1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_rx_edma.h> 113 #include <dev/ath/if_ath_tx_edma.h> 114 #include <dev/ath/if_ath_beacon.h> 115 #include <dev/ath/if_ath_btcoex.h> 116 #include <dev/ath/if_ath_spectral.h> 117 #include <dev/ath/if_ath_lna_div.h> 118 #include <dev/ath/if_athdfs.h> 119 120 #ifdef ATH_TX99_DIAG 121 #include <dev/ath/ath_tx99/ath_tx99.h> 122 #endif 123 124 #ifdef ATH_DEBUG_ALQ 125 #include <dev/ath/if_ath_alq.h> 126 #endif 127 128 /* 129 * Only enable this if you're working on PS-POLL support. 130 */ 131 #define ATH_SW_PSQ 132 133 /* 134 * ATH_BCBUF determines the number of vap's that can transmit 135 * beacons and also (currently) the number of vap's that can 136 * have unique mac addresses/bssid. When staggering beacons 137 * 4 is probably a good max as otherwise the beacons become 138 * very closely spaced and there is limited time for cab q traffic 139 * to go out. You can burst beacons instead but that is not good 140 * for stations in power save and at some point you really want 141 * another radio (and channel). 142 * 143 * The limit on the number of mac addresses is tied to our use of 144 * the U/L bit and tracking addresses in a byte; it would be 145 * worthwhile to allow more for applications like proxy sta. 146 */ 147 CTASSERT(ATH_BCBUF <= 8); 148 149 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 150 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 151 const uint8_t [IEEE80211_ADDR_LEN], 152 const uint8_t [IEEE80211_ADDR_LEN]); 153 static void ath_vap_delete(struct ieee80211vap *); 154 static void ath_init(void *); 155 static void ath_stop_locked(struct ifnet *); 156 static void ath_stop(struct ifnet *); 157 static int ath_reset_vap(struct ieee80211vap *, u_long); 158 static int ath_transmit(struct ifnet *ifp, struct mbuf *m); 159 static void ath_qflush(struct ifnet *ifp); 160 static int ath_media_change(struct ifnet *); 161 static void ath_watchdog(void *); 162 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 163 static void ath_fatal_proc(void *, int); 164 static void ath_bmiss_vap(struct ieee80211vap *); 165 static void ath_bmiss_proc(void *, int); 166 static void ath_key_update_begin(struct ieee80211vap *); 167 static void ath_key_update_end(struct ieee80211vap *); 168 static void ath_update_mcast_hw(struct ath_softc *); 169 static void ath_update_mcast(struct ifnet *); 170 static void ath_update_promisc(struct ifnet *); 171 static void ath_updateslot(struct ifnet *); 172 static void ath_bstuck_proc(void *, int); 173 static void ath_reset_proc(void *, int); 174 static int ath_desc_alloc(struct ath_softc *); 175 static void ath_desc_free(struct ath_softc *); 176 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 177 const uint8_t [IEEE80211_ADDR_LEN]); 178 static void ath_node_cleanup(struct ieee80211_node *); 179 static void ath_node_free(struct ieee80211_node *); 180 static void ath_node_getsignal(const struct ieee80211_node *, 181 int8_t *, int8_t *); 182 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 183 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 184 static int ath_tx_setup(struct ath_softc *, int, int); 185 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 186 static void ath_tx_cleanup(struct ath_softc *); 187 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 188 int dosched); 189 static void ath_tx_proc_q0(void *, int); 190 static void ath_tx_proc_q0123(void *, int); 191 static void ath_tx_proc(void *, int); 192 static void ath_txq_sched_tasklet(void *, int); 193 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 194 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 195 static void ath_scan_start(struct ieee80211com *); 196 static void ath_scan_end(struct ieee80211com *); 197 static void ath_set_channel(struct ieee80211com *); 198 #ifdef ATH_ENABLE_11N 199 static void ath_update_chw(struct ieee80211com *); 200 #endif /* ATH_ENABLE_11N */ 201 static void ath_calibrate(void *); 202 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 203 static void ath_setup_stationkey(struct ieee80211_node *); 204 static void ath_newassoc(struct ieee80211_node *, int); 205 static int ath_setregdomain(struct ieee80211com *, 206 struct ieee80211_regdomain *, int, 207 struct ieee80211_channel []); 208 static void ath_getradiocaps(struct ieee80211com *, int, int *, 209 struct ieee80211_channel []); 210 static int ath_getchannels(struct ath_softc *); 211 212 static int ath_rate_setup(struct ath_softc *, u_int mode); 213 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 214 215 static void ath_announce(struct ath_softc *); 216 217 static void ath_dfs_tasklet(void *, int); 218 static void ath_node_powersave(struct ieee80211_node *, int); 219 static int ath_node_set_tim(struct ieee80211_node *, int); 220 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 221 222 #ifdef IEEE80211_SUPPORT_TDMA 223 #include <dev/ath/if_ath_tdma.h> 224 #endif 225 226 SYSCTL_DECL(_hw_ath); 227 228 /* XXX validate sysctl values */ 229 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 230 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 231 0, "long chip calibration interval (secs)"); 232 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 233 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 234 0, "short chip calibration interval (msecs)"); 235 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 236 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 237 0, "reset chip calibration results (secs)"); 238 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 239 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 240 0, "ANI calibration (msecs)"); 241 242 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 243 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 244 0, "rx buffers allocated"); 245 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 246 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 247 0, "tx buffers allocated"); 248 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 249 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 250 0, "tx (mgmt) buffers allocated"); 251 252 int ath_bstuck_threshold = 4; /* max missed beacons */ 253 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 254 0, "max missed beacon xmits before chip reset"); 255 256 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 257 258 void 259 ath_legacy_attach_comp_func(struct ath_softc *sc) 260 { 261 262 /* 263 * Special case certain configurations. Note the 264 * CAB queue is handled by these specially so don't 265 * include them when checking the txq setup mask. 266 */ 267 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 268 case 0x01: 269 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 270 break; 271 case 0x0f: 272 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 273 break; 274 default: 275 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 276 break; 277 } 278 } 279 280 /* 281 * Set the target power mode. 282 * 283 * If this is called during a point in time where 284 * the hardware is being programmed elsewhere, it will 285 * simply store it away and update it when all current 286 * uses of the hardware are completed. 287 */ 288 void 289 _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line) 290 { 291 ATH_LOCK_ASSERT(sc); 292 293 sc->sc_target_powerstate = power_state; 294 295 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 296 __func__, 297 file, 298 line, 299 power_state, 300 sc->sc_powersave_refcnt); 301 302 if (sc->sc_powersave_refcnt == 0 && 303 power_state != sc->sc_cur_powerstate) { 304 sc->sc_cur_powerstate = power_state; 305 ath_hal_setpower(sc->sc_ah, power_state); 306 307 /* 308 * If the NIC is force-awake, then set the 309 * self-gen frame state appropriately. 310 * 311 * If the nic is in network sleep or full-sleep, 312 * we let the above call leave the self-gen 313 * state as "sleep". 314 */ 315 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 316 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 317 ath_hal_setselfgenpower(sc->sc_ah, 318 sc->sc_target_selfgen_state); 319 } 320 } 321 } 322 323 /* 324 * Set the current self-generated frames state. 325 * 326 * This is separate from the target power mode. The chip may be 327 * awake but the desired state is "sleep", so frames sent to the 328 * destination has PWRMGT=1 in the 802.11 header. The NIC also 329 * needs to know to set PWRMGT=1 in self-generated frames. 330 */ 331 void 332 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 333 { 334 335 ATH_LOCK_ASSERT(sc); 336 337 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 338 __func__, 339 file, 340 line, 341 power_state, 342 sc->sc_target_selfgen_state); 343 344 sc->sc_target_selfgen_state = power_state; 345 346 /* 347 * If the NIC is force-awake, then set the power state. 348 * Network-state and full-sleep will already transition it to 349 * mark self-gen frames as sleeping - and we can't 350 * guarantee the NIC is awake to program the self-gen frame 351 * setting anyway. 352 */ 353 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 354 ath_hal_setselfgenpower(sc->sc_ah, power_state); 355 } 356 } 357 358 /* 359 * Set the hardware power mode and take a reference. 360 * 361 * This doesn't update the target power mode in the driver; 362 * it just updates the hardware power state. 363 * 364 * XXX it should only ever force the hardware awake; it should 365 * never be called to set it asleep. 366 */ 367 void 368 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 369 { 370 ATH_LOCK_ASSERT(sc); 371 372 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 373 __func__, 374 file, 375 line, 376 power_state, 377 sc->sc_powersave_refcnt); 378 379 sc->sc_powersave_refcnt++; 380 381 if (power_state != sc->sc_cur_powerstate) { 382 ath_hal_setpower(sc->sc_ah, power_state); 383 sc->sc_cur_powerstate = power_state; 384 385 /* 386 * Adjust the self-gen powerstate if appropriate. 