1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tx.h> 106 #include <dev/ath/if_ath_sysctl.h> 107 #include <dev/ath/if_ath_led.h> 108 #include <dev/ath/if_ath_keycache.h> 109 #include <dev/ath/if_athdfs.h> 110 111 #ifdef ATH_TX99_DIAG 112 #include <dev/ath/ath_tx99/ath_tx99.h> 113 #endif 114 115 #define ATH_KTR_INTR KTR_SPARE4 116 #define ATH_KTR_ERR KTR_SPARE3 117 118 /* 119 * ATH_BCBUF determines the number of vap's that can transmit 120 * beacons and also (currently) the number of vap's that can 121 * have unique mac addresses/bssid. When staggering beacons 122 * 4 is probably a good max as otherwise the beacons become 123 * very closely spaced and there is limited time for cab q traffic 124 * to go out. You can burst beacons instead but that is not good 125 * for stations in power save and at some point you really want 126 * another radio (and channel). 127 * 128 * The limit on the number of mac addresses is tied to our use of 129 * the U/L bit and tracking addresses in a byte; it would be 130 * worthwhile to allow more for applications like proxy sta. 131 */ 132 CTASSERT(ATH_BCBUF <= 8); 133 134 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 135 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 136 const uint8_t [IEEE80211_ADDR_LEN], 137 const uint8_t [IEEE80211_ADDR_LEN]); 138 static void ath_vap_delete(struct ieee80211vap *); 139 static void ath_init(void *); 140 static void ath_stop_locked(struct ifnet *); 141 static void ath_stop(struct ifnet *); 142 static void ath_start(struct ifnet *); 143 static int ath_reset_vap(struct ieee80211vap *, u_long); 144 static int ath_media_change(struct ifnet *); 145 static void ath_watchdog(void *); 146 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 147 static void ath_fatal_proc(void *, int); 148 static void ath_bmiss_vap(struct ieee80211vap *); 149 static void ath_bmiss_proc(void *, int); 150 static void ath_key_update_begin(struct ieee80211vap *); 151 static void ath_key_update_end(struct ieee80211vap *); 152 static void ath_update_mcast(struct ifnet *); 153 static void ath_update_promisc(struct ifnet *); 154 static void ath_mode_init(struct ath_softc *); 155 static void ath_setslottime(struct ath_softc *); 156 static void ath_updateslot(struct ifnet *); 157 static int ath_beaconq_setup(struct ath_hal *); 158 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 159 static void ath_beacon_update(struct ieee80211vap *, int item); 160 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 161 static void ath_beacon_proc(void *, int); 162 static struct ath_buf *ath_beacon_generate(struct ath_softc *, 163 struct ieee80211vap *); 164 static void ath_bstuck_proc(void *, int); 165 static void ath_reset_proc(void *, int); 166 static void ath_beacon_return(struct ath_softc *, struct ath_buf *); 167 static void ath_beacon_free(struct ath_softc *); 168 static void ath_beacon_config(struct ath_softc *, struct ieee80211vap *); 169 static void ath_descdma_cleanup(struct ath_softc *sc, 170 struct ath_descdma *, ath_bufhead *); 171 static int ath_desc_alloc(struct ath_softc *); 172 static void ath_desc_free(struct ath_softc *); 173 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 174 const uint8_t [IEEE80211_ADDR_LEN]); 175 static void ath_node_cleanup(struct ieee80211_node *); 176 static void ath_node_free(struct ieee80211_node *); 177 static void ath_node_getsignal(const struct ieee80211_node *, 178 int8_t *, int8_t *); 179 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 180 static void ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 181 int subtype, int rssi, int nf); 182 static void ath_setdefantenna(struct ath_softc *, u_int); 183 static void ath_rx_proc(struct ath_softc *sc, int); 184 static void ath_rx_tasklet(void *, int); 185 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 186 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 187 static int ath_tx_setup(struct ath_softc *, int, int); 188 static int ath_wme_update(struct ieee80211com *); 189 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 190 static void ath_tx_cleanup(struct ath_softc *); 191 static void ath_tx_proc_q0(void *, int); 192 static void ath_tx_proc_q0123(void *, int); 193 static void ath_tx_proc(void *, int); 194 static void ath_txq_sched_tasklet(void *, int); 195 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 196 static void ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type); 197 static void ath_stoprecv(struct ath_softc *, int); 198 static int ath_startrecv(struct ath_softc *); 199 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 200 static void ath_scan_start(struct ieee80211com *); 201 static void ath_scan_end(struct ieee80211com *); 202 static void ath_set_channel(struct ieee80211com *); 203 #ifdef ATH_ENABLE_11N 204 static void ath_update_chw(struct ieee80211com *); 205 #endif /* ATH_ENABLE_11N */ 206 static void ath_calibrate(void *); 207 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 208 static void ath_setup_stationkey(struct ieee80211_node *); 209 static void ath_newassoc(struct ieee80211_node *, int); 210 static int ath_setregdomain(struct ieee80211com *, 211 struct ieee80211_regdomain *, int, 212 struct ieee80211_channel []); 213 static void ath_getradiocaps(struct ieee80211com *, int, int *, 214 struct ieee80211_channel []); 215 static int ath_getchannels(struct ath_softc *); 216 217 static int ath_rate_setup(struct ath_softc *, u_int mode); 218 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 219 220 static void ath_announce(struct ath_softc *); 221 222 static void ath_dfs_tasklet(void *, int); 223 224 #ifdef IEEE80211_SUPPORT_TDMA 225 static void ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, 226 u_int32_t bintval); 227 static void ath_tdma_bintvalsetup(struct ath_softc *sc, 228 const struct ieee80211_tdma_state *tdma); 229 static void ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap); 230 static void ath_tdma_update(struct ieee80211_node *ni, 231 const struct ieee80211_tdma_param *tdma, int); 232 static void ath_tdma_beacon_send(struct ath_softc *sc, 233 struct ieee80211vap *vap); 234 235 #define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */ 236 #define TDMA_LPF_LEN 6 237 #define TDMA_DUMMY_MARKER 0x127 238 #define TDMA_EP_MUL(x, mul) ((x) * (mul)) 239 #define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER)) 240 #define TDMA_LPF(x, y, len) \ 241 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y)) 242 #define TDMA_SAMPLE(x, y) do { \ 243 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \ 244 } while (0) 245 #define TDMA_EP_RND(x,mul) \ 246 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 247 #define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER) 248 #endif /* IEEE80211_SUPPORT_TDMA */ 249 250 SYSCTL_DECL(_hw_ath); 251 252 /* XXX validate sysctl values */ 253 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 254 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 255 0, "long chip calibration interval (secs)"); 256 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 257 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 258 0, "short chip calibration interval (msecs)"); 259 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 260 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 261 0, "reset chip calibration results (secs)"); 262 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 263 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 264 0, "ANI calibration (msecs)"); 265 266 static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 267 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 268 0, "rx buffers allocated"); 269 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 270 static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 271 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 272 0, "tx buffers allocated"); 273 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 274 275 static int ath_bstuck_threshold = 4; /* max missed beacons */ 276 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 277 0, "max missed beacon xmits before chip reset"); 278 279 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 280 281 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 282 #define HAL_MODE_HT40 \ 283 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 284 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 285 int 286 ath_attach(u_int16_t devid, struct ath_softc *sc) 287 { 288 struct ifnet *ifp; 289 struct ieee80211com *ic; 290 struct ath_hal *ah = NULL; 291 HAL_STATUS status; 292 int error = 0, i; 293 u_int wmodes; 294 uint8_t macaddr[IEEE80211_ADDR_LEN]; 295 int rx_chainmask, tx_chainmask; 296 297 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 298 299 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 300 if (ifp == NULL) { 301 device_printf(sc->sc_dev, "can not if_alloc()\n"); 302 error = ENOSPC; 303 goto bad; 304 } 305 ic = ifp->if_l2com; 306 307 /* set these up early for if_printf use */ 308 if_initname(ifp, device_get_name(sc->sc_dev), 309 device_get_unit(sc->sc_dev)); 310 311 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 312 sc->sc_eepromdata, &status); 313 if (ah == NULL) { 314 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 315 status); 316 error = ENXIO; 317 goto bad; 318 } 319 sc->sc_ah = ah; 320 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 321 #ifdef ATH_DEBUG 322 sc->sc_debug = ath_debug; 323 #endif 324 325 /* 326 * Check if the MAC has multi-rate retry support. 327 * We do this by trying to setup a fake extended 328 * descriptor. MAC's that don't have support will 329 * return false w/o doing anything. MAC's that do 330 * support it will return true w/o doing anything. 331 */ 332 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 333 334 /* 335 * Check if the device has hardware counters for PHY 336 * errors. If so we need to enable the MIB interrupt 337 * so we can act on stat triggers. 338 */ 339 if (ath_hal_hwphycounters(ah)) 340 sc->sc_needmib = 1; 341 342 /* 343 * Get the hardware key cache size. 344 */ 345 sc->sc_keymax = ath_hal_keycachesize(ah); 346 if (sc->sc_keymax > ATH_KEYMAX) { 347 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 348 ATH_KEYMAX, sc->sc_keymax); 349 sc->sc_keymax = ATH_KEYMAX; 350 } 351 /* 352 * Reset the key cache since some parts do not 353 * reset the contents on initial power up. 354 */ 355 for (i = 0; i < sc->sc_keymax; i++) 356 ath_hal_keyreset(ah, i); 357 358 /* 359 * Collect the default channel list. 360 */ 361 error = ath_getchannels(sc); 362 if (error != 0) 363 goto bad; 364 365 /* 366 * Setup rate tables for all potential media types. 367 */ 368 ath_rate_setup(sc, IEEE80211_MODE_11A); 369 ath_rate_setup(sc, IEEE80211_MODE_11B); 370 ath_rate_setup(sc, IEEE80211_MODE_11G); 371 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 372 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 373 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 374 ath_rate_setup(sc, IEEE80211_MODE_11NA); 375 ath_rate_setup(sc, IEEE80211_MODE_11NG); 376 ath_rate_setup(sc, IEEE80211_MODE_HALF); 377 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 378 379 /* NB: setup here so ath_rate_update is happy */ 380 ath_setcurmode(sc, IEEE80211_MODE_11A); 381 382 /* 383 * Allocate tx+rx descriptors and populate the lists. 384 */ 385 error = ath_desc_alloc(sc); 386 if (error != 0) { 387 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 388 goto bad; 389 } 390 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 391 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 392 393 ATH_TXBUF_LOCK_INIT(sc); 394 395 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 396 taskqueue_thread_enqueue, &sc->sc_tq); 397 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 398 "%s taskq", ifp->if_xname); 399 400 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc); 401 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 402 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 403 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 404 TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc); 405 TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc); 406 407 /* 408 * Allocate hardware transmit queues: one queue for 409 * beacon frames and one data queue for each QoS 410 * priority. Note that the hal handles resetting 411 * these queues at the needed time. 412 * 413 * XXX PS-Poll 414 */ 415 sc->sc_bhalq = ath_beaconq_setup(ah); 416 if (sc->sc_bhalq == (u_int) -1) { 417 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 418 error = EIO; 419 goto bad2; 420 } 421 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 422 if (sc->sc_cabq == NULL) { 423 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 424 error = EIO; 425 goto bad2; 426 } 427 /* NB: insure BK queue is the lowest priority h/w queue */ 428 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 429 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 430 ieee80211_wme_acnames[WME_AC_BK]); 431 error = EIO; 432 goto bad2; 433 } 434 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 435 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 436 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 437 /* 438 * Not enough hardware tx queues to properly do WME; 439 * just punt and assign them all to the same h/w queue. 440 * We could do a better job of this if, for example, 441 * we allocate queues when we switch from station to 442 * AP mode. 443 */ 444 if (sc->sc_ac2q[WME_AC_VI] != NULL) 445 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 446 if (sc->sc_ac2q[WME_AC_BE] != NULL) 447 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 448 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 449 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 450 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 451 } 452 453 /* 454 * Special case certain configurations. Note the 455 * CAB queue is handled by these specially so don't 456 * include them when checking the txq setup mask. 457 */ 458 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 459 case 0x01: 460 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 461 break; 462 case 0x0f: 463 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 464 break; 465 default: 466 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 467 break; 468 } 469 470 /* 471 * Setup rate control. Some rate control modules 472 * call back to change the anntena state so expose 473 * the necessary entry points. 474 * XXX maybe belongs in struct ath_ratectrl? 475 */ 476 sc->sc_setdefantenna = ath_setdefantenna; 477 sc->sc_rc = ath_rate_attach(sc); 478 if (sc->sc_rc == NULL) { 479 error = EIO; 480 goto bad2; 481 } 482 483 /* Attach DFS module */ 484 if (! ath_dfs_attach(sc)) { 485 device_printf(sc->sc_dev, 486 "%s: unable to attach DFS\n", __func__); 487 error = EIO; 488 goto bad2; 489 } 490 491 /* Start DFS processing tasklet */ 492 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 493 494 /* Configure LED state */ 495 sc->sc_blinking = 0; 496 sc->sc_ledstate = 1; 497 sc->sc_ledon = 0; /* low true */ 498 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 499 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 500 501 /* 502 * Don't setup hardware-based blinking. 503 * 504 * Although some NICs may have this configured in the 505 * default reset register values, the user may wish 506 * to alter which pins have which function. 507 * 508 * The reference driver attaches the MAC network LED to GPIO1 and 509 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 510 * NIC has these reversed. 511 */ 512 sc->sc_hardled = (1 == 0); 513 sc->sc_led_net_pin = -1; 514 sc->sc_led_pwr_pin = -1; 515 /* 516 * Auto-enable soft led processing for IBM cards and for 517 * 5211 minipci cards. Users can also manually enable/disable 518 * support with a sysctl. 519 */ 520 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 521 ath_led_config(sc); 522 ath_hal_setledstate(ah, HAL_LED_INIT); 523 524 ifp->if_softc = sc; 525 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 526 ifp->if_start = ath_start; 527 ifp->if_ioctl = ath_ioctl; 528 ifp->if_init = ath_init; 529 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 530 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 531 IFQ_SET_READY(&ifp->if_snd); 532 533 ic->ic_ifp = ifp; 534 /* XXX not right but it's not used anywhere important */ 535 ic->ic_phytype = IEEE80211_T_OFDM; 536 ic->ic_opmode = IEEE80211_M_STA; 537 ic->ic_caps = 538 IEEE80211_C_STA /* station mode */ 539 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 540 | IEEE80211_C_HOSTAP /* hostap mode */ 541 | IEEE80211_C_MONITOR /* monitor mode */ 542 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 543 | IEEE80211_C_WDS /* 4-address traffic works */ 544 | IEEE80211_C_MBSS /* mesh point link mode */ 545 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 546 | IEEE80211_C_SHSLOT /* short slot time supported */ 547 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 548 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 549 | IEEE80211_C_TXFRAG /* handle tx frags */ 550 #ifdef ATH_ENABLE_DFS 551 | IEEE80211_C_DFS /* Enable radar detection */ 552 #endif 553 ; 554 /* 555 * Query the hal to figure out h/w crypto support. 556 */ 557 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 558 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 559 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 560 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 561 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 562 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 563 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 564 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 565 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 566 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 567 /* 568 * Check if h/w does the MIC and/or whether the 569 * separate key cache entries are required to 570 * handle both tx+rx MIC keys. 571 */ 572 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 573 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 574 /* 575 * If the h/w supports storing tx+rx MIC keys 576 * in one cache slot automatically enable use. 577 */ 578 if (ath_hal_hastkipsplit(ah) || 579 !ath_hal_settkipsplit(ah, AH_FALSE)) 580 sc->sc_splitmic = 1; 581 /* 582 * If the h/w can do TKIP MIC together with WME then 583 * we use it; otherwise we force the MIC to be done 584 * in software by the net80211 layer. 585 */ 586 if (ath_hal_haswmetkipmic(ah)) 587 sc->sc_wmetkipmic = 1; 588 } 589 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 590 /* 591 * Check for multicast key search support. 592 */ 593 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 594 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 595 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 596 } 597 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 598 /* 599 * Mark key cache slots associated with global keys 600 * as in use. If we knew TKIP was not to be used we 601 * could leave the +32, +64, and +32+64 slots free. 602 */ 603 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 604 setbit(sc->sc_keymap, i); 605 setbit(sc->sc_keymap, i+64); 606 if (sc->sc_splitmic) { 607 setbit(sc->sc_keymap, i+32); 608 setbit(sc->sc_keymap, i+32+64); 609 } 610 } 611 /* 612 * TPC support can be done either with a global cap or 613 * per-packet support. The latter is not available on 614 * all parts. We're a bit pedantic here as all parts 615 * support a global cap. 616 */ 617 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 618 ic->ic_caps |= IEEE80211_C_TXPMGT; 619 620 /* 621 * Mark WME capability only if we have sufficient 622 * hardware queues to do proper priority scheduling. 623 */ 624 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 625 ic->ic_caps |= IEEE80211_C_WME; 626 /* 627 * Check for misc other capabilities. 628 */ 629 if (ath_hal_hasbursting(ah)) 630 ic->ic_caps |= IEEE80211_C_BURST; 631 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 632 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 633 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 634 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 635 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 636 if (ath_hal_hasfastframes(ah)) 637 ic->ic_caps |= IEEE80211_C_FF; 638 wmodes = ath_hal_getwirelessmodes(ah); 639 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 640 ic->ic_caps |= IEEE80211_C_TURBOP; 641 #ifdef IEEE80211_SUPPORT_TDMA 642 if (ath_hal_macversion(ah) > 0x78) { 643 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 644 ic->ic_tdma_update = ath_tdma_update; 645 } 646 #endif 647 648 /* 649 * TODO: enforce that at least this many frames are available 650 * in the txbuf list before allowing data frames (raw or 651 * otherwise) to be transmitted. 652 */ 653 sc->sc_txq_data_minfree = 10; 654 /* 655 * Leave this as default to maintain legacy behaviour. 656 * Shortening the cabq/mcastq may end up causing some 657 * undesirable behaviour. 658 */ 659 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 660 661 /* 662 * Allow the TX and RX chainmasks to be overridden by 663 * environment variables and/or device.hints. 664 * 665 * This must be done early - before the hardware is 666 * calibrated or before the 802.11n stream calculation 667 * is done. 668 */ 669 if (resource_int_value(device_get_name(sc->sc_dev), 670 device_get_unit(sc->sc_dev), "rx_chainmask", 671 &rx_chainmask) == 0) { 672 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 673 rx_chainmask); 674 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 675 } 676 if (resource_int_value(device_get_name(sc->sc_dev), 677 device_get_unit(sc->sc_dev), "tx_chainmask", 678 &tx_chainmask) == 0) { 679 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 680 tx_chainmask); 681 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 682 } 683 684 /* 685 * The if_ath 11n support is completely not ready for normal use. 686 * Enabling this option will likely break everything and everything. 687 * Don't think of doing that unless you know what you're doing. 688 */ 689 690 #ifdef ATH_ENABLE_11N 691 /* 692 * Query HT capabilities 693 */ 694 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 695 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 696 int rxs, txs; 697 698 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 699 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 700 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 701 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 702 | IEEE80211_HTCAP_MAXAMSDU_3839 703 /* max A-MSDU length */ 704 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 705 ; 706 707 /* 708 * Enable short-GI for HT20 only if the hardware 709 * advertises support. 710 * Notably, anything earlier than the AR9287 doesn't. 711 */ 712 if ((ath_hal_getcapability(ah, 713 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 714 (wmodes & HAL_MODE_HT20)) { 715 device_printf(sc->sc_dev, 716 "[HT] enabling short-GI in 20MHz mode\n"); 717 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 718 } 719 720 if (wmodes & HAL_MODE_HT40) 721 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 722 | IEEE80211_HTCAP_SHORTGI40; 723 724 /* 725 * TX/RX streams need to be taken into account when 726 * negotiating which MCS rates it'll receive and 727 * what MCS rates are available for TX. 728 */ 729 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 730 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 731 732 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 733 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 734 735 ic->ic_txstream = txs; 736 ic->ic_rxstream = rxs; 737 738 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 739 &sc->sc_rts_aggr_limit); 740 if (sc->sc_rts_aggr_limit != (64 * 1024)) 741 device_printf(sc->sc_dev, 742 "[HT] RTS aggregates limited to %d KiB\n", 743 sc->sc_rts_aggr_limit / 1024); 744 745 device_printf(sc->sc_dev, 746 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 747 } 748 #endif 749 750 /* 751 * Check if the hardware requires PCI register serialisation. 752 * Some of the Owl based MACs require this. 753 */ 754 if (mp_ncpus > 1 && 755 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 756 0, NULL) == HAL_OK) { 757 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 758 device_printf(sc->sc_dev, 759 "Enabling register serialisation\n"); 760 } 761 762 /* 763 * Indicate we need the 802.11 header padded to a 764 * 32-bit boundary for 4-address and QoS frames. 765 */ 766 ic->ic_flags |= IEEE80211_F_DATAPAD; 767 768 /* 769 * Query the hal about antenna support. 770 */ 771 sc->sc_defant = ath_hal_getdefantenna(ah); 772 773 /* 774 * Not all chips have the VEOL support we want to 775 * use with IBSS beacons; check here for it. 776 */ 777 sc->sc_hasveol = ath_hal_hasveol(ah); 778 779 /* get mac address from hardware */ 780 ath_hal_getmac(ah, macaddr); 781 if (sc->sc_hasbmask) 782 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 783 784 /* NB: used to size node table key mapping array */ 785 ic->ic_max_keyix = sc->sc_keymax; 786 /* call MI attach routine. */ 787 ieee80211_ifattach(ic, macaddr); 788 ic->ic_setregdomain = ath_setregdomain; 789 ic->ic_getradiocaps = ath_getradiocaps; 790 sc->sc_opmode = HAL_M_STA; 791 792 /* override default methods */ 793 ic->ic_newassoc = ath_newassoc; 794 ic->ic_updateslot = ath_updateslot; 795 ic->ic_wme.wme_update = ath_wme_update; 796 ic->ic_vap_create = ath_vap_create; 797 ic->ic_vap_delete = ath_vap_delete; 798 ic->ic_raw_xmit = ath_raw_xmit; 799 ic->ic_update_mcast = ath_update_mcast; 800 ic->ic_update_promisc = ath_update_promisc; 801 ic->ic_node_alloc = ath_node_alloc; 802 sc->sc_node_free = ic->ic_node_free; 803 ic->ic_node_free = ath_node_free; 804 sc->sc_node_cleanup = ic->ic_node_cleanup; 805 ic->ic_node_cleanup = ath_node_cleanup; 806 ic->ic_node_getsignal = ath_node_getsignal; 807 ic->ic_scan_start = ath_scan_start; 808 ic->ic_scan_end = ath_scan_end; 809 ic->ic_set_channel = ath_set_channel; 810 #ifdef ATH_ENABLE_11N 811 /* 802.11n specific - but just override anyway */ 812 sc->sc_addba_request = ic->ic_addba_request; 813 sc->sc_addba_response = ic->ic_addba_response; 814 sc->sc_addba_stop = ic->ic_addba_stop; 815 sc->sc_bar_response = ic->ic_bar_response; 816 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 817 818 ic->ic_addba_request = ath_addba_request; 819 ic->ic_addba_response = ath_addba_response; 820 ic->ic_addba_response_timeout = ath_addba_response_timeout; 821 ic->ic_addba_stop = ath_addba_stop; 822 ic->ic_bar_response = ath_bar_response; 823 824 ic->ic_update_chw = ath_update_chw; 825 #endif /* ATH_ENABLE_11N */ 826 827 ieee80211_radiotap_attach(ic, 828 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 829 ATH_TX_RADIOTAP_PRESENT, 830 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 831 ATH_RX_RADIOTAP_PRESENT); 832 833 /* 834 * Setup dynamic sysctl's now that country code and 835 * regdomain are available from the hal. 836 */ 837 ath_sysctlattach(sc); 838 ath_sysctl_stats_attach(sc); 839 ath_sysctl_hal_attach(sc); 840 841 if (bootverbose) 842 ieee80211_announce(ic); 843 ath_announce(sc); 844 return 0; 845 bad2: 846 ath_tx_cleanup(sc); 847 ath_desc_free(sc); 848 bad: 849 if (ah) 850 ath_hal_detach(ah); 851 if (ifp != NULL) 852 if_free(ifp); 853 sc->sc_invalid = 1; 854 return error; 855 } 856 857 int 858 ath_detach(struct ath_softc *sc) 859 { 860 struct ifnet *ifp = sc->sc_ifp; 861 862 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 863 __func__, ifp->if_flags); 864 865 /* 866 * NB: the order of these is important: 867 * o stop the chip so no more interrupts will fire 868 * o call the 802.11 layer before detaching the hal to 869 * insure callbacks into the driver to delete global 870 * key cache entries can be handled 871 * o free the taskqueue which drains any pending tasks 872 * o reclaim the tx queue data structures after calling 873 * the 802.11 layer as we'll get called back to reclaim 874 * node state and potentially want to use them 875 * o to cleanup the tx queues the hal is called, so detach 876 * it last 877 * Other than that, it's straightforward... 