1 /*- 2 * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 3. Neither the names of the above-listed copyright holders nor the names 16 * of any contributors may be used to endorse or promote products derived 17 * from this software without specific prior written permission. 18 * 19 * Alternatively, this software may be distributed under the terms of the 20 * GNU General Public License ("GPL") version 2 as published by the Free 21 * Software Foundation. 22 * 23 * NO WARRANTY 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 34 * THE POSSIBILITY OF SUCH DAMAGES. 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 /* 41 * Driver for the Atheros Wireless LAN controller. 42 * 43 * This software is derived from work of Atsushi Onoe; his contribution 44 * is greatly appreciated. 45 */ 46 47 #include "opt_inet.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/sysctl.h> 52 #include <sys/mbuf.h> 53 #include <sys/malloc.h> 54 #include <sys/lock.h> 55 #include <sys/mutex.h> 56 #include <sys/kernel.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/errno.h> 60 #include <sys/callout.h> 61 #include <sys/bus.h> 62 #include <sys/endian.h> 63 64 #include <machine/bus.h> 65 66 #include <net/if.h> 67 #include <net/if_dl.h> 68 #include <net/if_media.h> 69 #include <net/if_arp.h> 70 #include <net/ethernet.h> 71 #include <net/if_llc.h> 72 73 #include <net80211/ieee80211_var.h> 74 75 #include <net/bpf.h> 76 77 #ifdef INET 78 #include <netinet/in.h> 79 #include <netinet/if_ether.h> 80 #endif 81 82 #define AR_DEBUG 83 #include <dev/ath/if_athvar.h> 84 #include <contrib/dev/ath/ah_desc.h> 85 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */ 86 87 /* unalligned little endian access */ 88 #define LE_READ_2(p) \ 89 ((u_int16_t) \ 90 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 91 #define LE_READ_4(p) \ 92 ((u_int32_t) \ 93 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 94 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 95 96 static void ath_init(void *); 97 static void ath_stop_locked(struct ifnet *); 98 static void ath_stop(struct ifnet *); 99 static void ath_start(struct ifnet *); 100 static int ath_reset(struct ifnet *); 101 static int ath_media_change(struct ifnet *); 102 static void ath_watchdog(struct ifnet *); 103 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 104 static void ath_fatal_proc(void *, int); 105 static void ath_rxorn_proc(void *, int); 106 static void ath_bmiss_proc(void *, int); 107 static void ath_initkeytable(struct ath_softc *); 108 static int ath_key_alloc(struct ieee80211com *, 109 const struct ieee80211_key *); 110 static int ath_key_delete(struct ieee80211com *, 111 const struct ieee80211_key *); 112 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *, 113 const u_int8_t mac[IEEE80211_ADDR_LEN]); 114 static void ath_key_update_begin(struct ieee80211com *); 115 static void ath_key_update_end(struct ieee80211com *); 116 static void ath_mode_init(struct ath_softc *); 117 static void ath_setslottime(struct ath_softc *); 118 static void ath_updateslot(struct ifnet *); 119 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 120 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 121 static void ath_beacon_proc(void *, int); 122 static void ath_bstuck_proc(void *, int); 123 static void ath_beacon_free(struct ath_softc *); 124 static void ath_beacon_config(struct ath_softc *); 125 static void ath_descdma_cleanup(struct ath_softc *sc, 126 struct ath_descdma *, ath_bufhead *); 127 static int ath_desc_alloc(struct ath_softc *); 128 static void ath_desc_free(struct ath_softc *); 129 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *); 130 static void ath_node_free(struct ieee80211_node *); 131 static u_int8_t ath_node_getrssi(const struct ieee80211_node *); 132 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 133 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 134 struct ieee80211_node *ni, 135 int subtype, int rssi, u_int32_t rstamp); 136 static void ath_setdefantenna(struct ath_softc *, u_int); 137 static void ath_rx_proc(void *, int); 138 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 139 static int ath_tx_setup(struct ath_softc *, int, int); 140 static int ath_wme_update(struct ieee80211com *); 141 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 142 static void ath_tx_cleanup(struct ath_softc *); 143 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 144 struct ath_buf *, struct mbuf *); 145 static void ath_tx_proc_q0(void *, int); 146 static void ath_tx_proc_q0123(void *, int); 147 static void ath_tx_proc(void *, int); 148 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 149 static void ath_draintxq(struct ath_softc *); 150 static void ath_stoprecv(struct ath_softc *); 151 static int ath_startrecv(struct ath_softc *); 152 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 153 static void ath_next_scan(void *); 154 static void ath_calibrate(void *); 155 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); 156 static void ath_newassoc(struct ieee80211com *, 157 struct ieee80211_node *, int); 158 static int ath_getchannels(struct ath_softc *, u_int cc, 159 HAL_BOOL outdoor, HAL_BOOL xchanmode); 160 static void ath_update_led(struct ath_softc *); 161 static void ath_update_txpow(struct ath_softc *); 162 163 static int ath_rate_setup(struct ath_softc *, u_int mode); 164 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 165 166 static void ath_sysctlattach(struct ath_softc *); 167 static void ath_bpfattach(struct ath_softc *); 168 static void ath_announce(struct ath_softc *); 169 170 SYSCTL_DECL(_hw_ath); 171 172 /* XXX validate sysctl values */ 173 static int ath_dwelltime = 200; /* 5 channels/second */ 174 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime, 175 0, "channel dwell time (ms) for AP/station scanning"); 176 static int ath_calinterval = 30; /* calibrate every 30 secs */ 177 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval, 178 0, "chip calibration interval (secs)"); 179 static int ath_outdoor = AH_TRUE; /* outdoor operation */ 180 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor, 181 0, "outdoor operation"); 182 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor); 183 static int ath_xchanmode = AH_TRUE; /* extended channel use */ 184 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode, 185 0, "extended channel mode"); 186 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode); 187 static int ath_countrycode = CTRY_DEFAULT; /* country code */ 188 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode, 189 0, "country code"); 190 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode); 191 static int ath_regdomain = 0; /* regulatory domain */ 192 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain, 193 0, "regulatory domain"); 194 195 #ifdef AR_DEBUG 196 static int ath_debug = 0; 197 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug, 198 0, "control debugging printfs"); 199 TUNABLE_INT("hw.ath.debug", &ath_debug); 200 enum { 201 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 202 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 203 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 204 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 205 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 206 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 207 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 208 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 209 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 210 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 211 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 212 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 213 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 214 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 215 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */ 216 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */ 217 ATH_DEBUG_NODE = 0x00080000, /* node management */ 218 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */ 219 ATH_DEBUG_ANY = 0xffffffff 220 }; 221 #define IFF_DUMPPKTS(sc, m) \ 222 ((sc->sc_debug & m) || \ 223 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 224 #define DPRINTF(sc, m, fmt, ...) do { \ 225 if (sc->sc_debug & m) \ 226 printf(fmt, __VA_ARGS__); \ 227 } while (0) 228 #define KEYPRINTF(sc, ix, hk, mac) do { \ 229 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \ 230 ath_keyprint(__func__, ix, hk, mac); \ 231 } while (0) 232 static void ath_printrxbuf(struct ath_buf *bf, int); 233 static void ath_printtxbuf(struct ath_buf *bf, int); 234 #else 235 #define IFF_DUMPPKTS(sc, m) \ 236 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 237 #define DPRINTF(m, fmt, ...) 238 #define KEYPRINTF(sc, k, ix, mac) 239 #endif 240 241 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 242 243 int 244 ath_attach(u_int16_t devid, struct ath_softc *sc) 245 { 246 struct ifnet *ifp = &sc->sc_if; 247 struct ieee80211com *ic = &sc->sc_ic; 248 struct ath_hal *ah; 249 HAL_STATUS status; 250 int error = 0, i; 251 252 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 253 254 /* set these up early for if_printf use */ 255 if_initname(ifp, device_get_name(sc->sc_dev), 256 device_get_unit(sc->sc_dev)); 257 258 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); 259 if (ah == NULL) { 260 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 261 status); 262 error = ENXIO; 263 goto bad; 264 } 265 if (ah->ah_abi != HAL_ABI_VERSION) { 266 if_printf(ifp, "HAL ABI mismatch detected " 267 "(HAL:0x%x != driver:0x%x)\n", 268 ah->ah_abi, HAL_ABI_VERSION); 269 error = ENXIO; 270 goto bad; 271 } 272 sc->sc_ah = ah; 273 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 274 275 /* 276 * Check if the MAC has multi-rate retry support. 277 * We do this by trying to setup a fake extended 278 * descriptor. MAC's that don't have support will 279 * return false w/o doing anything. MAC's that do 280 * support it will return true w/o doing anything. 281 */ 282 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 283 284 /* 285 * Check if the device has hardware counters for PHY 286 * errors. If so we need to enable the MIB interrupt 287 * so we can act on stat triggers. 288 */ 289 if (ath_hal_hwphycounters(ah)) 290 sc->sc_needmib = 1; 291 292 /* 293 * Get the hardware key cache size. 294 */ 295 sc->sc_keymax = ath_hal_keycachesize(ah); 296 if (sc->sc_keymax > sizeof(sc->sc_keymap) * NBBY) { 297 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 298 sizeof(sc->sc_keymap) * NBBY, sc->sc_keymax); 299 sc->sc_keymax = sizeof(sc->sc_keymap) * NBBY; 300 } 301 /* 302 * Reset the key cache since some parts do not 303 * reset the contents on initial power up. 304 */ 305 for (i = 0; i < sc->sc_keymax; i++) 306 ath_hal_keyreset(ah, i); 307 /* 308 * Mark key cache slots associated with global keys 309 * as in use. If we knew TKIP was not to be used we 310 * could leave the +32, +64, and +32+64 slots free. 311 * XXX only for splitmic. 312 */ 313 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 314 setbit(sc->sc_keymap, i); 315 setbit(sc->sc_keymap, i+32); 316 setbit(sc->sc_keymap, i+64); 317 setbit(sc->sc_keymap, i+32+64); 318 } 319 320 /* 321 * Collect the channel list using the default country 322 * code and including outdoor channels. The 802.11 layer 323 * is resposible for filtering this list based on settings 324 * like the phy mode. 325 */ 326 error = ath_getchannels(sc, ath_countrycode, 327 ath_outdoor, ath_xchanmode); 328 if (error != 0) 329 goto bad; 330 /* 331 * Setup dynamic sysctl's now that country code and 332 * regdomain are available from the hal. 333 */ 334 ath_sysctlattach(sc); 335 336 /* 337 * Setup rate tables for all potential media types. 338 */ 339 ath_rate_setup(sc, IEEE80211_MODE_11A); 340 ath_rate_setup(sc, IEEE80211_MODE_11B); 341 ath_rate_setup(sc, IEEE80211_MODE_11G); 342 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 343 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 344 /* NB: setup here so ath_rate_update is happy */ 345 ath_setcurmode(sc, IEEE80211_MODE_11A); 346 347 /* 348 * Allocate tx+rx descriptors and populate the lists. 349 */ 350 error = ath_desc_alloc(sc); 351 if (error != 0) { 352 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 353 goto bad; 354 } 355 callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0); 356 callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE); 357 358 ATH_TXBUF_LOCK_INIT(sc); 359 360 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc); 361 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc); 362 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 363 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 364 TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc); 365 366 /* 367 * Allocate hardware transmit queues: one queue for 368 * beacon frames and one data queue for each QoS 369 * priority. Note that the hal handles reseting 370 * these queues at the needed time. 371 * 372 * XXX PS-Poll 373 */ 374 sc->sc_bhalq = ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, NULL); 375 if (sc->sc_bhalq == (u_int) -1) { 376 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 377 error = EIO; 378 goto bad2; 379 } 380 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 381 if (sc->sc_cabq == NULL) { 382 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 383 error = EIO; 384 goto bad2; 385 } 386 /* NB: insure BK queue is the lowest priority h/w queue */ 387 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 388 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 389 ieee80211_wme_acnames[WME_AC_BK]); 390 error = EIO; 391 goto bad2; 392 } 393 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 394 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 395 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 396 /* 397 * Not enough hardware tx queues to properly do WME; 398 * just punt and assign them all to the same h/w queue. 399 * We could do a better job of this if, for example, 400 * we allocate queues when we switch from station to 401 * AP mode. 402 */ 403 if (sc->sc_ac2q[WME_AC_VI] != NULL) 404 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 405 if (sc->sc_ac2q[WME_AC_BE] != NULL) 406 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 407 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 408 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 409 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 410 } 411 412 /* 413 * Special case certain configurations. Note the 414 * CAB queue is handled by these specially so don't 415 * include them when checking the txq setup mask. 416 */ 417 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 418 case 0x01: 419 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 420 break; 421 case 0x0f: 422 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 423 break; 424 default: 425 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 426 break; 427 } 428 429 /* 430 * Setup rate control. Some rate control modules 431 * call back to change the anntena state so expose 432 * the necessary entry points. 433 * XXX maybe belongs in struct ath_ratectrl? 434 */ 435 sc->sc_setdefantenna = ath_setdefantenna; 436 sc->sc_rc = ath_rate_attach(sc); 437 if (sc->sc_rc == NULL) { 438 error = EIO; 439 goto bad2; 440 } 441 442 sc->sc_ledstate = 1; 443 /* 444 * Auto-enable soft led processing for IBM cards and for 445 * 5211 minipci cards. Users can also manually enable/disable 446 * support with a sysctl. 447 */ 448 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 449 if (sc->sc_softled) { 450 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin); 451 ath_hal_gpioset(ah, sc->sc_ledpin, 0); 452 } 453 454 ifp->if_softc = sc; 455 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 456 ifp->if_start = ath_start; 457 ifp->if_watchdog = ath_watchdog; 458 ifp->if_ioctl = ath_ioctl; 459 ifp->if_init = ath_init; 460 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 461 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 462 IFQ_SET_READY(&ifp->if_snd); 463 464 ic->ic_ifp = ifp; 465 ic->ic_reset = ath_reset; 466 ic->ic_newassoc = ath_newassoc; 467 ic->ic_updateslot = ath_updateslot; 468 ic->ic_wme.wme_update = ath_wme_update; 469 /* XXX not right but it's not used anywhere important */ 470 ic->ic_phytype = IEEE80211_T_OFDM; 471 ic->ic_opmode = IEEE80211_M_STA; 472 ic->ic_caps = 473 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 474 | IEEE80211_C_HOSTAP /* hostap mode */ 475 | IEEE80211_C_MONITOR /* monitor mode */ 476 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 477 | IEEE80211_C_SHSLOT /* short slot time supported */ 478 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 479 ; 480 /* 481 * Query the hal to figure out h/w crypto support. 482 */ 483 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 484 ic->ic_caps |= IEEE80211_C_WEP; 485 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 486 ic->ic_caps |= IEEE80211_C_AES; 487 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 488 ic->ic_caps |= IEEE80211_C_AES_CCM; 489 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 490 ic->ic_caps |= IEEE80211_C_CKIP; 491 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 492 ic->ic_caps |= IEEE80211_C_TKIP; 493 /* 494 * Check if h/w does the MIC and/or whether the 495 * separate key cache entries are required to 496 * handle both tx+rx MIC keys. 497 */ 498 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 499 ic->ic_caps |= IEEE80211_C_TKIPMIC; 500 if (ath_hal_tkipsplit(ah)) 501 sc->sc_splitmic = 1; 502 } 503 /* 504 * TPC support can be done either with a global cap or 505 * per-packet support. The latter is not available on 506 * all parts. We're a bit pedantic here as all parts 507 * support a global cap. 508 */ 509 sc->sc_hastpc = ath_hal_hastpc(ah); 510 if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah)) 511 ic->ic_caps |= IEEE80211_C_TXPMGT; 512 513 /* 514 * Mark WME capability only if we have sufficient 515 * hardware queues to do proper priority scheduling. 516 */ 517 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 518 ic->ic_caps |= IEEE80211_C_WME; 519 /* 520 * Check for frame bursting capability. 