387 */ 388 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 389 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 390 ath_hal_setselfgenpower(sc->sc_ah, 391 sc->sc_target_selfgen_state); 392 } 393 394 } 395 } 396 397 /* 398 * Restore the power save mode to what it once was. 399 * 400 * This will decrement the reference counter and once it hits 401 * zero, it'll restore the powersave state. 402 */ 403 void 404 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 405 { 406 407 ATH_LOCK_ASSERT(sc); 408 409 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 410 __func__, 411 file, 412 line, 413 sc->sc_powersave_refcnt, 414 sc->sc_target_powerstate); 415 416 if (sc->sc_powersave_refcnt == 0) 417 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 418 else 419 sc->sc_powersave_refcnt--; 420 421 if (sc->sc_powersave_refcnt == 0 && 422 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 423 sc->sc_cur_powerstate = sc->sc_target_powerstate; 424 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 425 } 426 427 /* 428 * Adjust the self-gen powerstate if appropriate. 429 */ 430 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 431 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 432 ath_hal_setselfgenpower(sc->sc_ah, 433 sc->sc_target_selfgen_state); 434 } 435 436 } 437 438 /* 439 * Configure the initial HAL configuration values based on bus 440 * specific parameters. 441 * 442 * Some PCI IDs and other information may need tweaking. 443 * 444 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable 445 * if BT antenna diversity isn't enabled. 446 * 447 * So, let's also figure out how to enable BT diversity for AR9485. 448 */ 449 static void 450 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config) 451 { 452 /* XXX TODO: only for PCI devices? */ 453 454 if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) { 455 ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */ 456 ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE; 457 ah_config->ath_hal_min_gainidx = AH_TRUE; 458 ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88; 459 /* XXX low_rssi_thresh */ 460 /* XXX fast_div_bias */ 461 device_printf(sc->sc_dev, "configuring for %s\n", 462 (sc->sc_pci_devinfo & ATH_PCI_CUS198) ? 463 "CUS198" : "CUS230"); 464 } 465 466 if (sc->sc_pci_devinfo & ATH_PCI_CUS217) 467 device_printf(sc->sc_dev, "CUS217 card detected\n"); 468 469 if (sc->sc_pci_devinfo & ATH_PCI_CUS252) 470 device_printf(sc->sc_dev, "CUS252 card detected\n"); 471 472 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT) 473 device_printf(sc->sc_dev, "WB335 1-ANT card detected\n"); 474 475 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT) 476 device_printf(sc->sc_dev, "WB335 2-ANT card detected\n"); 477 478 if (sc->sc_pci_devinfo & ATH_PCI_KILLER) 479 device_printf(sc->sc_dev, "Killer Wireless card detected\n"); 480 481 #if 0 482 /* 483 * Some WB335 cards do not support antenna diversity. Since 484 * we use a hardcoded value for AR9565 instead of using the 485 * EEPROM/OTP data, remove the combining feature from 486 * the HW capabilities bitmap. 487 */ 488 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 489 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV)) 490 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB; 491 } 492 493 if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) { 494 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV; 495 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n"); 496 } 497 #endif 498 499 if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) { 500 ah_config->ath_hal_pcie_waen = 0x0040473b; 501 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n"); 502 } 503 504 #if 0 505 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) { 506 ah->config.no_pll_pwrsave = true; 507 device_printf(sc->sc_dev, "Disable PLL PowerSave\n"); 508 } 509 #endif 510 511 } 512 513 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 514 #define HAL_MODE_HT40 \ 515 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 516 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 517 int 518 ath_attach(u_int16_t devid, struct ath_softc *sc) 519 { 520 struct ifnet *ifp; 521 struct ieee80211com *ic; 522 struct ath_hal *ah = NULL; 523 HAL_STATUS status; 524 int error = 0, i; 525 u_int wmodes; 526 uint8_t macaddr[IEEE80211_ADDR_LEN]; 527 int rx_chainmask, tx_chainmask; 528 HAL_OPS_CONFIG ah_config; 529 530 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 531 532 CURVNET_SET(vnet0); 533 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 534 if (ifp == NULL) { 535 device_printf(sc->sc_dev, "can not if_alloc()\n"); 536 error = ENOSPC; 537 CURVNET_RESTORE(); 538 goto bad; 539 } 540 ic = ifp->if_l2com; 541 542 /* set these up early for if_printf use */ 543 if_initname(ifp, device_get_name(sc->sc_dev), 544 device_get_unit(sc->sc_dev)); 545 CURVNET_RESTORE(); 546 547 /* 548 * Configure the initial configuration data. 549 * 550 * This is stuff that may be needed early during attach 551 * rather than done via configuration calls later. 552 */ 553 bzero(&ah_config, sizeof(ah_config)); 554 ath_setup_hal_config(sc, &ah_config); 555 556 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 557 sc->sc_eepromdata, &ah_config, &status); 558 if (ah == NULL) { 559 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 560 status); 561 error = ENXIO; 562 goto bad; 563 } 564 sc->sc_ah = ah; 565 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 566 #ifdef ATH_DEBUG 567 sc->sc_debug = ath_debug; 568 #endif 569 570 /* 571 * Setup the DMA/EDMA functions based on the current 572 * hardware support. 573 * 574 * This is required before the descriptors are allocated. 575 */ 576 if (ath_hal_hasedma(sc->sc_ah)) { 577 sc->sc_isedma = 1; 578 ath_recv_setup_edma(sc); 579 ath_xmit_setup_edma(sc); 580 } else { 581 ath_recv_setup_legacy(sc); 582 ath_xmit_setup_legacy(sc); 583 } 584 585 if (ath_hal_hasmybeacon(sc->sc_ah)) { 586 sc->sc_do_mybeacon = 1; 587 } 588 589 /* 590 * Check if the MAC has multi-rate retry support. 591 * We do this by trying to setup a fake extended 592 * descriptor. MAC's that don't have support will 593 * return false w/o doing anything. MAC's that do 594 * support it will return true w/o doing anything. 595 */ 596 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 597 598 /* 599 * Check if the device has hardware counters for PHY 600 * errors. If so we need to enable the MIB interrupt 601 * so we can act on stat triggers. 602 */ 603 if (ath_hal_hwphycounters(ah)) 604 sc->sc_needmib = 1; 605 606 /* 607 * Get the hardware key cache size. 608 */ 609 sc->sc_keymax = ath_hal_keycachesize(ah); 610 if (sc->sc_keymax > ATH_KEYMAX) { 611 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 612 ATH_KEYMAX, sc->sc_keymax); 613 sc->sc_keymax = ATH_KEYMAX; 614 } 615 /* 616 * Reset the key cache since some parts do not 617 * reset the contents on initial power up. 618 */ 619 for (i = 0; i < sc->sc_keymax; i++) 620 ath_hal_keyreset(ah, i); 621 622 /* 623 * Collect the default channel list. 624 */ 625 error = ath_getchannels(sc); 626 if (error != 0) 627 goto bad; 628 629 /* 630 * Setup rate tables for all potential media types. 631 */ 632 ath_rate_setup(sc, IEEE80211_MODE_11A); 633 ath_rate_setup(sc, IEEE80211_MODE_11B); 634 ath_rate_setup(sc, IEEE80211_MODE_11G); 635 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 636 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 637 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 638 ath_rate_setup(sc, IEEE80211_MODE_11NA); 639 ath_rate_setup(sc, IEEE80211_MODE_11NG); 640 ath_rate_setup(sc, IEEE80211_MODE_HALF); 641 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 642 643 /* NB: setup here so ath_rate_update is happy */ 644 ath_setcurmode(sc, IEEE80211_MODE_11A); 645 646 /* 647 * Allocate TX descriptors and populate the lists. 648 */ 649 error = ath_desc_alloc(sc); 650 if (error != 0) { 651 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 652 error); 653 goto bad; 654 } 655 error = ath_txdma_setup(sc); 656 if (error != 0) { 657 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 658 error); 659 goto bad; 660 } 661 662 /* 663 * Allocate RX descriptors and populate the lists. 664 */ 665 error = ath_rxdma_setup(sc); 666 if (error != 0) { 667 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 668 error); 669 goto bad; 670 } 671 672 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 673 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 674 675 ATH_TXBUF_LOCK_INIT(sc); 676 677 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 678 taskqueue_thread_enqueue, &sc->sc_tq); 679 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 680 "%s taskq", ifp->if_xname); 681 682 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 683 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 684 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 685 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 686 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 687 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 688 689 /* 690 * Allocate hardware transmit queues: one queue for 691 * beacon frames and one data queue for each QoS 692 * priority. Note that the hal handles resetting 693 * these queues at the needed time. 694 * 695 * XXX PS-Poll 696 */ 697 sc->sc_bhalq = ath_beaconq_setup(sc); 698 if (sc->sc_bhalq == (u_int) -1) { 699 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 700 error = EIO; 701 goto bad2; 702 } 703 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 704 if (sc->sc_cabq == NULL) { 705 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 706 error = EIO; 707 goto bad2; 708 } 709 /* NB: insure BK queue is the lowest priority h/w queue */ 710 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 711 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 712 ieee80211_wme_acnames[WME_AC_BK]); 713 error = EIO; 714 goto bad2; 715 } 716 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 717 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 718 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 719 /* 720 * Not enough hardware tx queues to properly do WME; 721 * just punt and assign them all to the same h/w queue. 