xref: /freebsd/sys/dev/ath/if_ath.c (revision 6486b015fc84e96725fef22b0e3363351399ae83)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_llc.h>
82 
83 #include <net80211/ieee80211_var.h>
84 #include <net80211/ieee80211_regdomain.h>
85 #ifdef IEEE80211_SUPPORT_SUPERG
86 #include <net80211/ieee80211_superg.h>
87 #endif
88 #ifdef IEEE80211_SUPPORT_TDMA
89 #include <net80211/ieee80211_tdma.h>
90 #endif
91 
92 #include <net/bpf.h>
93 
94 #ifdef INET
95 #include <netinet/in.h>
96 #include <netinet/if_ether.h>
97 #endif
98 
99 #include <dev/ath/if_athvar.h>
100 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101 #include <dev/ath/ath_hal/ah_diagcodes.h>
102 
103 #include <dev/ath/if_ath_debug.h>
104 #include <dev/ath/if_ath_misc.h>
105 #include <dev/ath/if_ath_tx.h>
106 #include <dev/ath/if_ath_sysctl.h>
107 #include <dev/ath/if_ath_led.h>
108 #include <dev/ath/if_ath_keycache.h>
109 #include <dev/ath/if_athdfs.h>
110 
111 #ifdef ATH_TX99_DIAG
112 #include <dev/ath/ath_tx99/ath_tx99.h>
113 #endif
114 
115 #define	ATH_KTR_INTR	KTR_SPARE4
116 #define	ATH_KTR_ERR	KTR_SPARE3
117 
118 /*
119  * ATH_BCBUF determines the number of vap's that can transmit
120  * beacons and also (currently) the number of vap's that can
121  * have unique mac addresses/bssid.  When staggering beacons
122  * 4 is probably a good max as otherwise the beacons become
123  * very closely spaced and there is limited time for cab q traffic
124  * to go out.  You can burst beacons instead but that is not good
125  * for stations in power save and at some point you really want
126  * another radio (and channel).
127  *
128  * The limit on the number of mac addresses is tied to our use of
129  * the U/L bit and tracking addresses in a byte; it would be
130  * worthwhile to allow more for applications like proxy sta.
131  */
132 CTASSERT(ATH_BCBUF <= 8);
133 
134 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
135 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
136 		    const uint8_t [IEEE80211_ADDR_LEN],
137 		    const uint8_t [IEEE80211_ADDR_LEN]);
138 static void	ath_vap_delete(struct ieee80211vap *);
139 static void	ath_init(void *);
140 static void	ath_stop_locked(struct ifnet *);
141 static void	ath_stop(struct ifnet *);
142 static void	ath_start(struct ifnet *);
143 static int	ath_reset_vap(struct ieee80211vap *, u_long);
144 static int	ath_media_change(struct ifnet *);
145 static void	ath_watchdog(void *);
146 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
147 static void	ath_fatal_proc(void *, int);
148 static void	ath_bmiss_vap(struct ieee80211vap *);
149 static void	ath_bmiss_proc(void *, int);
150 static void	ath_key_update_begin(struct ieee80211vap *);
151 static void	ath_key_update_end(struct ieee80211vap *);
152 static void	ath_update_mcast(struct ifnet *);
153 static void	ath_update_promisc(struct ifnet *);
154 static void	ath_mode_init(struct ath_softc *);
155 static void	ath_setslottime(struct ath_softc *);
156 static void	ath_updateslot(struct ifnet *);
157 static int	ath_beaconq_setup(struct ath_hal *);
158 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
159 static void	ath_beacon_update(struct ieee80211vap *, int item);
160 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
161 static void	ath_beacon_proc(void *, int);
162 static struct ath_buf *ath_beacon_generate(struct ath_softc *,
163 			struct ieee80211vap *);
164 static void	ath_bstuck_proc(void *, int);
165 static void	ath_reset_proc(void *, int);
166 static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
167 static void	ath_beacon_free(struct ath_softc *);
168 static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
169 static void	ath_descdma_cleanup(struct ath_softc *sc,
170 			struct ath_descdma *, ath_bufhead *);
171 static int	ath_desc_alloc(struct ath_softc *);
172 static void	ath_desc_free(struct ath_softc *);
173 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
174 			const uint8_t [IEEE80211_ADDR_LEN]);
175 static void	ath_node_cleanup(struct ieee80211_node *);
176 static void	ath_node_free(struct ieee80211_node *);
177 static void	ath_node_getsignal(const struct ieee80211_node *,
178 			int8_t *, int8_t *);
179 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
180 static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
181 			int subtype, int rssi, int nf);
182 static void	ath_setdefantenna(struct ath_softc *, u_int);
183 static void	ath_rx_proc(struct ath_softc *sc, int);
184 static void	ath_rx_tasklet(void *, int);
185 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
186 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
187 static int	ath_tx_setup(struct ath_softc *, int, int);
188 static int	ath_wme_update(struct ieee80211com *);
189 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
190 static void	ath_tx_cleanup(struct ath_softc *);
191 static void	ath_tx_proc_q0(void *, int);
192 static void	ath_tx_proc_q0123(void *, int);
193 static void	ath_tx_proc(void *, int);
194 static void	ath_txq_sched_tasklet(void *, int);
195 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
196 static void	ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type);
197 static void	ath_stoprecv(struct ath_softc *, int);
198 static int	ath_startrecv(struct ath_softc *);
199 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
200 static void	ath_scan_start(struct ieee80211com *);
201 static void	ath_scan_end(struct ieee80211com *);
202 static void	ath_set_channel(struct ieee80211com *);
203 #ifdef	ATH_ENABLE_11N
204 static void	ath_update_chw(struct ieee80211com *);
205 #endif	/* ATH_ENABLE_11N */
206 static void	ath_calibrate(void *);
207 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
208 static void	ath_setup_stationkey(struct ieee80211_node *);
209 static void	ath_newassoc(struct ieee80211_node *, int);
210 static int	ath_setregdomain(struct ieee80211com *,
211 		    struct ieee80211_regdomain *, int,
212 		    struct ieee80211_channel []);
213 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
214 		    struct ieee80211_channel []);
215 static int	ath_getchannels(struct ath_softc *);
216 
217 static int	ath_rate_setup(struct ath_softc *, u_int mode);
218 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
219 
220 static void	ath_announce(struct ath_softc *);
221 
222 static void	ath_dfs_tasklet(void *, int);
223 
224 #ifdef IEEE80211_SUPPORT_TDMA
225 static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
226 		    u_int32_t bintval);
227 static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
228 		    const struct ieee80211_tdma_state *tdma);
229 static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
230 static void	ath_tdma_update(struct ieee80211_node *ni,
231 		    const struct ieee80211_tdma_param *tdma, int);
232 static void	ath_tdma_beacon_send(struct ath_softc *sc,
233 		    struct ieee80211vap *vap);
234 
235 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
236 #define	TDMA_LPF_LEN		6
237 #define	TDMA_DUMMY_MARKER	0x127
238 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
239 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
240 #define	TDMA_LPF(x, y, len) \
241     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
242 #define	TDMA_SAMPLE(x, y) do {					\
243 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
244 } while (0)
245 #define	TDMA_EP_RND(x,mul) \
246 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
247 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
248 #endif /* IEEE80211_SUPPORT_TDMA */
249 
250 SYSCTL_DECL(_hw_ath);
251 
252 /* XXX validate sysctl values */
253 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
254 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
255 	    0, "long chip calibration interval (secs)");
256 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
257 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
258 	    0, "short chip calibration interval (msecs)");
259 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
260 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
261 	    0, "reset chip calibration results (secs)");
262 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
263 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
264 	    0, "ANI calibration (msecs)");
265 
266 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
267 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
268 	    0, "rx buffers allocated");
269 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
270 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
271 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
272 	    0, "tx buffers allocated");
273 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
274 
275 static	int ath_bstuck_threshold = 4;		/* max missed beacons */
276 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
277 	    0, "max missed beacon xmits before chip reset");
278 
279 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
280 
281 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
282 #define	HAL_MODE_HT40 \
283 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
284 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
285 int
286 ath_attach(u_int16_t devid, struct ath_softc *sc)
287 {
288 	struct ifnet *ifp;
289 	struct ieee80211com *ic;
290 	struct ath_hal *ah = NULL;
291 	HAL_STATUS status;
292 	int error = 0, i;
293 	u_int wmodes;
294 	uint8_t macaddr[IEEE80211_ADDR_LEN];
295 	int rx_chainmask, tx_chainmask;
296 
297 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
298 
299 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
300 	if (ifp == NULL) {
301 		device_printf(sc->sc_dev, "can not if_alloc()\n");
302 		error = ENOSPC;
303 		goto bad;
304 	}
305 	ic = ifp->if_l2com;
306 
307 	/* set these up early for if_printf use */
308 	if_initname(ifp, device_get_name(sc->sc_dev),
309 		device_get_unit(sc->sc_dev));
310 
311 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
312 	    sc->sc_eepromdata, &status);
313 	if (ah == NULL) {
314 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
315 			status);
316 		error = ENXIO;
317 		goto bad;
318 	}
319 	sc->sc_ah = ah;
320 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
321 #ifdef	ATH_DEBUG
322 	sc->sc_debug = ath_debug;
323 #endif
324 
325 	/*
326 	 * Check if the MAC has multi-rate retry support.
327 	 * We do this by trying to setup a fake extended
328 	 * descriptor.  MAC's that don't have support will
329 	 * return false w/o doing anything.  MAC's that do
330 	 * support it will return true w/o doing anything.
331 	 */
332 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
333 
334 	/*
335 	 * Check if the device has hardware counters for PHY
336 	 * errors.  If so we need to enable the MIB interrupt
337 	 * so we can act on stat triggers.
338 	 */
339 	if (ath_hal_hwphycounters(ah))
340 		sc->sc_needmib = 1;
341 
342 	/*
343 	 * Get the hardware key cache size.
344 	 */
345 	sc->sc_keymax = ath_hal_keycachesize(ah);
346 	if (sc->sc_keymax > ATH_KEYMAX) {
347 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
348 			ATH_KEYMAX, sc->sc_keymax);
349 		sc->sc_keymax = ATH_KEYMAX;
350 	}
351 	/*
352 	 * Reset the key cache since some parts do not
353 	 * reset the contents on initial power up.
354 	 */
355 	for (i = 0; i < sc->sc_keymax; i++)
356 		ath_hal_keyreset(ah, i);
357 
358 	/*
359 	 * Collect the default channel list.
360 	 */
361 	error = ath_getchannels(sc);
362 	if (error != 0)
363 		goto bad;
364 
365 	/*
366 	 * Setup rate tables for all potential media types.
367 	 */
368 	ath_rate_setup(sc, IEEE80211_MODE_11A);
369 	ath_rate_setup(sc, IEEE80211_MODE_11B);
370 	ath_rate_setup(sc, IEEE80211_MODE_11G);
371 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
372 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
373 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
374 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
375 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
376 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
377 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
378 
379 	/* NB: setup here so ath_rate_update is happy */
380 	ath_setcurmode(sc, IEEE80211_MODE_11A);
381 
382 	/*
383 	 * Allocate tx+rx descriptors and populate the lists.
384 	 */
385 	error = ath_desc_alloc(sc);
386 	if (error != 0) {
387 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
388 		goto bad;
389 	}
390 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
391 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
392 
393 	ATH_TXBUF_LOCK_INIT(sc);
394 
395 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
396 		taskqueue_thread_enqueue, &sc->sc_tq);
397 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
398 		"%s taskq", ifp->if_xname);
399 
400 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc);
401 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
402 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
403 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
404 	TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc);
405 	TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc);
406 
407 	/*
408 	 * Allocate hardware transmit queues: one queue for
409 	 * beacon frames and one data queue for each QoS
410 	 * priority.  Note that the hal handles resetting
411 	 * these queues at the needed time.
412 	 *
413 	 * XXX PS-Poll
414 	 */
415 	sc->sc_bhalq = ath_beaconq_setup(ah);
416 	if (sc->sc_bhalq == (u_int) -1) {
417 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
418 		error = EIO;
419 		goto bad2;
420 	}
421 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
422 	if (sc->sc_cabq == NULL) {
423 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
424 		error = EIO;
425 		goto bad2;
426 	}
427 	/* NB: insure BK queue is the lowest priority h/w queue */
428 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
429 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
430 			ieee80211_wme_acnames[WME_AC_BK]);
431 		error = EIO;
432 		goto bad2;
433 	}
434 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
435 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
436 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
437 		/*
438 		 * Not enough hardware tx queues to properly do WME;
439 		 * just punt and assign them all to the same h/w queue.
440 		 * We could do a better job of this if, for example,
441 		 * we allocate queues when we switch from station to
442 		 * AP mode.
443 		 */
444 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
445 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
446 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
447 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
448 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
449 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
450 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
451 	}
452 
453 	/*
454 	 * Special case certain configurations.  Note the
455 	 * CAB queue is handled by these specially so don't
456 	 * include them when checking the txq setup mask.
457 	 */
458 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
459 	case 0x01:
460 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
461 		break;
462 	case 0x0f:
463 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
464 		break;
465 	default:
466 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
467 		break;
468 	}
469 
470 	/*
471 	 * Setup rate control.  Some rate control modules
472 	 * call back to change the anntena state so expose
473 	 * the necessary entry points.
474 	 * XXX maybe belongs in struct ath_ratectrl?
475 	 */
476 	sc->sc_setdefantenna = ath_setdefantenna;
477 	sc->sc_rc = ath_rate_attach(sc);
478 	if (sc->sc_rc == NULL) {
479 		error = EIO;
480 		goto bad2;
481 	}
482 
483 	/* Attach DFS module */
484 	if (! ath_dfs_attach(sc)) {
485 		device_printf(sc->sc_dev,
486 		    "%s: unable to attach DFS\n", __func__);
487 		error = EIO;
488 		goto bad2;
489 	}
490 
491 	/* Start DFS processing tasklet */
492 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
493 
494 	/* Configure LED state */
495 	sc->sc_blinking = 0;
496 	sc->sc_ledstate = 1;
497 	sc->sc_ledon = 0;			/* low true */
498 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
499 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
500 
501 	/*
502 	 * Don't setup hardware-based blinking.
503 	 *
504 	 * Although some NICs may have this configured in the
505 	 * default reset register values, the user may wish
506 	 * to alter which pins have which function.
507 	 *
508 	 * The reference driver attaches the MAC network LED to GPIO1 and
509 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
510 	 * NIC has these reversed.
511 	 */
512 	sc->sc_hardled = (1 == 0);
513 	sc->sc_led_net_pin = -1;
514 	sc->sc_led_pwr_pin = -1;
515 	/*
516 	 * Auto-enable soft led processing for IBM cards and for
517 	 * 5211 minipci cards.  Users can also manually enable/disable
518 	 * support with a sysctl.
519 	 */
520 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
521 	ath_led_config(sc);
522 	ath_hal_setledstate(ah, HAL_LED_INIT);
523 
524 	ifp->if_softc = sc;
525 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
526 	ifp->if_start = ath_start;
527 	ifp->if_ioctl = ath_ioctl;
528 	ifp->if_init = ath_init;
529 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
530 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
531 	IFQ_SET_READY(&ifp->if_snd);
532 
533 	ic->ic_ifp = ifp;
534 	/* XXX not right but it's not used anywhere important */
535 	ic->ic_phytype = IEEE80211_T_OFDM;
536 	ic->ic_opmode = IEEE80211_M_STA;
537 	ic->ic_caps =
538 		  IEEE80211_C_STA		/* station mode */
539 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
540 		| IEEE80211_C_HOSTAP		/* hostap mode */
541 		| IEEE80211_C_MONITOR		/* monitor mode */
542 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
543 		| IEEE80211_C_WDS		/* 4-address traffic works */
544 		| IEEE80211_C_MBSS		/* mesh point link mode */
545 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
546 		| IEEE80211_C_SHSLOT		/* short slot time supported */
547 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
548 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
549 		| IEEE80211_C_TXFRAG		/* handle tx frags */
550 #ifdef	ATH_ENABLE_DFS
551 		| IEEE80211_C_DFS		/* Enable radar detection */
552 #endif
553 		;
554 	/*
555 	 * Query the hal to figure out h/w crypto support.
556 	 */
557 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
558 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
559 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
560 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
561 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
562 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
563 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
564 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
565 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
566 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
567 		/*
568 		 * Check if h/w does the MIC and/or whether the
569 		 * separate key cache entries are required to
570 		 * handle both tx+rx MIC keys.
571 		 */
572 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
573 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
574 		/*
575 		 * If the h/w supports storing tx+rx MIC keys
576 		 * in one cache slot automatically enable use.
577 		 */
578 		if (ath_hal_hastkipsplit(ah) ||
579 		    !ath_hal_settkipsplit(ah, AH_FALSE))
580 			sc->sc_splitmic = 1;
581 		/*
582 		 * If the h/w can do TKIP MIC together with WME then
583 		 * we use it; otherwise we force the MIC to be done
584 		 * in software by the net80211 layer.
585 		 */
586 		if (ath_hal_haswmetkipmic(ah))
587 			sc->sc_wmetkipmic = 1;
588 	}
589 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
590 	/*
591 	 * Check for multicast key search support.
592 	 */
593 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
594 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
595 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
596 	}
597 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
598 	/*
599 	 * Mark key cache slots associated with global keys
600 	 * as in use.  If we knew TKIP was not to be used we
601 	 * could leave the +32, +64, and +32+64 slots free.
602 	 */
603 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
604 		setbit(sc->sc_keymap, i);
605 		setbit(sc->sc_keymap, i+64);
606 		if (sc->sc_splitmic) {
607 			setbit(sc->sc_keymap, i+32);
608 			setbit(sc->sc_keymap, i+32+64);
609 		}
610 	}
611 	/*
612 	 * TPC support can be done either with a global cap or
613 	 * per-packet support.  The latter is not available on
614 	 * all parts.  We're a bit pedantic here as all parts
615 	 * support a global cap.
616 	 */
617 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
618 		ic->ic_caps |= IEEE80211_C_TXPMGT;
619 
620 	/*
621 	 * Mark WME capability only if we have sufficient
622 	 * hardware queues to do proper priority scheduling.
623 	 */
624 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
625 		ic->ic_caps |= IEEE80211_C_WME;
626 	/*
627 	 * Check for misc other capabilities.
628 	 */
629 	if (ath_hal_hasbursting(ah))
630 		ic->ic_caps |= IEEE80211_C_BURST;
631 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
632 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
633 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
634 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
635 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
636 	if (ath_hal_hasfastframes(ah))
637 		ic->ic_caps |= IEEE80211_C_FF;
638 	wmodes = ath_hal_getwirelessmodes(ah);
639 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
640 		ic->ic_caps |= IEEE80211_C_TURBOP;
641 #ifdef IEEE80211_SUPPORT_TDMA
642 	if (ath_hal_macversion(ah) > 0x78) {
643 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
644 		ic->ic_tdma_update = ath_tdma_update;
645 	}
646 #endif
647 
648 	/*
649 	 * TODO: enforce that at least this many frames are available
650 	 * in the txbuf list before allowing data frames (raw or
651 	 * otherwise) to be transmitted.
652 	 */
653 	sc->sc_txq_data_minfree = 10;
654 	/*
655 	 * Leave this as default to maintain legacy behaviour.
656 	 * Shortening the cabq/mcastq may end up causing some
657 	 * undesirable behaviour.
658 	 */
659 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
660 
661 	/*
662 	 * Allow the TX and RX chainmasks to be overridden by
663 	 * environment variables and/or device.hints.
664 	 *
665 	 * This must be done early - before the hardware is
666 	 * calibrated or before the 802.11n stream calculation
667 	 * is done.
668 	 */
669 	if (resource_int_value(device_get_name(sc->sc_dev),
670 	    device_get_unit(sc->sc_dev), "rx_chainmask",
671 	    &rx_chainmask) == 0) {
672 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
673 		    rx_chainmask);
674 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
675 	}
676 	if (resource_int_value(device_get_name(sc->sc_dev),
677 	    device_get_unit(sc->sc_dev), "tx_chainmask",
678 	    &tx_chainmask) == 0) {
679 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
680 		    tx_chainmask);
681 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
682 	}
683 
684 	/*
685 	 * The if_ath 11n support is completely not ready for normal use.
686 	 * Enabling this option will likely break everything and everything.
687 	 * Don't think of doing that unless you know what you're doing.
688 	 */
689 
690 #ifdef	ATH_ENABLE_11N
691 	/*
692 	 * Query HT capabilities
693 	 */
694 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
695 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
696 		int rxs, txs;
697 
698 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
699 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
700 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
701 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
702 			    | IEEE80211_HTCAP_MAXAMSDU_3839
703 			    				/* max A-MSDU length */
704 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
705 			;
706 
707 		/*
708 		 * Enable short-GI for HT20 only if the hardware
709 		 * advertises support.
710 		 * Notably, anything earlier than the AR9287 doesn't.
711 		 */
712 		if ((ath_hal_getcapability(ah,
713 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
714 		    (wmodes & HAL_MODE_HT20)) {
715 			device_printf(sc->sc_dev,
716 			    "[HT] enabling short-GI in 20MHz mode\n");
717 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
718 		}
719 
720 		if (wmodes & HAL_MODE_HT40)
721 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
722 			    |  IEEE80211_HTCAP_SHORTGI40;
723 
724 		/*
725 		 * TX/RX streams need to be taken into account when
726 		 * negotiating which MCS rates it'll receive and
727 		 * what MCS rates are available for TX.
728 		 */
729 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
730 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
731 
732 		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
733 		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
734 
735 		ic->ic_txstream = txs;
736 		ic->ic_rxstream = rxs;
737 
738 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
739 		    &sc->sc_rts_aggr_limit);
740 		if (sc->sc_rts_aggr_limit != (64 * 1024))
741 			device_printf(sc->sc_dev,
742 			    "[HT] RTS aggregates limited to %d KiB\n",
743 			    sc->sc_rts_aggr_limit / 1024);
744 
745 		device_printf(sc->sc_dev,
746 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
747 	}
748 #endif
749 
750 	/*
751 	 * Check if the hardware requires PCI register serialisation.
752 	 * Some of the Owl based MACs require this.
753 	 */
754 	if (mp_ncpus > 1 &&
755 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
756 	     0, NULL) == HAL_OK) {
757 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
758 		device_printf(sc->sc_dev,
759 		    "Enabling register serialisation\n");
760 	}
761 
762 	/*
763 	 * Indicate we need the 802.11 header padded to a
764 	 * 32-bit boundary for 4-address and QoS frames.
765 	 */
766 	ic->ic_flags |= IEEE80211_F_DATAPAD;
767 
768 	/*
769 	 * Query the hal about antenna support.
770 	 */
771 	sc->sc_defant = ath_hal_getdefantenna(ah);
772 
773 	/*
774 	 * Not all chips have the VEOL support we want to
775 	 * use with IBSS beacons; check here for it.
776 	 */
777 	sc->sc_hasveol = ath_hal_hasveol(ah);
778 
779 	/* get mac address from hardware */
780 	ath_hal_getmac(ah, macaddr);
781 	if (sc->sc_hasbmask)
782 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
783 
784 	/* NB: used to size node table key mapping array */
785 	ic->ic_max_keyix = sc->sc_keymax;
786 	/* call MI attach routine. */
787 	ieee80211_ifattach(ic, macaddr);
788 	ic->ic_setregdomain = ath_setregdomain;
789 	ic->ic_getradiocaps = ath_getradiocaps;
790 	sc->sc_opmode = HAL_M_STA;
791 
792 	/* override default methods */
793 	ic->ic_newassoc = ath_newassoc;
794 	ic->ic_updateslot = ath_updateslot;
795 	ic->ic_wme.wme_update = ath_wme_update;
796 	ic->ic_vap_create = ath_vap_create;
797 	ic->ic_vap_delete = ath_vap_delete;
798 	ic->ic_raw_xmit = ath_raw_xmit;
799 	ic->ic_update_mcast = ath_update_mcast;
800 	ic->ic_update_promisc = ath_update_promisc;
801 	ic->ic_node_alloc = ath_node_alloc;
802 	sc->sc_node_free = ic->ic_node_free;
803 	ic->ic_node_free = ath_node_free;
804 	sc->sc_node_cleanup = ic->ic_node_cleanup;
805 	ic->ic_node_cleanup = ath_node_cleanup;
806 	ic->ic_node_getsignal = ath_node_getsignal;
807 	ic->ic_scan_start = ath_scan_start;
808 	ic->ic_scan_end = ath_scan_end;
809 	ic->ic_set_channel = ath_set_channel;
810 #ifdef	ATH_ENABLE_11N
811 	/* 802.11n specific - but just override anyway */
812 	sc->sc_addba_request = ic->ic_addba_request;
813 	sc->sc_addba_response = ic->ic_addba_response;
814 	sc->sc_addba_stop = ic->ic_addba_stop;
815 	sc->sc_bar_response = ic->ic_bar_response;
816 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
817 
818 	ic->ic_addba_request = ath_addba_request;
819 	ic->ic_addba_response = ath_addba_response;
820 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
821 	ic->ic_addba_stop = ath_addba_stop;
822 	ic->ic_bar_response = ath_bar_response;
823 
824 	ic->ic_update_chw = ath_update_chw;
825 #endif	/* ATH_ENABLE_11N */
826 
827 	ieee80211_radiotap_attach(ic,
828 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
829 		ATH_TX_RADIOTAP_PRESENT,
830 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
831 		ATH_RX_RADIOTAP_PRESENT);
832 
833 	/*
834 	 * Setup dynamic sysctl's now that country code and
835 	 * regdomain are available from the hal.
836 	 */
837 	ath_sysctlattach(sc);
838 	ath_sysctl_stats_attach(sc);
839 	ath_sysctl_hal_attach(sc);
840 
841 	if (bootverbose)
842 		ieee80211_announce(ic);
843 	ath_announce(sc);
844 	return 0;
845 bad2:
846 	ath_tx_cleanup(sc);
847 	ath_desc_free(sc);
848 bad:
849 	if (ah)
850 		ath_hal_detach(ah);
851 	if (ifp != NULL)
852 		if_free(ifp);
853 	sc->sc_invalid = 1;
854 	return error;
855 }
856 
857 int
858 ath_detach(struct ath_softc *sc)
859 {
860 	struct ifnet *ifp = sc->sc_ifp;
861 
862 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
863 		__func__, ifp->if_flags);
864 
865 	/*
866 	 * NB: the order of these is important:
867 	 * o stop the chip so no more interrupts will fire
868 	 * o call the 802.11 layer before detaching the hal to
869 	 *   insure callbacks into the driver to delete global
870 	 *   key cache entries can be handled
871 	 * o free the taskqueue which drains any pending tasks
872 	 * o reclaim the tx queue data structures after calling
873 	 *   the 802.11 layer as we'll get called back to reclaim
874 	 *   node state and potentially want to use them
875 	 * o to cleanup the tx queues the hal is called, so detach
876 	 *   it last
877 	 * Other than that, it's straightforward...
878 	 */
879 	ath_stop(ifp);
880 	ieee80211_ifdetach(ifp->if_l2com);
881 	taskqueue_free(sc->sc_tq);
882 #ifdef ATH_TX99_DIAG
883 	if (sc->sc_tx99 != NULL)
884 		sc->sc_tx99->detach(sc->sc_tx99);
885 #endif
886 	ath_rate_detach(sc->sc_rc);
887 
888 	ath_dfs_detach(sc);
889 	ath_desc_free(sc);
890 	ath_tx_cleanup(sc);
891 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
892 	if_free(ifp);
893 
894 	return 0;
895 }
896 
897 /*
898  * MAC address handling for multiple BSS on the same radio.
899  * The first vap uses the MAC address from the EEPROM.  For
900  * subsequent vap's we set the U/L bit (bit 1) in the MAC
901  * address and use the next six bits as an index.
902  */
903 static void
904 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
905 {
906 	int i;
907 
908 	if (clone && sc->sc_hasbmask) {
909 		/* NB: we only do this if h/w supports multiple bssid */
910 		for (i = 0; i < 8; i++)
911 			if ((sc->sc_bssidmask & (1<<i)) == 0)
912 				break;
913 		if (i != 0)
914 			mac[0] |= (i << 2)|0x2;
915 	} else
916 		i = 0;
917 	sc->sc_bssidmask |= 1<<i;
918 	sc->sc_hwbssidmask[0] &= ~mac[0];
919 	if (i == 0)
920 		sc->sc_nbssid0++;
921 }
922 
923 static void
924 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
925 {
926 	int i = mac[0] >> 2;
927 	uint8_t mask;
928 
929 	if (i != 0 || --sc->sc_nbssid0 == 0) {
930 		sc->sc_bssidmask &= ~(1<<i);
931 		/* recalculate bssid mask from remaining addresses */
932 		mask = 0xff;
933 		for (i = 1; i < 8; i++)
934 			if (sc->sc_bssidmask & (1<<i))
935 				mask &= ~((i<<2)|0x2);
936 		sc->sc_hwbssidmask[0] |= mask;
937 	}
938 }
939 
940 /*
941  * Assign a beacon xmit slot.  We try to space out
942  * assignments so when beacons are staggered the
943  * traffic coming out of the cab q has maximal time
944  * to go out before the next beacon is scheduled.
