1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 */ 46 #include "opt_ah.h" 47 #include "opt_wlan.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/sysctl.h> 52 #include <sys/mbuf.h> 53 #include <sys/malloc.h> 54 #include <sys/lock.h> 55 #include <sys/mutex.h> 56 #include <sys/kernel.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/errno.h> 60 #include <sys/callout.h> 61 #include <sys/bus.h> 62 #include <sys/endian.h> 63 #include <sys/kthread.h> 64 #include <sys/taskqueue.h> 65 #include <sys/priv.h> 66 #include <sys/module.h> 67 #include <sys/ktr.h> 68 #include <sys/smp.h> /* for mp_ncpus */ 69 70 #include <machine/bus.h> 71 72 #include <net/if.h> 73 #include <net/if_dl.h> 74 #include <net/if_media.h> 75 #include <net/if_types.h> 76 #include <net/if_arp.h> 77 #include <net/ethernet.h> 78 #include <net/if_llc.h> 79 80 #include <net80211/ieee80211_var.h> 81 #include <net80211/ieee80211_regdomain.h> 82 #ifdef IEEE80211_SUPPORT_SUPERG 83 #include <net80211/ieee80211_superg.h> 84 #endif 85 #ifdef IEEE80211_SUPPORT_TDMA 86 #include <net80211/ieee80211_tdma.h> 87 #endif 88 89 #include <net/bpf.h> 90 91 #ifdef INET 92 #include <netinet/in.h> 93 #include <netinet/if_ether.h> 94 #endif 95 96 #include <dev/ath/if_athvar.h> 97 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 98 #include <dev/ath/ath_hal/ah_diagcodes.h> 99 100 #include <dev/ath/if_ath_debug.h> 101 #include <dev/ath/if_ath_misc.h> 102 #include <dev/ath/if_ath_tx.h> 103 #include <dev/ath/if_ath_sysctl.h> 104 #include <dev/ath/if_ath_keycache.h> 105 #include <dev/ath/if_athdfs.h> 106 107 #ifdef ATH_TX99_DIAG 108 #include <dev/ath/ath_tx99/ath_tx99.h> 109 #endif 110 111 #define ATH_KTR_INTR KTR_SPARE4 112 #define ATH_KTR_ERR KTR_SPARE3 113 114 /* 115 * ATH_BCBUF determines the number of vap's that can transmit 116 * beacons and also (currently) the number of vap's that can 117 * have unique mac addresses/bssid. When staggering beacons 118 * 4 is probably a good max as otherwise the beacons become 119 * very closely spaced and there is limited time for cab q traffic 120 * to go out. You can burst beacons instead but that is not good 121 * for stations in power save and at some point you really want 122 * another radio (and channel). 123 * 124 * The limit on the number of mac addresses is tied to our use of 125 * the U/L bit and tracking addresses in a byte; it would be 126 * worthwhile to allow more for applications like proxy sta. 127 */ 128 CTASSERT(ATH_BCBUF <= 8); 129 130 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 131 const char name[IFNAMSIZ], int unit, int opmode, 132 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 133 const uint8_t mac[IEEE80211_ADDR_LEN]); 134 static void ath_vap_delete(struct ieee80211vap *); 135 static void ath_init(void *); 136 static void ath_stop_locked(struct ifnet *); 137 static void ath_stop(struct ifnet *); 138 static void ath_start(struct ifnet *); 139 static int ath_reset_vap(struct ieee80211vap *, u_long); 140 static int ath_media_change(struct ifnet *); 141 static void ath_watchdog(void *); 142 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 143 static void ath_fatal_proc(void *, int); 144 static void ath_bmiss_vap(struct ieee80211vap *); 145 static void ath_bmiss_proc(void *, int); 146 static void ath_key_update_begin(struct ieee80211vap *); 147 static void ath_key_update_end(struct ieee80211vap *); 148 static void ath_update_mcast(struct ifnet *); 149 static void ath_update_promisc(struct ifnet *); 150 static void ath_mode_init(struct ath_softc *); 151 static void ath_setslottime(struct ath_softc *); 152 static void ath_updateslot(struct ifnet *); 153 static int ath_beaconq_setup(struct ath_hal *); 154 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 155 static void ath_beacon_update(struct ieee80211vap *, int item); 156 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 157 static void ath_beacon_proc(void *, int); 158 static struct ath_buf *ath_beacon_generate(struct ath_softc *, 159 struct ieee80211vap *); 160 static void ath_bstuck_proc(void *, int); 161 static void ath_beacon_return(struct ath_softc *, struct ath_buf *); 162 static void ath_beacon_free(struct ath_softc *); 163 static void ath_beacon_config(struct ath_softc *, struct ieee80211vap *); 164 static void ath_descdma_cleanup(struct ath_softc *sc, 165 struct ath_descdma *, ath_bufhead *); 166 static int ath_desc_alloc(struct ath_softc *); 167 static void ath_desc_free(struct ath_softc *); 168 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 169 const uint8_t [IEEE80211_ADDR_LEN]); 170 static void ath_node_cleanup(struct ieee80211_node *); 171 static void ath_node_free(struct ieee80211_node *); 172 static void ath_node_getsignal(const struct ieee80211_node *, 173 int8_t *, int8_t *); 174 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 175 static void ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 176 int subtype, int rssi, int nf); 177 static void ath_setdefantenna(struct ath_softc *, u_int); 178 static void ath_rx_proc(struct ath_softc *sc, int); 179 static void ath_rx_tasklet(void *, int); 180 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 181 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 182 static int ath_tx_setup(struct ath_softc *, int, int); 183 static int ath_wme_update(struct ieee80211com *); 184 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 185 static void ath_tx_cleanup(struct ath_softc *); 186 static void ath_tx_proc_q0(void *, int); 187 static void ath_tx_proc_q0123(void *, int); 188 static void ath_tx_proc(void *, int); 189 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 190 static void ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type); 191 static void ath_stoprecv(struct ath_softc *, int); 192 static int ath_startrecv(struct ath_softc *); 193 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 194 static void ath_scan_start(struct ieee80211com *); 195 static void ath_scan_end(struct ieee80211com *); 196 static void ath_set_channel(struct ieee80211com *); 197 static void ath_calibrate(void *); 198 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 199 static void ath_setup_stationkey(struct ieee80211_node *); 200 static void ath_newassoc(struct ieee80211_node *, int); 201 static int ath_setregdomain(struct ieee80211com *, 202 struct ieee80211_regdomain *, int, 203 struct ieee80211_channel []); 204 static void ath_getradiocaps(struct ieee80211com *, int, int *, 205 struct ieee80211_channel []); 206 static int ath_getchannels(struct ath_softc *); 207 static void ath_led_event(struct ath_softc *, int); 208 209 static int ath_rate_setup(struct ath_softc *, u_int mode); 210 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 211 212 static void ath_announce(struct ath_softc *); 213 214 static void ath_dfs_tasklet(void *, int); 215 216 #ifdef IEEE80211_SUPPORT_TDMA 217 static void ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, 218 u_int32_t bintval); 219 static void ath_tdma_bintvalsetup(struct ath_softc *sc, 220 const struct ieee80211_tdma_state *tdma); 221 static void ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap); 222 static void ath_tdma_update(struct ieee80211_node *ni, 223 const struct ieee80211_tdma_param *tdma, int); 224 static void ath_tdma_beacon_send(struct ath_softc *sc, 225 struct ieee80211vap *vap); 226 227 #define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */ 228 #define TDMA_LPF_LEN 6 229 #define TDMA_DUMMY_MARKER 0x127 230 #define TDMA_EP_MUL(x, mul) ((x) * (mul)) 231 #define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER)) 232 #define TDMA_LPF(x, y, len) \ 233 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y)) 234 #define TDMA_SAMPLE(x, y) do { \ 235 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \ 236 } while (0) 237 #define TDMA_EP_RND(x,mul) \ 238 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 239 #define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER) 240 #endif /* IEEE80211_SUPPORT_TDMA */ 241 242 SYSCTL_DECL(_hw_ath); 243 244 /* XXX validate sysctl values */ 245 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 246 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 247 0, "long chip calibration interval (secs)"); 248 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 249 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 250 0, "short chip calibration interval (msecs)"); 251 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 252 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 253 0, "reset chip calibration results (secs)"); 254 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 255 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 256 0, "ANI calibration (msecs)"); 257 258 static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 259 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 260 0, "rx buffers allocated"); 261 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 262 static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 263 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 264 0, "tx buffers allocated"); 265 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 266 267 static int ath_bstuck_threshold = 4; /* max missed beacons */ 268 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 269 0, "max missed beacon xmits before chip reset"); 270 271 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 272 273 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 274 #define HAL_MODE_HT40 \ 275 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 276 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 277 int 278 ath_attach(u_int16_t devid, struct ath_softc *sc) 279 { 280 struct ifnet *ifp; 281 struct ieee80211com *ic; 282 struct ath_hal *ah = NULL; 283 HAL_STATUS status; 284 int error = 0, i; 285 u_int wmodes; 286 uint8_t macaddr[IEEE80211_ADDR_LEN]; 287 288 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 289 290 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 291 if (ifp == NULL) { 292 device_printf(sc->sc_dev, "can not if_alloc()\n"); 293 error = ENOSPC; 294 goto bad; 295 } 296 ic = ifp->if_l2com; 297 298 /* set these up early for if_printf use */ 299 if_initname(ifp, device_get_name(sc->sc_dev), 300 device_get_unit(sc->sc_dev)); 301 302 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, sc->sc_eepromdata, &status); 303 if (ah == NULL) { 304 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 305 status); 306 error = ENXIO; 307 goto bad; 308 } 309 sc->sc_ah = ah; 310 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 311 #ifdef ATH_DEBUG 312 sc->sc_debug = ath_debug; 313 #endif 314 315 /* 316 * Check if the MAC has multi-rate retry support. 317 * We do this by trying to setup a fake extended 318 * descriptor. MAC's that don't have support will 319 * return false w/o doing anything. MAC's that do 320 * support it will return true w/o doing anything. 321 */ 322 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 323 324 /* 325 * Check if the device has hardware counters for PHY 326 * errors. If so we need to enable the MIB interrupt 327 * so we can act on stat triggers. 328 */ 329 if (ath_hal_hwphycounters(ah)) 330 sc->sc_needmib = 1; 331 332 /* 333 * Get the hardware key cache size. 334 */ 335 sc->sc_keymax = ath_hal_keycachesize(ah); 336 if (sc->sc_keymax > ATH_KEYMAX) { 337 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 338 ATH_KEYMAX, sc->sc_keymax); 339 sc->sc_keymax = ATH_KEYMAX; 340 } 341 /* 342 * Reset the key cache since some parts do not 343 * reset the contents on initial power up. 344 */ 345 for (i = 0; i < sc->sc_keymax; i++) 346 ath_hal_keyreset(ah, i); 347 348 /* 349 * Collect the default channel list. 350 */ 351 error = ath_getchannels(sc); 352 if (error != 0) 353 goto bad; 354 355 /* 356 * Setup rate tables for all potential media types. 357 */ 358 ath_rate_setup(sc, IEEE80211_MODE_11A); 359 ath_rate_setup(sc, IEEE80211_MODE_11B); 360 ath_rate_setup(sc, IEEE80211_MODE_11G); 361 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 362 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 363 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 364 ath_rate_setup(sc, IEEE80211_MODE_11NA); 365 ath_rate_setup(sc, IEEE80211_MODE_11NG); 366 ath_rate_setup(sc, IEEE80211_MODE_HALF); 367 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 368 369 /* NB: setup here so ath_rate_update is happy */ 370 ath_setcurmode(sc, IEEE80211_MODE_11A); 371 372 /* 373 * Allocate tx+rx descriptors and populate the lists. 374 */ 375 error = ath_desc_alloc(sc); 376 if (error != 0) { 377 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 378 goto bad; 379 } 380 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 381 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 382 383 ATH_TXBUF_LOCK_INIT(sc); 384 385 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 386 taskqueue_thread_enqueue, &sc->sc_tq); 387 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 388 "%s taskq", ifp->if_xname); 389 390 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc); 391 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 392 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 393 394 /* 395 * Allocate hardware transmit queues: one queue for 396 * beacon frames and one data queue for each QoS 397 * priority. Note that the hal handles resetting 398 * these queues at the needed time. 399 * 400 * XXX PS-Poll 401 */ 402 sc->sc_bhalq = ath_beaconq_setup(ah); 403 if (sc->sc_bhalq == (u_int) -1) { 404 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 405 error = EIO; 406 goto bad2; 407 } 408 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 409 if (sc->sc_cabq == NULL) { 410 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 411 error = EIO; 412 goto bad2; 413 } 414 /* NB: insure BK queue is the lowest priority h/w queue */ 415 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 416 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 417 ieee80211_wme_acnames[WME_AC_BK]); 418 error = EIO; 419 goto bad2; 420 } 421 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 422 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 423 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 424 /* 425 * Not enough hardware tx queues to properly do WME; 426 * just punt and assign them all to the same h/w queue. 427 * We could do a better job of this if, for example, 428 * we allocate queues when we switch from station to 429 * AP mode. 430 */ 431 if (sc->sc_ac2q[WME_AC_VI] != NULL) 432 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 433 if (sc->sc_ac2q[WME_AC_BE] != NULL) 434 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 435 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 436 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 437 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 438 } 439 440 /* 441 * Special case certain configurations. Note the 442 * CAB queue is handled by these specially so don't 443 * include them when checking the txq setup mask. 444 */ 445 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 446 case 0x01: 447 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 448 break; 449 case 0x0f: 450 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 451 break; 452 default: 453 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 454 break; 455 } 456 457 /* 458 * Setup rate control. Some rate control modules 459 * call back to change the anntena state so expose 460 * the necessary entry points. 461 * XXX maybe belongs in struct ath_ratectrl? 462 */ 463 sc->sc_setdefantenna = ath_setdefantenna; 464 sc->sc_rc = ath_rate_attach(sc); 465 if (sc->sc_rc == NULL) { 466 error = EIO; 467 goto bad2; 468 } 469 470 /* Attach DFS module */ 471 if (! ath_dfs_attach(sc)) { 472 device_printf(sc->sc_dev, "%s: unable to attach DFS\n", __func__); 473 error = EIO; 474 goto bad2; 475 } 476 477 /* Start DFS processing tasklet */ 478 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 479 480 sc->sc_blinking = 0; 481 sc->sc_ledstate = 1; 482 sc->sc_ledon = 0; /* low true */ 483 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 484 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 485 /* 486 * Auto-enable soft led processing for IBM cards and for 487 * 5211 minipci cards. Users can also manually enable/disable 488 * support with a sysctl. 489 */ 490 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 491 if (sc->sc_softled) { 492 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin, 493 HAL_GPIO_MUX_MAC_NETWORK_LED); 494 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 495 } 496 497 ifp->if_softc = sc; 498 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 499 ifp->if_start = ath_start; 500 ifp->if_ioctl = ath_ioctl; 501 ifp->if_init = ath_init; 502 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 503 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 504 IFQ_SET_READY(&ifp->if_snd); 505 506 ic->ic_ifp = ifp; 507 /* XXX not right but it's not used anywhere important */ 508 ic->ic_phytype = IEEE80211_T_OFDM; 509 ic->ic_opmode = IEEE80211_M_STA; 510 ic->ic_caps = 511 IEEE80211_C_STA /* station mode */ 512 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 513 | IEEE80211_C_HOSTAP /* hostap mode */ 514 | IEEE80211_C_MONITOR /* monitor mode */ 515 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 516 | IEEE80211_C_WDS /* 4-address traffic works */ 517 | IEEE80211_C_MBSS /* mesh point link mode */ 518 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 519 | IEEE80211_C_SHSLOT /* short slot time supported */ 520 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 521 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 522 | IEEE80211_C_TXFRAG /* handle tx frags */ 523 #ifdef ATH_ENABLE_DFS 524 | IEEE80211_C_DFS /* Enable DFS radar detection */ 525 #endif 526 ; 527 /* 528 * Query the hal to figure out h/w crypto support. 529 */ 530 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 531 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 532 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 533 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 534 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 535 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 536 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 537 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 538 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 539 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 540 /* 541 * Check if h/w does the MIC and/or whether the 542 * separate key cache entries are required to 543 * handle both tx+rx MIC keys. 544 */ 545 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 546 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 547 /* 548 * If the h/w supports storing tx+rx MIC keys 549 * in one cache slot automatically enable use. 550 */ 551 if (ath_hal_hastkipsplit(ah) || 552 !ath_hal_settkipsplit(ah, AH_FALSE)) 553 sc->sc_splitmic = 1; 554 /* 555 * If the h/w can do TKIP MIC together with WME then 556 * we use it; otherwise we force the MIC to be done 557 * in software by the net80211 layer. 558 */ 559 if (ath_hal_haswmetkipmic(ah)) 560 sc->sc_wmetkipmic = 1; 561 } 562 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 563 /* 564 * Check for multicast key search support. 565 */ 566 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 567 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 568 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 569 } 570 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 571 /* 572 * Mark key cache slots associated with global keys 573 * as in use. If we knew TKIP was not to be used we 574 * could leave the +32, +64, and +32+64 slots free. 575 */ 576 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 577 setbit(sc->sc_keymap, i); 578 setbit(sc->sc_keymap, i+64); 579 if (sc->sc_splitmic) { 580 setbit(sc->sc_keymap, i+32); 581 setbit(sc->sc_keymap, i+32+64); 582 } 583 } 584 /* 585 * TPC support can be done either with a global cap or 586 * per-packet support. The latter is not available on 587 * all parts. We're a bit pedantic here as all parts 588 * support a global cap. 589 */ 590 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 591 ic->ic_caps |= IEEE80211_C_TXPMGT; 592 593 /* 594 * Mark WME capability only if we have sufficient 595 * hardware queues to do proper priority scheduling. 596 */ 597 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 598 ic->ic_caps |= IEEE80211_C_WME; 599 /* 600 * Check for misc other capabilities. 601 */ 602 if (ath_hal_hasbursting(ah)) 603 ic->ic_caps |= IEEE80211_C_BURST; 604 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 605 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 606 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 607 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 608 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 609 if (ath_hal_hasfastframes(ah)) 610 ic->ic_caps |= IEEE80211_C_FF; 611 wmodes = ath_hal_getwirelessmodes(ah); 612 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 613 ic->ic_caps |= IEEE80211_C_TURBOP; 614 #ifdef IEEE80211_SUPPORT_TDMA 615 if (ath_hal_macversion(ah) > 0x78) { 616 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 617 ic->ic_tdma_update = ath_tdma_update; 618 } 619 #endif 620 621 /* 622 * The if_ath 11n support is completely not ready for normal use. 623 * Enabling this option will likely break everything and everything. 624 * Don't think of doing that unless you know what you're doing. 625 */ 626 627 #ifdef ATH_ENABLE_11N 628 /* 629 * Query HT capabilities 630 */ 631 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 632 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 633 int rxs, txs; 634 635 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 636 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 637 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 638 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 639 | IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */ 640 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 641 ; 642 643 /* 644 * Enable short-GI for HT20 only if the hardware 645 * advertises support. 646 * Notably, anything earlier than the AR9287 doesn't. 647 */ 648 if ((ath_hal_getcapability(ah, 649 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 650 (wmodes & HAL_MODE_HT20)) { 651 device_printf(sc->sc_dev, 652 "[HT] enabling short-GI in 20MHz mode\n"); 653 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 654 } 655 656 if (wmodes & HAL_MODE_HT40) 657 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 658 | IEEE80211_HTCAP_SHORTGI40; 659 660 /* 661 * rx/tx stream is not currently used anywhere; it needs to be taken 662 * into account when negotiating which MCS rates it'll receive and 663 * what MCS rates are available for TX. 664 */ 665 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &rxs); 666 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &txs); 667 668 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 669 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 670 671 ic->ic_txstream = txs; 672 ic->ic_rxstream = rxs; 673 674 device_printf(sc->sc_dev, "[HT] %d RX streams; %d TX streams\n", rxs, txs); 675 } 676 #endif 677 678 /* 679 * Check if the hardware requires PCI register serialisation. 680 * Some of the Owl based MACs require this. 681 */ 682 if (mp_ncpus > 1 && 683 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 684 0, NULL) == HAL_OK) { 685 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 686 device_printf(sc->sc_dev, "Enabling register serialisation\n"); 687 } 688 689 /* 690 * Indicate we need the 802.11 header padded to a 691 * 32-bit boundary for 4-address and QoS frames. 692 */ 693 ic->ic_flags |= IEEE80211_F_DATAPAD; 694 695 /* 696 * Query the hal about antenna support. 697 */ 698 sc->sc_defant = ath_hal_getdefantenna(ah); 699 700 /* 701 * Not all chips have the VEOL support we want to 702 * use with IBSS beacons; check here for it. 703 */ 704 sc->sc_hasveol = ath_hal_hasveol(ah); 705 706 /* get mac address from hardware */ 707 ath_hal_getmac(ah, macaddr); 708 if (sc->sc_hasbmask) 709 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 710 711 /* NB: used to size node table key mapping array */ 712 ic->ic_max_keyix = sc->sc_keymax; 713 /* call MI attach routine. */ 714 ieee80211_ifattach(ic, macaddr); 715 ic->ic_setregdomain = ath_setregdomain; 716 ic->ic_getradiocaps = ath_getradiocaps; 717 sc->sc_opmode = HAL_M_STA; 718 719 /* override default methods */ 720 ic->ic_newassoc = ath_newassoc; 721 ic->ic_updateslot = ath_updateslot; 722 ic->ic_wme.wme_update = ath_wme_update; 723 ic->ic_vap_create = ath_vap_create; 724 ic->ic_vap_delete = ath_vap_delete; 725 ic->ic_raw_xmit = ath_raw_xmit; 726 ic->ic_update_mcast = ath_update_mcast; 727 ic->ic_update_promisc = ath_update_promisc; 728 ic->ic_node_alloc = ath_node_alloc; 729 sc->sc_node_free = ic->ic_node_free; 730 ic->ic_node_free = ath_node_free; 731 sc->sc_node_cleanup = ic->ic_node_cleanup; 732 ic->ic_node_cleanup = ath_node_cleanup; 733 ic->ic_node_getsignal = ath_node_getsignal; 734 ic->ic_scan_start = ath_scan_start; 735 ic->ic_scan_end = ath_scan_end; 736 ic->ic_set_channel = ath_set_channel; 737 738 /* 802.11n specific - but just override anyway */ 739 sc->sc_addba_request = ic->ic_addba_request; 740 sc->sc_addba_response = ic->ic_addba_response; 741 sc->sc_addba_stop = ic->ic_addba_stop; 742 sc->sc_bar_response = ic->ic_bar_response; 743 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 744 745 ic->ic_addba_request = ath_addba_request; 746 ic->ic_addba_response = ath_addba_response; 747 ic->ic_addba_response_timeout = ath_addba_response_timeout; 748 ic->ic_addba_stop = ath_addba_stop; 749 ic->ic_bar_response = ath_bar_response; 750 751 ieee80211_radiotap_attach(ic, 752 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 753 ATH_TX_RADIOTAP_PRESENT, 754 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 755 ATH_RX_RADIOTAP_PRESENT); 756 757 /* 758 * Setup dynamic sysctl's now that country code and 759 * regdomain are available from the hal. 760 */ 761 ath_sysctlattach(sc); 762 ath_sysctl_stats_attach(sc); 763 ath_sysctl_hal_attach(sc); 764 765 if (bootverbose) 766 ieee80211_announce(ic); 767 ath_announce(sc); 768 return 0; 769 bad2: 770 ath_tx_cleanup(sc); 771 ath_desc_free(sc); 772 bad: 773 if (ah) 774 ath_hal_detach(ah); 775 if (ifp != NULL) 776 if_free(ifp); 777 sc->sc_invalid = 1; 778 return error; 779 } 780 781 int 782 ath_detach(struct ath_softc *sc) 783 { 784 struct ifnet *ifp = sc->sc_ifp; 785 786 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 787 __func__, ifp->if_flags); 788 789 /* 790 * NB: the order of these is important: 791 * o stop the chip so no more interrupts will fire 792 * o call the 802.11 layer before detaching the hal to 793 * insure callbacks into the driver to delete global 794 * key cache entries can be handled 795 * o free the taskqueue which drains any pending tasks 796 * o reclaim the tx queue data structures after calling 797 * the 802.11 layer as we'll get called back to reclaim 798 * node state and potentially want to use them 799 * o to cleanup the tx queues the hal is called, so detach 800 * it last 801 * Other than that, it's straightforward... 