xref: /freebsd/sys/dev/ath/if_ath.c (revision 65b71c48d226f3ef3eb1c4452dccc678a7d2ac96)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_var.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_arp.h>
81 #include <net/ethernet.h>
82 #include <net/if_llc.h>
83 
84 #include <net80211/ieee80211_var.h>
85 #include <net80211/ieee80211_regdomain.h>
86 #ifdef IEEE80211_SUPPORT_SUPERG
87 #include <net80211/ieee80211_superg.h>
88 #endif
89 #ifdef IEEE80211_SUPPORT_TDMA
90 #include <net80211/ieee80211_tdma.h>
91 #endif
92 
93 #include <net/bpf.h>
94 
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/if_ether.h>
98 #endif
99 
100 #include <dev/ath/if_athvar.h>
101 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
102 #include <dev/ath/ath_hal/ah_diagcodes.h>
103 
104 #include <dev/ath/if_ath_debug.h>
105 #include <dev/ath/if_ath_misc.h>
106 #include <dev/ath/if_ath_tsf.h>
107 #include <dev/ath/if_ath_tx.h>
108 #include <dev/ath/if_ath_sysctl.h>
109 #include <dev/ath/if_ath_led.h>
110 #include <dev/ath/if_ath_keycache.h>
111 #include <dev/ath/if_ath_rx.h>
112 #include <dev/ath/if_ath_rx_edma.h>
113 #include <dev/ath/if_ath_tx_edma.h>
114 #include <dev/ath/if_ath_beacon.h>
115 #include <dev/ath/if_ath_btcoex.h>
116 #include <dev/ath/if_ath_spectral.h>
117 #include <dev/ath/if_ath_lna_div.h>
118 #include <dev/ath/if_athdfs.h>
119 
120 #ifdef ATH_TX99_DIAG
121 #include <dev/ath/ath_tx99/ath_tx99.h>
122 #endif
123 
124 #ifdef	ATH_DEBUG_ALQ
125 #include <dev/ath/if_ath_alq.h>
126 #endif
127 
128 /*
129  * Only enable this if you're working on PS-POLL support.
130  */
131 #define	ATH_SW_PSQ
132 
133 /*
134  * ATH_BCBUF determines the number of vap's that can transmit
135  * beacons and also (currently) the number of vap's that can
136  * have unique mac addresses/bssid.  When staggering beacons
137  * 4 is probably a good max as otherwise the beacons become
138  * very closely spaced and there is limited time for cab q traffic
139  * to go out.  You can burst beacons instead but that is not good
140  * for stations in power save and at some point you really want
141  * another radio (and channel).
142  *
143  * The limit on the number of mac addresses is tied to our use of
144  * the U/L bit and tracking addresses in a byte; it would be
145  * worthwhile to allow more for applications like proxy sta.
146  */
147 CTASSERT(ATH_BCBUF <= 8);
148 
149 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
150 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
151 		    const uint8_t [IEEE80211_ADDR_LEN],
152 		    const uint8_t [IEEE80211_ADDR_LEN]);
153 static void	ath_vap_delete(struct ieee80211vap *);
154 static int	ath_init(struct ath_softc *);
155 static void	ath_stop(struct ath_softc *);
156 static int	ath_reset_vap(struct ieee80211vap *, u_long);
157 static int	ath_transmit(struct ieee80211com *, struct mbuf *);
158 static int	ath_media_change(struct ifnet *);
159 static void	ath_watchdog(void *);
160 static int	ath_ioctl(struct ieee80211com *, u_long, void *);
161 static void	ath_parent(struct ieee80211com *);
162 static void	ath_fatal_proc(void *, int);
163 static void	ath_bmiss_vap(struct ieee80211vap *);
164 static void	ath_bmiss_proc(void *, int);
165 static void	ath_key_update_begin(struct ieee80211vap *);
166 static void	ath_key_update_end(struct ieee80211vap *);
167 static void	ath_update_mcast_hw(struct ath_softc *);
168 static void	ath_update_mcast(struct ieee80211com *);
169 static void	ath_update_promisc(struct ieee80211com *);
170 static void	ath_updateslot(struct ieee80211com *);
171 static void	ath_bstuck_proc(void *, int);
172 static void	ath_reset_proc(void *, int);
173 static int	ath_desc_alloc(struct ath_softc *);
174 static void	ath_desc_free(struct ath_softc *);
175 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
176 			const uint8_t [IEEE80211_ADDR_LEN]);
177 static void	ath_node_cleanup(struct ieee80211_node *);
178 static void	ath_node_free(struct ieee80211_node *);
179 static void	ath_node_getsignal(const struct ieee80211_node *,
180 			int8_t *, int8_t *);
181 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
182 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
183 static int	ath_tx_setup(struct ath_softc *, int, int);
184 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
185 static void	ath_tx_cleanup(struct ath_softc *);
186 static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
187 		    int dosched);
188 static void	ath_tx_proc_q0(void *, int);
189 static void	ath_tx_proc_q0123(void *, int);
190 static void	ath_tx_proc(void *, int);
191 static void	ath_txq_sched_tasklet(void *, int);
192 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
193 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
194 static void	ath_scan_start(struct ieee80211com *);
195 static void	ath_scan_end(struct ieee80211com *);
196 static void	ath_set_channel(struct ieee80211com *);
197 #ifdef	ATH_ENABLE_11N
198 static void	ath_update_chw(struct ieee80211com *);
199 #endif	/* ATH_ENABLE_11N */
200 static void	ath_calibrate(void *);
201 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
202 static void	ath_setup_stationkey(struct ieee80211_node *);
203 static void	ath_newassoc(struct ieee80211_node *, int);
204 static int	ath_setregdomain(struct ieee80211com *,
205 		    struct ieee80211_regdomain *, int,
206 		    struct ieee80211_channel []);
207 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
208 		    struct ieee80211_channel []);
209 static int	ath_getchannels(struct ath_softc *);
210 
211 static int	ath_rate_setup(struct ath_softc *, u_int mode);
212 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
213 
214 static void	ath_announce(struct ath_softc *);
215 
216 static void	ath_dfs_tasklet(void *, int);
217 static void	ath_node_powersave(struct ieee80211_node *, int);
218 static int	ath_node_set_tim(struct ieee80211_node *, int);
219 static void	ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
220 
221 #ifdef IEEE80211_SUPPORT_TDMA
222 #include <dev/ath/if_ath_tdma.h>
223 #endif
224 
225 SYSCTL_DECL(_hw_ath);
226 
227 /* XXX validate sysctl values */
228 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
229 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
230 	    0, "long chip calibration interval (secs)");
231 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
232 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
233 	    0, "short chip calibration interval (msecs)");
234 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
235 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
236 	    0, "reset chip calibration results (secs)");
237 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
238 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
239 	    0, "ANI calibration (msecs)");
240 
241 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
242 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf,
243 	    0, "rx buffers allocated");
244 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
245 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf,
246 	    0, "tx buffers allocated");
247 int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
248 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt,
249 	    0, "tx (mgmt) buffers allocated");
250 
251 int ath_bstuck_threshold = 4;		/* max missed beacons */
252 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
253 	    0, "max missed beacon xmits before chip reset");
254 
255 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
256 
257 void
258 ath_legacy_attach_comp_func(struct ath_softc *sc)
259 {
260 
261 	/*
262 	 * Special case certain configurations.  Note the
263 	 * CAB queue is handled by these specially so don't
264 	 * include them when checking the txq setup mask.
265 	 */
266 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
267 	case 0x01:
268 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
269 		break;
270 	case 0x0f:
271 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
272 		break;
273 	default:
274 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
275 		break;
276 	}
277 }
278 
279 /*
280  * Set the target power mode.
281  *
282  * If this is called during a point in time where
283  * the hardware is being programmed elsewhere, it will
284  * simply store it away and update it when all current
285  * uses of the hardware are completed.
286  */
287 void
288 _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line)
289 {
290 	ATH_LOCK_ASSERT(sc);
291 
292 	sc->sc_target_powerstate = power_state;
293 
294 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
295 	    __func__,
296 	    file,
297 	    line,
298 	    power_state,
299 	    sc->sc_powersave_refcnt);
300 
301 	if (sc->sc_powersave_refcnt == 0 &&
302 	    power_state != sc->sc_cur_powerstate) {
303 		sc->sc_cur_powerstate = power_state;
304 		ath_hal_setpower(sc->sc_ah, power_state);
305 
306 		/*
307 		 * If the NIC is force-awake, then set the
308 		 * self-gen frame state appropriately.
309 		 *
310 		 * If the nic is in network sleep or full-sleep,
311 		 * we let the above call leave the self-gen
312 		 * state as "sleep".
313 		 */
314 		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
315 		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
316 			ath_hal_setselfgenpower(sc->sc_ah,
317 			    sc->sc_target_selfgen_state);
318 		}
319 	}
320 }
321 
322 /*
323  * Set the current self-generated frames state.
324  *
325  * This is separate from the target power mode.  The chip may be
326  * awake but the desired state is "sleep", so frames sent to the
327  * destination has PWRMGT=1 in the 802.11 header.  The NIC also
328  * needs to know to set PWRMGT=1 in self-generated frames.
329  */
330 void
331 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line)
332 {
333 
334 	ATH_LOCK_ASSERT(sc);
335 
336 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
337 	    __func__,
338 	    file,
339 	    line,
340 	    power_state,
341 	    sc->sc_target_selfgen_state);
342 
343 	sc->sc_target_selfgen_state = power_state;
344 
345 	/*
346 	 * If the NIC is force-awake, then set the power state.
347 	 * Network-state and full-sleep will already transition it to
348 	 * mark self-gen frames as sleeping - and we can't
349 	 * guarantee the NIC is awake to program the self-gen frame
350 	 * setting anyway.
351 	 */
352 	if (sc->sc_cur_powerstate == HAL_PM_AWAKE) {
353 		ath_hal_setselfgenpower(sc->sc_ah, power_state);
354 	}
355 }
356 
357 /*
358  * Set the hardware power mode and take a reference.
359  *
360  * This doesn't update the target power mode in the driver;
361  * it just updates the hardware power state.
362  *
363  * XXX it should only ever force the hardware awake; it should
364  * never be called to set it asleep.
365  */
366 void
367 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line)
368 {
369 	ATH_LOCK_ASSERT(sc);
370 
371 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
372 	    __func__,
373 	    file,
374 	    line,
375 	    power_state,
376 	    sc->sc_powersave_refcnt);
377 
378 	sc->sc_powersave_refcnt++;
379 
380 	if (power_state != sc->sc_cur_powerstate) {
381 		ath_hal_setpower(sc->sc_ah, power_state);
382 		sc->sc_cur_powerstate = power_state;
383 
384 		/*
385 		 * Adjust the self-gen powerstate if appropriate.
386 		 */
387 		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
388 		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
389 			ath_hal_setselfgenpower(sc->sc_ah,
390 			    sc->sc_target_selfgen_state);
391 		}
392 
393 	}
394 }
395 
396 /*
397  * Restore the power save mode to what it once was.
398  *
399  * This will decrement the reference counter and once it hits
400  * zero, it'll restore the powersave state.
401  */
402 void
403 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line)
404 {
405 
406 	ATH_LOCK_ASSERT(sc);
407 
408 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n",
409 	    __func__,
410 	    file,
411 	    line,
412 	    sc->sc_powersave_refcnt,
413 	    sc->sc_target_powerstate);
414 
415 	if (sc->sc_powersave_refcnt == 0)
416 		device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__);
417 	else
418 		sc->sc_powersave_refcnt--;
419 
420 	if (sc->sc_powersave_refcnt == 0 &&
421 	    sc->sc_target_powerstate != sc->sc_cur_powerstate) {
422 		sc->sc_cur_powerstate = sc->sc_target_powerstate;
423 		ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate);
424 	}
425 
426 	/*
427 	 * Adjust the self-gen powerstate if appropriate.
428 	 */
429 	if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
430 	    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
431 		ath_hal_setselfgenpower(sc->sc_ah,
432 		    sc->sc_target_selfgen_state);
433 	}
434 
435 }
436 
437 /*
438  * Configure the initial HAL configuration values based on bus
439  * specific parameters.
440  *
441  * Some PCI IDs and other information may need tweaking.
442  *
443  * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable
444  * if BT antenna diversity isn't enabled.
445  *
446  * So, let's also figure out how to enable BT diversity for AR9485.
447  */
448 static void
449 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config)
450 {
451 	/* XXX TODO: only for PCI devices? */
452 
453 	if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) {
454 		ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */
455 		ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE;
456 		ah_config->ath_hal_min_gainidx = AH_TRUE;
457 		ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88;
458 		/* XXX low_rssi_thresh */
459 		/* XXX fast_div_bias */
460 		device_printf(sc->sc_dev, "configuring for %s\n",
461 		    (sc->sc_pci_devinfo & ATH_PCI_CUS198) ?
462 		    "CUS198" : "CUS230");
463 	}
464 
465 	if (sc->sc_pci_devinfo & ATH_PCI_CUS217)
466 		device_printf(sc->sc_dev, "CUS217 card detected\n");
467 
468 	if (sc->sc_pci_devinfo & ATH_PCI_CUS252)
469 		device_printf(sc->sc_dev, "CUS252 card detected\n");
470 
471 	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT)
472 		device_printf(sc->sc_dev, "WB335 1-ANT card detected\n");
473 
474 	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT)
475 		device_printf(sc->sc_dev, "WB335 2-ANT card detected\n");
476 
477 	if (sc->sc_pci_devinfo & ATH_PCI_KILLER)
478 		device_printf(sc->sc_dev, "Killer Wireless card detected\n");
479 
480 #if 0
481         /*
482          * Some WB335 cards do not support antenna diversity. Since
483          * we use a hardcoded value for AR9565 instead of using the
484          * EEPROM/OTP data, remove the combining feature from
485          * the HW capabilities bitmap.
486          */
487         if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
488                 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV))
489                         pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB;
490         }
491 
492         if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) {
493                 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV;
494                 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n");
495         }
496 #endif
497 
498         if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) {
499                 ah_config->ath_hal_pcie_waen = 0x0040473b;
500                 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n");
501         }
502 
503 #if 0
504         if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) {
505                 ah->config.no_pll_pwrsave = true;
506                 device_printf(sc->sc_dev, "Disable PLL PowerSave\n");
507         }
508 #endif
509 
510 }
511 
512 /*
513  * Attempt to fetch the MAC address from the kernel environment.
514  *
515  * Returns 0, macaddr in macaddr if successful; -1 otherwise.
516  */
517 static int
518 ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr)
519 {
520 	char devid_str[32];
521 	int local_mac = 0;
522 	char *local_macstr;
523 
524 	/*
525 	 * Fetch from the kenv rather than using hints.
526 	 *
527 	 * Hints would be nice but the transition to dynamic
528 	 * hints/kenv doesn't happen early enough for this
529 	 * to work reliably (eg on anything embedded.)
530 	 */
531 	snprintf(devid_str, 32, "hint.%s.%d.macaddr",
532 	    device_get_name(sc->sc_dev),
533 	    device_get_unit(sc->sc_dev));
534 
535 	if ((local_macstr = kern_getenv(devid_str)) != NULL) {
536 		uint32_t tmpmac[ETHER_ADDR_LEN];
537 		int count;
538 		int i;
539 
540 		/* Have a MAC address; should use it */
541 		device_printf(sc->sc_dev,
542 		    "Overriding MAC address from environment: '%s'\n",
543 		    local_macstr);
544 
545 		/* Extract out the MAC address */
546 		count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x",
547 		    &tmpmac[0], &tmpmac[1],
548 		    &tmpmac[2], &tmpmac[3],
549 		    &tmpmac[4], &tmpmac[5]);
550 		if (count == 6) {
551 			/* Valid! */
552 			local_mac = 1;
553 			for (i = 0; i < ETHER_ADDR_LEN; i++)
554 				macaddr[i] = tmpmac[i];
555 		}
556 		/* Done! */
557 		freeenv(local_macstr);
558 		local_macstr = NULL;
559 	}
560 
561 	if (local_mac)
562 		return (0);
563 	return (-1);
564 }
565 
566 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
567 #define	HAL_MODE_HT40 \
568 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
569 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
570 int
571 ath_attach(u_int16_t devid, struct ath_softc *sc)
572 {
573 	struct ieee80211com *ic = &sc->sc_ic;
574 	struct ath_hal *ah = NULL;
575 	HAL_STATUS status;
576 	int error = 0, i;
577 	u_int wmodes;
578 	int rx_chainmask, tx_chainmask;
579 	HAL_OPS_CONFIG ah_config;
580 
581 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
582 
583 	ic->ic_softc = sc;
584 	ic->ic_name = device_get_nameunit(sc->sc_dev);
585 
586 	/*
587 	 * Configure the initial configuration data.
588 	 *
589 	 * This is stuff that may be needed early during attach
590 	 * rather than done via configuration calls later.
591 	 */
592 	bzero(&ah_config, sizeof(ah_config));
593 	ath_setup_hal_config(sc, &ah_config);
594 
595 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
596 	    sc->sc_eepromdata, &ah_config, &status);
597 	if (ah == NULL) {
598 		device_printf(sc->sc_dev,
599 		    "unable to attach hardware; HAL status %u\n", status);
600 		error = ENXIO;
601 		goto bad;
602 	}
603 	sc->sc_ah = ah;
604 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
605 #ifdef	ATH_DEBUG
606 	sc->sc_debug = ath_debug;
607 #endif
608 
609 	/*
610 	 * Setup the DMA/EDMA functions based on the current
611 	 * hardware support.
612 	 *
613 	 * This is required before the descriptors are allocated.
614 	 */
615 	if (ath_hal_hasedma(sc->sc_ah)) {
616 		sc->sc_isedma = 1;
617 		ath_recv_setup_edma(sc);
618 		ath_xmit_setup_edma(sc);
619 	} else {
620 		ath_recv_setup_legacy(sc);
621 		ath_xmit_setup_legacy(sc);
622 	}
623 
624 	if (ath_hal_hasmybeacon(sc->sc_ah)) {
625 		sc->sc_do_mybeacon = 1;
626 	}
627 
628 	/*
629 	 * Check if the MAC has multi-rate retry support.
630 	 * We do this by trying to setup a fake extended
631 	 * descriptor.  MAC's that don't have support will
632 	 * return false w/o doing anything.  MAC's that do
633 	 * support it will return true w/o doing anything.
634 	 */
635 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
636 
637 	/*
638 	 * Check if the device has hardware counters for PHY
639 	 * errors.  If so we need to enable the MIB interrupt
640 	 * so we can act on stat triggers.
641 	 */
642 	if (ath_hal_hwphycounters(ah))
643 		sc->sc_needmib = 1;
644 
645 	/*
646 	 * Get the hardware key cache size.
647 	 */
648 	sc->sc_keymax = ath_hal_keycachesize(ah);
649 	if (sc->sc_keymax > ATH_KEYMAX) {
650 		device_printf(sc->sc_dev,
651 		    "Warning, using only %u of %u key cache slots\n",
652 		    ATH_KEYMAX, sc->sc_keymax);
653 		sc->sc_keymax = ATH_KEYMAX;
654 	}
655 	/*
656 	 * Reset the key cache since some parts do not
657 	 * reset the contents on initial power up.
658 	 */
659 	for (i = 0; i < sc->sc_keymax; i++)
660 		ath_hal_keyreset(ah, i);
661 
662 	/*
663 	 * Collect the default channel list.
664 	 */
665 	error = ath_getchannels(sc);
666 	if (error != 0)
667 		goto bad;
668 
669 	/*
670 	 * Setup rate tables for all potential media types.
671 	 */
672 	ath_rate_setup(sc, IEEE80211_MODE_11A);
673 	ath_rate_setup(sc, IEEE80211_MODE_11B);
674 	ath_rate_setup(sc, IEEE80211_MODE_11G);
675 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
676 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
677 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
678 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
679 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
680 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
681 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
682 
683 	/* NB: setup here so ath_rate_update is happy */
684 	ath_setcurmode(sc, IEEE80211_MODE_11A);
685 
686 	/*
687 	 * Allocate TX descriptors and populate the lists.
688 	 */
689 	error = ath_desc_alloc(sc);
690 	if (error != 0) {
691 		device_printf(sc->sc_dev,
692 		    "failed to allocate TX descriptors: %d\n", error);
693 		goto bad;
694 	}
695 	error = ath_txdma_setup(sc);
696 	if (error != 0) {
697 		device_printf(sc->sc_dev,
698 		    "failed to allocate TX descriptors: %d\n", error);
699 		goto bad;
700 	}
701 
702 	/*
703 	 * Allocate RX descriptors and populate the lists.
704 	 */
705 	error = ath_rxdma_setup(sc);
706 	if (error != 0) {
707 		device_printf(sc->sc_dev,
708 		     "failed to allocate RX descriptors: %d\n", error);
709 		goto bad;
710 	}
711 
712 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
713 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
714 
715 	ATH_TXBUF_LOCK_INIT(sc);
716 
717 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
718 		taskqueue_thread_enqueue, &sc->sc_tq);
719 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
720 	    device_get_nameunit(sc->sc_dev));
721 
722 	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
723 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
724 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
725 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
726 	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
727 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
728 
729 	/*
730 	 * Allocate hardware transmit queues: one queue for
731 	 * beacon frames and one data queue for each QoS
732 	 * priority.  Note that the hal handles resetting
733 	 * these queues at the needed time.
734 	 *
735 	 * XXX PS-Poll
736 	 */
737 	sc->sc_bhalq = ath_beaconq_setup(sc);
738 	if (sc->sc_bhalq == (u_int) -1) {
739 		device_printf(sc->sc_dev,
740 		    "unable to setup a beacon xmit queue!\n");
741 		error = EIO;
742 		goto bad2;
743 	}
744 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
745 	if (sc->sc_cabq == NULL) {
746 		device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n");
747 		error = EIO;
748 		goto bad2;
749 	}
750 	/* NB: insure BK queue is the lowest priority h/w queue */
751 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
752 		device_printf(sc->sc_dev,
753 		    "unable to setup xmit queue for %s traffic!\n",
754 		    ieee80211_wme_acnames[WME_AC_BK]);
755 		error = EIO;
756 		goto bad2;
757 	}
758 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
759 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
760 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
761 		/*
762 		 * Not enough hardware tx queues to properly do WME;
763 		 * just punt and assign them all to the same h/w queue.
764 		 * We could do a better job of this if, for example,
765 		 * we allocate queues when we switch from station to
766 		 * AP mode.
767 		 */
768 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
769 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
770 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
771 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
772 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
773 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
774 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
775 	}
776 
777 	/*
778 	 * Attach the TX completion function.
779 	 *
780 	 * The non-EDMA chips may have some special case optimisations;
781 	 * this method gives everyone a chance to attach cleanly.
782 	 */
783 	sc->sc_tx.xmit_attach_comp_func(sc);
784 
785 	/*
786 	 * Setup rate control.  Some rate control modules
787 	 * call back to change the anntena state so expose
788 	 * the necessary entry points.
789 	 * XXX maybe belongs in struct ath_ratectrl?
790 	 */
791 	sc->sc_setdefantenna = ath_setdefantenna;
792 	sc->sc_rc = ath_rate_attach(sc);
793 	if (sc->sc_rc == NULL) {
794 		error = EIO;
795 		goto bad2;
796 	}
797 
798 	/* Attach DFS module */
799 	if (! ath_dfs_attach(sc)) {
800 		device_printf(sc->sc_dev,
801 		    "%s: unable to attach DFS\n", __func__);
802 		error = EIO;
803 		goto bad2;
804 	}
805 
806 	/* Attach spectral module */
807 	if (ath_spectral_attach(sc) < 0) {
808 		device_printf(sc->sc_dev,
809 		    "%s: unable to attach spectral\n", __func__);
810 		error = EIO;
811 		goto bad2;
812 	}
813 
814 	/* Attach bluetooth coexistence module */
815 	if (ath_btcoex_attach(sc) < 0) {
816 		device_printf(sc->sc_dev,
817 		    "%s: unable to attach bluetooth coexistence\n", __func__);
818 		error = EIO;
819 		goto bad2;
820 	}
821 
822 	/* Attach LNA diversity module */
823 	if (ath_lna_div_attach(sc) < 0) {
824 		device_printf(sc->sc_dev,
825 		    "%s: unable to attach LNA diversity\n", __func__);
826 		error = EIO;
827 		goto bad2;
828 	}
829 
830 	/* Start DFS processing tasklet */
831 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
832 
833 	/* Configure LED state */
834 	sc->sc_blinking = 0;
835 	sc->sc_ledstate = 1;
836 	sc->sc_ledon = 0;			/* low true */
837 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
838 	callout_init(&sc->sc_ledtimer, 1);
839 
840 	/*
841 	 * Don't setup hardware-based blinking.
842 	 *
843 	 * Although some NICs may have this configured in the
844 	 * default reset register values, the user may wish
845 	 * to alter which pins have which function.
846 	 *
847 	 * The reference driver attaches the MAC network LED to GPIO1 and
848 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
849 	 * NIC has these reversed.
850 	 */
851 	sc->sc_hardled = (1 == 0);
852 	sc->sc_led_net_pin = -1;
853 	sc->sc_led_pwr_pin = -1;
854 	/*
855 	 * Auto-enable soft led processing for IBM cards and for
856 	 * 5211 minipci cards.  Users can also manually enable/disable
857 	 * support with a sysctl.
858 	 */
859 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
860 	ath_led_config(sc);
861 	ath_hal_setledstate(ah, HAL_LED_INIT);
862 
863 	/* XXX not right but it's not used anywhere important */
864 	ic->ic_phytype = IEEE80211_T_OFDM;
865 	ic->ic_opmode = IEEE80211_M_STA;
866 	ic->ic_caps =
867 		  IEEE80211_C_STA		/* station mode */
868 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
869 		| IEEE80211_C_HOSTAP		/* hostap mode */
870 		| IEEE80211_C_MONITOR		/* monitor mode */
871 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
872 		| IEEE80211_C_WDS		/* 4-address traffic works */
873 		| IEEE80211_C_MBSS		/* mesh point link mode */
874 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
875 		| IEEE80211_C_SHSLOT		/* short slot time supported */
876 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
877 #ifndef	ATH_ENABLE_11N
878 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
879 #endif
880 		| IEEE80211_C_TXFRAG		/* handle tx frags */
881 #ifdef	ATH_ENABLE_DFS
882 		| IEEE80211_C_DFS		/* Enable radar detection */
883 #endif
884 		| IEEE80211_C_PMGT		/* Station side power mgmt */
885 		| IEEE80211_C_SWSLEEP
886 		;
887 	/*
888 	 * Query the hal to figure out h/w crypto support.
889 	 */
890 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
891 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
892 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
893 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
894 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
895 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
896 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
897 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
898 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
899 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
900 		/*
901 		 * Check if h/w does the MIC and/or whether the
902 		 * separate key cache entries are required to
903 		 * handle both tx+rx MIC keys.
904 		 */
905 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
906 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
907 		/*
908 		 * If the h/w supports storing tx+rx MIC keys
909 		 * in one cache slot automatically enable use.
910 		 */
911 		if (ath_hal_hastkipsplit(ah) ||
912 		    !ath_hal_settkipsplit(ah, AH_FALSE))
913 			sc->sc_splitmic = 1;
914 		/*
915 		 * If the h/w can do TKIP MIC together with WME then
916 		 * we use it; otherwise we force the MIC to be done
917 		 * in software by the net80211 layer.
918 		 */
919 		if (ath_hal_haswmetkipmic(ah))
920 			sc->sc_wmetkipmic = 1;
921 	}
922 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
923 	/*
924 	 * Check for multicast key search support.
925 	 */
926 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
927 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
928 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
929 	}
930 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
931 	/*
932 	 * Mark key cache slots associated with global keys
933 	 * as in use.  If we knew TKIP was not to be used we
934 	 * could leave the +32, +64, and +32+64 slots free.
935 	 */
936 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
937 		setbit(sc->sc_keymap, i);
938 		setbit(sc->sc_keymap, i+64);
939 		if (sc->sc_splitmic) {
940 			setbit(sc->sc_keymap, i+32);
941 			setbit(sc->sc_keymap, i+32+64);
942 		}
943 	}
944 	/*
945 	 * TPC support can be done either with a global cap or
946 	 * per-packet support.  The latter is not available on
947 	 * all parts.  We're a bit pedantic here as all parts
948 	 * support a global cap.
949 	 */
950 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
951 		ic->ic_caps |= IEEE80211_C_TXPMGT;
952 
953 	/*
954 	 * Mark WME capability only if we have sufficient
955 	 * hardware queues to do proper priority scheduling.
956 	 */
957 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
958 		ic->ic_caps |= IEEE80211_C_WME;
959 	/*
960 	 * Check for misc other capabilities.
961 	 */
962 	if (ath_hal_hasbursting(ah))
963 		ic->ic_caps |= IEEE80211_C_BURST;
964 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
965 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
966 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
967 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
968 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
969 	sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
970 	sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
971 	sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
972 
973 	if (ath_hal_hasfastframes(ah))
974 		ic->ic_caps |= IEEE80211_C_FF;
975 	wmodes = ath_hal_getwirelessmodes(ah);
976 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
977 		ic->ic_caps |= IEEE80211_C_TURBOP;
978 #ifdef IEEE80211_SUPPORT_TDMA
979 	if (ath_hal_macversion(ah) > 0x78) {
980 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
981 		ic->ic_tdma_update = ath_tdma_update;
982 	}
983 #endif
984 
985 	/*
986 	 * TODO: enforce that at least this many frames are available
987 	 * in the txbuf list before allowing data frames (raw or
988 	 * otherwise) to be transmitted.
989 	 */
990 	sc->sc_txq_data_minfree = 10;
991 	/*
992 	 * Leave this as default to maintain legacy behaviour.