945  */
946 static int
947 assign_bslot(struct ath_softc *sc)
948 {
949 	u_int slot, free;
950 
951 	free = 0;
952 	for (slot = 0; slot < ATH_BCBUF; slot++)
953 		if (sc->sc_bslot[slot] == NULL) {
954 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
955 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
956 				return slot;
957 			free = slot;
958 			/* NB: keep looking for a double slot */
959 		}
960 	return free;
961 }
962 
963 static struct ieee80211vap *
964 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
965     enum ieee80211_opmode opmode, int flags,
966     const uint8_t bssid[IEEE80211_ADDR_LEN],
967     const uint8_t mac0[IEEE80211_ADDR_LEN])
968 {
969 	struct ath_softc *sc = ic->ic_ifp->if_softc;
970 	struct ath_vap *avp;
971 	struct ieee80211vap *vap;
972 	uint8_t mac[IEEE80211_ADDR_LEN];
973 	int needbeacon, error;
974 	enum ieee80211_opmode ic_opmode;
975 
976 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
977 	    M_80211_VAP, M_WAITOK | M_ZERO);
978 	needbeacon = 0;
979 	IEEE80211_ADDR_COPY(mac, mac0);
980 
981 	ATH_LOCK(sc);
982 	ic_opmode = opmode;		/* default to opmode of new vap */
983 	switch (opmode) {
984 	case IEEE80211_M_STA:
985 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
986 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
987 			goto bad;
988 		}
989 		if (sc->sc_nvaps) {
990 			/*
991 			 * With multiple vaps we must fall back
992 			 * to s/w beacon miss handling.
993 			 */
994 			flags |= IEEE80211_CLONE_NOBEACONS;
995 		}
996 		if (flags & IEEE80211_CLONE_NOBEACONS) {
997 			/*
998 			 * Station mode w/o beacons are implemented w/ AP mode.
999 			 */
1000 			ic_opmode = IEEE80211_M_HOSTAP;
1001 		}
1002 		break;
1003 	case IEEE80211_M_IBSS:
1004 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1005 			device_printf(sc->sc_dev,
1006 			    "only 1 ibss vap supported\n");
1007 			goto bad;
1008 		}
1009 		needbeacon = 1;
1010 		break;
1011 	case IEEE80211_M_AHDEMO:
1012 #ifdef IEEE80211_SUPPORT_TDMA
1013 		if (flags & IEEE80211_CLONE_TDMA) {
1014 			if (sc->sc_nvaps != 0) {
1015 				device_printf(sc->sc_dev,
1016 				    "only 1 tdma vap supported\n");
1017 				goto bad;
1018 			}
1019 			needbeacon = 1;
1020 			flags |= IEEE80211_CLONE_NOBEACONS;
1021 		}
1022 		/* fall thru... */
1023 #endif
1024 	case IEEE80211_M_MONITOR:
1025 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1026 			/*
1027 			 * Adopt existing mode.  Adding a monitor or ahdemo
1028 			 * vap to an existing configuration is of dubious
1029 			 * value but should be ok.
1030 			 */
1031 			/* XXX not right for monitor mode */
1032 			ic_opmode = ic->ic_opmode;
1033 		}
1034 		break;
1035 	case IEEE80211_M_HOSTAP:
1036 	case IEEE80211_M_MBSS:
1037 		needbeacon = 1;
1038 		break;
1039 	case IEEE80211_M_WDS:
1040 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1041 			device_printf(sc->sc_dev,
1042 			    "wds not supported in sta mode\n");
1043 			goto bad;
1044 		}
1045 		/*
1046 		 * Silently remove any request for a unique
1047 		 * bssid; WDS vap's always share the local
1048 		 * mac address.
1049 		 */
1050 		flags &= ~IEEE80211_CLONE_BSSID;
1051 		if (sc->sc_nvaps == 0)
1052 			ic_opmode = IEEE80211_M_HOSTAP;
1053 		else
1054 			ic_opmode = ic->ic_opmode;
1055 		break;
1056 	default:
1057 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1058 		goto bad;
1059 	}
1060 	/*
1061 	 * Check that a beacon buffer is available; the code below assumes it.
1062 	 */
1063 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1064 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1065 		goto bad;
1066 	}
1067 
1068 	/* STA, AHDEMO? */
1069 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1070 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1071 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1072 	}
1073 
1074 	vap = &avp->av_vap;
1075 	/* XXX can't hold mutex across if_alloc */
1076 	ATH_UNLOCK(sc);
1077 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1078 	    bssid, mac);
1079 	ATH_LOCK(sc);
1080 	if (error != 0) {
1081 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1082 		    __func__, error);
1083 		goto bad2;
1084 	}
1085 
1086 	/* h/w crypto support */
1087 	vap->iv_key_alloc = ath_key_alloc;
1088 	vap->iv_key_delete = ath_key_delete;
1089 	vap->iv_key_set = ath_key_set;
1090 	vap->iv_key_update_begin = ath_key_update_begin;
1091 	vap->iv_key_update_end = ath_key_update_end;
1092 
1093 	/* override various methods */
1094 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1095 	vap->iv_recv_mgmt = ath_recv_mgmt;
1096 	vap->iv_reset = ath_reset_vap;
1097 	vap->iv_update_beacon = ath_beacon_update;
1098 	avp->av_newstate = vap->iv_newstate;
1099 	vap->iv_newstate = ath_newstate;
1100 	avp->av_bmiss = vap->iv_bmiss;
1101 	vap->iv_bmiss = ath_bmiss_vap;
1102 
1103 	/* Set default parameters */
1104 
1105 	/*
1106 	 * Anything earlier than some AR9300 series MACs don't
1107 	 * support a smaller MPDU density.
1108 	 */
1109 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1110 	/*
1111 	 * All NICs can handle the maximum size, however
1112 	 * AR5416 based MACs can only TX aggregates w/ RTS
1113 	 * protection when the total aggregate size is <= 8k.
1114 	 * However, for now that's enforced by the TX path.
1115 	 */
1116 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1117 
1118 	avp->av_bslot = -1;
1119 	if (needbeacon) {
1120 		/*
1121 		 * Allocate beacon state and setup the q for buffered
1122 		 * multicast frames.  We know a beacon buffer is
1123 		 * available because we checked above.
1124 		 */
1125 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1126 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1127 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1128 			/*
1129 			 * Assign the vap to a beacon xmit slot.  As above
1130 			 * this cannot fail to find a free one.
1131 			 */
1132 			avp->av_bslot = assign_bslot(sc);
1133 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1134 			    ("beacon slot %u not empty", avp->av_bslot));
1135 			sc->sc_bslot[avp->av_bslot] = vap;
1136 			sc->sc_nbcnvaps++;
1137 		}
1138 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1139 			/*
1140 			 * Multple vaps are to transmit beacons and we
1141 			 * have h/w support for TSF adjusting; enable
1142 			 * use of staggered beacons.
1143 			 */
1144 			sc->sc_stagbeacons = 1;
1145 		}
1146 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1147 	}
1148 
1149 	ic->ic_opmode = ic_opmode;
1150 	if (opmode != IEEE80211_M_WDS) {
1151 		sc->sc_nvaps++;
1152 		if (opmode == IEEE80211_M_STA)
1153 			sc->sc_nstavaps++;
1154 		if (opmode == IEEE80211_M_MBSS)
1155 			sc->sc_nmeshvaps++;
1156 	}
1157 	switch (ic_opmode) {
1158 	case IEEE80211_M_IBSS:
1159 		sc->sc_opmode = HAL_M_IBSS;
1160 		break;
1161 	case IEEE80211_M_STA:
1162 		sc->sc_opmode = HAL_M_STA;
1163 		break;
1164 	case IEEE80211_M_AHDEMO:
1165 #ifdef IEEE80211_SUPPORT_TDMA
1166 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1167 			sc->sc_tdma = 1;
1168 			/* NB: disable tsf adjust */
1169 			sc->sc_stagbeacons = 0;
1170 		}
1171 		/*
1172 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1173 		 * just ap mode.
1174 		 */
1175 		/* fall thru... */
1176 #endif
1177 	case IEEE80211_M_HOSTAP:
1178 	case IEEE80211_M_MBSS:
1179 		sc->sc_opmode = HAL_M_HOSTAP;
1180 		break;
1181 	case IEEE80211_M_MONITOR:
1182 		sc->sc_opmode = HAL_M_MONITOR;
1183 		break;
1184 	default:
1185 		/* XXX should not happen */
1186 		break;
1187 	}
1188 	if (sc->sc_hastsfadd) {
1189 		/*
1190 		 * Configure whether or not TSF adjust should be done.
1191 		 */
1192 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1193 	}
1194 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1195 		/*
1196 		 * Enable s/w beacon miss handling.
1197 		 */
1198 		sc->sc_swbmiss = 1;
1199 	}
1200 	ATH_UNLOCK(sc);
1201 
1202 	/* complete setup */
1203 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1204 	return vap;
1205 bad2:
1206 	reclaim_address(sc, mac);
1207 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1208 bad:
1209 	free(avp, M_80211_VAP);
1210 	ATH_UNLOCK(sc);
1211 	return NULL;
1212 }
1213 
1214 static void
1215 ath_vap_delete(struct ieee80211vap *vap)
1216 {
1217 	struct ieee80211com *ic = vap->iv_ic;
1218 	struct ifnet *ifp = ic->ic_ifp;
1219 	struct ath_softc *sc = ifp->if_softc;
1220 	struct ath_hal *ah = sc->sc_ah;
1221 	struct ath_vap *avp = ATH_VAP(vap);
1222 
1223 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1224 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1225 		/*
1226 		 * Quiesce the hardware while we remove the vap.  In
1227 		 * particular we need to reclaim all references to
1228 		 * the vap state by any frames pending on the tx queues.
1229 		 */
1230 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1231 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1232 		/* XXX Do all frames from all vaps/nodes need draining here? */
1233 		ath_stoprecv(sc, 1);		/* stop recv side */
1234 	}
1235 
1236 	ieee80211_vap_detach(vap);
1237 
1238 	/*
1239 	 * XXX Danger Will Robinson! Danger!
1240 	 *
1241 	 * Because ieee80211_vap_detach() can queue a frame (the station
1242 	 * diassociate message?) after we've drained the TXQ and
1243 	 * flushed the software TXQ, we will end up with a frame queued
1244 	 * to a node whose vap is about to be freed.
1245 	 *
1246 	 * To work around this, flush the hardware/software again.
1247 	 * This may be racy - the ath task may be running and the packet
1248 	 * may be being scheduled between sw->hw txq. Tsk.
1249 	 *
1250 	 * TODO: figure out why a new node gets allocated somewhere around
1251 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1252 	 * call!)
1253 	 */
1254 
1255 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1256 
1257 	ATH_LOCK(sc);
1258 	/*
1259 	 * Reclaim beacon state.  Note this must be done before
1260 	 * the vap instance is reclaimed as we may have a reference
1261 	 * to it in the buffer for the beacon frame.
1262 	 */
1263 	if (avp->av_bcbuf != NULL) {
1264 		if (avp->av_bslot != -1) {
1265 			sc->sc_bslot[avp->av_bslot] = NULL;
1266 			sc->sc_nbcnvaps--;
1267 		}
1268 		ath_beacon_return(sc, avp->av_bcbuf);
1269 		avp->av_bcbuf = NULL;
1270 		if (sc->sc_nbcnvaps == 0) {
1271 			sc->sc_stagbeacons = 0;
1272 			if (sc->sc_hastsfadd)
1273 				ath_hal_settsfadjust(sc->sc_ah, 0);
1274 		}
1275 		/*
1276 		 * Reclaim any pending mcast frames for the vap.
1277 		 */
1278 		ath_tx_draintxq(sc, &avp->av_mcastq);
1279 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1280 	}
1281 	/*
1282 	 * Update bookkeeping.
1283 	 */
1284 	if (vap->iv_opmode == IEEE80211_M_STA) {
1285 		sc->sc_nstavaps--;
1286 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1287 			sc->sc_swbmiss = 0;
1288 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1289 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1290 		reclaim_address(sc, vap->iv_myaddr);
1291 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1292 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1293 			sc->sc_nmeshvaps--;
1294 	}
1295 	if (vap->iv_opmode != IEEE80211_M_WDS)
1296 		sc->sc_nvaps--;
1297 #ifdef IEEE80211_SUPPORT_TDMA
1298 	/* TDMA operation ceases when the last vap is destroyed */
1299 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1300 		sc->sc_tdma = 0;
1301 		sc->sc_swbmiss = 0;
1302 	}
1303 #endif
1304 	free(avp, M_80211_VAP);
1305 
1306 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1307 		/*
1308 		 * Restart rx+tx machines if still running (RUNNING will
1309 		 * be reset if we just destroyed the last vap).
1310 		 */
1311 		if (ath_startrecv(sc) != 0)
1312 			if_printf(ifp, "%s: unable to restart recv logic\n",
1313 			    __func__);
1314 		if (sc->sc_beacons) {		/* restart beacons */
1315 #ifdef IEEE80211_SUPPORT_TDMA
1316 			if (sc->sc_tdma)
1317 				ath_tdma_config(sc, NULL);
1318 			else
1319 #endif
1320 				ath_beacon_config(sc, NULL);
1321 		}
1322 		ath_hal_intrset(ah, sc->sc_imask);
1323 	}
1324 	ATH_UNLOCK(sc);
1325 }
1326 
1327 void
1328 ath_suspend(struct ath_softc *sc)
1329 {
1330 	struct ifnet *ifp = sc->sc_ifp;
1331 	struct ieee80211com *ic = ifp->if_l2com;
1332 
1333 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1334 		__func__, ifp->if_flags);
1335 
1336 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1337 	if (ic->ic_opmode == IEEE80211_M_STA)
1338 		ath_stop(ifp);
1339 	else
1340 		ieee80211_suspend_all(ic);
1341 	/*
1342 	 * NB: don't worry about putting the chip in low power
1343 	 * mode; pci will power off our socket on suspend and
1344 	 * CardBus detaches the device.
1345 	 */
1346 }
1347 
1348 /*
1349  * Reset the key cache since some parts do not reset the
1350  * contents on resume.  First we clear all entries, then
1351  * re-load keys that the 802.11 layer assumes are setup
1352  * in h/w.
1353  */
1354 static void
1355 ath_reset_keycache(struct ath_softc *sc)
1356 {
1357 	struct ifnet *ifp = sc->sc_ifp;
1358 	struct ieee80211com *ic = ifp->if_l2com;
1359 	struct ath_hal *ah = sc->sc_ah;
1360 	int i;
1361 
1362 	for (i = 0; i < sc->sc_keymax; i++)
1363 		ath_hal_keyreset(ah, i);
1364 	ieee80211_crypto_reload_keys(ic);
1365 }
1366 
1367 void
1368 ath_resume(struct ath_softc *sc)
1369 {
1370 	struct ifnet *ifp = sc->sc_ifp;
1371 	struct ieee80211com *ic = ifp->if_l2com;
1372 	struct ath_hal *ah = sc->sc_ah;
1373 	HAL_STATUS status;
1374 
1375 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1376 		__func__, ifp->if_flags);
1377 
1378 	/*
1379 	 * Must reset the chip before we reload the
1380 	 * keycache as we were powered down on suspend.
1381 	 */
1382 	ath_hal_reset(ah, sc->sc_opmode,
1383 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1384 	    AH_FALSE, &status);
1385 	ath_reset_keycache(sc);
1386 
1387 	/* Let DFS at it in case it's a DFS channel */
1388 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1389 
1390 	/* Restore the LED configuration */
1391 	ath_led_config(sc);
1392 	ath_hal_setledstate(ah, HAL_LED_INIT);
1393 
1394 	if (sc->sc_resume_up) {
1395 		if (ic->ic_opmode == IEEE80211_M_STA) {
1396 			ath_init(sc);
1397 			ath_hal_setledstate(ah, HAL_LED_RUN);
1398 			/*
1399 			 * Program the beacon registers using the last rx'd
1400 			 * beacon frame and enable sync on the next beacon
1401 			 * we see.  This should handle the case where we
1402 			 * wakeup and find the same AP and also the case where
1403 			 * we wakeup and need to roam.  For the latter we
1404 			 * should get bmiss events that trigger a roam.
1405 			 */
1406 			ath_beacon_config(sc, NULL);
1407 			sc->sc_syncbeacon = 1;
1408 		} else
1409 			ieee80211_resume_all(ic);
1410 	}
1411 
1412 	/* XXX beacons ? */
1413 }
1414 
1415 void
1416 ath_shutdown(struct ath_softc *sc)
1417 {
1418 	struct ifnet *ifp = sc->sc_ifp;
1419 
1420 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1421 		__func__, ifp->if_flags);
1422 
1423 	ath_stop(ifp);
1424 	/* NB: no point powering down chip as we're about to reboot */
1425 }
1426 
1427 /*
1428  * Interrupt handler.  Most of the actual processing is deferred.
1429  */
1430 void
1431 ath_intr(void *arg)
1432 {
1433 	struct ath_softc *sc = arg;
1434 	struct ifnet *ifp = sc->sc_ifp;
1435 	struct ath_hal *ah = sc->sc_ah;
1436 	HAL_INT status = 0;
1437 	uint32_t txqs;
1438 
1439 	/*
1440 	 * If we're inside a reset path, just print a warning and
1441 	 * clear the ISR. The reset routine will finish it for us.
1442 	 */
1443 	ATH_PCU_LOCK(sc);
1444 	if (sc->sc_inreset_cnt) {
1445 		HAL_INT status;
1446 		ath_hal_getisr(ah, &status);	/* clear ISR */
1447 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1448 		DPRINTF(sc, ATH_DEBUG_ANY,
1449 		    "%s: in reset, ignoring: status=0x%x\n",
1450 		    __func__, status);
1451 		ATH_PCU_UNLOCK(sc);
1452 		return;
1453 	}
1454 
1455 	if (sc->sc_invalid) {
1456 		/*
1457 		 * The hardware is not ready/present, don't touch anything.
1458 		 * Note this can happen early on if the IRQ is shared.
1459 		 */
1460 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1461 		ATH_PCU_UNLOCK(sc);
1462 		return;
1463 	}
1464 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1465 		ATH_PCU_UNLOCK(sc);
1466 		return;
1467 	}
1468 
1469 	if ((ifp->if_flags & IFF_UP) == 0 ||
1470 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1471 		HAL_INT status;
1472 
1473 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1474 			__func__, ifp->if_flags);
1475 		ath_hal_getisr(ah, &status);	/* clear ISR */
1476 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1477 		ATH_PCU_UNLOCK(sc);
1478 		return;
1479 	}
1480 
1481 	/*
1482 	 * Figure out the reason(s) for the interrupt.  Note
1483 	 * that the hal returns a pseudo-ISR that may include
1484 	 * bits we haven't explicitly enabled so we mask the
1485 	 * value to insure we only process bits we requested.
1486 	 */
1487 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1488 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1489 	CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status);
1490 #ifdef	ATH_KTR_INTR_DEBUG
1491 	CTR5(ATH_KTR_INTR,
1492 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1493 	    ah->ah_intrstate[0],
1494 	    ah->ah_intrstate[1],
1495 	    ah->ah_intrstate[2],
1496 	    ah->ah_intrstate[3],
1497 	    ah->ah_intrstate[6]);
1498 #endif
1499 
1500 	/* Squirrel away SYNC interrupt debugging */
1501 	if (ah->ah_syncstate != 0) {
1502 		int i;
1503 		for (i = 0; i < 32; i++)
1504 			if (ah->ah_syncstate & (i << i))
1505 				sc->sc_intr_stats.sync_intr[i]++;
1506 	}
1507 
1508 	status &= sc->sc_imask;			/* discard unasked for bits */
1509 
1510 	/* Short-circuit un-handled interrupts */
1511 	if (status == 0x0) {
1512 		ATH_PCU_UNLOCK(sc);
1513 		return;
1514 	}
1515 
1516 	/*
1517 	 * Take a note that we're inside the interrupt handler, so
1518 	 * the reset routines know to wait.
1519 	 */
1520 	sc->sc_intr_cnt++;
1521 	ATH_PCU_UNLOCK(sc);
1522 
1523 	/*
1524 	 * Handle the interrupt. We won't run concurrent with the reset
1525 	 * or channel change routines as they'll wait for sc_intr_cnt
1526 	 * to be 0 before continuing.
1527 	 */
1528 	if (status & HAL_INT_FATAL) {
1529 		sc->sc_stats.ast_hardware++;
1530 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1531 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1532 	} else {
1533 		if (status & HAL_INT_SWBA) {
1534 			/*
1535 			 * Software beacon alert--time to send a beacon.
1536 			 * Handle beacon transmission directly; deferring
1537 			 * this is too slow to meet timing constraints
1538 			 * under load.
1539 			 */
1540 #ifdef IEEE80211_SUPPORT_TDMA
1541 			if (sc->sc_tdma) {
1542 				if (sc->sc_tdmaswba == 0) {
1543 					struct ieee80211com *ic = ifp->if_l2com;
1544 					struct ieee80211vap *vap =
1545 					    TAILQ_FIRST(&ic->ic_vaps);
1546 					ath_tdma_beacon_send(sc, vap);
1547 					sc->sc_tdmaswba =
1548 					    vap->iv_tdma->tdma_bintval;
1549 				} else
1550 					sc->sc_tdmaswba--;
1551 			} else
1552 #endif
1553 			{
1554 				ath_beacon_proc(sc, 0);
1555 #ifdef IEEE80211_SUPPORT_SUPERG
1556 				/*
1557 				 * Schedule the rx taskq in case there's no
1558 				 * traffic so any frames held on the staging
1559 				 * queue are aged and potentially flushed.
1560 				 */
1561 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1562 #endif
1563 			}
1564 		}
1565 		if (status & HAL_INT_RXEOL) {
1566 			int imask;
1567 			CTR0(ATH_KTR_ERR, "ath_intr: RXEOL");
1568 			ATH_PCU_LOCK(sc);
1569 			/*
1570 			 * NB: the hardware should re-read the link when
1571 			 *     RXE bit is written, but it doesn't work at
1572 			 *     least on older hardware revs.
1573 			 */
1574 			sc->sc_stats.ast_rxeol++;
1575 			/*
1576 			 * Disable RXEOL/RXORN - prevent an interrupt
1577 			 * storm until the PCU logic can be reset.
1578 			 * In case the interface is reset some other
1579 			 * way before "sc_kickpcu" is called, don't
1580 			 * modify sc_imask - that way if it is reset
1581 			 * by a call to ath_reset() somehow, the
1582 			 * interrupt mask will be correctly reprogrammed.
1583 			 */
1584 			imask = sc->sc_imask;
1585 			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1586 			ath_hal_intrset(ah, imask);
1587 			/*
1588 			 * Only blank sc_rxlink if we've not yet kicked
1589 			 * the PCU.
1590 			 *
1591 			 * This isn't entirely correct - the correct solution
1592 			 * would be to have a PCU lock and engage that for
1593 			 * the duration of the PCU fiddling; which would include
1594 			 * running the RX process. Otherwise we could end up
1595 			 * messing up the RX descriptor chain and making the
1596 			 * RX desc list much shorter.
1597 			 */
1598 			if (! sc->sc_kickpcu)
1599 				sc->sc_rxlink = NULL;
1600 			sc->sc_kickpcu = 1;
1601 			/*
1602 			 * Enqueue an RX proc, to handled whatever
1603 			 * is in the RX queue.
1604 			 * This will then kick the PCU.
1605 			 */
1606 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1607 			ATH_PCU_UNLOCK(sc);
1608 		}
1609 		if (status & HAL_INT_TXURN) {
1610 			sc->sc_stats.ast_txurn++;
1611 			/* bump tx trigger level */
1612 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1613 		}
1614 		if (status & HAL_INT_RX) {
1615 			sc->sc_stats.ast_rx_intr++;
1616 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1617 		}
1618 		if (status & HAL_INT_TX) {
1619 			sc->sc_stats.ast_tx_intr++;
1620 			/*
1621 			 * Grab all the currently set bits in the HAL txq bitmap
1622 			 * and blank them. This is the only place we should be
1623 			 * doing this.
1624 			 */
1625 			ATH_PCU_LOCK(sc);
1626 			txqs = 0xffffffff;
1627 			ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1628 			sc->sc_txq_active |= txqs;
1629 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1630 			ATH_PCU_UNLOCK(sc);
1631 		}
1632 		if (status & HAL_INT_BMISS) {
1633 			sc->sc_stats.ast_bmiss++;
1634 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1635 		}
1636 		if (status & HAL_INT_GTT)
1637 			sc->sc_stats.ast_tx_timeout++;
1638 		if (status & HAL_INT_CST)
1639 			sc->sc_stats.ast_tx_cst++;
1640 		if (status & HAL_INT_MIB) {
1641 			sc->sc_stats.ast_mib++;
1642 			ATH_PCU_LOCK(sc);
1643 			/*
1644 			 * Disable interrupts until we service the MIB
1645 			 * interrupt; otherwise it will continue to fire.
1646 			 */
1647 			ath_hal_intrset(ah, 0);
1648 			/*
1649 			 * Let the hal handle the event.  We assume it will
1650 			 * clear whatever condition caused the interrupt.
1651 			 */
1652 			ath_hal_mibevent(ah, &sc->sc_halstats);
1653 			/*
1654 			 * Don't reset the interrupt if we've just
1655 			 * kicked the PCU, or we may get a nested
1656 			 * RXEOL before the rxproc has had a chance
1657 			 * to run.
1658 			 */
1659 			if (sc->sc_kickpcu == 0)
1660 				ath_hal_intrset(ah, sc->sc_imask);
1661 			ATH_PCU_UNLOCK(sc);
1662 		}
1663 		if (status & HAL_INT_RXORN) {
1664 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1665 			CTR0(ATH_KTR_ERR, "ath_intr: RXORN");
1666 			sc->sc_stats.ast_rxorn++;
1667 		}
1668 	}
1669 	ATH_PCU_LOCK(sc);
1670 	sc->sc_intr_cnt--;
1671 	ATH_PCU_UNLOCK(sc);
1672 }
1673 
1674 static void
1675 ath_fatal_proc(void *arg, int pending)
1676 {
1677 	struct ath_softc *sc = arg;
1678 	struct ifnet *ifp = sc->sc_ifp;
1679 	u_int32_t *state;
1680 	u_int32_t len;
1681 	void *sp;
1682 
1683 	if_printf(ifp, "hardware error; resetting\n");
1684 	/*
1685 	 * Fatal errors are unrecoverable.  Typically these
1686 	 * are caused by DMA errors.  Collect h/w state from
1687 	 * the hal so we can diagnose what's going on.
1688 	 */
1689 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1690 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1691 		state = sp;
1692 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1693 		    state[0], state[1] , state[2], state[3],
1694 		    state[4], state[5]);
1695 	}
1696 	ath_reset(ifp, ATH_RESET_NOLOSS);
1697 }
1698 
1699 static void
1700 ath_bmiss_vap(struct ieee80211vap *vap)
1701 {
1702 	/*
1703 	 * Workaround phantom bmiss interrupts by sanity-checking
1704 	 * the time of our last rx'd frame.  If it is within the
1705 	 * beacon miss interval then ignore the interrupt.  If it's
1706 	 * truly a bmiss we'll get another interrupt soon and that'll
1707 	 * be dispatched up for processing.  Note this applies only
1708 	 * for h/w beacon miss events.
1709 	 */
1710 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1711 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1712 		struct ath_softc *sc = ifp->if_softc;
1713 		u_int64_t lastrx = sc->sc_lastrx;
1714 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1715 		/* XXX should take a locked ref to iv_bss */
1716 		u_int bmisstimeout =
1717 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1718 
1719 		DPRINTF(sc, ATH_DEBUG_BEACON,
1720 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1721 		    __func__, (unsigned long long) tsf,
1722 		    (unsigned long long)(tsf - lastrx),
1723 		    (unsigned long long) lastrx, bmisstimeout);
1724 
1725 		if (tsf - lastrx <= bmisstimeout) {
1726 			sc->sc_stats.ast_bmiss_phantom++;
1727 			return;
1728 		}
1729 	}
1730 	ATH_VAP(vap)->av_bmiss(vap);
1731 }
1732 
1733 static int
1734 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1735 {
1736 	uint32_t rsize;
1737 	void *sp;
1738 
1739 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1740 		return 0;
1741 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1742 	*hangs = *(uint32_t *)sp;
1743 	return 1;
1744 }
1745 
1746 static void
1747 ath_bmiss_proc(void *arg, int pending)
1748 {
1749 	struct ath_softc *sc = arg;
1750 	struct ifnet *ifp = sc->sc_ifp;
1751 	uint32_t hangs;
1752 
1753 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1754 
1755 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1756 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1757 		ath_reset(ifp, ATH_RESET_NOLOSS);
1758 	} else
1759 		ieee80211_beacon_miss(ifp->if_l2com);
1760 }
1761 
1762 /*
1763  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1764  * calcs together with WME.  If necessary disable the crypto
1765  * hardware and mark the 802.11 state so keys will be setup
1766  * with the MIC work done in software.