802 */ 803 ath_stop(ifp); 804 ieee80211_ifdetach(ifp->if_l2com); 805 taskqueue_free(sc->sc_tq); 806 #ifdef ATH_TX99_DIAG 807 if (sc->sc_tx99 != NULL) 808 sc->sc_tx99->detach(sc->sc_tx99); 809 #endif 810 ath_rate_detach(sc->sc_rc); 811 812 ath_dfs_detach(sc); 813 ath_desc_free(sc); 814 ath_tx_cleanup(sc); 815 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 816 if_free(ifp); 817 818 return 0; 819 } 820 821 /* 822 * MAC address handling for multiple BSS on the same radio. 823 * The first vap uses the MAC address from the EEPROM. For 824 * subsequent vap's we set the U/L bit (bit 1) in the MAC 825 * address and use the next six bits as an index. 826 */ 827 static void 828 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 829 { 830 int i; 831 832 if (clone && sc->sc_hasbmask) { 833 /* NB: we only do this if h/w supports multiple bssid */ 834 for (i = 0; i < 8; i++) 835 if ((sc->sc_bssidmask & (1<<i)) == 0) 836 break; 837 if (i != 0) 838 mac[0] |= (i << 2)|0x2; 839 } else 840 i = 0; 841 sc->sc_bssidmask |= 1<<i; 842 sc->sc_hwbssidmask[0] &= ~mac[0]; 843 if (i == 0) 844 sc->sc_nbssid0++; 845 } 846 847 static void 848 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 849 { 850 int i = mac[0] >> 2; 851 uint8_t mask; 852 853 if (i != 0 || --sc->sc_nbssid0 == 0) { 854 sc->sc_bssidmask &= ~(1<<i); 855 /* recalculate bssid mask from remaining addresses */ 856 mask = 0xff; 857 for (i = 1; i < 8; i++) 858 if (sc->sc_bssidmask & (1<<i)) 859 mask &= ~((i<<2)|0x2); 860 sc->sc_hwbssidmask[0] |= mask; 861 } 862 } 863 864 /* 865 * Assign a beacon xmit slot. We try to space out 866 * assignments so when beacons are staggered the 867 * traffic coming out of the cab q has maximal time 868 * to go out before the next beacon is scheduled. 869 */ 870 static int 871 assign_bslot(struct ath_softc *sc) 872 { 873 u_int slot, free; 874 875 free = 0; 876 for (slot = 0; slot < ATH_BCBUF; slot++) 877 if (sc->sc_bslot[slot] == NULL) { 878 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 879 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 880 return slot; 881 free = slot; 882 /* NB: keep looking for a double slot */ 883 } 884 return free; 885 } 886 887 static struct ieee80211vap * 888 ath_vap_create(struct ieee80211com *ic, 889 const char name[IFNAMSIZ], int unit, int opmode, int flags, 890 const uint8_t bssid[IEEE80211_ADDR_LEN], 891 const uint8_t mac0[IEEE80211_ADDR_LEN]) 892 { 893 struct ath_softc *sc = ic->ic_ifp->if_softc; 894 struct ath_vap *avp; 895 struct ieee80211vap *vap; 896 uint8_t mac[IEEE80211_ADDR_LEN]; 897 int ic_opmode, needbeacon, error; 898 899 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 900 M_80211_VAP, M_WAITOK | M_ZERO); 901 needbeacon = 0; 902 IEEE80211_ADDR_COPY(mac, mac0); 903 904 ATH_LOCK(sc); 905 ic_opmode = opmode; /* default to opmode of new vap */ 906 switch (opmode) { 907 case IEEE80211_M_STA: 908 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 909 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 910 goto bad; 911 } 912 if (sc->sc_nvaps) { 913 /* 914 * With multiple vaps we must fall back 915 * to s/w beacon miss handling. 916 */ 917 flags |= IEEE80211_CLONE_NOBEACONS; 918 } 919 if (flags & IEEE80211_CLONE_NOBEACONS) { 920 /* 921 * Station mode w/o beacons are implemented w/ AP mode. 922 */ 923 ic_opmode = IEEE80211_M_HOSTAP; 924 } 925 break; 926 case IEEE80211_M_IBSS: 927 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 928 device_printf(sc->sc_dev, 929 "only 1 ibss vap supported\n"); 930 goto bad; 931 } 932 needbeacon = 1; 933 break; 934 case IEEE80211_M_AHDEMO: 935 #ifdef IEEE80211_SUPPORT_TDMA 936 if (flags & IEEE80211_CLONE_TDMA) { 937 if (sc->sc_nvaps != 0) { 938 device_printf(sc->sc_dev, 939 "only 1 tdma vap supported\n"); 940 goto bad; 941 } 942 needbeacon = 1; 943 flags |= IEEE80211_CLONE_NOBEACONS; 944 } 945 /* fall thru... */ 946 #endif 947 case IEEE80211_M_MONITOR: 948 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 949 /* 950 * Adopt existing mode. Adding a monitor or ahdemo 951 * vap to an existing configuration is of dubious 952 * value but should be ok. 953 */ 954 /* XXX not right for monitor mode */ 955 ic_opmode = ic->ic_opmode; 956 } 957 break; 958 case IEEE80211_M_HOSTAP: 959 case IEEE80211_M_MBSS: 960 needbeacon = 1; 961 break; 962 case IEEE80211_M_WDS: 963 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 964 device_printf(sc->sc_dev, 965 "wds not supported in sta mode\n"); 966 goto bad; 967 } 968 /* 969 * Silently remove any request for a unique 970 * bssid; WDS vap's always share the local 971 * mac address. 972 */ 973 flags &= ~IEEE80211_CLONE_BSSID; 974 if (sc->sc_nvaps == 0) 975 ic_opmode = IEEE80211_M_HOSTAP; 976 else 977 ic_opmode = ic->ic_opmode; 978 break; 979 default: 980 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 981 goto bad; 982 } 983 /* 984 * Check that a beacon buffer is available; the code below assumes it. 985 */ 986 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 987 device_printf(sc->sc_dev, "no beacon buffer available\n"); 988 goto bad; 989 } 990 991 /* STA, AHDEMO? */ 992 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 993 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 994 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 995 } 996 997 vap = &avp->av_vap; 998 /* XXX can't hold mutex across if_alloc */ 999 ATH_UNLOCK(sc); 1000 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1001 bssid, mac); 1002 ATH_LOCK(sc); 1003 if (error != 0) { 1004 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1005 __func__, error); 1006 goto bad2; 1007 } 1008 1009 /* h/w crypto support */ 1010 vap->iv_key_alloc = ath_key_alloc; 1011 vap->iv_key_delete = ath_key_delete; 1012 vap->iv_key_set = ath_key_set; 1013 vap->iv_key_update_begin = ath_key_update_begin; 1014 vap->iv_key_update_end = ath_key_update_end; 1015 1016 /* override various methods */ 1017 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1018 vap->iv_recv_mgmt = ath_recv_mgmt; 1019 vap->iv_reset = ath_reset_vap; 1020 vap->iv_update_beacon = ath_beacon_update; 1021 avp->av_newstate = vap->iv_newstate; 1022 vap->iv_newstate = ath_newstate; 1023 avp->av_bmiss = vap->iv_bmiss; 1024 vap->iv_bmiss = ath_bmiss_vap; 1025 1026 /* Set default parameters */ 1027 1028 /* 1029 * Anything earlier than some AR9300 series MACs don't 1030 * support a smaller MPDU density. 1031 */ 1032 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1033 /* 1034 * All NICs can handle the maximum size, however 1035 * AR5416 based MACs can only TX aggregates w/ RTS 1036 * protection when the total aggregate size is <= 8k. 1037 * However, for now that's enforced by the TX path. 1038 */ 1039 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1040 1041 avp->av_bslot = -1; 1042 if (needbeacon) { 1043 /* 1044 * Allocate beacon state and setup the q for buffered 1045 * multicast frames. We know a beacon buffer is 1046 * available because we checked above. 1047 */ 1048 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1049 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1050 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1051 /* 1052 * Assign the vap to a beacon xmit slot. As above 1053 * this cannot fail to find a free one. 1054 */ 1055 avp->av_bslot = assign_bslot(sc); 1056 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1057 ("beacon slot %u not empty", avp->av_bslot)); 1058 sc->sc_bslot[avp->av_bslot] = vap; 1059 sc->sc_nbcnvaps++; 1060 } 1061 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1062 /* 1063 * Multple vaps are to transmit beacons and we 1064 * have h/w support for TSF adjusting; enable 1065 * use of staggered beacons. 1066 */ 1067 sc->sc_stagbeacons = 1; 1068 } 1069 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1070 } 1071 1072 ic->ic_opmode = ic_opmode; 1073 if (opmode != IEEE80211_M_WDS) { 1074 sc->sc_nvaps++; 1075 if (opmode == IEEE80211_M_STA) 1076 sc->sc_nstavaps++; 1077 if (opmode == IEEE80211_M_MBSS) 1078 sc->sc_nmeshvaps++; 1079 } 1080 switch (ic_opmode) { 1081 case IEEE80211_M_IBSS: 1082 sc->sc_opmode = HAL_M_IBSS; 1083 break; 1084 case IEEE80211_M_STA: 1085 sc->sc_opmode = HAL_M_STA; 1086 break; 1087 case IEEE80211_M_AHDEMO: 1088 #ifdef IEEE80211_SUPPORT_TDMA 1089 if (vap->iv_caps & IEEE80211_C_TDMA) { 1090 sc->sc_tdma = 1; 1091 /* NB: disable tsf adjust */ 1092 sc->sc_stagbeacons = 0; 1093 } 1094 /* 1095 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1096 * just ap mode. 1097 */ 1098 /* fall thru... */ 1099 #endif 1100 case IEEE80211_M_HOSTAP: 1101 case IEEE80211_M_MBSS: 1102 sc->sc_opmode = HAL_M_HOSTAP; 1103 break; 1104 case IEEE80211_M_MONITOR: 1105 sc->sc_opmode = HAL_M_MONITOR; 1106 break; 1107 default: 1108 /* XXX should not happen */ 1109 break; 1110 } 1111 if (sc->sc_hastsfadd) { 1112 /* 1113 * Configure whether or not TSF adjust should be done. 1114 */ 1115 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1116 } 1117 if (flags & IEEE80211_CLONE_NOBEACONS) { 1118 /* 1119 * Enable s/w beacon miss handling. 1120 */ 1121 sc->sc_swbmiss = 1; 1122 } 1123 ATH_UNLOCK(sc); 1124 1125 /* complete setup */ 1126 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1127 return vap; 1128 bad2: 1129 reclaim_address(sc, mac); 1130 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1131 bad: 1132 free(avp, M_80211_VAP); 1133 ATH_UNLOCK(sc); 1134 return NULL; 1135 } 1136 1137 static void 1138 ath_vap_delete(struct ieee80211vap *vap) 1139 { 1140 struct ieee80211com *ic = vap->iv_ic; 1141 struct ifnet *ifp = ic->ic_ifp; 1142 struct ath_softc *sc = ifp->if_softc; 1143 struct ath_hal *ah = sc->sc_ah; 1144 struct ath_vap *avp = ATH_VAP(vap); 1145 1146 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1147 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1148 /* 1149 * Quiesce the hardware while we remove the vap. In 1150 * particular we need to reclaim all references to 1151 * the vap state by any frames pending on the tx queues. 1152 */ 1153 ath_hal_intrset(ah, 0); /* disable interrupts */ 1154 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1155 /* XXX Do all frames from all vaps/nodes need draining here? */ 1156 ath_stoprecv(sc, 1); /* stop recv side */ 1157 } 1158 1159 ieee80211_vap_detach(vap); 1160 1161 /* 1162 * XXX Danger Will Robinson! Danger! 1163 * 1164 * Because ieee80211_vap_detach() can queue a frame (the station 1165 * diassociate message?) after we've drained the TXQ and 1166 * flushed the software TXQ, we will end up with a frame queued 1167 * to a node whose vap is about to be freed. 1168 * 1169 * To work around this, flush the hardware/software again. 1170 * This may be racy - the ath task may be running and the packet 1171 * may be being scheduled between sw->hw txq. Tsk. 1172 * 1173 * TODO: figure out why a new node gets allocated somewhere around 1174 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1175 * call!) 1176 */ 1177 1178 ath_draintxq(sc, ATH_RESET_DEFAULT); 1179 1180 ATH_LOCK(sc); 1181 /* 1182 * Reclaim beacon state. Note this must be done before 1183 * the vap instance is reclaimed as we may have a reference 1184 * to it in the buffer for the beacon frame. 1185 */ 1186 if (avp->av_bcbuf != NULL) { 1187 if (avp->av_bslot != -1) { 1188 sc->sc_bslot[avp->av_bslot] = NULL; 1189 sc->sc_nbcnvaps--; 1190 } 1191 ath_beacon_return(sc, avp->av_bcbuf); 1192 avp->av_bcbuf = NULL; 1193 if (sc->sc_nbcnvaps == 0) { 1194 sc->sc_stagbeacons = 0; 1195 if (sc->sc_hastsfadd) 1196 ath_hal_settsfadjust(sc->sc_ah, 0); 1197 } 1198 /* 1199 * Reclaim any pending mcast frames for the vap. 1200 */ 1201 ath_tx_draintxq(sc, &avp->av_mcastq); 1202 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1203 } 1204 /* 1205 * Update bookkeeping. 1206 */ 1207 if (vap->iv_opmode == IEEE80211_M_STA) { 1208 sc->sc_nstavaps--; 1209 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1210 sc->sc_swbmiss = 0; 1211 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1212 vap->iv_opmode == IEEE80211_M_MBSS) { 1213 reclaim_address(sc, vap->iv_myaddr); 1214 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1215 if (vap->iv_opmode == IEEE80211_M_MBSS) 1216 sc->sc_nmeshvaps--; 1217 } 1218 if (vap->iv_opmode != IEEE80211_M_WDS) 1219 sc->sc_nvaps--; 1220 #ifdef IEEE80211_SUPPORT_TDMA 1221 /* TDMA operation ceases when the last vap is destroyed */ 1222 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1223 sc->sc_tdma = 0; 1224 sc->sc_swbmiss = 0; 1225 } 1226 #endif 1227 free(avp, M_80211_VAP); 1228 1229 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1230 /* 1231 * Restart rx+tx machines if still running (RUNNING will 1232 * be reset if we just destroyed the last vap). 1233 */ 1234 if (ath_startrecv(sc) != 0) 1235 if_printf(ifp, "%s: unable to restart recv logic\n", 1236 __func__); 1237 if (sc->sc_beacons) { /* restart beacons */ 1238 #ifdef IEEE80211_SUPPORT_TDMA 1239 if (sc->sc_tdma) 1240 ath_tdma_config(sc, NULL); 1241 else 1242 #endif 1243 ath_beacon_config(sc, NULL); 1244 } 1245 ath_hal_intrset(ah, sc->sc_imask); 1246 } 1247 ATH_UNLOCK(sc); 1248 } 1249 1250 void 1251 ath_suspend(struct ath_softc *sc) 1252 { 1253 struct ifnet *ifp = sc->sc_ifp; 1254 struct ieee80211com *ic = ifp->if_l2com; 1255 1256 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1257 __func__, ifp->if_flags); 1258 1259 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1260 if (ic->ic_opmode == IEEE80211_M_STA) 1261 ath_stop(ifp); 1262 else 1263 ieee80211_suspend_all(ic); 1264 /* 1265 * NB: don't worry about putting the chip in low power 1266 * mode; pci will power off our socket on suspend and 1267 * CardBus detaches the device. 1268 */ 1269 } 1270 1271 /* 1272 * Reset the key cache since some parts do not reset the 1273 * contents on resume. First we clear all entries, then 1274 * re-load keys that the 802.11 layer assumes are setup 1275 * in h/w. 1276 */ 1277 static void 1278 ath_reset_keycache(struct ath_softc *sc) 1279 { 1280 struct ifnet *ifp = sc->sc_ifp; 1281 struct ieee80211com *ic = ifp->if_l2com; 1282 struct ath_hal *ah = sc->sc_ah; 1283 int i; 1284 1285 for (i = 0; i < sc->sc_keymax; i++) 1286 ath_hal_keyreset(ah, i); 1287 ieee80211_crypto_reload_keys(ic); 1288 } 1289 1290 void 1291 ath_resume(struct ath_softc *sc) 1292 { 1293 struct ifnet *ifp = sc->sc_ifp; 1294 struct ieee80211com *ic = ifp->if_l2com; 1295 struct ath_hal *ah = sc->sc_ah; 1296 HAL_STATUS status; 1297 1298 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1299 __func__, ifp->if_flags); 1300 1301 /* 1302 * Must reset the chip before we reload the 1303 * keycache as we were powered down on suspend. 1304 */ 1305 ath_hal_reset(ah, sc->sc_opmode, 1306 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1307 AH_FALSE, &status); 1308 ath_reset_keycache(sc); 1309 1310 /* Let DFS at it in case it's a DFS channel */ 1311 ath_dfs_radar_enable(sc, ic->ic_curchan); 1312 1313 if (sc->sc_resume_up) { 1314 if (ic->ic_opmode == IEEE80211_M_STA) { 1315 ath_init(sc); 1316 /* 1317 * Program the beacon registers using the last rx'd 1318 * beacon frame and enable sync on the next beacon 1319 * we see. This should handle the case where we 1320 * wakeup and find the same AP and also the case where 1321 * we wakeup and need to roam. For the latter we 1322 * should get bmiss events that trigger a roam. 1323 */ 1324 ath_beacon_config(sc, NULL); 1325 sc->sc_syncbeacon = 1; 1326 } else 1327 ieee80211_resume_all(ic); 1328 } 1329 if (sc->sc_softled) { 1330 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin, 1331 HAL_GPIO_MUX_MAC_NETWORK_LED); 1332 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 1333 } 1334 1335 /* XXX beacons ? */ 1336 } 1337 1338 void 1339 ath_shutdown(struct ath_softc *sc) 1340 { 1341 struct ifnet *ifp = sc->sc_ifp; 1342 1343 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1344 __func__, ifp->if_flags); 1345 1346 ath_stop(ifp); 1347 /* NB: no point powering down chip as we're about to reboot */ 1348 } 1349 1350 /* 1351 * Interrupt handler. Most of the actual processing is deferred. 1352 */ 1353 void 1354 ath_intr(void *arg) 1355 { 1356 struct ath_softc *sc = arg; 1357 struct ifnet *ifp = sc->sc_ifp; 1358 struct ath_hal *ah = sc->sc_ah; 1359 HAL_INT status = 0; 1360 uint32_t txqs; 1361 1362 /* 1363 * If we're inside a reset path, just print a warning and 1364 * clear the ISR. The reset routine will finish it for us. 1365 */ 1366 ATH_PCU_LOCK(sc); 1367 if (sc->sc_inreset_cnt) { 1368 HAL_INT status; 1369 ath_hal_getisr(ah, &status); /* clear ISR */ 1370 ath_hal_intrset(ah, 0); /* disable further intr's */ 1371 DPRINTF(sc, ATH_DEBUG_ANY, 1372 "%s: in reset, ignoring: status=0x%x\n", 1373 __func__, status); 1374 ATH_PCU_UNLOCK(sc); 1375 return; 1376 } 1377 1378 if (sc->sc_invalid) { 1379 /* 1380 * The hardware is not ready/present, don't touch anything. 1381 * Note this can happen early on if the IRQ is shared. 1382 */ 1383 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1384 ATH_PCU_UNLOCK(sc); 1385 return; 1386 } 1387 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1388 ATH_PCU_UNLOCK(sc); 1389 return; 1390 } 1391 1392 if ((ifp->if_flags & IFF_UP) == 0 || 1393 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1394 HAL_INT status; 1395 1396 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1397 __func__, ifp->if_flags); 1398 ath_hal_getisr(ah, &status); /* clear ISR */ 1399 ath_hal_intrset(ah, 0); /* disable further intr's */ 1400 ATH_PCU_UNLOCK(sc); 1401 return; 1402 } 1403 1404 /* 1405 * Figure out the reason(s) for the interrupt. Note 1406 * that the hal returns a pseudo-ISR that may include 1407 * bits we haven't explicitly enabled so we mask the 1408 * value to insure we only process bits we requested. 1409 */ 1410 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1411 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1412 CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status); 1413 #ifdef ATH_KTR_INTR_DEBUG 1414 CTR5(ATH_KTR_INTR, 1415 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1416 ah->ah_intrstate[0], 1417 ah->ah_intrstate[1], 1418 ah->ah_intrstate[2], 1419 ah->ah_intrstate[3], 1420 ah->ah_intrstate[6]); 1421 #endif 1422 status &= sc->sc_imask; /* discard unasked for bits */ 1423 1424 /* Short-circuit un-handled interrupts */ 1425 if (status == 0x0) { 1426 ATH_PCU_UNLOCK(sc); 1427 return; 1428 } 1429 1430 /* 1431 * Take a note that we're inside the interrupt handler, so 1432 * the reset routines know to wait. 1433 */ 1434 sc->sc_intr_cnt++; 1435 ATH_PCU_UNLOCK(sc); 1436 1437 /* 1438 * Handle the interrupt. We won't run concurrent with the reset 1439 * or channel change routines as they'll wait for sc_intr_cnt 1440 * to be 0 before continuing. 1441 */ 1442 if (status & HAL_INT_FATAL) { 1443 sc->sc_stats.ast_hardware++; 1444 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1445 ath_fatal_proc(sc, 0); 1446 } else { 1447 if (status & HAL_INT_SWBA) { 1448 /* 1449 * Software beacon alert--time to send a beacon. 1450 * Handle beacon transmission directly; deferring 1451 * this is too slow to meet timing constraints 1452 * under load. 1453 */ 1454 #ifdef IEEE80211_SUPPORT_TDMA 1455 if (sc->sc_tdma) { 1456 if (sc->sc_tdmaswba == 0) { 1457 struct ieee80211com *ic = ifp->if_l2com; 1458 struct ieee80211vap *vap = 1459 TAILQ_FIRST(&ic->ic_vaps); 1460 ath_tdma_beacon_send(sc, vap); 1461 sc->sc_tdmaswba = 1462 vap->iv_tdma->tdma_bintval; 1463 } else 1464 sc->sc_tdmaswba--; 1465 } else 1466 #endif 1467 { 1468 ath_beacon_proc(sc, 0); 1469 #ifdef IEEE80211_SUPPORT_SUPERG 1470 /* 1471 * Schedule the rx taskq in case there's no 1472 * traffic so any frames held on the staging 1473 * queue are aged and potentially flushed. 1474 */ 1475 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1476 #endif 1477 } 1478 } 1479 if (status & HAL_INT_RXEOL) { 1480 int imask; 1481 CTR0(ATH_KTR_ERR, "ath_intr: RXEOL"); 1482 ATH_PCU_LOCK(sc); 1483 /* 1484 * NB: the hardware should re-read the link when 1485 * RXE bit is written, but it doesn't work at 1486 * least on older hardware revs. 1487 */ 1488 sc->sc_stats.ast_rxeol++; 1489 /* 1490 * Disable RXEOL/RXORN - prevent an interrupt 1491 * storm until the PCU logic can be reset. 1492 * In case the interface is reset some other 1493 * way before "sc_kickpcu" is called, don't 1494 * modify sc_imask - that way if it is reset 1495 * by a call to ath_reset() somehow, the 1496 * interrupt mask will be correctly reprogrammed. 1497 */ 1498 imask = sc->sc_imask; 1499 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1500 ath_hal_intrset(ah, imask); 1501 /* 1502 * Only blank sc_rxlink if we've not yet kicked 1503 * the PCU. 1504 * 1505 * This isn't entirely correct - the correct solution 1506 * would be to have a PCU lock and engage that for 1507 * the duration of the PCU fiddling; which would include 1508 * running the RX process. Otherwise we could end up 1509 * messing up the RX descriptor chain and making the 1510 * RX desc list much shorter. 1511 */ 1512 if (! sc->sc_kickpcu) 1513 sc->sc_rxlink = NULL; 1514 sc->sc_kickpcu = 1; 1515 /* 1516 * Enqueue an RX proc, to handled whatever 1517 * is in the RX queue. 1518 * This will then kick the PCU. 1519 */ 1520 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1521 ATH_PCU_UNLOCK(sc); 1522 } 1523 if (status & HAL_INT_TXURN) { 1524 sc->sc_stats.ast_txurn++; 1525 /* bump tx trigger level */ 1526 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1527 } 1528 if (status & HAL_INT_RX) { 1529 sc->sc_stats.ast_rx_intr++; 1530 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1531 } 1532 if (status & HAL_INT_TX) { 1533 sc->sc_stats.ast_tx_intr++; 1534 /* 1535 * Grab all the currently set bits in the HAL txq bitmap 1536 * and blank them. This is the only place we should be 1537 * doing this. 1538 */ 1539 ATH_PCU_LOCK(sc); 1540 txqs = 0xffffffff; 1541 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1542 sc->sc_txq_active |= txqs; 1543 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1544 ATH_PCU_UNLOCK(sc); 1545 } 1546 if (status & HAL_INT_BMISS) { 1547 sc->sc_stats.ast_bmiss++; 1548 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1549 } 1550 if (status & HAL_INT_GTT) 1551 sc->sc_stats.ast_tx_timeout++; 1552 if (status & HAL_INT_CST) 1553 sc->sc_stats.ast_tx_cst++; 1554 if (status & HAL_INT_MIB) { 1555 sc->sc_stats.ast_mib++; 1556 ATH_PCU_LOCK(sc); 1557 /* 1558 * Disable interrupts until we service the MIB 1559 * interrupt; otherwise it will continue to fire. 1560 */ 1561 ath_hal_intrset(ah, 0); 1562 /* 1563 * Let the hal handle the event. We assume it will 1564 * clear whatever condition caused the interrupt. 1565 */ 1566 ath_hal_mibevent(ah, &sc->sc_halstats); 1567 /* 1568 * Don't reset the interrupt if we've just 1569 * kicked the PCU, or we may get a nested 1570 * RXEOL before the rxproc has had a chance 1571 * to run. 1572 */ 1573 if (sc->sc_kickpcu == 0) 1574 ath_hal_intrset(ah, sc->sc_imask); 1575 ATH_PCU_UNLOCK(sc); 1576 } 1577 if (status & HAL_INT_RXORN) { 1578 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1579 CTR0(ATH_KTR_ERR, "ath_intr: RXORN"); 1580 sc->sc_stats.ast_rxorn++; 1581 } 1582 } 1583 ATH_PCU_LOCK(sc); 1584 sc->sc_intr_cnt--; 1585 ATH_PCU_UNLOCK(sc); 1586 } 1587 1588 static void 1589 ath_fatal_proc(void *arg, int pending) 1590 { 1591 struct ath_softc *sc = arg; 1592 struct ifnet *ifp = sc->sc_ifp; 1593 u_int32_t *state; 1594 u_int32_t len; 1595 void *sp; 1596 1597 if_printf(ifp, "hardware error; resetting\n"); 1598 /* 1599 * Fatal errors are unrecoverable. Typically these 1600 * are caused by DMA errors. Collect h/w state from 1601 * the hal so we can diagnose what's going on. 1602 */ 1603 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1604 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1605 state = sp; 1606 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1607 state[0], state[1] , state[2], state[3], 1608 state[4], state[5]); 1609 } 1610 ath_reset(ifp, ATH_RESET_NOLOSS); 1611 } 1612 1613 static void 1614 ath_bmiss_vap(struct ieee80211vap *vap) 1615 { 1616 /* 1617 * Workaround phantom bmiss interrupts by sanity-checking 1618 * the time of our last rx'd frame. If it is within the 1619 * beacon miss interval then ignore the interrupt. If it's 1620 * truly a bmiss we'll get another interrupt soon and that'll 1621 * be dispatched up for processing. Note this applies only 1622 * for h/w beacon miss events. 