878 */ 879 ath_stop(ifp); 880 ieee80211_ifdetach(ifp->if_l2com); 881 taskqueue_free(sc->sc_tq); 882 #ifdef ATH_TX99_DIAG 883 if (sc->sc_tx99 != NULL) 884 sc->sc_tx99->detach(sc->sc_tx99); 885 #endif 886 ath_rate_detach(sc->sc_rc); 887 888 ath_dfs_detach(sc); 889 ath_desc_free(sc); 890 ath_tx_cleanup(sc); 891 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 892 if_free(ifp); 893 894 return 0; 895 } 896 897 /* 898 * MAC address handling for multiple BSS on the same radio. 899 * The first vap uses the MAC address from the EEPROM. For 900 * subsequent vap's we set the U/L bit (bit 1) in the MAC 901 * address and use the next six bits as an index. 902 */ 903 static void 904 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 905 { 906 int i; 907 908 if (clone && sc->sc_hasbmask) { 909 /* NB: we only do this if h/w supports multiple bssid */ 910 for (i = 0; i < 8; i++) 911 if ((sc->sc_bssidmask & (1<<i)) == 0) 912 break; 913 if (i != 0) 914 mac[0] |= (i << 2)|0x2; 915 } else 916 i = 0; 917 sc->sc_bssidmask |= 1<<i; 918 sc->sc_hwbssidmask[0] &= ~mac[0]; 919 if (i == 0) 920 sc->sc_nbssid0++; 921 } 922 923 static void 924 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 925 { 926 int i = mac[0] >> 2; 927 uint8_t mask; 928 929 if (i != 0 || --sc->sc_nbssid0 == 0) { 930 sc->sc_bssidmask &= ~(1<<i); 931 /* recalculate bssid mask from remaining addresses */ 932 mask = 0xff; 933 for (i = 1; i < 8; i++) 934 if (sc->sc_bssidmask & (1<<i)) 935 mask &= ~((i<<2)|0x2); 936 sc->sc_hwbssidmask[0] |= mask; 937 } 938 } 939 940 /* 941 * Assign a beacon xmit slot. We try to space out 942 * assignments so when beacons are staggered the 943 * traffic coming out of the cab q has maximal time 944 * to go out before the next beacon is scheduled. 945 */ 946 static int 947 assign_bslot(struct ath_softc *sc) 948 { 949 u_int slot, free; 950 951 free = 0; 952 for (slot = 0; slot < ATH_BCBUF; slot++) 953 if (sc->sc_bslot[slot] == NULL) { 954 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 955 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 956 return slot; 957 free = slot; 958 /* NB: keep looking for a double slot */ 959 } 960 return free; 961 } 962 963 static struct ieee80211vap * 964 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 965 enum ieee80211_opmode opmode, int flags, 966 const uint8_t bssid[IEEE80211_ADDR_LEN], 967 const uint8_t mac0[IEEE80211_ADDR_LEN]) 968 { 969 struct ath_softc *sc = ic->ic_ifp->if_softc; 970 struct ath_vap *avp; 971 struct ieee80211vap *vap; 972 uint8_t mac[IEEE80211_ADDR_LEN]; 973 int needbeacon, error; 974 enum ieee80211_opmode ic_opmode; 975 976 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 977 M_80211_VAP, M_WAITOK | M_ZERO); 978 needbeacon = 0; 979 IEEE80211_ADDR_COPY(mac, mac0); 980 981 ATH_LOCK(sc); 982 ic_opmode = opmode; /* default to opmode of new vap */ 983 switch (opmode) { 984 case IEEE80211_M_STA: 985 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 986 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 987 goto bad; 988 } 989 if (sc->sc_nvaps) { 990 /* 991 * With multiple vaps we must fall back 992 * to s/w beacon miss handling. 993 */ 994 flags |= IEEE80211_CLONE_NOBEACONS; 995 } 996 if (flags & IEEE80211_CLONE_NOBEACONS) { 997 /* 998 * Station mode w/o beacons are implemented w/ AP mode. 999 */ 1000 ic_opmode = IEEE80211_M_HOSTAP; 1001 } 1002 break; 1003 case IEEE80211_M_IBSS: 1004 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1005 device_printf(sc->sc_dev, 1006 "only 1 ibss vap supported\n"); 1007 goto bad; 1008 } 1009 needbeacon = 1; 1010 break; 1011 case IEEE80211_M_AHDEMO: 1012 #ifdef IEEE80211_SUPPORT_TDMA 1013 if (flags & IEEE80211_CLONE_TDMA) { 1014 if (sc->sc_nvaps != 0) { 1015 device_printf(sc->sc_dev, 1016 "only 1 tdma vap supported\n"); 1017 goto bad; 1018 } 1019 needbeacon = 1; 1020 flags |= IEEE80211_CLONE_NOBEACONS; 1021 } 1022 /* fall thru... */ 1023 #endif 1024 case IEEE80211_M_MONITOR: 1025 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1026 /* 1027 * Adopt existing mode. Adding a monitor or ahdemo 1028 * vap to an existing configuration is of dubious 1029 * value but should be ok. 1030 */ 1031 /* XXX not right for monitor mode */ 1032 ic_opmode = ic->ic_opmode; 1033 } 1034 break; 1035 case IEEE80211_M_HOSTAP: 1036 case IEEE80211_M_MBSS: 1037 needbeacon = 1; 1038 break; 1039 case IEEE80211_M_WDS: 1040 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1041 device_printf(sc->sc_dev, 1042 "wds not supported in sta mode\n"); 1043 goto bad; 1044 } 1045 /* 1046 * Silently remove any request for a unique 1047 * bssid; WDS vap's always share the local 1048 * mac address. 1049 */ 1050 flags &= ~IEEE80211_CLONE_BSSID; 1051 if (sc->sc_nvaps == 0) 1052 ic_opmode = IEEE80211_M_HOSTAP; 1053 else 1054 ic_opmode = ic->ic_opmode; 1055 break; 1056 default: 1057 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1058 goto bad; 1059 } 1060 /* 1061 * Check that a beacon buffer is available; the code below assumes it. 1062 */ 1063 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1064 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1065 goto bad; 1066 } 1067 1068 /* STA, AHDEMO? */ 1069 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1070 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1071 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1072 } 1073 1074 vap = &avp->av_vap; 1075 /* XXX can't hold mutex across if_alloc */ 1076 ATH_UNLOCK(sc); 1077 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1078 bssid, mac); 1079 ATH_LOCK(sc); 1080 if (error != 0) { 1081 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1082 __func__, error); 1083 goto bad2; 1084 } 1085 1086 /* h/w crypto support */ 1087 vap->iv_key_alloc = ath_key_alloc; 1088 vap->iv_key_delete = ath_key_delete; 1089 vap->iv_key_set = ath_key_set; 1090 vap->iv_key_update_begin = ath_key_update_begin; 1091 vap->iv_key_update_end = ath_key_update_end; 1092 1093 /* override various methods */ 1094 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1095 vap->iv_recv_mgmt = ath_recv_mgmt; 1096 vap->iv_reset = ath_reset_vap; 1097 vap->iv_update_beacon = ath_beacon_update; 1098 avp->av_newstate = vap->iv_newstate; 1099 vap->iv_newstate = ath_newstate; 1100 avp->av_bmiss = vap->iv_bmiss; 1101 vap->iv_bmiss = ath_bmiss_vap; 1102 1103 /* Set default parameters */ 1104 1105 /* 1106 * Anything earlier than some AR9300 series MACs don't 1107 * support a smaller MPDU density. 1108 */ 1109 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1110 /* 1111 * All NICs can handle the maximum size, however 1112 * AR5416 based MACs can only TX aggregates w/ RTS 1113 * protection when the total aggregate size is <= 8k. 1114 * However, for now that's enforced by the TX path. 1115 */ 1116 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1117 1118 avp->av_bslot = -1; 1119 if (needbeacon) { 1120 /* 1121 * Allocate beacon state and setup the q for buffered 1122 * multicast frames. We know a beacon buffer is 1123 * available because we checked above. 1124 */ 1125 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1126 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1127 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1128 /* 1129 * Assign the vap to a beacon xmit slot. As above 1130 * this cannot fail to find a free one. 1131 */ 1132 avp->av_bslot = assign_bslot(sc); 1133 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1134 ("beacon slot %u not empty", avp->av_bslot)); 1135 sc->sc_bslot[avp->av_bslot] = vap; 1136 sc->sc_nbcnvaps++; 1137 } 1138 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1139 /* 1140 * Multple vaps are to transmit beacons and we 1141 * have h/w support for TSF adjusting; enable 1142 * use of staggered beacons. 1143 */ 1144 sc->sc_stagbeacons = 1; 1145 } 1146 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1147 } 1148 1149 ic->ic_opmode = ic_opmode; 1150 if (opmode != IEEE80211_M_WDS) { 1151 sc->sc_nvaps++; 1152 if (opmode == IEEE80211_M_STA) 1153 sc->sc_nstavaps++; 1154 if (opmode == IEEE80211_M_MBSS) 1155 sc->sc_nmeshvaps++; 1156 } 1157 switch (ic_opmode) { 1158 case IEEE80211_M_IBSS: 1159 sc->sc_opmode = HAL_M_IBSS; 1160 break; 1161 case IEEE80211_M_STA: 1162 sc->sc_opmode = HAL_M_STA; 1163 break; 1164 case IEEE80211_M_AHDEMO: 1165 #ifdef IEEE80211_SUPPORT_TDMA 1166 if (vap->iv_caps & IEEE80211_C_TDMA) { 1167 sc->sc_tdma = 1; 1168 /* NB: disable tsf adjust */ 1169 sc->sc_stagbeacons = 0; 1170 } 1171 /* 1172 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1173 * just ap mode. 1174 */ 1175 /* fall thru... */ 1176 #endif 1177 case IEEE80211_M_HOSTAP: 1178 case IEEE80211_M_MBSS: 1179 sc->sc_opmode = HAL_M_HOSTAP; 1180 break; 1181 case IEEE80211_M_MONITOR: 1182 sc->sc_opmode = HAL_M_MONITOR; 1183 break; 1184 default: 1185 /* XXX should not happen */ 1186 break; 1187 } 1188 if (sc->sc_hastsfadd) { 1189 /* 1190 * Configure whether or not TSF adjust should be done. 1191 */ 1192 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1193 } 1194 if (flags & IEEE80211_CLONE_NOBEACONS) { 1195 /* 1196 * Enable s/w beacon miss handling. 1197 */ 1198 sc->sc_swbmiss = 1; 1199 } 1200 ATH_UNLOCK(sc); 1201 1202 /* complete setup */ 1203 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1204 return vap; 1205 bad2: 1206 reclaim_address(sc, mac); 1207 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1208 bad: 1209 free(avp, M_80211_VAP); 1210 ATH_UNLOCK(sc); 1211 return NULL; 1212 } 1213 1214 static void 1215 ath_vap_delete(struct ieee80211vap *vap) 1216 { 1217 struct ieee80211com *ic = vap->iv_ic; 1218 struct ifnet *ifp = ic->ic_ifp; 1219 struct ath_softc *sc = ifp->if_softc; 1220 struct ath_hal *ah = sc->sc_ah; 1221 struct ath_vap *avp = ATH_VAP(vap); 1222 1223 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1224 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1225 /* 1226 * Quiesce the hardware while we remove the vap. In 1227 * particular we need to reclaim all references to 1228 * the vap state by any frames pending on the tx queues. 1229 */ 1230 ath_hal_intrset(ah, 0); /* disable interrupts */ 1231 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1232 /* XXX Do all frames from all vaps/nodes need draining here? */ 1233 ath_stoprecv(sc, 1); /* stop recv side */ 1234 } 1235 1236 ieee80211_vap_detach(vap); 1237 1238 /* 1239 * XXX Danger Will Robinson! Danger! 1240 * 1241 * Because ieee80211_vap_detach() can queue a frame (the station 1242 * diassociate message?) after we've drained the TXQ and 1243 * flushed the software TXQ, we will end up with a frame queued 1244 * to a node whose vap is about to be freed. 1245 * 1246 * To work around this, flush the hardware/software again. 1247 * This may be racy - the ath task may be running and the packet 1248 * may be being scheduled between sw->hw txq. Tsk. 1249 * 1250 * TODO: figure out why a new node gets allocated somewhere around 1251 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1252 * call!) 1253 */ 1254 1255 ath_draintxq(sc, ATH_RESET_DEFAULT); 1256 1257 ATH_LOCK(sc); 1258 /* 1259 * Reclaim beacon state. Note this must be done before 1260 * the vap instance is reclaimed as we may have a reference 1261 * to it in the buffer for the beacon frame. 1262 */ 1263 if (avp->av_bcbuf != NULL) { 1264 if (avp->av_bslot != -1) { 1265 sc->sc_bslot[avp->av_bslot] = NULL; 1266 sc->sc_nbcnvaps--; 1267 } 1268 ath_beacon_return(sc, avp->av_bcbuf); 1269 avp->av_bcbuf = NULL; 1270 if (sc->sc_nbcnvaps == 0) { 1271 sc->sc_stagbeacons = 0; 1272 if (sc->sc_hastsfadd) 1273 ath_hal_settsfadjust(sc->sc_ah, 0); 1274 } 1275 /* 1276 * Reclaim any pending mcast frames for the vap. 1277 */ 1278 ath_tx_draintxq(sc, &avp->av_mcastq); 1279 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1280 } 1281 /* 1282 * Update bookkeeping. 1283 */ 1284 if (vap->iv_opmode == IEEE80211_M_STA) { 1285 sc->sc_nstavaps--; 1286 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1287 sc->sc_swbmiss = 0; 1288 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1289 vap->iv_opmode == IEEE80211_M_MBSS) { 1290 reclaim_address(sc, vap->iv_myaddr); 1291 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1292 if (vap->iv_opmode == IEEE80211_M_MBSS) 1293 sc->sc_nmeshvaps--; 1294 } 1295 if (vap->iv_opmode != IEEE80211_M_WDS) 1296 sc->sc_nvaps--; 1297 #ifdef IEEE80211_SUPPORT_TDMA 1298 /* TDMA operation ceases when the last vap is destroyed */ 1299 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1300 sc->sc_tdma = 0; 1301 sc->sc_swbmiss = 0; 1302 } 1303 #endif 1304 free(avp, M_80211_VAP); 1305 1306 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1307 /* 1308 * Restart rx+tx machines if still running (RUNNING will 1309 * be reset if we just destroyed the last vap). 1310 */ 1311 if (ath_startrecv(sc) != 0) 1312 if_printf(ifp, "%s: unable to restart recv logic\n", 1313 __func__); 1314 if (sc->sc_beacons) { /* restart beacons */ 1315 #ifdef IEEE80211_SUPPORT_TDMA 1316 if (sc->sc_tdma) 1317 ath_tdma_config(sc, NULL); 1318 else 1319 #endif 1320 ath_beacon_config(sc, NULL); 1321 } 1322 ath_hal_intrset(ah, sc->sc_imask); 1323 } 1324 ATH_UNLOCK(sc); 1325 } 1326 1327 void 1328 ath_suspend(struct ath_softc *sc) 1329 { 1330 struct ifnet *ifp = sc->sc_ifp; 1331 struct ieee80211com *ic = ifp->if_l2com; 1332 1333 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1334 __func__, ifp->if_flags); 1335 1336 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1337 if (ic->ic_opmode == IEEE80211_M_STA) 1338 ath_stop(ifp); 1339 else 1340 ieee80211_suspend_all(ic); 1341 /* 1342 * NB: don't worry about putting the chip in low power 1343 * mode; pci will power off our socket on suspend and 1344 * CardBus detaches the device. 1345 */ 1346 } 1347 1348 /* 1349 * Reset the key cache since some parts do not reset the 1350 * contents on resume. First we clear all entries, then 1351 * re-load keys that the 802.11 layer assumes are setup 1352 * in h/w. 1353 */ 1354 static void 1355 ath_reset_keycache(struct ath_softc *sc) 1356 { 1357 struct ifnet *ifp = sc->sc_ifp; 1358 struct ieee80211com *ic = ifp->if_l2com; 1359 struct ath_hal *ah = sc->sc_ah; 1360 int i; 1361 1362 for (i = 0; i < sc->sc_keymax; i++) 1363 ath_hal_keyreset(ah, i); 1364 ieee80211_crypto_reload_keys(ic); 1365 } 1366 1367 void 1368 ath_resume(struct ath_softc *sc) 1369 { 1370 struct ifnet *ifp = sc->sc_ifp; 1371 struct ieee80211com *ic = ifp->if_l2com; 1372 struct ath_hal *ah = sc->sc_ah; 1373 HAL_STATUS status; 1374 1375 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1376 __func__, ifp->if_flags); 1377 1378 /* 1379 * Must reset the chip before we reload the 1380 * keycache as we were powered down on suspend. 1381 */ 1382 ath_hal_reset(ah, sc->sc_opmode, 1383 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1384 AH_FALSE, &status); 1385 ath_reset_keycache(sc); 1386 1387 /* Let DFS at it in case it's a DFS channel */ 1388 ath_dfs_radar_enable(sc, ic->ic_curchan); 1389 1390 /* Restore the LED configuration */ 1391 ath_led_config(sc); 1392 ath_hal_setledstate(ah, HAL_LED_INIT); 1393 1394 if (sc->sc_resume_up) { 1395 if (ic->ic_opmode == IEEE80211_M_STA) { 1396 ath_init(sc); 1397 ath_hal_setledstate(ah, HAL_LED_RUN); 1398 /* 1399 * Program the beacon registers using the last rx'd 1400 * beacon frame and enable sync on the next beacon 1401 * we see. This should handle the case where we 1402 * wakeup and find the same AP and also the case where 1403 * we wakeup and need to roam. For the latter we 1404 * should get bmiss events that trigger a roam. 1405 */ 1406 ath_beacon_config(sc, NULL); 1407 sc->sc_syncbeacon = 1; 1408 } else 1409 ieee80211_resume_all(ic); 1410 } 1411 1412 /* XXX beacons ? */ 1413 } 1414 1415 void 1416 ath_shutdown(struct ath_softc *sc) 1417 { 1418 struct ifnet *ifp = sc->sc_ifp; 1419 1420 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1421 __func__, ifp->if_flags); 1422 1423 ath_stop(ifp); 1424 /* NB: no point powering down chip as we're about to reboot */ 1425 } 1426 1427 /* 1428 * Interrupt handler. Most of the actual processing is deferred. 1429 */ 1430 void 1431 ath_intr(void *arg) 1432 { 1433 struct ath_softc *sc = arg; 1434 struct ifnet *ifp = sc->sc_ifp; 1435 struct ath_hal *ah = sc->sc_ah; 1436 HAL_INT status = 0; 1437 uint32_t txqs; 1438 1439 /* 1440 * If we're inside a reset path, just print a warning and 1441 * clear the ISR. The reset routine will finish it for us. 1442 */ 1443 ATH_PCU_LOCK(sc); 1444 if (sc->sc_inreset_cnt) { 1445 HAL_INT status; 1446 ath_hal_getisr(ah, &status); /* clear ISR */ 1447 ath_hal_intrset(ah, 0); /* disable further intr's */ 1448 DPRINTF(sc, ATH_DEBUG_ANY, 1449 "%s: in reset, ignoring: status=0x%x\n", 1450 __func__, status); 1451 ATH_PCU_UNLOCK(sc); 1452 return; 1453 } 1454 1455 if (sc->sc_invalid) { 1456 /* 1457 * The hardware is not ready/present, don't touch anything. 1458 * Note this can happen early on if the IRQ is shared. 1459 */ 1460 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1461 ATH_PCU_UNLOCK(sc); 1462 return; 1463 } 1464 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1465 ATH_PCU_UNLOCK(sc); 1466 return; 1467 } 1468 1469 if ((ifp->if_flags & IFF_UP) == 0 || 1470 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1471 HAL_INT status; 1472 1473 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1474 __func__, ifp->if_flags); 1475 ath_hal_getisr(ah, &status); /* clear ISR */ 1476 ath_hal_intrset(ah, 0); /* disable further intr's */ 1477 ATH_PCU_UNLOCK(sc); 1478 return; 1479 } 1480 1481 /* 1482 * Figure out the reason(s) for the interrupt. Note 1483 * that the hal returns a pseudo-ISR that may include 1484 * bits we haven't explicitly enabled so we mask the 1485 * value to insure we only process bits we requested. 1486 */ 1487 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1488 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1489 CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status); 1490 #ifdef ATH_KTR_INTR_DEBUG 1491 CTR5(ATH_KTR_INTR, 1492 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1493 ah->ah_intrstate[0], 1494 ah->ah_intrstate[1], 1495 ah->ah_intrstate[2], 1496 ah->ah_intrstate[3], 1497 ah->ah_intrstate[6]); 1498 #endif 1499 1500 /* Squirrel away SYNC interrupt debugging */ 1501 if (ah->ah_syncstate != 0) { 1502 int i; 1503 for (i = 0; i < 32; i++) 1504 if (ah->ah_syncstate & (i << i)) 1505 sc->sc_intr_stats.sync_intr[i]++; 1506 } 1507 1508 status &= sc->sc_imask; /* discard unasked for bits */ 1509 1510 /* Short-circuit un-handled interrupts */ 1511 if (status == 0x0) { 1512 ATH_PCU_UNLOCK(sc); 1513 return; 1514 } 1515 1516 /* 1517 * Take a note that we're inside the interrupt handler, so 1518 * the reset routines know to wait. 1519 */ 1520 sc->sc_intr_cnt++; 1521 ATH_PCU_UNLOCK(sc); 1522 1523 /* 1524 * Handle the interrupt. We won't run concurrent with the reset 1525 * or channel change routines as they'll wait for sc_intr_cnt 1526 * to be 0 before continuing. 1527 */ 1528 if (status & HAL_INT_FATAL) { 1529 sc->sc_stats.ast_hardware++; 1530 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1531 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1532 } else { 1533 if (status & HAL_INT_SWBA) { 1534 /* 1535 * Software beacon alert--time to send a beacon. 1536 * Handle beacon transmission directly; deferring 1537 * this is too slow to meet timing constraints 1538 * under load. 1539 */ 1540 #ifdef IEEE80211_SUPPORT_TDMA 1541 if (sc->sc_tdma) { 1542 if (sc->sc_tdmaswba == 0) { 1543 struct ieee80211com *ic = ifp->if_l2com; 1544 struct ieee80211vap *vap = 1545 TAILQ_FIRST(&ic->ic_vaps); 1546 ath_tdma_beacon_send(sc, vap); 1547 sc->sc_tdmaswba = 1548 vap->iv_tdma->tdma_bintval; 1549 } else 1550 sc->sc_tdmaswba--; 1551 } else 1552 #endif 1553 { 1554 ath_beacon_proc(sc, 0); 1555 #ifdef IEEE80211_SUPPORT_SUPERG 1556 /* 1557 * Schedule the rx taskq in case there's no 1558 * traffic so any frames held on the staging 1559 * queue are aged and potentially flushed. 1560 */ 1561 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1562 #endif 1563 } 1564 } 1565 if (status & HAL_INT_RXEOL) { 1566 int imask; 1567 CTR0(ATH_KTR_ERR, "ath_intr: RXEOL"); 1568 ATH_PCU_LOCK(sc); 1569 /* 1570 * NB: the hardware should re-read the link when 1571 * RXE bit is written, but it doesn't work at 1572 * least on older hardware revs. 1573 */ 1574 sc->sc_stats.ast_rxeol++; 1575 /* 1576 * Disable RXEOL/RXORN - prevent an interrupt 1577 * storm until the PCU logic can be reset. 1578 * In case the interface is reset some other 1579 * way before "sc_kickpcu" is called, don't 1580 * modify sc_imask - that way if it is reset 1581 * by a call to ath_reset() somehow, the 1582 * interrupt mask will be correctly reprogrammed. 1583 */ 1584 imask = sc->sc_imask; 1585 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1586 ath_hal_intrset(ah, imask); 1587 /* 1588 * Only blank sc_rxlink if we've not yet kicked 1589 * the PCU. 1590 * 1591 * This isn't entirely correct - the correct solution 1592 * would be to have a PCU lock and engage that for 1593 * the duration of the PCU fiddling; which would include 1594 * running the RX process. Otherwise we could end up 1595 * messing up the RX descriptor chain and making the 1596 * RX desc list much shorter. 1597 */ 1598 if (! sc->sc_kickpcu) 1599 sc->sc_rxlink = NULL; 1600 sc->sc_kickpcu = 1; 1601 /* 1602 * Enqueue an RX proc, to handled whatever 1603 * is in the RX queue. 1604 * This will then kick the PCU. 1605 */ 1606 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1607 ATH_PCU_UNLOCK(sc); 1608 } 1609 if (status & HAL_INT_TXURN) { 1610 sc->sc_stats.ast_txurn++; 1611 /* bump tx trigger level */ 1612 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1613 } 1614 if (status & HAL_INT_RX) { 1615 sc->sc_stats.ast_rx_intr++; 1616 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1617 } 1618 if (status & HAL_INT_TX) { 1619 sc->sc_stats.ast_tx_intr++; 1620 /* 1621 * Grab all the currently set bits in the HAL txq bitmap 1622 * and blank them. This is the only place we should be 1623 * doing this. 1624 */ 1625 ATH_PCU_LOCK(sc); 1626 txqs = 0xffffffff; 1627 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1628 sc->sc_txq_active |= txqs; 1629 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1630 ATH_PCU_UNLOCK(sc); 1631 } 1632 if (status & HAL_INT_BMISS) { 1633 sc->sc_stats.ast_bmiss++; 1634 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1635 } 1636 if (status & HAL_INT_GTT) 1637 sc->sc_stats.ast_tx_timeout++; 1638 if (status & HAL_INT_CST) 1639 sc->sc_stats.ast_tx_cst++; 1640 if (status & HAL_INT_MIB) { 1641 sc->sc_stats.ast_mib++; 1642 ATH_PCU_LOCK(sc); 1643 /* 1644 * Disable interrupts until we service the MIB 1645 * interrupt; otherwise it will continue to fire. 1646 */ 1647 ath_hal_intrset(ah, 0); 1648 /* 1649 * Let the hal handle the event. We assume it will 1650 * clear whatever condition caused the interrupt. 1651 */ 1652 ath_hal_mibevent(ah, &sc->sc_halstats); 1653 /* 1654 * Don't reset the interrupt if we've just 1655 * kicked the PCU, or we may get a nested 1656 * RXEOL before the rxproc has had a chance 1657 * to run. 1658 */ 1659 if (sc->sc_kickpcu == 0) 1660 ath_hal_intrset(ah, sc->sc_imask); 1661 ATH_PCU_UNLOCK(sc); 1662 } 1663 if (status & HAL_INT_RXORN) { 1664 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1665 CTR0(ATH_KTR_ERR, "ath_intr: RXORN"); 1666 sc->sc_stats.ast_rxorn++; 1667 } 1668 } 1669 ATH_PCU_LOCK(sc); 1670 sc->sc_intr_cnt--; 1671 ATH_PCU_UNLOCK(sc); 1672 } 1673 1674 static void 1675 ath_fatal_proc(void *arg, int pending) 1676 { 1677 struct ath_softc *sc = arg; 1678 struct ifnet *ifp = sc->sc_ifp; 1679 u_int32_t *state; 1680 u_int32_t len; 1681 void *sp; 1682 1683 if_printf(ifp, "hardware error; resetting\n"); 1684 /* 1685 * Fatal errors are unrecoverable. Typically these 1686 * are caused by DMA errors. Collect h/w state from 1687 * the hal so we can diagnose what's going on. 1688 */ 1689 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1690 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1691 state = sp; 1692 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1693 state[0], state[1] , state[2], state[3], 1694 state[4], state[5]); 1695 } 1696 ath_reset(ifp, ATH_RESET_NOLOSS); 1697 } 1698 1699 static void 1700 ath_bmiss_vap(struct ieee80211vap *vap) 1701 { 1702 /* 1703 * Workaround phantom bmiss interrupts by sanity-checking 1704 * the time of our last rx'd frame. If it is within the 1705 * beacon miss interval then ignore the interrupt. If it's 1706 * truly a bmiss we'll get another interrupt soon and that'll 1707 * be dispatched up for processing. Note this applies only 1708 * for h/w beacon miss events. 1709 */ 1710 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1711 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1712 struct ath_softc *sc = ifp->if_softc; 1713 u_int64_t lastrx = sc->sc_lastrx; 1714 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1715 /* XXX should take a locked ref to iv_bss */ 1716 u_int bmisstimeout = 1717 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1718 1719 DPRINTF(sc, ATH_DEBUG_BEACON, 1720 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1721 __func__, (unsigned long long) tsf, 1722 (unsigned long long)(tsf - lastrx), 1723 (unsigned long long) lastrx, bmisstimeout); 1724 1725 if (tsf - lastrx <= bmisstimeout) { 1726 sc->sc_stats.ast_bmiss_phantom++; 1727 return; 1728 } 1729 } 1730 ATH_VAP(vap)->av_bmiss(vap); 1731 } 1732 1733 static int 1734 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1735 { 1736 uint32_t rsize; 1737 void *sp; 1738 1739 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1740 return 0; 1741 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1742 *hangs = *(uint32_t *)sp; 1743 return 1; 1744 } 1745 1746 static void 1747 ath_bmiss_proc(void *arg, int pending) 1748 { 1749 struct ath_softc *sc = arg; 1750 struct ifnet *ifp = sc->sc_ifp; 1751 uint32_t hangs; 1752 1753 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1754 1755 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1756 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1757 ath_reset(ifp, ATH_RESET_NOLOSS); 1758 } else 1759 ieee80211_beacon_miss(ifp->if_l2com); 1760 } 1761 1762 /* 1763 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1764 * calcs together with WME. If necessary disable the crypto 1765 * hardware and mark the 802.11 state so keys will be setup 1766 * with the MIC work done in software. 