993 	 * Shortening the cabq/mcastq may end up causing some
994 	 * undesirable behaviour.
995 	 */
996 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
997 
998 	/*
999 	 * How deep can the node software TX queue get whilst it's asleep.
1000 	 */
1001 	sc->sc_txq_node_psq_maxdepth = 16;
1002 
1003 	/*
1004 	 * Default the maximum queue depth for a given node
1005 	 * to 1/4'th the TX buffers, or 64, whichever
1006 	 * is larger.
1007 	 */
1008 	sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4);
1009 
1010 	/* Enable CABQ by default */
1011 	sc->sc_cabq_enable = 1;
1012 
1013 	/*
1014 	 * Allow the TX and RX chainmasks to be overridden by
1015 	 * environment variables and/or device.hints.
1016 	 *
1017 	 * This must be done early - before the hardware is
1018 	 * calibrated or before the 802.11n stream calculation
1019 	 * is done.
1020 	 */
1021 	if (resource_int_value(device_get_name(sc->sc_dev),
1022 	    device_get_unit(sc->sc_dev), "rx_chainmask",
1023 	    &rx_chainmask) == 0) {
1024 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
1025 		    rx_chainmask);
1026 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
1027 	}
1028 	if (resource_int_value(device_get_name(sc->sc_dev),
1029 	    device_get_unit(sc->sc_dev), "tx_chainmask",
1030 	    &tx_chainmask) == 0) {
1031 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
1032 		    tx_chainmask);
1033 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
1034 	}
1035 
1036 	/*
1037 	 * Query the TX/RX chainmask configuration.
1038 	 *
1039 	 * This is only relevant for 11n devices.
1040 	 */
1041 	ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
1042 	ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
1043 
1044 	/*
1045 	 * Disable MRR with protected frames by default.
1046 	 * Only 802.11n series NICs can handle this.
1047 	 */
1048 	sc->sc_mrrprot = 0;	/* XXX should be a capability */
1049 
1050 	/*
1051 	 * Query the enterprise mode information the HAL.
1052 	 */
1053 	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
1054 	    &sc->sc_ent_cfg) == HAL_OK)
1055 		sc->sc_use_ent = 1;
1056 
1057 #ifdef	ATH_ENABLE_11N
1058 	/*
1059 	 * Query HT capabilities
1060 	 */
1061 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
1062 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
1063 		uint32_t rxs, txs;
1064 
1065 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
1066 
1067 		sc->sc_mrrprot = 1;	/* XXX should be a capability */
1068 
1069 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
1070 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
1071 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
1072 			    | IEEE80211_HTCAP_MAXAMSDU_3839
1073 			    				/* max A-MSDU length */
1074 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
1075 			;
1076 
1077 		/*
1078 		 * Enable short-GI for HT20 only if the hardware
1079 		 * advertises support.
1080 		 * Notably, anything earlier than the AR9287 doesn't.
1081 		 */
1082 		if ((ath_hal_getcapability(ah,
1083 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
1084 		    (wmodes & HAL_MODE_HT20)) {
1085 			device_printf(sc->sc_dev,
1086 			    "[HT] enabling short-GI in 20MHz mode\n");
1087 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
1088 		}
1089 
1090 		if (wmodes & HAL_MODE_HT40)
1091 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
1092 			    |  IEEE80211_HTCAP_SHORTGI40;
1093 
1094 		/*
1095 		 * TX/RX streams need to be taken into account when
1096 		 * negotiating which MCS rates it'll receive and
1097 		 * what MCS rates are available for TX.
1098 		 */
1099 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
1100 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
1101 		ic->ic_txstream = txs;
1102 		ic->ic_rxstream = rxs;
1103 
1104 		/*
1105 		 * Setup TX and RX STBC based on what the HAL allows and
1106 		 * the currently configured chainmask set.
1107 		 * Ie - don't enable STBC TX if only one chain is enabled.
1108 		 * STBC RX is fine on a single RX chain; it just won't
1109 		 * provide any real benefit.
1110 		 */
1111 		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
1112 		    NULL) == HAL_OK) {
1113 			sc->sc_rx_stbc = 1;
1114 			device_printf(sc->sc_dev,
1115 			    "[HT] 1 stream STBC receive enabled\n");
1116 			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
1117 		}
1118 		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
1119 		    NULL) == HAL_OK) {
1120 			sc->sc_tx_stbc = 1;
1121 			device_printf(sc->sc_dev,
1122 			    "[HT] 1 stream STBC transmit enabled\n");
1123 			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
1124 		}
1125 
1126 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
1127 		    &sc->sc_rts_aggr_limit);
1128 		if (sc->sc_rts_aggr_limit != (64 * 1024))
1129 			device_printf(sc->sc_dev,
1130 			    "[HT] RTS aggregates limited to %d KiB\n",
1131 			    sc->sc_rts_aggr_limit / 1024);
1132 
1133 		device_printf(sc->sc_dev,
1134 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
1135 	}
1136 #endif
1137 
1138 	/*
1139 	 * Initial aggregation settings.
1140 	 */
1141 	sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
1142 	sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
1143 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1144 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1145 	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
1146 	sc->sc_delim_min_pad = 0;
1147 
1148 	/*
1149 	 * Check if the hardware requires PCI register serialisation.
1150 	 * Some of the Owl based MACs require this.
1151 	 */
1152 	if (mp_ncpus > 1 &&
1153 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
1154 	     0, NULL) == HAL_OK) {
1155 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
1156 		device_printf(sc->sc_dev,
1157 		    "Enabling register serialisation\n");
1158 	}
1159 
1160 	/*
1161 	 * Initialise the deferred completed RX buffer list.
1162 	 */
1163 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
1164 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
1165 
1166 	/*
1167 	 * Indicate we need the 802.11 header padded to a
1168 	 * 32-bit boundary for 4-address and QoS frames.
1169 	 */
1170 	ic->ic_flags |= IEEE80211_F_DATAPAD;
1171 
1172 	/*
1173 	 * Query the hal about antenna support.
1174 	 */
1175 	sc->sc_defant = ath_hal_getdefantenna(ah);
1176 
1177 	/*
1178 	 * Not all chips have the VEOL support we want to
1179 	 * use with IBSS beacons; check here for it.
1180 	 */
1181 	sc->sc_hasveol = ath_hal_hasveol(ah);
1182 
1183 	/* get mac address from kenv first, then hardware */
1184 	if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) {
1185 		/* Tell the HAL now about the new MAC */
1186 		ath_hal_setmac(ah, ic->ic_macaddr);
1187 	} else {
1188 		ath_hal_getmac(ah, ic->ic_macaddr);
1189 	}
1190 
1191 	if (sc->sc_hasbmask)
1192 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
1193 
1194 	/* NB: used to size node table key mapping array */
1195 	ic->ic_max_keyix = sc->sc_keymax;
1196 	/* call MI attach routine. */
1197 	ieee80211_ifattach(ic);
1198 	ic->ic_setregdomain = ath_setregdomain;
1199 	ic->ic_getradiocaps = ath_getradiocaps;
1200 	sc->sc_opmode = HAL_M_STA;
1201 
1202 	/* override default methods */
1203 	ic->ic_ioctl = ath_ioctl;
1204 	ic->ic_parent = ath_parent;
1205 	ic->ic_transmit = ath_transmit;
1206 	ic->ic_newassoc = ath_newassoc;
1207 	ic->ic_updateslot = ath_updateslot;
1208 	ic->ic_wme.wme_update = ath_wme_update;
1209 	ic->ic_vap_create = ath_vap_create;
1210 	ic->ic_vap_delete = ath_vap_delete;
1211 	ic->ic_raw_xmit = ath_raw_xmit;
1212 	ic->ic_update_mcast = ath_update_mcast;
1213 	ic->ic_update_promisc = ath_update_promisc;
1214 	ic->ic_node_alloc = ath_node_alloc;
1215 	sc->sc_node_free = ic->ic_node_free;
1216 	ic->ic_node_free = ath_node_free;
1217 	sc->sc_node_cleanup = ic->ic_node_cleanup;
1218 	ic->ic_node_cleanup = ath_node_cleanup;
1219 	ic->ic_node_getsignal = ath_node_getsignal;
1220 	ic->ic_scan_start = ath_scan_start;
1221 	ic->ic_scan_end = ath_scan_end;
1222 	ic->ic_set_channel = ath_set_channel;
1223 #ifdef	ATH_ENABLE_11N
1224 	/* 802.11n specific - but just override anyway */
1225 	sc->sc_addba_request = ic->ic_addba_request;
1226 	sc->sc_addba_response = ic->ic_addba_response;
1227 	sc->sc_addba_stop = ic->ic_addba_stop;
1228 	sc->sc_bar_response = ic->ic_bar_response;
1229 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
1230 
1231 	ic->ic_addba_request = ath_addba_request;
1232 	ic->ic_addba_response = ath_addba_response;
1233 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
1234 	ic->ic_addba_stop = ath_addba_stop;
1235 	ic->ic_bar_response = ath_bar_response;
1236 
1237 	ic->ic_update_chw = ath_update_chw;
1238 #endif	/* ATH_ENABLE_11N */
1239 
1240 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
1241 	/*
1242 	 * There's one vendor bitmap entry in the RX radiotap
1243 	 * header; make sure that's taken into account.
1244 	 */
1245 	ieee80211_radiotap_attachv(ic,
1246 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
1247 		ATH_TX_RADIOTAP_PRESENT,
1248 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
1249 		ATH_RX_RADIOTAP_PRESENT);
1250 #else
1251 	/*
1252 	 * No vendor bitmap/extensions are present.
1253 	 */
1254 	ieee80211_radiotap_attach(ic,
1255 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
1256 		ATH_TX_RADIOTAP_PRESENT,
1257 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
1258 		ATH_RX_RADIOTAP_PRESENT);
1259 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
1260 
1261 	/*
1262 	 * Setup the ALQ logging if required
1263 	 */
1264 #ifdef	ATH_DEBUG_ALQ
1265 	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
1266 	if_ath_alq_setcfg(&sc->sc_alq,
1267 	    sc->sc_ah->ah_macVersion,
1268 	    sc->sc_ah->ah_macRev,
1269 	    sc->sc_ah->ah_phyRev,
1270 	    sc->sc_ah->ah_magic);
1271 #endif
1272 
1273 	/*
1274 	 * Setup dynamic sysctl's now that country code and
1275 	 * regdomain are available from the hal.
1276 	 */
1277 	ath_sysctlattach(sc);
1278 	ath_sysctl_stats_attach(sc);
1279 	ath_sysctl_hal_attach(sc);
1280 
1281 	if (bootverbose)
1282 		ieee80211_announce(ic);
1283 	ath_announce(sc);
1284 
1285 	/*
1286 	 * Put it to sleep for now.
1287 	 */
1288 	ATH_LOCK(sc);
1289 	ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
1290 	ATH_UNLOCK(sc);
1291 
1292 	return 0;
1293 bad2:
1294 	ath_tx_cleanup(sc);
1295 	ath_desc_free(sc);
1296 	ath_txdma_teardown(sc);
1297 	ath_rxdma_teardown(sc);
1298 bad:
1299 	if (ah)
1300 		ath_hal_detach(ah);
1301 	sc->sc_invalid = 1;
1302 	return error;
1303 }
1304 
1305 int
1306 ath_detach(struct ath_softc *sc)
1307 {
1308 
1309 	/*
1310 	 * NB: the order of these is important:
1311 	 * o stop the chip so no more interrupts will fire
1312 	 * o call the 802.11 layer before detaching the hal to
1313 	 *   insure callbacks into the driver to delete global
1314 	 *   key cache entries can be handled
1315 	 * o free the taskqueue which drains any pending tasks
1316 	 * o reclaim the tx queue data structures after calling
1317 	 *   the 802.11 layer as we'll get called back to reclaim
1318 	 *   node state and potentially want to use them
1319 	 * o to cleanup the tx queues the hal is called, so detach
1320 	 *   it last
1321 	 * Other than that, it's straightforward...
1322 	 */
1323 
1324 	/*
1325 	 * XXX Wake the hardware up first.  ath_stop() will still
1326 	 * wake it up first, but I'd rather do it here just to
1327 	 * ensure it's awake.
1328 	 */
1329 	ATH_LOCK(sc);
1330 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1331 	ath_power_setpower(sc, HAL_PM_AWAKE);
1332 
1333 	/*
1334 	 * Stop things cleanly.
1335 	 */
1336 	ath_stop(sc);
1337 	ATH_UNLOCK(sc);
1338 
1339 	ieee80211_ifdetach(&sc->sc_ic);
1340 	taskqueue_free(sc->sc_tq);
1341 #ifdef ATH_TX99_DIAG
1342 	if (sc->sc_tx99 != NULL)
1343 		sc->sc_tx99->detach(sc->sc_tx99);
1344 #endif
1345 	ath_rate_detach(sc->sc_rc);
1346 #ifdef	ATH_DEBUG_ALQ
1347 	if_ath_alq_tidyup(&sc->sc_alq);
1348 #endif
1349 	ath_lna_div_detach(sc);
1350 	ath_btcoex_detach(sc);
1351 	ath_spectral_detach(sc);
1352 	ath_dfs_detach(sc);
1353 	ath_desc_free(sc);
1354 	ath_txdma_teardown(sc);
1355 	ath_rxdma_teardown(sc);
1356 	ath_tx_cleanup(sc);
1357 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1358 
1359 	return 0;
1360 }
1361 
1362 /*
1363  * MAC address handling for multiple BSS on the same radio.
1364  * The first vap uses the MAC address from the EEPROM.  For
1365  * subsequent vap's we set the U/L bit (bit 1) in the MAC
1366  * address and use the next six bits as an index.
1367  */
1368 static void
1369 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1370 {
1371 	int i;
1372 
1373 	if (clone && sc->sc_hasbmask) {
1374 		/* NB: we only do this if h/w supports multiple bssid */
1375 		for (i = 0; i < 8; i++)
1376 			if ((sc->sc_bssidmask & (1<<i)) == 0)
1377 				break;
1378 		if (i != 0)
1379 			mac[0] |= (i << 2)|0x2;
1380 	} else
1381 		i = 0;
1382 	sc->sc_bssidmask |= 1<<i;
1383 	sc->sc_hwbssidmask[0] &= ~mac[0];
1384 	if (i == 0)
1385 		sc->sc_nbssid0++;
1386 }
1387 
1388 static void
1389 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1390 {
1391 	int i = mac[0] >> 2;
1392 	uint8_t mask;
1393 
1394 	if (i != 0 || --sc->sc_nbssid0 == 0) {
1395 		sc->sc_bssidmask &= ~(1<<i);
1396 		/* recalculate bssid mask from remaining addresses */
1397 		mask = 0xff;
1398 		for (i = 1; i < 8; i++)
1399 			if (sc->sc_bssidmask & (1<<i))
1400 				mask &= ~((i<<2)|0x2);
1401 		sc->sc_hwbssidmask[0] |= mask;
1402 	}
1403 }
1404 
1405 /*
1406  * Assign a beacon xmit slot.  We try to space out
1407  * assignments so when beacons are staggered the
1408  * traffic coming out of the cab q has maximal time
1409  * to go out before the next beacon is scheduled.
1410  */
1411 static int
1412 assign_bslot(struct ath_softc *sc)
1413 {
1414 	u_int slot, free;
1415 
1416 	free = 0;
1417 	for (slot = 0; slot < ATH_BCBUF; slot++)
1418 		if (sc->sc_bslot[slot] == NULL) {
1419 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1420 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1421 				return slot;
1422 			free = slot;
1423 			/* NB: keep looking for a double slot */
1424 		}
1425 	return free;
1426 }
1427 
1428 static struct ieee80211vap *
1429 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1430     enum ieee80211_opmode opmode, int flags,
1431     const uint8_t bssid[IEEE80211_ADDR_LEN],
1432     const uint8_t mac0[IEEE80211_ADDR_LEN])
1433 {
1434 	struct ath_softc *sc = ic->ic_softc;
1435 	struct ath_vap *avp;
1436 	struct ieee80211vap *vap;
1437 	uint8_t mac[IEEE80211_ADDR_LEN];
1438 	int needbeacon, error;
1439 	enum ieee80211_opmode ic_opmode;
1440 
1441 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1442 	    M_80211_VAP, M_WAITOK | M_ZERO);
1443 	needbeacon = 0;
1444 	IEEE80211_ADDR_COPY(mac, mac0);
1445 
1446 	ATH_LOCK(sc);
1447 	ic_opmode = opmode;		/* default to opmode of new vap */
1448 	switch (opmode) {
1449 	case IEEE80211_M_STA:
1450 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1451 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1452 			goto bad;
1453 		}
1454 		if (sc->sc_nvaps) {
1455 			/*
1456 			 * With multiple vaps we must fall back
1457 			 * to s/w beacon miss handling.
1458 			 */
1459 			flags |= IEEE80211_CLONE_NOBEACONS;
1460 		}
1461 		if (flags & IEEE80211_CLONE_NOBEACONS) {
1462 			/*
1463 			 * Station mode w/o beacons are implemented w/ AP mode.
1464 			 */
1465 			ic_opmode = IEEE80211_M_HOSTAP;
1466 		}
1467 		break;
1468 	case IEEE80211_M_IBSS:
1469 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1470 			device_printf(sc->sc_dev,
1471 			    "only 1 ibss vap supported\n");
1472 			goto bad;
1473 		}
1474 		needbeacon = 1;
1475 		break;
1476 	case IEEE80211_M_AHDEMO:
1477 #ifdef IEEE80211_SUPPORT_TDMA
1478 		if (flags & IEEE80211_CLONE_TDMA) {
1479 			if (sc->sc_nvaps != 0) {
1480 				device_printf(sc->sc_dev,
1481 				    "only 1 tdma vap supported\n");
1482 				goto bad;
1483 			}
1484 			needbeacon = 1;
1485 			flags |= IEEE80211_CLONE_NOBEACONS;
1486 		}
1487 		/* fall thru... */
1488 #endif
1489 	case IEEE80211_M_MONITOR:
1490 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1491 			/*
1492 			 * Adopt existing mode.  Adding a monitor or ahdemo
1493 			 * vap to an existing configuration is of dubious
1494 			 * value but should be ok.
1495 			 */
1496 			/* XXX not right for monitor mode */
1497 			ic_opmode = ic->ic_opmode;
1498 		}
1499 		break;
1500 	case IEEE80211_M_HOSTAP:
1501 	case IEEE80211_M_MBSS:
1502 		needbeacon = 1;
1503 		break;
1504 	case IEEE80211_M_WDS:
1505 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1506 			device_printf(sc->sc_dev,
1507 			    "wds not supported in sta mode\n");
1508 			goto bad;
1509 		}
1510 		/*
1511 		 * Silently remove any request for a unique
1512 		 * bssid; WDS vap's always share the local
1513 		 * mac address.
1514 		 */
1515 		flags &= ~IEEE80211_CLONE_BSSID;
1516 		if (sc->sc_nvaps == 0)
1517 			ic_opmode = IEEE80211_M_HOSTAP;
1518 		else
1519 			ic_opmode = ic->ic_opmode;
1520 		break;
1521 	default:
1522 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1523 		goto bad;
1524 	}
1525 	/*
1526 	 * Check that a beacon buffer is available; the code below assumes it.
1527 	 */
1528 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1529 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1530 		goto bad;
1531 	}
1532 
1533 	/* STA, AHDEMO? */
1534 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1535 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1536 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1537 	}
1538 
1539 	vap = &avp->av_vap;
1540 	/* XXX can't hold mutex across if_alloc */
1541 	ATH_UNLOCK(sc);
1542 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1543 	ATH_LOCK(sc);
1544 	if (error != 0) {
1545 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1546 		    __func__, error);
1547 		goto bad2;
1548 	}
1549 
1550 	/* h/w crypto support */
1551 	vap->iv_key_alloc = ath_key_alloc;
1552 	vap->iv_key_delete = ath_key_delete;
1553 	vap->iv_key_set = ath_key_set;
1554 	vap->iv_key_update_begin = ath_key_update_begin;
1555 	vap->iv_key_update_end = ath_key_update_end;
1556 
1557 	/* override various methods */
1558 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1559 	vap->iv_recv_mgmt = ath_recv_mgmt;
1560 	vap->iv_reset = ath_reset_vap;
1561 	vap->iv_update_beacon = ath_beacon_update;
1562 	avp->av_newstate = vap->iv_newstate;
1563 	vap->iv_newstate = ath_newstate;
1564 	avp->av_bmiss = vap->iv_bmiss;
1565 	vap->iv_bmiss = ath_bmiss_vap;
1566 
1567 	avp->av_node_ps = vap->iv_node_ps;
1568 	vap->iv_node_ps = ath_node_powersave;
1569 
1570 	avp->av_set_tim = vap->iv_set_tim;
1571 	vap->iv_set_tim = ath_node_set_tim;
1572 
1573 	avp->av_recv_pspoll = vap->iv_recv_pspoll;
1574 	vap->iv_recv_pspoll = ath_node_recv_pspoll;
1575 
1576 	/* Set default parameters */
1577 
1578 	/*
1579 	 * Anything earlier than some AR9300 series MACs don't
1580 	 * support a smaller MPDU density.
1581 	 */
1582 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1583 	/*
1584 	 * All NICs can handle the maximum size, however
1585 	 * AR5416 based MACs can only TX aggregates w/ RTS
1586 	 * protection when the total aggregate size is <= 8k.
1587 	 * However, for now that's enforced by the TX path.
1588 	 */
1589 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1590 
1591 	avp->av_bslot = -1;
1592 	if (needbeacon) {
1593 		/*
1594 		 * Allocate beacon state and setup the q for buffered
1595 		 * multicast frames.  We know a beacon buffer is
1596 		 * available because we checked above.
1597 		 */
1598 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1599 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1600 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1601 			/*
1602 			 * Assign the vap to a beacon xmit slot.  As above
1603 			 * this cannot fail to find a free one.
1604 			 */
1605 			avp->av_bslot = assign_bslot(sc);
1606 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1607 			    ("beacon slot %u not empty", avp->av_bslot));
1608 			sc->sc_bslot[avp->av_bslot] = vap;
1609 			sc->sc_nbcnvaps++;
1610 		}
1611 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1612 			/*
1613 			 * Multple vaps are to transmit beacons and we
1614 			 * have h/w support for TSF adjusting; enable
1615 			 * use of staggered beacons.
1616 			 */
1617 			sc->sc_stagbeacons = 1;
1618 		}
1619 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1620 	}
1621 
1622 	ic->ic_opmode = ic_opmode;
1623 	if (opmode != IEEE80211_M_WDS) {
1624 		sc->sc_nvaps++;
1625 		if (opmode == IEEE80211_M_STA)
1626 			sc->sc_nstavaps++;
1627 		if (opmode == IEEE80211_M_MBSS)
1628 			sc->sc_nmeshvaps++;
1629 	}
1630 	switch (ic_opmode) {
1631 	case IEEE80211_M_IBSS:
1632 		sc->sc_opmode = HAL_M_IBSS;
1633 		break;
1634 	case IEEE80211_M_STA:
1635 		sc->sc_opmode = HAL_M_STA;
1636 		break;
1637 	case IEEE80211_M_AHDEMO:
1638 #ifdef IEEE80211_SUPPORT_TDMA
1639 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1640 			sc->sc_tdma = 1;
1641 			/* NB: disable tsf adjust */
1642 			sc->sc_stagbeacons = 0;
1643 		}
1644 		/*
1645 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1646 		 * just ap mode.
1647 		 */
1648 		/* fall thru... */
1649 #endif
1650 	case IEEE80211_M_HOSTAP:
1651 	case IEEE80211_M_MBSS:
1652 		sc->sc_opmode = HAL_M_HOSTAP;
1653 		break;
1654 	case IEEE80211_M_MONITOR:
1655 		sc->sc_opmode = HAL_M_MONITOR;
1656 		break;
1657 	default:
1658 		/* XXX should not happen */
1659 		break;
1660 	}
1661 	if (sc->sc_hastsfadd) {
1662 		/*
1663 		 * Configure whether or not TSF adjust should be done.
1664 		 */
1665 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1666 	}
1667 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1668 		/*
1669 		 * Enable s/w beacon miss handling.
1670 		 */
1671 		sc->sc_swbmiss = 1;
1672 	}
1673 	ATH_UNLOCK(sc);
1674 
1675 	/* complete setup */
1676 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status,
1677 	    mac);
1678 	return vap;
1679 bad2:
1680 	reclaim_address(sc, mac);
1681 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1682 bad:
1683 	free(avp, M_80211_VAP);
1684 	ATH_UNLOCK(sc);
1685 	return NULL;
1686 }
1687 
1688 static void
1689 ath_vap_delete(struct ieee80211vap *vap)
1690 {
1691 	struct ieee80211com *ic = vap->iv_ic;
1692 	struct ath_softc *sc = ic->ic_softc;
1693 	struct ath_hal *ah = sc->sc_ah;
1694 	struct ath_vap *avp = ATH_VAP(vap);
1695 
1696 	ATH_LOCK(sc);
1697 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1698 	ATH_UNLOCK(sc);
1699 
1700 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1701 	if (sc->sc_running) {
1702 		/*
1703 		 * Quiesce the hardware while we remove the vap.  In
1704 		 * particular we need to reclaim all references to
1705 		 * the vap state by any frames pending on the tx queues.
1706 		 */
1707 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1708 		/* XXX Do all frames from all vaps/nodes need draining here? */
1709 		ath_stoprecv(sc, 1);		/* stop recv side */
1710 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1711 	}
1712 
1713 	/* .. leave the hardware awake for now. */
1714 
1715 	ieee80211_vap_detach(vap);
1716 
1717 	/*
1718 	 * XXX Danger Will Robinson! Danger!
1719 	 *
1720 	 * Because ieee80211_vap_detach() can queue a frame (the station
1721 	 * diassociate message?) after we've drained the TXQ and
1722 	 * flushed the software TXQ, we will end up with a frame queued
1723 	 * to a node whose vap is about to be freed.
1724 	 *
1725 	 * To work around this, flush the hardware/software again.
1726 	 * This may be racy - the ath task may be running and the packet
1727 	 * may be being scheduled between sw->hw txq. Tsk.
1728 	 *
1729 	 * TODO: figure out why a new node gets allocated somewhere around
1730 	 * here (after the ath_tx_swq() call; and after an ath_stop()
1731 	 * call!)
1732 	 */
1733 
1734 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1735 
1736 	ATH_LOCK(sc);
1737 	/*
1738 	 * Reclaim beacon state.  Note this must be done before
1739 	 * the vap instance is reclaimed as we may have a reference
1740 	 * to it in the buffer for the beacon frame.
1741 	 */
1742 	if (avp->av_bcbuf != NULL) {
1743 		if (avp->av_bslot != -1) {
1744 			sc->sc_bslot[avp->av_bslot] = NULL;
1745 			sc->sc_nbcnvaps--;
1746 		}
1747 		ath_beacon_return(sc, avp->av_bcbuf);
1748 		avp->av_bcbuf = NULL;
1749 		if (sc->sc_nbcnvaps == 0) {
1750 			sc->sc_stagbeacons = 0;
1751 			if (sc->sc_hastsfadd)
1752 				ath_hal_settsfadjust(sc->sc_ah, 0);
1753 		}
1754 		/*
1755 		 * Reclaim any pending mcast frames for the vap.
1756 		 */
1757 		ath_tx_draintxq(sc, &avp->av_mcastq);
1758 	}
1759 	/*
1760 	 * Update bookkeeping.
1761 	 */
1762 	if (vap->iv_opmode == IEEE80211_M_STA) {
1763 		sc->sc_nstavaps--;
1764 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1765 			sc->sc_swbmiss = 0;
1766 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1767 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1768 		reclaim_address(sc, vap->iv_myaddr);
1769 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1770 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1771 			sc->sc_nmeshvaps--;
1772 	}
1773 	if (vap->iv_opmode != IEEE80211_M_WDS)
1774 		sc->sc_nvaps--;
1775 #ifdef IEEE80211_SUPPORT_TDMA
1776 	/* TDMA operation ceases when the last vap is destroyed */
1777 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1778 		sc->sc_tdma = 0;
1779 		sc->sc_swbmiss = 0;
1780 	}
1781 #endif
1782 	free(avp, M_80211_VAP);
1783 
1784 	if (sc->sc_running) {
1785 		/*
1786 		 * Restart rx+tx machines if still running (RUNNING will
1787 		 * be reset if we just destroyed the last vap).
1788 		 */
1789 		if (ath_startrecv(sc) != 0)
1790 			device_printf(sc->sc_dev,
1791 			    "%s: unable to restart recv logic\n", __func__);
1792 		if (sc->sc_beacons) {		/* restart beacons */
1793 #ifdef IEEE80211_SUPPORT_TDMA
1794 			if (sc->sc_tdma)
1795 				ath_tdma_config(sc, NULL);
1796 			else
1797 #endif
1798 				ath_beacon_config(sc, NULL);
1799 		}
1800 		ath_hal_intrset(ah, sc->sc_imask);
1801 	}
1802 
1803 	/* Ok, let the hardware asleep. */
1804 	ath_power_restore_power_state(sc);
1805 	ATH_UNLOCK(sc);
1806 }
1807 
1808 void
1809 ath_suspend(struct ath_softc *sc)
1810 {
1811 	struct ieee80211com *ic = &sc->sc_ic;
1812 
1813 	sc->sc_resume_up = ic->ic_nrunning != 0;
1814 
1815 	ieee80211_suspend_all(ic);
1816 	/*
1817 	 * NB: don't worry about putting the chip in low power
1818 	 * mode; pci will power off our socket on suspend and
1819 	 * CardBus detaches the device.
