xref: /freebsd/sys/dev/ath/if_ath.c (revision 675be9115aae86ad6b3d877155d4fd7822892105)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  */
46 #include "opt_ah.h"
47 #include "opt_wlan.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysctl.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/kernel.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/errno.h>
60 #include <sys/callout.h>
61 #include <sys/bus.h>
62 #include <sys/endian.h>
63 #include <sys/kthread.h>
64 #include <sys/taskqueue.h>
65 #include <sys/priv.h>
66 #include <sys/module.h>
67 #include <sys/ktr.h>
68 #include <sys/smp.h>	/* for mp_ncpus */
69 
70 #include <machine/bus.h>
71 
72 #include <net/if.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75 #include <net/if_types.h>
76 #include <net/if_arp.h>
77 #include <net/ethernet.h>
78 #include <net/if_llc.h>
79 
80 #include <net80211/ieee80211_var.h>
81 #include <net80211/ieee80211_regdomain.h>
82 #ifdef IEEE80211_SUPPORT_SUPERG
83 #include <net80211/ieee80211_superg.h>
84 #endif
85 #ifdef IEEE80211_SUPPORT_TDMA
86 #include <net80211/ieee80211_tdma.h>
87 #endif
88 
89 #include <net/bpf.h>
90 
91 #ifdef INET
92 #include <netinet/in.h>
93 #include <netinet/if_ether.h>
94 #endif
95 
96 #include <dev/ath/if_athvar.h>
97 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
98 #include <dev/ath/ath_hal/ah_diagcodes.h>
99 
100 #include <dev/ath/if_ath_debug.h>
101 #include <dev/ath/if_ath_misc.h>
102 #include <dev/ath/if_ath_tx.h>
103 #include <dev/ath/if_ath_sysctl.h>
104 #include <dev/ath/if_ath_keycache.h>
105 #include <dev/ath/if_athdfs.h>
106 
107 #ifdef ATH_TX99_DIAG
108 #include <dev/ath/ath_tx99/ath_tx99.h>
109 #endif
110 
111 #define	ATH_KTR_INTR	KTR_SPARE4
112 #define	ATH_KTR_ERR	KTR_SPARE3
113 
114 /*
115  * ATH_BCBUF determines the number of vap's that can transmit
116  * beacons and also (currently) the number of vap's that can
117  * have unique mac addresses/bssid.  When staggering beacons
118  * 4 is probably a good max as otherwise the beacons become
119  * very closely spaced and there is limited time for cab q traffic
120  * to go out.  You can burst beacons instead but that is not good
121  * for stations in power save and at some point you really want
122  * another radio (and channel).
123  *
124  * The limit on the number of mac addresses is tied to our use of
125  * the U/L bit and tracking addresses in a byte; it would be
126  * worthwhile to allow more for applications like proxy sta.
127  */
128 CTASSERT(ATH_BCBUF <= 8);
129 
130 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
131 		    const char name[IFNAMSIZ], int unit, int opmode,
132 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
133 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
134 static void	ath_vap_delete(struct ieee80211vap *);
135 static void	ath_init(void *);
136 static void	ath_stop_locked(struct ifnet *);
137 static void	ath_stop(struct ifnet *);
138 static void	ath_start(struct ifnet *);
139 static int	ath_reset_vap(struct ieee80211vap *, u_long);
140 static int	ath_media_change(struct ifnet *);
141 static void	ath_watchdog(void *);
142 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
143 static void	ath_fatal_proc(void *, int);
144 static void	ath_bmiss_vap(struct ieee80211vap *);
145 static void	ath_bmiss_proc(void *, int);
146 static void	ath_key_update_begin(struct ieee80211vap *);
147 static void	ath_key_update_end(struct ieee80211vap *);
148 static void	ath_update_mcast(struct ifnet *);
149 static void	ath_update_promisc(struct ifnet *);
150 static void	ath_mode_init(struct ath_softc *);
151 static void	ath_setslottime(struct ath_softc *);
152 static void	ath_updateslot(struct ifnet *);
153 static int	ath_beaconq_setup(struct ath_hal *);
154 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
155 static void	ath_beacon_update(struct ieee80211vap *, int item);
156 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
157 static void	ath_beacon_proc(void *, int);
158 static struct ath_buf *ath_beacon_generate(struct ath_softc *,
159 			struct ieee80211vap *);
160 static void	ath_bstuck_proc(void *, int);
161 static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
162 static void	ath_beacon_free(struct ath_softc *);
163 static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
164 static void	ath_descdma_cleanup(struct ath_softc *sc,
165 			struct ath_descdma *, ath_bufhead *);
166 static int	ath_desc_alloc(struct ath_softc *);
167 static void	ath_desc_free(struct ath_softc *);
168 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
169 			const uint8_t [IEEE80211_ADDR_LEN]);
170 static void	ath_node_cleanup(struct ieee80211_node *);
171 static void	ath_node_free(struct ieee80211_node *);
172 static void	ath_node_getsignal(const struct ieee80211_node *,
173 			int8_t *, int8_t *);
174 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
175 static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
176 			int subtype, int rssi, int nf);
177 static void	ath_setdefantenna(struct ath_softc *, u_int);
178 static void	ath_rx_proc(struct ath_softc *sc, int);
179 static void	ath_rx_tasklet(void *, int);
180 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
181 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
182 static int	ath_tx_setup(struct ath_softc *, int, int);
183 static int	ath_wme_update(struct ieee80211com *);
184 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
185 static void	ath_tx_cleanup(struct ath_softc *);
186 static void	ath_tx_proc_q0(void *, int);
187 static void	ath_tx_proc_q0123(void *, int);
188 static void	ath_tx_proc(void *, int);
189 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
190 static void	ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type);
191 static void	ath_stoprecv(struct ath_softc *, int);
192 static int	ath_startrecv(struct ath_softc *);
193 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
194 static void	ath_scan_start(struct ieee80211com *);
195 static void	ath_scan_end(struct ieee80211com *);
196 static void	ath_set_channel(struct ieee80211com *);
197 static void	ath_calibrate(void *);
198 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
199 static void	ath_setup_stationkey(struct ieee80211_node *);
200 static void	ath_newassoc(struct ieee80211_node *, int);
201 static int	ath_setregdomain(struct ieee80211com *,
202 		    struct ieee80211_regdomain *, int,
203 		    struct ieee80211_channel []);
204 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
205 		    struct ieee80211_channel []);
206 static int	ath_getchannels(struct ath_softc *);
207 static void	ath_led_event(struct ath_softc *, int);
208 
209 static int	ath_rate_setup(struct ath_softc *, u_int mode);
210 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
211 
212 static void	ath_announce(struct ath_softc *);
213 
214 static void	ath_dfs_tasklet(void *, int);
215 
216 #ifdef IEEE80211_SUPPORT_TDMA
217 static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
218 		    u_int32_t bintval);
219 static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
220 		    const struct ieee80211_tdma_state *tdma);
221 static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
222 static void	ath_tdma_update(struct ieee80211_node *ni,
223 		    const struct ieee80211_tdma_param *tdma, int);
224 static void	ath_tdma_beacon_send(struct ath_softc *sc,
225 		    struct ieee80211vap *vap);
226 
227 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
228 #define	TDMA_LPF_LEN		6
229 #define	TDMA_DUMMY_MARKER	0x127
230 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
231 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
232 #define	TDMA_LPF(x, y, len) \
233     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
234 #define	TDMA_SAMPLE(x, y) do {					\
235 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
236 } while (0)
237 #define	TDMA_EP_RND(x,mul) \
238 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
239 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
240 #endif /* IEEE80211_SUPPORT_TDMA */
241 
242 SYSCTL_DECL(_hw_ath);
243 
244 /* XXX validate sysctl values */
245 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
246 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
247 	    0, "long chip calibration interval (secs)");
248 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
249 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
250 	    0, "short chip calibration interval (msecs)");
251 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
252 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
253 	    0, "reset chip calibration results (secs)");
254 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
255 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
256 	    0, "ANI calibration (msecs)");
257 
258 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
259 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
260 	    0, "rx buffers allocated");
261 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
262 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
263 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
264 	    0, "tx buffers allocated");
265 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
266 
267 static	int ath_bstuck_threshold = 4;		/* max missed beacons */
268 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
269 	    0, "max missed beacon xmits before chip reset");
270 
271 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
272 
273 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
274 #define	HAL_MODE_HT40 \
275 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
276 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
277 int
278 ath_attach(u_int16_t devid, struct ath_softc *sc)
279 {
280 	struct ifnet *ifp;
281 	struct ieee80211com *ic;
282 	struct ath_hal *ah = NULL;
283 	HAL_STATUS status;
284 	int error = 0, i;
285 	u_int wmodes;
286 	uint8_t macaddr[IEEE80211_ADDR_LEN];
287 
288 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
289 
290 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
291 	if (ifp == NULL) {
292 		device_printf(sc->sc_dev, "can not if_alloc()\n");
293 		error = ENOSPC;
294 		goto bad;
295 	}
296 	ic = ifp->if_l2com;
297 
298 	/* set these up early for if_printf use */
299 	if_initname(ifp, device_get_name(sc->sc_dev),
300 		device_get_unit(sc->sc_dev));
301 
302 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, sc->sc_eepromdata, &status);
303 	if (ah == NULL) {
304 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
305 			status);
306 		error = ENXIO;
307 		goto bad;
308 	}
309 	sc->sc_ah = ah;
310 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
311 #ifdef	ATH_DEBUG
312 	sc->sc_debug = ath_debug;
313 #endif
314 
315 	/*
316 	 * Check if the MAC has multi-rate retry support.
317 	 * We do this by trying to setup a fake extended
318 	 * descriptor.  MAC's that don't have support will
319 	 * return false w/o doing anything.  MAC's that do
320 	 * support it will return true w/o doing anything.
321 	 */
322 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
323 
324 	/*
325 	 * Check if the device has hardware counters for PHY
326 	 * errors.  If so we need to enable the MIB interrupt
327 	 * so we can act on stat triggers.
328 	 */
329 	if (ath_hal_hwphycounters(ah))
330 		sc->sc_needmib = 1;
331 
332 	/*
333 	 * Get the hardware key cache size.
334 	 */
335 	sc->sc_keymax = ath_hal_keycachesize(ah);
336 	if (sc->sc_keymax > ATH_KEYMAX) {
337 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
338 			ATH_KEYMAX, sc->sc_keymax);
339 		sc->sc_keymax = ATH_KEYMAX;
340 	}
341 	/*
342 	 * Reset the key cache since some parts do not
343 	 * reset the contents on initial power up.
344 	 */
345 	for (i = 0; i < sc->sc_keymax; i++)
346 		ath_hal_keyreset(ah, i);
347 
348 	/*
349 	 * Collect the default channel list.
350 	 */
351 	error = ath_getchannels(sc);
352 	if (error != 0)
353 		goto bad;
354 
355 	/*
356 	 * Setup rate tables for all potential media types.
357 	 */
358 	ath_rate_setup(sc, IEEE80211_MODE_11A);
359 	ath_rate_setup(sc, IEEE80211_MODE_11B);
360 	ath_rate_setup(sc, IEEE80211_MODE_11G);
361 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
362 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
363 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
364 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
365 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
366 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
367 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
368 
369 	/* NB: setup here so ath_rate_update is happy */
370 	ath_setcurmode(sc, IEEE80211_MODE_11A);
371 
372 	/*
373 	 * Allocate tx+rx descriptors and populate the lists.
374 	 */
375 	error = ath_desc_alloc(sc);
376 	if (error != 0) {
377 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
378 		goto bad;
379 	}
380 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
381 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
382 
383 	ATH_TXBUF_LOCK_INIT(sc);
384 
385 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
386 		taskqueue_thread_enqueue, &sc->sc_tq);
387 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
388 		"%s taskq", ifp->if_xname);
389 
390 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc);
391 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
392 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
393 
394 	/*
395 	 * Allocate hardware transmit queues: one queue for
396 	 * beacon frames and one data queue for each QoS
397 	 * priority.  Note that the hal handles resetting
398 	 * these queues at the needed time.
399 	 *
400 	 * XXX PS-Poll
401 	 */
402 	sc->sc_bhalq = ath_beaconq_setup(ah);
403 	if (sc->sc_bhalq == (u_int) -1) {
404 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
405 		error = EIO;
406 		goto bad2;
407 	}
408 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
409 	if (sc->sc_cabq == NULL) {
410 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
411 		error = EIO;
412 		goto bad2;
413 	}
414 	/* NB: insure BK queue is the lowest priority h/w queue */
415 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
416 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
417 			ieee80211_wme_acnames[WME_AC_BK]);
418 		error = EIO;
419 		goto bad2;
420 	}
421 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
422 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
423 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
424 		/*
425 		 * Not enough hardware tx queues to properly do WME;
426 		 * just punt and assign them all to the same h/w queue.
427 		 * We could do a better job of this if, for example,
428 		 * we allocate queues when we switch from station to
429 		 * AP mode.
430 		 */
431 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
432 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
433 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
434 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
435 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
436 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
437 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
438 	}
439 
440 	/*
441 	 * Special case certain configurations.  Note the
442 	 * CAB queue is handled by these specially so don't
443 	 * include them when checking the txq setup mask.
444 	 */
445 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
446 	case 0x01:
447 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
448 		break;
449 	case 0x0f:
450 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
451 		break;
452 	default:
453 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
454 		break;
455 	}
456 
457 	/*
458 	 * Setup rate control.  Some rate control modules
459 	 * call back to change the anntena state so expose
460 	 * the necessary entry points.
461 	 * XXX maybe belongs in struct ath_ratectrl?
462 	 */
463 	sc->sc_setdefantenna = ath_setdefantenna;
464 	sc->sc_rc = ath_rate_attach(sc);
465 	if (sc->sc_rc == NULL) {
466 		error = EIO;
467 		goto bad2;
468 	}
469 
470 	/* Attach DFS module */
471 	if (! ath_dfs_attach(sc)) {
472 		device_printf(sc->sc_dev, "%s: unable to attach DFS\n", __func__);
473 		error = EIO;
474 		goto bad2;
475 	}
476 
477 	/* Start DFS processing tasklet */
478 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
479 
480 	sc->sc_blinking = 0;
481 	sc->sc_ledstate = 1;
482 	sc->sc_ledon = 0;			/* low true */
483 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
484 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
485 	/*
486 	 * Auto-enable soft led processing for IBM cards and for
487 	 * 5211 minipci cards.  Users can also manually enable/disable
488 	 * support with a sysctl.
489 	 */
490 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
491 	if (sc->sc_softled) {
492 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
493 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
494 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
495 	}
496 
497 	ifp->if_softc = sc;
498 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
499 	ifp->if_start = ath_start;
500 	ifp->if_ioctl = ath_ioctl;
501 	ifp->if_init = ath_init;
502 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
503 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
504 	IFQ_SET_READY(&ifp->if_snd);
505 
506 	ic->ic_ifp = ifp;
507 	/* XXX not right but it's not used anywhere important */
508 	ic->ic_phytype = IEEE80211_T_OFDM;
509 	ic->ic_opmode = IEEE80211_M_STA;
510 	ic->ic_caps =
511 		  IEEE80211_C_STA		/* station mode */
512 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
513 		| IEEE80211_C_HOSTAP		/* hostap mode */
514 		| IEEE80211_C_MONITOR		/* monitor mode */
515 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
516 		| IEEE80211_C_WDS		/* 4-address traffic works */
517 		| IEEE80211_C_MBSS		/* mesh point link mode */
518 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
519 		| IEEE80211_C_SHSLOT		/* short slot time supported */
520 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
521 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
522 		| IEEE80211_C_TXFRAG		/* handle tx frags */
523 #ifdef	ATH_ENABLE_DFS
524 		| IEEE80211_C_DFS		/* Enable DFS radar detection */
525 #endif
526 		;
527 	/*
528 	 * Query the hal to figure out h/w crypto support.
529 	 */
530 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
531 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
532 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
533 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
534 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
535 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
536 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
537 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
538 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
539 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
540 		/*
541 		 * Check if h/w does the MIC and/or whether the
542 		 * separate key cache entries are required to
543 		 * handle both tx+rx MIC keys.
544 		 */
545 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
546 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
547 		/*
548 		 * If the h/w supports storing tx+rx MIC keys
549 		 * in one cache slot automatically enable use.
550 		 */
551 		if (ath_hal_hastkipsplit(ah) ||
552 		    !ath_hal_settkipsplit(ah, AH_FALSE))
553 			sc->sc_splitmic = 1;
554 		/*
555 		 * If the h/w can do TKIP MIC together with WME then
556 		 * we use it; otherwise we force the MIC to be done
557 		 * in software by the net80211 layer.
558 		 */
559 		if (ath_hal_haswmetkipmic(ah))
560 			sc->sc_wmetkipmic = 1;
561 	}
562 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
563 	/*
564 	 * Check for multicast key search support.
565 	 */
566 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
567 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
568 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
569 	}
570 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
571 	/*
572 	 * Mark key cache slots associated with global keys
573 	 * as in use.  If we knew TKIP was not to be used we
574 	 * could leave the +32, +64, and +32+64 slots free.
575 	 */
576 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
577 		setbit(sc->sc_keymap, i);
578 		setbit(sc->sc_keymap, i+64);
579 		if (sc->sc_splitmic) {
580 			setbit(sc->sc_keymap, i+32);
581 			setbit(sc->sc_keymap, i+32+64);
582 		}
583 	}
584 	/*
585 	 * TPC support can be done either with a global cap or
586 	 * per-packet support.  The latter is not available on
587 	 * all parts.  We're a bit pedantic here as all parts
588 	 * support a global cap.
589 	 */
590 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
591 		ic->ic_caps |= IEEE80211_C_TXPMGT;
592 
593 	/*
594 	 * Mark WME capability only if we have sufficient
595 	 * hardware queues to do proper priority scheduling.
596 	 */
597 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
598 		ic->ic_caps |= IEEE80211_C_WME;
599 	/*
600 	 * Check for misc other capabilities.
601 	 */
602 	if (ath_hal_hasbursting(ah))
603 		ic->ic_caps |= IEEE80211_C_BURST;
604 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
605 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
606 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
607 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
608 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
609 	if (ath_hal_hasfastframes(ah))
610 		ic->ic_caps |= IEEE80211_C_FF;
611 	wmodes = ath_hal_getwirelessmodes(ah);
612 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
613 		ic->ic_caps |= IEEE80211_C_TURBOP;
614 #ifdef IEEE80211_SUPPORT_TDMA
615 	if (ath_hal_macversion(ah) > 0x78) {
616 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
617 		ic->ic_tdma_update = ath_tdma_update;
618 	}
619 #endif
620 
621 	/*
622 	 * The if_ath 11n support is completely not ready for normal use.
623 	 * Enabling this option will likely break everything and everything.
624 	 * Don't think of doing that unless you know what you're doing.
625 	 */
626 
627 #ifdef	ATH_ENABLE_11N
628 	/*
629 	 * Query HT capabilities
630 	 */
631 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
632 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
633 		int rxs, txs;
634 
635 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
636 		ic->ic_htcaps = IEEE80211_HTC_HT		/* HT operation */
637 			    | IEEE80211_HTC_AMPDU		/* A-MPDU tx/rx */
638 			    | IEEE80211_HTC_AMSDU		/* A-MSDU tx/rx */
639 			    | IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
640 			    | IEEE80211_HTCAP_SMPS_OFF;		/* SM power save off */
641 			;
642 
643 		/*
644 		 * Enable short-GI for HT20 only if the hardware
645 		 * advertises support.
646 		 * Notably, anything earlier than the AR9287 doesn't.
647 		 */
648 		if ((ath_hal_getcapability(ah,
649 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
650 		    (wmodes & HAL_MODE_HT20)) {
651 			device_printf(sc->sc_dev,
652 			    "[HT] enabling short-GI in 20MHz mode\n");
653 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
654 		}
655 
656 		if (wmodes & HAL_MODE_HT40)
657 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
658 			    |  IEEE80211_HTCAP_SHORTGI40;
659 
660 		/*
661 		 * rx/tx stream is not currently used anywhere; it needs to be taken
662 		 * into account when negotiating which MCS rates it'll receive and
663 		 * what MCS rates are available for TX.
664 		 */
665 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &rxs);
666 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &txs);
667 
668 		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
669 		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
670 
671 		ic->ic_txstream = txs;
672 		ic->ic_rxstream = rxs;
673 
674 		device_printf(sc->sc_dev, "[HT] %d RX streams; %d TX streams\n", rxs, txs);
675 	}
676 #endif
677 
678 	/*
679 	 * Check if the hardware requires PCI register serialisation.
680 	 * Some of the Owl based MACs require this.
681 	 */
682 	if (mp_ncpus > 1 &&
683 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
684 	     0, NULL) == HAL_OK) {
685 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
686 		device_printf(sc->sc_dev, "Enabling register serialisation\n");
687 	}
688 
689 	/*
690 	 * Indicate we need the 802.11 header padded to a
691 	 * 32-bit boundary for 4-address and QoS frames.
692 	 */
693 	ic->ic_flags |= IEEE80211_F_DATAPAD;
694 
695 	/*
696 	 * Query the hal about antenna support.
697 	 */
698 	sc->sc_defant = ath_hal_getdefantenna(ah);
699 
700 	/*
701 	 * Not all chips have the VEOL support we want to
702 	 * use with IBSS beacons; check here for it.
703 	 */
704 	sc->sc_hasveol = ath_hal_hasveol(ah);
705 
706 	/* get mac address from hardware */
707 	ath_hal_getmac(ah, macaddr);
708 	if (sc->sc_hasbmask)
709 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
710 
711 	/* NB: used to size node table key mapping array */
712 	ic->ic_max_keyix = sc->sc_keymax;
713 	/* call MI attach routine. */
714 	ieee80211_ifattach(ic, macaddr);
715 	ic->ic_setregdomain = ath_setregdomain;
716 	ic->ic_getradiocaps = ath_getradiocaps;
717 	sc->sc_opmode = HAL_M_STA;
718 
719 	/* override default methods */
720 	ic->ic_newassoc = ath_newassoc;
721 	ic->ic_updateslot = ath_updateslot;
722 	ic->ic_wme.wme_update = ath_wme_update;
723 	ic->ic_vap_create = ath_vap_create;
724 	ic->ic_vap_delete = ath_vap_delete;
725 	ic->ic_raw_xmit = ath_raw_xmit;
726 	ic->ic_update_mcast = ath_update_mcast;
727 	ic->ic_update_promisc = ath_update_promisc;
728 	ic->ic_node_alloc = ath_node_alloc;
729 	sc->sc_node_free = ic->ic_node_free;
730 	ic->ic_node_free = ath_node_free;
731 	sc->sc_node_cleanup = ic->ic_node_cleanup;
732 	ic->ic_node_cleanup = ath_node_cleanup;
733 	ic->ic_node_getsignal = ath_node_getsignal;
734 	ic->ic_scan_start = ath_scan_start;
735 	ic->ic_scan_end = ath_scan_end;
736 	ic->ic_set_channel = ath_set_channel;
737 
738 	/* 802.11n specific - but just override anyway */
739 	sc->sc_addba_request = ic->ic_addba_request;
740 	sc->sc_addba_response = ic->ic_addba_response;
741 	sc->sc_addba_stop = ic->ic_addba_stop;
742 	sc->sc_bar_response = ic->ic_bar_response;
743 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
744 
745 	ic->ic_addba_request = ath_addba_request;
746 	ic->ic_addba_response = ath_addba_response;
747 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
748 	ic->ic_addba_stop = ath_addba_stop;
749 	ic->ic_bar_response = ath_bar_response;
750 
751 	ieee80211_radiotap_attach(ic,
752 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
753 		ATH_TX_RADIOTAP_PRESENT,
754 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
755 		ATH_RX_RADIOTAP_PRESENT);
756 
757 	/*
758 	 * Setup dynamic sysctl's now that country code and
759 	 * regdomain are available from the hal.
760 	 */
761 	ath_sysctlattach(sc);
762 	ath_sysctl_stats_attach(sc);
763 	ath_sysctl_hal_attach(sc);
764 
765 	if (bootverbose)
766 		ieee80211_announce(ic);
767 	ath_announce(sc);
768 	return 0;
769 bad2:
770 	ath_tx_cleanup(sc);
771 	ath_desc_free(sc);
772 bad:
773 	if (ah)
774 		ath_hal_detach(ah);
775 	if (ifp != NULL)
776 		if_free(ifp);
777 	sc->sc_invalid = 1;
778 	return error;
779 }
780 
781 int
782 ath_detach(struct ath_softc *sc)
783 {
784 	struct ifnet *ifp = sc->sc_ifp;
785 
786 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
787 		__func__, ifp->if_flags);
788 
789 	/*
790 	 * NB: the order of these is important:
791 	 * o stop the chip so no more interrupts will fire
792 	 * o call the 802.11 layer before detaching the hal to
793 	 *   insure callbacks into the driver to delete global
794 	 *   key cache entries can be handled
795 	 * o free the taskqueue which drains any pending tasks
796 	 * o reclaim the tx queue data structures after calling
797 	 *   the 802.11 layer as we'll get called back to reclaim
798 	 *   node state and potentially want to use them
799 	 * o to cleanup the tx queues the hal is called, so detach
800 	 *   it last
801 	 * Other than that, it's straightforward...
802 	 */
803 	ath_stop(ifp);
804 	ieee80211_ifdetach(ifp->if_l2com);
805 	taskqueue_free(sc->sc_tq);
806 #ifdef ATH_TX99_DIAG
807 	if (sc->sc_tx99 != NULL)
808 		sc->sc_tx99->detach(sc->sc_tx99);
809 #endif
810 	ath_rate_detach(sc->sc_rc);
811 
812 	ath_dfs_detach(sc);
813 	ath_desc_free(sc);
814 	ath_tx_cleanup(sc);
815 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
816 	if_free(ifp);
817 
818 	return 0;
819 }
820 
821 /*
822  * MAC address handling for multiple BSS on the same radio.
823  * The first vap uses the MAC address from the EEPROM.  For
824  * subsequent vap's we set the U/L bit (bit 1) in the MAC
825  * address and use the next six bits as an index.
826  */
827 static void
828 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
829 {
830 	int i;
831 
832 	if (clone && sc->sc_hasbmask) {
833 		/* NB: we only do this if h/w supports multiple bssid */
834 		for (i = 0; i < 8; i++)
835 			if ((sc->sc_bssidmask & (1<<i)) == 0)
836 				break;
837 		if (i != 0)
838 			mac[0] |= (i << 2)|0x2;
839 	} else
840 		i = 0;
841 	sc->sc_bssidmask |= 1<<i;
842 	sc->sc_hwbssidmask[0] &= ~mac[0];
843 	if (i == 0)
844 		sc->sc_nbssid0++;
845 }
846 
847 static void
848 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
849 {
850 	int i = mac[0] >> 2;
851 	uint8_t mask;
852 
853 	if (i != 0 || --sc->sc_nbssid0 == 0) {
854 		sc->sc_bssidmask &= ~(1<<i);
855 		/* recalculate bssid mask from remaining addresses */
856 		mask = 0xff;
857 		for (i = 1; i < 8; i++)
858 			if (sc->sc_bssidmask & (1<<i))
859 				mask &= ~((i<<2)|0x2);
860 		sc->sc_hwbssidmask[0] |= mask;
861 	}
862 }
863 
864 /*
865  * Assign a beacon xmit slot.  We try to space out
866  * assignments so when beacons are staggered the
867  * traffic coming out of the cab q has maximal time
868  * to go out before the next beacon is scheduled.