1623 */ 1624 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1625 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1626 struct ath_softc *sc = ifp->if_softc; 1627 u_int64_t lastrx = sc->sc_lastrx; 1628 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1629 u_int bmisstimeout = 1630 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1631 1632 DPRINTF(sc, ATH_DEBUG_BEACON, 1633 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1634 __func__, (unsigned long long) tsf, 1635 (unsigned long long)(tsf - lastrx), 1636 (unsigned long long) lastrx, bmisstimeout); 1637 1638 if (tsf - lastrx <= bmisstimeout) { 1639 sc->sc_stats.ast_bmiss_phantom++; 1640 return; 1641 } 1642 } 1643 ATH_VAP(vap)->av_bmiss(vap); 1644 } 1645 1646 static int 1647 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1648 { 1649 uint32_t rsize; 1650 void *sp; 1651 1652 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1653 return 0; 1654 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1655 *hangs = *(uint32_t *)sp; 1656 return 1; 1657 } 1658 1659 static void 1660 ath_bmiss_proc(void *arg, int pending) 1661 { 1662 struct ath_softc *sc = arg; 1663 struct ifnet *ifp = sc->sc_ifp; 1664 uint32_t hangs; 1665 1666 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1667 1668 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1669 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1670 ath_reset(ifp, ATH_RESET_NOLOSS); 1671 } else 1672 ieee80211_beacon_miss(ifp->if_l2com); 1673 } 1674 1675 /* 1676 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1677 * calcs together with WME. If necessary disable the crypto 1678 * hardware and mark the 802.11 state so keys will be setup 1679 * with the MIC work done in software. 1680 */ 1681 static void 1682 ath_settkipmic(struct ath_softc *sc) 1683 { 1684 struct ifnet *ifp = sc->sc_ifp; 1685 struct ieee80211com *ic = ifp->if_l2com; 1686 1687 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1688 if (ic->ic_flags & IEEE80211_F_WME) { 1689 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1690 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1691 } else { 1692 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1693 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1694 } 1695 } 1696 } 1697 1698 static void 1699 ath_init(void *arg) 1700 { 1701 struct ath_softc *sc = (struct ath_softc *) arg; 1702 struct ifnet *ifp = sc->sc_ifp; 1703 struct ieee80211com *ic = ifp->if_l2com; 1704 struct ath_hal *ah = sc->sc_ah; 1705 HAL_STATUS status; 1706 1707 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1708 __func__, ifp->if_flags); 1709 1710 ATH_LOCK(sc); 1711 /* 1712 * Stop anything previously setup. This is safe 1713 * whether this is the first time through or not. 1714 */ 1715 ath_stop_locked(ifp); 1716 1717 /* 1718 * The basic interface to setting the hardware in a good 1719 * state is ``reset''. On return the hardware is known to 1720 * be powered up and with interrupts disabled. This must 1721 * be followed by initialization of the appropriate bits 1722 * and then setup of the interrupt mask. 1723 */ 1724 ath_settkipmic(sc); 1725 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1726 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1727 status); 1728 ATH_UNLOCK(sc); 1729 return; 1730 } 1731 ath_chan_change(sc, ic->ic_curchan); 1732 1733 /* Let DFS at it in case it's a DFS channel */ 1734 ath_dfs_radar_enable(sc, ic->ic_curchan); 1735 1736 /* 1737 * Likewise this is set during reset so update 1738 * state cached in the driver. 1739 */ 1740 sc->sc_diversity = ath_hal_getdiversity(ah); 1741 sc->sc_lastlongcal = 0; 1742 sc->sc_resetcal = 1; 1743 sc->sc_lastcalreset = 0; 1744 sc->sc_lastani = 0; 1745 sc->sc_lastshortcal = 0; 1746 sc->sc_doresetcal = AH_FALSE; 1747 /* 1748 * Beacon timers were cleared here; give ath_newstate() 1749 * a hint that the beacon timers should be poked when 1750 * things transition to the RUN state. 1751 */ 1752 sc->sc_beacons = 0; 1753 1754 /* 1755 * Initial aggregation settings. 1756 */ 1757 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 1758 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1759 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1760 1761 /* 1762 * Setup the hardware after reset: the key cache 1763 * is filled as needed and the receive engine is 1764 * set going. Frame transmit is handled entirely 1765 * in the frame output path; there's nothing to do 1766 * here except setup the interrupt mask. 1767 */ 1768 if (ath_startrecv(sc) != 0) { 1769 if_printf(ifp, "unable to start recv logic\n"); 1770 ATH_UNLOCK(sc); 1771 return; 1772 } 1773 1774 /* 1775 * Enable interrupts. 1776 */ 1777 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1778 | HAL_INT_RXEOL | HAL_INT_RXORN 1779 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1780 /* 1781 * Enable MIB interrupts when there are hardware phy counters. 1782 * Note we only do this (at the moment) for station mode. 1783 */ 1784 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1785 sc->sc_imask |= HAL_INT_MIB; 1786 1787 /* Enable global TX timeout and carrier sense timeout if available */ 1788 if (ath_hal_gtxto_supported(ah)) 1789 sc->sc_imask |= HAL_INT_GTT; 1790 1791 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1792 __func__, sc->sc_imask); 1793 1794 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1795 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1796 ath_hal_intrset(ah, sc->sc_imask); 1797 1798 ATH_UNLOCK(sc); 1799 1800 #ifdef ATH_TX99_DIAG 1801 if (sc->sc_tx99 != NULL) 1802 sc->sc_tx99->start(sc->sc_tx99); 1803 else 1804 #endif 1805 ieee80211_start_all(ic); /* start all vap's */ 1806 } 1807 1808 static void 1809 ath_stop_locked(struct ifnet *ifp) 1810 { 1811 struct ath_softc *sc = ifp->if_softc; 1812 struct ath_hal *ah = sc->sc_ah; 1813 1814 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1815 __func__, sc->sc_invalid, ifp->if_flags); 1816 1817 ATH_LOCK_ASSERT(sc); 1818 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1819 /* 1820 * Shutdown the hardware and driver: 1821 * reset 802.11 state machine 1822 * turn off timers 1823 * disable interrupts 1824 * turn off the radio 1825 * clear transmit machinery 1826 * clear receive machinery 1827 * drain and release tx queues 1828 * reclaim beacon resources 1829 * power down hardware 1830 * 1831 * Note that some of this work is not possible if the 1832 * hardware is gone (invalid). 1833 */ 1834 #ifdef ATH_TX99_DIAG 1835 if (sc->sc_tx99 != NULL) 1836 sc->sc_tx99->stop(sc->sc_tx99); 1837 #endif 1838 callout_stop(&sc->sc_wd_ch); 1839 sc->sc_wd_timer = 0; 1840 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1841 if (!sc->sc_invalid) { 1842 if (sc->sc_softled) { 1843 callout_stop(&sc->sc_ledtimer); 1844 ath_hal_gpioset(ah, sc->sc_ledpin, 1845 !sc->sc_ledon); 1846 sc->sc_blinking = 0; 1847 } 1848 ath_hal_intrset(ah, 0); 1849 } 1850 ath_draintxq(sc, ATH_RESET_DEFAULT); 1851 if (!sc->sc_invalid) { 1852 ath_stoprecv(sc, 1); 1853 ath_hal_phydisable(ah); 1854 } else 1855 sc->sc_rxlink = NULL; 1856 ath_beacon_free(sc); /* XXX not needed */ 1857 } 1858 } 1859 1860 #define MAX_TXRX_ITERATIONS 1000 1861 static void 1862 ath_txrx_stop(struct ath_softc *sc) 1863 { 1864 int i = MAX_TXRX_ITERATIONS; 1865 1866 ATH_UNLOCK_ASSERT(sc); 1867 /* Stop any new TX/RX from occuring */ 1868 taskqueue_block(sc->sc_tq); 1869 1870 ATH_PCU_LOCK(sc); 1871 /* 1872 * Sleep until all the pending operations have completed. 1873 * 1874 * The caller must ensure that reset has been incremented 1875 * or the pending operations may continue being queued. 1876 */ 1877 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 1878 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 1879 if (i <= 0) 1880 break; 1881 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 1882 i--; 1883 } 1884 ATH_PCU_UNLOCK(sc); 1885 1886 if (i <= 0) 1887 device_printf(sc->sc_dev, 1888 "%s: didn't finish after %d iterations\n", 1889 __func__, MAX_TXRX_ITERATIONS); 1890 } 1891 #undef MAX_TXRX_ITERATIONS 1892 1893 static void 1894 ath_txrx_start(struct ath_softc *sc) 1895 { 1896 1897 taskqueue_unblock(sc->sc_tq); 1898 } 1899 1900 static void 1901 ath_stop(struct ifnet *ifp) 1902 { 1903 struct ath_softc *sc = ifp->if_softc; 1904 1905 ATH_LOCK(sc); 1906 ath_stop_locked(ifp); 1907 ATH_UNLOCK(sc); 1908 } 1909 1910 /* 1911 * Reset the hardware w/o losing operational state. This is 1912 * basically a more efficient way of doing ath_stop, ath_init, 1913 * followed by state transitions to the current 802.11 1914 * operational state. Used to recover from various errors and 1915 * to reset or reload hardware state. 1916 */ 1917 int 1918 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 1919 { 1920 struct ath_softc *sc = ifp->if_softc; 1921 struct ieee80211com *ic = ifp->if_l2com; 1922 struct ath_hal *ah = sc->sc_ah; 1923 HAL_STATUS status; 1924 int i; 1925 1926 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1927 1928 /* XXX ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 1929 ATH_PCU_UNLOCK_ASSERT(sc); 1930 ATH_UNLOCK_ASSERT(sc); 1931 1932 ATH_PCU_LOCK(sc); 1933 /* XXX if we're already inside a reset, print out a big warning */ 1934 if (sc->sc_inreset_cnt > 0) { 1935 device_printf(sc->sc_dev, 1936 "%s: concurrent ath_reset()! Danger!\n", 1937 __func__); 1938 } 1939 sc->sc_inreset_cnt++; 1940 ath_hal_intrset(ah, 0); /* disable interrupts */ 1941 ATH_PCU_UNLOCK(sc); 1942 1943 /* 1944 * Should now wait for pending TX/RX to complete 1945 * and block future ones from occuring. This needs to be 1946 * done before the TX queue is drained. 1947 */ 1948 ath_txrx_stop(sc); 1949 ath_draintxq(sc, reset_type); /* stop xmit side */ 1950 1951 /* 1952 * Regardless of whether we're doing a no-loss flush or 1953 * not, stop the PCU and handle what's in the RX queue. 1954 * That way frames aren't dropped which shouldn't be. 1955 */ 1956 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 1957 ath_rx_proc(sc, 0); 1958 1959 ath_settkipmic(sc); /* configure TKIP MIC handling */ 1960 /* NB: indicate channel change so we do a full reset */ 1961 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 1962 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1963 __func__, status); 1964 sc->sc_diversity = ath_hal_getdiversity(ah); 1965 1966 /* Let DFS at it in case it's a DFS channel */ 1967 ath_dfs_radar_enable(sc, ic->ic_curchan); 1968 1969 if (ath_startrecv(sc) != 0) /* restart recv */ 1970 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1971 /* 1972 * We may be doing a reset in response to an ioctl 1973 * that changes the channel so update any state that 1974 * might change as a result. 1975 */ 1976 ath_chan_change(sc, ic->ic_curchan); 1977 if (sc->sc_beacons) { /* restart beacons */ 1978 #ifdef IEEE80211_SUPPORT_TDMA 1979 if (sc->sc_tdma) 1980 ath_tdma_config(sc, NULL); 1981 else 1982 #endif 1983 ath_beacon_config(sc, NULL); 1984 } 1985 1986 /* 1987 * Release the reset lock and re-enable interrupts here. 1988 * If an interrupt was being processed in ath_intr(), 1989 * it would disable interrupts at this point. So we have 1990 * to atomically enable interrupts and decrement the 1991 * reset counter - this way ath_intr() doesn't end up 1992 * disabling interrupts without a corresponding enable 1993 * in the rest or channel change path. 1994 */ 1995 ATH_PCU_LOCK(sc); 1996 sc->sc_inreset_cnt--; 1997 /* XXX only do this if sc_inreset_cnt == 0? */ 1998 ath_hal_intrset(ah, sc->sc_imask); 1999 ATH_PCU_UNLOCK(sc); 2000 2001 /* 2002 * TX and RX can be started here. If it were started with 2003 * sc_inreset_cnt > 0, the TX and RX path would abort. 2004 * Thus if this is a nested call through the reset or 2005 * channel change code, TX completion will occur but 2006 * RX completion and ath_start / ath_tx_start will not 2007 * run. 2008 */ 2009 2010 /* Restart TX/RX as needed */ 2011 ath_txrx_start(sc); 2012 2013 /* XXX Restart TX completion and pending TX */ 2014 if (reset_type == ATH_RESET_NOLOSS) { 2015 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2016 if (ATH_TXQ_SETUP(sc, i)) { 2017 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2018 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2019 ath_txq_sched(sc, &sc->sc_txq[i]); 2020 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2021 } 2022 } 2023 } 2024 2025 /* 2026 * This may have been set during an ath_start() call which 2027 * set this once it detected a concurrent TX was going on. 2028 * So, clear it. 2029 */ 2030 /* XXX do this inside of IF_LOCK? */ 2031 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2032 2033 /* Handle any frames in the TX queue */ 2034 /* 2035 * XXX should this be done by the caller, rather than 2036 * ath_reset() ? 2037 */ 2038 ath_start(ifp); /* restart xmit */ 2039 return 0; 2040 } 2041 2042 static int 2043 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2044 { 2045 struct ieee80211com *ic = vap->iv_ic; 2046 struct ifnet *ifp = ic->ic_ifp; 2047 struct ath_softc *sc = ifp->if_softc; 2048 struct ath_hal *ah = sc->sc_ah; 2049 2050 switch (cmd) { 2051 case IEEE80211_IOC_TXPOWER: 2052 /* 2053 * If per-packet TPC is enabled, then we have nothing 2054 * to do; otherwise we need to force the global limit. 2055 * All this can happen directly; no need to reset. 2056 */ 2057 if (!ath_hal_gettpc(ah)) 2058 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2059 return 0; 2060 } 2061 /* XXX? Full or NOLOSS? */ 2062 return ath_reset(ifp, ATH_RESET_FULL); 2063 } 2064 2065 struct ath_buf * 2066 _ath_getbuf_locked(struct ath_softc *sc) 2067 { 2068 struct ath_buf *bf; 2069 2070 ATH_TXBUF_LOCK_ASSERT(sc); 2071 2072 bf = TAILQ_FIRST(&sc->sc_txbuf); 2073 if (bf == NULL) { 2074 sc->sc_stats.ast_tx_getnobuf++; 2075 } else { 2076 if (bf->bf_flags & ATH_BUF_BUSY) { 2077 sc->sc_stats.ast_tx_getbusybuf++; 2078 bf = NULL; 2079 } 2080 } 2081 2082 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) 2083 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2084 else 2085 bf = NULL; 2086 2087 if (bf == NULL) { 2088 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2089 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2090 "out of xmit buffers" : "xmit buffer busy"); 2091 return NULL; 2092 } 2093 2094 /* Valid bf here; clear some basic fields */ 2095 bf->bf_next = NULL; /* XXX just to be sure */ 2096 bf->bf_last = NULL; /* XXX again, just to be sure */ 2097 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2098 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2099 2100 return bf; 2101 } 2102 2103 /* 2104 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2105 * can't be thrown back on the queue as they could still be 2106 * in use by the hardware. 2107 * 2108 * This duplicates the buffer, or returns NULL. 2109 * 2110 * The descriptor is also copied but the link pointers and 2111 * the DMA segments aren't copied; this frame should thus 2112 * be again passed through the descriptor setup/chain routines 2113 * so the link is correct. 2114 * 2115 * The caller must free the buffer using ath_freebuf(). 2116 * 2117 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2118 * XXX in the TX pathway when retries are needed. 2119 * XXX Figure out how to keep some buffers free, or factor the 2120 * XXX number of busy buffers into the xmit path (ath_start()) 2121 * XXX so we don't over-commit. 2122 */ 2123 struct ath_buf * 2124 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2125 { 2126 struct ath_buf *tbf; 2127 2128 tbf = ath_getbuf(sc); 2129 if (tbf == NULL) 2130 return NULL; /* XXX failure? Why? */ 2131 2132 /* Copy basics */ 2133 tbf->bf_next = NULL; 2134 tbf->bf_nseg = bf->bf_nseg; 2135 tbf->bf_txflags = bf->bf_txflags; 2136 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2137 tbf->bf_status = bf->bf_status; 2138 tbf->bf_m = bf->bf_m; 2139 tbf->bf_node = bf->bf_node; 2140 /* will be setup by the chain/setup function */ 2141 tbf->bf_lastds = NULL; 2142 /* for now, last == self */ 2143 tbf->bf_last = tbf; 2144 tbf->bf_comp = bf->bf_comp; 2145 2146 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2147 2148 /* The caller has to re-init the descriptor + links */ 2149 2150 /* Copy state */ 2151 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2152 2153 return tbf; 2154 } 2155 2156 struct ath_buf * 2157 ath_getbuf(struct ath_softc *sc) 2158 { 2159 struct ath_buf *bf; 2160 2161 ATH_TXBUF_LOCK(sc); 2162 bf = _ath_getbuf_locked(sc); 2163 if (bf == NULL) { 2164 struct ifnet *ifp = sc->sc_ifp; 2165 2166 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2167 sc->sc_stats.ast_tx_qstop++; 2168 /* XXX do this inside of IF_LOCK? */ 2169 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2170 } 2171 ATH_TXBUF_UNLOCK(sc); 2172 return bf; 2173 } 2174 2175 static void 2176 ath_start(struct ifnet *ifp) 2177 { 2178 struct ath_softc *sc = ifp->if_softc; 2179 struct ieee80211_node *ni; 2180 struct ath_buf *bf; 2181 struct mbuf *m, *next; 2182 ath_bufhead frags; 2183 2184 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2185 return; 2186 2187 /* XXX is it ok to hold the ATH_LOCK here? */ 2188 ATH_PCU_LOCK(sc); 2189 if (sc->sc_inreset_cnt > 0) { 2190 device_printf(sc->sc_dev, 2191 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2192 /* XXX do this inside of IF_LOCK? */ 2193 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2194 ATH_PCU_UNLOCK(sc); 2195 return; 2196 } 2197 sc->sc_txstart_cnt++; 2198 ATH_PCU_UNLOCK(sc); 2199 2200 for (;;) { 2201 /* 2202 * Grab a TX buffer and associated resources. 2203 */ 2204 bf = ath_getbuf(sc); 2205 if (bf == NULL) 2206 break; 2207 2208 IFQ_DEQUEUE(&ifp->if_snd, m); 2209 if (m == NULL) { 2210 ATH_TXBUF_LOCK(sc); 2211 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2212 ATH_TXBUF_UNLOCK(sc); 2213 break; 2214 } 2215 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2216 /* 2217 * Check for fragmentation. If this frame 2218 * has been broken up verify we have enough 2219 * buffers to send all the fragments so all 2220 * go out or none... 2221 */ 2222 TAILQ_INIT(&frags); 2223 if ((m->m_flags & M_FRAG) && 2224 !ath_txfrag_setup(sc, &frags, m, ni)) { 2225 DPRINTF(sc, ATH_DEBUG_XMIT, 2226 "%s: out of txfrag buffers\n", __func__); 2227 sc->sc_stats.ast_tx_nofrag++; 2228 ifp->if_oerrors++; 2229 ath_freetx(m); 2230 goto bad; 2231 } 2232 ifp->if_opackets++; 2233 nextfrag: 2234 /* 2235 * Pass the frame to the h/w for transmission. 2236 * Fragmented frames have each frag chained together 2237 * with m_nextpkt. We know there are sufficient ath_buf's 2238 * to send all the frags because of work done by 2239 * ath_txfrag_setup. We leave m_nextpkt set while 2240 * calling ath_tx_start so it can use it to extend the 2241 * the tx duration to cover the subsequent frag and 2242 * so it can reclaim all the mbufs in case of an error; 2243 * ath_tx_start clears m_nextpkt once it commits to 2244 * handing the frame to the hardware. 2245 */ 2246 next = m->m_nextpkt; 2247 if (ath_tx_start(sc, ni, bf, m)) { 2248 bad: 2249 ifp->if_oerrors++; 2250 reclaim: 2251 bf->bf_m = NULL; 2252 bf->bf_node = NULL; 2253 ATH_TXBUF_LOCK(sc); 2254 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2255 ath_txfrag_cleanup(sc, &frags, ni); 2256 ATH_TXBUF_UNLOCK(sc); 2257 if (ni != NULL) 2258 ieee80211_free_node(ni); 2259 continue; 2260 } 2261 if (next != NULL) { 2262 /* 2263 * Beware of state changing between frags. 2264 * XXX check sta power-save state? 2265 */ 2266 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2267 DPRINTF(sc, ATH_DEBUG_XMIT, 2268 "%s: flush fragmented packet, state %s\n", 2269 __func__, 2270 ieee80211_state_name[ni->ni_vap->iv_state]); 2271 ath_freetx(next); 2272 goto reclaim; 2273 } 2274 m = next; 2275 bf = TAILQ_FIRST(&frags); 2276 KASSERT(bf != NULL, ("no buf for txfrag")); 2277 TAILQ_REMOVE(&frags, bf, bf_list); 2278 goto nextfrag; 2279 } 2280 2281 sc->sc_wd_timer = 5; 2282 } 2283 2284 ATH_PCU_LOCK(sc); 2285 sc->sc_txstart_cnt--; 2286 ATH_PCU_UNLOCK(sc); 2287 } 2288 2289 static int 2290 ath_media_change(struct ifnet *ifp) 2291 { 2292 int error = ieee80211_media_change(ifp); 2293 /* NB: only the fixed rate can change and that doesn't need a reset */ 2294 return (error == ENETRESET ? 0 : error); 2295 } 2296 2297 /* 2298 * Block/unblock tx+rx processing while a key change is done. 2299 * We assume the caller serializes key management operations 2300 * so we only need to worry about synchronization with other 2301 * uses that originate in the driver. 2302 */ 2303 static void 2304 ath_key_update_begin(struct ieee80211vap *vap) 2305 { 2306 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2307 struct ath_softc *sc = ifp->if_softc; 2308 2309 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2310 taskqueue_block(sc->sc_tq); 2311 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2312 } 2313 2314 static void 2315 ath_key_update_end(struct ieee80211vap *vap) 2316 { 2317 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2318 struct ath_softc *sc = ifp->if_softc; 2319 2320 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2321 IF_UNLOCK(&ifp->if_snd); 2322 taskqueue_unblock(sc->sc_tq); 2323 } 2324 2325 /* 2326 * Calculate the receive filter according to the 2327 * operating mode and state: 2328 * 2329 * o always accept unicast, broadcast, and multicast traffic 2330 * o accept PHY error frames when hardware doesn't have MIB support 2331 * to count and we need them for ANI (sta mode only until recently) 2332 * and we are not scanning (ANI is disabled) 2333 * NB: older hal's add rx filter bits out of sight and we need to 2334 * blindly preserve them 2335 * o probe request frames are accepted only when operating in 2336 * hostap, adhoc, mesh, or monitor modes 2337 * o enable promiscuous mode 2338 * - when in monitor mode 2339 * - if interface marked PROMISC (assumes bridge setting is filtered) 2340 * o accept beacons: 2341 * - when operating in station mode for collecting rssi data when 2342 * the station is otherwise quiet, or 2343 * - when operating in adhoc mode so the 802.11 layer creates 2344 * node table entries for peers, 2345 * - when scanning 2346 * - when doing s/w beacon miss (e.g. for ap+sta) 2347 * - when operating in ap mode in 11g to detect overlapping bss that 2348 * require protection 2349 * - when operating in mesh mode to detect neighbors 2350 * o accept control frames: 2351 * - when in monitor mode 2352 * XXX HT protection for 11n 2353 */ 2354 static u_int32_t 2355 ath_calcrxfilter(struct ath_softc *sc) 2356 { 2357 struct ifnet *ifp = sc->sc_ifp; 2358 struct ieee80211com *ic = ifp->if_l2com; 2359 u_int32_t rfilt; 2360 2361 rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 2362 if (!sc->sc_needmib && !sc->sc_scanning) 2363 rfilt |= HAL_RX_FILTER_PHYERR; 2364 if (ic->ic_opmode != IEEE80211_M_STA) 2365 rfilt |= HAL_RX_FILTER_PROBEREQ; 2366 /* XXX ic->ic_monvaps != 0? */ 2367 if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC)) 2368 rfilt |= HAL_RX_FILTER_PROM; 2369 if (ic->ic_opmode == IEEE80211_M_STA || 2370 ic->ic_opmode == IEEE80211_M_IBSS || 2371 sc->sc_swbmiss || sc->sc_scanning) 2372 rfilt |= HAL_RX_FILTER_BEACON; 2373 /* 2374 * NB: We don't recalculate the rx filter when 2375 * ic_protmode changes; otherwise we could do 2376 * this only when ic_protmode != NONE. 2377 */ 2378 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 2379 IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) 2380 rfilt |= HAL_RX_FILTER_BEACON; 2381 2382 /* 2383 * Enable hardware PS-POLL RX only for hostap mode; 2384 * STA mode sends PS-POLL frames but never 2385 * receives them. 2386 */ 2387 if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL, 2388 0, NULL) == HAL_OK && 2389 ic->ic_opmode == IEEE80211_M_HOSTAP) 2390 rfilt |= HAL_RX_FILTER_PSPOLL; 2391 2392 if (sc->sc_nmeshvaps) { 2393 rfilt |= HAL_RX_FILTER_BEACON; 2394 if (sc->sc_hasbmatch) 2395 rfilt |= HAL_RX_FILTER_BSSID; 2396 else 2397 rfilt |= HAL_RX_FILTER_PROM; 2398 } 2399 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2400 rfilt |= HAL_RX_FILTER_CONTROL; 2401 2402 /* 2403 * Enable RX of compressed BAR frames only when doing 2404 * 802.11n. Required for A-MPDU. 2405 */ 2406 if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) 2407 rfilt |= HAL_RX_FILTER_COMPBAR; 2408 2409 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n", 2410 __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags); 2411 return rfilt; 2412 } 2413 2414 static void 2415 ath_update_promisc(struct ifnet *ifp) 2416 { 2417 struct ath_softc *sc = ifp->if_softc; 2418 u_int32_t rfilt; 2419 2420 /* configure rx filter */ 2421 rfilt = ath_calcrxfilter(sc); 2422 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2423 2424 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2425 } 2426 2427 static void 2428 ath_update_mcast(struct ifnet *ifp) 2429 { 2430 struct ath_softc *sc = ifp->if_softc; 2431 u_int32_t mfilt[2]; 2432 2433 /* calculate and install multicast filter */ 2434 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2435 struct ifmultiaddr *ifma; 2436 /* 2437 * Merge multicast addresses to form the hardware filter. 2438 */ 2439 mfilt[0] = mfilt[1] = 0; 2440 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2441 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2442 caddr_t dl; 2443 u_int32_t val; 2444 u_int8_t pos; 2445 2446 /* calculate XOR of eight 6bit values */ 2447 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2448 val = LE_READ_4(dl + 0); 2449 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2450 val = LE_READ_4(dl + 3); 2451 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2452 pos &= 0x3f; 2453 mfilt[pos / 32] |= (1 << (pos % 32)); 2454 } 2455 if_maddr_runlock(ifp); 2456 } else 2457 mfilt[0] = mfilt[1] = ~0; 2458 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2459 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2460 __func__, mfilt[0], mfilt[1]); 2461 } 2462 2463 static void 2464 ath_mode_init(struct ath_softc *sc) 2465 { 2466 struct ifnet *ifp = sc->sc_ifp; 2467 struct ath_hal *ah = sc->sc_ah; 2468 u_int32_t rfilt; 2469 2470 /* configure rx filter */ 2471 rfilt = ath_calcrxfilter(sc); 2472 ath_hal_setrxfilter(ah, rfilt); 2473 2474 /* configure operational mode */ 2475 ath_hal_setopmode(ah); 2476 2477 /* handle any link-level address change */ 2478 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2479 2480 /* calculate and install multicast filter */ 2481 ath_update_mcast(ifp); 2482 } 2483 2484 /* 2485 * Set the slot time based on the current setting. 