1820 	 *
1821 	 * XXX TODO: well, that's great, except for non-cardbus
1822 	 * devices!
1823 	 */
1824 
1825 	/*
1826 	 * XXX This doesn't wait until all pending taskqueue
1827 	 * items and parallel transmit/receive/other threads
1828 	 * are running!
1829 	 */
1830 	ath_hal_intrset(sc->sc_ah, 0);
1831 	taskqueue_block(sc->sc_tq);
1832 
1833 	ATH_LOCK(sc);
1834 	callout_stop(&sc->sc_cal_ch);
1835 	ATH_UNLOCK(sc);
1836 
1837 	/*
1838 	 * XXX ensure sc_invalid is 1
1839 	 */
1840 
1841 	/* Disable the PCIe PHY, complete with workarounds */
1842 	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1843 }
1844 
1845 /*
1846  * Reset the key cache since some parts do not reset the
1847  * contents on resume.  First we clear all entries, then
1848  * re-load keys that the 802.11 layer assumes are setup
1849  * in h/w.
1850  */
1851 static void
1852 ath_reset_keycache(struct ath_softc *sc)
1853 {
1854 	struct ieee80211com *ic = &sc->sc_ic;
1855 	struct ath_hal *ah = sc->sc_ah;
1856 	int i;
1857 
1858 	ATH_LOCK(sc);
1859 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1860 	for (i = 0; i < sc->sc_keymax; i++)
1861 		ath_hal_keyreset(ah, i);
1862 	ath_power_restore_power_state(sc);
1863 	ATH_UNLOCK(sc);
1864 	ieee80211_crypto_reload_keys(ic);
1865 }
1866 
1867 /*
1868  * Fetch the current chainmask configuration based on the current
1869  * operating channel and options.
1870  */
1871 static void
1872 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1873 {
1874 
1875 	/*
1876 	 * Set TX chainmask to the currently configured chainmask;
1877 	 * the TX chainmask depends upon the current operating mode.
1878 	 */
1879 	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1880 	if (IEEE80211_IS_CHAN_HT(chan)) {
1881 		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1882 	} else {
1883 		sc->sc_cur_txchainmask = 1;
1884 	}
1885 
1886 	DPRINTF(sc, ATH_DEBUG_RESET,
1887 	    "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1888 	    __func__,
1889 	    sc->sc_cur_txchainmask,
1890 	    sc->sc_cur_rxchainmask);
1891 }
1892 
1893 void
1894 ath_resume(struct ath_softc *sc)
1895 {
1896 	struct ieee80211com *ic = &sc->sc_ic;
1897 	struct ath_hal *ah = sc->sc_ah;
1898 	HAL_STATUS status;
1899 
1900 	ath_hal_enablepcie(ah, 0, 0);
1901 
1902 	/*
1903 	 * Must reset the chip before we reload the
1904 	 * keycache as we were powered down on suspend.
1905 	 */
1906 	ath_update_chainmasks(sc,
1907 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1908 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1909 	    sc->sc_cur_rxchainmask);
1910 
1911 	/* Ensure we set the current power state to on */
1912 	ATH_LOCK(sc);
1913 	ath_power_setselfgen(sc, HAL_PM_AWAKE);
1914 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1915 	ath_power_setpower(sc, HAL_PM_AWAKE);
1916 	ATH_UNLOCK(sc);
1917 
1918 	ath_hal_reset(ah, sc->sc_opmode,
1919 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1920 	    AH_FALSE, &status);
1921 	ath_reset_keycache(sc);
1922 
1923 	ATH_RX_LOCK(sc);
1924 	sc->sc_rx_stopped = 1;
1925 	sc->sc_rx_resetted = 1;
1926 	ATH_RX_UNLOCK(sc);
1927 
1928 	/* Let DFS at it in case it's a DFS channel */
1929 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1930 
1931 	/* Let spectral at in case spectral is enabled */
1932 	ath_spectral_enable(sc, ic->ic_curchan);
1933 
1934 	/*
1935 	 * Let bluetooth coexistence at in case it's needed for this channel
1936 	 */
1937 	ath_btcoex_enable(sc, ic->ic_curchan);
1938 
1939 	/*
1940 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
1941 	 * support it.
1942 	 */
1943 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
1944 		ath_hal_setenforcetxop(sc->sc_ah, 1);
1945 	else
1946 		ath_hal_setenforcetxop(sc->sc_ah, 0);
1947 
1948 	/* Restore the LED configuration */
1949 	ath_led_config(sc);
1950 	ath_hal_setledstate(ah, HAL_LED_INIT);
1951 
1952 	if (sc->sc_resume_up)
1953 		ieee80211_resume_all(ic);
1954 
1955 	ATH_LOCK(sc);
1956 	ath_power_restore_power_state(sc);
1957 	ATH_UNLOCK(sc);
1958 
1959 	/* XXX beacons ? */
1960 }
1961 
1962 void
1963 ath_shutdown(struct ath_softc *sc)
1964 {
1965 
1966 	ATH_LOCK(sc);
1967 	ath_stop(sc);
1968 	ATH_UNLOCK(sc);
1969 	/* NB: no point powering down chip as we're about to reboot */
1970 }
1971 
1972 /*
1973  * Interrupt handler.  Most of the actual processing is deferred.
1974  */
1975 void
1976 ath_intr(void *arg)
1977 {
1978 	struct ath_softc *sc = arg;
1979 	struct ath_hal *ah = sc->sc_ah;
1980 	HAL_INT status = 0;
1981 	uint32_t txqs;
1982 
1983 	/*
1984 	 * If we're inside a reset path, just print a warning and
1985 	 * clear the ISR. The reset routine will finish it for us.
1986 	 */
1987 	ATH_PCU_LOCK(sc);
1988 	if (sc->sc_inreset_cnt) {
1989 		HAL_INT status;
1990 		ath_hal_getisr(ah, &status);	/* clear ISR */
1991 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1992 		DPRINTF(sc, ATH_DEBUG_ANY,
1993 		    "%s: in reset, ignoring: status=0x%x\n",
1994 		    __func__, status);
1995 		ATH_PCU_UNLOCK(sc);
1996 		return;
1997 	}
1998 
1999 	if (sc->sc_invalid) {
2000 		/*
2001 		 * The hardware is not ready/present, don't touch anything.
2002 		 * Note this can happen early on if the IRQ is shared.
2003 		 */
2004 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
2005 		ATH_PCU_UNLOCK(sc);
2006 		return;
2007 	}
2008 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
2009 		ATH_PCU_UNLOCK(sc);
2010 		return;
2011 	}
2012 
2013 	ATH_LOCK(sc);
2014 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2015 	ATH_UNLOCK(sc);
2016 
2017 	if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) {
2018 		HAL_INT status;
2019 
2020 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n",
2021 		    __func__, sc->sc_ic.ic_nrunning, sc->sc_running);
2022 		ath_hal_getisr(ah, &status);	/* clear ISR */
2023 		ath_hal_intrset(ah, 0);		/* disable further intr's */
2024 		ATH_PCU_UNLOCK(sc);
2025 
2026 		ATH_LOCK(sc);
2027 		ath_power_restore_power_state(sc);
2028 		ATH_UNLOCK(sc);
2029 		return;
2030 	}
2031 
2032 	/*
2033 	 * Figure out the reason(s) for the interrupt.  Note
2034 	 * that the hal returns a pseudo-ISR that may include
2035 	 * bits we haven't explicitly enabled so we mask the
2036 	 * value to insure we only process bits we requested.
2037 	 */
2038 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
2039 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
2040 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
2041 #ifdef	ATH_DEBUG_ALQ
2042 	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
2043 	    ah->ah_syncstate);
2044 #endif	/* ATH_DEBUG_ALQ */
2045 #ifdef	ATH_KTR_INTR_DEBUG
2046 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
2047 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
2048 	    ah->ah_intrstate[0],
2049 	    ah->ah_intrstate[1],
2050 	    ah->ah_intrstate[2],
2051 	    ah->ah_intrstate[3],
2052 	    ah->ah_intrstate[6]);
2053 #endif
2054 
2055 	/* Squirrel away SYNC interrupt debugging */
2056 	if (ah->ah_syncstate != 0) {
2057 		int i;
2058 		for (i = 0; i < 32; i++)
2059 			if (ah->ah_syncstate & (i << i))
2060 				sc->sc_intr_stats.sync_intr[i]++;
2061 	}
2062 
2063 	status &= sc->sc_imask;			/* discard unasked for bits */
2064 
2065 	/* Short-circuit un-handled interrupts */
2066 	if (status == 0x0) {
2067 		ATH_PCU_UNLOCK(sc);
2068 
2069 		ATH_LOCK(sc);
2070 		ath_power_restore_power_state(sc);
2071 		ATH_UNLOCK(sc);
2072 
2073 		return;
2074 	}
2075 
2076 	/*
2077 	 * Take a note that we're inside the interrupt handler, so
2078 	 * the reset routines know to wait.
2079 	 */
2080 	sc->sc_intr_cnt++;
2081 	ATH_PCU_UNLOCK(sc);
2082 
2083 	/*
2084 	 * Handle the interrupt. We won't run concurrent with the reset
2085 	 * or channel change routines as they'll wait for sc_intr_cnt
2086 	 * to be 0 before continuing.
2087 	 */
2088 	if (status & HAL_INT_FATAL) {
2089 		sc->sc_stats.ast_hardware++;
2090 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
2091 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
2092 	} else {
2093 		if (status & HAL_INT_SWBA) {
2094 			/*
2095 			 * Software beacon alert--time to send a beacon.
2096 			 * Handle beacon transmission directly; deferring
2097 			 * this is too slow to meet timing constraints
2098 			 * under load.
2099 			 */
2100 #ifdef IEEE80211_SUPPORT_TDMA
2101 			if (sc->sc_tdma) {
2102 				if (sc->sc_tdmaswba == 0) {
2103 					struct ieee80211com *ic = &sc->sc_ic;
2104 					struct ieee80211vap *vap =
2105 					    TAILQ_FIRST(&ic->ic_vaps);
2106 					ath_tdma_beacon_send(sc, vap);
2107 					sc->sc_tdmaswba =
2108 					    vap->iv_tdma->tdma_bintval;
2109 				} else
2110 					sc->sc_tdmaswba--;
2111 			} else
2112 #endif
2113 			{
2114 				ath_beacon_proc(sc, 0);
2115 #ifdef IEEE80211_SUPPORT_SUPERG
2116 				/*
2117 				 * Schedule the rx taskq in case there's no
2118 				 * traffic so any frames held on the staging
2119 				 * queue are aged and potentially flushed.
2120 				 */
2121 				sc->sc_rx.recv_sched(sc, 1);
2122 #endif
2123 			}
2124 		}
2125 		if (status & HAL_INT_RXEOL) {
2126 			int imask;
2127 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
2128 			if (! sc->sc_isedma) {
2129 				ATH_PCU_LOCK(sc);
2130 				/*
2131 				 * NB: the hardware should re-read the link when
2132 				 *     RXE bit is written, but it doesn't work at
2133 				 *     least on older hardware revs.
2134 				 */
2135 				sc->sc_stats.ast_rxeol++;
2136 				/*
2137 				 * Disable RXEOL/RXORN - prevent an interrupt
2138 				 * storm until the PCU logic can be reset.
2139 				 * In case the interface is reset some other
2140 				 * way before "sc_kickpcu" is called, don't
2141 				 * modify sc_imask - that way if it is reset
2142 				 * by a call to ath_reset() somehow, the
2143 				 * interrupt mask will be correctly reprogrammed.
2144 				 */
2145 				imask = sc->sc_imask;
2146 				imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
2147 				ath_hal_intrset(ah, imask);
2148 				/*
2149 				 * Only blank sc_rxlink if we've not yet kicked
2150 				 * the PCU.
2151 				 *
2152 				 * This isn't entirely correct - the correct solution
2153 				 * would be to have a PCU lock and engage that for
2154 				 * the duration of the PCU fiddling; which would include
2155 				 * running the RX process. Otherwise we could end up
2156 				 * messing up the RX descriptor chain and making the
2157 				 * RX desc list much shorter.
2158 				 */
2159 				if (! sc->sc_kickpcu)
2160 					sc->sc_rxlink = NULL;
2161 				sc->sc_kickpcu = 1;
2162 				ATH_PCU_UNLOCK(sc);
2163 			}
2164 			/*
2165 			 * Enqueue an RX proc to handle whatever
2166 			 * is in the RX queue.
2167 			 * This will then kick the PCU if required.
2168 			 */
2169 			sc->sc_rx.recv_sched(sc, 1);
2170 		}
2171 		if (status & HAL_INT_TXURN) {
2172 			sc->sc_stats.ast_txurn++;
2173 			/* bump tx trigger level */
2174 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
2175 		}
2176 		/*
2177 		 * Handle both the legacy and RX EDMA interrupt bits.
2178 		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
2179 		 */
2180 		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
2181 			sc->sc_stats.ast_rx_intr++;
2182 			sc->sc_rx.recv_sched(sc, 1);
2183 		}
2184 		if (status & HAL_INT_TX) {
2185 			sc->sc_stats.ast_tx_intr++;
2186 			/*
2187 			 * Grab all the currently set bits in the HAL txq bitmap
2188 			 * and blank them. This is the only place we should be
2189 			 * doing this.
2190 			 */
2191 			if (! sc->sc_isedma) {
2192 				ATH_PCU_LOCK(sc);
2193 				txqs = 0xffffffff;
2194 				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
2195 				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
2196 				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
2197 				    txqs,
2198 				    sc->sc_txq_active,
2199 				    sc->sc_txq_active | txqs);
2200 				sc->sc_txq_active |= txqs;
2201 				ATH_PCU_UNLOCK(sc);
2202 			}
2203 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
2204 		}
2205 		if (status & HAL_INT_BMISS) {
2206 			sc->sc_stats.ast_bmiss++;
2207 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
2208 		}
2209 		if (status & HAL_INT_GTT)
2210 			sc->sc_stats.ast_tx_timeout++;
2211 		if (status & HAL_INT_CST)
2212 			sc->sc_stats.ast_tx_cst++;
2213 		if (status & HAL_INT_MIB) {
2214 			sc->sc_stats.ast_mib++;
2215 			ATH_PCU_LOCK(sc);
2216 			/*
2217 			 * Disable interrupts until we service the MIB
2218 			 * interrupt; otherwise it will continue to fire.
2219 			 */
2220 			ath_hal_intrset(ah, 0);
2221 			/*
2222 			 * Let the hal handle the event.  We assume it will
2223 			 * clear whatever condition caused the interrupt.
2224 			 */
2225 			ath_hal_mibevent(ah, &sc->sc_halstats);
2226 			/*
2227 			 * Don't reset the interrupt if we've just
2228 			 * kicked the PCU, or we may get a nested
2229 			 * RXEOL before the rxproc has had a chance
2230 			 * to run.
2231 			 */
2232 			if (sc->sc_kickpcu == 0)
2233 				ath_hal_intrset(ah, sc->sc_imask);
2234 			ATH_PCU_UNLOCK(sc);
2235 		}
2236 		if (status & HAL_INT_RXORN) {
2237 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
2238 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
2239 			sc->sc_stats.ast_rxorn++;
2240 		}
2241 		if (status & HAL_INT_TSFOOR) {
2242 			device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__);
2243 			sc->sc_syncbeacon = 1;
2244 		}
2245 	}
2246 	ATH_PCU_LOCK(sc);
2247 	sc->sc_intr_cnt--;
2248 	ATH_PCU_UNLOCK(sc);
2249 
2250 	ATH_LOCK(sc);
2251 	ath_power_restore_power_state(sc);
2252 	ATH_UNLOCK(sc);
2253 }
2254 
2255 static void
2256 ath_fatal_proc(void *arg, int pending)
2257 {
2258 	struct ath_softc *sc = arg;
2259 	u_int32_t *state;
2260 	u_int32_t len;
2261 	void *sp;
2262 
2263 	if (sc->sc_invalid)
2264 		return;
2265 
2266 	device_printf(sc->sc_dev, "hardware error; resetting\n");
2267 	/*
2268 	 * Fatal errors are unrecoverable.  Typically these
2269 	 * are caused by DMA errors.  Collect h/w state from
2270 	 * the hal so we can diagnose what's going on.
2271 	 */
2272 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
2273 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
2274 		state = sp;
2275 		device_printf(sc->sc_dev,
2276 		    "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0],
2277 		    state[1] , state[2], state[3], state[4], state[5]);
2278 	}
2279 	ath_reset(sc, ATH_RESET_NOLOSS);
2280 }
2281 
2282 static void
2283 ath_bmiss_vap(struct ieee80211vap *vap)
2284 {
2285 	struct ath_softc *sc = vap->iv_ic->ic_softc;
2286 
2287 	/*
2288 	 * Workaround phantom bmiss interrupts by sanity-checking
2289 	 * the time of our last rx'd frame.  If it is within the
2290 	 * beacon miss interval then ignore the interrupt.  If it's
2291 	 * truly a bmiss we'll get another interrupt soon and that'll
2292 	 * be dispatched up for processing.  Note this applies only
2293 	 * for h/w beacon miss events.
2294 	 */
2295 
2296 	/*
2297 	 * XXX TODO: Just read the TSF during the interrupt path;
2298 	 * that way we don't have to wake up again just to read it
2299 	 * again.
2300 	 */
2301 	ATH_LOCK(sc);
2302 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2303 	ATH_UNLOCK(sc);
2304 
2305 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2306 		u_int64_t lastrx = sc->sc_lastrx;
2307 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
2308 		/* XXX should take a locked ref to iv_bss */
2309 		u_int bmisstimeout =
2310 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
2311 
2312 		DPRINTF(sc, ATH_DEBUG_BEACON,
2313 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
2314 		    __func__, (unsigned long long) tsf,
2315 		    (unsigned long long)(tsf - lastrx),
2316 		    (unsigned long long) lastrx, bmisstimeout);
2317 
2318 		if (tsf - lastrx <= bmisstimeout) {
2319 			sc->sc_stats.ast_bmiss_phantom++;
2320 
2321 			ATH_LOCK(sc);
2322 			ath_power_restore_power_state(sc);
2323 			ATH_UNLOCK(sc);
2324 
2325 			return;
2326 		}
2327 	}
2328 
2329 	/*
2330 	 * There's no need to keep the hardware awake during the call
2331 	 * to av_bmiss().
2332 	 */
2333 	ATH_LOCK(sc);
2334 	ath_power_restore_power_state(sc);
2335 	ATH_UNLOCK(sc);
2336 
2337 	/*
2338 	 * Attempt to force a beacon resync.
2339 	 */
2340 	sc->sc_syncbeacon = 1;
2341 
2342 	ATH_VAP(vap)->av_bmiss(vap);
2343 }
2344 
2345 /* XXX this needs a force wakeup! */
2346 int
2347 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
2348 {
2349 	uint32_t rsize;
2350 	void *sp;
2351 
2352 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
2353 		return 0;
2354 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
2355 	*hangs = *(uint32_t *)sp;
2356 	return 1;
2357 }
2358 
2359 static void
2360 ath_bmiss_proc(void *arg, int pending)
2361 {
2362 	struct ath_softc *sc = arg;
2363 	uint32_t hangs;
2364 
2365 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2366 
2367 	ATH_LOCK(sc);
2368 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2369 	ATH_UNLOCK(sc);
2370 
2371 	ath_beacon_miss(sc);
2372 
2373 	/*
2374 	 * Do a reset upon any becaon miss event.
2375 	 *
2376 	 * It may be a non-recognised RX clear hang which needs a reset
2377 	 * to clear.
2378 	 */
2379 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
2380 		ath_reset(sc, ATH_RESET_NOLOSS);
2381 		device_printf(sc->sc_dev,
2382 		    "bb hang detected (0x%x), resetting\n", hangs);
2383 	} else {
2384 		ath_reset(sc, ATH_RESET_NOLOSS);
2385 		ieee80211_beacon_miss(&sc->sc_ic);
2386 	}
2387 
2388 	/* Force a beacon resync, in case they've drifted */
2389 	sc->sc_syncbeacon = 1;
2390 
2391 	ATH_LOCK(sc);
2392 	ath_power_restore_power_state(sc);
2393 	ATH_UNLOCK(sc);
2394 }
2395 
2396 /*
2397  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
2398  * calcs together with WME.  If necessary disable the crypto
2399  * hardware and mark the 802.11 state so keys will be setup
2400  * with the MIC work done in software.
2401  */
2402 static void
2403 ath_settkipmic(struct ath_softc *sc)
2404 {
2405 	struct ieee80211com *ic = &sc->sc_ic;
2406 
2407 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2408 		if (ic->ic_flags & IEEE80211_F_WME) {
2409 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
2410 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2411 		} else {
2412 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
2413 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2414 		}
2415 	}
2416 }
2417 
2418 static int
2419 ath_init(struct ath_softc *sc)
2420 {
2421 	struct ieee80211com *ic = &sc->sc_ic;
2422 	struct ath_hal *ah = sc->sc_ah;
2423 	HAL_STATUS status;
2424 
2425 	ATH_LOCK_ASSERT(sc);
2426 
2427 	/*
2428 	 * Force the sleep state awake.
2429 	 */
2430 	ath_power_setselfgen(sc, HAL_PM_AWAKE);
2431 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2432 	ath_power_setpower(sc, HAL_PM_AWAKE);
2433 
2434 	/*
2435 	 * Stop anything previously setup.  This is safe
2436 	 * whether this is the first time through or not.
2437 	 */
2438 	ath_stop(sc);
2439 
2440 	/*
2441 	 * The basic interface to setting the hardware in a good
2442 	 * state is ``reset''.  On return the hardware is known to
2443 	 * be powered up and with interrupts disabled.  This must
2444 	 * be followed by initialization of the appropriate bits
2445 	 * and then setup of the interrupt mask.
2446 	 */
2447 	ath_settkipmic(sc);
2448 	ath_update_chainmasks(sc, ic->ic_curchan);
2449 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2450 	    sc->sc_cur_rxchainmask);
2451 
2452 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE,
2453 	    &status)) {
2454 		device_printf(sc->sc_dev,
2455 		    "unable to reset hardware; hal status %u\n", status);
2456 		return (ENODEV);
2457 	}
2458 
2459 	ATH_RX_LOCK(sc);
2460 	sc->sc_rx_stopped = 1;
2461 	sc->sc_rx_resetted = 1;
2462 	ATH_RX_UNLOCK(sc);
2463 
2464 	ath_chan_change(sc, ic->ic_curchan);
2465 
2466 	/* Let DFS at it in case it's a DFS channel */
2467 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2468 
2469 	/* Let spectral at in case spectral is enabled */
2470 	ath_spectral_enable(sc, ic->ic_curchan);
2471 
2472 	/*
2473 	 * Let bluetooth coexistence at in case it's needed for this channel
2474 	 */
2475 	ath_btcoex_enable(sc, ic->ic_curchan);
2476 
2477 	/*
2478 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2479 	 * support it.
2480 	 */
2481 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2482 		ath_hal_setenforcetxop(sc->sc_ah, 1);
2483 	else
2484 		ath_hal_setenforcetxop(sc->sc_ah, 0);
2485 
2486 	/*
2487 	 * Likewise this is set during reset so update
2488 	 * state cached in the driver.
2489 	 */
2490 	sc->sc_diversity = ath_hal_getdiversity(ah);
2491 	sc->sc_lastlongcal = ticks;
2492 	sc->sc_resetcal = 1;
2493 	sc->sc_lastcalreset = 0;
2494 	sc->sc_lastani = ticks;
2495 	sc->sc_lastshortcal = ticks;
2496 	sc->sc_doresetcal = AH_FALSE;
2497 	/*
2498 	 * Beacon timers were cleared here; give ath_newstate()
2499 	 * a hint that the beacon timers should be poked when
2500 	 * things transition to the RUN state.
2501 	 */
2502 	sc->sc_beacons = 0;
2503 
2504 	/*
2505 	 * Setup the hardware after reset: the key cache
2506 	 * is filled as needed and the receive engine is
2507 	 * set going.  Frame transmit is handled entirely
2508 	 * in the frame output path; there's nothing to do
2509 	 * here except setup the interrupt mask.
2510 	 */
2511 	if (ath_startrecv(sc) != 0) {
2512 		device_printf(sc->sc_dev, "unable to start recv logic\n");
2513 		ath_power_restore_power_state(sc);
2514 		return (ENODEV);
2515 	}
2516 
2517 	/*
2518 	 * Enable interrupts.
2519 	 */
2520 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2521 		  | HAL_INT_RXORN | HAL_INT_TXURN
2522 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2523 
2524 	/*
2525 	 * Enable RX EDMA bits.  Note these overlap with
2526 	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2527 	 */
2528 	if (sc->sc_isedma)
2529 		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2530 
2531 	/*
2532 	 * If we're an EDMA NIC, we don't care about RXEOL.
2533 	 * Writing a new descriptor in will simply restart
2534 	 * RX DMA.
2535 	 */
2536 	if (! sc->sc_isedma)
2537 		sc->sc_imask |= HAL_INT_RXEOL;
2538 
2539 	/*
2540 	 * Enable MIB interrupts when there are hardware phy counters.
2541 	 * Note we only do this (at the moment) for station mode.
2542 	 */
2543 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2544 		sc->sc_imask |= HAL_INT_MIB;
2545 
2546 	/*
2547 	 * XXX add capability for this.
2548 	 *
2549 	 * If we're in STA mode (and maybe IBSS?) then register for
2550 	 * TSFOOR interrupts.
2551 	 */
2552 	if (ic->ic_opmode == IEEE80211_M_STA)
2553 		sc->sc_imask |= HAL_INT_TSFOOR;
2554 
2555 	/* Enable global TX timeout and carrier sense timeout if available */
2556 	if (ath_hal_gtxto_supported(ah))
2557 		sc->sc_imask |= HAL_INT_GTT;
2558 
2559 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2560 		__func__, sc->sc_imask);
2561 
2562 	sc->sc_running = 1;
2563 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2564 	ath_hal_intrset(ah, sc->sc_imask);
2565 
2566 	ath_power_restore_power_state(sc);
2567 
2568 	return (0);
2569 }
2570 
2571 static void
2572 ath_stop(struct ath_softc *sc)
2573 {
2574 	struct ath_hal *ah = sc->sc_ah;
2575 
2576 	ATH_LOCK_ASSERT(sc);
2577 
2578 	/*
2579 	 * Wake the hardware up before fiddling with it.
2580 	 */
2581 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2582 
2583 	if (sc->sc_running) {
2584 		/*
2585 		 * Shutdown the hardware and driver:
2586 		 *    reset 802.11 state machine
2587 		 *    turn off timers
2588 		 *    disable interrupts
2589 		 *    turn off the radio
2590 		 *    clear transmit machinery
2591 		 *    clear receive machinery
2592 		 *    drain and release tx queues
2593 		 *    reclaim beacon resources
2594 		 *    power down hardware
2595 		 *
2596 		 * Note that some of this work is not possible if the
2597 		 * hardware is gone (invalid).
2598 		 */
2599 #ifdef ATH_TX99_DIAG
2600 		if (sc->sc_tx99 != NULL)
2601 			sc->sc_tx99->stop(sc->sc_tx99);
2602 #endif
2603 		callout_stop(&sc->sc_wd_ch);
2604 		sc->sc_wd_timer = 0;
2605 		sc->sc_running = 0;
2606 		if (!sc->sc_invalid) {
2607 			if (sc->sc_softled) {
2608 				callout_stop(&sc->sc_ledtimer);
2609 				ath_hal_gpioset(ah, sc->sc_ledpin,
2610 					!sc->sc_ledon);
2611 				sc->sc_blinking = 0;
2612 			}
2613 			ath_hal_intrset(ah, 0);
2614 		}
2615 		/* XXX we should stop RX regardless of whether it's valid */
2616 		if (!sc->sc_invalid) {
2617 			ath_stoprecv(sc, 1);
2618 			ath_hal_phydisable(ah);
2619 		} else
2620 			sc->sc_rxlink = NULL;
2621 		ath_draintxq(sc, ATH_RESET_DEFAULT);
2622 		ath_beacon_free(sc);	/* XXX not needed */
2623 	}
2624 
2625 	/* And now, restore the current power state */
2626 	ath_power_restore_power_state(sc);
2627 }
2628 
2629 /*
2630  * Wait until all pending TX/RX has completed.
2631  *
2632  * This waits until all existing transmit, receive and interrupts
2633  * have completed.  It's assumed that the caller has first
2634  * grabbed the reset lock so it doesn't try to do overlapping
2635  * chip resets.
2636  */
2637 #define	MAX_TXRX_ITERATIONS	100
2638 static void
2639 ath_txrx_stop_locked(struct ath_softc *sc)
2640 {
2641 	int i = MAX_TXRX_ITERATIONS;
2642 
2643 	ATH_UNLOCK_ASSERT(sc);
2644 	ATH_PCU_LOCK_ASSERT(sc);
2645 
2646 	/*
2647 	 * Sleep until all the pending operations have completed.
2648 	 *
2649 	 * The caller must ensure that reset has been incremented
2650 	 * or the pending operations may continue being queued.
2651 	 */
2652 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2653 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2654 		if (i <= 0)
2655 			break;
2656 		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
2657 		    msecs_to_ticks(10));
2658 		i--;
2659 	}
2660 
2661 	if (i <= 0)
2662 		device_printf(sc->sc_dev,
2663 		    "%s: didn't finish after %d iterations\n",
2664 		    __func__, MAX_TXRX_ITERATIONS);
2665 }
2666 #undef	MAX_TXRX_ITERATIONS
2667 
2668 #if 0
2669 static void
2670 ath_txrx_stop(struct ath_softc *sc)
2671 {
2672 	ATH_UNLOCK_ASSERT(sc);
2673 	ATH_PCU_UNLOCK_ASSERT(sc);
2674 
2675 	ATH_PCU_LOCK(sc);
2676 	ath_txrx_stop_locked(sc);
2677 	ATH_PCU_UNLOCK(sc);
2678 }
2679 #endif
2680 
2681 static void
2682 ath_txrx_start(struct ath_softc *sc)
2683 {
2684 
2685 	taskqueue_unblock(sc->sc_tq);
2686 }
2687 
2688 /*
2689  * Grab the reset lock, and wait around until noone else
2690  * is trying to do anything with it.
