1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_rx_edma.h> 113 #include <dev/ath/if_ath_tx_edma.h> 114 #include <dev/ath/if_ath_beacon.h> 115 #include <dev/ath/if_ath_btcoex.h> 116 #include <dev/ath/if_ath_spectral.h> 117 #include <dev/ath/if_ath_lna_div.h> 118 #include <dev/ath/if_athdfs.h> 119 120 #ifdef ATH_TX99_DIAG 121 #include <dev/ath/ath_tx99/ath_tx99.h> 122 #endif 123 124 #ifdef ATH_DEBUG_ALQ 125 #include <dev/ath/if_ath_alq.h> 126 #endif 127 128 /* 129 * Only enable this if you're working on PS-POLL support. 130 */ 131 #define ATH_SW_PSQ 132 133 /* 134 * ATH_BCBUF determines the number of vap's that can transmit 135 * beacons and also (currently) the number of vap's that can 136 * have unique mac addresses/bssid. When staggering beacons 137 * 4 is probably a good max as otherwise the beacons become 138 * very closely spaced and there is limited time for cab q traffic 139 * to go out. You can burst beacons instead but that is not good 140 * for stations in power save and at some point you really want 141 * another radio (and channel). 142 * 143 * The limit on the number of mac addresses is tied to our use of 144 * the U/L bit and tracking addresses in a byte; it would be 145 * worthwhile to allow more for applications like proxy sta. 146 */ 147 CTASSERT(ATH_BCBUF <= 8); 148 149 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 150 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 151 const uint8_t [IEEE80211_ADDR_LEN], 152 const uint8_t [IEEE80211_ADDR_LEN]); 153 static void ath_vap_delete(struct ieee80211vap *); 154 static int ath_init(struct ath_softc *); 155 static void ath_stop(struct ath_softc *); 156 static int ath_reset_vap(struct ieee80211vap *, u_long); 157 static int ath_transmit(struct ieee80211com *, struct mbuf *); 158 static int ath_media_change(struct ifnet *); 159 static void ath_watchdog(void *); 160 static int ath_ioctl(struct ieee80211com *, u_long, void *); 161 static void ath_parent(struct ieee80211com *); 162 static void ath_fatal_proc(void *, int); 163 static void ath_bmiss_vap(struct ieee80211vap *); 164 static void ath_bmiss_proc(void *, int); 165 static void ath_key_update_begin(struct ieee80211vap *); 166 static void ath_key_update_end(struct ieee80211vap *); 167 static void ath_update_mcast_hw(struct ath_softc *); 168 static void ath_update_mcast(struct ieee80211com *); 169 static void ath_update_promisc(struct ieee80211com *); 170 static void ath_updateslot(struct ieee80211com *); 171 static void ath_bstuck_proc(void *, int); 172 static void ath_reset_proc(void *, int); 173 static int ath_desc_alloc(struct ath_softc *); 174 static void ath_desc_free(struct ath_softc *); 175 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 176 const uint8_t [IEEE80211_ADDR_LEN]); 177 static void ath_node_cleanup(struct ieee80211_node *); 178 static void ath_node_free(struct ieee80211_node *); 179 static void ath_node_getsignal(const struct ieee80211_node *, 180 int8_t *, int8_t *); 181 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 182 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 183 static int ath_tx_setup(struct ath_softc *, int, int); 184 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 185 static void ath_tx_cleanup(struct ath_softc *); 186 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 187 int dosched); 188 static void ath_tx_proc_q0(void *, int); 189 static void ath_tx_proc_q0123(void *, int); 190 static void ath_tx_proc(void *, int); 191 static void ath_txq_sched_tasklet(void *, int); 192 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 193 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 194 static void ath_scan_start(struct ieee80211com *); 195 static void ath_scan_end(struct ieee80211com *); 196 static void ath_set_channel(struct ieee80211com *); 197 #ifdef ATH_ENABLE_11N 198 static void ath_update_chw(struct ieee80211com *); 199 #endif /* ATH_ENABLE_11N */ 200 static void ath_calibrate(void *); 201 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 202 static void ath_setup_stationkey(struct ieee80211_node *); 203 static void ath_newassoc(struct ieee80211_node *, int); 204 static int ath_setregdomain(struct ieee80211com *, 205 struct ieee80211_regdomain *, int, 206 struct ieee80211_channel []); 207 static void ath_getradiocaps(struct ieee80211com *, int, int *, 208 struct ieee80211_channel []); 209 static int ath_getchannels(struct ath_softc *); 210 211 static int ath_rate_setup(struct ath_softc *, u_int mode); 212 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 213 214 static void ath_announce(struct ath_softc *); 215 216 static void ath_dfs_tasklet(void *, int); 217 static void ath_node_powersave(struct ieee80211_node *, int); 218 static int ath_node_set_tim(struct ieee80211_node *, int); 219 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 220 221 #ifdef IEEE80211_SUPPORT_TDMA 222 #include <dev/ath/if_ath_tdma.h> 223 #endif 224 225 SYSCTL_DECL(_hw_ath); 226 227 /* XXX validate sysctl values */ 228 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 229 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 230 0, "long chip calibration interval (secs)"); 231 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 232 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 233 0, "short chip calibration interval (msecs)"); 234 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 235 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 236 0, "reset chip calibration results (secs)"); 237 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 238 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 239 0, "ANI calibration (msecs)"); 240 241 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 242 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 243 0, "rx buffers allocated"); 244 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 245 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 246 0, "tx buffers allocated"); 247 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 248 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 249 0, "tx (mgmt) buffers allocated"); 250 251 int ath_bstuck_threshold = 4; /* max missed beacons */ 252 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 253 0, "max missed beacon xmits before chip reset"); 254 255 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 256 257 void 258 ath_legacy_attach_comp_func(struct ath_softc *sc) 259 { 260 261 /* 262 * Special case certain configurations. Note the 263 * CAB queue is handled by these specially so don't 264 * include them when checking the txq setup mask. 265 */ 266 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 267 case 0x01: 268 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 269 break; 270 case 0x0f: 271 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 272 break; 273 default: 274 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 275 break; 276 } 277 } 278 279 /* 280 * Set the target power mode. 281 * 282 * If this is called during a point in time where 283 * the hardware is being programmed elsewhere, it will 284 * simply store it away and update it when all current 285 * uses of the hardware are completed. 286 */ 287 void 288 _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line) 289 { 290 ATH_LOCK_ASSERT(sc); 291 292 sc->sc_target_powerstate = power_state; 293 294 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 295 __func__, 296 file, 297 line, 298 power_state, 299 sc->sc_powersave_refcnt); 300 301 if (sc->sc_powersave_refcnt == 0 && 302 power_state != sc->sc_cur_powerstate) { 303 sc->sc_cur_powerstate = power_state; 304 ath_hal_setpower(sc->sc_ah, power_state); 305 306 /* 307 * If the NIC is force-awake, then set the 308 * self-gen frame state appropriately. 309 * 310 * If the nic is in network sleep or full-sleep, 311 * we let the above call leave the self-gen 312 * state as "sleep". 313 */ 314 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 315 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 316 ath_hal_setselfgenpower(sc->sc_ah, 317 sc->sc_target_selfgen_state); 318 } 319 } 320 } 321 322 /* 323 * Set the current self-generated frames state. 324 * 325 * This is separate from the target power mode. The chip may be 326 * awake but the desired state is "sleep", so frames sent to the 327 * destination has PWRMGT=1 in the 802.11 header. The NIC also 328 * needs to know to set PWRMGT=1 in self-generated frames. 329 */ 330 void 331 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 332 { 333 334 ATH_LOCK_ASSERT(sc); 335 336 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 337 __func__, 338 file, 339 line, 340 power_state, 341 sc->sc_target_selfgen_state); 342 343 sc->sc_target_selfgen_state = power_state; 344 345 /* 346 * If the NIC is force-awake, then set the power state. 347 * Network-state and full-sleep will already transition it to 348 * mark self-gen frames as sleeping - and we can't 349 * guarantee the NIC is awake to program the self-gen frame 350 * setting anyway. 351 */ 352 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 353 ath_hal_setselfgenpower(sc->sc_ah, power_state); 354 } 355 } 356 357 /* 358 * Set the hardware power mode and take a reference. 359 * 360 * This doesn't update the target power mode in the driver; 361 * it just updates the hardware power state. 362 * 363 * XXX it should only ever force the hardware awake; it should 364 * never be called to set it asleep. 365 */ 366 void 367 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 368 { 369 ATH_LOCK_ASSERT(sc); 370 371 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 372 __func__, 373 file, 374 line, 375 power_state, 376 sc->sc_powersave_refcnt); 377 378 sc->sc_powersave_refcnt++; 379 380 if (power_state != sc->sc_cur_powerstate) { 381 ath_hal_setpower(sc->sc_ah, power_state); 382 sc->sc_cur_powerstate = power_state; 383 384 /* 385 * Adjust the self-gen powerstate if appropriate. 386 */ 387 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 388 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 389 ath_hal_setselfgenpower(sc->sc_ah, 390 sc->sc_target_selfgen_state); 391 } 392 393 } 394 } 395 396 /* 397 * Restore the power save mode to what it once was. 398 * 399 * This will decrement the reference counter and once it hits 400 * zero, it'll restore the powersave state. 401 */ 402 void 403 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 404 { 405 406 ATH_LOCK_ASSERT(sc); 407 408 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 409 __func__, 410 file, 411 line, 412 sc->sc_powersave_refcnt, 413 sc->sc_target_powerstate); 414 415 if (sc->sc_powersave_refcnt == 0) 416 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 417 else 418 sc->sc_powersave_refcnt--; 419 420 if (sc->sc_powersave_refcnt == 0 && 421 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 422 sc->sc_cur_powerstate = sc->sc_target_powerstate; 423 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 424 } 425 426 /* 427 * Adjust the self-gen powerstate if appropriate. 428 */ 429 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 430 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 431 ath_hal_setselfgenpower(sc->sc_ah, 432 sc->sc_target_selfgen_state); 433 } 434 435 } 436 437 /* 438 * Configure the initial HAL configuration values based on bus 439 * specific parameters. 440 * 441 * Some PCI IDs and other information may need tweaking. 442 * 443 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable 444 * if BT antenna diversity isn't enabled. 445 * 446 * So, let's also figure out how to enable BT diversity for AR9485. 447 */ 448 static void 449 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config) 450 { 451 /* XXX TODO: only for PCI devices? */ 452 453 if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) { 454 ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */ 455 ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE; 456 ah_config->ath_hal_min_gainidx = AH_TRUE; 457 ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88; 458 /* XXX low_rssi_thresh */ 459 /* XXX fast_div_bias */ 460 device_printf(sc->sc_dev, "configuring for %s\n", 461 (sc->sc_pci_devinfo & ATH_PCI_CUS198) ? 462 "CUS198" : "CUS230"); 463 } 464 465 if (sc->sc_pci_devinfo & ATH_PCI_CUS217) 466 device_printf(sc->sc_dev, "CUS217 card detected\n"); 467 468 if (sc->sc_pci_devinfo & ATH_PCI_CUS252) 469 device_printf(sc->sc_dev, "CUS252 card detected\n"); 470 471 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT) 472 device_printf(sc->sc_dev, "WB335 1-ANT card detected\n"); 473 474 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT) 475 device_printf(sc->sc_dev, "WB335 2-ANT card detected\n"); 476 477 if (sc->sc_pci_devinfo & ATH_PCI_KILLER) 478 device_printf(sc->sc_dev, "Killer Wireless card detected\n"); 479 480 #if 0 481 /* 482 * Some WB335 cards do not support antenna diversity. Since 483 * we use a hardcoded value for AR9565 instead of using the 484 * EEPROM/OTP data, remove the combining feature from 485 * the HW capabilities bitmap. 486 */ 487 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 488 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV)) 489 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB; 490 } 491 492 if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) { 493 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV; 494 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n"); 495 } 496 #endif 497 498 if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) { 499 ah_config->ath_hal_pcie_waen = 0x0040473b; 500 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n"); 501 } 502 503 #if 0 504 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) { 505 ah->config.no_pll_pwrsave = true; 506 device_printf(sc->sc_dev, "Disable PLL PowerSave\n"); 507 } 508 #endif 509 510 } 511 512 /* 513 * Attempt to fetch the MAC address from the kernel environment. 514 * 515 * Returns 0, macaddr in macaddr if successful; -1 otherwise. 516 */ 517 static int 518 ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr) 519 { 520 char devid_str[32]; 521 int local_mac = 0; 522 char *local_macstr; 523 524 /* 525 * Fetch from the kenv rather than using hints. 526 * 527 * Hints would be nice but the transition to dynamic 528 * hints/kenv doesn't happen early enough for this 529 * to work reliably (eg on anything embedded.) 530 */ 531 snprintf(devid_str, 32, "hint.%s.%d.macaddr", 532 device_get_name(sc->sc_dev), 533 device_get_unit(sc->sc_dev)); 534 535 if ((local_macstr = kern_getenv(devid_str)) != NULL) { 536 uint32_t tmpmac[ETHER_ADDR_LEN]; 537 int count; 538 int i; 539 540 /* Have a MAC address; should use it */ 541 device_printf(sc->sc_dev, 542 "Overriding MAC address from environment: '%s'\n", 543 local_macstr); 544 545 /* Extract out the MAC address */ 546 count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x", 547 &tmpmac[0], &tmpmac[1], 548 &tmpmac[2], &tmpmac[3], 549 &tmpmac[4], &tmpmac[5]); 550 if (count == 6) { 551 /* Valid! */ 552 local_mac = 1; 553 for (i = 0; i < ETHER_ADDR_LEN; i++) 554 macaddr[i] = tmpmac[i]; 555 } 556 /* Done! */ 557 freeenv(local_macstr); 558 local_macstr = NULL; 559 } 560 561 if (local_mac) 562 return (0); 563 return (-1); 564 } 565 566 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 567 #define HAL_MODE_HT40 \ 568 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 569 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 570 int 571 ath_attach(u_int16_t devid, struct ath_softc *sc) 572 { 573 struct ieee80211com *ic = &sc->sc_ic; 574 struct ath_hal *ah = NULL; 575 HAL_STATUS status; 576 int error = 0, i; 577 u_int wmodes; 578 int rx_chainmask, tx_chainmask; 579 HAL_OPS_CONFIG ah_config; 580 581 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 582 583 ic->ic_softc = sc; 584 ic->ic_name = device_get_nameunit(sc->sc_dev); 585 586 /* 587 * Configure the initial configuration data. 588 * 589 * This is stuff that may be needed early during attach 590 * rather than done via configuration calls later. 591 */ 592 bzero(&ah_config, sizeof(ah_config)); 593 ath_setup_hal_config(sc, &ah_config); 594 595 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 596 sc->sc_eepromdata, &ah_config, &status); 597 if (ah == NULL) { 598 device_printf(sc->sc_dev, 599 "unable to attach hardware; HAL status %u\n", status); 600 error = ENXIO; 601 goto bad; 602 } 603 sc->sc_ah = ah; 604 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 605 #ifdef ATH_DEBUG 606 sc->sc_debug = ath_debug; 607 #endif 608 609 /* 610 * Setup the DMA/EDMA functions based on the current 611 * hardware support. 612 * 613 * This is required before the descriptors are allocated. 614 */ 615 if (ath_hal_hasedma(sc->sc_ah)) { 616 sc->sc_isedma = 1; 617 ath_recv_setup_edma(sc); 618 ath_xmit_setup_edma(sc); 619 } else { 620 ath_recv_setup_legacy(sc); 621 ath_xmit_setup_legacy(sc); 622 } 623 624 if (ath_hal_hasmybeacon(sc->sc_ah)) { 625 sc->sc_do_mybeacon = 1; 626 } 627 628 /* 629 * Check if the MAC has multi-rate retry support. 630 * We do this by trying to setup a fake extended 631 * descriptor. MAC's that don't have support will 632 * return false w/o doing anything. MAC's that do 633 * support it will return true w/o doing anything. 634 */ 635 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 636 637 /* 638 * Check if the device has hardware counters for PHY 639 * errors. If so we need to enable the MIB interrupt 640 * so we can act on stat triggers. 641 */ 642 if (ath_hal_hwphycounters(ah)) 643 sc->sc_needmib = 1; 644 645 /* 646 * Get the hardware key cache size. 647 */ 648 sc->sc_keymax = ath_hal_keycachesize(ah); 649 if (sc->sc_keymax > ATH_KEYMAX) { 650 device_printf(sc->sc_dev, 651 "Warning, using only %u of %u key cache slots\n", 652 ATH_KEYMAX, sc->sc_keymax); 653 sc->sc_keymax = ATH_KEYMAX; 654 } 655 /* 656 * Reset the key cache since some parts do not 657 * reset the contents on initial power up. 658 */ 659 for (i = 0; i < sc->sc_keymax; i++) 660 ath_hal_keyreset(ah, i); 661 662 /* 663 * Collect the default channel list. 664 */ 665 error = ath_getchannels(sc); 666 if (error != 0) 667 goto bad; 668 669 /* 670 * Setup rate tables for all potential media types. 671 */ 672 ath_rate_setup(sc, IEEE80211_MODE_11A); 673 ath_rate_setup(sc, IEEE80211_MODE_11B); 674 ath_rate_setup(sc, IEEE80211_MODE_11G); 675 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 676 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 677 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 678 ath_rate_setup(sc, IEEE80211_MODE_11NA); 679 ath_rate_setup(sc, IEEE80211_MODE_11NG); 680 ath_rate_setup(sc, IEEE80211_MODE_HALF); 681 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 682 683 /* NB: setup here so ath_rate_update is happy */ 684 ath_setcurmode(sc, IEEE80211_MODE_11A); 685 686 /* 687 * Allocate TX descriptors and populate the lists. 688 */ 689 error = ath_desc_alloc(sc); 690 if (error != 0) { 691 device_printf(sc->sc_dev, 692 "failed to allocate TX descriptors: %d\n", error); 693 goto bad; 694 } 695 error = ath_txdma_setup(sc); 696 if (error != 0) { 697 device_printf(sc->sc_dev, 698 "failed to allocate TX descriptors: %d\n", error); 699 goto bad; 700 } 701 702 /* 703 * Allocate RX descriptors and populate the lists. 704 */ 705 error = ath_rxdma_setup(sc); 706 if (error != 0) { 707 device_printf(sc->sc_dev, 708 "failed to allocate RX descriptors: %d\n", error); 709 goto bad; 710 } 711 712 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 713 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 714 715 ATH_TXBUF_LOCK_INIT(sc); 716 717 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 718 taskqueue_thread_enqueue, &sc->sc_tq); 719 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 720 device_get_nameunit(sc->sc_dev)); 721 722 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 723 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 724 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 725 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 726 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 727 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 728 729 /* 730 * Allocate hardware transmit queues: one queue for 731 * beacon frames and one data queue for each QoS 732 * priority. Note that the hal handles resetting 733 * these queues at the needed time. 734 * 735 * XXX PS-Poll 736 */ 737 sc->sc_bhalq = ath_beaconq_setup(sc); 738 if (sc->sc_bhalq == (u_int) -1) { 739 device_printf(sc->sc_dev, 740 "unable to setup a beacon xmit queue!\n"); 741 error = EIO; 742 goto bad2; 743 } 744 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 745 if (sc->sc_cabq == NULL) { 746 device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n"); 747 error = EIO; 748 goto bad2; 749 } 750 /* NB: insure BK queue is the lowest priority h/w queue */ 751 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 752 device_printf(sc->sc_dev, 753 "unable to setup xmit queue for %s traffic!\n", 754 ieee80211_wme_acnames[WME_AC_BK]); 755 error = EIO; 756 goto bad2; 757 } 758 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 759 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 760 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 761 /* 762 * Not enough hardware tx queues to properly do WME; 763 * just punt and assign them all to the same h/w queue. 764 * We could do a better job of this if, for example, 765 * we allocate queues when we switch from station to 766 * AP mode. 767 */ 768 if (sc->sc_ac2q[WME_AC_VI] != NULL) 769 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 770 if (sc->sc_ac2q[WME_AC_BE] != NULL) 771 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 772 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 773 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 774 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 775 } 776 777 /* 778 * Attach the TX completion function. 779 * 780 * The non-EDMA chips may have some special case optimisations; 781 * this method gives everyone a chance to attach cleanly. 782 */ 783 sc->sc_tx.xmit_attach_comp_func(sc); 784 785 /* 786 * Setup rate control. Some rate control modules 787 * call back to change the anntena state so expose 788 * the necessary entry points. 789 * XXX maybe belongs in struct ath_ratectrl? 790 */ 791 sc->sc_setdefantenna = ath_setdefantenna; 792 sc->sc_rc = ath_rate_attach(sc); 793 if (sc->sc_rc == NULL) { 794 error = EIO; 795 goto bad2; 796 } 797 798 /* Attach DFS module */ 799 if (! ath_dfs_attach(sc)) { 800 device_printf(sc->sc_dev, 801 "%s: unable to attach DFS\n", __func__); 802 error = EIO; 803 goto bad2; 804 } 805 806 /* Attach spectral module */ 807 if (ath_spectral_attach(sc) < 0) { 808 device_printf(sc->sc_dev, 809 "%s: unable to attach spectral\n", __func__); 810 error = EIO; 811 goto bad2; 812 } 813 814 /* Attach bluetooth coexistence module */ 815 if (ath_btcoex_attach(sc) < 0) { 816 device_printf(sc->sc_dev, 817 "%s: unable to attach bluetooth coexistence\n", __func__); 818 error = EIO; 819 goto bad2; 820 } 821 822 /* Attach LNA diversity module */ 823 if (ath_lna_div_attach(sc) < 0) { 824 device_printf(sc->sc_dev, 825 "%s: unable to attach LNA diversity\n", __func__); 826 error = EIO; 827 goto bad2; 828 } 829 830 /* Start DFS processing tasklet */ 831 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 832 833 /* Configure LED state */ 834 sc->sc_blinking = 0; 835 sc->sc_ledstate = 1; 836 sc->sc_ledon = 0; /* low true */ 837 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 838 callout_init(&sc->sc_ledtimer, 1); 839 840 /* 841 * Don't setup hardware-based blinking. 842 * 843 * Although some NICs may have this configured in the 844 * default reset register values, the user may wish 845 * to alter which pins have which function. 846 * 847 * The reference driver attaches the MAC network LED to GPIO1 and 848 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 849 * NIC has these reversed. 850 */ 851 sc->sc_hardled = (1 == 0); 852 sc->sc_led_net_pin = -1; 853 sc->sc_led_pwr_pin = -1; 854 /* 855 * Auto-enable soft led processing for IBM cards and for 856 * 5211 minipci cards. Users can also manually enable/disable 857 * support with a sysctl. 858 */ 859 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 860 ath_led_config(sc); 861 ath_hal_setledstate(ah, HAL_LED_INIT); 862 863 /* XXX not right but it's not used anywhere important */ 864 ic->ic_phytype = IEEE80211_T_OFDM; 865 ic->ic_opmode = IEEE80211_M_STA; 866 ic->ic_caps = 867 IEEE80211_C_STA /* station mode */ 868 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 869 | IEEE80211_C_HOSTAP /* hostap mode */ 870 | IEEE80211_C_MONITOR /* monitor mode */ 871 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 872 | IEEE80211_C_WDS /* 4-address traffic works */ 873 | IEEE80211_C_MBSS /* mesh point link mode */ 874 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 875 | IEEE80211_C_SHSLOT /* short slot time supported */ 876 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 877 #ifndef ATH_ENABLE_11N 878 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 879 #endif 880 | IEEE80211_C_TXFRAG /* handle tx frags */ 881 #ifdef ATH_ENABLE_DFS 882 | IEEE80211_C_DFS /* Enable radar detection */ 883 #endif 884 | IEEE80211_C_PMGT /* Station side power mgmt */ 885 | IEEE80211_C_SWSLEEP 886 ; 887 /* 888 * Query the hal to figure out h/w crypto support. 889 */ 890 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 891 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 892 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 893 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 894 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 895 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 896 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 897 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 898 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 899 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 900 /* 901 * Check if h/w does the MIC and/or whether the 902 * separate key cache entries are required to 903 * handle both tx+rx MIC keys. 904 */ 905 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 906 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 907 /* 908 * If the h/w supports storing tx+rx MIC keys 909 * in one cache slot automatically enable use. 910 */ 911 if (ath_hal_hastkipsplit(ah) || 912 !ath_hal_settkipsplit(ah, AH_FALSE)) 913 sc->sc_splitmic = 1; 914 /* 915 * If the h/w can do TKIP MIC together with WME then 916 * we use it; otherwise we force the MIC to be done 917 * in software by the net80211 layer. 