1767 */ 1768 static void 1769 ath_settkipmic(struct ath_softc *sc) 1770 { 1771 struct ifnet *ifp = sc->sc_ifp; 1772 struct ieee80211com *ic = ifp->if_l2com; 1773 1774 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1775 if (ic->ic_flags & IEEE80211_F_WME) { 1776 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1777 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1778 } else { 1779 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1780 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1781 } 1782 } 1783 } 1784 1785 static void 1786 ath_init(void *arg) 1787 { 1788 struct ath_softc *sc = (struct ath_softc *) arg; 1789 struct ifnet *ifp = sc->sc_ifp; 1790 struct ieee80211com *ic = ifp->if_l2com; 1791 struct ath_hal *ah = sc->sc_ah; 1792 HAL_STATUS status; 1793 1794 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1795 __func__, ifp->if_flags); 1796 1797 ATH_LOCK(sc); 1798 /* 1799 * Stop anything previously setup. This is safe 1800 * whether this is the first time through or not. 1801 */ 1802 ath_stop_locked(ifp); 1803 1804 /* 1805 * The basic interface to setting the hardware in a good 1806 * state is ``reset''. On return the hardware is known to 1807 * be powered up and with interrupts disabled. This must 1808 * be followed by initialization of the appropriate bits 1809 * and then setup of the interrupt mask. 1810 */ 1811 ath_settkipmic(sc); 1812 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1813 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1814 status); 1815 ATH_UNLOCK(sc); 1816 return; 1817 } 1818 ath_chan_change(sc, ic->ic_curchan); 1819 1820 /* Let DFS at it in case it's a DFS channel */ 1821 ath_dfs_radar_enable(sc, ic->ic_curchan); 1822 1823 /* 1824 * Likewise this is set during reset so update 1825 * state cached in the driver. 1826 */ 1827 sc->sc_diversity = ath_hal_getdiversity(ah); 1828 sc->sc_lastlongcal = 0; 1829 sc->sc_resetcal = 1; 1830 sc->sc_lastcalreset = 0; 1831 sc->sc_lastani = 0; 1832 sc->sc_lastshortcal = 0; 1833 sc->sc_doresetcal = AH_FALSE; 1834 /* 1835 * Beacon timers were cleared here; give ath_newstate() 1836 * a hint that the beacon timers should be poked when 1837 * things transition to the RUN state. 1838 */ 1839 sc->sc_beacons = 0; 1840 1841 /* 1842 * Initial aggregation settings. 1843 */ 1844 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 1845 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1846 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1847 1848 /* 1849 * Setup the hardware after reset: the key cache 1850 * is filled as needed and the receive engine is 1851 * set going. Frame transmit is handled entirely 1852 * in the frame output path; there's nothing to do 1853 * here except setup the interrupt mask. 1854 */ 1855 if (ath_startrecv(sc) != 0) { 1856 if_printf(ifp, "unable to start recv logic\n"); 1857 ATH_UNLOCK(sc); 1858 return; 1859 } 1860 1861 /* 1862 * Enable interrupts. 1863 */ 1864 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1865 | HAL_INT_RXEOL | HAL_INT_RXORN 1866 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1867 /* 1868 * Enable MIB interrupts when there are hardware phy counters. 1869 * Note we only do this (at the moment) for station mode. 1870 */ 1871 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1872 sc->sc_imask |= HAL_INT_MIB; 1873 1874 /* Enable global TX timeout and carrier sense timeout if available */ 1875 if (ath_hal_gtxto_supported(ah)) 1876 sc->sc_imask |= HAL_INT_GTT; 1877 1878 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1879 __func__, sc->sc_imask); 1880 1881 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1882 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1883 ath_hal_intrset(ah, sc->sc_imask); 1884 1885 ATH_UNLOCK(sc); 1886 1887 #ifdef ATH_TX99_DIAG 1888 if (sc->sc_tx99 != NULL) 1889 sc->sc_tx99->start(sc->sc_tx99); 1890 else 1891 #endif 1892 ieee80211_start_all(ic); /* start all vap's */ 1893 } 1894 1895 static void 1896 ath_stop_locked(struct ifnet *ifp) 1897 { 1898 struct ath_softc *sc = ifp->if_softc; 1899 struct ath_hal *ah = sc->sc_ah; 1900 1901 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1902 __func__, sc->sc_invalid, ifp->if_flags); 1903 1904 ATH_LOCK_ASSERT(sc); 1905 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1906 /* 1907 * Shutdown the hardware and driver: 1908 * reset 802.11 state machine 1909 * turn off timers 1910 * disable interrupts 1911 * turn off the radio 1912 * clear transmit machinery 1913 * clear receive machinery 1914 * drain and release tx queues 1915 * reclaim beacon resources 1916 * power down hardware 1917 * 1918 * Note that some of this work is not possible if the 1919 * hardware is gone (invalid). 1920 */ 1921 #ifdef ATH_TX99_DIAG 1922 if (sc->sc_tx99 != NULL) 1923 sc->sc_tx99->stop(sc->sc_tx99); 1924 #endif 1925 callout_stop(&sc->sc_wd_ch); 1926 sc->sc_wd_timer = 0; 1927 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1928 if (!sc->sc_invalid) { 1929 if (sc->sc_softled) { 1930 callout_stop(&sc->sc_ledtimer); 1931 ath_hal_gpioset(ah, sc->sc_ledpin, 1932 !sc->sc_ledon); 1933 sc->sc_blinking = 0; 1934 } 1935 ath_hal_intrset(ah, 0); 1936 } 1937 ath_draintxq(sc, ATH_RESET_DEFAULT); 1938 if (!sc->sc_invalid) { 1939 ath_stoprecv(sc, 1); 1940 ath_hal_phydisable(ah); 1941 } else 1942 sc->sc_rxlink = NULL; 1943 ath_beacon_free(sc); /* XXX not needed */ 1944 } 1945 } 1946 1947 #define MAX_TXRX_ITERATIONS 1000 1948 static void 1949 ath_txrx_stop_locked(struct ath_softc *sc) 1950 { 1951 int i = MAX_TXRX_ITERATIONS; 1952 1953 ATH_UNLOCK_ASSERT(sc); 1954 ATH_PCU_LOCK_ASSERT(sc); 1955 1956 /* 1957 * Sleep until all the pending operations have completed. 1958 * 1959 * The caller must ensure that reset has been incremented 1960 * or the pending operations may continue being queued. 1961 */ 1962 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 1963 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 1964 if (i <= 0) 1965 break; 1966 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 1967 i--; 1968 } 1969 1970 if (i <= 0) 1971 device_printf(sc->sc_dev, 1972 "%s: didn't finish after %d iterations\n", 1973 __func__, MAX_TXRX_ITERATIONS); 1974 } 1975 #undef MAX_TXRX_ITERATIONS 1976 1977 #if 0 1978 static void 1979 ath_txrx_stop(struct ath_softc *sc) 1980 { 1981 ATH_UNLOCK_ASSERT(sc); 1982 ATH_PCU_UNLOCK_ASSERT(sc); 1983 1984 ATH_PCU_LOCK(sc); 1985 ath_txrx_stop_locked(sc); 1986 ATH_PCU_UNLOCK(sc); 1987 } 1988 #endif 1989 1990 static void 1991 ath_txrx_start(struct ath_softc *sc) 1992 { 1993 1994 taskqueue_unblock(sc->sc_tq); 1995 } 1996 1997 /* 1998 * Grab the reset lock, and wait around until noone else 1999 * is trying to do anything with it. 2000 * 2001 * This is totally horrible but we can't hold this lock for 2002 * long enough to do TX/RX or we end up with net80211/ip stack 2003 * LORs and eventual deadlock. 2004 * 2005 * "dowait" signals whether to spin, waiting for the reset 2006 * lock count to reach 0. This should (for now) only be used 2007 * during the reset path, as the rest of the code may not 2008 * be locking-reentrant enough to behave correctly. 2009 * 2010 * Another, cleaner way should be found to serialise all of 2011 * these operations. 2012 */ 2013 #define MAX_RESET_ITERATIONS 10 2014 static int 2015 ath_reset_grablock(struct ath_softc *sc, int dowait) 2016 { 2017 int w = 0; 2018 int i = MAX_RESET_ITERATIONS; 2019 2020 ATH_PCU_LOCK_ASSERT(sc); 2021 do { 2022 if (sc->sc_inreset_cnt == 0) { 2023 w = 1; 2024 break; 2025 } 2026 if (dowait == 0) { 2027 w = 0; 2028 break; 2029 } 2030 ATH_PCU_UNLOCK(sc); 2031 pause("ath_reset_grablock", 1); 2032 i--; 2033 ATH_PCU_LOCK(sc); 2034 } while (i > 0); 2035 2036 /* 2037 * We always increment the refcounter, regardless 2038 * of whether we succeeded to get it in an exclusive 2039 * way. 2040 */ 2041 sc->sc_inreset_cnt++; 2042 2043 if (i <= 0) 2044 device_printf(sc->sc_dev, 2045 "%s: didn't finish after %d iterations\n", 2046 __func__, MAX_RESET_ITERATIONS); 2047 2048 if (w == 0) 2049 device_printf(sc->sc_dev, 2050 "%s: warning, recursive reset path!\n", 2051 __func__); 2052 2053 return w; 2054 } 2055 #undef MAX_RESET_ITERATIONS 2056 2057 /* 2058 * XXX TODO: write ath_reset_releaselock 2059 */ 2060 2061 static void 2062 ath_stop(struct ifnet *ifp) 2063 { 2064 struct ath_softc *sc = ifp->if_softc; 2065 2066 ATH_LOCK(sc); 2067 ath_stop_locked(ifp); 2068 ATH_UNLOCK(sc); 2069 } 2070 2071 /* 2072 * Reset the hardware w/o losing operational state. This is 2073 * basically a more efficient way of doing ath_stop, ath_init, 2074 * followed by state transitions to the current 802.11 2075 * operational state. Used to recover from various errors and 2076 * to reset or reload hardware state. 2077 */ 2078 int 2079 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2080 { 2081 struct ath_softc *sc = ifp->if_softc; 2082 struct ieee80211com *ic = ifp->if_l2com; 2083 struct ath_hal *ah = sc->sc_ah; 2084 HAL_STATUS status; 2085 int i; 2086 2087 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2088 2089 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2090 ATH_PCU_UNLOCK_ASSERT(sc); 2091 ATH_UNLOCK_ASSERT(sc); 2092 2093 /* Try to (stop any further TX/RX from occuring */ 2094 taskqueue_block(sc->sc_tq); 2095 2096 ATH_PCU_LOCK(sc); 2097 ath_hal_intrset(ah, 0); /* disable interrupts */ 2098 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2099 if (ath_reset_grablock(sc, 1) == 0) { 2100 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2101 __func__); 2102 } 2103 ATH_PCU_UNLOCK(sc); 2104 2105 /* 2106 * Should now wait for pending TX/RX to complete 2107 * and block future ones from occuring. This needs to be 2108 * done before the TX queue is drained. 2109 */ 2110 ath_draintxq(sc, reset_type); /* stop xmit side */ 2111 2112 /* 2113 * Regardless of whether we're doing a no-loss flush or 2114 * not, stop the PCU and handle what's in the RX queue. 2115 * That way frames aren't dropped which shouldn't be. 2116 */ 2117 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2118 ath_rx_proc(sc, 0); 2119 2120 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2121 /* NB: indicate channel change so we do a full reset */ 2122 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2123 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2124 __func__, status); 2125 sc->sc_diversity = ath_hal_getdiversity(ah); 2126 2127 /* Let DFS at it in case it's a DFS channel */ 2128 ath_dfs_radar_enable(sc, ic->ic_curchan); 2129 2130 if (ath_startrecv(sc) != 0) /* restart recv */ 2131 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2132 /* 2133 * We may be doing a reset in response to an ioctl 2134 * that changes the channel so update any state that 2135 * might change as a result. 2136 */ 2137 ath_chan_change(sc, ic->ic_curchan); 2138 if (sc->sc_beacons) { /* restart beacons */ 2139 #ifdef IEEE80211_SUPPORT_TDMA 2140 if (sc->sc_tdma) 2141 ath_tdma_config(sc, NULL); 2142 else 2143 #endif 2144 ath_beacon_config(sc, NULL); 2145 } 2146 2147 /* 2148 * Release the reset lock and re-enable interrupts here. 2149 * If an interrupt was being processed in ath_intr(), 2150 * it would disable interrupts at this point. So we have 2151 * to atomically enable interrupts and decrement the 2152 * reset counter - this way ath_intr() doesn't end up 2153 * disabling interrupts without a corresponding enable 2154 * in the rest or channel change path. 2155 */ 2156 ATH_PCU_LOCK(sc); 2157 sc->sc_inreset_cnt--; 2158 /* XXX only do this if sc_inreset_cnt == 0? */ 2159 ath_hal_intrset(ah, sc->sc_imask); 2160 ATH_PCU_UNLOCK(sc); 2161 2162 /* 2163 * TX and RX can be started here. If it were started with 2164 * sc_inreset_cnt > 0, the TX and RX path would abort. 2165 * Thus if this is a nested call through the reset or 2166 * channel change code, TX completion will occur but 2167 * RX completion and ath_start / ath_tx_start will not 2168 * run. 2169 */ 2170 2171 /* Restart TX/RX as needed */ 2172 ath_txrx_start(sc); 2173 2174 /* XXX Restart TX completion and pending TX */ 2175 if (reset_type == ATH_RESET_NOLOSS) { 2176 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2177 if (ATH_TXQ_SETUP(sc, i)) { 2178 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2179 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2180 ath_txq_sched(sc, &sc->sc_txq[i]); 2181 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2182 } 2183 } 2184 } 2185 2186 /* 2187 * This may have been set during an ath_start() call which 2188 * set this once it detected a concurrent TX was going on. 2189 * So, clear it. 2190 */ 2191 IF_LOCK(&ifp->if_snd); 2192 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2193 IF_UNLOCK(&ifp->if_snd); 2194 2195 /* Handle any frames in the TX queue */ 2196 /* 2197 * XXX should this be done by the caller, rather than 2198 * ath_reset() ? 2199 */ 2200 ath_start(ifp); /* restart xmit */ 2201 return 0; 2202 } 2203 2204 static int 2205 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2206 { 2207 struct ieee80211com *ic = vap->iv_ic; 2208 struct ifnet *ifp = ic->ic_ifp; 2209 struct ath_softc *sc = ifp->if_softc; 2210 struct ath_hal *ah = sc->sc_ah; 2211 2212 switch (cmd) { 2213 case IEEE80211_IOC_TXPOWER: 2214 /* 2215 * If per-packet TPC is enabled, then we have nothing 2216 * to do; otherwise we need to force the global limit. 2217 * All this can happen directly; no need to reset. 2218 */ 2219 if (!ath_hal_gettpc(ah)) 2220 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2221 return 0; 2222 } 2223 /* XXX? Full or NOLOSS? */ 2224 return ath_reset(ifp, ATH_RESET_FULL); 2225 } 2226 2227 struct ath_buf * 2228 _ath_getbuf_locked(struct ath_softc *sc) 2229 { 2230 struct ath_buf *bf; 2231 2232 ATH_TXBUF_LOCK_ASSERT(sc); 2233 2234 bf = TAILQ_FIRST(&sc->sc_txbuf); 2235 if (bf == NULL) { 2236 sc->sc_stats.ast_tx_getnobuf++; 2237 } else { 2238 if (bf->bf_flags & ATH_BUF_BUSY) { 2239 sc->sc_stats.ast_tx_getbusybuf++; 2240 bf = NULL; 2241 } 2242 } 2243 2244 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) 2245 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2246 else 2247 bf = NULL; 2248 2249 if (bf == NULL) { 2250 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2251 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2252 "out of xmit buffers" : "xmit buffer busy"); 2253 return NULL; 2254 } 2255 2256 /* Valid bf here; clear some basic fields */ 2257 bf->bf_next = NULL; /* XXX just to be sure */ 2258 bf->bf_last = NULL; /* XXX again, just to be sure */ 2259 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2260 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2261 2262 return bf; 2263 } 2264 2265 /* 2266 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2267 * can't be thrown back on the queue as they could still be 2268 * in use by the hardware. 2269 * 2270 * This duplicates the buffer, or returns NULL. 2271 * 2272 * The descriptor is also copied but the link pointers and 2273 * the DMA segments aren't copied; this frame should thus 2274 * be again passed through the descriptor setup/chain routines 2275 * so the link is correct. 2276 * 2277 * The caller must free the buffer using ath_freebuf(). 2278 * 2279 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2280 * XXX in the TX pathway when retries are needed. 2281 * XXX Figure out how to keep some buffers free, or factor the 2282 * XXX number of busy buffers into the xmit path (ath_start()) 2283 * XXX so we don't over-commit. 2284 */ 2285 struct ath_buf * 2286 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2287 { 2288 struct ath_buf *tbf; 2289 2290 tbf = ath_getbuf(sc); 2291 if (tbf == NULL) 2292 return NULL; /* XXX failure? Why? */ 2293 2294 /* Copy basics */ 2295 tbf->bf_next = NULL; 2296 tbf->bf_nseg = bf->bf_nseg; 2297 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2298 tbf->bf_status = bf->bf_status; 2299 tbf->bf_m = bf->bf_m; 2300 tbf->bf_node = bf->bf_node; 2301 /* will be setup by the chain/setup function */ 2302 tbf->bf_lastds = NULL; 2303 /* for now, last == self */ 2304 tbf->bf_last = tbf; 2305 tbf->bf_comp = bf->bf_comp; 2306 2307 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2308 2309 /* The caller has to re-init the descriptor + links */ 2310 2311 /* Copy state */ 2312 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2313 2314 return tbf; 2315 } 2316 2317 struct ath_buf * 2318 ath_getbuf(struct ath_softc *sc) 2319 { 2320 struct ath_buf *bf; 2321 2322 ATH_TXBUF_LOCK(sc); 2323 bf = _ath_getbuf_locked(sc); 2324 ATH_TXBUF_UNLOCK(sc); 2325 if (bf == NULL) { 2326 struct ifnet *ifp = sc->sc_ifp; 2327 2328 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2329 sc->sc_stats.ast_tx_qstop++; 2330 IF_LOCK(&ifp->if_snd); 2331 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2332 IF_UNLOCK(&ifp->if_snd); 2333 } 2334 return bf; 2335 } 2336 2337 static void 2338 ath_start(struct ifnet *ifp) 2339 { 2340 struct ath_softc *sc = ifp->if_softc; 2341 struct ieee80211_node *ni; 2342 struct ath_buf *bf; 2343 struct mbuf *m, *next; 2344 ath_bufhead frags; 2345 2346 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2347 return; 2348 2349 /* XXX is it ok to hold the ATH_LOCK here? */ 2350 ATH_PCU_LOCK(sc); 2351 if (sc->sc_inreset_cnt > 0) { 2352 device_printf(sc->sc_dev, 2353 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2354 ATH_PCU_UNLOCK(sc); 2355 IF_LOCK(&ifp->if_snd); 2356 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2357 IF_UNLOCK(&ifp->if_snd); 2358 return; 2359 } 2360 sc->sc_txstart_cnt++; 2361 ATH_PCU_UNLOCK(sc); 2362 2363 for (;;) { 2364 /* 2365 * Grab a TX buffer and associated resources. 2366 */ 2367 bf = ath_getbuf(sc); 2368 if (bf == NULL) 2369 break; 2370 2371 IFQ_DEQUEUE(&ifp->if_snd, m); 2372 if (m == NULL) { 2373 ATH_TXBUF_LOCK(sc); 2374 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2375 ATH_TXBUF_UNLOCK(sc); 2376 break; 2377 } 2378 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2379 /* 2380 * Check for fragmentation. If this frame 2381 * has been broken up verify we have enough 2382 * buffers to send all the fragments so all 2383 * go out or none... 2384 */ 2385 TAILQ_INIT(&frags); 2386 if ((m->m_flags & M_FRAG) && 2387 !ath_txfrag_setup(sc, &frags, m, ni)) { 2388 DPRINTF(sc, ATH_DEBUG_XMIT, 2389 "%s: out of txfrag buffers\n", __func__); 2390 sc->sc_stats.ast_tx_nofrag++; 2391 ifp->if_oerrors++; 2392 ath_freetx(m); 2393 goto bad; 2394 } 2395 ifp->if_opackets++; 2396 nextfrag: 2397 /* 2398 * Pass the frame to the h/w for transmission. 2399 * Fragmented frames have each frag chained together 2400 * with m_nextpkt. We know there are sufficient ath_buf's 2401 * to send all the frags because of work done by 2402 * ath_txfrag_setup. We leave m_nextpkt set while 2403 * calling ath_tx_start so it can use it to extend the 2404 * the tx duration to cover the subsequent frag and 2405 * so it can reclaim all the mbufs in case of an error; 2406 * ath_tx_start clears m_nextpkt once it commits to 2407 * handing the frame to the hardware. 2408 */ 2409 next = m->m_nextpkt; 2410 if (ath_tx_start(sc, ni, bf, m)) { 2411 bad: 2412 ifp->if_oerrors++; 2413 reclaim: 2414 bf->bf_m = NULL; 2415 bf->bf_node = NULL; 2416 ATH_TXBUF_LOCK(sc); 2417 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2418 ath_txfrag_cleanup(sc, &frags, ni); 2419 ATH_TXBUF_UNLOCK(sc); 2420 if (ni != NULL) 2421 ieee80211_free_node(ni); 2422 continue; 2423 } 2424 if (next != NULL) { 2425 /* 2426 * Beware of state changing between frags. 2427 * XXX check sta power-save state? 2428 */ 2429 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2430 DPRINTF(sc, ATH_DEBUG_XMIT, 2431 "%s: flush fragmented packet, state %s\n", 2432 __func__, 2433 ieee80211_state_name[ni->ni_vap->iv_state]); 2434 ath_freetx(next); 2435 goto reclaim; 2436 } 2437 m = next; 2438 bf = TAILQ_FIRST(&frags); 2439 KASSERT(bf != NULL, ("no buf for txfrag")); 2440 TAILQ_REMOVE(&frags, bf, bf_list); 2441 goto nextfrag; 2442 } 2443 2444 sc->sc_wd_timer = 5; 2445 } 2446 2447 ATH_PCU_LOCK(sc); 2448 sc->sc_txstart_cnt--; 2449 ATH_PCU_UNLOCK(sc); 2450 } 2451 2452 static int 2453 ath_media_change(struct ifnet *ifp) 2454 { 2455 int error = ieee80211_media_change(ifp); 2456 /* NB: only the fixed rate can change and that doesn't need a reset */ 2457 return (error == ENETRESET ? 0 : error); 2458 } 2459 2460 /* 2461 * Block/unblock tx+rx processing while a key change is done. 2462 * We assume the caller serializes key management operations 2463 * so we only need to worry about synchronization with other 2464 * uses that originate in the driver. 2465 */ 2466 static void 2467 ath_key_update_begin(struct ieee80211vap *vap) 2468 { 2469 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2470 struct ath_softc *sc = ifp->if_softc; 2471 2472 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2473 taskqueue_block(sc->sc_tq); 2474 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2475 } 2476 2477 static void 2478 ath_key_update_end(struct ieee80211vap *vap) 2479 { 2480 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2481 struct ath_softc *sc = ifp->if_softc; 2482 2483 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2484 IF_UNLOCK(&ifp->if_snd); 2485 taskqueue_unblock(sc->sc_tq); 2486 } 2487 2488 /* 2489 * Calculate the receive filter according to the 2490 * operating mode and state: 2491 * 2492 * o always accept unicast, broadcast, and multicast traffic 2493 * o accept PHY error frames when hardware doesn't have MIB support 2494 * to count and we need them for ANI (sta mode only until recently) 2495 * and we are not scanning (ANI is disabled) 2496 * NB: older hal's add rx filter bits out of sight and we need to 2497 * blindly preserve them 2498 * o probe request frames are accepted only when operating in 2499 * hostap, adhoc, mesh, or monitor modes 2500 * o enable promiscuous mode 2501 * - when in monitor mode 2502 * - if interface marked PROMISC (assumes bridge setting is filtered) 2503 * o accept beacons: 2504 * - when operating in station mode for collecting rssi data when 2505 * the station is otherwise quiet, or 2506 * - when operating in adhoc mode so the 802.11 layer creates 2507 * node table entries for peers, 2508 * - when scanning 2509 * - when doing s/w beacon miss (e.g. for ap+sta) 2510 * - when operating in ap mode in 11g to detect overlapping bss that 2511 * require protection 2512 * - when operating in mesh mode to detect neighbors 2513 * o accept control frames: 2514 * - when in monitor mode 2515 * XXX HT protection for 11n 2516 */ 2517 static u_int32_t 2518 ath_calcrxfilter(struct ath_softc *sc) 2519 { 2520 struct ifnet *ifp = sc->sc_ifp; 2521 struct ieee80211com *ic = ifp->if_l2com; 2522 u_int32_t rfilt; 2523 2524 rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 2525 if (!sc->sc_needmib && !sc->sc_scanning) 2526 rfilt |= HAL_RX_FILTER_PHYERR; 2527 if (ic->ic_opmode != IEEE80211_M_STA) 2528 rfilt |= HAL_RX_FILTER_PROBEREQ; 2529 /* XXX ic->ic_monvaps != 0? */ 2530 if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC)) 2531 rfilt |= HAL_RX_FILTER_PROM; 2532 if (ic->ic_opmode == IEEE80211_M_STA || 2533 ic->ic_opmode == IEEE80211_M_IBSS || 2534 sc->sc_swbmiss || sc->sc_scanning) 2535 rfilt |= HAL_RX_FILTER_BEACON; 2536 /* 2537 * NB: We don't recalculate the rx filter when 2538 * ic_protmode changes; otherwise we could do 2539 * this only when ic_protmode != NONE. 2540 */ 2541 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 2542 IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) 2543 rfilt |= HAL_RX_FILTER_BEACON; 2544 2545 /* 2546 * Enable hardware PS-POLL RX only for hostap mode; 2547 * STA mode sends PS-POLL frames but never 2548 * receives them. 2549 */ 2550 if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL, 2551 0, NULL) == HAL_OK && 2552 ic->ic_opmode == IEEE80211_M_HOSTAP) 2553 rfilt |= HAL_RX_FILTER_PSPOLL; 2554 2555 if (sc->sc_nmeshvaps) { 2556 rfilt |= HAL_RX_FILTER_BEACON; 2557 if (sc->sc_hasbmatch) 2558 rfilt |= HAL_RX_FILTER_BSSID; 2559 else 2560 rfilt |= HAL_RX_FILTER_PROM; 2561 } 2562 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2563 rfilt |= HAL_RX_FILTER_CONTROL; 2564 2565 /* 2566 * Enable RX of compressed BAR frames only when doing 2567 * 802.11n. Required for A-MPDU. 2568 */ 2569 if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) 2570 rfilt |= HAL_RX_FILTER_COMPBAR; 2571 2572 /* 2573 * Enable radar PHY errors if requested by the 2574 * DFS module. 2575 */ 2576 if (sc->sc_dodfs) 2577 rfilt |= HAL_RX_FILTER_PHYRADAR; 2578 2579 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n", 2580 __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags); 2581 return rfilt; 2582 } 2583 2584 static void 2585 ath_update_promisc(struct ifnet *ifp) 2586 { 2587 struct ath_softc *sc = ifp->if_softc; 2588 u_int32_t rfilt; 2589 2590 /* configure rx filter */ 2591 rfilt = ath_calcrxfilter(sc); 2592 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2593 2594 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2595 } 2596 2597 static void 2598 ath_update_mcast(struct ifnet *ifp) 2599 { 2600 struct ath_softc *sc = ifp->if_softc; 2601 u_int32_t mfilt[2]; 2602 2603 /* calculate and install multicast filter */ 2604 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2605 struct ifmultiaddr *ifma; 2606 /* 2607 * Merge multicast addresses to form the hardware filter. 2608 */ 2609 mfilt[0] = mfilt[1] = 0; 2610 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2611 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2612 caddr_t dl; 2613 u_int32_t val; 2614 u_int8_t pos; 2615 2616 /* calculate XOR of eight 6bit values */ 2617 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2618 val = LE_READ_4(dl + 0); 2619 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2620 val = LE_READ_4(dl + 3); 2621 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2622 pos &= 0x3f; 2623 mfilt[pos / 32] |= (1 << (pos % 32)); 2624 } 2625 if_maddr_runlock(ifp); 2626 } else 2627 mfilt[0] = mfilt[1] = ~0; 2628 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2629 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2630 __func__, mfilt[0], mfilt[1]); 2631 } 2632 2633 static void 2634 ath_mode_init(struct ath_softc *sc) 2635 { 2636 struct ifnet *ifp = sc->sc_ifp; 2637 struct ath_hal *ah = sc->sc_ah; 2638 u_int32_t rfilt; 2639 2640 /* configure rx filter */ 2641 rfilt = ath_calcrxfilter(sc); 2642 ath_hal_setrxfilter(ah, rfilt); 2643 2644 /* configure operational mode */ 2645 ath_hal_setopmode(ah); 2646 2647 /* handle any link-level address change */ 2648 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2649 2650 /* calculate and install multicast filter */ 2651 ath_update_mcast(ifp); 2652 } 2653 2654 /* 2655 * Set the slot time based on the current setting. 