2691  *
2692  * This is totally horrible but we can't hold this lock for
2693  * long enough to do TX/RX or we end up with net80211/ip stack
2694  * LORs and eventual deadlock.
2695  *
2696  * "dowait" signals whether to spin, waiting for the reset
2697  * lock count to reach 0. This should (for now) only be used
2698  * during the reset path, as the rest of the code may not
2699  * be locking-reentrant enough to behave correctly.
2700  *
2701  * Another, cleaner way should be found to serialise all of
2702  * these operations.
2703  */
2704 #define	MAX_RESET_ITERATIONS	25
2705 static int
2706 ath_reset_grablock(struct ath_softc *sc, int dowait)
2707 {
2708 	int w = 0;
2709 	int i = MAX_RESET_ITERATIONS;
2710 
2711 	ATH_PCU_LOCK_ASSERT(sc);
2712 	do {
2713 		if (sc->sc_inreset_cnt == 0) {
2714 			w = 1;
2715 			break;
2716 		}
2717 		if (dowait == 0) {
2718 			w = 0;
2719 			break;
2720 		}
2721 		ATH_PCU_UNLOCK(sc);
2722 		/*
2723 		 * 1 tick is likely not enough time for long calibrations
2724 		 * to complete.  So we should wait quite a while.
2725 		 */
2726 		pause("ath_reset_grablock", msecs_to_ticks(100));
2727 		i--;
2728 		ATH_PCU_LOCK(sc);
2729 	} while (i > 0);
2730 
2731 	/*
2732 	 * We always increment the refcounter, regardless
2733 	 * of whether we succeeded to get it in an exclusive
2734 	 * way.
2735 	 */
2736 	sc->sc_inreset_cnt++;
2737 
2738 	if (i <= 0)
2739 		device_printf(sc->sc_dev,
2740 		    "%s: didn't finish after %d iterations\n",
2741 		    __func__, MAX_RESET_ITERATIONS);
2742 
2743 	if (w == 0)
2744 		device_printf(sc->sc_dev,
2745 		    "%s: warning, recursive reset path!\n",
2746 		    __func__);
2747 
2748 	return w;
2749 }
2750 #undef MAX_RESET_ITERATIONS
2751 
2752 /*
2753  * Reset the hardware w/o losing operational state.  This is
2754  * basically a more efficient way of doing ath_stop, ath_init,
2755  * followed by state transitions to the current 802.11
2756  * operational state.  Used to recover from various errors and
2757  * to reset or reload hardware state.
2758  */
2759 int
2760 ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
2761 {
2762 	struct ieee80211com *ic = &sc->sc_ic;
2763 	struct ath_hal *ah = sc->sc_ah;
2764 	HAL_STATUS status;
2765 	int i;
2766 
2767 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2768 
2769 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2770 	ATH_PCU_UNLOCK_ASSERT(sc);
2771 	ATH_UNLOCK_ASSERT(sc);
2772 
2773 	/* Try to (stop any further TX/RX from occuring */
2774 	taskqueue_block(sc->sc_tq);
2775 
2776 	/*
2777 	 * Wake the hardware up.
2778 	 */
2779 	ATH_LOCK(sc);
2780 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2781 	ATH_UNLOCK(sc);
2782 
2783 	ATH_PCU_LOCK(sc);
2784 
2785 	/*
2786 	 * Grab the reset lock before TX/RX is stopped.
2787 	 *
2788 	 * This is needed to ensure that when the TX/RX actually does finish,
2789 	 * no further TX/RX/reset runs in parallel with this.
2790 	 */
2791 	if (ath_reset_grablock(sc, 1) == 0) {
2792 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2793 		    __func__);
2794 	}
2795 
2796 	/* disable interrupts */
2797 	ath_hal_intrset(ah, 0);
2798 
2799 	/*
2800 	 * Now, ensure that any in progress TX/RX completes before we
2801 	 * continue.
2802 	 */
2803 	ath_txrx_stop_locked(sc);
2804 
2805 	ATH_PCU_UNLOCK(sc);
2806 
2807 	/*
2808 	 * Regardless of whether we're doing a no-loss flush or
2809 	 * not, stop the PCU and handle what's in the RX queue.
2810 	 * That way frames aren't dropped which shouldn't be.
2811 	 */
2812 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2813 	ath_rx_flush(sc);
2814 
2815 	/*
2816 	 * Should now wait for pending TX/RX to complete
2817 	 * and block future ones from occuring. This needs to be
2818 	 * done before the TX queue is drained.
2819 	 */
2820 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2821 
2822 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2823 	/* NB: indicate channel change so we do a full reset */
2824 	ath_update_chainmasks(sc, ic->ic_curchan);
2825 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2826 	    sc->sc_cur_rxchainmask);
2827 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2828 		device_printf(sc->sc_dev,
2829 		    "%s: unable to reset hardware; hal status %u\n",
2830 		    __func__, status);
2831 	sc->sc_diversity = ath_hal_getdiversity(ah);
2832 
2833 	ATH_RX_LOCK(sc);
2834 	sc->sc_rx_stopped = 1;
2835 	sc->sc_rx_resetted = 1;
2836 	ATH_RX_UNLOCK(sc);
2837 
2838 	/* Let DFS at it in case it's a DFS channel */
2839 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2840 
2841 	/* Let spectral at in case spectral is enabled */
2842 	ath_spectral_enable(sc, ic->ic_curchan);
2843 
2844 	/*
2845 	 * Let bluetooth coexistence at in case it's needed for this channel
2846 	 */
2847 	ath_btcoex_enable(sc, ic->ic_curchan);
2848 
2849 	/*
2850 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2851 	 * support it.
2852 	 */
2853 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2854 		ath_hal_setenforcetxop(sc->sc_ah, 1);
2855 	else
2856 		ath_hal_setenforcetxop(sc->sc_ah, 0);
2857 
2858 	if (ath_startrecv(sc) != 0)	/* restart recv */
2859 		device_printf(sc->sc_dev,
2860 		    "%s: unable to start recv logic\n", __func__);
2861 	/*
2862 	 * We may be doing a reset in response to an ioctl
2863 	 * that changes the channel so update any state that
2864 	 * might change as a result.
2865 	 */
2866 	ath_chan_change(sc, ic->ic_curchan);
2867 	if (sc->sc_beacons) {		/* restart beacons */
2868 #ifdef IEEE80211_SUPPORT_TDMA
2869 		if (sc->sc_tdma)
2870 			ath_tdma_config(sc, NULL);
2871 		else
2872 #endif
2873 			ath_beacon_config(sc, NULL);
2874 	}
2875 
2876 	/*
2877 	 * Release the reset lock and re-enable interrupts here.
2878 	 * If an interrupt was being processed in ath_intr(),
2879 	 * it would disable interrupts at this point. So we have
2880 	 * to atomically enable interrupts and decrement the
2881 	 * reset counter - this way ath_intr() doesn't end up
2882 	 * disabling interrupts without a corresponding enable
2883 	 * in the rest or channel change path.
2884 	 *
2885 	 * Grab the TX reference in case we need to transmit.
2886 	 * That way a parallel transmit doesn't.
2887 	 */
2888 	ATH_PCU_LOCK(sc);
2889 	sc->sc_inreset_cnt--;
2890 	sc->sc_txstart_cnt++;
2891 	/* XXX only do this if sc_inreset_cnt == 0? */
2892 	ath_hal_intrset(ah, sc->sc_imask);
2893 	ATH_PCU_UNLOCK(sc);
2894 
2895 	/*
2896 	 * TX and RX can be started here. If it were started with
2897 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2898 	 * Thus if this is a nested call through the reset or
2899 	 * channel change code, TX completion will occur but
2900 	 * RX completion and ath_start / ath_tx_start will not
2901 	 * run.
2902 	 */
2903 
2904 	/* Restart TX/RX as needed */
2905 	ath_txrx_start(sc);
2906 
2907 	/* XXX TODO: we need to hold the tx refcount here! */
2908 
2909 	/* Restart TX completion and pending TX */
2910 	if (reset_type == ATH_RESET_NOLOSS) {
2911 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2912 			if (ATH_TXQ_SETUP(sc, i)) {
2913 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2914 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2915 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2916 
2917 				ATH_TX_LOCK(sc);
2918 				ath_txq_sched(sc, &sc->sc_txq[i]);
2919 				ATH_TX_UNLOCK(sc);
2920 			}
2921 		}
2922 	}
2923 
2924 	ATH_LOCK(sc);
2925 	ath_power_restore_power_state(sc);
2926 	ATH_UNLOCK(sc);
2927 
2928 	ATH_PCU_LOCK(sc);
2929 	sc->sc_txstart_cnt--;
2930 	ATH_PCU_UNLOCK(sc);
2931 
2932 	/* Handle any frames in the TX queue */
2933 	/*
2934 	 * XXX should this be done by the caller, rather than
2935 	 * ath_reset() ?
2936 	 */
2937 	ath_tx_kick(sc);		/* restart xmit */
2938 	return 0;
2939 }
2940 
2941 static int
2942 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2943 {
2944 	struct ieee80211com *ic = vap->iv_ic;
2945 	struct ath_softc *sc = ic->ic_softc;
2946 	struct ath_hal *ah = sc->sc_ah;
2947 
2948 	switch (cmd) {
2949 	case IEEE80211_IOC_TXPOWER:
2950 		/*
2951 		 * If per-packet TPC is enabled, then we have nothing
2952 		 * to do; otherwise we need to force the global limit.
2953 		 * All this can happen directly; no need to reset.
2954 		 */
2955 		if (!ath_hal_gettpc(ah))
2956 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2957 		return 0;
2958 	}
2959 	/* XXX? Full or NOLOSS? */
2960 	return ath_reset(sc, ATH_RESET_FULL);
2961 }
2962 
2963 struct ath_buf *
2964 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2965 {
2966 	struct ath_buf *bf;
2967 
2968 	ATH_TXBUF_LOCK_ASSERT(sc);
2969 
2970 	if (btype == ATH_BUFTYPE_MGMT)
2971 		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2972 	else
2973 		bf = TAILQ_FIRST(&sc->sc_txbuf);
2974 
2975 	if (bf == NULL) {
2976 		sc->sc_stats.ast_tx_getnobuf++;
2977 	} else {
2978 		if (bf->bf_flags & ATH_BUF_BUSY) {
2979 			sc->sc_stats.ast_tx_getbusybuf++;
2980 			bf = NULL;
2981 		}
2982 	}
2983 
2984 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2985 		if (btype == ATH_BUFTYPE_MGMT)
2986 			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2987 		else {
2988 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2989 			sc->sc_txbuf_cnt--;
2990 
2991 			/*
2992 			 * This shuldn't happen; however just to be
2993 			 * safe print a warning and fudge the txbuf
2994 			 * count.
2995 			 */
2996 			if (sc->sc_txbuf_cnt < 0) {
2997 				device_printf(sc->sc_dev,
2998 				    "%s: sc_txbuf_cnt < 0?\n",
2999 				    __func__);
3000 				sc->sc_txbuf_cnt = 0;
3001 			}
3002 		}
3003 	} else
3004 		bf = NULL;
3005 
3006 	if (bf == NULL) {
3007 		/* XXX should check which list, mgmt or otherwise */
3008 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
3009 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
3010 			"out of xmit buffers" : "xmit buffer busy");
3011 		return NULL;
3012 	}
3013 
3014 	/* XXX TODO: should do this at buffer list initialisation */
3015 	/* XXX (then, ensure the buffer has the right flag set) */
3016 	bf->bf_flags = 0;
3017 	if (btype == ATH_BUFTYPE_MGMT)
3018 		bf->bf_flags |= ATH_BUF_MGMT;
3019 	else
3020 		bf->bf_flags &= (~ATH_BUF_MGMT);
3021 
3022 	/* Valid bf here; clear some basic fields */
3023 	bf->bf_next = NULL;	/* XXX just to be sure */
3024 	bf->bf_last = NULL;	/* XXX again, just to be sure */
3025 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
3026 	bzero(&bf->bf_state, sizeof(bf->bf_state));
3027 
3028 	/*
3029 	 * Track the descriptor ID only if doing EDMA
3030 	 */
3031 	if (sc->sc_isedma) {
3032 		bf->bf_descid = sc->sc_txbuf_descid;
3033 		sc->sc_txbuf_descid++;
3034 	}
3035 
3036 	return bf;
3037 }
3038 
3039 /*
3040  * When retrying a software frame, buffers marked ATH_BUF_BUSY
3041  * can't be thrown back on the queue as they could still be
3042  * in use by the hardware.
3043  *
3044  * This duplicates the buffer, or returns NULL.
3045  *
3046  * The descriptor is also copied but the link pointers and
3047  * the DMA segments aren't copied; this frame should thus
3048  * be again passed through the descriptor setup/chain routines
3049  * so the link is correct.
3050  *
3051  * The caller must free the buffer using ath_freebuf().
3052  */
3053 struct ath_buf *
3054 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
3055 {
3056 	struct ath_buf *tbf;
3057 
3058 	tbf = ath_getbuf(sc,
3059 	    (bf->bf_flags & ATH_BUF_MGMT) ?
3060 	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
3061 	if (tbf == NULL)
3062 		return NULL;	/* XXX failure? Why? */
3063 
3064 	/* Copy basics */
3065 	tbf->bf_next = NULL;
3066 	tbf->bf_nseg = bf->bf_nseg;
3067 	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
3068 	tbf->bf_status = bf->bf_status;
3069 	tbf->bf_m = bf->bf_m;
3070 	tbf->bf_node = bf->bf_node;
3071 	KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__));
3072 	/* will be setup by the chain/setup function */
3073 	tbf->bf_lastds = NULL;
3074 	/* for now, last == self */
3075 	tbf->bf_last = tbf;
3076 	tbf->bf_comp = bf->bf_comp;
3077 
3078 	/* NOTE: DMA segments will be setup by the setup/chain functions */
3079 
3080 	/* The caller has to re-init the descriptor + links */
3081 
3082 	/*
3083 	 * Free the DMA mapping here, before we NULL the mbuf.
3084 	 * We must only call bus_dmamap_unload() once per mbuf chain
3085 	 * or behaviour is undefined.
3086 	 */
3087 	if (bf->bf_m != NULL) {
3088 		/*
3089 		 * XXX is this POSTWRITE call required?
3090 		 */
3091 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3092 		    BUS_DMASYNC_POSTWRITE);
3093 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3094 	}
3095 
3096 	bf->bf_m = NULL;
3097 	bf->bf_node = NULL;
3098 
3099 	/* Copy state */
3100 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
3101 
3102 	return tbf;
3103 }
3104 
3105 struct ath_buf *
3106 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
3107 {
3108 	struct ath_buf *bf;
3109 
3110 	ATH_TXBUF_LOCK(sc);
3111 	bf = _ath_getbuf_locked(sc, btype);
3112 	/*
3113 	 * If a mgmt buffer was requested but we're out of those,
3114 	 * try requesting a normal one.
3115 	 */
3116 	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
3117 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
3118 	ATH_TXBUF_UNLOCK(sc);
3119 	if (bf == NULL) {
3120 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
3121 		sc->sc_stats.ast_tx_qstop++;
3122 	}
3123 	return bf;
3124 }
3125 
3126 /*
3127  * Transmit a single frame.
3128  *
3129  * net80211 will free the node reference if the transmit
3130  * fails, so don't free the node reference here.
3131  */
3132 static int
3133 ath_transmit(struct ieee80211com *ic, struct mbuf *m)
3134 {
3135 	struct ath_softc *sc = ic->ic_softc;
3136 	struct ieee80211_node *ni;
3137 	struct mbuf *next;
3138 	struct ath_buf *bf;
3139 	ath_bufhead frags;
3140 	int retval = 0;
3141 
3142 	/*
3143 	 * Tell the reset path that we're currently transmitting.
3144 	 */
3145 	ATH_PCU_LOCK(sc);
3146 	if (sc->sc_inreset_cnt > 0) {
3147 		DPRINTF(sc, ATH_DEBUG_XMIT,
3148 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
3149 		ATH_PCU_UNLOCK(sc);
3150 		sc->sc_stats.ast_tx_qstop++;
3151 		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
3152 		return (ENOBUFS);	/* XXX should be EINVAL or? */
3153 	}
3154 	sc->sc_txstart_cnt++;
3155 	ATH_PCU_UNLOCK(sc);
3156 
3157 	/* Wake the hardware up already */
3158 	ATH_LOCK(sc);
3159 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3160 	ATH_UNLOCK(sc);
3161 
3162 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
3163 	/*
3164 	 * Grab the TX lock - it's ok to do this here; we haven't
3165 	 * yet started transmitting.
3166 	 */
3167 	ATH_TX_LOCK(sc);
3168 
3169 	/*
3170 	 * Node reference, if there's one.
3171 	 */
3172 	ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
3173 
3174 	/*
3175 	 * Enforce how deep a node queue can get.
3176 	 *
3177 	 * XXX it would be nicer if we kept an mbuf queue per
3178 	 * node and only whacked them into ath_bufs when we
3179 	 * are ready to schedule some traffic from them.
3180 	 * .. that may come later.
3181 	 *
3182 	 * XXX we should also track the per-node hardware queue
3183 	 * depth so it is easy to limit the _SUM_ of the swq and
3184 	 * hwq frames.  Since we only schedule two HWQ frames
3185 	 * at a time, this should be OK for now.
3186 	 */
3187 	if ((!(m->m_flags & M_EAPOL)) &&
3188 	    (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
3189 		sc->sc_stats.ast_tx_nodeq_overflow++;
3190 		retval = ENOBUFS;
3191 		goto finish;
3192 	}
3193 
3194 	/*
3195 	 * Check how many TX buffers are available.
3196 	 *
3197 	 * If this is for non-EAPOL traffic, just leave some
3198 	 * space free in order for buffer cloning and raw
3199 	 * frame transmission to occur.
3200 	 *
3201 	 * If it's for EAPOL traffic, ignore this for now.
3202 	 * Management traffic will be sent via the raw transmit
3203 	 * method which bypasses this check.
3204 	 *
3205 	 * This is needed to ensure that EAPOL frames during
3206 	 * (re) keying have a chance to go out.
3207 	 *
3208 	 * See kern/138379 for more information.
3209 	 */
3210 	if ((!(m->m_flags & M_EAPOL)) &&
3211 	    (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
3212 		sc->sc_stats.ast_tx_nobuf++;
3213 		retval = ENOBUFS;
3214 		goto finish;
3215 	}
3216 
3217 	/*
3218 	 * Grab a TX buffer and associated resources.
3219 	 *
3220 	 * If it's an EAPOL frame, allocate a MGMT ath_buf.
3221 	 * That way even with temporary buffer exhaustion due to
3222 	 * the data path doesn't leave us without the ability
3223 	 * to transmit management frames.
3224 	 *
3225 	 * Otherwise allocate a normal buffer.
3226 	 */
3227 	if (m->m_flags & M_EAPOL)
3228 		bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
3229 	else
3230 		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
3231 
3232 	if (bf == NULL) {
3233 		/*
3234 		 * If we failed to allocate a buffer, fail.
3235 		 *
3236 		 * We shouldn't fail normally, due to the check
3237 		 * above.
3238 		 */
3239 		sc->sc_stats.ast_tx_nobuf++;
3240 		retval = ENOBUFS;
3241 		goto finish;
3242 	}
3243 
3244 	/*
3245 	 * At this point we have a buffer; so we need to free it
3246 	 * if we hit any error conditions.
3247 	 */
3248 
3249 	/*
3250 	 * Check for fragmentation.  If this frame
3251 	 * has been broken up verify we have enough
3252 	 * buffers to send all the fragments so all
3253 	 * go out or none...
3254 	 */
3255 	TAILQ_INIT(&frags);
3256 	if ((m->m_flags & M_FRAG) &&
3257 	    !ath_txfrag_setup(sc, &frags, m, ni)) {
3258 		DPRINTF(sc, ATH_DEBUG_XMIT,
3259 		    "%s: out of txfrag buffers\n", __func__);
3260 		sc->sc_stats.ast_tx_nofrag++;
3261 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
3262 		/*
3263 		 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes,
3264 		 * we shouldn't free it but return back.
3265 		 */
3266 		ath_freetx(m);
3267 		m = NULL;
3268 		goto bad;
3269 	}
3270 
3271 	/*
3272 	 * At this point if we have any TX fragments, then we will
3273 	 * have bumped the node reference once for each of those.
3274 	 */
3275 
3276 	/*
3277 	 * XXX Is there anything actually _enforcing_ that the
3278 	 * fragments are being transmitted in one hit, rather than
3279 	 * being interleaved with other transmissions on that
3280 	 * hardware queue?
3281 	 *
3282 	 * The ATH TX output lock is the only thing serialising this
3283 	 * right now.
3284 	 */
3285 
3286 	/*
3287 	 * Calculate the "next fragment" length field in ath_buf
3288 	 * in order to let the transmit path know enough about
3289 	 * what to next write to the hardware.
3290 	 */
3291 	if (m->m_flags & M_FRAG) {
3292 		struct ath_buf *fbf = bf;
3293 		struct ath_buf *n_fbf = NULL;
3294 		struct mbuf *fm = m->m_nextpkt;
3295 
3296 		/*
3297 		 * We need to walk the list of fragments and set
3298 		 * the next size to the following buffer.
3299 		 * However, the first buffer isn't in the frag
3300 		 * list, so we have to do some gymnastics here.
3301 		 */
3302 		TAILQ_FOREACH(n_fbf, &frags, bf_list) {
3303 			fbf->bf_nextfraglen = fm->m_pkthdr.len;
3304 			fbf = n_fbf;
3305 			fm = fm->m_nextpkt;
3306 		}
3307 	}
3308 
3309 nextfrag:
3310 	/*
3311 	 * Pass the frame to the h/w for transmission.
3312 	 * Fragmented frames have each frag chained together
3313 	 * with m_nextpkt.  We know there are sufficient ath_buf's
3314 	 * to send all the frags because of work done by
3315 	 * ath_txfrag_setup.  We leave m_nextpkt set while
3316 	 * calling ath_tx_start so it can use it to extend the
3317 	 * the tx duration to cover the subsequent frag and
3318 	 * so it can reclaim all the mbufs in case of an error;
3319 	 * ath_tx_start clears m_nextpkt once it commits to
3320 	 * handing the frame to the hardware.
3321 	 *
3322 	 * Note: if this fails, then the mbufs are freed but
3323 	 * not the node reference.
3324 	 */
3325 	next = m->m_nextpkt;
3326 	if (ath_tx_start(sc, ni, bf, m)) {
3327 bad:
3328 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
3329 reclaim:
3330 		bf->bf_m = NULL;
3331 		bf->bf_node = NULL;
3332 		ATH_TXBUF_LOCK(sc);
3333 		ath_returnbuf_head(sc, bf);
3334 		/*
3335 		 * Free the rest of the node references and
3336 		 * buffers for the fragment list.
3337 		 */
3338 		ath_txfrag_cleanup(sc, &frags, ni);
3339 		ATH_TXBUF_UNLOCK(sc);
3340 		retval = ENOBUFS;
3341 		goto finish;
3342 	}
3343 
3344 	/*
3345 	 * Check here if the node is in power save state.
3346 	 */
3347 	ath_tx_update_tim(sc, ni, 1);
3348 
3349 	if (next != NULL) {
3350 		/*
3351 		 * Beware of state changing between frags.
3352 		 * XXX check sta power-save state?
3353 		 */
3354 		if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
3355 			DPRINTF(sc, ATH_DEBUG_XMIT,
3356 			    "%s: flush fragmented packet, state %s\n",
3357 			    __func__,
3358 			    ieee80211_state_name[ni->ni_vap->iv_state]);
3359 			/* XXX dmamap */
3360 			ath_freetx(next);
3361 			goto reclaim;
3362 		}
3363 		m = next;
3364 		bf = TAILQ_FIRST(&frags);
3365 		KASSERT(bf != NULL, ("no buf for txfrag"));
3366 		TAILQ_REMOVE(&frags, bf, bf_list);
3367 		goto nextfrag;
3368 	}
3369 
3370 	/*
3371 	 * Bump watchdog timer.
3372 	 */
3373 	sc->sc_wd_timer = 5;
3374 
3375 finish:
3376 	ATH_TX_UNLOCK(sc);
3377 
3378 	/*
3379 	 * Finished transmitting!
3380 	 */
3381 	ATH_PCU_LOCK(sc);
3382 	sc->sc_txstart_cnt--;
3383 	ATH_PCU_UNLOCK(sc);
3384 
3385 	/* Sleep the hardware if required */
3386 	ATH_LOCK(sc);
3387 	ath_power_restore_power_state(sc);
3388 	ATH_UNLOCK(sc);
3389 
3390 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
3391 
3392 	return (retval);
3393 }
3394 
3395 static int
3396 ath_media_change(struct ifnet *ifp)
3397 {
3398 	int error = ieee80211_media_change(ifp);
3399 	/* NB: only the fixed rate can change and that doesn't need a reset */
3400 	return (error == ENETRESET ? 0 : error);
3401 }
3402 
3403 /*
3404  * Block/unblock tx+rx processing while a key change is done.
3405  * We assume the caller serializes key management operations
3406  * so we only need to worry about synchronization with other
3407  * uses that originate in the driver.
3408  */
3409 static void
3410 ath_key_update_begin(struct ieee80211vap *vap)
3411 {
3412 	struct ath_softc *sc = vap->iv_ic->ic_softc;
3413 
3414 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3415 	taskqueue_block(sc->sc_tq);
3416 }
3417 
3418 static void
3419 ath_key_update_end(struct ieee80211vap *vap)
3420 {
3421 	struct ath_softc *sc = vap->iv_ic->ic_softc;
3422 
3423 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3424 	taskqueue_unblock(sc->sc_tq);
3425 }
3426 
3427 static void
3428 ath_update_promisc(struct ieee80211com *ic)
3429 {
3430 	struct ath_softc *sc = ic->ic_softc;
3431 	u_int32_t rfilt;
3432 
3433 	/* configure rx filter */
3434 	ATH_LOCK(sc);
3435 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3436 	rfilt = ath_calcrxfilter(sc);
3437 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
3438 	ath_power_restore_power_state(sc);
3439 	ATH_UNLOCK(sc);
3440 
3441 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3442 }
3443 
3444 /*
3445  * Driver-internal mcast update call.
3446  *
3447  * Assumes the hardware is already awake.
3448  */
3449 static void
3450 ath_update_mcast_hw(struct ath_softc *sc)
3451 {
3452 	struct ieee80211com *ic = &sc->sc_ic;
3453 	u_int32_t mfilt[2];
3454 
3455 	/* calculate and install multicast filter */
3456 	if (ic->ic_allmulti == 0) {
3457 		struct ieee80211vap *vap;
3458 		struct ifnet *ifp;
3459 		struct ifmultiaddr *ifma;
3460 
3461 		/*
3462 		 * Merge multicast addresses to form the hardware filter.
3463 		 */
3464 		mfilt[0] = mfilt[1] = 0;
3465 		TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
3466 			ifp = vap->iv_ifp;
3467 			if_maddr_rlock(ifp);
3468 			TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3469 				caddr_t dl;
3470 				uint32_t val;
3471 				uint8_t pos;
3472 
3473 				/* calculate XOR of eight 6bit values */
3474 				dl = LLADDR((struct sockaddr_dl *)
3475 				    ifma->ifma_addr);
3476 				val = LE_READ_4(dl + 0);
3477 				pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^
3478 				    val;
3479 				val = LE_READ_4(dl + 3);
3480 				pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^
3481 				    val;
3482 				pos &= 0x3f;
3483 				mfilt[pos / 32] |= (1 << (pos % 32));
3484 			}
3485 			if_maddr_runlock(ifp);
3486 		}
3487 	} else
3488 		mfilt[0] = mfilt[1] = ~0;
3489 
3490 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3491 
3492 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3493 		__func__, mfilt[0], mfilt[1]);
3494 }
3495 
3496 /*
3497  * Called from the net80211 layer - force the hardware
3498  * awake before operating.
3499  */
3500 static void
3501 ath_update_mcast(struct ieee80211com *ic)
3502 {
3503 	struct ath_softc *sc = ic->ic_softc;
3504 
3505 	ATH_LOCK(sc);
3506 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3507 	ATH_UNLOCK(sc);
3508 
3509 	ath_update_mcast_hw(sc);
3510 
3511 	ATH_LOCK(sc);
3512 	ath_power_restore_power_state(sc);
3513 	ATH_UNLOCK(sc);
3514 }
3515 
3516 void
3517 ath_mode_init(struct ath_softc *sc)
3518 {
3519 	struct ieee80211com *ic = &sc->sc_ic;
3520 	struct ath_hal *ah = sc->sc_ah;
3521 	u_int32_t rfilt;
3522 
3523 	/* configure rx filter */
3524 	rfilt = ath_calcrxfilter(sc);
3525 	ath_hal_setrxfilter(ah, rfilt);
3526 
3527 	/* configure operational mode */
3528 	ath_hal_setopmode(ah);
3529 
3530 	/* handle any link-level address change */
3531 	ath_hal_setmac(ah, ic->ic_macaddr);
3532 
3533 	/* calculate and install multicast filter */
3534 	ath_update_mcast_hw(sc);
3535 }
3536 
3537 /*
3538  * Set the slot time based on the current setting.