2486 */ 2487 static void 2488 ath_setslottime(struct ath_softc *sc) 2489 { 2490 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2491 struct ath_hal *ah = sc->sc_ah; 2492 u_int usec; 2493 2494 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2495 usec = 13; 2496 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2497 usec = 21; 2498 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2499 /* honor short/long slot time only in 11g */ 2500 /* XXX shouldn't honor on pure g or turbo g channel */ 2501 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2502 usec = HAL_SLOT_TIME_9; 2503 else 2504 usec = HAL_SLOT_TIME_20; 2505 } else 2506 usec = HAL_SLOT_TIME_9; 2507 2508 DPRINTF(sc, ATH_DEBUG_RESET, 2509 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2510 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2511 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2512 2513 ath_hal_setslottime(ah, usec); 2514 sc->sc_updateslot = OK; 2515 } 2516 2517 /* 2518 * Callback from the 802.11 layer to update the 2519 * slot time based on the current setting. 2520 */ 2521 static void 2522 ath_updateslot(struct ifnet *ifp) 2523 { 2524 struct ath_softc *sc = ifp->if_softc; 2525 struct ieee80211com *ic = ifp->if_l2com; 2526 2527 /* 2528 * When not coordinating the BSS, change the hardware 2529 * immediately. For other operation we defer the change 2530 * until beacon updates have propagated to the stations. 2531 */ 2532 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2533 ic->ic_opmode == IEEE80211_M_MBSS) 2534 sc->sc_updateslot = UPDATE; 2535 else 2536 ath_setslottime(sc); 2537 } 2538 2539 /* 2540 * Setup a h/w transmit queue for beacons. 2541 */ 2542 static int 2543 ath_beaconq_setup(struct ath_hal *ah) 2544 { 2545 HAL_TXQ_INFO qi; 2546 2547 memset(&qi, 0, sizeof(qi)); 2548 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2549 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2550 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2551 /* NB: for dynamic turbo, don't enable any other interrupts */ 2552 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2553 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2554 } 2555 2556 /* 2557 * Setup the transmit queue parameters for the beacon queue. 2558 */ 2559 static int 2560 ath_beaconq_config(struct ath_softc *sc) 2561 { 2562 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2563 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2564 struct ath_hal *ah = sc->sc_ah; 2565 HAL_TXQ_INFO qi; 2566 2567 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2568 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2569 ic->ic_opmode == IEEE80211_M_MBSS) { 2570 /* 2571 * Always burst out beacon and CAB traffic. 2572 */ 2573 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2574 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2575 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2576 } else { 2577 struct wmeParams *wmep = 2578 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2579 /* 2580 * Adhoc mode; important thing is to use 2x cwmin. 2581 */ 2582 qi.tqi_aifs = wmep->wmep_aifsn; 2583 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2584 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2585 } 2586 2587 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2588 device_printf(sc->sc_dev, "unable to update parameters for " 2589 "beacon hardware queue!\n"); 2590 return 0; 2591 } else { 2592 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2593 return 1; 2594 } 2595 #undef ATH_EXPONENT_TO_VALUE 2596 } 2597 2598 /* 2599 * Allocate and setup an initial beacon frame. 2600 */ 2601 static int 2602 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2603 { 2604 struct ieee80211vap *vap = ni->ni_vap; 2605 struct ath_vap *avp = ATH_VAP(vap); 2606 struct ath_buf *bf; 2607 struct mbuf *m; 2608 int error; 2609 2610 bf = avp->av_bcbuf; 2611 if (bf->bf_m != NULL) { 2612 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2613 m_freem(bf->bf_m); 2614 bf->bf_m = NULL; 2615 } 2616 if (bf->bf_node != NULL) { 2617 ieee80211_free_node(bf->bf_node); 2618 bf->bf_node = NULL; 2619 } 2620 2621 /* 2622 * NB: the beacon data buffer must be 32-bit aligned; 2623 * we assume the mbuf routines will return us something 2624 * with this alignment (perhaps should assert). 2625 */ 2626 m = ieee80211_beacon_alloc(ni, &avp->av_boff); 2627 if (m == NULL) { 2628 device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__); 2629 sc->sc_stats.ast_be_nombuf++; 2630 return ENOMEM; 2631 } 2632 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 2633 bf->bf_segs, &bf->bf_nseg, 2634 BUS_DMA_NOWAIT); 2635 if (error != 0) { 2636 device_printf(sc->sc_dev, 2637 "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n", 2638 __func__, error); 2639 m_freem(m); 2640 return error; 2641 } 2642 2643 /* 2644 * Calculate a TSF adjustment factor required for staggered 2645 * beacons. Note that we assume the format of the beacon 2646 * frame leaves the tstamp field immediately following the 2647 * header. 2648 */ 2649 if (sc->sc_stagbeacons && avp->av_bslot > 0) { 2650 uint64_t tsfadjust; 2651 struct ieee80211_frame *wh; 2652 2653 /* 2654 * The beacon interval is in TU's; the TSF is in usecs. 2655 * We figure out how many TU's to add to align the timestamp 2656 * then convert to TSF units and handle byte swapping before 2657 * inserting it in the frame. The hardware will then add this 2658 * each time a beacon frame is sent. Note that we align vap's 2659 * 1..N and leave vap 0 untouched. This means vap 0 has a 2660 * timestamp in one beacon interval while the others get a 2661 * timstamp aligned to the next interval. 2662 */ 2663 tsfadjust = ni->ni_intval * 2664 (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF; 2665 tsfadjust = htole64(tsfadjust << 10); /* TU -> TSF */ 2666 2667 DPRINTF(sc, ATH_DEBUG_BEACON, 2668 "%s: %s beacons bslot %d intval %u tsfadjust %llu\n", 2669 __func__, sc->sc_stagbeacons ? "stagger" : "burst", 2670 avp->av_bslot, ni->ni_intval, 2671 (long long unsigned) le64toh(tsfadjust)); 2672 2673 wh = mtod(m, struct ieee80211_frame *); 2674 memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust)); 2675 } 2676 bf->bf_m = m; 2677 bf->bf_node = ieee80211_ref_node(ni); 2678 2679 return 0; 2680 } 2681 2682 /* 2683 * Setup the beacon frame for transmit. 2684 */ 2685 static void 2686 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2687 { 2688 #define USE_SHPREAMBLE(_ic) \ 2689 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2690 == IEEE80211_F_SHPREAMBLE) 2691 struct ieee80211_node *ni = bf->bf_node; 2692 struct ieee80211com *ic = ni->ni_ic; 2693 struct mbuf *m = bf->bf_m; 2694 struct ath_hal *ah = sc->sc_ah; 2695 struct ath_desc *ds; 2696 int flags, antenna; 2697 const HAL_RATE_TABLE *rt; 2698 u_int8_t rix, rate; 2699 2700 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n", 2701 __func__, m, m->m_len); 2702 2703 /* setup descriptors */ 2704 ds = bf->bf_desc; 2705 bf->bf_last = bf; 2706 bf->bf_lastds = ds; 2707 2708 flags = HAL_TXDESC_NOACK; 2709 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2710 ds->ds_link = bf->bf_daddr; /* self-linked */ 2711 flags |= HAL_TXDESC_VEOL; 2712 /* 2713 * Let hardware handle antenna switching. 2714 */ 2715 antenna = sc->sc_txantenna; 2716 } else { 2717 ds->ds_link = 0; 2718 /* 2719 * Switch antenna every 4 beacons. 2720 * XXX assumes two antenna 2721 */ 2722 if (sc->sc_txantenna != 0) 2723 antenna = sc->sc_txantenna; 2724 else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0) 2725 antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1); 2726 else 2727 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2728 } 2729 2730 KASSERT(bf->bf_nseg == 1, 2731 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 2732 ds->ds_data = bf->bf_segs[0].ds_addr; 2733 /* 2734 * Calculate rate code. 2735 * XXX everything at min xmit rate 2736 */ 2737 rix = 0; 2738 rt = sc->sc_currates; 2739 rate = rt->info[rix].rateCode; 2740 if (USE_SHPREAMBLE(ic)) 2741 rate |= rt->info[rix].shortPreamble; 2742 ath_hal_setuptxdesc(ah, ds 2743 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2744 , sizeof(struct ieee80211_frame)/* header length */ 2745 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2746 , ni->ni_txpower /* txpower XXX */ 2747 , rate, 1 /* series 0 rate/tries */ 2748 , HAL_TXKEYIX_INVALID /* no encryption */ 2749 , antenna /* antenna mode */ 2750 , flags /* no ack, veol for beacons */ 2751 , 0 /* rts/cts rate */ 2752 , 0 /* rts/cts duration */ 2753 ); 2754 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2755 ath_hal_filltxdesc(ah, ds 2756 , roundup(m->m_len, 4) /* buffer length */ 2757 , AH_TRUE /* first segment */ 2758 , AH_TRUE /* last segment */ 2759 , ds /* first descriptor */ 2760 ); 2761 #if 0 2762 ath_desc_swap(ds); 2763 #endif 2764 #undef USE_SHPREAMBLE 2765 } 2766 2767 static void 2768 ath_beacon_update(struct ieee80211vap *vap, int item) 2769 { 2770 struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff; 2771 2772 setbit(bo->bo_flags, item); 2773 } 2774 2775 /* 2776 * Append the contents of src to dst; both queues 2777 * are assumed to be locked. 2778 */ 2779 static void 2780 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2781 { 2782 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2783 dst->axq_link = src->axq_link; 2784 src->axq_link = NULL; 2785 dst->axq_depth += src->axq_depth; 2786 dst->axq_aggr_depth += src->axq_aggr_depth; 2787 src->axq_depth = 0; 2788 src->axq_aggr_depth = 0; 2789 } 2790 2791 /* 2792 * Transmit a beacon frame at SWBA. Dynamic updates to the 2793 * frame contents are done as needed and the slot time is 2794 * also adjusted based on current state. 2795 */ 2796 static void 2797 ath_beacon_proc(void *arg, int pending) 2798 { 2799 struct ath_softc *sc = arg; 2800 struct ath_hal *ah = sc->sc_ah; 2801 struct ieee80211vap *vap; 2802 struct ath_buf *bf; 2803 int slot, otherant; 2804 uint32_t bfaddr; 2805 2806 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2807 __func__, pending); 2808 /* 2809 * Check if the previous beacon has gone out. If 2810 * not don't try to post another, skip this period 2811 * and wait for the next. Missed beacons indicate 2812 * a problem and should not occur. If we miss too 2813 * many consecutive beacons reset the device. 2814 */ 2815 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2816 sc->sc_bmisscount++; 2817 sc->sc_stats.ast_be_missed++; 2818 DPRINTF(sc, ATH_DEBUG_BEACON, 2819 "%s: missed %u consecutive beacons\n", 2820 __func__, sc->sc_bmisscount); 2821 if (sc->sc_bmisscount >= ath_bstuck_threshold) 2822 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 2823 return; 2824 } 2825 if (sc->sc_bmisscount != 0) { 2826 DPRINTF(sc, ATH_DEBUG_BEACON, 2827 "%s: resume beacon xmit after %u misses\n", 2828 __func__, sc->sc_bmisscount); 2829 sc->sc_bmisscount = 0; 2830 } 2831 2832 if (sc->sc_stagbeacons) { /* staggered beacons */ 2833 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2834 uint32_t tsftu; 2835 2836 tsftu = ath_hal_gettsf32(ah) >> 10; 2837 /* XXX lintval */ 2838 slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval; 2839 vap = sc->sc_bslot[(slot+1) % ATH_BCBUF]; 2840 bfaddr = 0; 2841 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 2842 bf = ath_beacon_generate(sc, vap); 2843 if (bf != NULL) 2844 bfaddr = bf->bf_daddr; 2845 } 2846 } else { /* burst'd beacons */ 2847 uint32_t *bflink = &bfaddr; 2848 2849 for (slot = 0; slot < ATH_BCBUF; slot++) { 2850 vap = sc->sc_bslot[slot]; 2851 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 2852 bf = ath_beacon_generate(sc, vap); 2853 if (bf != NULL) { 2854 *bflink = bf->bf_daddr; 2855 bflink = &bf->bf_desc->ds_link; 2856 } 2857 } 2858 } 2859 *bflink = 0; /* terminate list */ 2860 } 2861 2862 /* 2863 * Handle slot time change when a non-ERP station joins/leaves 2864 * an 11g network. The 802.11 layer notifies us via callback, 2865 * we mark updateslot, then wait one beacon before effecting 2866 * the change. This gives associated stations at least one 2867 * beacon interval to note the state change. 2868 */ 2869 /* XXX locking */ 2870 if (sc->sc_updateslot == UPDATE) { 2871 sc->sc_updateslot = COMMIT; /* commit next beacon */ 2872 sc->sc_slotupdate = slot; 2873 } else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot) 2874 ath_setslottime(sc); /* commit change to h/w */ 2875 2876 /* 2877 * Check recent per-antenna transmit statistics and flip 2878 * the default antenna if noticeably more frames went out 2879 * on the non-default antenna. 2880 * XXX assumes 2 anntenae 2881 */ 2882 if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) { 2883 otherant = sc->sc_defant & 1 ? 2 : 1; 2884 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 2885 ath_setdefantenna(sc, otherant); 2886 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 2887 } 2888 2889 if (bfaddr != 0) { 2890 /* 2891 * Stop any current dma and put the new frame on the queue. 2892 * This should never fail since we check above that no frames 2893 * are still pending on the queue. 2894 */ 2895 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 2896 DPRINTF(sc, ATH_DEBUG_ANY, 2897 "%s: beacon queue %u did not stop?\n", 2898 __func__, sc->sc_bhalq); 2899 } 2900 /* NB: cabq traffic should already be queued and primed */ 2901 ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr); 2902 ath_hal_txstart(ah, sc->sc_bhalq); 2903 2904 sc->sc_stats.ast_be_xmit++; 2905 } 2906 } 2907 2908 static struct ath_buf * 2909 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap) 2910 { 2911 struct ath_vap *avp = ATH_VAP(vap); 2912 struct ath_txq *cabq = sc->sc_cabq; 2913 struct ath_buf *bf; 2914 struct mbuf *m; 2915 int nmcastq, error; 2916 2917 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 2918 ("not running, state %d", vap->iv_state)); 2919 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 2920 2921 /* 2922 * Update dynamic beacon contents. If this returns 2923 * non-zero then we need to remap the memory because 2924 * the beacon frame changed size (probably because 2925 * of the TIM bitmap). 2926 */ 2927 bf = avp->av_bcbuf; 2928 m = bf->bf_m; 2929 nmcastq = avp->av_mcastq.axq_depth; 2930 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) { 2931 /* XXX too conservative? */ 2932 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2933 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 2934 bf->bf_segs, &bf->bf_nseg, 2935 BUS_DMA_NOWAIT); 2936 if (error != 0) { 2937 if_printf(vap->iv_ifp, 2938 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 2939 __func__, error); 2940 return NULL; 2941 } 2942 } 2943 if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) { 2944 DPRINTF(sc, ATH_DEBUG_BEACON, 2945 "%s: cabq did not drain, mcastq %u cabq %u\n", 2946 __func__, nmcastq, cabq->axq_depth); 2947 sc->sc_stats.ast_cabq_busy++; 2948 if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) { 2949 /* 2950 * CABQ traffic from a previous vap is still pending. 2951 * We must drain the q before this beacon frame goes 2952 * out as otherwise this vap's stations will get cab 2953 * frames from a different vap. 2954 * XXX could be slow causing us to miss DBA 2955 */ 2956 ath_tx_draintxq(sc, cabq); 2957 } 2958 } 2959 ath_beacon_setup(sc, bf); 2960 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 2961 2962 /* 2963 * Enable the CAB queue before the beacon queue to 2964 * insure cab frames are triggered by this beacon. 2965 */ 2966 if (avp->av_boff.bo_tim[4] & 1) { 2967 struct ath_hal *ah = sc->sc_ah; 2968 2969 /* NB: only at DTIM */ 2970 ATH_TXQ_LOCK(cabq); 2971 ATH_TXQ_LOCK(&avp->av_mcastq); 2972 if (nmcastq) { 2973 struct ath_buf *bfm; 2974 2975 /* 2976 * Move frames from the s/w mcast q to the h/w cab q. 2977 * XXX MORE_DATA bit 2978 */ 2979 bfm = TAILQ_FIRST(&avp->av_mcastq.axq_q); 2980 if (cabq->axq_link != NULL) { 2981 *cabq->axq_link = bfm->bf_daddr; 2982 } else 2983 ath_hal_puttxbuf(ah, cabq->axq_qnum, 2984 bfm->bf_daddr); 2985 ath_txqmove(cabq, &avp->av_mcastq); 2986 2987 sc->sc_stats.ast_cabq_xmit += nmcastq; 2988 } 2989 /* NB: gated by beacon so safe to start here */ 2990 if (! TAILQ_EMPTY(&(cabq->axq_q))) 2991 ath_hal_txstart(ah, cabq->axq_qnum); 2992 ATH_TXQ_UNLOCK(&avp->av_mcastq); 2993 ATH_TXQ_UNLOCK(cabq); 2994 } 2995 return bf; 2996 } 2997 2998 static void 2999 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap) 3000 { 3001 struct ath_vap *avp = ATH_VAP(vap); 3002 struct ath_hal *ah = sc->sc_ah; 3003 struct ath_buf *bf; 3004 struct mbuf *m; 3005 int error; 3006 3007 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3008 3009 /* 3010 * Update dynamic beacon contents. If this returns 3011 * non-zero then we need to remap the memory because 3012 * the beacon frame changed size (probably because 3013 * of the TIM bitmap). 3014 */ 3015 bf = avp->av_bcbuf; 3016 m = bf->bf_m; 3017 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) { 3018 /* XXX too conservative? */ 3019 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3020 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3021 bf->bf_segs, &bf->bf_nseg, 3022 BUS_DMA_NOWAIT); 3023 if (error != 0) { 3024 if_printf(vap->iv_ifp, 3025 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3026 __func__, error); 3027 return; 3028 } 3029 } 3030 ath_beacon_setup(sc, bf); 3031 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3032 3033 /* NB: caller is known to have already stopped tx dma */ 3034 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 3035 ath_hal_txstart(ah, sc->sc_bhalq); 3036 } 3037 3038 /* 3039 * Reset the hardware after detecting beacons have stopped. 3040 */ 3041 static void 3042 ath_bstuck_proc(void *arg, int pending) 3043 { 3044 struct ath_softc *sc = arg; 3045 struct ifnet *ifp = sc->sc_ifp; 3046 uint32_t hangs = 0; 3047 3048 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3049 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 3050 3051 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3052 sc->sc_bmisscount); 3053 sc->sc_stats.ast_bstuck++; 3054 /* 3055 * This assumes that there's no simultaneous channel mode change 3056 * occuring. 3057 */ 3058 ath_reset(ifp, ATH_RESET_NOLOSS); 3059 } 3060 3061 /* 3062 * Reclaim beacon resources and return buffer to the pool. 3063 */ 3064 static void 3065 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf) 3066 { 3067 3068 if (bf->bf_m != NULL) { 3069 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3070 m_freem(bf->bf_m); 3071 bf->bf_m = NULL; 3072 } 3073 if (bf->bf_node != NULL) { 3074 ieee80211_free_node(bf->bf_node); 3075 bf->bf_node = NULL; 3076 } 3077 TAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list); 3078 } 3079 3080 /* 3081 * Reclaim beacon resources. 3082 */ 3083 static void 3084 ath_beacon_free(struct ath_softc *sc) 3085 { 3086 struct ath_buf *bf; 3087 3088 TAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 3089 if (bf->bf_m != NULL) { 3090 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3091 m_freem(bf->bf_m); 3092 bf->bf_m = NULL; 3093 } 3094 if (bf->bf_node != NULL) { 3095 ieee80211_free_node(bf->bf_node); 3096 bf->bf_node = NULL; 3097 } 3098 } 3099 } 3100 3101 /* 3102 * Configure the beacon and sleep timers. 3103 * 3104 * When operating as an AP this resets the TSF and sets 3105 * up the hardware to notify us when we need to issue beacons. 3106 * 3107 * When operating in station mode this sets up the beacon 3108 * timers according to the timestamp of the last received 3109 * beacon and the current TSF, configures PCF and DTIM 3110 * handling, programs the sleep registers so the hardware 3111 * will wakeup in time to receive beacons, and configures 3112 * the beacon miss handling so we'll receive a BMISS 3113 * interrupt when we stop seeing beacons from the AP 3114 * we've associated with. 3115 */ 3116 static void 3117 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap) 3118 { 3119 #define TSF_TO_TU(_h,_l) \ 3120 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 3121 #define FUDGE 2 3122 struct ath_hal *ah = sc->sc_ah; 3123 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3124 struct ieee80211_node *ni; 3125 u_int32_t nexttbtt, intval, tsftu; 3126 u_int64_t tsf; 3127 3128 if (vap == NULL) 3129 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 3130 ni = vap->iv_bss; 3131 3132 /* extract tstamp from last beacon and convert to TU */ 3133 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 3134 LE_READ_4(ni->ni_tstamp.data)); 3135 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3136 ic->ic_opmode == IEEE80211_M_MBSS) { 3137 /* 3138 * For multi-bss ap/mesh support beacons are either staggered 3139 * evenly over N slots or burst together. For the former 3140 * arrange for the SWBA to be delivered for each slot. 3141 * Slots that are not occupied will generate nothing. 3142 */ 3143 /* NB: the beacon interval is kept internally in TU's */ 3144 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3145 if (sc->sc_stagbeacons) 3146 intval /= ATH_BCBUF; 3147 } else { 3148 /* NB: the beacon interval is kept internally in TU's */ 3149 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3150 } 3151 if (nexttbtt == 0) /* e.g. for ap mode */ 3152 nexttbtt = intval; 3153 else if (intval) /* NB: can be 0 for monitor mode */ 3154 nexttbtt = roundup(nexttbtt, intval); 3155 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 3156 __func__, nexttbtt, intval, ni->ni_intval); 3157 if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) { 3158 HAL_BEACON_STATE bs; 3159 int dtimperiod, dtimcount; 3160 int cfpperiod, cfpcount; 3161 3162 /* 3163 * Setup dtim and cfp parameters according to 3164 * last beacon we received (which may be none). 3165 */ 3166 dtimperiod = ni->ni_dtim_period; 3167 if (dtimperiod <= 0) /* NB: 0 if not known */ 3168 dtimperiod = 1; 3169 dtimcount = ni->ni_dtim_count; 3170 if (dtimcount >= dtimperiod) /* NB: sanity check */ 3171 dtimcount = 0; /* XXX? */ 3172 cfpperiod = 1; /* NB: no PCF support yet */ 3173 cfpcount = 0; 3174 /* 3175 * Pull nexttbtt forward to reflect the current 3176 * TSF and calculate dtim+cfp state for the result. 3177 */ 3178 tsf = ath_hal_gettsf64(ah); 3179 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3180 do { 3181 nexttbtt += intval; 3182 if (--dtimcount < 0) { 3183 dtimcount = dtimperiod - 1; 3184 if (--cfpcount < 0) 3185 cfpcount = cfpperiod - 1; 3186 } 3187 } while (nexttbtt < tsftu); 3188 memset(&bs, 0, sizeof(bs)); 3189 bs.bs_intval = intval; 3190 bs.bs_nexttbtt = nexttbtt; 3191 bs.bs_dtimperiod = dtimperiod*intval; 3192 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 3193 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 3194 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 3195 bs.bs_cfpmaxduration = 0; 3196 #if 0 3197 /* 3198 * The 802.11 layer records the offset to the DTIM 3199 * bitmap while receiving beacons; use it here to 3200 * enable h/w detection of our AID being marked in 3201 * the bitmap vector (to indicate frames for us are 3202 * pending at the AP). 3203 * XXX do DTIM handling in s/w to WAR old h/w bugs 3204 * XXX enable based on h/w rev for newer chips 3205 */ 3206 bs.bs_timoffset = ni->ni_timoff; 3207 #endif 3208 /* 3209 * Calculate the number of consecutive beacons to miss 3210 * before taking a BMISS interrupt. 3211 * Note that we clamp the result to at most 10 beacons. 3212 */ 3213 bs.bs_bmissthreshold = vap->iv_bmissthreshold; 3214 if (bs.bs_bmissthreshold > 10) 3215 bs.bs_bmissthreshold = 10; 3216 else if (bs.bs_bmissthreshold <= 0) 3217 bs.bs_bmissthreshold = 1; 3218 3219 /* 3220 * Calculate sleep duration. The configuration is 3221 * given in ms. We insure a multiple of the beacon 3222 * period is used. Also, if the sleep duration is 3223 * greater than the DTIM period then it makes senses 3224 * to make it a multiple of that. 3225 * 3226 * XXX fixed at 100ms 3227 */ 3228 bs.bs_sleepduration = 3229 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 3230 if (bs.bs_sleepduration > bs.bs_dtimperiod) 3231 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 3232 3233 DPRINTF(sc, ATH_DEBUG_BEACON, 3234 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 3235 , __func__ 3236 , tsf, tsftu 3237 , bs.bs_intval 3238 , bs.bs_nexttbtt 3239 , bs.bs_dtimperiod 3240 , bs.bs_nextdtim 3241 , bs.bs_bmissthreshold 3242 , bs.bs_sleepduration 3243 , bs.bs_cfpperiod 3244 , bs.bs_cfpmaxduration 3245 , bs.bs_cfpnext 3246 , bs.bs_timoffset 3247 ); 3248 ath_hal_intrset(ah, 0); 3249 ath_hal_beacontimers(ah, &bs); 3250 sc->sc_imask |= HAL_INT_BMISS; 3251 ath_hal_intrset(ah, sc->sc_imask); 3252 } else { 3253 ath_hal_intrset(ah, 0); 3254 if (nexttbtt == intval) 3255 intval |= HAL_BEACON_RESET_TSF; 3256 if (ic->ic_opmode == IEEE80211_M_IBSS) { 3257 /* 3258 * In IBSS mode enable the beacon timers but only 3259 * enable SWBA interrupts if we need to manually 3260 * prepare beacon frames. Otherwise we use a 3261 * self-linked tx descriptor and let the hardware 3262 * deal with things. 3263 */ 3264 intval |= HAL_BEACON_ENA; 3265 if (!sc->sc_hasveol) 3266 sc->sc_imask |= HAL_INT_SWBA; 3267 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 3268 /* 3269 * Pull nexttbtt forward to reflect 3270 * the current TSF. 3271 */ 3272 tsf = ath_hal_gettsf64(ah); 3273 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3274 do { 3275 nexttbtt += intval; 3276 } while (nexttbtt < tsftu); 3277 } 3278 ath_beaconq_config(sc); 3279 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3280 ic->ic_opmode == IEEE80211_M_MBSS) { 3281 /* 3282 * In AP/mesh mode we enable the beacon timers 3283 * and SWBA interrupts to prepare beacon frames. 