722 * We could do a better job of this if, for example, 723 * we allocate queues when we switch from station to 724 * AP mode. 725 */ 726 if (sc->sc_ac2q[WME_AC_VI] != NULL) 727 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 728 if (sc->sc_ac2q[WME_AC_BE] != NULL) 729 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 730 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 731 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 732 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 733 } 734 735 /* 736 * Attach the TX completion function. 737 * 738 * The non-EDMA chips may have some special case optimisations; 739 * this method gives everyone a chance to attach cleanly. 740 */ 741 sc->sc_tx.xmit_attach_comp_func(sc); 742 743 /* 744 * Setup rate control. Some rate control modules 745 * call back to change the anntena state so expose 746 * the necessary entry points. 747 * XXX maybe belongs in struct ath_ratectrl? 748 */ 749 sc->sc_setdefantenna = ath_setdefantenna; 750 sc->sc_rc = ath_rate_attach(sc); 751 if (sc->sc_rc == NULL) { 752 error = EIO; 753 goto bad2; 754 } 755 756 /* Attach DFS module */ 757 if (! ath_dfs_attach(sc)) { 758 device_printf(sc->sc_dev, 759 "%s: unable to attach DFS\n", __func__); 760 error = EIO; 761 goto bad2; 762 } 763 764 /* Attach spectral module */ 765 if (ath_spectral_attach(sc) < 0) { 766 device_printf(sc->sc_dev, 767 "%s: unable to attach spectral\n", __func__); 768 error = EIO; 769 goto bad2; 770 } 771 772 /* Attach bluetooth coexistence module */ 773 if (ath_btcoex_attach(sc) < 0) { 774 device_printf(sc->sc_dev, 775 "%s: unable to attach bluetooth coexistence\n", __func__); 776 error = EIO; 777 goto bad2; 778 } 779 780 /* Attach LNA diversity module */ 781 if (ath_lna_div_attach(sc) < 0) { 782 device_printf(sc->sc_dev, 783 "%s: unable to attach LNA diversity\n", __func__); 784 error = EIO; 785 goto bad2; 786 } 787 788 /* Start DFS processing tasklet */ 789 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 790 791 /* Configure LED state */ 792 sc->sc_blinking = 0; 793 sc->sc_ledstate = 1; 794 sc->sc_ledon = 0; /* low true */ 795 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 796 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 797 798 /* 799 * Don't setup hardware-based blinking. 800 * 801 * Although some NICs may have this configured in the 802 * default reset register values, the user may wish 803 * to alter which pins have which function. 804 * 805 * The reference driver attaches the MAC network LED to GPIO1 and 806 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 807 * NIC has these reversed. 808 */ 809 sc->sc_hardled = (1 == 0); 810 sc->sc_led_net_pin = -1; 811 sc->sc_led_pwr_pin = -1; 812 /* 813 * Auto-enable soft led processing for IBM cards and for 814 * 5211 minipci cards. Users can also manually enable/disable 815 * support with a sysctl. 816 */ 817 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 818 ath_led_config(sc); 819 ath_hal_setledstate(ah, HAL_LED_INIT); 820 821 ifp->if_softc = sc; 822 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 823 ifp->if_transmit = ath_transmit; 824 ifp->if_qflush = ath_qflush; 825 ifp->if_ioctl = ath_ioctl; 826 ifp->if_init = ath_init; 827 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 828 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 829 IFQ_SET_READY(&ifp->if_snd); 830 831 ic->ic_ifp = ifp; 832 /* XXX not right but it's not used anywhere important */ 833 ic->ic_phytype = IEEE80211_T_OFDM; 834 ic->ic_opmode = IEEE80211_M_STA; 835 ic->ic_caps = 836 IEEE80211_C_STA /* station mode */ 837 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 838 | IEEE80211_C_HOSTAP /* hostap mode */ 839 | IEEE80211_C_MONITOR /* monitor mode */ 840 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 841 | IEEE80211_C_WDS /* 4-address traffic works */ 842 | IEEE80211_C_MBSS /* mesh point link mode */ 843 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 844 | IEEE80211_C_SHSLOT /* short slot time supported */ 845 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 846 #ifndef ATH_ENABLE_11N 847 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 848 #endif 849 | IEEE80211_C_TXFRAG /* handle tx frags */ 850 #ifdef ATH_ENABLE_DFS 851 | IEEE80211_C_DFS /* Enable radar detection */ 852 #endif 853 | IEEE80211_C_PMGT /* Station side power mgmt */ 854 | IEEE80211_C_SWSLEEP 855 ; 856 /* 857 * Query the hal to figure out h/w crypto support. 858 */ 859 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 860 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 861 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 862 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 863 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 864 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 865 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 866 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 867 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 868 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 869 /* 870 * Check if h/w does the MIC and/or whether the 871 * separate key cache entries are required to 872 * handle both tx+rx MIC keys. 873 */ 874 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 875 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 876 /* 877 * If the h/w supports storing tx+rx MIC keys 878 * in one cache slot automatically enable use. 879 */ 880 if (ath_hal_hastkipsplit(ah) || 881 !ath_hal_settkipsplit(ah, AH_FALSE)) 882 sc->sc_splitmic = 1; 883 /* 884 * If the h/w can do TKIP MIC together with WME then 885 * we use it; otherwise we force the MIC to be done 886 * in software by the net80211 layer. 887 */ 888 if (ath_hal_haswmetkipmic(ah)) 889 sc->sc_wmetkipmic = 1; 890 } 891 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 892 /* 893 * Check for multicast key search support. 894 */ 895 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 896 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 897 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 898 } 899 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 900 /* 901 * Mark key cache slots associated with global keys 902 * as in use. If we knew TKIP was not to be used we 903 * could leave the +32, +64, and +32+64 slots free. 904 */ 905 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 906 setbit(sc->sc_keymap, i); 907 setbit(sc->sc_keymap, i+64); 908 if (sc->sc_splitmic) { 909 setbit(sc->sc_keymap, i+32); 910 setbit(sc->sc_keymap, i+32+64); 911 } 912 } 913 /* 914 * TPC support can be done either with a global cap or 915 * per-packet support. The latter is not available on 916 * all parts. We're a bit pedantic here as all parts 917 * support a global cap. 918 */ 919 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 920 ic->ic_caps |= IEEE80211_C_TXPMGT; 921 922 /* 923 * Mark WME capability only if we have sufficient 924 * hardware queues to do proper priority scheduling. 925 */ 926 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 927 ic->ic_caps |= IEEE80211_C_WME; 928 /* 929 * Check for misc other capabilities. 930 */ 931 if (ath_hal_hasbursting(ah)) 932 ic->ic_caps |= IEEE80211_C_BURST; 933 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 934 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 935 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 936 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 937 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 938 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 939 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 940 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 941 942 if (ath_hal_hasfastframes(ah)) 943 ic->ic_caps |= IEEE80211_C_FF; 944 wmodes = ath_hal_getwirelessmodes(ah); 945 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 946 ic->ic_caps |= IEEE80211_C_TURBOP; 947 #ifdef IEEE80211_SUPPORT_TDMA 948 if (ath_hal_macversion(ah) > 0x78) { 949 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 950 ic->ic_tdma_update = ath_tdma_update; 951 } 952 #endif 953 954 /* 955 * TODO: enforce that at least this many frames are available 956 * in the txbuf list before allowing data frames (raw or 957 * otherwise) to be transmitted. 958 */ 959 sc->sc_txq_data_minfree = 10; 960 /* 961 * Leave this as default to maintain legacy behaviour. 962 * Shortening the cabq/mcastq may end up causing some 963 * undesirable behaviour. 964 */ 965 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 966 967 /* 968 * How deep can the node software TX queue get whilst it's asleep. 969 */ 970 sc->sc_txq_node_psq_maxdepth = 16; 971 972 /* 973 * Default the maximum queue depth for a given node 974 * to 1/4'th the TX buffers, or 64, whichever 975 * is larger. 976 */ 977 sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4); 978 979 /* Enable CABQ by default */ 980 sc->sc_cabq_enable = 1; 981 982 /* 983 * Allow the TX and RX chainmasks to be overridden by 984 * environment variables and/or device.hints. 