3539  */
3540 void
3541 ath_setslottime(struct ath_softc *sc)
3542 {
3543 	struct ieee80211com *ic = &sc->sc_ic;
3544 	struct ath_hal *ah = sc->sc_ah;
3545 	u_int usec;
3546 
3547 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3548 		usec = 13;
3549 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3550 		usec = 21;
3551 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3552 		/* honor short/long slot time only in 11g */
3553 		/* XXX shouldn't honor on pure g or turbo g channel */
3554 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
3555 			usec = HAL_SLOT_TIME_9;
3556 		else
3557 			usec = HAL_SLOT_TIME_20;
3558 	} else
3559 		usec = HAL_SLOT_TIME_9;
3560 
3561 	DPRINTF(sc, ATH_DEBUG_RESET,
3562 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3563 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3564 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3565 
3566 	/* Wake up the hardware first before updating the slot time */
3567 	ATH_LOCK(sc);
3568 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3569 	ath_hal_setslottime(ah, usec);
3570 	ath_power_restore_power_state(sc);
3571 	sc->sc_updateslot = OK;
3572 	ATH_UNLOCK(sc);
3573 }
3574 
3575 /*
3576  * Callback from the 802.11 layer to update the
3577  * slot time based on the current setting.
3578  */
3579 static void
3580 ath_updateslot(struct ieee80211com *ic)
3581 {
3582 	struct ath_softc *sc = ic->ic_softc;
3583 
3584 	/*
3585 	 * When not coordinating the BSS, change the hardware
3586 	 * immediately.  For other operation we defer the change
3587 	 * until beacon updates have propagated to the stations.
3588 	 *
3589 	 * XXX sc_updateslot isn't changed behind a lock?
3590 	 */
3591 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3592 	    ic->ic_opmode == IEEE80211_M_MBSS)
3593 		sc->sc_updateslot = UPDATE;
3594 	else
3595 		ath_setslottime(sc);
3596 }
3597 
3598 /*
3599  * Append the contents of src to dst; both queues
3600  * are assumed to be locked.
3601  */
3602 void
3603 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3604 {
3605 
3606 	ATH_TXQ_LOCK_ASSERT(src);
3607 	ATH_TXQ_LOCK_ASSERT(dst);
3608 
3609 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3610 	dst->axq_link = src->axq_link;
3611 	src->axq_link = NULL;
3612 	dst->axq_depth += src->axq_depth;
3613 	dst->axq_aggr_depth += src->axq_aggr_depth;
3614 	src->axq_depth = 0;
3615 	src->axq_aggr_depth = 0;
3616 }
3617 
3618 /*
3619  * Reset the hardware, with no loss.
3620  *
3621  * This can't be used for a general case reset.
3622  */
3623 static void
3624 ath_reset_proc(void *arg, int pending)
3625 {
3626 	struct ath_softc *sc = arg;
3627 
3628 #if 0
3629 	device_printf(sc->sc_dev, "%s: resetting\n", __func__);
3630 #endif
3631 	ath_reset(sc, ATH_RESET_NOLOSS);
3632 }
3633 
3634 /*
3635  * Reset the hardware after detecting beacons have stopped.
3636  */
3637 static void
3638 ath_bstuck_proc(void *arg, int pending)
3639 {
3640 	struct ath_softc *sc = arg;
3641 	uint32_t hangs = 0;
3642 
3643 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3644 		device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs);
3645 
3646 #ifdef	ATH_DEBUG_ALQ
3647 	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
3648 		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3649 #endif
3650 
3651 	device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n",
3652 	    sc->sc_bmisscount);
3653 	sc->sc_stats.ast_bstuck++;
3654 	/*
3655 	 * This assumes that there's no simultaneous channel mode change
3656 	 * occuring.
3657 	 */
3658 	ath_reset(sc, ATH_RESET_NOLOSS);
3659 }
3660 
3661 static void
3662 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3663 {
3664 	bus_addr_t *paddr = (bus_addr_t*) arg;
3665 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3666 	*paddr = segs->ds_addr;
3667 }
3668 
3669 /*
3670  * Allocate the descriptors and appropriate DMA tag/setup.
3671  *
3672  * For some situations (eg EDMA TX completion), there isn't a requirement
3673  * for the ath_buf entries to be allocated.
3674  */
3675 int
3676 ath_descdma_alloc_desc(struct ath_softc *sc,
3677 	struct ath_descdma *dd, ath_bufhead *head,
3678 	const char *name, int ds_size, int ndesc)
3679 {
3680 #define	DS2PHYS(_dd, _ds) \
3681 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3682 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3683 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3684 	int error;
3685 
3686 	dd->dd_descsize = ds_size;
3687 
3688 	DPRINTF(sc, ATH_DEBUG_RESET,
3689 	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
3690 	    __func__, name, ndesc, dd->dd_descsize);
3691 
3692 	dd->dd_name = name;
3693 	dd->dd_desc_len = dd->dd_descsize * ndesc;
3694 
3695 	/*
3696 	 * Merlin work-around:
3697 	 * Descriptors that cross the 4KB boundary can't be used.
3698 	 * Assume one skipped descriptor per 4KB page.
3699 	 */
3700 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3701 		int numpages = dd->dd_desc_len / 4096;
3702 		dd->dd_desc_len += ds_size * numpages;
3703 	}
3704 
3705 	/*
3706 	 * Setup DMA descriptor area.
3707 	 *
3708 	 * BUS_DMA_ALLOCNOW is not used; we never use bounce
3709 	 * buffers for the descriptors themselves.
3710 	 */
3711 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3712 		       PAGE_SIZE, 0,		/* alignment, bounds */
3713 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3714 		       BUS_SPACE_MAXADDR,	/* highaddr */
3715 		       NULL, NULL,		/* filter, filterarg */
3716 		       dd->dd_desc_len,		/* maxsize */
3717 		       1,			/* nsegments */
3718 		       dd->dd_desc_len,		/* maxsegsize */
3719 		       0,			/* flags */
3720 		       NULL,			/* lockfunc */
3721 		       NULL,			/* lockarg */
3722 		       &dd->dd_dmat);
3723 	if (error != 0) {
3724 		device_printf(sc->sc_dev,
3725 		    "cannot allocate %s DMA tag\n", dd->dd_name);
3726 		return error;
3727 	}
3728 
3729 	/* allocate descriptors */
3730 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3731 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3732 				 &dd->dd_dmamap);
3733 	if (error != 0) {
3734 		device_printf(sc->sc_dev,
3735 		    "unable to alloc memory for %u %s descriptors, error %u\n",
3736 		    ndesc, dd->dd_name, error);
3737 		goto fail1;
3738 	}
3739 
3740 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3741 				dd->dd_desc, dd->dd_desc_len,
3742 				ath_load_cb, &dd->dd_desc_paddr,
3743 				BUS_DMA_NOWAIT);
3744 	if (error != 0) {
3745 		device_printf(sc->sc_dev,
3746 		    "unable to map %s descriptors, error %u\n",
3747 		    dd->dd_name, error);
3748 		goto fail2;
3749 	}
3750 
3751 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3752 	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
3753 	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
3754 	    /*XXX*/ (u_long) dd->dd_desc_len);
3755 
3756 	return (0);
3757 
3758 fail2:
3759 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3760 fail1:
3761 	bus_dma_tag_destroy(dd->dd_dmat);
3762 	memset(dd, 0, sizeof(*dd));
3763 	return error;
3764 #undef DS2PHYS
3765 #undef ATH_DESC_4KB_BOUND_CHECK
3766 }
3767 
3768 int
3769 ath_descdma_setup(struct ath_softc *sc,
3770 	struct ath_descdma *dd, ath_bufhead *head,
3771 	const char *name, int ds_size, int nbuf, int ndesc)
3772 {
3773 #define	DS2PHYS(_dd, _ds) \
3774 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3775 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3776 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3777 	uint8_t *ds;
3778 	struct ath_buf *bf;
3779 	int i, bsize, error;
3780 
3781 	/* Allocate descriptors */
3782 	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3783 	    nbuf * ndesc);
3784 
3785 	/* Assume any errors during allocation were dealt with */
3786 	if (error != 0) {
3787 		return (error);
3788 	}
3789 
3790 	ds = (uint8_t *) dd->dd_desc;
3791 
3792 	/* allocate rx buffers */
3793 	bsize = sizeof(struct ath_buf) * nbuf;
3794 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3795 	if (bf == NULL) {
3796 		device_printf(sc->sc_dev,
3797 		    "malloc of %s buffers failed, size %u\n",
3798 		    dd->dd_name, bsize);
3799 		goto fail3;
3800 	}
3801 	dd->dd_bufptr = bf;
3802 
3803 	TAILQ_INIT(head);
3804 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3805 		bf->bf_desc = (struct ath_desc *) ds;
3806 		bf->bf_daddr = DS2PHYS(dd, ds);
3807 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3808 			/*
3809 			 * Merlin WAR: Skip descriptor addresses which
3810 			 * cause 4KB boundary crossing along any point
3811 			 * in the descriptor.
3812 			 */
3813 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3814 			     dd->dd_descsize)) {
3815 				/* Start at the next page */
3816 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3817 				bf->bf_desc = (struct ath_desc *) ds;
3818 				bf->bf_daddr = DS2PHYS(dd, ds);
3819 			}
3820 		}
3821 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3822 				&bf->bf_dmamap);
3823 		if (error != 0) {
3824 			device_printf(sc->sc_dev, "unable to create dmamap "
3825 			    "for %s buffer %u, error %u\n",
3826 			    dd->dd_name, i, error);
3827 			ath_descdma_cleanup(sc, dd, head);
3828 			return error;
3829 		}
3830 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3831 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3832 	}
3833 
3834 	/*
3835 	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3836 	 * allocation otherwise weird stuff will occur and crash your
3837 	 * machine.
3838 	 */
3839 	return 0;
3840 	/* XXX this should likely just call ath_descdma_cleanup() */
3841 fail3:
3842 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3843 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3844 	bus_dma_tag_destroy(dd->dd_dmat);
3845 	memset(dd, 0, sizeof(*dd));
3846 	return error;
3847 #undef DS2PHYS
3848 #undef ATH_DESC_4KB_BOUND_CHECK
3849 }
3850 
3851 /*
3852  * Allocate ath_buf entries but no descriptor contents.
3853  *
3854  * This is for RX EDMA where the descriptors are the header part of
3855  * the RX buffer.
3856  */
3857 int
3858 ath_descdma_setup_rx_edma(struct ath_softc *sc,
3859 	struct ath_descdma *dd, ath_bufhead *head,
3860 	const char *name, int nbuf, int rx_status_len)
3861 {
3862 	struct ath_buf *bf;
3863 	int i, bsize, error;
3864 
3865 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3866 	    __func__, name, nbuf);
3867 
3868 	dd->dd_name = name;
3869 	/*
3870 	 * This is (mostly) purely for show.  We're not allocating any actual
3871 	 * descriptors here as EDMA RX has the descriptor be part
3872 	 * of the RX buffer.
3873 	 *
3874 	 * However, dd_desc_len is used by ath_descdma_free() to determine
3875 	 * whether we have already freed this DMA mapping.
3876 	 */
3877 	dd->dd_desc_len = rx_status_len * nbuf;
3878 	dd->dd_descsize = rx_status_len;
3879 
3880 	/* allocate rx buffers */
3881 	bsize = sizeof(struct ath_buf) * nbuf;
3882 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3883 	if (bf == NULL) {
3884 		device_printf(sc->sc_dev,
3885 		    "malloc of %s buffers failed, size %u\n",
3886 		    dd->dd_name, bsize);
3887 		error = ENOMEM;
3888 		goto fail3;
3889 	}
3890 	dd->dd_bufptr = bf;
3891 
3892 	TAILQ_INIT(head);
3893 	for (i = 0; i < nbuf; i++, bf++) {
3894 		bf->bf_desc = NULL;
3895 		bf->bf_daddr = 0;
3896 		bf->bf_lastds = NULL;	/* Just an initial value */
3897 
3898 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3899 				&bf->bf_dmamap);
3900 		if (error != 0) {
3901 			device_printf(sc->sc_dev, "unable to create dmamap "
3902 			    "for %s buffer %u, error %u\n",
3903 			    dd->dd_name, i, error);
3904 			ath_descdma_cleanup(sc, dd, head);
3905 			return error;
3906 		}
3907 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3908 	}
3909 	return 0;
3910 fail3:
3911 	memset(dd, 0, sizeof(*dd));
3912 	return error;
3913 }
3914 
3915 void
3916 ath_descdma_cleanup(struct ath_softc *sc,
3917 	struct ath_descdma *dd, ath_bufhead *head)
3918 {
3919 	struct ath_buf *bf;
3920 	struct ieee80211_node *ni;
3921 	int do_warning = 0;
3922 
3923 	if (dd->dd_dmamap != 0) {
3924 		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3925 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3926 		bus_dma_tag_destroy(dd->dd_dmat);
3927 	}
3928 
3929 	if (head != NULL) {
3930 		TAILQ_FOREACH(bf, head, bf_list) {
3931 			if (bf->bf_m) {
3932 				/*
3933 				 * XXX warn if there's buffers here.
3934 				 * XXX it should have been freed by the
3935 				 * owner!
3936 				 */
3937 
3938 				if (do_warning == 0) {
3939 					do_warning = 1;
3940 					device_printf(sc->sc_dev,
3941 					    "%s: %s: mbuf should've been"
3942 					    " unmapped/freed!\n",
3943 					    __func__,
3944 					    dd->dd_name);
3945 				}
3946 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3947 				    BUS_DMASYNC_POSTREAD);
3948 				bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3949 				m_freem(bf->bf_m);
3950 				bf->bf_m = NULL;
3951 			}
3952 			if (bf->bf_dmamap != NULL) {
3953 				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3954 				bf->bf_dmamap = NULL;
3955 			}
3956 			ni = bf->bf_node;
3957 			bf->bf_node = NULL;
3958 			if (ni != NULL) {
3959 				/*
3960 				 * Reclaim node reference.
3961 				 */
3962 				ieee80211_free_node(ni);
3963 			}
3964 		}
3965 	}
3966 
3967 	if (head != NULL)
3968 		TAILQ_INIT(head);
3969 
3970 	if (dd->dd_bufptr != NULL)
3971 		free(dd->dd_bufptr, M_ATHDEV);
3972 	memset(dd, 0, sizeof(*dd));
3973 }
3974 
3975 static int
3976 ath_desc_alloc(struct ath_softc *sc)
3977 {
3978 	int error;
3979 
3980 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3981 		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
3982 	if (error != 0) {
3983 		return error;
3984 	}
3985 	sc->sc_txbuf_cnt = ath_txbuf;
3986 
3987 	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3988 		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3989 		    ATH_TXDESC);
3990 	if (error != 0) {
3991 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3992 		return error;
3993 	}
3994 
3995 	/*
3996 	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3997 	 * flag doesn't have to be set in ath_getbuf_locked().
3998 	 */
3999 
4000 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
4001 			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
4002 	if (error != 0) {
4003 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4004 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
4005 		    &sc->sc_txbuf_mgmt);
4006 		return error;
4007 	}
4008 	return 0;
4009 }
4010 
4011 static void
4012 ath_desc_free(struct ath_softc *sc)
4013 {
4014 
4015 	if (sc->sc_bdma.dd_desc_len != 0)
4016 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
4017 	if (sc->sc_txdma.dd_desc_len != 0)
4018 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4019 	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
4020 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
4021 		    &sc->sc_txbuf_mgmt);
4022 }
4023 
4024 static struct ieee80211_node *
4025 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
4026 {
4027 	struct ieee80211com *ic = vap->iv_ic;
4028 	struct ath_softc *sc = ic->ic_softc;
4029 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
4030 	struct ath_node *an;
4031 
4032 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
4033 	if (an == NULL) {
4034 		/* XXX stat+msg */
4035 		return NULL;
4036 	}
4037 	ath_rate_node_init(sc, an);
4038 
4039 	/* Setup the mutex - there's no associd yet so set the name to NULL */
4040 	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
4041 	    device_get_nameunit(sc->sc_dev), an);
4042 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
4043 
4044 	/* XXX setup ath_tid */
4045 	ath_tx_tid_init(sc, an);
4046 
4047 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an);
4048 	return &an->an_node;
4049 }
4050 
4051 static void
4052 ath_node_cleanup(struct ieee80211_node *ni)
4053 {
4054 	struct ieee80211com *ic = ni->ni_ic;
4055 	struct ath_softc *sc = ic->ic_softc;
4056 
4057 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
4058 	    ni->ni_macaddr, ":", ATH_NODE(ni));
4059 
4060 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
4061 	ath_tx_node_flush(sc, ATH_NODE(ni));
4062 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
4063 	sc->sc_node_cleanup(ni);
4064 }
4065 
4066 static void
4067 ath_node_free(struct ieee80211_node *ni)
4068 {
4069 	struct ieee80211com *ic = ni->ni_ic;
4070 	struct ath_softc *sc = ic->ic_softc;
4071 
4072 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
4073 	    ni->ni_macaddr, ":", ATH_NODE(ni));
4074 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
4075 	sc->sc_node_free(ni);
4076 }
4077 
4078 static void
4079 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
4080 {
4081 	struct ieee80211com *ic = ni->ni_ic;
4082 	struct ath_softc *sc = ic->ic_softc;
4083 	struct ath_hal *ah = sc->sc_ah;
4084 
4085 	*rssi = ic->ic_node_getrssi(ni);
4086 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
4087 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
4088 	else
4089 		*noise = -95;		/* nominally correct */
4090 }
4091 
4092 /*
4093  * Set the default antenna.
4094  */
4095 void
4096 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
4097 {
4098 	struct ath_hal *ah = sc->sc_ah;
4099 
4100 	/* XXX block beacon interrupts */
4101 	ath_hal_setdefantenna(ah, antenna);
4102 	if (sc->sc_defant != antenna)
4103 		sc->sc_stats.ast_ant_defswitch++;
4104 	sc->sc_defant = antenna;
4105 	sc->sc_rxotherant = 0;
4106 }
4107 
4108 static void
4109 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4110 {
4111 	txq->axq_qnum = qnum;
4112 	txq->axq_ac = 0;
4113 	txq->axq_depth = 0;
4114 	txq->axq_aggr_depth = 0;
4115 	txq->axq_intrcnt = 0;
4116 	txq->axq_link = NULL;
4117 	txq->axq_softc = sc;
4118 	TAILQ_INIT(&txq->axq_q);
4119 	TAILQ_INIT(&txq->axq_tidq);
4120 	TAILQ_INIT(&txq->fifo.axq_q);
4121 	ATH_TXQ_LOCK_INIT(sc, txq);
4122 }
4123 
4124 /*
4125  * Setup a h/w transmit queue.
4126  */
4127 static struct ath_txq *
4128 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4129 {
4130 	struct ath_hal *ah = sc->sc_ah;
4131 	HAL_TXQ_INFO qi;
4132 	int qnum;
4133 
4134 	memset(&qi, 0, sizeof(qi));
4135 	qi.tqi_subtype = subtype;
4136 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4137 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4138 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4139 	/*
4140 	 * Enable interrupts only for EOL and DESC conditions.
4141 	 * We mark tx descriptors to receive a DESC interrupt
4142 	 * when a tx queue gets deep; otherwise waiting for the
4143 	 * EOL to reap descriptors.  Note that this is done to
4144 	 * reduce interrupt load and this only defers reaping
4145 	 * descriptors, never transmitting frames.  Aside from
4146 	 * reducing interrupts this also permits more concurrency.
4147 	 * The only potential downside is if the tx queue backs
4148 	 * up in which case the top half of the kernel may backup
4149 	 * due to a lack of tx descriptors.
4150 	 */
4151 	if (sc->sc_isedma)
4152 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4153 		    HAL_TXQ_TXOKINT_ENABLE;
4154 	else
4155 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4156 		    HAL_TXQ_TXDESCINT_ENABLE;
4157 
4158 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4159 	if (qnum == -1) {
4160 		/*
4161 		 * NB: don't print a message, this happens
4162 		 * normally on parts with too few tx queues
4163 		 */
4164 		return NULL;
4165 	}
4166 	if (qnum >= nitems(sc->sc_txq)) {
4167 		device_printf(sc->sc_dev,
4168 			"hal qnum %u out of range, max %zu!\n",
4169 			qnum, nitems(sc->sc_txq));
4170 		ath_hal_releasetxqueue(ah, qnum);
4171 		return NULL;
4172 	}
4173 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4174 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4175 		sc->sc_txqsetup |= 1<<qnum;
4176 	}
4177 	return &sc->sc_txq[qnum];
4178 }
4179 
4180 /*
4181  * Setup a hardware data transmit queue for the specified
4182  * access control.  The hal may not support all requested
4183  * queues in which case it will return a reference to a
4184  * previously setup queue.  We record the mapping from ac's
4185  * to h/w queues for use by ath_tx_start and also track
4186  * the set of h/w queues being used to optimize work in the
4187  * transmit interrupt handler and related routines.
4188  */
4189 static int
4190 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4191 {
4192 	struct ath_txq *txq;
4193 
4194 	if (ac >= nitems(sc->sc_ac2q)) {
4195 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4196 			ac, nitems(sc->sc_ac2q));
4197 		return 0;
4198 	}
4199 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4200 	if (txq != NULL) {
4201 		txq->axq_ac = ac;
4202 		sc->sc_ac2q[ac] = txq;
4203 		return 1;
4204 	} else
4205 		return 0;
4206 }
4207 
4208 /*
4209  * Update WME parameters for a transmit queue.
4210  */
4211 static int
4212 ath_txq_update(struct ath_softc *sc, int ac)
4213 {
4214 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4215 	struct ieee80211com *ic = &sc->sc_ic;
4216 	struct ath_txq *txq = sc->sc_ac2q[ac];
4217 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4218 	struct ath_hal *ah = sc->sc_ah;
4219 	HAL_TXQ_INFO qi;
4220 
4221 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4222 #ifdef IEEE80211_SUPPORT_TDMA
4223 	if (sc->sc_tdma) {
4224 		/*
4225 		 * AIFS is zero so there's no pre-transmit wait.  The
4226 		 * burst time defines the slot duration and is configured
4227 		 * through net80211.  The QCU is setup to not do post-xmit
4228 		 * back off, lockout all lower-priority QCU's, and fire
4229 		 * off the DMA beacon alert timer which is setup based
4230 		 * on the slot configuration.
4231 		 */
4232 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4233 			      | HAL_TXQ_TXERRINT_ENABLE
4234 			      | HAL_TXQ_TXURNINT_ENABLE
4235 			      | HAL_TXQ_TXEOLINT_ENABLE
4236 			      | HAL_TXQ_DBA_GATED
4237 			      | HAL_TXQ_BACKOFF_DISABLE
4238 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4239 			      ;
4240 		qi.tqi_aifs = 0;
4241 		/* XXX +dbaprep? */
4242 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4243 		qi.tqi_burstTime = qi.tqi_readyTime;
4244 	} else {
4245 #endif
4246 		/*
4247 		 * XXX shouldn't this just use the default flags
4248 		 * used in the previous queue setup?
4249 		 */
4250 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4251 			      | HAL_TXQ_TXERRINT_ENABLE
4252 			      | HAL_TXQ_TXDESCINT_ENABLE
4253 			      | HAL_TXQ_TXURNINT_ENABLE
4254 			      | HAL_TXQ_TXEOLINT_ENABLE
4255 			      ;
4256 		qi.tqi_aifs = wmep->wmep_aifsn;
4257 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4258 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4259 		qi.tqi_readyTime = 0;
4260 		qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit);
4261 #ifdef IEEE80211_SUPPORT_TDMA
4262 	}
4263 #endif
4264 
4265 	DPRINTF(sc, ATH_DEBUG_RESET,
4266 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4267 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4268 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4269 
4270 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4271 		device_printf(sc->sc_dev, "unable to update hardware queue "
4272 		    "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]);
4273 		return 0;
4274 	} else {
4275 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4276 		return 1;
4277 	}
4278 #undef ATH_EXPONENT_TO_VALUE
4279 }
4280 
4281 /*
4282  * Callback from the 802.11 layer to update WME parameters.
4283  */
4284 int
4285 ath_wme_update(struct ieee80211com *ic)
4286 {
4287 	struct ath_softc *sc = ic->ic_softc;
4288 
4289 	return !ath_txq_update(sc, WME_AC_BE) ||
4290 	    !ath_txq_update(sc, WME_AC_BK) ||
4291 	    !ath_txq_update(sc, WME_AC_VI) ||
4292 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4293 }
4294 
4295 /*
4296  * Reclaim resources for a setup queue.
4297  */
4298 static void
4299 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4300 {
4301 
4302 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4303 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4304 	ATH_TXQ_LOCK_DESTROY(txq);
4305 }
4306 
4307 /*
4308  * Reclaim all tx queue resources.
4309  */
4310 static void
4311 ath_tx_cleanup(struct ath_softc *sc)
4312 {
4313 	int i;
4314 
4315 	ATH_TXBUF_LOCK_DESTROY(sc);
4316 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4317 		if (ATH_TXQ_SETUP(sc, i))
4318 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4319 }
4320 
4321 /*
4322  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4323  * using the current rates in sc_rixmap.
4324  */
4325 int
4326 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4327 {
4328 	int rix = sc->sc_rixmap[rate];
4329 	/* NB: return lowest rix for invalid rate */
4330 	return (rix == 0xff ? 0 : rix);
4331 }
4332 
4333 static void
4334 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4335     struct ath_buf *bf)
4336 {
4337 	struct ieee80211_node *ni = bf->bf_node;
4338 	struct ieee80211com *ic = &sc->sc_ic;
4339 	int sr, lr, pri;
4340 
4341 	if (ts->ts_status == 0) {
4342 		u_int8_t txant = ts->ts_antenna;
4343 		sc->sc_stats.ast_ant_tx[txant]++;
4344 		sc->sc_ant_tx[txant]++;
4345 		if (ts->ts_finaltsi != 0)
4346 			sc->sc_stats.ast_tx_altrate++;
4347 		pri = M_WME_GETAC(bf->bf_m);
4348 		if (pri >= WME_AC_VO)
4349 			ic->ic_wme.wme_hipri_traffic++;
4350 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
4351 			ni->ni_inact = ni->ni_inact_reload;
4352 	} else {
4353 		if (ts->ts_status & HAL_TXERR_XRETRY)
4354 			sc->sc_stats.ast_tx_xretries++;
4355 		if (ts->ts_status & HAL_TXERR_FIFO)
4356 			sc->sc_stats.ast_tx_fifoerr++;
4357 		if (ts->ts_status & HAL_TXERR_FILT)
4358 			sc->sc_stats.ast_tx_filtered++;
4359 		if (ts->ts_status & HAL_TXERR_XTXOP)
4360 			sc->sc_stats.ast_tx_xtxop++;
4361 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4362 			sc->sc_stats.ast_tx_timerexpired++;
4363 
4364 		if (bf->bf_m->m_flags & M_FF)
4365 			sc->sc_stats.ast_ff_txerr++;
4366 	}
4367 	/* XXX when is this valid? */
4368 	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
4369 		sc->sc_stats.ast_tx_desccfgerr++;
4370 	/*
4371 	 * This can be valid for successful frame transmission!
4372 	 * If there's a TX FIFO underrun during aggregate transmission,
4373 	 * the MAC will pad the rest of the aggregate with delimiters.
4374 	 * If a BA is returned, the frame is marked as "OK" and it's up
4375 	 * to the TX completion code to notice which frames weren't
4376 	 * successfully transmitted.
4377 	 */
4378 	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
4379 		sc->sc_stats.ast_tx_data_underrun++;
4380 	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
4381 		sc->sc_stats.ast_tx_delim_underrun++;
4382 
4383 	sr = ts->ts_shortretry;
4384 	lr = ts->ts_longretry;
4385 	sc->sc_stats.ast_tx_shortretry += sr;
4386 	sc->sc_stats.ast_tx_longretry += lr;
4387 
4388 }
4389 
4390 /*
4391  * The default completion. If fail is 1, this means
4392  * "please don't retry the frame, and just return -1 status
4393  * to the net80211 stack.
4394  */
4395 void
4396 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4397 {
4398 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4399 	int st;
4400 
4401 	if (fail == 1)
4402 		st = -1;
4403 	else
4404 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
4405 		    ts->ts_status : HAL_TXERR_XRETRY;
4406 
4407 #if 0
4408 	if (bf->bf_state.bfs_dobaw)
4409 		device_printf(sc->sc_dev,
4410 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4411 		    __func__,
4412 		    bf,
4413 		    SEQNO(bf->bf_state.bfs_seqno));
4414 #endif
4415 	if (bf->bf_next != NULL)
4416 		device_printf(sc->sc_dev,
4417 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
4418 		    __func__,
4419 		    bf,
4420 		    SEQNO(bf->bf_state.bfs_seqno));
4421 
4422 	/*
4423 	 * Check if the node software queue is empty; if so
4424 	 * then clear the TIM.
4425 	 *
4426 	 * This needs to be done before the buffer is freed as
4427 	 * otherwise the node reference will have been released
4428 	 * and the node may not actually exist any longer.
4429 	 *
4430 	 * XXX I don't like this belonging here, but it's cleaner
4431 	 * to do it here right now then all the other places
4432 	 * where ath_tx_default_comp() is called.
4433 	 *
4434 	 * XXX TODO: during drain, ensure that the callback is
4435 	 * being called so we get a chance to update the TIM.
4436 	 */
4437 	if (bf->bf_node) {
4438 		ATH_TX_LOCK(sc);
4439 		ath_tx_update_tim(sc, bf->bf_node, 0);
4440 		ATH_TX_UNLOCK(sc);
4441 	}
4442 
4443 	/*
4444 	 * Do any tx complete callback.  Note this must
4445 	 * be done before releasing the node reference.