869  */
870 static int
871 assign_bslot(struct ath_softc *sc)
872 {
873 	u_int slot, free;
874 
875 	free = 0;
876 	for (slot = 0; slot < ATH_BCBUF; slot++)
877 		if (sc->sc_bslot[slot] == NULL) {
878 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
879 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
880 				return slot;
881 			free = slot;
882 			/* NB: keep looking for a double slot */
883 		}
884 	return free;
885 }
886 
887 static struct ieee80211vap *
888 ath_vap_create(struct ieee80211com *ic,
889 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
890 	const uint8_t bssid[IEEE80211_ADDR_LEN],
891 	const uint8_t mac0[IEEE80211_ADDR_LEN])
892 {
893 	struct ath_softc *sc = ic->ic_ifp->if_softc;
894 	struct ath_vap *avp;
895 	struct ieee80211vap *vap;
896 	uint8_t mac[IEEE80211_ADDR_LEN];
897 	int ic_opmode, needbeacon, error;
898 
899 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
900 	    M_80211_VAP, M_WAITOK | M_ZERO);
901 	needbeacon = 0;
902 	IEEE80211_ADDR_COPY(mac, mac0);
903 
904 	ATH_LOCK(sc);
905 	ic_opmode = opmode;		/* default to opmode of new vap */
906 	switch (opmode) {
907 	case IEEE80211_M_STA:
908 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
909 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
910 			goto bad;
911 		}
912 		if (sc->sc_nvaps) {
913 			/*
914 			 * With multiple vaps we must fall back
915 			 * to s/w beacon miss handling.
916 			 */
917 			flags |= IEEE80211_CLONE_NOBEACONS;
918 		}
919 		if (flags & IEEE80211_CLONE_NOBEACONS) {
920 			/*
921 			 * Station mode w/o beacons are implemented w/ AP mode.
922 			 */
923 			ic_opmode = IEEE80211_M_HOSTAP;
924 		}
925 		break;
926 	case IEEE80211_M_IBSS:
927 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
928 			device_printf(sc->sc_dev,
929 			    "only 1 ibss vap supported\n");
930 			goto bad;
931 		}
932 		needbeacon = 1;
933 		break;
934 	case IEEE80211_M_AHDEMO:
935 #ifdef IEEE80211_SUPPORT_TDMA
936 		if (flags & IEEE80211_CLONE_TDMA) {
937 			if (sc->sc_nvaps != 0) {
938 				device_printf(sc->sc_dev,
939 				    "only 1 tdma vap supported\n");
940 				goto bad;
941 			}
942 			needbeacon = 1;
943 			flags |= IEEE80211_CLONE_NOBEACONS;
944 		}
945 		/* fall thru... */
946 #endif
947 	case IEEE80211_M_MONITOR:
948 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
949 			/*
950 			 * Adopt existing mode.  Adding a monitor or ahdemo
951 			 * vap to an existing configuration is of dubious
952 			 * value but should be ok.
953 			 */
954 			/* XXX not right for monitor mode */
955 			ic_opmode = ic->ic_opmode;
956 		}
957 		break;
958 	case IEEE80211_M_HOSTAP:
959 	case IEEE80211_M_MBSS:
960 		needbeacon = 1;
961 		break;
962 	case IEEE80211_M_WDS:
963 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
964 			device_printf(sc->sc_dev,
965 			    "wds not supported in sta mode\n");
966 			goto bad;
967 		}
968 		/*
969 		 * Silently remove any request for a unique
970 		 * bssid; WDS vap's always share the local
971 		 * mac address.
972 		 */
973 		flags &= ~IEEE80211_CLONE_BSSID;
974 		if (sc->sc_nvaps == 0)
975 			ic_opmode = IEEE80211_M_HOSTAP;
976 		else
977 			ic_opmode = ic->ic_opmode;
978 		break;
979 	default:
980 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
981 		goto bad;
982 	}
983 	/*
984 	 * Check that a beacon buffer is available; the code below assumes it.
985 	 */
986 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
987 		device_printf(sc->sc_dev, "no beacon buffer available\n");
988 		goto bad;
989 	}
990 
991 	/* STA, AHDEMO? */
992 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
993 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
994 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
995 	}
996 
997 	vap = &avp->av_vap;
998 	/* XXX can't hold mutex across if_alloc */
999 	ATH_UNLOCK(sc);
1000 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1001 	    bssid, mac);
1002 	ATH_LOCK(sc);
1003 	if (error != 0) {
1004 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1005 		    __func__, error);
1006 		goto bad2;
1007 	}
1008 
1009 	/* h/w crypto support */
1010 	vap->iv_key_alloc = ath_key_alloc;
1011 	vap->iv_key_delete = ath_key_delete;
1012 	vap->iv_key_set = ath_key_set;
1013 	vap->iv_key_update_begin = ath_key_update_begin;
1014 	vap->iv_key_update_end = ath_key_update_end;
1015 
1016 	/* override various methods */
1017 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1018 	vap->iv_recv_mgmt = ath_recv_mgmt;
1019 	vap->iv_reset = ath_reset_vap;
1020 	vap->iv_update_beacon = ath_beacon_update;
1021 	avp->av_newstate = vap->iv_newstate;
1022 	vap->iv_newstate = ath_newstate;
1023 	avp->av_bmiss = vap->iv_bmiss;
1024 	vap->iv_bmiss = ath_bmiss_vap;
1025 
1026 	/* Set default parameters */
1027 
1028 	/*
1029 	 * Anything earlier than some AR9300 series MACs don't
1030 	 * support a smaller MPDU density.
1031 	 */
1032 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1033 	/*
1034 	 * All NICs can handle the maximum size, however
1035 	 * AR5416 based MACs can only TX aggregates w/ RTS
1036 	 * protection when the total aggregate size is <= 8k.
1037 	 * However, for now that's enforced by the TX path.
1038 	 */
1039 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1040 
1041 	avp->av_bslot = -1;
1042 	if (needbeacon) {
1043 		/*
1044 		 * Allocate beacon state and setup the q for buffered
1045 		 * multicast frames.  We know a beacon buffer is
1046 		 * available because we checked above.
1047 		 */
1048 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1049 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1050 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1051 			/*
1052 			 * Assign the vap to a beacon xmit slot.  As above
1053 			 * this cannot fail to find a free one.
1054 			 */
1055 			avp->av_bslot = assign_bslot(sc);
1056 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1057 			    ("beacon slot %u not empty", avp->av_bslot));
1058 			sc->sc_bslot[avp->av_bslot] = vap;
1059 			sc->sc_nbcnvaps++;
1060 		}
1061 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1062 			/*
1063 			 * Multple vaps are to transmit beacons and we
1064 			 * have h/w support for TSF adjusting; enable
1065 			 * use of staggered beacons.
1066 			 */
1067 			sc->sc_stagbeacons = 1;
1068 		}
1069 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1070 	}
1071 
1072 	ic->ic_opmode = ic_opmode;
1073 	if (opmode != IEEE80211_M_WDS) {
1074 		sc->sc_nvaps++;
1075 		if (opmode == IEEE80211_M_STA)
1076 			sc->sc_nstavaps++;
1077 		if (opmode == IEEE80211_M_MBSS)
1078 			sc->sc_nmeshvaps++;
1079 	}
1080 	switch (ic_opmode) {
1081 	case IEEE80211_M_IBSS:
1082 		sc->sc_opmode = HAL_M_IBSS;
1083 		break;
1084 	case IEEE80211_M_STA:
1085 		sc->sc_opmode = HAL_M_STA;
1086 		break;
1087 	case IEEE80211_M_AHDEMO:
1088 #ifdef IEEE80211_SUPPORT_TDMA
1089 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1090 			sc->sc_tdma = 1;
1091 			/* NB: disable tsf adjust */
1092 			sc->sc_stagbeacons = 0;
1093 		}
1094 		/*
1095 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1096 		 * just ap mode.
1097 		 */
1098 		/* fall thru... */
1099 #endif
1100 	case IEEE80211_M_HOSTAP:
1101 	case IEEE80211_M_MBSS:
1102 		sc->sc_opmode = HAL_M_HOSTAP;
1103 		break;
1104 	case IEEE80211_M_MONITOR:
1105 		sc->sc_opmode = HAL_M_MONITOR;
1106 		break;
1107 	default:
1108 		/* XXX should not happen */
1109 		break;
1110 	}
1111 	if (sc->sc_hastsfadd) {
1112 		/*
1113 		 * Configure whether or not TSF adjust should be done.
1114 		 */
1115 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1116 	}
1117 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1118 		/*
1119 		 * Enable s/w beacon miss handling.
1120 		 */
1121 		sc->sc_swbmiss = 1;
1122 	}
1123 	ATH_UNLOCK(sc);
1124 
1125 	/* complete setup */
1126 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1127 	return vap;
1128 bad2:
1129 	reclaim_address(sc, mac);
1130 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1131 bad:
1132 	free(avp, M_80211_VAP);
1133 	ATH_UNLOCK(sc);
1134 	return NULL;
1135 }
1136 
1137 static void
1138 ath_vap_delete(struct ieee80211vap *vap)
1139 {
1140 	struct ieee80211com *ic = vap->iv_ic;
1141 	struct ifnet *ifp = ic->ic_ifp;
1142 	struct ath_softc *sc = ifp->if_softc;
1143 	struct ath_hal *ah = sc->sc_ah;
1144 	struct ath_vap *avp = ATH_VAP(vap);
1145 
1146 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1147 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1148 		/*
1149 		 * Quiesce the hardware while we remove the vap.  In
1150 		 * particular we need to reclaim all references to
1151 		 * the vap state by any frames pending on the tx queues.
1152 		 */
1153 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1154 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1155 		/* XXX Do all frames from all vaps/nodes need draining here? */
1156 		ath_stoprecv(sc, 1);		/* stop recv side */
1157 	}
1158 
1159 	ieee80211_vap_detach(vap);
1160 
1161 	/*
1162 	 * XXX Danger Will Robinson! Danger!
1163 	 *
1164 	 * Because ieee80211_vap_detach() can queue a frame (the station
1165 	 * diassociate message?) after we've drained the TXQ and
1166 	 * flushed the software TXQ, we will end up with a frame queued
1167 	 * to a node whose vap is about to be freed.
1168 	 *
1169 	 * To work around this, flush the hardware/software again.
1170 	 * This may be racy - the ath task may be running and the packet
1171 	 * may be being scheduled between sw->hw txq. Tsk.
1172 	 *
1173 	 * TODO: figure out why a new node gets allocated somewhere around
1174 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1175 	 * call!)
1176 	 */
1177 
1178 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1179 
1180 	ATH_LOCK(sc);
1181 	/*
1182 	 * Reclaim beacon state.  Note this must be done before
1183 	 * the vap instance is reclaimed as we may have a reference
1184 	 * to it in the buffer for the beacon frame.
1185 	 */
1186 	if (avp->av_bcbuf != NULL) {
1187 		if (avp->av_bslot != -1) {
1188 			sc->sc_bslot[avp->av_bslot] = NULL;
1189 			sc->sc_nbcnvaps--;
1190 		}
1191 		ath_beacon_return(sc, avp->av_bcbuf);
1192 		avp->av_bcbuf = NULL;
1193 		if (sc->sc_nbcnvaps == 0) {
1194 			sc->sc_stagbeacons = 0;
1195 			if (sc->sc_hastsfadd)
1196 				ath_hal_settsfadjust(sc->sc_ah, 0);
1197 		}
1198 		/*
1199 		 * Reclaim any pending mcast frames for the vap.
1200 		 */
1201 		ath_tx_draintxq(sc, &avp->av_mcastq);
1202 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1203 	}
1204 	/*
1205 	 * Update bookkeeping.
1206 	 */
1207 	if (vap->iv_opmode == IEEE80211_M_STA) {
1208 		sc->sc_nstavaps--;
1209 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1210 			sc->sc_swbmiss = 0;
1211 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1212 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1213 		reclaim_address(sc, vap->iv_myaddr);
1214 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1215 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1216 			sc->sc_nmeshvaps--;
1217 	}
1218 	if (vap->iv_opmode != IEEE80211_M_WDS)
1219 		sc->sc_nvaps--;
1220 #ifdef IEEE80211_SUPPORT_TDMA
1221 	/* TDMA operation ceases when the last vap is destroyed */
1222 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1223 		sc->sc_tdma = 0;
1224 		sc->sc_swbmiss = 0;
1225 	}
1226 #endif
1227 	free(avp, M_80211_VAP);
1228 
1229 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1230 		/*
1231 		 * Restart rx+tx machines if still running (RUNNING will
1232 		 * be reset if we just destroyed the last vap).
1233 		 */
1234 		if (ath_startrecv(sc) != 0)
1235 			if_printf(ifp, "%s: unable to restart recv logic\n",
1236 			    __func__);
1237 		if (sc->sc_beacons) {		/* restart beacons */
1238 #ifdef IEEE80211_SUPPORT_TDMA
1239 			if (sc->sc_tdma)
1240 				ath_tdma_config(sc, NULL);
1241 			else
1242 #endif
1243 				ath_beacon_config(sc, NULL);
1244 		}
1245 		ath_hal_intrset(ah, sc->sc_imask);
1246 	}
1247 	ATH_UNLOCK(sc);
1248 }
1249 
1250 void
1251 ath_suspend(struct ath_softc *sc)
1252 {
1253 	struct ifnet *ifp = sc->sc_ifp;
1254 	struct ieee80211com *ic = ifp->if_l2com;
1255 
1256 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1257 		__func__, ifp->if_flags);
1258 
1259 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1260 	if (ic->ic_opmode == IEEE80211_M_STA)
1261 		ath_stop(ifp);
1262 	else
1263 		ieee80211_suspend_all(ic);
1264 	/*
1265 	 * NB: don't worry about putting the chip in low power
1266 	 * mode; pci will power off our socket on suspend and
1267 	 * CardBus detaches the device.
1268 	 */
1269 }
1270 
1271 /*
1272  * Reset the key cache since some parts do not reset the
1273  * contents on resume.  First we clear all entries, then
1274  * re-load keys that the 802.11 layer assumes are setup
1275  * in h/w.
1276  */
1277 static void
1278 ath_reset_keycache(struct ath_softc *sc)
1279 {
1280 	struct ifnet *ifp = sc->sc_ifp;
1281 	struct ieee80211com *ic = ifp->if_l2com;
1282 	struct ath_hal *ah = sc->sc_ah;
1283 	int i;
1284 
1285 	for (i = 0; i < sc->sc_keymax; i++)
1286 		ath_hal_keyreset(ah, i);
1287 	ieee80211_crypto_reload_keys(ic);
1288 }
1289 
1290 void
1291 ath_resume(struct ath_softc *sc)
1292 {
1293 	struct ifnet *ifp = sc->sc_ifp;
1294 	struct ieee80211com *ic = ifp->if_l2com;
1295 	struct ath_hal *ah = sc->sc_ah;
1296 	HAL_STATUS status;
1297 
1298 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1299 		__func__, ifp->if_flags);
1300 
1301 	/*
1302 	 * Must reset the chip before we reload the
1303 	 * keycache as we were powered down on suspend.
1304 	 */
1305 	ath_hal_reset(ah, sc->sc_opmode,
1306 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1307 	    AH_FALSE, &status);
1308 	ath_reset_keycache(sc);
1309 
1310 	/* Let DFS at it in case it's a DFS channel */
1311 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1312 
1313 	if (sc->sc_resume_up) {
1314 		if (ic->ic_opmode == IEEE80211_M_STA) {
1315 			ath_init(sc);
1316 			/*
1317 			 * Program the beacon registers using the last rx'd
1318 			 * beacon frame and enable sync on the next beacon
1319 			 * we see.  This should handle the case where we
1320 			 * wakeup and find the same AP and also the case where
1321 			 * we wakeup and need to roam.  For the latter we
1322 			 * should get bmiss events that trigger a roam.
1323 			 */
1324 			ath_beacon_config(sc, NULL);
1325 			sc->sc_syncbeacon = 1;
1326 		} else
1327 			ieee80211_resume_all(ic);
1328 	}
1329 	if (sc->sc_softled) {
1330 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1331 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1332 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1333 	}
1334 
1335 	/* XXX beacons ? */
1336 }
1337 
1338 void
1339 ath_shutdown(struct ath_softc *sc)
1340 {
1341 	struct ifnet *ifp = sc->sc_ifp;
1342 
1343 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1344 		__func__, ifp->if_flags);
1345 
1346 	ath_stop(ifp);
1347 	/* NB: no point powering down chip as we're about to reboot */
1348 }
1349 
1350 /*
1351  * Interrupt handler.  Most of the actual processing is deferred.
1352  */
1353 void
1354 ath_intr(void *arg)
1355 {
1356 	struct ath_softc *sc = arg;
1357 	struct ifnet *ifp = sc->sc_ifp;
1358 	struct ath_hal *ah = sc->sc_ah;
1359 	HAL_INT status = 0;
1360 	uint32_t txqs;
1361 
1362 	/*
1363 	 * If we're inside a reset path, just print a warning and
1364 	 * clear the ISR. The reset routine will finish it for us.
1365 	 */
1366 	ATH_PCU_LOCK(sc);
1367 	if (sc->sc_inreset_cnt) {
1368 		HAL_INT status;
1369 		ath_hal_getisr(ah, &status);	/* clear ISR */
1370 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1371 		DPRINTF(sc, ATH_DEBUG_ANY,
1372 		    "%s: in reset, ignoring: status=0x%x\n",
1373 		    __func__, status);
1374 		ATH_PCU_UNLOCK(sc);
1375 		return;
1376 	}
1377 
1378 	if (sc->sc_invalid) {
1379 		/*
1380 		 * The hardware is not ready/present, don't touch anything.
1381 		 * Note this can happen early on if the IRQ is shared.
1382 		 */
1383 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1384 		ATH_PCU_UNLOCK(sc);
1385 		return;
1386 	}
1387 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1388 		ATH_PCU_UNLOCK(sc);
1389 		return;
1390 	}
1391 
1392 	if ((ifp->if_flags & IFF_UP) == 0 ||
1393 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1394 		HAL_INT status;
1395 
1396 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1397 			__func__, ifp->if_flags);
1398 		ath_hal_getisr(ah, &status);	/* clear ISR */
1399 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1400 		ATH_PCU_UNLOCK(sc);
1401 		return;
1402 	}
1403 
1404 	/*
1405 	 * Figure out the reason(s) for the interrupt.  Note
1406 	 * that the hal returns a pseudo-ISR that may include
1407 	 * bits we haven't explicitly enabled so we mask the
1408 	 * value to insure we only process bits we requested.
1409 	 */
1410 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1411 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1412 	CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status);
1413 #ifdef	ATH_KTR_INTR_DEBUG
1414 	CTR5(ATH_KTR_INTR,
1415 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1416 	    ah->ah_intrstate[0],
1417 	    ah->ah_intrstate[1],
1418 	    ah->ah_intrstate[2],
1419 	    ah->ah_intrstate[3],
1420 	    ah->ah_intrstate[6]);
1421 #endif
1422 	status &= sc->sc_imask;			/* discard unasked for bits */
1423 
1424 	/* Short-circuit un-handled interrupts */
1425 	if (status == 0x0) {
1426 		ATH_PCU_UNLOCK(sc);
1427 		return;
1428 	}
1429 
1430 	/*
1431 	 * Take a note that we're inside the interrupt handler, so
1432 	 * the reset routines know to wait.
1433 	 */
1434 	sc->sc_intr_cnt++;
1435 	ATH_PCU_UNLOCK(sc);
1436 
1437 	/*
1438 	 * Handle the interrupt. We won't run concurrent with the reset
1439 	 * or channel change routines as they'll wait for sc_intr_cnt
1440 	 * to be 0 before continuing.
1441 	 */
1442 	if (status & HAL_INT_FATAL) {
1443 		sc->sc_stats.ast_hardware++;
1444 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1445 		ath_fatal_proc(sc, 0);
1446 	} else {
1447 		if (status & HAL_INT_SWBA) {
1448 			/*
1449 			 * Software beacon alert--time to send a beacon.
1450 			 * Handle beacon transmission directly; deferring
1451 			 * this is too slow to meet timing constraints
1452 			 * under load.
1453 			 */
1454 #ifdef IEEE80211_SUPPORT_TDMA
1455 			if (sc->sc_tdma) {
1456 				if (sc->sc_tdmaswba == 0) {
1457 					struct ieee80211com *ic = ifp->if_l2com;
1458 					struct ieee80211vap *vap =
1459 					    TAILQ_FIRST(&ic->ic_vaps);
1460 					ath_tdma_beacon_send(sc, vap);
1461 					sc->sc_tdmaswba =
1462 					    vap->iv_tdma->tdma_bintval;
1463 				} else
1464 					sc->sc_tdmaswba--;
1465 			} else
1466 #endif
1467 			{
1468 				ath_beacon_proc(sc, 0);
1469 #ifdef IEEE80211_SUPPORT_SUPERG
1470 				/*
1471 				 * Schedule the rx taskq in case there's no
1472 				 * traffic so any frames held on the staging
1473 				 * queue are aged and potentially flushed.
1474 				 */
1475 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1476 #endif
1477 			}
1478 		}
1479 		if (status & HAL_INT_RXEOL) {
1480 			int imask;
1481 			CTR0(ATH_KTR_ERR, "ath_intr: RXEOL");
1482 			ATH_PCU_LOCK(sc);
1483 			/*
1484 			 * NB: the hardware should re-read the link when
1485 			 *     RXE bit is written, but it doesn't work at
1486 			 *     least on older hardware revs.
1487 			 */
1488 			sc->sc_stats.ast_rxeol++;
1489 			/*
1490 			 * Disable RXEOL/RXORN - prevent an interrupt
1491 			 * storm until the PCU logic can be reset.
1492 			 * In case the interface is reset some other
1493 			 * way before "sc_kickpcu" is called, don't
1494 			 * modify sc_imask - that way if it is reset
1495 			 * by a call to ath_reset() somehow, the
1496 			 * interrupt mask will be correctly reprogrammed.
1497 			 */
1498 			imask = sc->sc_imask;
1499 			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1500 			ath_hal_intrset(ah, imask);
1501 			/*
1502 			 * Only blank sc_rxlink if we've not yet kicked
1503 			 * the PCU.
1504 			 *
1505 			 * This isn't entirely correct - the correct solution
1506 			 * would be to have a PCU lock and engage that for
1507 			 * the duration of the PCU fiddling; which would include
1508 			 * running the RX process. Otherwise we could end up
1509 			 * messing up the RX descriptor chain and making the
1510 			 * RX desc list much shorter.
1511 			 */
1512 			if (! sc->sc_kickpcu)
1513 				sc->sc_rxlink = NULL;
1514 			sc->sc_kickpcu = 1;
1515 			/*
1516 			 * Enqueue an RX proc, to handled whatever
1517 			 * is in the RX queue.
1518 			 * This will then kick the PCU.
1519 			 */
1520 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1521 			ATH_PCU_UNLOCK(sc);
1522 		}
1523 		if (status & HAL_INT_TXURN) {
1524 			sc->sc_stats.ast_txurn++;
1525 			/* bump tx trigger level */
1526 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1527 		}
1528 		if (status & HAL_INT_RX) {
1529 			sc->sc_stats.ast_rx_intr++;
1530 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1531 		}
1532 		if (status & HAL_INT_TX) {
1533 			sc->sc_stats.ast_tx_intr++;
1534 			/*
1535 			 * Grab all the currently set bits in the HAL txq bitmap
1536 			 * and blank them. This is the only place we should be
1537 			 * doing this.
1538 			 */
1539 			ATH_PCU_LOCK(sc);
1540 			txqs = 0xffffffff;
1541 			ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1542 			sc->sc_txq_active |= txqs;
1543 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1544 			ATH_PCU_UNLOCK(sc);
1545 		}
1546 		if (status & HAL_INT_BMISS) {
1547 			sc->sc_stats.ast_bmiss++;
1548 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1549 		}
1550 		if (status & HAL_INT_GTT)
1551 			sc->sc_stats.ast_tx_timeout++;
1552 		if (status & HAL_INT_CST)
1553 			sc->sc_stats.ast_tx_cst++;
1554 		if (status & HAL_INT_MIB) {
1555 			sc->sc_stats.ast_mib++;
1556 			ATH_PCU_LOCK(sc);
1557 			/*
1558 			 * Disable interrupts until we service the MIB
1559 			 * interrupt; otherwise it will continue to fire.
1560 			 */
1561 			ath_hal_intrset(ah, 0);
1562 			/*
1563 			 * Let the hal handle the event.  We assume it will
1564 			 * clear whatever condition caused the interrupt.
1565 			 */
1566 			ath_hal_mibevent(ah, &sc->sc_halstats);
1567 			/*
1568 			 * Don't reset the interrupt if we've just
1569 			 * kicked the PCU, or we may get a nested
1570 			 * RXEOL before the rxproc has had a chance
1571 			 * to run.
1572 			 */
1573 			if (sc->sc_kickpcu == 0)
1574 				ath_hal_intrset(ah, sc->sc_imask);
1575 			ATH_PCU_UNLOCK(sc);
1576 		}
1577 		if (status & HAL_INT_RXORN) {
1578 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1579 			CTR0(ATH_KTR_ERR, "ath_intr: RXORN");
1580 			sc->sc_stats.ast_rxorn++;
1581 		}
1582 	}
1583 	ATH_PCU_LOCK(sc);
1584 	sc->sc_intr_cnt--;
1585 	ATH_PCU_UNLOCK(sc);
1586 }
1587 
1588 static void
1589 ath_fatal_proc(void *arg, int pending)
1590 {
1591 	struct ath_softc *sc = arg;
1592 	struct ifnet *ifp = sc->sc_ifp;
1593 	u_int32_t *state;
1594 	u_int32_t len;
1595 	void *sp;
1596 
1597 	if_printf(ifp, "hardware error; resetting\n");
1598 	/*
1599 	 * Fatal errors are unrecoverable.  Typically these
1600 	 * are caused by DMA errors.  Collect h/w state from
1601 	 * the hal so we can diagnose what's going on.
1602 	 */
1603 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1604 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1605 		state = sp;
1606 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1607 		    state[0], state[1] , state[2], state[3],
1608 		    state[4], state[5]);
1609 	}
1610 	ath_reset(ifp, ATH_RESET_NOLOSS);
1611 }
1612 
1613 static void
1614 ath_bmiss_vap(struct ieee80211vap *vap)
1615 {
1616 	/*
1617 	 * Workaround phantom bmiss interrupts by sanity-checking
1618 	 * the time of our last rx'd frame.  If it is within the
1619 	 * beacon miss interval then ignore the interrupt.  If it's
1620 	 * truly a bmiss we'll get another interrupt soon and that'll
1621 	 * be dispatched up for processing.  Note this applies only
1622 	 * for h/w beacon miss events.
1623 	 */
1624 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1625 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1626 		struct ath_softc *sc = ifp->if_softc;
1627 		u_int64_t lastrx = sc->sc_lastrx;
1628 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1629 		u_int bmisstimeout =
1630 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1631 
1632 		DPRINTF(sc, ATH_DEBUG_BEACON,
1633 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1634 		    __func__, (unsigned long long) tsf,
1635 		    (unsigned long long)(tsf - lastrx),
1636 		    (unsigned long long) lastrx, bmisstimeout);
1637 
1638 		if (tsf - lastrx <= bmisstimeout) {
1639 			sc->sc_stats.ast_bmiss_phantom++;
1640 			return;
1641 		}
1642 	}
1643 	ATH_VAP(vap)->av_bmiss(vap);
1644 }
1645 
1646 static int
1647 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1648 {
1649 	uint32_t rsize;
1650 	void *sp;
1651 
1652 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1653 		return 0;
1654 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1655 	*hangs = *(uint32_t *)sp;
1656 	return 1;
1657 }
1658 
1659 static void
1660 ath_bmiss_proc(void *arg, int pending)
1661 {
1662 	struct ath_softc *sc = arg;
1663 	struct ifnet *ifp = sc->sc_ifp;
1664 	uint32_t hangs;
1665 
1666 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1667 
1668 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1669 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1670 		ath_reset(ifp, ATH_RESET_NOLOSS);
1671 	} else
1672 		ieee80211_beacon_miss(ifp->if_l2com);
1673 }
1674 
1675 /*
1676  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1677  * calcs together with WME.  If necessary disable the crypto
1678  * hardware and mark the 802.11 state so keys will be setup
1679  * with the MIC work done in software.