985 * 986 * This must be done early - before the hardware is 987 * calibrated or before the 802.11n stream calculation 988 * is done. 989 */ 990 if (resource_int_value(device_get_name(sc->sc_dev), 991 device_get_unit(sc->sc_dev), "rx_chainmask", 992 &rx_chainmask) == 0) { 993 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 994 rx_chainmask); 995 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 996 } 997 if (resource_int_value(device_get_name(sc->sc_dev), 998 device_get_unit(sc->sc_dev), "tx_chainmask", 999 &tx_chainmask) == 0) { 1000 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 1001 tx_chainmask); 1002 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 1003 } 1004 1005 /* 1006 * Query the TX/RX chainmask configuration. 1007 * 1008 * This is only relevant for 11n devices. 1009 */ 1010 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 1011 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 1012 1013 /* 1014 * Disable MRR with protected frames by default. 1015 * Only 802.11n series NICs can handle this. 1016 */ 1017 sc->sc_mrrprot = 0; /* XXX should be a capability */ 1018 1019 /* 1020 * Query the enterprise mode information the HAL. 1021 */ 1022 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 1023 &sc->sc_ent_cfg) == HAL_OK) 1024 sc->sc_use_ent = 1; 1025 1026 #ifdef ATH_ENABLE_11N 1027 /* 1028 * Query HT capabilities 1029 */ 1030 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 1031 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 1032 uint32_t rxs, txs; 1033 1034 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 1035 1036 sc->sc_mrrprot = 1; /* XXX should be a capability */ 1037 1038 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 1039 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 1040 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 1041 | IEEE80211_HTCAP_MAXAMSDU_3839 1042 /* max A-MSDU length */ 1043 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 1044 ; 1045 1046 /* 1047 * Enable short-GI for HT20 only if the hardware 1048 * advertises support. 1049 * Notably, anything earlier than the AR9287 doesn't. 1050 */ 1051 if ((ath_hal_getcapability(ah, 1052 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 1053 (wmodes & HAL_MODE_HT20)) { 1054 device_printf(sc->sc_dev, 1055 "[HT] enabling short-GI in 20MHz mode\n"); 1056 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 1057 } 1058 1059 if (wmodes & HAL_MODE_HT40) 1060 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 1061 | IEEE80211_HTCAP_SHORTGI40; 1062 1063 /* 1064 * TX/RX streams need to be taken into account when 1065 * negotiating which MCS rates it'll receive and 1066 * what MCS rates are available for TX. 1067 */ 1068 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 1069 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 1070 ic->ic_txstream = txs; 1071 ic->ic_rxstream = rxs; 1072 1073 /* 1074 * Setup TX and RX STBC based on what the HAL allows and 1075 * the currently configured chainmask set. 1076 * Ie - don't enable STBC TX if only one chain is enabled. 1077 * STBC RX is fine on a single RX chain; it just won't 1078 * provide any real benefit. 1079 */ 1080 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 1081 NULL) == HAL_OK) { 1082 sc->sc_rx_stbc = 1; 1083 device_printf(sc->sc_dev, 1084 "[HT] 1 stream STBC receive enabled\n"); 1085 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1086 } 1087 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1088 NULL) == HAL_OK) { 1089 sc->sc_tx_stbc = 1; 1090 device_printf(sc->sc_dev, 1091 "[HT] 1 stream STBC transmit enabled\n"); 1092 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1093 } 1094 1095 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1096 &sc->sc_rts_aggr_limit); 1097 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1098 device_printf(sc->sc_dev, 1099 "[HT] RTS aggregates limited to %d KiB\n", 1100 sc->sc_rts_aggr_limit / 1024); 1101 1102 device_printf(sc->sc_dev, 1103 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1104 } 1105 #endif 1106 1107 /* 1108 * Initial aggregation settings. 1109 */ 1110 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1111 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1112 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1113 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1114 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1115 sc->sc_delim_min_pad = 0; 1116 1117 /* 1118 * Check if the hardware requires PCI register serialisation. 1119 * Some of the Owl based MACs require this. 1120 */ 1121 if (mp_ncpus > 1 && 1122 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1123 0, NULL) == HAL_OK) { 1124 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1125 device_printf(sc->sc_dev, 1126 "Enabling register serialisation\n"); 1127 } 1128 1129 /* 1130 * Initialise the deferred completed RX buffer list. 1131 */ 1132 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1133 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1134 1135 /* 1136 * Indicate we need the 802.11 header padded to a 1137 * 32-bit boundary for 4-address and QoS frames. 1138 */ 1139 ic->ic_flags |= IEEE80211_F_DATAPAD; 1140 1141 /* 1142 * Query the hal about antenna support. 1143 */ 1144 sc->sc_defant = ath_hal_getdefantenna(ah); 1145 1146 /* 1147 * Not all chips have the VEOL support we want to 1148 * use with IBSS beacons; check here for it. 1149 */ 1150 sc->sc_hasveol = ath_hal_hasveol(ah); 1151 1152 /* get mac address from hardware */ 1153 ath_hal_getmac(ah, macaddr); 1154 if (sc->sc_hasbmask) 1155 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1156 1157 /* NB: used to size node table key mapping array */ 1158 ic->ic_max_keyix = sc->sc_keymax; 1159 /* call MI attach routine. */ 1160 ieee80211_ifattach(ic, macaddr); 1161 ic->ic_setregdomain = ath_setregdomain; 1162 ic->ic_getradiocaps = ath_getradiocaps; 1163 sc->sc_opmode = HAL_M_STA; 1164 1165 /* override default methods */ 1166 ic->ic_newassoc = ath_newassoc; 1167 ic->ic_updateslot = ath_updateslot; 1168 ic->ic_wme.wme_update = ath_wme_update; 1169 ic->ic_vap_create = ath_vap_create; 1170 ic->ic_vap_delete = ath_vap_delete; 1171 ic->ic_raw_xmit = ath_raw_xmit; 1172 ic->ic_update_mcast = ath_update_mcast; 1173 ic->ic_update_promisc = ath_update_promisc; 1174 ic->ic_node_alloc = ath_node_alloc; 1175 sc->sc_node_free = ic->ic_node_free; 1176 ic->ic_node_free = ath_node_free; 1177 sc->sc_node_cleanup = ic->ic_node_cleanup; 1178 ic->ic_node_cleanup = ath_node_cleanup; 1179 ic->ic_node_getsignal = ath_node_getsignal; 1180 ic->ic_scan_start = ath_scan_start; 1181 ic->ic_scan_end = ath_scan_end; 1182 ic->ic_set_channel = ath_set_channel; 1183 #ifdef ATH_ENABLE_11N 1184 /* 802.11n specific - but just override anyway */ 1185 sc->sc_addba_request = ic->ic_addba_request; 1186 sc->sc_addba_response = ic->ic_addba_response; 1187 sc->sc_addba_stop = ic->ic_addba_stop; 1188 sc->sc_bar_response = ic->ic_bar_response; 1189 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1190 1191 ic->ic_addba_request = ath_addba_request; 1192 ic->ic_addba_response = ath_addba_response; 1193 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1194 ic->ic_addba_stop = ath_addba_stop; 1195 ic->ic_bar_response = ath_bar_response; 1196 1197 ic->ic_update_chw = ath_update_chw; 1198 #endif /* ATH_ENABLE_11N */ 1199 1200 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1201 /* 1202 * There's one vendor bitmap entry in the RX radiotap 1203 * header; make sure that's taken into account. 1204 */ 1205 ieee80211_radiotap_attachv(ic, 1206 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1207 ATH_TX_RADIOTAP_PRESENT, 1208 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1209 ATH_RX_RADIOTAP_PRESENT); 1210 #else 1211 /* 1212 * No vendor bitmap/extensions are present. 1213 */ 1214 ieee80211_radiotap_attach(ic, 1215 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1216 ATH_TX_RADIOTAP_PRESENT, 1217 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1218 ATH_RX_RADIOTAP_PRESENT); 1219 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1220 1221 /* 1222 * Setup the ALQ logging if required 1223 */ 1224 #ifdef ATH_DEBUG_ALQ 1225 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1226 if_ath_alq_setcfg(&sc->sc_alq, 1227 sc->sc_ah->ah_macVersion, 1228 sc->sc_ah->ah_macRev, 1229 sc->sc_ah->ah_phyRev, 1230 sc->sc_ah->ah_magic); 1231 #endif 1232 1233 /* 1234 * Setup dynamic sysctl's now that country code and 1235 * regdomain are available from the hal. 1236 */ 1237 ath_sysctlattach(sc); 1238 ath_sysctl_stats_attach(sc); 1239 ath_sysctl_hal_attach(sc); 1240 1241 if (bootverbose) 1242 ieee80211_announce(ic); 1243 ath_announce(sc); 1244 1245 /* 1246 * Put it to sleep for now. 1247 */ 1248 ATH_LOCK(sc); 1249 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 1250 ATH_UNLOCK(sc); 1251 1252 return 0; 1253 bad2: 1254 ath_tx_cleanup(sc); 1255 ath_desc_free(sc); 1256 ath_txdma_teardown(sc); 1257 ath_rxdma_teardown(sc); 1258 bad: 1259 if (ah) 1260 ath_hal_detach(ah); 1261 1262 /* 1263 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE.. 1264 */ 1265 if (ifp != NULL && ifp->if_vnet) { 1266 CURVNET_SET(ifp->if_vnet); 1267 if_free(ifp); 1268 CURVNET_RESTORE(); 1269 } else if (ifp != NULL) 1270 if_free(ifp); 1271 sc->sc_invalid = 1; 1272 return error; 1273 } 1274 1275 int 1276 ath_detach(struct ath_softc *sc) 1277 { 1278 struct ifnet *ifp = sc->sc_ifp; 1279 1280 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1281 __func__, ifp->if_flags); 1282 1283 /* 1284 * NB: the order of these is important: 1285 * o stop the chip so no more interrupts will fire 1286 * o call the 802.11 layer before detaching the hal to 1287 * insure callbacks into the driver to delete global 1288 * key cache entries can be handled 1289 * o free the taskqueue which drains any pending tasks 1290 * o reclaim the tx queue data structures after calling 1291 * the 802.11 layer as we'll get called back to reclaim 1292 * node state and potentially want to use them 1293 * o to cleanup the tx queues the hal is called, so detach 1294 * it last 1295 * Other than that, it's straightforward... 