4446 	 * This will free the mbuf, release the net80211
4447 	 * node and recycle the ath_buf.
4448 	 */
4449 	ath_tx_freebuf(sc, bf, st);
4450 }
4451 
4452 /*
4453  * Update rate control with the given completion status.
4454  */
4455 void
4456 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4457     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4458     int nframes, int nbad)
4459 {
4460 	struct ath_node *an;
4461 
4462 	/* Only for unicast frames */
4463 	if (ni == NULL)
4464 		return;
4465 
4466 	an = ATH_NODE(ni);
4467 	ATH_NODE_UNLOCK_ASSERT(an);
4468 
4469 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4470 		ATH_NODE_LOCK(an);
4471 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4472 		ATH_NODE_UNLOCK(an);
4473 	}
4474 }
4475 
4476 /*
4477  * Process the completion of the given buffer.
4478  *
4479  * This calls the rate control update and then the buffer completion.
4480  * This will either free the buffer or requeue it.  In any case, the
4481  * bf pointer should be treated as invalid after this function is called.
4482  */
4483 void
4484 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
4485     struct ath_tx_status *ts, struct ath_buf *bf)
4486 {
4487 	struct ieee80211_node *ni = bf->bf_node;
4488 
4489 	ATH_TX_UNLOCK_ASSERT(sc);
4490 	ATH_TXQ_UNLOCK_ASSERT(txq);
4491 
4492 	/* If unicast frame, update general statistics */
4493 	if (ni != NULL) {
4494 		/* update statistics */
4495 		ath_tx_update_stats(sc, ts, bf);
4496 	}
4497 
4498 	/*
4499 	 * Call the completion handler.
4500 	 * The completion handler is responsible for
4501 	 * calling the rate control code.
4502 	 *
4503 	 * Frames with no completion handler get the
4504 	 * rate control code called here.
4505 	 */
4506 	if (bf->bf_comp == NULL) {
4507 		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4508 		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4509 			/*
4510 			 * XXX assume this isn't an aggregate
4511 			 * frame.
4512 			 */
4513 			ath_tx_update_ratectrl(sc, ni,
4514 			     bf->bf_state.bfs_rc, ts,
4515 			    bf->bf_state.bfs_pktlen, 1,
4516 			    (ts->ts_status == 0 ? 0 : 1));
4517 		}
4518 		ath_tx_default_comp(sc, bf, 0);
4519 	} else
4520 		bf->bf_comp(sc, bf, 0);
4521 }
4522 
4523 
4524 
4525 /*
4526  * Process completed xmit descriptors from the specified queue.
4527  * Kick the packet scheduler if needed. This can occur from this
4528  * particular task.
4529  */
4530 static int
4531 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4532 {
4533 	struct ath_hal *ah = sc->sc_ah;
4534 	struct ath_buf *bf;
4535 	struct ath_desc *ds;
4536 	struct ath_tx_status *ts;
4537 	struct ieee80211_node *ni;
4538 #ifdef	IEEE80211_SUPPORT_SUPERG
4539 	struct ieee80211com *ic = &sc->sc_ic;
4540 #endif	/* IEEE80211_SUPPORT_SUPERG */
4541 	int nacked;
4542 	HAL_STATUS status;
4543 
4544 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4545 		__func__, txq->axq_qnum,
4546 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4547 		txq->axq_link);
4548 
4549 	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4550 	    "ath_tx_processq: txq=%u head %p link %p depth %p",
4551 	    txq->axq_qnum,
4552 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4553 	    txq->axq_link,
4554 	    txq->axq_depth);
4555 
4556 	nacked = 0;
4557 	for (;;) {
4558 		ATH_TXQ_LOCK(txq);
4559 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4560 		bf = TAILQ_FIRST(&txq->axq_q);
4561 		if (bf == NULL) {
4562 			ATH_TXQ_UNLOCK(txq);
4563 			break;
4564 		}
4565 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4566 		ts = &bf->bf_status.ds_txstat;
4567 
4568 		status = ath_hal_txprocdesc(ah, ds, ts);
4569 #ifdef ATH_DEBUG
4570 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4571 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4572 			    status == HAL_OK);
4573 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4574 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4575 			    status == HAL_OK);
4576 #endif
4577 #ifdef	ATH_DEBUG_ALQ
4578 		if (if_ath_alq_checkdebug(&sc->sc_alq,
4579 		    ATH_ALQ_EDMA_TXSTATUS)) {
4580 			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
4581 			sc->sc_tx_statuslen,
4582 			(char *) ds);
4583 		}
4584 #endif
4585 
4586 		if (status == HAL_EINPROGRESS) {
4587 			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4588 			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4589 			    txq->axq_qnum, bf, ds);
4590 			ATH_TXQ_UNLOCK(txq);
4591 			break;
4592 		}
4593 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4594 
4595 		/*
4596 		 * Sanity check.
4597 		 */
4598 		if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4599 			device_printf(sc->sc_dev,
4600 			    "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4601 			    __func__,
4602 			    txq->axq_qnum,
4603 			    bf,
4604 			    bf->bf_state.bfs_tx_queue);
4605 		}
4606 		if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4607 			device_printf(sc->sc_dev,
4608 			    "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4609 			    __func__,
4610 			    txq->axq_qnum,
4611 			    bf->bf_last,
4612 			    bf->bf_last->bf_state.bfs_tx_queue);
4613 		}
4614 
4615 #if 0
4616 		if (txq->axq_depth > 0) {
4617 			/*
4618 			 * More frames follow.  Mark the buffer busy
4619 			 * so it's not re-used while the hardware may
4620 			 * still re-read the link field in the descriptor.
4621 			 *
4622 			 * Use the last buffer in an aggregate as that
4623 			 * is where the hardware may be - intermediate
4624 			 * descriptors won't be "busy".
4625 			 */
4626 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4627 		} else
4628 			txq->axq_link = NULL;
4629 #else
4630 		bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4631 #endif
4632 		if (bf->bf_state.bfs_aggr)
4633 			txq->axq_aggr_depth--;
4634 
4635 		ni = bf->bf_node;
4636 
4637 		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4638 		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4639 		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
4640 		/*
4641 		 * If unicast frame was ack'd update RSSI,
4642 		 * including the last rx time used to
4643 		 * workaround phantom bmiss interrupts.
4644 		 */
4645 		if (ni != NULL && ts->ts_status == 0 &&
4646 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4647 			nacked++;
4648 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4649 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4650 				ts->ts_rssi);
4651 		}
4652 		ATH_TXQ_UNLOCK(txq);
4653 
4654 		/*
4655 		 * Update statistics and call completion
4656 		 */
4657 		ath_tx_process_buf_completion(sc, txq, ts, bf);
4658 
4659 		/* XXX at this point, bf and ni may be totally invalid */
4660 	}
4661 #ifdef IEEE80211_SUPPORT_SUPERG
4662 	/*
4663 	 * Flush fast-frame staging queue when traffic slows.
4664 	 */
4665 	if (txq->axq_depth <= 1)
4666 		ieee80211_ff_flush(ic, txq->axq_ac);
4667 #endif
4668 
4669 	/* Kick the software TXQ scheduler */
4670 	if (dosched) {
4671 		ATH_TX_LOCK(sc);
4672 		ath_txq_sched(sc, txq);
4673 		ATH_TX_UNLOCK(sc);
4674 	}
4675 
4676 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4677 	    "ath_tx_processq: txq=%u: done",
4678 	    txq->axq_qnum);
4679 
4680 	return nacked;
4681 }
4682 
4683 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4684 
4685 /*
4686  * Deferred processing of transmit interrupt; special-cased
4687  * for a single hardware transmit queue (e.g. 5210 and 5211).
4688  */
4689 static void
4690 ath_tx_proc_q0(void *arg, int npending)
4691 {
4692 	struct ath_softc *sc = arg;
4693 	uint32_t txqs;
4694 
4695 	ATH_PCU_LOCK(sc);
4696 	sc->sc_txproc_cnt++;
4697 	txqs = sc->sc_txq_active;
4698 	sc->sc_txq_active &= ~txqs;
4699 	ATH_PCU_UNLOCK(sc);
4700 
4701 	ATH_LOCK(sc);
4702 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4703 	ATH_UNLOCK(sc);
4704 
4705 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4706 	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4707 
4708 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4709 		/* XXX why is lastrx updated in tx code? */
4710 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4711 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4712 		ath_tx_processq(sc, sc->sc_cabq, 1);
4713 	sc->sc_wd_timer = 0;
4714 
4715 	if (sc->sc_softled)
4716 		ath_led_event(sc, sc->sc_txrix);
4717 
4718 	ATH_PCU_LOCK(sc);
4719 	sc->sc_txproc_cnt--;
4720 	ATH_PCU_UNLOCK(sc);
4721 
4722 	ATH_LOCK(sc);
4723 	ath_power_restore_power_state(sc);
4724 	ATH_UNLOCK(sc);
4725 
4726 	ath_tx_kick(sc);
4727 }
4728 
4729 /*
4730  * Deferred processing of transmit interrupt; special-cased
4731  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4732  */
4733 static void
4734 ath_tx_proc_q0123(void *arg, int npending)
4735 {
4736 	struct ath_softc *sc = arg;
4737 	int nacked;
4738 	uint32_t txqs;
4739 
4740 	ATH_PCU_LOCK(sc);
4741 	sc->sc_txproc_cnt++;
4742 	txqs = sc->sc_txq_active;
4743 	sc->sc_txq_active &= ~txqs;
4744 	ATH_PCU_UNLOCK(sc);
4745 
4746 	ATH_LOCK(sc);
4747 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4748 	ATH_UNLOCK(sc);
4749 
4750 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4751 	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4752 
4753 	/*
4754 	 * Process each active queue.
4755 	 */
4756 	nacked = 0;
4757 	if (TXQACTIVE(txqs, 0))
4758 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4759 	if (TXQACTIVE(txqs, 1))
4760 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4761 	if (TXQACTIVE(txqs, 2))
4762 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4763 	if (TXQACTIVE(txqs, 3))
4764 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4765 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4766 		ath_tx_processq(sc, sc->sc_cabq, 1);
4767 	if (nacked)
4768 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4769 
4770 	sc->sc_wd_timer = 0;
4771 
4772 	if (sc->sc_softled)
4773 		ath_led_event(sc, sc->sc_txrix);
4774 
4775 	ATH_PCU_LOCK(sc);
4776 	sc->sc_txproc_cnt--;
4777 	ATH_PCU_UNLOCK(sc);
4778 
4779 	ATH_LOCK(sc);
4780 	ath_power_restore_power_state(sc);
4781 	ATH_UNLOCK(sc);
4782 
4783 	ath_tx_kick(sc);
4784 }
4785 
4786 /*
4787  * Deferred processing of transmit interrupt.
4788  */
4789 static void
4790 ath_tx_proc(void *arg, int npending)
4791 {
4792 	struct ath_softc *sc = arg;
4793 	int i, nacked;
4794 	uint32_t txqs;
4795 
4796 	ATH_PCU_LOCK(sc);
4797 	sc->sc_txproc_cnt++;
4798 	txqs = sc->sc_txq_active;
4799 	sc->sc_txq_active &= ~txqs;
4800 	ATH_PCU_UNLOCK(sc);
4801 
4802 	ATH_LOCK(sc);
4803 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4804 	ATH_UNLOCK(sc);
4805 
4806 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4807 
4808 	/*
4809 	 * Process each active queue.
4810 	 */
4811 	nacked = 0;
4812 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4813 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4814 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4815 	if (nacked)
4816 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4817 
4818 	sc->sc_wd_timer = 0;
4819 
4820 	if (sc->sc_softled)
4821 		ath_led_event(sc, sc->sc_txrix);
4822 
4823 	ATH_PCU_LOCK(sc);
4824 	sc->sc_txproc_cnt--;
4825 	ATH_PCU_UNLOCK(sc);
4826 
4827 	ATH_LOCK(sc);
4828 	ath_power_restore_power_state(sc);
4829 	ATH_UNLOCK(sc);
4830 
4831 	ath_tx_kick(sc);
4832 }
4833 #undef	TXQACTIVE
4834 
4835 /*
4836  * Deferred processing of TXQ rescheduling.
4837  */
4838 static void
4839 ath_txq_sched_tasklet(void *arg, int npending)
4840 {
4841 	struct ath_softc *sc = arg;
4842 	int i;
4843 
4844 	/* XXX is skipping ok? */
4845 	ATH_PCU_LOCK(sc);
4846 #if 0
4847 	if (sc->sc_inreset_cnt > 0) {
4848 		device_printf(sc->sc_dev,
4849 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4850 		ATH_PCU_UNLOCK(sc);
4851 		return;
4852 	}
4853 #endif
4854 	sc->sc_txproc_cnt++;
4855 	ATH_PCU_UNLOCK(sc);
4856 
4857 	ATH_LOCK(sc);
4858 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4859 	ATH_UNLOCK(sc);
4860 
4861 	ATH_TX_LOCK(sc);
4862 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4863 		if (ATH_TXQ_SETUP(sc, i)) {
4864 			ath_txq_sched(sc, &sc->sc_txq[i]);
4865 		}
4866 	}
4867 	ATH_TX_UNLOCK(sc);
4868 
4869 	ATH_LOCK(sc);
4870 	ath_power_restore_power_state(sc);
4871 	ATH_UNLOCK(sc);
4872 
4873 	ATH_PCU_LOCK(sc);
4874 	sc->sc_txproc_cnt--;
4875 	ATH_PCU_UNLOCK(sc);
4876 }
4877 
4878 void
4879 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4880 {
4881 
4882 	ATH_TXBUF_LOCK_ASSERT(sc);
4883 
4884 	if (bf->bf_flags & ATH_BUF_MGMT)
4885 		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4886 	else {
4887 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4888 		sc->sc_txbuf_cnt++;
4889 		if (sc->sc_txbuf_cnt > ath_txbuf) {
4890 			device_printf(sc->sc_dev,
4891 			    "%s: sc_txbuf_cnt > %d?\n",
4892 			    __func__,
4893 			    ath_txbuf);
4894 			sc->sc_txbuf_cnt = ath_txbuf;
4895 		}
4896 	}
4897 }
4898 
4899 void
4900 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4901 {
4902 
4903 	ATH_TXBUF_LOCK_ASSERT(sc);
4904 
4905 	if (bf->bf_flags & ATH_BUF_MGMT)
4906 		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4907 	else {
4908 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4909 		sc->sc_txbuf_cnt++;
4910 		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4911 			device_printf(sc->sc_dev,
4912 			    "%s: sc_txbuf_cnt > %d?\n",
4913 			    __func__,
4914 			    ATH_TXBUF);
4915 			sc->sc_txbuf_cnt = ATH_TXBUF;
4916 		}
4917 	}
4918 }
4919 
4920 /*
4921  * Free the holding buffer if it exists
4922  */
4923 void
4924 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
4925 {
4926 	ATH_TXBUF_UNLOCK_ASSERT(sc);
4927 	ATH_TXQ_LOCK_ASSERT(txq);
4928 
4929 	if (txq->axq_holdingbf == NULL)
4930 		return;
4931 
4932 	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
4933 
4934 	ATH_TXBUF_LOCK(sc);
4935 	ath_returnbuf_tail(sc, txq->axq_holdingbf);
4936 	ATH_TXBUF_UNLOCK(sc);
4937 
4938 	txq->axq_holdingbf = NULL;
4939 }
4940 
4941 /*
4942  * Add this buffer to the holding queue, freeing the previous
4943  * one if it exists.
4944  */
4945 static void
4946 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
4947 {
4948 	struct ath_txq *txq;
4949 
4950 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4951 
4952 	ATH_TXBUF_UNLOCK_ASSERT(sc);
4953 	ATH_TXQ_LOCK_ASSERT(txq);
4954 
4955 	/* XXX assert ATH_BUF_BUSY is set */
4956 
4957 	/* XXX assert the tx queue is under the max number */
4958 	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
4959 		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
4960 		    __func__,
4961 		    bf,
4962 		    bf->bf_state.bfs_tx_queue);
4963 		bf->bf_flags &= ~ATH_BUF_BUSY;
4964 		ath_returnbuf_tail(sc, bf);
4965 		return;
4966 	}
4967 	ath_txq_freeholdingbuf(sc, txq);
4968 	txq->axq_holdingbf = bf;
4969 }
4970 
4971 /*
4972  * Return a buffer to the pool and update the 'busy' flag on the
4973  * previous 'tail' entry.
4974  *
4975  * This _must_ only be called when the buffer is involved in a completed
4976  * TX. The logic is that if it was part of an active TX, the previous
4977  * buffer on the list is now not involved in a halted TX DMA queue, waiting
4978  * for restart (eg for TDMA.)
4979  *
4980  * The caller must free the mbuf and recycle the node reference.
4981  *
4982  * XXX This method of handling busy / holding buffers is insanely stupid.
4983  * It requires bf_state.bfs_tx_queue to be correctly assigned.  It would
4984  * be much nicer if buffers in the processq() methods would instead be
4985  * always completed there (pushed onto a txq or ath_bufhead) so we knew
4986  * exactly what hardware queue they came from in the first place.
4987  */
4988 void
4989 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4990 {
4991 	struct ath_txq *txq;
4992 
4993 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4994 
4995 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4996 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4997 
4998 	/*
4999 	 * If this buffer is busy, push it onto the holding queue.
5000 	 */
5001 	if (bf->bf_flags & ATH_BUF_BUSY) {
5002 		ATH_TXQ_LOCK(txq);
5003 		ath_txq_addholdingbuf(sc, bf);
5004 		ATH_TXQ_UNLOCK(txq);
5005 		return;
5006 	}
5007 
5008 	/*
5009 	 * Not a busy buffer, so free normally
5010 	 */
5011 	ATH_TXBUF_LOCK(sc);
5012 	ath_returnbuf_tail(sc, bf);
5013 	ATH_TXBUF_UNLOCK(sc);
5014 }
5015 
5016 /*
5017  * This is currently used by ath_tx_draintxq() and
5018  * ath_tx_tid_free_pkts().
5019  *
5020  * It recycles a single ath_buf.
5021  */
5022 void
5023 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
5024 {
5025 	struct ieee80211_node *ni = bf->bf_node;
5026 	struct mbuf *m0 = bf->bf_m;
5027 
5028 	/*
5029 	 * Make sure that we only sync/unload if there's an mbuf.
5030 	 * If not (eg we cloned a buffer), the unload will have already
5031 	 * occured.
5032 	 */
5033 	if (bf->bf_m != NULL) {
5034 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5035 		    BUS_DMASYNC_POSTWRITE);
5036 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5037 	}
5038 
5039 	bf->bf_node = NULL;
5040 	bf->bf_m = NULL;
5041 
5042 	/* Free the buffer, it's not needed any longer */
5043 	ath_freebuf(sc, bf);
5044 
5045 	/* Pass the buffer back to net80211 - completing it */
5046 	ieee80211_tx_complete(ni, m0, status);
5047 }
5048 
5049 static struct ath_buf *
5050 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
5051 {
5052 	struct ath_buf *bf;
5053 
5054 	ATH_TXQ_LOCK_ASSERT(txq);
5055 
5056 	/*
5057 	 * Drain the FIFO queue first, then if it's
5058 	 * empty, move to the normal frame queue.
5059 	 */
5060 	bf = TAILQ_FIRST(&txq->fifo.axq_q);
5061 	if (bf != NULL) {
5062 		/*
5063 		 * Is it the last buffer in this set?
5064 		 * Decrement the FIFO counter.
5065 		 */
5066 		if (bf->bf_flags & ATH_BUF_FIFOEND) {
5067 			if (txq->axq_fifo_depth == 0) {
5068 				device_printf(sc->sc_dev,
5069 				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
5070 				    __func__,
5071 				    txq->axq_qnum,
5072 				    txq->fifo.axq_depth);
5073 			} else
5074 				txq->axq_fifo_depth--;
5075 		}
5076 		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
5077 		return (bf);
5078 	}
5079 
5080 	/*
5081 	 * Debugging!
5082 	 */
5083 	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
5084 		device_printf(sc->sc_dev,
5085 		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
5086 		    __func__,
5087 		    txq->axq_qnum,
5088 		    txq->axq_fifo_depth,
5089 		    txq->fifo.axq_depth);
5090 	}
5091 
5092 	/*
5093 	 * Now drain the pending queue.
5094 	 */
5095 	bf = TAILQ_FIRST(&txq->axq_q);
5096 	if (bf == NULL) {
5097 		txq->axq_link = NULL;
5098 		return (NULL);
5099 	}
5100 	ATH_TXQ_REMOVE(txq, bf, bf_list);
5101 	return (bf);
5102 }
5103 
5104 void
5105 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5106 {
5107 #ifdef ATH_DEBUG
5108 	struct ath_hal *ah = sc->sc_ah;
5109 #endif
5110 	struct ath_buf *bf;
5111 	u_int ix;
5112 
5113 	/*
5114 	 * NB: this assumes output has been stopped and
5115 	 *     we do not need to block ath_tx_proc
5116 	 */
5117 	for (ix = 0;; ix++) {
5118 		ATH_TXQ_LOCK(txq);
5119 		bf = ath_tx_draintxq_get_one(sc, txq);
5120 		if (bf == NULL) {
5121 			ATH_TXQ_UNLOCK(txq);
5122 			break;
5123 		}
5124 		if (bf->bf_state.bfs_aggr)
5125 			txq->axq_aggr_depth--;
5126 #ifdef ATH_DEBUG
5127 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5128 			struct ieee80211com *ic = &sc->sc_ic;
5129 			int status = 0;
5130 
5131 			/*
5132 			 * EDMA operation has a TX completion FIFO
5133 			 * separate from the TX descriptor, so this
5134 			 * method of checking the "completion" status
5135 			 * is wrong.
5136 			 */
5137 			if (! sc->sc_isedma) {
5138 				status = (ath_hal_txprocdesc(ah,
5139 				    bf->bf_lastds,
5140 				    &bf->bf_status.ds_txstat) == HAL_OK);
5141 			}
5142 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
5143 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5144 			    bf->bf_m->m_len, 0, -1);
5145 		}
5146 #endif /* ATH_DEBUG */
5147 		/*
5148 		 * Since we're now doing magic in the completion
5149 		 * functions, we -must- call it for aggregation
5150 		 * destinations or BAW tracking will get upset.
5151 		 */
5152 		/*
5153 		 * Clear ATH_BUF_BUSY; the completion handler
5154 		 * will free the buffer.
5155 		 */
5156 		ATH_TXQ_UNLOCK(txq);
5157 		bf->bf_flags &= ~ATH_BUF_BUSY;
5158 		if (bf->bf_comp)
5159 			bf->bf_comp(sc, bf, 1);
5160 		else
5161 			ath_tx_default_comp(sc, bf, 1);
5162 	}
5163 
5164 	/*
5165 	 * Free the holding buffer if it exists
5166 	 */
5167 	ATH_TXQ_LOCK(txq);
5168 	ath_txq_freeholdingbuf(sc, txq);
5169 	ATH_TXQ_UNLOCK(txq);
5170 
5171 	/*
5172 	 * Drain software queued frames which are on
5173 	 * active TIDs.
5174 	 */
5175 	ath_tx_txq_drain(sc, txq);
5176 }
5177 
5178 static void
5179 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5180 {
5181 	struct ath_hal *ah = sc->sc_ah;
5182 
5183 	ATH_TXQ_LOCK_ASSERT(txq);
5184 
5185 	DPRINTF(sc, ATH_DEBUG_RESET,
5186 	    "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
5187 	    "link %p, holdingbf=%p\n",
5188 	    __func__,
5189 	    txq->axq_qnum,
5190 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5191 	    (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
5192 	    (int) ath_hal_numtxpending(ah, txq->axq_qnum),
5193 	    txq->axq_flags,
5194 	    txq->axq_link,
5195 	    txq->axq_holdingbf);
5196 
5197 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5198 	/* We've stopped TX DMA, so mark this as stopped. */
5199 	txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
5200 
5201 #ifdef	ATH_DEBUG
5202 	if ((sc->sc_debug & ATH_DEBUG_RESET)
5203 	    && (txq->axq_holdingbf != NULL)) {
5204 		ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
5205 	}
5206 #endif
5207 }
5208 
5209 int
5210 ath_stoptxdma(struct ath_softc *sc)
5211 {
5212 	struct ath_hal *ah = sc->sc_ah;
5213 	int i;
5214 
5215 	/* XXX return value */
5216 	if (sc->sc_invalid)
5217 		return 0;
5218 
5219 	if (!sc->sc_invalid) {
5220 		/* don't touch the hardware if marked invalid */
5221 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5222 		    __func__, sc->sc_bhalq,
5223 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5224 		    NULL);
5225 
5226 		/* stop the beacon queue */
5227 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5228 
5229 		/* Stop the data queues */
5230 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5231 			if (ATH_TXQ_SETUP(sc, i)) {
5232 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5233 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5234 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5235 			}
5236 		}
5237 	}
5238 
5239 	return 1;
5240 }
5241 
5242 #ifdef	ATH_DEBUG
5243 void
5244 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
5245 {
5246 	struct ath_hal *ah = sc->sc_ah;
5247 	struct ath_buf *bf;
5248 	int i = 0;
5249 
5250 	if (! (sc->sc_debug & ATH_DEBUG_RESET))
5251 		return;
5252 
5253 	device_printf(sc->sc_dev, "%s: Q%d: begin\n",
5254 	    __func__, txq->axq_qnum);
5255 	TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
5256 		ath_printtxbuf(sc, bf, txq->axq_qnum, i,
5257 			ath_hal_txprocdesc(ah, bf->bf_lastds,
5258 			    &bf->bf_status.ds_txstat) == HAL_OK);
5259 		i++;
5260 	}
5261 	device_printf(sc->sc_dev, "%s: Q%d: end\n",
5262 	    __func__, txq->axq_qnum);
5263 }
5264 #endif /* ATH_DEBUG */
5265 
5266 /*
5267  * Drain the transmit queues and reclaim resources.
5268  */
5269 void
5270 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5271 {
5272 	struct ath_hal *ah = sc->sc_ah;
5273 	struct ath_buf *bf_last;
5274 	int i;
5275 
5276 	(void) ath_stoptxdma(sc);
5277 
5278 	/*
5279 	 * Dump the queue contents
5280 	 */
5281 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5282 		/*
5283 		 * XXX TODO: should we just handle the completed TX frames
5284 		 * here, whether or not the reset is a full one or not?
5285 		 */
5286 		if (ATH_TXQ_SETUP(sc, i)) {
5287 #ifdef	ATH_DEBUG
5288 			if (sc->sc_debug & ATH_DEBUG_RESET)
5289 				ath_tx_dump(sc, &sc->sc_txq[i]);
5290 #endif	/* ATH_DEBUG */
5291 			if (reset_type == ATH_RESET_NOLOSS) {
5292 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
5293 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5294 				/*
5295 				 * Free the holding buffer; DMA is now
5296 				 * stopped.
5297 				 */
5298 				ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
5299 				/*
5300 				 * Setup the link pointer to be the
5301 				 * _last_ buffer/descriptor in the list.
5302 				 * If there's nothing in the list, set it
5303 				 * to NULL.
5304 				 */
5305 				bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
5306 				    axq_q_s);
5307 				if (bf_last != NULL) {
5308 					ath_hal_gettxdesclinkptr(ah,
5309 					    bf_last->bf_lastds,
5310 					    &sc->sc_txq[i].axq_link);
5311 				} else {
5312 					sc->sc_txq[i].axq_link = NULL;
5313 				}
5314 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5315 			} else
5316 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
5317 		}
5318 	}
5319 #ifdef ATH_DEBUG
5320 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5321 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5322 		if (bf != NULL && bf->bf_m != NULL) {
5323 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5324 				ath_hal_txprocdesc(ah, bf->bf_lastds,
5325 				    &bf->bf_status.ds_txstat) == HAL_OK);
5326 			ieee80211_dump_pkt(&sc->sc_ic,
5327 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5328 			    0, -1);
5329 		}
5330 	}
5331 #endif /* ATH_DEBUG */
5332 	sc->sc_wd_timer = 0;
5333 }
5334 
5335 /*
5336  * Update internal state after a channel change.
5337  */
5338 static void
5339 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5340 {
5341 	enum ieee80211_phymode mode;
5342 
5343 	/*
5344 	 * Change channels and update the h/w rate map
5345 	 * if we're switching; e.g. 11a to 11b/g.
5346 	 */
5347 	mode = ieee80211_chan2mode(chan);
5348 	if (mode != sc->sc_curmode)
5349 		ath_setcurmode(sc, mode);
5350 	sc->sc_curchan = chan;
5351 }
5352 
5353 /*
5354  * Set/change channels.  If the channel is really being changed,
5355  * it's done by resetting the chip.  To accomplish this we must
5356  * first cleanup any pending DMA, then restart stuff after a la
5357  * ath_init.