918 */ 919 if (ath_hal_haswmetkipmic(ah)) 920 sc->sc_wmetkipmic = 1; 921 } 922 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 923 /* 924 * Check for multicast key search support. 925 */ 926 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 927 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 928 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 929 } 930 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 931 /* 932 * Mark key cache slots associated with global keys 933 * as in use. If we knew TKIP was not to be used we 934 * could leave the +32, +64, and +32+64 slots free. 935 */ 936 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 937 setbit(sc->sc_keymap, i); 938 setbit(sc->sc_keymap, i+64); 939 if (sc->sc_splitmic) { 940 setbit(sc->sc_keymap, i+32); 941 setbit(sc->sc_keymap, i+32+64); 942 } 943 } 944 /* 945 * TPC support can be done either with a global cap or 946 * per-packet support. The latter is not available on 947 * all parts. We're a bit pedantic here as all parts 948 * support a global cap. 949 */ 950 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 951 ic->ic_caps |= IEEE80211_C_TXPMGT; 952 953 /* 954 * Mark WME capability only if we have sufficient 955 * hardware queues to do proper priority scheduling. 956 */ 957 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 958 ic->ic_caps |= IEEE80211_C_WME; 959 /* 960 * Check for misc other capabilities. 961 */ 962 if (ath_hal_hasbursting(ah)) 963 ic->ic_caps |= IEEE80211_C_BURST; 964 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 965 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 966 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 967 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 968 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 969 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 970 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 971 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 972 973 if (ath_hal_hasfastframes(ah)) 974 ic->ic_caps |= IEEE80211_C_FF; 975 wmodes = ath_hal_getwirelessmodes(ah); 976 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 977 ic->ic_caps |= IEEE80211_C_TURBOP; 978 #ifdef IEEE80211_SUPPORT_TDMA 979 if (ath_hal_macversion(ah) > 0x78) { 980 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 981 ic->ic_tdma_update = ath_tdma_update; 982 } 983 #endif 984 985 /* 986 * TODO: enforce that at least this many frames are available 987 * in the txbuf list before allowing data frames (raw or 988 * otherwise) to be transmitted. 989 */ 990 sc->sc_txq_data_minfree = 10; 991 /* 992 * Leave this as default to maintain legacy behaviour. 993 * Shortening the cabq/mcastq may end up causing some 994 * undesirable behaviour. 995 */ 996 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 997 998 /* 999 * How deep can the node software TX queue get whilst it's asleep. 1000 */ 1001 sc->sc_txq_node_psq_maxdepth = 16; 1002 1003 /* 1004 * Default the maximum queue depth for a given node 1005 * to 1/4'th the TX buffers, or 64, whichever 1006 * is larger. 1007 */ 1008 sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4); 1009 1010 /* Enable CABQ by default */ 1011 sc->sc_cabq_enable = 1; 1012 1013 /* 1014 * Allow the TX and RX chainmasks to be overridden by 1015 * environment variables and/or device.hints. 1016 * 1017 * This must be done early - before the hardware is 1018 * calibrated or before the 802.11n stream calculation 1019 * is done. 1020 */ 1021 if (resource_int_value(device_get_name(sc->sc_dev), 1022 device_get_unit(sc->sc_dev), "rx_chainmask", 1023 &rx_chainmask) == 0) { 1024 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 1025 rx_chainmask); 1026 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 1027 } 1028 if (resource_int_value(device_get_name(sc->sc_dev), 1029 device_get_unit(sc->sc_dev), "tx_chainmask", 1030 &tx_chainmask) == 0) { 1031 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 1032 tx_chainmask); 1033 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 1034 } 1035 1036 /* 1037 * Query the TX/RX chainmask configuration. 1038 * 1039 * This is only relevant for 11n devices. 1040 */ 1041 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 1042 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 1043 1044 /* 1045 * Disable MRR with protected frames by default. 1046 * Only 802.11n series NICs can handle this. 1047 */ 1048 sc->sc_mrrprot = 0; /* XXX should be a capability */ 1049 1050 /* 1051 * Query the enterprise mode information the HAL. 1052 */ 1053 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 1054 &sc->sc_ent_cfg) == HAL_OK) 1055 sc->sc_use_ent = 1; 1056 1057 #ifdef ATH_ENABLE_11N 1058 /* 1059 * Query HT capabilities 1060 */ 1061 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 1062 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 1063 uint32_t rxs, txs; 1064 1065 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 1066 1067 sc->sc_mrrprot = 1; /* XXX should be a capability */ 1068 1069 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 1070 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 1071 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 1072 | IEEE80211_HTCAP_MAXAMSDU_3839 1073 /* max A-MSDU length */ 1074 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 1075 ; 1076 1077 /* 1078 * Enable short-GI for HT20 only if the hardware 1079 * advertises support. 1080 * Notably, anything earlier than the AR9287 doesn't. 1081 */ 1082 if ((ath_hal_getcapability(ah, 1083 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 1084 (wmodes & HAL_MODE_HT20)) { 1085 device_printf(sc->sc_dev, 1086 "[HT] enabling short-GI in 20MHz mode\n"); 1087 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 1088 } 1089 1090 if (wmodes & HAL_MODE_HT40) 1091 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 1092 | IEEE80211_HTCAP_SHORTGI40; 1093 1094 /* 1095 * TX/RX streams need to be taken into account when 1096 * negotiating which MCS rates it'll receive and 1097 * what MCS rates are available for TX. 1098 */ 1099 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 1100 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 1101 ic->ic_txstream = txs; 1102 ic->ic_rxstream = rxs; 1103 1104 /* 1105 * Setup TX and RX STBC based on what the HAL allows and 1106 * the currently configured chainmask set. 1107 * Ie - don't enable STBC TX if only one chain is enabled. 1108 * STBC RX is fine on a single RX chain; it just won't 1109 * provide any real benefit. 1110 */ 1111 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 1112 NULL) == HAL_OK) { 1113 sc->sc_rx_stbc = 1; 1114 device_printf(sc->sc_dev, 1115 "[HT] 1 stream STBC receive enabled\n"); 1116 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1117 } 1118 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1119 NULL) == HAL_OK) { 1120 sc->sc_tx_stbc = 1; 1121 device_printf(sc->sc_dev, 1122 "[HT] 1 stream STBC transmit enabled\n"); 1123 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1124 } 1125 1126 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1127 &sc->sc_rts_aggr_limit); 1128 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1129 device_printf(sc->sc_dev, 1130 "[HT] RTS aggregates limited to %d KiB\n", 1131 sc->sc_rts_aggr_limit / 1024); 1132 1133 device_printf(sc->sc_dev, 1134 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1135 } 1136 #endif 1137 1138 /* 1139 * Initial aggregation settings. 1140 */ 1141 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1142 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1143 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1144 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1145 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1146 sc->sc_delim_min_pad = 0; 1147 1148 /* 1149 * Check if the hardware requires PCI register serialisation. 1150 * Some of the Owl based MACs require this. 1151 */ 1152 if (mp_ncpus > 1 && 1153 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1154 0, NULL) == HAL_OK) { 1155 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1156 device_printf(sc->sc_dev, 1157 "Enabling register serialisation\n"); 1158 } 1159 1160 /* 1161 * Initialise the deferred completed RX buffer list. 1162 */ 1163 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1164 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1165 1166 /* 1167 * Indicate we need the 802.11 header padded to a 1168 * 32-bit boundary for 4-address and QoS frames. 1169 */ 1170 ic->ic_flags |= IEEE80211_F_DATAPAD; 1171 1172 /* 1173 * Query the hal about antenna support. 1174 */ 1175 sc->sc_defant = ath_hal_getdefantenna(ah); 1176 1177 /* 1178 * Not all chips have the VEOL support we want to 1179 * use with IBSS beacons; check here for it. 1180 */ 1181 sc->sc_hasveol = ath_hal_hasveol(ah); 1182 1183 /* get mac address from kenv first, then hardware */ 1184 if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) { 1185 /* Tell the HAL now about the new MAC */ 1186 ath_hal_setmac(ah, ic->ic_macaddr); 1187 } else { 1188 ath_hal_getmac(ah, ic->ic_macaddr); 1189 } 1190 1191 if (sc->sc_hasbmask) 1192 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1193 1194 /* NB: used to size node table key mapping array */ 1195 ic->ic_max_keyix = sc->sc_keymax; 1196 /* call MI attach routine. */ 1197 ieee80211_ifattach(ic); 1198 ic->ic_setregdomain = ath_setregdomain; 1199 ic->ic_getradiocaps = ath_getradiocaps; 1200 sc->sc_opmode = HAL_M_STA; 1201 1202 /* override default methods */ 1203 ic->ic_ioctl = ath_ioctl; 1204 ic->ic_parent = ath_parent; 1205 ic->ic_transmit = ath_transmit; 1206 ic->ic_newassoc = ath_newassoc; 1207 ic->ic_updateslot = ath_updateslot; 1208 ic->ic_wme.wme_update = ath_wme_update; 1209 ic->ic_vap_create = ath_vap_create; 1210 ic->ic_vap_delete = ath_vap_delete; 1211 ic->ic_raw_xmit = ath_raw_xmit; 1212 ic->ic_update_mcast = ath_update_mcast; 1213 ic->ic_update_promisc = ath_update_promisc; 1214 ic->ic_node_alloc = ath_node_alloc; 1215 sc->sc_node_free = ic->ic_node_free; 1216 ic->ic_node_free = ath_node_free; 1217 sc->sc_node_cleanup = ic->ic_node_cleanup; 1218 ic->ic_node_cleanup = ath_node_cleanup; 1219 ic->ic_node_getsignal = ath_node_getsignal; 1220 ic->ic_scan_start = ath_scan_start; 1221 ic->ic_scan_end = ath_scan_end; 1222 ic->ic_set_channel = ath_set_channel; 1223 #ifdef ATH_ENABLE_11N 1224 /* 802.11n specific - but just override anyway */ 1225 sc->sc_addba_request = ic->ic_addba_request; 1226 sc->sc_addba_response = ic->ic_addba_response; 1227 sc->sc_addba_stop = ic->ic_addba_stop; 1228 sc->sc_bar_response = ic->ic_bar_response; 1229 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1230 1231 ic->ic_addba_request = ath_addba_request; 1232 ic->ic_addba_response = ath_addba_response; 1233 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1234 ic->ic_addba_stop = ath_addba_stop; 1235 ic->ic_bar_response = ath_bar_response; 1236 1237 ic->ic_update_chw = ath_update_chw; 1238 #endif /* ATH_ENABLE_11N */ 1239 1240 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1241 /* 1242 * There's one vendor bitmap entry in the RX radiotap 1243 * header; make sure that's taken into account. 1244 */ 1245 ieee80211_radiotap_attachv(ic, 1246 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1247 ATH_TX_RADIOTAP_PRESENT, 1248 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1249 ATH_RX_RADIOTAP_PRESENT); 1250 #else 1251 /* 1252 * No vendor bitmap/extensions are present. 1253 */ 1254 ieee80211_radiotap_attach(ic, 1255 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1256 ATH_TX_RADIOTAP_PRESENT, 1257 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1258 ATH_RX_RADIOTAP_PRESENT); 1259 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1260 1261 /* 1262 * Setup the ALQ logging if required 1263 */ 1264 #ifdef ATH_DEBUG_ALQ 1265 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1266 if_ath_alq_setcfg(&sc->sc_alq, 1267 sc->sc_ah->ah_macVersion, 1268 sc->sc_ah->ah_macRev, 1269 sc->sc_ah->ah_phyRev, 1270 sc->sc_ah->ah_magic); 1271 #endif 1272 1273 /* 1274 * Setup dynamic sysctl's now that country code and 1275 * regdomain are available from the hal. 1276 */ 1277 ath_sysctlattach(sc); 1278 ath_sysctl_stats_attach(sc); 1279 ath_sysctl_hal_attach(sc); 1280 1281 if (bootverbose) 1282 ieee80211_announce(ic); 1283 ath_announce(sc); 1284 1285 /* 1286 * Put it to sleep for now. 1287 */ 1288 ATH_LOCK(sc); 1289 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 1290 ATH_UNLOCK(sc); 1291 1292 return 0; 1293 bad2: 1294 ath_tx_cleanup(sc); 1295 ath_desc_free(sc); 1296 ath_txdma_teardown(sc); 1297 ath_rxdma_teardown(sc); 1298 bad: 1299 if (ah) 1300 ath_hal_detach(ah); 1301 sc->sc_invalid = 1; 1302 return error; 1303 } 1304 1305 int 1306 ath_detach(struct ath_softc *sc) 1307 { 1308 1309 /* 1310 * NB: the order of these is important: 1311 * o stop the chip so no more interrupts will fire 1312 * o call the 802.11 layer before detaching the hal to 1313 * insure callbacks into the driver to delete global 1314 * key cache entries can be handled 1315 * o free the taskqueue which drains any pending tasks 1316 * o reclaim the tx queue data structures after calling 1317 * the 802.11 layer as we'll get called back to reclaim 1318 * node state and potentially want to use them 1319 * o to cleanup the tx queues the hal is called, so detach 1320 * it last 1321 * Other than that, it's straightforward... 1322 */ 1323 1324 /* 1325 * XXX Wake the hardware up first. ath_stop() will still 1326 * wake it up first, but I'd rather do it here just to 1327 * ensure it's awake. 1328 */ 1329 ATH_LOCK(sc); 1330 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1331 ath_power_setpower(sc, HAL_PM_AWAKE); 1332 1333 /* 1334 * Stop things cleanly. 1335 */ 1336 ath_stop(sc); 1337 ATH_UNLOCK(sc); 1338 1339 ieee80211_ifdetach(&sc->sc_ic); 1340 taskqueue_free(sc->sc_tq); 1341 #ifdef ATH_TX99_DIAG 1342 if (sc->sc_tx99 != NULL) 1343 sc->sc_tx99->detach(sc->sc_tx99); 1344 #endif 1345 ath_rate_detach(sc->sc_rc); 1346 #ifdef ATH_DEBUG_ALQ 1347 if_ath_alq_tidyup(&sc->sc_alq); 1348 #endif 1349 ath_lna_div_detach(sc); 1350 ath_btcoex_detach(sc); 1351 ath_spectral_detach(sc); 1352 ath_dfs_detach(sc); 1353 ath_desc_free(sc); 1354 ath_txdma_teardown(sc); 1355 ath_rxdma_teardown(sc); 1356 ath_tx_cleanup(sc); 1357 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1358 1359 return 0; 1360 } 1361 1362 /* 1363 * MAC address handling for multiple BSS on the same radio. 1364 * The first vap uses the MAC address from the EEPROM. For 1365 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1366 * address and use the next six bits as an index. 1367 */ 1368 static void 1369 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1370 { 1371 int i; 1372 1373 if (clone && sc->sc_hasbmask) { 1374 /* NB: we only do this if h/w supports multiple bssid */ 1375 for (i = 0; i < 8; i++) 1376 if ((sc->sc_bssidmask & (1<<i)) == 0) 1377 break; 1378 if (i != 0) 1379 mac[0] |= (i << 2)|0x2; 1380 } else 1381 i = 0; 1382 sc->sc_bssidmask |= 1<<i; 1383 sc->sc_hwbssidmask[0] &= ~mac[0]; 1384 if (i == 0) 1385 sc->sc_nbssid0++; 1386 } 1387 1388 static void 1389 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1390 { 1391 int i = mac[0] >> 2; 1392 uint8_t mask; 1393 1394 if (i != 0 || --sc->sc_nbssid0 == 0) { 1395 sc->sc_bssidmask &= ~(1<<i); 1396 /* recalculate bssid mask from remaining addresses */ 1397 mask = 0xff; 1398 for (i = 1; i < 8; i++) 1399 if (sc->sc_bssidmask & (1<<i)) 1400 mask &= ~((i<<2)|0x2); 1401 sc->sc_hwbssidmask[0] |= mask; 1402 } 1403 } 1404 1405 /* 1406 * Assign a beacon xmit slot. We try to space out 1407 * assignments so when beacons are staggered the 1408 * traffic coming out of the cab q has maximal time 1409 * to go out before the next beacon is scheduled. 1410 */ 1411 static int 1412 assign_bslot(struct ath_softc *sc) 1413 { 1414 u_int slot, free; 1415 1416 free = 0; 1417 for (slot = 0; slot < ATH_BCBUF; slot++) 1418 if (sc->sc_bslot[slot] == NULL) { 1419 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1420 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1421 return slot; 1422 free = slot; 1423 /* NB: keep looking for a double slot */ 1424 } 1425 return free; 1426 } 1427 1428 static struct ieee80211vap * 1429 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1430 enum ieee80211_opmode opmode, int flags, 1431 const uint8_t bssid[IEEE80211_ADDR_LEN], 1432 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1433 { 1434 struct ath_softc *sc = ic->ic_softc; 1435 struct ath_vap *avp; 1436 struct ieee80211vap *vap; 1437 uint8_t mac[IEEE80211_ADDR_LEN]; 1438 int needbeacon, error; 1439 enum ieee80211_opmode ic_opmode; 1440 1441 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1442 M_80211_VAP, M_WAITOK | M_ZERO); 1443 needbeacon = 0; 1444 IEEE80211_ADDR_COPY(mac, mac0); 1445 1446 ATH_LOCK(sc); 1447 ic_opmode = opmode; /* default to opmode of new vap */ 1448 switch (opmode) { 1449 case IEEE80211_M_STA: 1450 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1451 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1452 goto bad; 1453 } 1454 if (sc->sc_nvaps) { 1455 /* 1456 * With multiple vaps we must fall back 1457 * to s/w beacon miss handling. 1458 */ 1459 flags |= IEEE80211_CLONE_NOBEACONS; 1460 } 1461 if (flags & IEEE80211_CLONE_NOBEACONS) { 1462 /* 1463 * Station mode w/o beacons are implemented w/ AP mode. 1464 */ 1465 ic_opmode = IEEE80211_M_HOSTAP; 1466 } 1467 break; 1468 case IEEE80211_M_IBSS: 1469 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1470 device_printf(sc->sc_dev, 1471 "only 1 ibss vap supported\n"); 1472 goto bad; 1473 } 1474 needbeacon = 1; 1475 break; 1476 case IEEE80211_M_AHDEMO: 1477 #ifdef IEEE80211_SUPPORT_TDMA 1478 if (flags & IEEE80211_CLONE_TDMA) { 1479 if (sc->sc_nvaps != 0) { 1480 device_printf(sc->sc_dev, 1481 "only 1 tdma vap supported\n"); 1482 goto bad; 1483 } 1484 needbeacon = 1; 1485 flags |= IEEE80211_CLONE_NOBEACONS; 1486 } 1487 /* fall thru... */ 1488 #endif 1489 case IEEE80211_M_MONITOR: 1490 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1491 /* 1492 * Adopt existing mode. Adding a monitor or ahdemo 1493 * vap to an existing configuration is of dubious 1494 * value but should be ok. 1495 */ 1496 /* XXX not right for monitor mode */ 1497 ic_opmode = ic->ic_opmode; 1498 } 1499 break; 1500 case IEEE80211_M_HOSTAP: 1501 case IEEE80211_M_MBSS: 1502 needbeacon = 1; 1503 break; 1504 case IEEE80211_M_WDS: 1505 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1506 device_printf(sc->sc_dev, 1507 "wds not supported in sta mode\n"); 1508 goto bad; 1509 } 1510 /* 1511 * Silently remove any request for a unique 1512 * bssid; WDS vap's always share the local 1513 * mac address. 1514 */ 1515 flags &= ~IEEE80211_CLONE_BSSID; 1516 if (sc->sc_nvaps == 0) 1517 ic_opmode = IEEE80211_M_HOSTAP; 1518 else 1519 ic_opmode = ic->ic_opmode; 1520 break; 1521 default: 1522 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1523 goto bad; 1524 } 1525 /* 1526 * Check that a beacon buffer is available; the code below assumes it. 1527 */ 1528 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1529 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1530 goto bad; 1531 } 1532 1533 /* STA, AHDEMO? */ 1534 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1535 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1536 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1537 } 1538 1539 vap = &avp->av_vap; 1540 /* XXX can't hold mutex across if_alloc */ 1541 ATH_UNLOCK(sc); 1542 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1543 ATH_LOCK(sc); 1544 if (error != 0) { 1545 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1546 __func__, error); 1547 goto bad2; 1548 } 1549 1550 /* h/w crypto support */ 1551 vap->iv_key_alloc = ath_key_alloc; 1552 vap->iv_key_delete = ath_key_delete; 1553 vap->iv_key_set = ath_key_set; 1554 vap->iv_key_update_begin = ath_key_update_begin; 1555 vap->iv_key_update_end = ath_key_update_end; 1556 1557 /* override various methods */ 1558 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1559 vap->iv_recv_mgmt = ath_recv_mgmt; 1560 vap->iv_reset = ath_reset_vap; 1561 vap->iv_update_beacon = ath_beacon_update; 1562 avp->av_newstate = vap->iv_newstate; 1563 vap->iv_newstate = ath_newstate; 1564 avp->av_bmiss = vap->iv_bmiss; 1565 vap->iv_bmiss = ath_bmiss_vap; 1566 1567 avp->av_node_ps = vap->iv_node_ps; 1568 vap->iv_node_ps = ath_node_powersave; 1569 1570 avp->av_set_tim = vap->iv_set_tim; 1571 vap->iv_set_tim = ath_node_set_tim; 1572 1573 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1574 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1575 1576 /* Set default parameters */ 1577 1578 /* 1579 * Anything earlier than some AR9300 series MACs don't 1580 * support a smaller MPDU density. 1581 */ 1582 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1583 /* 1584 * All NICs can handle the maximum size, however 1585 * AR5416 based MACs can only TX aggregates w/ RTS 1586 * protection when the total aggregate size is <= 8k. 1587 * However, for now that's enforced by the TX path. 1588 */ 1589 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1590 1591 avp->av_bslot = -1; 1592 if (needbeacon) { 1593 /* 1594 * Allocate beacon state and setup the q for buffered 1595 * multicast frames. We know a beacon buffer is 1596 * available because we checked above. 1597 */ 1598 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1599 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1600 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1601 /* 1602 * Assign the vap to a beacon xmit slot. As above 1603 * this cannot fail to find a free one. 1604 */ 1605 avp->av_bslot = assign_bslot(sc); 1606 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1607 ("beacon slot %u not empty", avp->av_bslot)); 1608 sc->sc_bslot[avp->av_bslot] = vap; 1609 sc->sc_nbcnvaps++; 1610 } 1611 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1612 /* 1613 * Multple vaps are to transmit beacons and we 1614 * have h/w support for TSF adjusting; enable 1615 * use of staggered beacons. 1616 */ 1617 sc->sc_stagbeacons = 1; 1618 } 1619 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1620 } 1621 1622 ic->ic_opmode = ic_opmode; 1623 if (opmode != IEEE80211_M_WDS) { 1624 sc->sc_nvaps++; 1625 if (opmode == IEEE80211_M_STA) 1626 sc->sc_nstavaps++; 1627 if (opmode == IEEE80211_M_MBSS) 1628 sc->sc_nmeshvaps++; 1629 } 1630 switch (ic_opmode) { 1631 case IEEE80211_M_IBSS: 1632 sc->sc_opmode = HAL_M_IBSS; 1633 break; 1634 case IEEE80211_M_STA: 1635 sc->sc_opmode = HAL_M_STA; 1636 break; 1637 case IEEE80211_M_AHDEMO: 1638 #ifdef IEEE80211_SUPPORT_TDMA 1639 if (vap->iv_caps & IEEE80211_C_TDMA) { 1640 sc->sc_tdma = 1; 1641 /* NB: disable tsf adjust */ 1642 sc->sc_stagbeacons = 0; 1643 } 1644 /* 1645 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1646 * just ap mode. 1647 */ 1648 /* fall thru... */ 1649 #endif 1650 case IEEE80211_M_HOSTAP: 1651 case IEEE80211_M_MBSS: 1652 sc->sc_opmode = HAL_M_HOSTAP; 1653 break; 1654 case IEEE80211_M_MONITOR: 1655 sc->sc_opmode = HAL_M_MONITOR; 1656 break; 1657 default: 1658 /* XXX should not happen */ 1659 break; 1660 } 1661 if (sc->sc_hastsfadd) { 1662 /* 1663 * Configure whether or not TSF adjust should be done. 1664 */ 1665 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1666 } 1667 if (flags & IEEE80211_CLONE_NOBEACONS) { 1668 /* 1669 * Enable s/w beacon miss handling. 1670 */ 1671 sc->sc_swbmiss = 1; 1672 } 1673 ATH_UNLOCK(sc); 1674 1675 /* complete setup */ 1676 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status, 1677 mac); 1678 return vap; 1679 bad2: 1680 reclaim_address(sc, mac); 1681 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1682 bad: 1683 free(avp, M_80211_VAP); 1684 ATH_UNLOCK(sc); 1685 return NULL; 1686 } 1687 1688 static void 1689 ath_vap_delete(struct ieee80211vap *vap) 1690 { 1691 struct ieee80211com *ic = vap->iv_ic; 1692 struct ath_softc *sc = ic->ic_softc; 1693 struct ath_hal *ah = sc->sc_ah; 1694 struct ath_vap *avp = ATH_VAP(vap); 1695 1696 ATH_LOCK(sc); 1697 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1698 ATH_UNLOCK(sc); 1699 1700 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1701 if (sc->sc_running) { 1702 /* 1703 * Quiesce the hardware while we remove the vap. In 1704 * particular we need to reclaim all references to 1705 * the vap state by any frames pending on the tx queues. 1706 */ 1707 ath_hal_intrset(ah, 0); /* disable interrupts */ 1708 /* XXX Do all frames from all vaps/nodes need draining here? */ 1709 ath_stoprecv(sc, 1); /* stop recv side */ 1710 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1711 } 1712 1713 /* .. leave the hardware awake for now. */ 1714 1715 ieee80211_vap_detach(vap); 1716 1717 /* 1718 * XXX Danger Will Robinson! Danger! 1719 * 1720 * Because ieee80211_vap_detach() can queue a frame (the station 1721 * diassociate message?) after we've drained the TXQ and 1722 * flushed the software TXQ, we will end up with a frame queued 1723 * to a node whose vap is about to be freed. 1724 * 1725 * To work around this, flush the hardware/software again. 1726 * This may be racy - the ath task may be running and the packet 1727 * may be being scheduled between sw->hw txq. Tsk. 1728 * 1729 * TODO: figure out why a new node gets allocated somewhere around 1730 * here (after the ath_tx_swq() call; and after an ath_stop() 1731 * call!) 1732 */ 1733 1734 ath_draintxq(sc, ATH_RESET_DEFAULT); 1735 1736 ATH_LOCK(sc); 1737 /* 1738 * Reclaim beacon state. Note this must be done before 1739 * the vap instance is reclaimed as we may have a reference 1740 * to it in the buffer for the beacon frame. 