1767  */
1768 static void
1769 ath_settkipmic(struct ath_softc *sc)
1770 {
1771 	struct ifnet *ifp = sc->sc_ifp;
1772 	struct ieee80211com *ic = ifp->if_l2com;
1773 
1774 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1775 		if (ic->ic_flags & IEEE80211_F_WME) {
1776 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1777 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1778 		} else {
1779 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1780 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1781 		}
1782 	}
1783 }
1784 
1785 static void
1786 ath_init(void *arg)
1787 {
1788 	struct ath_softc *sc = (struct ath_softc *) arg;
1789 	struct ifnet *ifp = sc->sc_ifp;
1790 	struct ieee80211com *ic = ifp->if_l2com;
1791 	struct ath_hal *ah = sc->sc_ah;
1792 	HAL_STATUS status;
1793 
1794 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1795 		__func__, ifp->if_flags);
1796 
1797 	ATH_LOCK(sc);
1798 	/*
1799 	 * Stop anything previously setup.  This is safe
1800 	 * whether this is the first time through or not.
1801 	 */
1802 	ath_stop_locked(ifp);
1803 
1804 	/*
1805 	 * The basic interface to setting the hardware in a good
1806 	 * state is ``reset''.  On return the hardware is known to
1807 	 * be powered up and with interrupts disabled.  This must
1808 	 * be followed by initialization of the appropriate bits
1809 	 * and then setup of the interrupt mask.
1810 	 */
1811 	ath_settkipmic(sc);
1812 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1813 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1814 			status);
1815 		ATH_UNLOCK(sc);
1816 		return;
1817 	}
1818 	ath_chan_change(sc, ic->ic_curchan);
1819 
1820 	/* Let DFS at it in case it's a DFS channel */
1821 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1822 
1823 	/*
1824 	 * Likewise this is set during reset so update
1825 	 * state cached in the driver.
1826 	 */
1827 	sc->sc_diversity = ath_hal_getdiversity(ah);
1828 	sc->sc_lastlongcal = 0;
1829 	sc->sc_resetcal = 1;
1830 	sc->sc_lastcalreset = 0;
1831 	sc->sc_lastani = 0;
1832 	sc->sc_lastshortcal = 0;
1833 	sc->sc_doresetcal = AH_FALSE;
1834 	/*
1835 	 * Beacon timers were cleared here; give ath_newstate()
1836 	 * a hint that the beacon timers should be poked when
1837 	 * things transition to the RUN state.
1838 	 */
1839 	sc->sc_beacons = 0;
1840 
1841 	/*
1842 	 * Initial aggregation settings.
1843 	 */
1844 	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
1845 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1846 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1847 
1848 	/*
1849 	 * Setup the hardware after reset: the key cache
1850 	 * is filled as needed and the receive engine is
1851 	 * set going.  Frame transmit is handled entirely
1852 	 * in the frame output path; there's nothing to do
1853 	 * here except setup the interrupt mask.
1854 	 */
1855 	if (ath_startrecv(sc) != 0) {
1856 		if_printf(ifp, "unable to start recv logic\n");
1857 		ATH_UNLOCK(sc);
1858 		return;
1859 	}
1860 
1861 	/*
1862 	 * Enable interrupts.
1863 	 */
1864 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1865 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1866 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1867 	/*
1868 	 * Enable MIB interrupts when there are hardware phy counters.
1869 	 * Note we only do this (at the moment) for station mode.
1870 	 */
1871 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1872 		sc->sc_imask |= HAL_INT_MIB;
1873 
1874 	/* Enable global TX timeout and carrier sense timeout if available */
1875 	if (ath_hal_gtxto_supported(ah))
1876 		sc->sc_imask |= HAL_INT_GTT;
1877 
1878 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1879 		__func__, sc->sc_imask);
1880 
1881 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1882 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1883 	ath_hal_intrset(ah, sc->sc_imask);
1884 
1885 	ATH_UNLOCK(sc);
1886 
1887 #ifdef ATH_TX99_DIAG
1888 	if (sc->sc_tx99 != NULL)
1889 		sc->sc_tx99->start(sc->sc_tx99);
1890 	else
1891 #endif
1892 	ieee80211_start_all(ic);		/* start all vap's */
1893 }
1894 
1895 static void
1896 ath_stop_locked(struct ifnet *ifp)
1897 {
1898 	struct ath_softc *sc = ifp->if_softc;
1899 	struct ath_hal *ah = sc->sc_ah;
1900 
1901 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1902 		__func__, sc->sc_invalid, ifp->if_flags);
1903 
1904 	ATH_LOCK_ASSERT(sc);
1905 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1906 		/*
1907 		 * Shutdown the hardware and driver:
1908 		 *    reset 802.11 state machine
1909 		 *    turn off timers
1910 		 *    disable interrupts
1911 		 *    turn off the radio
1912 		 *    clear transmit machinery
1913 		 *    clear receive machinery
1914 		 *    drain and release tx queues
1915 		 *    reclaim beacon resources
1916 		 *    power down hardware
1917 		 *
1918 		 * Note that some of this work is not possible if the
1919 		 * hardware is gone (invalid).
1920 		 */
1921 #ifdef ATH_TX99_DIAG
1922 		if (sc->sc_tx99 != NULL)
1923 			sc->sc_tx99->stop(sc->sc_tx99);
1924 #endif
1925 		callout_stop(&sc->sc_wd_ch);
1926 		sc->sc_wd_timer = 0;
1927 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1928 		if (!sc->sc_invalid) {
1929 			if (sc->sc_softled) {
1930 				callout_stop(&sc->sc_ledtimer);
1931 				ath_hal_gpioset(ah, sc->sc_ledpin,
1932 					!sc->sc_ledon);
1933 				sc->sc_blinking = 0;
1934 			}
1935 			ath_hal_intrset(ah, 0);
1936 		}
1937 		ath_draintxq(sc, ATH_RESET_DEFAULT);
1938 		if (!sc->sc_invalid) {
1939 			ath_stoprecv(sc, 1);
1940 			ath_hal_phydisable(ah);
1941 		} else
1942 			sc->sc_rxlink = NULL;
1943 		ath_beacon_free(sc);	/* XXX not needed */
1944 	}
1945 }
1946 
1947 #define	MAX_TXRX_ITERATIONS	1000
1948 static void
1949 ath_txrx_stop_locked(struct ath_softc *sc)
1950 {
1951 	int i = MAX_TXRX_ITERATIONS;
1952 
1953 	ATH_UNLOCK_ASSERT(sc);
1954 	ATH_PCU_LOCK_ASSERT(sc);
1955 
1956 	/*
1957 	 * Sleep until all the pending operations have completed.
1958 	 *
1959 	 * The caller must ensure that reset has been incremented
1960 	 * or the pending operations may continue being queued.
1961 	 */
1962 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
1963 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
1964 		if (i <= 0)
1965 			break;
1966 		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
1967 		i--;
1968 	}
1969 
1970 	if (i <= 0)
1971 		device_printf(sc->sc_dev,
1972 		    "%s: didn't finish after %d iterations\n",
1973 		    __func__, MAX_TXRX_ITERATIONS);
1974 }
1975 #undef	MAX_TXRX_ITERATIONS
1976 
1977 #if 0
1978 static void
1979 ath_txrx_stop(struct ath_softc *sc)
1980 {
1981 	ATH_UNLOCK_ASSERT(sc);
1982 	ATH_PCU_UNLOCK_ASSERT(sc);
1983 
1984 	ATH_PCU_LOCK(sc);
1985 	ath_txrx_stop_locked(sc);
1986 	ATH_PCU_UNLOCK(sc);
1987 }
1988 #endif
1989 
1990 static void
1991 ath_txrx_start(struct ath_softc *sc)
1992 {
1993 
1994 	taskqueue_unblock(sc->sc_tq);
1995 }
1996 
1997 /*
1998  * Grab the reset lock, and wait around until noone else
1999  * is trying to do anything with it.
2000  *
2001  * This is totally horrible but we can't hold this lock for
2002  * long enough to do TX/RX or we end up with net80211/ip stack
2003  * LORs and eventual deadlock.
2004  *
2005  * "dowait" signals whether to spin, waiting for the reset
2006  * lock count to reach 0. This should (for now) only be used
2007  * during the reset path, as the rest of the code may not
2008  * be locking-reentrant enough to behave correctly.
2009  *
2010  * Another, cleaner way should be found to serialise all of
2011  * these operations.
2012  */
2013 #define	MAX_RESET_ITERATIONS	10
2014 static int
2015 ath_reset_grablock(struct ath_softc *sc, int dowait)
2016 {
2017 	int w = 0;
2018 	int i = MAX_RESET_ITERATIONS;
2019 
2020 	ATH_PCU_LOCK_ASSERT(sc);
2021 	do {
2022 		if (sc->sc_inreset_cnt == 0) {
2023 			w = 1;
2024 			break;
2025 		}
2026 		if (dowait == 0) {
2027 			w = 0;
2028 			break;
2029 		}
2030 		ATH_PCU_UNLOCK(sc);
2031 		pause("ath_reset_grablock", 1);
2032 		i--;
2033 		ATH_PCU_LOCK(sc);
2034 	} while (i > 0);
2035 
2036 	/*
2037 	 * We always increment the refcounter, regardless
2038 	 * of whether we succeeded to get it in an exclusive
2039 	 * way.
2040 	 */
2041 	sc->sc_inreset_cnt++;
2042 
2043 	if (i <= 0)
2044 		device_printf(sc->sc_dev,
2045 		    "%s: didn't finish after %d iterations\n",
2046 		    __func__, MAX_RESET_ITERATIONS);
2047 
2048 	if (w == 0)
2049 		device_printf(sc->sc_dev,
2050 		    "%s: warning, recursive reset path!\n",
2051 		    __func__);
2052 
2053 	return w;
2054 }
2055 #undef MAX_RESET_ITERATIONS
2056 
2057 /*
2058  * XXX TODO: write ath_reset_releaselock
2059  */
2060 
2061 static void
2062 ath_stop(struct ifnet *ifp)
2063 {
2064 	struct ath_softc *sc = ifp->if_softc;
2065 
2066 	ATH_LOCK(sc);
2067 	ath_stop_locked(ifp);
2068 	ATH_UNLOCK(sc);
2069 }
2070 
2071 /*
2072  * Reset the hardware w/o losing operational state.  This is
2073  * basically a more efficient way of doing ath_stop, ath_init,
2074  * followed by state transitions to the current 802.11
2075  * operational state.  Used to recover from various errors and
2076  * to reset or reload hardware state.
2077  */
2078 int
2079 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2080 {
2081 	struct ath_softc *sc = ifp->if_softc;
2082 	struct ieee80211com *ic = ifp->if_l2com;
2083 	struct ath_hal *ah = sc->sc_ah;
2084 	HAL_STATUS status;
2085 	int i;
2086 
2087 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2088 
2089 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2090 	ATH_PCU_UNLOCK_ASSERT(sc);
2091 	ATH_UNLOCK_ASSERT(sc);
2092 
2093 	/* Try to (stop any further TX/RX from occuring */
2094 	taskqueue_block(sc->sc_tq);
2095 
2096 	ATH_PCU_LOCK(sc);
2097 	ath_hal_intrset(ah, 0);		/* disable interrupts */
2098 	ath_txrx_stop_locked(sc);	/* Ensure TX/RX is stopped */
2099 	if (ath_reset_grablock(sc, 1) == 0) {
2100 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2101 		    __func__);
2102 	}
2103 	ATH_PCU_UNLOCK(sc);
2104 
2105 	/*
2106 	 * Should now wait for pending TX/RX to complete
2107 	 * and block future ones from occuring. This needs to be
2108 	 * done before the TX queue is drained.
2109 	 */
2110 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2111 
2112 	/*
2113 	 * Regardless of whether we're doing a no-loss flush or
2114 	 * not, stop the PCU and handle what's in the RX queue.
2115 	 * That way frames aren't dropped which shouldn't be.
2116 	 */
2117 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2118 	ath_rx_proc(sc, 0);
2119 
2120 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2121 	/* NB: indicate channel change so we do a full reset */
2122 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2123 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2124 			__func__, status);
2125 	sc->sc_diversity = ath_hal_getdiversity(ah);
2126 
2127 	/* Let DFS at it in case it's a DFS channel */
2128 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2129 
2130 	if (ath_startrecv(sc) != 0)	/* restart recv */
2131 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2132 	/*
2133 	 * We may be doing a reset in response to an ioctl
2134 	 * that changes the channel so update any state that
2135 	 * might change as a result.
2136 	 */
2137 	ath_chan_change(sc, ic->ic_curchan);
2138 	if (sc->sc_beacons) {		/* restart beacons */
2139 #ifdef IEEE80211_SUPPORT_TDMA
2140 		if (sc->sc_tdma)
2141 			ath_tdma_config(sc, NULL);
2142 		else
2143 #endif
2144 			ath_beacon_config(sc, NULL);
2145 	}
2146 
2147 	/*
2148 	 * Release the reset lock and re-enable interrupts here.
2149 	 * If an interrupt was being processed in ath_intr(),
2150 	 * it would disable interrupts at this point. So we have
2151 	 * to atomically enable interrupts and decrement the
2152 	 * reset counter - this way ath_intr() doesn't end up
2153 	 * disabling interrupts without a corresponding enable
2154 	 * in the rest or channel change path.
2155 	 */
2156 	ATH_PCU_LOCK(sc);
2157 	sc->sc_inreset_cnt--;
2158 	/* XXX only do this if sc_inreset_cnt == 0? */
2159 	ath_hal_intrset(ah, sc->sc_imask);
2160 	ATH_PCU_UNLOCK(sc);
2161 
2162 	/*
2163 	 * TX and RX can be started here. If it were started with
2164 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2165 	 * Thus if this is a nested call through the reset or
2166 	 * channel change code, TX completion will occur but
2167 	 * RX completion and ath_start / ath_tx_start will not
2168 	 * run.
2169 	 */
2170 
2171 	/* Restart TX/RX as needed */
2172 	ath_txrx_start(sc);
2173 
2174 	/* XXX Restart TX completion and pending TX */
2175 	if (reset_type == ATH_RESET_NOLOSS) {
2176 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2177 			if (ATH_TXQ_SETUP(sc, i)) {
2178 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2179 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2180 				ath_txq_sched(sc, &sc->sc_txq[i]);
2181 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2182 			}
2183 		}
2184 	}
2185 
2186 	/*
2187 	 * This may have been set during an ath_start() call which
2188 	 * set this once it detected a concurrent TX was going on.
2189 	 * So, clear it.
2190 	 */
2191 	IF_LOCK(&ifp->if_snd);
2192 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2193 	IF_UNLOCK(&ifp->if_snd);
2194 
2195 	/* Handle any frames in the TX queue */
2196 	/*
2197 	 * XXX should this be done by the caller, rather than
2198 	 * ath_reset() ?
2199 	 */
2200 	ath_start(ifp);			/* restart xmit */
2201 	return 0;
2202 }
2203 
2204 static int
2205 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2206 {
2207 	struct ieee80211com *ic = vap->iv_ic;
2208 	struct ifnet *ifp = ic->ic_ifp;
2209 	struct ath_softc *sc = ifp->if_softc;
2210 	struct ath_hal *ah = sc->sc_ah;
2211 
2212 	switch (cmd) {
2213 	case IEEE80211_IOC_TXPOWER:
2214 		/*
2215 		 * If per-packet TPC is enabled, then we have nothing
2216 		 * to do; otherwise we need to force the global limit.
2217 		 * All this can happen directly; no need to reset.
2218 		 */
2219 		if (!ath_hal_gettpc(ah))
2220 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2221 		return 0;
2222 	}
2223 	/* XXX? Full or NOLOSS? */
2224 	return ath_reset(ifp, ATH_RESET_FULL);
2225 }
2226 
2227 struct ath_buf *
2228 _ath_getbuf_locked(struct ath_softc *sc)
2229 {
2230 	struct ath_buf *bf;
2231 
2232 	ATH_TXBUF_LOCK_ASSERT(sc);
2233 
2234 	bf = TAILQ_FIRST(&sc->sc_txbuf);
2235 	if (bf == NULL) {
2236 		sc->sc_stats.ast_tx_getnobuf++;
2237 	} else {
2238 		if (bf->bf_flags & ATH_BUF_BUSY) {
2239 			sc->sc_stats.ast_tx_getbusybuf++;
2240 			bf = NULL;
2241 		}
2242 	}
2243 
2244 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
2245 		TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2246 	else
2247 		bf = NULL;
2248 
2249 	if (bf == NULL) {
2250 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2251 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2252 			"out of xmit buffers" : "xmit buffer busy");
2253 		return NULL;
2254 	}
2255 
2256 	/* Valid bf here; clear some basic fields */
2257 	bf->bf_next = NULL;	/* XXX just to be sure */
2258 	bf->bf_last = NULL;	/* XXX again, just to be sure */
2259 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2260 	bzero(&bf->bf_state, sizeof(bf->bf_state));
2261 
2262 	return bf;
2263 }
2264 
2265 /*
2266  * When retrying a software frame, buffers marked ATH_BUF_BUSY
2267  * can't be thrown back on the queue as they could still be
2268  * in use by the hardware.
2269  *
2270  * This duplicates the buffer, or returns NULL.
2271  *
2272  * The descriptor is also copied but the link pointers and
2273  * the DMA segments aren't copied; this frame should thus
2274  * be again passed through the descriptor setup/chain routines
2275  * so the link is correct.
2276  *
2277  * The caller must free the buffer using ath_freebuf().
2278  *
2279  * XXX TODO: this call shouldn't fail as it'll cause packet loss
2280  * XXX in the TX pathway when retries are needed.
2281  * XXX Figure out how to keep some buffers free, or factor the
2282  * XXX number of busy buffers into the xmit path (ath_start())
2283  * XXX so we don't over-commit.
2284  */
2285 struct ath_buf *
2286 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
2287 {
2288 	struct ath_buf *tbf;
2289 
2290 	tbf = ath_getbuf(sc);
2291 	if (tbf == NULL)
2292 		return NULL;	/* XXX failure? Why? */
2293 
2294 	/* Copy basics */
2295 	tbf->bf_next = NULL;
2296 	tbf->bf_nseg = bf->bf_nseg;
2297 	tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
2298 	tbf->bf_status = bf->bf_status;
2299 	tbf->bf_m = bf->bf_m;
2300 	tbf->bf_node = bf->bf_node;
2301 	/* will be setup by the chain/setup function */
2302 	tbf->bf_lastds = NULL;
2303 	/* for now, last == self */
2304 	tbf->bf_last = tbf;
2305 	tbf->bf_comp = bf->bf_comp;
2306 
2307 	/* NOTE: DMA segments will be setup by the setup/chain functions */
2308 
2309 	/* The caller has to re-init the descriptor + links */
2310 
2311 	/* Copy state */
2312 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2313 
2314 	return tbf;
2315 }
2316 
2317 struct ath_buf *
2318 ath_getbuf(struct ath_softc *sc)
2319 {
2320 	struct ath_buf *bf;
2321 
2322 	ATH_TXBUF_LOCK(sc);
2323 	bf = _ath_getbuf_locked(sc);
2324 	ATH_TXBUF_UNLOCK(sc);
2325 	if (bf == NULL) {
2326 		struct ifnet *ifp = sc->sc_ifp;
2327 
2328 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2329 		sc->sc_stats.ast_tx_qstop++;
2330 		IF_LOCK(&ifp->if_snd);
2331 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2332 		IF_UNLOCK(&ifp->if_snd);
2333 	}
2334 	return bf;
2335 }
2336 
2337 static void
2338 ath_start(struct ifnet *ifp)
2339 {
2340 	struct ath_softc *sc = ifp->if_softc;
2341 	struct ieee80211_node *ni;
2342 	struct ath_buf *bf;
2343 	struct mbuf *m, *next;
2344 	ath_bufhead frags;
2345 
2346 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2347 		return;
2348 
2349 	/* XXX is it ok to hold the ATH_LOCK here? */
2350 	ATH_PCU_LOCK(sc);
2351 	if (sc->sc_inreset_cnt > 0) {
2352 		device_printf(sc->sc_dev,
2353 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2354 		ATH_PCU_UNLOCK(sc);
2355 		IF_LOCK(&ifp->if_snd);
2356 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2357 		IF_UNLOCK(&ifp->if_snd);
2358 		return;
2359 	}
2360 	sc->sc_txstart_cnt++;
2361 	ATH_PCU_UNLOCK(sc);
2362 
2363 	for (;;) {
2364 		/*
2365 		 * Grab a TX buffer and associated resources.
2366 		 */
2367 		bf = ath_getbuf(sc);
2368 		if (bf == NULL)
2369 			break;
2370 
2371 		IFQ_DEQUEUE(&ifp->if_snd, m);
2372 		if (m == NULL) {
2373 			ATH_TXBUF_LOCK(sc);
2374 			TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2375 			ATH_TXBUF_UNLOCK(sc);
2376 			break;
2377 		}
2378 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2379 		/*
2380 		 * Check for fragmentation.  If this frame
2381 		 * has been broken up verify we have enough
2382 		 * buffers to send all the fragments so all
2383 		 * go out or none...
2384 		 */
2385 		TAILQ_INIT(&frags);
2386 		if ((m->m_flags & M_FRAG) &&
2387 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2388 			DPRINTF(sc, ATH_DEBUG_XMIT,
2389 			    "%s: out of txfrag buffers\n", __func__);
2390 			sc->sc_stats.ast_tx_nofrag++;
2391 			ifp->if_oerrors++;
2392 			ath_freetx(m);
2393 			goto bad;
2394 		}
2395 		ifp->if_opackets++;
2396 	nextfrag:
2397 		/*
2398 		 * Pass the frame to the h/w for transmission.
2399 		 * Fragmented frames have each frag chained together
2400 		 * with m_nextpkt.  We know there are sufficient ath_buf's
2401 		 * to send all the frags because of work done by
2402 		 * ath_txfrag_setup.  We leave m_nextpkt set while
2403 		 * calling ath_tx_start so it can use it to extend the
2404 		 * the tx duration to cover the subsequent frag and
2405 		 * so it can reclaim all the mbufs in case of an error;
2406 		 * ath_tx_start clears m_nextpkt once it commits to
2407 		 * handing the frame to the hardware.
2408 		 */
2409 		next = m->m_nextpkt;
2410 		if (ath_tx_start(sc, ni, bf, m)) {
2411 	bad:
2412 			ifp->if_oerrors++;
2413 	reclaim:
2414 			bf->bf_m = NULL;
2415 			bf->bf_node = NULL;
2416 			ATH_TXBUF_LOCK(sc);
2417 			TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2418 			ath_txfrag_cleanup(sc, &frags, ni);
2419 			ATH_TXBUF_UNLOCK(sc);
2420 			if (ni != NULL)
2421 				ieee80211_free_node(ni);
2422 			continue;
2423 		}
2424 		if (next != NULL) {
2425 			/*
2426 			 * Beware of state changing between frags.
2427 			 * XXX check sta power-save state?
2428 			 */
2429 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2430 				DPRINTF(sc, ATH_DEBUG_XMIT,
2431 				    "%s: flush fragmented packet, state %s\n",
2432 				    __func__,
2433 				    ieee80211_state_name[ni->ni_vap->iv_state]);
2434 				ath_freetx(next);
2435 				goto reclaim;
2436 			}
2437 			m = next;
2438 			bf = TAILQ_FIRST(&frags);
2439 			KASSERT(bf != NULL, ("no buf for txfrag"));
2440 			TAILQ_REMOVE(&frags, bf, bf_list);
2441 			goto nextfrag;
2442 		}
2443 
2444 		sc->sc_wd_timer = 5;
2445 	}
2446 
2447 	ATH_PCU_LOCK(sc);
2448 	sc->sc_txstart_cnt--;
2449 	ATH_PCU_UNLOCK(sc);
2450 }
2451 
2452 static int
2453 ath_media_change(struct ifnet *ifp)
2454 {
2455 	int error = ieee80211_media_change(ifp);
2456 	/* NB: only the fixed rate can change and that doesn't need a reset */
2457 	return (error == ENETRESET ? 0 : error);
2458 }
2459 
2460 /*
2461  * Block/unblock tx+rx processing while a key change is done.
2462  * We assume the caller serializes key management operations
2463  * so we only need to worry about synchronization with other
2464  * uses that originate in the driver.
2465  */
2466 static void
2467 ath_key_update_begin(struct ieee80211vap *vap)
2468 {
2469 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2470 	struct ath_softc *sc = ifp->if_softc;
2471 
2472 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2473 	taskqueue_block(sc->sc_tq);
2474 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2475 }
2476 
2477 static void
2478 ath_key_update_end(struct ieee80211vap *vap)
2479 {
2480 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2481 	struct ath_softc *sc = ifp->if_softc;
2482 
2483 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2484 	IF_UNLOCK(&ifp->if_snd);
2485 	taskqueue_unblock(sc->sc_tq);
2486 }
2487 
2488 /*
2489  * Calculate the receive filter according to the
2490  * operating mode and state:
2491  *
2492  * o always accept unicast, broadcast, and multicast traffic
2493  * o accept PHY error frames when hardware doesn't have MIB support
2494  *   to count and we need them for ANI (sta mode only until recently)
2495  *   and we are not scanning (ANI is disabled)
2496  *   NB: older hal's add rx filter bits out of sight and we need to
2497  *	 blindly preserve them
2498  * o probe request frames are accepted only when operating in
2499  *   hostap, adhoc, mesh, or monitor modes
2500  * o enable promiscuous mode
2501  *   - when in monitor mode
2502  *   - if interface marked PROMISC (assumes bridge setting is filtered)
2503  * o accept beacons:
2504  *   - when operating in station mode for collecting rssi data when
2505  *     the station is otherwise quiet, or
2506  *   - when operating in adhoc mode so the 802.11 layer creates
2507  *     node table entries for peers,
2508  *   - when scanning
2509  *   - when doing s/w beacon miss (e.g. for ap+sta)
2510  *   - when operating in ap mode in 11g to detect overlapping bss that
2511  *     require protection
2512  *   - when operating in mesh mode to detect neighbors
2513  * o accept control frames:
2514  *   - when in monitor mode
2515  * XXX HT protection for 11n
2516  */
2517 static u_int32_t
2518 ath_calcrxfilter(struct ath_softc *sc)
2519 {
2520 	struct ifnet *ifp = sc->sc_ifp;
2521 	struct ieee80211com *ic = ifp->if_l2com;
2522 	u_int32_t rfilt;
2523 
2524 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2525 	if (!sc->sc_needmib && !sc->sc_scanning)
2526 		rfilt |= HAL_RX_FILTER_PHYERR;
2527 	if (ic->ic_opmode != IEEE80211_M_STA)
2528 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2529 	/* XXX ic->ic_monvaps != 0? */
2530 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2531 		rfilt |= HAL_RX_FILTER_PROM;
2532 	if (ic->ic_opmode == IEEE80211_M_STA ||
2533 	    ic->ic_opmode == IEEE80211_M_IBSS ||
2534 	    sc->sc_swbmiss || sc->sc_scanning)
2535 		rfilt |= HAL_RX_FILTER_BEACON;
2536 	/*
2537 	 * NB: We don't recalculate the rx filter when
2538 	 * ic_protmode changes; otherwise we could do
2539 	 * this only when ic_protmode != NONE.
2540 	 */
2541 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2542 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2543 		rfilt |= HAL_RX_FILTER_BEACON;
2544 
2545 	/*
2546 	 * Enable hardware PS-POLL RX only for hostap mode;
2547 	 * STA mode sends PS-POLL frames but never
2548 	 * receives them.
2549 	 */
2550 	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
2551 	    0, NULL) == HAL_OK &&
2552 	    ic->ic_opmode == IEEE80211_M_HOSTAP)
2553 		rfilt |= HAL_RX_FILTER_PSPOLL;
2554 
2555 	if (sc->sc_nmeshvaps) {
2556 		rfilt |= HAL_RX_FILTER_BEACON;
2557 		if (sc->sc_hasbmatch)
2558 			rfilt |= HAL_RX_FILTER_BSSID;
2559 		else
2560 			rfilt |= HAL_RX_FILTER_PROM;
2561 	}
2562 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2563 		rfilt |= HAL_RX_FILTER_CONTROL;
2564 
2565 	/*
2566 	 * Enable RX of compressed BAR frames only when doing
2567 	 * 802.11n. Required for A-MPDU.
2568 	 */
2569 	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
2570 		rfilt |= HAL_RX_FILTER_COMPBAR;
2571 
2572 	/*
2573 	 * Enable radar PHY errors if requested by the
2574 	 * DFS module.
2575 	 */
2576 	if (sc->sc_dodfs)
2577 		rfilt |= HAL_RX_FILTER_PHYRADAR;
2578 
2579 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2580 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2581 	return rfilt;
2582 }
2583 
2584 static void
2585 ath_update_promisc(struct ifnet *ifp)
2586 {
2587 	struct ath_softc *sc = ifp->if_softc;
2588 	u_int32_t rfilt;
2589 
2590 	/* configure rx filter */
2591 	rfilt = ath_calcrxfilter(sc);
2592 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2593 
2594 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2595 }
2596 
2597 static void
2598 ath_update_mcast(struct ifnet *ifp)
2599 {
2600 	struct ath_softc *sc = ifp->if_softc;
2601 	u_int32_t mfilt[2];
2602 
2603 	/* calculate and install multicast filter */
2604 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2605 		struct ifmultiaddr *ifma;
2606 		/*
2607 		 * Merge multicast addresses to form the hardware filter.