1680  */
1681 static void
1682 ath_settkipmic(struct ath_softc *sc)
1683 {
1684 	struct ifnet *ifp = sc->sc_ifp;
1685 	struct ieee80211com *ic = ifp->if_l2com;
1686 
1687 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1688 		if (ic->ic_flags & IEEE80211_F_WME) {
1689 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1690 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1691 		} else {
1692 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1693 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1694 		}
1695 	}
1696 }
1697 
1698 static void
1699 ath_init(void *arg)
1700 {
1701 	struct ath_softc *sc = (struct ath_softc *) arg;
1702 	struct ifnet *ifp = sc->sc_ifp;
1703 	struct ieee80211com *ic = ifp->if_l2com;
1704 	struct ath_hal *ah = sc->sc_ah;
1705 	HAL_STATUS status;
1706 
1707 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1708 		__func__, ifp->if_flags);
1709 
1710 	ATH_LOCK(sc);
1711 	/*
1712 	 * Stop anything previously setup.  This is safe
1713 	 * whether this is the first time through or not.
1714 	 */
1715 	ath_stop_locked(ifp);
1716 
1717 	/*
1718 	 * The basic interface to setting the hardware in a good
1719 	 * state is ``reset''.  On return the hardware is known to
1720 	 * be powered up and with interrupts disabled.  This must
1721 	 * be followed by initialization of the appropriate bits
1722 	 * and then setup of the interrupt mask.
1723 	 */
1724 	ath_settkipmic(sc);
1725 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1726 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1727 			status);
1728 		ATH_UNLOCK(sc);
1729 		return;
1730 	}
1731 	ath_chan_change(sc, ic->ic_curchan);
1732 
1733 	/* Let DFS at it in case it's a DFS channel */
1734 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1735 
1736 	/*
1737 	 * Likewise this is set during reset so update
1738 	 * state cached in the driver.
1739 	 */
1740 	sc->sc_diversity = ath_hal_getdiversity(ah);
1741 	sc->sc_lastlongcal = 0;
1742 	sc->sc_resetcal = 1;
1743 	sc->sc_lastcalreset = 0;
1744 	sc->sc_lastani = 0;
1745 	sc->sc_lastshortcal = 0;
1746 	sc->sc_doresetcal = AH_FALSE;
1747 	/*
1748 	 * Beacon timers were cleared here; give ath_newstate()
1749 	 * a hint that the beacon timers should be poked when
1750 	 * things transition to the RUN state.
1751 	 */
1752 	sc->sc_beacons = 0;
1753 
1754 	/*
1755 	 * Initial aggregation settings.
1756 	 */
1757 	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
1758 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1759 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1760 
1761 	/*
1762 	 * Setup the hardware after reset: the key cache
1763 	 * is filled as needed and the receive engine is
1764 	 * set going.  Frame transmit is handled entirely
1765 	 * in the frame output path; there's nothing to do
1766 	 * here except setup the interrupt mask.
1767 	 */
1768 	if (ath_startrecv(sc) != 0) {
1769 		if_printf(ifp, "unable to start recv logic\n");
1770 		ATH_UNLOCK(sc);
1771 		return;
1772 	}
1773 
1774 	/*
1775 	 * Enable interrupts.
1776 	 */
1777 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1778 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1779 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1780 	/*
1781 	 * Enable MIB interrupts when there are hardware phy counters.
1782 	 * Note we only do this (at the moment) for station mode.
1783 	 */
1784 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1785 		sc->sc_imask |= HAL_INT_MIB;
1786 
1787 	/* Enable global TX timeout and carrier sense timeout if available */
1788 	if (ath_hal_gtxto_supported(ah))
1789 		sc->sc_imask |= HAL_INT_GTT;
1790 
1791 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1792 		__func__, sc->sc_imask);
1793 
1794 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1795 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1796 	ath_hal_intrset(ah, sc->sc_imask);
1797 
1798 	ATH_UNLOCK(sc);
1799 
1800 #ifdef ATH_TX99_DIAG
1801 	if (sc->sc_tx99 != NULL)
1802 		sc->sc_tx99->start(sc->sc_tx99);
1803 	else
1804 #endif
1805 	ieee80211_start_all(ic);		/* start all vap's */
1806 }
1807 
1808 static void
1809 ath_stop_locked(struct ifnet *ifp)
1810 {
1811 	struct ath_softc *sc = ifp->if_softc;
1812 	struct ath_hal *ah = sc->sc_ah;
1813 
1814 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1815 		__func__, sc->sc_invalid, ifp->if_flags);
1816 
1817 	ATH_LOCK_ASSERT(sc);
1818 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1819 		/*
1820 		 * Shutdown the hardware and driver:
1821 		 *    reset 802.11 state machine
1822 		 *    turn off timers
1823 		 *    disable interrupts
1824 		 *    turn off the radio
1825 		 *    clear transmit machinery
1826 		 *    clear receive machinery
1827 		 *    drain and release tx queues
1828 		 *    reclaim beacon resources
1829 		 *    power down hardware
1830 		 *
1831 		 * Note that some of this work is not possible if the
1832 		 * hardware is gone (invalid).
1833 		 */
1834 #ifdef ATH_TX99_DIAG
1835 		if (sc->sc_tx99 != NULL)
1836 			sc->sc_tx99->stop(sc->sc_tx99);
1837 #endif
1838 		callout_stop(&sc->sc_wd_ch);
1839 		sc->sc_wd_timer = 0;
1840 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1841 		if (!sc->sc_invalid) {
1842 			if (sc->sc_softled) {
1843 				callout_stop(&sc->sc_ledtimer);
1844 				ath_hal_gpioset(ah, sc->sc_ledpin,
1845 					!sc->sc_ledon);
1846 				sc->sc_blinking = 0;
1847 			}
1848 			ath_hal_intrset(ah, 0);
1849 		}
1850 		ath_draintxq(sc, ATH_RESET_DEFAULT);
1851 		if (!sc->sc_invalid) {
1852 			ath_stoprecv(sc, 1);
1853 			ath_hal_phydisable(ah);
1854 		} else
1855 			sc->sc_rxlink = NULL;
1856 		ath_beacon_free(sc);	/* XXX not needed */
1857 	}
1858 }
1859 
1860 #define	MAX_TXRX_ITERATIONS	1000
1861 static void
1862 ath_txrx_stop(struct ath_softc *sc)
1863 {
1864 	int i = MAX_TXRX_ITERATIONS;
1865 
1866 	ATH_UNLOCK_ASSERT(sc);
1867 	/* Stop any new TX/RX from occuring */
1868 	taskqueue_block(sc->sc_tq);
1869 
1870 	ATH_PCU_LOCK(sc);
1871 	/*
1872 	 * Sleep until all the pending operations have completed.
1873 	 *
1874 	 * The caller must ensure that reset has been incremented
1875 	 * or the pending operations may continue being queued.
1876 	 */
1877 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
1878 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
1879 		if (i <= 0)
1880 			break;
1881 		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
1882 		i--;
1883 	}
1884 	ATH_PCU_UNLOCK(sc);
1885 
1886 	if (i <= 0)
1887 		device_printf(sc->sc_dev,
1888 		    "%s: didn't finish after %d iterations\n",
1889 		    __func__, MAX_TXRX_ITERATIONS);
1890 }
1891 #undef	MAX_TXRX_ITERATIONS
1892 
1893 static void
1894 ath_txrx_start(struct ath_softc *sc)
1895 {
1896 
1897 	taskqueue_unblock(sc->sc_tq);
1898 }
1899 
1900 static void
1901 ath_stop(struct ifnet *ifp)
1902 {
1903 	struct ath_softc *sc = ifp->if_softc;
1904 
1905 	ATH_LOCK(sc);
1906 	ath_stop_locked(ifp);
1907 	ATH_UNLOCK(sc);
1908 }
1909 
1910 /*
1911  * Reset the hardware w/o losing operational state.  This is
1912  * basically a more efficient way of doing ath_stop, ath_init,
1913  * followed by state transitions to the current 802.11
1914  * operational state.  Used to recover from various errors and
1915  * to reset or reload hardware state.
1916  */
1917 int
1918 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
1919 {
1920 	struct ath_softc *sc = ifp->if_softc;
1921 	struct ieee80211com *ic = ifp->if_l2com;
1922 	struct ath_hal *ah = sc->sc_ah;
1923 	HAL_STATUS status;
1924 	int i;
1925 
1926 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1927 
1928 	/* XXX ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
1929 	ATH_PCU_UNLOCK_ASSERT(sc);
1930 	ATH_UNLOCK_ASSERT(sc);
1931 
1932 	ATH_PCU_LOCK(sc);
1933 	/* XXX if we're already inside a reset, print out a big warning */
1934 	if (sc->sc_inreset_cnt > 0) {
1935 		device_printf(sc->sc_dev,
1936 		    "%s: concurrent ath_reset()! Danger!\n",
1937 		    __func__);
1938 	}
1939 	sc->sc_inreset_cnt++;
1940 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1941 	ATH_PCU_UNLOCK(sc);
1942 
1943 	/*
1944 	 * Should now wait for pending TX/RX to complete
1945 	 * and block future ones from occuring. This needs to be
1946 	 * done before the TX queue is drained.
1947 	 */
1948 	ath_txrx_stop(sc);
1949 	ath_draintxq(sc, reset_type);	/* stop xmit side */
1950 
1951 	/*
1952 	 * Regardless of whether we're doing a no-loss flush or
1953 	 * not, stop the PCU and handle what's in the RX queue.
1954 	 * That way frames aren't dropped which shouldn't be.
1955 	 */
1956 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
1957 	ath_rx_proc(sc, 0);
1958 
1959 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1960 	/* NB: indicate channel change so we do a full reset */
1961 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1962 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1963 			__func__, status);
1964 	sc->sc_diversity = ath_hal_getdiversity(ah);
1965 
1966 	/* Let DFS at it in case it's a DFS channel */
1967 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1968 
1969 	if (ath_startrecv(sc) != 0)	/* restart recv */
1970 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1971 	/*
1972 	 * We may be doing a reset in response to an ioctl
1973 	 * that changes the channel so update any state that
1974 	 * might change as a result.
1975 	 */
1976 	ath_chan_change(sc, ic->ic_curchan);
1977 	if (sc->sc_beacons) {		/* restart beacons */
1978 #ifdef IEEE80211_SUPPORT_TDMA
1979 		if (sc->sc_tdma)
1980 			ath_tdma_config(sc, NULL);
1981 		else
1982 #endif
1983 			ath_beacon_config(sc, NULL);
1984 	}
1985 
1986 	/*
1987 	 * Release the reset lock and re-enable interrupts here.
1988 	 * If an interrupt was being processed in ath_intr(),
1989 	 * it would disable interrupts at this point. So we have
1990 	 * to atomically enable interrupts and decrement the
1991 	 * reset counter - this way ath_intr() doesn't end up
1992 	 * disabling interrupts without a corresponding enable
1993 	 * in the rest or channel change path.
1994 	 */
1995 	ATH_PCU_LOCK(sc);
1996 	sc->sc_inreset_cnt--;
1997 	/* XXX only do this if sc_inreset_cnt == 0? */
1998 	ath_hal_intrset(ah, sc->sc_imask);
1999 	ATH_PCU_UNLOCK(sc);
2000 
2001 	/*
2002 	 * TX and RX can be started here. If it were started with
2003 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2004 	 * Thus if this is a nested call through the reset or
2005 	 * channel change code, TX completion will occur but
2006 	 * RX completion and ath_start / ath_tx_start will not
2007 	 * run.
2008 	 */
2009 
2010 	/* Restart TX/RX as needed */
2011 	ath_txrx_start(sc);
2012 
2013 	/* XXX Restart TX completion and pending TX */
2014 	if (reset_type == ATH_RESET_NOLOSS) {
2015 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2016 			if (ATH_TXQ_SETUP(sc, i)) {
2017 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2018 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2019 				ath_txq_sched(sc, &sc->sc_txq[i]);
2020 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2021 			}
2022 		}
2023 	}
2024 
2025 	/*
2026 	 * This may have been set during an ath_start() call which
2027 	 * set this once it detected a concurrent TX was going on.
2028 	 * So, clear it.
2029 	 */
2030 	/* XXX do this inside of IF_LOCK? */
2031 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2032 
2033 	/* Handle any frames in the TX queue */
2034 	/*
2035 	 * XXX should this be done by the caller, rather than
2036 	 * ath_reset() ?
2037 	 */
2038 	ath_start(ifp);			/* restart xmit */
2039 	return 0;
2040 }
2041 
2042 static int
2043 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2044 {
2045 	struct ieee80211com *ic = vap->iv_ic;
2046 	struct ifnet *ifp = ic->ic_ifp;
2047 	struct ath_softc *sc = ifp->if_softc;
2048 	struct ath_hal *ah = sc->sc_ah;
2049 
2050 	switch (cmd) {
2051 	case IEEE80211_IOC_TXPOWER:
2052 		/*
2053 		 * If per-packet TPC is enabled, then we have nothing
2054 		 * to do; otherwise we need to force the global limit.
2055 		 * All this can happen directly; no need to reset.
2056 		 */
2057 		if (!ath_hal_gettpc(ah))
2058 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2059 		return 0;
2060 	}
2061 	/* XXX? Full or NOLOSS? */
2062 	return ath_reset(ifp, ATH_RESET_FULL);
2063 }
2064 
2065 struct ath_buf *
2066 _ath_getbuf_locked(struct ath_softc *sc)
2067 {
2068 	struct ath_buf *bf;
2069 
2070 	ATH_TXBUF_LOCK_ASSERT(sc);
2071 
2072 	bf = TAILQ_FIRST(&sc->sc_txbuf);
2073 	if (bf == NULL) {
2074 		sc->sc_stats.ast_tx_getnobuf++;
2075 	} else {
2076 		if (bf->bf_flags & ATH_BUF_BUSY) {
2077 			sc->sc_stats.ast_tx_getbusybuf++;
2078 			bf = NULL;
2079 		}
2080 	}
2081 
2082 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
2083 		TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2084 	else
2085 		bf = NULL;
2086 
2087 	if (bf == NULL) {
2088 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2089 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2090 			"out of xmit buffers" : "xmit buffer busy");
2091 		return NULL;
2092 	}
2093 
2094 	/* Valid bf here; clear some basic fields */
2095 	bf->bf_next = NULL;	/* XXX just to be sure */
2096 	bf->bf_last = NULL;	/* XXX again, just to be sure */
2097 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2098 	bzero(&bf->bf_state, sizeof(bf->bf_state));
2099 
2100 	return bf;
2101 }
2102 
2103 /*
2104  * When retrying a software frame, buffers marked ATH_BUF_BUSY
2105  * can't be thrown back on the queue as they could still be
2106  * in use by the hardware.
2107  *
2108  * This duplicates the buffer, or returns NULL.
2109  *
2110  * The descriptor is also copied but the link pointers and
2111  * the DMA segments aren't copied; this frame should thus
2112  * be again passed through the descriptor setup/chain routines
2113  * so the link is correct.
2114  *
2115  * The caller must free the buffer using ath_freebuf().
2116  *
2117  * XXX TODO: this call shouldn't fail as it'll cause packet loss
2118  * XXX in the TX pathway when retries are needed.
2119  * XXX Figure out how to keep some buffers free, or factor the
2120  * XXX number of busy buffers into the xmit path (ath_start())
2121  * XXX so we don't over-commit.
2122  */
2123 struct ath_buf *
2124 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
2125 {
2126 	struct ath_buf *tbf;
2127 
2128 	tbf = ath_getbuf(sc);
2129 	if (tbf == NULL)
2130 		return NULL;	/* XXX failure? Why? */
2131 
2132 	/* Copy basics */
2133 	tbf->bf_next = NULL;
2134 	tbf->bf_nseg = bf->bf_nseg;
2135 	tbf->bf_txflags = bf->bf_txflags;
2136 	tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
2137 	tbf->bf_status = bf->bf_status;
2138 	tbf->bf_m = bf->bf_m;
2139 	tbf->bf_node = bf->bf_node;
2140 	/* will be setup by the chain/setup function */
2141 	tbf->bf_lastds = NULL;
2142 	/* for now, last == self */
2143 	tbf->bf_last = tbf;
2144 	tbf->bf_comp = bf->bf_comp;
2145 
2146 	/* NOTE: DMA segments will be setup by the setup/chain functions */
2147 
2148 	/* The caller has to re-init the descriptor + links */
2149 
2150 	/* Copy state */
2151 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2152 
2153 	return tbf;
2154 }
2155 
2156 struct ath_buf *
2157 ath_getbuf(struct ath_softc *sc)
2158 {
2159 	struct ath_buf *bf;
2160 
2161 	ATH_TXBUF_LOCK(sc);
2162 	bf = _ath_getbuf_locked(sc);
2163 	if (bf == NULL) {
2164 		struct ifnet *ifp = sc->sc_ifp;
2165 
2166 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2167 		sc->sc_stats.ast_tx_qstop++;
2168 		/* XXX do this inside of IF_LOCK? */
2169 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2170 	}
2171 	ATH_TXBUF_UNLOCK(sc);
2172 	return bf;
2173 }
2174 
2175 static void
2176 ath_start(struct ifnet *ifp)
2177 {
2178 	struct ath_softc *sc = ifp->if_softc;
2179 	struct ieee80211_node *ni;
2180 	struct ath_buf *bf;
2181 	struct mbuf *m, *next;
2182 	ath_bufhead frags;
2183 
2184 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2185 		return;
2186 
2187 	/* XXX is it ok to hold the ATH_LOCK here? */
2188 	ATH_PCU_LOCK(sc);
2189 	if (sc->sc_inreset_cnt > 0) {
2190 		device_printf(sc->sc_dev,
2191 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2192 		/* XXX do this inside of IF_LOCK? */
2193 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2194 		ATH_PCU_UNLOCK(sc);
2195 		return;
2196 	}
2197 	sc->sc_txstart_cnt++;
2198 	ATH_PCU_UNLOCK(sc);
2199 
2200 	for (;;) {
2201 		/*
2202 		 * Grab a TX buffer and associated resources.
2203 		 */
2204 		bf = ath_getbuf(sc);
2205 		if (bf == NULL)
2206 			break;
2207 
2208 		IFQ_DEQUEUE(&ifp->if_snd, m);
2209 		if (m == NULL) {
2210 			ATH_TXBUF_LOCK(sc);
2211 			TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2212 			ATH_TXBUF_UNLOCK(sc);
2213 			break;
2214 		}
2215 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2216 		/*
2217 		 * Check for fragmentation.  If this frame
2218 		 * has been broken up verify we have enough
2219 		 * buffers to send all the fragments so all
2220 		 * go out or none...
2221 		 */
2222 		TAILQ_INIT(&frags);
2223 		if ((m->m_flags & M_FRAG) &&
2224 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2225 			DPRINTF(sc, ATH_DEBUG_XMIT,
2226 			    "%s: out of txfrag buffers\n", __func__);
2227 			sc->sc_stats.ast_tx_nofrag++;
2228 			ifp->if_oerrors++;
2229 			ath_freetx(m);
2230 			goto bad;
2231 		}
2232 		ifp->if_opackets++;
2233 	nextfrag:
2234 		/*
2235 		 * Pass the frame to the h/w for transmission.
2236 		 * Fragmented frames have each frag chained together
2237 		 * with m_nextpkt.  We know there are sufficient ath_buf's
2238 		 * to send all the frags because of work done by
2239 		 * ath_txfrag_setup.  We leave m_nextpkt set while
2240 		 * calling ath_tx_start so it can use it to extend the
2241 		 * the tx duration to cover the subsequent frag and
2242 		 * so it can reclaim all the mbufs in case of an error;
2243 		 * ath_tx_start clears m_nextpkt once it commits to
2244 		 * handing the frame to the hardware.
2245 		 */
2246 		next = m->m_nextpkt;
2247 		if (ath_tx_start(sc, ni, bf, m)) {
2248 	bad:
2249 			ifp->if_oerrors++;
2250 	reclaim:
2251 			bf->bf_m = NULL;
2252 			bf->bf_node = NULL;
2253 			ATH_TXBUF_LOCK(sc);
2254 			TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2255 			ath_txfrag_cleanup(sc, &frags, ni);
2256 			ATH_TXBUF_UNLOCK(sc);
2257 			if (ni != NULL)
2258 				ieee80211_free_node(ni);
2259 			continue;
2260 		}
2261 		if (next != NULL) {
2262 			/*
2263 			 * Beware of state changing between frags.
2264 			 * XXX check sta power-save state?
2265 			 */
2266 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2267 				DPRINTF(sc, ATH_DEBUG_XMIT,
2268 				    "%s: flush fragmented packet, state %s\n",
2269 				    __func__,
2270 				    ieee80211_state_name[ni->ni_vap->iv_state]);
2271 				ath_freetx(next);
2272 				goto reclaim;
2273 			}
2274 			m = next;
2275 			bf = TAILQ_FIRST(&frags);
2276 			KASSERT(bf != NULL, ("no buf for txfrag"));
2277 			TAILQ_REMOVE(&frags, bf, bf_list);
2278 			goto nextfrag;
2279 		}
2280 
2281 		sc->sc_wd_timer = 5;
2282 	}
2283 
2284 	ATH_PCU_LOCK(sc);
2285 	sc->sc_txstart_cnt--;
2286 	ATH_PCU_UNLOCK(sc);
2287 }
2288 
2289 static int
2290 ath_media_change(struct ifnet *ifp)
2291 {
2292 	int error = ieee80211_media_change(ifp);
2293 	/* NB: only the fixed rate can change and that doesn't need a reset */
2294 	return (error == ENETRESET ? 0 : error);
2295 }
2296 
2297 /*
2298  * Block/unblock tx+rx processing while a key change is done.
2299  * We assume the caller serializes key management operations
2300  * so we only need to worry about synchronization with other
2301  * uses that originate in the driver.
2302  */
2303 static void
2304 ath_key_update_begin(struct ieee80211vap *vap)
2305 {
2306 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2307 	struct ath_softc *sc = ifp->if_softc;
2308 
2309 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2310 	taskqueue_block(sc->sc_tq);
2311 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2312 }
2313 
2314 static void
2315 ath_key_update_end(struct ieee80211vap *vap)
2316 {
2317 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2318 	struct ath_softc *sc = ifp->if_softc;
2319 
2320 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2321 	IF_UNLOCK(&ifp->if_snd);
2322 	taskqueue_unblock(sc->sc_tq);
2323 }
2324 
2325 /*
2326  * Calculate the receive filter according to the
2327  * operating mode and state:
2328  *
2329  * o always accept unicast, broadcast, and multicast traffic
2330  * o accept PHY error frames when hardware doesn't have MIB support
2331  *   to count and we need them for ANI (sta mode only until recently)
2332  *   and we are not scanning (ANI is disabled)
2333  *   NB: older hal's add rx filter bits out of sight and we need to
2334  *	 blindly preserve them
2335  * o probe request frames are accepted only when operating in
2336  *   hostap, adhoc, mesh, or monitor modes
2337  * o enable promiscuous mode
2338  *   - when in monitor mode
2339  *   - if interface marked PROMISC (assumes bridge setting is filtered)
2340  * o accept beacons:
2341  *   - when operating in station mode for collecting rssi data when
2342  *     the station is otherwise quiet, or
2343  *   - when operating in adhoc mode so the 802.11 layer creates
2344  *     node table entries for peers,
2345  *   - when scanning
2346  *   - when doing s/w beacon miss (e.g. for ap+sta)
2347  *   - when operating in ap mode in 11g to detect overlapping bss that
2348  *     require protection
2349  *   - when operating in mesh mode to detect neighbors
2350  * o accept control frames:
2351  *   - when in monitor mode
2352  * XXX HT protection for 11n
2353  */
2354 static u_int32_t
2355 ath_calcrxfilter(struct ath_softc *sc)
2356 {
2357 	struct ifnet *ifp = sc->sc_ifp;
2358 	struct ieee80211com *ic = ifp->if_l2com;
2359 	u_int32_t rfilt;
2360 
2361 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2362 	if (!sc->sc_needmib && !sc->sc_scanning)
2363 		rfilt |= HAL_RX_FILTER_PHYERR;
2364 	if (ic->ic_opmode != IEEE80211_M_STA)
2365 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2366 	/* XXX ic->ic_monvaps != 0? */
2367 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2368 		rfilt |= HAL_RX_FILTER_PROM;
2369 	if (ic->ic_opmode == IEEE80211_M_STA ||
2370 	    ic->ic_opmode == IEEE80211_M_IBSS ||
2371 	    sc->sc_swbmiss || sc->sc_scanning)
2372 		rfilt |= HAL_RX_FILTER_BEACON;
2373 	/*
2374 	 * NB: We don't recalculate the rx filter when
2375 	 * ic_protmode changes; otherwise we could do
2376 	 * this only when ic_protmode != NONE.
2377 	 */
2378 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2379 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2380 		rfilt |= HAL_RX_FILTER_BEACON;
2381 
2382 	/*
2383 	 * Enable hardware PS-POLL RX only for hostap mode;
2384 	 * STA mode sends PS-POLL frames but never
2385 	 * receives them.
2386 	 */
2387 	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
2388 	    0, NULL) == HAL_OK &&
2389 	    ic->ic_opmode == IEEE80211_M_HOSTAP)
2390 		rfilt |= HAL_RX_FILTER_PSPOLL;
2391 
2392 	if (sc->sc_nmeshvaps) {
2393 		rfilt |= HAL_RX_FILTER_BEACON;
2394 		if (sc->sc_hasbmatch)
2395 			rfilt |= HAL_RX_FILTER_BSSID;
2396 		else
2397 			rfilt |= HAL_RX_FILTER_PROM;
2398 	}
2399 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2400 		rfilt |= HAL_RX_FILTER_CONTROL;
2401 
2402 	/*
2403 	 * Enable RX of compressed BAR frames only when doing
2404 	 * 802.11n. Required for A-MPDU.
2405 	 */
2406 	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
2407 		rfilt |= HAL_RX_FILTER_COMPBAR;
2408 
2409 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2410 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2411 	return rfilt;
2412 }
2413 
2414 static void
2415 ath_update_promisc(struct ifnet *ifp)
2416 {
2417 	struct ath_softc *sc = ifp->if_softc;
2418 	u_int32_t rfilt;
2419 
2420 	/* configure rx filter */
2421 	rfilt = ath_calcrxfilter(sc);
2422 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2423 
2424 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2425 }
2426 
2427 static void
2428 ath_update_mcast(struct ifnet *ifp)
2429 {
2430 	struct ath_softc *sc = ifp->if_softc;
2431 	u_int32_t mfilt[2];
2432 
2433 	/* calculate and install multicast filter */
2434 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2435 		struct ifmultiaddr *ifma;
2436 		/*
2437 		 * Merge multicast addresses to form the hardware filter.
2438 		 */
2439 		mfilt[0] = mfilt[1] = 0;
2440 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2441 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2442 			caddr_t dl;
2443 			u_int32_t val;
2444 			u_int8_t pos;
2445 
2446 			/* calculate XOR of eight 6bit values */
2447 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2448 			val = LE_READ_4(dl + 0);
2449 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2450 			val = LE_READ_4(dl + 3);
2451 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2452 			pos &= 0x3f;
2453 			mfilt[pos / 32] |= (1 << (pos % 32));
2454 		}
2455 		if_maddr_runlock(ifp);
2456 	} else
2457 		mfilt[0] = mfilt[1] = ~0;
2458 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2459 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2460 		__func__, mfilt[0], mfilt[1]);
2461 }
2462 
2463 static void
2464 ath_mode_init(struct ath_softc *sc)
2465 {
2466 	struct ifnet *ifp = sc->sc_ifp;
2467 	struct ath_hal *ah = sc->sc_ah;
2468 	u_int32_t rfilt;
2469 
2470 	/* configure rx filter */
2471 	rfilt = ath_calcrxfilter(sc);
2472 	ath_hal_setrxfilter(ah, rfilt);
2473 
2474 	/* configure operational mode */
2475 	ath_hal_setopmode(ah);
2476 
2477 	/* handle any link-level address change */
2478 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2479 
2480 	/* calculate and install multicast filter */
2481 	ath_update_mcast(ifp);
2482 }
2483 
2484 /*
2485  * Set the slot time based on the current setting.