1741 */ 1742 if (avp->av_bcbuf != NULL) { 1743 if (avp->av_bslot != -1) { 1744 sc->sc_bslot[avp->av_bslot] = NULL; 1745 sc->sc_nbcnvaps--; 1746 } 1747 ath_beacon_return(sc, avp->av_bcbuf); 1748 avp->av_bcbuf = NULL; 1749 if (sc->sc_nbcnvaps == 0) { 1750 sc->sc_stagbeacons = 0; 1751 if (sc->sc_hastsfadd) 1752 ath_hal_settsfadjust(sc->sc_ah, 0); 1753 } 1754 /* 1755 * Reclaim any pending mcast frames for the vap. 1756 */ 1757 ath_tx_draintxq(sc, &avp->av_mcastq); 1758 } 1759 /* 1760 * Update bookkeeping. 1761 */ 1762 if (vap->iv_opmode == IEEE80211_M_STA) { 1763 sc->sc_nstavaps--; 1764 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1765 sc->sc_swbmiss = 0; 1766 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1767 vap->iv_opmode == IEEE80211_M_MBSS) { 1768 reclaim_address(sc, vap->iv_myaddr); 1769 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1770 if (vap->iv_opmode == IEEE80211_M_MBSS) 1771 sc->sc_nmeshvaps--; 1772 } 1773 if (vap->iv_opmode != IEEE80211_M_WDS) 1774 sc->sc_nvaps--; 1775 #ifdef IEEE80211_SUPPORT_TDMA 1776 /* TDMA operation ceases when the last vap is destroyed */ 1777 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1778 sc->sc_tdma = 0; 1779 sc->sc_swbmiss = 0; 1780 } 1781 #endif 1782 free(avp, M_80211_VAP); 1783 1784 if (sc->sc_running) { 1785 /* 1786 * Restart rx+tx machines if still running (RUNNING will 1787 * be reset if we just destroyed the last vap). 1788 */ 1789 if (ath_startrecv(sc) != 0) 1790 device_printf(sc->sc_dev, 1791 "%s: unable to restart recv logic\n", __func__); 1792 if (sc->sc_beacons) { /* restart beacons */ 1793 #ifdef IEEE80211_SUPPORT_TDMA 1794 if (sc->sc_tdma) 1795 ath_tdma_config(sc, NULL); 1796 else 1797 #endif 1798 ath_beacon_config(sc, NULL); 1799 } 1800 ath_hal_intrset(ah, sc->sc_imask); 1801 } 1802 1803 /* Ok, let the hardware asleep. */ 1804 ath_power_restore_power_state(sc); 1805 ATH_UNLOCK(sc); 1806 } 1807 1808 void 1809 ath_suspend(struct ath_softc *sc) 1810 { 1811 struct ieee80211com *ic = &sc->sc_ic; 1812 1813 sc->sc_resume_up = ic->ic_nrunning != 0; 1814 1815 ieee80211_suspend_all(ic); 1816 /* 1817 * NB: don't worry about putting the chip in low power 1818 * mode; pci will power off our socket on suspend and 1819 * CardBus detaches the device. 1820 * 1821 * XXX TODO: well, that's great, except for non-cardbus 1822 * devices! 1823 */ 1824 1825 /* 1826 * XXX This doesn't wait until all pending taskqueue 1827 * items and parallel transmit/receive/other threads 1828 * are running! 1829 */ 1830 ath_hal_intrset(sc->sc_ah, 0); 1831 taskqueue_block(sc->sc_tq); 1832 1833 ATH_LOCK(sc); 1834 callout_stop(&sc->sc_cal_ch); 1835 ATH_UNLOCK(sc); 1836 1837 /* 1838 * XXX ensure sc_invalid is 1 1839 */ 1840 1841 /* Disable the PCIe PHY, complete with workarounds */ 1842 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1843 } 1844 1845 /* 1846 * Reset the key cache since some parts do not reset the 1847 * contents on resume. First we clear all entries, then 1848 * re-load keys that the 802.11 layer assumes are setup 1849 * in h/w. 1850 */ 1851 static void 1852 ath_reset_keycache(struct ath_softc *sc) 1853 { 1854 struct ieee80211com *ic = &sc->sc_ic; 1855 struct ath_hal *ah = sc->sc_ah; 1856 int i; 1857 1858 ATH_LOCK(sc); 1859 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1860 for (i = 0; i < sc->sc_keymax; i++) 1861 ath_hal_keyreset(ah, i); 1862 ath_power_restore_power_state(sc); 1863 ATH_UNLOCK(sc); 1864 ieee80211_crypto_reload_keys(ic); 1865 } 1866 1867 /* 1868 * Fetch the current chainmask configuration based on the current 1869 * operating channel and options. 1870 */ 1871 static void 1872 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1873 { 1874 1875 /* 1876 * Set TX chainmask to the currently configured chainmask; 1877 * the TX chainmask depends upon the current operating mode. 1878 */ 1879 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1880 if (IEEE80211_IS_CHAN_HT(chan)) { 1881 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1882 } else { 1883 sc->sc_cur_txchainmask = 1; 1884 } 1885 1886 DPRINTF(sc, ATH_DEBUG_RESET, 1887 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1888 __func__, 1889 sc->sc_cur_txchainmask, 1890 sc->sc_cur_rxchainmask); 1891 } 1892 1893 void 1894 ath_resume(struct ath_softc *sc) 1895 { 1896 struct ieee80211com *ic = &sc->sc_ic; 1897 struct ath_hal *ah = sc->sc_ah; 1898 HAL_STATUS status; 1899 1900 ath_hal_enablepcie(ah, 0, 0); 1901 1902 /* 1903 * Must reset the chip before we reload the 1904 * keycache as we were powered down on suspend. 1905 */ 1906 ath_update_chainmasks(sc, 1907 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1908 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1909 sc->sc_cur_rxchainmask); 1910 1911 /* Ensure we set the current power state to on */ 1912 ATH_LOCK(sc); 1913 ath_power_setselfgen(sc, HAL_PM_AWAKE); 1914 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1915 ath_power_setpower(sc, HAL_PM_AWAKE); 1916 ATH_UNLOCK(sc); 1917 1918 ath_hal_reset(ah, sc->sc_opmode, 1919 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1920 AH_FALSE, &status); 1921 ath_reset_keycache(sc); 1922 1923 ATH_RX_LOCK(sc); 1924 sc->sc_rx_stopped = 1; 1925 sc->sc_rx_resetted = 1; 1926 ATH_RX_UNLOCK(sc); 1927 1928 /* Let DFS at it in case it's a DFS channel */ 1929 ath_dfs_radar_enable(sc, ic->ic_curchan); 1930 1931 /* Let spectral at in case spectral is enabled */ 1932 ath_spectral_enable(sc, ic->ic_curchan); 1933 1934 /* 1935 * Let bluetooth coexistence at in case it's needed for this channel 1936 */ 1937 ath_btcoex_enable(sc, ic->ic_curchan); 1938 1939 /* 1940 * If we're doing TDMA, enforce the TXOP limitation for chips that 1941 * support it. 1942 */ 1943 if (sc->sc_hasenforcetxop && sc->sc_tdma) 1944 ath_hal_setenforcetxop(sc->sc_ah, 1); 1945 else 1946 ath_hal_setenforcetxop(sc->sc_ah, 0); 1947 1948 /* Restore the LED configuration */ 1949 ath_led_config(sc); 1950 ath_hal_setledstate(ah, HAL_LED_INIT); 1951 1952 if (sc->sc_resume_up) 1953 ieee80211_resume_all(ic); 1954 1955 ATH_LOCK(sc); 1956 ath_power_restore_power_state(sc); 1957 ATH_UNLOCK(sc); 1958 1959 /* XXX beacons ? */ 1960 } 1961 1962 void 1963 ath_shutdown(struct ath_softc *sc) 1964 { 1965 1966 ATH_LOCK(sc); 1967 ath_stop(sc); 1968 ATH_UNLOCK(sc); 1969 /* NB: no point powering down chip as we're about to reboot */ 1970 } 1971 1972 /* 1973 * Interrupt handler. Most of the actual processing is deferred. 1974 */ 1975 void 1976 ath_intr(void *arg) 1977 { 1978 struct ath_softc *sc = arg; 1979 struct ath_hal *ah = sc->sc_ah; 1980 HAL_INT status = 0; 1981 uint32_t txqs; 1982 1983 /* 1984 * If we're inside a reset path, just print a warning and 1985 * clear the ISR. The reset routine will finish it for us. 1986 */ 1987 ATH_PCU_LOCK(sc); 1988 if (sc->sc_inreset_cnt) { 1989 HAL_INT status; 1990 ath_hal_getisr(ah, &status); /* clear ISR */ 1991 ath_hal_intrset(ah, 0); /* disable further intr's */ 1992 DPRINTF(sc, ATH_DEBUG_ANY, 1993 "%s: in reset, ignoring: status=0x%x\n", 1994 __func__, status); 1995 ATH_PCU_UNLOCK(sc); 1996 return; 1997 } 1998 1999 if (sc->sc_invalid) { 2000 /* 2001 * The hardware is not ready/present, don't touch anything. 2002 * Note this can happen early on if the IRQ is shared. 2003 */ 2004 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 2005 ATH_PCU_UNLOCK(sc); 2006 return; 2007 } 2008 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 2009 ATH_PCU_UNLOCK(sc); 2010 return; 2011 } 2012 2013 ATH_LOCK(sc); 2014 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2015 ATH_UNLOCK(sc); 2016 2017 if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) { 2018 HAL_INT status; 2019 2020 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n", 2021 __func__, sc->sc_ic.ic_nrunning, sc->sc_running); 2022 ath_hal_getisr(ah, &status); /* clear ISR */ 2023 ath_hal_intrset(ah, 0); /* disable further intr's */ 2024 ATH_PCU_UNLOCK(sc); 2025 2026 ATH_LOCK(sc); 2027 ath_power_restore_power_state(sc); 2028 ATH_UNLOCK(sc); 2029 return; 2030 } 2031 2032 /* 2033 * Figure out the reason(s) for the interrupt. Note 2034 * that the hal returns a pseudo-ISR that may include 2035 * bits we haven't explicitly enabled so we mask the 2036 * value to insure we only process bits we requested. 2037 */ 2038 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 2039 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 2040 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 2041 #ifdef ATH_DEBUG_ALQ 2042 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 2043 ah->ah_syncstate); 2044 #endif /* ATH_DEBUG_ALQ */ 2045 #ifdef ATH_KTR_INTR_DEBUG 2046 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 2047 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 2048 ah->ah_intrstate[0], 2049 ah->ah_intrstate[1], 2050 ah->ah_intrstate[2], 2051 ah->ah_intrstate[3], 2052 ah->ah_intrstate[6]); 2053 #endif 2054 2055 /* Squirrel away SYNC interrupt debugging */ 2056 if (ah->ah_syncstate != 0) { 2057 int i; 2058 for (i = 0; i < 32; i++) 2059 if (ah->ah_syncstate & (i << i)) 2060 sc->sc_intr_stats.sync_intr[i]++; 2061 } 2062 2063 status &= sc->sc_imask; /* discard unasked for bits */ 2064 2065 /* Short-circuit un-handled interrupts */ 2066 if (status == 0x0) { 2067 ATH_PCU_UNLOCK(sc); 2068 2069 ATH_LOCK(sc); 2070 ath_power_restore_power_state(sc); 2071 ATH_UNLOCK(sc); 2072 2073 return; 2074 } 2075 2076 /* 2077 * Take a note that we're inside the interrupt handler, so 2078 * the reset routines know to wait. 2079 */ 2080 sc->sc_intr_cnt++; 2081 ATH_PCU_UNLOCK(sc); 2082 2083 /* 2084 * Handle the interrupt. We won't run concurrent with the reset 2085 * or channel change routines as they'll wait for sc_intr_cnt 2086 * to be 0 before continuing. 2087 */ 2088 if (status & HAL_INT_FATAL) { 2089 sc->sc_stats.ast_hardware++; 2090 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 2091 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 2092 } else { 2093 if (status & HAL_INT_SWBA) { 2094 /* 2095 * Software beacon alert--time to send a beacon. 2096 * Handle beacon transmission directly; deferring 2097 * this is too slow to meet timing constraints 2098 * under load. 2099 */ 2100 #ifdef IEEE80211_SUPPORT_TDMA 2101 if (sc->sc_tdma) { 2102 if (sc->sc_tdmaswba == 0) { 2103 struct ieee80211com *ic = &sc->sc_ic; 2104 struct ieee80211vap *vap = 2105 TAILQ_FIRST(&ic->ic_vaps); 2106 ath_tdma_beacon_send(sc, vap); 2107 sc->sc_tdmaswba = 2108 vap->iv_tdma->tdma_bintval; 2109 } else 2110 sc->sc_tdmaswba--; 2111 } else 2112 #endif 2113 { 2114 ath_beacon_proc(sc, 0); 2115 #ifdef IEEE80211_SUPPORT_SUPERG 2116 /* 2117 * Schedule the rx taskq in case there's no 2118 * traffic so any frames held on the staging 2119 * queue are aged and potentially flushed. 2120 */ 2121 sc->sc_rx.recv_sched(sc, 1); 2122 #endif 2123 } 2124 } 2125 if (status & HAL_INT_RXEOL) { 2126 int imask; 2127 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2128 if (! sc->sc_isedma) { 2129 ATH_PCU_LOCK(sc); 2130 /* 2131 * NB: the hardware should re-read the link when 2132 * RXE bit is written, but it doesn't work at 2133 * least on older hardware revs. 2134 */ 2135 sc->sc_stats.ast_rxeol++; 2136 /* 2137 * Disable RXEOL/RXORN - prevent an interrupt 2138 * storm until the PCU logic can be reset. 2139 * In case the interface is reset some other 2140 * way before "sc_kickpcu" is called, don't 2141 * modify sc_imask - that way if it is reset 2142 * by a call to ath_reset() somehow, the 2143 * interrupt mask will be correctly reprogrammed. 2144 */ 2145 imask = sc->sc_imask; 2146 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2147 ath_hal_intrset(ah, imask); 2148 /* 2149 * Only blank sc_rxlink if we've not yet kicked 2150 * the PCU. 2151 * 2152 * This isn't entirely correct - the correct solution 2153 * would be to have a PCU lock and engage that for 2154 * the duration of the PCU fiddling; which would include 2155 * running the RX process. Otherwise we could end up 2156 * messing up the RX descriptor chain and making the 2157 * RX desc list much shorter. 2158 */ 2159 if (! sc->sc_kickpcu) 2160 sc->sc_rxlink = NULL; 2161 sc->sc_kickpcu = 1; 2162 ATH_PCU_UNLOCK(sc); 2163 } 2164 /* 2165 * Enqueue an RX proc to handle whatever 2166 * is in the RX queue. 2167 * This will then kick the PCU if required. 2168 */ 2169 sc->sc_rx.recv_sched(sc, 1); 2170 } 2171 if (status & HAL_INT_TXURN) { 2172 sc->sc_stats.ast_txurn++; 2173 /* bump tx trigger level */ 2174 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2175 } 2176 /* 2177 * Handle both the legacy and RX EDMA interrupt bits. 2178 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2179 */ 2180 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2181 sc->sc_stats.ast_rx_intr++; 2182 sc->sc_rx.recv_sched(sc, 1); 2183 } 2184 if (status & HAL_INT_TX) { 2185 sc->sc_stats.ast_tx_intr++; 2186 /* 2187 * Grab all the currently set bits in the HAL txq bitmap 2188 * and blank them. This is the only place we should be 2189 * doing this. 2190 */ 2191 if (! sc->sc_isedma) { 2192 ATH_PCU_LOCK(sc); 2193 txqs = 0xffffffff; 2194 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2195 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2196 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2197 txqs, 2198 sc->sc_txq_active, 2199 sc->sc_txq_active | txqs); 2200 sc->sc_txq_active |= txqs; 2201 ATH_PCU_UNLOCK(sc); 2202 } 2203 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2204 } 2205 if (status & HAL_INT_BMISS) { 2206 sc->sc_stats.ast_bmiss++; 2207 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2208 } 2209 if (status & HAL_INT_GTT) 2210 sc->sc_stats.ast_tx_timeout++; 2211 if (status & HAL_INT_CST) 2212 sc->sc_stats.ast_tx_cst++; 2213 if (status & HAL_INT_MIB) { 2214 sc->sc_stats.ast_mib++; 2215 ATH_PCU_LOCK(sc); 2216 /* 2217 * Disable interrupts until we service the MIB 2218 * interrupt; otherwise it will continue to fire. 2219 */ 2220 ath_hal_intrset(ah, 0); 2221 /* 2222 * Let the hal handle the event. We assume it will 2223 * clear whatever condition caused the interrupt. 2224 */ 2225 ath_hal_mibevent(ah, &sc->sc_halstats); 2226 /* 2227 * Don't reset the interrupt if we've just 2228 * kicked the PCU, or we may get a nested 2229 * RXEOL before the rxproc has had a chance 2230 * to run. 2231 */ 2232 if (sc->sc_kickpcu == 0) 2233 ath_hal_intrset(ah, sc->sc_imask); 2234 ATH_PCU_UNLOCK(sc); 2235 } 2236 if (status & HAL_INT_RXORN) { 2237 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2238 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2239 sc->sc_stats.ast_rxorn++; 2240 } 2241 if (status & HAL_INT_TSFOOR) { 2242 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2243 sc->sc_syncbeacon = 1; 2244 } 2245 } 2246 ATH_PCU_LOCK(sc); 2247 sc->sc_intr_cnt--; 2248 ATH_PCU_UNLOCK(sc); 2249 2250 ATH_LOCK(sc); 2251 ath_power_restore_power_state(sc); 2252 ATH_UNLOCK(sc); 2253 } 2254 2255 static void 2256 ath_fatal_proc(void *arg, int pending) 2257 { 2258 struct ath_softc *sc = arg; 2259 u_int32_t *state; 2260 u_int32_t len; 2261 void *sp; 2262 2263 if (sc->sc_invalid) 2264 return; 2265 2266 device_printf(sc->sc_dev, "hardware error; resetting\n"); 2267 /* 2268 * Fatal errors are unrecoverable. Typically these 2269 * are caused by DMA errors. Collect h/w state from 2270 * the hal so we can diagnose what's going on. 2271 */ 2272 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2273 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2274 state = sp; 2275 device_printf(sc->sc_dev, 2276 "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0], 2277 state[1] , state[2], state[3], state[4], state[5]); 2278 } 2279 ath_reset(sc, ATH_RESET_NOLOSS); 2280 } 2281 2282 static void 2283 ath_bmiss_vap(struct ieee80211vap *vap) 2284 { 2285 struct ath_softc *sc = vap->iv_ic->ic_softc; 2286 2287 /* 2288 * Workaround phantom bmiss interrupts by sanity-checking 2289 * the time of our last rx'd frame. If it is within the 2290 * beacon miss interval then ignore the interrupt. If it's 2291 * truly a bmiss we'll get another interrupt soon and that'll 2292 * be dispatched up for processing. Note this applies only 2293 * for h/w beacon miss events. 2294 */ 2295 2296 /* 2297 * XXX TODO: Just read the TSF during the interrupt path; 2298 * that way we don't have to wake up again just to read it 2299 * again. 2300 */ 2301 ATH_LOCK(sc); 2302 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2303 ATH_UNLOCK(sc); 2304 2305 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2306 u_int64_t lastrx = sc->sc_lastrx; 2307 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2308 /* XXX should take a locked ref to iv_bss */ 2309 u_int bmisstimeout = 2310 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2311 2312 DPRINTF(sc, ATH_DEBUG_BEACON, 2313 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2314 __func__, (unsigned long long) tsf, 2315 (unsigned long long)(tsf - lastrx), 2316 (unsigned long long) lastrx, bmisstimeout); 2317 2318 if (tsf - lastrx <= bmisstimeout) { 2319 sc->sc_stats.ast_bmiss_phantom++; 2320 2321 ATH_LOCK(sc); 2322 ath_power_restore_power_state(sc); 2323 ATH_UNLOCK(sc); 2324 2325 return; 2326 } 2327 } 2328 2329 /* 2330 * There's no need to keep the hardware awake during the call 2331 * to av_bmiss(). 2332 */ 2333 ATH_LOCK(sc); 2334 ath_power_restore_power_state(sc); 2335 ATH_UNLOCK(sc); 2336 2337 /* 2338 * Attempt to force a beacon resync. 2339 */ 2340 sc->sc_syncbeacon = 1; 2341 2342 ATH_VAP(vap)->av_bmiss(vap); 2343 } 2344 2345 /* XXX this needs a force wakeup! */ 2346 int 2347 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2348 { 2349 uint32_t rsize; 2350 void *sp; 2351 2352 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2353 return 0; 2354 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2355 *hangs = *(uint32_t *)sp; 2356 return 1; 2357 } 2358 2359 static void 2360 ath_bmiss_proc(void *arg, int pending) 2361 { 2362 struct ath_softc *sc = arg; 2363 uint32_t hangs; 2364 2365 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2366 2367 ATH_LOCK(sc); 2368 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2369 ATH_UNLOCK(sc); 2370 2371 ath_beacon_miss(sc); 2372 2373 /* 2374 * Do a reset upon any becaon miss event. 2375 * 2376 * It may be a non-recognised RX clear hang which needs a reset 2377 * to clear. 2378 */ 2379 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2380 ath_reset(sc, ATH_RESET_NOLOSS); 2381 device_printf(sc->sc_dev, 2382 "bb hang detected (0x%x), resetting\n", hangs); 2383 } else { 2384 ath_reset(sc, ATH_RESET_NOLOSS); 2385 ieee80211_beacon_miss(&sc->sc_ic); 2386 } 2387 2388 /* Force a beacon resync, in case they've drifted */ 2389 sc->sc_syncbeacon = 1; 2390 2391 ATH_LOCK(sc); 2392 ath_power_restore_power_state(sc); 2393 ATH_UNLOCK(sc); 2394 } 2395 2396 /* 2397 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2398 * calcs together with WME. If necessary disable the crypto 2399 * hardware and mark the 802.11 state so keys will be setup 2400 * with the MIC work done in software. 2401 */ 2402 static void 2403 ath_settkipmic(struct ath_softc *sc) 2404 { 2405 struct ieee80211com *ic = &sc->sc_ic; 2406 2407 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2408 if (ic->ic_flags & IEEE80211_F_WME) { 2409 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2410 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2411 } else { 2412 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2413 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2414 } 2415 } 2416 } 2417 2418 static int 2419 ath_init(struct ath_softc *sc) 2420 { 2421 struct ieee80211com *ic = &sc->sc_ic; 2422 struct ath_hal *ah = sc->sc_ah; 2423 HAL_STATUS status; 2424 2425 ATH_LOCK_ASSERT(sc); 2426 2427 /* 2428 * Force the sleep state awake. 2429 */ 2430 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2431 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2432 ath_power_setpower(sc, HAL_PM_AWAKE); 2433 2434 /* 2435 * Stop anything previously setup. This is safe 2436 * whether this is the first time through or not. 2437 */ 2438 ath_stop(sc); 2439 2440 /* 2441 * The basic interface to setting the hardware in a good 2442 * state is ``reset''. On return the hardware is known to 2443 * be powered up and with interrupts disabled. This must 2444 * be followed by initialization of the appropriate bits 2445 * and then setup of the interrupt mask. 2446 */ 2447 ath_settkipmic(sc); 2448 ath_update_chainmasks(sc, ic->ic_curchan); 2449 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2450 sc->sc_cur_rxchainmask); 2451 2452 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, 2453 &status)) { 2454 device_printf(sc->sc_dev, 2455 "unable to reset hardware; hal status %u\n", status); 2456 return (ENODEV); 2457 } 2458 2459 ATH_RX_LOCK(sc); 2460 sc->sc_rx_stopped = 1; 2461 sc->sc_rx_resetted = 1; 2462 ATH_RX_UNLOCK(sc); 2463 2464 ath_chan_change(sc, ic->ic_curchan); 2465 2466 /* Let DFS at it in case it's a DFS channel */ 2467 ath_dfs_radar_enable(sc, ic->ic_curchan); 2468 2469 /* Let spectral at in case spectral is enabled */ 2470 ath_spectral_enable(sc, ic->ic_curchan); 2471 2472 /* 2473 * Let bluetooth coexistence at in case it's needed for this channel 2474 */ 2475 ath_btcoex_enable(sc, ic->ic_curchan); 2476 2477 /* 2478 * If we're doing TDMA, enforce the TXOP limitation for chips that 2479 * support it. 2480 */ 2481 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2482 ath_hal_setenforcetxop(sc->sc_ah, 1); 2483 else 2484 ath_hal_setenforcetxop(sc->sc_ah, 0); 2485 2486 /* 2487 * Likewise this is set during reset so update 2488 * state cached in the driver. 2489 */ 2490 sc->sc_diversity = ath_hal_getdiversity(ah); 2491 sc->sc_lastlongcal = ticks; 2492 sc->sc_resetcal = 1; 2493 sc->sc_lastcalreset = 0; 2494 sc->sc_lastani = ticks; 2495 sc->sc_lastshortcal = ticks; 2496 sc->sc_doresetcal = AH_FALSE; 2497 /* 2498 * Beacon timers were cleared here; give ath_newstate() 2499 * a hint that the beacon timers should be poked when 2500 * things transition to the RUN state. 2501 */ 2502 sc->sc_beacons = 0; 2503 2504 /* 2505 * Setup the hardware after reset: the key cache 2506 * is filled as needed and the receive engine is 2507 * set going. Frame transmit is handled entirely 2508 * in the frame output path; there's nothing to do 2509 * here except setup the interrupt mask. 2510 */ 2511 if (ath_startrecv(sc) != 0) { 2512 device_printf(sc->sc_dev, "unable to start recv logic\n"); 2513 ath_power_restore_power_state(sc); 2514 return (ENODEV); 2515 } 2516 2517 /* 2518 * Enable interrupts. 2519 */ 2520 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2521 | HAL_INT_RXORN | HAL_INT_TXURN 2522 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2523 2524 /* 2525 * Enable RX EDMA bits. Note these overlap with 2526 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2527 */ 2528 if (sc->sc_isedma) 2529 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2530 2531 /* 2532 * If we're an EDMA NIC, we don't care about RXEOL. 2533 * Writing a new descriptor in will simply restart 2534 * RX DMA. 2535 */ 2536 if (! sc->sc_isedma) 2537 sc->sc_imask |= HAL_INT_RXEOL; 2538 2539 /* 2540 * Enable MIB interrupts when there are hardware phy counters. 2541 * Note we only do this (at the moment) for station mode. 2542 */ 2543 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2544 sc->sc_imask |= HAL_INT_MIB; 2545 2546 /* 2547 * XXX add capability for this. 2548 * 2549 * If we're in STA mode (and maybe IBSS?) then register for 2550 * TSFOOR interrupts. 2551 */ 2552 if (ic->ic_opmode == IEEE80211_M_STA) 2553 sc->sc_imask |= HAL_INT_TSFOOR; 2554 2555 /* Enable global TX timeout and carrier sense timeout if available */ 2556 if (ath_hal_gtxto_supported(ah)) 2557 sc->sc_imask |= HAL_INT_GTT; 2558 2559 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2560 __func__, sc->sc_imask); 2561 2562 sc->sc_running = 1; 2563 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2564 ath_hal_intrset(ah, sc->sc_imask); 2565 2566 ath_power_restore_power_state(sc); 2567 2568 return (0); 2569 } 2570 2571 static void 2572 ath_stop(struct ath_softc *sc) 2573 { 2574 struct ath_hal *ah = sc->sc_ah; 2575 2576 ATH_LOCK_ASSERT(sc); 2577 2578 /* 2579 * Wake the hardware up before fiddling with it. 2580 */ 2581 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2582 2583 if (sc->sc_running) { 2584 /* 2585 * Shutdown the hardware and driver: 2586 * reset 802.11 state machine 2587 * turn off timers 2588 * disable interrupts 2589 * turn off the radio 2590 * clear transmit machinery 2591 * clear receive machinery 2592 * drain and release tx queues 2593 * reclaim beacon resources 2594 * power down hardware 2595 * 2596 * Note that some of this work is not possible if the 2597 * hardware is gone (invalid). 2598 */ 2599 #ifdef ATH_TX99_DIAG 2600 if (sc->sc_tx99 != NULL) 2601 sc->sc_tx99->stop(sc->sc_tx99); 2602 #endif 2603 callout_stop(&sc->sc_wd_ch); 2604 sc->sc_wd_timer = 0; 2605 sc->sc_running = 0; 2606 if (!sc->sc_invalid) { 2607 if (sc->sc_softled) { 2608 callout_stop(&sc->sc_ledtimer); 2609 ath_hal_gpioset(ah, sc->sc_ledpin, 2610 !sc->sc_ledon); 2611 sc->sc_blinking = 0; 2612 } 2613 ath_hal_intrset(ah, 0); 2614 } 2615 /* XXX we should stop RX regardless of whether it's valid */ 2616 if (!sc->sc_invalid) { 2617 ath_stoprecv(sc, 1); 2618 ath_hal_phydisable(ah); 2619 } else 2620 sc->sc_rxlink = NULL; 2621 ath_draintxq(sc, ATH_RESET_DEFAULT); 2622 ath_beacon_free(sc); /* XXX not needed */ 2623 } 2624 2625 /* And now, restore the current power state */ 2626 ath_power_restore_power_state(sc); 2627 } 2628 2629 /* 2630 * Wait until all pending TX/RX has completed. 2631 * 2632 * This waits until all existing transmit, receive and interrupts 2633 * have completed. It's assumed that the caller has first 2634 * grabbed the reset lock so it doesn't try to do overlapping 2635 * chip resets. 2636 */ 2637 #define MAX_TXRX_ITERATIONS 100 2638 static void 2639 ath_txrx_stop_locked(struct ath_softc *sc) 2640 { 2641 int i = MAX_TXRX_ITERATIONS; 2642 2643 ATH_UNLOCK_ASSERT(sc); 2644 ATH_PCU_LOCK_ASSERT(sc); 2645 2646 /* 2647 * Sleep until all the pending operations have completed. 2648 * 2649 * The caller must ensure that reset has been incremented 2650 * or the pending operations may continue being queued. 