2608 		 */
2609 		mfilt[0] = mfilt[1] = 0;
2610 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2611 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2612 			caddr_t dl;
2613 			u_int32_t val;
2614 			u_int8_t pos;
2615 
2616 			/* calculate XOR of eight 6bit values */
2617 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2618 			val = LE_READ_4(dl + 0);
2619 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2620 			val = LE_READ_4(dl + 3);
2621 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2622 			pos &= 0x3f;
2623 			mfilt[pos / 32] |= (1 << (pos % 32));
2624 		}
2625 		if_maddr_runlock(ifp);
2626 	} else
2627 		mfilt[0] = mfilt[1] = ~0;
2628 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2629 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2630 		__func__, mfilt[0], mfilt[1]);
2631 }
2632 
2633 static void
2634 ath_mode_init(struct ath_softc *sc)
2635 {
2636 	struct ifnet *ifp = sc->sc_ifp;
2637 	struct ath_hal *ah = sc->sc_ah;
2638 	u_int32_t rfilt;
2639 
2640 	/* configure rx filter */
2641 	rfilt = ath_calcrxfilter(sc);
2642 	ath_hal_setrxfilter(ah, rfilt);
2643 
2644 	/* configure operational mode */
2645 	ath_hal_setopmode(ah);
2646 
2647 	/* handle any link-level address change */
2648 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2649 
2650 	/* calculate and install multicast filter */
2651 	ath_update_mcast(ifp);
2652 }
2653 
2654 /*
2655  * Set the slot time based on the current setting.
2656  */
2657 static void
2658 ath_setslottime(struct ath_softc *sc)
2659 {
2660 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2661 	struct ath_hal *ah = sc->sc_ah;
2662 	u_int usec;
2663 
2664 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2665 		usec = 13;
2666 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2667 		usec = 21;
2668 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2669 		/* honor short/long slot time only in 11g */
2670 		/* XXX shouldn't honor on pure g or turbo g channel */
2671 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2672 			usec = HAL_SLOT_TIME_9;
2673 		else
2674 			usec = HAL_SLOT_TIME_20;
2675 	} else
2676 		usec = HAL_SLOT_TIME_9;
2677 
2678 	DPRINTF(sc, ATH_DEBUG_RESET,
2679 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2680 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2681 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2682 
2683 	ath_hal_setslottime(ah, usec);
2684 	sc->sc_updateslot = OK;
2685 }
2686 
2687 /*
2688  * Callback from the 802.11 layer to update the
2689  * slot time based on the current setting.
2690  */
2691 static void
2692 ath_updateslot(struct ifnet *ifp)
2693 {
2694 	struct ath_softc *sc = ifp->if_softc;
2695 	struct ieee80211com *ic = ifp->if_l2com;
2696 
2697 	/*
2698 	 * When not coordinating the BSS, change the hardware
2699 	 * immediately.  For other operation we defer the change
2700 	 * until beacon updates have propagated to the stations.
2701 	 */
2702 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2703 	    ic->ic_opmode == IEEE80211_M_MBSS)
2704 		sc->sc_updateslot = UPDATE;
2705 	else
2706 		ath_setslottime(sc);
2707 }
2708 
2709 /*
2710  * Setup a h/w transmit queue for beacons.
2711  */
2712 static int
2713 ath_beaconq_setup(struct ath_hal *ah)
2714 {
2715 	HAL_TXQ_INFO qi;
2716 
2717 	memset(&qi, 0, sizeof(qi));
2718 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2719 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2720 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2721 	/* NB: for dynamic turbo, don't enable any other interrupts */
2722 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2723 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2724 }
2725 
2726 /*
2727  * Setup the transmit queue parameters for the beacon queue.
2728  */
2729 static int
2730 ath_beaconq_config(struct ath_softc *sc)
2731 {
2732 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2733 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2734 	struct ath_hal *ah = sc->sc_ah;
2735 	HAL_TXQ_INFO qi;
2736 
2737 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2738 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2739 	    ic->ic_opmode == IEEE80211_M_MBSS) {
2740 		/*
2741 		 * Always burst out beacon and CAB traffic.
2742 		 */
2743 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2744 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2745 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2746 	} else {
2747 		struct wmeParams *wmep =
2748 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2749 		/*
2750 		 * Adhoc mode; important thing is to use 2x cwmin.
2751 		 */
2752 		qi.tqi_aifs = wmep->wmep_aifsn;
2753 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2754 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2755 	}
2756 
2757 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2758 		device_printf(sc->sc_dev, "unable to update parameters for "
2759 			"beacon hardware queue!\n");
2760 		return 0;
2761 	} else {
2762 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2763 		return 1;
2764 	}
2765 #undef ATH_EXPONENT_TO_VALUE
2766 }
2767 
2768 /*
2769  * Allocate and setup an initial beacon frame.
2770  */
2771 static int
2772 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2773 {
2774 	struct ieee80211vap *vap = ni->ni_vap;
2775 	struct ath_vap *avp = ATH_VAP(vap);
2776 	struct ath_buf *bf;
2777 	struct mbuf *m;
2778 	int error;
2779 
2780 	bf = avp->av_bcbuf;
2781 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: bf_m=%p, bf_node=%p\n",
2782 	    __func__, bf->bf_m, bf->bf_node);
2783 	if (bf->bf_m != NULL) {
2784 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2785 		m_freem(bf->bf_m);
2786 		bf->bf_m = NULL;
2787 	}
2788 	if (bf->bf_node != NULL) {
2789 		ieee80211_free_node(bf->bf_node);
2790 		bf->bf_node = NULL;
2791 	}
2792 
2793 	/*
2794 	 * NB: the beacon data buffer must be 32-bit aligned;
2795 	 * we assume the mbuf routines will return us something
2796 	 * with this alignment (perhaps should assert).
2797 	 */
2798 	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2799 	if (m == NULL) {
2800 		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2801 		sc->sc_stats.ast_be_nombuf++;
2802 		return ENOMEM;
2803 	}
2804 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2805 				     bf->bf_segs, &bf->bf_nseg,
2806 				     BUS_DMA_NOWAIT);
2807 	if (error != 0) {
2808 		device_printf(sc->sc_dev,
2809 		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2810 		    __func__, error);
2811 		m_freem(m);
2812 		return error;
2813 	}
2814 
2815 	/*
2816 	 * Calculate a TSF adjustment factor required for staggered
2817 	 * beacons.  Note that we assume the format of the beacon
2818 	 * frame leaves the tstamp field immediately following the
2819 	 * header.
2820 	 */
2821 	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2822 		uint64_t tsfadjust;
2823 		struct ieee80211_frame *wh;
2824 
2825 		/*
2826 		 * The beacon interval is in TU's; the TSF is in usecs.
2827 		 * We figure out how many TU's to add to align the timestamp
2828 		 * then convert to TSF units and handle byte swapping before
2829 		 * inserting it in the frame.  The hardware will then add this
2830 		 * each time a beacon frame is sent.  Note that we align vap's
2831 		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2832 		 * timestamp in one beacon interval while the others get a
2833 		 * timstamp aligned to the next interval.
2834 		 */
2835 		tsfadjust = ni->ni_intval *
2836 		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2837 		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2838 
2839 		DPRINTF(sc, ATH_DEBUG_BEACON,
2840 		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2841 		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2842 		    avp->av_bslot, ni->ni_intval,
2843 		    (long long unsigned) le64toh(tsfadjust));
2844 
2845 		wh = mtod(m, struct ieee80211_frame *);
2846 		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2847 	}
2848 	bf->bf_m = m;
2849 	bf->bf_node = ieee80211_ref_node(ni);
2850 
2851 	return 0;
2852 }
2853 
2854 /*
2855  * Setup the beacon frame for transmit.
2856  */
2857 static void
2858 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2859 {
2860 #define	USE_SHPREAMBLE(_ic) \
2861 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2862 		== IEEE80211_F_SHPREAMBLE)
2863 	struct ieee80211_node *ni = bf->bf_node;
2864 	struct ieee80211com *ic = ni->ni_ic;
2865 	struct mbuf *m = bf->bf_m;
2866 	struct ath_hal *ah = sc->sc_ah;
2867 	struct ath_desc *ds;
2868 	int flags, antenna;
2869 	const HAL_RATE_TABLE *rt;
2870 	u_int8_t rix, rate;
2871 
2872 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2873 		__func__, m, m->m_len);
2874 
2875 	/* setup descriptors */
2876 	ds = bf->bf_desc;
2877 	bf->bf_last = bf;
2878 	bf->bf_lastds = ds;
2879 
2880 	flags = HAL_TXDESC_NOACK;
2881 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2882 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2883 		flags |= HAL_TXDESC_VEOL;
2884 		/*
2885 		 * Let hardware handle antenna switching.
2886 		 */
2887 		antenna = sc->sc_txantenna;
2888 	} else {
2889 		ds->ds_link = 0;
2890 		/*
2891 		 * Switch antenna every 4 beacons.
2892 		 * XXX assumes two antenna
2893 		 */
2894 		if (sc->sc_txantenna != 0)
2895 			antenna = sc->sc_txantenna;
2896 		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2897 			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2898 		else
2899 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2900 	}
2901 
2902 	KASSERT(bf->bf_nseg == 1,
2903 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2904 	ds->ds_data = bf->bf_segs[0].ds_addr;
2905 	/*
2906 	 * Calculate rate code.
2907 	 * XXX everything at min xmit rate
2908 	 */
2909 	rix = 0;
2910 	rt = sc->sc_currates;
2911 	rate = rt->info[rix].rateCode;
2912 	if (USE_SHPREAMBLE(ic))
2913 		rate |= rt->info[rix].shortPreamble;
2914 	ath_hal_setuptxdesc(ah, ds
2915 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2916 		, sizeof(struct ieee80211_frame)/* header length */
2917 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2918 		, ni->ni_txpower		/* txpower XXX */
2919 		, rate, 1			/* series 0 rate/tries */
2920 		, HAL_TXKEYIX_INVALID		/* no encryption */
2921 		, antenna			/* antenna mode */
2922 		, flags				/* no ack, veol for beacons */
2923 		, 0				/* rts/cts rate */
2924 		, 0				/* rts/cts duration */
2925 	);
2926 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2927 	ath_hal_filltxdesc(ah, ds
2928 		, roundup(m->m_len, 4)		/* buffer length */
2929 		, AH_TRUE			/* first segment */
2930 		, AH_TRUE			/* last segment */
2931 		, ds				/* first descriptor */
2932 	);
2933 #if 0
2934 	ath_desc_swap(ds);
2935 #endif
2936 #undef USE_SHPREAMBLE
2937 }
2938 
2939 static void
2940 ath_beacon_update(struct ieee80211vap *vap, int item)
2941 {
2942 	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2943 
2944 	setbit(bo->bo_flags, item);
2945 }
2946 
2947 /*
2948  * Append the contents of src to dst; both queues
2949  * are assumed to be locked.
2950  */
2951 static void
2952 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2953 {
2954 
2955 	ATH_TXQ_LOCK_ASSERT(dst);
2956 	ATH_TXQ_LOCK_ASSERT(src);
2957 
2958 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2959 	dst->axq_link = src->axq_link;
2960 	src->axq_link = NULL;
2961 	dst->axq_depth += src->axq_depth;
2962 	dst->axq_aggr_depth += src->axq_aggr_depth;
2963 	src->axq_depth = 0;
2964 	src->axq_aggr_depth = 0;
2965 }
2966 
2967 /*
2968  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2969  * frame contents are done as needed and the slot time is
2970  * also adjusted based on current state.
2971  */
2972 static void
2973 ath_beacon_proc(void *arg, int pending)
2974 {
2975 	struct ath_softc *sc = arg;
2976 	struct ath_hal *ah = sc->sc_ah;
2977 	struct ieee80211vap *vap;
2978 	struct ath_buf *bf;
2979 	int slot, otherant;
2980 	uint32_t bfaddr;
2981 
2982 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2983 		__func__, pending);
2984 	/*
2985 	 * Check if the previous beacon has gone out.  If
2986 	 * not don't try to post another, skip this period
2987 	 * and wait for the next.  Missed beacons indicate
2988 	 * a problem and should not occur.  If we miss too
2989 	 * many consecutive beacons reset the device.
2990 	 */
2991 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2992 		sc->sc_bmisscount++;
2993 		sc->sc_stats.ast_be_missed++;
2994 		DPRINTF(sc, ATH_DEBUG_BEACON,
2995 			"%s: missed %u consecutive beacons\n",
2996 			__func__, sc->sc_bmisscount);
2997 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2998 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2999 		return;
3000 	}
3001 	if (sc->sc_bmisscount != 0) {
3002 		DPRINTF(sc, ATH_DEBUG_BEACON,
3003 			"%s: resume beacon xmit after %u misses\n",
3004 			__func__, sc->sc_bmisscount);
3005 		sc->sc_bmisscount = 0;
3006 	}
3007 
3008 	if (sc->sc_stagbeacons) {			/* staggered beacons */
3009 		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3010 		uint32_t tsftu;
3011 
3012 		tsftu = ath_hal_gettsf32(ah) >> 10;
3013 		/* XXX lintval */
3014 		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
3015 		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
3016 		bfaddr = 0;
3017 		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
3018 			bf = ath_beacon_generate(sc, vap);
3019 			if (bf != NULL)
3020 				bfaddr = bf->bf_daddr;
3021 		}
3022 	} else {					/* burst'd beacons */
3023 		uint32_t *bflink = &bfaddr;
3024 
3025 		for (slot = 0; slot < ATH_BCBUF; slot++) {
3026 			vap = sc->sc_bslot[slot];
3027 			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
3028 				bf = ath_beacon_generate(sc, vap);
3029 				if (bf != NULL) {
3030 					*bflink = bf->bf_daddr;
3031 					bflink = &bf->bf_desc->ds_link;
3032 				}
3033 			}
3034 		}
3035 		*bflink = 0;				/* terminate list */
3036 	}
3037 
3038 	/*
3039 	 * Handle slot time change when a non-ERP station joins/leaves
3040 	 * an 11g network.  The 802.11 layer notifies us via callback,
3041 	 * we mark updateslot, then wait one beacon before effecting
3042 	 * the change.  This gives associated stations at least one
3043 	 * beacon interval to note the state change.
3044 	 */
3045 	/* XXX locking */
3046 	if (sc->sc_updateslot == UPDATE) {
3047 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
3048 		sc->sc_slotupdate = slot;
3049 	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
3050 		ath_setslottime(sc);		/* commit change to h/w */
3051 
3052 	/*
3053 	 * Check recent per-antenna transmit statistics and flip
3054 	 * the default antenna if noticeably more frames went out
3055 	 * on the non-default antenna.
3056 	 * XXX assumes 2 anntenae
3057 	 */
3058 	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
3059 		otherant = sc->sc_defant & 1 ? 2 : 1;
3060 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
3061 			ath_setdefantenna(sc, otherant);
3062 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
3063 	}
3064 
3065 	if (bfaddr != 0) {
3066 		/*
3067 		 * Stop any current dma and put the new frame on the queue.
3068 		 * This should never fail since we check above that no frames
3069 		 * are still pending on the queue.
3070 		 */
3071 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
3072 			DPRINTF(sc, ATH_DEBUG_ANY,
3073 				"%s: beacon queue %u did not stop?\n",
3074 				__func__, sc->sc_bhalq);
3075 		}
3076 		/* NB: cabq traffic should already be queued and primed */
3077 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
3078 		ath_hal_txstart(ah, sc->sc_bhalq);
3079 
3080 		sc->sc_stats.ast_be_xmit++;
3081 	}
3082 }
3083 
3084 static struct ath_buf *
3085 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
3086 {
3087 	struct ath_vap *avp = ATH_VAP(vap);
3088 	struct ath_txq *cabq = sc->sc_cabq;
3089 	struct ath_buf *bf;
3090 	struct mbuf *m;
3091 	int nmcastq, error;
3092 
3093 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
3094 	    ("not running, state %d", vap->iv_state));
3095 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3096 
3097 	/*
3098 	 * Update dynamic beacon contents.  If this returns
3099 	 * non-zero then we need to remap the memory because
3100 	 * the beacon frame changed size (probably because
3101 	 * of the TIM bitmap).
3102 	 */
3103 	bf = avp->av_bcbuf;
3104 	m = bf->bf_m;
3105 	/* XXX lock mcastq? */
3106 	nmcastq = avp->av_mcastq.axq_depth;
3107 
3108 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
3109 		/* XXX too conservative? */
3110 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3111 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3112 					     bf->bf_segs, &bf->bf_nseg,
3113 					     BUS_DMA_NOWAIT);
3114 		if (error != 0) {
3115 			if_printf(vap->iv_ifp,
3116 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3117 			    __func__, error);
3118 			return NULL;
3119 		}
3120 	}
3121 	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
3122 		DPRINTF(sc, ATH_DEBUG_BEACON,
3123 		    "%s: cabq did not drain, mcastq %u cabq %u\n",
3124 		    __func__, nmcastq, cabq->axq_depth);
3125 		sc->sc_stats.ast_cabq_busy++;
3126 		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
3127 			/*
3128 			 * CABQ traffic from a previous vap is still pending.
3129 			 * We must drain the q before this beacon frame goes
3130 			 * out as otherwise this vap's stations will get cab
3131 			 * frames from a different vap.
3132 			 * XXX could be slow causing us to miss DBA
3133 			 */
3134 			ath_tx_draintxq(sc, cabq);
3135 		}
3136 	}
3137 	ath_beacon_setup(sc, bf);
3138 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3139 
3140 	/*
3141 	 * Enable the CAB queue before the beacon queue to
3142 	 * insure cab frames are triggered by this beacon.
3143 	 */
3144 	if (avp->av_boff.bo_tim[4] & 1) {
3145 		struct ath_hal *ah = sc->sc_ah;
3146 
3147 		/* NB: only at DTIM */
3148 		ATH_TXQ_LOCK(cabq);
3149 		ATH_TXQ_LOCK(&avp->av_mcastq);
3150 		if (nmcastq) {
3151 			struct ath_buf *bfm;
3152 
3153 			/*
3154 			 * Move frames from the s/w mcast q to the h/w cab q.
3155 			 * XXX MORE_DATA bit
3156 			 */
3157 			bfm = TAILQ_FIRST(&avp->av_mcastq.axq_q);
3158 			if (cabq->axq_link != NULL) {
3159 				*cabq->axq_link = bfm->bf_daddr;
3160 			} else
3161 				ath_hal_puttxbuf(ah, cabq->axq_qnum,
3162 					bfm->bf_daddr);
3163 			ath_txqmove(cabq, &avp->av_mcastq);
3164 
3165 			sc->sc_stats.ast_cabq_xmit += nmcastq;
3166 		}
3167 		/* NB: gated by beacon so safe to start here */
3168 		if (! TAILQ_EMPTY(&(cabq->axq_q)))
3169 			ath_hal_txstart(ah, cabq->axq_qnum);
3170 		ATH_TXQ_UNLOCK(&avp->av_mcastq);
3171 		ATH_TXQ_UNLOCK(cabq);
3172 	}
3173 	return bf;
3174 }
3175 
3176 static void
3177 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3178 {
3179 	struct ath_vap *avp = ATH_VAP(vap);
3180 	struct ath_hal *ah = sc->sc_ah;
3181 	struct ath_buf *bf;
3182 	struct mbuf *m;
3183 	int error;
3184 
3185 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3186 
3187 	/*
3188 	 * Update dynamic beacon contents.  If this returns
3189 	 * non-zero then we need to remap the memory because
3190 	 * the beacon frame changed size (probably because
3191 	 * of the TIM bitmap).
3192 	 */
3193 	bf = avp->av_bcbuf;
3194 	m = bf->bf_m;
3195 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3196 		/* XXX too conservative? */
3197 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3198 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3199 					     bf->bf_segs, &bf->bf_nseg,
3200 					     BUS_DMA_NOWAIT);
3201 		if (error != 0) {
3202 			if_printf(vap->iv_ifp,
3203 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3204 			    __func__, error);
3205 			return;
3206 		}
3207 	}
3208 	ath_beacon_setup(sc, bf);
3209 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3210 
3211 	/* NB: caller is known to have already stopped tx dma */
3212 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3213 	ath_hal_txstart(ah, sc->sc_bhalq);
3214 }
3215 
3216 /*
3217  * Reset the hardware, with no loss.
3218  *
3219  * This can't be used for a general case reset.
3220  */
3221 static void
3222 ath_reset_proc(void *arg, int pending)
3223 {
3224 	struct ath_softc *sc = arg;
3225 	struct ifnet *ifp = sc->sc_ifp;
3226 
3227 #if 0
3228 	if_printf(ifp, "%s: resetting\n", __func__);
3229 #endif
3230 	ath_reset(ifp, ATH_RESET_NOLOSS);
3231 }
3232 
3233 /*
3234  * Reset the hardware after detecting beacons have stopped.
3235  */
3236 static void
3237 ath_bstuck_proc(void *arg, int pending)
3238 {
3239 	struct ath_softc *sc = arg;
3240 	struct ifnet *ifp = sc->sc_ifp;
3241 	uint32_t hangs = 0;
3242 
3243 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3244 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3245 
3246 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3247 		sc->sc_bmisscount);
3248 	sc->sc_stats.ast_bstuck++;
3249 	/*
3250 	 * This assumes that there's no simultaneous channel mode change
3251 	 * occuring.
3252 	 */
3253 	ath_reset(ifp, ATH_RESET_NOLOSS);
3254 }
3255 
3256 /*
3257  * Reclaim beacon resources and return buffer to the pool.
3258  */
3259 static void
3260 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3261 {
3262 
3263 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: free bf=%p, bf_m=%p, bf_node=%p\n",
3264 	    __func__, bf, bf->bf_m, bf->bf_node);
3265 	if (bf->bf_m != NULL) {
3266 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3267 		m_freem(bf->bf_m);
3268 		bf->bf_m = NULL;
3269 	}
3270 	if (bf->bf_node != NULL) {
3271 		ieee80211_free_node(bf->bf_node);
3272 		bf->bf_node = NULL;
3273 	}
3274 	TAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3275 }
3276 
3277 /*
3278  * Reclaim beacon resources.
3279  */
3280 static void
3281 ath_beacon_free(struct ath_softc *sc)
3282 {
3283 	struct ath_buf *bf;
3284 
3285 	TAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3286 		DPRINTF(sc, ATH_DEBUG_NODE,
3287 		    "%s: free bf=%p, bf_m=%p, bf_node=%p\n",
3288 		        __func__, bf, bf->bf_m, bf->bf_node);
3289 		if (bf->bf_m != NULL) {
3290 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3291 			m_freem(bf->bf_m);
3292 			bf->bf_m = NULL;
3293 		}
3294 		if (bf->bf_node != NULL) {
3295 			ieee80211_free_node(bf->bf_node);
3296 			bf->bf_node = NULL;
3297 		}
3298 	}
3299 }
3300 
3301 /*
3302  * Configure the beacon and sleep timers.
3303  *
3304  * When operating as an AP this resets the TSF and sets
3305  * up the hardware to notify us when we need to issue beacons.
3306  *
3307  * When operating in station mode this sets up the beacon
3308  * timers according to the timestamp of the last received
3309  * beacon and the current TSF, configures PCF and DTIM
3310  * handling, programs the sleep registers so the hardware
3311  * will wakeup in time to receive beacons, and configures
3312  * the beacon miss handling so we'll receive a BMISS
3313  * interrupt when we stop seeing beacons from the AP
3314  * we've associated with.
3315  */
3316 static void
3317 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3318 {
3319 #define	TSF_TO_TU(_h,_l) \
3320 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3321 #define	FUDGE	2
3322 	struct ath_hal *ah = sc->sc_ah;
3323 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3324 	struct ieee80211_node *ni;
3325 	u_int32_t nexttbtt, intval, tsftu;
3326 	u_int64_t tsf;
3327 
3328 	if (vap == NULL)
3329 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3330 	ni = ieee80211_ref_node(vap->iv_bss);
3331 
3332 	/* extract tstamp from last beacon and convert to TU */
3333 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3334 			     LE_READ_4(ni->ni_tstamp.data));
3335 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3336 	    ic->ic_opmode == IEEE80211_M_MBSS) {
3337 		/*
3338 		 * For multi-bss ap/mesh support beacons are either staggered
3339 		 * evenly over N slots or burst together.  For the former
3340 		 * arrange for the SWBA to be delivered for each slot.
3341 		 * Slots that are not occupied will generate nothing.
3342 		 */
3343 		/* NB: the beacon interval is kept internally in TU's */
3344 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3345 		if (sc->sc_stagbeacons)
3346 			intval /= ATH_BCBUF;
3347 	} else {
3348 		/* NB: the beacon interval is kept internally in TU's */
3349 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3350 	}
3351 	if (nexttbtt == 0)		/* e.g. for ap mode */
3352 		nexttbtt = intval;
3353 	else if (intval)		/* NB: can be 0 for monitor mode */
3354 		nexttbtt = roundup(nexttbtt, intval);
3355 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3356 		__func__, nexttbtt, intval, ni->ni_intval);
3357 	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3358 		HAL_BEACON_STATE bs;
3359 		int dtimperiod, dtimcount;
3360 		int cfpperiod, cfpcount;
3361 
3362 		/*
3363 		 * Setup dtim and cfp parameters according to
3364 		 * last beacon we received (which may be none).
3365 		 */
3366 		dtimperiod = ni->ni_dtim_period;
3367 		if (dtimperiod <= 0)		/* NB: 0 if not known */
3368 			dtimperiod = 1;
3369 		dtimcount = ni->ni_dtim_count;
3370 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3371 			dtimcount = 0;		/* XXX? */
3372 		cfpperiod = 1;			/* NB: no PCF support yet */
3373 		cfpcount = 0;
3374 		/*
3375 		 * Pull nexttbtt forward to reflect the current
3376 		 * TSF and calculate dtim+cfp state for the result.
3377 		 */
3378 		tsf = ath_hal_gettsf64(ah);
3379 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3380 		do {
3381 			nexttbtt += intval;
3382 			if (--dtimcount < 0) {
3383 				dtimcount = dtimperiod - 1;
3384 				if (--cfpcount < 0)
3385 					cfpcount = cfpperiod - 1;
3386 			}
3387 		} while (nexttbtt < tsftu);
3388 		memset(&bs, 0, sizeof(bs));
3389 		bs.bs_intval = intval;
3390 		bs.bs_nexttbtt = nexttbtt;
3391 		bs.bs_dtimperiod = dtimperiod*intval;
3392 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3393 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3394 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3395 		bs.bs_cfpmaxduration = 0;
3396 #if 0
3397 		/*
3398 		 * The 802.11 layer records the offset to the DTIM
3399 		 * bitmap while receiving beacons; use it here to
3400 		 * enable h/w detection of our AID being marked in
3401 		 * the bitmap vector (to indicate frames for us are
3402 		 * pending at the AP).
3403 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3404 		 * XXX enable based on h/w rev for newer chips
3405 		 */
3406 		bs.bs_timoffset = ni->ni_timoff;
3407 #endif
3408 		/*
3409 		 * Calculate the number of consecutive beacons to miss
3410 		 * before taking a BMISS interrupt.
3411 		 * Note that we clamp the result to at most 10 beacons.
3412 		 */
3413 		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3414 		if (bs.bs_bmissthreshold > 10)
3415 			bs.bs_bmissthreshold = 10;
3416 		else if (bs.bs_bmissthreshold <= 0)
3417 			bs.bs_bmissthreshold = 1;
3418 
3419 		/*
3420 		 * Calculate sleep duration.  The configuration is
3421 		 * given in ms.  We insure a multiple of the beacon
3422 		 * period is used.  Also, if the sleep duration is
3423 		 * greater than the DTIM period then it makes senses
3424 		 * to make it a multiple of that.
3425 		 *
3426 		 * XXX fixed at 100ms
3427 		 */
3428 		bs.bs_sleepduration =
3429 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3430 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3431 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3432 
3433 		DPRINTF(sc, ATH_DEBUG_BEACON,
3434 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3435 			, __func__
3436 			, tsf, tsftu
3437 			, bs.bs_intval
3438 			, bs.bs_nexttbtt
3439 			, bs.bs_dtimperiod
3440 			, bs.bs_nextdtim
3441 			, bs.bs_bmissthreshold
3442 			, bs.bs_sleepduration
3443 			, bs.bs_cfpperiod
3444 			, bs.bs_cfpmaxduration
3445 			, bs.bs_cfpnext
3446 			, bs.bs_timoffset
3447 		);
3448 		ath_hal_intrset(ah, 0);
3449 		ath_hal_beacontimers(ah, &bs);
3450 		sc->sc_imask |= HAL_INT_BMISS;
3451 		ath_hal_intrset(ah, sc->sc_imask);
3452 	} else {
3453 		ath_hal_intrset(ah, 0);
3454 		if (nexttbtt == intval)
3455 			intval |= HAL_BEACON_RESET_TSF;
3456 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3457 			/*
3458 			 * In IBSS mode enable the beacon timers but only
3459 			 * enable SWBA interrupts if we need to manually
3460 			 * prepare beacon frames.  Otherwise we use a
3461 			 * self-linked tx descriptor and let the hardware
3462 			 * deal with things.
3463 			 */
3464 			intval |= HAL_BEACON_ENA;
3465 			if (!sc->sc_hasveol)
3466 				sc->sc_imask |= HAL_INT_SWBA;
3467 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3468 				/*
3469 				 * Pull nexttbtt forward to reflect
3470 				 * the current TSF.