521 */ 522 if (ath_hal_hasbursting(ah)) 523 ic->ic_caps |= IEEE80211_C_BURST; 524 525 /* 526 * Indicate we need the 802.11 header padded to a 527 * 32-bit boundary for 4-address and QoS frames. 528 */ 529 ic->ic_flags |= IEEE80211_F_DATAPAD; 530 531 /* 532 * Query the hal about antenna support. 533 */ 534 if (ath_hal_hasdiversity(ah)) { 535 sc->sc_hasdiversity = 1; 536 sc->sc_diversity = ath_hal_getdiversity(ah); 537 } 538 sc->sc_defant = ath_hal_getdefantenna(ah); 539 540 /* 541 * Not all chips have the VEOL support we want to 542 * use with IBSS beacons; check here for it. 543 */ 544 sc->sc_hasveol = ath_hal_hasveol(ah); 545 546 /* get mac address from hardware */ 547 ath_hal_getmac(ah, ic->ic_myaddr); 548 549 /* call MI attach routine. */ 550 ieee80211_ifattach(ic); 551 /* override default methods */ 552 ic->ic_node_alloc = ath_node_alloc; 553 sc->sc_node_free = ic->ic_node_free; 554 ic->ic_node_free = ath_node_free; 555 ic->ic_node_getrssi = ath_node_getrssi; 556 sc->sc_recv_mgmt = ic->ic_recv_mgmt; 557 ic->ic_recv_mgmt = ath_recv_mgmt; 558 sc->sc_newstate = ic->ic_newstate; 559 ic->ic_newstate = ath_newstate; 560 ic->ic_crypto.cs_key_alloc = ath_key_alloc; 561 ic->ic_crypto.cs_key_delete = ath_key_delete; 562 ic->ic_crypto.cs_key_set = ath_key_set; 563 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin; 564 ic->ic_crypto.cs_key_update_end = ath_key_update_end; 565 /* complete initialization */ 566 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status); 567 568 ath_bpfattach(sc); 569 570 if (bootverbose) 571 ieee80211_announce(ic); 572 ath_announce(sc); 573 return 0; 574 bad2: 575 ath_tx_cleanup(sc); 576 ath_desc_free(sc); 577 bad: 578 if (ah) 579 ath_hal_detach(ah); 580 sc->sc_invalid = 1; 581 return error; 582 } 583 584 int 585 ath_detach(struct ath_softc *sc) 586 { 587 struct ifnet *ifp = &sc->sc_if; 588 589 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 590 __func__, ifp->if_flags); 591 592 ath_stop(ifp); 593 bpfdetach(ifp); 594 /* 595 * NB: the order of these is important: 596 * o call the 802.11 layer before detaching the hal to 597 * insure callbacks into the driver to delete global 598 * key cache entries can be handled 599 * o reclaim the tx queue data structures after calling 600 * the 802.11 layer as we'll get called back to reclaim 601 * node state and potentially want to use them 602 * o to cleanup the tx queues the hal is called, so detach 603 * it last 604 * Other than that, it's straightforward... 605 */ 606 ieee80211_ifdetach(&sc->sc_ic); 607 ath_rate_detach(sc->sc_rc); 608 ath_desc_free(sc); 609 ath_tx_cleanup(sc); 610 ath_hal_detach(sc->sc_ah); 611 612 return 0; 613 } 614 615 void 616 ath_suspend(struct ath_softc *sc) 617 { 618 struct ifnet *ifp = &sc->sc_if; 619 620 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 621 __func__, ifp->if_flags); 622 623 ath_stop(ifp); 624 } 625 626 void 627 ath_resume(struct ath_softc *sc) 628 { 629 struct ifnet *ifp = &sc->sc_if; 630 631 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 632 __func__, ifp->if_flags); 633 634 if (ifp->if_flags & IFF_UP) { 635 ath_init(ifp); 636 if (ifp->if_flags & IFF_RUNNING) 637 ath_start(ifp); 638 } 639 } 640 641 void 642 ath_shutdown(struct ath_softc *sc) 643 { 644 struct ifnet *ifp = &sc->sc_if; 645 646 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 647 __func__, ifp->if_flags); 648 649 ath_stop(ifp); 650 } 651 652 /* 653 * Interrupt handler. Most of the actual processing is deferred. 654 */ 655 void 656 ath_intr(void *arg) 657 { 658 struct ath_softc *sc = arg; 659 struct ifnet *ifp = &sc->sc_if; 660 struct ath_hal *ah = sc->sc_ah; 661 HAL_INT status; 662 663 if (sc->sc_invalid) { 664 /* 665 * The hardware is not ready/present, don't touch anything. 666 * Note this can happen early on if the IRQ is shared. 667 */ 668 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 669 return; 670 } 671 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 672 return; 673 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) { 674 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 675 __func__, ifp->if_flags); 676 ath_hal_getisr(ah, &status); /* clear ISR */ 677 ath_hal_intrset(ah, 0); /* disable further intr's */ 678 return; 679 } 680 /* 681 * Figure out the reason(s) for the interrupt. Note 682 * that the hal returns a pseudo-ISR that may include 683 * bits we haven't explicitly enabled so we mask the 684 * value to insure we only process bits we requested. 685 */ 686 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 687 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 688 status &= sc->sc_imask; /* discard unasked for bits */ 689 if (status & HAL_INT_FATAL) { 690 /* 691 * Fatal errors are unrecoverable. Typically 692 * these are caused by DMA errors. Unfortunately 693 * the exact reason is not (presently) returned 694 * by the hal. 695 */ 696 sc->sc_stats.ast_hardware++; 697 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 698 taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask); 699 } else if (status & HAL_INT_RXORN) { 700 sc->sc_stats.ast_rxorn++; 701 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 702 taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask); 703 } else { 704 if (status & HAL_INT_SWBA) { 705 /* 706 * Software beacon alert--time to send a beacon. 707 * Handle beacon transmission directly; deferring 708 * this is too slow to meet timing constraints 709 * under load. 710 */ 711 ath_beacon_proc(sc, 0); 712 } 713 if (status & HAL_INT_RXEOL) { 714 /* 715 * NB: the hardware should re-read the link when 716 * RXE bit is written, but it doesn't work at 717 * least on older hardware revs. 718 */ 719 sc->sc_stats.ast_rxeol++; 720 sc->sc_rxlink = NULL; 721 } 722 if (status & HAL_INT_TXURN) { 723 sc->sc_stats.ast_txurn++; 724 /* bump tx trigger level */ 725 ath_hal_updatetxtriglevel(ah, AH_TRUE); 726 } 727 if (status & HAL_INT_RX) 728 taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask); 729 if (status & HAL_INT_TX) 730 taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask); 731 if (status & HAL_INT_BMISS) { 732 sc->sc_stats.ast_bmiss++; 733 taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask); 734 } 735 if (status & HAL_INT_MIB) { 736 sc->sc_stats.ast_mib++; 737 /* 738 * Disable interrupts until we service the MIB 739 * interrupt; otherwise it will continue to fire. 740 */ 741 ath_hal_intrset(ah, 0); 742 /* 743 * Let the hal handle the event. We assume it will 744 * clear whatever condition caused the interrupt. 745 */ 746 ath_hal_mibevent(ah, 747 &ATH_NODE(sc->sc_ic.ic_bss)->an_halstats); 748 ath_hal_intrset(ah, sc->sc_imask); 749 } 750 } 751 } 752 753 static void 754 ath_fatal_proc(void *arg, int pending) 755 { 756 struct ath_softc *sc = arg; 757 struct ifnet *ifp = &sc->sc_if; 758 759 if_printf(ifp, "hardware error; resetting\n"); 760 ath_reset(ifp); 761 } 762 763 static void 764 ath_rxorn_proc(void *arg, int pending) 765 { 766 struct ath_softc *sc = arg; 767 struct ifnet *ifp = &sc->sc_if; 768 769 if_printf(ifp, "rx FIFO overrun; resetting\n"); 770 ath_reset(ifp); 771 } 772 773 static void 774 ath_bmiss_proc(void *arg, int pending) 775 { 776 struct ath_softc *sc = arg; 777 struct ieee80211com *ic = &sc->sc_ic; 778 779 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 780 KASSERT(ic->ic_opmode == IEEE80211_M_STA, 781 ("unexpect operating mode %u", ic->ic_opmode)); 782 if (ic->ic_state == IEEE80211_S_RUN) { 783 /* 784 * Rather than go directly to scan state, try to 785 * reassociate first. If that fails then the state 786 * machine will drop us into scanning after timing 787 * out waiting for a probe response. 788 */ 789 NET_LOCK_GIANT(); 790 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1); 791 NET_UNLOCK_GIANT(); 792 } 793 } 794 795 static u_int 796 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan) 797 { 798 #define N(a) (sizeof(a) / sizeof(a[0])) 799 static const u_int modeflags[] = { 800 0, /* IEEE80211_MODE_AUTO */ 801 CHANNEL_A, /* IEEE80211_MODE_11A */ 802 CHANNEL_B, /* IEEE80211_MODE_11B */ 803 CHANNEL_PUREG, /* IEEE80211_MODE_11G */ 804 0, /* IEEE80211_MODE_FH */ 805 CHANNEL_T, /* IEEE80211_MODE_TURBO_A */ 806 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */ 807 }; 808 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan); 809 810 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode)); 811 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode)); 812 return modeflags[mode]; 813 #undef N 814 } 815 816 static void 817 ath_init(void *arg) 818 { 819 struct ath_softc *sc = (struct ath_softc *) arg; 820 struct ieee80211com *ic = &sc->sc_ic; 821 struct ifnet *ifp = &sc->sc_if; 822 struct ieee80211_node *ni; 823 enum ieee80211_phymode mode; 824 struct ath_hal *ah = sc->sc_ah; 825 HAL_STATUS status; 826 827 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 828 __func__, ifp->if_flags); 829 830 ATH_LOCK(sc); 831 /* 832 * Stop anything previously setup. This is safe 833 * whether this is the first time through or not. 834 */ 835 ath_stop_locked(ifp); 836 837 /* 838 * The basic interface to setting the hardware in a good 839 * state is ``reset''. On return the hardware is known to 840 * be powered up and with interrupts disabled. This must 841 * be followed by initialization of the appropriate bits 842 * and then setup of the interrupt mask. 843 */ 844 sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq; 845 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan); 846 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) { 847 if_printf(ifp, "unable to reset hardware; hal status %u\n", 848 status); 849 goto done; 850 } 851 852 /* 853 * This is needed only to setup initial state 854 * but it's best done after a reset. 855 */ 856 ath_update_txpow(sc); 857 858 /* 859 * Setup the hardware after reset: the key cache 860 * is filled as needed and the receive engine is 861 * set going. Frame transmit is handled entirely 862 * in the frame output path; there's nothing to do 863 * here except setup the interrupt mask. 864 */ 865 ath_initkeytable(sc); /* XXX still needed? */ 866 if (ath_startrecv(sc) != 0) { 867 if_printf(ifp, "unable to start recv logic\n"); 868 goto done; 869 } 870 871 /* 872 * Enable interrupts. 873 */ 874 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 875 | HAL_INT_RXEOL | HAL_INT_RXORN 876 | HAL_INT_FATAL | HAL_INT_GLOBAL; 877 /* 878 * Enable MIB interrupts when there are hardware phy counters. 879 * Note we only do this (at the moment) for station mode. 880 */ 881 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 882 sc->sc_imask |= HAL_INT_MIB; 883 ath_hal_intrset(ah, sc->sc_imask); 884 885 ifp->if_flags |= IFF_RUNNING; 886 ic->ic_state = IEEE80211_S_INIT; 887 888 /* 889 * The hardware should be ready to go now so it's safe 890 * to kick the 802.11 state machine as it's likely to 891 * immediately call back to us to send mgmt frames. 892 */ 893 ni = ic->ic_bss; 894 ni->ni_chan = ic->ic_ibss_chan; 895 mode = ieee80211_chan2mode(ic, ni->ni_chan); 896 if (mode != sc->sc_curmode) 897 ath_setcurmode(sc, mode); 898 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 899 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 900 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 901 } else 902 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 903 done: 904 ATH_UNLOCK(sc); 905 } 906 907 static void 908 ath_stop_locked(struct ifnet *ifp) 909 { 910 struct ath_softc *sc = ifp->if_softc; 911 struct ieee80211com *ic = &sc->sc_ic; 912 struct ath_hal *ah = sc->sc_ah; 913 914 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 915 __func__, sc->sc_invalid, ifp->if_flags); 916 917 ATH_LOCK_ASSERT(sc); 918 if (ifp->if_flags & IFF_RUNNING) { 919 /* 920 * Shutdown the hardware and driver: 921 * reset 802.11 state machine 922 * turn off timers 923 * disable interrupts 924 * turn off the radio 925 * clear transmit machinery 926 * clear receive machinery 927 * drain and release tx queues 928 * reclaim beacon resources 929 * power down hardware 930 * 931 * Note that some of this work is not possible if the 932 * hardware is gone (invalid). 933 */ 934 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 935 ifp->if_flags &= ~IFF_RUNNING; 936 ifp->if_timer = 0; 937 if (!sc->sc_invalid) { 938 if (sc->sc_softled) 939 ath_hal_gpioset(ah, sc->sc_ledpin, 1); 940 ath_hal_intrset(ah, 0); 941 } 942 ath_draintxq(sc); 943 if (!sc->sc_invalid) { 944 ath_stoprecv(sc); 945 ath_hal_phydisable(ah); 946 } else 947 sc->sc_rxlink = NULL; 948 IFQ_DRV_PURGE(&ifp->if_snd); 949 ath_beacon_free(sc); 950 } 951 } 952 953 static void 954 ath_stop(struct ifnet *ifp) 955 { 956 struct ath_softc *sc = ifp->if_softc; 957 958 ATH_LOCK(sc); 959 ath_stop_locked(ifp); 960 if (!sc->sc_invalid) { 961 /* 962 * Set the chip in full sleep mode. Note that we are 963 * careful to do this only when bringing the interface 964 * completely to a stop. When the chip is in this state 965 * it must be carefully woken up or references to 966 * registers in the PCI clock domain may freeze the bus 967 * (and system). This varies by chip and is mostly an 968 * issue with newer parts that go to sleep more quickly. 969 */ 970 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0); 971 } 972 ATH_UNLOCK(sc); 973 } 974 975 /* 976 * Reset the hardware w/o losing operational state. This is 977 * basically a more efficient way of doing ath_stop, ath_init, 978 * followed by state transitions to the current 802.11 979 * operational state. Used to recover from various errors and 980 * to reset or reload hardware state. 981 */ 982 static int 983 ath_reset(struct ifnet *ifp) 984 { 985 struct ath_softc *sc = ifp->if_softc; 986 struct ieee80211com *ic = &sc->sc_ic; 987 struct ath_hal *ah = sc->sc_ah; 988 struct ieee80211_channel *c; 989 HAL_STATUS status; 990 991 /* 992 * Convert to a HAL channel description with the flags 993 * constrained to reflect the current operating mode. 994 */ 995 c = ic->ic_ibss_chan; 996 sc->sc_curchan.channel = c->ic_freq; 997 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c); 998 999 ath_hal_intrset(ah, 0); /* disable interrupts */ 1000 ath_draintxq(sc); /* stop xmit side */ 1001 ath_stoprecv(sc); /* stop recv side */ 1002 /* NB: indicate channel change so we do a full reset */ 1003 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status)) 1004 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1005 __func__, status); 1006 ath_update_txpow(sc); /* update tx power state */ 1007 if (ath_startrecv(sc) != 0) /* restart recv */ 1008 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1009 /* 1010 * We may be doing a reset in response to an ioctl 1011 * that changes the channel so update any state that 1012 * might change as a result. 1013 */ 1014 ath_chan_change(sc, c); 1015 if (ic->ic_state == IEEE80211_S_RUN) 1016 ath_beacon_config(sc); /* restart beacons */ 1017 ath_hal_intrset(ah, sc->sc_imask); 1018 1019 ath_start(ifp); /* restart xmit */ 1020 return 0; 1021 } 1022 1023 static void 1024 ath_start(struct ifnet *ifp) 1025 { 1026 struct ath_softc *sc = ifp->if_softc; 1027 struct ath_hal *ah = sc->sc_ah; 1028 struct ieee80211com *ic = &sc->sc_ic; 1029 struct ieee80211_node *ni; 1030 struct ath_buf *bf; 1031 struct mbuf *m; 1032 struct ieee80211_frame *wh; 1033 struct ether_header *eh; 1034 1035 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 1036 return; 1037 for (;;) { 1038 /* 1039 * Grab a TX buffer and associated resources. 1040 */ 1041 ATH_TXBUF_LOCK(sc); 1042 bf = STAILQ_FIRST(&sc->sc_txbuf); 1043 if (bf != NULL) 1044 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1045 ATH_TXBUF_UNLOCK(sc); 1046 if (bf == NULL) { 1047 DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n", 1048 __func__); 1049 sc->sc_stats.ast_tx_qstop++; 1050 ifp->if_flags |= IFF_OACTIVE; 1051 break; 1052 } 1053 /* 1054 * Poll the management queue for frames; they 1055 * have priority over normal data frames. 1056 */ 1057 IF_DEQUEUE(&ic->ic_mgtq, m); 1058 if (m == NULL) { 1059 /* 1060 * No data frames go out unless we're associated. 1061 */ 1062 if (ic->ic_state != IEEE80211_S_RUN) { 1063 DPRINTF(sc, ATH_DEBUG_ANY, 1064 "%s: ignore data packet, state %u\n", 1065 __func__, ic->ic_state); 1066 sc->sc_stats.ast_tx_discard++; 1067 ATH_TXBUF_LOCK(sc); 1068 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1069 ATH_TXBUF_UNLOCK(sc); 1070 break; 1071 } 1072 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */ 1073 if (m == NULL) { 1074 ATH_TXBUF_LOCK(sc); 1075 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1076 ATH_TXBUF_UNLOCK(sc); 1077 break; 1078 } 1079 /* 1080 * Find the node for the destination so we can do 1081 * things like power save and fast frames aggregation. 1082 */ 1083 if (m->m_len < sizeof(struct ether_header) && 1084 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 1085 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1086 ni = NULL; 1087 goto bad; 1088 } 1089 eh = mtod(m, struct ether_header *); 1090 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1091 if (ni == NULL) { 1092 /* NB: ieee80211_find_txnode does stat+msg */ 1093 goto bad; 1094 } 1095 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1096 (m->m_flags & M_PWR_SAV) == 0) { 1097 /* 1098 * Station in power save mode; pass the frame 1099 * to the 802.11 layer and continue. We'll get 1100 * the frame back when the time is right. 1101 */ 1102 ieee80211_pwrsave(ic, ni, m); 1103 goto reclaim; 1104 } 1105 /* calculate priority so we can find the tx queue */ 1106 if (ieee80211_classify(ic, m, ni)) { 1107 DPRINTF(sc, ATH_DEBUG_XMIT, 1108 "%s: discard, classification failure\n", 1109 __func__); 1110 goto bad; 1111 } 1112 ifp->if_opackets++; 1113 BPF_MTAP(ifp, m); 1114 /* 1115 * Encapsulate the packet in prep for transmission. 1116 */ 1117 m = ieee80211_encap(ic, m, ni); 1118 if (m == NULL) { 1119 DPRINTF(sc, ATH_DEBUG_ANY, 1120 "%s: encapsulation failure\n", 1121 __func__); 1122 sc->sc_stats.ast_tx_encap++; 1123 goto bad; 1124 } 1125 } else { 1126 /* 1127 * Hack! The referenced node pointer is in the 1128 * rcvif field of the packet header. This is 1129 * placed there by ieee80211_mgmt_output because 1130 * we need to hold the reference with the frame 1131 * and there's no other way (other than packet 1132 * tags which we consider too expensive to use) 1133 * to pass it along. 