2651 */ 2652 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2653 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2654 if (i <= 0) 2655 break; 2656 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2657 msecs_to_ticks(10)); 2658 i--; 2659 } 2660 2661 if (i <= 0) 2662 device_printf(sc->sc_dev, 2663 "%s: didn't finish after %d iterations\n", 2664 __func__, MAX_TXRX_ITERATIONS); 2665 } 2666 #undef MAX_TXRX_ITERATIONS 2667 2668 #if 0 2669 static void 2670 ath_txrx_stop(struct ath_softc *sc) 2671 { 2672 ATH_UNLOCK_ASSERT(sc); 2673 ATH_PCU_UNLOCK_ASSERT(sc); 2674 2675 ATH_PCU_LOCK(sc); 2676 ath_txrx_stop_locked(sc); 2677 ATH_PCU_UNLOCK(sc); 2678 } 2679 #endif 2680 2681 static void 2682 ath_txrx_start(struct ath_softc *sc) 2683 { 2684 2685 taskqueue_unblock(sc->sc_tq); 2686 } 2687 2688 /* 2689 * Grab the reset lock, and wait around until noone else 2690 * is trying to do anything with it. 2691 * 2692 * This is totally horrible but we can't hold this lock for 2693 * long enough to do TX/RX or we end up with net80211/ip stack 2694 * LORs and eventual deadlock. 2695 * 2696 * "dowait" signals whether to spin, waiting for the reset 2697 * lock count to reach 0. This should (for now) only be used 2698 * during the reset path, as the rest of the code may not 2699 * be locking-reentrant enough to behave correctly. 2700 * 2701 * Another, cleaner way should be found to serialise all of 2702 * these operations. 2703 */ 2704 #define MAX_RESET_ITERATIONS 25 2705 static int 2706 ath_reset_grablock(struct ath_softc *sc, int dowait) 2707 { 2708 int w = 0; 2709 int i = MAX_RESET_ITERATIONS; 2710 2711 ATH_PCU_LOCK_ASSERT(sc); 2712 do { 2713 if (sc->sc_inreset_cnt == 0) { 2714 w = 1; 2715 break; 2716 } 2717 if (dowait == 0) { 2718 w = 0; 2719 break; 2720 } 2721 ATH_PCU_UNLOCK(sc); 2722 /* 2723 * 1 tick is likely not enough time for long calibrations 2724 * to complete. So we should wait quite a while. 2725 */ 2726 pause("ath_reset_grablock", msecs_to_ticks(100)); 2727 i--; 2728 ATH_PCU_LOCK(sc); 2729 } while (i > 0); 2730 2731 /* 2732 * We always increment the refcounter, regardless 2733 * of whether we succeeded to get it in an exclusive 2734 * way. 2735 */ 2736 sc->sc_inreset_cnt++; 2737 2738 if (i <= 0) 2739 device_printf(sc->sc_dev, 2740 "%s: didn't finish after %d iterations\n", 2741 __func__, MAX_RESET_ITERATIONS); 2742 2743 if (w == 0) 2744 device_printf(sc->sc_dev, 2745 "%s: warning, recursive reset path!\n", 2746 __func__); 2747 2748 return w; 2749 } 2750 #undef MAX_RESET_ITERATIONS 2751 2752 /* 2753 * Reset the hardware w/o losing operational state. This is 2754 * basically a more efficient way of doing ath_stop, ath_init, 2755 * followed by state transitions to the current 802.11 2756 * operational state. Used to recover from various errors and 2757 * to reset or reload hardware state. 2758 */ 2759 int 2760 ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 2761 { 2762 struct ieee80211com *ic = &sc->sc_ic; 2763 struct ath_hal *ah = sc->sc_ah; 2764 HAL_STATUS status; 2765 int i; 2766 2767 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2768 2769 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2770 ATH_PCU_UNLOCK_ASSERT(sc); 2771 ATH_UNLOCK_ASSERT(sc); 2772 2773 /* Try to (stop any further TX/RX from occuring */ 2774 taskqueue_block(sc->sc_tq); 2775 2776 /* 2777 * Wake the hardware up. 2778 */ 2779 ATH_LOCK(sc); 2780 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2781 ATH_UNLOCK(sc); 2782 2783 ATH_PCU_LOCK(sc); 2784 2785 /* 2786 * Grab the reset lock before TX/RX is stopped. 2787 * 2788 * This is needed to ensure that when the TX/RX actually does finish, 2789 * no further TX/RX/reset runs in parallel with this. 2790 */ 2791 if (ath_reset_grablock(sc, 1) == 0) { 2792 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2793 __func__); 2794 } 2795 2796 /* disable interrupts */ 2797 ath_hal_intrset(ah, 0); 2798 2799 /* 2800 * Now, ensure that any in progress TX/RX completes before we 2801 * continue. 2802 */ 2803 ath_txrx_stop_locked(sc); 2804 2805 ATH_PCU_UNLOCK(sc); 2806 2807 /* 2808 * Regardless of whether we're doing a no-loss flush or 2809 * not, stop the PCU and handle what's in the RX queue. 2810 * That way frames aren't dropped which shouldn't be. 2811 */ 2812 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2813 ath_rx_flush(sc); 2814 2815 /* 2816 * Should now wait for pending TX/RX to complete 2817 * and block future ones from occuring. This needs to be 2818 * done before the TX queue is drained. 2819 */ 2820 ath_draintxq(sc, reset_type); /* stop xmit side */ 2821 2822 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2823 /* NB: indicate channel change so we do a full reset */ 2824 ath_update_chainmasks(sc, ic->ic_curchan); 2825 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2826 sc->sc_cur_rxchainmask); 2827 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2828 device_printf(sc->sc_dev, 2829 "%s: unable to reset hardware; hal status %u\n", 2830 __func__, status); 2831 sc->sc_diversity = ath_hal_getdiversity(ah); 2832 2833 ATH_RX_LOCK(sc); 2834 sc->sc_rx_stopped = 1; 2835 sc->sc_rx_resetted = 1; 2836 ATH_RX_UNLOCK(sc); 2837 2838 /* Let DFS at it in case it's a DFS channel */ 2839 ath_dfs_radar_enable(sc, ic->ic_curchan); 2840 2841 /* Let spectral at in case spectral is enabled */ 2842 ath_spectral_enable(sc, ic->ic_curchan); 2843 2844 /* 2845 * Let bluetooth coexistence at in case it's needed for this channel 2846 */ 2847 ath_btcoex_enable(sc, ic->ic_curchan); 2848 2849 /* 2850 * If we're doing TDMA, enforce the TXOP limitation for chips that 2851 * support it. 2852 */ 2853 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2854 ath_hal_setenforcetxop(sc->sc_ah, 1); 2855 else 2856 ath_hal_setenforcetxop(sc->sc_ah, 0); 2857 2858 if (ath_startrecv(sc) != 0) /* restart recv */ 2859 device_printf(sc->sc_dev, 2860 "%s: unable to start recv logic\n", __func__); 2861 /* 2862 * We may be doing a reset in response to an ioctl 2863 * that changes the channel so update any state that 2864 * might change as a result. 2865 */ 2866 ath_chan_change(sc, ic->ic_curchan); 2867 if (sc->sc_beacons) { /* restart beacons */ 2868 #ifdef IEEE80211_SUPPORT_TDMA 2869 if (sc->sc_tdma) 2870 ath_tdma_config(sc, NULL); 2871 else 2872 #endif 2873 ath_beacon_config(sc, NULL); 2874 } 2875 2876 /* 2877 * Release the reset lock and re-enable interrupts here. 2878 * If an interrupt was being processed in ath_intr(), 2879 * it would disable interrupts at this point. So we have 2880 * to atomically enable interrupts and decrement the 2881 * reset counter - this way ath_intr() doesn't end up 2882 * disabling interrupts without a corresponding enable 2883 * in the rest or channel change path. 2884 * 2885 * Grab the TX reference in case we need to transmit. 2886 * That way a parallel transmit doesn't. 2887 */ 2888 ATH_PCU_LOCK(sc); 2889 sc->sc_inreset_cnt--; 2890 sc->sc_txstart_cnt++; 2891 /* XXX only do this if sc_inreset_cnt == 0? */ 2892 ath_hal_intrset(ah, sc->sc_imask); 2893 ATH_PCU_UNLOCK(sc); 2894 2895 /* 2896 * TX and RX can be started here. If it were started with 2897 * sc_inreset_cnt > 0, the TX and RX path would abort. 2898 * Thus if this is a nested call through the reset or 2899 * channel change code, TX completion will occur but 2900 * RX completion and ath_start / ath_tx_start will not 2901 * run. 2902 */ 2903 2904 /* Restart TX/RX as needed */ 2905 ath_txrx_start(sc); 2906 2907 /* XXX TODO: we need to hold the tx refcount here! */ 2908 2909 /* Restart TX completion and pending TX */ 2910 if (reset_type == ATH_RESET_NOLOSS) { 2911 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2912 if (ATH_TXQ_SETUP(sc, i)) { 2913 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2914 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2915 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2916 2917 ATH_TX_LOCK(sc); 2918 ath_txq_sched(sc, &sc->sc_txq[i]); 2919 ATH_TX_UNLOCK(sc); 2920 } 2921 } 2922 } 2923 2924 ATH_LOCK(sc); 2925 ath_power_restore_power_state(sc); 2926 ATH_UNLOCK(sc); 2927 2928 ATH_PCU_LOCK(sc); 2929 sc->sc_txstart_cnt--; 2930 ATH_PCU_UNLOCK(sc); 2931 2932 /* Handle any frames in the TX queue */ 2933 /* 2934 * XXX should this be done by the caller, rather than 2935 * ath_reset() ? 2936 */ 2937 ath_tx_kick(sc); /* restart xmit */ 2938 return 0; 2939 } 2940 2941 static int 2942 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2943 { 2944 struct ieee80211com *ic = vap->iv_ic; 2945 struct ath_softc *sc = ic->ic_softc; 2946 struct ath_hal *ah = sc->sc_ah; 2947 2948 switch (cmd) { 2949 case IEEE80211_IOC_TXPOWER: 2950 /* 2951 * If per-packet TPC is enabled, then we have nothing 2952 * to do; otherwise we need to force the global limit. 2953 * All this can happen directly; no need to reset. 2954 */ 2955 if (!ath_hal_gettpc(ah)) 2956 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2957 return 0; 2958 } 2959 /* XXX? Full or NOLOSS? */ 2960 return ath_reset(sc, ATH_RESET_FULL); 2961 } 2962 2963 struct ath_buf * 2964 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2965 { 2966 struct ath_buf *bf; 2967 2968 ATH_TXBUF_LOCK_ASSERT(sc); 2969 2970 if (btype == ATH_BUFTYPE_MGMT) 2971 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2972 else 2973 bf = TAILQ_FIRST(&sc->sc_txbuf); 2974 2975 if (bf == NULL) { 2976 sc->sc_stats.ast_tx_getnobuf++; 2977 } else { 2978 if (bf->bf_flags & ATH_BUF_BUSY) { 2979 sc->sc_stats.ast_tx_getbusybuf++; 2980 bf = NULL; 2981 } 2982 } 2983 2984 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2985 if (btype == ATH_BUFTYPE_MGMT) 2986 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2987 else { 2988 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2989 sc->sc_txbuf_cnt--; 2990 2991 /* 2992 * This shuldn't happen; however just to be 2993 * safe print a warning and fudge the txbuf 2994 * count. 2995 */ 2996 if (sc->sc_txbuf_cnt < 0) { 2997 device_printf(sc->sc_dev, 2998 "%s: sc_txbuf_cnt < 0?\n", 2999 __func__); 3000 sc->sc_txbuf_cnt = 0; 3001 } 3002 } 3003 } else 3004 bf = NULL; 3005 3006 if (bf == NULL) { 3007 /* XXX should check which list, mgmt or otherwise */ 3008 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 3009 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 3010 "out of xmit buffers" : "xmit buffer busy"); 3011 return NULL; 3012 } 3013 3014 /* XXX TODO: should do this at buffer list initialisation */ 3015 /* XXX (then, ensure the buffer has the right flag set) */ 3016 bf->bf_flags = 0; 3017 if (btype == ATH_BUFTYPE_MGMT) 3018 bf->bf_flags |= ATH_BUF_MGMT; 3019 else 3020 bf->bf_flags &= (~ATH_BUF_MGMT); 3021 3022 /* Valid bf here; clear some basic fields */ 3023 bf->bf_next = NULL; /* XXX just to be sure */ 3024 bf->bf_last = NULL; /* XXX again, just to be sure */ 3025 bf->bf_comp = NULL; /* XXX again, just to be sure */ 3026 bzero(&bf->bf_state, sizeof(bf->bf_state)); 3027 3028 /* 3029 * Track the descriptor ID only if doing EDMA 3030 */ 3031 if (sc->sc_isedma) { 3032 bf->bf_descid = sc->sc_txbuf_descid; 3033 sc->sc_txbuf_descid++; 3034 } 3035 3036 return bf; 3037 } 3038 3039 /* 3040 * When retrying a software frame, buffers marked ATH_BUF_BUSY 3041 * can't be thrown back on the queue as they could still be 3042 * in use by the hardware. 3043 * 3044 * This duplicates the buffer, or returns NULL. 3045 * 3046 * The descriptor is also copied but the link pointers and 3047 * the DMA segments aren't copied; this frame should thus 3048 * be again passed through the descriptor setup/chain routines 3049 * so the link is correct. 3050 * 3051 * The caller must free the buffer using ath_freebuf(). 3052 */ 3053 struct ath_buf * 3054 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 3055 { 3056 struct ath_buf *tbf; 3057 3058 tbf = ath_getbuf(sc, 3059 (bf->bf_flags & ATH_BUF_MGMT) ? 3060 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 3061 if (tbf == NULL) 3062 return NULL; /* XXX failure? Why? */ 3063 3064 /* Copy basics */ 3065 tbf->bf_next = NULL; 3066 tbf->bf_nseg = bf->bf_nseg; 3067 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 3068 tbf->bf_status = bf->bf_status; 3069 tbf->bf_m = bf->bf_m; 3070 tbf->bf_node = bf->bf_node; 3071 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 3072 /* will be setup by the chain/setup function */ 3073 tbf->bf_lastds = NULL; 3074 /* for now, last == self */ 3075 tbf->bf_last = tbf; 3076 tbf->bf_comp = bf->bf_comp; 3077 3078 /* NOTE: DMA segments will be setup by the setup/chain functions */ 3079 3080 /* The caller has to re-init the descriptor + links */ 3081 3082 /* 3083 * Free the DMA mapping here, before we NULL the mbuf. 3084 * We must only call bus_dmamap_unload() once per mbuf chain 3085 * or behaviour is undefined. 3086 */ 3087 if (bf->bf_m != NULL) { 3088 /* 3089 * XXX is this POSTWRITE call required? 3090 */ 3091 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3092 BUS_DMASYNC_POSTWRITE); 3093 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3094 } 3095 3096 bf->bf_m = NULL; 3097 bf->bf_node = NULL; 3098 3099 /* Copy state */ 3100 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3101 3102 return tbf; 3103 } 3104 3105 struct ath_buf * 3106 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3107 { 3108 struct ath_buf *bf; 3109 3110 ATH_TXBUF_LOCK(sc); 3111 bf = _ath_getbuf_locked(sc, btype); 3112 /* 3113 * If a mgmt buffer was requested but we're out of those, 3114 * try requesting a normal one. 3115 */ 3116 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3117 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3118 ATH_TXBUF_UNLOCK(sc); 3119 if (bf == NULL) { 3120 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3121 sc->sc_stats.ast_tx_qstop++; 3122 } 3123 return bf; 3124 } 3125 3126 /* 3127 * Transmit a single frame. 3128 * 3129 * net80211 will free the node reference if the transmit 3130 * fails, so don't free the node reference here. 3131 */ 3132 static int 3133 ath_transmit(struct ieee80211com *ic, struct mbuf *m) 3134 { 3135 struct ath_softc *sc = ic->ic_softc; 3136 struct ieee80211_node *ni; 3137 struct mbuf *next; 3138 struct ath_buf *bf; 3139 ath_bufhead frags; 3140 int retval = 0; 3141 3142 /* 3143 * Tell the reset path that we're currently transmitting. 3144 */ 3145 ATH_PCU_LOCK(sc); 3146 if (sc->sc_inreset_cnt > 0) { 3147 DPRINTF(sc, ATH_DEBUG_XMIT, 3148 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3149 ATH_PCU_UNLOCK(sc); 3150 sc->sc_stats.ast_tx_qstop++; 3151 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3152 return (ENOBUFS); /* XXX should be EINVAL or? */ 3153 } 3154 sc->sc_txstart_cnt++; 3155 ATH_PCU_UNLOCK(sc); 3156 3157 /* Wake the hardware up already */ 3158 ATH_LOCK(sc); 3159 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3160 ATH_UNLOCK(sc); 3161 3162 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3163 /* 3164 * Grab the TX lock - it's ok to do this here; we haven't 3165 * yet started transmitting. 3166 */ 3167 ATH_TX_LOCK(sc); 3168 3169 /* 3170 * Node reference, if there's one. 3171 */ 3172 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3173 3174 /* 3175 * Enforce how deep a node queue can get. 3176 * 3177 * XXX it would be nicer if we kept an mbuf queue per 3178 * node and only whacked them into ath_bufs when we 3179 * are ready to schedule some traffic from them. 3180 * .. that may come later. 3181 * 3182 * XXX we should also track the per-node hardware queue 3183 * depth so it is easy to limit the _SUM_ of the swq and 3184 * hwq frames. Since we only schedule two HWQ frames 3185 * at a time, this should be OK for now. 3186 */ 3187 if ((!(m->m_flags & M_EAPOL)) && 3188 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3189 sc->sc_stats.ast_tx_nodeq_overflow++; 3190 retval = ENOBUFS; 3191 goto finish; 3192 } 3193 3194 /* 3195 * Check how many TX buffers are available. 3196 * 3197 * If this is for non-EAPOL traffic, just leave some 3198 * space free in order for buffer cloning and raw 3199 * frame transmission to occur. 3200 * 3201 * If it's for EAPOL traffic, ignore this for now. 3202 * Management traffic will be sent via the raw transmit 3203 * method which bypasses this check. 3204 * 3205 * This is needed to ensure that EAPOL frames during 3206 * (re) keying have a chance to go out. 3207 * 3208 * See kern/138379 for more information. 3209 */ 3210 if ((!(m->m_flags & M_EAPOL)) && 3211 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3212 sc->sc_stats.ast_tx_nobuf++; 3213 retval = ENOBUFS; 3214 goto finish; 3215 } 3216 3217 /* 3218 * Grab a TX buffer and associated resources. 3219 * 3220 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3221 * That way even with temporary buffer exhaustion due to 3222 * the data path doesn't leave us without the ability 3223 * to transmit management frames. 3224 * 3225 * Otherwise allocate a normal buffer. 3226 */ 3227 if (m->m_flags & M_EAPOL) 3228 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3229 else 3230 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3231 3232 if (bf == NULL) { 3233 /* 3234 * If we failed to allocate a buffer, fail. 3235 * 3236 * We shouldn't fail normally, due to the check 3237 * above. 3238 */ 3239 sc->sc_stats.ast_tx_nobuf++; 3240 retval = ENOBUFS; 3241 goto finish; 3242 } 3243 3244 /* 3245 * At this point we have a buffer; so we need to free it 3246 * if we hit any error conditions. 3247 */ 3248 3249 /* 3250 * Check for fragmentation. If this frame 3251 * has been broken up verify we have enough 3252 * buffers to send all the fragments so all 3253 * go out or none... 3254 */ 3255 TAILQ_INIT(&frags); 3256 if ((m->m_flags & M_FRAG) && 3257 !ath_txfrag_setup(sc, &frags, m, ni)) { 3258 DPRINTF(sc, ATH_DEBUG_XMIT, 3259 "%s: out of txfrag buffers\n", __func__); 3260 sc->sc_stats.ast_tx_nofrag++; 3261 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3262 /* 3263 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes, 3264 * we shouldn't free it but return back. 3265 */ 3266 ath_freetx(m); 3267 m = NULL; 3268 goto bad; 3269 } 3270 3271 /* 3272 * At this point if we have any TX fragments, then we will 3273 * have bumped the node reference once for each of those. 3274 */ 3275 3276 /* 3277 * XXX Is there anything actually _enforcing_ that the 3278 * fragments are being transmitted in one hit, rather than 3279 * being interleaved with other transmissions on that 3280 * hardware queue? 3281 * 3282 * The ATH TX output lock is the only thing serialising this 3283 * right now. 3284 */ 3285 3286 /* 3287 * Calculate the "next fragment" length field in ath_buf 3288 * in order to let the transmit path know enough about 3289 * what to next write to the hardware. 3290 */ 3291 if (m->m_flags & M_FRAG) { 3292 struct ath_buf *fbf = bf; 3293 struct ath_buf *n_fbf = NULL; 3294 struct mbuf *fm = m->m_nextpkt; 3295 3296 /* 3297 * We need to walk the list of fragments and set 3298 * the next size to the following buffer. 3299 * However, the first buffer isn't in the frag 3300 * list, so we have to do some gymnastics here. 3301 */ 3302 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3303 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3304 fbf = n_fbf; 3305 fm = fm->m_nextpkt; 3306 } 3307 } 3308 3309 nextfrag: 3310 /* 3311 * Pass the frame to the h/w for transmission. 3312 * Fragmented frames have each frag chained together 3313 * with m_nextpkt. We know there are sufficient ath_buf's 3314 * to send all the frags because of work done by 3315 * ath_txfrag_setup. We leave m_nextpkt set while 3316 * calling ath_tx_start so it can use it to extend the 3317 * the tx duration to cover the subsequent frag and 3318 * so it can reclaim all the mbufs in case of an error; 3319 * ath_tx_start clears m_nextpkt once it commits to 3320 * handing the frame to the hardware. 3321 * 3322 * Note: if this fails, then the mbufs are freed but 3323 * not the node reference. 3324 */ 3325 next = m->m_nextpkt; 3326 if (ath_tx_start(sc, ni, bf, m)) { 3327 bad: 3328 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3329 reclaim: 3330 bf->bf_m = NULL; 3331 bf->bf_node = NULL; 3332 ATH_TXBUF_LOCK(sc); 3333 ath_returnbuf_head(sc, bf); 3334 /* 3335 * Free the rest of the node references and 3336 * buffers for the fragment list. 3337 */ 3338 ath_txfrag_cleanup(sc, &frags, ni); 3339 ATH_TXBUF_UNLOCK(sc); 3340 retval = ENOBUFS; 3341 goto finish; 3342 } 3343 3344 /* 3345 * Check here if the node is in power save state. 3346 */ 3347 ath_tx_update_tim(sc, ni, 1); 3348 3349 if (next != NULL) { 3350 /* 3351 * Beware of state changing between frags. 3352 * XXX check sta power-save state? 3353 */ 3354 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3355 DPRINTF(sc, ATH_DEBUG_XMIT, 3356 "%s: flush fragmented packet, state %s\n", 3357 __func__, 3358 ieee80211_state_name[ni->ni_vap->iv_state]); 3359 /* XXX dmamap */ 3360 ath_freetx(next); 3361 goto reclaim; 3362 } 3363 m = next; 3364 bf = TAILQ_FIRST(&frags); 3365 KASSERT(bf != NULL, ("no buf for txfrag")); 3366 TAILQ_REMOVE(&frags, bf, bf_list); 3367 goto nextfrag; 3368 } 3369 3370 /* 3371 * Bump watchdog timer. 3372 */ 3373 sc->sc_wd_timer = 5; 3374 3375 finish: 3376 ATH_TX_UNLOCK(sc); 3377 3378 /* 3379 * Finished transmitting! 3380 */ 3381 ATH_PCU_LOCK(sc); 3382 sc->sc_txstart_cnt--; 3383 ATH_PCU_UNLOCK(sc); 3384 3385 /* Sleep the hardware if required */ 3386 ATH_LOCK(sc); 3387 ath_power_restore_power_state(sc); 3388 ATH_UNLOCK(sc); 3389 3390 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3391 3392 return (retval); 3393 } 3394 3395 static int 3396 ath_media_change(struct ifnet *ifp) 3397 { 3398 int error = ieee80211_media_change(ifp); 3399 /* NB: only the fixed rate can change and that doesn't need a reset */ 3400 return (error == ENETRESET ? 0 : error); 3401 } 3402 3403 /* 3404 * Block/unblock tx+rx processing while a key change is done. 3405 * We assume the caller serializes key management operations 3406 * so we only need to worry about synchronization with other 3407 * uses that originate in the driver. 3408 */ 3409 static void 3410 ath_key_update_begin(struct ieee80211vap *vap) 3411 { 3412 struct ath_softc *sc = vap->iv_ic->ic_softc; 3413 3414 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3415 taskqueue_block(sc->sc_tq); 3416 } 3417 3418 static void 3419 ath_key_update_end(struct ieee80211vap *vap) 3420 { 3421 struct ath_softc *sc = vap->iv_ic->ic_softc; 3422 3423 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3424 taskqueue_unblock(sc->sc_tq); 3425 } 3426 3427 static void 3428 ath_update_promisc(struct ieee80211com *ic) 3429 { 3430 struct ath_softc *sc = ic->ic_softc; 3431 u_int32_t rfilt; 3432 3433 /* configure rx filter */ 3434 ATH_LOCK(sc); 3435 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3436 rfilt = ath_calcrxfilter(sc); 3437 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3438 ath_power_restore_power_state(sc); 3439 ATH_UNLOCK(sc); 3440 3441 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3442 } 3443 3444 /* 3445 * Driver-internal mcast update call. 3446 * 3447 * Assumes the hardware is already awake. 3448 */ 3449 static void 3450 ath_update_mcast_hw(struct ath_softc *sc) 3451 { 3452 struct ieee80211com *ic = &sc->sc_ic; 3453 u_int32_t mfilt[2]; 3454 3455 /* calculate and install multicast filter */ 3456 if (ic->ic_allmulti == 0) { 3457 struct ieee80211vap *vap; 3458 struct ifnet *ifp; 3459 struct ifmultiaddr *ifma; 3460 3461 /* 3462 * Merge multicast addresses to form the hardware filter. 3463 */ 3464 mfilt[0] = mfilt[1] = 0; 3465 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 3466 ifp = vap->iv_ifp; 3467 if_maddr_rlock(ifp); 3468 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3469 caddr_t dl; 3470 uint32_t val; 3471 uint8_t pos; 3472 3473 /* calculate XOR of eight 6bit values */ 3474 dl = LLADDR((struct sockaddr_dl *) 3475 ifma->ifma_addr); 3476 val = LE_READ_4(dl + 0); 3477 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ 3478 val; 3479 val = LE_READ_4(dl + 3); 3480 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ 3481 val; 3482 pos &= 0x3f; 3483 mfilt[pos / 32] |= (1 << (pos % 32)); 3484 } 3485 if_maddr_runlock(ifp); 3486 } 3487 } else 3488 mfilt[0] = mfilt[1] = ~0; 3489 3490 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3491 3492 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3493 __func__, mfilt[0], mfilt[1]); 3494 } 3495 3496 /* 3497 * Called from the net80211 layer - force the hardware 3498 * awake before operating. 3499 */ 3500 static void 3501 ath_update_mcast(struct ieee80211com *ic) 3502 { 3503 struct ath_softc *sc = ic->ic_softc; 3504 3505 ATH_LOCK(sc); 3506 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3507 ATH_UNLOCK(sc); 3508 3509 ath_update_mcast_hw(sc); 3510 3511 ATH_LOCK(sc); 3512 ath_power_restore_power_state(sc); 3513 ATH_UNLOCK(sc); 3514 } 3515 3516 void 3517 ath_mode_init(struct ath_softc *sc) 3518 { 3519 struct ieee80211com *ic = &sc->sc_ic; 3520 struct ath_hal *ah = sc->sc_ah; 3521 u_int32_t rfilt; 3522 3523 /* configure rx filter */ 3524 rfilt = ath_calcrxfilter(sc); 3525 ath_hal_setrxfilter(ah, rfilt); 3526 3527 /* configure operational mode */ 3528 ath_hal_setopmode(ah); 3529 3530 /* handle any link-level address change */ 3531 ath_hal_setmac(ah, ic->ic_macaddr); 3532 3533 /* calculate and install multicast filter */ 3534 ath_update_mcast_hw(sc); 3535 } 3536 3537 /* 3538 * Set the slot time based on the current setting. 3539 */ 3540 void 3541 ath_setslottime(struct ath_softc *sc) 3542 { 3543 struct ieee80211com *ic = &sc->sc_ic; 3544 struct ath_hal *ah = sc->sc_ah; 3545 u_int usec; 3546 3547 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3548 usec = 13; 3549 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3550 usec = 21; 3551 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3552 /* honor short/long slot time only in 11g */ 3553 /* XXX shouldn't honor on pure g or turbo g channel */ 3554 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3555 usec = HAL_SLOT_TIME_9; 3556 else 3557 usec = HAL_SLOT_TIME_20; 3558 } else 3559 usec = HAL_SLOT_TIME_9; 3560 3561 DPRINTF(sc, ATH_DEBUG_RESET, 3562 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3563 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3564 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3565 3566 /* Wake up the hardware first before updating the slot time */ 3567 ATH_LOCK(sc); 3568 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3569 ath_hal_setslottime(ah, usec); 3570 ath_power_restore_power_state(sc); 3571 sc->sc_updateslot = OK; 3572 ATH_UNLOCK(sc); 3573 } 3574 3575 /* 3576 * Callback from the 802.11 layer to update the 3577 * slot time based on the current setting. 