3471 				 */
3472 				tsf = ath_hal_gettsf64(ah);
3473 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3474 				do {
3475 					nexttbtt += intval;
3476 				} while (nexttbtt < tsftu);
3477 			}
3478 			ath_beaconq_config(sc);
3479 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3480 		    ic->ic_opmode == IEEE80211_M_MBSS) {
3481 			/*
3482 			 * In AP/mesh mode we enable the beacon timers
3483 			 * and SWBA interrupts to prepare beacon frames.
3484 			 */
3485 			intval |= HAL_BEACON_ENA;
3486 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3487 			ath_beaconq_config(sc);
3488 		}
3489 		ath_hal_beaconinit(ah, nexttbtt, intval);
3490 		sc->sc_bmisscount = 0;
3491 		ath_hal_intrset(ah, sc->sc_imask);
3492 		/*
3493 		 * When using a self-linked beacon descriptor in
3494 		 * ibss mode load it once here.
3495 		 */
3496 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3497 			ath_beacon_start_adhoc(sc, vap);
3498 	}
3499 	sc->sc_syncbeacon = 0;
3500 	ieee80211_free_node(ni);
3501 #undef FUDGE
3502 #undef TSF_TO_TU
3503 }
3504 
3505 static void
3506 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3507 {
3508 	bus_addr_t *paddr = (bus_addr_t*) arg;
3509 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3510 	*paddr = segs->ds_addr;
3511 }
3512 
3513 static int
3514 ath_descdma_setup(struct ath_softc *sc,
3515 	struct ath_descdma *dd, ath_bufhead *head,
3516 	const char *name, int nbuf, int ndesc)
3517 {
3518 #define	DS2PHYS(_dd, _ds) \
3519 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3520 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3521 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3522 	struct ifnet *ifp = sc->sc_ifp;
3523 	uint8_t *ds;
3524 	struct ath_buf *bf;
3525 	int i, bsize, error;
3526 	int desc_len;
3527 
3528 	desc_len = sizeof(struct ath_desc);
3529 
3530 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3531 	    __func__, name, nbuf, ndesc);
3532 
3533 	dd->dd_name = name;
3534 	dd->dd_desc_len = desc_len * nbuf * ndesc;
3535 
3536 	/*
3537 	 * Merlin work-around:
3538 	 * Descriptors that cross the 4KB boundary can't be used.
3539 	 * Assume one skipped descriptor per 4KB page.
3540 	 */
3541 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3542 		int numdescpage = 4096 / (desc_len * ndesc);
3543 		dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096;
3544 	}
3545 
3546 	/*
3547 	 * Setup DMA descriptor area.
3548 	 */
3549 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3550 		       PAGE_SIZE, 0,		/* alignment, bounds */
3551 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3552 		       BUS_SPACE_MAXADDR,	/* highaddr */
3553 		       NULL, NULL,		/* filter, filterarg */
3554 		       dd->dd_desc_len,		/* maxsize */
3555 		       1,			/* nsegments */
3556 		       dd->dd_desc_len,		/* maxsegsize */
3557 		       BUS_DMA_ALLOCNOW,	/* flags */
3558 		       NULL,			/* lockfunc */
3559 		       NULL,			/* lockarg */
3560 		       &dd->dd_dmat);
3561 	if (error != 0) {
3562 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3563 		return error;
3564 	}
3565 
3566 	/* allocate descriptors */
3567 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3568 	if (error != 0) {
3569 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3570 			"error %u\n", dd->dd_name, error);
3571 		goto fail0;
3572 	}
3573 
3574 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3575 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3576 				 &dd->dd_dmamap);
3577 	if (error != 0) {
3578 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3579 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3580 		goto fail1;
3581 	}
3582 
3583 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3584 				dd->dd_desc, dd->dd_desc_len,
3585 				ath_load_cb, &dd->dd_desc_paddr,
3586 				BUS_DMA_NOWAIT);
3587 	if (error != 0) {
3588 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3589 			dd->dd_name, error);
3590 		goto fail2;
3591 	}
3592 
3593 	ds = (uint8_t *) dd->dd_desc;
3594 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3595 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3596 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3597 
3598 	/* allocate rx buffers */
3599 	bsize = sizeof(struct ath_buf) * nbuf;
3600 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3601 	if (bf == NULL) {
3602 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3603 			dd->dd_name, bsize);
3604 		goto fail3;
3605 	}
3606 	dd->dd_bufptr = bf;
3607 
3608 	TAILQ_INIT(head);
3609 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) {
3610 		bf->bf_desc = (struct ath_desc *) ds;
3611 		bf->bf_daddr = DS2PHYS(dd, ds);
3612 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3613 			/*
3614 			 * Merlin WAR: Skip descriptor addresses which
3615 			 * cause 4KB boundary crossing along any point
3616 			 * in the descriptor.
3617 			 */
3618 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3619 			     desc_len * ndesc)) {
3620 				/* Start at the next page */
3621 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3622 				bf->bf_desc = (struct ath_desc *) ds;
3623 				bf->bf_daddr = DS2PHYS(dd, ds);
3624 			}
3625 		}
3626 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3627 				&bf->bf_dmamap);
3628 		if (error != 0) {
3629 			if_printf(ifp, "unable to create dmamap for %s "
3630 				"buffer %u, error %u\n", dd->dd_name, i, error);
3631 			ath_descdma_cleanup(sc, dd, head);
3632 			return error;
3633 		}
3634 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3635 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3636 	}
3637 	return 0;
3638 fail3:
3639 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3640 fail2:
3641 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3642 fail1:
3643 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3644 fail0:
3645 	bus_dma_tag_destroy(dd->dd_dmat);
3646 	memset(dd, 0, sizeof(*dd));
3647 	return error;
3648 #undef DS2PHYS
3649 #undef ATH_DESC_4KB_BOUND_CHECK
3650 }
3651 
3652 static void
3653 ath_descdma_cleanup(struct ath_softc *sc,
3654 	struct ath_descdma *dd, ath_bufhead *head)
3655 {
3656 	struct ath_buf *bf;
3657 	struct ieee80211_node *ni;
3658 
3659 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3660 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3661 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3662 	bus_dma_tag_destroy(dd->dd_dmat);
3663 
3664 	TAILQ_FOREACH(bf, head, bf_list) {
3665 		if (bf->bf_m) {
3666 			m_freem(bf->bf_m);
3667 			bf->bf_m = NULL;
3668 		}
3669 		if (bf->bf_dmamap != NULL) {
3670 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3671 			bf->bf_dmamap = NULL;
3672 		}
3673 		ni = bf->bf_node;
3674 		bf->bf_node = NULL;
3675 		if (ni != NULL) {
3676 			/*
3677 			 * Reclaim node reference.
3678 			 */
3679 			ieee80211_free_node(ni);
3680 		}
3681 	}
3682 
3683 	TAILQ_INIT(head);
3684 	free(dd->dd_bufptr, M_ATHDEV);
3685 	memset(dd, 0, sizeof(*dd));
3686 }
3687 
3688 static int
3689 ath_desc_alloc(struct ath_softc *sc)
3690 {
3691 	int error;
3692 
3693 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3694 			"rx", ath_rxbuf, 1);
3695 	if (error != 0)
3696 		return error;
3697 
3698 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3699 			"tx", ath_txbuf, ATH_TXDESC);
3700 	if (error != 0) {
3701 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3702 		return error;
3703 	}
3704 
3705 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3706 			"beacon", ATH_BCBUF, 1);
3707 	if (error != 0) {
3708 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3709 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3710 		return error;
3711 	}
3712 	return 0;
3713 }
3714 
3715 static void
3716 ath_desc_free(struct ath_softc *sc)
3717 {
3718 
3719 	if (sc->sc_bdma.dd_desc_len != 0)
3720 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3721 	if (sc->sc_txdma.dd_desc_len != 0)
3722 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3723 	if (sc->sc_rxdma.dd_desc_len != 0)
3724 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3725 }
3726 
3727 static struct ieee80211_node *
3728 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3729 {
3730 	struct ieee80211com *ic = vap->iv_ic;
3731 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3732 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3733 	struct ath_node *an;
3734 
3735 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3736 	if (an == NULL) {
3737 		/* XXX stat+msg */
3738 		return NULL;
3739 	}
3740 	ath_rate_node_init(sc, an);
3741 
3742 	/* Setup the mutex - there's no associd yet so set the name to NULL */
3743 	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3744 	    device_get_nameunit(sc->sc_dev), an);
3745 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3746 
3747 	/* XXX setup ath_tid */
3748 	ath_tx_tid_init(sc, an);
3749 
3750 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3751 	return &an->an_node;
3752 }
3753 
3754 static void
3755 ath_node_cleanup(struct ieee80211_node *ni)
3756 {
3757 	struct ieee80211com *ic = ni->ni_ic;
3758 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3759 
3760 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3761 	ath_tx_node_flush(sc, ATH_NODE(ni));
3762 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3763 	sc->sc_node_cleanup(ni);
3764 }
3765 
3766 static void
3767 ath_node_free(struct ieee80211_node *ni)
3768 {
3769 	struct ieee80211com *ic = ni->ni_ic;
3770 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3771 
3772 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3773 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3774 	sc->sc_node_free(ni);
3775 }
3776 
3777 static void
3778 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3779 {
3780 	struct ieee80211com *ic = ni->ni_ic;
3781 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3782 	struct ath_hal *ah = sc->sc_ah;
3783 
3784 	*rssi = ic->ic_node_getrssi(ni);
3785 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3786 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3787 	else
3788 		*noise = -95;		/* nominally correct */
3789 }
3790 
3791 static int
3792 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3793 {
3794 	struct ath_hal *ah = sc->sc_ah;
3795 	int error;
3796 	struct mbuf *m;
3797 	struct ath_desc *ds;
3798 
3799 	m = bf->bf_m;
3800 	if (m == NULL) {
3801 		/*
3802 		 * NB: by assigning a page to the rx dma buffer we
3803 		 * implicitly satisfy the Atheros requirement that
3804 		 * this buffer be cache-line-aligned and sized to be
3805 		 * multiple of the cache line size.  Not doing this
3806 		 * causes weird stuff to happen (for the 5210 at least).
3807 		 */
3808 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3809 		if (m == NULL) {
3810 			DPRINTF(sc, ATH_DEBUG_ANY,
3811 				"%s: no mbuf/cluster\n", __func__);
3812 			sc->sc_stats.ast_rx_nombuf++;
3813 			return ENOMEM;
3814 		}
3815 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3816 
3817 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3818 					     bf->bf_dmamap, m,
3819 					     bf->bf_segs, &bf->bf_nseg,
3820 					     BUS_DMA_NOWAIT);
3821 		if (error != 0) {
3822 			DPRINTF(sc, ATH_DEBUG_ANY,
3823 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3824 			    __func__, error);
3825 			sc->sc_stats.ast_rx_busdma++;
3826 			m_freem(m);
3827 			return error;
3828 		}
3829 		KASSERT(bf->bf_nseg == 1,
3830 			("multi-segment packet; nseg %u", bf->bf_nseg));
3831 		bf->bf_m = m;
3832 	}
3833 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3834 
3835 	/*
3836 	 * Setup descriptors.  For receive we always terminate
3837 	 * the descriptor list with a self-linked entry so we'll
3838 	 * not get overrun under high load (as can happen with a
3839 	 * 5212 when ANI processing enables PHY error frames).
3840 	 *
3841 	 * To insure the last descriptor is self-linked we create
3842 	 * each descriptor as self-linked and add it to the end.  As
3843 	 * each additional descriptor is added the previous self-linked
3844 	 * entry is ``fixed'' naturally.  This should be safe even
3845 	 * if DMA is happening.  When processing RX interrupts we
3846 	 * never remove/process the last, self-linked, entry on the
3847 	 * descriptor list.  This insures the hardware always has
3848 	 * someplace to write a new frame.
3849 	 */
3850 	/*
3851 	 * 11N: we can no longer afford to self link the last descriptor.
3852 	 * MAC acknowledges BA status as long as it copies frames to host
3853 	 * buffer (or rx fifo). This can incorrectly acknowledge packets
3854 	 * to a sender if last desc is self-linked.
3855 	 */
3856 	ds = bf->bf_desc;
3857 	if (sc->sc_rxslink)
3858 		ds->ds_link = bf->bf_daddr;	/* link to self */
3859 	else
3860 		ds->ds_link = 0;		/* terminate the list */
3861 	ds->ds_data = bf->bf_segs[0].ds_addr;
3862 	ath_hal_setuprxdesc(ah, ds
3863 		, m->m_len		/* buffer size */
3864 		, 0
3865 	);
3866 
3867 	if (sc->sc_rxlink != NULL)
3868 		*sc->sc_rxlink = bf->bf_daddr;
3869 	sc->sc_rxlink = &ds->ds_link;
3870 	return 0;
3871 }
3872 
3873 /*
3874  * Extend 15-bit time stamp from rx descriptor to
3875  * a full 64-bit TSF using the specified TSF.
3876  */
3877 static __inline u_int64_t
3878 ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf)
3879 {
3880 	if ((tsf & 0x7fff) < rstamp)
3881 		tsf -= 0x8000;
3882 
3883 	return ((tsf &~ 0x7fff) | rstamp);
3884 }
3885 
3886 /*
3887  * Extend 32-bit time stamp from rx descriptor to
3888  * a full 64-bit TSF using the specified TSF.
3889  */
3890 static __inline u_int64_t
3891 ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf)
3892 {
3893 	u_int32_t tsf_low = tsf & 0xffffffff;
3894 	u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp;
3895 
3896 	if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000))
3897 		tsf64 -= 0x100000000ULL;
3898 
3899 	if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000))
3900 		tsf64 += 0x100000000ULL;
3901 
3902 	return tsf64;
3903 }
3904 
3905 /*
3906  * Extend the TSF from the RX descriptor to a full 64 bit TSF.
3907  * Earlier hardware versions only wrote the low 15 bits of the
3908  * TSF into the RX descriptor; later versions (AR5416 and up)
3909  * include the 32 bit TSF value.
3910  */
3911 static __inline u_int64_t
3912 ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf)
3913 {
3914 	if (sc->sc_rxtsf32)
3915 		return ath_extend_tsf32(rstamp, tsf);
3916 	else
3917 		return ath_extend_tsf15(rstamp, tsf);
3918 }
3919 
3920 /*
3921  * Intercept management frames to collect beacon rssi data
3922  * and to do ibss merges.
3923  */
3924 static void
3925 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3926 	int subtype, int rssi, int nf)
3927 {
3928 	struct ieee80211vap *vap = ni->ni_vap;
3929 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3930 
3931 	/*
3932 	 * Call up first so subsequent work can use information
3933 	 * potentially stored in the node (e.g. for ibss merge).
3934 	 */
3935 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3936 	switch (subtype) {
3937 	case IEEE80211_FC0_SUBTYPE_BEACON:
3938 		/* update rssi statistics for use by the hal */
3939 		/* XXX unlocked check against vap->iv_bss? */
3940 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3941 		if (sc->sc_syncbeacon &&
3942 		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3943 			/*
3944 			 * Resync beacon timers using the tsf of the beacon
3945 			 * frame we just received.
3946 			 */
3947 			ath_beacon_config(sc, vap);
3948 		}
3949 		/* fall thru... */
3950 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3951 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3952 		    vap->iv_state == IEEE80211_S_RUN) {
3953 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3954 			uint64_t tsf = ath_extend_tsf(sc, rstamp,
3955 				ath_hal_gettsf64(sc->sc_ah));
3956 			/*
3957 			 * Handle ibss merge as needed; check the tsf on the
3958 			 * frame before attempting the merge.  The 802.11 spec
3959 			 * says the station should change it's bssid to match
3960 			 * the oldest station with the same ssid, where oldest
3961 			 * is determined by the tsf.  Note that hardware
3962 			 * reconfiguration happens through callback to
3963 			 * ath_newstate as the state machine will go from
3964 			 * RUN -> RUN when this happens.
3965 			 */
3966 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3967 				DPRINTF(sc, ATH_DEBUG_STATE,
3968 				    "ibss merge, rstamp %u tsf %ju "
3969 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3970 				    (uintmax_t)ni->ni_tstamp.tsf);
3971 				(void) ieee80211_ibss_merge(ni);
3972 			}
3973 		}
3974 		break;
3975 	}
3976 }
3977 
3978 /*
3979  * Set the default antenna.
3980  */
3981 static void
3982 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3983 {
3984 	struct ath_hal *ah = sc->sc_ah;
3985 
3986 	/* XXX block beacon interrupts */
3987 	ath_hal_setdefantenna(ah, antenna);
3988 	if (sc->sc_defant != antenna)
3989 		sc->sc_stats.ast_ant_defswitch++;
3990 	sc->sc_defant = antenna;
3991 	sc->sc_rxotherant = 0;
3992 }
3993 
3994 static void
3995 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3996 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3997 {
3998 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3999 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
4000 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
4001 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
4002 	struct ath_softc *sc = ifp->if_softc;
4003 	const HAL_RATE_TABLE *rt;
4004 	uint8_t rix;
4005 
4006 	rt = sc->sc_currates;
4007 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4008 	rix = rt->rateCodeToIndex[rs->rs_rate];
4009 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
4010 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
4011 #ifdef AH_SUPPORT_AR5416
4012 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
4013 	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
4014 		struct ieee80211com *ic = ifp->if_l2com;
4015 
4016 		if ((rs->rs_flags & HAL_RX_2040) == 0)
4017 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
4018 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
4019 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
4020 		else
4021 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
4022 		if ((rs->rs_flags & HAL_RX_GI) == 0)
4023 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
4024 	}
4025 #endif
4026 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
4027 	if (rs->rs_status & HAL_RXERR_CRC)
4028 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
4029 	/* XXX propagate other error flags from descriptor */
4030 	sc->sc_rx_th.wr_antnoise = nf;
4031 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
4032 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
4033 #undef CHAN_HT
4034 #undef CHAN_HT20
4035 #undef CHAN_HT40U
4036 #undef CHAN_HT40D
4037 }
4038 
4039 static void
4040 ath_handle_micerror(struct ieee80211com *ic,
4041 	struct ieee80211_frame *wh, int keyix)
4042 {
4043 	struct ieee80211_node *ni;
4044 
4045 	/* XXX recheck MIC to deal w/ chips that lie */
4046 	/* XXX discard MIC errors on !data frames */
4047 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
4048 	if (ni != NULL) {
4049 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
4050 		ieee80211_free_node(ni);
4051 	}
4052 }
4053 
4054 /*
4055  * Only run the RX proc if it's not already running.
4056  * Since this may get run as part of the reset/flush path,
4057  * the task can't clash with an existing, running tasklet.
4058  */
4059 static void
4060 ath_rx_tasklet(void *arg, int npending)
4061 {
4062 	struct ath_softc *sc = arg;
4063 
4064 	CTR1(ATH_KTR_INTR, "ath_rx_proc: pending=%d", npending);
4065 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
4066 	ATH_PCU_LOCK(sc);
4067 	if (sc->sc_inreset_cnt > 0) {
4068 		device_printf(sc->sc_dev,
4069 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4070 		ATH_PCU_UNLOCK(sc);
4071 		return;
4072 	}
4073 	ATH_PCU_UNLOCK(sc);
4074 	ath_rx_proc(sc, 1);
4075 }
4076 
4077 static void
4078 ath_rx_proc(struct ath_softc *sc, int resched)
4079 {
4080 #define	PA2DESC(_sc, _pa) \
4081 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4082 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4083 	struct ath_buf *bf;
4084 	struct ifnet *ifp = sc->sc_ifp;
4085 	struct ieee80211com *ic = ifp->if_l2com;
4086 	struct ath_hal *ah = sc->sc_ah;
4087 	struct ath_desc *ds;
4088 	struct ath_rx_status *rs;
4089 	struct mbuf *m;
4090 	struct ieee80211_node *ni;
4091 	int len, type, ngood;
4092 	HAL_STATUS status;
4093 	int16_t nf;
4094 	u_int64_t tsf, rstamp;
4095 	int npkts = 0;
4096 
4097 	/* XXX we must not hold the ATH_LOCK here */
4098 	ATH_UNLOCK_ASSERT(sc);
4099 	ATH_PCU_UNLOCK_ASSERT(sc);
4100 
4101 	ATH_PCU_LOCK(sc);
4102 	sc->sc_rxproc_cnt++;
4103 	ATH_PCU_UNLOCK(sc);
4104 
4105 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__);
4106 	ngood = 0;
4107 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
4108 	sc->sc_stats.ast_rx_noise = nf;
4109 	tsf = ath_hal_gettsf64(ah);
4110 	do {
4111 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
4112 		if (sc->sc_rxslink && bf == NULL) {	/* NB: shouldn't happen */
4113 			if_printf(ifp, "%s: no buffer!\n", __func__);
4114 			break;
4115 		} else if (bf == NULL) {
4116 			/*
4117 			 * End of List:
4118 			 * this can happen for non-self-linked RX chains
4119 			 */
4120 			sc->sc_stats.ast_rx_hitqueueend++;
4121 			break;
4122 		}
4123 		m = bf->bf_m;
4124 		if (m == NULL) {		/* NB: shouldn't happen */
4125 			/*
4126 			 * If mbuf allocation failed previously there
4127 			 * will be no mbuf; try again to re-populate it.
4128 			 */
4129 			/* XXX make debug msg */
4130 			if_printf(ifp, "%s: no mbuf!\n", __func__);
4131 			TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
4132 			goto rx_next;
4133 		}
4134 		ds = bf->bf_desc;
4135 		if (ds->ds_link == bf->bf_daddr) {
4136 			/* NB: never process the self-linked entry at the end */
4137 			sc->sc_stats.ast_rx_hitqueueend++;
4138 			break;
4139 		}
4140 		/* XXX sync descriptor memory */
4141 		/*
4142 		 * Must provide the virtual address of the current
4143 		 * descriptor, the physical address, and the virtual
4144 		 * address of the next descriptor in the h/w chain.
4145 		 * This allows the HAL to look ahead to see if the
4146 		 * hardware is done with a descriptor by checking the
4147 		 * done bit in the following descriptor and the address
4148 		 * of the current descriptor the DMA engine is working
4149 		 * on.  All this is necessary because of our use of
4150 		 * a self-linked list to avoid rx overruns.
4151 		 */
4152 		rs = &bf->bf_status.ds_rxstat;
4153 		status = ath_hal_rxprocdesc(ah, ds,
4154 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4155 #ifdef ATH_DEBUG
4156 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
4157 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
4158 #endif
4159 		if (status == HAL_EINPROGRESS)
4160 			break;
4161 
4162 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
4163 		npkts++;
4164 
4165 		/*
4166 		 * Calculate the correct 64 bit TSF given
4167 		 * the TSF64 register value and rs_tstamp.
4168 		 */
4169 		rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
4170 
4171 		/* These aren't specifically errors */
4172 #ifdef	AH_SUPPORT_AR5416
4173 		if (rs->rs_flags & HAL_RX_GI)
4174 			sc->sc_stats.ast_rx_halfgi++;
4175 		if (rs->rs_flags & HAL_RX_2040)
4176 			sc->sc_stats.ast_rx_2040++;
4177 		if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
4178 			sc->sc_stats.ast_rx_pre_crc_err++;
4179 		if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
4180 			sc->sc_stats.ast_rx_post_crc_err++;
4181 		if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
4182 			sc->sc_stats.ast_rx_decrypt_busy_err++;
4183 		if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
4184 			sc->sc_stats.ast_rx_hi_rx_chain++;
4185 #endif /* AH_SUPPORT_AR5416 */
4186 
4187 		if (rs->rs_status != 0) {
4188 			if (rs->rs_status & HAL_RXERR_CRC)
4189 				sc->sc_stats.ast_rx_crcerr++;
4190 			if (rs->rs_status & HAL_RXERR_FIFO)
4191 				sc->sc_stats.ast_rx_fifoerr++;
4192 			if (rs->rs_status & HAL_RXERR_PHY) {
4193 				sc->sc_stats.ast_rx_phyerr++;
4194 				/* Process DFS radar events */
4195 				if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
4196 				    (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
4197 					/* Since we're touching the frame data, sync it */
4198 					bus_dmamap_sync(sc->sc_dmat,
4199 					    bf->bf_dmamap,
4200 					    BUS_DMASYNC_POSTREAD);
4201 					/* Now pass it to the radar processing code */
4202 					ath_dfs_process_phy_err(sc, mtod(m, char *), rstamp, rs);
4203 				}
4204 
4205 				/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
4206 				if (rs->rs_phyerr < 64)
4207 					sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
4208 				goto rx_error;	/* NB: don't count in ierrors */
4209 			}
4210 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
4211 				/*
4212 				 * Decrypt error.  If the error occurred
4213 				 * because there was no hardware key, then
4214 				 * let the frame through so the upper layers
4215 				 * can process it.  This is necessary for 5210
4216 				 * parts which have no way to setup a ``clear''
4217 				 * key cache entry.
4218 				 *
4219 				 * XXX do key cache faulting
4220 				 */
4221 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
4222 					goto rx_accept;
4223 				sc->sc_stats.ast_rx_badcrypt++;
4224 			}
4225 			if (rs->rs_status & HAL_RXERR_MIC) {
4226 				sc->sc_stats.ast_rx_badmic++;
4227 				/*
4228 				 * Do minimal work required to hand off
4229 				 * the 802.11 header for notification.
4230 				 */
4231 				/* XXX frag's and qos frames */
4232 				len = rs->rs_datalen;
4233 				if (len >= sizeof (struct ieee80211_frame)) {
4234 					bus_dmamap_sync(sc->sc_dmat,
4235 					    bf->bf_dmamap,
4236 					    BUS_DMASYNC_POSTREAD);
4237 					ath_handle_micerror(ic,
4238 					    mtod(m, struct ieee80211_frame *),
4239 					    sc->sc_splitmic ?
4240 						rs->rs_keyix-32 : rs->rs_keyix);
4241 				}
4242 			}
4243 			ifp->if_ierrors++;
4244 rx_error:
4245 			/*
4246 			 * Cleanup any pending partial frame.
4247 			 */
4248 			if (sc->sc_rxpending != NULL) {
4249 				m_freem(sc->sc_rxpending);
4250 				sc->sc_rxpending = NULL;
4251 			}
4252 			/*
4253 			 * When a tap is present pass error frames
4254 			 * that have been requested.  By default we
4255 			 * pass decrypt+mic errors but others may be
4256 			 * interesting (e.g. crc).
4257 			 */
4258 			if (ieee80211_radiotap_active(ic) &&
4259 			    (rs->rs_status & sc->sc_monpass)) {
4260 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4261 				    BUS_DMASYNC_POSTREAD);
4262 				/* NB: bpf needs the mbuf length setup */
4263 				len = rs->rs_datalen;
4264 				m->m_pkthdr.len = m->m_len = len;
4265 				bf->bf_m = NULL;
4266 				ath_rx_tap(ifp, m, rs, rstamp, nf);
4267 				ieee80211_radiotap_rx_all(ic, m);
4268 				m_freem(m);
4269 			}
4270 			/* XXX pass MIC errors up for s/w reclaculation */
4271 			goto rx_next;
4272 		}
4273 rx_accept:
4274 		/*
4275 		 * Sync and unmap the frame.  At this point we're
4276 		 * committed to passing the mbuf somewhere so clear
4277 		 * bf_m; this means a new mbuf must be allocated
4278 		 * when the rx descriptor is setup again to receive
4279 		 * another frame.
4280 		 */
4281 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4282 		    BUS_DMASYNC_POSTREAD);
4283 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4284 		bf->bf_m = NULL;
4285 
4286 		len = rs->rs_datalen;
4287 		m->m_len = len;
4288 
4289 		if (rs->rs_more) {
4290 			/*
4291 			 * Frame spans multiple descriptors; save
4292 			 * it for the next completed descriptor, it
4293 			 * will be used to construct a jumbogram.
4294 			 */
4295 			if (sc->sc_rxpending != NULL) {
4296 				/* NB: max frame size is currently 2 clusters */
4297 				sc->sc_stats.ast_rx_toobig++;
4298 				m_freem(sc->sc_rxpending);
4299 			}
4300 			m->m_pkthdr.rcvif = ifp;
4301 			m->m_pkthdr.len = len;
4302 			sc->sc_rxpending = m;
4303 			goto rx_next;
4304 		} else if (sc->sc_rxpending != NULL) {
4305 			/*
4306 			 * This is the second part of a jumbogram,
4307 			 * chain it to the first mbuf, adjust the
4308 			 * frame length, and clear the rxpending state.
4309 			 */
4310 			sc->sc_rxpending->m_next = m;
4311 			sc->sc_rxpending->m_pkthdr.len += len;
4312 			m = sc->sc_rxpending;
4313 			sc->sc_rxpending = NULL;
4314 		} else {
4315 			/*
4316 			 * Normal single-descriptor receive; setup
4317 			 * the rcvif and packet length.
4318 			 */
4319 			m->m_pkthdr.rcvif = ifp;
4320 			m->m_pkthdr.len = len;
4321 		}
4322 
4323 		/*
4324 		 * Validate rs->rs_antenna.
4325 		 *
4326 		 * Some users w/ AR9285 NICs have reported crashes
4327 		 * here because rs_antenna field is bogusly large.
4328 		 * Let's enforce the maximum antenna limit of 8
4329 		 * (and it shouldn't be hard coded, but that's a
4330 		 * separate problem) and if there's an issue, print
4331 		 * out an error and adjust rs_antenna to something
4332 		 * sensible.
4333 		 *
4334 		 * This code should be removed once the actual
4335 		 * root cause of the issue has been identified.