2656 */ 2657 static void 2658 ath_setslottime(struct ath_softc *sc) 2659 { 2660 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2661 struct ath_hal *ah = sc->sc_ah; 2662 u_int usec; 2663 2664 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2665 usec = 13; 2666 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2667 usec = 21; 2668 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2669 /* honor short/long slot time only in 11g */ 2670 /* XXX shouldn't honor on pure g or turbo g channel */ 2671 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2672 usec = HAL_SLOT_TIME_9; 2673 else 2674 usec = HAL_SLOT_TIME_20; 2675 } else 2676 usec = HAL_SLOT_TIME_9; 2677 2678 DPRINTF(sc, ATH_DEBUG_RESET, 2679 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2680 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2681 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2682 2683 ath_hal_setslottime(ah, usec); 2684 sc->sc_updateslot = OK; 2685 } 2686 2687 /* 2688 * Callback from the 802.11 layer to update the 2689 * slot time based on the current setting. 2690 */ 2691 static void 2692 ath_updateslot(struct ifnet *ifp) 2693 { 2694 struct ath_softc *sc = ifp->if_softc; 2695 struct ieee80211com *ic = ifp->if_l2com; 2696 2697 /* 2698 * When not coordinating the BSS, change the hardware 2699 * immediately. For other operation we defer the change 2700 * until beacon updates have propagated to the stations. 2701 */ 2702 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2703 ic->ic_opmode == IEEE80211_M_MBSS) 2704 sc->sc_updateslot = UPDATE; 2705 else 2706 ath_setslottime(sc); 2707 } 2708 2709 /* 2710 * Setup a h/w transmit queue for beacons. 2711 */ 2712 static int 2713 ath_beaconq_setup(struct ath_hal *ah) 2714 { 2715 HAL_TXQ_INFO qi; 2716 2717 memset(&qi, 0, sizeof(qi)); 2718 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2719 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2720 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2721 /* NB: for dynamic turbo, don't enable any other interrupts */ 2722 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2723 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2724 } 2725 2726 /* 2727 * Setup the transmit queue parameters for the beacon queue. 2728 */ 2729 static int 2730 ath_beaconq_config(struct ath_softc *sc) 2731 { 2732 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2733 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2734 struct ath_hal *ah = sc->sc_ah; 2735 HAL_TXQ_INFO qi; 2736 2737 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2738 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2739 ic->ic_opmode == IEEE80211_M_MBSS) { 2740 /* 2741 * Always burst out beacon and CAB traffic. 2742 */ 2743 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2744 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2745 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2746 } else { 2747 struct wmeParams *wmep = 2748 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2749 /* 2750 * Adhoc mode; important thing is to use 2x cwmin. 2751 */ 2752 qi.tqi_aifs = wmep->wmep_aifsn; 2753 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2754 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2755 } 2756 2757 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2758 device_printf(sc->sc_dev, "unable to update parameters for " 2759 "beacon hardware queue!\n"); 2760 return 0; 2761 } else { 2762 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2763 return 1; 2764 } 2765 #undef ATH_EXPONENT_TO_VALUE 2766 } 2767 2768 /* 2769 * Allocate and setup an initial beacon frame. 2770 */ 2771 static int 2772 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2773 { 2774 struct ieee80211vap *vap = ni->ni_vap; 2775 struct ath_vap *avp = ATH_VAP(vap); 2776 struct ath_buf *bf; 2777 struct mbuf *m; 2778 int error; 2779 2780 bf = avp->av_bcbuf; 2781 DPRINTF(sc, ATH_DEBUG_NODE, "%s: bf_m=%p, bf_node=%p\n", 2782 __func__, bf->bf_m, bf->bf_node); 2783 if (bf->bf_m != NULL) { 2784 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2785 m_freem(bf->bf_m); 2786 bf->bf_m = NULL; 2787 } 2788 if (bf->bf_node != NULL) { 2789 ieee80211_free_node(bf->bf_node); 2790 bf->bf_node = NULL; 2791 } 2792 2793 /* 2794 * NB: the beacon data buffer must be 32-bit aligned; 2795 * we assume the mbuf routines will return us something 2796 * with this alignment (perhaps should assert). 2797 */ 2798 m = ieee80211_beacon_alloc(ni, &avp->av_boff); 2799 if (m == NULL) { 2800 device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__); 2801 sc->sc_stats.ast_be_nombuf++; 2802 return ENOMEM; 2803 } 2804 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 2805 bf->bf_segs, &bf->bf_nseg, 2806 BUS_DMA_NOWAIT); 2807 if (error != 0) { 2808 device_printf(sc->sc_dev, 2809 "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n", 2810 __func__, error); 2811 m_freem(m); 2812 return error; 2813 } 2814 2815 /* 2816 * Calculate a TSF adjustment factor required for staggered 2817 * beacons. Note that we assume the format of the beacon 2818 * frame leaves the tstamp field immediately following the 2819 * header. 2820 */ 2821 if (sc->sc_stagbeacons && avp->av_bslot > 0) { 2822 uint64_t tsfadjust; 2823 struct ieee80211_frame *wh; 2824 2825 /* 2826 * The beacon interval is in TU's; the TSF is in usecs. 2827 * We figure out how many TU's to add to align the timestamp 2828 * then convert to TSF units and handle byte swapping before 2829 * inserting it in the frame. The hardware will then add this 2830 * each time a beacon frame is sent. Note that we align vap's 2831 * 1..N and leave vap 0 untouched. This means vap 0 has a 2832 * timestamp in one beacon interval while the others get a 2833 * timstamp aligned to the next interval. 2834 */ 2835 tsfadjust = ni->ni_intval * 2836 (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF; 2837 tsfadjust = htole64(tsfadjust << 10); /* TU -> TSF */ 2838 2839 DPRINTF(sc, ATH_DEBUG_BEACON, 2840 "%s: %s beacons bslot %d intval %u tsfadjust %llu\n", 2841 __func__, sc->sc_stagbeacons ? "stagger" : "burst", 2842 avp->av_bslot, ni->ni_intval, 2843 (long long unsigned) le64toh(tsfadjust)); 2844 2845 wh = mtod(m, struct ieee80211_frame *); 2846 memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust)); 2847 } 2848 bf->bf_m = m; 2849 bf->bf_node = ieee80211_ref_node(ni); 2850 2851 return 0; 2852 } 2853 2854 /* 2855 * Setup the beacon frame for transmit. 2856 */ 2857 static void 2858 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2859 { 2860 #define USE_SHPREAMBLE(_ic) \ 2861 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2862 == IEEE80211_F_SHPREAMBLE) 2863 struct ieee80211_node *ni = bf->bf_node; 2864 struct ieee80211com *ic = ni->ni_ic; 2865 struct mbuf *m = bf->bf_m; 2866 struct ath_hal *ah = sc->sc_ah; 2867 struct ath_desc *ds; 2868 int flags, antenna; 2869 const HAL_RATE_TABLE *rt; 2870 u_int8_t rix, rate; 2871 2872 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n", 2873 __func__, m, m->m_len); 2874 2875 /* setup descriptors */ 2876 ds = bf->bf_desc; 2877 bf->bf_last = bf; 2878 bf->bf_lastds = ds; 2879 2880 flags = HAL_TXDESC_NOACK; 2881 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2882 ds->ds_link = bf->bf_daddr; /* self-linked */ 2883 flags |= HAL_TXDESC_VEOL; 2884 /* 2885 * Let hardware handle antenna switching. 2886 */ 2887 antenna = sc->sc_txantenna; 2888 } else { 2889 ds->ds_link = 0; 2890 /* 2891 * Switch antenna every 4 beacons. 2892 * XXX assumes two antenna 2893 */ 2894 if (sc->sc_txantenna != 0) 2895 antenna = sc->sc_txantenna; 2896 else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0) 2897 antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1); 2898 else 2899 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2900 } 2901 2902 KASSERT(bf->bf_nseg == 1, 2903 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 2904 ds->ds_data = bf->bf_segs[0].ds_addr; 2905 /* 2906 * Calculate rate code. 2907 * XXX everything at min xmit rate 2908 */ 2909 rix = 0; 2910 rt = sc->sc_currates; 2911 rate = rt->info[rix].rateCode; 2912 if (USE_SHPREAMBLE(ic)) 2913 rate |= rt->info[rix].shortPreamble; 2914 ath_hal_setuptxdesc(ah, ds 2915 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2916 , sizeof(struct ieee80211_frame)/* header length */ 2917 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2918 , ni->ni_txpower /* txpower XXX */ 2919 , rate, 1 /* series 0 rate/tries */ 2920 , HAL_TXKEYIX_INVALID /* no encryption */ 2921 , antenna /* antenna mode */ 2922 , flags /* no ack, veol for beacons */ 2923 , 0 /* rts/cts rate */ 2924 , 0 /* rts/cts duration */ 2925 ); 2926 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2927 ath_hal_filltxdesc(ah, ds 2928 , roundup(m->m_len, 4) /* buffer length */ 2929 , AH_TRUE /* first segment */ 2930 , AH_TRUE /* last segment */ 2931 , ds /* first descriptor */ 2932 ); 2933 #if 0 2934 ath_desc_swap(ds); 2935 #endif 2936 #undef USE_SHPREAMBLE 2937 } 2938 2939 static void 2940 ath_beacon_update(struct ieee80211vap *vap, int item) 2941 { 2942 struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff; 2943 2944 setbit(bo->bo_flags, item); 2945 } 2946 2947 /* 2948 * Append the contents of src to dst; both queues 2949 * are assumed to be locked. 2950 */ 2951 static void 2952 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2953 { 2954 2955 ATH_TXQ_LOCK_ASSERT(dst); 2956 ATH_TXQ_LOCK_ASSERT(src); 2957 2958 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2959 dst->axq_link = src->axq_link; 2960 src->axq_link = NULL; 2961 dst->axq_depth += src->axq_depth; 2962 dst->axq_aggr_depth += src->axq_aggr_depth; 2963 src->axq_depth = 0; 2964 src->axq_aggr_depth = 0; 2965 } 2966 2967 /* 2968 * Transmit a beacon frame at SWBA. Dynamic updates to the 2969 * frame contents are done as needed and the slot time is 2970 * also adjusted based on current state. 2971 */ 2972 static void 2973 ath_beacon_proc(void *arg, int pending) 2974 { 2975 struct ath_softc *sc = arg; 2976 struct ath_hal *ah = sc->sc_ah; 2977 struct ieee80211vap *vap; 2978 struct ath_buf *bf; 2979 int slot, otherant; 2980 uint32_t bfaddr; 2981 2982 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2983 __func__, pending); 2984 /* 2985 * Check if the previous beacon has gone out. If 2986 * not don't try to post another, skip this period 2987 * and wait for the next. Missed beacons indicate 2988 * a problem and should not occur. If we miss too 2989 * many consecutive beacons reset the device. 2990 */ 2991 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2992 sc->sc_bmisscount++; 2993 sc->sc_stats.ast_be_missed++; 2994 DPRINTF(sc, ATH_DEBUG_BEACON, 2995 "%s: missed %u consecutive beacons\n", 2996 __func__, sc->sc_bmisscount); 2997 if (sc->sc_bmisscount >= ath_bstuck_threshold) 2998 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 2999 return; 3000 } 3001 if (sc->sc_bmisscount != 0) { 3002 DPRINTF(sc, ATH_DEBUG_BEACON, 3003 "%s: resume beacon xmit after %u misses\n", 3004 __func__, sc->sc_bmisscount); 3005 sc->sc_bmisscount = 0; 3006 } 3007 3008 if (sc->sc_stagbeacons) { /* staggered beacons */ 3009 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3010 uint32_t tsftu; 3011 3012 tsftu = ath_hal_gettsf32(ah) >> 10; 3013 /* XXX lintval */ 3014 slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval; 3015 vap = sc->sc_bslot[(slot+1) % ATH_BCBUF]; 3016 bfaddr = 0; 3017 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 3018 bf = ath_beacon_generate(sc, vap); 3019 if (bf != NULL) 3020 bfaddr = bf->bf_daddr; 3021 } 3022 } else { /* burst'd beacons */ 3023 uint32_t *bflink = &bfaddr; 3024 3025 for (slot = 0; slot < ATH_BCBUF; slot++) { 3026 vap = sc->sc_bslot[slot]; 3027 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 3028 bf = ath_beacon_generate(sc, vap); 3029 if (bf != NULL) { 3030 *bflink = bf->bf_daddr; 3031 bflink = &bf->bf_desc->ds_link; 3032 } 3033 } 3034 } 3035 *bflink = 0; /* terminate list */ 3036 } 3037 3038 /* 3039 * Handle slot time change when a non-ERP station joins/leaves 3040 * an 11g network. The 802.11 layer notifies us via callback, 3041 * we mark updateslot, then wait one beacon before effecting 3042 * the change. This gives associated stations at least one 3043 * beacon interval to note the state change. 3044 */ 3045 /* XXX locking */ 3046 if (sc->sc_updateslot == UPDATE) { 3047 sc->sc_updateslot = COMMIT; /* commit next beacon */ 3048 sc->sc_slotupdate = slot; 3049 } else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot) 3050 ath_setslottime(sc); /* commit change to h/w */ 3051 3052 /* 3053 * Check recent per-antenna transmit statistics and flip 3054 * the default antenna if noticeably more frames went out 3055 * on the non-default antenna. 3056 * XXX assumes 2 anntenae 3057 */ 3058 if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) { 3059 otherant = sc->sc_defant & 1 ? 2 : 1; 3060 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 3061 ath_setdefantenna(sc, otherant); 3062 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 3063 } 3064 3065 if (bfaddr != 0) { 3066 /* 3067 * Stop any current dma and put the new frame on the queue. 3068 * This should never fail since we check above that no frames 3069 * are still pending on the queue. 3070 */ 3071 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 3072 DPRINTF(sc, ATH_DEBUG_ANY, 3073 "%s: beacon queue %u did not stop?\n", 3074 __func__, sc->sc_bhalq); 3075 } 3076 /* NB: cabq traffic should already be queued and primed */ 3077 ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr); 3078 ath_hal_txstart(ah, sc->sc_bhalq); 3079 3080 sc->sc_stats.ast_be_xmit++; 3081 } 3082 } 3083 3084 static struct ath_buf * 3085 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap) 3086 { 3087 struct ath_vap *avp = ATH_VAP(vap); 3088 struct ath_txq *cabq = sc->sc_cabq; 3089 struct ath_buf *bf; 3090 struct mbuf *m; 3091 int nmcastq, error; 3092 3093 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 3094 ("not running, state %d", vap->iv_state)); 3095 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3096 3097 /* 3098 * Update dynamic beacon contents. If this returns 3099 * non-zero then we need to remap the memory because 3100 * the beacon frame changed size (probably because 3101 * of the TIM bitmap). 3102 */ 3103 bf = avp->av_bcbuf; 3104 m = bf->bf_m; 3105 /* XXX lock mcastq? */ 3106 nmcastq = avp->av_mcastq.axq_depth; 3107 3108 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) { 3109 /* XXX too conservative? */ 3110 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3111 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3112 bf->bf_segs, &bf->bf_nseg, 3113 BUS_DMA_NOWAIT); 3114 if (error != 0) { 3115 if_printf(vap->iv_ifp, 3116 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3117 __func__, error); 3118 return NULL; 3119 } 3120 } 3121 if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) { 3122 DPRINTF(sc, ATH_DEBUG_BEACON, 3123 "%s: cabq did not drain, mcastq %u cabq %u\n", 3124 __func__, nmcastq, cabq->axq_depth); 3125 sc->sc_stats.ast_cabq_busy++; 3126 if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) { 3127 /* 3128 * CABQ traffic from a previous vap is still pending. 3129 * We must drain the q before this beacon frame goes 3130 * out as otherwise this vap's stations will get cab 3131 * frames from a different vap. 3132 * XXX could be slow causing us to miss DBA 3133 */ 3134 ath_tx_draintxq(sc, cabq); 3135 } 3136 } 3137 ath_beacon_setup(sc, bf); 3138 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3139 3140 /* 3141 * Enable the CAB queue before the beacon queue to 3142 * insure cab frames are triggered by this beacon. 3143 */ 3144 if (avp->av_boff.bo_tim[4] & 1) { 3145 struct ath_hal *ah = sc->sc_ah; 3146 3147 /* NB: only at DTIM */ 3148 ATH_TXQ_LOCK(cabq); 3149 ATH_TXQ_LOCK(&avp->av_mcastq); 3150 if (nmcastq) { 3151 struct ath_buf *bfm; 3152 3153 /* 3154 * Move frames from the s/w mcast q to the h/w cab q. 3155 * XXX MORE_DATA bit 3156 */ 3157 bfm = TAILQ_FIRST(&avp->av_mcastq.axq_q); 3158 if (cabq->axq_link != NULL) { 3159 *cabq->axq_link = bfm->bf_daddr; 3160 } else 3161 ath_hal_puttxbuf(ah, cabq->axq_qnum, 3162 bfm->bf_daddr); 3163 ath_txqmove(cabq, &avp->av_mcastq); 3164 3165 sc->sc_stats.ast_cabq_xmit += nmcastq; 3166 } 3167 /* NB: gated by beacon so safe to start here */ 3168 if (! TAILQ_EMPTY(&(cabq->axq_q))) 3169 ath_hal_txstart(ah, cabq->axq_qnum); 3170 ATH_TXQ_UNLOCK(&avp->av_mcastq); 3171 ATH_TXQ_UNLOCK(cabq); 3172 } 3173 return bf; 3174 } 3175 3176 static void 3177 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap) 3178 { 3179 struct ath_vap *avp = ATH_VAP(vap); 3180 struct ath_hal *ah = sc->sc_ah; 3181 struct ath_buf *bf; 3182 struct mbuf *m; 3183 int error; 3184 3185 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3186 3187 /* 3188 * Update dynamic beacon contents. If this returns 3189 * non-zero then we need to remap the memory because 3190 * the beacon frame changed size (probably because 3191 * of the TIM bitmap). 3192 */ 3193 bf = avp->av_bcbuf; 3194 m = bf->bf_m; 3195 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) { 3196 /* XXX too conservative? */ 3197 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3198 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3199 bf->bf_segs, &bf->bf_nseg, 3200 BUS_DMA_NOWAIT); 3201 if (error != 0) { 3202 if_printf(vap->iv_ifp, 3203 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3204 __func__, error); 3205 return; 3206 } 3207 } 3208 ath_beacon_setup(sc, bf); 3209 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3210 3211 /* NB: caller is known to have already stopped tx dma */ 3212 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 3213 ath_hal_txstart(ah, sc->sc_bhalq); 3214 } 3215 3216 /* 3217 * Reset the hardware, with no loss. 3218 * 3219 * This can't be used for a general case reset. 3220 */ 3221 static void 3222 ath_reset_proc(void *arg, int pending) 3223 { 3224 struct ath_softc *sc = arg; 3225 struct ifnet *ifp = sc->sc_ifp; 3226 3227 #if 0 3228 if_printf(ifp, "%s: resetting\n", __func__); 3229 #endif 3230 ath_reset(ifp, ATH_RESET_NOLOSS); 3231 } 3232 3233 /* 3234 * Reset the hardware after detecting beacons have stopped. 3235 */ 3236 static void 3237 ath_bstuck_proc(void *arg, int pending) 3238 { 3239 struct ath_softc *sc = arg; 3240 struct ifnet *ifp = sc->sc_ifp; 3241 uint32_t hangs = 0; 3242 3243 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3244 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 3245 3246 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3247 sc->sc_bmisscount); 3248 sc->sc_stats.ast_bstuck++; 3249 /* 3250 * This assumes that there's no simultaneous channel mode change 3251 * occuring. 3252 */ 3253 ath_reset(ifp, ATH_RESET_NOLOSS); 3254 } 3255 3256 /* 3257 * Reclaim beacon resources and return buffer to the pool. 3258 */ 3259 static void 3260 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf) 3261 { 3262 3263 DPRINTF(sc, ATH_DEBUG_NODE, "%s: free bf=%p, bf_m=%p, bf_node=%p\n", 3264 __func__, bf, bf->bf_m, bf->bf_node); 3265 if (bf->bf_m != NULL) { 3266 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3267 m_freem(bf->bf_m); 3268 bf->bf_m = NULL; 3269 } 3270 if (bf->bf_node != NULL) { 3271 ieee80211_free_node(bf->bf_node); 3272 bf->bf_node = NULL; 3273 } 3274 TAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list); 3275 } 3276 3277 /* 3278 * Reclaim beacon resources. 3279 */ 3280 static void 3281 ath_beacon_free(struct ath_softc *sc) 3282 { 3283 struct ath_buf *bf; 3284 3285 TAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 3286 DPRINTF(sc, ATH_DEBUG_NODE, 3287 "%s: free bf=%p, bf_m=%p, bf_node=%p\n", 3288 __func__, bf, bf->bf_m, bf->bf_node); 3289 if (bf->bf_m != NULL) { 3290 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3291 m_freem(bf->bf_m); 3292 bf->bf_m = NULL; 3293 } 3294 if (bf->bf_node != NULL) { 3295 ieee80211_free_node(bf->bf_node); 3296 bf->bf_node = NULL; 3297 } 3298 } 3299 } 3300 3301 /* 3302 * Configure the beacon and sleep timers. 3303 * 3304 * When operating as an AP this resets the TSF and sets 3305 * up the hardware to notify us when we need to issue beacons. 3306 * 3307 * When operating in station mode this sets up the beacon 3308 * timers according to the timestamp of the last received 3309 * beacon and the current TSF, configures PCF and DTIM 3310 * handling, programs the sleep registers so the hardware 3311 * will wakeup in time to receive beacons, and configures 3312 * the beacon miss handling so we'll receive a BMISS 3313 * interrupt when we stop seeing beacons from the AP 3314 * we've associated with. 3315 */ 3316 static void 3317 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap) 3318 { 3319 #define TSF_TO_TU(_h,_l) \ 3320 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 3321 #define FUDGE 2 3322 struct ath_hal *ah = sc->sc_ah; 3323 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3324 struct ieee80211_node *ni; 3325 u_int32_t nexttbtt, intval, tsftu; 3326 u_int64_t tsf; 3327 3328 if (vap == NULL) 3329 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 3330 ni = ieee80211_ref_node(vap->iv_bss); 3331 3332 /* extract tstamp from last beacon and convert to TU */ 3333 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 3334 LE_READ_4(ni->ni_tstamp.data)); 3335 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3336 ic->ic_opmode == IEEE80211_M_MBSS) { 3337 /* 3338 * For multi-bss ap/mesh support beacons are either staggered 3339 * evenly over N slots or burst together. For the former 3340 * arrange for the SWBA to be delivered for each slot. 3341 * Slots that are not occupied will generate nothing. 3342 */ 3343 /* NB: the beacon interval is kept internally in TU's */ 3344 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3345 if (sc->sc_stagbeacons) 3346 intval /= ATH_BCBUF; 3347 } else { 3348 /* NB: the beacon interval is kept internally in TU's */ 3349 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3350 } 3351 if (nexttbtt == 0) /* e.g. for ap mode */ 3352 nexttbtt = intval; 3353 else if (intval) /* NB: can be 0 for monitor mode */ 3354 nexttbtt = roundup(nexttbtt, intval); 3355 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 3356 __func__, nexttbtt, intval, ni->ni_intval); 3357 if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) { 3358 HAL_BEACON_STATE bs; 3359 int dtimperiod, dtimcount; 3360 int cfpperiod, cfpcount; 3361 3362 /* 3363 * Setup dtim and cfp parameters according to 3364 * last beacon we received (which may be none). 3365 */ 3366 dtimperiod = ni->ni_dtim_period; 3367 if (dtimperiod <= 0) /* NB: 0 if not known */ 3368 dtimperiod = 1; 3369 dtimcount = ni->ni_dtim_count; 3370 if (dtimcount >= dtimperiod) /* NB: sanity check */ 3371 dtimcount = 0; /* XXX? */ 3372 cfpperiod = 1; /* NB: no PCF support yet */ 3373 cfpcount = 0; 3374 /* 3375 * Pull nexttbtt forward to reflect the current 3376 * TSF and calculate dtim+cfp state for the result. 3377 */ 3378 tsf = ath_hal_gettsf64(ah); 3379 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3380 do { 3381 nexttbtt += intval; 3382 if (--dtimcount < 0) { 3383 dtimcount = dtimperiod - 1; 3384 if (--cfpcount < 0) 3385 cfpcount = cfpperiod - 1; 3386 } 3387 } while (nexttbtt < tsftu); 3388 memset(&bs, 0, sizeof(bs)); 3389 bs.bs_intval = intval; 3390 bs.bs_nexttbtt = nexttbtt; 3391 bs.bs_dtimperiod = dtimperiod*intval; 3392 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 3393 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 3394 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 3395 bs.bs_cfpmaxduration = 0; 3396 #if 0 3397 /* 3398 * The 802.11 layer records the offset to the DTIM 3399 * bitmap while receiving beacons; use it here to 3400 * enable h/w detection of our AID being marked in 3401 * the bitmap vector (to indicate frames for us are 3402 * pending at the AP). 3403 * XXX do DTIM handling in s/w to WAR old h/w bugs 3404 * XXX enable based on h/w rev for newer chips 3405 */ 3406 bs.bs_timoffset = ni->ni_timoff; 3407 #endif 3408 /* 3409 * Calculate the number of consecutive beacons to miss 3410 * before taking a BMISS interrupt. 3411 * Note that we clamp the result to at most 10 beacons. 3412 */ 3413 bs.bs_bmissthreshold = vap->iv_bmissthreshold; 3414 if (bs.bs_bmissthreshold > 10) 3415 bs.bs_bmissthreshold = 10; 3416 else if (bs.bs_bmissthreshold <= 0) 3417 bs.bs_bmissthreshold = 1; 3418 3419 /* 3420 * Calculate sleep duration. The configuration is 3421 * given in ms. We insure a multiple of the beacon 3422 * period is used. Also, if the sleep duration is 3423 * greater than the DTIM period then it makes senses 3424 * to make it a multiple of that. 3425 * 3426 * XXX fixed at 100ms 3427 */ 3428 bs.bs_sleepduration = 3429 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 3430 if (bs.bs_sleepduration > bs.bs_dtimperiod) 3431 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 3432 3433 DPRINTF(sc, ATH_DEBUG_BEACON, 3434 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 3435 , __func__ 3436 , tsf, tsftu 3437 , bs.bs_intval 3438 , bs.bs_nexttbtt 3439 , bs.bs_dtimperiod 3440 , bs.bs_nextdtim 3441 , bs.bs_bmissthreshold 3442 , bs.bs_sleepduration 3443 , bs.bs_cfpperiod 3444 , bs.bs_cfpmaxduration 3445 , bs.bs_cfpnext 3446 , bs.bs_timoffset 3447 ); 3448 ath_hal_intrset(ah, 0); 3449 ath_hal_beacontimers(ah, &bs); 3450 sc->sc_imask |= HAL_INT_BMISS; 3451 ath_hal_intrset(ah, sc->sc_imask); 3452 } else { 3453 ath_hal_intrset(ah, 0); 3454 if (nexttbtt == intval) 3455 intval |= HAL_BEACON_RESET_TSF; 3456 if (ic->ic_opmode == IEEE80211_M_IBSS) { 3457 /* 3458 * In IBSS mode enable the beacon timers but only 3459 * enable SWBA interrupts if we need to manually 3460 * prepare beacon frames. Otherwise we use a 3461 * self-linked tx descriptor and let the hardware 3462 * deal with things. 3463 */ 3464 intval |= HAL_BEACON_ENA; 3465 if (!sc->sc_hasveol) 3466 sc->sc_imask |= HAL_INT_SWBA; 3467 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 3468 /* 3469 * Pull nexttbtt forward to reflect 3470 * the current TSF. 3471 */ 3472 tsf = ath_hal_gettsf64(ah); 3473 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3474 do { 3475 nexttbtt += intval; 3476 } while (nexttbtt < tsftu); 3477 } 3478 ath_beaconq_config(sc); 3479 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3480 ic->ic_opmode == IEEE80211_M_MBSS) { 3481 /* 3482 * In AP/mesh mode we enable the beacon timers 3483 * and SWBA interrupts to prepare beacon frames. 