3578 */ 3579 static void 3580 ath_updateslot(struct ieee80211com *ic) 3581 { 3582 struct ath_softc *sc = ic->ic_softc; 3583 3584 /* 3585 * When not coordinating the BSS, change the hardware 3586 * immediately. For other operation we defer the change 3587 * until beacon updates have propagated to the stations. 3588 * 3589 * XXX sc_updateslot isn't changed behind a lock? 3590 */ 3591 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3592 ic->ic_opmode == IEEE80211_M_MBSS) 3593 sc->sc_updateslot = UPDATE; 3594 else 3595 ath_setslottime(sc); 3596 } 3597 3598 /* 3599 * Append the contents of src to dst; both queues 3600 * are assumed to be locked. 3601 */ 3602 void 3603 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3604 { 3605 3606 ATH_TXQ_LOCK_ASSERT(src); 3607 ATH_TXQ_LOCK_ASSERT(dst); 3608 3609 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3610 dst->axq_link = src->axq_link; 3611 src->axq_link = NULL; 3612 dst->axq_depth += src->axq_depth; 3613 dst->axq_aggr_depth += src->axq_aggr_depth; 3614 src->axq_depth = 0; 3615 src->axq_aggr_depth = 0; 3616 } 3617 3618 /* 3619 * Reset the hardware, with no loss. 3620 * 3621 * This can't be used for a general case reset. 3622 */ 3623 static void 3624 ath_reset_proc(void *arg, int pending) 3625 { 3626 struct ath_softc *sc = arg; 3627 3628 #if 0 3629 device_printf(sc->sc_dev, "%s: resetting\n", __func__); 3630 #endif 3631 ath_reset(sc, ATH_RESET_NOLOSS); 3632 } 3633 3634 /* 3635 * Reset the hardware after detecting beacons have stopped. 3636 */ 3637 static void 3638 ath_bstuck_proc(void *arg, int pending) 3639 { 3640 struct ath_softc *sc = arg; 3641 uint32_t hangs = 0; 3642 3643 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3644 device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs); 3645 3646 #ifdef ATH_DEBUG_ALQ 3647 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3648 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3649 #endif 3650 3651 device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n", 3652 sc->sc_bmisscount); 3653 sc->sc_stats.ast_bstuck++; 3654 /* 3655 * This assumes that there's no simultaneous channel mode change 3656 * occuring. 3657 */ 3658 ath_reset(sc, ATH_RESET_NOLOSS); 3659 } 3660 3661 static void 3662 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3663 { 3664 bus_addr_t *paddr = (bus_addr_t*) arg; 3665 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3666 *paddr = segs->ds_addr; 3667 } 3668 3669 /* 3670 * Allocate the descriptors and appropriate DMA tag/setup. 3671 * 3672 * For some situations (eg EDMA TX completion), there isn't a requirement 3673 * for the ath_buf entries to be allocated. 3674 */ 3675 int 3676 ath_descdma_alloc_desc(struct ath_softc *sc, 3677 struct ath_descdma *dd, ath_bufhead *head, 3678 const char *name, int ds_size, int ndesc) 3679 { 3680 #define DS2PHYS(_dd, _ds) \ 3681 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3682 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3683 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3684 int error; 3685 3686 dd->dd_descsize = ds_size; 3687 3688 DPRINTF(sc, ATH_DEBUG_RESET, 3689 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 3690 __func__, name, ndesc, dd->dd_descsize); 3691 3692 dd->dd_name = name; 3693 dd->dd_desc_len = dd->dd_descsize * ndesc; 3694 3695 /* 3696 * Merlin work-around: 3697 * Descriptors that cross the 4KB boundary can't be used. 3698 * Assume one skipped descriptor per 4KB page. 3699 */ 3700 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3701 int numpages = dd->dd_desc_len / 4096; 3702 dd->dd_desc_len += ds_size * numpages; 3703 } 3704 3705 /* 3706 * Setup DMA descriptor area. 3707 * 3708 * BUS_DMA_ALLOCNOW is not used; we never use bounce 3709 * buffers for the descriptors themselves. 3710 */ 3711 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3712 PAGE_SIZE, 0, /* alignment, bounds */ 3713 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3714 BUS_SPACE_MAXADDR, /* highaddr */ 3715 NULL, NULL, /* filter, filterarg */ 3716 dd->dd_desc_len, /* maxsize */ 3717 1, /* nsegments */ 3718 dd->dd_desc_len, /* maxsegsize */ 3719 0, /* flags */ 3720 NULL, /* lockfunc */ 3721 NULL, /* lockarg */ 3722 &dd->dd_dmat); 3723 if (error != 0) { 3724 device_printf(sc->sc_dev, 3725 "cannot allocate %s DMA tag\n", dd->dd_name); 3726 return error; 3727 } 3728 3729 /* allocate descriptors */ 3730 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3731 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3732 &dd->dd_dmamap); 3733 if (error != 0) { 3734 device_printf(sc->sc_dev, 3735 "unable to alloc memory for %u %s descriptors, error %u\n", 3736 ndesc, dd->dd_name, error); 3737 goto fail1; 3738 } 3739 3740 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3741 dd->dd_desc, dd->dd_desc_len, 3742 ath_load_cb, &dd->dd_desc_paddr, 3743 BUS_DMA_NOWAIT); 3744 if (error != 0) { 3745 device_printf(sc->sc_dev, 3746 "unable to map %s descriptors, error %u\n", 3747 dd->dd_name, error); 3748 goto fail2; 3749 } 3750 3751 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3752 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 3753 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 3754 /*XXX*/ (u_long) dd->dd_desc_len); 3755 3756 return (0); 3757 3758 fail2: 3759 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3760 fail1: 3761 bus_dma_tag_destroy(dd->dd_dmat); 3762 memset(dd, 0, sizeof(*dd)); 3763 return error; 3764 #undef DS2PHYS 3765 #undef ATH_DESC_4KB_BOUND_CHECK 3766 } 3767 3768 int 3769 ath_descdma_setup(struct ath_softc *sc, 3770 struct ath_descdma *dd, ath_bufhead *head, 3771 const char *name, int ds_size, int nbuf, int ndesc) 3772 { 3773 #define DS2PHYS(_dd, _ds) \ 3774 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3775 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3776 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3777 uint8_t *ds; 3778 struct ath_buf *bf; 3779 int i, bsize, error; 3780 3781 /* Allocate descriptors */ 3782 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 3783 nbuf * ndesc); 3784 3785 /* Assume any errors during allocation were dealt with */ 3786 if (error != 0) { 3787 return (error); 3788 } 3789 3790 ds = (uint8_t *) dd->dd_desc; 3791 3792 /* allocate rx buffers */ 3793 bsize = sizeof(struct ath_buf) * nbuf; 3794 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3795 if (bf == NULL) { 3796 device_printf(sc->sc_dev, 3797 "malloc of %s buffers failed, size %u\n", 3798 dd->dd_name, bsize); 3799 goto fail3; 3800 } 3801 dd->dd_bufptr = bf; 3802 3803 TAILQ_INIT(head); 3804 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 3805 bf->bf_desc = (struct ath_desc *) ds; 3806 bf->bf_daddr = DS2PHYS(dd, ds); 3807 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3808 /* 3809 * Merlin WAR: Skip descriptor addresses which 3810 * cause 4KB boundary crossing along any point 3811 * in the descriptor. 3812 */ 3813 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3814 dd->dd_descsize)) { 3815 /* Start at the next page */ 3816 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3817 bf->bf_desc = (struct ath_desc *) ds; 3818 bf->bf_daddr = DS2PHYS(dd, ds); 3819 } 3820 } 3821 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3822 &bf->bf_dmamap); 3823 if (error != 0) { 3824 device_printf(sc->sc_dev, "unable to create dmamap " 3825 "for %s buffer %u, error %u\n", 3826 dd->dd_name, i, error); 3827 ath_descdma_cleanup(sc, dd, head); 3828 return error; 3829 } 3830 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3831 TAILQ_INSERT_TAIL(head, bf, bf_list); 3832 } 3833 3834 /* 3835 * XXX TODO: ensure that ds doesn't overflow the descriptor 3836 * allocation otherwise weird stuff will occur and crash your 3837 * machine. 3838 */ 3839 return 0; 3840 /* XXX this should likely just call ath_descdma_cleanup() */ 3841 fail3: 3842 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3843 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3844 bus_dma_tag_destroy(dd->dd_dmat); 3845 memset(dd, 0, sizeof(*dd)); 3846 return error; 3847 #undef DS2PHYS 3848 #undef ATH_DESC_4KB_BOUND_CHECK 3849 } 3850 3851 /* 3852 * Allocate ath_buf entries but no descriptor contents. 3853 * 3854 * This is for RX EDMA where the descriptors are the header part of 3855 * the RX buffer. 3856 */ 3857 int 3858 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3859 struct ath_descdma *dd, ath_bufhead *head, 3860 const char *name, int nbuf, int rx_status_len) 3861 { 3862 struct ath_buf *bf; 3863 int i, bsize, error; 3864 3865 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3866 __func__, name, nbuf); 3867 3868 dd->dd_name = name; 3869 /* 3870 * This is (mostly) purely for show. We're not allocating any actual 3871 * descriptors here as EDMA RX has the descriptor be part 3872 * of the RX buffer. 3873 * 3874 * However, dd_desc_len is used by ath_descdma_free() to determine 3875 * whether we have already freed this DMA mapping. 3876 */ 3877 dd->dd_desc_len = rx_status_len * nbuf; 3878 dd->dd_descsize = rx_status_len; 3879 3880 /* allocate rx buffers */ 3881 bsize = sizeof(struct ath_buf) * nbuf; 3882 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3883 if (bf == NULL) { 3884 device_printf(sc->sc_dev, 3885 "malloc of %s buffers failed, size %u\n", 3886 dd->dd_name, bsize); 3887 error = ENOMEM; 3888 goto fail3; 3889 } 3890 dd->dd_bufptr = bf; 3891 3892 TAILQ_INIT(head); 3893 for (i = 0; i < nbuf; i++, bf++) { 3894 bf->bf_desc = NULL; 3895 bf->bf_daddr = 0; 3896 bf->bf_lastds = NULL; /* Just an initial value */ 3897 3898 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3899 &bf->bf_dmamap); 3900 if (error != 0) { 3901 device_printf(sc->sc_dev, "unable to create dmamap " 3902 "for %s buffer %u, error %u\n", 3903 dd->dd_name, i, error); 3904 ath_descdma_cleanup(sc, dd, head); 3905 return error; 3906 } 3907 TAILQ_INSERT_TAIL(head, bf, bf_list); 3908 } 3909 return 0; 3910 fail3: 3911 memset(dd, 0, sizeof(*dd)); 3912 return error; 3913 } 3914 3915 void 3916 ath_descdma_cleanup(struct ath_softc *sc, 3917 struct ath_descdma *dd, ath_bufhead *head) 3918 { 3919 struct ath_buf *bf; 3920 struct ieee80211_node *ni; 3921 int do_warning = 0; 3922 3923 if (dd->dd_dmamap != 0) { 3924 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3925 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3926 bus_dma_tag_destroy(dd->dd_dmat); 3927 } 3928 3929 if (head != NULL) { 3930 TAILQ_FOREACH(bf, head, bf_list) { 3931 if (bf->bf_m) { 3932 /* 3933 * XXX warn if there's buffers here. 3934 * XXX it should have been freed by the 3935 * owner! 3936 */ 3937 3938 if (do_warning == 0) { 3939 do_warning = 1; 3940 device_printf(sc->sc_dev, 3941 "%s: %s: mbuf should've been" 3942 " unmapped/freed!\n", 3943 __func__, 3944 dd->dd_name); 3945 } 3946 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3947 BUS_DMASYNC_POSTREAD); 3948 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3949 m_freem(bf->bf_m); 3950 bf->bf_m = NULL; 3951 } 3952 if (bf->bf_dmamap != NULL) { 3953 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3954 bf->bf_dmamap = NULL; 3955 } 3956 ni = bf->bf_node; 3957 bf->bf_node = NULL; 3958 if (ni != NULL) { 3959 /* 3960 * Reclaim node reference. 3961 */ 3962 ieee80211_free_node(ni); 3963 } 3964 } 3965 } 3966 3967 if (head != NULL) 3968 TAILQ_INIT(head); 3969 3970 if (dd->dd_bufptr != NULL) 3971 free(dd->dd_bufptr, M_ATHDEV); 3972 memset(dd, 0, sizeof(*dd)); 3973 } 3974 3975 static int 3976 ath_desc_alloc(struct ath_softc *sc) 3977 { 3978 int error; 3979 3980 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3981 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3982 if (error != 0) { 3983 return error; 3984 } 3985 sc->sc_txbuf_cnt = ath_txbuf; 3986 3987 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3988 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3989 ATH_TXDESC); 3990 if (error != 0) { 3991 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3992 return error; 3993 } 3994 3995 /* 3996 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3997 * flag doesn't have to be set in ath_getbuf_locked(). 3998 */ 3999 4000 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 4001 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 4002 if (error != 0) { 4003 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 4004 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 4005 &sc->sc_txbuf_mgmt); 4006 return error; 4007 } 4008 return 0; 4009 } 4010 4011 static void 4012 ath_desc_free(struct ath_softc *sc) 4013 { 4014 4015 if (sc->sc_bdma.dd_desc_len != 0) 4016 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 4017 if (sc->sc_txdma.dd_desc_len != 0) 4018 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 4019 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 4020 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 4021 &sc->sc_txbuf_mgmt); 4022 } 4023 4024 static struct ieee80211_node * 4025 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 4026 { 4027 struct ieee80211com *ic = vap->iv_ic; 4028 struct ath_softc *sc = ic->ic_softc; 4029 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 4030 struct ath_node *an; 4031 4032 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 4033 if (an == NULL) { 4034 /* XXX stat+msg */ 4035 return NULL; 4036 } 4037 ath_rate_node_init(sc, an); 4038 4039 /* Setup the mutex - there's no associd yet so set the name to NULL */ 4040 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 4041 device_get_nameunit(sc->sc_dev), an); 4042 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 4043 4044 /* XXX setup ath_tid */ 4045 ath_tx_tid_init(sc, an); 4046 4047 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 4048 return &an->an_node; 4049 } 4050 4051 static void 4052 ath_node_cleanup(struct ieee80211_node *ni) 4053 { 4054 struct ieee80211com *ic = ni->ni_ic; 4055 struct ath_softc *sc = ic->ic_softc; 4056 4057 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 4058 ni->ni_macaddr, ":", ATH_NODE(ni)); 4059 4060 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 4061 ath_tx_node_flush(sc, ATH_NODE(ni)); 4062 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 4063 sc->sc_node_cleanup(ni); 4064 } 4065 4066 static void 4067 ath_node_free(struct ieee80211_node *ni) 4068 { 4069 struct ieee80211com *ic = ni->ni_ic; 4070 struct ath_softc *sc = ic->ic_softc; 4071 4072 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 4073 ni->ni_macaddr, ":", ATH_NODE(ni)); 4074 mtx_destroy(&ATH_NODE(ni)->an_mtx); 4075 sc->sc_node_free(ni); 4076 } 4077 4078 static void 4079 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 4080 { 4081 struct ieee80211com *ic = ni->ni_ic; 4082 struct ath_softc *sc = ic->ic_softc; 4083 struct ath_hal *ah = sc->sc_ah; 4084 4085 *rssi = ic->ic_node_getrssi(ni); 4086 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 4087 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 4088 else 4089 *noise = -95; /* nominally correct */ 4090 } 4091 4092 /* 4093 * Set the default antenna. 4094 */ 4095 void 4096 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 4097 { 4098 struct ath_hal *ah = sc->sc_ah; 4099 4100 /* XXX block beacon interrupts */ 4101 ath_hal_setdefantenna(ah, antenna); 4102 if (sc->sc_defant != antenna) 4103 sc->sc_stats.ast_ant_defswitch++; 4104 sc->sc_defant = antenna; 4105 sc->sc_rxotherant = 0; 4106 } 4107 4108 static void 4109 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4110 { 4111 txq->axq_qnum = qnum; 4112 txq->axq_ac = 0; 4113 txq->axq_depth = 0; 4114 txq->axq_aggr_depth = 0; 4115 txq->axq_intrcnt = 0; 4116 txq->axq_link = NULL; 4117 txq->axq_softc = sc; 4118 TAILQ_INIT(&txq->axq_q); 4119 TAILQ_INIT(&txq->axq_tidq); 4120 TAILQ_INIT(&txq->fifo.axq_q); 4121 ATH_TXQ_LOCK_INIT(sc, txq); 4122 } 4123 4124 /* 4125 * Setup a h/w transmit queue. 4126 */ 4127 static struct ath_txq * 4128 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4129 { 4130 struct ath_hal *ah = sc->sc_ah; 4131 HAL_TXQ_INFO qi; 4132 int qnum; 4133 4134 memset(&qi, 0, sizeof(qi)); 4135 qi.tqi_subtype = subtype; 4136 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4137 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4138 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4139 /* 4140 * Enable interrupts only for EOL and DESC conditions. 4141 * We mark tx descriptors to receive a DESC interrupt 4142 * when a tx queue gets deep; otherwise waiting for the 4143 * EOL to reap descriptors. Note that this is done to 4144 * reduce interrupt load and this only defers reaping 4145 * descriptors, never transmitting frames. Aside from 4146 * reducing interrupts this also permits more concurrency. 4147 * The only potential downside is if the tx queue backs 4148 * up in which case the top half of the kernel may backup 4149 * due to a lack of tx descriptors. 4150 */ 4151 if (sc->sc_isedma) 4152 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4153 HAL_TXQ_TXOKINT_ENABLE; 4154 else 4155 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4156 HAL_TXQ_TXDESCINT_ENABLE; 4157 4158 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4159 if (qnum == -1) { 4160 /* 4161 * NB: don't print a message, this happens 4162 * normally on parts with too few tx queues 4163 */ 4164 return NULL; 4165 } 4166 if (qnum >= nitems(sc->sc_txq)) { 4167 device_printf(sc->sc_dev, 4168 "hal qnum %u out of range, max %zu!\n", 4169 qnum, nitems(sc->sc_txq)); 4170 ath_hal_releasetxqueue(ah, qnum); 4171 return NULL; 4172 } 4173 if (!ATH_TXQ_SETUP(sc, qnum)) { 4174 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4175 sc->sc_txqsetup |= 1<<qnum; 4176 } 4177 return &sc->sc_txq[qnum]; 4178 } 4179 4180 /* 4181 * Setup a hardware data transmit queue for the specified 4182 * access control. The hal may not support all requested 4183 * queues in which case it will return a reference to a 4184 * previously setup queue. We record the mapping from ac's 4185 * to h/w queues for use by ath_tx_start and also track 4186 * the set of h/w queues being used to optimize work in the 4187 * transmit interrupt handler and related routines. 4188 */ 4189 static int 4190 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4191 { 4192 struct ath_txq *txq; 4193 4194 if (ac >= nitems(sc->sc_ac2q)) { 4195 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4196 ac, nitems(sc->sc_ac2q)); 4197 return 0; 4198 } 4199 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4200 if (txq != NULL) { 4201 txq->axq_ac = ac; 4202 sc->sc_ac2q[ac] = txq; 4203 return 1; 4204 } else 4205 return 0; 4206 } 4207 4208 /* 4209 * Update WME parameters for a transmit queue. 4210 */ 4211 static int 4212 ath_txq_update(struct ath_softc *sc, int ac) 4213 { 4214 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4215 struct ieee80211com *ic = &sc->sc_ic; 4216 struct ath_txq *txq = sc->sc_ac2q[ac]; 4217 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4218 struct ath_hal *ah = sc->sc_ah; 4219 HAL_TXQ_INFO qi; 4220 4221 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4222 #ifdef IEEE80211_SUPPORT_TDMA 4223 if (sc->sc_tdma) { 4224 /* 4225 * AIFS is zero so there's no pre-transmit wait. The 4226 * burst time defines the slot duration and is configured 4227 * through net80211. The QCU is setup to not do post-xmit 4228 * back off, lockout all lower-priority QCU's, and fire 4229 * off the DMA beacon alert timer which is setup based 4230 * on the slot configuration. 4231 */ 4232 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4233 | HAL_TXQ_TXERRINT_ENABLE 4234 | HAL_TXQ_TXURNINT_ENABLE 4235 | HAL_TXQ_TXEOLINT_ENABLE 4236 | HAL_TXQ_DBA_GATED 4237 | HAL_TXQ_BACKOFF_DISABLE 4238 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4239 ; 4240 qi.tqi_aifs = 0; 4241 /* XXX +dbaprep? */ 4242 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4243 qi.tqi_burstTime = qi.tqi_readyTime; 4244 } else { 4245 #endif 4246 /* 4247 * XXX shouldn't this just use the default flags 4248 * used in the previous queue setup? 4249 */ 4250 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4251 | HAL_TXQ_TXERRINT_ENABLE 4252 | HAL_TXQ_TXDESCINT_ENABLE 4253 | HAL_TXQ_TXURNINT_ENABLE 4254 | HAL_TXQ_TXEOLINT_ENABLE 4255 ; 4256 qi.tqi_aifs = wmep->wmep_aifsn; 4257 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4258 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4259 qi.tqi_readyTime = 0; 4260 qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit); 4261 #ifdef IEEE80211_SUPPORT_TDMA 4262 } 4263 #endif 4264 4265 DPRINTF(sc, ATH_DEBUG_RESET, 4266 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4267 __func__, txq->axq_qnum, qi.tqi_qflags, 4268 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4269 4270 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4271 device_printf(sc->sc_dev, "unable to update hardware queue " 4272 "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]); 4273 return 0; 4274 } else { 4275 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4276 return 1; 4277 } 4278 #undef ATH_EXPONENT_TO_VALUE 4279 } 4280 4281 /* 4282 * Callback from the 802.11 layer to update WME parameters. 4283 */ 4284 int 4285 ath_wme_update(struct ieee80211com *ic) 4286 { 4287 struct ath_softc *sc = ic->ic_softc; 4288 4289 return !ath_txq_update(sc, WME_AC_BE) || 4290 !ath_txq_update(sc, WME_AC_BK) || 4291 !ath_txq_update(sc, WME_AC_VI) || 4292 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4293 } 4294 4295 /* 4296 * Reclaim resources for a setup queue. 4297 */ 4298 static void 4299 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4300 { 4301 4302 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4303 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4304 ATH_TXQ_LOCK_DESTROY(txq); 4305 } 4306 4307 /* 4308 * Reclaim all tx queue resources. 4309 */ 4310 static void 4311 ath_tx_cleanup(struct ath_softc *sc) 4312 { 4313 int i; 4314 4315 ATH_TXBUF_LOCK_DESTROY(sc); 4316 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4317 if (ATH_TXQ_SETUP(sc, i)) 4318 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4319 } 4320 4321 /* 4322 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4323 * using the current rates in sc_rixmap. 4324 */ 4325 int 4326 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4327 { 4328 int rix = sc->sc_rixmap[rate]; 4329 /* NB: return lowest rix for invalid rate */ 4330 return (rix == 0xff ? 0 : rix); 4331 } 4332 4333 static void 4334 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4335 struct ath_buf *bf) 4336 { 4337 struct ieee80211_node *ni = bf->bf_node; 4338 struct ieee80211com *ic = &sc->sc_ic; 4339 int sr, lr, pri; 4340 4341 if (ts->ts_status == 0) { 4342 u_int8_t txant = ts->ts_antenna; 4343 sc->sc_stats.ast_ant_tx[txant]++; 4344 sc->sc_ant_tx[txant]++; 4345 if (ts->ts_finaltsi != 0) 4346 sc->sc_stats.ast_tx_altrate++; 4347 pri = M_WME_GETAC(bf->bf_m); 4348 if (pri >= WME_AC_VO) 4349 ic->ic_wme.wme_hipri_traffic++; 4350 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4351 ni->ni_inact = ni->ni_inact_reload; 4352 } else { 4353 if (ts->ts_status & HAL_TXERR_XRETRY) 4354 sc->sc_stats.ast_tx_xretries++; 4355 if (ts->ts_status & HAL_TXERR_FIFO) 4356 sc->sc_stats.ast_tx_fifoerr++; 4357 if (ts->ts_status & HAL_TXERR_FILT) 4358 sc->sc_stats.ast_tx_filtered++; 4359 if (ts->ts_status & HAL_TXERR_XTXOP) 4360 sc->sc_stats.ast_tx_xtxop++; 4361 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4362 sc->sc_stats.ast_tx_timerexpired++; 4363 4364 if (bf->bf_m->m_flags & M_FF) 4365 sc->sc_stats.ast_ff_txerr++; 4366 } 4367 /* XXX when is this valid? */ 4368 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4369 sc->sc_stats.ast_tx_desccfgerr++; 4370 /* 4371 * This can be valid for successful frame transmission! 4372 * If there's a TX FIFO underrun during aggregate transmission, 4373 * the MAC will pad the rest of the aggregate with delimiters. 4374 * If a BA is returned, the frame is marked as "OK" and it's up 4375 * to the TX completion code to notice which frames weren't 4376 * successfully transmitted. 4377 */ 4378 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4379 sc->sc_stats.ast_tx_data_underrun++; 4380 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4381 sc->sc_stats.ast_tx_delim_underrun++; 4382 4383 sr = ts->ts_shortretry; 4384 lr = ts->ts_longretry; 4385 sc->sc_stats.ast_tx_shortretry += sr; 4386 sc->sc_stats.ast_tx_longretry += lr; 4387 4388 } 4389 4390 /* 4391 * The default completion. If fail is 1, this means 4392 * "please don't retry the frame, and just return -1 status 4393 * to the net80211 stack. 4394 */ 4395 void 4396 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4397 { 4398 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4399 int st; 4400 4401 if (fail == 1) 4402 st = -1; 4403 else 4404 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4405 ts->ts_status : HAL_TXERR_XRETRY; 4406 4407 #if 0 4408 if (bf->bf_state.bfs_dobaw) 4409 device_printf(sc->sc_dev, 4410 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4411 __func__, 4412 bf, 4413 SEQNO(bf->bf_state.bfs_seqno)); 4414 #endif 4415 if (bf->bf_next != NULL) 4416 device_printf(sc->sc_dev, 4417 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4418 __func__, 4419 bf, 4420 SEQNO(bf->bf_state.bfs_seqno)); 4421 4422 /* 4423 * Check if the node software queue is empty; if so 4424 * then clear the TIM. 4425 * 4426 * This needs to be done before the buffer is freed as 4427 * otherwise the node reference will have been released 4428 * and the node may not actually exist any longer. 4429 * 4430 * XXX I don't like this belonging here, but it's cleaner 4431 * to do it here right now then all the other places 4432 * where ath_tx_default_comp() is called. 4433 * 4434 * XXX TODO: during drain, ensure that the callback is 4435 * being called so we get a chance to update the TIM. 4436 */ 4437 if (bf->bf_node) { 4438 ATH_TX_LOCK(sc); 4439 ath_tx_update_tim(sc, bf->bf_node, 0); 4440 ATH_TX_UNLOCK(sc); 4441 } 4442 4443 /* 4444 * Do any tx complete callback. Note this must 4445 * be done before releasing the node reference. 