4336 		 * For example, it may be that the rs_antenna
4337 		 * field is only valid for the lsat frame of
4338 		 * an aggregate and it just happens that it is
4339 		 * "mostly" right. (This is a general statement -
4340 		 * the majority of the statistics are only valid
4341 		 * for the last frame in an aggregate.
4342 		 */
4343 		if (rs->rs_antenna > 7) {
4344 			device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n",
4345 			    __func__, rs->rs_antenna);
4346 #ifdef	ATH_DEBUG
4347 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
4348 #endif /* ATH_DEBUG */
4349 			rs->rs_antenna = 0;	/* XXX better than nothing */
4350 		}
4351 
4352 		ifp->if_ipackets++;
4353 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
4354 
4355 		/*
4356 		 * Populate the rx status block.  When there are bpf
4357 		 * listeners we do the additional work to provide
4358 		 * complete status.  Otherwise we fill in only the
4359 		 * material required by ieee80211_input.  Note that
4360 		 * noise setting is filled in above.
4361 		 */
4362 		if (ieee80211_radiotap_active(ic))
4363 			ath_rx_tap(ifp, m, rs, rstamp, nf);
4364 
4365 		/*
4366 		 * From this point on we assume the frame is at least
4367 		 * as large as ieee80211_frame_min; verify that.
4368 		 */
4369 		if (len < IEEE80211_MIN_LEN) {
4370 			if (!ieee80211_radiotap_active(ic)) {
4371 				DPRINTF(sc, ATH_DEBUG_RECV,
4372 				    "%s: short packet %d\n", __func__, len);
4373 				sc->sc_stats.ast_rx_tooshort++;
4374 			} else {
4375 				/* NB: in particular this captures ack's */
4376 				ieee80211_radiotap_rx_all(ic, m);
4377 			}
4378 			m_freem(m);
4379 			goto rx_next;
4380 		}
4381 
4382 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
4383 			const HAL_RATE_TABLE *rt = sc->sc_currates;
4384 			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
4385 
4386 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
4387 			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
4388 		}
4389 
4390 		m_adj(m, -IEEE80211_CRC_LEN);
4391 
4392 		/*
4393 		 * Locate the node for sender, track state, and then
4394 		 * pass the (referenced) node up to the 802.11 layer
4395 		 * for its use.
4396 		 */
4397 		ni = ieee80211_find_rxnode_withkey(ic,
4398 			mtod(m, const struct ieee80211_frame_min *),
4399 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
4400 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4401 		sc->sc_lastrs = rs;
4402 
4403 #ifdef	AH_SUPPORT_AR5416
4404 		if (rs->rs_isaggr)
4405 			sc->sc_stats.ast_rx_agg++;
4406 #endif /* AH_SUPPORT_AR5416 */
4407 
4408 		if (ni != NULL) {
4409 			/*
4410  			 * Only punt packets for ampdu reorder processing for
4411 			 * 11n nodes; net80211 enforces that M_AMPDU is only
4412 			 * set for 11n nodes.
4413  			 */
4414 			if (ni->ni_flags & IEEE80211_NODE_HT)
4415 				m->m_flags |= M_AMPDU;
4416 
4417 			/*
4418 			 * Sending station is known, dispatch directly.
4419 			 */
4420 			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
4421 			ieee80211_free_node(ni);
4422 			/*
4423 			 * Arrange to update the last rx timestamp only for
4424 			 * frames from our ap when operating in station mode.
4425 			 * This assumes the rx key is always setup when
4426 			 * associated.
4427 			 */
4428 			if (ic->ic_opmode == IEEE80211_M_STA &&
4429 			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4430 				ngood++;
4431 		} else {
4432 			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
4433 		}
4434 		/*
4435 		 * Track rx rssi and do any rx antenna management.
4436 		 */
4437 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4438 		if (sc->sc_diversity) {
4439 			/*
4440 			 * When using fast diversity, change the default rx
4441 			 * antenna if diversity chooses the other antenna 3
4442 			 * times in a row.
4443 			 */
4444 			if (sc->sc_defant != rs->rs_antenna) {
4445 				if (++sc->sc_rxotherant >= 3)
4446 					ath_setdefantenna(sc, rs->rs_antenna);
4447 			} else
4448 				sc->sc_rxotherant = 0;
4449 		}
4450 
4451 		/* Newer school diversity - kite specific for now */
4452 		/* XXX perhaps migrate the normal diversity code to this? */
4453 		if ((ah)->ah_rxAntCombDiversity)
4454 			(*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz);
4455 
4456 		if (sc->sc_softled) {
4457 			/*
4458 			 * Blink for any data frame.  Otherwise do a
4459 			 * heartbeat-style blink when idle.  The latter
4460 			 * is mainly for station mode where we depend on
4461 			 * periodic beacon frames to trigger the poll event.
4462 			 */
4463 			if (type == IEEE80211_FC0_TYPE_DATA) {
4464 				const HAL_RATE_TABLE *rt = sc->sc_currates;
4465 				ath_led_event(sc,
4466 				    rt->rateCodeToIndex[rs->rs_rate]);
4467 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4468 				ath_led_event(sc, 0);
4469 		}
4470 rx_next:
4471 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4472 	} while (ath_rxbuf_init(sc, bf) == 0);
4473 
4474 	/* rx signal state monitoring */
4475 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4476 	if (ngood)
4477 		sc->sc_lastrx = tsf;
4478 
4479 	CTR2(ATH_KTR_INTR, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood);
4480 	/* Queue DFS tasklet if needed */
4481 	if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan))
4482 		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
4483 
4484 	/*
4485 	 * Now that all the RX frames were handled that
4486 	 * need to be handled, kick the PCU if there's
4487 	 * been an RXEOL condition.
4488 	 */
4489 	ATH_PCU_LOCK(sc);
4490 	if (resched && sc->sc_kickpcu) {
4491 		CTR0(ATH_KTR_ERR, "ath_rx_proc: kickpcu");
4492 		device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n",
4493 		    __func__, npkts);
4494 
4495 		/* XXX rxslink? */
4496 		/*
4497 		 * XXX can we hold the PCU lock here?
4498 		 * Are there any net80211 buffer calls involved?
4499 		 */
4500 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
4501 		ath_hal_putrxbuf(ah, bf->bf_daddr);
4502 		ath_hal_rxena(ah);		/* enable recv descriptors */
4503 		ath_mode_init(sc);		/* set filters, etc. */
4504 		ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4505 
4506 		ath_hal_intrset(ah, sc->sc_imask);
4507 		sc->sc_kickpcu = 0;
4508 	}
4509 	ATH_PCU_UNLOCK(sc);
4510 
4511 	/* XXX check this inside of IF_LOCK? */
4512 	if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
4513 #ifdef IEEE80211_SUPPORT_SUPERG
4514 		ieee80211_ff_age_all(ic, 100);
4515 #endif
4516 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
4517 			ath_start(ifp);
4518 	}
4519 #undef PA2DESC
4520 
4521 	ATH_PCU_LOCK(sc);
4522 	sc->sc_rxproc_cnt--;
4523 	ATH_PCU_UNLOCK(sc);
4524 }
4525 
4526 static void
4527 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4528 {
4529 	txq->axq_qnum = qnum;
4530 	txq->axq_ac = 0;
4531 	txq->axq_depth = 0;
4532 	txq->axq_aggr_depth = 0;
4533 	txq->axq_intrcnt = 0;
4534 	txq->axq_link = NULL;
4535 	txq->axq_softc = sc;
4536 	TAILQ_INIT(&txq->axq_q);
4537 	TAILQ_INIT(&txq->axq_tidq);
4538 	ATH_TXQ_LOCK_INIT(sc, txq);
4539 }
4540 
4541 /*
4542  * Setup a h/w transmit queue.
4543  */
4544 static struct ath_txq *
4545 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4546 {
4547 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4548 	struct ath_hal *ah = sc->sc_ah;
4549 	HAL_TXQ_INFO qi;
4550 	int qnum;
4551 
4552 	memset(&qi, 0, sizeof(qi));
4553 	qi.tqi_subtype = subtype;
4554 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4555 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4556 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4557 	/*
4558 	 * Enable interrupts only for EOL and DESC conditions.
4559 	 * We mark tx descriptors to receive a DESC interrupt
4560 	 * when a tx queue gets deep; otherwise waiting for the
4561 	 * EOL to reap descriptors.  Note that this is done to
4562 	 * reduce interrupt load and this only defers reaping
4563 	 * descriptors, never transmitting frames.  Aside from
4564 	 * reducing interrupts this also permits more concurrency.
4565 	 * The only potential downside is if the tx queue backs
4566 	 * up in which case the top half of the kernel may backup
4567 	 * due to a lack of tx descriptors.
4568 	 */
4569 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4570 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4571 	if (qnum == -1) {
4572 		/*
4573 		 * NB: don't print a message, this happens
4574 		 * normally on parts with too few tx queues
4575 		 */
4576 		return NULL;
4577 	}
4578 	if (qnum >= N(sc->sc_txq)) {
4579 		device_printf(sc->sc_dev,
4580 			"hal qnum %u out of range, max %zu!\n",
4581 			qnum, N(sc->sc_txq));
4582 		ath_hal_releasetxqueue(ah, qnum);
4583 		return NULL;
4584 	}
4585 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4586 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4587 		sc->sc_txqsetup |= 1<<qnum;
4588 	}
4589 	return &sc->sc_txq[qnum];
4590 #undef N
4591 }
4592 
4593 /*
4594  * Setup a hardware data transmit queue for the specified
4595  * access control.  The hal may not support all requested
4596  * queues in which case it will return a reference to a
4597  * previously setup queue.  We record the mapping from ac's
4598  * to h/w queues for use by ath_tx_start and also track
4599  * the set of h/w queues being used to optimize work in the
4600  * transmit interrupt handler and related routines.
4601  */
4602 static int
4603 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4604 {
4605 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4606 	struct ath_txq *txq;
4607 
4608 	if (ac >= N(sc->sc_ac2q)) {
4609 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4610 			ac, N(sc->sc_ac2q));
4611 		return 0;
4612 	}
4613 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4614 	if (txq != NULL) {
4615 		txq->axq_ac = ac;
4616 		sc->sc_ac2q[ac] = txq;
4617 		return 1;
4618 	} else
4619 		return 0;
4620 #undef N
4621 }
4622 
4623 /*
4624  * Update WME parameters for a transmit queue.
4625  */
4626 static int
4627 ath_txq_update(struct ath_softc *sc, int ac)
4628 {
4629 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4630 #define	ATH_TXOP_TO_US(v)		(v<<5)
4631 	struct ifnet *ifp = sc->sc_ifp;
4632 	struct ieee80211com *ic = ifp->if_l2com;
4633 	struct ath_txq *txq = sc->sc_ac2q[ac];
4634 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4635 	struct ath_hal *ah = sc->sc_ah;
4636 	HAL_TXQ_INFO qi;
4637 
4638 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4639 #ifdef IEEE80211_SUPPORT_TDMA
4640 	if (sc->sc_tdma) {
4641 		/*
4642 		 * AIFS is zero so there's no pre-transmit wait.  The
4643 		 * burst time defines the slot duration and is configured
4644 		 * through net80211.  The QCU is setup to not do post-xmit
4645 		 * back off, lockout all lower-priority QCU's, and fire
4646 		 * off the DMA beacon alert timer which is setup based
4647 		 * on the slot configuration.
4648 		 */
4649 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4650 			      | HAL_TXQ_TXERRINT_ENABLE
4651 			      | HAL_TXQ_TXURNINT_ENABLE
4652 			      | HAL_TXQ_TXEOLINT_ENABLE
4653 			      | HAL_TXQ_DBA_GATED
4654 			      | HAL_TXQ_BACKOFF_DISABLE
4655 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4656 			      ;
4657 		qi.tqi_aifs = 0;
4658 		/* XXX +dbaprep? */
4659 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4660 		qi.tqi_burstTime = qi.tqi_readyTime;
4661 	} else {
4662 #endif
4663 		/*
4664 		 * XXX shouldn't this just use the default flags
4665 		 * used in the previous queue setup?
4666 		 */
4667 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4668 			      | HAL_TXQ_TXERRINT_ENABLE
4669 			      | HAL_TXQ_TXDESCINT_ENABLE
4670 			      | HAL_TXQ_TXURNINT_ENABLE
4671 			      | HAL_TXQ_TXEOLINT_ENABLE
4672 			      ;
4673 		qi.tqi_aifs = wmep->wmep_aifsn;
4674 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4675 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4676 		qi.tqi_readyTime = 0;
4677 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4678 #ifdef IEEE80211_SUPPORT_TDMA
4679 	}
4680 #endif
4681 
4682 	DPRINTF(sc, ATH_DEBUG_RESET,
4683 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4684 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4685 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4686 
4687 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4688 		if_printf(ifp, "unable to update hardware queue "
4689 			"parameters for %s traffic!\n",
4690 			ieee80211_wme_acnames[ac]);
4691 		return 0;
4692 	} else {
4693 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4694 		return 1;
4695 	}
4696 #undef ATH_TXOP_TO_US
4697 #undef ATH_EXPONENT_TO_VALUE
4698 }
4699 
4700 /*
4701  * Callback from the 802.11 layer to update WME parameters.
4702  */
4703 static int
4704 ath_wme_update(struct ieee80211com *ic)
4705 {
4706 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4707 
4708 	return !ath_txq_update(sc, WME_AC_BE) ||
4709 	    !ath_txq_update(sc, WME_AC_BK) ||
4710 	    !ath_txq_update(sc, WME_AC_VI) ||
4711 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4712 }
4713 
4714 /*
4715  * Reclaim resources for a setup queue.
4716  */
4717 static void
4718 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4719 {
4720 
4721 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4722 	ATH_TXQ_LOCK_DESTROY(txq);
4723 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4724 }
4725 
4726 /*
4727  * Reclaim all tx queue resources.
4728  */
4729 static void
4730 ath_tx_cleanup(struct ath_softc *sc)
4731 {
4732 	int i;
4733 
4734 	ATH_TXBUF_LOCK_DESTROY(sc);
4735 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4736 		if (ATH_TXQ_SETUP(sc, i))
4737 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4738 }
4739 
4740 /*
4741  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4742  * using the current rates in sc_rixmap.
4743  */
4744 int
4745 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4746 {
4747 	int rix = sc->sc_rixmap[rate];
4748 	/* NB: return lowest rix for invalid rate */
4749 	return (rix == 0xff ? 0 : rix);
4750 }
4751 
4752 static void
4753 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4754     struct ath_buf *bf)
4755 {
4756 	struct ieee80211_node *ni = bf->bf_node;
4757 	struct ifnet *ifp = sc->sc_ifp;
4758 	struct ieee80211com *ic = ifp->if_l2com;
4759 	int sr, lr, pri;
4760 
4761 	if (ts->ts_status == 0) {
4762 		u_int8_t txant = ts->ts_antenna;
4763 		sc->sc_stats.ast_ant_tx[txant]++;
4764 		sc->sc_ant_tx[txant]++;
4765 		if (ts->ts_finaltsi != 0)
4766 			sc->sc_stats.ast_tx_altrate++;
4767 		pri = M_WME_GETAC(bf->bf_m);
4768 		if (pri >= WME_AC_VO)
4769 			ic->ic_wme.wme_hipri_traffic++;
4770 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
4771 			ni->ni_inact = ni->ni_inact_reload;
4772 	} else {
4773 		if (ts->ts_status & HAL_TXERR_XRETRY)
4774 			sc->sc_stats.ast_tx_xretries++;
4775 		if (ts->ts_status & HAL_TXERR_FIFO)
4776 			sc->sc_stats.ast_tx_fifoerr++;
4777 		if (ts->ts_status & HAL_TXERR_FILT)
4778 			sc->sc_stats.ast_tx_filtered++;
4779 		if (ts->ts_status & HAL_TXERR_XTXOP)
4780 			sc->sc_stats.ast_tx_xtxop++;
4781 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4782 			sc->sc_stats.ast_tx_timerexpired++;
4783 
4784 		if (ts->ts_status & HAL_TX_DATA_UNDERRUN)
4785 			sc->sc_stats.ast_tx_data_underrun++;
4786 		if (ts->ts_status & HAL_TX_DELIM_UNDERRUN)
4787 			sc->sc_stats.ast_tx_delim_underrun++;
4788 
4789 		if (bf->bf_m->m_flags & M_FF)
4790 			sc->sc_stats.ast_ff_txerr++;
4791 	}
4792 	/* XXX when is this valid? */
4793 	if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
4794 		sc->sc_stats.ast_tx_desccfgerr++;
4795 
4796 	sr = ts->ts_shortretry;
4797 	lr = ts->ts_longretry;
4798 	sc->sc_stats.ast_tx_shortretry += sr;
4799 	sc->sc_stats.ast_tx_longretry += lr;
4800 
4801 }
4802 
4803 /*
4804  * The default completion. If fail is 1, this means
4805  * "please don't retry the frame, and just return -1 status
4806  * to the net80211 stack.
4807  */
4808 void
4809 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4810 {
4811 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4812 	int st;
4813 
4814 	if (fail == 1)
4815 		st = -1;
4816 	else
4817 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
4818 		    ts->ts_status : HAL_TXERR_XRETRY;
4819 
4820 	if (bf->bf_state.bfs_dobaw)
4821 		device_printf(sc->sc_dev,
4822 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4823 		    __func__,
4824 		    bf,
4825 		    SEQNO(bf->bf_state.bfs_seqno));
4826 	if (bf->bf_next != NULL)
4827 		device_printf(sc->sc_dev,
4828 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
4829 		    __func__,
4830 		    bf,
4831 		    SEQNO(bf->bf_state.bfs_seqno));
4832 
4833 	/*
4834 	 * Do any tx complete callback.  Note this must
4835 	 * be done before releasing the node reference.
4836 	 * This will free the mbuf, release the net80211
4837 	 * node and recycle the ath_buf.
4838 	 */
4839 	ath_tx_freebuf(sc, bf, st);
4840 }
4841 
4842 /*
4843  * Update rate control with the given completion status.
4844  */
4845 void
4846 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4847     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4848     int nframes, int nbad)
4849 {
4850 	struct ath_node *an;
4851 
4852 	/* Only for unicast frames */
4853 	if (ni == NULL)
4854 		return;
4855 
4856 	an = ATH_NODE(ni);
4857 
4858 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4859 		ATH_NODE_LOCK(an);
4860 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4861 		ATH_NODE_UNLOCK(an);
4862 	}
4863 }
4864 
4865 /*
4866  * Update the busy status of the last frame on the free list.
4867  * When doing TDMA, the busy flag tracks whether the hardware
4868  * currently points to this buffer or not, and thus gated DMA
4869  * may restart by re-reading the last descriptor in this
4870  * buffer.
4871  *
4872  * This should be called in the completion function once one
4873  * of the buffers has been used.
4874  */
4875 static void
4876 ath_tx_update_busy(struct ath_softc *sc)
4877 {
4878 	struct ath_buf *last;
4879 
4880 	/*
4881 	 * Since the last frame may still be marked
4882 	 * as ATH_BUF_BUSY, unmark it here before
4883 	 * finishing the frame processing.
4884 	 * Since we've completed a frame (aggregate
4885 	 * or otherwise), the hardware has moved on
4886 	 * and is no longer referencing the previous
4887 	 * descriptor.
4888 	 */
4889 	ATH_TXBUF_LOCK_ASSERT(sc);
4890 	last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
4891 	if (last != NULL)
4892 		last->bf_flags &= ~ATH_BUF_BUSY;
4893 }
4894 
4895 
4896 /*
4897  * Process completed xmit descriptors from the specified queue.
4898  * Kick the packet scheduler if needed. This can occur from this
4899  * particular task.
4900  */
4901 static int
4902 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4903 {
4904 	struct ath_hal *ah = sc->sc_ah;
4905 	struct ath_buf *bf;
4906 	struct ath_desc *ds;
4907 	struct ath_tx_status *ts;
4908 	struct ieee80211_node *ni;
4909 	struct ath_node *an;
4910 #ifdef	IEEE80211_SUPPORT_SUPERG
4911 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4912 #endif	/* IEEE80211_SUPPORT_SUPERG */
4913 	int nacked;
4914 	HAL_STATUS status;
4915 
4916 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4917 		__func__, txq->axq_qnum,
4918 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4919 		txq->axq_link);
4920 	nacked = 0;
4921 	for (;;) {
4922 		ATH_TXQ_LOCK(txq);
4923 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4924 		bf = TAILQ_FIRST(&txq->axq_q);
4925 		if (bf == NULL) {
4926 			ATH_TXQ_UNLOCK(txq);
4927 			break;
4928 		}
4929 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4930 		ts = &bf->bf_status.ds_txstat;
4931 		status = ath_hal_txprocdesc(ah, ds, ts);
4932 #ifdef ATH_DEBUG
4933 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4934 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4935 			    status == HAL_OK);
4936 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) {
4937 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4938 			    status == HAL_OK);
4939 		}
4940 #endif
4941 		if (status == HAL_EINPROGRESS) {
4942 			ATH_TXQ_UNLOCK(txq);
4943 			break;
4944 		}
4945 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4946 #ifdef IEEE80211_SUPPORT_TDMA
4947 		if (txq->axq_depth > 0) {
4948 			/*
4949 			 * More frames follow.  Mark the buffer busy
4950 			 * so it's not re-used while the hardware may
4951 			 * still re-read the link field in the descriptor.
4952 			 *
4953 			 * Use the last buffer in an aggregate as that
4954 			 * is where the hardware may be - intermediate
4955 			 * descriptors won't be "busy".
4956 			 */
4957 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4958 		} else
4959 #else
4960 		if (txq->axq_depth == 0)
4961 #endif
4962 			txq->axq_link = NULL;
4963 		if (bf->bf_state.bfs_aggr)
4964 			txq->axq_aggr_depth--;
4965 
4966 		ni = bf->bf_node;
4967 		/*
4968 		 * If unicast frame was ack'd update RSSI,
4969 		 * including the last rx time used to
4970 		 * workaround phantom bmiss interrupts.
4971 		 */
4972 		if (ni != NULL && ts->ts_status == 0 &&
4973 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4974 			nacked++;
4975 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4976 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4977 				ts->ts_rssi);
4978 		}
4979 		ATH_TXQ_UNLOCK(txq);
4980 
4981 		/* If unicast frame, update general statistics */
4982 		if (ni != NULL) {
4983 			an = ATH_NODE(ni);
4984 			/* update statistics */
4985 			ath_tx_update_stats(sc, ts, bf);
4986 		}
4987 
4988 		/*
4989 		 * Call the completion handler.
4990 		 * The completion handler is responsible for
4991 		 * calling the rate control code.
4992 		 *
4993 		 * Frames with no completion handler get the
4994 		 * rate control code called here.
4995 		 */
4996 		if (bf->bf_comp == NULL) {
4997 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4998 			    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4999 				/*
5000 				 * XXX assume this isn't an aggregate
5001 				 * frame.
5002 				 */
5003 				ath_tx_update_ratectrl(sc, ni,
5004 				     bf->bf_state.bfs_rc, ts,
5005 				    bf->bf_state.bfs_pktlen, 1,
5006 				    (ts->ts_status == 0 ? 0 : 1));
5007 			}
5008 			ath_tx_default_comp(sc, bf, 0);
5009 		} else
5010 			bf->bf_comp(sc, bf, 0);
5011 	}
5012 #ifdef IEEE80211_SUPPORT_SUPERG
5013 	/*
5014 	 * Flush fast-frame staging queue when traffic slows.
5015 	 */
5016 	if (txq->axq_depth <= 1)
5017 		ieee80211_ff_flush(ic, txq->axq_ac);
5018 #endif
5019 
5020 	/* Kick the TXQ scheduler */
5021 	if (dosched) {
5022 		ATH_TXQ_LOCK(txq);
5023 		ath_txq_sched(sc, txq);
5024 		ATH_TXQ_UNLOCK(txq);
5025 	}
5026 
5027 	return nacked;
5028 }
5029 
5030 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
5031 
5032 /*
5033  * Deferred processing of transmit interrupt; special-cased
5034  * for a single hardware transmit queue (e.g. 5210 and 5211).
5035  */
5036 static void
5037 ath_tx_proc_q0(void *arg, int npending)
5038 {
5039 	struct ath_softc *sc = arg;
5040 	struct ifnet *ifp = sc->sc_ifp;
5041 	uint32_t txqs;
5042 
5043 	ATH_PCU_LOCK(sc);
5044 	sc->sc_txproc_cnt++;
5045 	txqs = sc->sc_txq_active;
5046 	sc->sc_txq_active &= ~txqs;
5047 	ATH_PCU_UNLOCK(sc);
5048 
5049 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
5050 		/* XXX why is lastrx updated in tx code? */
5051 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5052 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
5053 		ath_tx_processq(sc, sc->sc_cabq, 1);
5054 	IF_LOCK(&ifp->if_snd);
5055 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5056 	IF_UNLOCK(&ifp->if_snd);
5057 	sc->sc_wd_timer = 0;
5058 
5059 	if (sc->sc_softled)
5060 		ath_led_event(sc, sc->sc_txrix);
5061 
5062 	ATH_PCU_LOCK(sc);
5063 	sc->sc_txproc_cnt--;
5064 	ATH_PCU_UNLOCK(sc);
5065 
5066 	ath_start(ifp);
5067 }
5068 
5069 /*
5070  * Deferred processing of transmit interrupt; special-cased
5071  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5072  */
5073 static void
5074 ath_tx_proc_q0123(void *arg, int npending)
5075 {
5076 	struct ath_softc *sc = arg;
5077 	struct ifnet *ifp = sc->sc_ifp;
5078 	int nacked;
5079 	uint32_t txqs;
5080 
5081 	ATH_PCU_LOCK(sc);
5082 	sc->sc_txproc_cnt++;
5083 	txqs = sc->sc_txq_active;
5084 	sc->sc_txq_active &= ~txqs;
5085 	ATH_PCU_UNLOCK(sc);
5086 
5087 	/*
5088 	 * Process each active queue.
5089 	 */
5090 	nacked = 0;
5091 	if (TXQACTIVE(txqs, 0))
5092 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
5093 	if (TXQACTIVE(txqs, 1))
5094 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
5095 	if (TXQACTIVE(txqs, 2))
5096 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
5097 	if (TXQACTIVE(txqs, 3))
5098 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
5099 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
5100 		ath_tx_processq(sc, sc->sc_cabq, 1);
5101 	if (nacked)
5102 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5103 
5104 	IF_LOCK(&ifp->if_snd);
5105 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5106 	IF_UNLOCK(&ifp->if_snd);
5107 	sc->sc_wd_timer = 0;
5108 
5109 	if (sc->sc_softled)
5110 		ath_led_event(sc, sc->sc_txrix);
5111 
5112 	ATH_PCU_LOCK(sc);
5113 	sc->sc_txproc_cnt--;
5114 	ATH_PCU_UNLOCK(sc);
5115 
5116 	ath_start(ifp);
5117 }
5118 
5119 /*
5120  * Deferred processing of transmit interrupt.
5121  */
5122 static void
5123 ath_tx_proc(void *arg, int npending)
5124 {
5125 	struct ath_softc *sc = arg;
5126 	struct ifnet *ifp = sc->sc_ifp;
5127 	int i, nacked;
5128 	uint32_t txqs;
5129 
5130 	ATH_PCU_LOCK(sc);
5131 	sc->sc_txproc_cnt++;
5132 	txqs = sc->sc_txq_active;
5133 	sc->sc_txq_active &= ~txqs;
5134 	ATH_PCU_UNLOCK(sc);
5135 
5136 	/*
5137 	 * Process each active queue.
5138 	 */
5139 	nacked = 0;
5140 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5141 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
5142 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
5143 	if (nacked)
5144 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5145 
5146 	/* XXX check this inside of IF_LOCK? */
5147 	IF_LOCK(&ifp->if_snd);
5148 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5149 	IF_UNLOCK(&ifp->if_snd);
5150 	sc->sc_wd_timer = 0;
5151 
5152 	if (sc->sc_softled)
5153 		ath_led_event(sc, sc->sc_txrix);
5154 
5155 	ATH_PCU_LOCK(sc);
5156 	sc->sc_txproc_cnt--;
5157 	ATH_PCU_UNLOCK(sc);
5158 
5159 	ath_start(ifp);
5160 }
5161 #undef	TXQACTIVE
5162 
5163 /*
5164  * Deferred processing of TXQ rescheduling.
5165  */
5166 static void
5167 ath_txq_sched_tasklet(void *arg, int npending)
5168 {
5169 	struct ath_softc *sc = arg;
5170 	int i;
5171 
5172 	/* XXX is skipping ok? */
5173 	ATH_PCU_LOCK(sc);
5174 #if 0
5175 	if (sc->sc_inreset_cnt > 0) {
5176 		device_printf(sc->sc_dev,
5177 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
5178 		ATH_PCU_UNLOCK(sc);
5179 		return;
5180 	}
5181 #endif
5182 	sc->sc_txproc_cnt++;
5183 	ATH_PCU_UNLOCK(sc);
5184 
5185 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5186 		if (ATH_TXQ_SETUP(sc, i)) {
5187 			ATH_TXQ_LOCK(&sc->sc_txq[i]);
5188 			ath_txq_sched(sc, &sc->sc_txq[i]);
5189 			ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5190 		}
5191 	}
5192 
5193 	ATH_PCU_LOCK(sc);
5194 	sc->sc_txproc_cnt--;
5195 	ATH_PCU_UNLOCK(sc);
5196 }
5197 
5198 /*
5199  * Return a buffer to the pool and update the 'busy' flag on the
5200  * previous 'tail' entry.