2486  */
2487 static void
2488 ath_setslottime(struct ath_softc *sc)
2489 {
2490 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2491 	struct ath_hal *ah = sc->sc_ah;
2492 	u_int usec;
2493 
2494 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2495 		usec = 13;
2496 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2497 		usec = 21;
2498 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2499 		/* honor short/long slot time only in 11g */
2500 		/* XXX shouldn't honor on pure g or turbo g channel */
2501 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2502 			usec = HAL_SLOT_TIME_9;
2503 		else
2504 			usec = HAL_SLOT_TIME_20;
2505 	} else
2506 		usec = HAL_SLOT_TIME_9;
2507 
2508 	DPRINTF(sc, ATH_DEBUG_RESET,
2509 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2510 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2511 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2512 
2513 	ath_hal_setslottime(ah, usec);
2514 	sc->sc_updateslot = OK;
2515 }
2516 
2517 /*
2518  * Callback from the 802.11 layer to update the
2519  * slot time based on the current setting.
2520  */
2521 static void
2522 ath_updateslot(struct ifnet *ifp)
2523 {
2524 	struct ath_softc *sc = ifp->if_softc;
2525 	struct ieee80211com *ic = ifp->if_l2com;
2526 
2527 	/*
2528 	 * When not coordinating the BSS, change the hardware
2529 	 * immediately.  For other operation we defer the change
2530 	 * until beacon updates have propagated to the stations.
2531 	 */
2532 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2533 	    ic->ic_opmode == IEEE80211_M_MBSS)
2534 		sc->sc_updateslot = UPDATE;
2535 	else
2536 		ath_setslottime(sc);
2537 }
2538 
2539 /*
2540  * Setup a h/w transmit queue for beacons.
2541  */
2542 static int
2543 ath_beaconq_setup(struct ath_hal *ah)
2544 {
2545 	HAL_TXQ_INFO qi;
2546 
2547 	memset(&qi, 0, sizeof(qi));
2548 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2549 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2550 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2551 	/* NB: for dynamic turbo, don't enable any other interrupts */
2552 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2553 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2554 }
2555 
2556 /*
2557  * Setup the transmit queue parameters for the beacon queue.
2558  */
2559 static int
2560 ath_beaconq_config(struct ath_softc *sc)
2561 {
2562 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2563 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2564 	struct ath_hal *ah = sc->sc_ah;
2565 	HAL_TXQ_INFO qi;
2566 
2567 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2568 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2569 	    ic->ic_opmode == IEEE80211_M_MBSS) {
2570 		/*
2571 		 * Always burst out beacon and CAB traffic.
2572 		 */
2573 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2574 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2575 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2576 	} else {
2577 		struct wmeParams *wmep =
2578 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2579 		/*
2580 		 * Adhoc mode; important thing is to use 2x cwmin.
2581 		 */
2582 		qi.tqi_aifs = wmep->wmep_aifsn;
2583 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2584 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2585 	}
2586 
2587 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2588 		device_printf(sc->sc_dev, "unable to update parameters for "
2589 			"beacon hardware queue!\n");
2590 		return 0;
2591 	} else {
2592 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2593 		return 1;
2594 	}
2595 #undef ATH_EXPONENT_TO_VALUE
2596 }
2597 
2598 /*
2599  * Allocate and setup an initial beacon frame.
2600  */
2601 static int
2602 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2603 {
2604 	struct ieee80211vap *vap = ni->ni_vap;
2605 	struct ath_vap *avp = ATH_VAP(vap);
2606 	struct ath_buf *bf;
2607 	struct mbuf *m;
2608 	int error;
2609 
2610 	bf = avp->av_bcbuf;
2611 	if (bf->bf_m != NULL) {
2612 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2613 		m_freem(bf->bf_m);
2614 		bf->bf_m = NULL;
2615 	}
2616 	if (bf->bf_node != NULL) {
2617 		ieee80211_free_node(bf->bf_node);
2618 		bf->bf_node = NULL;
2619 	}
2620 
2621 	/*
2622 	 * NB: the beacon data buffer must be 32-bit aligned;
2623 	 * we assume the mbuf routines will return us something
2624 	 * with this alignment (perhaps should assert).
2625 	 */
2626 	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2627 	if (m == NULL) {
2628 		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2629 		sc->sc_stats.ast_be_nombuf++;
2630 		return ENOMEM;
2631 	}
2632 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2633 				     bf->bf_segs, &bf->bf_nseg,
2634 				     BUS_DMA_NOWAIT);
2635 	if (error != 0) {
2636 		device_printf(sc->sc_dev,
2637 		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2638 		    __func__, error);
2639 		m_freem(m);
2640 		return error;
2641 	}
2642 
2643 	/*
2644 	 * Calculate a TSF adjustment factor required for staggered
2645 	 * beacons.  Note that we assume the format of the beacon
2646 	 * frame leaves the tstamp field immediately following the
2647 	 * header.
2648 	 */
2649 	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2650 		uint64_t tsfadjust;
2651 		struct ieee80211_frame *wh;
2652 
2653 		/*
2654 		 * The beacon interval is in TU's; the TSF is in usecs.
2655 		 * We figure out how many TU's to add to align the timestamp
2656 		 * then convert to TSF units and handle byte swapping before
2657 		 * inserting it in the frame.  The hardware will then add this
2658 		 * each time a beacon frame is sent.  Note that we align vap's
2659 		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2660 		 * timestamp in one beacon interval while the others get a
2661 		 * timstamp aligned to the next interval.
2662 		 */
2663 		tsfadjust = ni->ni_intval *
2664 		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2665 		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2666 
2667 		DPRINTF(sc, ATH_DEBUG_BEACON,
2668 		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2669 		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2670 		    avp->av_bslot, ni->ni_intval,
2671 		    (long long unsigned) le64toh(tsfadjust));
2672 
2673 		wh = mtod(m, struct ieee80211_frame *);
2674 		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2675 	}
2676 	bf->bf_m = m;
2677 	bf->bf_node = ieee80211_ref_node(ni);
2678 
2679 	return 0;
2680 }
2681 
2682 /*
2683  * Setup the beacon frame for transmit.
2684  */
2685 static void
2686 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2687 {
2688 #define	USE_SHPREAMBLE(_ic) \
2689 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2690 		== IEEE80211_F_SHPREAMBLE)
2691 	struct ieee80211_node *ni = bf->bf_node;
2692 	struct ieee80211com *ic = ni->ni_ic;
2693 	struct mbuf *m = bf->bf_m;
2694 	struct ath_hal *ah = sc->sc_ah;
2695 	struct ath_desc *ds;
2696 	int flags, antenna;
2697 	const HAL_RATE_TABLE *rt;
2698 	u_int8_t rix, rate;
2699 
2700 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2701 		__func__, m, m->m_len);
2702 
2703 	/* setup descriptors */
2704 	ds = bf->bf_desc;
2705 	bf->bf_last = bf;
2706 	bf->bf_lastds = ds;
2707 
2708 	flags = HAL_TXDESC_NOACK;
2709 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2710 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2711 		flags |= HAL_TXDESC_VEOL;
2712 		/*
2713 		 * Let hardware handle antenna switching.
2714 		 */
2715 		antenna = sc->sc_txantenna;
2716 	} else {
2717 		ds->ds_link = 0;
2718 		/*
2719 		 * Switch antenna every 4 beacons.
2720 		 * XXX assumes two antenna
2721 		 */
2722 		if (sc->sc_txantenna != 0)
2723 			antenna = sc->sc_txantenna;
2724 		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2725 			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2726 		else
2727 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2728 	}
2729 
2730 	KASSERT(bf->bf_nseg == 1,
2731 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2732 	ds->ds_data = bf->bf_segs[0].ds_addr;
2733 	/*
2734 	 * Calculate rate code.
2735 	 * XXX everything at min xmit rate
2736 	 */
2737 	rix = 0;
2738 	rt = sc->sc_currates;
2739 	rate = rt->info[rix].rateCode;
2740 	if (USE_SHPREAMBLE(ic))
2741 		rate |= rt->info[rix].shortPreamble;
2742 	ath_hal_setuptxdesc(ah, ds
2743 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2744 		, sizeof(struct ieee80211_frame)/* header length */
2745 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2746 		, ni->ni_txpower		/* txpower XXX */
2747 		, rate, 1			/* series 0 rate/tries */
2748 		, HAL_TXKEYIX_INVALID		/* no encryption */
2749 		, antenna			/* antenna mode */
2750 		, flags				/* no ack, veol for beacons */
2751 		, 0				/* rts/cts rate */
2752 		, 0				/* rts/cts duration */
2753 	);
2754 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2755 	ath_hal_filltxdesc(ah, ds
2756 		, roundup(m->m_len, 4)		/* buffer length */
2757 		, AH_TRUE			/* first segment */
2758 		, AH_TRUE			/* last segment */
2759 		, ds				/* first descriptor */
2760 	);
2761 #if 0
2762 	ath_desc_swap(ds);
2763 #endif
2764 #undef USE_SHPREAMBLE
2765 }
2766 
2767 static void
2768 ath_beacon_update(struct ieee80211vap *vap, int item)
2769 {
2770 	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2771 
2772 	setbit(bo->bo_flags, item);
2773 }
2774 
2775 /*
2776  * Append the contents of src to dst; both queues
2777  * are assumed to be locked.
2778  */
2779 static void
2780 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2781 {
2782 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2783 	dst->axq_link = src->axq_link;
2784 	src->axq_link = NULL;
2785 	dst->axq_depth += src->axq_depth;
2786 	dst->axq_aggr_depth += src->axq_aggr_depth;
2787 	src->axq_depth = 0;
2788 	src->axq_aggr_depth = 0;
2789 }
2790 
2791 /*
2792  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2793  * frame contents are done as needed and the slot time is
2794  * also adjusted based on current state.
2795  */
2796 static void
2797 ath_beacon_proc(void *arg, int pending)
2798 {
2799 	struct ath_softc *sc = arg;
2800 	struct ath_hal *ah = sc->sc_ah;
2801 	struct ieee80211vap *vap;
2802 	struct ath_buf *bf;
2803 	int slot, otherant;
2804 	uint32_t bfaddr;
2805 
2806 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2807 		__func__, pending);
2808 	/*
2809 	 * Check if the previous beacon has gone out.  If
2810 	 * not don't try to post another, skip this period
2811 	 * and wait for the next.  Missed beacons indicate
2812 	 * a problem and should not occur.  If we miss too
2813 	 * many consecutive beacons reset the device.
2814 	 */
2815 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2816 		sc->sc_bmisscount++;
2817 		sc->sc_stats.ast_be_missed++;
2818 		DPRINTF(sc, ATH_DEBUG_BEACON,
2819 			"%s: missed %u consecutive beacons\n",
2820 			__func__, sc->sc_bmisscount);
2821 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2822 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2823 		return;
2824 	}
2825 	if (sc->sc_bmisscount != 0) {
2826 		DPRINTF(sc, ATH_DEBUG_BEACON,
2827 			"%s: resume beacon xmit after %u misses\n",
2828 			__func__, sc->sc_bmisscount);
2829 		sc->sc_bmisscount = 0;
2830 	}
2831 
2832 	if (sc->sc_stagbeacons) {			/* staggered beacons */
2833 		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2834 		uint32_t tsftu;
2835 
2836 		tsftu = ath_hal_gettsf32(ah) >> 10;
2837 		/* XXX lintval */
2838 		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2839 		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2840 		bfaddr = 0;
2841 		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2842 			bf = ath_beacon_generate(sc, vap);
2843 			if (bf != NULL)
2844 				bfaddr = bf->bf_daddr;
2845 		}
2846 	} else {					/* burst'd beacons */
2847 		uint32_t *bflink = &bfaddr;
2848 
2849 		for (slot = 0; slot < ATH_BCBUF; slot++) {
2850 			vap = sc->sc_bslot[slot];
2851 			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2852 				bf = ath_beacon_generate(sc, vap);
2853 				if (bf != NULL) {
2854 					*bflink = bf->bf_daddr;
2855 					bflink = &bf->bf_desc->ds_link;
2856 				}
2857 			}
2858 		}
2859 		*bflink = 0;				/* terminate list */
2860 	}
2861 
2862 	/*
2863 	 * Handle slot time change when a non-ERP station joins/leaves
2864 	 * an 11g network.  The 802.11 layer notifies us via callback,
2865 	 * we mark updateslot, then wait one beacon before effecting
2866 	 * the change.  This gives associated stations at least one
2867 	 * beacon interval to note the state change.
2868 	 */
2869 	/* XXX locking */
2870 	if (sc->sc_updateslot == UPDATE) {
2871 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2872 		sc->sc_slotupdate = slot;
2873 	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
2874 		ath_setslottime(sc);		/* commit change to h/w */
2875 
2876 	/*
2877 	 * Check recent per-antenna transmit statistics and flip
2878 	 * the default antenna if noticeably more frames went out
2879 	 * on the non-default antenna.
2880 	 * XXX assumes 2 anntenae
2881 	 */
2882 	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
2883 		otherant = sc->sc_defant & 1 ? 2 : 1;
2884 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2885 			ath_setdefantenna(sc, otherant);
2886 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2887 	}
2888 
2889 	if (bfaddr != 0) {
2890 		/*
2891 		 * Stop any current dma and put the new frame on the queue.
2892 		 * This should never fail since we check above that no frames
2893 		 * are still pending on the queue.
2894 		 */
2895 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2896 			DPRINTF(sc, ATH_DEBUG_ANY,
2897 				"%s: beacon queue %u did not stop?\n",
2898 				__func__, sc->sc_bhalq);
2899 		}
2900 		/* NB: cabq traffic should already be queued and primed */
2901 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
2902 		ath_hal_txstart(ah, sc->sc_bhalq);
2903 
2904 		sc->sc_stats.ast_be_xmit++;
2905 	}
2906 }
2907 
2908 static struct ath_buf *
2909 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
2910 {
2911 	struct ath_vap *avp = ATH_VAP(vap);
2912 	struct ath_txq *cabq = sc->sc_cabq;
2913 	struct ath_buf *bf;
2914 	struct mbuf *m;
2915 	int nmcastq, error;
2916 
2917 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2918 	    ("not running, state %d", vap->iv_state));
2919 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2920 
2921 	/*
2922 	 * Update dynamic beacon contents.  If this returns
2923 	 * non-zero then we need to remap the memory because
2924 	 * the beacon frame changed size (probably because
2925 	 * of the TIM bitmap).
2926 	 */
2927 	bf = avp->av_bcbuf;
2928 	m = bf->bf_m;
2929 	nmcastq = avp->av_mcastq.axq_depth;
2930 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
2931 		/* XXX too conservative? */
2932 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2933 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2934 					     bf->bf_segs, &bf->bf_nseg,
2935 					     BUS_DMA_NOWAIT);
2936 		if (error != 0) {
2937 			if_printf(vap->iv_ifp,
2938 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2939 			    __func__, error);
2940 			return NULL;
2941 		}
2942 	}
2943 	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
2944 		DPRINTF(sc, ATH_DEBUG_BEACON,
2945 		    "%s: cabq did not drain, mcastq %u cabq %u\n",
2946 		    __func__, nmcastq, cabq->axq_depth);
2947 		sc->sc_stats.ast_cabq_busy++;
2948 		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
2949 			/*
2950 			 * CABQ traffic from a previous vap is still pending.
2951 			 * We must drain the q before this beacon frame goes
2952 			 * out as otherwise this vap's stations will get cab
2953 			 * frames from a different vap.
2954 			 * XXX could be slow causing us to miss DBA
2955 			 */
2956 			ath_tx_draintxq(sc, cabq);
2957 		}
2958 	}
2959 	ath_beacon_setup(sc, bf);
2960 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2961 
2962 	/*
2963 	 * Enable the CAB queue before the beacon queue to
2964 	 * insure cab frames are triggered by this beacon.
2965 	 */
2966 	if (avp->av_boff.bo_tim[4] & 1) {
2967 		struct ath_hal *ah = sc->sc_ah;
2968 
2969 		/* NB: only at DTIM */
2970 		ATH_TXQ_LOCK(cabq);
2971 		ATH_TXQ_LOCK(&avp->av_mcastq);
2972 		if (nmcastq) {
2973 			struct ath_buf *bfm;
2974 
2975 			/*
2976 			 * Move frames from the s/w mcast q to the h/w cab q.
2977 			 * XXX MORE_DATA bit
2978 			 */
2979 			bfm = TAILQ_FIRST(&avp->av_mcastq.axq_q);
2980 			if (cabq->axq_link != NULL) {
2981 				*cabq->axq_link = bfm->bf_daddr;
2982 			} else
2983 				ath_hal_puttxbuf(ah, cabq->axq_qnum,
2984 					bfm->bf_daddr);
2985 			ath_txqmove(cabq, &avp->av_mcastq);
2986 
2987 			sc->sc_stats.ast_cabq_xmit += nmcastq;
2988 		}
2989 		/* NB: gated by beacon so safe to start here */
2990 		if (! TAILQ_EMPTY(&(cabq->axq_q)))
2991 			ath_hal_txstart(ah, cabq->axq_qnum);
2992 		ATH_TXQ_UNLOCK(&avp->av_mcastq);
2993 		ATH_TXQ_UNLOCK(cabq);
2994 	}
2995 	return bf;
2996 }
2997 
2998 static void
2999 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3000 {
3001 	struct ath_vap *avp = ATH_VAP(vap);
3002 	struct ath_hal *ah = sc->sc_ah;
3003 	struct ath_buf *bf;
3004 	struct mbuf *m;
3005 	int error;
3006 
3007 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3008 
3009 	/*
3010 	 * Update dynamic beacon contents.  If this returns
3011 	 * non-zero then we need to remap the memory because
3012 	 * the beacon frame changed size (probably because
3013 	 * of the TIM bitmap).
3014 	 */
3015 	bf = avp->av_bcbuf;
3016 	m = bf->bf_m;
3017 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3018 		/* XXX too conservative? */
3019 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3020 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3021 					     bf->bf_segs, &bf->bf_nseg,
3022 					     BUS_DMA_NOWAIT);
3023 		if (error != 0) {
3024 			if_printf(vap->iv_ifp,
3025 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3026 			    __func__, error);
3027 			return;
3028 		}
3029 	}
3030 	ath_beacon_setup(sc, bf);
3031 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3032 
3033 	/* NB: caller is known to have already stopped tx dma */
3034 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3035 	ath_hal_txstart(ah, sc->sc_bhalq);
3036 }
3037 
3038 /*
3039  * Reset the hardware after detecting beacons have stopped.
3040  */
3041 static void
3042 ath_bstuck_proc(void *arg, int pending)
3043 {
3044 	struct ath_softc *sc = arg;
3045 	struct ifnet *ifp = sc->sc_ifp;
3046 	uint32_t hangs = 0;
3047 
3048 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3049 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3050 
3051 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3052 		sc->sc_bmisscount);
3053 	sc->sc_stats.ast_bstuck++;
3054 	/*
3055 	 * This assumes that there's no simultaneous channel mode change
3056 	 * occuring.
3057 	 */
3058 	ath_reset(ifp, ATH_RESET_NOLOSS);
3059 }
3060 
3061 /*
3062  * Reclaim beacon resources and return buffer to the pool.
3063  */
3064 static void
3065 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3066 {
3067 
3068 	if (bf->bf_m != NULL) {
3069 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3070 		m_freem(bf->bf_m);
3071 		bf->bf_m = NULL;
3072 	}
3073 	if (bf->bf_node != NULL) {
3074 		ieee80211_free_node(bf->bf_node);
3075 		bf->bf_node = NULL;
3076 	}
3077 	TAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3078 }
3079 
3080 /*
3081  * Reclaim beacon resources.
3082  */
3083 static void
3084 ath_beacon_free(struct ath_softc *sc)
3085 {
3086 	struct ath_buf *bf;
3087 
3088 	TAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3089 		if (bf->bf_m != NULL) {
3090 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3091 			m_freem(bf->bf_m);
3092 			bf->bf_m = NULL;
3093 		}
3094 		if (bf->bf_node != NULL) {
3095 			ieee80211_free_node(bf->bf_node);
3096 			bf->bf_node = NULL;
3097 		}
3098 	}
3099 }
3100 
3101 /*
3102  * Configure the beacon and sleep timers.
3103  *
3104  * When operating as an AP this resets the TSF and sets
3105  * up the hardware to notify us when we need to issue beacons.
3106  *
3107  * When operating in station mode this sets up the beacon
3108  * timers according to the timestamp of the last received
3109  * beacon and the current TSF, configures PCF and DTIM
3110  * handling, programs the sleep registers so the hardware
3111  * will wakeup in time to receive beacons, and configures
3112  * the beacon miss handling so we'll receive a BMISS
3113  * interrupt when we stop seeing beacons from the AP
3114  * we've associated with.
3115  */
3116 static void
3117 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3118 {
3119 #define	TSF_TO_TU(_h,_l) \
3120 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3121 #define	FUDGE	2
3122 	struct ath_hal *ah = sc->sc_ah;
3123 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3124 	struct ieee80211_node *ni;
3125 	u_int32_t nexttbtt, intval, tsftu;
3126 	u_int64_t tsf;
3127 
3128 	if (vap == NULL)
3129 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3130 	ni = vap->iv_bss;
3131 
3132 	/* extract tstamp from last beacon and convert to TU */
3133 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3134 			     LE_READ_4(ni->ni_tstamp.data));
3135 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3136 	    ic->ic_opmode == IEEE80211_M_MBSS) {
3137 		/*
3138 		 * For multi-bss ap/mesh support beacons are either staggered
3139 		 * evenly over N slots or burst together.  For the former
3140 		 * arrange for the SWBA to be delivered for each slot.
3141 		 * Slots that are not occupied will generate nothing.
3142 		 */
3143 		/* NB: the beacon interval is kept internally in TU's */
3144 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3145 		if (sc->sc_stagbeacons)
3146 			intval /= ATH_BCBUF;
3147 	} else {
3148 		/* NB: the beacon interval is kept internally in TU's */
3149 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3150 	}
3151 	if (nexttbtt == 0)		/* e.g. for ap mode */
3152 		nexttbtt = intval;
3153 	else if (intval)		/* NB: can be 0 for monitor mode */
3154 		nexttbtt = roundup(nexttbtt, intval);
3155 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3156 		__func__, nexttbtt, intval, ni->ni_intval);
3157 	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3158 		HAL_BEACON_STATE bs;
3159 		int dtimperiod, dtimcount;
3160 		int cfpperiod, cfpcount;
3161 
3162 		/*
3163 		 * Setup dtim and cfp parameters according to
3164 		 * last beacon we received (which may be none).
3165 		 */
3166 		dtimperiod = ni->ni_dtim_period;
3167 		if (dtimperiod <= 0)		/* NB: 0 if not known */
3168 			dtimperiod = 1;
3169 		dtimcount = ni->ni_dtim_count;
3170 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3171 			dtimcount = 0;		/* XXX? */
3172 		cfpperiod = 1;			/* NB: no PCF support yet */
3173 		cfpcount = 0;
3174 		/*
3175 		 * Pull nexttbtt forward to reflect the current
3176 		 * TSF and calculate dtim+cfp state for the result.
3177 		 */
3178 		tsf = ath_hal_gettsf64(ah);
3179 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3180 		do {
3181 			nexttbtt += intval;
3182 			if (--dtimcount < 0) {
3183 				dtimcount = dtimperiod - 1;
3184 				if (--cfpcount < 0)
3185 					cfpcount = cfpperiod - 1;
3186 			}
3187 		} while (nexttbtt < tsftu);
3188 		memset(&bs, 0, sizeof(bs));
3189 		bs.bs_intval = intval;
3190 		bs.bs_nexttbtt = nexttbtt;
3191 		bs.bs_dtimperiod = dtimperiod*intval;
3192 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3193 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3194 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3195 		bs.bs_cfpmaxduration = 0;
3196 #if 0
3197 		/*
3198 		 * The 802.11 layer records the offset to the DTIM
3199 		 * bitmap while receiving beacons; use it here to
3200 		 * enable h/w detection of our AID being marked in
3201 		 * the bitmap vector (to indicate frames for us are
3202 		 * pending at the AP).
3203 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3204 		 * XXX enable based on h/w rev for newer chips
3205 		 */
3206 		bs.bs_timoffset = ni->ni_timoff;
3207 #endif
3208 		/*
3209 		 * Calculate the number of consecutive beacons to miss
3210 		 * before taking a BMISS interrupt.
3211 		 * Note that we clamp the result to at most 10 beacons.
3212 		 */
3213 		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3214 		if (bs.bs_bmissthreshold > 10)
3215 			bs.bs_bmissthreshold = 10;
3216 		else if (bs.bs_bmissthreshold <= 0)
3217 			bs.bs_bmissthreshold = 1;
3218 
3219 		/*
3220 		 * Calculate sleep duration.  The configuration is
3221 		 * given in ms.  We insure a multiple of the beacon
3222 		 * period is used.  Also, if the sleep duration is
3223 		 * greater than the DTIM period then it makes senses
3224 		 * to make it a multiple of that.
3225 		 *
3226 		 * XXX fixed at 100ms
3227 		 */
3228 		bs.bs_sleepduration =
3229 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3230 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3231 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3232 
3233 		DPRINTF(sc, ATH_DEBUG_BEACON,
3234 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3235 			, __func__
3236 			, tsf, tsftu
3237 			, bs.bs_intval
3238 			, bs.bs_nexttbtt
3239 			, bs.bs_dtimperiod
3240 			, bs.bs_nextdtim
3241 			, bs.bs_bmissthreshold
3242 			, bs.bs_sleepduration
3243 			, bs.bs_cfpperiod
3244 			, bs.bs_cfpmaxduration
3245 			, bs.bs_cfpnext
3246 			, bs.bs_timoffset
3247 		);
3248 		ath_hal_intrset(ah, 0);
3249 		ath_hal_beacontimers(ah, &bs);
3250 		sc->sc_imask |= HAL_INT_BMISS;
3251 		ath_hal_intrset(ah, sc->sc_imask);
3252 	} else {
3253 		ath_hal_intrset(ah, 0);
3254 		if (nexttbtt == intval)
3255 			intval |= HAL_BEACON_RESET_TSF;
3256 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3257 			/*
3258 			 * In IBSS mode enable the beacon timers but only
3259 			 * enable SWBA interrupts if we need to manually
3260 			 * prepare beacon frames.  Otherwise we use a
3261 			 * self-linked tx descriptor and let the hardware
3262 			 * deal with things.
3263 			 */
3264 			intval |= HAL_BEACON_ENA;
3265 			if (!sc->sc_hasveol)
3266 				sc->sc_imask |= HAL_INT_SWBA;
3267 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3268 				/*
3269 				 * Pull nexttbtt forward to reflect
3270 				 * the current TSF.
3271 				 */
3272 				tsf = ath_hal_gettsf64(ah);
3273 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3274 				do {
3275 					nexttbtt += intval;
3276 				} while (nexttbtt < tsftu);
3277 			}
3278 			ath_beaconq_config(sc);
3279 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3280 		    ic->ic_opmode == IEEE80211_M_MBSS) {
3281 			/*
3282 			 * In AP/mesh mode we enable the beacon timers
3283 			 * and SWBA interrupts to prepare beacon frames.