4446 * This will free the mbuf, release the net80211 4447 * node and recycle the ath_buf. 4448 */ 4449 ath_tx_freebuf(sc, bf, st); 4450 } 4451 4452 /* 4453 * Update rate control with the given completion status. 4454 */ 4455 void 4456 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4457 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4458 int nframes, int nbad) 4459 { 4460 struct ath_node *an; 4461 4462 /* Only for unicast frames */ 4463 if (ni == NULL) 4464 return; 4465 4466 an = ATH_NODE(ni); 4467 ATH_NODE_UNLOCK_ASSERT(an); 4468 4469 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4470 ATH_NODE_LOCK(an); 4471 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4472 ATH_NODE_UNLOCK(an); 4473 } 4474 } 4475 4476 /* 4477 * Process the completion of the given buffer. 4478 * 4479 * This calls the rate control update and then the buffer completion. 4480 * This will either free the buffer or requeue it. In any case, the 4481 * bf pointer should be treated as invalid after this function is called. 4482 */ 4483 void 4484 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4485 struct ath_tx_status *ts, struct ath_buf *bf) 4486 { 4487 struct ieee80211_node *ni = bf->bf_node; 4488 4489 ATH_TX_UNLOCK_ASSERT(sc); 4490 ATH_TXQ_UNLOCK_ASSERT(txq); 4491 4492 /* If unicast frame, update general statistics */ 4493 if (ni != NULL) { 4494 /* update statistics */ 4495 ath_tx_update_stats(sc, ts, bf); 4496 } 4497 4498 /* 4499 * Call the completion handler. 4500 * The completion handler is responsible for 4501 * calling the rate control code. 4502 * 4503 * Frames with no completion handler get the 4504 * rate control code called here. 4505 */ 4506 if (bf->bf_comp == NULL) { 4507 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4508 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4509 /* 4510 * XXX assume this isn't an aggregate 4511 * frame. 4512 */ 4513 ath_tx_update_ratectrl(sc, ni, 4514 bf->bf_state.bfs_rc, ts, 4515 bf->bf_state.bfs_pktlen, 1, 4516 (ts->ts_status == 0 ? 0 : 1)); 4517 } 4518 ath_tx_default_comp(sc, bf, 0); 4519 } else 4520 bf->bf_comp(sc, bf, 0); 4521 } 4522 4523 4524 4525 /* 4526 * Process completed xmit descriptors from the specified queue. 4527 * Kick the packet scheduler if needed. This can occur from this 4528 * particular task. 4529 */ 4530 static int 4531 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4532 { 4533 struct ath_hal *ah = sc->sc_ah; 4534 struct ath_buf *bf; 4535 struct ath_desc *ds; 4536 struct ath_tx_status *ts; 4537 struct ieee80211_node *ni; 4538 #ifdef IEEE80211_SUPPORT_SUPERG 4539 struct ieee80211com *ic = &sc->sc_ic; 4540 #endif /* IEEE80211_SUPPORT_SUPERG */ 4541 int nacked; 4542 HAL_STATUS status; 4543 4544 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4545 __func__, txq->axq_qnum, 4546 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4547 txq->axq_link); 4548 4549 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4550 "ath_tx_processq: txq=%u head %p link %p depth %p", 4551 txq->axq_qnum, 4552 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4553 txq->axq_link, 4554 txq->axq_depth); 4555 4556 nacked = 0; 4557 for (;;) { 4558 ATH_TXQ_LOCK(txq); 4559 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4560 bf = TAILQ_FIRST(&txq->axq_q); 4561 if (bf == NULL) { 4562 ATH_TXQ_UNLOCK(txq); 4563 break; 4564 } 4565 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4566 ts = &bf->bf_status.ds_txstat; 4567 4568 status = ath_hal_txprocdesc(ah, ds, ts); 4569 #ifdef ATH_DEBUG 4570 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4571 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4572 status == HAL_OK); 4573 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4574 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4575 status == HAL_OK); 4576 #endif 4577 #ifdef ATH_DEBUG_ALQ 4578 if (if_ath_alq_checkdebug(&sc->sc_alq, 4579 ATH_ALQ_EDMA_TXSTATUS)) { 4580 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4581 sc->sc_tx_statuslen, 4582 (char *) ds); 4583 } 4584 #endif 4585 4586 if (status == HAL_EINPROGRESS) { 4587 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4588 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4589 txq->axq_qnum, bf, ds); 4590 ATH_TXQ_UNLOCK(txq); 4591 break; 4592 } 4593 ATH_TXQ_REMOVE(txq, bf, bf_list); 4594 4595 /* 4596 * Sanity check. 4597 */ 4598 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4599 device_printf(sc->sc_dev, 4600 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4601 __func__, 4602 txq->axq_qnum, 4603 bf, 4604 bf->bf_state.bfs_tx_queue); 4605 } 4606 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4607 device_printf(sc->sc_dev, 4608 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4609 __func__, 4610 txq->axq_qnum, 4611 bf->bf_last, 4612 bf->bf_last->bf_state.bfs_tx_queue); 4613 } 4614 4615 #if 0 4616 if (txq->axq_depth > 0) { 4617 /* 4618 * More frames follow. Mark the buffer busy 4619 * so it's not re-used while the hardware may 4620 * still re-read the link field in the descriptor. 4621 * 4622 * Use the last buffer in an aggregate as that 4623 * is where the hardware may be - intermediate 4624 * descriptors won't be "busy". 4625 */ 4626 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4627 } else 4628 txq->axq_link = NULL; 4629 #else 4630 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4631 #endif 4632 if (bf->bf_state.bfs_aggr) 4633 txq->axq_aggr_depth--; 4634 4635 ni = bf->bf_node; 4636 4637 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4638 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4639 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4640 /* 4641 * If unicast frame was ack'd update RSSI, 4642 * including the last rx time used to 4643 * workaround phantom bmiss interrupts. 4644 */ 4645 if (ni != NULL && ts->ts_status == 0 && 4646 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4647 nacked++; 4648 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4649 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4650 ts->ts_rssi); 4651 } 4652 ATH_TXQ_UNLOCK(txq); 4653 4654 /* 4655 * Update statistics and call completion 4656 */ 4657 ath_tx_process_buf_completion(sc, txq, ts, bf); 4658 4659 /* XXX at this point, bf and ni may be totally invalid */ 4660 } 4661 #ifdef IEEE80211_SUPPORT_SUPERG 4662 /* 4663 * Flush fast-frame staging queue when traffic slows. 4664 */ 4665 if (txq->axq_depth <= 1) 4666 ieee80211_ff_flush(ic, txq->axq_ac); 4667 #endif 4668 4669 /* Kick the software TXQ scheduler */ 4670 if (dosched) { 4671 ATH_TX_LOCK(sc); 4672 ath_txq_sched(sc, txq); 4673 ATH_TX_UNLOCK(sc); 4674 } 4675 4676 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4677 "ath_tx_processq: txq=%u: done", 4678 txq->axq_qnum); 4679 4680 return nacked; 4681 } 4682 4683 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4684 4685 /* 4686 * Deferred processing of transmit interrupt; special-cased 4687 * for a single hardware transmit queue (e.g. 5210 and 5211). 4688 */ 4689 static void 4690 ath_tx_proc_q0(void *arg, int npending) 4691 { 4692 struct ath_softc *sc = arg; 4693 uint32_t txqs; 4694 4695 ATH_PCU_LOCK(sc); 4696 sc->sc_txproc_cnt++; 4697 txqs = sc->sc_txq_active; 4698 sc->sc_txq_active &= ~txqs; 4699 ATH_PCU_UNLOCK(sc); 4700 4701 ATH_LOCK(sc); 4702 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4703 ATH_UNLOCK(sc); 4704 4705 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4706 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4707 4708 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4709 /* XXX why is lastrx updated in tx code? */ 4710 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4711 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4712 ath_tx_processq(sc, sc->sc_cabq, 1); 4713 sc->sc_wd_timer = 0; 4714 4715 if (sc->sc_softled) 4716 ath_led_event(sc, sc->sc_txrix); 4717 4718 ATH_PCU_LOCK(sc); 4719 sc->sc_txproc_cnt--; 4720 ATH_PCU_UNLOCK(sc); 4721 4722 ATH_LOCK(sc); 4723 ath_power_restore_power_state(sc); 4724 ATH_UNLOCK(sc); 4725 4726 ath_tx_kick(sc); 4727 } 4728 4729 /* 4730 * Deferred processing of transmit interrupt; special-cased 4731 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4732 */ 4733 static void 4734 ath_tx_proc_q0123(void *arg, int npending) 4735 { 4736 struct ath_softc *sc = arg; 4737 int nacked; 4738 uint32_t txqs; 4739 4740 ATH_PCU_LOCK(sc); 4741 sc->sc_txproc_cnt++; 4742 txqs = sc->sc_txq_active; 4743 sc->sc_txq_active &= ~txqs; 4744 ATH_PCU_UNLOCK(sc); 4745 4746 ATH_LOCK(sc); 4747 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4748 ATH_UNLOCK(sc); 4749 4750 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4751 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4752 4753 /* 4754 * Process each active queue. 4755 */ 4756 nacked = 0; 4757 if (TXQACTIVE(txqs, 0)) 4758 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4759 if (TXQACTIVE(txqs, 1)) 4760 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4761 if (TXQACTIVE(txqs, 2)) 4762 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4763 if (TXQACTIVE(txqs, 3)) 4764 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4765 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4766 ath_tx_processq(sc, sc->sc_cabq, 1); 4767 if (nacked) 4768 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4769 4770 sc->sc_wd_timer = 0; 4771 4772 if (sc->sc_softled) 4773 ath_led_event(sc, sc->sc_txrix); 4774 4775 ATH_PCU_LOCK(sc); 4776 sc->sc_txproc_cnt--; 4777 ATH_PCU_UNLOCK(sc); 4778 4779 ATH_LOCK(sc); 4780 ath_power_restore_power_state(sc); 4781 ATH_UNLOCK(sc); 4782 4783 ath_tx_kick(sc); 4784 } 4785 4786 /* 4787 * Deferred processing of transmit interrupt. 4788 */ 4789 static void 4790 ath_tx_proc(void *arg, int npending) 4791 { 4792 struct ath_softc *sc = arg; 4793 int i, nacked; 4794 uint32_t txqs; 4795 4796 ATH_PCU_LOCK(sc); 4797 sc->sc_txproc_cnt++; 4798 txqs = sc->sc_txq_active; 4799 sc->sc_txq_active &= ~txqs; 4800 ATH_PCU_UNLOCK(sc); 4801 4802 ATH_LOCK(sc); 4803 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4804 ATH_UNLOCK(sc); 4805 4806 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4807 4808 /* 4809 * Process each active queue. 4810 */ 4811 nacked = 0; 4812 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4813 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4814 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4815 if (nacked) 4816 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4817 4818 sc->sc_wd_timer = 0; 4819 4820 if (sc->sc_softled) 4821 ath_led_event(sc, sc->sc_txrix); 4822 4823 ATH_PCU_LOCK(sc); 4824 sc->sc_txproc_cnt--; 4825 ATH_PCU_UNLOCK(sc); 4826 4827 ATH_LOCK(sc); 4828 ath_power_restore_power_state(sc); 4829 ATH_UNLOCK(sc); 4830 4831 ath_tx_kick(sc); 4832 } 4833 #undef TXQACTIVE 4834 4835 /* 4836 * Deferred processing of TXQ rescheduling. 4837 */ 4838 static void 4839 ath_txq_sched_tasklet(void *arg, int npending) 4840 { 4841 struct ath_softc *sc = arg; 4842 int i; 4843 4844 /* XXX is skipping ok? */ 4845 ATH_PCU_LOCK(sc); 4846 #if 0 4847 if (sc->sc_inreset_cnt > 0) { 4848 device_printf(sc->sc_dev, 4849 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4850 ATH_PCU_UNLOCK(sc); 4851 return; 4852 } 4853 #endif 4854 sc->sc_txproc_cnt++; 4855 ATH_PCU_UNLOCK(sc); 4856 4857 ATH_LOCK(sc); 4858 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4859 ATH_UNLOCK(sc); 4860 4861 ATH_TX_LOCK(sc); 4862 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4863 if (ATH_TXQ_SETUP(sc, i)) { 4864 ath_txq_sched(sc, &sc->sc_txq[i]); 4865 } 4866 } 4867 ATH_TX_UNLOCK(sc); 4868 4869 ATH_LOCK(sc); 4870 ath_power_restore_power_state(sc); 4871 ATH_UNLOCK(sc); 4872 4873 ATH_PCU_LOCK(sc); 4874 sc->sc_txproc_cnt--; 4875 ATH_PCU_UNLOCK(sc); 4876 } 4877 4878 void 4879 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4880 { 4881 4882 ATH_TXBUF_LOCK_ASSERT(sc); 4883 4884 if (bf->bf_flags & ATH_BUF_MGMT) 4885 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4886 else { 4887 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4888 sc->sc_txbuf_cnt++; 4889 if (sc->sc_txbuf_cnt > ath_txbuf) { 4890 device_printf(sc->sc_dev, 4891 "%s: sc_txbuf_cnt > %d?\n", 4892 __func__, 4893 ath_txbuf); 4894 sc->sc_txbuf_cnt = ath_txbuf; 4895 } 4896 } 4897 } 4898 4899 void 4900 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4901 { 4902 4903 ATH_TXBUF_LOCK_ASSERT(sc); 4904 4905 if (bf->bf_flags & ATH_BUF_MGMT) 4906 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4907 else { 4908 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4909 sc->sc_txbuf_cnt++; 4910 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4911 device_printf(sc->sc_dev, 4912 "%s: sc_txbuf_cnt > %d?\n", 4913 __func__, 4914 ATH_TXBUF); 4915 sc->sc_txbuf_cnt = ATH_TXBUF; 4916 } 4917 } 4918 } 4919 4920 /* 4921 * Free the holding buffer if it exists 4922 */ 4923 void 4924 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4925 { 4926 ATH_TXBUF_UNLOCK_ASSERT(sc); 4927 ATH_TXQ_LOCK_ASSERT(txq); 4928 4929 if (txq->axq_holdingbf == NULL) 4930 return; 4931 4932 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4933 4934 ATH_TXBUF_LOCK(sc); 4935 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4936 ATH_TXBUF_UNLOCK(sc); 4937 4938 txq->axq_holdingbf = NULL; 4939 } 4940 4941 /* 4942 * Add this buffer to the holding queue, freeing the previous 4943 * one if it exists. 4944 */ 4945 static void 4946 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4947 { 4948 struct ath_txq *txq; 4949 4950 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4951 4952 ATH_TXBUF_UNLOCK_ASSERT(sc); 4953 ATH_TXQ_LOCK_ASSERT(txq); 4954 4955 /* XXX assert ATH_BUF_BUSY is set */ 4956 4957 /* XXX assert the tx queue is under the max number */ 4958 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4959 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4960 __func__, 4961 bf, 4962 bf->bf_state.bfs_tx_queue); 4963 bf->bf_flags &= ~ATH_BUF_BUSY; 4964 ath_returnbuf_tail(sc, bf); 4965 return; 4966 } 4967 ath_txq_freeholdingbuf(sc, txq); 4968 txq->axq_holdingbf = bf; 4969 } 4970 4971 /* 4972 * Return a buffer to the pool and update the 'busy' flag on the 4973 * previous 'tail' entry. 4974 * 4975 * This _must_ only be called when the buffer is involved in a completed 4976 * TX. The logic is that if it was part of an active TX, the previous 4977 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4978 * for restart (eg for TDMA.) 4979 * 4980 * The caller must free the mbuf and recycle the node reference. 4981 * 4982 * XXX This method of handling busy / holding buffers is insanely stupid. 4983 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4984 * be much nicer if buffers in the processq() methods would instead be 4985 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4986 * exactly what hardware queue they came from in the first place. 4987 */ 4988 void 4989 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4990 { 4991 struct ath_txq *txq; 4992 4993 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4994 4995 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4996 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4997 4998 /* 4999 * If this buffer is busy, push it onto the holding queue. 5000 */ 5001 if (bf->bf_flags & ATH_BUF_BUSY) { 5002 ATH_TXQ_LOCK(txq); 5003 ath_txq_addholdingbuf(sc, bf); 5004 ATH_TXQ_UNLOCK(txq); 5005 return; 5006 } 5007 5008 /* 5009 * Not a busy buffer, so free normally 5010 */ 5011 ATH_TXBUF_LOCK(sc); 5012 ath_returnbuf_tail(sc, bf); 5013 ATH_TXBUF_UNLOCK(sc); 5014 } 5015 5016 /* 5017 * This is currently used by ath_tx_draintxq() and 5018 * ath_tx_tid_free_pkts(). 5019 * 5020 * It recycles a single ath_buf. 5021 */ 5022 void 5023 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 5024 { 5025 struct ieee80211_node *ni = bf->bf_node; 5026 struct mbuf *m0 = bf->bf_m; 5027 5028 /* 5029 * Make sure that we only sync/unload if there's an mbuf. 5030 * If not (eg we cloned a buffer), the unload will have already 5031 * occured. 5032 */ 5033 if (bf->bf_m != NULL) { 5034 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 5035 BUS_DMASYNC_POSTWRITE); 5036 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 5037 } 5038 5039 bf->bf_node = NULL; 5040 bf->bf_m = NULL; 5041 5042 /* Free the buffer, it's not needed any longer */ 5043 ath_freebuf(sc, bf); 5044 5045 /* Pass the buffer back to net80211 - completing it */ 5046 ieee80211_tx_complete(ni, m0, status); 5047 } 5048 5049 static struct ath_buf * 5050 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 5051 { 5052 struct ath_buf *bf; 5053 5054 ATH_TXQ_LOCK_ASSERT(txq); 5055 5056 /* 5057 * Drain the FIFO queue first, then if it's 5058 * empty, move to the normal frame queue. 5059 */ 5060 bf = TAILQ_FIRST(&txq->fifo.axq_q); 5061 if (bf != NULL) { 5062 /* 5063 * Is it the last buffer in this set? 5064 * Decrement the FIFO counter. 5065 */ 5066 if (bf->bf_flags & ATH_BUF_FIFOEND) { 5067 if (txq->axq_fifo_depth == 0) { 5068 device_printf(sc->sc_dev, 5069 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 5070 __func__, 5071 txq->axq_qnum, 5072 txq->fifo.axq_depth); 5073 } else 5074 txq->axq_fifo_depth--; 5075 } 5076 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 5077 return (bf); 5078 } 5079 5080 /* 5081 * Debugging! 5082 */ 5083 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 5084 device_printf(sc->sc_dev, 5085 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 5086 __func__, 5087 txq->axq_qnum, 5088 txq->axq_fifo_depth, 5089 txq->fifo.axq_depth); 5090 } 5091 5092 /* 5093 * Now drain the pending queue. 5094 */ 5095 bf = TAILQ_FIRST(&txq->axq_q); 5096 if (bf == NULL) { 5097 txq->axq_link = NULL; 5098 return (NULL); 5099 } 5100 ATH_TXQ_REMOVE(txq, bf, bf_list); 5101 return (bf); 5102 } 5103 5104 void 5105 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5106 { 5107 #ifdef ATH_DEBUG 5108 struct ath_hal *ah = sc->sc_ah; 5109 #endif 5110 struct ath_buf *bf; 5111 u_int ix; 5112 5113 /* 5114 * NB: this assumes output has been stopped and 5115 * we do not need to block ath_tx_proc 5116 */ 5117 for (ix = 0;; ix++) { 5118 ATH_TXQ_LOCK(txq); 5119 bf = ath_tx_draintxq_get_one(sc, txq); 5120 if (bf == NULL) { 5121 ATH_TXQ_UNLOCK(txq); 5122 break; 5123 } 5124 if (bf->bf_state.bfs_aggr) 5125 txq->axq_aggr_depth--; 5126 #ifdef ATH_DEBUG 5127 if (sc->sc_debug & ATH_DEBUG_RESET) { 5128 struct ieee80211com *ic = &sc->sc_ic; 5129 int status = 0; 5130 5131 /* 5132 * EDMA operation has a TX completion FIFO 5133 * separate from the TX descriptor, so this 5134 * method of checking the "completion" status 5135 * is wrong. 5136 */ 5137 if (! sc->sc_isedma) { 5138 status = (ath_hal_txprocdesc(ah, 5139 bf->bf_lastds, 5140 &bf->bf_status.ds_txstat) == HAL_OK); 5141 } 5142 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 5143 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5144 bf->bf_m->m_len, 0, -1); 5145 } 5146 #endif /* ATH_DEBUG */ 5147 /* 5148 * Since we're now doing magic in the completion 5149 * functions, we -must- call it for aggregation 5150 * destinations or BAW tracking will get upset. 5151 */ 5152 /* 5153 * Clear ATH_BUF_BUSY; the completion handler 5154 * will free the buffer. 5155 */ 5156 ATH_TXQ_UNLOCK(txq); 5157 bf->bf_flags &= ~ATH_BUF_BUSY; 5158 if (bf->bf_comp) 5159 bf->bf_comp(sc, bf, 1); 5160 else 5161 ath_tx_default_comp(sc, bf, 1); 5162 } 5163 5164 /* 5165 * Free the holding buffer if it exists 5166 */ 5167 ATH_TXQ_LOCK(txq); 5168 ath_txq_freeholdingbuf(sc, txq); 5169 ATH_TXQ_UNLOCK(txq); 5170 5171 /* 5172 * Drain software queued frames which are on 5173 * active TIDs. 5174 */ 5175 ath_tx_txq_drain(sc, txq); 5176 } 5177 5178 static void 5179 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5180 { 5181 struct ath_hal *ah = sc->sc_ah; 5182 5183 ATH_TXQ_LOCK_ASSERT(txq); 5184 5185 DPRINTF(sc, ATH_DEBUG_RESET, 5186 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 5187 "link %p, holdingbf=%p\n", 5188 __func__, 5189 txq->axq_qnum, 5190 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5191 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 5192 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 5193 txq->axq_flags, 5194 txq->axq_link, 5195 txq->axq_holdingbf); 5196 5197 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5198 /* We've stopped TX DMA, so mark this as stopped. */ 5199 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 5200 5201 #ifdef ATH_DEBUG 5202 if ((sc->sc_debug & ATH_DEBUG_RESET) 5203 && (txq->axq_holdingbf != NULL)) { 5204 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 5205 } 5206 #endif 5207 } 5208 5209 int 5210 ath_stoptxdma(struct ath_softc *sc) 5211 { 5212 struct ath_hal *ah = sc->sc_ah; 5213 int i; 5214 5215 /* XXX return value */ 5216 if (sc->sc_invalid) 5217 return 0; 5218 5219 if (!sc->sc_invalid) { 5220 /* don't touch the hardware if marked invalid */ 5221 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5222 __func__, sc->sc_bhalq, 5223 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5224 NULL); 5225 5226 /* stop the beacon queue */ 5227 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5228 5229 /* Stop the data queues */ 5230 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5231 if (ATH_TXQ_SETUP(sc, i)) { 5232 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5233 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5234 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5235 } 5236 } 5237 } 5238 5239 return 1; 5240 } 5241 5242 #ifdef ATH_DEBUG 5243 void 5244 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 5245 { 5246 struct ath_hal *ah = sc->sc_ah; 5247 struct ath_buf *bf; 5248 int i = 0; 5249 5250 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 5251 return; 5252 5253 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 5254 __func__, txq->axq_qnum); 5255 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 5256 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 5257 ath_hal_txprocdesc(ah, bf->bf_lastds, 5258 &bf->bf_status.ds_txstat) == HAL_OK); 5259 i++; 5260 } 5261 device_printf(sc->sc_dev, "%s: Q%d: end\n", 5262 __func__, txq->axq_qnum); 5263 } 5264 #endif /* ATH_DEBUG */ 5265 5266 /* 5267 * Drain the transmit queues and reclaim resources. 5268 */ 5269 void 5270 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5271 { 5272 struct ath_hal *ah = sc->sc_ah; 5273 struct ath_buf *bf_last; 5274 int i; 5275 5276 (void) ath_stoptxdma(sc); 5277 5278 /* 5279 * Dump the queue contents 5280 */ 5281 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5282 /* 5283 * XXX TODO: should we just handle the completed TX frames 5284 * here, whether or not the reset is a full one or not? 5285 */ 5286 if (ATH_TXQ_SETUP(sc, i)) { 5287 #ifdef ATH_DEBUG 5288 if (sc->sc_debug & ATH_DEBUG_RESET) 5289 ath_tx_dump(sc, &sc->sc_txq[i]); 5290 #endif /* ATH_DEBUG */ 5291 if (reset_type == ATH_RESET_NOLOSS) { 5292 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5293 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5294 /* 5295 * Free the holding buffer; DMA is now 5296 * stopped. 5297 */ 5298 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 5299 /* 5300 * Setup the link pointer to be the 5301 * _last_ buffer/descriptor in the list. 5302 * If there's nothing in the list, set it 5303 * to NULL. 5304 */ 5305 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5306 axq_q_s); 5307 if (bf_last != NULL) { 5308 ath_hal_gettxdesclinkptr(ah, 5309 bf_last->bf_lastds, 5310 &sc->sc_txq[i].axq_link); 5311 } else { 5312 sc->sc_txq[i].axq_link = NULL; 5313 } 5314 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5315 } else 5316 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5317 } 5318 } 5319 #ifdef ATH_DEBUG 5320 if (sc->sc_debug & ATH_DEBUG_RESET) { 5321 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5322 if (bf != NULL && bf->bf_m != NULL) { 5323 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5324 ath_hal_txprocdesc(ah, bf->bf_lastds, 5325 &bf->bf_status.ds_txstat) == HAL_OK); 5326 ieee80211_dump_pkt(&sc->sc_ic, 5327 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5328 0, -1); 5329 } 5330 } 5331 #endif /* ATH_DEBUG */ 5332 sc->sc_wd_timer = 0; 5333 } 5334 5335 /* 5336 * Update internal state after a channel change. 5337 */ 5338 static void 5339 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5340 { 5341 enum ieee80211_phymode mode; 5342 5343 /* 5344 * Change channels and update the h/w rate map 5345 * if we're switching; e.g. 11a to 11b/g. 5346 */ 5347 mode = ieee80211_chan2mode(chan); 5348 if (mode != sc->sc_curmode) 5349 ath_setcurmode(sc, mode); 5350 sc->sc_curchan = chan; 5351 } 5352 5353 /* 5354 * Set/change channels. If the channel is really being changed, 5355 * it's done by resetting the chip. To accomplish this we must 5356 * first cleanup any pending DMA, then restart stuff after a la 5357 * ath_init. 5358 */ 5359 static int 5360 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5361 { 5362 struct ieee80211com *ic = &sc->sc_ic; 5363 struct ath_hal *ah = sc->sc_ah; 5364 int ret = 0; 5365 5366 /* Treat this as an interface reset */ 5367 ATH_PCU_UNLOCK_ASSERT(sc); 5368 ATH_UNLOCK_ASSERT(sc); 5369 5370 /* (Try to) stop TX/RX from occuring */ 5371 taskqueue_block(sc->sc_tq); 5372 5373 ATH_PCU_LOCK(sc); 5374 5375 /* Disable interrupts */ 5376 ath_hal_intrset(ah, 0); 5377 5378 /* Stop new RX/TX/interrupt completion */ 5379 if (ath_reset_grablock(sc, 1) == 0) { 5380 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5381 __func__); 5382 } 5383 5384 /* Stop pending RX/TX completion */ 5385 ath_txrx_stop_locked(sc); 5386 5387 ATH_PCU_UNLOCK(sc); 5388 5389 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5390 __func__, ieee80211_chan2ieee(ic, chan), 5391 chan->ic_freq, chan->ic_flags); 5392 if (chan != sc->sc_curchan) { 5393 HAL_STATUS status; 5394 /* 5395 * To switch channels clear any pending DMA operations; 5396 * wait long enough for the RX fifo to drain, reset the 5397 * hardware at the new frequency, and then re-enable 5398 * the relevant bits of the h/w. 5399 */ 5400 #if 0 5401 ath_hal_intrset(ah, 0); /* disable interrupts */ 5402 #endif 5403 ath_stoprecv(sc, 1); /* turn off frame recv */ 5404 /* 5405 * First, handle completed TX/RX frames. 