5201  *
5202  * This _must_ only be called when the buffer is involved in a completed
5203  * TX. The logic is that if it was part of an active TX, the previous
5204  * buffer on the list is now not involved in a halted TX DMA queue, waiting
5205  * for restart (eg for TDMA.)
5206  *
5207  * The caller must free the mbuf and recycle the node reference.
5208  */
5209 void
5210 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
5211 {
5212 	bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5213 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
5214 
5215 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
5216 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
5217 
5218 	ATH_TXBUF_LOCK(sc);
5219 	ath_tx_update_busy(sc);
5220 	TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5221 	ATH_TXBUF_UNLOCK(sc);
5222 }
5223 
5224 /*
5225  * This is currently used by ath_tx_draintxq() and
5226  * ath_tx_tid_free_pkts().
5227  *
5228  * It recycles a single ath_buf.
5229  */
5230 void
5231 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
5232 {
5233 	struct ieee80211_node *ni = bf->bf_node;
5234 	struct mbuf *m0 = bf->bf_m;
5235 
5236 	bf->bf_node = NULL;
5237 	bf->bf_m = NULL;
5238 
5239 	/* Free the buffer, it's not needed any longer */
5240 	ath_freebuf(sc, bf);
5241 
5242 	if (ni != NULL) {
5243 		/*
5244 		 * Do any callback and reclaim the node reference.
5245 		 */
5246 		if (m0->m_flags & M_TXCB)
5247 			ieee80211_process_callback(ni, m0, status);
5248 		ieee80211_free_node(ni);
5249 	}
5250 	m_freem(m0);
5251 
5252 	/*
5253 	 * XXX the buffer used to be freed -after-, but the DMA map was
5254 	 * freed where ath_freebuf() now is. I've no idea what this
5255 	 * will do.
5256 	 */
5257 }
5258 
5259 void
5260 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5261 {
5262 #ifdef ATH_DEBUG
5263 	struct ath_hal *ah = sc->sc_ah;
5264 #endif
5265 	struct ath_buf *bf;
5266 	u_int ix;
5267 
5268 	/*
5269 	 * NB: this assumes output has been stopped and
5270 	 *     we do not need to block ath_tx_proc
5271 	 */
5272 	ATH_TXBUF_LOCK(sc);
5273 	bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
5274 	if (bf != NULL)
5275 		bf->bf_flags &= ~ATH_BUF_BUSY;
5276 	ATH_TXBUF_UNLOCK(sc);
5277 
5278 	for (ix = 0;; ix++) {
5279 		ATH_TXQ_LOCK(txq);
5280 		bf = TAILQ_FIRST(&txq->axq_q);
5281 		if (bf == NULL) {
5282 			txq->axq_link = NULL;
5283 			ATH_TXQ_UNLOCK(txq);
5284 			break;
5285 		}
5286 		ATH_TXQ_REMOVE(txq, bf, bf_list);
5287 		if (bf->bf_state.bfs_aggr)
5288 			txq->axq_aggr_depth--;
5289 #ifdef ATH_DEBUG
5290 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5291 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5292 
5293 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5294 				ath_hal_txprocdesc(ah, bf->bf_lastds,
5295 				    &bf->bf_status.ds_txstat) == HAL_OK);
5296 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5297 			    bf->bf_m->m_len, 0, -1);
5298 		}
5299 #endif /* ATH_DEBUG */
5300 		/*
5301 		 * Since we're now doing magic in the completion
5302 		 * functions, we -must- call it for aggregation
5303 		 * destinations or BAW tracking will get upset.
5304 		 */
5305 		/*
5306 		 * Clear ATH_BUF_BUSY; the completion handler
5307 		 * will free the buffer.
5308 		 */
5309 		ATH_TXQ_UNLOCK(txq);
5310 		bf->bf_flags &= ~ATH_BUF_BUSY;
5311 		if (bf->bf_comp)
5312 			bf->bf_comp(sc, bf, 1);
5313 		else
5314 			ath_tx_default_comp(sc, bf, 1);
5315 	}
5316 
5317 	/*
5318 	 * Drain software queued frames which are on
5319 	 * active TIDs.
5320 	 */
5321 	ath_tx_txq_drain(sc, txq);
5322 }
5323 
5324 static void
5325 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5326 {
5327 	struct ath_hal *ah = sc->sc_ah;
5328 
5329 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5330 	    __func__, txq->axq_qnum,
5331 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5332 	    txq->axq_link);
5333 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5334 }
5335 
5336 static int
5337 ath_stoptxdma(struct ath_softc *sc)
5338 {
5339 	struct ath_hal *ah = sc->sc_ah;
5340 	int i;
5341 
5342 	/* XXX return value */
5343 	if (sc->sc_invalid)
5344 		return 0;
5345 
5346 	if (!sc->sc_invalid) {
5347 		/* don't touch the hardware if marked invalid */
5348 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5349 		    __func__, sc->sc_bhalq,
5350 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5351 		    NULL);
5352 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5353 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5354 			if (ATH_TXQ_SETUP(sc, i))
5355 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5356 	}
5357 
5358 	return 1;
5359 }
5360 
5361 /*
5362  * Drain the transmit queues and reclaim resources.
5363  */
5364 static void
5365 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5366 {
5367 #ifdef	ATH_DEBUG
5368 	struct ath_hal *ah = sc->sc_ah;
5369 #endif
5370 	struct ifnet *ifp = sc->sc_ifp;
5371 	int i;
5372 
5373 	(void) ath_stoptxdma(sc);
5374 
5375 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5376 		/*
5377 		 * XXX TODO: should we just handle the completed TX frames
5378 		 * here, whether or not the reset is a full one or not?
5379 		 */
5380 		if (ATH_TXQ_SETUP(sc, i)) {
5381 			if (reset_type == ATH_RESET_NOLOSS)
5382 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
5383 			else
5384 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
5385 		}
5386 	}
5387 #ifdef ATH_DEBUG
5388 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5389 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5390 		if (bf != NULL && bf->bf_m != NULL) {
5391 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5392 				ath_hal_txprocdesc(ah, bf->bf_lastds,
5393 				    &bf->bf_status.ds_txstat) == HAL_OK);
5394 			ieee80211_dump_pkt(ifp->if_l2com,
5395 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5396 			    0, -1);
5397 		}
5398 	}
5399 #endif /* ATH_DEBUG */
5400 	IF_LOCK(&ifp->if_snd);
5401 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5402 	IF_UNLOCK(&ifp->if_snd);
5403 	sc->sc_wd_timer = 0;
5404 }
5405 
5406 /*
5407  * Disable the receive h/w in preparation for a reset.
5408  */
5409 static void
5410 ath_stoprecv(struct ath_softc *sc, int dodelay)
5411 {
5412 #define	PA2DESC(_sc, _pa) \
5413 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5414 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5415 	struct ath_hal *ah = sc->sc_ah;
5416 
5417 	ath_hal_stoppcurecv(ah);	/* disable PCU */
5418 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5419 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5420 	/*
5421 	 * TODO: see if this particular DELAY() is required; it may be
5422 	 * masking some missing FIFO flush or DMA sync.
5423 	 */
5424 	if (dodelay)
5425 		DELAY(3000);		/* 3ms is long enough for 1 frame */
5426 #ifdef ATH_DEBUG
5427 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5428 		struct ath_buf *bf;
5429 		u_int ix;
5430 
5431 		device_printf(sc->sc_dev,
5432 		    "%s: rx queue %p, link %p\n",
5433 		    __func__,
5434 		    (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah),
5435 		    sc->sc_rxlink);
5436 		ix = 0;
5437 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5438 			struct ath_desc *ds = bf->bf_desc;
5439 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5440 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5441 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5442 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5443 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5444 			ix++;
5445 		}
5446 	}
5447 #endif
5448 	if (sc->sc_rxpending != NULL) {
5449 		m_freem(sc->sc_rxpending);
5450 		sc->sc_rxpending = NULL;
5451 	}
5452 	sc->sc_rxlink = NULL;		/* just in case */
5453 #undef PA2DESC
5454 }
5455 
5456 /*
5457  * Enable the receive h/w following a reset.
5458  */
5459 static int
5460 ath_startrecv(struct ath_softc *sc)
5461 {
5462 	struct ath_hal *ah = sc->sc_ah;
5463 	struct ath_buf *bf;
5464 
5465 	sc->sc_rxlink = NULL;
5466 	sc->sc_rxpending = NULL;
5467 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5468 		int error = ath_rxbuf_init(sc, bf);
5469 		if (error != 0) {
5470 			DPRINTF(sc, ATH_DEBUG_RECV,
5471 				"%s: ath_rxbuf_init failed %d\n",
5472 				__func__, error);
5473 			return error;
5474 		}
5475 	}
5476 
5477 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
5478 	ath_hal_putrxbuf(ah, bf->bf_daddr);
5479 	ath_hal_rxena(ah);		/* enable recv descriptors */
5480 	ath_mode_init(sc);		/* set filters, etc. */
5481 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5482 	return 0;
5483 }
5484 
5485 /*
5486  * Update internal state after a channel change.
5487  */
5488 static void
5489 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5490 {
5491 	enum ieee80211_phymode mode;
5492 
5493 	/*
5494 	 * Change channels and update the h/w rate map
5495 	 * if we're switching; e.g. 11a to 11b/g.
5496 	 */
5497 	mode = ieee80211_chan2mode(chan);
5498 	if (mode != sc->sc_curmode)
5499 		ath_setcurmode(sc, mode);
5500 	sc->sc_curchan = chan;
5501 }
5502 
5503 /*
5504  * Set/change channels.  If the channel is really being changed,
5505  * it's done by resetting the chip.  To accomplish this we must
5506  * first cleanup any pending DMA, then restart stuff after a la
5507  * ath_init.
5508  */
5509 static int
5510 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5511 {
5512 	struct ifnet *ifp = sc->sc_ifp;
5513 	struct ieee80211com *ic = ifp->if_l2com;
5514 	struct ath_hal *ah = sc->sc_ah;
5515 	int ret = 0;
5516 
5517 	/* Treat this as an interface reset */
5518 	ATH_PCU_UNLOCK_ASSERT(sc);
5519 	ATH_UNLOCK_ASSERT(sc);
5520 
5521 	/* (Try to) stop TX/RX from occuring */
5522 	taskqueue_block(sc->sc_tq);
5523 
5524 	ATH_PCU_LOCK(sc);
5525 	ath_hal_intrset(ah, 0);		/* Stop new RX/TX completion */
5526 	ath_txrx_stop_locked(sc);	/* Stop pending RX/TX completion */
5527 	if (ath_reset_grablock(sc, 1) == 0) {
5528 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5529 		    __func__);
5530 	}
5531 	ATH_PCU_UNLOCK(sc);
5532 
5533 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5534 	    __func__, ieee80211_chan2ieee(ic, chan),
5535 	    chan->ic_freq, chan->ic_flags);
5536 	if (chan != sc->sc_curchan) {
5537 		HAL_STATUS status;
5538 		/*
5539 		 * To switch channels clear any pending DMA operations;
5540 		 * wait long enough for the RX fifo to drain, reset the
5541 		 * hardware at the new frequency, and then re-enable
5542 		 * the relevant bits of the h/w.
5543 		 */
5544 #if 0
5545 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5546 #endif
5547 		ath_stoprecv(sc, 1);		/* turn off frame recv */
5548 		/*
5549 		 * First, handle completed TX/RX frames.
5550 		 */
5551 		ath_rx_proc(sc, 0);
5552 		ath_draintxq(sc, ATH_RESET_NOLOSS);
5553 		/*
5554 		 * Next, flush the non-scheduled frames.
5555 		 */
5556 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5557 
5558 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5559 			if_printf(ifp, "%s: unable to reset "
5560 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5561 			    __func__, ieee80211_chan2ieee(ic, chan),
5562 			    chan->ic_freq, chan->ic_flags, status);
5563 			ret = EIO;
5564 			goto finish;
5565 		}
5566 		sc->sc_diversity = ath_hal_getdiversity(ah);
5567 
5568 		/* Let DFS at it in case it's a DFS channel */
5569 		ath_dfs_radar_enable(sc, chan);
5570 
5571 		/*
5572 		 * Re-enable rx framework.
5573 		 */
5574 		if (ath_startrecv(sc) != 0) {
5575 			if_printf(ifp, "%s: unable to restart recv logic\n",
5576 			    __func__);
5577 			ret = EIO;
5578 			goto finish;
5579 		}
5580 
5581 		/*
5582 		 * Change channels and update the h/w rate map
5583 		 * if we're switching; e.g. 11a to 11b/g.
5584 		 */
5585 		ath_chan_change(sc, chan);
5586 
5587 		/*
5588 		 * Reset clears the beacon timers; reset them
5589 		 * here if needed.
5590 		 */
5591 		if (sc->sc_beacons) {		/* restart beacons */
5592 #ifdef IEEE80211_SUPPORT_TDMA
5593 			if (sc->sc_tdma)
5594 				ath_tdma_config(sc, NULL);
5595 			else
5596 #endif
5597 			ath_beacon_config(sc, NULL);
5598 		}
5599 
5600 		/*
5601 		 * Re-enable interrupts.
5602 		 */
5603 #if 0
5604 		ath_hal_intrset(ah, sc->sc_imask);
5605 #endif
5606 	}
5607 
5608 finish:
5609 	ATH_PCU_LOCK(sc);
5610 	sc->sc_inreset_cnt--;
5611 	/* XXX only do this if sc_inreset_cnt == 0? */
5612 	ath_hal_intrset(ah, sc->sc_imask);
5613 	ATH_PCU_UNLOCK(sc);
5614 
5615 	IF_LOCK(&ifp->if_snd);
5616 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5617 	IF_UNLOCK(&ifp->if_snd);
5618 	ath_txrx_start(sc);
5619 	/* XXX ath_start? */
5620 
5621 	return ret;
5622 }
5623 
5624 /*
5625  * Periodically recalibrate the PHY to account
5626  * for temperature/environment changes.
5627  */
5628 static void
5629 ath_calibrate(void *arg)
5630 {
5631 	struct ath_softc *sc = arg;
5632 	struct ath_hal *ah = sc->sc_ah;
5633 	struct ifnet *ifp = sc->sc_ifp;
5634 	struct ieee80211com *ic = ifp->if_l2com;
5635 	HAL_BOOL longCal, isCalDone;
5636 	HAL_BOOL aniCal, shortCal = AH_FALSE;
5637 	int nextcal;
5638 
5639 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5640 		goto restart;
5641 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5642 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5643 	if (sc->sc_doresetcal)
5644 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5645 
5646 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5647 	if (aniCal) {
5648 		sc->sc_stats.ast_ani_cal++;
5649 		sc->sc_lastani = ticks;
5650 		ath_hal_ani_poll(ah, sc->sc_curchan);
5651 	}
5652 
5653 	if (longCal) {
5654 		sc->sc_stats.ast_per_cal++;
5655 		sc->sc_lastlongcal = ticks;
5656 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5657 			/*
5658 			 * Rfgain is out of bounds, reset the chip
5659 			 * to load new gain values.
5660 			 */
5661 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5662 				"%s: rfgain change\n", __func__);
5663 			sc->sc_stats.ast_per_rfgain++;
5664 			sc->sc_resetcal = 0;
5665 			sc->sc_doresetcal = AH_TRUE;
5666 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5667 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5668 			return;
5669 		}
5670 		/*
5671 		 * If this long cal is after an idle period, then
5672 		 * reset the data collection state so we start fresh.
5673 		 */
5674 		if (sc->sc_resetcal) {
5675 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5676 			sc->sc_lastcalreset = ticks;
5677 			sc->sc_lastshortcal = ticks;
5678 			sc->sc_resetcal = 0;
5679 			sc->sc_doresetcal = AH_TRUE;
5680 		}
5681 	}
5682 
5683 	/* Only call if we're doing a short/long cal, not for ANI calibration */
5684 	if (shortCal || longCal) {
5685 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5686 			if (longCal) {
5687 				/*
5688 				 * Calibrate noise floor data again in case of change.
5689 				 */
5690 				ath_hal_process_noisefloor(ah);
5691 			}
5692 		} else {
5693 			DPRINTF(sc, ATH_DEBUG_ANY,
5694 				"%s: calibration of channel %u failed\n",
5695 				__func__, sc->sc_curchan->ic_freq);
5696 			sc->sc_stats.ast_per_calfail++;
5697 		}
5698 		if (shortCal)
5699 			sc->sc_lastshortcal = ticks;
5700 	}
5701 	if (!isCalDone) {
5702 restart:
5703 		/*
5704 		 * Use a shorter interval to potentially collect multiple
5705 		 * data samples required to complete calibration.  Once
5706 		 * we're told the work is done we drop back to a longer
5707 		 * interval between requests.  We're more aggressive doing
5708 		 * work when operating as an AP to improve operation right
5709 		 * after startup.
5710 		 */
5711 		sc->sc_lastshortcal = ticks;
5712 		nextcal = ath_shortcalinterval*hz/1000;
5713 		if (sc->sc_opmode != HAL_M_HOSTAP)
5714 			nextcal *= 10;
5715 		sc->sc_doresetcal = AH_TRUE;
5716 	} else {
5717 		/* nextcal should be the shortest time for next event */
5718 		nextcal = ath_longcalinterval*hz;
5719 		if (sc->sc_lastcalreset == 0)
5720 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5721 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5722 			sc->sc_resetcal = 1;	/* setup reset next trip */
5723 		sc->sc_doresetcal = AH_FALSE;
5724 	}
5725 	/* ANI calibration may occur more often than short/long/resetcal */
5726 	if (ath_anicalinterval > 0)
5727 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5728 
5729 	if (nextcal != 0) {
5730 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5731 		    __func__, nextcal, isCalDone ? "" : "!");
5732 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5733 	} else {
5734 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5735 		    __func__);
5736 		/* NB: don't rearm timer */
5737 	}
5738 }
5739 
5740 static void
5741 ath_scan_start(struct ieee80211com *ic)
5742 {
5743 	struct ifnet *ifp = ic->ic_ifp;
5744 	struct ath_softc *sc = ifp->if_softc;
5745 	struct ath_hal *ah = sc->sc_ah;
5746 	u_int32_t rfilt;
5747 
5748 	/* XXX calibration timer? */
5749 
5750 	ATH_LOCK(sc);
5751 	sc->sc_scanning = 1;
5752 	sc->sc_syncbeacon = 0;
5753 	rfilt = ath_calcrxfilter(sc);
5754 	ATH_UNLOCK(sc);
5755 
5756 	ATH_PCU_LOCK(sc);
5757 	ath_hal_setrxfilter(ah, rfilt);
5758 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5759 	ATH_PCU_UNLOCK(sc);
5760 
5761 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5762 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5763 }
5764 
5765 static void
5766 ath_scan_end(struct ieee80211com *ic)
5767 {
5768 	struct ifnet *ifp = ic->ic_ifp;
5769 	struct ath_softc *sc = ifp->if_softc;
5770 	struct ath_hal *ah = sc->sc_ah;
5771 	u_int32_t rfilt;
5772 
5773 	ATH_LOCK(sc);
5774 	sc->sc_scanning = 0;
5775 	rfilt = ath_calcrxfilter(sc);
5776 	ATH_UNLOCK(sc);
5777 
5778 	ATH_PCU_LOCK(sc);
5779 	ath_hal_setrxfilter(ah, rfilt);
5780 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5781 
5782 	ath_hal_process_noisefloor(ah);
5783 	ATH_PCU_UNLOCK(sc);
5784 
5785 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5786 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5787 		 sc->sc_curaid);
5788 }
5789 
5790 #ifdef	ATH_ENABLE_11N
5791 /*
5792  * For now, just do a channel change.
5793  *
5794  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5795  * control state and resetting the hardware without dropping frames out
5796  * of the queue.
5797  *
5798  * The unfortunate trouble here is making absolutely sure that the
5799  * channel width change has propagated enough so the hardware
5800  * absolutely isn't handed bogus frames for it's current operating
5801  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5802  * does occur in parallel, we need to make certain we've blocked
5803  * any further ongoing TX (and RX, that can cause raw TX)
5804  * before we do this.
5805  */
5806 static void
5807 ath_update_chw(struct ieee80211com *ic)
5808 {
5809 	struct ifnet *ifp = ic->ic_ifp;
5810 	struct ath_softc *sc = ifp->if_softc;
5811 
5812 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5813 	ath_set_channel(ic);
5814 }
5815 #endif	/* ATH_ENABLE_11N */
5816 
5817 static void
5818 ath_set_channel(struct ieee80211com *ic)
5819 {
5820 	struct ifnet *ifp = ic->ic_ifp;
5821 	struct ath_softc *sc = ifp->if_softc;
5822 
5823 	(void) ath_chan_set(sc, ic->ic_curchan);
5824 	/*
5825 	 * If we are returning to our bss channel then mark state
5826 	 * so the next recv'd beacon's tsf will be used to sync the
5827 	 * beacon timers.  Note that since we only hear beacons in
5828 	 * sta/ibss mode this has no effect in other operating modes.
5829 	 */
5830 	ATH_LOCK(sc);
5831 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5832 		sc->sc_syncbeacon = 1;
5833 	ATH_UNLOCK(sc);
5834 }
5835 
5836 /*
5837  * Walk the vap list and check if there any vap's in RUN state.
5838  */
5839 static int
5840 ath_isanyrunningvaps(struct ieee80211vap *this)
5841 {
5842 	struct ieee80211com *ic = this->iv_ic;
5843 	struct ieee80211vap *vap;
5844 
5845 	IEEE80211_LOCK_ASSERT(ic);
5846 
5847 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5848 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5849 			return 1;
5850 	}
5851 	return 0;
5852 }
5853 
5854 static int
5855 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5856 {
5857 	struct ieee80211com *ic = vap->iv_ic;
5858 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5859 	struct ath_vap *avp = ATH_VAP(vap);
5860 	struct ath_hal *ah = sc->sc_ah;
5861 	struct ieee80211_node *ni = NULL;
5862 	int i, error, stamode;
5863 	u_int32_t rfilt;
5864 	int csa_run_transition = 0;
5865 	static const HAL_LED_STATE leds[] = {
5866 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5867 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5868 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5869 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5870 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5871 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5872 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5873 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5874 	};
5875 
5876 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5877 		ieee80211_state_name[vap->iv_state],
5878 		ieee80211_state_name[nstate]);
5879 
5880 	/*
5881 	 * net80211 _should_ have the comlock asserted at this point.
5882 	 * There are some comments around the calls to vap->iv_newstate
5883 	 * which indicate that it (newstate) may end up dropping the
5884 	 * lock.  This and the subsequent lock assert check after newstate
5885 	 * are an attempt to catch these and figure out how/why.
5886 	 */
5887 	IEEE80211_LOCK_ASSERT(ic);
5888 
5889 	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5890 		csa_run_transition = 1;
5891 
5892 	callout_drain(&sc->sc_cal_ch);
5893 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5894 
5895 	if (nstate == IEEE80211_S_SCAN) {
5896 		/*
5897 		 * Scanning: turn off beacon miss and don't beacon.
5898 		 * Mark beacon state so when we reach RUN state we'll
5899 		 * [re]setup beacons.  Unblock the task q thread so
5900 		 * deferred interrupt processing is done.
5901 		 */
5902 		ath_hal_intrset(ah,
5903 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5904 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5905 		sc->sc_beacons = 0;
5906 		taskqueue_unblock(sc->sc_tq);
5907 	}
5908 
5909 	ni = ieee80211_ref_node(vap->iv_bss);
5910 	rfilt = ath_calcrxfilter(sc);
5911 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5912 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5913 		   vap->iv_opmode == IEEE80211_M_IBSS);
5914 	if (stamode && nstate == IEEE80211_S_RUN) {
5915 		sc->sc_curaid = ni->ni_associd;
5916 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5917 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5918 	}
5919 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5920 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5921 	ath_hal_setrxfilter(ah, rfilt);
5922 
5923 	/* XXX is this to restore keycache on resume? */
5924 	if (vap->iv_opmode != IEEE80211_M_STA &&
5925 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5926 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5927 			if (ath_hal_keyisvalid(ah, i))
5928 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5929 	}
5930 
5931 	/*
5932 	 * Invoke the parent method to do net80211 work.
5933 	 */
5934 	error = avp->av_newstate(vap, nstate, arg);
5935 	if (error != 0)
5936 		goto bad;
5937 
5938 	/*
5939 	 * See above: ensure av_newstate() doesn't drop the lock
5940 	 * on us.
5941 	 */
5942 	IEEE80211_LOCK_ASSERT(ic);
5943 
5944 	if (nstate == IEEE80211_S_RUN) {
5945 		/* NB: collect bss node again, it may have changed */
5946 		ieee80211_free_node(ni);
5947 		ni = ieee80211_ref_node(vap->iv_bss);
5948 
5949 		DPRINTF(sc, ATH_DEBUG_STATE,
5950 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5951 		    "capinfo 0x%04x chan %d\n", __func__,
5952 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5953 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5954 
5955 		switch (vap->iv_opmode) {
5956 #ifdef IEEE80211_SUPPORT_TDMA
5957 		case IEEE80211_M_AHDEMO:
5958 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5959 				break;
5960 			/* fall thru... */
5961 #endif
5962 		case IEEE80211_M_HOSTAP:
5963 		case IEEE80211_M_IBSS:
5964 		case IEEE80211_M_MBSS:
5965 			/*
5966 			 * Allocate and setup the beacon frame.
5967 			 *
5968 			 * Stop any previous beacon DMA.  This may be
5969 			 * necessary, for example, when an ibss merge
5970 			 * causes reconfiguration; there will be a state
5971 			 * transition from RUN->RUN that means we may
5972 			 * be called with beacon transmission active.
5973 			 */
5974 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5975 
5976 			error = ath_beacon_alloc(sc, ni);
5977 			if (error != 0)
5978 				goto bad;
5979 			/*
5980 			 * If joining an adhoc network defer beacon timer
5981 			 * configuration to the next beacon frame so we
5982 			 * have a current TSF to use.  Otherwise we're
5983 			 * starting an ibss/bss so there's no need to delay;
5984 			 * if this is the first vap moving to RUN state, then
5985 			 * beacon state needs to be [re]configured.
5986 			 */
5987 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5988 			    ni->ni_tstamp.tsf != 0) {
5989 				sc->sc_syncbeacon = 1;
5990 			} else if (!sc->sc_beacons) {
5991 #ifdef IEEE80211_SUPPORT_TDMA
5992 				if (vap->iv_caps & IEEE80211_C_TDMA)
5993 					ath_tdma_config(sc, vap);
5994 				else
5995 #endif
5996 					ath_beacon_config(sc, vap);
5997 				sc->sc_beacons = 1;
5998 			}
5999 			break;
6000 		case IEEE80211_M_STA:
6001 			/*
6002 			 * Defer beacon timer configuration to the next
6003 			 * beacon frame so we have a current TSF to use
6004 			 * (any TSF collected when scanning is likely old).
6005 			 * However if it's due to a CSA -> RUN transition,
6006 			 * force a beacon update so we pick up a lack of
6007 			 * beacons from an AP in CAC and thus force a
6008 			 * scan.
6009 			 */
6010 			sc->sc_syncbeacon = 1;
6011 			if (csa_run_transition)
6012 				ath_beacon_config(sc, vap);
6013 			break;
6014 		case IEEE80211_M_MONITOR:
6015 			/*
6016 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
6017 			 * transitions so we must re-enable interrupts here to
6018 			 * handle the case of a single monitor mode vap.
6019 			 */
6020 			ath_hal_intrset(ah, sc->sc_imask);
6021 			break;
6022 		case IEEE80211_M_WDS:
6023 			break;
6024 		default:
6025 			break;
6026 		}
6027 		/*
6028 		 * Let the hal process statistics collected during a
6029 		 * scan so it can provide calibrated noise floor data.
6030 		 */
6031 		ath_hal_process_noisefloor(ah);
6032 		/*
6033 		 * Reset rssi stats; maybe not the best place...
6034 		 */
6035 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
6036 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
6037 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
6038 		/*
6039 		 * Finally, start any timers and the task q thread
6040 		 * (in case we didn't go through SCAN state).
6041 		 */
6042 		if (ath_longcalinterval != 0) {
6043 			/* start periodic recalibration timer */
6044 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6045 		} else {
6046 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6047 			    "%s: calibration disabled\n", __func__);
6048 		}
6049 		taskqueue_unblock(sc->sc_tq);
6050 	} else if (nstate == IEEE80211_S_INIT) {
6051 		/*
6052 		 * If there are no vaps left in RUN state then
6053 		 * shutdown host/driver operation:
6054 		 * o disable interrupts
6055 		 * o disable the task queue thread
6056 		 * o mark beacon processing as stopped
6057 		 */
6058 		if (!ath_isanyrunningvaps(vap)) {
6059 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6060 			/* disable interrupts  */
6061 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
6062 			taskqueue_block(sc->sc_tq);
6063 			sc->sc_beacons = 0;
6064 		}
6065 #ifdef IEEE80211_SUPPORT_TDMA
6066 		ath_hal_setcca(ah, AH_TRUE);
6067 #endif
6068 	}
6069 bad:
6070 	ieee80211_free_node(ni);
6071 	return error;
6072 }
6073 
6074 /*
6075  * Allocate a key cache slot to the station so we can
6076  * setup a mapping from key index to node. The key cache
6077  * slot is needed for managing antenna state and for
6078  * compression when stations do not use crypto.  We do
6079  * it uniliaterally here; if crypto is employed this slot
6080  * will be reassigned.