3284 			 */
3285 			intval |= HAL_BEACON_ENA;
3286 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3287 			ath_beaconq_config(sc);
3288 		}
3289 		ath_hal_beaconinit(ah, nexttbtt, intval);
3290 		sc->sc_bmisscount = 0;
3291 		ath_hal_intrset(ah, sc->sc_imask);
3292 		/*
3293 		 * When using a self-linked beacon descriptor in
3294 		 * ibss mode load it once here.
3295 		 */
3296 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3297 			ath_beacon_start_adhoc(sc, vap);
3298 	}
3299 	sc->sc_syncbeacon = 0;
3300 #undef FUDGE
3301 #undef TSF_TO_TU
3302 }
3303 
3304 static void
3305 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3306 {
3307 	bus_addr_t *paddr = (bus_addr_t*) arg;
3308 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3309 	*paddr = segs->ds_addr;
3310 }
3311 
3312 static int
3313 ath_descdma_setup(struct ath_softc *sc,
3314 	struct ath_descdma *dd, ath_bufhead *head,
3315 	const char *name, int nbuf, int ndesc)
3316 {
3317 #define	DS2PHYS(_dd, _ds) \
3318 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3319 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3320 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3321 	struct ifnet *ifp = sc->sc_ifp;
3322 	uint8_t *ds;
3323 	struct ath_buf *bf;
3324 	int i, bsize, error;
3325 	int desc_len;
3326 
3327 	desc_len = sizeof(struct ath_desc);
3328 
3329 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3330 	    __func__, name, nbuf, ndesc);
3331 
3332 	dd->dd_name = name;
3333 	dd->dd_desc_len = desc_len * nbuf * ndesc;
3334 
3335 	/*
3336 	 * Merlin work-around:
3337 	 * Descriptors that cross the 4KB boundary can't be used.
3338 	 * Assume one skipped descriptor per 4KB page.
3339 	 */
3340 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3341 		int numdescpage = 4096 / (desc_len * ndesc);
3342 		dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096;
3343 	}
3344 
3345 	/*
3346 	 * Setup DMA descriptor area.
3347 	 */
3348 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3349 		       PAGE_SIZE, 0,		/* alignment, bounds */
3350 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3351 		       BUS_SPACE_MAXADDR,	/* highaddr */
3352 		       NULL, NULL,		/* filter, filterarg */
3353 		       dd->dd_desc_len,		/* maxsize */
3354 		       1,			/* nsegments */
3355 		       dd->dd_desc_len,		/* maxsegsize */
3356 		       BUS_DMA_ALLOCNOW,	/* flags */
3357 		       NULL,			/* lockfunc */
3358 		       NULL,			/* lockarg */
3359 		       &dd->dd_dmat);
3360 	if (error != 0) {
3361 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3362 		return error;
3363 	}
3364 
3365 	/* allocate descriptors */
3366 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3367 	if (error != 0) {
3368 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3369 			"error %u\n", dd->dd_name, error);
3370 		goto fail0;
3371 	}
3372 
3373 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3374 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3375 				 &dd->dd_dmamap);
3376 	if (error != 0) {
3377 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3378 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3379 		goto fail1;
3380 	}
3381 
3382 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3383 				dd->dd_desc, dd->dd_desc_len,
3384 				ath_load_cb, &dd->dd_desc_paddr,
3385 				BUS_DMA_NOWAIT);
3386 	if (error != 0) {
3387 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3388 			dd->dd_name, error);
3389 		goto fail2;
3390 	}
3391 
3392 	ds = (uint8_t *) dd->dd_desc;
3393 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3394 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3395 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3396 
3397 	/* allocate rx buffers */
3398 	bsize = sizeof(struct ath_buf) * nbuf;
3399 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3400 	if (bf == NULL) {
3401 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3402 			dd->dd_name, bsize);
3403 		goto fail3;
3404 	}
3405 	dd->dd_bufptr = bf;
3406 
3407 	TAILQ_INIT(head);
3408 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) {
3409 		bf->bf_desc = (struct ath_desc *) ds;
3410 		bf->bf_daddr = DS2PHYS(dd, ds);
3411 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3412 			/*
3413 			 * Merlin WAR: Skip descriptor addresses which
3414 			 * cause 4KB boundary crossing along any point
3415 			 * in the descriptor.
3416 			 */
3417 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3418 			     desc_len * ndesc)) {
3419 				/* Start at the next page */
3420 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3421 				bf->bf_desc = (struct ath_desc *) ds;
3422 				bf->bf_daddr = DS2PHYS(dd, ds);
3423 			}
3424 		}
3425 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3426 				&bf->bf_dmamap);
3427 		if (error != 0) {
3428 			if_printf(ifp, "unable to create dmamap for %s "
3429 				"buffer %u, error %u\n", dd->dd_name, i, error);
3430 			ath_descdma_cleanup(sc, dd, head);
3431 			return error;
3432 		}
3433 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3434 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3435 	}
3436 	return 0;
3437 fail3:
3438 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3439 fail2:
3440 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3441 fail1:
3442 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3443 fail0:
3444 	bus_dma_tag_destroy(dd->dd_dmat);
3445 	memset(dd, 0, sizeof(*dd));
3446 	return error;
3447 #undef DS2PHYS
3448 #undef ATH_DESC_4KB_BOUND_CHECK
3449 }
3450 
3451 static void
3452 ath_descdma_cleanup(struct ath_softc *sc,
3453 	struct ath_descdma *dd, ath_bufhead *head)
3454 {
3455 	struct ath_buf *bf;
3456 	struct ieee80211_node *ni;
3457 
3458 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3459 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3460 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3461 	bus_dma_tag_destroy(dd->dd_dmat);
3462 
3463 	TAILQ_FOREACH(bf, head, bf_list) {
3464 		if (bf->bf_m) {
3465 			m_freem(bf->bf_m);
3466 			bf->bf_m = NULL;
3467 		}
3468 		if (bf->bf_dmamap != NULL) {
3469 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3470 			bf->bf_dmamap = NULL;
3471 		}
3472 		ni = bf->bf_node;
3473 		bf->bf_node = NULL;
3474 		if (ni != NULL) {
3475 			/*
3476 			 * Reclaim node reference.
3477 			 */
3478 			ieee80211_free_node(ni);
3479 		}
3480 	}
3481 
3482 	TAILQ_INIT(head);
3483 	free(dd->dd_bufptr, M_ATHDEV);
3484 	memset(dd, 0, sizeof(*dd));
3485 }
3486 
3487 static int
3488 ath_desc_alloc(struct ath_softc *sc)
3489 {
3490 	int error;
3491 
3492 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3493 			"rx", ath_rxbuf, 1);
3494 	if (error != 0)
3495 		return error;
3496 
3497 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3498 			"tx", ath_txbuf, ATH_TXDESC);
3499 	if (error != 0) {
3500 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3501 		return error;
3502 	}
3503 
3504 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3505 			"beacon", ATH_BCBUF, 1);
3506 	if (error != 0) {
3507 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3508 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3509 		return error;
3510 	}
3511 	return 0;
3512 }
3513 
3514 static void
3515 ath_desc_free(struct ath_softc *sc)
3516 {
3517 
3518 	if (sc->sc_bdma.dd_desc_len != 0)
3519 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3520 	if (sc->sc_txdma.dd_desc_len != 0)
3521 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3522 	if (sc->sc_rxdma.dd_desc_len != 0)
3523 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3524 }
3525 
3526 static struct ieee80211_node *
3527 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3528 {
3529 	struct ieee80211com *ic = vap->iv_ic;
3530 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3531 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3532 	struct ath_node *an;
3533 
3534 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3535 	if (an == NULL) {
3536 		/* XXX stat+msg */
3537 		return NULL;
3538 	}
3539 	ath_rate_node_init(sc, an);
3540 
3541 	/* Setup the mutex - there's no associd yet so set the name to NULL */
3542 	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3543 	    device_get_nameunit(sc->sc_dev), an);
3544 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3545 
3546 	/* XXX setup ath_tid */
3547 	ath_tx_tid_init(sc, an);
3548 
3549 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3550 	return &an->an_node;
3551 }
3552 
3553 static void
3554 ath_node_cleanup(struct ieee80211_node *ni)
3555 {
3556 	struct ieee80211com *ic = ni->ni_ic;
3557 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3558 
3559 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3560 	ath_tx_node_flush(sc, ATH_NODE(ni));
3561 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3562 	sc->sc_node_cleanup(ni);
3563 }
3564 
3565 static void
3566 ath_node_free(struct ieee80211_node *ni)
3567 {
3568 	struct ieee80211com *ic = ni->ni_ic;
3569 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3570 
3571 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3572 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3573 	sc->sc_node_free(ni);
3574 }
3575 
3576 static void
3577 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3578 {
3579 	struct ieee80211com *ic = ni->ni_ic;
3580 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3581 	struct ath_hal *ah = sc->sc_ah;
3582 
3583 	*rssi = ic->ic_node_getrssi(ni);
3584 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3585 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3586 	else
3587 		*noise = -95;		/* nominally correct */
3588 }
3589 
3590 static int
3591 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3592 {
3593 	struct ath_hal *ah = sc->sc_ah;
3594 	int error;
3595 	struct mbuf *m;
3596 	struct ath_desc *ds;
3597 
3598 	m = bf->bf_m;
3599 	if (m == NULL) {
3600 		/*
3601 		 * NB: by assigning a page to the rx dma buffer we
3602 		 * implicitly satisfy the Atheros requirement that
3603 		 * this buffer be cache-line-aligned and sized to be
3604 		 * multiple of the cache line size.  Not doing this
3605 		 * causes weird stuff to happen (for the 5210 at least).
3606 		 */
3607 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3608 		if (m == NULL) {
3609 			DPRINTF(sc, ATH_DEBUG_ANY,
3610 				"%s: no mbuf/cluster\n", __func__);
3611 			sc->sc_stats.ast_rx_nombuf++;
3612 			return ENOMEM;
3613 		}
3614 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3615 
3616 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3617 					     bf->bf_dmamap, m,
3618 					     bf->bf_segs, &bf->bf_nseg,
3619 					     BUS_DMA_NOWAIT);
3620 		if (error != 0) {
3621 			DPRINTF(sc, ATH_DEBUG_ANY,
3622 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3623 			    __func__, error);
3624 			sc->sc_stats.ast_rx_busdma++;
3625 			m_freem(m);
3626 			return error;
3627 		}
3628 		KASSERT(bf->bf_nseg == 1,
3629 			("multi-segment packet; nseg %u", bf->bf_nseg));
3630 		bf->bf_m = m;
3631 	}
3632 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3633 
3634 	/*
3635 	 * Setup descriptors.  For receive we always terminate
3636 	 * the descriptor list with a self-linked entry so we'll
3637 	 * not get overrun under high load (as can happen with a
3638 	 * 5212 when ANI processing enables PHY error frames).
3639 	 *
3640 	 * To insure the last descriptor is self-linked we create
3641 	 * each descriptor as self-linked and add it to the end.  As
3642 	 * each additional descriptor is added the previous self-linked
3643 	 * entry is ``fixed'' naturally.  This should be safe even
3644 	 * if DMA is happening.  When processing RX interrupts we
3645 	 * never remove/process the last, self-linked, entry on the
3646 	 * descriptor list.  This insures the hardware always has
3647 	 * someplace to write a new frame.
3648 	 */
3649 	/*
3650 	 * 11N: we can no longer afford to self link the last descriptor.
3651 	 * MAC acknowledges BA status as long as it copies frames to host
3652 	 * buffer (or rx fifo). This can incorrectly acknowledge packets
3653 	 * to a sender if last desc is self-linked.
3654 	 */
3655 	ds = bf->bf_desc;
3656 	if (sc->sc_rxslink)
3657 		ds->ds_link = bf->bf_daddr;	/* link to self */
3658 	else
3659 		ds->ds_link = 0;		/* terminate the list */
3660 	ds->ds_data = bf->bf_segs[0].ds_addr;
3661 	ath_hal_setuprxdesc(ah, ds
3662 		, m->m_len		/* buffer size */
3663 		, 0
3664 	);
3665 
3666 	if (sc->sc_rxlink != NULL)
3667 		*sc->sc_rxlink = bf->bf_daddr;
3668 	sc->sc_rxlink = &ds->ds_link;
3669 	return 0;
3670 }
3671 
3672 /*
3673  * Extend 15-bit time stamp from rx descriptor to
3674  * a full 64-bit TSF using the specified TSF.
3675  */
3676 static __inline u_int64_t
3677 ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf)
3678 {
3679 	if ((tsf & 0x7fff) < rstamp)
3680 		tsf -= 0x8000;
3681 
3682 	return ((tsf &~ 0x7fff) | rstamp);
3683 }
3684 
3685 /*
3686  * Extend 32-bit time stamp from rx descriptor to
3687  * a full 64-bit TSF using the specified TSF.
3688  */
3689 static __inline u_int64_t
3690 ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf)
3691 {
3692 	u_int32_t tsf_low = tsf & 0xffffffff;
3693 	u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp;
3694 
3695 	if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000))
3696 		tsf64 -= 0x100000000ULL;
3697 
3698 	if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000))
3699 		tsf64 += 0x100000000ULL;
3700 
3701 	return tsf64;
3702 }
3703 
3704 /*
3705  * Extend the TSF from the RX descriptor to a full 64 bit TSF.
3706  * Earlier hardware versions only wrote the low 15 bits of the
3707  * TSF into the RX descriptor; later versions (AR5416 and up)
3708  * include the 32 bit TSF value.
3709  */
3710 static __inline u_int64_t
3711 ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf)
3712 {
3713 	if (sc->sc_rxtsf32)
3714 		return ath_extend_tsf32(rstamp, tsf);
3715 	else
3716 		return ath_extend_tsf15(rstamp, tsf);
3717 }
3718 
3719 /*
3720  * Intercept management frames to collect beacon rssi data
3721  * and to do ibss merges.
3722  */
3723 static void
3724 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3725 	int subtype, int rssi, int nf)
3726 {
3727 	struct ieee80211vap *vap = ni->ni_vap;
3728 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3729 
3730 	/*
3731 	 * Call up first so subsequent work can use information
3732 	 * potentially stored in the node (e.g. for ibss merge).
3733 	 */
3734 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3735 	switch (subtype) {
3736 	case IEEE80211_FC0_SUBTYPE_BEACON:
3737 		/* update rssi statistics for use by the hal */
3738 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3739 		if (sc->sc_syncbeacon &&
3740 		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3741 			/*
3742 			 * Resync beacon timers using the tsf of the beacon
3743 			 * frame we just received.
3744 			 */
3745 			ath_beacon_config(sc, vap);
3746 		}
3747 		/* fall thru... */
3748 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3749 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3750 		    vap->iv_state == IEEE80211_S_RUN) {
3751 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3752 			uint64_t tsf = ath_extend_tsf(sc, rstamp,
3753 				ath_hal_gettsf64(sc->sc_ah));
3754 			/*
3755 			 * Handle ibss merge as needed; check the tsf on the
3756 			 * frame before attempting the merge.  The 802.11 spec
3757 			 * says the station should change it's bssid to match
3758 			 * the oldest station with the same ssid, where oldest
3759 			 * is determined by the tsf.  Note that hardware
3760 			 * reconfiguration happens through callback to
3761 			 * ath_newstate as the state machine will go from
3762 			 * RUN -> RUN when this happens.
3763 			 */
3764 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3765 				DPRINTF(sc, ATH_DEBUG_STATE,
3766 				    "ibss merge, rstamp %u tsf %ju "
3767 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3768 				    (uintmax_t)ni->ni_tstamp.tsf);
3769 				(void) ieee80211_ibss_merge(ni);
3770 			}
3771 		}
3772 		break;
3773 	}
3774 }
3775 
3776 /*
3777  * Set the default antenna.
3778  */
3779 static void
3780 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3781 {
3782 	struct ath_hal *ah = sc->sc_ah;
3783 
3784 	/* XXX block beacon interrupts */
3785 	ath_hal_setdefantenna(ah, antenna);
3786 	if (sc->sc_defant != antenna)
3787 		sc->sc_stats.ast_ant_defswitch++;
3788 	sc->sc_defant = antenna;
3789 	sc->sc_rxotherant = 0;
3790 }
3791 
3792 static void
3793 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3794 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3795 {
3796 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3797 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3798 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3799 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3800 	struct ath_softc *sc = ifp->if_softc;
3801 	const HAL_RATE_TABLE *rt;
3802 	uint8_t rix;
3803 
3804 	rt = sc->sc_currates;
3805 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3806 	rix = rt->rateCodeToIndex[rs->rs_rate];
3807 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3808 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3809 #ifdef AH_SUPPORT_AR5416
3810 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3811 	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3812 		struct ieee80211com *ic = ifp->if_l2com;
3813 
3814 		if ((rs->rs_flags & HAL_RX_2040) == 0)
3815 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3816 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3817 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3818 		else
3819 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3820 		if ((rs->rs_flags & HAL_RX_GI) == 0)
3821 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3822 	}
3823 #endif
3824 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
3825 	if (rs->rs_status & HAL_RXERR_CRC)
3826 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3827 	/* XXX propagate other error flags from descriptor */
3828 	sc->sc_rx_th.wr_antnoise = nf;
3829 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
3830 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3831 #undef CHAN_HT
3832 #undef CHAN_HT20
3833 #undef CHAN_HT40U
3834 #undef CHAN_HT40D
3835 }
3836 
3837 static void
3838 ath_handle_micerror(struct ieee80211com *ic,
3839 	struct ieee80211_frame *wh, int keyix)
3840 {
3841 	struct ieee80211_node *ni;
3842 
3843 	/* XXX recheck MIC to deal w/ chips that lie */
3844 	/* XXX discard MIC errors on !data frames */
3845 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3846 	if (ni != NULL) {
3847 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3848 		ieee80211_free_node(ni);
3849 	}
3850 }
3851 
3852 /*
3853  * Only run the RX proc if it's not already running.
3854  * Since this may get run as part of the reset/flush path,
3855  * the task can't clash with an existing, running tasklet.
3856  */
3857 static void
3858 ath_rx_tasklet(void *arg, int npending)
3859 {
3860 	struct ath_softc *sc = arg;
3861 
3862 	CTR1(ATH_KTR_INTR, "ath_rx_proc: pending=%d", npending);
3863 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3864 	ATH_PCU_LOCK(sc);
3865 	if (sc->sc_inreset_cnt > 0) {
3866 		device_printf(sc->sc_dev,
3867 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
3868 		ATH_PCU_UNLOCK(sc);
3869 		return;
3870 	}
3871 	ATH_PCU_UNLOCK(sc);
3872 	ath_rx_proc(sc, 1);
3873 }
3874 
3875 static void
3876 ath_rx_proc(struct ath_softc *sc, int resched)
3877 {
3878 #define	PA2DESC(_sc, _pa) \
3879 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3880 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3881 	struct ath_buf *bf;
3882 	struct ifnet *ifp = sc->sc_ifp;
3883 	struct ieee80211com *ic = ifp->if_l2com;
3884 	struct ath_hal *ah = sc->sc_ah;
3885 	struct ath_desc *ds;
3886 	struct ath_rx_status *rs;
3887 	struct mbuf *m;
3888 	struct ieee80211_node *ni;
3889 	int len, type, ngood;
3890 	HAL_STATUS status;
3891 	int16_t nf;
3892 	u_int64_t tsf;
3893 	int npkts = 0;
3894 
3895 	/* XXX we must not hold the ATH_LOCK here */
3896 	ATH_UNLOCK_ASSERT(sc);
3897 	ATH_PCU_UNLOCK_ASSERT(sc);
3898 
3899 	ATH_PCU_LOCK(sc);
3900 	sc->sc_rxproc_cnt++;
3901 	ATH_PCU_UNLOCK(sc);
3902 
3903 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__);
3904 	ngood = 0;
3905 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
3906 	sc->sc_stats.ast_rx_noise = nf;
3907 	tsf = ath_hal_gettsf64(ah);
3908 	do {
3909 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
3910 		if (sc->sc_rxslink && bf == NULL) {	/* NB: shouldn't happen */
3911 			if_printf(ifp, "%s: no buffer!\n", __func__);
3912 			break;
3913 		} else if (bf == NULL) {
3914 			/*
3915 			 * End of List:
3916 			 * this can happen for non-self-linked RX chains
3917 			 */
3918 			sc->sc_stats.ast_rx_hitqueueend++;
3919 			break;
3920 		}
3921 		m = bf->bf_m;
3922 		if (m == NULL) {		/* NB: shouldn't happen */
3923 			/*
3924 			 * If mbuf allocation failed previously there
3925 			 * will be no mbuf; try again to re-populate it.
3926 			 */
3927 			/* XXX make debug msg */
3928 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3929 			TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
3930 			goto rx_next;
3931 		}
3932 		ds = bf->bf_desc;
3933 		if (ds->ds_link == bf->bf_daddr) {
3934 			/* NB: never process the self-linked entry at the end */
3935 			sc->sc_stats.ast_rx_hitqueueend++;
3936 			break;
3937 		}
3938 		/* XXX sync descriptor memory */
3939 		/*
3940 		 * Must provide the virtual address of the current
3941 		 * descriptor, the physical address, and the virtual
3942 		 * address of the next descriptor in the h/w chain.
3943 		 * This allows the HAL to look ahead to see if the
3944 		 * hardware is done with a descriptor by checking the
3945 		 * done bit in the following descriptor and the address
3946 		 * of the current descriptor the DMA engine is working
3947 		 * on.  All this is necessary because of our use of
3948 		 * a self-linked list to avoid rx overruns.
3949 		 */
3950 		rs = &bf->bf_status.ds_rxstat;
3951 		status = ath_hal_rxprocdesc(ah, ds,
3952 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3953 #ifdef ATH_DEBUG
3954 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3955 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
3956 #endif
3957 		if (status == HAL_EINPROGRESS)
3958 			break;
3959 
3960 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
3961 		npkts++;
3962 
3963 		/* These aren't specifically errors */
3964 		if (rs->rs_flags & HAL_RX_GI)
3965 			sc->sc_stats.ast_rx_halfgi++;
3966 		if (rs->rs_flags & HAL_RX_2040)
3967 			sc->sc_stats.ast_rx_2040++;
3968 		if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
3969 			sc->sc_stats.ast_rx_pre_crc_err++;
3970 		if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
3971 			sc->sc_stats.ast_rx_post_crc_err++;
3972 		if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
3973 			sc->sc_stats.ast_rx_decrypt_busy_err++;
3974 		if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
3975 			sc->sc_stats.ast_rx_hi_rx_chain++;
3976 
3977 		if (rs->rs_status != 0) {
3978 			if (rs->rs_status & HAL_RXERR_CRC)
3979 				sc->sc_stats.ast_rx_crcerr++;
3980 			if (rs->rs_status & HAL_RXERR_FIFO)
3981 				sc->sc_stats.ast_rx_fifoerr++;
3982 			if (rs->rs_status & HAL_RXERR_PHY) {
3983 				sc->sc_stats.ast_rx_phyerr++;
3984 				/* Process DFS radar events */
3985 				if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
3986 				    (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
3987 					/* Since we're touching the frame data, sync it */
3988 					bus_dmamap_sync(sc->sc_dmat,
3989 					    bf->bf_dmamap,
3990 					    BUS_DMASYNC_POSTREAD);
3991 					/* Now pass it to the radar processing code */
3992 					ath_dfs_process_phy_err(sc, mtod(m, char *), tsf, rs);
3993 				}
3994 
3995 				/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
3996 				if (rs->rs_phyerr < 64)
3997 					sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
3998 				goto rx_error;	/* NB: don't count in ierrors */
3999 			}
4000 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
4001 				/*
4002 				 * Decrypt error.  If the error occurred
4003 				 * because there was no hardware key, then
4004 				 * let the frame through so the upper layers
4005 				 * can process it.  This is necessary for 5210
4006 				 * parts which have no way to setup a ``clear''
4007 				 * key cache entry.
4008 				 *
4009 				 * XXX do key cache faulting
4010 				 */
4011 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
4012 					goto rx_accept;
4013 				sc->sc_stats.ast_rx_badcrypt++;
4014 			}
4015 			if (rs->rs_status & HAL_RXERR_MIC) {
4016 				sc->sc_stats.ast_rx_badmic++;
4017 				/*
4018 				 * Do minimal work required to hand off
4019 				 * the 802.11 header for notification.
4020 				 */
4021 				/* XXX frag's and qos frames */
4022 				len = rs->rs_datalen;
4023 				if (len >= sizeof (struct ieee80211_frame)) {
4024 					bus_dmamap_sync(sc->sc_dmat,
4025 					    bf->bf_dmamap,
4026 					    BUS_DMASYNC_POSTREAD);
4027 					ath_handle_micerror(ic,
4028 					    mtod(m, struct ieee80211_frame *),
4029 					    sc->sc_splitmic ?
4030 						rs->rs_keyix-32 : rs->rs_keyix);
4031 				}
4032 			}
4033 			ifp->if_ierrors++;
4034 rx_error:
4035 			/*
4036 			 * Cleanup any pending partial frame.
4037 			 */
4038 			if (sc->sc_rxpending != NULL) {
4039 				m_freem(sc->sc_rxpending);
4040 				sc->sc_rxpending = NULL;
4041 			}
4042 			/*
4043 			 * When a tap is present pass error frames
4044 			 * that have been requested.  By default we
4045 			 * pass decrypt+mic errors but others may be
4046 			 * interesting (e.g. crc).
4047 			 */
4048 			if (ieee80211_radiotap_active(ic) &&
4049 			    (rs->rs_status & sc->sc_monpass)) {
4050 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4051 				    BUS_DMASYNC_POSTREAD);
4052 				/* NB: bpf needs the mbuf length setup */
4053 				len = rs->rs_datalen;
4054 				m->m_pkthdr.len = m->m_len = len;
4055 				bf->bf_m = NULL;
4056 				ath_rx_tap(ifp, m, rs, tsf, nf);
4057 				ieee80211_radiotap_rx_all(ic, m);
4058 				m_freem(m);
4059 			}
4060 			/* XXX pass MIC errors up for s/w reclaculation */
4061 			goto rx_next;
4062 		}
4063 rx_accept:
4064 		/*
4065 		 * Sync and unmap the frame.  At this point we're
4066 		 * committed to passing the mbuf somewhere so clear
4067 		 * bf_m; this means a new mbuf must be allocated
4068 		 * when the rx descriptor is setup again to receive
4069 		 * another frame.
4070 		 */
4071 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4072 		    BUS_DMASYNC_POSTREAD);
4073 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4074 		bf->bf_m = NULL;
4075 
4076 		len = rs->rs_datalen;
4077 		m->m_len = len;
4078 
4079 		if (rs->rs_more) {
4080 			/*
4081 			 * Frame spans multiple descriptors; save
4082 			 * it for the next completed descriptor, it
4083 			 * will be used to construct a jumbogram.
4084 			 */
4085 			if (sc->sc_rxpending != NULL) {
4086 				/* NB: max frame size is currently 2 clusters */
4087 				sc->sc_stats.ast_rx_toobig++;
4088 				m_freem(sc->sc_rxpending);
4089 			}
4090 			m->m_pkthdr.rcvif = ifp;
4091 			m->m_pkthdr.len = len;
4092 			sc->sc_rxpending = m;
4093 			goto rx_next;
4094 		} else if (sc->sc_rxpending != NULL) {
4095 			/*
4096 			 * This is the second part of a jumbogram,
4097 			 * chain it to the first mbuf, adjust the
4098 			 * frame length, and clear the rxpending state.
4099 			 */
4100 			sc->sc_rxpending->m_next = m;
4101 			sc->sc_rxpending->m_pkthdr.len += len;
4102 			m = sc->sc_rxpending;
4103 			sc->sc_rxpending = NULL;
4104 		} else {
4105 			/*
4106 			 * Normal single-descriptor receive; setup
4107 			 * the rcvif and packet length.