3284 */ 3285 intval |= HAL_BEACON_ENA; 3286 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 3287 ath_beaconq_config(sc); 3288 } 3289 ath_hal_beaconinit(ah, nexttbtt, intval); 3290 sc->sc_bmisscount = 0; 3291 ath_hal_intrset(ah, sc->sc_imask); 3292 /* 3293 * When using a self-linked beacon descriptor in 3294 * ibss mode load it once here. 3295 */ 3296 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 3297 ath_beacon_start_adhoc(sc, vap); 3298 } 3299 sc->sc_syncbeacon = 0; 3300 #undef FUDGE 3301 #undef TSF_TO_TU 3302 } 3303 3304 static void 3305 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3306 { 3307 bus_addr_t *paddr = (bus_addr_t*) arg; 3308 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3309 *paddr = segs->ds_addr; 3310 } 3311 3312 static int 3313 ath_descdma_setup(struct ath_softc *sc, 3314 struct ath_descdma *dd, ath_bufhead *head, 3315 const char *name, int nbuf, int ndesc) 3316 { 3317 #define DS2PHYS(_dd, _ds) \ 3318 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3319 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3320 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3321 struct ifnet *ifp = sc->sc_ifp; 3322 uint8_t *ds; 3323 struct ath_buf *bf; 3324 int i, bsize, error; 3325 int desc_len; 3326 3327 desc_len = sizeof(struct ath_desc); 3328 3329 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 3330 __func__, name, nbuf, ndesc); 3331 3332 dd->dd_name = name; 3333 dd->dd_desc_len = desc_len * nbuf * ndesc; 3334 3335 /* 3336 * Merlin work-around: 3337 * Descriptors that cross the 4KB boundary can't be used. 3338 * Assume one skipped descriptor per 4KB page. 3339 */ 3340 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3341 int numdescpage = 4096 / (desc_len * ndesc); 3342 dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096; 3343 } 3344 3345 /* 3346 * Setup DMA descriptor area. 3347 */ 3348 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3349 PAGE_SIZE, 0, /* alignment, bounds */ 3350 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3351 BUS_SPACE_MAXADDR, /* highaddr */ 3352 NULL, NULL, /* filter, filterarg */ 3353 dd->dd_desc_len, /* maxsize */ 3354 1, /* nsegments */ 3355 dd->dd_desc_len, /* maxsegsize */ 3356 BUS_DMA_ALLOCNOW, /* flags */ 3357 NULL, /* lockfunc */ 3358 NULL, /* lockarg */ 3359 &dd->dd_dmat); 3360 if (error != 0) { 3361 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3362 return error; 3363 } 3364 3365 /* allocate descriptors */ 3366 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 3367 if (error != 0) { 3368 if_printf(ifp, "unable to create dmamap for %s descriptors, " 3369 "error %u\n", dd->dd_name, error); 3370 goto fail0; 3371 } 3372 3373 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3374 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3375 &dd->dd_dmamap); 3376 if (error != 0) { 3377 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3378 "error %u\n", nbuf * ndesc, dd->dd_name, error); 3379 goto fail1; 3380 } 3381 3382 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3383 dd->dd_desc, dd->dd_desc_len, 3384 ath_load_cb, &dd->dd_desc_paddr, 3385 BUS_DMA_NOWAIT); 3386 if (error != 0) { 3387 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3388 dd->dd_name, error); 3389 goto fail2; 3390 } 3391 3392 ds = (uint8_t *) dd->dd_desc; 3393 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3394 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 3395 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 3396 3397 /* allocate rx buffers */ 3398 bsize = sizeof(struct ath_buf) * nbuf; 3399 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3400 if (bf == NULL) { 3401 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3402 dd->dd_name, bsize); 3403 goto fail3; 3404 } 3405 dd->dd_bufptr = bf; 3406 3407 TAILQ_INIT(head); 3408 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) { 3409 bf->bf_desc = (struct ath_desc *) ds; 3410 bf->bf_daddr = DS2PHYS(dd, ds); 3411 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3412 /* 3413 * Merlin WAR: Skip descriptor addresses which 3414 * cause 4KB boundary crossing along any point 3415 * in the descriptor. 3416 */ 3417 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3418 desc_len * ndesc)) { 3419 /* Start at the next page */ 3420 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3421 bf->bf_desc = (struct ath_desc *) ds; 3422 bf->bf_daddr = DS2PHYS(dd, ds); 3423 } 3424 } 3425 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3426 &bf->bf_dmamap); 3427 if (error != 0) { 3428 if_printf(ifp, "unable to create dmamap for %s " 3429 "buffer %u, error %u\n", dd->dd_name, i, error); 3430 ath_descdma_cleanup(sc, dd, head); 3431 return error; 3432 } 3433 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3434 TAILQ_INSERT_TAIL(head, bf, bf_list); 3435 } 3436 return 0; 3437 fail3: 3438 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3439 fail2: 3440 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3441 fail1: 3442 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3443 fail0: 3444 bus_dma_tag_destroy(dd->dd_dmat); 3445 memset(dd, 0, sizeof(*dd)); 3446 return error; 3447 #undef DS2PHYS 3448 #undef ATH_DESC_4KB_BOUND_CHECK 3449 } 3450 3451 static void 3452 ath_descdma_cleanup(struct ath_softc *sc, 3453 struct ath_descdma *dd, ath_bufhead *head) 3454 { 3455 struct ath_buf *bf; 3456 struct ieee80211_node *ni; 3457 3458 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3459 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3460 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3461 bus_dma_tag_destroy(dd->dd_dmat); 3462 3463 TAILQ_FOREACH(bf, head, bf_list) { 3464 if (bf->bf_m) { 3465 m_freem(bf->bf_m); 3466 bf->bf_m = NULL; 3467 } 3468 if (bf->bf_dmamap != NULL) { 3469 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3470 bf->bf_dmamap = NULL; 3471 } 3472 ni = bf->bf_node; 3473 bf->bf_node = NULL; 3474 if (ni != NULL) { 3475 /* 3476 * Reclaim node reference. 3477 */ 3478 ieee80211_free_node(ni); 3479 } 3480 } 3481 3482 TAILQ_INIT(head); 3483 free(dd->dd_bufptr, M_ATHDEV); 3484 memset(dd, 0, sizeof(*dd)); 3485 } 3486 3487 static int 3488 ath_desc_alloc(struct ath_softc *sc) 3489 { 3490 int error; 3491 3492 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 3493 "rx", ath_rxbuf, 1); 3494 if (error != 0) 3495 return error; 3496 3497 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3498 "tx", ath_txbuf, ATH_TXDESC); 3499 if (error != 0) { 3500 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3501 return error; 3502 } 3503 3504 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3505 "beacon", ATH_BCBUF, 1); 3506 if (error != 0) { 3507 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3508 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3509 return error; 3510 } 3511 return 0; 3512 } 3513 3514 static void 3515 ath_desc_free(struct ath_softc *sc) 3516 { 3517 3518 if (sc->sc_bdma.dd_desc_len != 0) 3519 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3520 if (sc->sc_txdma.dd_desc_len != 0) 3521 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3522 if (sc->sc_rxdma.dd_desc_len != 0) 3523 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3524 } 3525 3526 static struct ieee80211_node * 3527 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3528 { 3529 struct ieee80211com *ic = vap->iv_ic; 3530 struct ath_softc *sc = ic->ic_ifp->if_softc; 3531 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3532 struct ath_node *an; 3533 3534 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3535 if (an == NULL) { 3536 /* XXX stat+msg */ 3537 return NULL; 3538 } 3539 ath_rate_node_init(sc, an); 3540 3541 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3542 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3543 device_get_nameunit(sc->sc_dev), an); 3544 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3545 3546 /* XXX setup ath_tid */ 3547 ath_tx_tid_init(sc, an); 3548 3549 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3550 return &an->an_node; 3551 } 3552 3553 static void 3554 ath_node_cleanup(struct ieee80211_node *ni) 3555 { 3556 struct ieee80211com *ic = ni->ni_ic; 3557 struct ath_softc *sc = ic->ic_ifp->if_softc; 3558 3559 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3560 ath_tx_node_flush(sc, ATH_NODE(ni)); 3561 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3562 sc->sc_node_cleanup(ni); 3563 } 3564 3565 static void 3566 ath_node_free(struct ieee80211_node *ni) 3567 { 3568 struct ieee80211com *ic = ni->ni_ic; 3569 struct ath_softc *sc = ic->ic_ifp->if_softc; 3570 3571 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3572 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3573 sc->sc_node_free(ni); 3574 } 3575 3576 static void 3577 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3578 { 3579 struct ieee80211com *ic = ni->ni_ic; 3580 struct ath_softc *sc = ic->ic_ifp->if_softc; 3581 struct ath_hal *ah = sc->sc_ah; 3582 3583 *rssi = ic->ic_node_getrssi(ni); 3584 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3585 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3586 else 3587 *noise = -95; /* nominally correct */ 3588 } 3589 3590 static int 3591 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 3592 { 3593 struct ath_hal *ah = sc->sc_ah; 3594 int error; 3595 struct mbuf *m; 3596 struct ath_desc *ds; 3597 3598 m = bf->bf_m; 3599 if (m == NULL) { 3600 /* 3601 * NB: by assigning a page to the rx dma buffer we 3602 * implicitly satisfy the Atheros requirement that 3603 * this buffer be cache-line-aligned and sized to be 3604 * multiple of the cache line size. Not doing this 3605 * causes weird stuff to happen (for the 5210 at least). 3606 */ 3607 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 3608 if (m == NULL) { 3609 DPRINTF(sc, ATH_DEBUG_ANY, 3610 "%s: no mbuf/cluster\n", __func__); 3611 sc->sc_stats.ast_rx_nombuf++; 3612 return ENOMEM; 3613 } 3614 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 3615 3616 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, 3617 bf->bf_dmamap, m, 3618 bf->bf_segs, &bf->bf_nseg, 3619 BUS_DMA_NOWAIT); 3620 if (error != 0) { 3621 DPRINTF(sc, ATH_DEBUG_ANY, 3622 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n", 3623 __func__, error); 3624 sc->sc_stats.ast_rx_busdma++; 3625 m_freem(m); 3626 return error; 3627 } 3628 KASSERT(bf->bf_nseg == 1, 3629 ("multi-segment packet; nseg %u", bf->bf_nseg)); 3630 bf->bf_m = m; 3631 } 3632 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 3633 3634 /* 3635 * Setup descriptors. For receive we always terminate 3636 * the descriptor list with a self-linked entry so we'll 3637 * not get overrun under high load (as can happen with a 3638 * 5212 when ANI processing enables PHY error frames). 3639 * 3640 * To insure the last descriptor is self-linked we create 3641 * each descriptor as self-linked and add it to the end. As 3642 * each additional descriptor is added the previous self-linked 3643 * entry is ``fixed'' naturally. This should be safe even 3644 * if DMA is happening. When processing RX interrupts we 3645 * never remove/process the last, self-linked, entry on the 3646 * descriptor list. This insures the hardware always has 3647 * someplace to write a new frame. 3648 */ 3649 /* 3650 * 11N: we can no longer afford to self link the last descriptor. 3651 * MAC acknowledges BA status as long as it copies frames to host 3652 * buffer (or rx fifo). This can incorrectly acknowledge packets 3653 * to a sender if last desc is self-linked. 3654 */ 3655 ds = bf->bf_desc; 3656 if (sc->sc_rxslink) 3657 ds->ds_link = bf->bf_daddr; /* link to self */ 3658 else 3659 ds->ds_link = 0; /* terminate the list */ 3660 ds->ds_data = bf->bf_segs[0].ds_addr; 3661 ath_hal_setuprxdesc(ah, ds 3662 , m->m_len /* buffer size */ 3663 , 0 3664 ); 3665 3666 if (sc->sc_rxlink != NULL) 3667 *sc->sc_rxlink = bf->bf_daddr; 3668 sc->sc_rxlink = &ds->ds_link; 3669 return 0; 3670 } 3671 3672 /* 3673 * Extend 15-bit time stamp from rx descriptor to 3674 * a full 64-bit TSF using the specified TSF. 3675 */ 3676 static __inline u_int64_t 3677 ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf) 3678 { 3679 if ((tsf & 0x7fff) < rstamp) 3680 tsf -= 0x8000; 3681 3682 return ((tsf &~ 0x7fff) | rstamp); 3683 } 3684 3685 /* 3686 * Extend 32-bit time stamp from rx descriptor to 3687 * a full 64-bit TSF using the specified TSF. 3688 */ 3689 static __inline u_int64_t 3690 ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf) 3691 { 3692 u_int32_t tsf_low = tsf & 0xffffffff; 3693 u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp; 3694 3695 if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000)) 3696 tsf64 -= 0x100000000ULL; 3697 3698 if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000)) 3699 tsf64 += 0x100000000ULL; 3700 3701 return tsf64; 3702 } 3703 3704 /* 3705 * Extend the TSF from the RX descriptor to a full 64 bit TSF. 3706 * Earlier hardware versions only wrote the low 15 bits of the 3707 * TSF into the RX descriptor; later versions (AR5416 and up) 3708 * include the 32 bit TSF value. 3709 */ 3710 static __inline u_int64_t 3711 ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf) 3712 { 3713 if (sc->sc_rxtsf32) 3714 return ath_extend_tsf32(rstamp, tsf); 3715 else 3716 return ath_extend_tsf15(rstamp, tsf); 3717 } 3718 3719 /* 3720 * Intercept management frames to collect beacon rssi data 3721 * and to do ibss merges. 3722 */ 3723 static void 3724 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 3725 int subtype, int rssi, int nf) 3726 { 3727 struct ieee80211vap *vap = ni->ni_vap; 3728 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 3729 3730 /* 3731 * Call up first so subsequent work can use information 3732 * potentially stored in the node (e.g. for ibss merge). 3733 */ 3734 ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf); 3735 switch (subtype) { 3736 case IEEE80211_FC0_SUBTYPE_BEACON: 3737 /* update rssi statistics for use by the hal */ 3738 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 3739 if (sc->sc_syncbeacon && 3740 ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) { 3741 /* 3742 * Resync beacon timers using the tsf of the beacon 3743 * frame we just received. 3744 */ 3745 ath_beacon_config(sc, vap); 3746 } 3747 /* fall thru... */ 3748 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 3749 if (vap->iv_opmode == IEEE80211_M_IBSS && 3750 vap->iv_state == IEEE80211_S_RUN) { 3751 uint32_t rstamp = sc->sc_lastrs->rs_tstamp; 3752 uint64_t tsf = ath_extend_tsf(sc, rstamp, 3753 ath_hal_gettsf64(sc->sc_ah)); 3754 /* 3755 * Handle ibss merge as needed; check the tsf on the 3756 * frame before attempting the merge. The 802.11 spec 3757 * says the station should change it's bssid to match 3758 * the oldest station with the same ssid, where oldest 3759 * is determined by the tsf. Note that hardware 3760 * reconfiguration happens through callback to 3761 * ath_newstate as the state machine will go from 3762 * RUN -> RUN when this happens. 3763 */ 3764 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 3765 DPRINTF(sc, ATH_DEBUG_STATE, 3766 "ibss merge, rstamp %u tsf %ju " 3767 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 3768 (uintmax_t)ni->ni_tstamp.tsf); 3769 (void) ieee80211_ibss_merge(ni); 3770 } 3771 } 3772 break; 3773 } 3774 } 3775 3776 /* 3777 * Set the default antenna. 3778 */ 3779 static void 3780 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3781 { 3782 struct ath_hal *ah = sc->sc_ah; 3783 3784 /* XXX block beacon interrupts */ 3785 ath_hal_setdefantenna(ah, antenna); 3786 if (sc->sc_defant != antenna) 3787 sc->sc_stats.ast_ant_defswitch++; 3788 sc->sc_defant = antenna; 3789 sc->sc_rxotherant = 0; 3790 } 3791 3792 static void 3793 ath_rx_tap(struct ifnet *ifp, struct mbuf *m, 3794 const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf) 3795 { 3796 #define CHAN_HT20 htole32(IEEE80211_CHAN_HT20) 3797 #define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U) 3798 #define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D) 3799 #define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D) 3800 struct ath_softc *sc = ifp->if_softc; 3801 const HAL_RATE_TABLE *rt; 3802 uint8_t rix; 3803 3804 rt = sc->sc_currates; 3805 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3806 rix = rt->rateCodeToIndex[rs->rs_rate]; 3807 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 3808 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 3809 #ifdef AH_SUPPORT_AR5416 3810 sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT; 3811 if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */ 3812 struct ieee80211com *ic = ifp->if_l2com; 3813 3814 if ((rs->rs_flags & HAL_RX_2040) == 0) 3815 sc->sc_rx_th.wr_chan_flags |= CHAN_HT20; 3816 else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan)) 3817 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U; 3818 else 3819 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D; 3820 if ((rs->rs_flags & HAL_RX_GI) == 0) 3821 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; 3822 } 3823 #endif 3824 sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf)); 3825 if (rs->rs_status & HAL_RXERR_CRC) 3826 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 3827 /* XXX propagate other error flags from descriptor */ 3828 sc->sc_rx_th.wr_antnoise = nf; 3829 sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi; 3830 sc->sc_rx_th.wr_antenna = rs->rs_antenna; 3831 #undef CHAN_HT 3832 #undef CHAN_HT20 3833 #undef CHAN_HT40U 3834 #undef CHAN_HT40D 3835 } 3836 3837 static void 3838 ath_handle_micerror(struct ieee80211com *ic, 3839 struct ieee80211_frame *wh, int keyix) 3840 { 3841 struct ieee80211_node *ni; 3842 3843 /* XXX recheck MIC to deal w/ chips that lie */ 3844 /* XXX discard MIC errors on !data frames */ 3845 ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh); 3846 if (ni != NULL) { 3847 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix); 3848 ieee80211_free_node(ni); 3849 } 3850 } 3851 3852 /* 3853 * Only run the RX proc if it's not already running. 3854 * Since this may get run as part of the reset/flush path, 3855 * the task can't clash with an existing, running tasklet. 3856 */ 3857 static void 3858 ath_rx_tasklet(void *arg, int npending) 3859 { 3860 struct ath_softc *sc = arg; 3861 3862 CTR1(ATH_KTR_INTR, "ath_rx_proc: pending=%d", npending); 3863 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 3864 ATH_PCU_LOCK(sc); 3865 if (sc->sc_inreset_cnt > 0) { 3866 device_printf(sc->sc_dev, 3867 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 3868 ATH_PCU_UNLOCK(sc); 3869 return; 3870 } 3871 ATH_PCU_UNLOCK(sc); 3872 ath_rx_proc(sc, 1); 3873 } 3874 3875 static void 3876 ath_rx_proc(struct ath_softc *sc, int resched) 3877 { 3878 #define PA2DESC(_sc, _pa) \ 3879 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 3880 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 3881 struct ath_buf *bf; 3882 struct ifnet *ifp = sc->sc_ifp; 3883 struct ieee80211com *ic = ifp->if_l2com; 3884 struct ath_hal *ah = sc->sc_ah; 3885 struct ath_desc *ds; 3886 struct ath_rx_status *rs; 3887 struct mbuf *m; 3888 struct ieee80211_node *ni; 3889 int len, type, ngood; 3890 HAL_STATUS status; 3891 int16_t nf; 3892 u_int64_t tsf; 3893 int npkts = 0; 3894 3895 /* XXX we must not hold the ATH_LOCK here */ 3896 ATH_UNLOCK_ASSERT(sc); 3897 ATH_PCU_UNLOCK_ASSERT(sc); 3898 3899 ATH_PCU_LOCK(sc); 3900 sc->sc_rxproc_cnt++; 3901 ATH_PCU_UNLOCK(sc); 3902 3903 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__); 3904 ngood = 0; 3905 nf = ath_hal_getchannoise(ah, sc->sc_curchan); 3906 sc->sc_stats.ast_rx_noise = nf; 3907 tsf = ath_hal_gettsf64(ah); 3908 do { 3909 bf = TAILQ_FIRST(&sc->sc_rxbuf); 3910 if (sc->sc_rxslink && bf == NULL) { /* NB: shouldn't happen */ 3911 if_printf(ifp, "%s: no buffer!\n", __func__); 3912 break; 3913 } else if (bf == NULL) { 3914 /* 3915 * End of List: 3916 * this can happen for non-self-linked RX chains 3917 */ 3918 sc->sc_stats.ast_rx_hitqueueend++; 3919 break; 3920 } 3921 m = bf->bf_m; 3922 if (m == NULL) { /* NB: shouldn't happen */ 3923 /* 3924 * If mbuf allocation failed previously there 3925 * will be no mbuf; try again to re-populate it. 3926 */ 3927 /* XXX make debug msg */ 3928 if_printf(ifp, "%s: no mbuf!\n", __func__); 3929 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 3930 goto rx_next; 3931 } 3932 ds = bf->bf_desc; 3933 if (ds->ds_link == bf->bf_daddr) { 3934 /* NB: never process the self-linked entry at the end */ 3935 sc->sc_stats.ast_rx_hitqueueend++; 3936 break; 3937 } 3938 /* XXX sync descriptor memory */ 3939 /* 3940 * Must provide the virtual address of the current 3941 * descriptor, the physical address, and the virtual 3942 * address of the next descriptor in the h/w chain. 3943 * This allows the HAL to look ahead to see if the 3944 * hardware is done with a descriptor by checking the 3945 * done bit in the following descriptor and the address 3946 * of the current descriptor the DMA engine is working 3947 * on. All this is necessary because of our use of 3948 * a self-linked list to avoid rx overruns. 3949 */ 3950 rs = &bf->bf_status.ds_rxstat; 3951 status = ath_hal_rxprocdesc(ah, ds, 3952 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 3953 #ifdef ATH_DEBUG 3954 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 3955 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 3956 #endif 3957 if (status == HAL_EINPROGRESS) 3958 break; 3959 3960 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 3961 npkts++; 3962 3963 /* These aren't specifically errors */ 3964 if (rs->rs_flags & HAL_RX_GI) 3965 sc->sc_stats.ast_rx_halfgi++; 3966 if (rs->rs_flags & HAL_RX_2040) 3967 sc->sc_stats.ast_rx_2040++; 3968 if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE) 3969 sc->sc_stats.ast_rx_pre_crc_err++; 3970 if (rs->rs_flags & HAL_RX_DELIM_CRC_POST) 3971 sc->sc_stats.ast_rx_post_crc_err++; 3972 if (rs->rs_flags & HAL_RX_DECRYPT_BUSY) 3973 sc->sc_stats.ast_rx_decrypt_busy_err++; 3974 if (rs->rs_flags & HAL_RX_HI_RX_CHAIN) 3975 sc->sc_stats.ast_rx_hi_rx_chain++; 3976 3977 if (rs->rs_status != 0) { 3978 if (rs->rs_status & HAL_RXERR_CRC) 3979 sc->sc_stats.ast_rx_crcerr++; 3980 if (rs->rs_status & HAL_RXERR_FIFO) 3981 sc->sc_stats.ast_rx_fifoerr++; 3982 if (rs->rs_status & HAL_RXERR_PHY) { 3983 sc->sc_stats.ast_rx_phyerr++; 3984 /* Process DFS radar events */ 3985 if ((rs->rs_phyerr == HAL_PHYERR_RADAR) || 3986 (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) { 3987 /* Since we're touching the frame data, sync it */ 3988 bus_dmamap_sync(sc->sc_dmat, 3989 bf->bf_dmamap, 3990 BUS_DMASYNC_POSTREAD); 3991 /* Now pass it to the radar processing code */ 3992 ath_dfs_process_phy_err(sc, mtod(m, char *), tsf, rs); 3993 } 3994 3995 /* Be suitably paranoid about receiving phy errors out of the stats array bounds */ 3996 if (rs->rs_phyerr < 64) 3997 sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++; 3998 goto rx_error; /* NB: don't count in ierrors */ 3999 } 4000 if (rs->rs_status & HAL_RXERR_DECRYPT) { 4001 /* 4002 * Decrypt error. If the error occurred 4003 * because there was no hardware key, then 4004 * let the frame through so the upper layers 4005 * can process it. This is necessary for 5210 4006 * parts which have no way to setup a ``clear'' 4007 * key cache entry. 4008 * 4009 * XXX do key cache faulting 4010 */ 4011 if (rs->rs_keyix == HAL_RXKEYIX_INVALID) 4012 goto rx_accept; 4013 sc->sc_stats.ast_rx_badcrypt++; 4014 } 4015 if (rs->rs_status & HAL_RXERR_MIC) { 4016 sc->sc_stats.ast_rx_badmic++; 4017 /* 4018 * Do minimal work required to hand off 4019 * the 802.11 header for notification. 4020 */ 4021 /* XXX frag's and qos frames */ 4022 len = rs->rs_datalen; 4023 if (len >= sizeof (struct ieee80211_frame)) { 4024 bus_dmamap_sync(sc->sc_dmat, 4025 bf->bf_dmamap, 4026 BUS_DMASYNC_POSTREAD); 4027 ath_handle_micerror(ic, 4028 mtod(m, struct ieee80211_frame *), 4029 sc->sc_splitmic ? 4030 rs->rs_keyix-32 : rs->rs_keyix); 4031 } 4032 } 4033 ifp->if_ierrors++; 4034 rx_error: 4035 /* 4036 * Cleanup any pending partial frame. 4037 */ 4038 if (sc->sc_rxpending != NULL) { 4039 m_freem(sc->sc_rxpending); 4040 sc->sc_rxpending = NULL; 4041 } 4042 /* 4043 * When a tap is present pass error frames 4044 * that have been requested. By default we 4045 * pass decrypt+mic errors but others may be 4046 * interesting (e.g. crc). 4047 */ 4048 if (ieee80211_radiotap_active(ic) && 4049 (rs->rs_status & sc->sc_monpass)) { 4050 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4051 BUS_DMASYNC_POSTREAD); 4052 /* NB: bpf needs the mbuf length setup */ 4053 len = rs->rs_datalen; 4054 m->m_pkthdr.len = m->m_len = len; 4055 bf->bf_m = NULL; 4056 ath_rx_tap(ifp, m, rs, tsf, nf); 4057 ieee80211_radiotap_rx_all(ic, m); 4058 m_freem(m); 4059 } 4060 /* XXX pass MIC errors up for s/w reclaculation */ 4061 goto rx_next; 4062 } 4063 rx_accept: 4064 /* 4065 * Sync and unmap the frame. At this point we're 4066 * committed to passing the mbuf somewhere so clear 4067 * bf_m; this means a new mbuf must be allocated 4068 * when the rx descriptor is setup again to receive 4069 * another frame. 4070 */ 4071 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4072 BUS_DMASYNC_POSTREAD); 4073 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4074 bf->bf_m = NULL; 4075 4076 len = rs->rs_datalen; 4077 m->m_len = len; 4078 4079 if (rs->rs_more) { 4080 /* 4081 * Frame spans multiple descriptors; save 4082 * it for the next completed descriptor, it 4083 * will be used to construct a jumbogram. 4084 */ 4085 if (sc->sc_rxpending != NULL) { 4086 /* NB: max frame size is currently 2 clusters */ 4087 sc->sc_stats.ast_rx_toobig++; 4088 m_freem(sc->sc_rxpending); 4089 } 4090 m->m_pkthdr.rcvif = ifp; 4091 m->m_pkthdr.len = len; 4092 sc->sc_rxpending = m; 4093 goto rx_next; 4094 } else if (sc->sc_rxpending != NULL) { 4095 /* 4096 * This is the second part of a jumbogram, 4097 * chain it to the first mbuf, adjust the 4098 * frame length, and clear the rxpending state. 4099 */ 4100 sc->sc_rxpending->m_next = m; 4101 sc->sc_rxpending->m_pkthdr.len += len; 4102 m = sc->sc_rxpending; 4103 sc->sc_rxpending = NULL; 4104 } else { 4105 /* 4106 * Normal single-descriptor receive; setup 4107 * the rcvif and packet length. 4108 */ 4109 m->m_pkthdr.rcvif = ifp; 4110 m->m_pkthdr.len = len; 4111 } 4112 4113 ifp->if_ipackets++; 4114 sc->sc_stats.ast_ant_rx[rs->rs_antenna]++; 4115 4116 /* 4117 * Populate the rx status block. When there are bpf 4118 * listeners we do the additional work to provide 4119 * complete status. Otherwise we fill in only the 4120 * material required by ieee80211_input. Note that 4121 * noise setting is filled in above. 