3484 */ 3485 intval |= HAL_BEACON_ENA; 3486 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 3487 ath_beaconq_config(sc); 3488 } 3489 ath_hal_beaconinit(ah, nexttbtt, intval); 3490 sc->sc_bmisscount = 0; 3491 ath_hal_intrset(ah, sc->sc_imask); 3492 /* 3493 * When using a self-linked beacon descriptor in 3494 * ibss mode load it once here. 3495 */ 3496 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 3497 ath_beacon_start_adhoc(sc, vap); 3498 } 3499 sc->sc_syncbeacon = 0; 3500 ieee80211_free_node(ni); 3501 #undef FUDGE 3502 #undef TSF_TO_TU 3503 } 3504 3505 static void 3506 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3507 { 3508 bus_addr_t *paddr = (bus_addr_t*) arg; 3509 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3510 *paddr = segs->ds_addr; 3511 } 3512 3513 static int 3514 ath_descdma_setup(struct ath_softc *sc, 3515 struct ath_descdma *dd, ath_bufhead *head, 3516 const char *name, int nbuf, int ndesc) 3517 { 3518 #define DS2PHYS(_dd, _ds) \ 3519 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3520 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3521 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3522 struct ifnet *ifp = sc->sc_ifp; 3523 uint8_t *ds; 3524 struct ath_buf *bf; 3525 int i, bsize, error; 3526 int desc_len; 3527 3528 desc_len = sizeof(struct ath_desc); 3529 3530 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 3531 __func__, name, nbuf, ndesc); 3532 3533 dd->dd_name = name; 3534 dd->dd_desc_len = desc_len * nbuf * ndesc; 3535 3536 /* 3537 * Merlin work-around: 3538 * Descriptors that cross the 4KB boundary can't be used. 3539 * Assume one skipped descriptor per 4KB page. 3540 */ 3541 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3542 int numdescpage = 4096 / (desc_len * ndesc); 3543 dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096; 3544 } 3545 3546 /* 3547 * Setup DMA descriptor area. 3548 */ 3549 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3550 PAGE_SIZE, 0, /* alignment, bounds */ 3551 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3552 BUS_SPACE_MAXADDR, /* highaddr */ 3553 NULL, NULL, /* filter, filterarg */ 3554 dd->dd_desc_len, /* maxsize */ 3555 1, /* nsegments */ 3556 dd->dd_desc_len, /* maxsegsize */ 3557 BUS_DMA_ALLOCNOW, /* flags */ 3558 NULL, /* lockfunc */ 3559 NULL, /* lockarg */ 3560 &dd->dd_dmat); 3561 if (error != 0) { 3562 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3563 return error; 3564 } 3565 3566 /* allocate descriptors */ 3567 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 3568 if (error != 0) { 3569 if_printf(ifp, "unable to create dmamap for %s descriptors, " 3570 "error %u\n", dd->dd_name, error); 3571 goto fail0; 3572 } 3573 3574 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3575 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3576 &dd->dd_dmamap); 3577 if (error != 0) { 3578 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3579 "error %u\n", nbuf * ndesc, dd->dd_name, error); 3580 goto fail1; 3581 } 3582 3583 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3584 dd->dd_desc, dd->dd_desc_len, 3585 ath_load_cb, &dd->dd_desc_paddr, 3586 BUS_DMA_NOWAIT); 3587 if (error != 0) { 3588 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3589 dd->dd_name, error); 3590 goto fail2; 3591 } 3592 3593 ds = (uint8_t *) dd->dd_desc; 3594 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3595 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 3596 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 3597 3598 /* allocate rx buffers */ 3599 bsize = sizeof(struct ath_buf) * nbuf; 3600 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3601 if (bf == NULL) { 3602 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3603 dd->dd_name, bsize); 3604 goto fail3; 3605 } 3606 dd->dd_bufptr = bf; 3607 3608 TAILQ_INIT(head); 3609 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) { 3610 bf->bf_desc = (struct ath_desc *) ds; 3611 bf->bf_daddr = DS2PHYS(dd, ds); 3612 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3613 /* 3614 * Merlin WAR: Skip descriptor addresses which 3615 * cause 4KB boundary crossing along any point 3616 * in the descriptor. 3617 */ 3618 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3619 desc_len * ndesc)) { 3620 /* Start at the next page */ 3621 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3622 bf->bf_desc = (struct ath_desc *) ds; 3623 bf->bf_daddr = DS2PHYS(dd, ds); 3624 } 3625 } 3626 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3627 &bf->bf_dmamap); 3628 if (error != 0) { 3629 if_printf(ifp, "unable to create dmamap for %s " 3630 "buffer %u, error %u\n", dd->dd_name, i, error); 3631 ath_descdma_cleanup(sc, dd, head); 3632 return error; 3633 } 3634 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3635 TAILQ_INSERT_TAIL(head, bf, bf_list); 3636 } 3637 return 0; 3638 fail3: 3639 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3640 fail2: 3641 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3642 fail1: 3643 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3644 fail0: 3645 bus_dma_tag_destroy(dd->dd_dmat); 3646 memset(dd, 0, sizeof(*dd)); 3647 return error; 3648 #undef DS2PHYS 3649 #undef ATH_DESC_4KB_BOUND_CHECK 3650 } 3651 3652 static void 3653 ath_descdma_cleanup(struct ath_softc *sc, 3654 struct ath_descdma *dd, ath_bufhead *head) 3655 { 3656 struct ath_buf *bf; 3657 struct ieee80211_node *ni; 3658 3659 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3660 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3661 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3662 bus_dma_tag_destroy(dd->dd_dmat); 3663 3664 TAILQ_FOREACH(bf, head, bf_list) { 3665 if (bf->bf_m) { 3666 m_freem(bf->bf_m); 3667 bf->bf_m = NULL; 3668 } 3669 if (bf->bf_dmamap != NULL) { 3670 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3671 bf->bf_dmamap = NULL; 3672 } 3673 ni = bf->bf_node; 3674 bf->bf_node = NULL; 3675 if (ni != NULL) { 3676 /* 3677 * Reclaim node reference. 3678 */ 3679 ieee80211_free_node(ni); 3680 } 3681 } 3682 3683 TAILQ_INIT(head); 3684 free(dd->dd_bufptr, M_ATHDEV); 3685 memset(dd, 0, sizeof(*dd)); 3686 } 3687 3688 static int 3689 ath_desc_alloc(struct ath_softc *sc) 3690 { 3691 int error; 3692 3693 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 3694 "rx", ath_rxbuf, 1); 3695 if (error != 0) 3696 return error; 3697 3698 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3699 "tx", ath_txbuf, ATH_TXDESC); 3700 if (error != 0) { 3701 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3702 return error; 3703 } 3704 3705 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3706 "beacon", ATH_BCBUF, 1); 3707 if (error != 0) { 3708 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3709 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3710 return error; 3711 } 3712 return 0; 3713 } 3714 3715 static void 3716 ath_desc_free(struct ath_softc *sc) 3717 { 3718 3719 if (sc->sc_bdma.dd_desc_len != 0) 3720 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3721 if (sc->sc_txdma.dd_desc_len != 0) 3722 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3723 if (sc->sc_rxdma.dd_desc_len != 0) 3724 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3725 } 3726 3727 static struct ieee80211_node * 3728 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3729 { 3730 struct ieee80211com *ic = vap->iv_ic; 3731 struct ath_softc *sc = ic->ic_ifp->if_softc; 3732 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3733 struct ath_node *an; 3734 3735 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3736 if (an == NULL) { 3737 /* XXX stat+msg */ 3738 return NULL; 3739 } 3740 ath_rate_node_init(sc, an); 3741 3742 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3743 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3744 device_get_nameunit(sc->sc_dev), an); 3745 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3746 3747 /* XXX setup ath_tid */ 3748 ath_tx_tid_init(sc, an); 3749 3750 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3751 return &an->an_node; 3752 } 3753 3754 static void 3755 ath_node_cleanup(struct ieee80211_node *ni) 3756 { 3757 struct ieee80211com *ic = ni->ni_ic; 3758 struct ath_softc *sc = ic->ic_ifp->if_softc; 3759 3760 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3761 ath_tx_node_flush(sc, ATH_NODE(ni)); 3762 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3763 sc->sc_node_cleanup(ni); 3764 } 3765 3766 static void 3767 ath_node_free(struct ieee80211_node *ni) 3768 { 3769 struct ieee80211com *ic = ni->ni_ic; 3770 struct ath_softc *sc = ic->ic_ifp->if_softc; 3771 3772 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3773 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3774 sc->sc_node_free(ni); 3775 } 3776 3777 static void 3778 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3779 { 3780 struct ieee80211com *ic = ni->ni_ic; 3781 struct ath_softc *sc = ic->ic_ifp->if_softc; 3782 struct ath_hal *ah = sc->sc_ah; 3783 3784 *rssi = ic->ic_node_getrssi(ni); 3785 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3786 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3787 else 3788 *noise = -95; /* nominally correct */ 3789 } 3790 3791 static int 3792 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 3793 { 3794 struct ath_hal *ah = sc->sc_ah; 3795 int error; 3796 struct mbuf *m; 3797 struct ath_desc *ds; 3798 3799 m = bf->bf_m; 3800 if (m == NULL) { 3801 /* 3802 * NB: by assigning a page to the rx dma buffer we 3803 * implicitly satisfy the Atheros requirement that 3804 * this buffer be cache-line-aligned and sized to be 3805 * multiple of the cache line size. Not doing this 3806 * causes weird stuff to happen (for the 5210 at least). 3807 */ 3808 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 3809 if (m == NULL) { 3810 DPRINTF(sc, ATH_DEBUG_ANY, 3811 "%s: no mbuf/cluster\n", __func__); 3812 sc->sc_stats.ast_rx_nombuf++; 3813 return ENOMEM; 3814 } 3815 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 3816 3817 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, 3818 bf->bf_dmamap, m, 3819 bf->bf_segs, &bf->bf_nseg, 3820 BUS_DMA_NOWAIT); 3821 if (error != 0) { 3822 DPRINTF(sc, ATH_DEBUG_ANY, 3823 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n", 3824 __func__, error); 3825 sc->sc_stats.ast_rx_busdma++; 3826 m_freem(m); 3827 return error; 3828 } 3829 KASSERT(bf->bf_nseg == 1, 3830 ("multi-segment packet; nseg %u", bf->bf_nseg)); 3831 bf->bf_m = m; 3832 } 3833 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 3834 3835 /* 3836 * Setup descriptors. For receive we always terminate 3837 * the descriptor list with a self-linked entry so we'll 3838 * not get overrun under high load (as can happen with a 3839 * 5212 when ANI processing enables PHY error frames). 3840 * 3841 * To insure the last descriptor is self-linked we create 3842 * each descriptor as self-linked and add it to the end. As 3843 * each additional descriptor is added the previous self-linked 3844 * entry is ``fixed'' naturally. This should be safe even 3845 * if DMA is happening. When processing RX interrupts we 3846 * never remove/process the last, self-linked, entry on the 3847 * descriptor list. This insures the hardware always has 3848 * someplace to write a new frame. 3849 */ 3850 /* 3851 * 11N: we can no longer afford to self link the last descriptor. 3852 * MAC acknowledges BA status as long as it copies frames to host 3853 * buffer (or rx fifo). This can incorrectly acknowledge packets 3854 * to a sender if last desc is self-linked. 3855 */ 3856 ds = bf->bf_desc; 3857 if (sc->sc_rxslink) 3858 ds->ds_link = bf->bf_daddr; /* link to self */ 3859 else 3860 ds->ds_link = 0; /* terminate the list */ 3861 ds->ds_data = bf->bf_segs[0].ds_addr; 3862 ath_hal_setuprxdesc(ah, ds 3863 , m->m_len /* buffer size */ 3864 , 0 3865 ); 3866 3867 if (sc->sc_rxlink != NULL) 3868 *sc->sc_rxlink = bf->bf_daddr; 3869 sc->sc_rxlink = &ds->ds_link; 3870 return 0; 3871 } 3872 3873 /* 3874 * Extend 15-bit time stamp from rx descriptor to 3875 * a full 64-bit TSF using the specified TSF. 3876 */ 3877 static __inline u_int64_t 3878 ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf) 3879 { 3880 if ((tsf & 0x7fff) < rstamp) 3881 tsf -= 0x8000; 3882 3883 return ((tsf &~ 0x7fff) | rstamp); 3884 } 3885 3886 /* 3887 * Extend 32-bit time stamp from rx descriptor to 3888 * a full 64-bit TSF using the specified TSF. 3889 */ 3890 static __inline u_int64_t 3891 ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf) 3892 { 3893 u_int32_t tsf_low = tsf & 0xffffffff; 3894 u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp; 3895 3896 if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000)) 3897 tsf64 -= 0x100000000ULL; 3898 3899 if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000)) 3900 tsf64 += 0x100000000ULL; 3901 3902 return tsf64; 3903 } 3904 3905 /* 3906 * Extend the TSF from the RX descriptor to a full 64 bit TSF. 3907 * Earlier hardware versions only wrote the low 15 bits of the 3908 * TSF into the RX descriptor; later versions (AR5416 and up) 3909 * include the 32 bit TSF value. 3910 */ 3911 static __inline u_int64_t 3912 ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf) 3913 { 3914 if (sc->sc_rxtsf32) 3915 return ath_extend_tsf32(rstamp, tsf); 3916 else 3917 return ath_extend_tsf15(rstamp, tsf); 3918 } 3919 3920 /* 3921 * Intercept management frames to collect beacon rssi data 3922 * and to do ibss merges. 3923 */ 3924 static void 3925 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 3926 int subtype, int rssi, int nf) 3927 { 3928 struct ieee80211vap *vap = ni->ni_vap; 3929 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 3930 3931 /* 3932 * Call up first so subsequent work can use information 3933 * potentially stored in the node (e.g. for ibss merge). 3934 */ 3935 ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf); 3936 switch (subtype) { 3937 case IEEE80211_FC0_SUBTYPE_BEACON: 3938 /* update rssi statistics for use by the hal */ 3939 /* XXX unlocked check against vap->iv_bss? */ 3940 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 3941 if (sc->sc_syncbeacon && 3942 ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) { 3943 /* 3944 * Resync beacon timers using the tsf of the beacon 3945 * frame we just received. 3946 */ 3947 ath_beacon_config(sc, vap); 3948 } 3949 /* fall thru... */ 3950 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 3951 if (vap->iv_opmode == IEEE80211_M_IBSS && 3952 vap->iv_state == IEEE80211_S_RUN) { 3953 uint32_t rstamp = sc->sc_lastrs->rs_tstamp; 3954 uint64_t tsf = ath_extend_tsf(sc, rstamp, 3955 ath_hal_gettsf64(sc->sc_ah)); 3956 /* 3957 * Handle ibss merge as needed; check the tsf on the 3958 * frame before attempting the merge. The 802.11 spec 3959 * says the station should change it's bssid to match 3960 * the oldest station with the same ssid, where oldest 3961 * is determined by the tsf. Note that hardware 3962 * reconfiguration happens through callback to 3963 * ath_newstate as the state machine will go from 3964 * RUN -> RUN when this happens. 3965 */ 3966 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 3967 DPRINTF(sc, ATH_DEBUG_STATE, 3968 "ibss merge, rstamp %u tsf %ju " 3969 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 3970 (uintmax_t)ni->ni_tstamp.tsf); 3971 (void) ieee80211_ibss_merge(ni); 3972 } 3973 } 3974 break; 3975 } 3976 } 3977 3978 /* 3979 * Set the default antenna. 3980 */ 3981 static void 3982 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3983 { 3984 struct ath_hal *ah = sc->sc_ah; 3985 3986 /* XXX block beacon interrupts */ 3987 ath_hal_setdefantenna(ah, antenna); 3988 if (sc->sc_defant != antenna) 3989 sc->sc_stats.ast_ant_defswitch++; 3990 sc->sc_defant = antenna; 3991 sc->sc_rxotherant = 0; 3992 } 3993 3994 static void 3995 ath_rx_tap(struct ifnet *ifp, struct mbuf *m, 3996 const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf) 3997 { 3998 #define CHAN_HT20 htole32(IEEE80211_CHAN_HT20) 3999 #define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U) 4000 #define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D) 4001 #define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D) 4002 struct ath_softc *sc = ifp->if_softc; 4003 const HAL_RATE_TABLE *rt; 4004 uint8_t rix; 4005 4006 rt = sc->sc_currates; 4007 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 4008 rix = rt->rateCodeToIndex[rs->rs_rate]; 4009 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 4010 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 4011 #ifdef AH_SUPPORT_AR5416 4012 sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT; 4013 if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */ 4014 struct ieee80211com *ic = ifp->if_l2com; 4015 4016 if ((rs->rs_flags & HAL_RX_2040) == 0) 4017 sc->sc_rx_th.wr_chan_flags |= CHAN_HT20; 4018 else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan)) 4019 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U; 4020 else 4021 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D; 4022 if ((rs->rs_flags & HAL_RX_GI) == 0) 4023 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; 4024 } 4025 #endif 4026 sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf)); 4027 if (rs->rs_status & HAL_RXERR_CRC) 4028 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 4029 /* XXX propagate other error flags from descriptor */ 4030 sc->sc_rx_th.wr_antnoise = nf; 4031 sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi; 4032 sc->sc_rx_th.wr_antenna = rs->rs_antenna; 4033 #undef CHAN_HT 4034 #undef CHAN_HT20 4035 #undef CHAN_HT40U 4036 #undef CHAN_HT40D 4037 } 4038 4039 static void 4040 ath_handle_micerror(struct ieee80211com *ic, 4041 struct ieee80211_frame *wh, int keyix) 4042 { 4043 struct ieee80211_node *ni; 4044 4045 /* XXX recheck MIC to deal w/ chips that lie */ 4046 /* XXX discard MIC errors on !data frames */ 4047 ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh); 4048 if (ni != NULL) { 4049 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix); 4050 ieee80211_free_node(ni); 4051 } 4052 } 4053 4054 /* 4055 * Only run the RX proc if it's not already running. 4056 * Since this may get run as part of the reset/flush path, 4057 * the task can't clash with an existing, running tasklet. 4058 */ 4059 static void 4060 ath_rx_tasklet(void *arg, int npending) 4061 { 4062 struct ath_softc *sc = arg; 4063 4064 CTR1(ATH_KTR_INTR, "ath_rx_proc: pending=%d", npending); 4065 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 4066 ATH_PCU_LOCK(sc); 4067 if (sc->sc_inreset_cnt > 0) { 4068 device_printf(sc->sc_dev, 4069 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4070 ATH_PCU_UNLOCK(sc); 4071 return; 4072 } 4073 ATH_PCU_UNLOCK(sc); 4074 ath_rx_proc(sc, 1); 4075 } 4076 4077 static void 4078 ath_rx_proc(struct ath_softc *sc, int resched) 4079 { 4080 #define PA2DESC(_sc, _pa) \ 4081 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 4082 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 4083 struct ath_buf *bf; 4084 struct ifnet *ifp = sc->sc_ifp; 4085 struct ieee80211com *ic = ifp->if_l2com; 4086 struct ath_hal *ah = sc->sc_ah; 4087 struct ath_desc *ds; 4088 struct ath_rx_status *rs; 4089 struct mbuf *m; 4090 struct ieee80211_node *ni; 4091 int len, type, ngood; 4092 HAL_STATUS status; 4093 int16_t nf; 4094 u_int64_t tsf, rstamp; 4095 int npkts = 0; 4096 4097 /* XXX we must not hold the ATH_LOCK here */ 4098 ATH_UNLOCK_ASSERT(sc); 4099 ATH_PCU_UNLOCK_ASSERT(sc); 4100 4101 ATH_PCU_LOCK(sc); 4102 sc->sc_rxproc_cnt++; 4103 ATH_PCU_UNLOCK(sc); 4104 4105 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__); 4106 ngood = 0; 4107 nf = ath_hal_getchannoise(ah, sc->sc_curchan); 4108 sc->sc_stats.ast_rx_noise = nf; 4109 tsf = ath_hal_gettsf64(ah); 4110 do { 4111 bf = TAILQ_FIRST(&sc->sc_rxbuf); 4112 if (sc->sc_rxslink && bf == NULL) { /* NB: shouldn't happen */ 4113 if_printf(ifp, "%s: no buffer!\n", __func__); 4114 break; 4115 } else if (bf == NULL) { 4116 /* 4117 * End of List: 4118 * this can happen for non-self-linked RX chains 4119 */ 4120 sc->sc_stats.ast_rx_hitqueueend++; 4121 break; 4122 } 4123 m = bf->bf_m; 4124 if (m == NULL) { /* NB: shouldn't happen */ 4125 /* 4126 * If mbuf allocation failed previously there 4127 * will be no mbuf; try again to re-populate it. 4128 */ 4129 /* XXX make debug msg */ 4130 if_printf(ifp, "%s: no mbuf!\n", __func__); 4131 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 4132 goto rx_next; 4133 } 4134 ds = bf->bf_desc; 4135 if (ds->ds_link == bf->bf_daddr) { 4136 /* NB: never process the self-linked entry at the end */ 4137 sc->sc_stats.ast_rx_hitqueueend++; 4138 break; 4139 } 4140 /* XXX sync descriptor memory */ 4141 /* 4142 * Must provide the virtual address of the current 4143 * descriptor, the physical address, and the virtual 4144 * address of the next descriptor in the h/w chain. 4145 * This allows the HAL to look ahead to see if the 4146 * hardware is done with a descriptor by checking the 4147 * done bit in the following descriptor and the address 4148 * of the current descriptor the DMA engine is working 4149 * on. All this is necessary because of our use of 4150 * a self-linked list to avoid rx overruns. 4151 */ 4152 rs = &bf->bf_status.ds_rxstat; 4153 status = ath_hal_rxprocdesc(ah, ds, 4154 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 4155 #ifdef ATH_DEBUG 4156 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 4157 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 4158 #endif 4159 if (status == HAL_EINPROGRESS) 4160 break; 4161 4162 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 4163 npkts++; 4164 4165 /* 4166 * Calculate the correct 64 bit TSF given 4167 * the TSF64 register value and rs_tstamp. 4168 */ 4169 rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf); 4170 4171 /* These aren't specifically errors */ 4172 #ifdef AH_SUPPORT_AR5416 4173 if (rs->rs_flags & HAL_RX_GI) 4174 sc->sc_stats.ast_rx_halfgi++; 4175 if (rs->rs_flags & HAL_RX_2040) 4176 sc->sc_stats.ast_rx_2040++; 4177 if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE) 4178 sc->sc_stats.ast_rx_pre_crc_err++; 4179 if (rs->rs_flags & HAL_RX_DELIM_CRC_POST) 4180 sc->sc_stats.ast_rx_post_crc_err++; 4181 if (rs->rs_flags & HAL_RX_DECRYPT_BUSY) 4182 sc->sc_stats.ast_rx_decrypt_busy_err++; 4183 if (rs->rs_flags & HAL_RX_HI_RX_CHAIN) 4184 sc->sc_stats.ast_rx_hi_rx_chain++; 4185 #endif /* AH_SUPPORT_AR5416 */ 4186 4187 if (rs->rs_status != 0) { 4188 if (rs->rs_status & HAL_RXERR_CRC) 4189 sc->sc_stats.ast_rx_crcerr++; 4190 if (rs->rs_status & HAL_RXERR_FIFO) 4191 sc->sc_stats.ast_rx_fifoerr++; 4192 if (rs->rs_status & HAL_RXERR_PHY) { 4193 sc->sc_stats.ast_rx_phyerr++; 4194 /* Process DFS radar events */ 4195 if ((rs->rs_phyerr == HAL_PHYERR_RADAR) || 4196 (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) { 4197 /* Since we're touching the frame data, sync it */ 4198 bus_dmamap_sync(sc->sc_dmat, 4199 bf->bf_dmamap, 4200 BUS_DMASYNC_POSTREAD); 4201 /* Now pass it to the radar processing code */ 4202 ath_dfs_process_phy_err(sc, mtod(m, char *), rstamp, rs); 4203 } 4204 4205 /* Be suitably paranoid about receiving phy errors out of the stats array bounds */ 4206 if (rs->rs_phyerr < 64) 4207 sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++; 4208 goto rx_error; /* NB: don't count in ierrors */ 4209 } 4210 if (rs->rs_status & HAL_RXERR_DECRYPT) { 4211 /* 4212 * Decrypt error. If the error occurred 4213 * because there was no hardware key, then 4214 * let the frame through so the upper layers 4215 * can process it. This is necessary for 5210 4216 * parts which have no way to setup a ``clear'' 4217 * key cache entry. 4218 * 4219 * XXX do key cache faulting 4220 */ 4221 if (rs->rs_keyix == HAL_RXKEYIX_INVALID) 4222 goto rx_accept; 4223 sc->sc_stats.ast_rx_badcrypt++; 4224 } 4225 if (rs->rs_status & HAL_RXERR_MIC) { 4226 sc->sc_stats.ast_rx_badmic++; 4227 /* 4228 * Do minimal work required to hand off 4229 * the 802.11 header for notification. 4230 */ 4231 /* XXX frag's and qos frames */ 4232 len = rs->rs_datalen; 4233 if (len >= sizeof (struct ieee80211_frame)) { 4234 bus_dmamap_sync(sc->sc_dmat, 4235 bf->bf_dmamap, 4236 BUS_DMASYNC_POSTREAD); 4237 ath_handle_micerror(ic, 4238 mtod(m, struct ieee80211_frame *), 4239 sc->sc_splitmic ? 4240 rs->rs_keyix-32 : rs->rs_keyix); 4241 } 4242 } 4243 ifp->if_ierrors++; 4244 rx_error: 4245 /* 4246 * Cleanup any pending partial frame. 4247 */ 4248 if (sc->sc_rxpending != NULL) { 4249 m_freem(sc->sc_rxpending); 4250 sc->sc_rxpending = NULL; 4251 } 4252 /* 4253 * When a tap is present pass error frames 4254 * that have been requested. By default we 4255 * pass decrypt+mic errors but others may be 4256 * interesting (e.g. crc). 4257 */ 4258 if (ieee80211_radiotap_active(ic) && 4259 (rs->rs_status & sc->sc_monpass)) { 4260 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4261 BUS_DMASYNC_POSTREAD); 4262 /* NB: bpf needs the mbuf length setup */ 4263 len = rs->rs_datalen; 4264 m->m_pkthdr.len = m->m_len = len; 4265 bf->bf_m = NULL; 4266 ath_rx_tap(ifp, m, rs, rstamp, nf); 4267 ieee80211_radiotap_rx_all(ic, m); 4268 m_freem(m); 4269 } 4270 /* XXX pass MIC errors up for s/w reclaculation */ 4271 goto rx_next; 4272 } 4273 rx_accept: 4274 /* 4275 * Sync and unmap the frame. At this point we're 4276 * committed to passing the mbuf somewhere so clear 4277 * bf_m; this means a new mbuf must be allocated 4278 * when the rx descriptor is setup again to receive 4279 * another frame. 4280 */ 4281 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4282 BUS_DMASYNC_POSTREAD); 4283 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4284 bf->bf_m = NULL; 4285 4286 len = rs->rs_datalen; 4287 m->m_len = len; 4288 4289 if (rs->rs_more) { 4290 /* 4291 * Frame spans multiple descriptors; save 4292 * it for the next completed descriptor, it 4293 * will be used to construct a jumbogram. 4294 */ 4295 if (sc->sc_rxpending != NULL) { 4296 /* NB: max frame size is currently 2 clusters */ 4297 sc->sc_stats.ast_rx_toobig++; 4298 m_freem(sc->sc_rxpending); 4299 } 4300 m->m_pkthdr.rcvif = ifp; 4301 m->m_pkthdr.len = len; 4302 sc->sc_rxpending = m; 4303 goto rx_next; 4304 } else if (sc->sc_rxpending != NULL) { 4305 /* 4306 * This is the second part of a jumbogram, 4307 * chain it to the first mbuf, adjust the 4308 * frame length, and clear the rxpending state. 4309 */ 4310 sc->sc_rxpending->m_next = m; 4311 sc->sc_rxpending->m_pkthdr.len += len; 4312 m = sc->sc_rxpending; 4313 sc->sc_rxpending = NULL; 4314 } else { 4315 /* 4316 * Normal single-descriptor receive; setup 4317 * the rcvif and packet length. 4318 */ 4319 m->m_pkthdr.rcvif = ifp; 4320 m->m_pkthdr.len = len; 4321 } 4322 4323 /* 4324 * Validate rs->rs_antenna. 4325 * 4326 * Some users w/ AR9285 NICs have reported crashes 4327 * here because rs_antenna field is bogusly large. 4328 * Let's enforce the maximum antenna limit of 8 4329 * (and it shouldn't be hard coded, but that's a 4330 * separate problem) and if there's an issue, print 4331 * out an error and adjust rs_antenna to something 4332 * sensible. 4333 * 4334 * This code should be removed once the actual 4335 * root cause of the issue has been identified. 4336 * For example, it may be that the rs_antenna 4337 * field is only valid for the lsat frame of 4338 * an aggregate and it just happens that it is 4339 * "mostly" right. (This is a general statement - 4340 * the majority of the statistics are only valid 4341 * for the last frame in an aggregate. 