1134 */ 1135 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1136 m->m_pkthdr.rcvif = NULL; 1137 1138 wh = mtod(m, struct ieee80211_frame *); 1139 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1140 IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 1141 /* fill time stamp */ 1142 u_int64_t tsf; 1143 u_int32_t *tstamp; 1144 1145 tsf = ath_hal_gettsf64(ah); 1146 /* XXX: adjust 100us delay to xmit */ 1147 tsf += 100; 1148 tstamp = (u_int32_t *)&wh[1]; 1149 tstamp[0] = htole32(tsf & 0xffffffff); 1150 tstamp[1] = htole32(tsf >> 32); 1151 } 1152 sc->sc_stats.ast_tx_mgmt++; 1153 } 1154 1155 if (ath_tx_start(sc, ni, bf, m)) { 1156 bad: 1157 ifp->if_oerrors++; 1158 reclaim: 1159 ATH_TXBUF_LOCK(sc); 1160 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1161 ATH_TXBUF_UNLOCK(sc); 1162 if (ni != NULL) 1163 ieee80211_free_node(ni); 1164 continue; 1165 } 1166 1167 sc->sc_tx_timer = 5; 1168 ifp->if_timer = 1; 1169 } 1170 } 1171 1172 static int 1173 ath_media_change(struct ifnet *ifp) 1174 { 1175 #define IS_UP(ifp) \ 1176 ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP)) 1177 int error; 1178 1179 error = ieee80211_media_change(ifp); 1180 if (error == ENETRESET) { 1181 if (IS_UP(ifp)) 1182 ath_init(ifp); /* XXX lose error */ 1183 error = 0; 1184 } 1185 return error; 1186 #undef IS_UP 1187 } 1188 1189 #ifdef AR_DEBUG 1190 static void 1191 ath_keyprint(const char *tag, u_int ix, 1192 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1193 { 1194 static const char *ciphers[] = { 1195 "WEP", 1196 "AES-OCB", 1197 "AES-CCM", 1198 "CKIP", 1199 "TKIP", 1200 "CLR", 1201 }; 1202 int i, n; 1203 1204 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); 1205 for (i = 0, n = hk->kv_len; i < n; i++) 1206 printf("%02x", hk->kv_val[i]); 1207 printf(" mac %s", ether_sprintf(mac)); 1208 if (hk->kv_type == HAL_CIPHER_TKIP) { 1209 printf(" mic "); 1210 for (i = 0; i < sizeof(hk->kv_mic); i++) 1211 printf("%02x", hk->kv_mic[i]); 1212 } 1213 printf("\n"); 1214 } 1215 #endif 1216 1217 /* 1218 * Set a TKIP key into the hardware. This handles the 1219 * potential distribution of key state to multiple key 1220 * cache slots for TKIP. 1221 */ 1222 static int 1223 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, 1224 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1225 { 1226 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) 1227 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; 1228 struct ath_hal *ah = sc->sc_ah; 1229 1230 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, 1231 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher)); 1232 KASSERT(sc->sc_splitmic, ("key cache !split")); 1233 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { 1234 /* 1235 * TX key goes at first index, RX key at +32. 1236 * The hal handles the MIC keys at index+64. 1237 */ 1238 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); 1239 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 1240 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid)) 1241 return 0; 1242 1243 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1244 KEYPRINTF(sc, k->wk_keyix+32, hk, mac); 1245 /* XXX delete tx key on failure? */ 1246 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac); 1247 } else if (k->wk_flags & IEEE80211_KEY_XR) { 1248 /* 1249 * TX/RX key goes at first index. 1250 * The hal handles the MIC keys are index+64. 1251 */ 1252 KASSERT(k->wk_keyix < IEEE80211_WEP_NKID, 1253 ("group key at index %u", k->wk_keyix)); 1254 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ? 1255 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic)); 1256 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 1257 return ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid); 1258 } 1259 /* XXX key w/o xmit/recv; need this for compression? */ 1260 return 0; 1261 #undef IEEE80211_KEY_XR 1262 } 1263 1264 /* 1265 * Set a net80211 key into the hardware. This handles the 1266 * potential distribution of key state to multiple key 1267 * cache slots for TKIP with hardware MIC support. 1268 */ 1269 static int 1270 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k, 1271 const u_int8_t mac[IEEE80211_ADDR_LEN]) 1272 { 1273 #define N(a) (sizeof(a)/sizeof(a[0])) 1274 static const u_int8_t ciphermap[] = { 1275 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ 1276 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ 1277 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ 1278 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ 1279 (u_int8_t) -1, /* 4 is not allocated */ 1280 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ 1281 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ 1282 }; 1283 struct ath_hal *ah = sc->sc_ah; 1284 const struct ieee80211_cipher *cip = k->wk_cipher; 1285 HAL_KEYVAL hk; 1286 1287 memset(&hk, 0, sizeof(hk)); 1288 /* 1289 * Software crypto uses a "clear key" so non-crypto 1290 * state kept in the key cache are maintained and 1291 * so that rx frames have an entry to match. 1292 */ 1293 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { 1294 KASSERT(cip->ic_cipher < N(ciphermap), 1295 ("invalid cipher type %u", cip->ic_cipher)); 1296 hk.kv_type = ciphermap[cip->ic_cipher]; 1297 hk.kv_len = k->wk_keylen; 1298 memcpy(hk.kv_val, k->wk_key, k->wk_keylen); 1299 } else 1300 hk.kv_type = HAL_CIPHER_CLR; 1301 1302 if (hk.kv_type == HAL_CIPHER_TKIP && 1303 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && 1304 sc->sc_splitmic) { 1305 return ath_keyset_tkip(sc, k, &hk, mac); 1306 } else { 1307 KEYPRINTF(sc, k->wk_keyix, &hk, mac); 1308 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac); 1309 } 1310 #undef N 1311 } 1312 1313 /* 1314 * Fill the hardware key cache with key entries. 1315 */ 1316 static void 1317 ath_initkeytable(struct ath_softc *sc) 1318 { 1319 struct ieee80211com *ic = &sc->sc_ic; 1320 struct ifnet *ifp = &sc->sc_if; 1321 struct ath_hal *ah = sc->sc_ah; 1322 const u_int8_t *bssid; 1323 int i; 1324 1325 /* XXX maybe should reset all keys when !PRIVACY */ 1326 if (ic->ic_state == IEEE80211_S_SCAN) 1327 bssid = ifp->if_broadcastaddr; 1328 else 1329 bssid = ic->ic_bss->ni_bssid; 1330 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1331 struct ieee80211_key *k = &ic->ic_nw_keys[i]; 1332 1333 if (k->wk_keylen == 0) { 1334 ath_hal_keyreset(ah, i); 1335 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: reset key %u\n", 1336 __func__, i); 1337 } else { 1338 ath_keyset(sc, k, bssid); 1339 } 1340 } 1341 } 1342 1343 /* 1344 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1345 * each key, one for decrypt/encrypt and the other for the MIC. 1346 */ 1347 static u_int16_t 1348 key_alloc_2pair(struct ath_softc *sc) 1349 { 1350 #define N(a) (sizeof(a)/sizeof(a[0])) 1351 u_int i, keyix; 1352 1353 KASSERT(sc->sc_splitmic, ("key cache !split")); 1354 /* XXX could optimize */ 1355 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1356 u_int8_t b = sc->sc_keymap[i]; 1357 if (b != 0xff) { 1358 /* 1359 * One or more slots in this byte are free. 1360 */ 1361 keyix = i*NBBY; 1362 while (b & 1) { 1363 again: 1364 keyix++; 1365 b >>= 1; 1366 } 1367 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ 1368 if (isset(sc->sc_keymap, keyix+32) || 1369 isset(sc->sc_keymap, keyix+64) || 1370 isset(sc->sc_keymap, keyix+32+64)) { 1371 /* full pair unavailable */ 1372 /* XXX statistic */ 1373 if (keyix == (i+1)*NBBY) { 1374 /* no slots were appropriate, advance */ 1375 continue; 1376 } 1377 goto again; 1378 } 1379 setbit(sc->sc_keymap, keyix); 1380 setbit(sc->sc_keymap, keyix+64); 1381 setbit(sc->sc_keymap, keyix+32); 1382 setbit(sc->sc_keymap, keyix+32+64); 1383 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1384 "%s: key pair %u,%u %u,%u\n", 1385 __func__, keyix, keyix+64, 1386 keyix+32, keyix+32+64); 1387 return keyix; 1388 } 1389 } 1390 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1391 return IEEE80211_KEYIX_NONE; 1392 #undef N 1393 } 1394 1395 /* 1396 * Allocate a single key cache slot. 1397 */ 1398 static u_int16_t 1399 key_alloc_single(struct ath_softc *sc) 1400 { 1401 #define N(a) (sizeof(a)/sizeof(a[0])) 1402 u_int i, keyix; 1403 1404 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ 1405 for (i = 0; i < N(sc->sc_keymap); i++) { 1406 u_int8_t b = sc->sc_keymap[i]; 1407 if (b != 0xff) { 1408 /* 1409 * One or more slots are free. 1410 */ 1411 keyix = i*NBBY; 1412 while (b & 1) 1413 keyix++, b >>= 1; 1414 setbit(sc->sc_keymap, keyix); 1415 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", 1416 __func__, keyix); 1417 return keyix; 1418 } 1419 } 1420 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); 1421 return IEEE80211_KEYIX_NONE; 1422 #undef N 1423 } 1424 1425 /* 1426 * Allocate one or more key cache slots for a uniacst key. The 1427 * key itself is needed only to identify the cipher. For hardware 1428 * TKIP with split cipher+MIC keys we allocate two key cache slot 1429 * pairs so that we can setup separate TX and RX MIC keys. Note 1430 * that the MIC key for a TKIP key at slot i is assumed by the 1431 * hardware to be at slot i+64. This limits TKIP keys to the first 1432 * 64 entries. 1433 */ 1434 static int 1435 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k) 1436 { 1437 struct ath_softc *sc = ic->ic_ifp->if_softc; 1438 1439 /* 1440 * We allocate two pair for TKIP when using the h/w to do 1441 * the MIC. For everything else, including software crypto, 1442 * we allocate a single entry. Note that s/w crypto requires 1443 * a pass-through slot on the 5211 and 5212. The 5210 does 1444 * not support pass-through cache entries and we map all 1445 * those requests to slot 0. 1446 */ 1447 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 1448 return key_alloc_single(sc); 1449 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && 1450 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) { 1451 return key_alloc_2pair(sc); 1452 } else { 1453 return key_alloc_single(sc); 1454 } 1455 } 1456 1457 /* 1458 * Delete an entry in the key cache allocated by ath_key_alloc. 1459 */ 1460 static int 1461 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) 1462 { 1463 struct ath_softc *sc = ic->ic_ifp->if_softc; 1464 struct ath_hal *ah = sc->sc_ah; 1465 const struct ieee80211_cipher *cip = k->wk_cipher; 1466 u_int keyix = k->wk_keyix; 1467 1468 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); 1469 1470 ath_hal_keyreset(ah, keyix); 1471 /* 1472 * Handle split tx/rx keying required for TKIP with h/w MIC. 1473 */ 1474 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1475 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) 1476 ath_hal_keyreset(ah, keyix+32); /* RX key */ 1477 if (keyix >= IEEE80211_WEP_NKID) { 1478 /* 1479 * Don't touch keymap entries for global keys so 1480 * they are never considered for dynamic allocation. 1481 */ 1482 clrbit(sc->sc_keymap, keyix); 1483 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1484 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && 1485 sc->sc_splitmic) { 1486 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ 1487 clrbit(sc->sc_keymap, keyix+32); /* RX key */ 1488 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */ 1489 } 1490 } 1491 return 1; 1492 } 1493 1494 /* 1495 * Set the key cache contents for the specified key. Key cache 1496 * slot(s) must already have been allocated by ath_key_alloc. 1497 */ 1498 static int 1499 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, 1500 const u_int8_t mac[IEEE80211_ADDR_LEN]) 1501 { 1502 struct ath_softc *sc = ic->ic_ifp->if_softc; 1503 1504 return ath_keyset(sc, k, mac); 1505 } 1506 1507 /* 1508 * Block/unblock tx+rx processing while a key change is done. 1509 * We assume the caller serializes key management operations 1510 * so we only need to worry about synchronization with other 1511 * uses that originate in the driver. 1512 */ 1513 static void 1514 ath_key_update_begin(struct ieee80211com *ic) 1515 { 1516 struct ifnet *ifp = ic->ic_ifp; 1517 struct ath_softc *sc = ifp->if_softc; 1518 1519 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1520 #if 0 1521 tasklet_disable(&sc->sc_rxtq); 1522 #endif 1523 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 1524 } 1525 1526 static void 1527 ath_key_update_end(struct ieee80211com *ic) 1528 { 1529 struct ifnet *ifp = ic->ic_ifp; 1530 struct ath_softc *sc = ifp->if_softc; 1531 1532 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1533 IF_UNLOCK(&ifp->if_snd); 1534 #if 0 1535 tasklet_enable(&sc->sc_rxtq); 1536 #endif 1537 } 1538 1539 /* 1540 * Calculate the receive filter according to the 1541 * operating mode and state: 1542 * 1543 * o always accept unicast, broadcast, and multicast traffic 1544 * o maintain current state of phy error reception (the hal 1545 * may enable phy error frames for noise immunity work) 1546 * o probe request frames are accepted only when operating in 1547 * hostap, adhoc, or monitor modes 1548 * o enable promiscuous mode according to the interface state 1549 * o accept beacons: 1550 * - when operating in adhoc mode so the 802.11 layer creates 1551 * node table entries for peers, 1552 * - when operating in station mode for collecting rssi data when 1553 * the station is otherwise quiet, or 1554 * - when scanning 1555 */ 1556 static u_int32_t 1557 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state) 1558 { 1559 struct ieee80211com *ic = &sc->sc_ic; 1560 struct ath_hal *ah = sc->sc_ah; 1561 struct ifnet *ifp = &sc->sc_if; 1562 u_int32_t rfilt; 1563 1564 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR) 1565 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 1566 if (ic->ic_opmode != IEEE80211_M_STA) 1567 rfilt |= HAL_RX_FILTER_PROBEREQ; 1568 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1569 (ifp->if_flags & IFF_PROMISC)) 1570 rfilt |= HAL_RX_FILTER_PROM; 1571 if (ic->ic_opmode == IEEE80211_M_STA || 1572 ic->ic_opmode == IEEE80211_M_IBSS || 1573 state == IEEE80211_S_SCAN) 1574 rfilt |= HAL_RX_FILTER_BEACON; 1575 return rfilt; 1576 } 1577 1578 static void 1579 ath_mode_init(struct ath_softc *sc) 1580 { 1581 struct ieee80211com *ic = &sc->sc_ic; 1582 struct ath_hal *ah = sc->sc_ah; 1583 struct ifnet *ifp = &sc->sc_if; 1584 u_int32_t rfilt, mfilt[2], val; 1585 u_int8_t pos; 1586 struct ifmultiaddr *ifma; 1587 1588 /* configure rx filter */ 1589 rfilt = ath_calcrxfilter(sc, ic->ic_state); 1590 ath_hal_setrxfilter(ah, rfilt); 1591 1592 /* configure operational mode */ 1593 ath_hal_setopmode(ah); 1594 1595 /* 1596 * Handle any link-level address change. Note that we only 1597 * need to force ic_myaddr; any other addresses are handled 1598 * as a byproduct of the ifnet code marking the interface 1599 * down then up. 1600 * 1601 * XXX should get from lladdr instead of arpcom but that's more work 1602 */ 1603 IEEE80211_ADDR_COPY(ic->ic_myaddr, IFP2AC(ifp)->ac_enaddr); 1604 ath_hal_setmac(ah, ic->ic_myaddr); 1605 1606 /* calculate and install multicast filter */ 1607 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 1608 mfilt[0] = mfilt[1] = 0; 1609 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1610 caddr_t dl; 1611 1612 /* calculate XOR of eight 6bit values */ 1613 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 1614 val = LE_READ_4(dl + 0); 1615 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1616 val = LE_READ_4(dl + 3); 1617 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1618 pos &= 0x3f; 1619 mfilt[pos / 32] |= (1 << (pos % 32)); 1620 } 1621 } else { 1622 mfilt[0] = mfilt[1] = ~0; 1623 } 1624 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]); 1625 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n", 1626 __func__, rfilt, mfilt[0], mfilt[1]); 1627 } 1628 1629 static void 1630 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error) 1631 { 1632 struct ath_buf *bf = arg; 1633 1634 KASSERT(nseg <= ATH_MAX_SCATTER, 1635 ("%s: too many DMA segments %u", __func__, nseg)); 1636 KASSERT(error == 0, 1637 ("%s: error %u on bus_dma callback", __func__, error)); 1638 bf->bf_mapsize = mapsize; 1639 bf->bf_nseg = nseg; 1640 bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0])); 1641 } 1642 1643 /* 1644 * Set the slot time based on the current setting. 1645 */ 1646 static void 1647 ath_setslottime(struct ath_softc *sc) 1648 { 1649 struct ieee80211com *ic = &sc->sc_ic; 1650 struct ath_hal *ah = sc->sc_ah; 1651 1652 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1653 ath_hal_setslottime(ah, HAL_SLOT_TIME_9); 1654 else 1655 ath_hal_setslottime(ah, HAL_SLOT_TIME_20); 1656 sc->sc_updateslot = OK; 1657 } 1658 1659 /* 1660 * Callback from the 802.11 layer to update the 1661 * slot time based on the current setting. 1662 */ 1663 static void 1664 ath_updateslot(struct ifnet *ifp) 1665 { 1666 struct ath_softc *sc = ifp->if_softc; 1667 struct ieee80211com *ic = &sc->sc_ic; 1668 1669 /* 1670 * When not coordinating the BSS, change the hardware 1671 * immediately. For other operation we defer the change 1672 * until beacon updates have propagated to the stations. 1673 */ 1674 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1675 sc->sc_updateslot = UPDATE; 1676 else 1677 ath_setslottime(sc); 1678 } 1679 1680 /* 1681 * Allocate and setup an initial beacon frame. 1682 */ 1683 static int 1684 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 1685 { 1686 struct ieee80211com *ic = ni->ni_ic; 1687 struct ath_buf *bf; 1688 struct mbuf *m; 1689 int error; 1690 1691 bf = STAILQ_FIRST(&sc->sc_bbuf); 1692 if (bf == NULL) { 1693 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__); 1694 sc->sc_stats.ast_be_nombuf++; /* XXX */ 1695 return ENOMEM; /* XXX */ 1696 } 1697 if (bf->bf_m != NULL) { 1698 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1699 m_freem(bf->bf_m); 1700 bf->bf_m = NULL; 1701 bf->bf_node = NULL; 1702 } 1703 /* 1704 * NB: the beacon data buffer must be 32-bit aligned; 1705 * we assume the mbuf routines will return us something 1706 * with this alignment (perhaps should assert). 