4122 */ 4123 if (ieee80211_radiotap_active(ic)) 4124 ath_rx_tap(ifp, m, rs, tsf, nf); 4125 4126 /* 4127 * From this point on we assume the frame is at least 4128 * as large as ieee80211_frame_min; verify that. 4129 */ 4130 if (len < IEEE80211_MIN_LEN) { 4131 if (!ieee80211_radiotap_active(ic)) { 4132 DPRINTF(sc, ATH_DEBUG_RECV, 4133 "%s: short packet %d\n", __func__, len); 4134 sc->sc_stats.ast_rx_tooshort++; 4135 } else { 4136 /* NB: in particular this captures ack's */ 4137 ieee80211_radiotap_rx_all(ic, m); 4138 } 4139 m_freem(m); 4140 goto rx_next; 4141 } 4142 4143 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 4144 const HAL_RATE_TABLE *rt = sc->sc_currates; 4145 uint8_t rix = rt->rateCodeToIndex[rs->rs_rate]; 4146 4147 ieee80211_dump_pkt(ic, mtod(m, caddr_t), len, 4148 sc->sc_hwmap[rix].ieeerate, rs->rs_rssi); 4149 } 4150 4151 m_adj(m, -IEEE80211_CRC_LEN); 4152 4153 /* 4154 * Locate the node for sender, track state, and then 4155 * pass the (referenced) node up to the 802.11 layer 4156 * for its use. 4157 */ 4158 ni = ieee80211_find_rxnode_withkey(ic, 4159 mtod(m, const struct ieee80211_frame_min *), 4160 rs->rs_keyix == HAL_RXKEYIX_INVALID ? 4161 IEEE80211_KEYIX_NONE : rs->rs_keyix); 4162 sc->sc_lastrs = rs; 4163 4164 if (rs->rs_isaggr) 4165 sc->sc_stats.ast_rx_agg++; 4166 4167 if (ni != NULL) { 4168 /* 4169 * Only punt packets for ampdu reorder processing for 4170 * 11n nodes; net80211 enforces that M_AMPDU is only 4171 * set for 11n nodes. 4172 */ 4173 if (ni->ni_flags & IEEE80211_NODE_HT) 4174 m->m_flags |= M_AMPDU; 4175 4176 /* 4177 * Sending station is known, dispatch directly. 4178 */ 4179 type = ieee80211_input(ni, m, rs->rs_rssi, nf); 4180 ieee80211_free_node(ni); 4181 /* 4182 * Arrange to update the last rx timestamp only for 4183 * frames from our ap when operating in station mode. 4184 * This assumes the rx key is always setup when 4185 * associated. 4186 */ 4187 if (ic->ic_opmode == IEEE80211_M_STA && 4188 rs->rs_keyix != HAL_RXKEYIX_INVALID) 4189 ngood++; 4190 } else { 4191 type = ieee80211_input_all(ic, m, rs->rs_rssi, nf); 4192 } 4193 /* 4194 * Track rx rssi and do any rx antenna management. 4195 */ 4196 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi); 4197 if (sc->sc_diversity) { 4198 /* 4199 * When using fast diversity, change the default rx 4200 * antenna if diversity chooses the other antenna 3 4201 * times in a row. 4202 */ 4203 if (sc->sc_defant != rs->rs_antenna) { 4204 if (++sc->sc_rxotherant >= 3) 4205 ath_setdefantenna(sc, rs->rs_antenna); 4206 } else 4207 sc->sc_rxotherant = 0; 4208 } 4209 4210 /* Newer school diversity - kite specific for now */ 4211 /* XXX perhaps migrate the normal diversity code to this? */ 4212 if ((ah)->ah_rxAntCombDiversity) 4213 (*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz); 4214 4215 if (sc->sc_softled) { 4216 /* 4217 * Blink for any data frame. Otherwise do a 4218 * heartbeat-style blink when idle. The latter 4219 * is mainly for station mode where we depend on 4220 * periodic beacon frames to trigger the poll event. 4221 */ 4222 if (type == IEEE80211_FC0_TYPE_DATA) { 4223 const HAL_RATE_TABLE *rt = sc->sc_currates; 4224 ath_led_event(sc, 4225 rt->rateCodeToIndex[rs->rs_rate]); 4226 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 4227 ath_led_event(sc, 0); 4228 } 4229 rx_next: 4230 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 4231 } while (ath_rxbuf_init(sc, bf) == 0); 4232 4233 /* rx signal state monitoring */ 4234 ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan); 4235 if (ngood) 4236 sc->sc_lastrx = tsf; 4237 4238 CTR2(ATH_KTR_INTR, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood); 4239 /* Queue DFS tasklet if needed */ 4240 if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan)) 4241 taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask); 4242 4243 /* 4244 * Now that all the RX frames were handled that 4245 * need to be handled, kick the PCU if there's 4246 * been an RXEOL condition. 4247 */ 4248 ATH_PCU_LOCK(sc); 4249 if (resched && sc->sc_kickpcu) { 4250 CTR0(ATH_KTR_ERR, "ath_rx_proc: kickpcu"); 4251 device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n", 4252 __func__, npkts); 4253 4254 /* XXX rxslink? */ 4255 /* 4256 * XXX can we hold the PCU lock here? 4257 * Are there any net80211 buffer calls involved? 4258 */ 4259 bf = TAILQ_FIRST(&sc->sc_rxbuf); 4260 ath_hal_putrxbuf(ah, bf->bf_daddr); 4261 ath_hal_rxena(ah); /* enable recv descriptors */ 4262 ath_mode_init(sc); /* set filters, etc. */ 4263 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4264 4265 ath_hal_intrset(ah, sc->sc_imask); 4266 sc->sc_kickpcu = 0; 4267 } 4268 ATH_PCU_UNLOCK(sc); 4269 4270 /* XXX check this inside of IF_LOCK? */ 4271 if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) { 4272 #ifdef IEEE80211_SUPPORT_SUPERG 4273 ieee80211_ff_age_all(ic, 100); 4274 #endif 4275 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 4276 ath_start(ifp); 4277 } 4278 #undef PA2DESC 4279 4280 ATH_PCU_LOCK(sc); 4281 sc->sc_rxproc_cnt--; 4282 ATH_PCU_UNLOCK(sc); 4283 } 4284 4285 static void 4286 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4287 { 4288 txq->axq_qnum = qnum; 4289 txq->axq_ac = 0; 4290 txq->axq_depth = 0; 4291 txq->axq_aggr_depth = 0; 4292 txq->axq_intrcnt = 0; 4293 txq->axq_link = NULL; 4294 txq->axq_softc = sc; 4295 TAILQ_INIT(&txq->axq_q); 4296 TAILQ_INIT(&txq->axq_tidq); 4297 ATH_TXQ_LOCK_INIT(sc, txq); 4298 } 4299 4300 /* 4301 * Setup a h/w transmit queue. 4302 */ 4303 static struct ath_txq * 4304 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4305 { 4306 #define N(a) (sizeof(a)/sizeof(a[0])) 4307 struct ath_hal *ah = sc->sc_ah; 4308 HAL_TXQ_INFO qi; 4309 int qnum; 4310 4311 memset(&qi, 0, sizeof(qi)); 4312 qi.tqi_subtype = subtype; 4313 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4314 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4315 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4316 /* 4317 * Enable interrupts only for EOL and DESC conditions. 4318 * We mark tx descriptors to receive a DESC interrupt 4319 * when a tx queue gets deep; otherwise waiting for the 4320 * EOL to reap descriptors. Note that this is done to 4321 * reduce interrupt load and this only defers reaping 4322 * descriptors, never transmitting frames. Aside from 4323 * reducing interrupts this also permits more concurrency. 4324 * The only potential downside is if the tx queue backs 4325 * up in which case the top half of the kernel may backup 4326 * due to a lack of tx descriptors. 4327 */ 4328 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 4329 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4330 if (qnum == -1) { 4331 /* 4332 * NB: don't print a message, this happens 4333 * normally on parts with too few tx queues 4334 */ 4335 return NULL; 4336 } 4337 if (qnum >= N(sc->sc_txq)) { 4338 device_printf(sc->sc_dev, 4339 "hal qnum %u out of range, max %zu!\n", 4340 qnum, N(sc->sc_txq)); 4341 ath_hal_releasetxqueue(ah, qnum); 4342 return NULL; 4343 } 4344 if (!ATH_TXQ_SETUP(sc, qnum)) { 4345 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4346 sc->sc_txqsetup |= 1<<qnum; 4347 } 4348 return &sc->sc_txq[qnum]; 4349 #undef N 4350 } 4351 4352 /* 4353 * Setup a hardware data transmit queue for the specified 4354 * access control. The hal may not support all requested 4355 * queues in which case it will return a reference to a 4356 * previously setup queue. We record the mapping from ac's 4357 * to h/w queues for use by ath_tx_start and also track 4358 * the set of h/w queues being used to optimize work in the 4359 * transmit interrupt handler and related routines. 4360 */ 4361 static int 4362 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4363 { 4364 #define N(a) (sizeof(a)/sizeof(a[0])) 4365 struct ath_txq *txq; 4366 4367 if (ac >= N(sc->sc_ac2q)) { 4368 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4369 ac, N(sc->sc_ac2q)); 4370 return 0; 4371 } 4372 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4373 if (txq != NULL) { 4374 txq->axq_ac = ac; 4375 sc->sc_ac2q[ac] = txq; 4376 return 1; 4377 } else 4378 return 0; 4379 #undef N 4380 } 4381 4382 /* 4383 * Update WME parameters for a transmit queue. 4384 */ 4385 static int 4386 ath_txq_update(struct ath_softc *sc, int ac) 4387 { 4388 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4389 #define ATH_TXOP_TO_US(v) (v<<5) 4390 struct ifnet *ifp = sc->sc_ifp; 4391 struct ieee80211com *ic = ifp->if_l2com; 4392 struct ath_txq *txq = sc->sc_ac2q[ac]; 4393 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4394 struct ath_hal *ah = sc->sc_ah; 4395 HAL_TXQ_INFO qi; 4396 4397 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4398 #ifdef IEEE80211_SUPPORT_TDMA 4399 if (sc->sc_tdma) { 4400 /* 4401 * AIFS is zero so there's no pre-transmit wait. The 4402 * burst time defines the slot duration and is configured 4403 * through net80211. The QCU is setup to not do post-xmit 4404 * back off, lockout all lower-priority QCU's, and fire 4405 * off the DMA beacon alert timer which is setup based 4406 * on the slot configuration. 4407 */ 4408 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4409 | HAL_TXQ_TXERRINT_ENABLE 4410 | HAL_TXQ_TXURNINT_ENABLE 4411 | HAL_TXQ_TXEOLINT_ENABLE 4412 | HAL_TXQ_DBA_GATED 4413 | HAL_TXQ_BACKOFF_DISABLE 4414 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4415 ; 4416 qi.tqi_aifs = 0; 4417 /* XXX +dbaprep? */ 4418 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4419 qi.tqi_burstTime = qi.tqi_readyTime; 4420 } else { 4421 #endif 4422 /* 4423 * XXX shouldn't this just use the default flags 4424 * used in the previous queue setup? 4425 */ 4426 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4427 | HAL_TXQ_TXERRINT_ENABLE 4428 | HAL_TXQ_TXDESCINT_ENABLE 4429 | HAL_TXQ_TXURNINT_ENABLE 4430 | HAL_TXQ_TXEOLINT_ENABLE 4431 ; 4432 qi.tqi_aifs = wmep->wmep_aifsn; 4433 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4434 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4435 qi.tqi_readyTime = 0; 4436 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 4437 #ifdef IEEE80211_SUPPORT_TDMA 4438 } 4439 #endif 4440 4441 DPRINTF(sc, ATH_DEBUG_RESET, 4442 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4443 __func__, txq->axq_qnum, qi.tqi_qflags, 4444 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4445 4446 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4447 if_printf(ifp, "unable to update hardware queue " 4448 "parameters for %s traffic!\n", 4449 ieee80211_wme_acnames[ac]); 4450 return 0; 4451 } else { 4452 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4453 return 1; 4454 } 4455 #undef ATH_TXOP_TO_US 4456 #undef ATH_EXPONENT_TO_VALUE 4457 } 4458 4459 /* 4460 * Callback from the 802.11 layer to update WME parameters. 4461 */ 4462 static int 4463 ath_wme_update(struct ieee80211com *ic) 4464 { 4465 struct ath_softc *sc = ic->ic_ifp->if_softc; 4466 4467 return !ath_txq_update(sc, WME_AC_BE) || 4468 !ath_txq_update(sc, WME_AC_BK) || 4469 !ath_txq_update(sc, WME_AC_VI) || 4470 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4471 } 4472 4473 /* 4474 * Reclaim resources for a setup queue. 4475 */ 4476 static void 4477 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4478 { 4479 4480 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4481 ATH_TXQ_LOCK_DESTROY(txq); 4482 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4483 } 4484 4485 /* 4486 * Reclaim all tx queue resources. 4487 */ 4488 static void 4489 ath_tx_cleanup(struct ath_softc *sc) 4490 { 4491 int i; 4492 4493 ATH_TXBUF_LOCK_DESTROY(sc); 4494 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4495 if (ATH_TXQ_SETUP(sc, i)) 4496 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4497 } 4498 4499 /* 4500 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4501 * using the current rates in sc_rixmap. 4502 */ 4503 int 4504 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4505 { 4506 int rix = sc->sc_rixmap[rate]; 4507 /* NB: return lowest rix for invalid rate */ 4508 return (rix == 0xff ? 0 : rix); 4509 } 4510 4511 static void 4512 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4513 struct ath_buf *bf) 4514 { 4515 struct ieee80211_node *ni = bf->bf_node; 4516 struct ifnet *ifp = sc->sc_ifp; 4517 struct ieee80211com *ic = ifp->if_l2com; 4518 int sr, lr, pri; 4519 4520 if (ts->ts_status == 0) { 4521 u_int8_t txant = ts->ts_antenna; 4522 sc->sc_stats.ast_ant_tx[txant]++; 4523 sc->sc_ant_tx[txant]++; 4524 if (ts->ts_finaltsi != 0) 4525 sc->sc_stats.ast_tx_altrate++; 4526 pri = M_WME_GETAC(bf->bf_m); 4527 if (pri >= WME_AC_VO) 4528 ic->ic_wme.wme_hipri_traffic++; 4529 if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) 4530 ni->ni_inact = ni->ni_inact_reload; 4531 } else { 4532 if (ts->ts_status & HAL_TXERR_XRETRY) 4533 sc->sc_stats.ast_tx_xretries++; 4534 if (ts->ts_status & HAL_TXERR_FIFO) 4535 sc->sc_stats.ast_tx_fifoerr++; 4536 if (ts->ts_status & HAL_TXERR_FILT) 4537 sc->sc_stats.ast_tx_filtered++; 4538 if (ts->ts_status & HAL_TXERR_XTXOP) 4539 sc->sc_stats.ast_tx_xtxop++; 4540 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4541 sc->sc_stats.ast_tx_timerexpired++; 4542 4543 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 4544 sc->sc_stats.ast_tx_data_underrun++; 4545 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 4546 sc->sc_stats.ast_tx_delim_underrun++; 4547 4548 if (bf->bf_m->m_flags & M_FF) 4549 sc->sc_stats.ast_ff_txerr++; 4550 } 4551 /* XXX when is this valid? */ 4552 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 4553 sc->sc_stats.ast_tx_desccfgerr++; 4554 4555 sr = ts->ts_shortretry; 4556 lr = ts->ts_longretry; 4557 sc->sc_stats.ast_tx_shortretry += sr; 4558 sc->sc_stats.ast_tx_longretry += lr; 4559 4560 } 4561 4562 /* 4563 * The default completion. If fail is 1, this means 4564 * "please don't retry the frame, and just return -1 status 4565 * to the net80211 stack. 4566 */ 4567 void 4568 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4569 { 4570 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4571 int st; 4572 4573 if (fail == 1) 4574 st = -1; 4575 else 4576 st = ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) ? 4577 ts->ts_status : HAL_TXERR_XRETRY; 4578 4579 if (bf->bf_state.bfs_dobaw) 4580 device_printf(sc->sc_dev, 4581 "%s: dobaw should've been cleared!\n", __func__); 4582 if (bf->bf_next != NULL) 4583 device_printf(sc->sc_dev, 4584 "%s: bf_next not NULL!\n", __func__); 4585 4586 /* 4587 * Do any tx complete callback. Note this must 4588 * be done before releasing the node reference. 4589 * This will free the mbuf, release the net80211 4590 * node and recycle the ath_buf. 4591 */ 4592 ath_tx_freebuf(sc, bf, st); 4593 } 4594 4595 /* 4596 * Update rate control with the given completion status. 4597 */ 4598 void 4599 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4600 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4601 int nframes, int nbad) 4602 { 4603 struct ath_node *an; 4604 4605 /* Only for unicast frames */ 4606 if (ni == NULL) 4607 return; 4608 4609 an = ATH_NODE(ni); 4610 4611 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4612 ATH_NODE_LOCK(an); 4613 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4614 ATH_NODE_UNLOCK(an); 4615 } 4616 } 4617 4618 /* 4619 * Update the busy status of the last frame on the free list. 4620 * When doing TDMA, the busy flag tracks whether the hardware 4621 * currently points to this buffer or not, and thus gated DMA 4622 * may restart by re-reading the last descriptor in this 4623 * buffer. 4624 * 4625 * This should be called in the completion function once one 4626 * of the buffers has been used. 4627 */ 4628 static void 4629 ath_tx_update_busy(struct ath_softc *sc) 4630 { 4631 struct ath_buf *last; 4632 4633 /* 4634 * Since the last frame may still be marked 4635 * as ATH_BUF_BUSY, unmark it here before 4636 * finishing the frame processing. 4637 * Since we've completed a frame (aggregate 4638 * or otherwise), the hardware has moved on 4639 * and is no longer referencing the previous 4640 * descriptor. 4641 */ 4642 ATH_TXBUF_LOCK_ASSERT(sc); 4643 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4644 if (last != NULL) 4645 last->bf_flags &= ~ATH_BUF_BUSY; 4646 } 4647 4648 4649 /* 4650 * Process completed xmit descriptors from the specified queue. 4651 * Kick the packet scheduler if needed. This can occur from this 4652 * particular task. 4653 */ 4654 static int 4655 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4656 { 4657 struct ath_hal *ah = sc->sc_ah; 4658 struct ath_buf *bf; 4659 struct ath_desc *ds; 4660 struct ath_tx_status *ts; 4661 struct ieee80211_node *ni; 4662 struct ath_node *an; 4663 int nacked; 4664 HAL_STATUS status; 4665 4666 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4667 __func__, txq->axq_qnum, 4668 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4669 txq->axq_link); 4670 nacked = 0; 4671 for (;;) { 4672 ATH_TXQ_LOCK(txq); 4673 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4674 bf = TAILQ_FIRST(&txq->axq_q); 4675 if (bf == NULL) { 4676 ATH_TXQ_UNLOCK(txq); 4677 break; 4678 } 4679 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4680 ts = &bf->bf_status.ds_txstat; 4681 status = ath_hal_txprocdesc(ah, ds, ts); 4682 #ifdef ATH_DEBUG 4683 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4684 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4685 status == HAL_OK); 4686 #endif 4687 if (status == HAL_EINPROGRESS) { 4688 ATH_TXQ_UNLOCK(txq); 4689 break; 4690 } 4691 ATH_TXQ_REMOVE(txq, bf, bf_list); 4692 #ifdef IEEE80211_SUPPORT_TDMA 4693 if (txq->axq_depth > 0) { 4694 /* 4695 * More frames follow. Mark the buffer busy 4696 * so it's not re-used while the hardware may 4697 * still re-read the link field in the descriptor. 4698 * 4699 * Use the last buffer in an aggregate as that 4700 * is where the hardware may be - intermediate 4701 * descriptors won't be "busy". 4702 */ 4703 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4704 } else 4705 #else 4706 if (txq->axq_depth == 0) 4707 #endif 4708 txq->axq_link = NULL; 4709 if (bf->bf_state.bfs_aggr) 4710 txq->axq_aggr_depth--; 4711 4712 ni = bf->bf_node; 4713 /* 4714 * If unicast frame was ack'd update RSSI, 4715 * including the last rx time used to 4716 * workaround phantom bmiss interrupts. 4717 */ 4718 if (ni != NULL && ts->ts_status == 0 && 4719 ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)) { 4720 nacked++; 4721 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4722 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4723 ts->ts_rssi); 4724 } 4725 ATH_TXQ_UNLOCK(txq); 4726 4727 /* If unicast frame, update general statistics */ 4728 if (ni != NULL) { 4729 an = ATH_NODE(ni); 4730 /* update statistics */ 4731 ath_tx_update_stats(sc, ts, bf); 4732 } 4733 4734 /* 4735 * Call the completion handler. 4736 * The completion handler is responsible for 4737 * calling the rate control code. 4738 * 4739 * Frames with no completion handler get the 4740 * rate control code called here. 4741 */ 4742 if (bf->bf_comp == NULL) { 4743 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4744 (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) { 4745 /* 4746 * XXX assume this isn't an aggregate 4747 * frame. 4748 */ 4749 ath_tx_update_ratectrl(sc, ni, 4750 bf->bf_state.bfs_rc, ts, 4751 bf->bf_state.bfs_pktlen, 1, 4752 (ts->ts_status == 0 ? 0 : 1)); 4753 } 4754 ath_tx_default_comp(sc, bf, 0); 4755 } else 4756 bf->bf_comp(sc, bf, 0); 4757 } 4758 #ifdef IEEE80211_SUPPORT_SUPERG 4759 /* 4760 * Flush fast-frame staging queue when traffic slows. 4761 */ 4762 if (txq->axq_depth <= 1) 4763 ieee80211_ff_flush(ic, txq->axq_ac); 4764 #endif 4765 4766 /* Kick the TXQ scheduler */ 4767 if (dosched) { 4768 ATH_TXQ_LOCK(txq); 4769 ath_txq_sched(sc, txq); 4770 ATH_TXQ_UNLOCK(txq); 4771 } 4772 4773 return nacked; 4774 } 4775 4776 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4777 4778 /* 4779 * Deferred processing of transmit interrupt; special-cased 4780 * for a single hardware transmit queue (e.g. 5210 and 5211). 4781 */ 4782 static void 4783 ath_tx_proc_q0(void *arg, int npending) 4784 { 4785 struct ath_softc *sc = arg; 4786 struct ifnet *ifp = sc->sc_ifp; 4787 uint32_t txqs; 4788 4789 ATH_PCU_LOCK(sc); 4790 sc->sc_txproc_cnt++; 4791 txqs = sc->sc_txq_active; 4792 sc->sc_txq_active &= ~txqs; 4793 ATH_PCU_UNLOCK(sc); 4794 4795 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4796 /* XXX why is lastrx updated in tx code? */ 4797 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4798 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4799 ath_tx_processq(sc, sc->sc_cabq, 1); 4800 /* XXX check this inside of IF_LOCK? */ 4801 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4802 sc->sc_wd_timer = 0; 4803 4804 if (sc->sc_softled) 4805 ath_led_event(sc, sc->sc_txrix); 4806 4807 ATH_PCU_LOCK(sc); 4808 sc->sc_txproc_cnt--; 4809 ATH_PCU_UNLOCK(sc); 4810 4811 ath_start(ifp); 4812 } 4813 4814 /* 4815 * Deferred processing of transmit interrupt; special-cased 4816 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4817 */ 4818 static void 4819 ath_tx_proc_q0123(void *arg, int npending) 4820 { 4821 struct ath_softc *sc = arg; 4822 struct ifnet *ifp = sc->sc_ifp; 4823 int nacked; 4824 uint32_t txqs; 4825 4826 ATH_PCU_LOCK(sc); 4827 sc->sc_txproc_cnt++; 4828 txqs = sc->sc_txq_active; 4829 sc->sc_txq_active &= ~txqs; 4830 ATH_PCU_UNLOCK(sc); 4831 4832 /* 4833 * Process each active queue. 4834 */ 4835 nacked = 0; 4836 if (TXQACTIVE(txqs, 0)) 4837 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4838 if (TXQACTIVE(txqs, 1)) 4839 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4840 if (TXQACTIVE(txqs, 2)) 4841 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4842 if (TXQACTIVE(txqs, 3)) 4843 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4844 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4845 ath_tx_processq(sc, sc->sc_cabq, 1); 4846 if (nacked) 4847 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4848 4849 /* XXX check this inside of IF_LOCK? */ 4850 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4851 sc->sc_wd_timer = 0; 4852 4853 if (sc->sc_softled) 4854 ath_led_event(sc, sc->sc_txrix); 4855 4856 ATH_PCU_LOCK(sc); 4857 sc->sc_txproc_cnt--; 4858 ATH_PCU_UNLOCK(sc); 4859 4860 ath_start(ifp); 4861 } 4862 4863 /* 4864 * Deferred processing of transmit interrupt. 4865 */ 4866 static void 4867 ath_tx_proc(void *arg, int npending) 4868 { 4869 struct ath_softc *sc = arg; 4870 struct ifnet *ifp = sc->sc_ifp; 4871 int i, nacked; 4872 uint32_t txqs; 4873 4874 ATH_PCU_LOCK(sc); 4875 sc->sc_txproc_cnt++; 4876 txqs = sc->sc_txq_active; 4877 sc->sc_txq_active &= ~txqs; 4878 ATH_PCU_UNLOCK(sc); 4879 4880 /* 4881 * Process each active queue. 4882 */ 4883 nacked = 0; 4884 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4885 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4886 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4887 if (nacked) 4888 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4889 4890 /* XXX check this inside of IF_LOCK? */ 4891 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4892 sc->sc_wd_timer = 0; 4893 4894 if (sc->sc_softled) 4895 ath_led_event(sc, sc->sc_txrix); 4896 4897 ATH_PCU_LOCK(sc); 4898 sc->sc_txproc_cnt--; 4899 ATH_PCU_UNLOCK(sc); 4900 4901 ath_start(ifp); 4902 } 4903 #undef TXQACTIVE 4904 4905 /* 4906 * Return a buffer to the pool and update the 'busy' flag on the 4907 * previous 'tail' entry. 4908 * 4909 * This _must_ only be called when the buffer is involved in a completed 4910 * TX. The logic is that if it was part of an active TX, the previous 4911 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4912 * for restart (eg for TDMA.) 4913 * 4914 * The caller must free the mbuf and recycle the node reference. 4915 */ 4916 void 4917 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4918 { 4919 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4920 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 4921 4922 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4923 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4924 4925 ATH_TXBUF_LOCK(sc); 4926 ath_tx_update_busy(sc); 4927 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4928 ATH_TXBUF_UNLOCK(sc); 4929 } 4930 4931 /* 4932 * This is currently used by ath_tx_draintxq() and 4933 * ath_tx_tid_free_pkts(). 4934 * 4935 * It recycles a single ath_buf. 4936 */ 4937 void 4938 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4939 { 4940 struct ieee80211_node *ni = bf->bf_node; 4941 struct mbuf *m0 = bf->bf_m; 4942 4943 bf->bf_node = NULL; 4944 bf->bf_m = NULL; 4945 4946 /* Free the buffer, it's not needed any longer */ 4947 ath_freebuf(sc, bf); 4948 4949 if (ni != NULL) { 4950 /* 4951 * Do any callback and reclaim the node reference. 4952 */ 4953 if (m0->m_flags & M_TXCB) 4954 ieee80211_process_callback(ni, m0, status); 4955 ieee80211_free_node(ni); 4956 } 4957 m_freem(m0); 4958 4959 /* 4960 * XXX the buffer used to be freed -after-, but the DMA map was 4961 * freed where ath_freebuf() now is. I've no idea what this 4962 * will do. 4963 */ 4964 } 4965 4966 void 4967 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4968 { 4969 #ifdef ATH_DEBUG 4970 struct ath_hal *ah = sc->sc_ah; 4971 #endif 4972 struct ath_buf *bf; 4973 u_int ix; 4974 4975 /* 4976 * NB: this assumes output has been stopped and 4977 * we do not need to block ath_tx_proc 4978 */ 4979 ATH_TXBUF_LOCK(sc); 4980 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4981 if (bf != NULL) 4982 bf->bf_flags &= ~ATH_BUF_BUSY; 4983 ATH_TXBUF_UNLOCK(sc); 4984 4985 for (ix = 0;; ix++) { 4986 ATH_TXQ_LOCK(txq); 4987 bf = TAILQ_FIRST(&txq->axq_q); 4988 if (bf == NULL) { 4989 txq->axq_link = NULL; 4990 ATH_TXQ_UNLOCK(txq); 4991 break; 4992 } 4993 ATH_TXQ_REMOVE(txq, bf, bf_list); 4994 if (bf->bf_state.bfs_aggr) 4995 txq->axq_aggr_depth--; 4996 #ifdef ATH_DEBUG 4997 if (sc->sc_debug & ATH_DEBUG_RESET) { 4998 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4999 5000 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, 5001 ath_hal_txprocdesc(ah, bf->bf_lastds, 5002 &bf->bf_status.ds_txstat) == HAL_OK); 5003 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5004 bf->bf_m->m_len, 0, -1); 5005 } 5006 #endif /* ATH_DEBUG */ 5007 /* 5008 * Since we're now doing magic in the completion 5009 * functions, we -must- call it for aggregation 5010 * destinations or BAW tracking will get upset. 