4108 			 */
4109 			m->m_pkthdr.rcvif = ifp;
4110 			m->m_pkthdr.len = len;
4111 		}
4112 
4113 		ifp->if_ipackets++;
4114 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
4115 
4116 		/*
4117 		 * Populate the rx status block.  When there are bpf
4118 		 * listeners we do the additional work to provide
4119 		 * complete status.  Otherwise we fill in only the
4120 		 * material required by ieee80211_input.  Note that
4121 		 * noise setting is filled in above.
4122 		 */
4123 		if (ieee80211_radiotap_active(ic))
4124 			ath_rx_tap(ifp, m, rs, tsf, nf);
4125 
4126 		/*
4127 		 * From this point on we assume the frame is at least
4128 		 * as large as ieee80211_frame_min; verify that.
4129 		 */
4130 		if (len < IEEE80211_MIN_LEN) {
4131 			if (!ieee80211_radiotap_active(ic)) {
4132 				DPRINTF(sc, ATH_DEBUG_RECV,
4133 				    "%s: short packet %d\n", __func__, len);
4134 				sc->sc_stats.ast_rx_tooshort++;
4135 			} else {
4136 				/* NB: in particular this captures ack's */
4137 				ieee80211_radiotap_rx_all(ic, m);
4138 			}
4139 			m_freem(m);
4140 			goto rx_next;
4141 		}
4142 
4143 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
4144 			const HAL_RATE_TABLE *rt = sc->sc_currates;
4145 			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
4146 
4147 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
4148 			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
4149 		}
4150 
4151 		m_adj(m, -IEEE80211_CRC_LEN);
4152 
4153 		/*
4154 		 * Locate the node for sender, track state, and then
4155 		 * pass the (referenced) node up to the 802.11 layer
4156 		 * for its use.
4157 		 */
4158 		ni = ieee80211_find_rxnode_withkey(ic,
4159 			mtod(m, const struct ieee80211_frame_min *),
4160 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
4161 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4162 		sc->sc_lastrs = rs;
4163 
4164 		if (rs->rs_isaggr)
4165 			sc->sc_stats.ast_rx_agg++;
4166 
4167 		if (ni != NULL) {
4168 			/*
4169  			 * Only punt packets for ampdu reorder processing for
4170 			 * 11n nodes; net80211 enforces that M_AMPDU is only
4171 			 * set for 11n nodes.
4172  			 */
4173 			if (ni->ni_flags & IEEE80211_NODE_HT)
4174 				m->m_flags |= M_AMPDU;
4175 
4176 			/*
4177 			 * Sending station is known, dispatch directly.
4178 			 */
4179 			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
4180 			ieee80211_free_node(ni);
4181 			/*
4182 			 * Arrange to update the last rx timestamp only for
4183 			 * frames from our ap when operating in station mode.
4184 			 * This assumes the rx key is always setup when
4185 			 * associated.
4186 			 */
4187 			if (ic->ic_opmode == IEEE80211_M_STA &&
4188 			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4189 				ngood++;
4190 		} else {
4191 			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
4192 		}
4193 		/*
4194 		 * Track rx rssi and do any rx antenna management.
4195 		 */
4196 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4197 		if (sc->sc_diversity) {
4198 			/*
4199 			 * When using fast diversity, change the default rx
4200 			 * antenna if diversity chooses the other antenna 3
4201 			 * times in a row.
4202 			 */
4203 			if (sc->sc_defant != rs->rs_antenna) {
4204 				if (++sc->sc_rxotherant >= 3)
4205 					ath_setdefantenna(sc, rs->rs_antenna);
4206 			} else
4207 				sc->sc_rxotherant = 0;
4208 		}
4209 
4210 		/* Newer school diversity - kite specific for now */
4211 		/* XXX perhaps migrate the normal diversity code to this? */
4212 		if ((ah)->ah_rxAntCombDiversity)
4213 			(*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz);
4214 
4215 		if (sc->sc_softled) {
4216 			/*
4217 			 * Blink for any data frame.  Otherwise do a
4218 			 * heartbeat-style blink when idle.  The latter
4219 			 * is mainly for station mode where we depend on
4220 			 * periodic beacon frames to trigger the poll event.
4221 			 */
4222 			if (type == IEEE80211_FC0_TYPE_DATA) {
4223 				const HAL_RATE_TABLE *rt = sc->sc_currates;
4224 				ath_led_event(sc,
4225 				    rt->rateCodeToIndex[rs->rs_rate]);
4226 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4227 				ath_led_event(sc, 0);
4228 		}
4229 rx_next:
4230 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4231 	} while (ath_rxbuf_init(sc, bf) == 0);
4232 
4233 	/* rx signal state monitoring */
4234 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4235 	if (ngood)
4236 		sc->sc_lastrx = tsf;
4237 
4238 	CTR2(ATH_KTR_INTR, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood);
4239 	/* Queue DFS tasklet if needed */
4240 	if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan))
4241 		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
4242 
4243 	/*
4244 	 * Now that all the RX frames were handled that
4245 	 * need to be handled, kick the PCU if there's
4246 	 * been an RXEOL condition.
4247 	 */
4248 	ATH_PCU_LOCK(sc);
4249 	if (resched && sc->sc_kickpcu) {
4250 		CTR0(ATH_KTR_ERR, "ath_rx_proc: kickpcu");
4251 		device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n",
4252 		    __func__, npkts);
4253 
4254 		/* XXX rxslink? */
4255 		/*
4256 		 * XXX can we hold the PCU lock here?
4257 		 * Are there any net80211 buffer calls involved?
4258 		 */
4259 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
4260 		ath_hal_putrxbuf(ah, bf->bf_daddr);
4261 		ath_hal_rxena(ah);		/* enable recv descriptors */
4262 		ath_mode_init(sc);		/* set filters, etc. */
4263 		ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4264 
4265 		ath_hal_intrset(ah, sc->sc_imask);
4266 		sc->sc_kickpcu = 0;
4267 	}
4268 	ATH_PCU_UNLOCK(sc);
4269 
4270 	/* XXX check this inside of IF_LOCK? */
4271 	if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
4272 #ifdef IEEE80211_SUPPORT_SUPERG
4273 		ieee80211_ff_age_all(ic, 100);
4274 #endif
4275 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
4276 			ath_start(ifp);
4277 	}
4278 #undef PA2DESC
4279 
4280 	ATH_PCU_LOCK(sc);
4281 	sc->sc_rxproc_cnt--;
4282 	ATH_PCU_UNLOCK(sc);
4283 }
4284 
4285 static void
4286 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4287 {
4288 	txq->axq_qnum = qnum;
4289 	txq->axq_ac = 0;
4290 	txq->axq_depth = 0;
4291 	txq->axq_aggr_depth = 0;
4292 	txq->axq_intrcnt = 0;
4293 	txq->axq_link = NULL;
4294 	txq->axq_softc = sc;
4295 	TAILQ_INIT(&txq->axq_q);
4296 	TAILQ_INIT(&txq->axq_tidq);
4297 	ATH_TXQ_LOCK_INIT(sc, txq);
4298 }
4299 
4300 /*
4301  * Setup a h/w transmit queue.
4302  */
4303 static struct ath_txq *
4304 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4305 {
4306 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4307 	struct ath_hal *ah = sc->sc_ah;
4308 	HAL_TXQ_INFO qi;
4309 	int qnum;
4310 
4311 	memset(&qi, 0, sizeof(qi));
4312 	qi.tqi_subtype = subtype;
4313 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4314 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4315 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4316 	/*
4317 	 * Enable interrupts only for EOL and DESC conditions.
4318 	 * We mark tx descriptors to receive a DESC interrupt
4319 	 * when a tx queue gets deep; otherwise waiting for the
4320 	 * EOL to reap descriptors.  Note that this is done to
4321 	 * reduce interrupt load and this only defers reaping
4322 	 * descriptors, never transmitting frames.  Aside from
4323 	 * reducing interrupts this also permits more concurrency.
4324 	 * The only potential downside is if the tx queue backs
4325 	 * up in which case the top half of the kernel may backup
4326 	 * due to a lack of tx descriptors.
4327 	 */
4328 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4329 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4330 	if (qnum == -1) {
4331 		/*
4332 		 * NB: don't print a message, this happens
4333 		 * normally on parts with too few tx queues
4334 		 */
4335 		return NULL;
4336 	}
4337 	if (qnum >= N(sc->sc_txq)) {
4338 		device_printf(sc->sc_dev,
4339 			"hal qnum %u out of range, max %zu!\n",
4340 			qnum, N(sc->sc_txq));
4341 		ath_hal_releasetxqueue(ah, qnum);
4342 		return NULL;
4343 	}
4344 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4345 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4346 		sc->sc_txqsetup |= 1<<qnum;
4347 	}
4348 	return &sc->sc_txq[qnum];
4349 #undef N
4350 }
4351 
4352 /*
4353  * Setup a hardware data transmit queue for the specified
4354  * access control.  The hal may not support all requested
4355  * queues in which case it will return a reference to a
4356  * previously setup queue.  We record the mapping from ac's
4357  * to h/w queues for use by ath_tx_start and also track
4358  * the set of h/w queues being used to optimize work in the
4359  * transmit interrupt handler and related routines.
4360  */
4361 static int
4362 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4363 {
4364 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4365 	struct ath_txq *txq;
4366 
4367 	if (ac >= N(sc->sc_ac2q)) {
4368 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4369 			ac, N(sc->sc_ac2q));
4370 		return 0;
4371 	}
4372 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4373 	if (txq != NULL) {
4374 		txq->axq_ac = ac;
4375 		sc->sc_ac2q[ac] = txq;
4376 		return 1;
4377 	} else
4378 		return 0;
4379 #undef N
4380 }
4381 
4382 /*
4383  * Update WME parameters for a transmit queue.
4384  */
4385 static int
4386 ath_txq_update(struct ath_softc *sc, int ac)
4387 {
4388 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4389 #define	ATH_TXOP_TO_US(v)		(v<<5)
4390 	struct ifnet *ifp = sc->sc_ifp;
4391 	struct ieee80211com *ic = ifp->if_l2com;
4392 	struct ath_txq *txq = sc->sc_ac2q[ac];
4393 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4394 	struct ath_hal *ah = sc->sc_ah;
4395 	HAL_TXQ_INFO qi;
4396 
4397 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4398 #ifdef IEEE80211_SUPPORT_TDMA
4399 	if (sc->sc_tdma) {
4400 		/*
4401 		 * AIFS is zero so there's no pre-transmit wait.  The
4402 		 * burst time defines the slot duration and is configured
4403 		 * through net80211.  The QCU is setup to not do post-xmit
4404 		 * back off, lockout all lower-priority QCU's, and fire
4405 		 * off the DMA beacon alert timer which is setup based
4406 		 * on the slot configuration.
4407 		 */
4408 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4409 			      | HAL_TXQ_TXERRINT_ENABLE
4410 			      | HAL_TXQ_TXURNINT_ENABLE
4411 			      | HAL_TXQ_TXEOLINT_ENABLE
4412 			      | HAL_TXQ_DBA_GATED
4413 			      | HAL_TXQ_BACKOFF_DISABLE
4414 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4415 			      ;
4416 		qi.tqi_aifs = 0;
4417 		/* XXX +dbaprep? */
4418 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4419 		qi.tqi_burstTime = qi.tqi_readyTime;
4420 	} else {
4421 #endif
4422 		/*
4423 		 * XXX shouldn't this just use the default flags
4424 		 * used in the previous queue setup?
4425 		 */
4426 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4427 			      | HAL_TXQ_TXERRINT_ENABLE
4428 			      | HAL_TXQ_TXDESCINT_ENABLE
4429 			      | HAL_TXQ_TXURNINT_ENABLE
4430 			      | HAL_TXQ_TXEOLINT_ENABLE
4431 			      ;
4432 		qi.tqi_aifs = wmep->wmep_aifsn;
4433 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4434 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4435 		qi.tqi_readyTime = 0;
4436 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4437 #ifdef IEEE80211_SUPPORT_TDMA
4438 	}
4439 #endif
4440 
4441 	DPRINTF(sc, ATH_DEBUG_RESET,
4442 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4443 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4444 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4445 
4446 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4447 		if_printf(ifp, "unable to update hardware queue "
4448 			"parameters for %s traffic!\n",
4449 			ieee80211_wme_acnames[ac]);
4450 		return 0;
4451 	} else {
4452 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4453 		return 1;
4454 	}
4455 #undef ATH_TXOP_TO_US
4456 #undef ATH_EXPONENT_TO_VALUE
4457 }
4458 
4459 /*
4460  * Callback from the 802.11 layer to update WME parameters.
4461  */
4462 static int
4463 ath_wme_update(struct ieee80211com *ic)
4464 {
4465 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4466 
4467 	return !ath_txq_update(sc, WME_AC_BE) ||
4468 	    !ath_txq_update(sc, WME_AC_BK) ||
4469 	    !ath_txq_update(sc, WME_AC_VI) ||
4470 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4471 }
4472 
4473 /*
4474  * Reclaim resources for a setup queue.
4475  */
4476 static void
4477 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4478 {
4479 
4480 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4481 	ATH_TXQ_LOCK_DESTROY(txq);
4482 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4483 }
4484 
4485 /*
4486  * Reclaim all tx queue resources.
4487  */
4488 static void
4489 ath_tx_cleanup(struct ath_softc *sc)
4490 {
4491 	int i;
4492 
4493 	ATH_TXBUF_LOCK_DESTROY(sc);
4494 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4495 		if (ATH_TXQ_SETUP(sc, i))
4496 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4497 }
4498 
4499 /*
4500  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4501  * using the current rates in sc_rixmap.
4502  */
4503 int
4504 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4505 {
4506 	int rix = sc->sc_rixmap[rate];
4507 	/* NB: return lowest rix for invalid rate */
4508 	return (rix == 0xff ? 0 : rix);
4509 }
4510 
4511 static void
4512 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4513     struct ath_buf *bf)
4514 {
4515 	struct ieee80211_node *ni = bf->bf_node;
4516 	struct ifnet *ifp = sc->sc_ifp;
4517 	struct ieee80211com *ic = ifp->if_l2com;
4518 	int sr, lr, pri;
4519 
4520 	if (ts->ts_status == 0) {
4521 		u_int8_t txant = ts->ts_antenna;
4522 		sc->sc_stats.ast_ant_tx[txant]++;
4523 		sc->sc_ant_tx[txant]++;
4524 		if (ts->ts_finaltsi != 0)
4525 			sc->sc_stats.ast_tx_altrate++;
4526 		pri = M_WME_GETAC(bf->bf_m);
4527 		if (pri >= WME_AC_VO)
4528 			ic->ic_wme.wme_hipri_traffic++;
4529 		if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
4530 			ni->ni_inact = ni->ni_inact_reload;
4531 	} else {
4532 		if (ts->ts_status & HAL_TXERR_XRETRY)
4533 			sc->sc_stats.ast_tx_xretries++;
4534 		if (ts->ts_status & HAL_TXERR_FIFO)
4535 			sc->sc_stats.ast_tx_fifoerr++;
4536 		if (ts->ts_status & HAL_TXERR_FILT)
4537 			sc->sc_stats.ast_tx_filtered++;
4538 		if (ts->ts_status & HAL_TXERR_XTXOP)
4539 			sc->sc_stats.ast_tx_xtxop++;
4540 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4541 			sc->sc_stats.ast_tx_timerexpired++;
4542 
4543 		if (ts->ts_status & HAL_TX_DATA_UNDERRUN)
4544 			sc->sc_stats.ast_tx_data_underrun++;
4545 		if (ts->ts_status & HAL_TX_DELIM_UNDERRUN)
4546 			sc->sc_stats.ast_tx_delim_underrun++;
4547 
4548 		if (bf->bf_m->m_flags & M_FF)
4549 			sc->sc_stats.ast_ff_txerr++;
4550 	}
4551 	/* XXX when is this valid? */
4552 	if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
4553 		sc->sc_stats.ast_tx_desccfgerr++;
4554 
4555 	sr = ts->ts_shortretry;
4556 	lr = ts->ts_longretry;
4557 	sc->sc_stats.ast_tx_shortretry += sr;
4558 	sc->sc_stats.ast_tx_longretry += lr;
4559 
4560 }
4561 
4562 /*
4563  * The default completion. If fail is 1, this means
4564  * "please don't retry the frame, and just return -1 status
4565  * to the net80211 stack.
4566  */
4567 void
4568 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4569 {
4570 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4571 	int st;
4572 
4573 	if (fail == 1)
4574 		st = -1;
4575 	else
4576 		st = ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) ?
4577 		    ts->ts_status : HAL_TXERR_XRETRY;
4578 
4579 	if (bf->bf_state.bfs_dobaw)
4580 		device_printf(sc->sc_dev,
4581 		    "%s: dobaw should've been cleared!\n", __func__);
4582 	if (bf->bf_next != NULL)
4583 		device_printf(sc->sc_dev,
4584 		    "%s: bf_next not NULL!\n", __func__);
4585 
4586 	/*
4587 	 * Do any tx complete callback.  Note this must
4588 	 * be done before releasing the node reference.
4589 	 * This will free the mbuf, release the net80211
4590 	 * node and recycle the ath_buf.
4591 	 */
4592 	ath_tx_freebuf(sc, bf, st);
4593 }
4594 
4595 /*
4596  * Update rate control with the given completion status.
4597  */
4598 void
4599 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4600     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4601     int nframes, int nbad)
4602 {
4603 	struct ath_node *an;
4604 
4605 	/* Only for unicast frames */
4606 	if (ni == NULL)
4607 		return;
4608 
4609 	an = ATH_NODE(ni);
4610 
4611 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4612 		ATH_NODE_LOCK(an);
4613 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4614 		ATH_NODE_UNLOCK(an);
4615 	}
4616 }
4617 
4618 /*
4619  * Update the busy status of the last frame on the free list.
4620  * When doing TDMA, the busy flag tracks whether the hardware
4621  * currently points to this buffer or not, and thus gated DMA
4622  * may restart by re-reading the last descriptor in this
4623  * buffer.
4624  *
4625  * This should be called in the completion function once one
4626  * of the buffers has been used.
4627  */
4628 static void
4629 ath_tx_update_busy(struct ath_softc *sc)
4630 {
4631 	struct ath_buf *last;
4632 
4633 	/*
4634 	 * Since the last frame may still be marked
4635 	 * as ATH_BUF_BUSY, unmark it here before
4636 	 * finishing the frame processing.
4637 	 * Since we've completed a frame (aggregate
4638 	 * or otherwise), the hardware has moved on
4639 	 * and is no longer referencing the previous
4640 	 * descriptor.
4641 	 */
4642 	ATH_TXBUF_LOCK_ASSERT(sc);
4643 	last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
4644 	if (last != NULL)
4645 		last->bf_flags &= ~ATH_BUF_BUSY;
4646 }
4647 
4648 
4649 /*
4650  * Process completed xmit descriptors from the specified queue.
4651  * Kick the packet scheduler if needed. This can occur from this
4652  * particular task.
4653  */
4654 static int
4655 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4656 {
4657 	struct ath_hal *ah = sc->sc_ah;
4658 	struct ath_buf *bf;
4659 	struct ath_desc *ds;
4660 	struct ath_tx_status *ts;
4661 	struct ieee80211_node *ni;
4662 	struct ath_node *an;
4663 	int nacked;
4664 	HAL_STATUS status;
4665 
4666 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4667 		__func__, txq->axq_qnum,
4668 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4669 		txq->axq_link);
4670 	nacked = 0;
4671 	for (;;) {
4672 		ATH_TXQ_LOCK(txq);
4673 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4674 		bf = TAILQ_FIRST(&txq->axq_q);
4675 		if (bf == NULL) {
4676 			ATH_TXQ_UNLOCK(txq);
4677 			break;
4678 		}
4679 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4680 		ts = &bf->bf_status.ds_txstat;
4681 		status = ath_hal_txprocdesc(ah, ds, ts);
4682 #ifdef ATH_DEBUG
4683 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4684 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4685 			    status == HAL_OK);
4686 #endif
4687 		if (status == HAL_EINPROGRESS) {
4688 			ATH_TXQ_UNLOCK(txq);
4689 			break;
4690 		}
4691 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4692 #ifdef IEEE80211_SUPPORT_TDMA
4693 		if (txq->axq_depth > 0) {
4694 			/*
4695 			 * More frames follow.  Mark the buffer busy
4696 			 * so it's not re-used while the hardware may
4697 			 * still re-read the link field in the descriptor.
4698 			 *
4699 			 * Use the last buffer in an aggregate as that
4700 			 * is where the hardware may be - intermediate
4701 			 * descriptors won't be "busy".
4702 			 */
4703 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4704 		} else
4705 #else
4706 		if (txq->axq_depth == 0)
4707 #endif
4708 			txq->axq_link = NULL;
4709 		if (bf->bf_state.bfs_aggr)
4710 			txq->axq_aggr_depth--;
4711 
4712 		ni = bf->bf_node;
4713 		/*
4714 		 * If unicast frame was ack'd update RSSI,
4715 		 * including the last rx time used to
4716 		 * workaround phantom bmiss interrupts.
4717 		 */
4718 		if (ni != NULL && ts->ts_status == 0 &&
4719 		    ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)) {
4720 			nacked++;
4721 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4722 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4723 				ts->ts_rssi);
4724 		}
4725 		ATH_TXQ_UNLOCK(txq);
4726 
4727 		/* If unicast frame, update general statistics */
4728 		if (ni != NULL) {
4729 			an = ATH_NODE(ni);
4730 			/* update statistics */
4731 			ath_tx_update_stats(sc, ts, bf);
4732 		}
4733 
4734 		/*
4735 		 * Call the completion handler.
4736 		 * The completion handler is responsible for
4737 		 * calling the rate control code.
4738 		 *
4739 		 * Frames with no completion handler get the
4740 		 * rate control code called here.
4741 		 */
4742 		if (bf->bf_comp == NULL) {
4743 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4744 			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
4745 				/*
4746 				 * XXX assume this isn't an aggregate
4747 				 * frame.
4748 				 */
4749 				ath_tx_update_ratectrl(sc, ni,
4750 				     bf->bf_state.bfs_rc, ts,
4751 				    bf->bf_state.bfs_pktlen, 1,
4752 				    (ts->ts_status == 0 ? 0 : 1));
4753 			}
4754 			ath_tx_default_comp(sc, bf, 0);
4755 		} else
4756 			bf->bf_comp(sc, bf, 0);
4757 	}
4758 #ifdef IEEE80211_SUPPORT_SUPERG
4759 	/*
4760 	 * Flush fast-frame staging queue when traffic slows.
4761 	 */
4762 	if (txq->axq_depth <= 1)
4763 		ieee80211_ff_flush(ic, txq->axq_ac);
4764 #endif
4765 
4766 	/* Kick the TXQ scheduler */
4767 	if (dosched) {
4768 		ATH_TXQ_LOCK(txq);
4769 		ath_txq_sched(sc, txq);
4770 		ATH_TXQ_UNLOCK(txq);
4771 	}
4772 
4773 	return nacked;
4774 }
4775 
4776 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4777 
4778 /*
4779  * Deferred processing of transmit interrupt; special-cased
4780  * for a single hardware transmit queue (e.g. 5210 and 5211).
4781  */
4782 static void
4783 ath_tx_proc_q0(void *arg, int npending)
4784 {
4785 	struct ath_softc *sc = arg;
4786 	struct ifnet *ifp = sc->sc_ifp;
4787 	uint32_t txqs;
4788 
4789 	ATH_PCU_LOCK(sc);
4790 	sc->sc_txproc_cnt++;
4791 	txqs = sc->sc_txq_active;
4792 	sc->sc_txq_active &= ~txqs;
4793 	ATH_PCU_UNLOCK(sc);
4794 
4795 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4796 		/* XXX why is lastrx updated in tx code? */
4797 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4798 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4799 		ath_tx_processq(sc, sc->sc_cabq, 1);
4800 	/* XXX check this inside of IF_LOCK? */
4801 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4802 	sc->sc_wd_timer = 0;
4803 
4804 	if (sc->sc_softled)
4805 		ath_led_event(sc, sc->sc_txrix);
4806 
4807 	ATH_PCU_LOCK(sc);
4808 	sc->sc_txproc_cnt--;
4809 	ATH_PCU_UNLOCK(sc);
4810 
4811 	ath_start(ifp);
4812 }
4813 
4814 /*
4815  * Deferred processing of transmit interrupt; special-cased
4816  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4817  */
4818 static void
4819 ath_tx_proc_q0123(void *arg, int npending)
4820 {
4821 	struct ath_softc *sc = arg;
4822 	struct ifnet *ifp = sc->sc_ifp;
4823 	int nacked;
4824 	uint32_t txqs;
4825 
4826 	ATH_PCU_LOCK(sc);
4827 	sc->sc_txproc_cnt++;
4828 	txqs = sc->sc_txq_active;
4829 	sc->sc_txq_active &= ~txqs;
4830 	ATH_PCU_UNLOCK(sc);
4831 
4832 	/*
4833 	 * Process each active queue.
4834 	 */
4835 	nacked = 0;
4836 	if (TXQACTIVE(txqs, 0))
4837 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4838 	if (TXQACTIVE(txqs, 1))
4839 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4840 	if (TXQACTIVE(txqs, 2))
4841 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4842 	if (TXQACTIVE(txqs, 3))
4843 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4844 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4845 		ath_tx_processq(sc, sc->sc_cabq, 1);
4846 	if (nacked)
4847 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4848 
4849 	/* XXX check this inside of IF_LOCK? */
4850 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4851 	sc->sc_wd_timer = 0;
4852 
4853 	if (sc->sc_softled)
4854 		ath_led_event(sc, sc->sc_txrix);
4855 
4856 	ATH_PCU_LOCK(sc);
4857 	sc->sc_txproc_cnt--;
4858 	ATH_PCU_UNLOCK(sc);
4859 
4860 	ath_start(ifp);
4861 }
4862 
4863 /*
4864  * Deferred processing of transmit interrupt.
4865  */
4866 static void
4867 ath_tx_proc(void *arg, int npending)
4868 {
4869 	struct ath_softc *sc = arg;
4870 	struct ifnet *ifp = sc->sc_ifp;
4871 	int i, nacked;
4872 	uint32_t txqs;
4873 
4874 	ATH_PCU_LOCK(sc);
4875 	sc->sc_txproc_cnt++;
4876 	txqs = sc->sc_txq_active;
4877 	sc->sc_txq_active &= ~txqs;
4878 	ATH_PCU_UNLOCK(sc);
4879 
4880 	/*
4881 	 * Process each active queue.
4882 	 */
4883 	nacked = 0;
4884 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4885 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4886 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4887 	if (nacked)
4888 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4889 
4890 	/* XXX check this inside of IF_LOCK? */
4891 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4892 	sc->sc_wd_timer = 0;
4893 
4894 	if (sc->sc_softled)
4895 		ath_led_event(sc, sc->sc_txrix);
4896 
4897 	ATH_PCU_LOCK(sc);
4898 	sc->sc_txproc_cnt--;
4899 	ATH_PCU_UNLOCK(sc);
4900 
4901 	ath_start(ifp);
4902 }
4903 #undef	TXQACTIVE
4904 
4905 /*
4906  * Return a buffer to the pool and update the 'busy' flag on the
4907  * previous 'tail' entry.
4908  *
4909  * This _must_ only be called when the buffer is involved in a completed
4910  * TX. The logic is that if it was part of an active TX, the previous
4911  * buffer on the list is now not involved in a halted TX DMA queue, waiting
4912  * for restart (eg for TDMA.)
4913  *
4914  * The caller must free the mbuf and recycle the node reference.
4915  */
4916 void
4917 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4918 {
4919 	bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4920 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
4921 
4922 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4923 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4924 
4925 	ATH_TXBUF_LOCK(sc);
4926 	ath_tx_update_busy(sc);
4927 	TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4928 	ATH_TXBUF_UNLOCK(sc);
4929 }
4930 
4931 /*
4932  * This is currently used by ath_tx_draintxq() and
4933  * ath_tx_tid_free_pkts().