1707 */ 1708 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff); 1709 if (m == NULL) { 1710 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n", 1711 __func__); 1712 sc->sc_stats.ast_be_nombuf++; 1713 return ENOMEM; 1714 } 1715 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 1716 ath_mbuf_load_cb, bf, 1717 BUS_DMA_NOWAIT); 1718 if (error == 0) { 1719 bf->bf_m = m; 1720 bf->bf_node = ni; /* NB: no held reference */ 1721 } else { 1722 m_freem(m); 1723 } 1724 return error; 1725 } 1726 1727 /* 1728 * Setup the beacon frame for transmit. 1729 */ 1730 static void 1731 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 1732 { 1733 #define USE_SHPREAMBLE(_ic) \ 1734 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 1735 == IEEE80211_F_SHPREAMBLE) 1736 struct ieee80211_node *ni = bf->bf_node; 1737 struct ieee80211com *ic = ni->ni_ic; 1738 struct mbuf *m = bf->bf_m; 1739 struct ath_hal *ah = sc->sc_ah; 1740 struct ath_node *an = ATH_NODE(ni); 1741 struct ath_desc *ds; 1742 int flags, antenna; 1743 u_int8_t rate; 1744 1745 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n", 1746 __func__, m, m->m_len); 1747 1748 /* setup descriptors */ 1749 ds = bf->bf_desc; 1750 1751 flags = HAL_TXDESC_NOACK; 1752 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 1753 ds->ds_link = bf->bf_daddr; /* self-linked */ 1754 flags |= HAL_TXDESC_VEOL; 1755 /* 1756 * Let hardware handle antenna switching. 1757 */ 1758 antenna = 0; 1759 } else { 1760 ds->ds_link = 0; 1761 /* 1762 * Switch antenna every 4 beacons. 1763 * XXX assumes two antenna 1764 */ 1765 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 1766 } 1767 1768 KASSERT(bf->bf_nseg == 1, 1769 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 1770 ds->ds_data = bf->bf_segs[0].ds_addr; 1771 /* 1772 * Calculate rate code. 1773 * XXX everything at min xmit rate 1774 */ 1775 if (USE_SHPREAMBLE(ic)) 1776 rate = an->an_tx_mgtratesp; 1777 else 1778 rate = an->an_tx_mgtrate; 1779 ath_hal_setuptxdesc(ah, ds 1780 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 1781 , sizeof(struct ieee80211_frame)/* header length */ 1782 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 1783 , ni->ni_txpower /* txpower XXX */ 1784 , rate, 1 /* series 0 rate/tries */ 1785 , HAL_TXKEYIX_INVALID /* no encryption */ 1786 , antenna /* antenna mode */ 1787 , flags /* no ack, veol for beacons */ 1788 , 0 /* rts/cts rate */ 1789 , 0 /* rts/cts duration */ 1790 ); 1791 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 1792 ath_hal_filltxdesc(ah, ds 1793 , roundup(m->m_len, 4) /* buffer length */ 1794 , AH_TRUE /* first segment */ 1795 , AH_TRUE /* last segment */ 1796 , ds /* first descriptor */ 1797 ); 1798 #undef USE_SHPREAMBLE 1799 } 1800 1801 /* 1802 * Transmit a beacon frame at SWBA. Dynamic updates to the 1803 * frame contents are done as needed and the slot time is 1804 * also adjusted based on current state. 1805 */ 1806 static void 1807 ath_beacon_proc(void *arg, int pending) 1808 { 1809 struct ath_softc *sc = arg; 1810 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf); 1811 struct ieee80211_node *ni = bf->bf_node; 1812 struct ieee80211com *ic = ni->ni_ic; 1813 struct ath_hal *ah = sc->sc_ah; 1814 struct mbuf *m; 1815 int ncabq, error, otherant; 1816 1817 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 1818 __func__, pending); 1819 1820 if (ic->ic_opmode == IEEE80211_M_STA || 1821 ic->ic_opmode == IEEE80211_M_MONITOR || 1822 bf == NULL || bf->bf_m == NULL) { 1823 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n", 1824 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL); 1825 return; 1826 } 1827 /* 1828 * Check if the previous beacon has gone out. If 1829 * not don't don't try to post another, skip this 1830 * period and wait for the next. Missed beacons 1831 * indicate a problem and should not occur. If we 1832 * miss too many consecutive beacons reset the device. 1833 */ 1834 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 1835 sc->sc_bmisscount++; 1836 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 1837 "%s: missed %u consecutive beacons\n", 1838 __func__, sc->sc_bmisscount); 1839 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */ 1840 taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask); 1841 return; 1842 } 1843 if (sc->sc_bmisscount != 0) { 1844 DPRINTF(sc, ATH_DEBUG_BEACON, 1845 "%s: resume beacon xmit after %u misses\n", 1846 __func__, sc->sc_bmisscount); 1847 sc->sc_bmisscount = 0; 1848 } 1849 1850 /* 1851 * Update dynamic beacon contents. If this returns 1852 * non-zero then we need to remap the memory because 1853 * the beacon frame changed size (probably because 1854 * of the TIM bitmap). 1855 */ 1856 m = bf->bf_m; 1857 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum); 1858 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) { 1859 /* XXX too conservative? */ 1860 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1861 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 1862 ath_mbuf_load_cb, bf, 1863 BUS_DMA_NOWAIT); 1864 if (error != 0) { 1865 if_printf(ic->ic_ifp, 1866 "%s: bus_dmamap_load_mbuf failed, error %u\n", 1867 __func__, error); 1868 return; 1869 } 1870 } 1871 1872 /* 1873 * Handle slot time change when a non-ERP station joins/leaves 1874 * an 11g network. The 802.11 layer notifies us via callback, 1875 * we mark updateslot, then wait one beacon before effecting 1876 * the change. This gives associated stations at least one 1877 * beacon interval to note the state change. 1878 */ 1879 /* XXX locking */ 1880 if (sc->sc_updateslot == UPDATE) 1881 sc->sc_updateslot = COMMIT; /* commit next beacon */ 1882 else if (sc->sc_updateslot == COMMIT) 1883 ath_setslottime(sc); /* commit change to h/w */ 1884 1885 /* 1886 * Check recent per-antenna transmit statistics and flip 1887 * the default antenna if noticeably more frames went out 1888 * on the non-default antenna. 1889 * XXX assumes 2 anntenae 1890 */ 1891 otherant = sc->sc_defant & 1 ? 2 : 1; 1892 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 1893 ath_setdefantenna(sc, otherant); 1894 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 1895 1896 /* 1897 * Construct tx descriptor. 1898 */ 1899 ath_beacon_setup(sc, bf); 1900 1901 /* 1902 * Stop any current dma and put the new frame on the queue. 1903 * This should never fail since we check above that no frames 1904 * are still pending on the queue. 1905 */ 1906 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 1907 DPRINTF(sc, ATH_DEBUG_ANY, 1908 "%s: beacon queue %u did not stop?\n", 1909 __func__, sc->sc_bhalq); 1910 } 1911 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 1912 1913 /* 1914 * Enable the CAB queue before the beacon queue to 1915 * insure cab frames are triggered by this beacon. 1916 */ 1917 if (sc->sc_boff.bo_tim[4] & 1) /* NB: only at DTIM */ 1918 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum); 1919 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 1920 ath_hal_txstart(ah, sc->sc_bhalq); 1921 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 1922 "%s: TXDP[%u] = %p (%p)\n", __func__, 1923 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc); 1924 1925 sc->sc_stats.ast_be_xmit++; 1926 } 1927 1928 /* 1929 * Reset the hardware after detecting beacons have stopped. 1930 */ 1931 static void 1932 ath_bstuck_proc(void *arg, int pending) 1933 { 1934 struct ath_softc *sc = arg; 1935 struct ifnet *ifp = &sc->sc_if; 1936 1937 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 1938 sc->sc_bmisscount); 1939 ath_reset(ifp); 1940 } 1941 1942 /* 1943 * Reclaim beacon resources. 1944 */ 1945 static void 1946 ath_beacon_free(struct ath_softc *sc) 1947 { 1948 struct ath_buf *bf; 1949 1950 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) 1951 if (bf->bf_m != NULL) { 1952 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1953 m_freem(bf->bf_m); 1954 bf->bf_m = NULL; 1955 bf->bf_node = NULL; 1956 } 1957 } 1958 1959 /* 1960 * Configure the beacon and sleep timers. 1961 * 1962 * When operating as an AP this resets the TSF and sets 1963 * up the hardware to notify us when we need to issue beacons. 1964 * 1965 * When operating in station mode this sets up the beacon 1966 * timers according to the timestamp of the last received 1967 * beacon and the current TSF, configures PCF and DTIM 1968 * handling, programs the sleep registers so the hardware 1969 * will wakeup in time to receive beacons, and configures 1970 * the beacon miss handling so we'll receive a BMISS 1971 * interrupt when we stop seeing beacons from the AP 1972 * we've associated with. 1973 */ 1974 static void 1975 ath_beacon_config(struct ath_softc *sc) 1976 { 1977 struct ath_hal *ah = sc->sc_ah; 1978 struct ieee80211com *ic = &sc->sc_ic; 1979 struct ieee80211_node *ni = ic->ic_bss; 1980 u_int32_t nexttbtt, intval; 1981 1982 nexttbtt = (LE_READ_4(ni->ni_tstamp.data + 4) << 22) | 1983 (LE_READ_4(ni->ni_tstamp.data) >> 10); 1984 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u\n", 1985 __func__, nexttbtt, ni->ni_intval); 1986 nexttbtt += ni->ni_intval; 1987 intval = ni->ni_intval & HAL_BEACON_PERIOD; 1988 if (ic->ic_opmode == IEEE80211_M_STA) { 1989 HAL_BEACON_STATE bs; 1990 u_int32_t bmisstime; 1991 1992 /* NB: no PCF support right now */ 1993 memset(&bs, 0, sizeof(bs)); 1994 /* 1995 * Reset our tsf so the hardware will update the 1996 * tsf register to reflect timestamps found in 1997 * received beacons. 1998 */ 1999 bs.bs_intval = intval | HAL_BEACON_RESET_TSF; 2000 bs.bs_nexttbtt = nexttbtt; 2001 bs.bs_dtimperiod = bs.bs_intval; 2002 bs.bs_nextdtim = nexttbtt; 2003 /* 2004 * The 802.11 layer records the offset to the DTIM 2005 * bitmap while receiving beacons; use it here to 2006 * enable h/w detection of our AID being marked in 2007 * the bitmap vector (to indicate frames for us are 2008 * pending at the AP). 2009 */ 2010 bs.bs_timoffset = ni->ni_timoff; 2011 /* 2012 * Calculate the number of consecutive beacons to miss 2013 * before taking a BMISS interrupt. The configuration 2014 * is specified in ms, so we need to convert that to 2015 * TU's and then calculate based on the beacon interval. 2016 * Note that we clamp the result to at most 10 beacons. 2017 */ 2018 bmisstime = (ic->ic_bmisstimeout * 1000) / 1024; 2019 bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval); 2020 if (bs.bs_bmissthreshold > 10) 2021 bs.bs_bmissthreshold = 10; 2022 else if (bs.bs_bmissthreshold <= 0) 2023 bs.bs_bmissthreshold = 1; 2024 2025 /* 2026 * Calculate sleep duration. The configuration is 2027 * given in ms. We insure a multiple of the beacon 2028 * period is used. Also, if the sleep duration is 2029 * greater than the DTIM period then it makes senses 2030 * to make it a multiple of that. 2031 * 2032 * XXX fixed at 100ms 2033 */ 2034 bs.bs_sleepduration = 2035 roundup((100 * 1000) / 1024, bs.bs_intval); 2036 if (bs.bs_sleepduration > bs.bs_dtimperiod) 2037 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 2038 2039 DPRINTF(sc, ATH_DEBUG_BEACON, 2040 "%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 2041 , __func__ 2042 , bs.bs_intval 2043 , bs.bs_nexttbtt 2044 , bs.bs_dtimperiod 2045 , bs.bs_nextdtim 2046 , bs.bs_bmissthreshold 2047 , bs.bs_sleepduration 2048 , bs.bs_cfpperiod 2049 , bs.bs_cfpmaxduration 2050 , bs.bs_cfpnext 2051 , bs.bs_timoffset 2052 ); 2053 ath_hal_intrset(ah, 0); 2054 ath_hal_beacontimers(ah, &bs); 2055 sc->sc_imask |= HAL_INT_BMISS; 2056 ath_hal_intrset(ah, sc->sc_imask); 2057 } else { 2058 ath_hal_intrset(ah, 0); 2059 if (nexttbtt == ni->ni_intval) 2060 intval |= HAL_BEACON_RESET_TSF; 2061 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2062 /* 2063 * In IBSS mode enable the beacon timers but only 2064 * enable SWBA interrupts if we need to manually 2065 * prepare beacon frames. Otherwise we use a 2066 * self-linked tx descriptor and let the hardware 2067 * deal with things. 2068 */ 2069 intval |= HAL_BEACON_ENA; 2070 if (!sc->sc_hasveol) 2071 sc->sc_imask |= HAL_INT_SWBA; 2072 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2073 /* 2074 * In AP mode we enable the beacon timers and 2075 * SWBA interrupts to prepare beacon frames. 2076 */ 2077 intval |= HAL_BEACON_ENA; 2078 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 2079 } 2080 ath_hal_beaconinit(ah, nexttbtt, intval); 2081 sc->sc_bmisscount = 0; 2082 ath_hal_intrset(ah, sc->sc_imask); 2083 /* 2084 * When using a self-linked beacon descriptor in 2085 * ibss mode load it once here. 2086 */ 2087 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 2088 ath_beacon_proc(sc, 0); 2089 } 2090 } 2091 2092 static void 2093 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2094 { 2095 bus_addr_t *paddr = (bus_addr_t*) arg; 2096 KASSERT(error == 0, 2097 ("%s: error %u on bus_dma callback", __func__, error)); 2098 *paddr = segs->ds_addr; 2099 } 2100 2101 static int 2102 ath_descdma_setup(struct ath_softc *sc, 2103 struct ath_descdma *dd, ath_bufhead *head, 2104 const char *name, int nbuf, int ndesc) 2105 { 2106 #define DS2PHYS(_dd, _ds) \ 2107 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2108 struct ifnet *ifp = &sc->sc_if; 2109 struct ath_desc *ds; 2110 struct ath_buf *bf; 2111 int i, bsize, error; 2112 2113 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 2114 __func__, name, nbuf, ndesc); 2115 2116 dd->dd_name = name; 2117 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; 2118 2119 /* 2120 * Setup DMA descriptor area. 2121 */ 2122 error = bus_dma_tag_create(NULL, /* parent */ 2123 PAGE_SIZE, 0, /* alignment, bounds */ 2124 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2125 BUS_SPACE_MAXADDR, /* highaddr */ 2126 NULL, NULL, /* filter, filterarg */ 2127 dd->dd_desc_len, /* maxsize */ 2128 1, /* nsegments */ 2129 BUS_SPACE_MAXADDR, /* maxsegsize */ 2130 BUS_DMA_ALLOCNOW, /* flags */ 2131 NULL, /* lockfunc */ 2132 NULL, /* lockarg */ 2133 &dd->dd_dmat); 2134 if (error != 0) { 2135 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 2136 return error; 2137 } 2138 2139 /* allocate descriptors */ 2140 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2141 if (error != 0) { 2142 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2143 "error %u\n", dd->dd_name, error); 2144 goto fail0; 2145 } 2146 2147 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 2148 BUS_DMA_NOWAIT, &dd->dd_dmamap); 2149 if (error != 0) { 2150 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2151 "error %u\n", nbuf * ndesc, dd->dd_name, error); 2152 goto fail1; 2153 } 2154 2155 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 2156 dd->dd_desc, dd->dd_desc_len, 2157 ath_load_cb, &dd->dd_desc_paddr, 2158 BUS_DMA_NOWAIT); 2159 if (error != 0) { 2160 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2161 dd->dd_name, error); 2162 goto fail2; 2163 } 2164 2165 ds = dd->dd_desc; 2166 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2167 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 2168 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 2169 2170 /* allocate rx buffers */ 2171 bsize = sizeof(struct ath_buf) * nbuf; 2172 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2173 if (bf == NULL) { 2174 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2175 dd->dd_name, bsize); 2176 goto fail3; 2177 } 2178 dd->dd_bufptr = bf; 2179 2180 STAILQ_INIT(head); 2181 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { 2182 bf->bf_desc = ds; 2183 bf->bf_daddr = DS2PHYS(dd, ds); 2184 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 2185 &bf->bf_dmamap); 2186 if (error != 0) { 2187 if_printf(ifp, "unable to create dmamap for %s " 2188 "buffer %u, error %u\n", dd->dd_name, i, error); 2189 ath_descdma_cleanup(sc, dd, head); 2190 return error; 2191 } 2192 STAILQ_INSERT_TAIL(head, bf, bf_list); 2193 } 2194 return 0; 2195 fail3: 2196 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2197 fail2: 2198 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2199 fail1: 2200 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2201 fail0: 2202 bus_dma_tag_destroy(dd->dd_dmat); 2203 memset(dd, 0, sizeof(*dd)); 2204 return error; 2205 #undef DS2PHYS 2206 } 2207 2208 static void 2209 ath_descdma_cleanup(struct ath_softc *sc, 2210 struct ath_descdma *dd, ath_bufhead *head) 2211 { 2212 struct ath_buf *bf; 2213 struct ieee80211_node *ni; 2214 2215 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2216 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2217 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2218 bus_dma_tag_destroy(dd->dd_dmat); 2219 2220 STAILQ_FOREACH(bf, head, bf_list) { 2221 if (bf->bf_m) { 2222 m_freem(bf->bf_m); 2223 bf->bf_m = NULL; 2224 } 2225 if (bf->bf_dmamap != NULL) { 2226 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2227 bf->bf_dmamap = NULL; 2228 } 2229 ni = bf->bf_node; 2230 bf->bf_node = NULL; 2231 if (ni != NULL) { 2232 /* 2233 * Reclaim node reference. 2234 */ 2235 ieee80211_free_node(ni); 2236 } 2237 } 2238 2239 STAILQ_INIT(head); 2240 free(dd->dd_bufptr, M_ATHDEV); 2241 memset(dd, 0, sizeof(*dd)); 2242 } 2243 2244 static int 2245 ath_desc_alloc(struct ath_softc *sc) 2246 { 2247 int error; 2248 2249 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 2250 "rx", ATH_RXBUF, 1); 2251 if (error != 0) 2252 return error; 2253 2254 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 2255 "tx", ATH_TXBUF, ATH_TXDESC); 2256 if (error != 0) { 2257 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2258 return error; 2259 } 2260 2261 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 2262 "beacon", 1, 1); 2263 if (error != 0) { 2264 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2265 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2266 return error; 2267 } 2268 return 0; 2269 } 2270 2271 static void 2272 ath_desc_free(struct ath_softc *sc) 2273 { 2274 2275 if (sc->sc_bdma.dd_desc_len != 0) 2276 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 2277 if (sc->sc_txdma.dd_desc_len != 0) 2278 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2279 if (sc->sc_rxdma.dd_desc_len != 0) 2280 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2281 } 2282 2283 static struct ieee80211_node * 2284 ath_node_alloc(struct ieee80211_node_table *nt) 2285 { 2286 struct ieee80211com *ic = nt->nt_ic; 2287 struct ath_softc *sc = ic->ic_ifp->if_softc; 2288 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 2289 struct ath_node *an; 2290 2291 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 2292 if (an == NULL) { 2293 /* XXX stat+msg */ 2294 return NULL; 2295 } 2296 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER; 2297 an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 2298 an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 2299 an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 2300 ath_rate_node_init(sc, an); 2301 2302 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 2303 return &an->an_node; 2304 } 2305 2306 /* 2307 * Clear any references to a node in a transmit queue. 