5406 */ 5407 ath_rx_flush(sc); 5408 ath_draintxq(sc, ATH_RESET_NOLOSS); 5409 /* 5410 * Next, flush the non-scheduled frames. 5411 */ 5412 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5413 5414 ath_update_chainmasks(sc, chan); 5415 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5416 sc->sc_cur_rxchainmask); 5417 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 5418 device_printf(sc->sc_dev, "%s: unable to reset " 5419 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5420 __func__, ieee80211_chan2ieee(ic, chan), 5421 chan->ic_freq, chan->ic_flags, status); 5422 ret = EIO; 5423 goto finish; 5424 } 5425 sc->sc_diversity = ath_hal_getdiversity(ah); 5426 5427 ATH_RX_LOCK(sc); 5428 sc->sc_rx_stopped = 1; 5429 sc->sc_rx_resetted = 1; 5430 ATH_RX_UNLOCK(sc); 5431 5432 /* Let DFS at it in case it's a DFS channel */ 5433 ath_dfs_radar_enable(sc, chan); 5434 5435 /* Let spectral at in case spectral is enabled */ 5436 ath_spectral_enable(sc, chan); 5437 5438 /* 5439 * Let bluetooth coexistence at in case it's needed for this 5440 * channel 5441 */ 5442 ath_btcoex_enable(sc, ic->ic_curchan); 5443 5444 /* 5445 * If we're doing TDMA, enforce the TXOP limitation for chips 5446 * that support it. 5447 */ 5448 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5449 ath_hal_setenforcetxop(sc->sc_ah, 1); 5450 else 5451 ath_hal_setenforcetxop(sc->sc_ah, 0); 5452 5453 /* 5454 * Re-enable rx framework. 5455 */ 5456 if (ath_startrecv(sc) != 0) { 5457 device_printf(sc->sc_dev, 5458 "%s: unable to restart recv logic\n", __func__); 5459 ret = EIO; 5460 goto finish; 5461 } 5462 5463 /* 5464 * Change channels and update the h/w rate map 5465 * if we're switching; e.g. 11a to 11b/g. 5466 */ 5467 ath_chan_change(sc, chan); 5468 5469 /* 5470 * Reset clears the beacon timers; reset them 5471 * here if needed. 5472 */ 5473 if (sc->sc_beacons) { /* restart beacons */ 5474 #ifdef IEEE80211_SUPPORT_TDMA 5475 if (sc->sc_tdma) 5476 ath_tdma_config(sc, NULL); 5477 else 5478 #endif 5479 ath_beacon_config(sc, NULL); 5480 } 5481 5482 /* 5483 * Re-enable interrupts. 5484 */ 5485 #if 0 5486 ath_hal_intrset(ah, sc->sc_imask); 5487 #endif 5488 } 5489 5490 finish: 5491 ATH_PCU_LOCK(sc); 5492 sc->sc_inreset_cnt--; 5493 /* XXX only do this if sc_inreset_cnt == 0? */ 5494 ath_hal_intrset(ah, sc->sc_imask); 5495 ATH_PCU_UNLOCK(sc); 5496 5497 ath_txrx_start(sc); 5498 /* XXX ath_start? */ 5499 5500 return ret; 5501 } 5502 5503 /* 5504 * Periodically recalibrate the PHY to account 5505 * for temperature/environment changes. 5506 */ 5507 static void 5508 ath_calibrate(void *arg) 5509 { 5510 struct ath_softc *sc = arg; 5511 struct ath_hal *ah = sc->sc_ah; 5512 struct ieee80211com *ic = &sc->sc_ic; 5513 HAL_BOOL longCal, isCalDone = AH_TRUE; 5514 HAL_BOOL aniCal, shortCal = AH_FALSE; 5515 int nextcal; 5516 5517 ATH_LOCK_ASSERT(sc); 5518 5519 /* 5520 * Force the hardware awake for ANI work. 5521 */ 5522 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5523 5524 /* Skip trying to do this if we're in reset */ 5525 if (sc->sc_inreset_cnt) 5526 goto restart; 5527 5528 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5529 goto restart; 5530 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5531 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5532 if (sc->sc_doresetcal) 5533 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5534 5535 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5536 if (aniCal) { 5537 sc->sc_stats.ast_ani_cal++; 5538 sc->sc_lastani = ticks; 5539 ath_hal_ani_poll(ah, sc->sc_curchan); 5540 } 5541 5542 if (longCal) { 5543 sc->sc_stats.ast_per_cal++; 5544 sc->sc_lastlongcal = ticks; 5545 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5546 /* 5547 * Rfgain is out of bounds, reset the chip 5548 * to load new gain values. 5549 */ 5550 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5551 "%s: rfgain change\n", __func__); 5552 sc->sc_stats.ast_per_rfgain++; 5553 sc->sc_resetcal = 0; 5554 sc->sc_doresetcal = AH_TRUE; 5555 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5556 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5557 ath_power_restore_power_state(sc); 5558 return; 5559 } 5560 /* 5561 * If this long cal is after an idle period, then 5562 * reset the data collection state so we start fresh. 5563 */ 5564 if (sc->sc_resetcal) { 5565 (void) ath_hal_calreset(ah, sc->sc_curchan); 5566 sc->sc_lastcalreset = ticks; 5567 sc->sc_lastshortcal = ticks; 5568 sc->sc_resetcal = 0; 5569 sc->sc_doresetcal = AH_TRUE; 5570 } 5571 } 5572 5573 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5574 if (shortCal || longCal) { 5575 isCalDone = AH_FALSE; 5576 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5577 if (longCal) { 5578 /* 5579 * Calibrate noise floor data again in case of change. 5580 */ 5581 ath_hal_process_noisefloor(ah); 5582 } 5583 } else { 5584 DPRINTF(sc, ATH_DEBUG_ANY, 5585 "%s: calibration of channel %u failed\n", 5586 __func__, sc->sc_curchan->ic_freq); 5587 sc->sc_stats.ast_per_calfail++; 5588 } 5589 if (shortCal) 5590 sc->sc_lastshortcal = ticks; 5591 } 5592 if (!isCalDone) { 5593 restart: 5594 /* 5595 * Use a shorter interval to potentially collect multiple 5596 * data samples required to complete calibration. Once 5597 * we're told the work is done we drop back to a longer 5598 * interval between requests. We're more aggressive doing 5599 * work when operating as an AP to improve operation right 5600 * after startup. 5601 */ 5602 sc->sc_lastshortcal = ticks; 5603 nextcal = ath_shortcalinterval*hz/1000; 5604 if (sc->sc_opmode != HAL_M_HOSTAP) 5605 nextcal *= 10; 5606 sc->sc_doresetcal = AH_TRUE; 5607 } else { 5608 /* nextcal should be the shortest time for next event */ 5609 nextcal = ath_longcalinterval*hz; 5610 if (sc->sc_lastcalreset == 0) 5611 sc->sc_lastcalreset = sc->sc_lastlongcal; 5612 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5613 sc->sc_resetcal = 1; /* setup reset next trip */ 5614 sc->sc_doresetcal = AH_FALSE; 5615 } 5616 /* ANI calibration may occur more often than short/long/resetcal */ 5617 if (ath_anicalinterval > 0) 5618 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5619 5620 if (nextcal != 0) { 5621 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5622 __func__, nextcal, isCalDone ? "" : "!"); 5623 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5624 } else { 5625 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5626 __func__); 5627 /* NB: don't rearm timer */ 5628 } 5629 /* 5630 * Restore power state now that we're done. 5631 */ 5632 ath_power_restore_power_state(sc); 5633 } 5634 5635 static void 5636 ath_scan_start(struct ieee80211com *ic) 5637 { 5638 struct ath_softc *sc = ic->ic_softc; 5639 struct ath_hal *ah = sc->sc_ah; 5640 u_int32_t rfilt; 5641 5642 /* XXX calibration timer? */ 5643 /* XXXGL: is constant ieee80211broadcastaddr a correct choice? */ 5644 5645 ATH_LOCK(sc); 5646 sc->sc_scanning = 1; 5647 sc->sc_syncbeacon = 0; 5648 rfilt = ath_calcrxfilter(sc); 5649 ATH_UNLOCK(sc); 5650 5651 ATH_PCU_LOCK(sc); 5652 ath_hal_setrxfilter(ah, rfilt); 5653 ath_hal_setassocid(ah, ieee80211broadcastaddr, 0); 5654 ATH_PCU_UNLOCK(sc); 5655 5656 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5657 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr)); 5658 } 5659 5660 static void 5661 ath_scan_end(struct ieee80211com *ic) 5662 { 5663 struct ath_softc *sc = ic->ic_softc; 5664 struct ath_hal *ah = sc->sc_ah; 5665 u_int32_t rfilt; 5666 5667 ATH_LOCK(sc); 5668 sc->sc_scanning = 0; 5669 rfilt = ath_calcrxfilter(sc); 5670 ATH_UNLOCK(sc); 5671 5672 ATH_PCU_LOCK(sc); 5673 ath_hal_setrxfilter(ah, rfilt); 5674 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5675 5676 ath_hal_process_noisefloor(ah); 5677 ATH_PCU_UNLOCK(sc); 5678 5679 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5680 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5681 sc->sc_curaid); 5682 } 5683 5684 #ifdef ATH_ENABLE_11N 5685 /* 5686 * For now, just do a channel change. 5687 * 5688 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5689 * control state and resetting the hardware without dropping frames out 5690 * of the queue. 5691 * 5692 * The unfortunate trouble here is making absolutely sure that the 5693 * channel width change has propagated enough so the hardware 5694 * absolutely isn't handed bogus frames for it's current operating 5695 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5696 * does occur in parallel, we need to make certain we've blocked 5697 * any further ongoing TX (and RX, that can cause raw TX) 5698 * before we do this. 5699 */ 5700 static void 5701 ath_update_chw(struct ieee80211com *ic) 5702 { 5703 struct ath_softc *sc = ic->ic_softc; 5704 5705 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5706 ath_set_channel(ic); 5707 } 5708 #endif /* ATH_ENABLE_11N */ 5709 5710 static void 5711 ath_set_channel(struct ieee80211com *ic) 5712 { 5713 struct ath_softc *sc = ic->ic_softc; 5714 5715 ATH_LOCK(sc); 5716 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5717 ATH_UNLOCK(sc); 5718 5719 (void) ath_chan_set(sc, ic->ic_curchan); 5720 /* 5721 * If we are returning to our bss channel then mark state 5722 * so the next recv'd beacon's tsf will be used to sync the 5723 * beacon timers. Note that since we only hear beacons in 5724 * sta/ibss mode this has no effect in other operating modes. 5725 */ 5726 ATH_LOCK(sc); 5727 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5728 sc->sc_syncbeacon = 1; 5729 ath_power_restore_power_state(sc); 5730 ATH_UNLOCK(sc); 5731 } 5732 5733 /* 5734 * Walk the vap list and check if there any vap's in RUN state. 5735 */ 5736 static int 5737 ath_isanyrunningvaps(struct ieee80211vap *this) 5738 { 5739 struct ieee80211com *ic = this->iv_ic; 5740 struct ieee80211vap *vap; 5741 5742 IEEE80211_LOCK_ASSERT(ic); 5743 5744 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5745 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5746 return 1; 5747 } 5748 return 0; 5749 } 5750 5751 static int 5752 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5753 { 5754 struct ieee80211com *ic = vap->iv_ic; 5755 struct ath_softc *sc = ic->ic_softc; 5756 struct ath_vap *avp = ATH_VAP(vap); 5757 struct ath_hal *ah = sc->sc_ah; 5758 struct ieee80211_node *ni = NULL; 5759 int i, error, stamode; 5760 u_int32_t rfilt; 5761 int csa_run_transition = 0; 5762 enum ieee80211_state ostate = vap->iv_state; 5763 5764 static const HAL_LED_STATE leds[] = { 5765 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5766 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5767 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5768 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5769 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5770 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5771 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5772 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5773 }; 5774 5775 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5776 ieee80211_state_name[ostate], 5777 ieee80211_state_name[nstate]); 5778 5779 /* 5780 * net80211 _should_ have the comlock asserted at this point. 5781 * There are some comments around the calls to vap->iv_newstate 5782 * which indicate that it (newstate) may end up dropping the 5783 * lock. This and the subsequent lock assert check after newstate 5784 * are an attempt to catch these and figure out how/why. 5785 */ 5786 IEEE80211_LOCK_ASSERT(ic); 5787 5788 /* Before we touch the hardware - wake it up */ 5789 ATH_LOCK(sc); 5790 /* 5791 * If the NIC is in anything other than SLEEP state, 5792 * we need to ensure that self-generated frames are 5793 * set for PWRMGT=0. Otherwise we may end up with 5794 * strange situations. 5795 * 5796 * XXX TODO: is this actually the case? :-) 5797 */ 5798 if (nstate != IEEE80211_S_SLEEP) 5799 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5800 5801 /* 5802 * Now, wake the thing up. 5803 */ 5804 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5805 5806 /* 5807 * And stop the calibration callout whilst we have 5808 * ATH_LOCK held. 5809 */ 5810 callout_stop(&sc->sc_cal_ch); 5811 ATH_UNLOCK(sc); 5812 5813 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5814 csa_run_transition = 1; 5815 5816 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5817 5818 if (nstate == IEEE80211_S_SCAN) { 5819 /* 5820 * Scanning: turn off beacon miss and don't beacon. 5821 * Mark beacon state so when we reach RUN state we'll 5822 * [re]setup beacons. Unblock the task q thread so 5823 * deferred interrupt processing is done. 5824 */ 5825 5826 /* Ensure we stay awake during scan */ 5827 ATH_LOCK(sc); 5828 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5829 ath_power_setpower(sc, HAL_PM_AWAKE); 5830 ATH_UNLOCK(sc); 5831 5832 ath_hal_intrset(ah, 5833 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5834 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5835 sc->sc_beacons = 0; 5836 taskqueue_unblock(sc->sc_tq); 5837 } 5838 5839 ni = ieee80211_ref_node(vap->iv_bss); 5840 rfilt = ath_calcrxfilter(sc); 5841 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5842 vap->iv_opmode == IEEE80211_M_AHDEMO || 5843 vap->iv_opmode == IEEE80211_M_IBSS); 5844 5845 /* 5846 * XXX Dont need to do this (and others) if we've transitioned 5847 * from SLEEP->RUN. 5848 */ 5849 if (stamode && nstate == IEEE80211_S_RUN) { 5850 sc->sc_curaid = ni->ni_associd; 5851 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5852 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5853 } 5854 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5855 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5856 ath_hal_setrxfilter(ah, rfilt); 5857 5858 /* XXX is this to restore keycache on resume? */ 5859 if (vap->iv_opmode != IEEE80211_M_STA && 5860 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5861 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5862 if (ath_hal_keyisvalid(ah, i)) 5863 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5864 } 5865 5866 /* 5867 * Invoke the parent method to do net80211 work. 5868 */ 5869 error = avp->av_newstate(vap, nstate, arg); 5870 if (error != 0) 5871 goto bad; 5872 5873 /* 5874 * See above: ensure av_newstate() doesn't drop the lock 5875 * on us. 5876 */ 5877 IEEE80211_LOCK_ASSERT(ic); 5878 5879 if (nstate == IEEE80211_S_RUN) { 5880 /* NB: collect bss node again, it may have changed */ 5881 ieee80211_free_node(ni); 5882 ni = ieee80211_ref_node(vap->iv_bss); 5883 5884 DPRINTF(sc, ATH_DEBUG_STATE, 5885 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5886 "capinfo 0x%04x chan %d\n", __func__, 5887 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5888 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5889 5890 switch (vap->iv_opmode) { 5891 #ifdef IEEE80211_SUPPORT_TDMA 5892 case IEEE80211_M_AHDEMO: 5893 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5894 break; 5895 /* fall thru... */ 5896 #endif 5897 case IEEE80211_M_HOSTAP: 5898 case IEEE80211_M_IBSS: 5899 case IEEE80211_M_MBSS: 5900 /* 5901 * Allocate and setup the beacon frame. 5902 * 5903 * Stop any previous beacon DMA. This may be 5904 * necessary, for example, when an ibss merge 5905 * causes reconfiguration; there will be a state 5906 * transition from RUN->RUN that means we may 5907 * be called with beacon transmission active. 5908 */ 5909 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5910 5911 error = ath_beacon_alloc(sc, ni); 5912 if (error != 0) 5913 goto bad; 5914 /* 5915 * If joining an adhoc network defer beacon timer 5916 * configuration to the next beacon frame so we 5917 * have a current TSF to use. Otherwise we're 5918 * starting an ibss/bss so there's no need to delay; 5919 * if this is the first vap moving to RUN state, then 5920 * beacon state needs to be [re]configured. 5921 */ 5922 if (vap->iv_opmode == IEEE80211_M_IBSS && 5923 ni->ni_tstamp.tsf != 0) { 5924 sc->sc_syncbeacon = 1; 5925 } else if (!sc->sc_beacons) { 5926 #ifdef IEEE80211_SUPPORT_TDMA 5927 if (vap->iv_caps & IEEE80211_C_TDMA) 5928 ath_tdma_config(sc, vap); 5929 else 5930 #endif 5931 ath_beacon_config(sc, vap); 5932 sc->sc_beacons = 1; 5933 } 5934 break; 5935 case IEEE80211_M_STA: 5936 /* 5937 * Defer beacon timer configuration to the next 5938 * beacon frame so we have a current TSF to use 5939 * (any TSF collected when scanning is likely old). 5940 * However if it's due to a CSA -> RUN transition, 5941 * force a beacon update so we pick up a lack of 5942 * beacons from an AP in CAC and thus force a 5943 * scan. 5944 * 5945 * And, there's also corner cases here where 5946 * after a scan, the AP may have disappeared. 5947 * In that case, we may not receive an actual 5948 * beacon to update the beacon timer and thus we 5949 * won't get notified of the missing beacons. 5950 */ 5951 if (ostate != IEEE80211_S_RUN && 5952 ostate != IEEE80211_S_SLEEP) { 5953 DPRINTF(sc, ATH_DEBUG_BEACON, 5954 "%s: STA; syncbeacon=1\n", __func__); 5955 sc->sc_syncbeacon = 1; 5956 5957 if (csa_run_transition) 5958 ath_beacon_config(sc, vap); 5959 5960 /* 5961 * PR: kern/175227 5962 * 5963 * Reconfigure beacons during reset; as otherwise 5964 * we won't get the beacon timers reprogrammed 5965 * after a reset and thus we won't pick up a 5966 * beacon miss interrupt. 5967 * 5968 * Hopefully we'll see a beacon before the BMISS 5969 * timer fires (too often), leading to a STA 5970 * disassociation. 5971 */ 5972 sc->sc_beacons = 1; 5973 } 5974 break; 5975 case IEEE80211_M_MONITOR: 5976 /* 5977 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5978 * transitions so we must re-enable interrupts here to 5979 * handle the case of a single monitor mode vap. 5980 */ 5981 ath_hal_intrset(ah, sc->sc_imask); 5982 break; 5983 case IEEE80211_M_WDS: 5984 break; 5985 default: 5986 break; 5987 } 5988 /* 5989 * Let the hal process statistics collected during a 5990 * scan so it can provide calibrated noise floor data. 5991 */ 5992 ath_hal_process_noisefloor(ah); 5993 /* 5994 * Reset rssi stats; maybe not the best place... 5995 */ 5996 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5997 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5998 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5999 6000 /* 6001 * Force awake for RUN mode. 6002 */ 6003 ATH_LOCK(sc); 6004 ath_power_setselfgen(sc, HAL_PM_AWAKE); 6005 ath_power_setpower(sc, HAL_PM_AWAKE); 6006 6007 /* 6008 * Finally, start any timers and the task q thread 6009 * (in case we didn't go through SCAN state). 6010 */ 6011 if (ath_longcalinterval != 0) { 6012 /* start periodic recalibration timer */ 6013 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6014 } else { 6015 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6016 "%s: calibration disabled\n", __func__); 6017 } 6018 ATH_UNLOCK(sc); 6019 6020 taskqueue_unblock(sc->sc_tq); 6021 } else if (nstate == IEEE80211_S_INIT) { 6022 /* 6023 * If there are no vaps left in RUN state then 6024 * shutdown host/driver operation: 6025 * o disable interrupts 6026 * o disable the task queue thread 6027 * o mark beacon processing as stopped 6028 */ 6029 if (!ath_isanyrunningvaps(vap)) { 6030 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 6031 /* disable interrupts */ 6032 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 6033 taskqueue_block(sc->sc_tq); 6034 sc->sc_beacons = 0; 6035 } 6036 #ifdef IEEE80211_SUPPORT_TDMA 6037 ath_hal_setcca(ah, AH_TRUE); 6038 #endif 6039 } else if (nstate == IEEE80211_S_SLEEP) { 6040 /* We're going to sleep, so transition appropriately */ 6041 /* For now, only do this if we're a single STA vap */ 6042 if (sc->sc_nvaps == 1 && 6043 vap->iv_opmode == IEEE80211_M_STA) { 6044 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 6045 ATH_LOCK(sc); 6046 /* 6047 * Always at least set the self-generated 6048 * frame config to set PWRMGT=1. 6049 */ 6050 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 6051 6052 /* 6053 * If we're not syncing beacons, transition 6054 * to NETWORK_SLEEP. 6055 * 6056 * We stay awake if syncbeacon > 0 in case 6057 * we need to listen for some beacons otherwise 6058 * our beacon timer config may be wrong. 6059 */ 6060 if (sc->sc_syncbeacon == 0) { 6061 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP); 6062 } 6063 ATH_UNLOCK(sc); 6064 } 6065 } 6066 bad: 6067 ieee80211_free_node(ni); 6068 6069 /* 6070 * Restore the power state - either to what it was, or 6071 * to network_sleep if it's alright. 6072 */ 6073 ATH_LOCK(sc); 6074 ath_power_restore_power_state(sc); 6075 ATH_UNLOCK(sc); 6076 return error; 6077 } 6078 6079 /* 6080 * Allocate a key cache slot to the station so we can 6081 * setup a mapping from key index to node. The key cache 6082 * slot is needed for managing antenna state and for 6083 * compression when stations do not use crypto. We do 6084 * it uniliaterally here; if crypto is employed this slot 6085 * will be reassigned. 6086 */ 6087 static void 6088 ath_setup_stationkey(struct ieee80211_node *ni) 6089 { 6090 struct ieee80211vap *vap = ni->ni_vap; 6091 struct ath_softc *sc = vap->iv_ic->ic_softc; 6092 ieee80211_keyix keyix, rxkeyix; 6093 6094 /* XXX should take a locked ref to vap->iv_bss */ 6095 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 6096 /* 6097 * Key cache is full; we'll fall back to doing 6098 * the more expensive lookup in software. Note 6099 * this also means no h/w compression. 6100 */ 6101 /* XXX msg+statistic */ 6102 } else { 6103 /* XXX locking? */ 6104 ni->ni_ucastkey.wk_keyix = keyix; 6105 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 6106 /* NB: must mark device key to get called back on delete */ 6107 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 6108 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 6109 /* NB: this will create a pass-thru key entry */ 6110 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 6111 } 6112 } 6113 6114 /* 6115 * Setup driver-specific state for a newly associated node. 6116 * Note that we're called also on a re-associate, the isnew 6117 * param tells us if this is the first time or not. 6118 */ 6119 static void 6120 ath_newassoc(struct ieee80211_node *ni, int isnew) 6121 { 6122 struct ath_node *an = ATH_NODE(ni); 6123 struct ieee80211vap *vap = ni->ni_vap; 6124 struct ath_softc *sc = vap->iv_ic->ic_softc; 6125 const struct ieee80211_txparam *tp = ni->ni_txparms; 6126 6127 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 6128 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 6129 6130 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 6131 __func__, 6132 ni->ni_macaddr, 6133 ":", 6134 isnew, 6135 an->an_is_powersave); 6136 6137 ATH_NODE_LOCK(an); 6138 ath_rate_newassoc(sc, an, isnew); 6139 ATH_NODE_UNLOCK(an); 6140 6141 if (isnew && 6142 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6143 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6144 ath_setup_stationkey(ni); 6145 6146 /* 6147 * If we're reassociating, make sure that any paused queues 6148 * get unpaused. 6149 * 6150 * Now, we may hvae frames in the hardware queue for this node. 6151 * So if we are reassociating and there are frames in the queue, 6152 * we need to go through the cleanup path to ensure that they're 6153 * marked as non-aggregate. 6154 */ 6155 if (! isnew) { 6156 DPRINTF(sc, ATH_DEBUG_NODE, 6157 "%s: %6D: reassoc; is_powersave=%d\n", 6158 __func__, 6159 ni->ni_macaddr, 6160 ":", 6161 an->an_is_powersave); 6162 6163 /* XXX for now, we can't hold the lock across assoc */ 6164 ath_tx_node_reassoc(sc, an); 6165 6166 /* XXX for now, we can't hold the lock across wakeup */ 6167 if (an->an_is_powersave) 6168 ath_tx_node_wakeup(sc, an); 6169 } 6170 } 6171 6172 static int 6173 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6174 int nchans, struct ieee80211_channel chans[]) 6175 { 6176 struct ath_softc *sc = ic->ic_softc; 6177 struct ath_hal *ah = sc->sc_ah; 6178 HAL_STATUS status; 6179 6180 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6181 "%s: rd %u cc %u location %c%s\n", 6182 __func__, reg->regdomain, reg->country, reg->location, 6183 reg->ecm ? " ecm" : ""); 6184 6185 status = ath_hal_set_channels(ah, chans, nchans, 6186 reg->country, reg->regdomain); 6187 if (status != HAL_OK) { 6188 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6189 __func__, status); 6190 return EINVAL; /* XXX */ 6191 } 6192 6193 return 0; 6194 } 6195 6196 static void 6197 ath_getradiocaps(struct ieee80211com *ic, 6198 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6199 { 6200 struct ath_softc *sc = ic->ic_softc; 6201 struct ath_hal *ah = sc->sc_ah; 6202 6203 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6204 __func__, SKU_DEBUG, CTRY_DEFAULT); 6205 6206 /* XXX check return */ 6207 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6208 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6209 6210 } 6211 6212 static int 6213 ath_getchannels(struct ath_softc *sc) 6214 { 6215 struct ieee80211com *ic = &sc->sc_ic; 6216 struct ath_hal *ah = sc->sc_ah; 6217 HAL_STATUS status; 6218 6219 /* 6220 * Collect channel set based on EEPROM contents. 