4934  *
4935  * It recycles a single ath_buf.
4936  */
4937 void
4938 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4939 {
4940 	struct ieee80211_node *ni = bf->bf_node;
4941 	struct mbuf *m0 = bf->bf_m;
4942 
4943 	bf->bf_node = NULL;
4944 	bf->bf_m = NULL;
4945 
4946 	/* Free the buffer, it's not needed any longer */
4947 	ath_freebuf(sc, bf);
4948 
4949 	if (ni != NULL) {
4950 		/*
4951 		 * Do any callback and reclaim the node reference.
4952 		 */
4953 		if (m0->m_flags & M_TXCB)
4954 			ieee80211_process_callback(ni, m0, status);
4955 		ieee80211_free_node(ni);
4956 	}
4957 	m_freem(m0);
4958 
4959 	/*
4960 	 * XXX the buffer used to be freed -after-, but the DMA map was
4961 	 * freed where ath_freebuf() now is. I've no idea what this
4962 	 * will do.
4963 	 */
4964 }
4965 
4966 void
4967 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4968 {
4969 #ifdef ATH_DEBUG
4970 	struct ath_hal *ah = sc->sc_ah;
4971 #endif
4972 	struct ath_buf *bf;
4973 	u_int ix;
4974 
4975 	/*
4976 	 * NB: this assumes output has been stopped and
4977 	 *     we do not need to block ath_tx_proc
4978 	 */
4979 	ATH_TXBUF_LOCK(sc);
4980 	bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
4981 	if (bf != NULL)
4982 		bf->bf_flags &= ~ATH_BUF_BUSY;
4983 	ATH_TXBUF_UNLOCK(sc);
4984 
4985 	for (ix = 0;; ix++) {
4986 		ATH_TXQ_LOCK(txq);
4987 		bf = TAILQ_FIRST(&txq->axq_q);
4988 		if (bf == NULL) {
4989 			txq->axq_link = NULL;
4990 			ATH_TXQ_UNLOCK(txq);
4991 			break;
4992 		}
4993 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4994 		if (bf->bf_state.bfs_aggr)
4995 			txq->axq_aggr_depth--;
4996 #ifdef ATH_DEBUG
4997 		if (sc->sc_debug & ATH_DEBUG_RESET) {
4998 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4999 
5000 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5001 				ath_hal_txprocdesc(ah, bf->bf_lastds,
5002 				    &bf->bf_status.ds_txstat) == HAL_OK);
5003 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5004 			    bf->bf_m->m_len, 0, -1);
5005 		}
5006 #endif /* ATH_DEBUG */
5007 		/*
5008 		 * Since we're now doing magic in the completion
5009 		 * functions, we -must- call it for aggregation
5010 		 * destinations or BAW tracking will get upset.
5011 		 */
5012 		/*
5013 		 * Clear ATH_BUF_BUSY; the completion handler
5014 		 * will free the buffer.
5015 		 */
5016 		ATH_TXQ_UNLOCK(txq);
5017 		bf->bf_flags &= ~ATH_BUF_BUSY;
5018 		if (bf->bf_comp)
5019 			bf->bf_comp(sc, bf, 1);
5020 		else
5021 			ath_tx_default_comp(sc, bf, 1);
5022 	}
5023 
5024 	/*
5025 	 * Drain software queued frames which are on
5026 	 * active TIDs.
5027 	 */
5028 	ath_tx_txq_drain(sc, txq);
5029 }
5030 
5031 static void
5032 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5033 {
5034 	struct ath_hal *ah = sc->sc_ah;
5035 
5036 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5037 	    __func__, txq->axq_qnum,
5038 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5039 	    txq->axq_link);
5040 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5041 }
5042 
5043 static int
5044 ath_stoptxdma(struct ath_softc *sc)
5045 {
5046 	struct ath_hal *ah = sc->sc_ah;
5047 	int i;
5048 
5049 	/* XXX return value */
5050 	if (sc->sc_invalid)
5051 		return 0;
5052 
5053 	if (!sc->sc_invalid) {
5054 		/* don't touch the hardware if marked invalid */
5055 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5056 		    __func__, sc->sc_bhalq,
5057 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5058 		    NULL);
5059 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5060 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5061 			if (ATH_TXQ_SETUP(sc, i))
5062 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5063 	}
5064 
5065 	return 1;
5066 }
5067 
5068 /*
5069  * Drain the transmit queues and reclaim resources.
5070  */
5071 static void
5072 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5073 {
5074 #ifdef	ATH_DEBUG
5075 	struct ath_hal *ah = sc->sc_ah;
5076 #endif
5077 	struct ifnet *ifp = sc->sc_ifp;
5078 	int i;
5079 
5080 	(void) ath_stoptxdma(sc);
5081 
5082 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5083 		/*
5084 		 * XXX TODO: should we just handle the completed TX frames
5085 		 * here, whether or not the reset is a full one or not?
5086 		 */
5087 		if (ATH_TXQ_SETUP(sc, i)) {
5088 			if (reset_type == ATH_RESET_NOLOSS)
5089 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
5090 			else
5091 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
5092 		}
5093 	}
5094 #ifdef ATH_DEBUG
5095 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5096 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5097 		if (bf != NULL && bf->bf_m != NULL) {
5098 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5099 				ath_hal_txprocdesc(ah, bf->bf_lastds,
5100 				    &bf->bf_status.ds_txstat) == HAL_OK);
5101 			ieee80211_dump_pkt(ifp->if_l2com,
5102 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5103 			    0, -1);
5104 		}
5105 	}
5106 #endif /* ATH_DEBUG */
5107 	/* XXX check this inside of IF_LOCK? */
5108 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5109 	sc->sc_wd_timer = 0;
5110 }
5111 
5112 /*
5113  * Disable the receive h/w in preparation for a reset.
5114  */
5115 static void
5116 ath_stoprecv(struct ath_softc *sc, int dodelay)
5117 {
5118 #define	PA2DESC(_sc, _pa) \
5119 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5120 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5121 	struct ath_hal *ah = sc->sc_ah;
5122 
5123 	ath_hal_stoppcurecv(ah);	/* disable PCU */
5124 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5125 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5126 	if (dodelay)
5127 		DELAY(3000);		/* 3ms is long enough for 1 frame */
5128 #ifdef ATH_DEBUG
5129 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5130 		struct ath_buf *bf;
5131 		u_int ix;
5132 
5133 		printf("%s: rx queue %p, link %p\n", __func__,
5134 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5135 		ix = 0;
5136 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5137 			struct ath_desc *ds = bf->bf_desc;
5138 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5139 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5140 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5141 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5142 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5143 			ix++;
5144 		}
5145 	}
5146 #endif
5147 	if (sc->sc_rxpending != NULL) {
5148 		m_freem(sc->sc_rxpending);
5149 		sc->sc_rxpending = NULL;
5150 	}
5151 	sc->sc_rxlink = NULL;		/* just in case */
5152 #undef PA2DESC
5153 }
5154 
5155 /*
5156  * Enable the receive h/w following a reset.
5157  */
5158 static int
5159 ath_startrecv(struct ath_softc *sc)
5160 {
5161 	struct ath_hal *ah = sc->sc_ah;
5162 	struct ath_buf *bf;
5163 
5164 	sc->sc_rxlink = NULL;
5165 	sc->sc_rxpending = NULL;
5166 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5167 		int error = ath_rxbuf_init(sc, bf);
5168 		if (error != 0) {
5169 			DPRINTF(sc, ATH_DEBUG_RECV,
5170 				"%s: ath_rxbuf_init failed %d\n",
5171 				__func__, error);
5172 			return error;
5173 		}
5174 	}
5175 
5176 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
5177 	ath_hal_putrxbuf(ah, bf->bf_daddr);
5178 	ath_hal_rxena(ah);		/* enable recv descriptors */
5179 	ath_mode_init(sc);		/* set filters, etc. */
5180 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5181 	return 0;
5182 }
5183 
5184 /*
5185  * Update internal state after a channel change.
5186  */
5187 static void
5188 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5189 {
5190 	enum ieee80211_phymode mode;
5191 
5192 	/*
5193 	 * Change channels and update the h/w rate map
5194 	 * if we're switching; e.g. 11a to 11b/g.
5195 	 */
5196 	mode = ieee80211_chan2mode(chan);
5197 	if (mode != sc->sc_curmode)
5198 		ath_setcurmode(sc, mode);
5199 	sc->sc_curchan = chan;
5200 }
5201 
5202 /*
5203  * Set/change channels.  If the channel is really being changed,
5204  * it's done by resetting the chip.  To accomplish this we must
5205  * first cleanup any pending DMA, then restart stuff after a la
5206  * ath_init.
5207  */
5208 static int
5209 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5210 {
5211 	struct ifnet *ifp = sc->sc_ifp;
5212 	struct ieee80211com *ic = ifp->if_l2com;
5213 	struct ath_hal *ah = sc->sc_ah;
5214 	int ret = 0;
5215 	int dointr = 0;
5216 
5217 	/* Treat this as an interface reset */
5218 	ATH_PCU_LOCK(sc);
5219 	if (sc->sc_inreset_cnt > 0)
5220 		device_printf(sc->sc_dev, "%s: danger! concurrent reset!\n",
5221 		    __func__);
5222 	sc->sc_inreset_cnt++;
5223 	if (chan != sc->sc_curchan) {
5224 		dointr = 1;
5225 		/* XXX only do this if inreset_cnt is 1? */
5226 		ath_hal_intrset(ah, 0);
5227 	}
5228 	ATH_PCU_UNLOCK(sc);
5229 	ath_txrx_stop(sc);
5230 
5231 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5232 	    __func__, ieee80211_chan2ieee(ic, chan),
5233 	    chan->ic_freq, chan->ic_flags);
5234 	if (chan != sc->sc_curchan) {
5235 		HAL_STATUS status;
5236 		/*
5237 		 * To switch channels clear any pending DMA operations;
5238 		 * wait long enough for the RX fifo to drain, reset the
5239 		 * hardware at the new frequency, and then re-enable
5240 		 * the relevant bits of the h/w.
5241 		 */
5242 #if 0
5243 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5244 #endif
5245 		ath_stoprecv(sc, 1);		/* turn off frame recv */
5246 		/*
5247 		 * First, handle completed TX/RX frames.
5248 		 */
5249 		ath_rx_proc(sc, 0);
5250 		ath_draintxq(sc, ATH_RESET_NOLOSS);
5251 		/*
5252 		 * Next, flush the non-scheduled frames.
5253 		 */
5254 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5255 
5256 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5257 			if_printf(ifp, "%s: unable to reset "
5258 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5259 			    __func__, ieee80211_chan2ieee(ic, chan),
5260 			    chan->ic_freq, chan->ic_flags, status);
5261 			ret = EIO;
5262 			goto finish;
5263 		}
5264 		sc->sc_diversity = ath_hal_getdiversity(ah);
5265 
5266 		/* Let DFS at it in case it's a DFS channel */
5267 		ath_dfs_radar_enable(sc, ic->ic_curchan);
5268 
5269 		/*
5270 		 * Re-enable rx framework.
5271 		 */
5272 		if (ath_startrecv(sc) != 0) {
5273 			if_printf(ifp, "%s: unable to restart recv logic\n",
5274 			    __func__);
5275 			ret = EIO;
5276 			goto finish;
5277 		}
5278 
5279 		/*
5280 		 * Change channels and update the h/w rate map
5281 		 * if we're switching; e.g. 11a to 11b/g.
5282 		 */
5283 		ath_chan_change(sc, chan);
5284 
5285 		/*
5286 		 * Reset clears the beacon timers; reset them
5287 		 * here if needed.
5288 		 */
5289 		if (sc->sc_beacons) {		/* restart beacons */
5290 #ifdef IEEE80211_SUPPORT_TDMA
5291 			if (sc->sc_tdma)
5292 				ath_tdma_config(sc, NULL);
5293 			else
5294 #endif
5295 			ath_beacon_config(sc, NULL);
5296 		}
5297 
5298 #if 0
5299 		/*
5300 		 * Re-enable interrupts.
5301 		 */
5302 		ath_hal_intrset(ah, sc->sc_imask);
5303 #endif
5304 	}
5305 
5306 finish:
5307 	ATH_PCU_LOCK(sc);
5308 	sc->sc_inreset_cnt--;
5309 	/* XXX only do this if sc_inreset_cnt == 0? */
5310 	if (dointr)
5311 		ath_hal_intrset(ah, sc->sc_imask);
5312 	ATH_PCU_UNLOCK(sc);
5313 
5314 	/* XXX do this inside of IF_LOCK? */
5315 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5316 	ath_txrx_start(sc);
5317 	/* XXX ath_start? */
5318 
5319 	return ret;
5320 }
5321 
5322 /*
5323  * Periodically recalibrate the PHY to account
5324  * for temperature/environment changes.
5325  */
5326 static void
5327 ath_calibrate(void *arg)
5328 {
5329 	struct ath_softc *sc = arg;
5330 	struct ath_hal *ah = sc->sc_ah;
5331 	struct ifnet *ifp = sc->sc_ifp;
5332 	struct ieee80211com *ic = ifp->if_l2com;
5333 	HAL_BOOL longCal, isCalDone;
5334 	HAL_BOOL aniCal, shortCal = AH_FALSE;
5335 	int nextcal;
5336 
5337 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5338 		goto restart;
5339 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5340 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5341 	if (sc->sc_doresetcal)
5342 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5343 
5344 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5345 	if (aniCal) {
5346 		sc->sc_stats.ast_ani_cal++;
5347 		sc->sc_lastani = ticks;
5348 		ath_hal_ani_poll(ah, sc->sc_curchan);
5349 	}
5350 
5351 	if (longCal) {
5352 		sc->sc_stats.ast_per_cal++;
5353 		sc->sc_lastlongcal = ticks;
5354 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5355 			/*
5356 			 * Rfgain is out of bounds, reset the chip
5357 			 * to load new gain values.
5358 			 */
5359 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5360 				"%s: rfgain change\n", __func__);
5361 			sc->sc_stats.ast_per_rfgain++;
5362 			/*
5363 			 * Drop lock - we can't hold it across the
5364 			 * ath_reset() call. Instead, we'll drop
5365 			 * out here, do a reset, then reschedule
5366 			 * the callout.
5367 			 */
5368 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5369 			sc->sc_resetcal = 0;
5370 			sc->sc_doresetcal = AH_TRUE;
5371 			ATH_UNLOCK(sc);
5372 			ath_reset(ifp, ATH_RESET_NOLOSS);
5373 			ATH_LOCK(sc);
5374 			return;
5375 		}
5376 		/*
5377 		 * If this long cal is after an idle period, then
5378 		 * reset the data collection state so we start fresh.
5379 		 */
5380 		if (sc->sc_resetcal) {
5381 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5382 			sc->sc_lastcalreset = ticks;
5383 			sc->sc_lastshortcal = ticks;
5384 			sc->sc_resetcal = 0;
5385 			sc->sc_doresetcal = AH_TRUE;
5386 		}
5387 	}
5388 
5389 	/* Only call if we're doing a short/long cal, not for ANI calibration */
5390 	if (shortCal || longCal) {
5391 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5392 			if (longCal) {
5393 				/*
5394 				 * Calibrate noise floor data again in case of change.
5395 				 */
5396 				ath_hal_process_noisefloor(ah);
5397 			}
5398 		} else {
5399 			DPRINTF(sc, ATH_DEBUG_ANY,
5400 				"%s: calibration of channel %u failed\n",
5401 				__func__, sc->sc_curchan->ic_freq);
5402 			sc->sc_stats.ast_per_calfail++;
5403 		}
5404 		if (shortCal)
5405 			sc->sc_lastshortcal = ticks;
5406 	}
5407 	if (!isCalDone) {
5408 restart:
5409 		/*
5410 		 * Use a shorter interval to potentially collect multiple
5411 		 * data samples required to complete calibration.  Once
5412 		 * we're told the work is done we drop back to a longer
5413 		 * interval between requests.  We're more aggressive doing
5414 		 * work when operating as an AP to improve operation right
5415 		 * after startup.
5416 		 */
5417 		sc->sc_lastshortcal = ticks;
5418 		nextcal = ath_shortcalinterval*hz/1000;
5419 		if (sc->sc_opmode != HAL_M_HOSTAP)
5420 			nextcal *= 10;
5421 		sc->sc_doresetcal = AH_TRUE;
5422 	} else {
5423 		/* nextcal should be the shortest time for next event */
5424 		nextcal = ath_longcalinterval*hz;
5425 		if (sc->sc_lastcalreset == 0)
5426 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5427 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5428 			sc->sc_resetcal = 1;	/* setup reset next trip */
5429 		sc->sc_doresetcal = AH_FALSE;
5430 	}
5431 	/* ANI calibration may occur more often than short/long/resetcal */
5432 	if (ath_anicalinterval > 0)
5433 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5434 
5435 	if (nextcal != 0) {
5436 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5437 		    __func__, nextcal, isCalDone ? "" : "!");
5438 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5439 	} else {
5440 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5441 		    __func__);
5442 		/* NB: don't rearm timer */
5443 	}
5444 }
5445 
5446 static void
5447 ath_scan_start(struct ieee80211com *ic)
5448 {
5449 	struct ifnet *ifp = ic->ic_ifp;
5450 	struct ath_softc *sc = ifp->if_softc;
5451 	struct ath_hal *ah = sc->sc_ah;
5452 	u_int32_t rfilt;
5453 
5454 	/* XXX calibration timer? */
5455 
5456 	sc->sc_scanning = 1;
5457 	sc->sc_syncbeacon = 0;
5458 	rfilt = ath_calcrxfilter(sc);
5459 	ath_hal_setrxfilter(ah, rfilt);
5460 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5461 
5462 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5463 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5464 }
5465 
5466 static void
5467 ath_scan_end(struct ieee80211com *ic)
5468 {
5469 	struct ifnet *ifp = ic->ic_ifp;
5470 	struct ath_softc *sc = ifp->if_softc;
5471 	struct ath_hal *ah = sc->sc_ah;
5472 	u_int32_t rfilt;
5473 
5474 	sc->sc_scanning = 0;
5475 	rfilt = ath_calcrxfilter(sc);
5476 	ath_hal_setrxfilter(ah, rfilt);
5477 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5478 
5479 	ath_hal_process_noisefloor(ah);
5480 
5481 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5482 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5483 		 sc->sc_curaid);
5484 }
5485 
5486 static void
5487 ath_set_channel(struct ieee80211com *ic)
5488 {
5489 	struct ifnet *ifp = ic->ic_ifp;
5490 	struct ath_softc *sc = ifp->if_softc;
5491 
5492 	(void) ath_chan_set(sc, ic->ic_curchan);
5493 	/*
5494 	 * If we are returning to our bss channel then mark state
5495 	 * so the next recv'd beacon's tsf will be used to sync the
5496 	 * beacon timers.  Note that since we only hear beacons in
5497 	 * sta/ibss mode this has no effect in other operating modes.
5498 	 */
5499 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5500 		sc->sc_syncbeacon = 1;
5501 }
5502 
5503 /*
5504  * Walk the vap list and check if there any vap's in RUN state.
5505  */
5506 static int
5507 ath_isanyrunningvaps(struct ieee80211vap *this)
5508 {
5509 	struct ieee80211com *ic = this->iv_ic;
5510 	struct ieee80211vap *vap;
5511 
5512 	IEEE80211_LOCK_ASSERT(ic);
5513 
5514 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5515 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5516 			return 1;
5517 	}
5518 	return 0;
5519 }
5520 
5521 static int
5522 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5523 {
5524 	struct ieee80211com *ic = vap->iv_ic;
5525 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5526 	struct ath_vap *avp = ATH_VAP(vap);
5527 	struct ath_hal *ah = sc->sc_ah;
5528 	struct ieee80211_node *ni = NULL;
5529 	int i, error, stamode;
5530 	u_int32_t rfilt;
5531 	int csa_run_transition = 0;
5532 	static const HAL_LED_STATE leds[] = {
5533 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5534 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5535 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5536 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5537 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5538 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5539 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5540 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5541 	};
5542 
5543 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5544 		ieee80211_state_name[vap->iv_state],
5545 		ieee80211_state_name[nstate]);
5546 
5547 	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5548 		csa_run_transition = 1;
5549 
5550 	callout_drain(&sc->sc_cal_ch);
5551 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5552 
5553 	if (nstate == IEEE80211_S_SCAN) {
5554 		/*
5555 		 * Scanning: turn off beacon miss and don't beacon.
5556 		 * Mark beacon state so when we reach RUN state we'll
5557 		 * [re]setup beacons.  Unblock the task q thread so
5558 		 * deferred interrupt processing is done.
5559 		 */
5560 		ath_hal_intrset(ah,
5561 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5562 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5563 		sc->sc_beacons = 0;
5564 		taskqueue_unblock(sc->sc_tq);
5565 	}
5566 
5567 	ni = vap->iv_bss;
5568 	rfilt = ath_calcrxfilter(sc);
5569 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5570 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5571 		   vap->iv_opmode == IEEE80211_M_IBSS);
5572 	if (stamode && nstate == IEEE80211_S_RUN) {
5573 		sc->sc_curaid = ni->ni_associd;
5574 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5575 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5576 	}
5577 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5578 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5579 	ath_hal_setrxfilter(ah, rfilt);
5580 
5581 	/* XXX is this to restore keycache on resume? */
5582 	if (vap->iv_opmode != IEEE80211_M_STA &&
5583 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5584 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5585 			if (ath_hal_keyisvalid(ah, i))
5586 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5587 	}
5588 
5589 	/*
5590 	 * Invoke the parent method to do net80211 work.
5591 	 */
5592 	error = avp->av_newstate(vap, nstate, arg);
5593 	if (error != 0)
5594 		goto bad;
5595 
5596 	if (nstate == IEEE80211_S_RUN) {
5597 		/* NB: collect bss node again, it may have changed */
5598 		ni = vap->iv_bss;
5599 
5600 		DPRINTF(sc, ATH_DEBUG_STATE,
5601 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5602 		    "capinfo 0x%04x chan %d\n", __func__,
5603 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5604 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5605 
5606 		switch (vap->iv_opmode) {
5607 #ifdef IEEE80211_SUPPORT_TDMA
5608 		case IEEE80211_M_AHDEMO:
5609 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5610 				break;
5611 			/* fall thru... */
5612 #endif
5613 		case IEEE80211_M_HOSTAP:
5614 		case IEEE80211_M_IBSS:
5615 		case IEEE80211_M_MBSS:
5616 			/*
5617 			 * Allocate and setup the beacon frame.
5618 			 *
5619 			 * Stop any previous beacon DMA.  This may be
5620 			 * necessary, for example, when an ibss merge
5621 			 * causes reconfiguration; there will be a state
5622 			 * transition from RUN->RUN that means we may
5623 			 * be called with beacon transmission active.
5624 			 */
5625 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5626 
5627 			error = ath_beacon_alloc(sc, ni);
5628 			if (error != 0)
5629 				goto bad;
5630 			/*
5631 			 * If joining an adhoc network defer beacon timer
5632 			 * configuration to the next beacon frame so we
5633 			 * have a current TSF to use.  Otherwise we're
5634 			 * starting an ibss/bss so there's no need to delay;
5635 			 * if this is the first vap moving to RUN state, then
5636 			 * beacon state needs to be [re]configured.
5637 			 */
5638 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5639 			    ni->ni_tstamp.tsf != 0) {
5640 				sc->sc_syncbeacon = 1;
5641 			} else if (!sc->sc_beacons) {
5642 #ifdef IEEE80211_SUPPORT_TDMA
5643 				if (vap->iv_caps & IEEE80211_C_TDMA)
5644 					ath_tdma_config(sc, vap);
5645 				else
5646 #endif
5647 					ath_beacon_config(sc, vap);
5648 				sc->sc_beacons = 1;
5649 			}
5650 			break;
5651 		case IEEE80211_M_STA:
5652 			/*
5653 			 * Defer beacon timer configuration to the next
5654 			 * beacon frame so we have a current TSF to use
5655 			 * (any TSF collected when scanning is likely old).
5656 			 * However if it's due to a CSA -> RUN transition,
5657 			 * force a beacon update so we pick up a lack of
5658 			 * beacons from an AP in CAC and thus force a
5659 			 * scan.
5660 			 */
5661 			sc->sc_syncbeacon = 1;
5662 			if (csa_run_transition)
5663 				ath_beacon_config(sc, vap);
5664 			break;
5665 		case IEEE80211_M_MONITOR:
5666 			/*
5667 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5668 			 * transitions so we must re-enable interrupts here to
5669 			 * handle the case of a single monitor mode vap.
5670 			 */
5671 			ath_hal_intrset(ah, sc->sc_imask);
5672 			break;
5673 		case IEEE80211_M_WDS:
5674 			break;
5675 		default:
5676 			break;
5677 		}
5678 		/*
5679 		 * Let the hal process statistics collected during a
5680 		 * scan so it can provide calibrated noise floor data.
5681 		 */
5682 		ath_hal_process_noisefloor(ah);
5683 		/*
5684 		 * Reset rssi stats; maybe not the best place...
5685 		 */
5686 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5687 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5688 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5689 		/*
5690 		 * Finally, start any timers and the task q thread
5691 		 * (in case we didn't go through SCAN state).
5692 		 */
5693 		if (ath_longcalinterval != 0) {
5694 			/* start periodic recalibration timer */
5695 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5696 		} else {
5697 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5698 			    "%s: calibration disabled\n", __func__);
5699 		}
5700 		taskqueue_unblock(sc->sc_tq);
5701 	} else if (nstate == IEEE80211_S_INIT) {
5702 		/*
5703 		 * If there are no vaps left in RUN state then
5704 		 * shutdown host/driver operation:
5705 		 * o disable interrupts
5706 		 * o disable the task queue thread
5707 		 * o mark beacon processing as stopped
5708 		 */
5709 		if (!ath_isanyrunningvaps(vap)) {
5710 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5711 			/* disable interrupts  */
5712 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5713 			taskqueue_block(sc->sc_tq);
5714 			sc->sc_beacons = 0;
5715 		}
5716 #ifdef IEEE80211_SUPPORT_TDMA
5717 		ath_hal_setcca(ah, AH_TRUE);
5718 #endif
5719 	}
5720 bad:
5721 	return error;
5722 }
5723 
5724 /*
5725  * Allocate a key cache slot to the station so we can
5726  * setup a mapping from key index to node. The key cache
5727  * slot is needed for managing antenna state and for
5728  * compression when stations do not use crypto.  We do
5729  * it uniliaterally here; if crypto is employed this slot
5730  * will be reassigned.
5731  */
5732 static void
5733 ath_setup_stationkey(struct ieee80211_node *ni)
5734 {
5735 	struct ieee80211vap *vap = ni->ni_vap;
5736 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5737 	ieee80211_keyix keyix, rxkeyix;
5738 
5739 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5740 		/*
5741 		 * Key cache is full; we'll fall back to doing
5742 		 * the more expensive lookup in software.  Note
5743 		 * this also means no h/w compression.
5744 		 */
5745 		/* XXX msg+statistic */
5746 	} else {
5747 		/* XXX locking? */
5748 		ni->ni_ucastkey.wk_keyix = keyix;
5749 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5750 		/* NB: must mark device key to get called back on delete */
5751 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5752 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5753 		/* NB: this will create a pass-thru key entry */
5754 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
5755 	}
5756 }
5757 
5758 /*
5759  * Setup driver-specific state for a newly associated node.
5760  * Note that we're called also on a re-associate, the isnew
5761  * param tells us if this is the first time or not.