2308 * This happens when the node is cleaned so we don't 2309 * need to worry about the reference count going to zero; 2310 * we just reclaim the reference w/o dropping the txq lock. 2311 * Then we null the pointer and the right thing happens 2312 * when the buffer is cleaned in ath_tx_processq. 2313 */ 2314 static void 2315 ath_tx_cleanq(struct ieee80211com *ic, struct ath_txq *txq, 2316 struct ieee80211_node *ni) 2317 { 2318 struct ath_buf *bf; 2319 2320 ATH_TXQ_LOCK(txq); 2321 STAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 2322 if (bf->bf_node == ni) { 2323 /* NB: this clears the pointer too */ 2324 ieee80211_unref_node(&bf->bf_node); 2325 } 2326 } 2327 ATH_TXQ_UNLOCK(txq); 2328 } 2329 2330 static void 2331 ath_node_free(struct ieee80211_node *ni) 2332 { 2333 struct ieee80211com *ic = ni->ni_ic; 2334 struct ath_softc *sc = ic->ic_ifp->if_softc; 2335 int i; 2336 2337 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 2338 2339 /* XXX can this happen since refcnt must be zero for us to be called? */ 2340 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 2341 if (ATH_TXQ_SETUP(sc, i)) 2342 ath_tx_cleanq(ic, &sc->sc_txq[i], ni); 2343 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 2344 sc->sc_node_free(ni); 2345 } 2346 2347 static u_int8_t 2348 ath_node_getrssi(const struct ieee80211_node *ni) 2349 { 2350 #define HAL_EP_RND(x, mul) \ 2351 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 2352 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi; 2353 int32_t rssi; 2354 2355 /* 2356 * When only one frame is received there will be no state in 2357 * avgrssi so fallback on the value recorded by the 802.11 layer. 2358 */ 2359 if (avgrssi != ATH_RSSI_DUMMY_MARKER) 2360 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER); 2361 else 2362 rssi = ni->ni_rssi; 2363 /* NB: theoretically we shouldn't need this, but be paranoid */ 2364 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi; 2365 #undef HAL_EP_RND 2366 } 2367 2368 static int 2369 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 2370 { 2371 struct ath_hal *ah = sc->sc_ah; 2372 int error; 2373 struct mbuf *m; 2374 struct ath_desc *ds; 2375 2376 m = bf->bf_m; 2377 if (m == NULL) { 2378 /* 2379 * NB: by assigning a page to the rx dma buffer we 2380 * implicitly satisfy the Atheros requirement that 2381 * this buffer be cache-line-aligned and sized to be 2382 * multiple of the cache line size. Not doing this 2383 * causes weird stuff to happen (for the 5210 at least). 2384 */ 2385 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2386 if (m == NULL) { 2387 DPRINTF(sc, ATH_DEBUG_ANY, 2388 "%s: no mbuf/cluster\n", __func__); 2389 sc->sc_stats.ast_rx_nombuf++; 2390 return ENOMEM; 2391 } 2392 KASSERT(m->m_next == NULL, ("m_next %p (1)", m->m_next)); 2393 bf->bf_m = m; 2394 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 2395 2396 error = bus_dmamap_load_mbuf(sc->sc_dmat, 2397 bf->bf_dmamap, m, 2398 ath_mbuf_load_cb, bf, 2399 BUS_DMA_NOWAIT); 2400 if (error != 0) { 2401 DPRINTF(sc, ATH_DEBUG_ANY, 2402 "%s: bus_dmamap_load_mbuf failed; error %d\n", 2403 __func__, error); 2404 sc->sc_stats.ast_rx_busdma++; 2405 return error; 2406 } 2407 KASSERT(bf->bf_nseg == 1, ("%s: multi-segment packet; nseg %u", 2408 __func__, bf->bf_nseg)); 2409 } 2410 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 2411 2412 /* 2413 * Setup descriptors. For receive we always terminate 2414 * the descriptor list with a self-linked entry so we'll 2415 * not get overrun under high load (as can happen with a 2416 * 5212 when ANI processing enables PHY error frames). 2417 * 2418 * To insure the last descriptor is self-linked we create 2419 * each descriptor as self-linked and add it to the end. As 2420 * each additional descriptor is added the previous self-linked 2421 * entry is ``fixed'' naturally. This should be safe even 2422 * if DMA is happening. When processing RX interrupts we 2423 * never remove/process the last, self-linked, entry on the 2424 * descriptor list. This insures the hardware always has 2425 * someplace to write a new frame. 2426 */ 2427 ds = bf->bf_desc; 2428 ds->ds_link = bf->bf_daddr; /* link to self */ 2429 ds->ds_data = bf->bf_segs[0].ds_addr; 2430 ath_hal_setuprxdesc(ah, ds 2431 , m->m_len /* buffer size */ 2432 , 0 2433 ); 2434 2435 if (sc->sc_rxlink != NULL) 2436 *sc->sc_rxlink = bf->bf_daddr; 2437 sc->sc_rxlink = &ds->ds_link; 2438 return 0; 2439 } 2440 2441 /* 2442 * Intercept management frames to collect beacon rssi data 2443 * and to do ibss merges. 2444 */ 2445 static void 2446 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 2447 struct ieee80211_node *ni, 2448 int subtype, int rssi, u_int32_t rstamp) 2449 { 2450 struct ath_softc *sc = ic->ic_ifp->if_softc; 2451 2452 /* 2453 * Call up first so subsequent work can use information 2454 * potentially stored in the node (e.g. for ibss merge). 2455 */ 2456 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp); 2457 switch (subtype) { 2458 case IEEE80211_FC0_SUBTYPE_BEACON: 2459 /* update rssi statistics for use by the hal */ 2460 ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi); 2461 /* fall thru... */ 2462 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 2463 if (ic->ic_opmode == IEEE80211_M_IBSS && 2464 ic->ic_state == IEEE80211_S_RUN) { 2465 struct ath_hal *ah = sc->sc_ah; 2466 /* XXX extend rstamp */ 2467 u_int64_t tsf = ath_hal_gettsf64(ah); 2468 2469 /* 2470 * Handle ibss merge as needed; check the tsf on the 2471 * frame before attempting the merge. The 802.11 spec 2472 * says the station should change it's bssid to match 2473 * the oldest station with the same ssid, where oldest 2474 * is determined by the tsf. 2475 */ 2476 if (le64toh(ni->ni_tstamp.tsf) >= tsf && 2477 ieee80211_ibss_merge(ic, ni)) 2478 ath_hal_setassocid(ah, ic->ic_bss->ni_bssid, 0); 2479 } 2480 break; 2481 } 2482 } 2483 2484 /* 2485 * Set the default antenna. 2486 */ 2487 static void 2488 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 2489 { 2490 struct ath_hal *ah = sc->sc_ah; 2491 2492 /* XXX block beacon interrupts */ 2493 ath_hal_setdefantenna(ah, antenna); 2494 if (sc->sc_defant != antenna) 2495 sc->sc_stats.ast_ant_defswitch++; 2496 sc->sc_defant = antenna; 2497 sc->sc_rxotherant = 0; 2498 } 2499 2500 static void 2501 ath_rx_proc(void *arg, int npending) 2502 { 2503 #define PA2DESC(_sc, _pa) \ 2504 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 2505 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 2506 struct ath_softc *sc = arg; 2507 struct ath_buf *bf; 2508 struct ieee80211com *ic = &sc->sc_ic; 2509 struct ifnet *ifp = &sc->sc_if; 2510 struct ath_hal *ah = sc->sc_ah; 2511 struct ath_desc *ds; 2512 struct mbuf *m; 2513 struct ieee80211_node *ni; 2514 struct ath_node *an; 2515 int len; 2516 u_int phyerr; 2517 HAL_STATUS status; 2518 2519 NET_LOCK_GIANT(); /* XXX */ 2520 2521 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 2522 do { 2523 bf = STAILQ_FIRST(&sc->sc_rxbuf); 2524 if (bf == NULL) { /* NB: shouldn't happen */ 2525 if_printf(ifp, "%s: no buffer!\n", __func__); 2526 break; 2527 } 2528 ds = bf->bf_desc; 2529 if (ds->ds_link == bf->bf_daddr) { 2530 /* NB: never process the self-linked entry at the end */ 2531 break; 2532 } 2533 m = bf->bf_m; 2534 if (m == NULL) { /* NB: shouldn't happen */ 2535 if_printf(ifp, "%s: no mbuf!\n", __func__); 2536 continue; 2537 } 2538 /* XXX sync descriptor memory */ 2539 /* 2540 * Must provide the virtual address of the current 2541 * descriptor, the physical address, and the virtual 2542 * address of the next descriptor in the h/w chain. 2543 * This allows the HAL to look ahead to see if the 2544 * hardware is done with a descriptor by checking the 2545 * done bit in the following descriptor and the address 2546 * of the current descriptor the DMA engine is working 2547 * on. All this is necessary because of our use of 2548 * a self-linked list to avoid rx overruns. 2549 */ 2550 status = ath_hal_rxprocdesc(ah, ds, 2551 bf->bf_daddr, PA2DESC(sc, ds->ds_link)); 2552 #ifdef AR_DEBUG 2553 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 2554 ath_printrxbuf(bf, status == HAL_OK); 2555 #endif 2556 if (status == HAL_EINPROGRESS) 2557 break; 2558 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 2559 if (ds->ds_rxstat.rs_more) { 2560 /* 2561 * Frame spans multiple descriptors; this 2562 * cannot happen yet as we don't support 2563 * jumbograms. If not in monitor mode, 2564 * discard the frame. 2565 */ 2566 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2567 sc->sc_stats.ast_rx_toobig++; 2568 goto rx_next; 2569 } 2570 /* fall thru for monitor mode handling... */ 2571 } else if (ds->ds_rxstat.rs_status != 0) { 2572 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 2573 sc->sc_stats.ast_rx_crcerr++; 2574 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) 2575 sc->sc_stats.ast_rx_fifoerr++; 2576 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { 2577 sc->sc_stats.ast_rx_phyerr++; 2578 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; 2579 sc->sc_stats.ast_rx_phy[phyerr]++; 2580 goto rx_next; 2581 } 2582 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) { 2583 /* 2584 * Decrypt error. If the error occurred 2585 * because there was no hardware key, then 2586 * let the frame through so the upper layers 2587 * can process it. This is necessary for 5210 2588 * parts which have no way to setup a ``clear'' 2589 * key cache entry. 2590 * 2591 * XXX do key cache faulting 2592 */ 2593 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID) 2594 goto rx_accept; 2595 sc->sc_stats.ast_rx_badcrypt++; 2596 } 2597 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) { 2598 sc->sc_stats.ast_rx_badmic++; 2599 /* 2600 * Do minimal work required to hand off 2601 * the 802.11 header for notifcation. 2602 */ 2603 /* XXX frag's and qos frames */ 2604 len = ds->ds_rxstat.rs_datalen; 2605 if (len >= sizeof (struct ieee80211_frame)) { 2606 bus_dmamap_sync(sc->sc_dmat, 2607 bf->bf_dmamap, 2608 BUS_DMASYNC_POSTREAD); 2609 ieee80211_notify_michael_failure(ic, 2610 mtod(m, struct ieee80211_frame *), 2611 ds->ds_rxstat.rs_keyix); 2612 } 2613 } 2614 ifp->if_ierrors++; 2615 /* 2616 * Reject error frames, we normally don't want 2617 * to see them in monitor mode (in monitor mode 2618 * allow through packets that have crypto problems). 2619 */ 2620 if ((ds->ds_rxstat.rs_status &~ 2621 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) || 2622 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) 2623 goto rx_next; 2624 } 2625 rx_accept: 2626 KASSERT(m->m_next == NULL, ("m_next %p (3)", m->m_next)); 2627 /* 2628 * Sync and unmap the frame. At this point we're 2629 * committed to passing the mbuf somewhere so clear 2630 * bf_m; this means a new sk_buff must be allocated 2631 * when the rx descriptor is setup again to receive 2632 * another frame. 2633 */ 2634 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 2635 BUS_DMASYNC_POSTREAD); 2636 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2637 bf->bf_m = NULL; 2638 2639 m->m_pkthdr.rcvif = ifp; 2640 len = ds->ds_rxstat.rs_datalen; 2641 m->m_pkthdr.len = m->m_len = len; 2642 2643 if (sc->sc_softled) 2644 ath_update_led(sc); 2645 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++; 2646 2647 if (sc->sc_drvbpf) { 2648 /* 2649 * Discard anything shorter than an ack or cts. 2650 */ 2651 if (len < IEEE80211_ACK_LEN) { 2652 DPRINTF(sc, ATH_DEBUG_RECV, 2653 "%s: runt packet %d\n", 2654 __func__, len); 2655 sc->sc_stats.ast_rx_tooshort++; 2656 m_freem(m); 2657 goto rx_next; 2658 } 2659 sc->sc_rx_th.wr_rate = 2660 sc->sc_hwmap[ds->ds_rxstat.rs_rate]; 2661 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi; 2662 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna; 2663 /* XXX TSF */ 2664 2665 bpf_mtap2(sc->sc_drvbpf, 2666 &sc->sc_rx_th, sc->sc_rx_th_len, m); 2667 } 2668 2669 /* 2670 * From this point on we assume the frame is at least 2671 * as large as ieee80211_frame_min; verify that. 2672 */ 2673 if (len < IEEE80211_MIN_LEN) { 2674 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n", 2675 __func__, len); 2676 sc->sc_stats.ast_rx_tooshort++; 2677 m_freem(m); 2678 goto rx_next; 2679 } 2680 2681 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 2682 ieee80211_dump_pkt(mtod(m, caddr_t), len, 2683 sc->sc_hwmap[ds->ds_rxstat.rs_rate], 2684 ds->ds_rxstat.rs_rssi); 2685 } 2686 2687 m_adj(m, -IEEE80211_CRC_LEN); 2688 2689 /* 2690 * Locate the node for sender, track state, and then 2691 * pass the (referenced) node up to the 802.11 layer 2692 * for its use. 2693 */ 2694 ni = ieee80211_find_rxnode(ic, 2695 mtod(m, const struct ieee80211_frame_min *)); 2696 2697 /* 2698 * Track rx rssi and do any rx antenna management. 2699 */ 2700 an = ATH_NODE(ni); 2701 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi); 2702 if (sc->sc_diversity) { 2703 /* 2704 * When using fast diversity, change the default rx 2705 * antenna if diversity chooses the other antenna 3 2706 * times in a row. 2707 */ 2708 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) { 2709 if (++sc->sc_rxotherant >= 3) 2710 ath_setdefantenna(sc, 2711 ds->ds_rxstat.rs_antenna); 2712 } else 2713 sc->sc_rxotherant = 0; 2714 } 2715 2716 /* 2717 * Send frame up for processing. 2718 */ 2719 ieee80211_input(ic, m, ni, 2720 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 2721 2722 /* 2723 * Reclaim node reference. 2724 */ 2725 ieee80211_free_node(ni); 2726 rx_next: 2727 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 2728 } while (ath_rxbuf_init(sc, bf) == 0); 2729 2730 /* rx signal state monitoring */ 2731 ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats); 2732 2733 NET_UNLOCK_GIANT(); /* XXX */ 2734 #undef PA2DESC 2735 } 2736 2737 /* 2738 * Setup a h/w transmit queue. 2739 */ 2740 static struct ath_txq * 2741 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 2742 { 2743 #define N(a) (sizeof(a)/sizeof(a[0])) 2744 struct ath_hal *ah = sc->sc_ah; 2745 HAL_TXQ_INFO qi; 2746 int qnum; 2747 2748 memset(&qi, 0, sizeof(qi)); 2749 qi.tqi_subtype = subtype; 2750 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2751 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2752 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2753 /* 2754 * Enable interrupts only for EOL and DESC conditions. 2755 * We mark tx descriptors to receive a DESC interrupt 2756 * when a tx queue gets deep; otherwise waiting for the 2757 * EOL to reap descriptors. Note that this is done to 2758 * reduce interrupt load and this only defers reaping 2759 * descriptors, never transmitting frames. Aside from 2760 * reducing interrupts this also permits more concurrency. 2761 * The only potential downside is if the tx queue backs 2762 * up in which case the top half of the kernel may backup 2763 * due to a lack of tx descriptors. 2764 */ 2765 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE; 2766 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 2767 if (qnum == -1) { 2768 /* 2769 * NB: don't print a message, this happens 2770 * ormally on parts with too few tx queues 2771 */ 2772 return NULL; 2773 } 2774 if (qnum >= N(sc->sc_txq)) { 2775 device_printf(sc->sc_dev, "hal qnum %u out of range, max %u!\n", 2776 qnum, N(sc->sc_txq)); 2777 ath_hal_releasetxqueue(ah, qnum); 2778 return NULL; 2779 } 2780 if (!ATH_TXQ_SETUP(sc, qnum)) { 2781 struct ath_txq *txq = &sc->sc_txq[qnum]; 2782 2783 txq->axq_qnum = qnum; 2784 txq->axq_depth = 0; 2785 txq->axq_intrcnt = 0; 2786 txq->axq_link = NULL; 2787 STAILQ_INIT(&txq->axq_q); 2788 ATH_TXQ_LOCK_INIT(sc, txq); 2789 sc->sc_txqsetup |= 1<<qnum; 2790 } 2791 return &sc->sc_txq[qnum]; 2792 #undef N 2793 } 2794 2795 /* 2796 * Setup a hardware data transmit queue for the specified 2797 * access control. The hal may not support all requested 2798 * queues in which case it will return a reference to a 2799 * previously setup queue. We record the mapping from ac's 2800 * to h/w queues for use by ath_tx_start and also track 2801 * the set of h/w queues being used to optimize work in the 2802 * transmit interrupt handler and related routines. 2803 */ 2804 static int 2805 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 2806 { 2807 #define N(a) (sizeof(a)/sizeof(a[0])) 2808 struct ath_txq *txq; 2809 2810 if (ac >= N(sc->sc_ac2q)) { 2811 device_printf(sc->sc_dev, "AC %u out of range, max %u!\n", 2812 ac, N(sc->sc_ac2q)); 2813 return 0; 2814 } 2815 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 2816 if (txq != NULL) { 2817 sc->sc_ac2q[ac] = txq; 2818 return 1; 2819 } else 2820 return 0; 2821 #undef N 2822 } 2823 2824 /* 2825 * Update WME parameters for a transmit queue. 2826 */ 2827 static int 2828 ath_txq_update(struct ath_softc *sc, int ac) 2829 { 2830 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 2831 #define ATH_TXOP_TO_US(v) (v<<5) 2832 struct ieee80211com *ic = &sc->sc_ic; 2833 struct ath_txq *txq = sc->sc_ac2q[ac]; 2834 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2835 struct ath_hal *ah = sc->sc_ah; 2836 HAL_TXQ_INFO qi; 2837 2838 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 2839 qi.tqi_aifs = wmep->wmep_aifsn; 2840 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2841 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2842 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 2843 2844 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 2845 device_printf(sc->sc_dev, "unable to update hardware queue " 2846 "parameters for %s traffic!