1296 */ 1297 1298 /* 1299 * XXX Wake the hardware up first. ath_stop() will still 1300 * wake it up first, but I'd rather do it here just to 1301 * ensure it's awake. 1302 */ 1303 ATH_LOCK(sc); 1304 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1305 ath_power_setpower(sc, HAL_PM_AWAKE); 1306 ATH_UNLOCK(sc); 1307 1308 /* 1309 * Stop things cleanly. 1310 */ 1311 ath_stop(ifp); 1312 1313 ieee80211_ifdetach(ifp->if_l2com); 1314 taskqueue_free(sc->sc_tq); 1315 #ifdef ATH_TX99_DIAG 1316 if (sc->sc_tx99 != NULL) 1317 sc->sc_tx99->detach(sc->sc_tx99); 1318 #endif 1319 ath_rate_detach(sc->sc_rc); 1320 #ifdef ATH_DEBUG_ALQ 1321 if_ath_alq_tidyup(&sc->sc_alq); 1322 #endif 1323 ath_lna_div_detach(sc); 1324 ath_btcoex_detach(sc); 1325 ath_spectral_detach(sc); 1326 ath_dfs_detach(sc); 1327 ath_desc_free(sc); 1328 ath_txdma_teardown(sc); 1329 ath_rxdma_teardown(sc); 1330 ath_tx_cleanup(sc); 1331 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1332 1333 CURVNET_SET(ifp->if_vnet); 1334 if_free(ifp); 1335 CURVNET_RESTORE(); 1336 1337 return 0; 1338 } 1339 1340 /* 1341 * MAC address handling for multiple BSS on the same radio. 1342 * The first vap uses the MAC address from the EEPROM. For 1343 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1344 * address and use the next six bits as an index. 1345 */ 1346 static void 1347 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1348 { 1349 int i; 1350 1351 if (clone && sc->sc_hasbmask) { 1352 /* NB: we only do this if h/w supports multiple bssid */ 1353 for (i = 0; i < 8; i++) 1354 if ((sc->sc_bssidmask & (1<<i)) == 0) 1355 break; 1356 if (i != 0) 1357 mac[0] |= (i << 2)|0x2; 1358 } else 1359 i = 0; 1360 sc->sc_bssidmask |= 1<<i; 1361 sc->sc_hwbssidmask[0] &= ~mac[0]; 1362 if (i == 0) 1363 sc->sc_nbssid0++; 1364 } 1365 1366 static void 1367 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1368 { 1369 int i = mac[0] >> 2; 1370 uint8_t mask; 1371 1372 if (i != 0 || --sc->sc_nbssid0 == 0) { 1373 sc->sc_bssidmask &= ~(1<<i); 1374 /* recalculate bssid mask from remaining addresses */ 1375 mask = 0xff; 1376 for (i = 1; i < 8; i++) 1377 if (sc->sc_bssidmask & (1<<i)) 1378 mask &= ~((i<<2)|0x2); 1379 sc->sc_hwbssidmask[0] |= mask; 1380 } 1381 } 1382 1383 /* 1384 * Assign a beacon xmit slot. We try to space out 1385 * assignments so when beacons are staggered the 1386 * traffic coming out of the cab q has maximal time 1387 * to go out before the next beacon is scheduled. 1388 */ 1389 static int 1390 assign_bslot(struct ath_softc *sc) 1391 { 1392 u_int slot, free; 1393 1394 free = 0; 1395 for (slot = 0; slot < ATH_BCBUF; slot++) 1396 if (sc->sc_bslot[slot] == NULL) { 1397 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1398 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1399 return slot; 1400 free = slot; 1401 /* NB: keep looking for a double slot */ 1402 } 1403 return free; 1404 } 1405 1406 static struct ieee80211vap * 1407 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1408 enum ieee80211_opmode opmode, int flags, 1409 const uint8_t bssid[IEEE80211_ADDR_LEN], 1410 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1411 { 1412 struct ath_softc *sc = ic->ic_ifp->if_softc; 1413 struct ath_vap *avp; 1414 struct ieee80211vap *vap; 1415 uint8_t mac[IEEE80211_ADDR_LEN]; 1416 int needbeacon, error; 1417 enum ieee80211_opmode ic_opmode; 1418 1419 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1420 M_80211_VAP, M_WAITOK | M_ZERO); 1421 needbeacon = 0; 1422 IEEE80211_ADDR_COPY(mac, mac0); 1423 1424 ATH_LOCK(sc); 1425 ic_opmode = opmode; /* default to opmode of new vap */ 1426 switch (opmode) { 1427 case IEEE80211_M_STA: 1428 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1429 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1430 goto bad; 1431 } 1432 if (sc->sc_nvaps) { 1433 /* 1434 * With multiple vaps we must fall back 1435 * to s/w beacon miss handling. 1436 */ 1437 flags |= IEEE80211_CLONE_NOBEACONS; 1438 } 1439 if (flags & IEEE80211_CLONE_NOBEACONS) { 1440 /* 1441 * Station mode w/o beacons are implemented w/ AP mode. 1442 */ 1443 ic_opmode = IEEE80211_M_HOSTAP; 1444 } 1445 break; 1446 case IEEE80211_M_IBSS: 1447 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1448 device_printf(sc->sc_dev, 1449 "only 1 ibss vap supported\n"); 1450 goto bad; 1451 } 1452 needbeacon = 1; 1453 break; 1454 case IEEE80211_M_AHDEMO: 1455 #ifdef IEEE80211_SUPPORT_TDMA 1456 if (flags & IEEE80211_CLONE_TDMA) { 1457 if (sc->sc_nvaps != 0) { 1458 device_printf(sc->sc_dev, 1459 "only 1 tdma vap supported\n"); 1460 goto bad; 1461 } 1462 needbeacon = 1; 1463 flags |= IEEE80211_CLONE_NOBEACONS; 1464 } 1465 /* fall thru... */ 1466 #endif 1467 case IEEE80211_M_MONITOR: 1468 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1469 /* 1470 * Adopt existing mode. Adding a monitor or ahdemo 1471 * vap to an existing configuration is of dubious 1472 * value but should be ok. 1473 */ 1474 /* XXX not right for monitor mode */ 1475 ic_opmode = ic->ic_opmode; 1476 } 1477 break; 1478 case IEEE80211_M_HOSTAP: 1479 case IEEE80211_M_MBSS: 1480 needbeacon = 1; 1481 break; 1482 case IEEE80211_M_WDS: 1483 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1484 device_printf(sc->sc_dev, 1485 "wds not supported in sta mode\n"); 1486 goto bad; 1487 } 1488 /* 1489 * Silently remove any request for a unique 1490 * bssid; WDS vap's always share the local 1491 * mac address. 1492 */ 1493 flags &= ~IEEE80211_CLONE_BSSID; 1494 if (sc->sc_nvaps == 0) 1495 ic_opmode = IEEE80211_M_HOSTAP; 1496 else 1497 ic_opmode = ic->ic_opmode; 1498 break; 1499 default: 1500 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1501 goto bad; 1502 } 1503 /* 1504 * Check that a beacon buffer is available; the code below assumes it. 1505 */ 1506 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1507 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1508 goto bad; 1509 } 1510 1511 /* STA, AHDEMO? */ 1512 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1513 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1514 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1515 } 1516 1517 vap = &avp->av_vap; 1518 /* XXX can't hold mutex across if_alloc */ 1519 ATH_UNLOCK(sc); 1520 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1521 bssid, mac); 1522 ATH_LOCK(sc); 1523 if (error != 0) { 1524 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1525 __func__, error); 1526 goto bad2; 1527 } 1528 1529 /* h/w crypto support */ 1530 vap->iv_key_alloc = ath_key_alloc; 1531 vap->iv_key_delete = ath_key_delete; 1532 vap->iv_key_set = ath_key_set; 1533 vap->iv_key_update_begin = ath_key_update_begin; 1534 vap->iv_key_update_end = ath_key_update_end; 1535 1536 /* override various methods */ 1537 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1538 vap->iv_recv_mgmt = ath_recv_mgmt; 1539 vap->iv_reset = ath_reset_vap; 1540 vap->iv_update_beacon = ath_beacon_update; 1541 avp->av_newstate = vap->iv_newstate; 1542 vap->iv_newstate = ath_newstate; 1543 avp->av_bmiss = vap->iv_bmiss; 1544 vap->iv_bmiss = ath_bmiss_vap; 1545 1546 avp->av_node_ps = vap->iv_node_ps; 1547 vap->iv_node_ps = ath_node_powersave; 1548 1549 avp->av_set_tim = vap->iv_set_tim; 1550 vap->iv_set_tim = ath_node_set_tim; 1551 1552 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1553 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1554 1555 /* Set default parameters */ 1556 1557 /* 1558 * Anything earlier than some AR9300 series MACs don't 1559 * support a smaller MPDU density. 1560 */ 1561 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1562 /* 1563 * All NICs can handle the maximum size, however 1564 * AR5416 based MACs can only TX aggregates w/ RTS 1565 * protection when the total aggregate size is <= 8k. 1566 * However, for now that's enforced by the TX path. 1567 */ 1568 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1569 1570 avp->av_bslot = -1; 1571 if (needbeacon) { 1572 /* 1573 * Allocate beacon state and setup the q for buffered 1574 * multicast frames. We know a beacon buffer is 1575 * available because we checked above. 1576 */ 1577 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1578 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1579 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1580 /* 1581 * Assign the vap to a beacon xmit slot. As above 1582 * this cannot fail to find a free one. 1583 */ 1584 avp->av_bslot = assign_bslot(sc); 1585 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1586 ("beacon slot %u not empty", avp->av_bslot)); 1587 sc->sc_bslot[avp->av_bslot] = vap; 1588 sc->sc_nbcnvaps++; 1589 } 1590 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1591 /* 1592 * Multple vaps are to transmit beacons and we 1593 * have h/w support for TSF adjusting; enable 1594 * use of staggered beacons. 1595 */ 1596 sc->sc_stagbeacons = 1; 1597 } 1598 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1599 } 1600 1601 ic->ic_opmode = ic_opmode; 1602 if (opmode != IEEE80211_M_WDS) { 1603 sc->sc_nvaps++; 1604 if (opmode == IEEE80211_M_STA) 1605 sc->sc_nstavaps++; 1606 if (opmode == IEEE80211_M_MBSS) 1607 sc->sc_nmeshvaps++; 1608 } 1609 switch (ic_opmode) { 1610 case IEEE80211_M_IBSS: 1611 sc->sc_opmode = HAL_M_IBSS; 1612 break; 1613 case IEEE80211_M_STA: 1614 sc->sc_opmode = HAL_M_STA; 1615 break; 1616 case IEEE80211_M_AHDEMO: 1617 #ifdef IEEE80211_SUPPORT_TDMA 1618 if (vap->iv_caps & IEEE80211_C_TDMA) { 1619 sc->sc_tdma = 1; 1620 /* NB: disable tsf adjust */ 1621 sc->sc_stagbeacons = 0; 1622 } 1623 /* 1624 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1625 * just ap mode. 1626 */ 1627 /* fall thru... */ 1628 #endif 1629 case IEEE80211_M_HOSTAP: 1630 case IEEE80211_M_MBSS: 1631 sc->sc_opmode = HAL_M_HOSTAP; 1632 break; 1633 case IEEE80211_M_MONITOR: 1634 sc->sc_opmode = HAL_M_MONITOR; 1635 break; 1636 default: 1637 /* XXX should not happen */ 1638 break; 1639 } 1640 if (sc->sc_hastsfadd) { 1641 /* 1642 * Configure whether or not TSF adjust should be done. 1643 */ 1644 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1645 } 1646 if (flags & IEEE80211_CLONE_NOBEACONS) { 1647 /* 1648 * Enable s/w beacon miss handling. 