6221 */ 6222 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6223 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6224 if (status != HAL_OK) { 6225 device_printf(sc->sc_dev, 6226 "%s: unable to collect channel list from hal, status %d\n", 6227 __func__, status); 6228 return EINVAL; 6229 } 6230 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6231 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6232 /* XXX map Atheros sku's to net80211 SKU's */ 6233 /* XXX net80211 types too small */ 6234 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6235 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6236 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6237 ic->ic_regdomain.isocc[1] = ' '; 6238 6239 ic->ic_regdomain.ecm = 1; 6240 ic->ic_regdomain.location = 'I'; 6241 6242 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6243 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6244 __func__, sc->sc_eerd, sc->sc_eecc, 6245 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6246 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6247 return 0; 6248 } 6249 6250 static int 6251 ath_rate_setup(struct ath_softc *sc, u_int mode) 6252 { 6253 struct ath_hal *ah = sc->sc_ah; 6254 const HAL_RATE_TABLE *rt; 6255 6256 switch (mode) { 6257 case IEEE80211_MODE_11A: 6258 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6259 break; 6260 case IEEE80211_MODE_HALF: 6261 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6262 break; 6263 case IEEE80211_MODE_QUARTER: 6264 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6265 break; 6266 case IEEE80211_MODE_11B: 6267 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6268 break; 6269 case IEEE80211_MODE_11G: 6270 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6271 break; 6272 case IEEE80211_MODE_TURBO_A: 6273 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6274 break; 6275 case IEEE80211_MODE_TURBO_G: 6276 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6277 break; 6278 case IEEE80211_MODE_STURBO_A: 6279 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6280 break; 6281 case IEEE80211_MODE_11NA: 6282 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6283 break; 6284 case IEEE80211_MODE_11NG: 6285 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6286 break; 6287 default: 6288 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6289 __func__, mode); 6290 return 0; 6291 } 6292 sc->sc_rates[mode] = rt; 6293 return (rt != NULL); 6294 } 6295 6296 static void 6297 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6298 { 6299 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6300 static const struct { 6301 u_int rate; /* tx/rx 802.11 rate */ 6302 u_int16_t timeOn; /* LED on time (ms) */ 6303 u_int16_t timeOff; /* LED off time (ms) */ 6304 } blinkrates[] = { 6305 { 108, 40, 10 }, 6306 { 96, 44, 11 }, 6307 { 72, 50, 13 }, 6308 { 48, 57, 14 }, 6309 { 36, 67, 16 }, 6310 { 24, 80, 20 }, 6311 { 22, 100, 25 }, 6312 { 18, 133, 34 }, 6313 { 12, 160, 40 }, 6314 { 10, 200, 50 }, 6315 { 6, 240, 58 }, 6316 { 4, 267, 66 }, 6317 { 2, 400, 100 }, 6318 { 0, 500, 130 }, 6319 /* XXX half/quarter rates */ 6320 }; 6321 const HAL_RATE_TABLE *rt; 6322 int i, j; 6323 6324 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6325 rt = sc->sc_rates[mode]; 6326 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6327 for (i = 0; i < rt->rateCount; i++) { 6328 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6329 if (rt->info[i].phy != IEEE80211_T_HT) 6330 sc->sc_rixmap[ieeerate] = i; 6331 else 6332 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6333 } 6334 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6335 for (i = 0; i < nitems(sc->sc_hwmap); i++) { 6336 if (i >= rt->rateCount) { 6337 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6338 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6339 continue; 6340 } 6341 sc->sc_hwmap[i].ieeerate = 6342 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6343 if (rt->info[i].phy == IEEE80211_T_HT) 6344 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6345 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6346 if (rt->info[i].shortPreamble || 6347 rt->info[i].phy == IEEE80211_T_OFDM) 6348 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6349 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6350 for (j = 0; j < nitems(blinkrates)-1; j++) 6351 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6352 break; 6353 /* NB: this uses the last entry if the rate isn't found */ 6354 /* XXX beware of overlow */ 6355 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6356 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6357 } 6358 sc->sc_currates = rt; 6359 sc->sc_curmode = mode; 6360 /* 6361 * All protection frames are transmited at 2Mb/s for 6362 * 11g, otherwise at 1Mb/s. 6363 */ 6364 if (mode == IEEE80211_MODE_11G) 6365 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6366 else 6367 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6368 /* NB: caller is responsible for resetting rate control state */ 6369 } 6370 6371 static void 6372 ath_watchdog(void *arg) 6373 { 6374 struct ath_softc *sc = arg; 6375 struct ieee80211com *ic = &sc->sc_ic; 6376 int do_reset = 0; 6377 6378 ATH_LOCK_ASSERT(sc); 6379 6380 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6381 uint32_t hangs; 6382 6383 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6384 6385 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6386 hangs != 0) { 6387 device_printf(sc->sc_dev, "%s hang detected (0x%x)\n", 6388 hangs & 0xff ? "bb" : "mac", hangs); 6389 } else 6390 device_printf(sc->sc_dev, "device timeout\n"); 6391 do_reset = 1; 6392 counter_u64_add(ic->ic_oerrors, 1); 6393 sc->sc_stats.ast_watchdog++; 6394 6395 ath_power_restore_power_state(sc); 6396 } 6397 6398 /* 6399 * We can't hold the lock across the ath_reset() call. 6400 * 6401 * And since this routine can't hold a lock and sleep, 6402 * do the reset deferred. 6403 */ 6404 if (do_reset) { 6405 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6406 } 6407 6408 callout_schedule(&sc->sc_wd_ch, hz); 6409 } 6410 6411 /* 6412 * Fetch the rate control statistics for the given node. 6413 */ 6414 static int 6415 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 6416 { 6417 struct ath_node *an; 6418 struct ieee80211com *ic = &sc->sc_ic; 6419 struct ieee80211_node *ni; 6420 int error = 0; 6421 6422 /* Perform a lookup on the given node */ 6423 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 6424 if (ni == NULL) { 6425 error = EINVAL; 6426 goto bad; 6427 } 6428 6429 /* Lock the ath_node */ 6430 an = ATH_NODE(ni); 6431 ATH_NODE_LOCK(an); 6432 6433 /* Fetch the rate control stats for this node */ 6434 error = ath_rate_fetch_node_stats(sc, an, rs); 6435 6436 /* No matter what happens here, just drop through */ 6437 6438 /* Unlock the ath_node */ 6439 ATH_NODE_UNLOCK(an); 6440 6441 /* Unref the node */ 6442 ieee80211_node_decref(ni); 6443 6444 bad: 6445 return (error); 6446 } 6447 6448 #ifdef ATH_DIAGAPI 6449 /* 6450 * Diagnostic interface to the HAL. This is used by various 6451 * tools to do things like retrieve register contents for 6452 * debugging. The mechanism is intentionally opaque so that 6453 * it can change frequently w/o concern for compatiblity. 6454 */ 6455 static int 6456 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6457 { 6458 struct ath_hal *ah = sc->sc_ah; 6459 u_int id = ad->ad_id & ATH_DIAG_ID; 6460 void *indata = NULL; 6461 void *outdata = NULL; 6462 u_int32_t insize = ad->ad_in_size; 6463 u_int32_t outsize = ad->ad_out_size; 6464 int error = 0; 6465 6466 if (ad->ad_id & ATH_DIAG_IN) { 6467 /* 6468 * Copy in data. 6469 */ 6470 indata = malloc(insize, M_TEMP, M_NOWAIT); 6471 if (indata == NULL) { 6472 error = ENOMEM; 6473 goto bad; 6474 } 6475 error = copyin(ad->ad_in_data, indata, insize); 6476 if (error) 6477 goto bad; 6478 } 6479 if (ad->ad_id & ATH_DIAG_DYN) { 6480 /* 6481 * Allocate a buffer for the results (otherwise the HAL 6482 * returns a pointer to a buffer where we can read the 6483 * results). Note that we depend on the HAL leaving this 6484 * pointer for us to use below in reclaiming the buffer; 6485 * may want to be more defensive. 6486 */ 6487 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6488 if (outdata == NULL) { 6489 error = ENOMEM; 6490 goto bad; 6491 } 6492 } 6493 6494 6495 ATH_LOCK(sc); 6496 if (id != HAL_DIAG_REGS) 6497 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6498 ATH_UNLOCK(sc); 6499 6500 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6501 if (outsize < ad->ad_out_size) 6502 ad->ad_out_size = outsize; 6503 if (outdata != NULL) 6504 error = copyout(outdata, ad->ad_out_data, 6505 ad->ad_out_size); 6506 } else { 6507 error = EINVAL; 6508 } 6509 6510 ATH_LOCK(sc); 6511 if (id != HAL_DIAG_REGS) 6512 ath_power_restore_power_state(sc); 6513 ATH_UNLOCK(sc); 6514 6515 bad: 6516 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6517 free(indata, M_TEMP); 6518 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6519 free(outdata, M_TEMP); 6520 return error; 6521 } 6522 #endif /* ATH_DIAGAPI */ 6523 6524 static void 6525 ath_parent(struct ieee80211com *ic) 6526 { 6527 struct ath_softc *sc = ic->ic_softc; 6528 int error = EDOOFUS; 6529 6530 ATH_LOCK(sc); 6531 if (ic->ic_nrunning > 0) { 6532 /* 6533 * To avoid rescanning another access point, 6534 * do not call ath_init() here. Instead, 6535 * only reflect promisc mode settings. 6536 */ 6537 if (sc->sc_running) { 6538 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6539 ath_mode_init(sc); 6540 ath_power_restore_power_state(sc); 6541 } else if (!sc->sc_invalid) { 6542 /* 6543 * Beware of being called during attach/detach 6544 * to reset promiscuous mode. In that case we 6545 * will still be marked UP but not RUNNING. 6546 * However trying to re-init the interface 6547 * is the wrong thing to do as we've already 6548 * torn down much of our state. There's 6549 * probably a better way to deal with this. 6550 */ 6551 error = ath_init(sc); 6552 } 6553 } else { 6554 ath_stop(sc); 6555 if (!sc->sc_invalid) 6556 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 6557 } 6558 ATH_UNLOCK(sc); 6559 6560 if (error == 0) { 6561 #ifdef ATH_TX99_DIAG 6562 if (sc->sc_tx99 != NULL) 6563 sc->sc_tx99->start(sc->sc_tx99); 6564 else 6565 #endif 6566 ieee80211_start_all(ic); 6567 } 6568 } 6569 6570 static int 6571 ath_ioctl(struct ieee80211com *ic, u_long cmd, void *data) 6572 { 6573 struct ifreq *ifr = data; 6574 struct ath_softc *sc = ic->ic_softc; 6575 6576 switch (cmd) { 6577 case SIOCGATHSTATS: { 6578 struct ieee80211vap *vap; 6579 struct ifnet *ifp; 6580 const HAL_RATE_TABLE *rt; 6581 6582 /* NB: embed these numbers to get a consistent view */ 6583 sc->sc_stats.ast_tx_packets = 0; 6584 sc->sc_stats.ast_rx_packets = 0; 6585 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 6586 ifp = vap->iv_ifp; 6587 sc->sc_stats.ast_tx_packets += ifp->if_get_counter(ifp, 6588 IFCOUNTER_OPACKETS); 6589 sc->sc_stats.ast_rx_packets += ifp->if_get_counter(ifp, 6590 IFCOUNTER_IPACKETS); 6591 } 6592 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 6593 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 6594 #ifdef IEEE80211_SUPPORT_TDMA 6595 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 6596 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 6597 #endif 6598 rt = sc->sc_currates; 6599 sc->sc_stats.ast_tx_rate = 6600 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 6601 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 6602 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 6603 return copyout(&sc->sc_stats, 6604 ifr->ifr_data, sizeof (sc->sc_stats)); 6605 } 6606 case SIOCGATHAGSTATS: 6607 return copyout(&sc->sc_aggr_stats, 6608 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 6609 case SIOCZATHSTATS: { 6610 int error; 6611 6612 error = priv_check(curthread, PRIV_DRIVER); 6613 if (error == 0) { 6614 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6615 memset(&sc->sc_aggr_stats, 0, 6616 sizeof(sc->sc_aggr_stats)); 6617 memset(&sc->sc_intr_stats, 0, 6618 sizeof(sc->sc_intr_stats)); 6619 } 6620 return (error); 6621 } 6622 #ifdef ATH_DIAGAPI 6623 case SIOCGATHDIAG: 6624 return (ath_ioctl_diag(sc, data)); 6625 case SIOCGATHPHYERR: 6626 return (ath_ioctl_phyerr(sc, data)); 6627 #endif 6628 case SIOCGATHSPECTRAL: 6629 return (ath_ioctl_spectral(sc, data)); 6630 case SIOCGATHNODERATESTATS: 6631 return (ath_ioctl_ratestats(sc, data)); 6632 default: 6633 return (ENOTTY); 6634 } 6635 } 6636 6637 /* 6638 * Announce various information on device/driver attach. 6639 */ 6640 static void 6641 ath_announce(struct ath_softc *sc) 6642 { 6643 struct ath_hal *ah = sc->sc_ah; 6644 6645 device_printf(sc->sc_dev, "AR%s mac %d.%d RF%s phy %d.%d\n", 6646 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6647 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6648 device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6649 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6650 if (bootverbose) { 6651 int i; 6652 for (i = 0; i <= WME_AC_VO; i++) { 6653 struct ath_txq *txq = sc->sc_ac2q[i]; 6654 device_printf(sc->sc_dev, 6655 "Use hw queue %u for %s traffic\n", 6656 txq->axq_qnum, ieee80211_wme_acnames[i]); 6657 } 6658 device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n", 6659 sc->sc_cabq->axq_qnum); 6660 device_printf(sc->sc_dev, "Use hw queue %u for beacons\n", 6661 sc->sc_bhalq); 6662 } 6663 if (ath_rxbuf != ATH_RXBUF) 6664 device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf); 6665 if (ath_txbuf != ATH_TXBUF) 6666 device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf); 6667 if (sc->sc_mcastkey && bootverbose) 6668 device_printf(sc->sc_dev, "using multicast key search\n"); 6669 } 6670 6671 static void 6672 ath_dfs_tasklet(void *p, int npending) 6673 { 6674 struct ath_softc *sc = (struct ath_softc *) p; 6675 struct ieee80211com *ic = &sc->sc_ic; 6676 6677 /* 6678 * If previous processing has found a radar event, 6679 * signal this to the net80211 layer to begin DFS 6680 * processing. 6681 */ 6682 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6683 /* DFS event found, initiate channel change */ 6684 /* 6685 * XXX doesn't currently tell us whether the event 6686 * XXX was found in the primary or extension 6687 * XXX channel! 6688 */ 6689 IEEE80211_LOCK(ic); 6690 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6691 IEEE80211_UNLOCK(ic); 6692 } 6693 } 6694 6695 /* 6696 * Enable/disable power save. This must be called with 6697 * no TX driver locks currently held, so it should only 6698 * be called from the RX path (which doesn't hold any 6699 * TX driver locks.) 6700 */ 6701 static void 6702 ath_node_powersave(struct ieee80211_node *ni, int enable) 6703 { 6704 #ifdef ATH_SW_PSQ 6705 struct ath_node *an = ATH_NODE(ni); 6706 struct ieee80211com *ic = ni->ni_ic; 6707 struct ath_softc *sc = ic->ic_softc; 6708 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6709 6710 /* XXX and no TXQ locks should be held here */ 6711 6712 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6713 __func__, 6714 ni->ni_macaddr, 6715 ":", 6716 !! enable); 6717 6718 /* Suspend or resume software queue handling */ 6719 if (enable) 6720 ath_tx_node_sleep(sc, an); 6721 else 6722 ath_tx_node_wakeup(sc, an); 6723 6724 /* Update net80211 state */ 6725 avp->av_node_ps(ni, enable); 6726 #else 6727 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6728 6729 /* Update net80211 state */ 6730 avp->av_node_ps(ni, enable); 6731 #endif/* ATH_SW_PSQ */ 6732 } 6733 6734 /* 6735 * Notification from net80211 that the powersave queue state has 6736 * changed. 6737 * 6738 * Since the software queue also may have some frames: 6739 * 6740 * + if the node software queue has frames and the TID state 6741 * is 0, we set the TIM; 6742 * + if the node and the stack are both empty, we clear the TIM bit. 6743 * + If the stack tries to set the bit, always set it. 6744 * + If the stack tries to clear the bit, only clear it if the 6745 * software queue in question is also cleared. 6746 * 6747 * TODO: this is called during node teardown; so let's ensure this 6748 * is all correctly handled and that the TIM bit is cleared. 6749 * It may be that the node flush is called _AFTER_ the net80211 6750 * stack clears the TIM. 6751 * 6752 * Here is the racy part. Since it's possible >1 concurrent, 6753 * overlapping TXes will appear complete with a TX completion in 6754 * another thread, it's possible that the concurrent TIM calls will 6755 * clash. We can't hold the node lock here because setting the 6756 * TIM grabs the net80211 comlock and this may cause a LOR. 6757 * The solution is either to totally serialise _everything_ at 6758 * this point (ie, all TX, completion and any reset/flush go into 6759 * one taskqueue) or a new "ath TIM lock" needs to be created that 6760 * just wraps the driver state change and this call to avp->av_set_tim(). 6761 * 6762 * The same race exists in the net80211 power save queue handling 6763 * as well. Since multiple transmitting threads may queue frames 6764 * into the driver, as well as ps-poll and the driver transmitting 6765 * frames (and thus clearing the psq), it's quite possible that 6766 * a packet entering the PSQ and a ps-poll being handled will 6767 * race, causing the TIM to be cleared and not re-set. 6768 */ 6769 static int 6770 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6771 { 6772 #ifdef ATH_SW_PSQ 6773 struct ieee80211com *ic = ni->ni_ic; 6774 struct ath_softc *sc = ic->ic_softc; 6775 struct ath_node *an = ATH_NODE(ni); 6776 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6777 int changed = 0; 6778 6779 ATH_TX_LOCK(sc); 6780 an->an_stack_psq = enable; 6781 6782 /* 6783 * This will get called for all operating modes, 6784 * even if avp->av_set_tim is unset. 6785 * It's currently set for hostap/ibss modes; but 6786 * the same infrastructure is used for both STA 6787 * and AP/IBSS node power save. 6788 */ 6789 if (avp->av_set_tim == NULL) { 6790 ATH_TX_UNLOCK(sc); 6791 return (0); 6792 } 6793 6794 /* 6795 * If setting the bit, always set it here. 6796 * If clearing the bit, only clear it if the 6797 * software queue is also empty. 6798 * 6799 * If the node has left power save, just clear the TIM 6800 * bit regardless of the state of the power save queue. 6801 * 6802 * XXX TODO: although atomics are used, it's quite possible 6803 * that a race will occur between this and setting/clearing 6804 * in another thread. TX completion will occur always in 6805 * one thread, however setting/clearing the TIM bit can come 6806 * from a variety of different process contexts! 6807 */ 6808 if (enable && an->an_tim_set == 1) { 6809 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6810 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6811 __func__, 6812 ni->ni_macaddr, 6813 ":", 6814 enable); 6815 ATH_TX_UNLOCK(sc); 6816 } else if (enable) { 6817 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6818 "%s: %6D: enable=%d, enabling TIM\n", 6819 __func__, 6820 ni->ni_macaddr, 6821 ":", 6822 enable); 6823 an->an_tim_set = 1; 6824 ATH_TX_UNLOCK(sc); 6825 changed = avp->av_set_tim(ni, enable); 6826 } else if (an->an_swq_depth == 0) { 6827 /* disable */ 6828 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6829 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6830 __func__, 6831 ni->ni_macaddr, 6832 ":", 6833 enable); 6834 an->an_tim_set = 0; 6835 ATH_TX_UNLOCK(sc); 6836 changed = avp->av_set_tim(ni, enable); 6837 } else if (! an->an_is_powersave) { 6838 /* 6839 * disable regardless; the node isn't in powersave now 6840 */ 6841 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6842 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6843 __func__, 6844 ni->ni_macaddr, 6845 ":", 6846 enable); 6847 an->an_tim_set = 0; 6848 ATH_TX_UNLOCK(sc); 6849 changed = avp->av_set_tim(ni, enable); 6850 } else { 6851 /* 6852 * psq disable, node is currently in powersave, node 6853 * software queue isn't empty, so don't clear the TIM bit 6854 * for now. 6855 */ 6856 ATH_TX_UNLOCK(sc); 6857 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6858 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6859 __func__, 6860 ni->ni_macaddr, 6861 ":", 6862 enable); 6863 changed = 0; 6864 } 6865 6866 return (changed); 6867 #else 6868 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6869 6870 /* 6871 * Some operating modes don't set av_set_tim(), so don't 6872 * update it here. 6873 */ 6874 if (avp->av_set_tim == NULL) 6875 return (0); 6876 6877 return (avp->av_set_tim(ni, enable)); 6878 #endif /* ATH_SW_PSQ */ 6879 } 6880 6881 /* 6882 * Set or update the TIM from the software queue. 6883 * 6884 * Check the software queue depth before attempting to do lock 6885 * anything; that avoids trying to obtain the lock. Then, 6886 * re-check afterwards to ensure nothing has changed in the 6887 * meantime. 6888 * 6889 * set: This is designed to be called from the TX path, after 6890 * a frame has been queued; to see if the swq > 0. 6891 * 6892 * clear: This is designed to be called from the buffer completion point 6893 * (right now it's ath_tx_default_comp()) where the state of 6894 * a software queue has changed. 6895 * 6896 * It makes sense to place it at buffer free / completion rather 6897 * than after each software queue operation, as there's no real 6898 * point in churning the TIM bit as the last frames in the software 6899 * queue are transmitted. If they fail and we retry them, we'd 6900 * just be setting the TIM bit again anyway. 6901 */ 6902 void 6903 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6904 int enable) 6905 { 6906 #ifdef ATH_SW_PSQ 6907 struct ath_node *an; 6908 struct ath_vap *avp; 6909 6910 /* Don't do this for broadcast/etc frames */ 6911 if (ni == NULL) 6912 return; 6913 6914 an = ATH_NODE(ni); 6915 avp = ATH_VAP(ni->ni_vap); 6916 6917 /* 6918 * And for operating modes without the TIM handler set, let's 6919 * just skip those. 6920 */ 6921 if (avp->av_set_tim == NULL) 6922 return; 6923 6924 ATH_TX_LOCK_ASSERT(sc); 6925 6926 if (enable) { 6927 if (an->an_is_powersave && 6928 an->an_tim_set == 0 && 6929 an->an_swq_depth != 0) { 6930 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6931 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6932 __func__, 6933 ni->ni_macaddr, 6934 ":"); 6935 an->an_tim_set = 1; 6936 (void) avp->av_set_tim(ni, 1); 6937 } 6938 } else { 6939 /* 6940 * Don't bother grabbing the lock unless the queue is empty. 6941 */ 6942 if (an->an_swq_depth != 0) 6943 return; 6944 6945 if (an->an_is_powersave && 6946 an->an_stack_psq == 0 && 6947 an->an_tim_set == 1 && 6948 an->an_swq_depth == 0) { 6949 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6950 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6951 " clear!\n", 6952 __func__, 6953 ni->ni_macaddr, 6954 ":"); 6955 an->an_tim_set = 0; 6956 (void) avp->av_set_tim(ni, 0); 6957 } 6958 } 6959 #else 6960 return; 6961 #endif /* ATH_SW_PSQ */ 6962 } 6963 6964 /* 6965 * Received a ps-poll frame from net80211. 6966 * 6967 * Here we get a chance to serve out a software-queued frame ourselves 6968 * before we punt it to net80211 to transmit us one itself - either 6969 * because there's traffic in the net80211 psq, or a NULL frame to 6970 * indicate there's nothing else. 6971 */ 6972 static void 6973 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6974 { 6975 #ifdef ATH_SW_PSQ 6976 struct ath_node *an; 6977 struct ath_vap *avp; 6978 struct ieee80211com *ic = ni->ni_ic; 6979 struct ath_softc *sc = ic->ic_softc; 6980 int tid; 6981 6982 /* Just paranoia */ 6983 if (ni == NULL) 6984 return; 6985 6986 /* 6987 * Unassociated (temporary node) station. 6988 */ 6989 if (ni->ni_associd == 0) 6990 return; 6991 6992 /* 6993 * We do have an active node, so let's begin looking into it. 6994 */ 6995 an = ATH_NODE(ni); 6996 avp = ATH_VAP(ni->ni_vap); 6997 6998 /* 6999 * For now, we just call the original ps-poll method. 7000 * Once we're ready to flip this on: 7001 * 7002 * + Set leak to 1, as no matter what we're going to have 7003 * to send a frame; 7004 * + Check the software queue and if there's something in it, 7005 * schedule the highest TID thas has traffic from this node. 7006 * Then make sure we schedule the software scheduler to 7007 * run so it picks up said frame. 7008 * 7009 * That way whatever happens, we'll at least send _a_ frame 7010 * to the given node. 7011 * 7012 * Again, yes, it's crappy QoS if the node has multiple 7013 * TIDs worth of traffic - but let's get it working first 7014 * before we optimise it. 7015 * 7016 * Also yes, there's definitely latency here - we're not 7017 * direct dispatching to the hardware in this path (and 7018 * we're likely being called from the packet receive path, 7019 * so going back into TX may be a little hairy!) but again 7020 * I'd like to get this working first before optimising 7021 * turn-around time. 7022 */ 7023 7024 ATH_TX_LOCK(sc); 7025 7026 /* 7027 * Legacy - we're called and the node isn't asleep. 7028 * Immediately punt. 7029 */ 7030 if (! an->an_is_powersave) { 7031 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7032 "%s: %6D: not in powersave?\n", 7033 __func__, 7034 ni->ni_macaddr, 7035 ":"); 7036 ATH_TX_UNLOCK(sc); 7037 avp->av_recv_pspoll(ni, m); 7038 return; 7039 } 7040 7041 /* 7042 * We're in powersave. 7043 * 7044 * Leak a frame. 7045 */ 7046 an->an_leak_count = 1; 7047 7048 /* 7049 * Now, if there's no frames in the node, just punt to 7050 * recv_pspoll. 7051 * 7052 * Don't bother checking if the TIM bit is set, we really 7053 * only care if there are any frames here! 7054 */ 7055 if (an->an_swq_depth == 0) { 7056 ATH_TX_UNLOCK(sc); 7057 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7058 "%s: %6D: SWQ empty; punting to net80211\n", 7059 __func__, 7060 ni->ni_macaddr, 7061 ":"); 7062 avp->av_recv_pspoll(ni, m); 7063 return; 7064 } 7065 7066 /* 7067 * Ok, let's schedule the highest TID that has traffic 7068 * and then schedule something. 7069 */ 7070 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 7071 struct ath_tid *atid = &an->an_tid[tid]; 7072 /* 7073 * No frames? Skip. 7074 */ 7075 if (atid->axq_depth == 0) 7076 continue; 7077 ath_tx_tid_sched(sc, atid); 7078 /* 7079 * XXX we could do a direct call to the TXQ 7080 * scheduler code here to optimise latency 7081 * at the expense of a REALLY deep callstack. 7082 */ 7083 ATH_TX_UNLOCK(sc); 7084 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 7085 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7086 "%s: %6D: leaking frame to TID %d\n", 7087 __func__, 7088 ni->ni_macaddr, 7089 ":", 7090 tid); 7091 return; 7092 } 7093 7094 ATH_TX_UNLOCK(sc); 7095 7096 /* 7097 * XXX nothing in the TIDs at this point? Eek. 7098 */ 7099 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7100 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 7101 __func__, 7102 ni->ni_macaddr, 7103 ":"); 7104 avp->av_recv_pspoll(ni, m); 7105 #else 7106 avp->av_recv_pspoll(ni, m); 7107 #endif /* ATH_SW_PSQ */ 7108 } 7109 7110 MODULE_VERSION(if_ath, 1); 7111 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 7112 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ) 7113 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 7114 #endif 7115