4342 */ 4343 if (rs->rs_antenna > 7) { 4344 device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n", 4345 __func__, rs->rs_antenna); 4346 #ifdef ATH_DEBUG 4347 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 4348 #endif /* ATH_DEBUG */ 4349 rs->rs_antenna = 0; /* XXX better than nothing */ 4350 } 4351 4352 ifp->if_ipackets++; 4353 sc->sc_stats.ast_ant_rx[rs->rs_antenna]++; 4354 4355 /* 4356 * Populate the rx status block. When there are bpf 4357 * listeners we do the additional work to provide 4358 * complete status. Otherwise we fill in only the 4359 * material required by ieee80211_input. Note that 4360 * noise setting is filled in above. 4361 */ 4362 if (ieee80211_radiotap_active(ic)) 4363 ath_rx_tap(ifp, m, rs, rstamp, nf); 4364 4365 /* 4366 * From this point on we assume the frame is at least 4367 * as large as ieee80211_frame_min; verify that. 4368 */ 4369 if (len < IEEE80211_MIN_LEN) { 4370 if (!ieee80211_radiotap_active(ic)) { 4371 DPRINTF(sc, ATH_DEBUG_RECV, 4372 "%s: short packet %d\n", __func__, len); 4373 sc->sc_stats.ast_rx_tooshort++; 4374 } else { 4375 /* NB: in particular this captures ack's */ 4376 ieee80211_radiotap_rx_all(ic, m); 4377 } 4378 m_freem(m); 4379 goto rx_next; 4380 } 4381 4382 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 4383 const HAL_RATE_TABLE *rt = sc->sc_currates; 4384 uint8_t rix = rt->rateCodeToIndex[rs->rs_rate]; 4385 4386 ieee80211_dump_pkt(ic, mtod(m, caddr_t), len, 4387 sc->sc_hwmap[rix].ieeerate, rs->rs_rssi); 4388 } 4389 4390 m_adj(m, -IEEE80211_CRC_LEN); 4391 4392 /* 4393 * Locate the node for sender, track state, and then 4394 * pass the (referenced) node up to the 802.11 layer 4395 * for its use. 4396 */ 4397 ni = ieee80211_find_rxnode_withkey(ic, 4398 mtod(m, const struct ieee80211_frame_min *), 4399 rs->rs_keyix == HAL_RXKEYIX_INVALID ? 4400 IEEE80211_KEYIX_NONE : rs->rs_keyix); 4401 sc->sc_lastrs = rs; 4402 4403 #ifdef AH_SUPPORT_AR5416 4404 if (rs->rs_isaggr) 4405 sc->sc_stats.ast_rx_agg++; 4406 #endif /* AH_SUPPORT_AR5416 */ 4407 4408 if (ni != NULL) { 4409 /* 4410 * Only punt packets for ampdu reorder processing for 4411 * 11n nodes; net80211 enforces that M_AMPDU is only 4412 * set for 11n nodes. 4413 */ 4414 if (ni->ni_flags & IEEE80211_NODE_HT) 4415 m->m_flags |= M_AMPDU; 4416 4417 /* 4418 * Sending station is known, dispatch directly. 4419 */ 4420 type = ieee80211_input(ni, m, rs->rs_rssi, nf); 4421 ieee80211_free_node(ni); 4422 /* 4423 * Arrange to update the last rx timestamp only for 4424 * frames from our ap when operating in station mode. 4425 * This assumes the rx key is always setup when 4426 * associated. 4427 */ 4428 if (ic->ic_opmode == IEEE80211_M_STA && 4429 rs->rs_keyix != HAL_RXKEYIX_INVALID) 4430 ngood++; 4431 } else { 4432 type = ieee80211_input_all(ic, m, rs->rs_rssi, nf); 4433 } 4434 /* 4435 * Track rx rssi and do any rx antenna management. 4436 */ 4437 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi); 4438 if (sc->sc_diversity) { 4439 /* 4440 * When using fast diversity, change the default rx 4441 * antenna if diversity chooses the other antenna 3 4442 * times in a row. 4443 */ 4444 if (sc->sc_defant != rs->rs_antenna) { 4445 if (++sc->sc_rxotherant >= 3) 4446 ath_setdefantenna(sc, rs->rs_antenna); 4447 } else 4448 sc->sc_rxotherant = 0; 4449 } 4450 4451 /* Newer school diversity - kite specific for now */ 4452 /* XXX perhaps migrate the normal diversity code to this? */ 4453 if ((ah)->ah_rxAntCombDiversity) 4454 (*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz); 4455 4456 if (sc->sc_softled) { 4457 /* 4458 * Blink for any data frame. Otherwise do a 4459 * heartbeat-style blink when idle. The latter 4460 * is mainly for station mode where we depend on 4461 * periodic beacon frames to trigger the poll event. 4462 */ 4463 if (type == IEEE80211_FC0_TYPE_DATA) { 4464 const HAL_RATE_TABLE *rt = sc->sc_currates; 4465 ath_led_event(sc, 4466 rt->rateCodeToIndex[rs->rs_rate]); 4467 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 4468 ath_led_event(sc, 0); 4469 } 4470 rx_next: 4471 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 4472 } while (ath_rxbuf_init(sc, bf) == 0); 4473 4474 /* rx signal state monitoring */ 4475 ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan); 4476 if (ngood) 4477 sc->sc_lastrx = tsf; 4478 4479 CTR2(ATH_KTR_INTR, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood); 4480 /* Queue DFS tasklet if needed */ 4481 if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan)) 4482 taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask); 4483 4484 /* 4485 * Now that all the RX frames were handled that 4486 * need to be handled, kick the PCU if there's 4487 * been an RXEOL condition. 4488 */ 4489 ATH_PCU_LOCK(sc); 4490 if (resched && sc->sc_kickpcu) { 4491 CTR0(ATH_KTR_ERR, "ath_rx_proc: kickpcu"); 4492 device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n", 4493 __func__, npkts); 4494 4495 /* XXX rxslink? */ 4496 /* 4497 * XXX can we hold the PCU lock here? 4498 * Are there any net80211 buffer calls involved? 4499 */ 4500 bf = TAILQ_FIRST(&sc->sc_rxbuf); 4501 ath_hal_putrxbuf(ah, bf->bf_daddr); 4502 ath_hal_rxena(ah); /* enable recv descriptors */ 4503 ath_mode_init(sc); /* set filters, etc. */ 4504 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4505 4506 ath_hal_intrset(ah, sc->sc_imask); 4507 sc->sc_kickpcu = 0; 4508 } 4509 ATH_PCU_UNLOCK(sc); 4510 4511 /* XXX check this inside of IF_LOCK? */ 4512 if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) { 4513 #ifdef IEEE80211_SUPPORT_SUPERG 4514 ieee80211_ff_age_all(ic, 100); 4515 #endif 4516 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 4517 ath_start(ifp); 4518 } 4519 #undef PA2DESC 4520 4521 ATH_PCU_LOCK(sc); 4522 sc->sc_rxproc_cnt--; 4523 ATH_PCU_UNLOCK(sc); 4524 } 4525 4526 static void 4527 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4528 { 4529 txq->axq_qnum = qnum; 4530 txq->axq_ac = 0; 4531 txq->axq_depth = 0; 4532 txq->axq_aggr_depth = 0; 4533 txq->axq_intrcnt = 0; 4534 txq->axq_link = NULL; 4535 txq->axq_softc = sc; 4536 TAILQ_INIT(&txq->axq_q); 4537 TAILQ_INIT(&txq->axq_tidq); 4538 ATH_TXQ_LOCK_INIT(sc, txq); 4539 } 4540 4541 /* 4542 * Setup a h/w transmit queue. 4543 */ 4544 static struct ath_txq * 4545 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4546 { 4547 #define N(a) (sizeof(a)/sizeof(a[0])) 4548 struct ath_hal *ah = sc->sc_ah; 4549 HAL_TXQ_INFO qi; 4550 int qnum; 4551 4552 memset(&qi, 0, sizeof(qi)); 4553 qi.tqi_subtype = subtype; 4554 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4555 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4556 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4557 /* 4558 * Enable interrupts only for EOL and DESC conditions. 4559 * We mark tx descriptors to receive a DESC interrupt 4560 * when a tx queue gets deep; otherwise waiting for the 4561 * EOL to reap descriptors. Note that this is done to 4562 * reduce interrupt load and this only defers reaping 4563 * descriptors, never transmitting frames. Aside from 4564 * reducing interrupts this also permits more concurrency. 4565 * The only potential downside is if the tx queue backs 4566 * up in which case the top half of the kernel may backup 4567 * due to a lack of tx descriptors. 4568 */ 4569 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 4570 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4571 if (qnum == -1) { 4572 /* 4573 * NB: don't print a message, this happens 4574 * normally on parts with too few tx queues 4575 */ 4576 return NULL; 4577 } 4578 if (qnum >= N(sc->sc_txq)) { 4579 device_printf(sc->sc_dev, 4580 "hal qnum %u out of range, max %zu!\n", 4581 qnum, N(sc->sc_txq)); 4582 ath_hal_releasetxqueue(ah, qnum); 4583 return NULL; 4584 } 4585 if (!ATH_TXQ_SETUP(sc, qnum)) { 4586 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4587 sc->sc_txqsetup |= 1<<qnum; 4588 } 4589 return &sc->sc_txq[qnum]; 4590 #undef N 4591 } 4592 4593 /* 4594 * Setup a hardware data transmit queue for the specified 4595 * access control. The hal may not support all requested 4596 * queues in which case it will return a reference to a 4597 * previously setup queue. We record the mapping from ac's 4598 * to h/w queues for use by ath_tx_start and also track 4599 * the set of h/w queues being used to optimize work in the 4600 * transmit interrupt handler and related routines. 4601 */ 4602 static int 4603 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4604 { 4605 #define N(a) (sizeof(a)/sizeof(a[0])) 4606 struct ath_txq *txq; 4607 4608 if (ac >= N(sc->sc_ac2q)) { 4609 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4610 ac, N(sc->sc_ac2q)); 4611 return 0; 4612 } 4613 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4614 if (txq != NULL) { 4615 txq->axq_ac = ac; 4616 sc->sc_ac2q[ac] = txq; 4617 return 1; 4618 } else 4619 return 0; 4620 #undef N 4621 } 4622 4623 /* 4624 * Update WME parameters for a transmit queue. 4625 */ 4626 static int 4627 ath_txq_update(struct ath_softc *sc, int ac) 4628 { 4629 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4630 #define ATH_TXOP_TO_US(v) (v<<5) 4631 struct ifnet *ifp = sc->sc_ifp; 4632 struct ieee80211com *ic = ifp->if_l2com; 4633 struct ath_txq *txq = sc->sc_ac2q[ac]; 4634 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4635 struct ath_hal *ah = sc->sc_ah; 4636 HAL_TXQ_INFO qi; 4637 4638 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4639 #ifdef IEEE80211_SUPPORT_TDMA 4640 if (sc->sc_tdma) { 4641 /* 4642 * AIFS is zero so there's no pre-transmit wait. The 4643 * burst time defines the slot duration and is configured 4644 * through net80211. The QCU is setup to not do post-xmit 4645 * back off, lockout all lower-priority QCU's, and fire 4646 * off the DMA beacon alert timer which is setup based 4647 * on the slot configuration. 4648 */ 4649 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4650 | HAL_TXQ_TXERRINT_ENABLE 4651 | HAL_TXQ_TXURNINT_ENABLE 4652 | HAL_TXQ_TXEOLINT_ENABLE 4653 | HAL_TXQ_DBA_GATED 4654 | HAL_TXQ_BACKOFF_DISABLE 4655 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4656 ; 4657 qi.tqi_aifs = 0; 4658 /* XXX +dbaprep? */ 4659 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4660 qi.tqi_burstTime = qi.tqi_readyTime; 4661 } else { 4662 #endif 4663 /* 4664 * XXX shouldn't this just use the default flags 4665 * used in the previous queue setup? 4666 */ 4667 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4668 | HAL_TXQ_TXERRINT_ENABLE 4669 | HAL_TXQ_TXDESCINT_ENABLE 4670 | HAL_TXQ_TXURNINT_ENABLE 4671 | HAL_TXQ_TXEOLINT_ENABLE 4672 ; 4673 qi.tqi_aifs = wmep->wmep_aifsn; 4674 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4675 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4676 qi.tqi_readyTime = 0; 4677 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 4678 #ifdef IEEE80211_SUPPORT_TDMA 4679 } 4680 #endif 4681 4682 DPRINTF(sc, ATH_DEBUG_RESET, 4683 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4684 __func__, txq->axq_qnum, qi.tqi_qflags, 4685 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4686 4687 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4688 if_printf(ifp, "unable to update hardware queue " 4689 "parameters for %s traffic!\n", 4690 ieee80211_wme_acnames[ac]); 4691 return 0; 4692 } else { 4693 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4694 return 1; 4695 } 4696 #undef ATH_TXOP_TO_US 4697 #undef ATH_EXPONENT_TO_VALUE 4698 } 4699 4700 /* 4701 * Callback from the 802.11 layer to update WME parameters. 4702 */ 4703 static int 4704 ath_wme_update(struct ieee80211com *ic) 4705 { 4706 struct ath_softc *sc = ic->ic_ifp->if_softc; 4707 4708 return !ath_txq_update(sc, WME_AC_BE) || 4709 !ath_txq_update(sc, WME_AC_BK) || 4710 !ath_txq_update(sc, WME_AC_VI) || 4711 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4712 } 4713 4714 /* 4715 * Reclaim resources for a setup queue. 4716 */ 4717 static void 4718 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4719 { 4720 4721 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4722 ATH_TXQ_LOCK_DESTROY(txq); 4723 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4724 } 4725 4726 /* 4727 * Reclaim all tx queue resources. 4728 */ 4729 static void 4730 ath_tx_cleanup(struct ath_softc *sc) 4731 { 4732 int i; 4733 4734 ATH_TXBUF_LOCK_DESTROY(sc); 4735 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4736 if (ATH_TXQ_SETUP(sc, i)) 4737 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4738 } 4739 4740 /* 4741 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4742 * using the current rates in sc_rixmap. 4743 */ 4744 int 4745 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4746 { 4747 int rix = sc->sc_rixmap[rate]; 4748 /* NB: return lowest rix for invalid rate */ 4749 return (rix == 0xff ? 0 : rix); 4750 } 4751 4752 static void 4753 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4754 struct ath_buf *bf) 4755 { 4756 struct ieee80211_node *ni = bf->bf_node; 4757 struct ifnet *ifp = sc->sc_ifp; 4758 struct ieee80211com *ic = ifp->if_l2com; 4759 int sr, lr, pri; 4760 4761 if (ts->ts_status == 0) { 4762 u_int8_t txant = ts->ts_antenna; 4763 sc->sc_stats.ast_ant_tx[txant]++; 4764 sc->sc_ant_tx[txant]++; 4765 if (ts->ts_finaltsi != 0) 4766 sc->sc_stats.ast_tx_altrate++; 4767 pri = M_WME_GETAC(bf->bf_m); 4768 if (pri >= WME_AC_VO) 4769 ic->ic_wme.wme_hipri_traffic++; 4770 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4771 ni->ni_inact = ni->ni_inact_reload; 4772 } else { 4773 if (ts->ts_status & HAL_TXERR_XRETRY) 4774 sc->sc_stats.ast_tx_xretries++; 4775 if (ts->ts_status & HAL_TXERR_FIFO) 4776 sc->sc_stats.ast_tx_fifoerr++; 4777 if (ts->ts_status & HAL_TXERR_FILT) 4778 sc->sc_stats.ast_tx_filtered++; 4779 if (ts->ts_status & HAL_TXERR_XTXOP) 4780 sc->sc_stats.ast_tx_xtxop++; 4781 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4782 sc->sc_stats.ast_tx_timerexpired++; 4783 4784 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 4785 sc->sc_stats.ast_tx_data_underrun++; 4786 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 4787 sc->sc_stats.ast_tx_delim_underrun++; 4788 4789 if (bf->bf_m->m_flags & M_FF) 4790 sc->sc_stats.ast_ff_txerr++; 4791 } 4792 /* XXX when is this valid? */ 4793 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 4794 sc->sc_stats.ast_tx_desccfgerr++; 4795 4796 sr = ts->ts_shortretry; 4797 lr = ts->ts_longretry; 4798 sc->sc_stats.ast_tx_shortretry += sr; 4799 sc->sc_stats.ast_tx_longretry += lr; 4800 4801 } 4802 4803 /* 4804 * The default completion. If fail is 1, this means 4805 * "please don't retry the frame, and just return -1 status 4806 * to the net80211 stack. 4807 */ 4808 void 4809 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4810 { 4811 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4812 int st; 4813 4814 if (fail == 1) 4815 st = -1; 4816 else 4817 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4818 ts->ts_status : HAL_TXERR_XRETRY; 4819 4820 if (bf->bf_state.bfs_dobaw) 4821 device_printf(sc->sc_dev, 4822 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4823 __func__, 4824 bf, 4825 SEQNO(bf->bf_state.bfs_seqno)); 4826 if (bf->bf_next != NULL) 4827 device_printf(sc->sc_dev, 4828 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4829 __func__, 4830 bf, 4831 SEQNO(bf->bf_state.bfs_seqno)); 4832 4833 /* 4834 * Do any tx complete callback. Note this must 4835 * be done before releasing the node reference. 4836 * This will free the mbuf, release the net80211 4837 * node and recycle the ath_buf. 4838 */ 4839 ath_tx_freebuf(sc, bf, st); 4840 } 4841 4842 /* 4843 * Update rate control with the given completion status. 4844 */ 4845 void 4846 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4847 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4848 int nframes, int nbad) 4849 { 4850 struct ath_node *an; 4851 4852 /* Only for unicast frames */ 4853 if (ni == NULL) 4854 return; 4855 4856 an = ATH_NODE(ni); 4857 4858 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4859 ATH_NODE_LOCK(an); 4860 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4861 ATH_NODE_UNLOCK(an); 4862 } 4863 } 4864 4865 /* 4866 * Update the busy status of the last frame on the free list. 4867 * When doing TDMA, the busy flag tracks whether the hardware 4868 * currently points to this buffer or not, and thus gated DMA 4869 * may restart by re-reading the last descriptor in this 4870 * buffer. 4871 * 4872 * This should be called in the completion function once one 4873 * of the buffers has been used. 4874 */ 4875 static void 4876 ath_tx_update_busy(struct ath_softc *sc) 4877 { 4878 struct ath_buf *last; 4879 4880 /* 4881 * Since the last frame may still be marked 4882 * as ATH_BUF_BUSY, unmark it here before 4883 * finishing the frame processing. 4884 * Since we've completed a frame (aggregate 4885 * or otherwise), the hardware has moved on 4886 * and is no longer referencing the previous 4887 * descriptor. 4888 */ 4889 ATH_TXBUF_LOCK_ASSERT(sc); 4890 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4891 if (last != NULL) 4892 last->bf_flags &= ~ATH_BUF_BUSY; 4893 } 4894 4895 4896 /* 4897 * Process completed xmit descriptors from the specified queue. 4898 * Kick the packet scheduler if needed. This can occur from this 4899 * particular task. 4900 */ 4901 static int 4902 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4903 { 4904 struct ath_hal *ah = sc->sc_ah; 4905 struct ath_buf *bf; 4906 struct ath_desc *ds; 4907 struct ath_tx_status *ts; 4908 struct ieee80211_node *ni; 4909 struct ath_node *an; 4910 #ifdef IEEE80211_SUPPORT_SUPERG 4911 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4912 #endif /* IEEE80211_SUPPORT_SUPERG */ 4913 int nacked; 4914 HAL_STATUS status; 4915 4916 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4917 __func__, txq->axq_qnum, 4918 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4919 txq->axq_link); 4920 nacked = 0; 4921 for (;;) { 4922 ATH_TXQ_LOCK(txq); 4923 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4924 bf = TAILQ_FIRST(&txq->axq_q); 4925 if (bf == NULL) { 4926 ATH_TXQ_UNLOCK(txq); 4927 break; 4928 } 4929 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4930 ts = &bf->bf_status.ds_txstat; 4931 status = ath_hal_txprocdesc(ah, ds, ts); 4932 #ifdef ATH_DEBUG 4933 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4934 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4935 status == HAL_OK); 4936 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) { 4937 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4938 status == HAL_OK); 4939 } 4940 #endif 4941 if (status == HAL_EINPROGRESS) { 4942 ATH_TXQ_UNLOCK(txq); 4943 break; 4944 } 4945 ATH_TXQ_REMOVE(txq, bf, bf_list); 4946 #ifdef IEEE80211_SUPPORT_TDMA 4947 if (txq->axq_depth > 0) { 4948 /* 4949 * More frames follow. Mark the buffer busy 4950 * so it's not re-used while the hardware may 4951 * still re-read the link field in the descriptor. 4952 * 4953 * Use the last buffer in an aggregate as that 4954 * is where the hardware may be - intermediate 4955 * descriptors won't be "busy". 4956 */ 4957 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4958 } else 4959 #else 4960 if (txq->axq_depth == 0) 4961 #endif 4962 txq->axq_link = NULL; 4963 if (bf->bf_state.bfs_aggr) 4964 txq->axq_aggr_depth--; 4965 4966 ni = bf->bf_node; 4967 /* 4968 * If unicast frame was ack'd update RSSI, 4969 * including the last rx time used to 4970 * workaround phantom bmiss interrupts. 4971 */ 4972 if (ni != NULL && ts->ts_status == 0 && 4973 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4974 nacked++; 4975 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4976 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4977 ts->ts_rssi); 4978 } 4979 ATH_TXQ_UNLOCK(txq); 4980 4981 /* If unicast frame, update general statistics */ 4982 if (ni != NULL) { 4983 an = ATH_NODE(ni); 4984 /* update statistics */ 4985 ath_tx_update_stats(sc, ts, bf); 4986 } 4987 4988 /* 4989 * Call the completion handler. 4990 * The completion handler is responsible for 4991 * calling the rate control code. 4992 * 4993 * Frames with no completion handler get the 4994 * rate control code called here. 4995 */ 4996 if (bf->bf_comp == NULL) { 4997 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4998 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4999 /* 5000 * XXX assume this isn't an aggregate 5001 * frame. 5002 */ 5003 ath_tx_update_ratectrl(sc, ni, 5004 bf->bf_state.bfs_rc, ts, 5005 bf->bf_state.bfs_pktlen, 1, 5006 (ts->ts_status == 0 ? 0 : 1)); 5007 } 5008 ath_tx_default_comp(sc, bf, 0); 5009 } else 5010 bf->bf_comp(sc, bf, 0); 5011 } 5012 #ifdef IEEE80211_SUPPORT_SUPERG 5013 /* 5014 * Flush fast-frame staging queue when traffic slows. 5015 */ 5016 if (txq->axq_depth <= 1) 5017 ieee80211_ff_flush(ic, txq->axq_ac); 5018 #endif 5019 5020 /* Kick the TXQ scheduler */ 5021 if (dosched) { 5022 ATH_TXQ_LOCK(txq); 5023 ath_txq_sched(sc, txq); 5024 ATH_TXQ_UNLOCK(txq); 5025 } 5026 5027 return nacked; 5028 } 5029 5030 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 5031 5032 /* 5033 * Deferred processing of transmit interrupt; special-cased 5034 * for a single hardware transmit queue (e.g. 5210 and 5211). 5035 */ 5036 static void 5037 ath_tx_proc_q0(void *arg, int npending) 5038 { 5039 struct ath_softc *sc = arg; 5040 struct ifnet *ifp = sc->sc_ifp; 5041 uint32_t txqs; 5042 5043 ATH_PCU_LOCK(sc); 5044 sc->sc_txproc_cnt++; 5045 txqs = sc->sc_txq_active; 5046 sc->sc_txq_active &= ~txqs; 5047 ATH_PCU_UNLOCK(sc); 5048 5049 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 5050 /* XXX why is lastrx updated in tx code? */ 5051 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 5052 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 5053 ath_tx_processq(sc, sc->sc_cabq, 1); 5054 IF_LOCK(&ifp->if_snd); 5055 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5056 IF_UNLOCK(&ifp->if_snd); 5057 sc->sc_wd_timer = 0; 5058 5059 if (sc->sc_softled) 5060 ath_led_event(sc, sc->sc_txrix); 5061 5062 ATH_PCU_LOCK(sc); 5063 sc->sc_txproc_cnt--; 5064 ATH_PCU_UNLOCK(sc); 5065 5066 ath_start(ifp); 5067 } 5068 5069 /* 5070 * Deferred processing of transmit interrupt; special-cased 5071 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 5072 */ 5073 static void 5074 ath_tx_proc_q0123(void *arg, int npending) 5075 { 5076 struct ath_softc *sc = arg; 5077 struct ifnet *ifp = sc->sc_ifp; 5078 int nacked; 5079 uint32_t txqs; 5080 5081 ATH_PCU_LOCK(sc); 5082 sc->sc_txproc_cnt++; 5083 txqs = sc->sc_txq_active; 5084 sc->sc_txq_active &= ~txqs; 5085 ATH_PCU_UNLOCK(sc); 5086 5087 /* 5088 * Process each active queue. 5089 */ 5090 nacked = 0; 5091 if (TXQACTIVE(txqs, 0)) 5092 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 5093 if (TXQACTIVE(txqs, 1)) 5094 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 5095 if (TXQACTIVE(txqs, 2)) 5096 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 5097 if (TXQACTIVE(txqs, 3)) 5098 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 5099 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 5100 ath_tx_processq(sc, sc->sc_cabq, 1); 5101 if (nacked) 5102 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 5103 5104 IF_LOCK(&ifp->if_snd); 5105 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5106 IF_UNLOCK(&ifp->if_snd); 5107 sc->sc_wd_timer = 0; 5108 5109 if (sc->sc_softled) 5110 ath_led_event(sc, sc->sc_txrix); 5111 5112 ATH_PCU_LOCK(sc); 5113 sc->sc_txproc_cnt--; 5114 ATH_PCU_UNLOCK(sc); 5115 5116 ath_start(ifp); 5117 } 5118 5119 /* 5120 * Deferred processing of transmit interrupt. 5121 */ 5122 static void 5123 ath_tx_proc(void *arg, int npending) 5124 { 5125 struct ath_softc *sc = arg; 5126 struct ifnet *ifp = sc->sc_ifp; 5127 int i, nacked; 5128 uint32_t txqs; 5129 5130 ATH_PCU_LOCK(sc); 5131 sc->sc_txproc_cnt++; 5132 txqs = sc->sc_txq_active; 5133 sc->sc_txq_active &= ~txqs; 5134 ATH_PCU_UNLOCK(sc); 5135 5136 /* 5137 * Process each active queue. 5138 */ 5139 nacked = 0; 5140 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5141 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 5142 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 5143 if (nacked) 5144 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 5145 5146 /* XXX check this inside of IF_LOCK? */ 5147 IF_LOCK(&ifp->if_snd); 5148 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5149 IF_UNLOCK(&ifp->if_snd); 5150 sc->sc_wd_timer = 0; 5151 5152 if (sc->sc_softled) 5153 ath_led_event(sc, sc->sc_txrix); 5154 5155 ATH_PCU_LOCK(sc); 5156 sc->sc_txproc_cnt--; 5157 ATH_PCU_UNLOCK(sc); 5158 5159 ath_start(ifp); 5160 } 5161 #undef TXQACTIVE 5162 5163 /* 5164 * Deferred processing of TXQ rescheduling. 5165 */ 5166 static void 5167 ath_txq_sched_tasklet(void *arg, int npending) 5168 { 5169 struct ath_softc *sc = arg; 5170 int i; 5171 5172 /* XXX is skipping ok? */ 5173 ATH_PCU_LOCK(sc); 5174 #if 0 5175 if (sc->sc_inreset_cnt > 0) { 5176 device_printf(sc->sc_dev, 5177 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 5178 ATH_PCU_UNLOCK(sc); 5179 return; 5180 } 5181 #endif 5182 sc->sc_txproc_cnt++; 5183 ATH_PCU_UNLOCK(sc); 5184 5185 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5186 if (ATH_TXQ_SETUP(sc, i)) { 5187 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5188 ath_txq_sched(sc, &sc->sc_txq[i]); 5189 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5190 } 5191 } 5192 5193 ATH_PCU_LOCK(sc); 5194 sc->sc_txproc_cnt--; 5195 ATH_PCU_UNLOCK(sc); 5196 } 5197 5198 /* 5199 * Return a buffer to the pool and update the 'busy' flag on the 5200 * previous 'tail' entry. 5201 * 5202 * This _must_ only be called when the buffer is involved in a completed 5203 * TX. The logic is that if it was part of an active TX, the previous 5204 * buffer on the list is now not involved in a halted TX DMA queue, waiting 5205 * for restart (eg for TDMA.) 5206 * 5207 * The caller must free the mbuf and recycle the node reference. 5208 */ 5209 void 5210 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 5211 { 5212 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 5213 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 5214 5215 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 5216 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 5217 5218 ATH_TXBUF_LOCK(sc); 5219 ath_tx_update_busy(sc); 5220 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 5221 ATH_TXBUF_UNLOCK(sc); 5222 } 5223 5224 /* 5225 * This is currently used by ath_tx_draintxq() and 5226 * ath_tx_tid_free_pkts(). 5227 * 5228 * It recycles a single ath_buf. 5229 */ 5230 void 5231 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 5232 { 5233 struct ieee80211_node *ni = bf->bf_node; 5234 struct mbuf *m0 = bf->bf_m; 5235 5236 bf->bf_node = NULL; 5237 bf->bf_m = NULL; 5238 5239 /* Free the buffer, it's not needed any longer */ 5240 ath_freebuf(sc, bf); 5241 5242 if (ni != NULL) { 5243 /* 5244 * Do any callback and reclaim the node reference. 