5358  */
5359 static int
5360 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5361 {
5362 	struct ieee80211com *ic = &sc->sc_ic;
5363 	struct ath_hal *ah = sc->sc_ah;
5364 	int ret = 0;
5365 
5366 	/* Treat this as an interface reset */
5367 	ATH_PCU_UNLOCK_ASSERT(sc);
5368 	ATH_UNLOCK_ASSERT(sc);
5369 
5370 	/* (Try to) stop TX/RX from occuring */
5371 	taskqueue_block(sc->sc_tq);
5372 
5373 	ATH_PCU_LOCK(sc);
5374 
5375 	/* Disable interrupts */
5376 	ath_hal_intrset(ah, 0);
5377 
5378 	/* Stop new RX/TX/interrupt completion */
5379 	if (ath_reset_grablock(sc, 1) == 0) {
5380 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5381 		    __func__);
5382 	}
5383 
5384 	/* Stop pending RX/TX completion */
5385 	ath_txrx_stop_locked(sc);
5386 
5387 	ATH_PCU_UNLOCK(sc);
5388 
5389 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5390 	    __func__, ieee80211_chan2ieee(ic, chan),
5391 	    chan->ic_freq, chan->ic_flags);
5392 	if (chan != sc->sc_curchan) {
5393 		HAL_STATUS status;
5394 		/*
5395 		 * To switch channels clear any pending DMA operations;
5396 		 * wait long enough for the RX fifo to drain, reset the
5397 		 * hardware at the new frequency, and then re-enable
5398 		 * the relevant bits of the h/w.
5399 		 */
5400 #if 0
5401 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5402 #endif
5403 		ath_stoprecv(sc, 1);		/* turn off frame recv */
5404 		/*
5405 		 * First, handle completed TX/RX frames.
5406 		 */
5407 		ath_rx_flush(sc);
5408 		ath_draintxq(sc, ATH_RESET_NOLOSS);
5409 		/*
5410 		 * Next, flush the non-scheduled frames.
5411 		 */
5412 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5413 
5414 		ath_update_chainmasks(sc, chan);
5415 		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
5416 		    sc->sc_cur_rxchainmask);
5417 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5418 			device_printf(sc->sc_dev, "%s: unable to reset "
5419 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5420 			    __func__, ieee80211_chan2ieee(ic, chan),
5421 			    chan->ic_freq, chan->ic_flags, status);
5422 			ret = EIO;
5423 			goto finish;
5424 		}
5425 		sc->sc_diversity = ath_hal_getdiversity(ah);
5426 
5427 		ATH_RX_LOCK(sc);
5428 		sc->sc_rx_stopped = 1;
5429 		sc->sc_rx_resetted = 1;
5430 		ATH_RX_UNLOCK(sc);
5431 
5432 		/* Let DFS at it in case it's a DFS channel */
5433 		ath_dfs_radar_enable(sc, chan);
5434 
5435 		/* Let spectral at in case spectral is enabled */
5436 		ath_spectral_enable(sc, chan);
5437 
5438 		/*
5439 		 * Let bluetooth coexistence at in case it's needed for this
5440 		 * channel
5441 		 */
5442 		ath_btcoex_enable(sc, ic->ic_curchan);
5443 
5444 		/*
5445 		 * If we're doing TDMA, enforce the TXOP limitation for chips
5446 		 * that support it.
5447 		 */
5448 		if (sc->sc_hasenforcetxop && sc->sc_tdma)
5449 			ath_hal_setenforcetxop(sc->sc_ah, 1);
5450 		else
5451 			ath_hal_setenforcetxop(sc->sc_ah, 0);
5452 
5453 		/*
5454 		 * Re-enable rx framework.
5455 		 */
5456 		if (ath_startrecv(sc) != 0) {
5457 			device_printf(sc->sc_dev,
5458 			    "%s: unable to restart recv logic\n", __func__);
5459 			ret = EIO;
5460 			goto finish;
5461 		}
5462 
5463 		/*
5464 		 * Change channels and update the h/w rate map
5465 		 * if we're switching; e.g. 11a to 11b/g.
5466 		 */
5467 		ath_chan_change(sc, chan);
5468 
5469 		/*
5470 		 * Reset clears the beacon timers; reset them
5471 		 * here if needed.
5472 		 */
5473 		if (sc->sc_beacons) {		/* restart beacons */
5474 #ifdef IEEE80211_SUPPORT_TDMA
5475 			if (sc->sc_tdma)
5476 				ath_tdma_config(sc, NULL);
5477 			else
5478 #endif
5479 			ath_beacon_config(sc, NULL);
5480 		}
5481 
5482 		/*
5483 		 * Re-enable interrupts.
5484 		 */
5485 #if 0
5486 		ath_hal_intrset(ah, sc->sc_imask);
5487 #endif
5488 	}
5489 
5490 finish:
5491 	ATH_PCU_LOCK(sc);
5492 	sc->sc_inreset_cnt--;
5493 	/* XXX only do this if sc_inreset_cnt == 0? */
5494 	ath_hal_intrset(ah, sc->sc_imask);
5495 	ATH_PCU_UNLOCK(sc);
5496 
5497 	ath_txrx_start(sc);
5498 	/* XXX ath_start? */
5499 
5500 	return ret;
5501 }
5502 
5503 /*
5504  * Periodically recalibrate the PHY to account
5505  * for temperature/environment changes.
5506  */
5507 static void
5508 ath_calibrate(void *arg)
5509 {
5510 	struct ath_softc *sc = arg;
5511 	struct ath_hal *ah = sc->sc_ah;
5512 	struct ieee80211com *ic = &sc->sc_ic;
5513 	HAL_BOOL longCal, isCalDone = AH_TRUE;
5514 	HAL_BOOL aniCal, shortCal = AH_FALSE;
5515 	int nextcal;
5516 
5517 	ATH_LOCK_ASSERT(sc);
5518 
5519 	/*
5520 	 * Force the hardware awake for ANI work.
5521 	 */
5522 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5523 
5524 	/* Skip trying to do this if we're in reset */
5525 	if (sc->sc_inreset_cnt)
5526 		goto restart;
5527 
5528 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5529 		goto restart;
5530 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5531 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5532 	if (sc->sc_doresetcal)
5533 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5534 
5535 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5536 	if (aniCal) {
5537 		sc->sc_stats.ast_ani_cal++;
5538 		sc->sc_lastani = ticks;
5539 		ath_hal_ani_poll(ah, sc->sc_curchan);
5540 	}
5541 
5542 	if (longCal) {
5543 		sc->sc_stats.ast_per_cal++;
5544 		sc->sc_lastlongcal = ticks;
5545 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5546 			/*
5547 			 * Rfgain is out of bounds, reset the chip
5548 			 * to load new gain values.
5549 			 */
5550 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5551 				"%s: rfgain change\n", __func__);
5552 			sc->sc_stats.ast_per_rfgain++;
5553 			sc->sc_resetcal = 0;
5554 			sc->sc_doresetcal = AH_TRUE;
5555 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5556 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5557 			ath_power_restore_power_state(sc);
5558 			return;
5559 		}
5560 		/*
5561 		 * If this long cal is after an idle period, then
5562 		 * reset the data collection state so we start fresh.
5563 		 */
5564 		if (sc->sc_resetcal) {
5565 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5566 			sc->sc_lastcalreset = ticks;
5567 			sc->sc_lastshortcal = ticks;
5568 			sc->sc_resetcal = 0;
5569 			sc->sc_doresetcal = AH_TRUE;
5570 		}
5571 	}
5572 
5573 	/* Only call if we're doing a short/long cal, not for ANI calibration */
5574 	if (shortCal || longCal) {
5575 		isCalDone = AH_FALSE;
5576 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5577 			if (longCal) {
5578 				/*
5579 				 * Calibrate noise floor data again in case of change.
5580 				 */
5581 				ath_hal_process_noisefloor(ah);
5582 			}
5583 		} else {
5584 			DPRINTF(sc, ATH_DEBUG_ANY,
5585 				"%s: calibration of channel %u failed\n",
5586 				__func__, sc->sc_curchan->ic_freq);
5587 			sc->sc_stats.ast_per_calfail++;
5588 		}
5589 		if (shortCal)
5590 			sc->sc_lastshortcal = ticks;
5591 	}
5592 	if (!isCalDone) {
5593 restart:
5594 		/*
5595 		 * Use a shorter interval to potentially collect multiple
5596 		 * data samples required to complete calibration.  Once
5597 		 * we're told the work is done we drop back to a longer
5598 		 * interval between requests.  We're more aggressive doing
5599 		 * work when operating as an AP to improve operation right
5600 		 * after startup.
5601 		 */
5602 		sc->sc_lastshortcal = ticks;
5603 		nextcal = ath_shortcalinterval*hz/1000;
5604 		if (sc->sc_opmode != HAL_M_HOSTAP)
5605 			nextcal *= 10;
5606 		sc->sc_doresetcal = AH_TRUE;
5607 	} else {
5608 		/* nextcal should be the shortest time for next event */
5609 		nextcal = ath_longcalinterval*hz;
5610 		if (sc->sc_lastcalreset == 0)
5611 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5612 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5613 			sc->sc_resetcal = 1;	/* setup reset next trip */
5614 		sc->sc_doresetcal = AH_FALSE;
5615 	}
5616 	/* ANI calibration may occur more often than short/long/resetcal */
5617 	if (ath_anicalinterval > 0)
5618 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5619 
5620 	if (nextcal != 0) {
5621 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5622 		    __func__, nextcal, isCalDone ? "" : "!");
5623 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5624 	} else {
5625 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5626 		    __func__);
5627 		/* NB: don't rearm timer */
5628 	}
5629 	/*
5630 	 * Restore power state now that we're done.
5631 	 */
5632 	ath_power_restore_power_state(sc);
5633 }
5634 
5635 static void
5636 ath_scan_start(struct ieee80211com *ic)
5637 {
5638 	struct ath_softc *sc = ic->ic_softc;
5639 	struct ath_hal *ah = sc->sc_ah;
5640 	u_int32_t rfilt;
5641 
5642 	/* XXX calibration timer? */
5643 	/* XXXGL: is constant ieee80211broadcastaddr a correct choice? */
5644 
5645 	ATH_LOCK(sc);
5646 	sc->sc_scanning = 1;
5647 	sc->sc_syncbeacon = 0;
5648 	rfilt = ath_calcrxfilter(sc);
5649 	ATH_UNLOCK(sc);
5650 
5651 	ATH_PCU_LOCK(sc);
5652 	ath_hal_setrxfilter(ah, rfilt);
5653 	ath_hal_setassocid(ah, ieee80211broadcastaddr, 0);
5654 	ATH_PCU_UNLOCK(sc);
5655 
5656 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5657 		 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr));
5658 }
5659 
5660 static void
5661 ath_scan_end(struct ieee80211com *ic)
5662 {
5663 	struct ath_softc *sc = ic->ic_softc;
5664 	struct ath_hal *ah = sc->sc_ah;
5665 	u_int32_t rfilt;
5666 
5667 	ATH_LOCK(sc);
5668 	sc->sc_scanning = 0;
5669 	rfilt = ath_calcrxfilter(sc);
5670 	ATH_UNLOCK(sc);
5671 
5672 	ATH_PCU_LOCK(sc);
5673 	ath_hal_setrxfilter(ah, rfilt);
5674 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5675 
5676 	ath_hal_process_noisefloor(ah);
5677 	ATH_PCU_UNLOCK(sc);
5678 
5679 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5680 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5681 		 sc->sc_curaid);
5682 }
5683 
5684 #ifdef	ATH_ENABLE_11N
5685 /*
5686  * For now, just do a channel change.
5687  *
5688  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5689  * control state and resetting the hardware without dropping frames out
5690  * of the queue.
5691  *
5692  * The unfortunate trouble here is making absolutely sure that the
5693  * channel width change has propagated enough so the hardware
5694  * absolutely isn't handed bogus frames for it's current operating
5695  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5696  * does occur in parallel, we need to make certain we've blocked
5697  * any further ongoing TX (and RX, that can cause raw TX)
5698  * before we do this.
5699  */
5700 static void
5701 ath_update_chw(struct ieee80211com *ic)
5702 {
5703 	struct ath_softc *sc = ic->ic_softc;
5704 
5705 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5706 	ath_set_channel(ic);
5707 }
5708 #endif	/* ATH_ENABLE_11N */
5709 
5710 static void
5711 ath_set_channel(struct ieee80211com *ic)
5712 {
5713 	struct ath_softc *sc = ic->ic_softc;
5714 
5715 	ATH_LOCK(sc);
5716 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5717 	ATH_UNLOCK(sc);
5718 
5719 	(void) ath_chan_set(sc, ic->ic_curchan);
5720 	/*
5721 	 * If we are returning to our bss channel then mark state
5722 	 * so the next recv'd beacon's tsf will be used to sync the
5723 	 * beacon timers.  Note that since we only hear beacons in
5724 	 * sta/ibss mode this has no effect in other operating modes.
5725 	 */
5726 	ATH_LOCK(sc);
5727 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5728 		sc->sc_syncbeacon = 1;
5729 	ath_power_restore_power_state(sc);
5730 	ATH_UNLOCK(sc);
5731 }
5732 
5733 /*
5734  * Walk the vap list and check if there any vap's in RUN state.
5735  */
5736 static int
5737 ath_isanyrunningvaps(struct ieee80211vap *this)
5738 {
5739 	struct ieee80211com *ic = this->iv_ic;
5740 	struct ieee80211vap *vap;
5741 
5742 	IEEE80211_LOCK_ASSERT(ic);
5743 
5744 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5745 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5746 			return 1;
5747 	}
5748 	return 0;
5749 }
5750 
5751 static int
5752 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5753 {
5754 	struct ieee80211com *ic = vap->iv_ic;
5755 	struct ath_softc *sc = ic->ic_softc;
5756 	struct ath_vap *avp = ATH_VAP(vap);
5757 	struct ath_hal *ah = sc->sc_ah;
5758 	struct ieee80211_node *ni = NULL;
5759 	int i, error, stamode;
5760 	u_int32_t rfilt;
5761 	int csa_run_transition = 0;
5762 	enum ieee80211_state ostate = vap->iv_state;
5763 
5764 	static const HAL_LED_STATE leds[] = {
5765 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5766 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5767 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5768 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5769 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5770 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5771 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5772 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5773 	};
5774 
5775 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5776 		ieee80211_state_name[ostate],
5777 		ieee80211_state_name[nstate]);
5778 
5779 	/*
5780 	 * net80211 _should_ have the comlock asserted at this point.
5781 	 * There are some comments around the calls to vap->iv_newstate
5782 	 * which indicate that it (newstate) may end up dropping the
5783 	 * lock.  This and the subsequent lock assert check after newstate
5784 	 * are an attempt to catch these and figure out how/why.
5785 	 */
5786 	IEEE80211_LOCK_ASSERT(ic);
5787 
5788 	/* Before we touch the hardware - wake it up */
5789 	ATH_LOCK(sc);
5790 	/*
5791 	 * If the NIC is in anything other than SLEEP state,
5792 	 * we need to ensure that self-generated frames are
5793 	 * set for PWRMGT=0.  Otherwise we may end up with
5794 	 * strange situations.
5795 	 *
5796 	 * XXX TODO: is this actually the case? :-)
5797 	 */
5798 	if (nstate != IEEE80211_S_SLEEP)
5799 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5800 
5801 	/*
5802 	 * Now, wake the thing up.
5803 	 */
5804 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5805 
5806 	/*
5807 	 * And stop the calibration callout whilst we have
5808 	 * ATH_LOCK held.
5809 	 */
5810 	callout_stop(&sc->sc_cal_ch);
5811 	ATH_UNLOCK(sc);
5812 
5813 	if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5814 		csa_run_transition = 1;
5815 
5816 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5817 
5818 	if (nstate == IEEE80211_S_SCAN) {
5819 		/*
5820 		 * Scanning: turn off beacon miss and don't beacon.
5821 		 * Mark beacon state so when we reach RUN state we'll
5822 		 * [re]setup beacons.  Unblock the task q thread so
5823 		 * deferred interrupt processing is done.
5824 		 */
5825 
5826 		/* Ensure we stay awake during scan */
5827 		ATH_LOCK(sc);
5828 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5829 		ath_power_setpower(sc, HAL_PM_AWAKE);
5830 		ATH_UNLOCK(sc);
5831 
5832 		ath_hal_intrset(ah,
5833 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5834 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5835 		sc->sc_beacons = 0;
5836 		taskqueue_unblock(sc->sc_tq);
5837 	}
5838 
5839 	ni = ieee80211_ref_node(vap->iv_bss);
5840 	rfilt = ath_calcrxfilter(sc);
5841 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5842 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5843 		   vap->iv_opmode == IEEE80211_M_IBSS);
5844 
5845 	/*
5846 	 * XXX Dont need to do this (and others) if we've transitioned
5847 	 * from SLEEP->RUN.
5848 	 */
5849 	if (stamode && nstate == IEEE80211_S_RUN) {
5850 		sc->sc_curaid = ni->ni_associd;
5851 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5852 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5853 	}
5854 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5855 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5856 	ath_hal_setrxfilter(ah, rfilt);
5857 
5858 	/* XXX is this to restore keycache on resume? */
5859 	if (vap->iv_opmode != IEEE80211_M_STA &&
5860 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5861 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5862 			if (ath_hal_keyisvalid(ah, i))
5863 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5864 	}
5865 
5866 	/*
5867 	 * Invoke the parent method to do net80211 work.
5868 	 */
5869 	error = avp->av_newstate(vap, nstate, arg);
5870 	if (error != 0)
5871 		goto bad;
5872 
5873 	/*
5874 	 * See above: ensure av_newstate() doesn't drop the lock
5875 	 * on us.
5876 	 */
5877 	IEEE80211_LOCK_ASSERT(ic);
5878 
5879 	if (nstate == IEEE80211_S_RUN) {
5880 		/* NB: collect bss node again, it may have changed */
5881 		ieee80211_free_node(ni);
5882 		ni = ieee80211_ref_node(vap->iv_bss);
5883 
5884 		DPRINTF(sc, ATH_DEBUG_STATE,
5885 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5886 		    "capinfo 0x%04x chan %d\n", __func__,
5887 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5888 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5889 
5890 		switch (vap->iv_opmode) {
5891 #ifdef IEEE80211_SUPPORT_TDMA
5892 		case IEEE80211_M_AHDEMO:
5893 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5894 				break;
5895 			/* fall thru... */
5896 #endif
5897 		case IEEE80211_M_HOSTAP:
5898 		case IEEE80211_M_IBSS:
5899 		case IEEE80211_M_MBSS:
5900 			/*
5901 			 * Allocate and setup the beacon frame.
5902 			 *
5903 			 * Stop any previous beacon DMA.  This may be
5904 			 * necessary, for example, when an ibss merge
5905 			 * causes reconfiguration; there will be a state
5906 			 * transition from RUN->RUN that means we may
5907 			 * be called with beacon transmission active.
5908 			 */
5909 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5910 
5911 			error = ath_beacon_alloc(sc, ni);
5912 			if (error != 0)
5913 				goto bad;
5914 			/*
5915 			 * If joining an adhoc network defer beacon timer
5916 			 * configuration to the next beacon frame so we
5917 			 * have a current TSF to use.  Otherwise we're
5918 			 * starting an ibss/bss so there's no need to delay;
5919 			 * if this is the first vap moving to RUN state, then
5920 			 * beacon state needs to be [re]configured.
5921 			 */
5922 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5923 			    ni->ni_tstamp.tsf != 0) {
5924 				sc->sc_syncbeacon = 1;
5925 			} else if (!sc->sc_beacons) {
5926 #ifdef IEEE80211_SUPPORT_TDMA
5927 				if (vap->iv_caps & IEEE80211_C_TDMA)
5928 					ath_tdma_config(sc, vap);
5929 				else
5930 #endif
5931 					ath_beacon_config(sc, vap);
5932 				sc->sc_beacons = 1;
5933 			}
5934 			break;
5935 		case IEEE80211_M_STA:
5936 			/*
5937 			 * Defer beacon timer configuration to the next
5938 			 * beacon frame so we have a current TSF to use
5939 			 * (any TSF collected when scanning is likely old).
5940 			 * However if it's due to a CSA -> RUN transition,
5941 			 * force a beacon update so we pick up a lack of
5942 			 * beacons from an AP in CAC and thus force a
5943 			 * scan.
5944 			 *
5945 			 * And, there's also corner cases here where
5946 			 * after a scan, the AP may have disappeared.
5947 			 * In that case, we may not receive an actual
5948 			 * beacon to update the beacon timer and thus we
5949 			 * won't get notified of the missing beacons.
5950 			 */
5951 			if (ostate != IEEE80211_S_RUN &&
5952 			    ostate != IEEE80211_S_SLEEP) {
5953 				DPRINTF(sc, ATH_DEBUG_BEACON,
5954 				    "%s: STA; syncbeacon=1\n", __func__);
5955 				sc->sc_syncbeacon = 1;
5956 
5957 				if (csa_run_transition)
5958 					ath_beacon_config(sc, vap);
5959 
5960 			/*
5961 			 * PR: kern/175227
5962 			 *
5963 			 * Reconfigure beacons during reset; as otherwise
5964 			 * we won't get the beacon timers reprogrammed
5965 			 * after a reset and thus we won't pick up a
5966 			 * beacon miss interrupt.
5967 			 *
5968 			 * Hopefully we'll see a beacon before the BMISS
5969 			 * timer fires (too often), leading to a STA
5970 			 * disassociation.
5971 			 */
5972 				sc->sc_beacons = 1;
5973 			}
5974 			break;
5975 		case IEEE80211_M_MONITOR:
5976 			/*
5977 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5978 			 * transitions so we must re-enable interrupts here to
5979 			 * handle the case of a single monitor mode vap.
5980 			 */
5981 			ath_hal_intrset(ah, sc->sc_imask);
5982 			break;
5983 		case IEEE80211_M_WDS:
5984 			break;
5985 		default:
5986 			break;
5987 		}
5988 		/*
5989 		 * Let the hal process statistics collected during a
5990 		 * scan so it can provide calibrated noise floor data.
5991 		 */
5992 		ath_hal_process_noisefloor(ah);
5993 		/*
5994 		 * Reset rssi stats; maybe not the best place...
5995 		 */
5996 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5997 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5998 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5999 
6000 		/*
6001 		 * Force awake for RUN mode.
6002 		 */
6003 		ATH_LOCK(sc);
6004 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
6005 		ath_power_setpower(sc, HAL_PM_AWAKE);
6006 
6007 		/*
6008 		 * Finally, start any timers and the task q thread
6009 		 * (in case we didn't go through SCAN state).
6010 		 */
6011 		if (ath_longcalinterval != 0) {
6012 			/* start periodic recalibration timer */
6013 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6014 		} else {
6015 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6016 			    "%s: calibration disabled\n", __func__);
6017 		}
6018 		ATH_UNLOCK(sc);
6019 
6020 		taskqueue_unblock(sc->sc_tq);
6021 	} else if (nstate == IEEE80211_S_INIT) {
6022 		/*
6023 		 * If there are no vaps left in RUN state then
6024 		 * shutdown host/driver operation:
6025 		 * o disable interrupts
6026 		 * o disable the task queue thread
6027 		 * o mark beacon processing as stopped
6028 		 */
6029 		if (!ath_isanyrunningvaps(vap)) {
6030 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6031 			/* disable interrupts  */
6032 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
6033 			taskqueue_block(sc->sc_tq);
6034 			sc->sc_beacons = 0;
6035 		}
6036 #ifdef IEEE80211_SUPPORT_TDMA
6037 		ath_hal_setcca(ah, AH_TRUE);
6038 #endif
6039 	} else if (nstate == IEEE80211_S_SLEEP) {
6040 		/* We're going to sleep, so transition appropriately */
6041 		/* For now, only do this if we're a single STA vap */
6042 		if (sc->sc_nvaps == 1 &&
6043 		    vap->iv_opmode == IEEE80211_M_STA) {
6044 			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon);
6045 			ATH_LOCK(sc);
6046 			/*
6047 			 * Always at least set the self-generated
6048 			 * frame config to set PWRMGT=1.
6049 			 */
6050 			ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP);
6051 
6052 			/*
6053 			 * If we're not syncing beacons, transition
6054 			 * to NETWORK_SLEEP.
6055 			 *
6056 			 * We stay awake if syncbeacon > 0 in case
6057 			 * we need to listen for some beacons otherwise
6058 			 * our beacon timer config may be wrong.
6059 			 */
6060 			if (sc->sc_syncbeacon == 0) {
6061 				ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP);
6062 			}
6063 			ATH_UNLOCK(sc);
6064 		}
6065 	}
6066 bad:
6067 	ieee80211_free_node(ni);
6068 
6069 	/*
6070 	 * Restore the power state - either to what it was, or
6071 	 * to network_sleep if it's alright.
6072 	 */
6073 	ATH_LOCK(sc);
6074 	ath_power_restore_power_state(sc);
6075 	ATH_UNLOCK(sc);
6076 	return error;
6077 }
6078 
6079 /*
6080  * Allocate a key cache slot to the station so we can
6081  * setup a mapping from key index to node. The key cache
6082  * slot is needed for managing antenna state and for
6083  * compression when stations do not use crypto.  We do
6084  * it uniliaterally here; if crypto is employed this slot
6085  * will be reassigned.
6086  */
6087 static void
6088 ath_setup_stationkey(struct ieee80211_node *ni)
6089 {
6090 	struct ieee80211vap *vap = ni->ni_vap;
6091 	struct ath_softc *sc = vap->iv_ic->ic_softc;
6092 	ieee80211_keyix keyix, rxkeyix;
6093 
6094 	/* XXX should take a locked ref to vap->iv_bss */
6095 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6096 		/*
6097 		 * Key cache is full; we'll fall back to doing
6098 		 * the more expensive lookup in software.  Note
6099 		 * this also means no h/w compression.
6100 		 */
6101 		/* XXX msg+statistic */
6102 	} else {
6103 		/* XXX locking? */
6104 		ni->ni_ucastkey.wk_keyix = keyix;
6105 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6106 		/* NB: must mark device key to get called back on delete */
6107 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6108 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6109 		/* NB: this will create a pass-thru key entry */
6110 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
6111 	}
6112 }
6113 
6114 /*
6115  * Setup driver-specific state for a newly associated node.
6116  * Note that we're called also on a re-associate, the isnew
6117  * param tells us if this is the first time or not.
6118  */
6119 static void
6120 ath_newassoc(struct ieee80211_node *ni, int isnew)
6121 {
6122 	struct ath_node *an = ATH_NODE(ni);
6123 	struct ieee80211vap *vap = ni->ni_vap;
6124 	struct ath_softc *sc = vap->iv_ic->ic_softc;
6125 	const struct ieee80211_txparam *tp = ni->ni_txparms;
6126 
6127 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
6128 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
6129 
6130 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n",
6131 	    __func__,
6132 	    ni->ni_macaddr,
6133 	    ":",
6134 	    isnew,
6135 	    an->an_is_powersave);
6136 
6137 	ATH_NODE_LOCK(an);
6138 	ath_rate_newassoc(sc, an, isnew);
6139 	ATH_NODE_UNLOCK(an);
6140 
6141 	if (isnew &&
6142 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6143 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6144 		ath_setup_stationkey(ni);
6145 
6146 	/*
6147 	 * If we're reassociating, make sure that any paused queues
6148 	 * get unpaused.
6149 	 *
6150 	 * Now, we may hvae frames in the hardware queue for this node.
6151 	 * So if we are reassociating and there are frames in the queue,
6152 	 * we need to go through the cleanup path to ensure that they're
6153 	 * marked as non-aggregate.
6154 	 */
6155 	if (! isnew) {
6156 		DPRINTF(sc, ATH_DEBUG_NODE,
6157 		    "%s: %6D: reassoc; is_powersave=%d\n",
6158 		    __func__,
6159 		    ni->ni_macaddr,
6160 		    ":",
6161 		    an->an_is_powersave);
6162 
6163 		/* XXX for now, we can't hold the lock across assoc */
6164 		ath_tx_node_reassoc(sc, an);
6165 
6166 		/* XXX for now, we can't hold the lock across wakeup */
6167 		if (an->an_is_powersave)
6168 			ath_tx_node_wakeup(sc, an);
6169 	}
6170 }
6171 
6172 static int
6173 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6174 	int nchans, struct ieee80211_channel chans[])
6175 {
6176 	struct ath_softc *sc = ic->ic_softc;
6177 	struct ath_hal *ah = sc->sc_ah;
6178 	HAL_STATUS status;
6179 
6180 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6181 	    "%s: rd %u cc %u location %c%s\n",
6182 	    __func__, reg->regdomain, reg->country, reg->location,
6183 	    reg->ecm ? " ecm" : "");
6184 
6185 	status = ath_hal_set_channels(ah, chans, nchans,
6186 	    reg->country, reg->regdomain);
6187 	if (status != HAL_OK) {
6188 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6189 		    __func__, status);
6190 		return EINVAL;		/* XXX */
6191 	}
6192 
6193 	return 0;
6194 }
6195 
6196 static void
6197 ath_getradiocaps(struct ieee80211com *ic,
6198 	int maxchans, int *nchans, struct ieee80211_channel chans[])
6199 {
6200 	struct ath_softc *sc = ic->ic_softc;
6201 	struct ath_hal *ah = sc->sc_ah;
6202 
6203 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6204 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
6205 
6206 	/* XXX check return */
6207 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6208 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6209 
6210 }
6211 
6212 static int
6213 ath_getchannels(struct ath_softc *sc)
6214 {
6215 	struct ieee80211com *ic = &sc->sc_ic;
6216 	struct ath_hal *ah = sc->sc_ah;
6217 	HAL_STATUS status;
6218 
6219 	/*
6220 	 * Collect channel set based on EEPROM contents.