\n", 2847 ieee80211_wme_acnames[ac]); 2848 return 0; 2849 } else { 2850 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 2851 return 1; 2852 } 2853 #undef ATH_TXOP_TO_US 2854 #undef ATH_EXPONENT_TO_VALUE 2855 } 2856 2857 /* 2858 * Callback from the 802.11 layer to update WME parameters. 2859 */ 2860 static int 2861 ath_wme_update(struct ieee80211com *ic) 2862 { 2863 struct ath_softc *sc = ic->ic_ifp->if_softc; 2864 2865 return !ath_txq_update(sc, WME_AC_BE) || 2866 !ath_txq_update(sc, WME_AC_BK) || 2867 !ath_txq_update(sc, WME_AC_VI) || 2868 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 2869 } 2870 2871 /* 2872 * Reclaim resources for a setup queue. 2873 */ 2874 static void 2875 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 2876 { 2877 2878 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 2879 ATH_TXQ_LOCK_DESTROY(txq); 2880 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 2881 } 2882 2883 /* 2884 * Reclaim all tx queue resources. 2885 */ 2886 static void 2887 ath_tx_cleanup(struct ath_softc *sc) 2888 { 2889 int i; 2890 2891 ATH_TXBUF_LOCK_DESTROY(sc); 2892 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 2893 if (ATH_TXQ_SETUP(sc, i)) 2894 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 2895 } 2896 2897 static int 2898 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 2899 struct mbuf *m0) 2900 { 2901 struct ieee80211com *ic = &sc->sc_ic; 2902 struct ath_hal *ah = sc->sc_ah; 2903 struct ifnet *ifp = &sc->sc_if; 2904 int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0; 2905 u_int8_t rix, txrate, ctsrate; 2906 u_int8_t cix = 0xff; /* NB: silence compiler */ 2907 struct ath_desc *ds, *ds0; 2908 struct ath_txq *txq; 2909 struct mbuf *m; 2910 struct ieee80211_frame *wh; 2911 u_int subtype, flags, ctsduration; 2912 HAL_PKT_TYPE atype; 2913 const HAL_RATE_TABLE *rt; 2914 HAL_BOOL shortPreamble; 2915 struct ath_node *an; 2916 2917 wh = mtod(m0, struct ieee80211_frame *); 2918 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 2919 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 2920 hdrlen = ieee80211_anyhdrsize(wh); 2921 /* 2922 * Packet length must not include by any 2923 * pad bytes; deduct it here. 2924 */ 2925 pktlen = m0->m_pkthdr.len - (hdrlen & 3); 2926 2927 if (iswep) { 2928 const struct ieee80211_cipher *cip; 2929 struct ieee80211_key *k; 2930 2931 /* 2932 * Construct the 802.11 header+trailer for an encrypted 2933 * frame. The only reason this can fail is because of an 2934 * unknown or unsupported cipher/key type. 2935 */ 2936 k = ieee80211_crypto_encap(ic, ni, m0); 2937 if (k == NULL) { 2938 /* 2939 * This can happen when the key is yanked after the 2940 * frame was queued. Just discard the frame; the 2941 * 802.11 layer counts failures and provides 2942 * debugging/diagnostics. 2943 */ 2944 return EIO; 2945 } 2946 /* 2947 * Adjust the packet + header lengths for the crypto 2948 * additions and calculate the h/w key index. When 2949 * a s/w mic is done the frame will have had any mic 2950 * added to it prior to entry so skb->len above will 2951 * account for it. Otherwise we need to add it to the 2952 * packet length. 2953 */ 2954 cip = k->wk_cipher; 2955 hdrlen += cip->ic_header; 2956 pktlen += cip->ic_header + cip->ic_trailer; 2957 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0) 2958 pktlen += cip->ic_miclen; 2959 keyix = k->wk_keyix; 2960 2961 /* packet header may have moved, reset our local pointer */ 2962 wh = mtod(m0, struct ieee80211_frame *); 2963 } else 2964 keyix = HAL_TXKEYIX_INVALID; 2965 2966 pktlen += IEEE80211_CRC_LEN; 2967 2968 /* 2969 * Load the DMA map so any coalescing is done. This 2970 * also calculates the number of descriptors we need. 2971 */ 2972 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 2973 ath_mbuf_load_cb, bf, 2974 BUS_DMA_NOWAIT); 2975 if (error == EFBIG) { 2976 /* XXX packet requires too many descriptors */ 2977 bf->bf_nseg = ATH_TXDESC+1; 2978 } else if (error != 0) { 2979 sc->sc_stats.ast_tx_busdma++; 2980 m_freem(m0); 2981 return error; 2982 } 2983 /* 2984 * Discard null packets and check for packets that 2985 * require too many TX descriptors. We try to convert 2986 * the latter to a cluster. 2987 */ 2988 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */ 2989 sc->sc_stats.ast_tx_linear++; 2990 MGETHDR(m, M_DONTWAIT, MT_DATA); 2991 if (m == NULL) { 2992 sc->sc_stats.ast_tx_nombuf++; 2993 m_freem(m0); 2994 return ENOMEM; 2995 } 2996 M_MOVE_PKTHDR(m, m0); 2997 MCLGET(m, M_DONTWAIT); 2998 if ((m->m_flags & M_EXT) == 0) { 2999 sc->sc_stats.ast_tx_nomcl++; 3000 m_freem(m0); 3001 m_free(m); 3002 return ENOMEM; 3003 } 3004 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t)); 3005 m_freem(m0); 3006 m->m_len = m->m_pkthdr.len; 3007 m0 = m; 3008 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3009 ath_mbuf_load_cb, bf, 3010 BUS_DMA_NOWAIT); 3011 if (error != 0) { 3012 sc->sc_stats.ast_tx_busdma++; 3013 m_freem(m0); 3014 return error; 3015 } 3016 KASSERT(bf->bf_nseg == 1, 3017 ("ath_tx_start: packet not one segment; nseg %u", 3018 bf->bf_nseg)); 3019 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 3020 sc->sc_stats.ast_tx_nodata++; 3021 m_freem(m0); 3022 return EIO; 3023 } 3024 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen); 3025 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3026 bf->bf_m = m0; 3027 bf->bf_node = ni; /* NB: held reference */ 3028 3029 /* setup descriptors */ 3030 ds = bf->bf_desc; 3031 rt = sc->sc_currates; 3032 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3033 3034 /* 3035 * NB: the 802.11 layer marks whether or not we should 3036 * use short preamble based on the current mode and 3037 * negotiated parameters. 3038 */ 3039 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 3040 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { 3041 shortPreamble = AH_TRUE; 3042 sc->sc_stats.ast_tx_shortpre++; 3043 } else { 3044 shortPreamble = AH_FALSE; 3045 } 3046 3047 an = ATH_NODE(ni); 3048 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 3049 /* 3050 * Calculate Atheros packet type from IEEE80211 packet header, 3051 * setup for rate calculations, and select h/w transmit queue. 3052 */ 3053 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 3054 case IEEE80211_FC0_TYPE_MGT: 3055 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3056 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 3057 atype = HAL_PKT_TYPE_BEACON; 3058 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3059 atype = HAL_PKT_TYPE_PROBE_RESP; 3060 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 3061 atype = HAL_PKT_TYPE_ATIM; 3062 else 3063 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 3064 rix = 0; /* XXX lowest rate */ 3065 try0 = ATH_TXMAXTRY; 3066 if (shortPreamble) 3067 txrate = an->an_tx_mgtratesp; 3068 else 3069 txrate = an->an_tx_mgtrate; 3070 /* NB: force all management frames to highest queue */ 3071 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3072 /* NB: force all management frames to highest queue */ 3073 txq = sc->sc_ac2q[WME_AC_VO]; 3074 } else 3075 txq = sc->sc_ac2q[WME_AC_BE]; 3076 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3077 break; 3078 case IEEE80211_FC0_TYPE_CTL: 3079 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 3080 rix = 0; /* XXX lowest rate */ 3081 try0 = ATH_TXMAXTRY; 3082 if (shortPreamble) 3083 txrate = an->an_tx_mgtratesp; 3084 else 3085 txrate = an->an_tx_mgtrate; 3086 /* NB: force all ctl frames to highest queue */ 3087 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3088 /* NB: force all ctl frames to highest queue */ 3089 txq = sc->sc_ac2q[WME_AC_VO]; 3090 } else 3091 txq = sc->sc_ac2q[WME_AC_BE]; 3092 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3093 break; 3094 case IEEE80211_FC0_TYPE_DATA: 3095 atype = HAL_PKT_TYPE_NORMAL; /* default */ 3096 /* 3097 * Data frames; consult the rate control module. 3098 */ 3099 ath_rate_findrate(sc, an, shortPreamble, pktlen, 3100 &rix, &try0, &txrate); 3101 /* 3102 * Default all non-QoS traffic to the background queue. 3103 */ 3104 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) { 3105 u_int pri = M_WME_GETAC(m0); 3106 txq = sc->sc_ac2q[pri]; 3107 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[pri].wmep_noackPolicy) 3108 flags |= HAL_TXDESC_NOACK; 3109 } else 3110 txq = sc->sc_ac2q[WME_AC_BE]; 3111 break; 3112 default: 3113 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 3114 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 3115 /* XXX statistic */ 3116 m_freem(m0); 3117 return EIO; 3118 } 3119 3120 /* 3121 * When servicing one or more stations in power-save mode 3122 * multicast frames must be buffered until after the beacon. 3123 * We use the CAB queue for that. 3124 */ 3125 if (ismcast && ic->ic_ps_sta) { 3126 txq = sc->sc_cabq; 3127 /* XXX? more bit in 802.11 frame header */ 3128 } 3129 3130 /* 3131 * Calculate miscellaneous flags. 3132 */ 3133 if (ismcast) { 3134 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 3135 sc->sc_stats.ast_tx_noack++; 3136 } else if (pktlen > ic->ic_rtsthreshold) { 3137 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 3138 cix = rt->info[rix].controlRate; 3139 sc->sc_stats.ast_tx_rts++; 3140 } 3141 3142 /* 3143 * If 802.11g protection is enabled, determine whether 3144 * to use RTS/CTS or just CTS. Note that this is only 3145 * done for OFDM unicast frames. 3146 */ 3147 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3148 rt->info[rix].phy == IEEE80211_T_OFDM && 3149 (flags & HAL_TXDESC_NOACK) == 0) { 3150 /* XXX fragments must use CCK rates w/ protection */ 3151 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3152 flags |= HAL_TXDESC_RTSENA; 3153 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3154 flags |= HAL_TXDESC_CTSENA; 3155 cix = rt->info[sc->sc_protrix].controlRate; 3156 sc->sc_stats.ast_tx_protect++; 3157 } 3158 3159 /* 3160 * Calculate duration. This logically belongs in the 802.11 3161 * layer but it lacks sufficient information to calculate it. 3162 */ 3163 if ((flags & HAL_TXDESC_NOACK) == 0 && 3164 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 3165 u_int16_t dur; 3166 /* 3167 * XXX not right with fragmentation. 3168 */ 3169 if (shortPreamble) 3170 dur = rt->info[rix].spAckDuration; 3171 else 3172 dur = rt->info[rix].lpAckDuration; 3173 *(u_int16_t *)wh->i_dur = htole16(dur); 3174 } 3175 3176 /* 3177 * Calculate RTS/CTS rate and duration if needed. 3178 */ 3179 ctsduration = 0; 3180 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 3181 /* 3182 * CTS transmit rate is derived from the transmit rate 3183 * by looking in the h/w rate table. We must also factor 3184 * in whether or not a short preamble is to be used. 3185 */ 3186 /* NB: cix is set above where RTS/CTS is enabled */ 3187 KASSERT(cix != 0xff, ("cix not setup")); 3188 ctsrate = rt->info[cix].rateCode; 3189 /* 3190 * Compute the transmit duration based on the frame 3191 * size and the size of an ACK frame. We call into the 3192 * HAL to do the computation since it depends on the 3193 * characteristics of the actual PHY being used. 3194 * 3195 * NB: CTS is assumed the same size as an ACK so we can 3196 * use the precalculated ACK durations. 3197 */ 3198 if (shortPreamble) { 3199 ctsrate |= rt->info[cix].shortPreamble; 3200 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3201 ctsduration += rt->info[cix].spAckDuration; 3202 ctsduration += ath_hal_computetxtime(ah, 3203 rt, pktlen, rix, AH_TRUE); 3204 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3205 ctsduration += rt->info[cix].spAckDuration; 3206 } else { 3207 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3208 ctsduration += rt->info[cix].lpAckDuration; 3209 ctsduration += ath_hal_computetxtime(ah, 3210 rt, pktlen, rix, AH_FALSE); 3211 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3212 ctsduration += rt->info[cix].lpAckDuration; 3213 } 3214 /* 3215 * Must disable multi-rate retry when using RTS/CTS. 3216 */ 3217 try0 = ATH_TXMAXTRY; 3218 } else 3219 ctsrate = 0; 3220 3221 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 3222 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len, 3223 sc->sc_hwmap[txrate], -1); 3224 3225 if (ic->ic_rawbpf) 3226 bpf_mtap(ic->ic_rawbpf, m0); 3227 if (sc->sc_drvbpf) { 3228 sc->sc_tx_th.wt_flags = 0; 3229 if (shortPreamble) 3230 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 3231 if (iswep) 3232 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3233 sc->sc_tx_th.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 3234 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 3235 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 3236 3237 bpf_mtap2(sc->sc_drvbpf, 3238 &sc->sc_tx_th, sc->sc_tx_th_len, m0); 3239 } 3240 3241 /* 3242 * Determine if a tx interrupt should be generated for 3243 * this descriptor. We take a tx interrupt to reap 3244 * descriptors when the h/w hits an EOL condition or 3245 * when the descriptor is specifically marked to generate 3246 * an interrupt. We periodically mark descriptors in this 3247 * way to insure timely replenishing of the supply needed 3248 * for sending frames. Defering interrupts reduces system 3249 * load and potentially allows more concurrent work to be 3250 * done but if done to aggressively can cause senders to 3251 * backup. 3252 * 3253 * NB: use >= to deal with sc_txintrperiod changing 3254 * dynamically through sysctl. 3255 */ 3256 if (flags & HAL_TXDESC_INTREQ) { 3257 txq->axq_intrcnt = 0; 3258 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 3259 flags |= HAL_TXDESC_INTREQ; 3260 txq->axq_intrcnt = 0; 3261 } 3262 3263 /* 3264 * Formulate first tx descriptor with tx controls. 3265 */ 3266 /* XXX check return value? */ 3267 ath_hal_setuptxdesc(ah, ds 3268 , pktlen /* packet length */ 3269 , hdrlen /* header length */ 3270 , atype /* Atheros packet type */ 3271 , ni->ni_txpower /* txpower */ 3272 , txrate, try0 /* series 0 rate/tries */ 3273 , keyix /* key cache index */ 3274 , sc->sc_txantenna /* antenna mode */ 3275 , flags /* flags */ 3276 , ctsrate /* rts/cts rate */ 3277 , ctsduration /* rts/cts duration */ 3278 ); 3279 /* 3280 * Setup the multi-rate retry state only when we're 3281 * going to use it. This assumes ath_hal_setuptxdesc 3282 * initializes the descriptors (so we don't have to) 3283 * when the hardware supports multi-rate retry and 3284 * we don't use it. 3285 */ 3286 if (try0 != ATH_TXMAXTRY) 3287 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix); 3288 3289 /* 3290 * Fillin the remainder of the descriptor info. 3291 */ 3292 ds0 = ds; 3293 for (i = 0; i < bf->bf_nseg; i++, ds++) { 3294 ds->ds_data = bf->bf_segs[i].ds_addr; 3295 if (i == bf->bf_nseg - 1) 3296 ds->ds_link = 0; 3297 else 3298 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 3299 ath_hal_filltxdesc(ah, ds 3300 , bf->bf_segs[i].ds_len /* segment length */ 3301 , i == 0 /* first segment */ 3302 , i == bf->bf_nseg - 1 /* last segment */ 3303 , ds0 /* first descriptor */ 3304 ); 3305 DPRINTF(sc, ATH_DEBUG_XMIT, 3306 "%s: %d: %08x %08x %08x %08x %08x %08x\n", 3307 __func__, i, ds->ds_link, ds->ds_data, 3308 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); 3309 } 3310 #if 0 3311 if ((flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) && 3312 !ath_hal_updateCTSForBursting(ah, ds 3313 , txq->axq_linkbuf != NULL ? 3314 txq->axq_linkbuf->bf_desc : NULL 3315 , txq->axq_lastdsWithCTS 3316 , txq->axq_gatingds 3317 , IEEE80211_TXOP_TO_US(ic->ic_chanParams.cap_wmeParams[skb->priority].wmep_txopLimit) 3318 , ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE))) { 3319 ATH_TXQ_LOCK(txq); 3320 txq->axq_lastdsWithCTS = ds; 3321 /* set gating Desc to final desc */ 3322 txq->axq_gatingds = (struct ath_desc *)txq->axq_link; 3323 ATH_TXQ_UNLOCK(txq); 3324 } 3325 #endif 3326 /* 3327 * Insert the frame on the outbound list and 3328 * pass it on to the hardware. 3329 */ 3330 ATH_TXQ_LOCK(txq); 3331 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 3332 if (txq->axq_link == NULL) { 3333 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 3334 DPRINTF(sc, ATH_DEBUG_XMIT, 3335 "%s: TXDP[%u] = %p (%p) depth %d\n", __func__, 3336 txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc, 3337 txq->axq_depth); 3338 } else { 3339 *txq->axq_link = bf->bf_daddr; 3340 DPRINTF(sc, ATH_DEBUG_XMIT, 3341 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 3342 txq->axq_qnum, txq->axq_link, 3343 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); 3344 } 3345 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 3346 ATH_TXQ_UNLOCK(txq); 3347 3348 if (sc->sc_softled) 3349 ath_update_led(sc); 3350 3351 /* 3352 * The CAB queue is started from the SWBA handler since 3353 * frames only go out on DTIM and to avoid possible races. 3354 */ 3355 if (txq != sc->sc_cabq) 3356 ath_hal_txstart(ah, txq->axq_qnum); 3357 return 0; 3358 } 3359 3360 /* 3361 * Process completed xmit descriptors from the specified queue. 3362 */ 3363 static void 3364 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 3365 { 3366 struct ath_hal *ah = sc->sc_ah; 3367 struct ieee80211com *ic = &sc->sc_ic; 3368 struct ath_buf *bf; 3369 struct ath_desc *ds; 3370 struct ieee80211_node *ni; 3371 struct ath_node *an; 3372 int sr, lr, pri; 3373 HAL_STATUS status; 3374 3375 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3376 __func__, txq->axq_qnum, 3377 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3378 txq->axq_link); 3379 for (;;) { 3380 ATH_TXQ_LOCK(txq); 3381 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3382 bf = STAILQ_FIRST(&txq->axq_q); 3383 if (bf == NULL) { 3384 txq->axq_link = NULL; 3385 ATH_TXQ_UNLOCK(txq); 3386 break; 3387 } 3388 /* only the last descriptor is needed */ 3389 ds = &bf->bf_desc[bf->bf_nseg - 1]; 3390 status = ath_hal_txprocdesc(ah, ds); 3391 #ifdef AR_DEBUG 3392 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3393 ath_printtxbuf(bf, status == HAL_OK); 3394 #endif 3395 if (status == HAL_EINPROGRESS) { 3396 ATH_TXQ_UNLOCK(txq); 3397 break; 3398 } 3399 #if 0 3400 if (bf->bf_desc == txq->axq_lastdsWithCTS) 3401 txq->axq_lastdsWithCTS = NULL; 3402 if (ds == txq->axq_gatingds) 3403 txq->axq_gatingds = NULL; 3404 #endif 3405 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 3406 ATH_TXQ_UNLOCK(txq); 3407 3408 ni = bf->bf_node; 3409 if (ni != NULL) { 3410 an = ATH_NODE(ni); 3411 if (ds->ds_txstat.ts_status == 0) { 3412 u_int8_t txant = ds->ds_txstat.ts_antenna; 3413 sc->sc_stats.ast_ant_tx[txant]++; 3414 sc->sc_ant_tx[txant]++; 3415 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE) 3416 sc->sc_stats.ast_tx_altrate++; 3417 sc->sc_stats.ast_tx_rssi = 3418 ds->ds_txstat.ts_rssi; 3419 ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi, 3420 ds->ds_txstat.ts_rssi); 3421 pri = M_WME_GETAC(bf->bf_m); 3422 if (pri >= WME_AC_VO) 3423 ic->ic_wme.wme_hipri_traffic++; 3424 ni->ni_inact = ni->ni_inact_reload; 3425 } else { 3426 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) 3427 sc->sc_stats.ast_tx_xretries++; 3428 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) 3429 sc->sc_stats.ast_tx_fifoerr++; 3430 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) 3431 sc->sc_stats.ast_tx_filtered++; 3432 } 3433 sr = ds->ds_txstat.ts_shortretry; 3434 lr = ds->ds_txstat.ts_longretry; 3435 sc->sc_stats.ast_tx_shortretry += sr; 3436 sc->sc_stats.ast_tx_longretry += lr; 3437 /* 3438 * Hand the descriptor to the rate control algorithm. 