5245 */ 5246 if (m0->m_flags & M_TXCB) 5247 ieee80211_process_callback(ni, m0, status); 5248 ieee80211_free_node(ni); 5249 } 5250 m_freem(m0); 5251 5252 /* 5253 * XXX the buffer used to be freed -after-, but the DMA map was 5254 * freed where ath_freebuf() now is. I've no idea what this 5255 * will do. 5256 */ 5257 } 5258 5259 void 5260 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5261 { 5262 #ifdef ATH_DEBUG 5263 struct ath_hal *ah = sc->sc_ah; 5264 #endif 5265 struct ath_buf *bf; 5266 u_int ix; 5267 5268 /* 5269 * NB: this assumes output has been stopped and 5270 * we do not need to block ath_tx_proc 5271 */ 5272 ATH_TXBUF_LOCK(sc); 5273 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 5274 if (bf != NULL) 5275 bf->bf_flags &= ~ATH_BUF_BUSY; 5276 ATH_TXBUF_UNLOCK(sc); 5277 5278 for (ix = 0;; ix++) { 5279 ATH_TXQ_LOCK(txq); 5280 bf = TAILQ_FIRST(&txq->axq_q); 5281 if (bf == NULL) { 5282 txq->axq_link = NULL; 5283 ATH_TXQ_UNLOCK(txq); 5284 break; 5285 } 5286 ATH_TXQ_REMOVE(txq, bf, bf_list); 5287 if (bf->bf_state.bfs_aggr) 5288 txq->axq_aggr_depth--; 5289 #ifdef ATH_DEBUG 5290 if (sc->sc_debug & ATH_DEBUG_RESET) { 5291 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5292 5293 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, 5294 ath_hal_txprocdesc(ah, bf->bf_lastds, 5295 &bf->bf_status.ds_txstat) == HAL_OK); 5296 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5297 bf->bf_m->m_len, 0, -1); 5298 } 5299 #endif /* ATH_DEBUG */ 5300 /* 5301 * Since we're now doing magic in the completion 5302 * functions, we -must- call it for aggregation 5303 * destinations or BAW tracking will get upset. 5304 */ 5305 /* 5306 * Clear ATH_BUF_BUSY; the completion handler 5307 * will free the buffer. 5308 */ 5309 ATH_TXQ_UNLOCK(txq); 5310 bf->bf_flags &= ~ATH_BUF_BUSY; 5311 if (bf->bf_comp) 5312 bf->bf_comp(sc, bf, 1); 5313 else 5314 ath_tx_default_comp(sc, bf, 1); 5315 } 5316 5317 /* 5318 * Drain software queued frames which are on 5319 * active TIDs. 5320 */ 5321 ath_tx_txq_drain(sc, txq); 5322 } 5323 5324 static void 5325 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5326 { 5327 struct ath_hal *ah = sc->sc_ah; 5328 5329 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5330 __func__, txq->axq_qnum, 5331 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5332 txq->axq_link); 5333 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5334 } 5335 5336 static int 5337 ath_stoptxdma(struct ath_softc *sc) 5338 { 5339 struct ath_hal *ah = sc->sc_ah; 5340 int i; 5341 5342 /* XXX return value */ 5343 if (sc->sc_invalid) 5344 return 0; 5345 5346 if (!sc->sc_invalid) { 5347 /* don't touch the hardware if marked invalid */ 5348 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5349 __func__, sc->sc_bhalq, 5350 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5351 NULL); 5352 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5353 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5354 if (ATH_TXQ_SETUP(sc, i)) 5355 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5356 } 5357 5358 return 1; 5359 } 5360 5361 /* 5362 * Drain the transmit queues and reclaim resources. 5363 */ 5364 static void 5365 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5366 { 5367 #ifdef ATH_DEBUG 5368 struct ath_hal *ah = sc->sc_ah; 5369 #endif 5370 struct ifnet *ifp = sc->sc_ifp; 5371 int i; 5372 5373 (void) ath_stoptxdma(sc); 5374 5375 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5376 /* 5377 * XXX TODO: should we just handle the completed TX frames 5378 * here, whether or not the reset is a full one or not? 5379 */ 5380 if (ATH_TXQ_SETUP(sc, i)) { 5381 if (reset_type == ATH_RESET_NOLOSS) 5382 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5383 else 5384 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5385 } 5386 } 5387 #ifdef ATH_DEBUG 5388 if (sc->sc_debug & ATH_DEBUG_RESET) { 5389 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5390 if (bf != NULL && bf->bf_m != NULL) { 5391 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5392 ath_hal_txprocdesc(ah, bf->bf_lastds, 5393 &bf->bf_status.ds_txstat) == HAL_OK); 5394 ieee80211_dump_pkt(ifp->if_l2com, 5395 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5396 0, -1); 5397 } 5398 } 5399 #endif /* ATH_DEBUG */ 5400 IF_LOCK(&ifp->if_snd); 5401 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5402 IF_UNLOCK(&ifp->if_snd); 5403 sc->sc_wd_timer = 0; 5404 } 5405 5406 /* 5407 * Disable the receive h/w in preparation for a reset. 5408 */ 5409 static void 5410 ath_stoprecv(struct ath_softc *sc, int dodelay) 5411 { 5412 #define PA2DESC(_sc, _pa) \ 5413 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 5414 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 5415 struct ath_hal *ah = sc->sc_ah; 5416 5417 ath_hal_stoppcurecv(ah); /* disable PCU */ 5418 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 5419 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 5420 /* 5421 * TODO: see if this particular DELAY() is required; it may be 5422 * masking some missing FIFO flush or DMA sync. 5423 */ 5424 if (dodelay) 5425 DELAY(3000); /* 3ms is long enough for 1 frame */ 5426 #ifdef ATH_DEBUG 5427 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 5428 struct ath_buf *bf; 5429 u_int ix; 5430 5431 device_printf(sc->sc_dev, 5432 "%s: rx queue %p, link %p\n", 5433 __func__, 5434 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), 5435 sc->sc_rxlink); 5436 ix = 0; 5437 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5438 struct ath_desc *ds = bf->bf_desc; 5439 struct ath_rx_status *rs = &bf->bf_status.ds_rxstat; 5440 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 5441 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 5442 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 5443 ath_printrxbuf(sc, bf, ix, status == HAL_OK); 5444 ix++; 5445 } 5446 } 5447 #endif 5448 if (sc->sc_rxpending != NULL) { 5449 m_freem(sc->sc_rxpending); 5450 sc->sc_rxpending = NULL; 5451 } 5452 sc->sc_rxlink = NULL; /* just in case */ 5453 #undef PA2DESC 5454 } 5455 5456 /* 5457 * Enable the receive h/w following a reset. 5458 */ 5459 static int 5460 ath_startrecv(struct ath_softc *sc) 5461 { 5462 struct ath_hal *ah = sc->sc_ah; 5463 struct ath_buf *bf; 5464 5465 sc->sc_rxlink = NULL; 5466 sc->sc_rxpending = NULL; 5467 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5468 int error = ath_rxbuf_init(sc, bf); 5469 if (error != 0) { 5470 DPRINTF(sc, ATH_DEBUG_RECV, 5471 "%s: ath_rxbuf_init failed %d\n", 5472 __func__, error); 5473 return error; 5474 } 5475 } 5476 5477 bf = TAILQ_FIRST(&sc->sc_rxbuf); 5478 ath_hal_putrxbuf(ah, bf->bf_daddr); 5479 ath_hal_rxena(ah); /* enable recv descriptors */ 5480 ath_mode_init(sc); /* set filters, etc. */ 5481 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 5482 return 0; 5483 } 5484 5485 /* 5486 * Update internal state after a channel change. 5487 */ 5488 static void 5489 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5490 { 5491 enum ieee80211_phymode mode; 5492 5493 /* 5494 * Change channels and update the h/w rate map 5495 * if we're switching; e.g. 11a to 11b/g. 5496 */ 5497 mode = ieee80211_chan2mode(chan); 5498 if (mode != sc->sc_curmode) 5499 ath_setcurmode(sc, mode); 5500 sc->sc_curchan = chan; 5501 } 5502 5503 /* 5504 * Set/change channels. If the channel is really being changed, 5505 * it's done by resetting the chip. To accomplish this we must 5506 * first cleanup any pending DMA, then restart stuff after a la 5507 * ath_init. 5508 */ 5509 static int 5510 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5511 { 5512 struct ifnet *ifp = sc->sc_ifp; 5513 struct ieee80211com *ic = ifp->if_l2com; 5514 struct ath_hal *ah = sc->sc_ah; 5515 int ret = 0; 5516 5517 /* Treat this as an interface reset */ 5518 ATH_PCU_UNLOCK_ASSERT(sc); 5519 ATH_UNLOCK_ASSERT(sc); 5520 5521 /* (Try to) stop TX/RX from occuring */ 5522 taskqueue_block(sc->sc_tq); 5523 5524 ATH_PCU_LOCK(sc); 5525 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 5526 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 5527 if (ath_reset_grablock(sc, 1) == 0) { 5528 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5529 __func__); 5530 } 5531 ATH_PCU_UNLOCK(sc); 5532 5533 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5534 __func__, ieee80211_chan2ieee(ic, chan), 5535 chan->ic_freq, chan->ic_flags); 5536 if (chan != sc->sc_curchan) { 5537 HAL_STATUS status; 5538 /* 5539 * To switch channels clear any pending DMA operations; 5540 * wait long enough for the RX fifo to drain, reset the 5541 * hardware at the new frequency, and then re-enable 5542 * the relevant bits of the h/w. 5543 */ 5544 #if 0 5545 ath_hal_intrset(ah, 0); /* disable interrupts */ 5546 #endif 5547 ath_stoprecv(sc, 1); /* turn off frame recv */ 5548 /* 5549 * First, handle completed TX/RX frames. 5550 */ 5551 ath_rx_proc(sc, 0); 5552 ath_draintxq(sc, ATH_RESET_NOLOSS); 5553 /* 5554 * Next, flush the non-scheduled frames. 5555 */ 5556 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5557 5558 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 5559 if_printf(ifp, "%s: unable to reset " 5560 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5561 __func__, ieee80211_chan2ieee(ic, chan), 5562 chan->ic_freq, chan->ic_flags, status); 5563 ret = EIO; 5564 goto finish; 5565 } 5566 sc->sc_diversity = ath_hal_getdiversity(ah); 5567 5568 /* Let DFS at it in case it's a DFS channel */ 5569 ath_dfs_radar_enable(sc, chan); 5570 5571 /* 5572 * Re-enable rx framework. 5573 */ 5574 if (ath_startrecv(sc) != 0) { 5575 if_printf(ifp, "%s: unable to restart recv logic\n", 5576 __func__); 5577 ret = EIO; 5578 goto finish; 5579 } 5580 5581 /* 5582 * Change channels and update the h/w rate map 5583 * if we're switching; e.g. 11a to 11b/g. 5584 */ 5585 ath_chan_change(sc, chan); 5586 5587 /* 5588 * Reset clears the beacon timers; reset them 5589 * here if needed. 5590 */ 5591 if (sc->sc_beacons) { /* restart beacons */ 5592 #ifdef IEEE80211_SUPPORT_TDMA 5593 if (sc->sc_tdma) 5594 ath_tdma_config(sc, NULL); 5595 else 5596 #endif 5597 ath_beacon_config(sc, NULL); 5598 } 5599 5600 /* 5601 * Re-enable interrupts. 5602 */ 5603 #if 0 5604 ath_hal_intrset(ah, sc->sc_imask); 5605 #endif 5606 } 5607 5608 finish: 5609 ATH_PCU_LOCK(sc); 5610 sc->sc_inreset_cnt--; 5611 /* XXX only do this if sc_inreset_cnt == 0? */ 5612 ath_hal_intrset(ah, sc->sc_imask); 5613 ATH_PCU_UNLOCK(sc); 5614 5615 IF_LOCK(&ifp->if_snd); 5616 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5617 IF_UNLOCK(&ifp->if_snd); 5618 ath_txrx_start(sc); 5619 /* XXX ath_start? */ 5620 5621 return ret; 5622 } 5623 5624 /* 5625 * Periodically recalibrate the PHY to account 5626 * for temperature/environment changes. 5627 */ 5628 static void 5629 ath_calibrate(void *arg) 5630 { 5631 struct ath_softc *sc = arg; 5632 struct ath_hal *ah = sc->sc_ah; 5633 struct ifnet *ifp = sc->sc_ifp; 5634 struct ieee80211com *ic = ifp->if_l2com; 5635 HAL_BOOL longCal, isCalDone; 5636 HAL_BOOL aniCal, shortCal = AH_FALSE; 5637 int nextcal; 5638 5639 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5640 goto restart; 5641 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5642 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5643 if (sc->sc_doresetcal) 5644 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5645 5646 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5647 if (aniCal) { 5648 sc->sc_stats.ast_ani_cal++; 5649 sc->sc_lastani = ticks; 5650 ath_hal_ani_poll(ah, sc->sc_curchan); 5651 } 5652 5653 if (longCal) { 5654 sc->sc_stats.ast_per_cal++; 5655 sc->sc_lastlongcal = ticks; 5656 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5657 /* 5658 * Rfgain is out of bounds, reset the chip 5659 * to load new gain values. 5660 */ 5661 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5662 "%s: rfgain change\n", __func__); 5663 sc->sc_stats.ast_per_rfgain++; 5664 sc->sc_resetcal = 0; 5665 sc->sc_doresetcal = AH_TRUE; 5666 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5667 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5668 return; 5669 } 5670 /* 5671 * If this long cal is after an idle period, then 5672 * reset the data collection state so we start fresh. 5673 */ 5674 if (sc->sc_resetcal) { 5675 (void) ath_hal_calreset(ah, sc->sc_curchan); 5676 sc->sc_lastcalreset = ticks; 5677 sc->sc_lastshortcal = ticks; 5678 sc->sc_resetcal = 0; 5679 sc->sc_doresetcal = AH_TRUE; 5680 } 5681 } 5682 5683 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5684 if (shortCal || longCal) { 5685 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5686 if (longCal) { 5687 /* 5688 * Calibrate noise floor data again in case of change. 5689 */ 5690 ath_hal_process_noisefloor(ah); 5691 } 5692 } else { 5693 DPRINTF(sc, ATH_DEBUG_ANY, 5694 "%s: calibration of channel %u failed\n", 5695 __func__, sc->sc_curchan->ic_freq); 5696 sc->sc_stats.ast_per_calfail++; 5697 } 5698 if (shortCal) 5699 sc->sc_lastshortcal = ticks; 5700 } 5701 if (!isCalDone) { 5702 restart: 5703 /* 5704 * Use a shorter interval to potentially collect multiple 5705 * data samples required to complete calibration. Once 5706 * we're told the work is done we drop back to a longer 5707 * interval between requests. We're more aggressive doing 5708 * work when operating as an AP to improve operation right 5709 * after startup. 5710 */ 5711 sc->sc_lastshortcal = ticks; 5712 nextcal = ath_shortcalinterval*hz/1000; 5713 if (sc->sc_opmode != HAL_M_HOSTAP) 5714 nextcal *= 10; 5715 sc->sc_doresetcal = AH_TRUE; 5716 } else { 5717 /* nextcal should be the shortest time for next event */ 5718 nextcal = ath_longcalinterval*hz; 5719 if (sc->sc_lastcalreset == 0) 5720 sc->sc_lastcalreset = sc->sc_lastlongcal; 5721 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5722 sc->sc_resetcal = 1; /* setup reset next trip */ 5723 sc->sc_doresetcal = AH_FALSE; 5724 } 5725 /* ANI calibration may occur more often than short/long/resetcal */ 5726 if (ath_anicalinterval > 0) 5727 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5728 5729 if (nextcal != 0) { 5730 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5731 __func__, nextcal, isCalDone ? "" : "!"); 5732 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5733 } else { 5734 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5735 __func__); 5736 /* NB: don't rearm timer */ 5737 } 5738 } 5739 5740 static void 5741 ath_scan_start(struct ieee80211com *ic) 5742 { 5743 struct ifnet *ifp = ic->ic_ifp; 5744 struct ath_softc *sc = ifp->if_softc; 5745 struct ath_hal *ah = sc->sc_ah; 5746 u_int32_t rfilt; 5747 5748 /* XXX calibration timer? */ 5749 5750 ATH_LOCK(sc); 5751 sc->sc_scanning = 1; 5752 sc->sc_syncbeacon = 0; 5753 rfilt = ath_calcrxfilter(sc); 5754 ATH_UNLOCK(sc); 5755 5756 ATH_PCU_LOCK(sc); 5757 ath_hal_setrxfilter(ah, rfilt); 5758 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5759 ATH_PCU_UNLOCK(sc); 5760 5761 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5762 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5763 } 5764 5765 static void 5766 ath_scan_end(struct ieee80211com *ic) 5767 { 5768 struct ifnet *ifp = ic->ic_ifp; 5769 struct ath_softc *sc = ifp->if_softc; 5770 struct ath_hal *ah = sc->sc_ah; 5771 u_int32_t rfilt; 5772 5773 ATH_LOCK(sc); 5774 sc->sc_scanning = 0; 5775 rfilt = ath_calcrxfilter(sc); 5776 ATH_UNLOCK(sc); 5777 5778 ATH_PCU_LOCK(sc); 5779 ath_hal_setrxfilter(ah, rfilt); 5780 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5781 5782 ath_hal_process_noisefloor(ah); 5783 ATH_PCU_UNLOCK(sc); 5784 5785 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5786 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5787 sc->sc_curaid); 5788 } 5789 5790 #ifdef ATH_ENABLE_11N 5791 /* 5792 * For now, just do a channel change. 5793 * 5794 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5795 * control state and resetting the hardware without dropping frames out 5796 * of the queue. 5797 * 5798 * The unfortunate trouble here is making absolutely sure that the 5799 * channel width change has propagated enough so the hardware 5800 * absolutely isn't handed bogus frames for it's current operating 5801 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5802 * does occur in parallel, we need to make certain we've blocked 5803 * any further ongoing TX (and RX, that can cause raw TX) 5804 * before we do this. 5805 */ 5806 static void 5807 ath_update_chw(struct ieee80211com *ic) 5808 { 5809 struct ifnet *ifp = ic->ic_ifp; 5810 struct ath_softc *sc = ifp->if_softc; 5811 5812 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5813 ath_set_channel(ic); 5814 } 5815 #endif /* ATH_ENABLE_11N */ 5816 5817 static void 5818 ath_set_channel(struct ieee80211com *ic) 5819 { 5820 struct ifnet *ifp = ic->ic_ifp; 5821 struct ath_softc *sc = ifp->if_softc; 5822 5823 (void) ath_chan_set(sc, ic->ic_curchan); 5824 /* 5825 * If we are returning to our bss channel then mark state 5826 * so the next recv'd beacon's tsf will be used to sync the 5827 * beacon timers. Note that since we only hear beacons in 5828 * sta/ibss mode this has no effect in other operating modes. 5829 */ 5830 ATH_LOCK(sc); 5831 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5832 sc->sc_syncbeacon = 1; 5833 ATH_UNLOCK(sc); 5834 } 5835 5836 /* 5837 * Walk the vap list and check if there any vap's in RUN state. 5838 */ 5839 static int 5840 ath_isanyrunningvaps(struct ieee80211vap *this) 5841 { 5842 struct ieee80211com *ic = this->iv_ic; 5843 struct ieee80211vap *vap; 5844 5845 IEEE80211_LOCK_ASSERT(ic); 5846 5847 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5848 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5849 return 1; 5850 } 5851 return 0; 5852 } 5853 5854 static int 5855 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5856 { 5857 struct ieee80211com *ic = vap->iv_ic; 5858 struct ath_softc *sc = ic->ic_ifp->if_softc; 5859 struct ath_vap *avp = ATH_VAP(vap); 5860 struct ath_hal *ah = sc->sc_ah; 5861 struct ieee80211_node *ni = NULL; 5862 int i, error, stamode; 5863 u_int32_t rfilt; 5864 int csa_run_transition = 0; 5865 static const HAL_LED_STATE leds[] = { 5866 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5867 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5868 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5869 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5870 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5871 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5872 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5873 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5874 }; 5875 5876 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5877 ieee80211_state_name[vap->iv_state], 5878 ieee80211_state_name[nstate]); 5879 5880 /* 5881 * net80211 _should_ have the comlock asserted at this point. 5882 * There are some comments around the calls to vap->iv_newstate 5883 * which indicate that it (newstate) may end up dropping the 5884 * lock. This and the subsequent lock assert check after newstate 5885 * are an attempt to catch these and figure out how/why. 5886 */ 5887 IEEE80211_LOCK_ASSERT(ic); 5888 5889 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5890 csa_run_transition = 1; 5891 5892 callout_drain(&sc->sc_cal_ch); 5893 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5894 5895 if (nstate == IEEE80211_S_SCAN) { 5896 /* 5897 * Scanning: turn off beacon miss and don't beacon. 5898 * Mark beacon state so when we reach RUN state we'll 5899 * [re]setup beacons. Unblock the task q thread so 5900 * deferred interrupt processing is done. 5901 */ 5902 ath_hal_intrset(ah, 5903 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5904 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5905 sc->sc_beacons = 0; 5906 taskqueue_unblock(sc->sc_tq); 5907 } 5908 5909 ni = ieee80211_ref_node(vap->iv_bss); 5910 rfilt = ath_calcrxfilter(sc); 5911 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5912 vap->iv_opmode == IEEE80211_M_AHDEMO || 5913 vap->iv_opmode == IEEE80211_M_IBSS); 5914 if (stamode && nstate == IEEE80211_S_RUN) { 5915 sc->sc_curaid = ni->ni_associd; 5916 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5917 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5918 } 5919 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5920 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5921 ath_hal_setrxfilter(ah, rfilt); 5922 5923 /* XXX is this to restore keycache on resume? */ 5924 if (vap->iv_opmode != IEEE80211_M_STA && 5925 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5926 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5927 if (ath_hal_keyisvalid(ah, i)) 5928 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5929 } 5930 5931 /* 5932 * Invoke the parent method to do net80211 work. 5933 */ 5934 error = avp->av_newstate(vap, nstate, arg); 5935 if (error != 0) 5936 goto bad; 5937 5938 /* 5939 * See above: ensure av_newstate() doesn't drop the lock 5940 * on us. 5941 */ 5942 IEEE80211_LOCK_ASSERT(ic); 5943 5944 if (nstate == IEEE80211_S_RUN) { 5945 /* NB: collect bss node again, it may have changed */ 5946 ieee80211_free_node(ni); 5947 ni = ieee80211_ref_node(vap->iv_bss); 5948 5949 DPRINTF(sc, ATH_DEBUG_STATE, 5950 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5951 "capinfo 0x%04x chan %d\n", __func__, 5952 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5953 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5954 5955 switch (vap->iv_opmode) { 5956 #ifdef IEEE80211_SUPPORT_TDMA 5957 case IEEE80211_M_AHDEMO: 5958 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5959 break; 5960 /* fall thru... */ 5961 #endif 5962 case IEEE80211_M_HOSTAP: 5963 case IEEE80211_M_IBSS: 5964 case IEEE80211_M_MBSS: 5965 /* 5966 * Allocate and setup the beacon frame. 5967 * 5968 * Stop any previous beacon DMA. This may be 5969 * necessary, for example, when an ibss merge 5970 * causes reconfiguration; there will be a state 5971 * transition from RUN->RUN that means we may 5972 * be called with beacon transmission active. 5973 */ 5974 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5975 5976 error = ath_beacon_alloc(sc, ni); 5977 if (error != 0) 5978 goto bad; 5979 /* 5980 * If joining an adhoc network defer beacon timer 5981 * configuration to the next beacon frame so we 5982 * have a current TSF to use. Otherwise we're 5983 * starting an ibss/bss so there's no need to delay; 5984 * if this is the first vap moving to RUN state, then 5985 * beacon state needs to be [re]configured. 5986 */ 5987 if (vap->iv_opmode == IEEE80211_M_IBSS && 5988 ni->ni_tstamp.tsf != 0) { 5989 sc->sc_syncbeacon = 1; 5990 } else if (!sc->sc_beacons) { 5991 #ifdef IEEE80211_SUPPORT_TDMA 5992 if (vap->iv_caps & IEEE80211_C_TDMA) 5993 ath_tdma_config(sc, vap); 5994 else 5995 #endif 5996 ath_beacon_config(sc, vap); 5997 sc->sc_beacons = 1; 5998 } 5999 break; 6000 case IEEE80211_M_STA: 6001 /* 6002 * Defer beacon timer configuration to the next 6003 * beacon frame so we have a current TSF to use 6004 * (any TSF collected when scanning is likely old). 6005 * However if it's due to a CSA -> RUN transition, 6006 * force a beacon update so we pick up a lack of 6007 * beacons from an AP in CAC and thus force a 6008 * scan. 6009 */ 6010 sc->sc_syncbeacon = 1; 6011 if (csa_run_transition) 6012 ath_beacon_config(sc, vap); 6013 break; 6014 case IEEE80211_M_MONITOR: 6015 /* 6016 * Monitor mode vaps have only INIT->RUN and RUN->RUN 6017 * transitions so we must re-enable interrupts here to 6018 * handle the case of a single monitor mode vap. 6019 */ 6020 ath_hal_intrset(ah, sc->sc_imask); 6021 break; 6022 case IEEE80211_M_WDS: 6023 break; 6024 default: 6025 break; 6026 } 6027 /* 6028 * Let the hal process statistics collected during a 6029 * scan so it can provide calibrated noise floor data. 6030 */ 6031 ath_hal_process_noisefloor(ah); 6032 /* 6033 * Reset rssi stats; maybe not the best place... 6034 */ 6035 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 6036 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 6037 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 6038 /* 6039 * Finally, start any timers and the task q thread 6040 * (in case we didn't go through SCAN state). 6041 */ 6042 if (ath_longcalinterval != 0) { 6043 /* start periodic recalibration timer */ 6044 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6045 } else { 6046 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6047 "%s: calibration disabled\n", __func__); 6048 } 6049 taskqueue_unblock(sc->sc_tq); 6050 } else if (nstate == IEEE80211_S_INIT) { 6051 /* 6052 * If there are no vaps left in RUN state then 6053 * shutdown host/driver operation: 6054 * o disable interrupts 6055 * o disable the task queue thread 6056 * o mark beacon processing as stopped 6057 */ 6058 if (!ath_isanyrunningvaps(vap)) { 6059 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 6060 /* disable interrupts */ 6061 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 6062 taskqueue_block(sc->sc_tq); 6063 sc->sc_beacons = 0; 6064 } 6065 #ifdef IEEE80211_SUPPORT_TDMA 6066 ath_hal_setcca(ah, AH_TRUE); 6067 #endif 6068 } 6069 bad: 6070 ieee80211_free_node(ni); 6071 return error; 6072 } 6073 6074 /* 6075 * Allocate a key cache slot to the station so we can 6076 * setup a mapping from key index to node. The key cache 6077 * slot is needed for managing antenna state and for 6078 * compression when stations do not use crypto. We do 6079 * it uniliaterally here; if crypto is employed this slot 6080 * will be reassigned. 6081 */ 6082 static void 6083 ath_setup_stationkey(struct ieee80211_node *ni) 6084 { 6085 struct ieee80211vap *vap = ni->ni_vap; 6086 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6087 ieee80211_keyix keyix, rxkeyix; 6088 6089 /* XXX should take a locked ref to vap->iv_bss */ 6090 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 6091 /* 6092 * Key cache is full; we'll fall back to doing 6093 * the more expensive lookup in software. Note 6094 * this also means no h/w compression. 6095 */ 6096 /* XXX msg+statistic */ 6097 } else { 6098 /* XXX locking? */ 6099 ni->ni_ucastkey.wk_keyix = keyix; 6100 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 6101 /* NB: must mark device key to get called back on delete */ 6102 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 6103 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 6104 /* NB: this will create a pass-thru key entry */ 6105 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 6106 } 6107 } 6108 6109 /* 6110 * Setup driver-specific state for a newly associated node. 6111 * Note that we're called also on a re-associate, the isnew 6112 * param tells us if this is the first time or not. 6113 */ 6114 static void 6115 ath_newassoc(struct ieee80211_node *ni, int isnew) 6116 { 6117 struct ath_node *an = ATH_NODE(ni); 6118 struct ieee80211vap *vap = ni->ni_vap; 6119 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6120 const struct ieee80211_txparam *tp = ni->ni_txparms; 6121 6122 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 6123 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 6124 6125 ath_rate_newassoc(sc, an, isnew); 6126 if (isnew && 6127 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6128 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6129 ath_setup_stationkey(ni); 6130 } 6131 6132 static int 6133 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6134 int nchans, struct ieee80211_channel chans[]) 6135 { 6136 struct ath_softc *sc = ic->ic_ifp->if_softc; 6137 struct ath_hal *ah = sc->sc_ah; 6138 HAL_STATUS status; 6139 6140 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6141 "%s: rd %u cc %u location %c%s\n", 6142 __func__, reg->regdomain, reg->country, reg->location, 6143 reg->ecm ? " ecm" : ""); 6144 6145 status = ath_hal_set_channels(ah, chans, nchans, 6146 reg->country, reg->regdomain); 6147 if (status != HAL_OK) { 6148 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6149 __func__, status); 6150 return EINVAL; /* XXX */ 6151 } 6152 6153 return 0; 6154 } 6155 6156 static void 6157 ath_getradiocaps(struct ieee80211com *ic, 6158 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6159 { 6160 struct ath_softc *sc = ic->ic_ifp->if_softc; 6161 struct ath_hal *ah = sc->sc_ah; 6162 6163 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6164 __func__, SKU_DEBUG, CTRY_DEFAULT); 6165 6166 /* XXX check return */ 6167 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6168 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6169 6170 } 6171 6172 static int 6173 ath_getchannels(struct ath_softc *sc) 6174 { 6175 struct ifnet *ifp = sc->sc_ifp; 6176 struct ieee80211com *ic = ifp->if_l2com; 6177 struct ath_hal *ah = sc->sc_ah; 6178 HAL_STATUS status; 6179 6180 /* 6181 * Collect channel set based on EEPROM contents. 