6221 	 */
6222 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6223 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6224 	if (status != HAL_OK) {
6225 		device_printf(sc->sc_dev,
6226 		    "%s: unable to collect channel list from hal, status %d\n",
6227 		    __func__, status);
6228 		return EINVAL;
6229 	}
6230 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6231 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6232 	/* XXX map Atheros sku's to net80211 SKU's */
6233 	/* XXX net80211 types too small */
6234 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6235 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6236 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
6237 	ic->ic_regdomain.isocc[1] = ' ';
6238 
6239 	ic->ic_regdomain.ecm = 1;
6240 	ic->ic_regdomain.location = 'I';
6241 
6242 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6243 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6244 	    __func__, sc->sc_eerd, sc->sc_eecc,
6245 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6246 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6247 	return 0;
6248 }
6249 
6250 static int
6251 ath_rate_setup(struct ath_softc *sc, u_int mode)
6252 {
6253 	struct ath_hal *ah = sc->sc_ah;
6254 	const HAL_RATE_TABLE *rt;
6255 
6256 	switch (mode) {
6257 	case IEEE80211_MODE_11A:
6258 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6259 		break;
6260 	case IEEE80211_MODE_HALF:
6261 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6262 		break;
6263 	case IEEE80211_MODE_QUARTER:
6264 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6265 		break;
6266 	case IEEE80211_MODE_11B:
6267 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6268 		break;
6269 	case IEEE80211_MODE_11G:
6270 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6271 		break;
6272 	case IEEE80211_MODE_TURBO_A:
6273 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6274 		break;
6275 	case IEEE80211_MODE_TURBO_G:
6276 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6277 		break;
6278 	case IEEE80211_MODE_STURBO_A:
6279 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6280 		break;
6281 	case IEEE80211_MODE_11NA:
6282 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6283 		break;
6284 	case IEEE80211_MODE_11NG:
6285 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6286 		break;
6287 	default:
6288 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6289 			__func__, mode);
6290 		return 0;
6291 	}
6292 	sc->sc_rates[mode] = rt;
6293 	return (rt != NULL);
6294 }
6295 
6296 static void
6297 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6298 {
6299 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6300 	static const struct {
6301 		u_int		rate;		/* tx/rx 802.11 rate */
6302 		u_int16_t	timeOn;		/* LED on time (ms) */
6303 		u_int16_t	timeOff;	/* LED off time (ms) */
6304 	} blinkrates[] = {
6305 		{ 108,  40,  10 },
6306 		{  96,  44,  11 },
6307 		{  72,  50,  13 },
6308 		{  48,  57,  14 },
6309 		{  36,  67,  16 },
6310 		{  24,  80,  20 },
6311 		{  22, 100,  25 },
6312 		{  18, 133,  34 },
6313 		{  12, 160,  40 },
6314 		{  10, 200,  50 },
6315 		{   6, 240,  58 },
6316 		{   4, 267,  66 },
6317 		{   2, 400, 100 },
6318 		{   0, 500, 130 },
6319 		/* XXX half/quarter rates */
6320 	};
6321 	const HAL_RATE_TABLE *rt;
6322 	int i, j;
6323 
6324 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6325 	rt = sc->sc_rates[mode];
6326 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6327 	for (i = 0; i < rt->rateCount; i++) {
6328 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6329 		if (rt->info[i].phy != IEEE80211_T_HT)
6330 			sc->sc_rixmap[ieeerate] = i;
6331 		else
6332 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6333 	}
6334 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6335 	for (i = 0; i < nitems(sc->sc_hwmap); i++) {
6336 		if (i >= rt->rateCount) {
6337 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6338 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6339 			continue;
6340 		}
6341 		sc->sc_hwmap[i].ieeerate =
6342 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6343 		if (rt->info[i].phy == IEEE80211_T_HT)
6344 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6345 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6346 		if (rt->info[i].shortPreamble ||
6347 		    rt->info[i].phy == IEEE80211_T_OFDM)
6348 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6349 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6350 		for (j = 0; j < nitems(blinkrates)-1; j++)
6351 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6352 				break;
6353 		/* NB: this uses the last entry if the rate isn't found */
6354 		/* XXX beware of overlow */
6355 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6356 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6357 	}
6358 	sc->sc_currates = rt;
6359 	sc->sc_curmode = mode;
6360 	/*
6361 	 * All protection frames are transmited at 2Mb/s for
6362 	 * 11g, otherwise at 1Mb/s.
6363 	 */
6364 	if (mode == IEEE80211_MODE_11G)
6365 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6366 	else
6367 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6368 	/* NB: caller is responsible for resetting rate control state */
6369 }
6370 
6371 static void
6372 ath_watchdog(void *arg)
6373 {
6374 	struct ath_softc *sc = arg;
6375 	struct ieee80211com *ic = &sc->sc_ic;
6376 	int do_reset = 0;
6377 
6378 	ATH_LOCK_ASSERT(sc);
6379 
6380 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6381 		uint32_t hangs;
6382 
6383 		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6384 
6385 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6386 		    hangs != 0) {
6387 			device_printf(sc->sc_dev, "%s hang detected (0x%x)\n",
6388 			    hangs & 0xff ? "bb" : "mac", hangs);
6389 		} else
6390 			device_printf(sc->sc_dev, "device timeout\n");
6391 		do_reset = 1;
6392 		counter_u64_add(ic->ic_oerrors, 1);
6393 		sc->sc_stats.ast_watchdog++;
6394 
6395 		ath_power_restore_power_state(sc);
6396 	}
6397 
6398 	/*
6399 	 * We can't hold the lock across the ath_reset() call.
6400 	 *
6401 	 * And since this routine can't hold a lock and sleep,
6402 	 * do the reset deferred.
6403 	 */
6404 	if (do_reset) {
6405 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
6406 	}
6407 
6408 	callout_schedule(&sc->sc_wd_ch, hz);
6409 }
6410 
6411 /*
6412  * Fetch the rate control statistics for the given node.
6413  */
6414 static int
6415 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
6416 {
6417 	struct ath_node *an;
6418 	struct ieee80211com *ic = &sc->sc_ic;
6419 	struct ieee80211_node *ni;
6420 	int error = 0;
6421 
6422 	/* Perform a lookup on the given node */
6423 	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
6424 	if (ni == NULL) {
6425 		error = EINVAL;
6426 		goto bad;
6427 	}
6428 
6429 	/* Lock the ath_node */
6430 	an = ATH_NODE(ni);
6431 	ATH_NODE_LOCK(an);
6432 
6433 	/* Fetch the rate control stats for this node */
6434 	error = ath_rate_fetch_node_stats(sc, an, rs);
6435 
6436 	/* No matter what happens here, just drop through */
6437 
6438 	/* Unlock the ath_node */
6439 	ATH_NODE_UNLOCK(an);
6440 
6441 	/* Unref the node */
6442 	ieee80211_node_decref(ni);
6443 
6444 bad:
6445 	return (error);
6446 }
6447 
6448 #ifdef ATH_DIAGAPI
6449 /*
6450  * Diagnostic interface to the HAL.  This is used by various
6451  * tools to do things like retrieve register contents for
6452  * debugging.  The mechanism is intentionally opaque so that
6453  * it can change frequently w/o concern for compatiblity.
6454  */
6455 static int
6456 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6457 {
6458 	struct ath_hal *ah = sc->sc_ah;
6459 	u_int id = ad->ad_id & ATH_DIAG_ID;
6460 	void *indata = NULL;
6461 	void *outdata = NULL;
6462 	u_int32_t insize = ad->ad_in_size;
6463 	u_int32_t outsize = ad->ad_out_size;
6464 	int error = 0;
6465 
6466 	if (ad->ad_id & ATH_DIAG_IN) {
6467 		/*
6468 		 * Copy in data.
6469 		 */
6470 		indata = malloc(insize, M_TEMP, M_NOWAIT);
6471 		if (indata == NULL) {
6472 			error = ENOMEM;
6473 			goto bad;
6474 		}
6475 		error = copyin(ad->ad_in_data, indata, insize);
6476 		if (error)
6477 			goto bad;
6478 	}
6479 	if (ad->ad_id & ATH_DIAG_DYN) {
6480 		/*
6481 		 * Allocate a buffer for the results (otherwise the HAL
6482 		 * returns a pointer to a buffer where we can read the
6483 		 * results).  Note that we depend on the HAL leaving this
6484 		 * pointer for us to use below in reclaiming the buffer;
6485 		 * may want to be more defensive.
6486 		 */
6487 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6488 		if (outdata == NULL) {
6489 			error = ENOMEM;
6490 			goto bad;
6491 		}
6492 	}
6493 
6494 
6495 	ATH_LOCK(sc);
6496 	if (id != HAL_DIAG_REGS)
6497 		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6498 	ATH_UNLOCK(sc);
6499 
6500 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6501 		if (outsize < ad->ad_out_size)
6502 			ad->ad_out_size = outsize;
6503 		if (outdata != NULL)
6504 			error = copyout(outdata, ad->ad_out_data,
6505 					ad->ad_out_size);
6506 	} else {
6507 		error = EINVAL;
6508 	}
6509 
6510 	ATH_LOCK(sc);
6511 	if (id != HAL_DIAG_REGS)
6512 		ath_power_restore_power_state(sc);
6513 	ATH_UNLOCK(sc);
6514 
6515 bad:
6516 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6517 		free(indata, M_TEMP);
6518 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6519 		free(outdata, M_TEMP);
6520 	return error;
6521 }
6522 #endif /* ATH_DIAGAPI */
6523 
6524 static void
6525 ath_parent(struct ieee80211com *ic)
6526 {
6527 	struct ath_softc *sc = ic->ic_softc;
6528 	int error = EDOOFUS;
6529 
6530 	ATH_LOCK(sc);
6531 	if (ic->ic_nrunning > 0) {
6532 		/*
6533 		 * To avoid rescanning another access point,
6534 		 * do not call ath_init() here.  Instead,
6535 		 * only reflect promisc mode settings.
6536 		 */
6537 		if (sc->sc_running) {
6538 			ath_power_set_power_state(sc, HAL_PM_AWAKE);
6539 			ath_mode_init(sc);
6540 			ath_power_restore_power_state(sc);
6541 		} else if (!sc->sc_invalid) {
6542 			/*
6543 			 * Beware of being called during attach/detach
6544 			 * to reset promiscuous mode.  In that case we
6545 			 * will still be marked UP but not RUNNING.
6546 			 * However trying to re-init the interface
6547 			 * is the wrong thing to do as we've already
6548 			 * torn down much of our state.  There's
6549 			 * probably a better way to deal with this.
6550 			 */
6551 			error = ath_init(sc);
6552 		}
6553 	} else {
6554 		ath_stop(sc);
6555 		if (!sc->sc_invalid)
6556 			ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
6557 	}
6558 	ATH_UNLOCK(sc);
6559 
6560 	if (error == 0) {
6561 #ifdef ATH_TX99_DIAG
6562 		if (sc->sc_tx99 != NULL)
6563 			sc->sc_tx99->start(sc->sc_tx99);
6564 		else
6565 #endif
6566 		ieee80211_start_all(ic);
6567 	}
6568 }
6569 
6570 static int
6571 ath_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
6572 {
6573 	struct ifreq *ifr = data;
6574 	struct ath_softc *sc = ic->ic_softc;
6575 
6576 	switch (cmd) {
6577 	case SIOCGATHSTATS: {
6578 		struct ieee80211vap *vap;
6579 		struct ifnet *ifp;
6580 		const HAL_RATE_TABLE *rt;
6581 
6582 		/* NB: embed these numbers to get a consistent view */
6583 		sc->sc_stats.ast_tx_packets = 0;
6584 		sc->sc_stats.ast_rx_packets = 0;
6585 		TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
6586 			ifp = vap->iv_ifp;
6587 			sc->sc_stats.ast_tx_packets += ifp->if_get_counter(ifp,
6588 			    IFCOUNTER_OPACKETS);
6589 			sc->sc_stats.ast_rx_packets += ifp->if_get_counter(ifp,
6590 			    IFCOUNTER_IPACKETS);
6591 		}
6592 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6593 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6594 #ifdef IEEE80211_SUPPORT_TDMA
6595 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6596 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6597 #endif
6598 		rt = sc->sc_currates;
6599 		sc->sc_stats.ast_tx_rate =
6600 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6601 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
6602 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
6603 		return copyout(&sc->sc_stats,
6604 		    ifr->ifr_data, sizeof (sc->sc_stats));
6605 	}
6606 	case SIOCGATHAGSTATS:
6607 		return copyout(&sc->sc_aggr_stats,
6608 		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
6609 	case SIOCZATHSTATS: {
6610 		int error;
6611 
6612 		error = priv_check(curthread, PRIV_DRIVER);
6613 		if (error == 0) {
6614 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6615 			memset(&sc->sc_aggr_stats, 0,
6616 			    sizeof(sc->sc_aggr_stats));
6617 			memset(&sc->sc_intr_stats, 0,
6618 			    sizeof(sc->sc_intr_stats));
6619 		}
6620 		return (error);
6621 	}
6622 #ifdef ATH_DIAGAPI
6623 	case SIOCGATHDIAG:
6624 		return (ath_ioctl_diag(sc, data));
6625 	case SIOCGATHPHYERR:
6626 		return (ath_ioctl_phyerr(sc, data));
6627 #endif
6628 	case SIOCGATHSPECTRAL:
6629 		return (ath_ioctl_spectral(sc, data));
6630 	case SIOCGATHNODERATESTATS:
6631 		return (ath_ioctl_ratestats(sc, data));
6632 	default:
6633 		return (ENOTTY);
6634 	}
6635 }
6636 
6637 /*
6638  * Announce various information on device/driver attach.
6639  */
6640 static void
6641 ath_announce(struct ath_softc *sc)
6642 {
6643 	struct ath_hal *ah = sc->sc_ah;
6644 
6645 	device_printf(sc->sc_dev, "AR%s mac %d.%d RF%s phy %d.%d\n",
6646 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6647 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6648 	device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6649 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6650 	if (bootverbose) {
6651 		int i;
6652 		for (i = 0; i <= WME_AC_VO; i++) {
6653 			struct ath_txq *txq = sc->sc_ac2q[i];
6654 			device_printf(sc->sc_dev,
6655 			    "Use hw queue %u for %s traffic\n",
6656 			    txq->axq_qnum, ieee80211_wme_acnames[i]);
6657 		}
6658 		device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n",
6659 		    sc->sc_cabq->axq_qnum);
6660 		device_printf(sc->sc_dev, "Use hw queue %u for beacons\n",
6661 		    sc->sc_bhalq);
6662 	}
6663 	if (ath_rxbuf != ATH_RXBUF)
6664 		device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf);
6665 	if (ath_txbuf != ATH_TXBUF)
6666 		device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf);
6667 	if (sc->sc_mcastkey && bootverbose)
6668 		device_printf(sc->sc_dev, "using multicast key search\n");
6669 }
6670 
6671 static void
6672 ath_dfs_tasklet(void *p, int npending)
6673 {
6674 	struct ath_softc *sc = (struct ath_softc *) p;
6675 	struct ieee80211com *ic = &sc->sc_ic;
6676 
6677 	/*
6678 	 * If previous processing has found a radar event,
6679 	 * signal this to the net80211 layer to begin DFS
6680 	 * processing.
6681 	 */
6682 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6683 		/* DFS event found, initiate channel change */
6684 		/*
6685 		 * XXX doesn't currently tell us whether the event
6686 		 * XXX was found in the primary or extension
6687 		 * XXX channel!
6688 		 */
6689 		IEEE80211_LOCK(ic);
6690 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6691 		IEEE80211_UNLOCK(ic);
6692 	}
6693 }
6694 
6695 /*
6696  * Enable/disable power save.  This must be called with
6697  * no TX driver locks currently held, so it should only
6698  * be called from the RX path (which doesn't hold any
6699  * TX driver locks.)
6700  */
6701 static void
6702 ath_node_powersave(struct ieee80211_node *ni, int enable)
6703 {
6704 #ifdef	ATH_SW_PSQ
6705 	struct ath_node *an = ATH_NODE(ni);
6706 	struct ieee80211com *ic = ni->ni_ic;
6707 	struct ath_softc *sc = ic->ic_softc;
6708 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6709 
6710 	/* XXX and no TXQ locks should be held here */
6711 
6712 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n",
6713 	    __func__,
6714 	    ni->ni_macaddr,
6715 	    ":",
6716 	    !! enable);
6717 
6718 	/* Suspend or resume software queue handling */
6719 	if (enable)
6720 		ath_tx_node_sleep(sc, an);
6721 	else
6722 		ath_tx_node_wakeup(sc, an);
6723 
6724 	/* Update net80211 state */
6725 	avp->av_node_ps(ni, enable);
6726 #else
6727 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6728 
6729 	/* Update net80211 state */
6730 	avp->av_node_ps(ni, enable);
6731 #endif/* ATH_SW_PSQ */
6732 }
6733 
6734 /*
6735  * Notification from net80211 that the powersave queue state has
6736  * changed.
6737  *
6738  * Since the software queue also may have some frames:
6739  *
6740  * + if the node software queue has frames and the TID state
6741  *   is 0, we set the TIM;
6742  * + if the node and the stack are both empty, we clear the TIM bit.
6743  * + If the stack tries to set the bit, always set it.
6744  * + If the stack tries to clear the bit, only clear it if the
6745  *   software queue in question is also cleared.
6746  *
6747  * TODO: this is called during node teardown; so let's ensure this
6748  * is all correctly handled and that the TIM bit is cleared.
6749  * It may be that the node flush is called _AFTER_ the net80211
6750  * stack clears the TIM.
6751  *
6752  * Here is the racy part.  Since it's possible >1 concurrent,
6753  * overlapping TXes will appear complete with a TX completion in
6754  * another thread, it's possible that the concurrent TIM calls will
6755  * clash.  We can't hold the node lock here because setting the
6756  * TIM grabs the net80211 comlock and this may cause a LOR.
6757  * The solution is either to totally serialise _everything_ at
6758  * this point (ie, all TX, completion and any reset/flush go into
6759  * one taskqueue) or a new "ath TIM lock" needs to be created that
6760  * just wraps the driver state change and this call to avp->av_set_tim().
6761  *
6762  * The same race exists in the net80211 power save queue handling
6763  * as well.  Since multiple transmitting threads may queue frames
6764  * into the driver, as well as ps-poll and the driver transmitting
6765  * frames (and thus clearing the psq), it's quite possible that
6766  * a packet entering the PSQ and a ps-poll being handled will
6767  * race, causing the TIM to be cleared and not re-set.
6768  */
6769 static int
6770 ath_node_set_tim(struct ieee80211_node *ni, int enable)
6771 {
6772 #ifdef	ATH_SW_PSQ
6773 	struct ieee80211com *ic = ni->ni_ic;
6774 	struct ath_softc *sc = ic->ic_softc;
6775 	struct ath_node *an = ATH_NODE(ni);
6776 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6777 	int changed = 0;
6778 
6779 	ATH_TX_LOCK(sc);
6780 	an->an_stack_psq = enable;
6781 
6782 	/*
6783 	 * This will get called for all operating modes,
6784 	 * even if avp->av_set_tim is unset.
6785 	 * It's currently set for hostap/ibss modes; but
6786 	 * the same infrastructure is used for both STA
6787 	 * and AP/IBSS node power save.
6788 	 */
6789 	if (avp->av_set_tim == NULL) {
6790 		ATH_TX_UNLOCK(sc);
6791 		return (0);
6792 	}
6793 
6794 	/*
6795 	 * If setting the bit, always set it here.
6796 	 * If clearing the bit, only clear it if the
6797 	 * software queue is also empty.
6798 	 *
6799 	 * If the node has left power save, just clear the TIM
6800 	 * bit regardless of the state of the power save queue.
6801 	 *
6802 	 * XXX TODO: although atomics are used, it's quite possible
6803 	 * that a race will occur between this and setting/clearing
6804 	 * in another thread.  TX completion will occur always in
6805 	 * one thread, however setting/clearing the TIM bit can come
6806 	 * from a variety of different process contexts!
6807 	 */
6808 	if (enable && an->an_tim_set == 1) {
6809 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6810 		    "%s: %6D: enable=%d, tim_set=1, ignoring\n",
6811 		    __func__,
6812 		    ni->ni_macaddr,
6813 		    ":",
6814 		    enable);
6815 		ATH_TX_UNLOCK(sc);
6816 	} else if (enable) {
6817 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6818 		    "%s: %6D: enable=%d, enabling TIM\n",
6819 		    __func__,
6820 		    ni->ni_macaddr,
6821 		    ":",
6822 		    enable);
6823 		an->an_tim_set = 1;
6824 		ATH_TX_UNLOCK(sc);
6825 		changed = avp->av_set_tim(ni, enable);
6826 	} else if (an->an_swq_depth == 0) {
6827 		/* disable */
6828 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6829 		    "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n",
6830 		    __func__,
6831 		    ni->ni_macaddr,
6832 		    ":",
6833 		    enable);
6834 		an->an_tim_set = 0;
6835 		ATH_TX_UNLOCK(sc);
6836 		changed = avp->av_set_tim(ni, enable);
6837 	} else if (! an->an_is_powersave) {
6838 		/*
6839 		 * disable regardless; the node isn't in powersave now
6840 		 */
6841 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6842 		    "%s: %6D: enable=%d, an_pwrsave=0, disabling\n",
6843 		    __func__,
6844 		    ni->ni_macaddr,
6845 		    ":",
6846 		    enable);
6847 		an->an_tim_set = 0;
6848 		ATH_TX_UNLOCK(sc);
6849 		changed = avp->av_set_tim(ni, enable);
6850 	} else {
6851 		/*
6852 		 * psq disable, node is currently in powersave, node
6853 		 * software queue isn't empty, so don't clear the TIM bit
6854 		 * for now.
6855 		 */
6856 		ATH_TX_UNLOCK(sc);
6857 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6858 		    "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n",
6859 		    __func__,
6860 		    ni->ni_macaddr,
6861 		    ":",
6862 		    enable);
6863 		changed = 0;
6864 	}
6865 
6866 	return (changed);
6867 #else
6868 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6869 
6870 	/*
6871 	 * Some operating modes don't set av_set_tim(), so don't
6872 	 * update it here.
6873 	 */
6874 	if (avp->av_set_tim == NULL)
6875 		return (0);
6876 
6877 	return (avp->av_set_tim(ni, enable));
6878 #endif /* ATH_SW_PSQ */
6879 }
6880 
6881 /*
6882  * Set or update the TIM from the software queue.
6883  *
6884  * Check the software queue depth before attempting to do lock
6885  * anything; that avoids trying to obtain the lock.  Then,
6886  * re-check afterwards to ensure nothing has changed in the
6887  * meantime.
6888  *
6889  * set:   This is designed to be called from the TX path, after
6890  *        a frame has been queued; to see if the swq > 0.
6891  *
6892  * clear: This is designed to be called from the buffer completion point
6893  *        (right now it's ath_tx_default_comp()) where the state of
6894  *        a software queue has changed.
6895  *
6896  * It makes sense to place it at buffer free / completion rather
6897  * than after each software queue operation, as there's no real
6898  * point in churning the TIM bit as the last frames in the software
6899  * queue are transmitted.  If they fail and we retry them, we'd
6900  * just be setting the TIM bit again anyway.
6901  */
6902 void
6903 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
6904      int enable)
6905 {
6906 #ifdef	ATH_SW_PSQ
6907 	struct ath_node *an;
6908 	struct ath_vap *avp;
6909 
6910 	/* Don't do this for broadcast/etc frames */
6911 	if (ni == NULL)
6912 		return;
6913 
6914 	an = ATH_NODE(ni);
6915 	avp = ATH_VAP(ni->ni_vap);
6916 
6917 	/*
6918 	 * And for operating modes without the TIM handler set, let's
6919 	 * just skip those.
6920 	 */
6921 	if (avp->av_set_tim == NULL)
6922 		return;
6923 
6924 	ATH_TX_LOCK_ASSERT(sc);
6925 
6926 	if (enable) {
6927 		if (an->an_is_powersave &&
6928 		    an->an_tim_set == 0 &&
6929 		    an->an_swq_depth != 0) {
6930 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6931 			    "%s: %6D: swq_depth>0, tim_set=0, set!\n",
6932 			    __func__,
6933 			    ni->ni_macaddr,
6934 			    ":");
6935 			an->an_tim_set = 1;
6936 			(void) avp->av_set_tim(ni, 1);
6937 		}
6938 	} else {
6939 		/*
6940 		 * Don't bother grabbing the lock unless the queue is empty.
6941 		 */
6942 		if (an->an_swq_depth != 0)
6943 			return;
6944 
6945 		if (an->an_is_powersave &&
6946 		    an->an_stack_psq == 0 &&
6947 		    an->an_tim_set == 1 &&
6948 		    an->an_swq_depth == 0) {
6949 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6950 			    "%s: %6D: swq_depth=0, tim_set=1, psq_set=0,"
6951 			    " clear!\n",
6952 			    __func__,
6953 			    ni->ni_macaddr,
6954 			    ":");
6955 			an->an_tim_set = 0;
6956 			(void) avp->av_set_tim(ni, 0);
6957 		}
6958 	}
6959 #else
6960 	return;
6961 #endif	/* ATH_SW_PSQ */
6962 }
6963 
6964 /*
6965  * Received a ps-poll frame from net80211.
6966  *
6967  * Here we get a chance to serve out a software-queued frame ourselves
6968  * before we punt it to net80211 to transmit us one itself - either
6969  * because there's traffic in the net80211 psq, or a NULL frame to
6970  * indicate there's nothing else.
6971  */
6972 static void
6973 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
6974 {
6975 #ifdef	ATH_SW_PSQ
6976 	struct ath_node *an;
6977 	struct ath_vap *avp;
6978 	struct ieee80211com *ic = ni->ni_ic;
6979 	struct ath_softc *sc = ic->ic_softc;
6980 	int tid;
6981 
6982 	/* Just paranoia */
6983 	if (ni == NULL)
6984 		return;
6985 
6986 	/*
6987 	 * Unassociated (temporary node) station.
6988 	 */
6989 	if (ni->ni_associd == 0)
6990 		return;
6991 
6992 	/*
6993 	 * We do have an active node, so let's begin looking into it.
6994 	 */
6995 	an = ATH_NODE(ni);
6996 	avp = ATH_VAP(ni->ni_vap);
6997 
6998 	/*
6999 	 * For now, we just call the original ps-poll method.
7000 	 * Once we're ready to flip this on:
7001 	 *
7002 	 * + Set leak to 1, as no matter what we're going to have
7003 	 *   to send a frame;
7004 	 * + Check the software queue and if there's something in it,
7005 	 *   schedule the highest TID thas has traffic from this node.
7006 	 *   Then make sure we schedule the software scheduler to
7007 	 *   run so it picks up said frame.
7008 	 *
7009 	 * That way whatever happens, we'll at least send _a_ frame
7010 	 * to the given node.
7011 	 *
7012 	 * Again, yes, it's crappy QoS if the node has multiple
7013 	 * TIDs worth of traffic - but let's get it working first
7014 	 * before we optimise it.
7015 	 *
7016 	 * Also yes, there's definitely latency here - we're not
7017 	 * direct dispatching to the hardware in this path (and
7018 	 * we're likely being called from the packet receive path,
7019 	 * so going back into TX may be a little hairy!) but again
7020 	 * I'd like to get this working first before optimising
7021 	 * turn-around time.
7022 	 */
7023 
7024 	ATH_TX_LOCK(sc);
7025 
7026 	/*
7027 	 * Legacy - we're called and the node isn't asleep.
7028 	 * Immediately punt.
7029 	 */
7030 	if (! an->an_is_powersave) {
7031 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7032 		    "%s: %6D: not in powersave?\n",
7033 		    __func__,
7034 		    ni->ni_macaddr,
7035 		    ":");
7036 		ATH_TX_UNLOCK(sc);
7037 		avp->av_recv_pspoll(ni, m);
7038 		return;
7039 	}
7040 
7041 	/*
7042 	 * We're in powersave.
7043 	 *
7044 	 * Leak a frame.
7045 	 */
7046 	an->an_leak_count = 1;
7047 
7048 	/*
7049 	 * Now, if there's no frames in the node, just punt to
7050 	 * recv_pspoll.
7051 	 *
7052 	 * Don't bother checking if the TIM bit is set, we really
7053 	 * only care if there are any frames here!
7054 	 */
7055 	if (an->an_swq_depth == 0) {
7056 		ATH_TX_UNLOCK(sc);
7057 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7058 		    "%s: %6D: SWQ empty; punting to net80211\n",
7059 		    __func__,
7060 		    ni->ni_macaddr,
7061 		    ":");
7062 		avp->av_recv_pspoll(ni, m);
7063 		return;
7064 	}
7065 
7066 	/*
7067 	 * Ok, let's schedule the highest TID that has traffic
7068 	 * and then schedule something.
7069 	 */
7070 	for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
7071 		struct ath_tid *atid = &an->an_tid[tid];
7072 		/*
7073 		 * No frames? Skip.
7074 		 */
7075 		if (atid->axq_depth == 0)
7076 			continue;
7077 		ath_tx_tid_sched(sc, atid);
7078 		/*
7079 		 * XXX we could do a direct call to the TXQ
7080 		 * scheduler code here to optimise latency
7081 		 * at the expense of a REALLY deep callstack.
7082 		 */
7083 		ATH_TX_UNLOCK(sc);
7084 		taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
7085 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7086 		    "%s: %6D: leaking frame to TID %d\n",
7087 		    __func__,
7088 		    ni->ni_macaddr,
7089 		    ":",
7090 		    tid);
7091 		return;
7092 	}
7093 
7094 	ATH_TX_UNLOCK(sc);
7095 
7096 	/*
7097 	 * XXX nothing in the TIDs at this point? Eek.
7098 	 */
7099 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7100 	    "%s: %6D: TIDs empty, but ath_node showed traffic?!\n",
7101 	    __func__,
7102 	    ni->ni_macaddr,
7103 	    ":");
7104 	avp->av_recv_pspoll(ni, m);
7105 #else
7106 	avp->av_recv_pspoll(ni, m);
7107 #endif	/* ATH_SW_PSQ */
7108 }
7109 
7110 MODULE_VERSION(if_ath, 1);
7111 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
7112 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ)
7113 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
7114 #endif
7115