1649 */ 1650 sc->sc_swbmiss = 1; 1651 } 1652 ATH_UNLOCK(sc); 1653 1654 /* complete setup */ 1655 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1656 return vap; 1657 bad2: 1658 reclaim_address(sc, mac); 1659 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1660 bad: 1661 free(avp, M_80211_VAP); 1662 ATH_UNLOCK(sc); 1663 return NULL; 1664 } 1665 1666 static void 1667 ath_vap_delete(struct ieee80211vap *vap) 1668 { 1669 struct ieee80211com *ic = vap->iv_ic; 1670 struct ifnet *ifp = ic->ic_ifp; 1671 struct ath_softc *sc = ifp->if_softc; 1672 struct ath_hal *ah = sc->sc_ah; 1673 struct ath_vap *avp = ATH_VAP(vap); 1674 1675 ATH_LOCK(sc); 1676 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1677 ATH_UNLOCK(sc); 1678 1679 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1680 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1681 /* 1682 * Quiesce the hardware while we remove the vap. In 1683 * particular we need to reclaim all references to 1684 * the vap state by any frames pending on the tx queues. 1685 */ 1686 ath_hal_intrset(ah, 0); /* disable interrupts */ 1687 /* XXX Do all frames from all vaps/nodes need draining here? */ 1688 ath_stoprecv(sc, 1); /* stop recv side */ 1689 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1690 } 1691 1692 /* .. leave the hardware awake for now. */ 1693 1694 ieee80211_vap_detach(vap); 1695 1696 /* 1697 * XXX Danger Will Robinson! Danger! 1698 * 1699 * Because ieee80211_vap_detach() can queue a frame (the station 1700 * diassociate message?) after we've drained the TXQ and 1701 * flushed the software TXQ, we will end up with a frame queued 1702 * to a node whose vap is about to be freed. 1703 * 1704 * To work around this, flush the hardware/software again. 1705 * This may be racy - the ath task may be running and the packet 1706 * may be being scheduled between sw->hw txq. Tsk. 1707 * 1708 * TODO: figure out why a new node gets allocated somewhere around 1709 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1710 * call!) 1711 */ 1712 1713 ath_draintxq(sc, ATH_RESET_DEFAULT); 1714 1715 ATH_LOCK(sc); 1716 /* 1717 * Reclaim beacon state. Note this must be done before 1718 * the vap instance is reclaimed as we may have a reference 1719 * to it in the buffer for the beacon frame. 1720 */ 1721 if (avp->av_bcbuf != NULL) { 1722 if (avp->av_bslot != -1) { 1723 sc->sc_bslot[avp->av_bslot] = NULL; 1724 sc->sc_nbcnvaps--; 1725 } 1726 ath_beacon_return(sc, avp->av_bcbuf); 1727 avp->av_bcbuf = NULL; 1728 if (sc->sc_nbcnvaps == 0) { 1729 sc->sc_stagbeacons = 0; 1730 if (sc->sc_hastsfadd) 1731 ath_hal_settsfadjust(sc->sc_ah, 0); 1732 } 1733 /* 1734 * Reclaim any pending mcast frames for the vap. 1735 */ 1736 ath_tx_draintxq(sc, &avp->av_mcastq); 1737 } 1738 /* 1739 * Update bookkeeping. 1740 */ 1741 if (vap->iv_opmode == IEEE80211_M_STA) { 1742 sc->sc_nstavaps--; 1743 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1744 sc->sc_swbmiss = 0; 1745 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1746 vap->iv_opmode == IEEE80211_M_MBSS) { 1747 reclaim_address(sc, vap->iv_myaddr); 1748 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1749 if (vap->iv_opmode == IEEE80211_M_MBSS) 1750 sc->sc_nmeshvaps--; 1751 } 1752 if (vap->iv_opmode != IEEE80211_M_WDS) 1753 sc->sc_nvaps--; 1754 #ifdef IEEE80211_SUPPORT_TDMA 1755 /* TDMA operation ceases when the last vap is destroyed */ 1756 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1757 sc->sc_tdma = 0; 1758 sc->sc_swbmiss = 0; 1759 } 1760 #endif 1761 free(avp, M_80211_VAP); 1762 1763 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1764 /* 1765 * Restart rx+tx machines if still running (RUNNING will 1766 * be reset if we just destroyed the last vap). 1767 */ 1768 if (ath_startrecv(sc) != 0) 1769 if_printf(ifp, "%s: unable to restart recv logic\n", 1770 __func__); 1771 if (sc->sc_beacons) { /* restart beacons */ 1772 #ifdef IEEE80211_SUPPORT_TDMA 1773 if (sc->sc_tdma) 1774 ath_tdma_config(sc, NULL); 1775 else 1776 #endif 1777 ath_beacon_config(sc, NULL); 1778 } 1779 ath_hal_intrset(ah, sc->sc_imask); 1780 } 1781 1782 /* Ok, let the hardware asleep. */ 1783 ath_power_restore_power_state(sc); 1784 ATH_UNLOCK(sc); 1785 } 1786 1787 void 1788 ath_suspend(struct ath_softc *sc) 1789 { 1790 struct ifnet *ifp = sc->sc_ifp; 1791 struct ieee80211com *ic = ifp->if_l2com; 1792 1793 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1794 __func__, ifp->if_flags); 1795 1796 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1797 1798 ieee80211_suspend_all(ic); 1799 /* 1800 * NB: don't worry about putting the chip in low power 1801 * mode; pci will power off our socket on suspend and 1802 * CardBus detaches the device. 1803 * 1804 * XXX TODO: well, that's great, except for non-cardbus 1805 * devices! 1806 */ 1807 1808 /* 1809 * XXX This doesn't wait until all pending taskqueue 1810 * items and parallel transmit/receive/other threads 1811 * are running! 1812 */ 1813 ath_hal_intrset(sc->sc_ah, 0); 1814 taskqueue_block(sc->sc_tq); 1815 callout_drain(&sc->sc_cal_ch); 1816 1817 /* 1818 * XXX ensure sc_invalid is 1 1819 */ 1820 1821 /* Disable the PCIe PHY, complete with workarounds */ 1822 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1823 } 1824 1825 /* 1826 * Reset the key cache since some parts do not reset the 1827 * contents on resume. First we clear all entries, then 1828 * re-load keys that the 802.11 layer assumes are setup 1829 * in h/w. 1830 */ 1831 static void 1832 ath_reset_keycache(struct ath_softc *sc) 1833 { 1834 struct ifnet *ifp = sc->sc_ifp; 1835 struct ieee80211com *ic = ifp->if_l2com; 1836 struct ath_hal *ah = sc->sc_ah; 1837 int i; 1838 1839 ATH_LOCK(sc); 1840 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1841 for (i = 0; i < sc->sc_keymax; i++) 1842 ath_hal_keyreset(ah, i); 1843 ath_power_restore_power_state(sc); 1844 ATH_UNLOCK(sc); 1845 ieee80211_crypto_reload_keys(ic); 1846 } 1847 1848 /* 1849 * Fetch the current chainmask configuration based on the current 1850 * operating channel and options. 1851 */ 1852 static void 1853 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1854 { 1855 1856 /* 1857 * Set TX chainmask to the currently configured chainmask; 1858 * the TX chainmask depends upon the current operating mode. 1859 */ 1860 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1861 if (IEEE80211_IS_CHAN_HT(chan)) { 1862 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1863 } else { 1864 sc->sc_cur_txchainmask = 1; 1865 } 1866 1867 DPRINTF(sc, ATH_DEBUG_RESET, 1868 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1869 __func__, 1870 sc->sc_cur_txchainmask, 1871 sc->sc_cur_rxchainmask); 1872 } 1873 1874 void 1875 ath_resume(struct ath_softc *sc) 1876 { 1877 struct ifnet *ifp = sc->sc_ifp; 1878 struct ieee80211com *ic = ifp->if_l2com; 1879 struct ath_hal *ah = sc->sc_ah; 1880 HAL_STATUS status; 1881 1882 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1883 __func__, ifp->if_flags); 1884 1885 /* Re-enable PCIe, re-enable the PCIe bus */ 1886 ath_hal_enablepcie(ah, 0, 0); 1887 1888 /* 1889 * Must reset the chip before we reload the 1890 * keycache as we were powered down on suspend. 1891 */ 1892 ath_update_chainmasks(sc, 1893 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1894 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1895 sc->sc_cur_rxchainmask); 1896 1897 /* Ensure we set the current power state to on */ 1898 ATH_LOCK(sc); 1899 ath_power_setselfgen(sc, HAL_PM_AWAKE); 1900 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1901 ath_power_setpower(sc, HAL_PM_AWAKE); 1902 ATH_UNLOCK(sc); 1903 1904 ath_hal_reset(ah, sc->sc_opmode, 1905 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1906 AH_FALSE, &status); 1907 ath_reset_keycache(sc); 1908 1909 ATH_RX_LOCK(sc); 1910 sc->sc_rx_stopped = 1; 1911 sc->sc_rx_resetted = 1; 1912 ATH_RX_UNLOCK(sc); 1913 1914 /* Let DFS at it in case it's a DFS channel */ 1915 ath_dfs_radar_enable(sc, ic->ic_curchan); 1916 1917 /* Let spectral at in case spectral is enabled */ 1918 ath_spectral_enable(sc, ic->ic_curchan); 1919 1920 /* 1921 * Let bluetooth coexistence at in case it's needed for this channel 1922 */ 1923 ath_btcoex_enable(sc, ic->ic_curchan); 1924 1925 /* 1926 * If we're doing TDMA, enforce the TXOP limitation for chips that 1927 * support it. 1928 */ 1929 if (sc->sc_hasenforcetxop && sc->sc_tdma) 1930 ath_hal_setenforcetxop(sc->sc_ah, 1); 1931 else 1932 ath_hal_setenforcetxop(sc->sc_ah, 0); 1933 1934 /* Restore the LED configuration */ 1935 ath_led_config(sc); 1936 ath_hal_setledstate(ah, HAL_LED_INIT); 1937 1938 if (sc->sc_resume_up) 1939 ieee80211_resume_all(ic); 1940 1941 ATH_LOCK(sc); 1942 ath_power_restore_power_state(sc); 1943 ATH_UNLOCK(sc); 1944 1945 /* XXX beacons ? */ 1946 } 1947 1948 void 1949 ath_shutdown(struct ath_softc *sc) 1950 { 1951 struct ifnet *ifp = sc->sc_ifp; 1952 1953 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1954 __func__, ifp->if_flags); 1955 1956 ath_stop(ifp); 1957 /* NB: no point powering down chip as we're about to reboot */ 1958 } 1959 1960 /* 1961 * Interrupt handler. Most of the actual processing is deferred. 