5011 */ 5012 /* 5013 * Clear ATH_BUF_BUSY; the completion handler 5014 * will free the buffer. 5015 */ 5016 ATH_TXQ_UNLOCK(txq); 5017 bf->bf_flags &= ~ATH_BUF_BUSY; 5018 if (bf->bf_comp) 5019 bf->bf_comp(sc, bf, 1); 5020 else 5021 ath_tx_default_comp(sc, bf, 1); 5022 } 5023 5024 /* 5025 * Drain software queued frames which are on 5026 * active TIDs. 5027 */ 5028 ath_tx_txq_drain(sc, txq); 5029 } 5030 5031 static void 5032 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5033 { 5034 struct ath_hal *ah = sc->sc_ah; 5035 5036 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5037 __func__, txq->axq_qnum, 5038 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5039 txq->axq_link); 5040 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5041 } 5042 5043 static int 5044 ath_stoptxdma(struct ath_softc *sc) 5045 { 5046 struct ath_hal *ah = sc->sc_ah; 5047 int i; 5048 5049 /* XXX return value */ 5050 if (sc->sc_invalid) 5051 return 0; 5052 5053 if (!sc->sc_invalid) { 5054 /* don't touch the hardware if marked invalid */ 5055 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5056 __func__, sc->sc_bhalq, 5057 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5058 NULL); 5059 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5060 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5061 if (ATH_TXQ_SETUP(sc, i)) 5062 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5063 } 5064 5065 return 1; 5066 } 5067 5068 /* 5069 * Drain the transmit queues and reclaim resources. 5070 */ 5071 static void 5072 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5073 { 5074 #ifdef ATH_DEBUG 5075 struct ath_hal *ah = sc->sc_ah; 5076 #endif 5077 struct ifnet *ifp = sc->sc_ifp; 5078 int i; 5079 5080 (void) ath_stoptxdma(sc); 5081 5082 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5083 /* 5084 * XXX TODO: should we just handle the completed TX frames 5085 * here, whether or not the reset is a full one or not? 5086 */ 5087 if (ATH_TXQ_SETUP(sc, i)) { 5088 if (reset_type == ATH_RESET_NOLOSS) 5089 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5090 else 5091 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5092 } 5093 } 5094 #ifdef ATH_DEBUG 5095 if (sc->sc_debug & ATH_DEBUG_RESET) { 5096 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5097 if (bf != NULL && bf->bf_m != NULL) { 5098 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5099 ath_hal_txprocdesc(ah, bf->bf_lastds, 5100 &bf->bf_status.ds_txstat) == HAL_OK); 5101 ieee80211_dump_pkt(ifp->if_l2com, 5102 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5103 0, -1); 5104 } 5105 } 5106 #endif /* ATH_DEBUG */ 5107 /* XXX check this inside of IF_LOCK? */ 5108 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5109 sc->sc_wd_timer = 0; 5110 } 5111 5112 /* 5113 * Disable the receive h/w in preparation for a reset. 5114 */ 5115 static void 5116 ath_stoprecv(struct ath_softc *sc, int dodelay) 5117 { 5118 #define PA2DESC(_sc, _pa) \ 5119 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 5120 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 5121 struct ath_hal *ah = sc->sc_ah; 5122 5123 ath_hal_stoppcurecv(ah); /* disable PCU */ 5124 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 5125 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 5126 if (dodelay) 5127 DELAY(3000); /* 3ms is long enough for 1 frame */ 5128 #ifdef ATH_DEBUG 5129 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 5130 struct ath_buf *bf; 5131 u_int ix; 5132 5133 printf("%s: rx queue %p, link %p\n", __func__, 5134 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 5135 ix = 0; 5136 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5137 struct ath_desc *ds = bf->bf_desc; 5138 struct ath_rx_status *rs = &bf->bf_status.ds_rxstat; 5139 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 5140 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 5141 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 5142 ath_printrxbuf(sc, bf, ix, status == HAL_OK); 5143 ix++; 5144 } 5145 } 5146 #endif 5147 if (sc->sc_rxpending != NULL) { 5148 m_freem(sc->sc_rxpending); 5149 sc->sc_rxpending = NULL; 5150 } 5151 sc->sc_rxlink = NULL; /* just in case */ 5152 #undef PA2DESC 5153 } 5154 5155 /* 5156 * Enable the receive h/w following a reset. 5157 */ 5158 static int 5159 ath_startrecv(struct ath_softc *sc) 5160 { 5161 struct ath_hal *ah = sc->sc_ah; 5162 struct ath_buf *bf; 5163 5164 sc->sc_rxlink = NULL; 5165 sc->sc_rxpending = NULL; 5166 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5167 int error = ath_rxbuf_init(sc, bf); 5168 if (error != 0) { 5169 DPRINTF(sc, ATH_DEBUG_RECV, 5170 "%s: ath_rxbuf_init failed %d\n", 5171 __func__, error); 5172 return error; 5173 } 5174 } 5175 5176 bf = TAILQ_FIRST(&sc->sc_rxbuf); 5177 ath_hal_putrxbuf(ah, bf->bf_daddr); 5178 ath_hal_rxena(ah); /* enable recv descriptors */ 5179 ath_mode_init(sc); /* set filters, etc. */ 5180 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 5181 return 0; 5182 } 5183 5184 /* 5185 * Update internal state after a channel change. 5186 */ 5187 static void 5188 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5189 { 5190 enum ieee80211_phymode mode; 5191 5192 /* 5193 * Change channels and update the h/w rate map 5194 * if we're switching; e.g. 11a to 11b/g. 5195 */ 5196 mode = ieee80211_chan2mode(chan); 5197 if (mode != sc->sc_curmode) 5198 ath_setcurmode(sc, mode); 5199 sc->sc_curchan = chan; 5200 } 5201 5202 /* 5203 * Set/change channels. If the channel is really being changed, 5204 * it's done by resetting the chip. To accomplish this we must 5205 * first cleanup any pending DMA, then restart stuff after a la 5206 * ath_init. 5207 */ 5208 static int 5209 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5210 { 5211 struct ifnet *ifp = sc->sc_ifp; 5212 struct ieee80211com *ic = ifp->if_l2com; 5213 struct ath_hal *ah = sc->sc_ah; 5214 int ret = 0; 5215 int dointr = 0; 5216 5217 /* Treat this as an interface reset */ 5218 ATH_PCU_LOCK(sc); 5219 if (sc->sc_inreset_cnt > 0) 5220 device_printf(sc->sc_dev, "%s: danger! concurrent reset!\n", 5221 __func__); 5222 sc->sc_inreset_cnt++; 5223 if (chan != sc->sc_curchan) { 5224 dointr = 1; 5225 /* XXX only do this if inreset_cnt is 1? */ 5226 ath_hal_intrset(ah, 0); 5227 } 5228 ATH_PCU_UNLOCK(sc); 5229 ath_txrx_stop(sc); 5230 5231 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5232 __func__, ieee80211_chan2ieee(ic, chan), 5233 chan->ic_freq, chan->ic_flags); 5234 if (chan != sc->sc_curchan) { 5235 HAL_STATUS status; 5236 /* 5237 * To switch channels clear any pending DMA operations; 5238 * wait long enough for the RX fifo to drain, reset the 5239 * hardware at the new frequency, and then re-enable 5240 * the relevant bits of the h/w. 5241 */ 5242 #if 0 5243 ath_hal_intrset(ah, 0); /* disable interrupts */ 5244 #endif 5245 ath_stoprecv(sc, 1); /* turn off frame recv */ 5246 /* 5247 * First, handle completed TX/RX frames. 5248 */ 5249 ath_rx_proc(sc, 0); 5250 ath_draintxq(sc, ATH_RESET_NOLOSS); 5251 /* 5252 * Next, flush the non-scheduled frames. 5253 */ 5254 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5255 5256 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 5257 if_printf(ifp, "%s: unable to reset " 5258 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5259 __func__, ieee80211_chan2ieee(ic, chan), 5260 chan->ic_freq, chan->ic_flags, status); 5261 ret = EIO; 5262 goto finish; 5263 } 5264 sc->sc_diversity = ath_hal_getdiversity(ah); 5265 5266 /* Let DFS at it in case it's a DFS channel */ 5267 ath_dfs_radar_enable(sc, ic->ic_curchan); 5268 5269 /* 5270 * Re-enable rx framework. 5271 */ 5272 if (ath_startrecv(sc) != 0) { 5273 if_printf(ifp, "%s: unable to restart recv logic\n", 5274 __func__); 5275 ret = EIO; 5276 goto finish; 5277 } 5278 5279 /* 5280 * Change channels and update the h/w rate map 5281 * if we're switching; e.g. 11a to 11b/g. 5282 */ 5283 ath_chan_change(sc, chan); 5284 5285 /* 5286 * Reset clears the beacon timers; reset them 5287 * here if needed. 5288 */ 5289 if (sc->sc_beacons) { /* restart beacons */ 5290 #ifdef IEEE80211_SUPPORT_TDMA 5291 if (sc->sc_tdma) 5292 ath_tdma_config(sc, NULL); 5293 else 5294 #endif 5295 ath_beacon_config(sc, NULL); 5296 } 5297 5298 #if 0 5299 /* 5300 * Re-enable interrupts. 5301 */ 5302 ath_hal_intrset(ah, sc->sc_imask); 5303 #endif 5304 } 5305 5306 finish: 5307 ATH_PCU_LOCK(sc); 5308 sc->sc_inreset_cnt--; 5309 /* XXX only do this if sc_inreset_cnt == 0? */ 5310 if (dointr) 5311 ath_hal_intrset(ah, sc->sc_imask); 5312 ATH_PCU_UNLOCK(sc); 5313 5314 /* XXX do this inside of IF_LOCK? */ 5315 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5316 ath_txrx_start(sc); 5317 /* XXX ath_start? */ 5318 5319 return ret; 5320 } 5321 5322 /* 5323 * Periodically recalibrate the PHY to account 5324 * for temperature/environment changes. 5325 */ 5326 static void 5327 ath_calibrate(void *arg) 5328 { 5329 struct ath_softc *sc = arg; 5330 struct ath_hal *ah = sc->sc_ah; 5331 struct ifnet *ifp = sc->sc_ifp; 5332 struct ieee80211com *ic = ifp->if_l2com; 5333 HAL_BOOL longCal, isCalDone; 5334 HAL_BOOL aniCal, shortCal = AH_FALSE; 5335 int nextcal; 5336 5337 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5338 goto restart; 5339 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5340 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5341 if (sc->sc_doresetcal) 5342 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5343 5344 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5345 if (aniCal) { 5346 sc->sc_stats.ast_ani_cal++; 5347 sc->sc_lastani = ticks; 5348 ath_hal_ani_poll(ah, sc->sc_curchan); 5349 } 5350 5351 if (longCal) { 5352 sc->sc_stats.ast_per_cal++; 5353 sc->sc_lastlongcal = ticks; 5354 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5355 /* 5356 * Rfgain is out of bounds, reset the chip 5357 * to load new gain values. 5358 */ 5359 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5360 "%s: rfgain change\n", __func__); 5361 sc->sc_stats.ast_per_rfgain++; 5362 /* 5363 * Drop lock - we can't hold it across the 5364 * ath_reset() call. Instead, we'll drop 5365 * out here, do a reset, then reschedule 5366 * the callout. 5367 */ 5368 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5369 sc->sc_resetcal = 0; 5370 sc->sc_doresetcal = AH_TRUE; 5371 ATH_UNLOCK(sc); 5372 ath_reset(ifp, ATH_RESET_NOLOSS); 5373 ATH_LOCK(sc); 5374 return; 5375 } 5376 /* 5377 * If this long cal is after an idle period, then 5378 * reset the data collection state so we start fresh. 5379 */ 5380 if (sc->sc_resetcal) { 5381 (void) ath_hal_calreset(ah, sc->sc_curchan); 5382 sc->sc_lastcalreset = ticks; 5383 sc->sc_lastshortcal = ticks; 5384 sc->sc_resetcal = 0; 5385 sc->sc_doresetcal = AH_TRUE; 5386 } 5387 } 5388 5389 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5390 if (shortCal || longCal) { 5391 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5392 if (longCal) { 5393 /* 5394 * Calibrate noise floor data again in case of change. 5395 */ 5396 ath_hal_process_noisefloor(ah); 5397 } 5398 } else { 5399 DPRINTF(sc, ATH_DEBUG_ANY, 5400 "%s: calibration of channel %u failed\n", 5401 __func__, sc->sc_curchan->ic_freq); 5402 sc->sc_stats.ast_per_calfail++; 5403 } 5404 if (shortCal) 5405 sc->sc_lastshortcal = ticks; 5406 } 5407 if (!isCalDone) { 5408 restart: 5409 /* 5410 * Use a shorter interval to potentially collect multiple 5411 * data samples required to complete calibration. Once 5412 * we're told the work is done we drop back to a longer 5413 * interval between requests. We're more aggressive doing 5414 * work when operating as an AP to improve operation right 5415 * after startup. 5416 */ 5417 sc->sc_lastshortcal = ticks; 5418 nextcal = ath_shortcalinterval*hz/1000; 5419 if (sc->sc_opmode != HAL_M_HOSTAP) 5420 nextcal *= 10; 5421 sc->sc_doresetcal = AH_TRUE; 5422 } else { 5423 /* nextcal should be the shortest time for next event */ 5424 nextcal = ath_longcalinterval*hz; 5425 if (sc->sc_lastcalreset == 0) 5426 sc->sc_lastcalreset = sc->sc_lastlongcal; 5427 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5428 sc->sc_resetcal = 1; /* setup reset next trip */ 5429 sc->sc_doresetcal = AH_FALSE; 5430 } 5431 /* ANI calibration may occur more often than short/long/resetcal */ 5432 if (ath_anicalinterval > 0) 5433 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5434 5435 if (nextcal != 0) { 5436 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5437 __func__, nextcal, isCalDone ? "" : "!"); 5438 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5439 } else { 5440 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5441 __func__); 5442 /* NB: don't rearm timer */ 5443 } 5444 } 5445 5446 static void 5447 ath_scan_start(struct ieee80211com *ic) 5448 { 5449 struct ifnet *ifp = ic->ic_ifp; 5450 struct ath_softc *sc = ifp->if_softc; 5451 struct ath_hal *ah = sc->sc_ah; 5452 u_int32_t rfilt; 5453 5454 /* XXX calibration timer? */ 5455 5456 sc->sc_scanning = 1; 5457 sc->sc_syncbeacon = 0; 5458 rfilt = ath_calcrxfilter(sc); 5459 ath_hal_setrxfilter(ah, rfilt); 5460 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5461 5462 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5463 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5464 } 5465 5466 static void 5467 ath_scan_end(struct ieee80211com *ic) 5468 { 5469 struct ifnet *ifp = ic->ic_ifp; 5470 struct ath_softc *sc = ifp->if_softc; 5471 struct ath_hal *ah = sc->sc_ah; 5472 u_int32_t rfilt; 5473 5474 sc->sc_scanning = 0; 5475 rfilt = ath_calcrxfilter(sc); 5476 ath_hal_setrxfilter(ah, rfilt); 5477 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5478 5479 ath_hal_process_noisefloor(ah); 5480 5481 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5482 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5483 sc->sc_curaid); 5484 } 5485 5486 static void 5487 ath_set_channel(struct ieee80211com *ic) 5488 { 5489 struct ifnet *ifp = ic->ic_ifp; 5490 struct ath_softc *sc = ifp->if_softc; 5491 5492 (void) ath_chan_set(sc, ic->ic_curchan); 5493 /* 5494 * If we are returning to our bss channel then mark state 5495 * so the next recv'd beacon's tsf will be used to sync the 5496 * beacon timers. Note that since we only hear beacons in 5497 * sta/ibss mode this has no effect in other operating modes. 5498 */ 5499 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5500 sc->sc_syncbeacon = 1; 5501 } 5502 5503 /* 5504 * Walk the vap list and check if there any vap's in RUN state. 5505 */ 5506 static int 5507 ath_isanyrunningvaps(struct ieee80211vap *this) 5508 { 5509 struct ieee80211com *ic = this->iv_ic; 5510 struct ieee80211vap *vap; 5511 5512 IEEE80211_LOCK_ASSERT(ic); 5513 5514 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5515 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5516 return 1; 5517 } 5518 return 0; 5519 } 5520 5521 static int 5522 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5523 { 5524 struct ieee80211com *ic = vap->iv_ic; 5525 struct ath_softc *sc = ic->ic_ifp->if_softc; 5526 struct ath_vap *avp = ATH_VAP(vap); 5527 struct ath_hal *ah = sc->sc_ah; 5528 struct ieee80211_node *ni = NULL; 5529 int i, error, stamode; 5530 u_int32_t rfilt; 5531 int csa_run_transition = 0; 5532 static const HAL_LED_STATE leds[] = { 5533 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5534 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5535 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5536 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5537 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5538 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5539 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5540 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5541 }; 5542 5543 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5544 ieee80211_state_name[vap->iv_state], 5545 ieee80211_state_name[nstate]); 5546 5547 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5548 csa_run_transition = 1; 5549 5550 callout_drain(&sc->sc_cal_ch); 5551 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5552 5553 if (nstate == IEEE80211_S_SCAN) { 5554 /* 5555 * Scanning: turn off beacon miss and don't beacon. 5556 * Mark beacon state so when we reach RUN state we'll 5557 * [re]setup beacons. Unblock the task q thread so 5558 * deferred interrupt processing is done. 5559 */ 5560 ath_hal_intrset(ah, 5561 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5562 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5563 sc->sc_beacons = 0; 5564 taskqueue_unblock(sc->sc_tq); 5565 } 5566 5567 ni = vap->iv_bss; 5568 rfilt = ath_calcrxfilter(sc); 5569 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5570 vap->iv_opmode == IEEE80211_M_AHDEMO || 5571 vap->iv_opmode == IEEE80211_M_IBSS); 5572 if (stamode && nstate == IEEE80211_S_RUN) { 5573 sc->sc_curaid = ni->ni_associd; 5574 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5575 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5576 } 5577 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5578 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5579 ath_hal_setrxfilter(ah, rfilt); 5580 5581 /* XXX is this to restore keycache on resume? */ 5582 if (vap->iv_opmode != IEEE80211_M_STA && 5583 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5584 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5585 if (ath_hal_keyisvalid(ah, i)) 5586 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5587 } 5588 5589 /* 5590 * Invoke the parent method to do net80211 work. 5591 */ 5592 error = avp->av_newstate(vap, nstate, arg); 5593 if (error != 0) 5594 goto bad; 5595 5596 if (nstate == IEEE80211_S_RUN) { 5597 /* NB: collect bss node again, it may have changed */ 5598 ni = vap->iv_bss; 5599 5600 DPRINTF(sc, ATH_DEBUG_STATE, 5601 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5602 "capinfo 0x%04x chan %d\n", __func__, 5603 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5604 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5605 5606 switch (vap->iv_opmode) { 5607 #ifdef IEEE80211_SUPPORT_TDMA 5608 case IEEE80211_M_AHDEMO: 5609 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5610 break; 5611 /* fall thru... */ 5612 #endif 5613 case IEEE80211_M_HOSTAP: 5614 case IEEE80211_M_IBSS: 5615 case IEEE80211_M_MBSS: 5616 /* 5617 * Allocate and setup the beacon frame. 5618 * 5619 * Stop any previous beacon DMA. This may be 5620 * necessary, for example, when an ibss merge 5621 * causes reconfiguration; there will be a state 5622 * transition from RUN->RUN that means we may 5623 * be called with beacon transmission active. 5624 */ 5625 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5626 5627 error = ath_beacon_alloc(sc, ni); 5628 if (error != 0) 5629 goto bad; 5630 /* 5631 * If joining an adhoc network defer beacon timer 5632 * configuration to the next beacon frame so we 5633 * have a current TSF to use. Otherwise we're 5634 * starting an ibss/bss so there's no need to delay; 5635 * if this is the first vap moving to RUN state, then 5636 * beacon state needs to be [re]configured. 5637 */ 5638 if (vap->iv_opmode == IEEE80211_M_IBSS && 5639 ni->ni_tstamp.tsf != 0) { 5640 sc->sc_syncbeacon = 1; 5641 } else if (!sc->sc_beacons) { 5642 #ifdef IEEE80211_SUPPORT_TDMA 5643 if (vap->iv_caps & IEEE80211_C_TDMA) 5644 ath_tdma_config(sc, vap); 5645 else 5646 #endif 5647 ath_beacon_config(sc, vap); 5648 sc->sc_beacons = 1; 5649 } 5650 break; 5651 case IEEE80211_M_STA: 5652 /* 5653 * Defer beacon timer configuration to the next 5654 * beacon frame so we have a current TSF to use 5655 * (any TSF collected when scanning is likely old). 5656 * However if it's due to a CSA -> RUN transition, 5657 * force a beacon update so we pick up a lack of 5658 * beacons from an AP in CAC and thus force a 5659 * scan. 5660 */ 5661 sc->sc_syncbeacon = 1; 5662 if (csa_run_transition) 5663 ath_beacon_config(sc, vap); 5664 break; 5665 case IEEE80211_M_MONITOR: 5666 /* 5667 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5668 * transitions so we must re-enable interrupts here to 5669 * handle the case of a single monitor mode vap. 5670 */ 5671 ath_hal_intrset(ah, sc->sc_imask); 5672 break; 5673 case IEEE80211_M_WDS: 5674 break; 5675 default: 5676 break; 5677 } 5678 /* 5679 * Let the hal process statistics collected during a 5680 * scan so it can provide calibrated noise floor data. 5681 */ 5682 ath_hal_process_noisefloor(ah); 5683 /* 5684 * Reset rssi stats; maybe not the best place... 5685 */ 5686 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5687 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5688 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5689 /* 5690 * Finally, start any timers and the task q thread 5691 * (in case we didn't go through SCAN state). 5692 */ 5693 if (ath_longcalinterval != 0) { 5694 /* start periodic recalibration timer */ 5695 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5696 } else { 5697 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5698 "%s: calibration disabled\n", __func__); 5699 } 5700 taskqueue_unblock(sc->sc_tq); 5701 } else if (nstate == IEEE80211_S_INIT) { 5702 /* 5703 * If there are no vaps left in RUN state then 5704 * shutdown host/driver operation: 5705 * o disable interrupts 5706 * o disable the task queue thread 5707 * o mark beacon processing as stopped 5708 */ 5709 if (!ath_isanyrunningvaps(vap)) { 5710 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5711 /* disable interrupts */ 5712 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5713 taskqueue_block(sc->sc_tq); 5714 sc->sc_beacons = 0; 5715 } 5716 #ifdef IEEE80211_SUPPORT_TDMA 5717 ath_hal_setcca(ah, AH_TRUE); 5718 #endif 5719 } 5720 bad: 5721 return error; 5722 } 5723 5724 /* 5725 * Allocate a key cache slot to the station so we can 5726 * setup a mapping from key index to node. The key cache 5727 * slot is needed for managing antenna state and for 5728 * compression when stations do not use crypto. We do 5729 * it uniliaterally here; if crypto is employed this slot 5730 * will be reassigned. 5731 */ 5732 static void 5733 ath_setup_stationkey(struct ieee80211_node *ni) 5734 { 5735 struct ieee80211vap *vap = ni->ni_vap; 5736 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5737 ieee80211_keyix keyix, rxkeyix; 5738 5739 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5740 /* 5741 * Key cache is full; we'll fall back to doing 5742 * the more expensive lookup in software. Note 5743 * this also means no h/w compression. 5744 */ 5745 /* XXX msg+statistic */ 5746 } else { 5747 /* XXX locking? */ 5748 ni->ni_ucastkey.wk_keyix = keyix; 5749 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5750 /* NB: must mark device key to get called back on delete */ 5751 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5752 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5753 /* NB: this will create a pass-thru key entry */ 5754 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5755 } 5756 } 5757 5758 /* 5759 * Setup driver-specific state for a newly associated node. 5760 * Note that we're called also on a re-associate, the isnew 5761 * param tells us if this is the first time or not. 5762 */ 5763 static void 5764 ath_newassoc(struct ieee80211_node *ni, int isnew) 5765 { 5766 struct ath_node *an = ATH_NODE(ni); 5767 struct ieee80211vap *vap = ni->ni_vap; 5768 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5769 const struct ieee80211_txparam *tp = ni->ni_txparms; 5770 5771 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5772 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5773 5774 ath_rate_newassoc(sc, an, isnew); 5775 if (isnew && 5776 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5777 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5778 ath_setup_stationkey(ni); 5779 } 5780 5781 static int 5782 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5783 int nchans, struct ieee80211_channel chans[]) 5784 { 5785 struct ath_softc *sc = ic->ic_ifp->if_softc; 5786 struct ath_hal *ah = sc->sc_ah; 5787 HAL_STATUS status; 5788 5789 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5790 "%s: rd %u cc %u location %c%s\n", 5791 __func__, reg->regdomain, reg->country, reg->location, 5792 reg->ecm ? " ecm" : ""); 5793 5794 status = ath_hal_set_channels(ah, chans, nchans, 5795 reg->country, reg->regdomain); 5796 if (status != HAL_OK) { 5797 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5798 __func__, status); 5799 return EINVAL; /* XXX */ 5800 } 5801 5802 return 0; 5803 } 5804 5805 static void 5806 ath_getradiocaps(struct ieee80211com *ic, 5807 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5808 { 5809 struct ath_softc *sc = ic->ic_ifp->if_softc; 5810 struct ath_hal *ah = sc->sc_ah; 5811 5812 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5813 __func__, SKU_DEBUG, CTRY_DEFAULT); 5814 5815 /* XXX check return */ 5816 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5817 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5818 5819 } 5820 5821 static int 5822 ath_getchannels(struct ath_softc *sc) 5823 { 5824 struct ifnet *ifp = sc->sc_ifp; 5825 struct ieee80211com *ic = ifp->if_l2com; 5826 struct ath_hal *ah = sc->sc_ah; 5827 HAL_STATUS status; 5828 5829 /* 5830 * Collect channel set based on EEPROM contents. 