5762  */
5763 static void
5764 ath_newassoc(struct ieee80211_node *ni, int isnew)
5765 {
5766 	struct ath_node *an = ATH_NODE(ni);
5767 	struct ieee80211vap *vap = ni->ni_vap;
5768 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5769 	const struct ieee80211_txparam *tp = ni->ni_txparms;
5770 
5771 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5772 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5773 
5774 	ath_rate_newassoc(sc, an, isnew);
5775 	if (isnew &&
5776 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5777 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5778 		ath_setup_stationkey(ni);
5779 }
5780 
5781 static int
5782 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5783 	int nchans, struct ieee80211_channel chans[])
5784 {
5785 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5786 	struct ath_hal *ah = sc->sc_ah;
5787 	HAL_STATUS status;
5788 
5789 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5790 	    "%s: rd %u cc %u location %c%s\n",
5791 	    __func__, reg->regdomain, reg->country, reg->location,
5792 	    reg->ecm ? " ecm" : "");
5793 
5794 	status = ath_hal_set_channels(ah, chans, nchans,
5795 	    reg->country, reg->regdomain);
5796 	if (status != HAL_OK) {
5797 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5798 		    __func__, status);
5799 		return EINVAL;		/* XXX */
5800 	}
5801 
5802 	return 0;
5803 }
5804 
5805 static void
5806 ath_getradiocaps(struct ieee80211com *ic,
5807 	int maxchans, int *nchans, struct ieee80211_channel chans[])
5808 {
5809 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5810 	struct ath_hal *ah = sc->sc_ah;
5811 
5812 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5813 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5814 
5815 	/* XXX check return */
5816 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5817 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5818 
5819 }
5820 
5821 static int
5822 ath_getchannels(struct ath_softc *sc)
5823 {
5824 	struct ifnet *ifp = sc->sc_ifp;
5825 	struct ieee80211com *ic = ifp->if_l2com;
5826 	struct ath_hal *ah = sc->sc_ah;
5827 	HAL_STATUS status;
5828 
5829 	/*
5830 	 * Collect channel set based on EEPROM contents.
5831 	 */
5832 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5833 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5834 	if (status != HAL_OK) {
5835 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5836 		    "status %d\n", __func__, status);
5837 		return EINVAL;
5838 	}
5839 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5840 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5841 	/* XXX map Atheros sku's to net80211 SKU's */
5842 	/* XXX net80211 types too small */
5843 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5844 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5845 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5846 	ic->ic_regdomain.isocc[1] = ' ';
5847 
5848 	ic->ic_regdomain.ecm = 1;
5849 	ic->ic_regdomain.location = 'I';
5850 
5851 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5852 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5853 	    __func__, sc->sc_eerd, sc->sc_eecc,
5854 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5855 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5856 	return 0;
5857 }
5858 
5859 static void
5860 ath_led_done(void *arg)
5861 {
5862 	struct ath_softc *sc = arg;
5863 
5864 	sc->sc_blinking = 0;
5865 }
5866 
5867 /*
5868  * Turn the LED off: flip the pin and then set a timer so no
5869  * update will happen for the specified duration.
5870  */
5871 static void
5872 ath_led_off(void *arg)
5873 {
5874 	struct ath_softc *sc = arg;
5875 
5876 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5877 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
5878 }
5879 
5880 /*
5881  * Blink the LED according to the specified on/off times.
5882  */
5883 static void
5884 ath_led_blink(struct ath_softc *sc, int on, int off)
5885 {
5886 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5887 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5888 	sc->sc_blinking = 1;
5889 	sc->sc_ledoff = off;
5890 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5891 }
5892 
5893 static void
5894 ath_led_event(struct ath_softc *sc, int rix)
5895 {
5896 	sc->sc_ledevent = ticks;	/* time of last event */
5897 	if (sc->sc_blinking)		/* don't interrupt active blink */
5898 		return;
5899 	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
5900 }
5901 
5902 static int
5903 ath_rate_setup(struct ath_softc *sc, u_int mode)
5904 {
5905 	struct ath_hal *ah = sc->sc_ah;
5906 	const HAL_RATE_TABLE *rt;
5907 
5908 	switch (mode) {
5909 	case IEEE80211_MODE_11A:
5910 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5911 		break;
5912 	case IEEE80211_MODE_HALF:
5913 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5914 		break;
5915 	case IEEE80211_MODE_QUARTER:
5916 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5917 		break;
5918 	case IEEE80211_MODE_11B:
5919 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5920 		break;
5921 	case IEEE80211_MODE_11G:
5922 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5923 		break;
5924 	case IEEE80211_MODE_TURBO_A:
5925 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5926 		break;
5927 	case IEEE80211_MODE_TURBO_G:
5928 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5929 		break;
5930 	case IEEE80211_MODE_STURBO_A:
5931 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5932 		break;
5933 	case IEEE80211_MODE_11NA:
5934 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5935 		break;
5936 	case IEEE80211_MODE_11NG:
5937 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5938 		break;
5939 	default:
5940 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5941 			__func__, mode);
5942 		return 0;
5943 	}
5944 	sc->sc_rates[mode] = rt;
5945 	return (rt != NULL);
5946 }
5947 
5948 static void
5949 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5950 {
5951 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5952 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5953 	static const struct {
5954 		u_int		rate;		/* tx/rx 802.11 rate */
5955 		u_int16_t	timeOn;		/* LED on time (ms) */
5956 		u_int16_t	timeOff;	/* LED off time (ms) */
5957 	} blinkrates[] = {
5958 		{ 108,  40,  10 },
5959 		{  96,  44,  11 },
5960 		{  72,  50,  13 },
5961 		{  48,  57,  14 },
5962 		{  36,  67,  16 },
5963 		{  24,  80,  20 },
5964 		{  22, 100,  25 },
5965 		{  18, 133,  34 },
5966 		{  12, 160,  40 },
5967 		{  10, 200,  50 },
5968 		{   6, 240,  58 },
5969 		{   4, 267,  66 },
5970 		{   2, 400, 100 },
5971 		{   0, 500, 130 },
5972 		/* XXX half/quarter rates */
5973 	};
5974 	const HAL_RATE_TABLE *rt;
5975 	int i, j;
5976 
5977 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5978 	rt = sc->sc_rates[mode];
5979 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5980 	for (i = 0; i < rt->rateCount; i++) {
5981 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5982 		if (rt->info[i].phy != IEEE80211_T_HT)
5983 			sc->sc_rixmap[ieeerate] = i;
5984 		else
5985 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5986 	}
5987 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5988 	for (i = 0; i < N(sc->sc_hwmap); i++) {
5989 		if (i >= rt->rateCount) {
5990 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5991 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5992 			continue;
5993 		}
5994 		sc->sc_hwmap[i].ieeerate =
5995 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5996 		if (rt->info[i].phy == IEEE80211_T_HT)
5997 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5998 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5999 		if (rt->info[i].shortPreamble ||
6000 		    rt->info[i].phy == IEEE80211_T_OFDM)
6001 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6002 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6003 		for (j = 0; j < N(blinkrates)-1; j++)
6004 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6005 				break;
6006 		/* NB: this uses the last entry if the rate isn't found */
6007 		/* XXX beware of overlow */
6008 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6009 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6010 	}
6011 	sc->sc_currates = rt;
6012 	sc->sc_curmode = mode;
6013 	/*
6014 	 * All protection frames are transmited at 2Mb/s for
6015 	 * 11g, otherwise at 1Mb/s.
6016 	 */
6017 	if (mode == IEEE80211_MODE_11G)
6018 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6019 	else
6020 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6021 	/* NB: caller is responsible for resetting rate control state */
6022 #undef N
6023 }
6024 
6025 static void
6026 ath_watchdog(void *arg)
6027 {
6028 	struct ath_softc *sc = arg;
6029 	int do_reset = 0;
6030 
6031 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6032 		struct ifnet *ifp = sc->sc_ifp;
6033 		uint32_t hangs;
6034 
6035 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6036 		    hangs != 0) {
6037 			if_printf(ifp, "%s hang detected (0x%x)\n",
6038 			    hangs & 0xff ? "bb" : "mac", hangs);
6039 		} else
6040 			if_printf(ifp, "device timeout\n");
6041 		do_reset = 1;
6042 		ifp->if_oerrors++;
6043 		sc->sc_stats.ast_watchdog++;
6044 	}
6045 
6046 	/*
6047 	 * We can't hold the lock across the ath_reset() call.
6048 	 */
6049 	if (do_reset) {
6050 		ATH_UNLOCK(sc);
6051 		ath_reset(sc->sc_ifp, ATH_RESET_NOLOSS);
6052 		ATH_LOCK(sc);
6053 	}
6054 
6055 	callout_schedule(&sc->sc_wd_ch, hz);
6056 }
6057 
6058 #ifdef ATH_DIAGAPI
6059 /*
6060  * Diagnostic interface to the HAL.  This is used by various
6061  * tools to do things like retrieve register contents for
6062  * debugging.  The mechanism is intentionally opaque so that
6063  * it can change frequently w/o concern for compatiblity.
6064  */
6065 static int
6066 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6067 {
6068 	struct ath_hal *ah = sc->sc_ah;
6069 	u_int id = ad->ad_id & ATH_DIAG_ID;
6070 	void *indata = NULL;
6071 	void *outdata = NULL;
6072 	u_int32_t insize = ad->ad_in_size;
6073 	u_int32_t outsize = ad->ad_out_size;
6074 	int error = 0;
6075 
6076 	if (ad->ad_id & ATH_DIAG_IN) {
6077 		/*
6078 		 * Copy in data.
6079 		 */
6080 		indata = malloc(insize, M_TEMP, M_NOWAIT);
6081 		if (indata == NULL) {
6082 			error = ENOMEM;
6083 			goto bad;
6084 		}
6085 		error = copyin(ad->ad_in_data, indata, insize);
6086 		if (error)
6087 			goto bad;
6088 	}
6089 	if (ad->ad_id & ATH_DIAG_DYN) {
6090 		/*
6091 		 * Allocate a buffer for the results (otherwise the HAL
6092 		 * returns a pointer to a buffer where we can read the
6093 		 * results).  Note that we depend on the HAL leaving this
6094 		 * pointer for us to use below in reclaiming the buffer;
6095 		 * may want to be more defensive.
6096 		 */
6097 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6098 		if (outdata == NULL) {
6099 			error = ENOMEM;
6100 			goto bad;
6101 		}
6102 	}
6103 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6104 		if (outsize < ad->ad_out_size)
6105 			ad->ad_out_size = outsize;
6106 		if (outdata != NULL)
6107 			error = copyout(outdata, ad->ad_out_data,
6108 					ad->ad_out_size);
6109 	} else {
6110 		error = EINVAL;
6111 	}
6112 bad:
6113 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6114 		free(indata, M_TEMP);
6115 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6116 		free(outdata, M_TEMP);
6117 	return error;
6118 }
6119 #endif /* ATH_DIAGAPI */
6120 
6121 static int
6122 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6123 {
6124 #define	IS_RUNNING(ifp) \
6125 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6126 	struct ath_softc *sc = ifp->if_softc;
6127 	struct ieee80211com *ic = ifp->if_l2com;
6128 	struct ifreq *ifr = (struct ifreq *)data;
6129 	const HAL_RATE_TABLE *rt;
6130 	int error = 0;
6131 
6132 	switch (cmd) {
6133 	case SIOCSIFFLAGS:
6134 		ATH_LOCK(sc);
6135 		if (IS_RUNNING(ifp)) {
6136 			/*
6137 			 * To avoid rescanning another access point,
6138 			 * do not call ath_init() here.  Instead,
6139 			 * only reflect promisc mode settings.
6140 			 */
6141 			ath_mode_init(sc);
6142 		} else if (ifp->if_flags & IFF_UP) {
6143 			/*
6144 			 * Beware of being called during attach/detach
6145 			 * to reset promiscuous mode.  In that case we
6146 			 * will still be marked UP but not RUNNING.
6147 			 * However trying to re-init the interface
6148 			 * is the wrong thing to do as we've already
6149 			 * torn down much of our state.  There's
6150 			 * probably a better way to deal with this.
6151 			 */
6152 			if (!sc->sc_invalid)
6153 				ath_init(sc);	/* XXX lose error */
6154 		} else {
6155 			ath_stop_locked(ifp);
6156 #ifdef notyet
6157 			/* XXX must wakeup in places like ath_vap_delete */
6158 			if (!sc->sc_invalid)
6159 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6160 #endif
6161 		}
6162 		ATH_UNLOCK(sc);
6163 		break;
6164 	case SIOCGIFMEDIA:
6165 	case SIOCSIFMEDIA:
6166 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6167 		break;
6168 	case SIOCGATHSTATS:
6169 		/* NB: embed these numbers to get a consistent view */
6170 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6171 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6172 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6173 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6174 #ifdef IEEE80211_SUPPORT_TDMA
6175 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6176 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6177 #endif
6178 		rt = sc->sc_currates;
6179 		sc->sc_stats.ast_tx_rate =
6180 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6181 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
6182 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
6183 		return copyout(&sc->sc_stats,
6184 		    ifr->ifr_data, sizeof (sc->sc_stats));
6185 	case SIOCZATHSTATS:
6186 		error = priv_check(curthread, PRIV_DRIVER);
6187 		if (error == 0)
6188 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6189 		break;
6190 #ifdef ATH_DIAGAPI
6191 	case SIOCGATHDIAG:
6192 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6193 		break;
6194 	case SIOCGATHPHYERR:
6195 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
6196 		break;
6197 #endif
6198 	case SIOCGIFADDR:
6199 		error = ether_ioctl(ifp, cmd, data);
6200 		break;
6201 	default:
6202 		error = EINVAL;
6203 		break;
6204 	}
6205 	return error;
6206 #undef IS_RUNNING
6207 }
6208 
6209 /*
6210  * Announce various information on device/driver attach.
6211  */
6212 static void
6213 ath_announce(struct ath_softc *sc)
6214 {
6215 	struct ifnet *ifp = sc->sc_ifp;
6216 	struct ath_hal *ah = sc->sc_ah;
6217 
6218 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6219 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6220 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6221 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6222 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6223 	if (bootverbose) {
6224 		int i;
6225 		for (i = 0; i <= WME_AC_VO; i++) {
6226 			struct ath_txq *txq = sc->sc_ac2q[i];
6227 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6228 				txq->axq_qnum, ieee80211_wme_acnames[i]);
6229 		}
6230 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6231 			sc->sc_cabq->axq_qnum);
6232 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6233 	}
6234 	if (ath_rxbuf != ATH_RXBUF)
6235 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6236 	if (ath_txbuf != ATH_TXBUF)
6237 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6238 	if (sc->sc_mcastkey && bootverbose)
6239 		if_printf(ifp, "using multicast key search\n");
6240 }
6241 
6242 #ifdef IEEE80211_SUPPORT_TDMA
6243 static void
6244 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
6245 {
6246 	struct ath_hal *ah = sc->sc_ah;
6247 	HAL_BEACON_TIMERS bt;
6248 
6249 	bt.bt_intval = bintval | HAL_BEACON_ENA;
6250 	bt.bt_nexttbtt = nexttbtt;
6251 	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
6252 	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
6253 	bt.bt_nextatim = nexttbtt+1;
6254 	/* Enables TBTT, DBA, SWBA timers by default */
6255 	bt.bt_flags = 0;
6256 	ath_hal_beaconsettimers(ah, &bt);
6257 }
6258 
6259 /*
6260  * Calculate the beacon interval.  This is periodic in the
6261  * superframe for the bss.  We assume each station is configured
6262  * identically wrt transmit rate so the guard time we calculate
6263  * above will be the same on all stations.  Note we need to
6264  * factor in the xmit time because the hardware will schedule
6265  * a frame for transmit if the start of the frame is within
6266  * the burst time.  When we get hardware that properly kills
6267  * frames in the PCU we can reduce/eliminate the guard time.
6268  *
6269  * Roundup to 1024 is so we have 1 TU buffer in the guard time
6270  * to deal with the granularity of the nexttbtt timer.  11n MAC's
6271  * with 1us timer granularity should allow us to reduce/eliminate
6272  * this.
6273  */
6274 static void
6275 ath_tdma_bintvalsetup(struct ath_softc *sc,
6276 	const struct ieee80211_tdma_state *tdma)
6277 {
6278 	/* copy from vap state (XXX check all vaps have same value?) */
6279 	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
6280 
6281 	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
6282 		tdma->tdma_slotcnt, 1024);
6283 	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
6284 	if (sc->sc_tdmabintval & 1)
6285 		sc->sc_tdmabintval++;
6286 
6287 	if (tdma->tdma_slot == 0) {
6288 		/*
6289 		 * Only slot 0 beacons; other slots respond.
6290 		 */
6291 		sc->sc_imask |= HAL_INT_SWBA;
6292 		sc->sc_tdmaswba = 0;		/* beacon immediately */
6293 	} else {
6294 		/* XXX all vaps must be slot 0 or slot !0 */
6295 		sc->sc_imask &= ~HAL_INT_SWBA;
6296 	}
6297 }
6298 
6299 /*
6300  * Max 802.11 overhead.  This assumes no 4-address frames and
6301  * the encapsulation done by ieee80211_encap (llc).  We also
6302  * include potential crypto overhead.
6303  */
6304 #define	IEEE80211_MAXOVERHEAD \
6305 	(sizeof(struct ieee80211_qosframe) \
6306 	 + sizeof(struct llc) \
6307 	 + IEEE80211_ADDR_LEN \
6308 	 + IEEE80211_WEP_IVLEN \
6309 	 + IEEE80211_WEP_KIDLEN \
6310 	 + IEEE80211_WEP_CRCLEN \
6311 	 + IEEE80211_WEP_MICLEN \
6312 	 + IEEE80211_CRC_LEN)
6313 
6314 /*
6315  * Setup initially for tdma operation.  Start the beacon
6316  * timers and enable SWBA if we are slot 0.  Otherwise
6317  * we wait for slot 0 to arrive so we can sync up before
6318  * starting to transmit.
6319  */
6320 static void
6321 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
6322 {
6323 	struct ath_hal *ah = sc->sc_ah;
6324 	struct ifnet *ifp = sc->sc_ifp;
6325 	struct ieee80211com *ic = ifp->if_l2com;
6326 	const struct ieee80211_txparam *tp;
6327 	const struct ieee80211_tdma_state *tdma = NULL;
6328 	int rix;
6329 
6330 	if (vap == NULL) {
6331 		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
6332 		if (vap == NULL) {
6333 			if_printf(ifp, "%s: no vaps?\n", __func__);
6334 			return;
6335 		}
6336 	}
6337 	tp = vap->iv_bss->ni_txparms;
6338 	/*
6339 	 * Calculate the guard time for each slot.  This is the
6340 	 * time to send a maximal-size frame according to the
6341 	 * fixed/lowest transmit rate.  Note that the interface
6342 	 * mtu does not include the 802.11 overhead so we must
6343 	 * tack that on (ath_hal_computetxtime includes the
6344 	 * preamble and plcp in it's calculation).
6345 	 */
6346 	tdma = vap->iv_tdma;
6347 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
6348 		rix = ath_tx_findrix(sc, tp->ucastrate);
6349 	else
6350 		rix = ath_tx_findrix(sc, tp->mcastrate);
6351 	/* XXX short preamble assumed */
6352 	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
6353 		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
6354 
6355 	ath_hal_intrset(ah, 0);
6356 
6357 	ath_beaconq_config(sc);			/* setup h/w beacon q */
6358 	if (sc->sc_setcca)
6359 		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
6360 	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
6361 	ath_tdma_settimers(sc, sc->sc_tdmabintval,
6362 		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
6363 	sc->sc_syncbeacon = 0;
6364 
6365 	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
6366 	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
6367 
6368 	ath_hal_intrset(ah, sc->sc_imask);
6369 
6370 	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
6371 	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
6372 	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
6373 	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
6374 	    sc->sc_tdmadbaprep);
6375 }
6376 
6377 /*
6378  * Update tdma operation.  Called from the 802.11 layer
6379  * when a beacon is received from the TDMA station operating
6380  * in the slot immediately preceding us in the bss.  Use
6381  * the rx timestamp for the beacon frame to update our
6382  * beacon timers so we follow their schedule.  Note that
6383  * by using the rx timestamp we implicitly include the
6384  * propagation delay in our schedule.
6385  */
6386 static void
6387 ath_tdma_update(struct ieee80211_node *ni,
6388 	const struct ieee80211_tdma_param *tdma, int changed)
6389 {
6390 #define	TSF_TO_TU(_h,_l) \
6391 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
6392 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
6393 	struct ieee80211vap *vap = ni->ni_vap;
6394 	struct ieee80211com *ic = ni->ni_ic;
6395 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6396 	struct ath_hal *ah = sc->sc_ah;
6397 	const HAL_RATE_TABLE *rt = sc->sc_currates;
6398 	u_int64_t tsf, rstamp, nextslot, nexttbtt;
6399 	u_int32_t txtime, nextslottu;
6400 	int32_t tudelta, tsfdelta;
6401 	const struct ath_rx_status *rs;
6402 	int rix;
6403 
6404 	sc->sc_stats.ast_tdma_update++;
6405 
6406 	/*
6407 	 * Check for and adopt configuration changes.
6408 	 */
6409 	if (changed != 0) {
6410 		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
6411 
6412 		ath_tdma_bintvalsetup(sc, ts);
6413 		if (changed & TDMA_UPDATE_SLOTLEN)
6414 			ath_wme_update(ic);
6415 
6416 		DPRINTF(sc, ATH_DEBUG_TDMA,
6417 		    "%s: adopt slot %u slotcnt %u slotlen %u us "
6418 		    "bintval %u TU\n", __func__,
6419 		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
6420 		    sc->sc_tdmabintval);
6421 
6422 		/* XXX right? */
6423 		ath_hal_intrset(ah, sc->sc_imask);
6424 		/* NB: beacon timers programmed below */
6425 	}
6426 
6427 	/* extend rx timestamp to 64 bits */
6428 	rs = sc->sc_lastrs;
6429 	tsf = ath_hal_gettsf64(ah);
6430 	rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
6431 	/*
6432 	 * The rx timestamp is set by the hardware on completing
6433 	 * reception (at the point where the rx descriptor is DMA'd
6434 	 * to the host).  To find the start of our next slot we
6435 	 * must adjust this time by the time required to send
6436 	 * the packet just received.
6437 	 */
6438 	rix = rt->rateCodeToIndex[rs->rs_rate];
6439 	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
6440 	    rt->info[rix].shortPreamble);
6441 	/* NB: << 9 is to cvt to TU and /2 */
6442 	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
6443 	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
6444 
6445 	/*
6446 	 * Retrieve the hardware NextTBTT in usecs
6447 	 * and calculate the difference between what the
6448 	 * other station thinks and what we have programmed.  This
6449 	 * lets us figure how to adjust our timers to match.  The
6450 	 * adjustments are done by pulling the TSF forward and possibly
6451 	 * rewriting the beacon timers.
6452 	 */
6453 	nexttbtt = ath_hal_getnexttbtt(ah);
6454 	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt);
6455 
6456 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
6457 	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
6458 	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
6459 
6460 	if (tsfdelta < 0) {
6461 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
6462 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
6463 		tsfdelta = -tsfdelta % 1024;
6464 		nextslottu++;
6465 	} else if (tsfdelta > 0) {
6466 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
6467 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
6468 		tsfdelta = 1024 - (tsfdelta % 1024);
6469 		nextslottu++;
6470 	} else {
6471 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
6472 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
6473 	}
6474 	tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt);
6475 
6476 	/*
6477 	 * Copy sender's timetstamp into tdma ie so they can
6478 	 * calculate roundtrip time.  We submit a beacon frame
6479 	 * below after any timer adjustment.  The frame goes out
6480 	 * at the next TBTT so the sender can calculate the
6481 	 * roundtrip by inspecting the tdma ie in our beacon frame.
6482 	 *
6483 	 * NB: This tstamp is subtlely preserved when
6484 	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
6485 	 *     slot position changes) because ieee80211_add_tdma
6486 	 *     skips over the data.
6487 	 */
6488 	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
6489 		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
6490 		&ni->ni_tstamp.data, 8);
6491 #if 0
6492 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
6493 	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n",
6494 	    (unsigned long long) tsf, (unsigned long long) nextslot,
6495 	    (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta);
6496 #endif
6497 	/*
6498 	 * Adjust the beacon timers only when pulling them forward
6499 	 * or when going back by less than the beacon interval.
6500 	 * Negative jumps larger than the beacon interval seem to
6501 	 * cause the timers to stop and generally cause instability.
6502 	 * This basically filters out jumps due to missed beacons.
6503 	 */
6504 	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
6505 		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
6506 		sc->sc_stats.ast_tdma_timers++;
6507 	}
6508 	if (tsfdelta > 0) {
6509 		ath_hal_adjusttsf(ah, tsfdelta);
6510 		sc->sc_stats.ast_tdma_tsf++;
6511 	}
6512 	ath_tdma_beacon_send(sc, vap);		/* prepare response */
6513 #undef TU_TO_TSF
6514 #undef TSF_TO_TU
6515 }
6516 
6517 /*
6518  * Transmit a beacon frame at SWBA.  Dynamic updates
6519  * to the frame contents are done as needed.
6520  */
6521 static void
6522 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
6523 {
6524 	struct ath_hal *ah = sc->sc_ah;
6525 	struct ath_buf *bf;
6526 	int otherant;
6527 
6528 	/*
6529 	 * Check if the previous beacon has gone out.  If
6530 	 * not don't try to post another, skip this period
6531 	 * and wait for the next.  Missed beacons indicate
6532 	 * a problem and should not occur.  If we miss too
6533 	 * many consecutive beacons reset the device.
6534 	 */
6535 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
6536 		sc->sc_bmisscount++;
6537 		DPRINTF(sc, ATH_DEBUG_BEACON,
6538 			"%s: missed %u consecutive beacons\n",
6539 			__func__, sc->sc_bmisscount);
6540 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
6541 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
6542 		return;
6543 	}
6544 	if (sc->sc_bmisscount != 0) {
6545 		DPRINTF(sc, ATH_DEBUG_BEACON,
6546 			"%s: resume beacon xmit after %u misses\n",
6547 			__func__, sc->sc_bmisscount);
6548 		sc->sc_bmisscount = 0;
6549 	}
6550 
6551 	/*
6552 	 * Check recent per-antenna transmit statistics and flip
6553 	 * the default antenna if noticeably more frames went out
6554 	 * on the non-default antenna.
6555 	 * XXX assumes 2 anntenae
6556 	 */
6557 	if (!sc->sc_diversity) {
6558 		otherant = sc->sc_defant & 1 ? 2 : 1;
6559 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
6560 			ath_setdefantenna(sc, otherant);
6561 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
6562 	}
6563 
6564 	bf = ath_beacon_generate(sc, vap);
6565 	if (bf != NULL) {
6566 		/*
6567 		 * Stop any current dma and put the new frame on the queue.
6568 		 * This should never fail since we check above that no frames
6569 		 * are still pending on the queue.
6570 		 */
6571 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
6572 			DPRINTF(sc, ATH_DEBUG_ANY,
6573 				"%s: beacon queue %u did not stop?\n",
6574 				__func__, sc->sc_bhalq);
6575 			/* NB: the HAL still stops DMA, so proceed */
6576 		}
6577 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
6578 		ath_hal_txstart(ah, sc->sc_bhalq);
6579 
6580 		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
6581 
6582 		/*
6583 		 * Record local TSF for our last send for use
6584 		 * in arbitrating slot collisions.
6585 		 */
6586 		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
6587 	}
6588 }
6589 #endif /* IEEE80211_SUPPORT_TDMA */
6590 
6591 static void
6592 ath_dfs_tasklet(void *p, int npending)
6593 {
6594 	struct ath_softc *sc = (struct ath_softc *) p;
6595 	struct ifnet *ifp = sc->sc_ifp;
6596 	struct ieee80211com *ic = ifp->if_l2com;
6597 
6598 	/*
6599 	 * If previous processing has found a radar event,
6600 	 * signal this to the net80211 layer to begin DFS
6601 	 * processing.
6602 	 */
6603 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6604 		/* DFS event found, initiate channel change */
6605 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6606 	}
6607 }
6608 
6609 MODULE_VERSION(if_ath, 1);
6610 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
6611