3439 */ 3440 ath_rate_tx_complete(sc, an, ds); 3441 /* 3442 * Reclaim reference to node. 3443 * 3444 * NB: the node may be reclaimed here if, for example 3445 * this is a DEAUTH message that was sent and the 3446 * node was timed out due to inactivity. 3447 */ 3448 ieee80211_free_node(ni); 3449 } 3450 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3451 BUS_DMASYNC_POSTWRITE); 3452 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3453 m_freem(bf->bf_m); 3454 bf->bf_m = NULL; 3455 bf->bf_node = NULL; 3456 3457 ATH_TXBUF_LOCK(sc); 3458 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3459 ATH_TXBUF_UNLOCK(sc); 3460 } 3461 } 3462 3463 /* 3464 * Deferred processing of transmit interrupt; special-cased 3465 * for a single hardware transmit queue (e.g. 5210 and 5211). 3466 */ 3467 static void 3468 ath_tx_proc_q0(void *arg, int npending) 3469 { 3470 struct ath_softc *sc = arg; 3471 struct ifnet *ifp = &sc->sc_if; 3472 3473 ath_tx_processq(sc, &sc->sc_txq[0]); 3474 ath_tx_processq(sc, sc->sc_cabq); 3475 ifp->if_flags &= ~IFF_OACTIVE; 3476 sc->sc_tx_timer = 0; 3477 3478 ath_start(ifp); 3479 } 3480 3481 /* 3482 * Deferred processing of transmit interrupt; special-cased 3483 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3484 */ 3485 static void 3486 ath_tx_proc_q0123(void *arg, int npending) 3487 { 3488 struct ath_softc *sc = arg; 3489 struct ifnet *ifp = &sc->sc_if; 3490 3491 /* 3492 * Process each active queue. 3493 */ 3494 ath_tx_processq(sc, &sc->sc_txq[0]); 3495 ath_tx_processq(sc, &sc->sc_txq[1]); 3496 ath_tx_processq(sc, &sc->sc_txq[2]); 3497 ath_tx_processq(sc, &sc->sc_txq[3]); 3498 ath_tx_processq(sc, sc->sc_cabq); 3499 3500 ifp->if_flags &= ~IFF_OACTIVE; 3501 sc->sc_tx_timer = 0; 3502 3503 ath_start(ifp); 3504 } 3505 3506 /* 3507 * Deferred processing of transmit interrupt. 3508 */ 3509 static void 3510 ath_tx_proc(void *arg, int npending) 3511 { 3512 struct ath_softc *sc = arg; 3513 struct ifnet *ifp = &sc->sc_if; 3514 int i; 3515 3516 /* 3517 * Process each active queue. 3518 */ 3519 /* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */ 3520 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3521 if (ATH_TXQ_SETUP(sc, i)) 3522 ath_tx_processq(sc, &sc->sc_txq[i]); 3523 3524 ifp->if_flags &= ~IFF_OACTIVE; 3525 sc->sc_tx_timer = 0; 3526 3527 ath_start(ifp); 3528 } 3529 3530 static void 3531 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 3532 { 3533 struct ath_hal *ah = sc->sc_ah; 3534 struct ieee80211_node *ni; 3535 struct ath_buf *bf; 3536 3537 /* 3538 * NB: this assumes output has been stopped and 3539 * we do not need to block ath_tx_tasklet 3540 */ 3541 for (;;) { 3542 ATH_TXQ_LOCK(txq); 3543 bf = STAILQ_FIRST(&txq->axq_q); 3544 if (bf == NULL) { 3545 txq->axq_link = NULL; 3546 ATH_TXQ_UNLOCK(txq); 3547 break; 3548 } 3549 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 3550 ATH_TXQ_UNLOCK(txq); 3551 #ifdef AR_DEBUG 3552 if (sc->sc_debug & ATH_DEBUG_RESET) 3553 ath_printtxbuf(bf, 3554 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK); 3555 #endif /* AR_DEBUG */ 3556 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3557 m_freem(bf->bf_m); 3558 bf->bf_m = NULL; 3559 ni = bf->bf_node; 3560 bf->bf_node = NULL; 3561 if (ni != NULL) { 3562 /* 3563 * Reclaim node reference. 3564 */ 3565 ieee80211_free_node(ni); 3566 } 3567 ATH_TXBUF_LOCK(sc); 3568 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3569 ATH_TXBUF_UNLOCK(sc); 3570 } 3571 } 3572 3573 static void 3574 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 3575 { 3576 struct ath_hal *ah = sc->sc_ah; 3577 3578 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 3579 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 3580 __func__, txq->axq_qnum, 3581 (caddr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), txq->axq_link); 3582 } 3583 3584 /* 3585 * Drain the transmit queues and reclaim resources. 3586 */ 3587 static void 3588 ath_draintxq(struct ath_softc *sc) 3589 { 3590 struct ath_hal *ah = sc->sc_ah; 3591 struct ifnet *ifp = &sc->sc_if; 3592 int i; 3593 3594 /* XXX return value */ 3595 if (!sc->sc_invalid) { 3596 /* don't touch the hardware if marked invalid */ 3597 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 3598 DPRINTF(sc, ATH_DEBUG_RESET, 3599 "%s: beacon queue %p\n", __func__, 3600 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)); 3601 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3602 if (ATH_TXQ_SETUP(sc, i)) 3603 ath_tx_stopdma(sc, &sc->sc_txq[i]); 3604 } 3605 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3606 if (ATH_TXQ_SETUP(sc, i)) 3607 ath_tx_draintxq(sc, &sc->sc_txq[i]); 3608 ifp->if_flags &= ~IFF_OACTIVE; 3609 sc->sc_tx_timer = 0; 3610 } 3611 3612 /* 3613 * Disable the receive h/w in preparation for a reset. 3614 */ 3615 static void 3616 ath_stoprecv(struct ath_softc *sc) 3617 { 3618 #define PA2DESC(_sc, _pa) \ 3619 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 3620 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 3621 struct ath_hal *ah = sc->sc_ah; 3622 3623 ath_hal_stoppcurecv(ah); /* disable PCU */ 3624 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 3625 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 3626 DELAY(3000); /* 3ms is long enough for 1 frame */ 3627 #ifdef AR_DEBUG 3628 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 3629 struct ath_buf *bf; 3630 3631 printf("%s: rx queue %p, link %p\n", __func__, 3632 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 3633 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 3634 struct ath_desc *ds = bf->bf_desc; 3635 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 3636 bf->bf_daddr, PA2DESC(sc, ds->ds_link)); 3637 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 3638 ath_printrxbuf(bf, status == HAL_OK); 3639 } 3640 } 3641 #endif 3642 sc->sc_rxlink = NULL; /* just in case */ 3643 #undef PA2DESC 3644 } 3645 3646 /* 3647 * Enable the receive h/w following a reset. 3648 */ 3649 static int 3650 ath_startrecv(struct ath_softc *sc) 3651 { 3652 struct ath_hal *ah = sc->sc_ah; 3653 struct ath_buf *bf; 3654 3655 sc->sc_rxlink = NULL; 3656 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 3657 int error = ath_rxbuf_init(sc, bf); 3658 if (error != 0) { 3659 DPRINTF(sc, ATH_DEBUG_RECV, 3660 "%s: ath_rxbuf_init failed %d\n", 3661 __func__, error); 3662 return error; 3663 } 3664 } 3665 3666 bf = STAILQ_FIRST(&sc->sc_rxbuf); 3667 ath_hal_putrxbuf(ah, bf->bf_daddr); 3668 ath_hal_rxena(ah); /* enable recv descriptors */ 3669 ath_mode_init(sc); /* set filters, etc. */ 3670 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 3671 return 0; 3672 } 3673 3674 /* 3675 * Update internal state after a channel change. 3676 */ 3677 static void 3678 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 3679 { 3680 struct ieee80211com *ic = &sc->sc_ic; 3681 enum ieee80211_phymode mode; 3682 3683 /* 3684 * Change channels and update the h/w rate map 3685 * if we're switching; e.g. 11a to 11b/g. 3686 */ 3687 mode = ieee80211_chan2mode(ic, chan); 3688 if (mode != sc->sc_curmode) 3689 ath_setcurmode(sc, mode); 3690 /* 3691 * Update BPF state. 3692 */ 3693 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 3694 htole16(chan->ic_freq); 3695 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 3696 htole16(chan->ic_flags); 3697 } 3698 3699 /* 3700 * Set/change channels. If the channel is really being changed, 3701 * it's done by reseting the chip. To accomplish this we must 3702 * first cleanup any pending DMA, then restart stuff after a la 3703 * ath_init. 3704 */ 3705 static int 3706 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 3707 { 3708 struct ath_hal *ah = sc->sc_ah; 3709 struct ieee80211com *ic = &sc->sc_ic; 3710 HAL_CHANNEL hchan; 3711 3712 /* 3713 * Convert to a HAL channel description with 3714 * the flags constrained to reflect the current 3715 * operating mode. 3716 */ 3717 hchan.channel = chan->ic_freq; 3718 hchan.channelFlags = ath_chan2flags(ic, chan); 3719 3720 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n", 3721 __func__, 3722 ath_hal_mhz2ieee(sc->sc_curchan.channel, 3723 sc->sc_curchan.channelFlags), 3724 sc->sc_curchan.channel, 3725 ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel); 3726 if (hchan.channel != sc->sc_curchan.channel || 3727 hchan.channelFlags != sc->sc_curchan.channelFlags) { 3728 HAL_STATUS status; 3729 3730 /* 3731 * To switch channels clear any pending DMA operations; 3732 * wait long enough for the RX fifo to drain, reset the 3733 * hardware at the new frequency, and then re-enable 3734 * the relevant bits of the h/w. 3735 */ 3736 ath_hal_intrset(ah, 0); /* disable interrupts */ 3737 ath_draintxq(sc); /* clear pending tx frames */ 3738 ath_stoprecv(sc); /* turn off frame recv */ 3739 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { 3740 if_printf(ic->ic_ifp, "ath_chan_set: unable to reset " 3741 "channel %u (%u Mhz)\n", 3742 ieee80211_chan2ieee(ic, chan), chan->ic_freq); 3743 return EIO; 3744 } 3745 sc->sc_curchan = hchan; 3746 ath_update_txpow(sc); /* update tx power state */ 3747 3748 /* 3749 * Re-enable rx framework. 3750 */ 3751 if (ath_startrecv(sc) != 0) { 3752 if_printf(ic->ic_ifp, 3753 "ath_chan_set: unable to restart recv logic\n"); 3754 return EIO; 3755 } 3756 3757 /* 3758 * Change channels and update the h/w rate map 3759 * if we're switching; e.g. 11a to 11b/g. 3760 */ 3761 ic->ic_ibss_chan = chan; 3762 ath_chan_change(sc, chan); 3763 3764 /* 3765 * Re-enable interrupts. 3766 */ 3767 ath_hal_intrset(ah, sc->sc_imask); 3768 } 3769 return 0; 3770 } 3771 3772 static void 3773 ath_next_scan(void *arg) 3774 { 3775 struct ath_softc *sc = arg; 3776 struct ieee80211com *ic = &sc->sc_ic; 3777 3778 if (ic->ic_state == IEEE80211_S_SCAN) 3779 ieee80211_next_scan(ic); 3780 } 3781 3782 /* 3783 * Periodically recalibrate the PHY to account 3784 * for temperature/environment changes. 3785 */ 3786 static void 3787 ath_calibrate(void *arg) 3788 { 3789 struct ath_softc *sc = arg; 3790 struct ath_hal *ah = sc->sc_ah; 3791 3792 sc->sc_stats.ast_per_cal++; 3793 3794 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n", 3795 __func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags); 3796 3797 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 3798 /* 3799 * Rfgain is out of bounds, reset the chip 3800 * to load new gain values. 3801 */ 3802 sc->sc_stats.ast_per_rfgain++; 3803 ath_reset(&sc->sc_if); 3804 } 3805 if (!ath_hal_calibrate(ah, &sc->sc_curchan)) { 3806 DPRINTF(sc, ATH_DEBUG_ANY, 3807 "%s: calibration of channel %u failed\n", 3808 __func__, sc->sc_curchan.channel); 3809 sc->sc_stats.ast_per_calfail++; 3810 } 3811 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc); 3812 } 3813 3814 static int 3815 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 3816 { 3817 struct ifnet *ifp = ic->ic_ifp; 3818 struct ath_softc *sc = ifp->if_softc; 3819 struct ath_hal *ah = sc->sc_ah; 3820 struct ieee80211_node *ni; 3821 int i, error; 3822 const u_int8_t *bssid; 3823 u_int32_t rfilt; 3824 static const HAL_LED_STATE leds[] = { 3825 HAL_LED_INIT, /* IEEE80211_S_INIT */ 3826 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 3827 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 3828 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 3829 HAL_LED_RUN, /* IEEE80211_S_RUN */ 3830 }; 3831 3832 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 3833 ieee80211_state_name[ic->ic_state], 3834 ieee80211_state_name[nstate]); 3835 3836 callout_stop(&sc->sc_scan_ch); 3837 callout_stop(&sc->sc_cal_ch); 3838 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 3839 3840 if (nstate == IEEE80211_S_INIT) { 3841 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 3842 ath_hal_intrset(ah, sc->sc_imask); 3843 /* 3844 * Notify the rate control algorithm. 3845 */ 3846 ath_rate_newstate(sc, nstate); 3847 goto done; 3848 } 3849 ni = ic->ic_bss; 3850 error = ath_chan_set(sc, ni->ni_chan); 3851 if (error != 0) 3852 goto bad; 3853 rfilt = ath_calcrxfilter(sc, nstate); 3854 if (nstate == IEEE80211_S_SCAN) 3855 bssid = ifp->if_broadcastaddr; 3856 else 3857 bssid = ni->ni_bssid; 3858 ath_hal_setrxfilter(ah, rfilt); 3859 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n", 3860 __func__, rfilt, ether_sprintf(bssid)); 3861 3862 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) 3863 ath_hal_setassocid(ah, bssid, ni->ni_associd); 3864 else 3865 ath_hal_setassocid(ah, bssid, 0); 3866 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 3867 for (i = 0; i < IEEE80211_WEP_NKID; i++) 3868 if (ath_hal_keyisvalid(ah, i)) 3869 ath_hal_keysetmac(ah, i, bssid); 3870 } 3871 3872 /* 3873 * Notify the rate control algorithm so rates 3874 * are setup should ath_beacon_alloc be called. 3875 */ 3876 ath_rate_newstate(sc, nstate); 3877 3878 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 3879 /* nothing to do */; 3880 } else if (nstate == IEEE80211_S_RUN) { 3881 DPRINTF(sc, ATH_DEBUG_STATE, 3882 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s " 3883 "capinfo=0x%04x chan=%d\n" 3884 , __func__ 3885 , ic->ic_flags 3886 , ni->ni_intval 3887 , ether_sprintf(ni->ni_bssid) 3888 , ni->ni_capinfo 3889 , ieee80211_chan2ieee(ic, ni->ni_chan)); 3890 3891 /* 3892 * Allocate and setup the beacon frame for AP or adhoc mode. 3893 */ 3894 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3895 ic->ic_opmode == IEEE80211_M_IBSS) { 3896 error = ath_beacon_alloc(sc, ni); 3897 if (error != 0) 3898 goto bad; 3899 } 3900 3901 /* 3902 * Configure the beacon and sleep timers. 3903 */ 3904 ath_beacon_config(sc); 3905 } else { 3906 ath_hal_intrset(ah, 3907 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 3908 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 3909 } 3910 done: 3911 /* 3912 * Invoke the parent method to complete the work. 3913 */ 3914 error = sc->sc_newstate(ic, nstate, arg); 3915 /* 3916 * Finally, start any timers. 3917 */ 3918 if (nstate == IEEE80211_S_RUN) { 3919 /* start periodic recalibration timer */ 3920 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, 3921 ath_calibrate, sc); 3922 } else if (nstate == IEEE80211_S_SCAN) { 3923 /* start ap/neighbor scan timer */ 3924 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000, 3925 ath_next_scan, sc); 3926 } 3927 bad: 3928 return error; 3929 } 3930 3931 /* 3932 * Setup driver-specific state for a newly associated node. 3933 * Note that we're called also on a re-associate, the isnew 3934 * param tells us if this is the first time or not. 3935 */ 3936 static void 3937 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 3938 { 3939 struct ath_softc *sc = ic->ic_ifp->if_softc; 3940 3941 ath_rate_newassoc(sc, ATH_NODE(ni), isnew); 3942 } 3943 3944 static int 3945 ath_getchannels(struct ath_softc *sc, u_int cc, 3946 HAL_BOOL outdoor, HAL_BOOL xchanmode) 3947 { 3948 struct ieee80211com *ic = &sc->sc_ic; 3949 struct ifnet *ifp = &sc->sc_if; 3950 struct ath_hal *ah = sc->sc_ah; 3951 HAL_CHANNEL *chans; 3952 int i, ix, nchan; 3953 3954 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 3955 M_TEMP, M_NOWAIT); 3956 if (chans == NULL) { 3957 if_printf(ifp, "unable to allocate channel table\n"); 3958 return ENOMEM; 3959 } 3960 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, 3961 cc, HAL_MODE_ALL, outdoor, xchanmode)) { 3962 u_int32_t rd; 3963 3964 ath_hal_getregdomain(ah, &rd); 3965 if_printf(ifp, "unable to collect channel list from hal; " 3966 "regdomain likely %u country code %u\n", rd, cc); 3967 free(chans, M_TEMP); 3968 return EINVAL; 3969 } 3970 3971 /* 3972 * Convert HAL channels to ieee80211 ones and insert 3973 * them in the table according to their channel number. 3974 */ 3975 for (i = 0; i < nchan; i++) { 3976 HAL_CHANNEL *c = &chans[i]; 3977 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags); 3978 if (ix > IEEE80211_CHAN_MAX) { 3979 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n", 3980 ix, c->channel, c->channelFlags); 3981 continue; 3982 } 3983 /* NB: flags are known to be compatible */ 3984 if (ic->ic_channels[ix].ic_freq == 0) { 3985 ic->ic_channels[ix].ic_freq = c->channel; 3986 ic->ic_channels[ix].ic_flags = c->channelFlags; 3987 } else { 3988 /* channels overlap; e.g. 11g and 11b */ 3989 ic->ic_channels[ix].ic_flags |= c->channelFlags; 3990 } 3991 } 3992 free(chans, M_TEMP); 3993 return 0; 3994 } 3995 3996 static void 3997 ath_update_led(struct ath_softc *sc) 3998 { 3999 struct ieee80211com *ic = &sc->sc_ic; 4000 struct ath_hal *ah = sc->sc_ah; 4001 u_int32_t threshold; 4002 4003 /* 4004 * When not associated, flash LED on for 5s, off for 200ms. 4005 * XXX this assumes 100ms beacon interval. 