5831 */ 5832 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5833 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5834 if (status != HAL_OK) { 5835 if_printf(ifp, "%s: unable to collect channel list from hal, " 5836 "status %d\n", __func__, status); 5837 return EINVAL; 5838 } 5839 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5840 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5841 /* XXX map Atheros sku's to net80211 SKU's */ 5842 /* XXX net80211 types too small */ 5843 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5844 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5845 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5846 ic->ic_regdomain.isocc[1] = ' '; 5847 5848 ic->ic_regdomain.ecm = 1; 5849 ic->ic_regdomain.location = 'I'; 5850 5851 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5852 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5853 __func__, sc->sc_eerd, sc->sc_eecc, 5854 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5855 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5856 return 0; 5857 } 5858 5859 static void 5860 ath_led_done(void *arg) 5861 { 5862 struct ath_softc *sc = arg; 5863 5864 sc->sc_blinking = 0; 5865 } 5866 5867 /* 5868 * Turn the LED off: flip the pin and then set a timer so no 5869 * update will happen for the specified duration. 5870 */ 5871 static void 5872 ath_led_off(void *arg) 5873 { 5874 struct ath_softc *sc = arg; 5875 5876 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 5877 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 5878 } 5879 5880 /* 5881 * Blink the LED according to the specified on/off times. 5882 */ 5883 static void 5884 ath_led_blink(struct ath_softc *sc, int on, int off) 5885 { 5886 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 5887 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 5888 sc->sc_blinking = 1; 5889 sc->sc_ledoff = off; 5890 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 5891 } 5892 5893 static void 5894 ath_led_event(struct ath_softc *sc, int rix) 5895 { 5896 sc->sc_ledevent = ticks; /* time of last event */ 5897 if (sc->sc_blinking) /* don't interrupt active blink */ 5898 return; 5899 ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff); 5900 } 5901 5902 static int 5903 ath_rate_setup(struct ath_softc *sc, u_int mode) 5904 { 5905 struct ath_hal *ah = sc->sc_ah; 5906 const HAL_RATE_TABLE *rt; 5907 5908 switch (mode) { 5909 case IEEE80211_MODE_11A: 5910 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5911 break; 5912 case IEEE80211_MODE_HALF: 5913 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5914 break; 5915 case IEEE80211_MODE_QUARTER: 5916 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5917 break; 5918 case IEEE80211_MODE_11B: 5919 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5920 break; 5921 case IEEE80211_MODE_11G: 5922 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5923 break; 5924 case IEEE80211_MODE_TURBO_A: 5925 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5926 break; 5927 case IEEE80211_MODE_TURBO_G: 5928 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5929 break; 5930 case IEEE80211_MODE_STURBO_A: 5931 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5932 break; 5933 case IEEE80211_MODE_11NA: 5934 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 5935 break; 5936 case IEEE80211_MODE_11NG: 5937 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 5938 break; 5939 default: 5940 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5941 __func__, mode); 5942 return 0; 5943 } 5944 sc->sc_rates[mode] = rt; 5945 return (rt != NULL); 5946 } 5947 5948 static void 5949 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5950 { 5951 #define N(a) (sizeof(a)/sizeof(a[0])) 5952 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5953 static const struct { 5954 u_int rate; /* tx/rx 802.11 rate */ 5955 u_int16_t timeOn; /* LED on time (ms) */ 5956 u_int16_t timeOff; /* LED off time (ms) */ 5957 } blinkrates[] = { 5958 { 108, 40, 10 }, 5959 { 96, 44, 11 }, 5960 { 72, 50, 13 }, 5961 { 48, 57, 14 }, 5962 { 36, 67, 16 }, 5963 { 24, 80, 20 }, 5964 { 22, 100, 25 }, 5965 { 18, 133, 34 }, 5966 { 12, 160, 40 }, 5967 { 10, 200, 50 }, 5968 { 6, 240, 58 }, 5969 { 4, 267, 66 }, 5970 { 2, 400, 100 }, 5971 { 0, 500, 130 }, 5972 /* XXX half/quarter rates */ 5973 }; 5974 const HAL_RATE_TABLE *rt; 5975 int i, j; 5976 5977 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5978 rt = sc->sc_rates[mode]; 5979 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5980 for (i = 0; i < rt->rateCount; i++) { 5981 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5982 if (rt->info[i].phy != IEEE80211_T_HT) 5983 sc->sc_rixmap[ieeerate] = i; 5984 else 5985 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 5986 } 5987 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5988 for (i = 0; i < N(sc->sc_hwmap); i++) { 5989 if (i >= rt->rateCount) { 5990 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5991 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5992 continue; 5993 } 5994 sc->sc_hwmap[i].ieeerate = 5995 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5996 if (rt->info[i].phy == IEEE80211_T_HT) 5997 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 5998 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5999 if (rt->info[i].shortPreamble || 6000 rt->info[i].phy == IEEE80211_T_OFDM) 6001 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6002 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6003 for (j = 0; j < N(blinkrates)-1; j++) 6004 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6005 break; 6006 /* NB: this uses the last entry if the rate isn't found */ 6007 /* XXX beware of overlow */ 6008 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6009 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6010 } 6011 sc->sc_currates = rt; 6012 sc->sc_curmode = mode; 6013 /* 6014 * All protection frames are transmited at 2Mb/s for 6015 * 11g, otherwise at 1Mb/s. 6016 */ 6017 if (mode == IEEE80211_MODE_11G) 6018 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6019 else 6020 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6021 /* NB: caller is responsible for resetting rate control state */ 6022 #undef N 6023 } 6024 6025 static void 6026 ath_watchdog(void *arg) 6027 { 6028 struct ath_softc *sc = arg; 6029 int do_reset = 0; 6030 6031 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6032 struct ifnet *ifp = sc->sc_ifp; 6033 uint32_t hangs; 6034 6035 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6036 hangs != 0) { 6037 if_printf(ifp, "%s hang detected (0x%x)\n", 6038 hangs & 0xff ? "bb" : "mac", hangs); 6039 } else 6040 if_printf(ifp, "device timeout\n"); 6041 do_reset = 1; 6042 ifp->if_oerrors++; 6043 sc->sc_stats.ast_watchdog++; 6044 } 6045 6046 /* 6047 * We can't hold the lock across the ath_reset() call. 6048 */ 6049 if (do_reset) { 6050 ATH_UNLOCK(sc); 6051 ath_reset(sc->sc_ifp, ATH_RESET_NOLOSS); 6052 ATH_LOCK(sc); 6053 } 6054 6055 callout_schedule(&sc->sc_wd_ch, hz); 6056 } 6057 6058 #ifdef ATH_DIAGAPI 6059 /* 6060 * Diagnostic interface to the HAL. This is used by various 6061 * tools to do things like retrieve register contents for 6062 * debugging. The mechanism is intentionally opaque so that 6063 * it can change frequently w/o concern for compatiblity. 6064 */ 6065 static int 6066 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6067 { 6068 struct ath_hal *ah = sc->sc_ah; 6069 u_int id = ad->ad_id & ATH_DIAG_ID; 6070 void *indata = NULL; 6071 void *outdata = NULL; 6072 u_int32_t insize = ad->ad_in_size; 6073 u_int32_t outsize = ad->ad_out_size; 6074 int error = 0; 6075 6076 if (ad->ad_id & ATH_DIAG_IN) { 6077 /* 6078 * Copy in data. 6079 */ 6080 indata = malloc(insize, M_TEMP, M_NOWAIT); 6081 if (indata == NULL) { 6082 error = ENOMEM; 6083 goto bad; 6084 } 6085 error = copyin(ad->ad_in_data, indata, insize); 6086 if (error) 6087 goto bad; 6088 } 6089 if (ad->ad_id & ATH_DIAG_DYN) { 6090 /* 6091 * Allocate a buffer for the results (otherwise the HAL 6092 * returns a pointer to a buffer where we can read the 6093 * results). Note that we depend on the HAL leaving this 6094 * pointer for us to use below in reclaiming the buffer; 6095 * may want to be more defensive. 6096 */ 6097 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6098 if (outdata == NULL) { 6099 error = ENOMEM; 6100 goto bad; 6101 } 6102 } 6103 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6104 if (outsize < ad->ad_out_size) 6105 ad->ad_out_size = outsize; 6106 if (outdata != NULL) 6107 error = copyout(outdata, ad->ad_out_data, 6108 ad->ad_out_size); 6109 } else { 6110 error = EINVAL; 6111 } 6112 bad: 6113 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6114 free(indata, M_TEMP); 6115 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6116 free(outdata, M_TEMP); 6117 return error; 6118 } 6119 #endif /* ATH_DIAGAPI */ 6120 6121 static int 6122 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 6123 { 6124 #define IS_RUNNING(ifp) \ 6125 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 6126 struct ath_softc *sc = ifp->if_softc; 6127 struct ieee80211com *ic = ifp->if_l2com; 6128 struct ifreq *ifr = (struct ifreq *)data; 6129 const HAL_RATE_TABLE *rt; 6130 int error = 0; 6131 6132 switch (cmd) { 6133 case SIOCSIFFLAGS: 6134 ATH_LOCK(sc); 6135 if (IS_RUNNING(ifp)) { 6136 /* 6137 * To avoid rescanning another access point, 6138 * do not call ath_init() here. Instead, 6139 * only reflect promisc mode settings. 6140 */ 6141 ath_mode_init(sc); 6142 } else if (ifp->if_flags & IFF_UP) { 6143 /* 6144 * Beware of being called during attach/detach 6145 * to reset promiscuous mode. In that case we 6146 * will still be marked UP but not RUNNING. 6147 * However trying to re-init the interface 6148 * is the wrong thing to do as we've already 6149 * torn down much of our state. There's 6150 * probably a better way to deal with this. 6151 */ 6152 if (!sc->sc_invalid) 6153 ath_init(sc); /* XXX lose error */ 6154 } else { 6155 ath_stop_locked(ifp); 6156 #ifdef notyet 6157 /* XXX must wakeup in places like ath_vap_delete */ 6158 if (!sc->sc_invalid) 6159 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 6160 #endif 6161 } 6162 ATH_UNLOCK(sc); 6163 break; 6164 case SIOCGIFMEDIA: 6165 case SIOCSIFMEDIA: 6166 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 6167 break; 6168 case SIOCGATHSTATS: 6169 /* NB: embed these numbers to get a consistent view */ 6170 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 6171 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 6172 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 6173 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 6174 #ifdef IEEE80211_SUPPORT_TDMA 6175 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 6176 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 6177 #endif 6178 rt = sc->sc_currates; 6179 sc->sc_stats.ast_tx_rate = 6180 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 6181 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 6182 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 6183 return copyout(&sc->sc_stats, 6184 ifr->ifr_data, sizeof (sc->sc_stats)); 6185 case SIOCZATHSTATS: 6186 error = priv_check(curthread, PRIV_DRIVER); 6187 if (error == 0) 6188 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6189 break; 6190 #ifdef ATH_DIAGAPI 6191 case SIOCGATHDIAG: 6192 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 6193 break; 6194 case SIOCGATHPHYERR: 6195 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 6196 break; 6197 #endif 6198 case SIOCGIFADDR: 6199 error = ether_ioctl(ifp, cmd, data); 6200 break; 6201 default: 6202 error = EINVAL; 6203 break; 6204 } 6205 return error; 6206 #undef IS_RUNNING 6207 } 6208 6209 /* 6210 * Announce various information on device/driver attach. 6211 */ 6212 static void 6213 ath_announce(struct ath_softc *sc) 6214 { 6215 struct ifnet *ifp = sc->sc_ifp; 6216 struct ath_hal *ah = sc->sc_ah; 6217 6218 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 6219 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6220 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6221 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6222 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6223 if (bootverbose) { 6224 int i; 6225 for (i = 0; i <= WME_AC_VO; i++) { 6226 struct ath_txq *txq = sc->sc_ac2q[i]; 6227 if_printf(ifp, "Use hw queue %u for %s traffic\n", 6228 txq->axq_qnum, ieee80211_wme_acnames[i]); 6229 } 6230 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 6231 sc->sc_cabq->axq_qnum); 6232 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 6233 } 6234 if (ath_rxbuf != ATH_RXBUF) 6235 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 6236 if (ath_txbuf != ATH_TXBUF) 6237 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 6238 if (sc->sc_mcastkey && bootverbose) 6239 if_printf(ifp, "using multicast key search\n"); 6240 } 6241 6242 #ifdef IEEE80211_SUPPORT_TDMA 6243 static void 6244 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval) 6245 { 6246 struct ath_hal *ah = sc->sc_ah; 6247 HAL_BEACON_TIMERS bt; 6248 6249 bt.bt_intval = bintval | HAL_BEACON_ENA; 6250 bt.bt_nexttbtt = nexttbtt; 6251 bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep; 6252 bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep; 6253 bt.bt_nextatim = nexttbtt+1; 6254 /* Enables TBTT, DBA, SWBA timers by default */ 6255 bt.bt_flags = 0; 6256 ath_hal_beaconsettimers(ah, &bt); 6257 } 6258 6259 /* 6260 * Calculate the beacon interval. This is periodic in the 6261 * superframe for the bss. We assume each station is configured 6262 * identically wrt transmit rate so the guard time we calculate 6263 * above will be the same on all stations. Note we need to 6264 * factor in the xmit time because the hardware will schedule 6265 * a frame for transmit if the start of the frame is within 6266 * the burst time. When we get hardware that properly kills 6267 * frames in the PCU we can reduce/eliminate the guard time. 6268 * 6269 * Roundup to 1024 is so we have 1 TU buffer in the guard time 6270 * to deal with the granularity of the nexttbtt timer. 11n MAC's 6271 * with 1us timer granularity should allow us to reduce/eliminate 6272 * this. 6273 */ 6274 static void 6275 ath_tdma_bintvalsetup(struct ath_softc *sc, 6276 const struct ieee80211_tdma_state *tdma) 6277 { 6278 /* copy from vap state (XXX check all vaps have same value?) */ 6279 sc->sc_tdmaslotlen = tdma->tdma_slotlen; 6280 6281 sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) * 6282 tdma->tdma_slotcnt, 1024); 6283 sc->sc_tdmabintval >>= 10; /* TSF -> TU */ 6284 if (sc->sc_tdmabintval & 1) 6285 sc->sc_tdmabintval++; 6286 6287 if (tdma->tdma_slot == 0) { 6288 /* 6289 * Only slot 0 beacons; other slots respond. 6290 */ 6291 sc->sc_imask |= HAL_INT_SWBA; 6292 sc->sc_tdmaswba = 0; /* beacon immediately */ 6293 } else { 6294 /* XXX all vaps must be slot 0 or slot !0 */ 6295 sc->sc_imask &= ~HAL_INT_SWBA; 6296 } 6297 } 6298 6299 /* 6300 * Max 802.11 overhead. This assumes no 4-address frames and 6301 * the encapsulation done by ieee80211_encap (llc). We also 6302 * include potential crypto overhead. 6303 */ 6304 #define IEEE80211_MAXOVERHEAD \ 6305 (sizeof(struct ieee80211_qosframe) \ 6306 + sizeof(struct llc) \ 6307 + IEEE80211_ADDR_LEN \ 6308 + IEEE80211_WEP_IVLEN \ 6309 + IEEE80211_WEP_KIDLEN \ 6310 + IEEE80211_WEP_CRCLEN \ 6311 + IEEE80211_WEP_MICLEN \ 6312 + IEEE80211_CRC_LEN) 6313 6314 /* 6315 * Setup initially for tdma operation. Start the beacon 6316 * timers and enable SWBA if we are slot 0. Otherwise 6317 * we wait for slot 0 to arrive so we can sync up before 6318 * starting to transmit. 6319 */ 6320 static void 6321 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap) 6322 { 6323 struct ath_hal *ah = sc->sc_ah; 6324 struct ifnet *ifp = sc->sc_ifp; 6325 struct ieee80211com *ic = ifp->if_l2com; 6326 const struct ieee80211_txparam *tp; 6327 const struct ieee80211_tdma_state *tdma = NULL; 6328 int rix; 6329 6330 if (vap == NULL) { 6331 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 6332 if (vap == NULL) { 6333 if_printf(ifp, "%s: no vaps?\n", __func__); 6334 return; 6335 } 6336 } 6337 tp = vap->iv_bss->ni_txparms; 6338 /* 6339 * Calculate the guard time for each slot. This is the 6340 * time to send a maximal-size frame according to the 6341 * fixed/lowest transmit rate. Note that the interface 6342 * mtu does not include the 802.11 overhead so we must 6343 * tack that on (ath_hal_computetxtime includes the 6344 * preamble and plcp in it's calculation). 6345 */ 6346 tdma = vap->iv_tdma; 6347 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 6348 rix = ath_tx_findrix(sc, tp->ucastrate); 6349 else 6350 rix = ath_tx_findrix(sc, tp->mcastrate); 6351 /* XXX short preamble assumed */ 6352 sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates, 6353 ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE); 6354 6355 ath_hal_intrset(ah, 0); 6356 6357 ath_beaconq_config(sc); /* setup h/w beacon q */ 6358 if (sc->sc_setcca) 6359 ath_hal_setcca(ah, AH_FALSE); /* disable CCA */ 6360 ath_tdma_bintvalsetup(sc, tdma); /* calculate beacon interval */ 6361 ath_tdma_settimers(sc, sc->sc_tdmabintval, 6362 sc->sc_tdmabintval | HAL_BEACON_RESET_TSF); 6363 sc->sc_syncbeacon = 0; 6364 6365 sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER; 6366 sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER; 6367 6368 ath_hal_intrset(ah, sc->sc_imask); 6369 6370 DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u " 6371 "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__, 6372 tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt, 6373 tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval, 6374 sc->sc_tdmadbaprep); 6375 } 6376 6377 /* 6378 * Update tdma operation. Called from the 802.11 layer 6379 * when a beacon is received from the TDMA station operating 6380 * in the slot immediately preceding us in the bss. Use 6381 * the rx timestamp for the beacon frame to update our 6382 * beacon timers so we follow their schedule. Note that 6383 * by using the rx timestamp we implicitly include the 6384 * propagation delay in our schedule. 6385 */ 6386 static void 6387 ath_tdma_update(struct ieee80211_node *ni, 6388 const struct ieee80211_tdma_param *tdma, int changed) 6389 { 6390 #define TSF_TO_TU(_h,_l) \ 6391 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 6392 #define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10) 6393 struct ieee80211vap *vap = ni->ni_vap; 6394 struct ieee80211com *ic = ni->ni_ic; 6395 struct ath_softc *sc = ic->ic_ifp->if_softc; 6396 struct ath_hal *ah = sc->sc_ah; 6397 const HAL_RATE_TABLE *rt = sc->sc_currates; 6398 u_int64_t tsf, rstamp, nextslot, nexttbtt; 6399 u_int32_t txtime, nextslottu; 6400 int32_t tudelta, tsfdelta; 6401 const struct ath_rx_status *rs; 6402 int rix; 6403 6404 sc->sc_stats.ast_tdma_update++; 6405 6406 /* 6407 * Check for and adopt configuration changes. 6408 */ 6409 if (changed != 0) { 6410 const struct ieee80211_tdma_state *ts = vap->iv_tdma; 6411 6412 ath_tdma_bintvalsetup(sc, ts); 6413 if (changed & TDMA_UPDATE_SLOTLEN) 6414 ath_wme_update(ic); 6415 6416 DPRINTF(sc, ATH_DEBUG_TDMA, 6417 "%s: adopt slot %u slotcnt %u slotlen %u us " 6418 "bintval %u TU\n", __func__, 6419 ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen, 6420 sc->sc_tdmabintval); 6421 6422 /* XXX right? */ 6423 ath_hal_intrset(ah, sc->sc_imask); 6424 /* NB: beacon timers programmed below */ 6425 } 6426 6427 /* extend rx timestamp to 64 bits */ 6428 rs = sc->sc_lastrs; 6429 tsf = ath_hal_gettsf64(ah); 6430 rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf); 6431 /* 6432 * The rx timestamp is set by the hardware on completing 6433 * reception (at the point where the rx descriptor is DMA'd 6434 * to the host). To find the start of our next slot we 6435 * must adjust this time by the time required to send 6436 * the packet just received. 6437 */ 6438 rix = rt->rateCodeToIndex[rs->rs_rate]; 6439 txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix, 6440 rt->info[rix].shortPreamble); 6441 /* NB: << 9 is to cvt to TU and /2 */ 6442 nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9); 6443 nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD; 6444 6445 /* 6446 * Retrieve the hardware NextTBTT in usecs 6447 * and calculate the difference between what the 6448 * other station thinks and what we have programmed. This 6449 * lets us figure how to adjust our timers to match. The 6450 * adjustments are done by pulling the TSF forward and possibly 6451 * rewriting the beacon timers. 6452 */ 6453 nexttbtt = ath_hal_getnexttbtt(ah); 6454 tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt); 6455 6456 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6457 "tsfdelta %d avg +%d/-%d\n", tsfdelta, 6458 TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam)); 6459 6460 if (tsfdelta < 0) { 6461 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6462 TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta); 6463 tsfdelta = -tsfdelta % 1024; 6464 nextslottu++; 6465 } else if (tsfdelta > 0) { 6466 TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta); 6467 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6468 tsfdelta = 1024 - (tsfdelta % 1024); 6469 nextslottu++; 6470 } else { 6471 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6472 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6473 } 6474 tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt); 6475 6476 /* 6477 * Copy sender's timetstamp into tdma ie so they can 6478 * calculate roundtrip time. We submit a beacon frame 6479 * below after any timer adjustment. The frame goes out 6480 * at the next TBTT so the sender can calculate the 6481 * roundtrip by inspecting the tdma ie in our beacon frame. 6482 * 6483 * NB: This tstamp is subtlely preserved when 6484 * IEEE80211_BEACON_TDMA is marked (e.g. when the 6485 * slot position changes) because ieee80211_add_tdma 6486 * skips over the data. 6487 */ 6488 memcpy(ATH_VAP(vap)->av_boff.bo_tdma + 6489 __offsetof(struct ieee80211_tdma_param, tdma_tstamp), 6490 &ni->ni_tstamp.data, 8); 6491 #if 0 6492 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6493 "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n", 6494 (unsigned long long) tsf, (unsigned long long) nextslot, 6495 (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta); 6496 #endif 6497 /* 6498 * Adjust the beacon timers only when pulling them forward 6499 * or when going back by less than the beacon interval. 6500 * Negative jumps larger than the beacon interval seem to 6501 * cause the timers to stop and generally cause instability. 6502 * This basically filters out jumps due to missed beacons. 6503 */ 6504 if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) { 6505 ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval); 6506 sc->sc_stats.ast_tdma_timers++; 6507 } 6508 if (tsfdelta > 0) { 6509 ath_hal_adjusttsf(ah, tsfdelta); 6510 sc->sc_stats.ast_tdma_tsf++; 6511 } 6512 ath_tdma_beacon_send(sc, vap); /* prepare response */ 6513 #undef TU_TO_TSF 6514 #undef TSF_TO_TU 6515 } 6516 6517 /* 6518 * Transmit a beacon frame at SWBA. Dynamic updates 6519 * to the frame contents are done as needed. 6520 */ 6521 static void 6522 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap) 6523 { 6524 struct ath_hal *ah = sc->sc_ah; 6525 struct ath_buf *bf; 6526 int otherant; 6527 6528 /* 6529 * Check if the previous beacon has gone out. If 6530 * not don't try to post another, skip this period 6531 * and wait for the next. Missed beacons indicate 6532 * a problem and should not occur. If we miss too 6533 * many consecutive beacons reset the device. 6534 */ 6535 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 6536 sc->sc_bmisscount++; 6537 DPRINTF(sc, ATH_DEBUG_BEACON, 6538 "%s: missed %u consecutive beacons\n", 6539 __func__, sc->sc_bmisscount); 6540 if (sc->sc_bmisscount >= ath_bstuck_threshold) 6541 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 6542 return; 6543 } 6544 if (sc->sc_bmisscount != 0) { 6545 DPRINTF(sc, ATH_DEBUG_BEACON, 6546 "%s: resume beacon xmit after %u misses\n", 6547 __func__, sc->sc_bmisscount); 6548 sc->sc_bmisscount = 0; 6549 } 6550 6551 /* 6552 * Check recent per-antenna transmit statistics and flip 6553 * the default antenna if noticeably more frames went out 6554 * on the non-default antenna. 6555 * XXX assumes 2 anntenae 6556 */ 6557 if (!sc->sc_diversity) { 6558 otherant = sc->sc_defant & 1 ? 2 : 1; 6559 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 6560 ath_setdefantenna(sc, otherant); 6561 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 6562 } 6563 6564 bf = ath_beacon_generate(sc, vap); 6565 if (bf != NULL) { 6566 /* 6567 * Stop any current dma and put the new frame on the queue. 6568 * This should never fail since we check above that no frames 6569 * are still pending on the queue. 6570 */ 6571 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 6572 DPRINTF(sc, ATH_DEBUG_ANY, 6573 "%s: beacon queue %u did not stop?\n", 6574 __func__, sc->sc_bhalq); 6575 /* NB: the HAL still stops DMA, so proceed */ 6576 } 6577 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 6578 ath_hal_txstart(ah, sc->sc_bhalq); 6579 6580 sc->sc_stats.ast_be_xmit++; /* XXX per-vap? */ 6581 6582 /* 6583 * Record local TSF for our last send for use 6584 * in arbitrating slot collisions. 6585 */ 6586 vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah); 6587 } 6588 } 6589 #endif /* IEEE80211_SUPPORT_TDMA */ 6590 6591 static void 6592 ath_dfs_tasklet(void *p, int npending) 6593 { 6594 struct ath_softc *sc = (struct ath_softc *) p; 6595 struct ifnet *ifp = sc->sc_ifp; 6596 struct ieee80211com *ic = ifp->if_l2com; 6597 6598 /* 6599 * If previous processing has found a radar event, 6600 * signal this to the net80211 layer to begin DFS 6601 * processing. 6602 */ 6603 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6604 /* DFS event found, initiate channel change */ 6605 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6606 } 6607 } 6608 6609 MODULE_VERSION(if_ath, 1); 6610 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6611