6182 */ 6183 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6184 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6185 if (status != HAL_OK) { 6186 if_printf(ifp, "%s: unable to collect channel list from hal, " 6187 "status %d\n", __func__, status); 6188 return EINVAL; 6189 } 6190 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6191 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6192 /* XXX map Atheros sku's to net80211 SKU's */ 6193 /* XXX net80211 types too small */ 6194 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6195 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6196 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6197 ic->ic_regdomain.isocc[1] = ' '; 6198 6199 ic->ic_regdomain.ecm = 1; 6200 ic->ic_regdomain.location = 'I'; 6201 6202 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6203 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6204 __func__, sc->sc_eerd, sc->sc_eecc, 6205 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6206 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6207 return 0; 6208 } 6209 6210 static int 6211 ath_rate_setup(struct ath_softc *sc, u_int mode) 6212 { 6213 struct ath_hal *ah = sc->sc_ah; 6214 const HAL_RATE_TABLE *rt; 6215 6216 switch (mode) { 6217 case IEEE80211_MODE_11A: 6218 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6219 break; 6220 case IEEE80211_MODE_HALF: 6221 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6222 break; 6223 case IEEE80211_MODE_QUARTER: 6224 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6225 break; 6226 case IEEE80211_MODE_11B: 6227 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6228 break; 6229 case IEEE80211_MODE_11G: 6230 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6231 break; 6232 case IEEE80211_MODE_TURBO_A: 6233 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6234 break; 6235 case IEEE80211_MODE_TURBO_G: 6236 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6237 break; 6238 case IEEE80211_MODE_STURBO_A: 6239 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6240 break; 6241 case IEEE80211_MODE_11NA: 6242 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6243 break; 6244 case IEEE80211_MODE_11NG: 6245 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6246 break; 6247 default: 6248 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6249 __func__, mode); 6250 return 0; 6251 } 6252 sc->sc_rates[mode] = rt; 6253 return (rt != NULL); 6254 } 6255 6256 static void 6257 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6258 { 6259 #define N(a) (sizeof(a)/sizeof(a[0])) 6260 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6261 static const struct { 6262 u_int rate; /* tx/rx 802.11 rate */ 6263 u_int16_t timeOn; /* LED on time (ms) */ 6264 u_int16_t timeOff; /* LED off time (ms) */ 6265 } blinkrates[] = { 6266 { 108, 40, 10 }, 6267 { 96, 44, 11 }, 6268 { 72, 50, 13 }, 6269 { 48, 57, 14 }, 6270 { 36, 67, 16 }, 6271 { 24, 80, 20 }, 6272 { 22, 100, 25 }, 6273 { 18, 133, 34 }, 6274 { 12, 160, 40 }, 6275 { 10, 200, 50 }, 6276 { 6, 240, 58 }, 6277 { 4, 267, 66 }, 6278 { 2, 400, 100 }, 6279 { 0, 500, 130 }, 6280 /* XXX half/quarter rates */ 6281 }; 6282 const HAL_RATE_TABLE *rt; 6283 int i, j; 6284 6285 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6286 rt = sc->sc_rates[mode]; 6287 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6288 for (i = 0; i < rt->rateCount; i++) { 6289 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6290 if (rt->info[i].phy != IEEE80211_T_HT) 6291 sc->sc_rixmap[ieeerate] = i; 6292 else 6293 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6294 } 6295 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6296 for (i = 0; i < N(sc->sc_hwmap); i++) { 6297 if (i >= rt->rateCount) { 6298 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6299 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6300 continue; 6301 } 6302 sc->sc_hwmap[i].ieeerate = 6303 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6304 if (rt->info[i].phy == IEEE80211_T_HT) 6305 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6306 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6307 if (rt->info[i].shortPreamble || 6308 rt->info[i].phy == IEEE80211_T_OFDM) 6309 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6310 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6311 for (j = 0; j < N(blinkrates)-1; j++) 6312 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6313 break; 6314 /* NB: this uses the last entry if the rate isn't found */ 6315 /* XXX beware of overlow */ 6316 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6317 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6318 } 6319 sc->sc_currates = rt; 6320 sc->sc_curmode = mode; 6321 /* 6322 * All protection frames are transmited at 2Mb/s for 6323 * 11g, otherwise at 1Mb/s. 6324 */ 6325 if (mode == IEEE80211_MODE_11G) 6326 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6327 else 6328 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6329 /* NB: caller is responsible for resetting rate control state */ 6330 #undef N 6331 } 6332 6333 static void 6334 ath_watchdog(void *arg) 6335 { 6336 struct ath_softc *sc = arg; 6337 int do_reset = 0; 6338 6339 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6340 struct ifnet *ifp = sc->sc_ifp; 6341 uint32_t hangs; 6342 6343 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6344 hangs != 0) { 6345 if_printf(ifp, "%s hang detected (0x%x)\n", 6346 hangs & 0xff ? "bb" : "mac", hangs); 6347 } else 6348 if_printf(ifp, "device timeout\n"); 6349 do_reset = 1; 6350 ifp->if_oerrors++; 6351 sc->sc_stats.ast_watchdog++; 6352 } 6353 6354 /* 6355 * We can't hold the lock across the ath_reset() call. 6356 * 6357 * And since this routine can't hold a lock and sleep, 6358 * do the reset deferred. 6359 */ 6360 if (do_reset) { 6361 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6362 } 6363 6364 callout_schedule(&sc->sc_wd_ch, hz); 6365 } 6366 6367 #ifdef ATH_DIAGAPI 6368 /* 6369 * Diagnostic interface to the HAL. This is used by various 6370 * tools to do things like retrieve register contents for 6371 * debugging. The mechanism is intentionally opaque so that 6372 * it can change frequently w/o concern for compatiblity. 6373 */ 6374 static int 6375 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6376 { 6377 struct ath_hal *ah = sc->sc_ah; 6378 u_int id = ad->ad_id & ATH_DIAG_ID; 6379 void *indata = NULL; 6380 void *outdata = NULL; 6381 u_int32_t insize = ad->ad_in_size; 6382 u_int32_t outsize = ad->ad_out_size; 6383 int error = 0; 6384 6385 if (ad->ad_id & ATH_DIAG_IN) { 6386 /* 6387 * Copy in data. 6388 */ 6389 indata = malloc(insize, M_TEMP, M_NOWAIT); 6390 if (indata == NULL) { 6391 error = ENOMEM; 6392 goto bad; 6393 } 6394 error = copyin(ad->ad_in_data, indata, insize); 6395 if (error) 6396 goto bad; 6397 } 6398 if (ad->ad_id & ATH_DIAG_DYN) { 6399 /* 6400 * Allocate a buffer for the results (otherwise the HAL 6401 * returns a pointer to a buffer where we can read the 6402 * results). Note that we depend on the HAL leaving this 6403 * pointer for us to use below in reclaiming the buffer; 6404 * may want to be more defensive. 6405 */ 6406 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6407 if (outdata == NULL) { 6408 error = ENOMEM; 6409 goto bad; 6410 } 6411 } 6412 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6413 if (outsize < ad->ad_out_size) 6414 ad->ad_out_size = outsize; 6415 if (outdata != NULL) 6416 error = copyout(outdata, ad->ad_out_data, 6417 ad->ad_out_size); 6418 } else { 6419 error = EINVAL; 6420 } 6421 bad: 6422 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6423 free(indata, M_TEMP); 6424 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6425 free(outdata, M_TEMP); 6426 return error; 6427 } 6428 #endif /* ATH_DIAGAPI */ 6429 6430 static int 6431 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 6432 { 6433 #define IS_RUNNING(ifp) \ 6434 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 6435 struct ath_softc *sc = ifp->if_softc; 6436 struct ieee80211com *ic = ifp->if_l2com; 6437 struct ifreq *ifr = (struct ifreq *)data; 6438 const HAL_RATE_TABLE *rt; 6439 int error = 0; 6440 6441 switch (cmd) { 6442 case SIOCSIFFLAGS: 6443 ATH_LOCK(sc); 6444 if (IS_RUNNING(ifp)) { 6445 /* 6446 * To avoid rescanning another access point, 6447 * do not call ath_init() here. Instead, 6448 * only reflect promisc mode settings. 6449 */ 6450 ath_mode_init(sc); 6451 } else if (ifp->if_flags & IFF_UP) { 6452 /* 6453 * Beware of being called during attach/detach 6454 * to reset promiscuous mode. In that case we 6455 * will still be marked UP but not RUNNING. 6456 * However trying to re-init the interface 6457 * is the wrong thing to do as we've already 6458 * torn down much of our state. There's 6459 * probably a better way to deal with this. 6460 */ 6461 if (!sc->sc_invalid) 6462 ath_init(sc); /* XXX lose error */ 6463 } else { 6464 ath_stop_locked(ifp); 6465 #ifdef notyet 6466 /* XXX must wakeup in places like ath_vap_delete */ 6467 if (!sc->sc_invalid) 6468 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 6469 #endif 6470 } 6471 ATH_UNLOCK(sc); 6472 break; 6473 case SIOCGIFMEDIA: 6474 case SIOCSIFMEDIA: 6475 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 6476 break; 6477 case SIOCGATHSTATS: 6478 /* NB: embed these numbers to get a consistent view */ 6479 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 6480 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 6481 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 6482 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 6483 #ifdef IEEE80211_SUPPORT_TDMA 6484 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 6485 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 6486 #endif 6487 rt = sc->sc_currates; 6488 sc->sc_stats.ast_tx_rate = 6489 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 6490 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 6491 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 6492 return copyout(&sc->sc_stats, 6493 ifr->ifr_data, sizeof (sc->sc_stats)); 6494 case SIOCZATHSTATS: 6495 error = priv_check(curthread, PRIV_DRIVER); 6496 if (error == 0) { 6497 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6498 memset(&sc->sc_aggr_stats, 0, 6499 sizeof(sc->sc_aggr_stats)); 6500 memset(&sc->sc_intr_stats, 0, 6501 sizeof(sc->sc_intr_stats)); 6502 } 6503 break; 6504 #ifdef ATH_DIAGAPI 6505 case SIOCGATHDIAG: 6506 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 6507 break; 6508 case SIOCGATHPHYERR: 6509 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 6510 break; 6511 #endif 6512 case SIOCGIFADDR: 6513 error = ether_ioctl(ifp, cmd, data); 6514 break; 6515 default: 6516 error = EINVAL; 6517 break; 6518 } 6519 return error; 6520 #undef IS_RUNNING 6521 } 6522 6523 /* 6524 * Announce various information on device/driver attach. 6525 */ 6526 static void 6527 ath_announce(struct ath_softc *sc) 6528 { 6529 struct ifnet *ifp = sc->sc_ifp; 6530 struct ath_hal *ah = sc->sc_ah; 6531 6532 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 6533 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6534 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6535 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6536 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6537 if (bootverbose) { 6538 int i; 6539 for (i = 0; i <= WME_AC_VO; i++) { 6540 struct ath_txq *txq = sc->sc_ac2q[i]; 6541 if_printf(ifp, "Use hw queue %u for %s traffic\n", 6542 txq->axq_qnum, ieee80211_wme_acnames[i]); 6543 } 6544 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 6545 sc->sc_cabq->axq_qnum); 6546 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 6547 } 6548 if (ath_rxbuf != ATH_RXBUF) 6549 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 6550 if (ath_txbuf != ATH_TXBUF) 6551 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 6552 if (sc->sc_mcastkey && bootverbose) 6553 if_printf(ifp, "using multicast key search\n"); 6554 } 6555 6556 #ifdef IEEE80211_SUPPORT_TDMA 6557 static void 6558 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval) 6559 { 6560 struct ath_hal *ah = sc->sc_ah; 6561 HAL_BEACON_TIMERS bt; 6562 6563 bt.bt_intval = bintval | HAL_BEACON_ENA; 6564 bt.bt_nexttbtt = nexttbtt; 6565 bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep; 6566 bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep; 6567 bt.bt_nextatim = nexttbtt+1; 6568 /* Enables TBTT, DBA, SWBA timers by default */ 6569 bt.bt_flags = 0; 6570 ath_hal_beaconsettimers(ah, &bt); 6571 } 6572 6573 /* 6574 * Calculate the beacon interval. This is periodic in the 6575 * superframe for the bss. We assume each station is configured 6576 * identically wrt transmit rate so the guard time we calculate 6577 * above will be the same on all stations. Note we need to 6578 * factor in the xmit time because the hardware will schedule 6579 * a frame for transmit if the start of the frame is within 6580 * the burst time. When we get hardware that properly kills 6581 * frames in the PCU we can reduce/eliminate the guard time. 6582 * 6583 * Roundup to 1024 is so we have 1 TU buffer in the guard time 6584 * to deal with the granularity of the nexttbtt timer. 11n MAC's 6585 * with 1us timer granularity should allow us to reduce/eliminate 6586 * this. 6587 */ 6588 static void 6589 ath_tdma_bintvalsetup(struct ath_softc *sc, 6590 const struct ieee80211_tdma_state *tdma) 6591 { 6592 /* copy from vap state (XXX check all vaps have same value?) */ 6593 sc->sc_tdmaslotlen = tdma->tdma_slotlen; 6594 6595 sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) * 6596 tdma->tdma_slotcnt, 1024); 6597 sc->sc_tdmabintval >>= 10; /* TSF -> TU */ 6598 if (sc->sc_tdmabintval & 1) 6599 sc->sc_tdmabintval++; 6600 6601 if (tdma->tdma_slot == 0) { 6602 /* 6603 * Only slot 0 beacons; other slots respond. 6604 */ 6605 sc->sc_imask |= HAL_INT_SWBA; 6606 sc->sc_tdmaswba = 0; /* beacon immediately */ 6607 } else { 6608 /* XXX all vaps must be slot 0 or slot !0 */ 6609 sc->sc_imask &= ~HAL_INT_SWBA; 6610 } 6611 } 6612 6613 /* 6614 * Max 802.11 overhead. This assumes no 4-address frames and 6615 * the encapsulation done by ieee80211_encap (llc). We also 6616 * include potential crypto overhead. 6617 */ 6618 #define IEEE80211_MAXOVERHEAD \ 6619 (sizeof(struct ieee80211_qosframe) \ 6620 + sizeof(struct llc) \ 6621 + IEEE80211_ADDR_LEN \ 6622 + IEEE80211_WEP_IVLEN \ 6623 + IEEE80211_WEP_KIDLEN \ 6624 + IEEE80211_WEP_CRCLEN \ 6625 + IEEE80211_WEP_MICLEN \ 6626 + IEEE80211_CRC_LEN) 6627 6628 /* 6629 * Setup initially for tdma operation. Start the beacon 6630 * timers and enable SWBA if we are slot 0. Otherwise 6631 * we wait for slot 0 to arrive so we can sync up before 6632 * starting to transmit. 6633 */ 6634 static void 6635 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap) 6636 { 6637 struct ath_hal *ah = sc->sc_ah; 6638 struct ifnet *ifp = sc->sc_ifp; 6639 struct ieee80211com *ic = ifp->if_l2com; 6640 const struct ieee80211_txparam *tp; 6641 const struct ieee80211_tdma_state *tdma = NULL; 6642 int rix; 6643 6644 if (vap == NULL) { 6645 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 6646 if (vap == NULL) { 6647 if_printf(ifp, "%s: no vaps?\n", __func__); 6648 return; 6649 } 6650 } 6651 /* XXX should take a locked ref to iv_bss */ 6652 tp = vap->iv_bss->ni_txparms; 6653 /* 6654 * Calculate the guard time for each slot. This is the 6655 * time to send a maximal-size frame according to the 6656 * fixed/lowest transmit rate. Note that the interface 6657 * mtu does not include the 802.11 overhead so we must 6658 * tack that on (ath_hal_computetxtime includes the 6659 * preamble and plcp in it's calculation). 6660 */ 6661 tdma = vap->iv_tdma; 6662 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 6663 rix = ath_tx_findrix(sc, tp->ucastrate); 6664 else 6665 rix = ath_tx_findrix(sc, tp->mcastrate); 6666 /* XXX short preamble assumed */ 6667 sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates, 6668 ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE); 6669 6670 ath_hal_intrset(ah, 0); 6671 6672 ath_beaconq_config(sc); /* setup h/w beacon q */ 6673 if (sc->sc_setcca) 6674 ath_hal_setcca(ah, AH_FALSE); /* disable CCA */ 6675 ath_tdma_bintvalsetup(sc, tdma); /* calculate beacon interval */ 6676 ath_tdma_settimers(sc, sc->sc_tdmabintval, 6677 sc->sc_tdmabintval | HAL_BEACON_RESET_TSF); 6678 sc->sc_syncbeacon = 0; 6679 6680 sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER; 6681 sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER; 6682 6683 ath_hal_intrset(ah, sc->sc_imask); 6684 6685 DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u " 6686 "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__, 6687 tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt, 6688 tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval, 6689 sc->sc_tdmadbaprep); 6690 } 6691 6692 /* 6693 * Update tdma operation. Called from the 802.11 layer 6694 * when a beacon is received from the TDMA station operating 6695 * in the slot immediately preceding us in the bss. Use 6696 * the rx timestamp for the beacon frame to update our 6697 * beacon timers so we follow their schedule. Note that 6698 * by using the rx timestamp we implicitly include the 6699 * propagation delay in our schedule. 6700 */ 6701 static void 6702 ath_tdma_update(struct ieee80211_node *ni, 6703 const struct ieee80211_tdma_param *tdma, int changed) 6704 { 6705 #define TSF_TO_TU(_h,_l) \ 6706 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 6707 #define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10) 6708 struct ieee80211vap *vap = ni->ni_vap; 6709 struct ieee80211com *ic = ni->ni_ic; 6710 struct ath_softc *sc = ic->ic_ifp->if_softc; 6711 struct ath_hal *ah = sc->sc_ah; 6712 const HAL_RATE_TABLE *rt = sc->sc_currates; 6713 u_int64_t tsf, rstamp, nextslot, nexttbtt; 6714 u_int32_t txtime, nextslottu; 6715 int32_t tudelta, tsfdelta; 6716 const struct ath_rx_status *rs; 6717 int rix; 6718 6719 sc->sc_stats.ast_tdma_update++; 6720 6721 /* 6722 * Check for and adopt configuration changes. 6723 */ 6724 if (changed != 0) { 6725 const struct ieee80211_tdma_state *ts = vap->iv_tdma; 6726 6727 ath_tdma_bintvalsetup(sc, ts); 6728 if (changed & TDMA_UPDATE_SLOTLEN) 6729 ath_wme_update(ic); 6730 6731 DPRINTF(sc, ATH_DEBUG_TDMA, 6732 "%s: adopt slot %u slotcnt %u slotlen %u us " 6733 "bintval %u TU\n", __func__, 6734 ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen, 6735 sc->sc_tdmabintval); 6736 6737 /* XXX right? */ 6738 ath_hal_intrset(ah, sc->sc_imask); 6739 /* NB: beacon timers programmed below */ 6740 } 6741 6742 /* extend rx timestamp to 64 bits */ 6743 rs = sc->sc_lastrs; 6744 tsf = ath_hal_gettsf64(ah); 6745 rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf); 6746 /* 6747 * The rx timestamp is set by the hardware on completing 6748 * reception (at the point where the rx descriptor is DMA'd 6749 * to the host). To find the start of our next slot we 6750 * must adjust this time by the time required to send 6751 * the packet just received. 6752 */ 6753 rix = rt->rateCodeToIndex[rs->rs_rate]; 6754 txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix, 6755 rt->info[rix].shortPreamble); 6756 /* NB: << 9 is to cvt to TU and /2 */ 6757 nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9); 6758 nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD; 6759 6760 /* 6761 * Retrieve the hardware NextTBTT in usecs 6762 * and calculate the difference between what the 6763 * other station thinks and what we have programmed. This 6764 * lets us figure how to adjust our timers to match. The 6765 * adjustments are done by pulling the TSF forward and possibly 6766 * rewriting the beacon timers. 6767 */ 6768 nexttbtt = ath_hal_getnexttbtt(ah); 6769 tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt); 6770 6771 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6772 "tsfdelta %d avg +%d/-%d\n", tsfdelta, 6773 TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam)); 6774 6775 if (tsfdelta < 0) { 6776 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6777 TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta); 6778 tsfdelta = -tsfdelta % 1024; 6779 nextslottu++; 6780 } else if (tsfdelta > 0) { 6781 TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta); 6782 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6783 tsfdelta = 1024 - (tsfdelta % 1024); 6784 nextslottu++; 6785 } else { 6786 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6787 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6788 } 6789 tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt); 6790 6791 /* 6792 * Copy sender's timetstamp into tdma ie so they can 6793 * calculate roundtrip time. We submit a beacon frame 6794 * below after any timer adjustment. The frame goes out 6795 * at the next TBTT so the sender can calculate the 6796 * roundtrip by inspecting the tdma ie in our beacon frame. 6797 * 6798 * NB: This tstamp is subtlely preserved when 6799 * IEEE80211_BEACON_TDMA is marked (e.g. when the 6800 * slot position changes) because ieee80211_add_tdma 6801 * skips over the data. 6802 */ 6803 memcpy(ATH_VAP(vap)->av_boff.bo_tdma + 6804 __offsetof(struct ieee80211_tdma_param, tdma_tstamp), 6805 &ni->ni_tstamp.data, 8); 6806 #if 0 6807 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6808 "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n", 6809 (unsigned long long) tsf, (unsigned long long) nextslot, 6810 (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta); 6811 #endif 6812 /* 6813 * Adjust the beacon timers only when pulling them forward 6814 * or when going back by less than the beacon interval. 6815 * Negative jumps larger than the beacon interval seem to 6816 * cause the timers to stop and generally cause instability. 6817 * This basically filters out jumps due to missed beacons. 6818 */ 6819 if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) { 6820 ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval); 6821 sc->sc_stats.ast_tdma_timers++; 6822 } 6823 if (tsfdelta > 0) { 6824 ath_hal_adjusttsf(ah, tsfdelta); 6825 sc->sc_stats.ast_tdma_tsf++; 6826 } 6827 ath_tdma_beacon_send(sc, vap); /* prepare response */ 6828 #undef TU_TO_TSF 6829 #undef TSF_TO_TU 6830 } 6831 6832 /* 6833 * Transmit a beacon frame at SWBA. Dynamic updates 6834 * to the frame contents are done as needed. 6835 */ 6836 static void 6837 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap) 6838 { 6839 struct ath_hal *ah = sc->sc_ah; 6840 struct ath_buf *bf; 6841 int otherant; 6842 6843 /* 6844 * Check if the previous beacon has gone out. If 6845 * not don't try to post another, skip this period 6846 * and wait for the next. Missed beacons indicate 6847 * a problem and should not occur. If we miss too 6848 * many consecutive beacons reset the device. 6849 */ 6850 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 6851 sc->sc_bmisscount++; 6852 DPRINTF(sc, ATH_DEBUG_BEACON, 6853 "%s: missed %u consecutive beacons\n", 6854 __func__, sc->sc_bmisscount); 6855 if (sc->sc_bmisscount >= ath_bstuck_threshold) 6856 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 6857 return; 6858 } 6859 if (sc->sc_bmisscount != 0) { 6860 DPRINTF(sc, ATH_DEBUG_BEACON, 6861 "%s: resume beacon xmit after %u misses\n", 6862 __func__, sc->sc_bmisscount); 6863 sc->sc_bmisscount = 0; 6864 } 6865 6866 /* 6867 * Check recent per-antenna transmit statistics and flip 6868 * the default antenna if noticeably more frames went out 6869 * on the non-default antenna. 6870 * XXX assumes 2 anntenae 6871 */ 6872 if (!sc->sc_diversity) { 6873 otherant = sc->sc_defant & 1 ? 2 : 1; 6874 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 6875 ath_setdefantenna(sc, otherant); 6876 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 6877 } 6878 6879 bf = ath_beacon_generate(sc, vap); 6880 if (bf != NULL) { 6881 /* 6882 * Stop any current dma and put the new frame on the queue. 6883 * This should never fail since we check above that no frames 6884 * are still pending on the queue. 6885 */ 6886 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 6887 DPRINTF(sc, ATH_DEBUG_ANY, 6888 "%s: beacon queue %u did not stop?\n", 6889 __func__, sc->sc_bhalq); 6890 /* NB: the HAL still stops DMA, so proceed */ 6891 } 6892 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 6893 ath_hal_txstart(ah, sc->sc_bhalq); 6894 6895 sc->sc_stats.ast_be_xmit++; /* XXX per-vap? */ 6896 6897 /* 6898 * Record local TSF for our last send for use 6899 * in arbitrating slot collisions. 6900 */ 6901 /* XXX should take a locked ref to iv_bss */ 6902 vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah); 6903 } 6904 } 6905 #endif /* IEEE80211_SUPPORT_TDMA */ 6906 6907 static void 6908 ath_dfs_tasklet(void *p, int npending) 6909 { 6910 struct ath_softc *sc = (struct ath_softc *) p; 6911 struct ifnet *ifp = sc->sc_ifp; 6912 struct ieee80211com *ic = ifp->if_l2com; 6913 6914 /* 6915 * If previous processing has found a radar event, 6916 * signal this to the net80211 layer to begin DFS 6917 * processing. 6918 */ 6919 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6920 /* DFS event found, initiate channel change */ 6921 /* 6922 * XXX doesn't currently tell us whether the event 6923 * XXX was found in the primary or extension 6924 * XXX channel! 6925 */ 6926 IEEE80211_LOCK(ic); 6927 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6928 IEEE80211_UNLOCK(ic); 6929 } 6930 } 6931 6932 MODULE_VERSION(if_ath, 1); 6933 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6934 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 6935 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 6936 #endif 6937