1962 */ 1963 void 1964 ath_intr(void *arg) 1965 { 1966 struct ath_softc *sc = arg; 1967 struct ifnet *ifp = sc->sc_ifp; 1968 struct ath_hal *ah = sc->sc_ah; 1969 HAL_INT status = 0; 1970 uint32_t txqs; 1971 1972 /* 1973 * If we're inside a reset path, just print a warning and 1974 * clear the ISR. The reset routine will finish it for us. 1975 */ 1976 ATH_PCU_LOCK(sc); 1977 if (sc->sc_inreset_cnt) { 1978 HAL_INT status; 1979 ath_hal_getisr(ah, &status); /* clear ISR */ 1980 ath_hal_intrset(ah, 0); /* disable further intr's */ 1981 DPRINTF(sc, ATH_DEBUG_ANY, 1982 "%s: in reset, ignoring: status=0x%x\n", 1983 __func__, status); 1984 ATH_PCU_UNLOCK(sc); 1985 return; 1986 } 1987 1988 if (sc->sc_invalid) { 1989 /* 1990 * The hardware is not ready/present, don't touch anything. 1991 * Note this can happen early on if the IRQ is shared. 1992 */ 1993 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1994 ATH_PCU_UNLOCK(sc); 1995 return; 1996 } 1997 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1998 ATH_PCU_UNLOCK(sc); 1999 return; 2000 } 2001 2002 ATH_LOCK(sc); 2003 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2004 ATH_UNLOCK(sc); 2005 2006 if ((ifp->if_flags & IFF_UP) == 0 || 2007 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2008 HAL_INT status; 2009 2010 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 2011 __func__, ifp->if_flags); 2012 ath_hal_getisr(ah, &status); /* clear ISR */ 2013 ath_hal_intrset(ah, 0); /* disable further intr's */ 2014 ATH_PCU_UNLOCK(sc); 2015 2016 ATH_LOCK(sc); 2017 ath_power_restore_power_state(sc); 2018 ATH_UNLOCK(sc); 2019 return; 2020 } 2021 2022 /* 2023 * Figure out the reason(s) for the interrupt. Note 2024 * that the hal returns a pseudo-ISR that may include 2025 * bits we haven't explicitly enabled so we mask the 2026 * value to insure we only process bits we requested. 2027 */ 2028 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 2029 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 2030 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 2031 #ifdef ATH_DEBUG_ALQ 2032 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 2033 ah->ah_syncstate); 2034 #endif /* ATH_DEBUG_ALQ */ 2035 #ifdef ATH_KTR_INTR_DEBUG 2036 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 2037 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 2038 ah->ah_intrstate[0], 2039 ah->ah_intrstate[1], 2040 ah->ah_intrstate[2], 2041 ah->ah_intrstate[3], 2042 ah->ah_intrstate[6]); 2043 #endif 2044 2045 /* Squirrel away SYNC interrupt debugging */ 2046 if (ah->ah_syncstate != 0) { 2047 int i; 2048 for (i = 0; i < 32; i++) 2049 if (ah->ah_syncstate & (i << i)) 2050 sc->sc_intr_stats.sync_intr[i]++; 2051 } 2052 2053 status &= sc->sc_imask; /* discard unasked for bits */ 2054 2055 /* Short-circuit un-handled interrupts */ 2056 if (status == 0x0) { 2057 ATH_PCU_UNLOCK(sc); 2058 2059 ATH_LOCK(sc); 2060 ath_power_restore_power_state(sc); 2061 ATH_UNLOCK(sc); 2062 2063 return; 2064 } 2065 2066 /* 2067 * Take a note that we're inside the interrupt handler, so 2068 * the reset routines know to wait. 2069 */ 2070 sc->sc_intr_cnt++; 2071 ATH_PCU_UNLOCK(sc); 2072 2073 /* 2074 * Handle the interrupt. We won't run concurrent with the reset 2075 * or channel change routines as they'll wait for sc_intr_cnt 2076 * to be 0 before continuing. 2077 */ 2078 if (status & HAL_INT_FATAL) { 2079 sc->sc_stats.ast_hardware++; 2080 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 2081 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 2082 } else { 2083 if (status & HAL_INT_SWBA) { 2084 /* 2085 * Software beacon alert--time to send a beacon. 2086 * Handle beacon transmission directly; deferring 2087 * this is too slow to meet timing constraints 2088 * under load. 2089 */ 2090 #ifdef IEEE80211_SUPPORT_TDMA 2091 if (sc->sc_tdma) { 2092 if (sc->sc_tdmaswba == 0) { 2093 struct ieee80211com *ic = ifp->if_l2com; 2094 struct ieee80211vap *vap = 2095 TAILQ_FIRST(&ic->ic_vaps); 2096 ath_tdma_beacon_send(sc, vap); 2097 sc->sc_tdmaswba = 2098 vap->iv_tdma->tdma_bintval; 2099 } else 2100 sc->sc_tdmaswba--; 2101 } else 2102 #endif 2103 { 2104 ath_beacon_proc(sc, 0); 2105 #ifdef IEEE80211_SUPPORT_SUPERG 2106 /* 2107 * Schedule the rx taskq in case there's no 2108 * traffic so any frames held on the staging 2109 * queue are aged and potentially flushed. 2110 */ 2111 sc->sc_rx.recv_sched(sc, 1); 2112 #endif 2113 } 2114 } 2115 if (status & HAL_INT_RXEOL) { 2116 int imask; 2117 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2118 if (! sc->sc_isedma) { 2119 ATH_PCU_LOCK(sc); 2120 /* 2121 * NB: the hardware should re-read the link when 2122 * RXE bit is written, but it doesn't work at 2123 * least on older hardware revs. 2124 */ 2125 sc->sc_stats.ast_rxeol++; 2126 /* 2127 * Disable RXEOL/RXORN - prevent an interrupt 2128 * storm until the PCU logic can be reset. 2129 * In case the interface is reset some other 2130 * way before "sc_kickpcu" is called, don't 2131 * modify sc_imask - that way if it is reset 2132 * by a call to ath_reset() somehow, the 2133 * interrupt mask will be correctly reprogrammed. 2134 */ 2135 imask = sc->sc_imask; 2136 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2137 ath_hal_intrset(ah, imask); 2138 /* 2139 * Only blank sc_rxlink if we've not yet kicked 2140 * the PCU. 2141 * 2142 * This isn't entirely correct - the correct solution 2143 * would be to have a PCU lock and engage that for 2144 * the duration of the PCU fiddling; which would include 2145 * running the RX process. Otherwise we could end up 2146 * messing up the RX descriptor chain and making the 2147 * RX desc list much shorter. 2148 */ 2149 if (! sc->sc_kickpcu) 2150 sc->sc_rxlink = NULL; 2151 sc->sc_kickpcu = 1; 2152 ATH_PCU_UNLOCK(sc); 2153 } 2154 /* 2155 * Enqueue an RX proc to handle whatever 2156 * is in the RX queue. 2157 * This will then kick the PCU if required. 2158 */ 2159 sc->sc_rx.recv_sched(sc, 1); 2160 } 2161 if (status & HAL_INT_TXURN) { 2162 sc->sc_stats.ast_txurn++; 2163 /* bump tx trigger level */ 2164 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2165 } 2166 /* 2167 * Handle both the legacy and RX EDMA interrupt bits. 2168 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2169 */ 2170 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2171 sc->sc_stats.ast_rx_intr++; 2172 sc->sc_rx.recv_sched(sc, 1); 2173 } 2174 if (status & HAL_INT_TX) { 2175 sc->sc_stats.ast_tx_intr++; 2176 /* 2177 * Grab all the currently set bits in the HAL txq bitmap 2178 * and blank them. This is the only place we should be 2179 * doing this. 2180 */ 2181 if (! sc->sc_isedma) { 2182 ATH_PCU_LOCK(sc); 2183 txqs = 0xffffffff; 2184 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2185 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2186 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2187 txqs, 2188 sc->sc_txq_active, 2189 sc->sc_txq_active | txqs); 2190 sc->sc_txq_active |= txqs; 2191 ATH_PCU_UNLOCK(sc); 2192 } 2193 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2194 } 2195 if (status & HAL_INT_BMISS) { 2196 sc->sc_stats.ast_bmiss++; 2197 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2198 } 2199 if (status & HAL_INT_GTT) 2200 sc->sc_stats.ast_tx_timeout++; 2201 if (status & HAL_INT_CST) 2202 sc->sc_stats.ast_tx_cst++; 2203 if (status & HAL_INT_MIB) { 2204 sc->sc_stats.ast_mib++; 2205 ATH_PCU_LOCK(sc); 2206 /* 2207 * Disable interrupts until we service the MIB 2208 * interrupt; otherwise it will continue to fire. 2209 */ 2210 ath_hal_intrset(ah, 0); 2211 /* 2212 * Let the hal handle the event. We assume it will 2213 * clear whatever condition caused the interrupt. 2214 */ 2215 ath_hal_mibevent(ah, &sc->sc_halstats); 2216 /* 2217 * Don't reset the interrupt if we've just 2218 * kicked the PCU, or we may get a nested 2219 * RXEOL before the rxproc has had a chance 2220 * to run. 2221 */ 2222 if (sc->sc_kickpcu == 0) 2223 ath_hal_intrset(ah, sc->sc_imask); 2224 ATH_PCU_UNLOCK(sc); 2225 } 2226 if (status & HAL_INT_RXORN) { 2227 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2228 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2229 sc->sc_stats.ast_rxorn++; 2230 } 2231 if (status & HAL_INT_TSFOOR) { 2232 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2233 sc->sc_syncbeacon = 1; 2234 } 2235 } 2236 ATH_PCU_LOCK(sc); 2237 sc->sc_intr_cnt--; 2238 ATH_PCU_UNLOCK(sc); 2239 2240 ATH_LOCK(sc); 2241 ath_power_restore_power_state(sc); 2242 ATH_UNLOCK(sc); 2243 } 2244 2245 static void 2246 ath_fatal_proc(void *arg, int pending) 2247 { 2248 struct ath_softc *sc = arg; 2249 struct ifnet *ifp = sc->sc_ifp; 2250 u_int32_t *state; 2251 u_int32_t len; 2252 void *sp; 2253 2254 if_printf(ifp, "hardware error; resetting\n"); 2255 /* 2256 * Fatal errors are unrecoverable. Typically these 2257 * are caused by DMA errors. Collect h/w state from 2258 * the hal so we can diagnose what's going on. 2259 */ 2260 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2261 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2262 state = sp; 2263 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 2264 state[0], state[1] , state[2], state[3], 2265 state[4], state[5]); 2266 } 2267 ath_reset(ifp, ATH_RESET_NOLOSS); 2268 } 2269 2270 static void 2271 ath_bmiss_vap(struct ieee80211vap *vap) 2272 { 2273 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 2274 2275 /* 2276 * Workaround phantom bmiss interrupts by sanity-checking 2277 * the time of our last rx'd frame. If it is within the 2278 * beacon miss interval then ignore the interrupt. If it's 2279 * truly a bmiss we'll get another interrupt soon and that'll 2280 * be dispatched up for processing. Note this applies only 2281 * for h/w beacon miss events. 2282 */ 2283 2284 /* 2285 * XXX TODO: Just read the TSF during the interrupt path; 2286 * that way we don't have to wake up again just to read it 2287 * again. 