6081  */
6082 static void
6083 ath_setup_stationkey(struct ieee80211_node *ni)
6084 {
6085 	struct ieee80211vap *vap = ni->ni_vap;
6086 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6087 	ieee80211_keyix keyix, rxkeyix;
6088 
6089 	/* XXX should take a locked ref to vap->iv_bss */
6090 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6091 		/*
6092 		 * Key cache is full; we'll fall back to doing
6093 		 * the more expensive lookup in software.  Note
6094 		 * this also means no h/w compression.
6095 		 */
6096 		/* XXX msg+statistic */
6097 	} else {
6098 		/* XXX locking? */
6099 		ni->ni_ucastkey.wk_keyix = keyix;
6100 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6101 		/* NB: must mark device key to get called back on delete */
6102 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6103 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6104 		/* NB: this will create a pass-thru key entry */
6105 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
6106 	}
6107 }
6108 
6109 /*
6110  * Setup driver-specific state for a newly associated node.
6111  * Note that we're called also on a re-associate, the isnew
6112  * param tells us if this is the first time or not.
6113  */
6114 static void
6115 ath_newassoc(struct ieee80211_node *ni, int isnew)
6116 {
6117 	struct ath_node *an = ATH_NODE(ni);
6118 	struct ieee80211vap *vap = ni->ni_vap;
6119 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6120 	const struct ieee80211_txparam *tp = ni->ni_txparms;
6121 
6122 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
6123 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
6124 
6125 	ath_rate_newassoc(sc, an, isnew);
6126 	if (isnew &&
6127 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6128 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6129 		ath_setup_stationkey(ni);
6130 }
6131 
6132 static int
6133 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6134 	int nchans, struct ieee80211_channel chans[])
6135 {
6136 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6137 	struct ath_hal *ah = sc->sc_ah;
6138 	HAL_STATUS status;
6139 
6140 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6141 	    "%s: rd %u cc %u location %c%s\n",
6142 	    __func__, reg->regdomain, reg->country, reg->location,
6143 	    reg->ecm ? " ecm" : "");
6144 
6145 	status = ath_hal_set_channels(ah, chans, nchans,
6146 	    reg->country, reg->regdomain);
6147 	if (status != HAL_OK) {
6148 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6149 		    __func__, status);
6150 		return EINVAL;		/* XXX */
6151 	}
6152 
6153 	return 0;
6154 }
6155 
6156 static void
6157 ath_getradiocaps(struct ieee80211com *ic,
6158 	int maxchans, int *nchans, struct ieee80211_channel chans[])
6159 {
6160 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6161 	struct ath_hal *ah = sc->sc_ah;
6162 
6163 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6164 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
6165 
6166 	/* XXX check return */
6167 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6168 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6169 
6170 }
6171 
6172 static int
6173 ath_getchannels(struct ath_softc *sc)
6174 {
6175 	struct ifnet *ifp = sc->sc_ifp;
6176 	struct ieee80211com *ic = ifp->if_l2com;
6177 	struct ath_hal *ah = sc->sc_ah;
6178 	HAL_STATUS status;
6179 
6180 	/*
6181 	 * Collect channel set based on EEPROM contents.
6182 	 */
6183 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6184 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6185 	if (status != HAL_OK) {
6186 		if_printf(ifp, "%s: unable to collect channel list from hal, "
6187 		    "status %d\n", __func__, status);
6188 		return EINVAL;
6189 	}
6190 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6191 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6192 	/* XXX map Atheros sku's to net80211 SKU's */
6193 	/* XXX net80211 types too small */
6194 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6195 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6196 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
6197 	ic->ic_regdomain.isocc[1] = ' ';
6198 
6199 	ic->ic_regdomain.ecm = 1;
6200 	ic->ic_regdomain.location = 'I';
6201 
6202 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6203 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6204 	    __func__, sc->sc_eerd, sc->sc_eecc,
6205 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6206 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6207 	return 0;
6208 }
6209 
6210 static int
6211 ath_rate_setup(struct ath_softc *sc, u_int mode)
6212 {
6213 	struct ath_hal *ah = sc->sc_ah;
6214 	const HAL_RATE_TABLE *rt;
6215 
6216 	switch (mode) {
6217 	case IEEE80211_MODE_11A:
6218 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6219 		break;
6220 	case IEEE80211_MODE_HALF:
6221 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6222 		break;
6223 	case IEEE80211_MODE_QUARTER:
6224 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6225 		break;
6226 	case IEEE80211_MODE_11B:
6227 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6228 		break;
6229 	case IEEE80211_MODE_11G:
6230 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6231 		break;
6232 	case IEEE80211_MODE_TURBO_A:
6233 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6234 		break;
6235 	case IEEE80211_MODE_TURBO_G:
6236 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6237 		break;
6238 	case IEEE80211_MODE_STURBO_A:
6239 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6240 		break;
6241 	case IEEE80211_MODE_11NA:
6242 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6243 		break;
6244 	case IEEE80211_MODE_11NG:
6245 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6246 		break;
6247 	default:
6248 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6249 			__func__, mode);
6250 		return 0;
6251 	}
6252 	sc->sc_rates[mode] = rt;
6253 	return (rt != NULL);
6254 }
6255 
6256 static void
6257 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6258 {
6259 #define	N(a)	(sizeof(a)/sizeof(a[0]))
6260 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6261 	static const struct {
6262 		u_int		rate;		/* tx/rx 802.11 rate */
6263 		u_int16_t	timeOn;		/* LED on time (ms) */
6264 		u_int16_t	timeOff;	/* LED off time (ms) */
6265 	} blinkrates[] = {
6266 		{ 108,  40,  10 },
6267 		{  96,  44,  11 },
6268 		{  72,  50,  13 },
6269 		{  48,  57,  14 },
6270 		{  36,  67,  16 },
6271 		{  24,  80,  20 },
6272 		{  22, 100,  25 },
6273 		{  18, 133,  34 },
6274 		{  12, 160,  40 },
6275 		{  10, 200,  50 },
6276 		{   6, 240,  58 },
6277 		{   4, 267,  66 },
6278 		{   2, 400, 100 },
6279 		{   0, 500, 130 },
6280 		/* XXX half/quarter rates */
6281 	};
6282 	const HAL_RATE_TABLE *rt;
6283 	int i, j;
6284 
6285 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6286 	rt = sc->sc_rates[mode];
6287 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6288 	for (i = 0; i < rt->rateCount; i++) {
6289 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6290 		if (rt->info[i].phy != IEEE80211_T_HT)
6291 			sc->sc_rixmap[ieeerate] = i;
6292 		else
6293 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6294 	}
6295 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6296 	for (i = 0; i < N(sc->sc_hwmap); i++) {
6297 		if (i >= rt->rateCount) {
6298 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6299 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6300 			continue;
6301 		}
6302 		sc->sc_hwmap[i].ieeerate =
6303 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6304 		if (rt->info[i].phy == IEEE80211_T_HT)
6305 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6306 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6307 		if (rt->info[i].shortPreamble ||
6308 		    rt->info[i].phy == IEEE80211_T_OFDM)
6309 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6310 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6311 		for (j = 0; j < N(blinkrates)-1; j++)
6312 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6313 				break;
6314 		/* NB: this uses the last entry if the rate isn't found */
6315 		/* XXX beware of overlow */
6316 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6317 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6318 	}
6319 	sc->sc_currates = rt;
6320 	sc->sc_curmode = mode;
6321 	/*
6322 	 * All protection frames are transmited at 2Mb/s for
6323 	 * 11g, otherwise at 1Mb/s.
6324 	 */
6325 	if (mode == IEEE80211_MODE_11G)
6326 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6327 	else
6328 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6329 	/* NB: caller is responsible for resetting rate control state */
6330 #undef N
6331 }
6332 
6333 static void
6334 ath_watchdog(void *arg)
6335 {
6336 	struct ath_softc *sc = arg;
6337 	int do_reset = 0;
6338 
6339 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6340 		struct ifnet *ifp = sc->sc_ifp;
6341 		uint32_t hangs;
6342 
6343 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6344 		    hangs != 0) {
6345 			if_printf(ifp, "%s hang detected (0x%x)\n",
6346 			    hangs & 0xff ? "bb" : "mac", hangs);
6347 		} else
6348 			if_printf(ifp, "device timeout\n");
6349 		do_reset = 1;
6350 		ifp->if_oerrors++;
6351 		sc->sc_stats.ast_watchdog++;
6352 	}
6353 
6354 	/*
6355 	 * We can't hold the lock across the ath_reset() call.
6356 	 *
6357 	 * And since this routine can't hold a lock and sleep,
6358 	 * do the reset deferred.
6359 	 */
6360 	if (do_reset) {
6361 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
6362 	}
6363 
6364 	callout_schedule(&sc->sc_wd_ch, hz);
6365 }
6366 
6367 #ifdef ATH_DIAGAPI
6368 /*
6369  * Diagnostic interface to the HAL.  This is used by various
6370  * tools to do things like retrieve register contents for
6371  * debugging.  The mechanism is intentionally opaque so that
6372  * it can change frequently w/o concern for compatiblity.
6373  */
6374 static int
6375 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6376 {
6377 	struct ath_hal *ah = sc->sc_ah;
6378 	u_int id = ad->ad_id & ATH_DIAG_ID;
6379 	void *indata = NULL;
6380 	void *outdata = NULL;
6381 	u_int32_t insize = ad->ad_in_size;
6382 	u_int32_t outsize = ad->ad_out_size;
6383 	int error = 0;
6384 
6385 	if (ad->ad_id & ATH_DIAG_IN) {
6386 		/*
6387 		 * Copy in data.
6388 		 */
6389 		indata = malloc(insize, M_TEMP, M_NOWAIT);
6390 		if (indata == NULL) {
6391 			error = ENOMEM;
6392 			goto bad;
6393 		}
6394 		error = copyin(ad->ad_in_data, indata, insize);
6395 		if (error)
6396 			goto bad;
6397 	}
6398 	if (ad->ad_id & ATH_DIAG_DYN) {
6399 		/*
6400 		 * Allocate a buffer for the results (otherwise the HAL
6401 		 * returns a pointer to a buffer where we can read the
6402 		 * results).  Note that we depend on the HAL leaving this
6403 		 * pointer for us to use below in reclaiming the buffer;
6404 		 * may want to be more defensive.
6405 		 */
6406 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6407 		if (outdata == NULL) {
6408 			error = ENOMEM;
6409 			goto bad;
6410 		}
6411 	}
6412 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6413 		if (outsize < ad->ad_out_size)
6414 			ad->ad_out_size = outsize;
6415 		if (outdata != NULL)
6416 			error = copyout(outdata, ad->ad_out_data,
6417 					ad->ad_out_size);
6418 	} else {
6419 		error = EINVAL;
6420 	}
6421 bad:
6422 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6423 		free(indata, M_TEMP);
6424 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6425 		free(outdata, M_TEMP);
6426 	return error;
6427 }
6428 #endif /* ATH_DIAGAPI */
6429 
6430 static int
6431 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6432 {
6433 #define	IS_RUNNING(ifp) \
6434 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6435 	struct ath_softc *sc = ifp->if_softc;
6436 	struct ieee80211com *ic = ifp->if_l2com;
6437 	struct ifreq *ifr = (struct ifreq *)data;
6438 	const HAL_RATE_TABLE *rt;
6439 	int error = 0;
6440 
6441 	switch (cmd) {
6442 	case SIOCSIFFLAGS:
6443 		ATH_LOCK(sc);
6444 		if (IS_RUNNING(ifp)) {
6445 			/*
6446 			 * To avoid rescanning another access point,
6447 			 * do not call ath_init() here.  Instead,
6448 			 * only reflect promisc mode settings.
6449 			 */
6450 			ath_mode_init(sc);
6451 		} else if (ifp->if_flags & IFF_UP) {
6452 			/*
6453 			 * Beware of being called during attach/detach
6454 			 * to reset promiscuous mode.  In that case we
6455 			 * will still be marked UP but not RUNNING.
6456 			 * However trying to re-init the interface
6457 			 * is the wrong thing to do as we've already
6458 			 * torn down much of our state.  There's
6459 			 * probably a better way to deal with this.
6460 			 */
6461 			if (!sc->sc_invalid)
6462 				ath_init(sc);	/* XXX lose error */
6463 		} else {
6464 			ath_stop_locked(ifp);
6465 #ifdef notyet
6466 			/* XXX must wakeup in places like ath_vap_delete */
6467 			if (!sc->sc_invalid)
6468 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6469 #endif
6470 		}
6471 		ATH_UNLOCK(sc);
6472 		break;
6473 	case SIOCGIFMEDIA:
6474 	case SIOCSIFMEDIA:
6475 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6476 		break;
6477 	case SIOCGATHSTATS:
6478 		/* NB: embed these numbers to get a consistent view */
6479 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6480 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6481 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6482 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6483 #ifdef IEEE80211_SUPPORT_TDMA
6484 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6485 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6486 #endif
6487 		rt = sc->sc_currates;
6488 		sc->sc_stats.ast_tx_rate =
6489 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6490 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
6491 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
6492 		return copyout(&sc->sc_stats,
6493 		    ifr->ifr_data, sizeof (sc->sc_stats));
6494 	case SIOCZATHSTATS:
6495 		error = priv_check(curthread, PRIV_DRIVER);
6496 		if (error == 0) {
6497 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6498 			memset(&sc->sc_aggr_stats, 0,
6499 			    sizeof(sc->sc_aggr_stats));
6500 			memset(&sc->sc_intr_stats, 0,
6501 			    sizeof(sc->sc_intr_stats));
6502 		}
6503 		break;
6504 #ifdef ATH_DIAGAPI
6505 	case SIOCGATHDIAG:
6506 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6507 		break;
6508 	case SIOCGATHPHYERR:
6509 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
6510 		break;
6511 #endif
6512 	case SIOCGIFADDR:
6513 		error = ether_ioctl(ifp, cmd, data);
6514 		break;
6515 	default:
6516 		error = EINVAL;
6517 		break;
6518 	}
6519 	return error;
6520 #undef IS_RUNNING
6521 }
6522 
6523 /*
6524  * Announce various information on device/driver attach.
6525  */
6526 static void
6527 ath_announce(struct ath_softc *sc)
6528 {
6529 	struct ifnet *ifp = sc->sc_ifp;
6530 	struct ath_hal *ah = sc->sc_ah;
6531 
6532 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6533 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6534 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6535 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6536 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6537 	if (bootverbose) {
6538 		int i;
6539 		for (i = 0; i <= WME_AC_VO; i++) {
6540 			struct ath_txq *txq = sc->sc_ac2q[i];
6541 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6542 				txq->axq_qnum, ieee80211_wme_acnames[i]);
6543 		}
6544 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6545 			sc->sc_cabq->axq_qnum);
6546 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6547 	}
6548 	if (ath_rxbuf != ATH_RXBUF)
6549 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6550 	if (ath_txbuf != ATH_TXBUF)
6551 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6552 	if (sc->sc_mcastkey && bootverbose)
6553 		if_printf(ifp, "using multicast key search\n");
6554 }
6555 
6556 #ifdef IEEE80211_SUPPORT_TDMA
6557 static void
6558 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
6559 {
6560 	struct ath_hal *ah = sc->sc_ah;
6561 	HAL_BEACON_TIMERS bt;
6562 
6563 	bt.bt_intval = bintval | HAL_BEACON_ENA;
6564 	bt.bt_nexttbtt = nexttbtt;
6565 	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
6566 	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
6567 	bt.bt_nextatim = nexttbtt+1;
6568 	/* Enables TBTT, DBA, SWBA timers by default */
6569 	bt.bt_flags = 0;
6570 	ath_hal_beaconsettimers(ah, &bt);
6571 }
6572 
6573 /*
6574  * Calculate the beacon interval.  This is periodic in the
6575  * superframe for the bss.  We assume each station is configured
6576  * identically wrt transmit rate so the guard time we calculate
6577  * above will be the same on all stations.  Note we need to
6578  * factor in the xmit time because the hardware will schedule
6579  * a frame for transmit if the start of the frame is within
6580  * the burst time.  When we get hardware that properly kills
6581  * frames in the PCU we can reduce/eliminate the guard time.
6582  *
6583  * Roundup to 1024 is so we have 1 TU buffer in the guard time
6584  * to deal with the granularity of the nexttbtt timer.  11n MAC's
6585  * with 1us timer granularity should allow us to reduce/eliminate
6586  * this.
6587  */
6588 static void
6589 ath_tdma_bintvalsetup(struct ath_softc *sc,
6590 	const struct ieee80211_tdma_state *tdma)
6591 {
6592 	/* copy from vap state (XXX check all vaps have same value?) */
6593 	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
6594 
6595 	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
6596 		tdma->tdma_slotcnt, 1024);
6597 	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
6598 	if (sc->sc_tdmabintval & 1)
6599 		sc->sc_tdmabintval++;
6600 
6601 	if (tdma->tdma_slot == 0) {
6602 		/*
6603 		 * Only slot 0 beacons; other slots respond.
6604 		 */
6605 		sc->sc_imask |= HAL_INT_SWBA;
6606 		sc->sc_tdmaswba = 0;		/* beacon immediately */
6607 	} else {
6608 		/* XXX all vaps must be slot 0 or slot !0 */
6609 		sc->sc_imask &= ~HAL_INT_SWBA;
6610 	}
6611 }
6612 
6613 /*
6614  * Max 802.11 overhead.  This assumes no 4-address frames and
6615  * the encapsulation done by ieee80211_encap (llc).  We also
6616  * include potential crypto overhead.
6617  */
6618 #define	IEEE80211_MAXOVERHEAD \
6619 	(sizeof(struct ieee80211_qosframe) \
6620 	 + sizeof(struct llc) \
6621 	 + IEEE80211_ADDR_LEN \
6622 	 + IEEE80211_WEP_IVLEN \
6623 	 + IEEE80211_WEP_KIDLEN \
6624 	 + IEEE80211_WEP_CRCLEN \
6625 	 + IEEE80211_WEP_MICLEN \
6626 	 + IEEE80211_CRC_LEN)
6627 
6628 /*
6629  * Setup initially for tdma operation.  Start the beacon
6630  * timers and enable SWBA if we are slot 0.  Otherwise
6631  * we wait for slot 0 to arrive so we can sync up before
6632  * starting to transmit.
6633  */
6634 static void
6635 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
6636 {
6637 	struct ath_hal *ah = sc->sc_ah;
6638 	struct ifnet *ifp = sc->sc_ifp;
6639 	struct ieee80211com *ic = ifp->if_l2com;
6640 	const struct ieee80211_txparam *tp;
6641 	const struct ieee80211_tdma_state *tdma = NULL;
6642 	int rix;
6643 
6644 	if (vap == NULL) {
6645 		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
6646 		if (vap == NULL) {
6647 			if_printf(ifp, "%s: no vaps?\n", __func__);
6648 			return;
6649 		}
6650 	}
6651 	/* XXX should take a locked ref to iv_bss */
6652 	tp = vap->iv_bss->ni_txparms;
6653 	/*
6654 	 * Calculate the guard time for each slot.  This is the
6655 	 * time to send a maximal-size frame according to the
6656 	 * fixed/lowest transmit rate.  Note that the interface
6657 	 * mtu does not include the 802.11 overhead so we must
6658 	 * tack that on (ath_hal_computetxtime includes the
6659 	 * preamble and plcp in it's calculation).
6660 	 */
6661 	tdma = vap->iv_tdma;
6662 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
6663 		rix = ath_tx_findrix(sc, tp->ucastrate);
6664 	else
6665 		rix = ath_tx_findrix(sc, tp->mcastrate);
6666 	/* XXX short preamble assumed */
6667 	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
6668 		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
6669 
6670 	ath_hal_intrset(ah, 0);
6671 
6672 	ath_beaconq_config(sc);			/* setup h/w beacon q */
6673 	if (sc->sc_setcca)
6674 		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
6675 	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
6676 	ath_tdma_settimers(sc, sc->sc_tdmabintval,
6677 		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
6678 	sc->sc_syncbeacon = 0;
6679 
6680 	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
6681 	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
6682 
6683 	ath_hal_intrset(ah, sc->sc_imask);
6684 
6685 	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
6686 	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
6687 	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
6688 	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
6689 	    sc->sc_tdmadbaprep);
6690 }
6691 
6692 /*
6693  * Update tdma operation.  Called from the 802.11 layer
6694  * when a beacon is received from the TDMA station operating
6695  * in the slot immediately preceding us in the bss.  Use
6696  * the rx timestamp for the beacon frame to update our
6697  * beacon timers so we follow their schedule.  Note that
6698  * by using the rx timestamp we implicitly include the
6699  * propagation delay in our schedule.
6700  */
6701 static void
6702 ath_tdma_update(struct ieee80211_node *ni,
6703 	const struct ieee80211_tdma_param *tdma, int changed)
6704 {
6705 #define	TSF_TO_TU(_h,_l) \
6706 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
6707 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
6708 	struct ieee80211vap *vap = ni->ni_vap;
6709 	struct ieee80211com *ic = ni->ni_ic;
6710 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6711 	struct ath_hal *ah = sc->sc_ah;
6712 	const HAL_RATE_TABLE *rt = sc->sc_currates;
6713 	u_int64_t tsf, rstamp, nextslot, nexttbtt;
6714 	u_int32_t txtime, nextslottu;
6715 	int32_t tudelta, tsfdelta;
6716 	const struct ath_rx_status *rs;
6717 	int rix;
6718 
6719 	sc->sc_stats.ast_tdma_update++;
6720 
6721 	/*
6722 	 * Check for and adopt configuration changes.
6723 	 */
6724 	if (changed != 0) {
6725 		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
6726 
6727 		ath_tdma_bintvalsetup(sc, ts);
6728 		if (changed & TDMA_UPDATE_SLOTLEN)
6729 			ath_wme_update(ic);
6730 
6731 		DPRINTF(sc, ATH_DEBUG_TDMA,
6732 		    "%s: adopt slot %u slotcnt %u slotlen %u us "
6733 		    "bintval %u TU\n", __func__,
6734 		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
6735 		    sc->sc_tdmabintval);
6736 
6737 		/* XXX right? */
6738 		ath_hal_intrset(ah, sc->sc_imask);
6739 		/* NB: beacon timers programmed below */
6740 	}
6741 
6742 	/* extend rx timestamp to 64 bits */
6743 	rs = sc->sc_lastrs;
6744 	tsf = ath_hal_gettsf64(ah);
6745 	rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
6746 	/*
6747 	 * The rx timestamp is set by the hardware on completing
6748 	 * reception (at the point where the rx descriptor is DMA'd
6749 	 * to the host).  To find the start of our next slot we
6750 	 * must adjust this time by the time required to send
6751 	 * the packet just received.
6752 	 */
6753 	rix = rt->rateCodeToIndex[rs->rs_rate];
6754 	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
6755 	    rt->info[rix].shortPreamble);
6756 	/* NB: << 9 is to cvt to TU and /2 */
6757 	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
6758 	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
6759 
6760 	/*
6761 	 * Retrieve the hardware NextTBTT in usecs
6762 	 * and calculate the difference between what the
6763 	 * other station thinks and what we have programmed.  This
6764 	 * lets us figure how to adjust our timers to match.  The
6765 	 * adjustments are done by pulling the TSF forward and possibly
6766 	 * rewriting the beacon timers.
6767 	 */
6768 	nexttbtt = ath_hal_getnexttbtt(ah);
6769 	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt);
6770 
6771 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
6772 	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
6773 	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
6774 
6775 	if (tsfdelta < 0) {
6776 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
6777 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
6778 		tsfdelta = -tsfdelta % 1024;
6779 		nextslottu++;
6780 	} else if (tsfdelta > 0) {
6781 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
6782 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
6783 		tsfdelta = 1024 - (tsfdelta % 1024);
6784 		nextslottu++;
6785 	} else {
6786 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
6787 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
6788 	}
6789 	tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt);
6790 
6791 	/*
6792 	 * Copy sender's timetstamp into tdma ie so they can
6793 	 * calculate roundtrip time.  We submit a beacon frame
6794 	 * below after any timer adjustment.  The frame goes out
6795 	 * at the next TBTT so the sender can calculate the
6796 	 * roundtrip by inspecting the tdma ie in our beacon frame.
6797 	 *
6798 	 * NB: This tstamp is subtlely preserved when
6799 	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
6800 	 *     slot position changes) because ieee80211_add_tdma
6801 	 *     skips over the data.
6802 	 */
6803 	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
6804 		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
6805 		&ni->ni_tstamp.data, 8);
6806 #if 0
6807 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
6808 	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n",
6809 	    (unsigned long long) tsf, (unsigned long long) nextslot,
6810 	    (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta);
6811 #endif
6812 	/*
6813 	 * Adjust the beacon timers only when pulling them forward
6814 	 * or when going back by less than the beacon interval.
6815 	 * Negative jumps larger than the beacon interval seem to
6816 	 * cause the timers to stop and generally cause instability.
6817 	 * This basically filters out jumps due to missed beacons.
6818 	 */
6819 	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
6820 		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
6821 		sc->sc_stats.ast_tdma_timers++;
6822 	}
6823 	if (tsfdelta > 0) {
6824 		ath_hal_adjusttsf(ah, tsfdelta);
6825 		sc->sc_stats.ast_tdma_tsf++;
6826 	}
6827 	ath_tdma_beacon_send(sc, vap);		/* prepare response */
6828 #undef TU_TO_TSF
6829 #undef TSF_TO_TU
6830 }
6831 
6832 /*
6833  * Transmit a beacon frame at SWBA.  Dynamic updates
6834  * to the frame contents are done as needed.
6835  */
6836 static void
6837 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
6838 {
6839 	struct ath_hal *ah = sc->sc_ah;
6840 	struct ath_buf *bf;
6841 	int otherant;
6842 
6843 	/*
6844 	 * Check if the previous beacon has gone out.  If
6845 	 * not don't try to post another, skip this period
6846 	 * and wait for the next.  Missed beacons indicate
6847 	 * a problem and should not occur.  If we miss too
6848 	 * many consecutive beacons reset the device.
6849 	 */
6850 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
6851 		sc->sc_bmisscount++;
6852 		DPRINTF(sc, ATH_DEBUG_BEACON,
6853 			"%s: missed %u consecutive beacons\n",
6854 			__func__, sc->sc_bmisscount);
6855 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
6856 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
6857 		return;
6858 	}
6859 	if (sc->sc_bmisscount != 0) {
6860 		DPRINTF(sc, ATH_DEBUG_BEACON,
6861 			"%s: resume beacon xmit after %u misses\n",
6862 			__func__, sc->sc_bmisscount);
6863 		sc->sc_bmisscount = 0;
6864 	}
6865 
6866 	/*
6867 	 * Check recent per-antenna transmit statistics and flip
6868 	 * the default antenna if noticeably more frames went out
6869 	 * on the non-default antenna.
6870 	 * XXX assumes 2 anntenae
6871 	 */
6872 	if (!sc->sc_diversity) {
6873 		otherant = sc->sc_defant & 1 ? 2 : 1;
6874 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
6875 			ath_setdefantenna(sc, otherant);
6876 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
6877 	}
6878 
6879 	bf = ath_beacon_generate(sc, vap);
6880 	if (bf != NULL) {
6881 		/*
6882 		 * Stop any current dma and put the new frame on the queue.
6883 		 * This should never fail since we check above that no frames
6884 		 * are still pending on the queue.
6885 		 */
6886 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
6887 			DPRINTF(sc, ATH_DEBUG_ANY,
6888 				"%s: beacon queue %u did not stop?\n",
6889 				__func__, sc->sc_bhalq);
6890 			/* NB: the HAL still stops DMA, so proceed */
6891 		}
6892 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
6893 		ath_hal_txstart(ah, sc->sc_bhalq);
6894 
6895 		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
6896 
6897 		/*
6898 		 * Record local TSF for our last send for use
6899 		 * in arbitrating slot collisions.
6900 		 */
6901 		/* XXX should take a locked ref to iv_bss */
6902 		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
6903 	}
6904 }
6905 #endif /* IEEE80211_SUPPORT_TDMA */
6906 
6907 static void
6908 ath_dfs_tasklet(void *p, int npending)
6909 {
6910 	struct ath_softc *sc = (struct ath_softc *) p;
6911 	struct ifnet *ifp = sc->sc_ifp;
6912 	struct ieee80211com *ic = ifp->if_l2com;
6913 
6914 	/*
6915 	 * If previous processing has found a radar event,
6916 	 * signal this to the net80211 layer to begin DFS
6917 	 * processing.
6918 	 */
6919 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6920 		/* DFS event found, initiate channel change */
6921 		/*
6922 		 * XXX doesn't currently tell us whether the event
6923 		 * XXX was found in the primary or extension
6924 		 * XXX channel!
6925 		 */
6926 		IEEE80211_LOCK(ic);
6927 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6928 		IEEE80211_UNLOCK(ic);
6929 	}
6930 }
6931 
6932 MODULE_VERSION(if_ath, 1);
6933 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
6934 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
6935 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
6936 #endif
6937