4006 */ 4007 if (ic->ic_state != IEEE80211_S_RUN) { 4008 threshold = 2 + sc->sc_ledstate * 48; 4009 } else { 4010 threshold = 2 + sc->sc_ledstate * 18; 4011 } 4012 if (ic->ic_stats.is_rx_beacon - sc->sc_beacons >= threshold) { 4013 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin); 4014 ath_hal_gpioset(ah, sc->sc_ledpin, sc->sc_ledstate); 4015 sc->sc_ledstate ^= 1; 4016 sc->sc_beacons = ic->ic_stats.is_rx_beacon; 4017 } 4018 } 4019 4020 static void 4021 ath_update_txpow(struct ath_softc *sc) 4022 { 4023 struct ieee80211com *ic = &sc->sc_ic; 4024 struct ath_hal *ah = sc->sc_ah; 4025 u_int32_t txpow; 4026 4027 if (sc->sc_curtxpow != ic->ic_txpowlimit) { 4028 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 4029 /* read back in case value is clamped */ 4030 ath_hal_gettxpowlimit(ah, &txpow); 4031 ic->ic_txpowlimit = sc->sc_curtxpow = txpow; 4032 } 4033 /* 4034 * Fetch max tx power level for status requests. 4035 */ 4036 ath_hal_getmaxtxpow(sc->sc_ah, &txpow); 4037 ic->ic_bss->ni_txpower = txpow; 4038 } 4039 4040 static int 4041 ath_rate_setup(struct ath_softc *sc, u_int mode) 4042 { 4043 struct ath_hal *ah = sc->sc_ah; 4044 struct ieee80211com *ic = &sc->sc_ic; 4045 const HAL_RATE_TABLE *rt; 4046 struct ieee80211_rateset *rs; 4047 int i, maxrates; 4048 4049 switch (mode) { 4050 case IEEE80211_MODE_11A: 4051 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A); 4052 break; 4053 case IEEE80211_MODE_11B: 4054 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B); 4055 break; 4056 case IEEE80211_MODE_11G: 4057 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G); 4058 break; 4059 case IEEE80211_MODE_TURBO_A: 4060 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO); 4061 break; 4062 case IEEE80211_MODE_TURBO_G: 4063 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G); 4064 break; 4065 default: 4066 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 4067 __func__, mode); 4068 return 0; 4069 } 4070 rt = sc->sc_rates[mode]; 4071 if (rt == NULL) 4072 return 0; 4073 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { 4074 DPRINTF(sc, ATH_DEBUG_ANY, 4075 "%s: rate table too small (%u > %u)\n", 4076 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE); 4077 maxrates = IEEE80211_RATE_MAXSIZE; 4078 } else 4079 maxrates = rt->rateCount; 4080 rs = &ic->ic_sup_rates[mode]; 4081 for (i = 0; i < maxrates; i++) 4082 rs->rs_rates[i] = rt->info[i].dot11Rate; 4083 rs->rs_nrates = maxrates; 4084 return 1; 4085 } 4086 4087 static void 4088 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 4089 { 4090 const HAL_RATE_TABLE *rt; 4091 int i; 4092 4093 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 4094 rt = sc->sc_rates[mode]; 4095 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 4096 for (i = 0; i < rt->rateCount; i++) 4097 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 4098 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 4099 for (i = 0; i < 32; i++) { 4100 u_int8_t ix = rt->rateCodeToIndex[i]; 4101 if (ix != 0xff) 4102 sc->sc_hwmap[i] = rt->info[ix].dot11Rate & IEEE80211_RATE_VAL; 4103 } 4104 sc->sc_currates = rt; 4105 sc->sc_curmode = mode; 4106 /* 4107 * All protection frames are transmited at 2Mb/s for 4108 * 11g, otherwise at 1Mb/s. 4109 * XXX select protection rate index from rate table. 4110 */ 4111 sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0); 4112 /* NB: caller is responsible for reseting rate control state */ 4113 } 4114 4115 #ifdef AR_DEBUG 4116 static void 4117 ath_printrxbuf(struct ath_buf *bf, int done) 4118 { 4119 struct ath_desc *ds; 4120 int i; 4121 4122 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 4123 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n", 4124 i, ds, (struct ath_desc *)bf->bf_daddr + i, 4125 ds->ds_link, ds->ds_data, 4126 ds->ds_ctl0, ds->ds_ctl1, 4127 ds->ds_hw[0], ds->ds_hw[1], 4128 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'); 4129 } 4130 } 4131 4132 static void 4133 ath_printtxbuf(struct ath_buf *bf, int done) 4134 { 4135 struct ath_desc *ds; 4136 int i; 4137 4138 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 4139 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n", 4140 i, ds, (struct ath_desc *)bf->bf_daddr + i, 4141 ds->ds_link, ds->ds_data, 4142 ds->ds_ctl0, ds->ds_ctl1, 4143 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], 4144 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'); 4145 } 4146 } 4147 #endif /* AR_DEBUG */ 4148 4149 static void 4150 ath_watchdog(struct ifnet *ifp) 4151 { 4152 struct ath_softc *sc = ifp->if_softc; 4153 struct ieee80211com *ic = &sc->sc_ic; 4154 4155 ifp->if_timer = 0; 4156 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 4157 return; 4158 if (sc->sc_tx_timer) { 4159 if (--sc->sc_tx_timer == 0) { 4160 if_printf(ifp, "device timeout\n"); 4161 ath_reset(ifp); 4162 ifp->if_oerrors++; 4163 sc->sc_stats.ast_watchdog++; 4164 } else 4165 ifp->if_timer = 1; 4166 } 4167 ieee80211_watchdog(ic); 4168 } 4169 4170 /* 4171 * Diagnostic interface to the HAL. This is used by various 4172 * tools to do things like retrieve register contents for 4173 * debugging. The mechanism is intentionally opaque so that 4174 * it can change frequently w/o concern for compatiblity. 4175 */ 4176 static int 4177 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 4178 { 4179 struct ath_hal *ah = sc->sc_ah; 4180 u_int id = ad->ad_id & ATH_DIAG_ID; 4181 void *indata = NULL; 4182 void *outdata = NULL; 4183 u_int32_t insize = ad->ad_in_size; 4184 u_int32_t outsize = ad->ad_out_size; 4185 int error = 0; 4186 4187 if (ad->ad_id & ATH_DIAG_IN) { 4188 /* 4189 * Copy in data. 4190 */ 4191 indata = malloc(insize, M_TEMP, M_NOWAIT); 4192 if (indata == NULL) { 4193 error = ENOMEM; 4194 goto bad; 4195 } 4196 error = copyin(ad->ad_in_data, indata, insize); 4197 if (error) 4198 goto bad; 4199 } 4200 if (ad->ad_id & ATH_DIAG_DYN) { 4201 /* 4202 * Allocate a buffer for the results (otherwise the HAL 4203 * returns a pointer to a buffer where we can read the 4204 * results). Note that we depend on the HAL leaving this 4205 * pointer for us to use below in reclaiming the buffer; 4206 * may want to be more defensive. 4207 */ 4208 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 4209 if (outdata == NULL) { 4210 error = ENOMEM; 4211 goto bad; 4212 } 4213 } 4214 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 4215 if (outsize < ad->ad_out_size) 4216 ad->ad_out_size = outsize; 4217 if (outdata != NULL) 4218 error = copyout(outdata, ad->ad_out_data, 4219 ad->ad_out_size); 4220 } else { 4221 error = EINVAL; 4222 } 4223 bad: 4224 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 4225 free(indata, M_TEMP); 4226 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 4227 free(outdata, M_TEMP); 4228 return error; 4229 } 4230 4231 static int 4232 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 4233 { 4234 #define IS_RUNNING(ifp) \ 4235 ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP)) 4236 struct ath_softc *sc = ifp->if_softc; 4237 struct ieee80211com *ic = &sc->sc_ic; 4238 struct ifreq *ifr = (struct ifreq *)data; 4239 int error = 0; 4240 4241 ATH_LOCK(sc); 4242 switch (cmd) { 4243 case SIOCSIFFLAGS: 4244 if (IS_RUNNING(ifp)) { 4245 /* 4246 * To avoid rescanning another access point, 4247 * do not call ath_init() here. Instead, 4248 * only reflect promisc mode settings. 4249 */ 4250 ath_mode_init(sc); 4251 } else if (ifp->if_flags & IFF_UP) { 4252 /* 4253 * Beware of being called during attach/detach 4254 * to reset promiscuous mode. In that case we 4255 * will still be marked UP but not RUNNING. 4256 * However trying to re-init the interface 4257 * is the wrong thing to do as we've already 4258 * torn down much of our state. There's 4259 * probably a better way to deal with this. 4260 */ 4261 if (!sc->sc_invalid && ic->ic_bss != NULL) 4262 ath_init(ifp); /* XXX lose error */ 4263 } else 4264 ath_stop_locked(ifp); 4265 break; 4266 case SIOCADDMULTI: 4267 case SIOCDELMULTI: 4268 /* 4269 * The upper layer has already installed/removed 4270 * the multicast address(es), just recalculate the 4271 * multicast filter for the card. 4272 */ 4273 if (ifp->if_flags & IFF_RUNNING) 4274 ath_mode_init(sc); 4275 break; 4276 case SIOCGATHSTATS: 4277 /* NB: embed these numbers to get a consistent view */ 4278 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 4279 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 4280 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic); 4281 ATH_UNLOCK(sc); 4282 /* 4283 * NB: Drop the softc lock in case of a page fault; 4284 * we'll accept any potential inconsisentcy in the 4285 * statistics. The alternative is to copy the data 4286 * to a local structure. 4287 */ 4288 return copyout(&sc->sc_stats, 4289 ifr->ifr_data, sizeof (sc->sc_stats)); 4290 case SIOCGATHDIAG: 4291 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 4292 break; 4293 default: 4294 error = ieee80211_ioctl(ic, cmd, data); 4295 if (error == ENETRESET) { 4296 if (IS_RUNNING(ifp) && 4297 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 4298 ath_init(ifp); /* XXX lose error */ 4299 error = 0; 4300 } 4301 if (error == ERESTART) 4302 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0; 4303 break; 4304 } 4305 ATH_UNLOCK(sc); 4306 return error; 4307 #undef IS_UP 4308 } 4309 4310 static int 4311 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS) 4312 { 4313 struct ath_softc *sc = arg1; 4314 u_int slottime = ath_hal_getslottime(sc->sc_ah); 4315 int error; 4316 4317 error = sysctl_handle_int(oidp, &slottime, 0, req); 4318 if (error || !req->newptr) 4319 return error; 4320 return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0; 4321 } 4322 4323 static int 4324 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS) 4325 { 4326 struct ath_softc *sc = arg1; 4327 u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah); 4328 int error; 4329 4330 error = sysctl_handle_int(oidp, &acktimeout, 0, req); 4331 if (error || !req->newptr) 4332 return error; 4333 return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0; 4334 } 4335 4336 static int 4337 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS) 4338 { 4339 struct ath_softc *sc = arg1; 4340 u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah); 4341 int error; 4342 4343 error = sysctl_handle_int(oidp, &ctstimeout, 0, req); 4344 if (error || !req->newptr) 4345 return error; 4346 return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0; 4347 } 4348 4349 static int 4350 ath_sysctl_softled(SYSCTL_HANDLER_ARGS) 4351 { 4352 struct ath_softc *sc = arg1; 4353 int softled = sc->sc_softled; 4354 int error; 4355 4356 error = sysctl_handle_int(oidp, &softled, 0, req); 4357 if (error || !req->newptr) 4358 return error; 4359 if (softled > 1) 4360 softled = 1; 4361 if (softled != sc->sc_softled) { 4362 if (softled) 4363 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin); 4364 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !softled); 4365 sc->sc_softled = softled; 4366 } 4367 return 0; 4368 } 4369 4370 static int 4371 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS) 4372 { 4373 struct ath_softc *sc = arg1; 4374 u_int defantenna = ath_hal_getdefantenna(sc->sc_ah); 4375 int error; 4376 4377 error = sysctl_handle_int(oidp, &defantenna, 0, req); 4378 if (!error && req->newptr) 4379 ath_hal_setdefantenna(sc->sc_ah, defantenna); 4380 return error; 4381 } 4382 4383 static int 4384 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS) 4385 { 4386 struct ath_softc *sc = arg1; 4387 u_int diversity = sc->sc_diversity; 4388 int error; 4389 4390 error = sysctl_handle_int(oidp, &diversity, 0, req); 4391 if (error || !req->newptr) 4392 return error; 4393 sc->sc_diversity = diversity; 4394 return !ath_hal_setdiversity(sc->sc_ah, diversity) ? EINVAL : 0; 4395 } 4396 4397 static int 4398 ath_sysctl_diag(SYSCTL_HANDLER_ARGS) 4399 { 4400 struct ath_softc *sc = arg1; 4401 u_int32_t diag; 4402 int error; 4403 4404 if (!ath_hal_getdiag(sc->sc_ah, &diag)) 4405 return EINVAL; 4406 error = sysctl_handle_int(oidp, &diag, 0, req); 4407 if (error || !req->newptr) 4408 return error; 4409 return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0; 4410 } 4411 4412 static int 4413 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS) 4414 { 4415 struct ath_softc *sc = arg1; 4416 struct ifnet *ifp = &sc->sc_if; 4417 u_int32_t scale; 4418 int error; 4419 4420 ath_hal_gettpscale(sc->sc_ah, &scale); 4421 error = sysctl_handle_int(oidp, &scale, 0, req); 4422 if (error || !req->newptr) 4423 return error; 4424 return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp); 4425 } 4426 4427 static int 4428 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS) 4429 { 4430 struct ath_softc *sc = arg1; 4431 u_int tpc = ath_hal_gettpc(sc->sc_ah); 4432 int error; 4433 4434 error = sysctl_handle_int(oidp, &tpc, 0, req); 4435 if (error || !req->newptr) 4436 return error; 4437 return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0; 4438 } 4439 4440 static void 4441 ath_sysctlattach(struct ath_softc *sc) 4442 { 4443 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 4444 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 4445 4446 ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode); 4447 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4448 "countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0, 4449 "EEPROM country code"); 4450 ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain); 4451 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4452 "regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0, 4453 "EEPROM regdomain code"); 4454 sc->sc_debug = ath_debug; 4455 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4456 "debug", CTLFLAG_RW, &sc->sc_debug, 0, 4457 "control debugging printfs"); 4458 4459 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4460 "slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4461 ath_sysctl_slottime, "I", "802.11 slot time (us)"); 4462 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4463 "acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4464 ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)"); 4465 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4466 "ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4467 ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)"); 4468 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4469 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4470 ath_sysctl_softled, "I", "enable/disable software LED support"); 4471 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4472 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 4473 "GPIO pin connected to LED"); 4474 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4475 "txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0, 4476 "tx antenna (0=auto)"); 4477 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4478 "rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4479 ath_sysctl_rxantenna, "I", "default/rx antenna"); 4480 if (sc->sc_hasdiversity) 4481 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4482 "diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4483 ath_sysctl_diversity, "I", "antenna diversity"); 4484 sc->sc_txintrperiod = ATH_TXINTR_PERIOD; 4485 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4486 "txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0, 4487 "tx descriptor batching"); 4488 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4489 "diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4490 ath_sysctl_diag, "I", "h/w diagnostic control"); 4491 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4492 "tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4493 ath_sysctl_tpscale, "I", "tx power scaling"); 4494 if (sc->sc_hastpc) 4495 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4496 "tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4497 ath_sysctl_tpc, "I", "enable/disable per-packet TPC"); 4498 } 4499 4500 static void 4501 ath_bpfattach(struct ath_softc *sc) 4502 { 4503 struct ifnet *ifp = &sc->sc_if; 4504 4505 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 4506 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th), 4507 &sc->sc_drvbpf); 4508 /* 4509 * Initialize constant fields. 4510 * XXX make header lengths a multiple of 32-bits so subsequent 4511 * headers are properly aligned; this is a kludge to keep 4512 * certain applications happy. 4513 * 4514 * NB: the channel is setup each time we transition to the 4515 * RUN state to avoid filling it in for each frame. 4516 */ 4517 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 4518 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 4519 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 4520 4521 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 4522 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 4523 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 4524 } 4525 4526 /* 4527 * Announce various information on device/driver attach. 4528 */ 4529 static void 4530 ath_announce(struct ath_softc *sc) 4531 { 4532 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B) 4533 struct ifnet *ifp = &sc->sc_if; 4534 struct ath_hal *ah = sc->sc_ah; 4535 u_int modes, cc; 4536 4537 if_printf(ifp, "mac %d.%d phy %d.%d", 4538 ah->ah_macVersion, ah->ah_macRev, 4539 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 4540 /* 4541 * Print radio revision(s). We check the wireless modes 4542 * to avoid falsely printing revs for inoperable parts. 4543 * Dual-band radio revs are returned in the 5Ghz rev number. 4544 */ 4545 ath_hal_getcountrycode(ah, &cc); 4546 modes = ath_hal_getwirelessmodes(ah, cc); 4547 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) { 4548 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev) 4549 printf(" 5ghz radio %d.%d 2ghz radio %d.%d", 4550 ah->ah_analog5GhzRev >> 4, 4551 ah->ah_analog5GhzRev & 0xf, 4552 ah->ah_analog2GhzRev >> 4, 4553 ah->ah_analog2GhzRev & 0xf); 4554 else 4555 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 4556 ah->ah_analog5GhzRev & 0xf); 4557 } else 4558 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 4559 ah->ah_analog5GhzRev & 0xf); 4560 printf("\n"); 4561 if (bootverbose) { 4562 int i; 4563 for (i = 0; i <= WME_AC_VO; i++) { 4564 struct ath_txq *txq = sc->sc_ac2q[i]; 4565 if_printf(ifp, "Use hw queue %u for %s traffic\n", 4566 txq->axq_qnum, ieee80211_wme_acnames[i]); 4567 } 4568 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 4569 sc->sc_cabq->axq_qnum); 4570 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 4571 } 4572 #undef HAL_MODE_DUALBAND 4573 } 4574