2288 */ 2289 ATH_LOCK(sc); 2290 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2291 ATH_UNLOCK(sc); 2292 2293 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2294 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2295 struct ath_softc *sc = ifp->if_softc; 2296 u_int64_t lastrx = sc->sc_lastrx; 2297 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2298 /* XXX should take a locked ref to iv_bss */ 2299 u_int bmisstimeout = 2300 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2301 2302 DPRINTF(sc, ATH_DEBUG_BEACON, 2303 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2304 __func__, (unsigned long long) tsf, 2305 (unsigned long long)(tsf - lastrx), 2306 (unsigned long long) lastrx, bmisstimeout); 2307 2308 if (tsf - lastrx <= bmisstimeout) { 2309 sc->sc_stats.ast_bmiss_phantom++; 2310 2311 ATH_LOCK(sc); 2312 ath_power_restore_power_state(sc); 2313 ATH_UNLOCK(sc); 2314 2315 return; 2316 } 2317 } 2318 2319 /* 2320 * There's no need to keep the hardware awake during the call 2321 * to av_bmiss(). 2322 */ 2323 ATH_LOCK(sc); 2324 ath_power_restore_power_state(sc); 2325 ATH_UNLOCK(sc); 2326 2327 /* 2328 * Attempt to force a beacon resync. 2329 */ 2330 sc->sc_syncbeacon = 1; 2331 2332 ATH_VAP(vap)->av_bmiss(vap); 2333 } 2334 2335 /* XXX this needs a force wakeup! */ 2336 int 2337 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2338 { 2339 uint32_t rsize; 2340 void *sp; 2341 2342 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2343 return 0; 2344 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2345 *hangs = *(uint32_t *)sp; 2346 return 1; 2347 } 2348 2349 static void 2350 ath_bmiss_proc(void *arg, int pending) 2351 { 2352 struct ath_softc *sc = arg; 2353 struct ifnet *ifp = sc->sc_ifp; 2354 uint32_t hangs; 2355 2356 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2357 2358 ATH_LOCK(sc); 2359 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2360 ATH_UNLOCK(sc); 2361 2362 ath_beacon_miss(sc); 2363 2364 /* 2365 * Do a reset upon any becaon miss event. 2366 * 2367 * It may be a non-recognised RX clear hang which needs a reset 2368 * to clear. 2369 */ 2370 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2371 ath_reset(ifp, ATH_RESET_NOLOSS); 2372 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 2373 } else { 2374 ath_reset(ifp, ATH_RESET_NOLOSS); 2375 ieee80211_beacon_miss(ifp->if_l2com); 2376 } 2377 2378 /* Force a beacon resync, in case they've drifted */ 2379 sc->sc_syncbeacon = 1; 2380 2381 ATH_LOCK(sc); 2382 ath_power_restore_power_state(sc); 2383 ATH_UNLOCK(sc); 2384 } 2385 2386 /* 2387 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2388 * calcs together with WME. If necessary disable the crypto 2389 * hardware and mark the 802.11 state so keys will be setup 2390 * with the MIC work done in software. 2391 */ 2392 static void 2393 ath_settkipmic(struct ath_softc *sc) 2394 { 2395 struct ifnet *ifp = sc->sc_ifp; 2396 struct ieee80211com *ic = ifp->if_l2com; 2397 2398 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2399 if (ic->ic_flags & IEEE80211_F_WME) { 2400 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2401 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2402 } else { 2403 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2404 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2405 } 2406 } 2407 } 2408 2409 static void 2410 ath_init(void *arg) 2411 { 2412 struct ath_softc *sc = (struct ath_softc *) arg; 2413 struct ifnet *ifp = sc->sc_ifp; 2414 struct ieee80211com *ic = ifp->if_l2com; 2415 struct ath_hal *ah = sc->sc_ah; 2416 HAL_STATUS status; 2417 2418 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 2419 __func__, ifp->if_flags); 2420 2421 ATH_LOCK(sc); 2422 /* 2423 * Force the sleep state awake. 2424 */ 2425 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2426 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2427 ath_power_setpower(sc, HAL_PM_AWAKE); 2428 2429 /* 2430 * Stop anything previously setup. This is safe 2431 * whether this is the first time through or not. 2432 */ 2433 ath_stop_locked(ifp); 2434 2435 /* 2436 * The basic interface to setting the hardware in a good 2437 * state is ``reset''. On return the hardware is known to 2438 * be powered up and with interrupts disabled. This must 2439 * be followed by initialization of the appropriate bits 2440 * and then setup of the interrupt mask. 2441 */ 2442 ath_settkipmic(sc); 2443 ath_update_chainmasks(sc, ic->ic_curchan); 2444 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2445 sc->sc_cur_rxchainmask); 2446 2447 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 2448 if_printf(ifp, "unable to reset hardware; hal status %u\n", 2449 status); 2450 ATH_UNLOCK(sc); 2451 return; 2452 } 2453 2454 ATH_RX_LOCK(sc); 2455 sc->sc_rx_stopped = 1; 2456 sc->sc_rx_resetted = 1; 2457 ATH_RX_UNLOCK(sc); 2458 2459 ath_chan_change(sc, ic->ic_curchan); 2460 2461 /* Let DFS at it in case it's a DFS channel */ 2462 ath_dfs_radar_enable(sc, ic->ic_curchan); 2463 2464 /* Let spectral at in case spectral is enabled */ 2465 ath_spectral_enable(sc, ic->ic_curchan); 2466 2467 /* 2468 * Let bluetooth coexistence at in case it's needed for this channel 2469 */ 2470 ath_btcoex_enable(sc, ic->ic_curchan); 2471 2472 /* 2473 * If we're doing TDMA, enforce the TXOP limitation for chips that 2474 * support it. 2475 */ 2476 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2477 ath_hal_setenforcetxop(sc->sc_ah, 1); 2478 else 2479 ath_hal_setenforcetxop(sc->sc_ah, 0); 2480 2481 /* 2482 * Likewise this is set during reset so update 2483 * state cached in the driver. 2484 */ 2485 sc->sc_diversity = ath_hal_getdiversity(ah); 2486 sc->sc_lastlongcal = 0; 2487 sc->sc_resetcal = 1; 2488 sc->sc_lastcalreset = 0; 2489 sc->sc_lastani = 0; 2490 sc->sc_lastshortcal = 0; 2491 sc->sc_doresetcal = AH_FALSE; 2492 /* 2493 * Beacon timers were cleared here; give ath_newstate() 2494 * a hint that the beacon timers should be poked when 2495 * things transition to the RUN state. 2496 */ 2497 sc->sc_beacons = 0; 2498 2499 /* 2500 * Setup the hardware after reset: the key cache 2501 * is filled as needed and the receive engine is 2502 * set going. Frame transmit is handled entirely 2503 * in the frame output path; there's nothing to do 2504 * here except setup the interrupt mask. 2505 */ 2506 if (ath_startrecv(sc) != 0) { 2507 if_printf(ifp, "unable to start recv logic\n"); 2508 ath_power_restore_power_state(sc); 2509 ATH_UNLOCK(sc); 2510 return; 2511 } 2512 2513 /* 2514 * Enable interrupts. 2515 */ 2516 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2517 | HAL_INT_RXORN | HAL_INT_TXURN 2518 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2519 2520 /* 2521 * Enable RX EDMA bits. Note these overlap with 2522 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2523 */ 2524 if (sc->sc_isedma) 2525 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2526 2527 /* 2528 * If we're an EDMA NIC, we don't care about RXEOL. 2529 * Writing a new descriptor in will simply restart 2530 * RX DMA. 2531 */ 2532 if (! sc->sc_isedma) 2533 sc->sc_imask |= HAL_INT_RXEOL; 2534 2535 /* 2536 * Enable MIB interrupts when there are hardware phy counters. 2537 * Note we only do this (at the moment) for station mode. 2538 */ 2539 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2540 sc->sc_imask |= HAL_INT_MIB; 2541 2542 /* 2543 * XXX add capability for this. 2544 * 2545 * If we're in STA mode (and maybe IBSS?) then register for 2546 * TSFOOR interrupts. 2547 */ 2548 if (ic->ic_opmode == IEEE80211_M_STA) 2549 sc->sc_imask |= HAL_INT_TSFOOR; 2550 2551 /* Enable global TX timeout and carrier sense timeout if available */ 2552 if (ath_hal_gtxto_supported(ah)) 2553 sc->sc_imask |= HAL_INT_GTT; 2554 2555 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2556 __func__, sc->sc_imask); 2557 2558 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2559 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2560 ath_hal_intrset(ah, sc->sc_imask); 2561 2562 ath_power_restore_power_state(sc); 2563 ATH_UNLOCK(sc); 2564 2565 #ifdef ATH_TX99_DIAG 2566 if (sc->sc_tx99 != NULL) 2567 sc->sc_tx99->start(sc->sc_tx99); 2568 else 2569 #endif 2570 ieee80211_start_all(ic); /* start all vap's */ 2571 } 2572 2573 static void 2574 ath_stop_locked(struct ifnet *ifp) 2575 { 2576 struct ath_softc *sc = ifp->if_softc; 2577 struct ath_hal *ah = sc->sc_ah; 2578 2579 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 2580 __func__, sc->sc_invalid, ifp->if_flags); 2581 2582 ATH_LOCK_ASSERT(sc); 2583 2584 /* 2585 * Wake the hardware up before fiddling with it. 2586 */ 2587 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2588 2589 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2590 /* 2591 * Shutdown the hardware and driver: 2592 * reset 802.11 state machine 2593 * turn off timers 2594 * disable interrupts 2595 * turn off the radio 2596 * clear transmit machinery 2597 * clear receive machinery 2598 * drain and release tx queues 2599 * reclaim beacon resources 2600 * power down hardware 2601 * 2602 * Note that some of this work is not possible if the 2603 * hardware is gone (invalid). 2604 */ 2605 #ifdef ATH_TX99_DIAG 2606 if (sc->sc_tx99 != NULL) 2607 sc->sc_tx99->stop(sc->sc_tx99); 2608 #endif 2609 callout_stop(&sc->sc_wd_ch); 2610 sc->sc_wd_timer = 0; 2611 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2612 if (!sc->sc_invalid) { 2613 if (sc->sc_softled) { 2614 callout_stop(&sc->sc_ledtimer); 2615 ath_hal_gpioset(ah, sc->sc_ledpin, 2616 !sc->sc_ledon); 2617 sc->sc_blinking = 0; 2618 } 2619 ath_hal_intrset(ah, 0); 2620 } 2621 /* XXX we should stop RX regardless of whether it's valid */ 2622 if (!sc->sc_invalid) { 2623 ath_stoprecv(sc, 1); 2624 ath_hal_phydisable(ah); 2625 } else 2626 sc->sc_rxlink = NULL; 2627 ath_draintxq(sc, ATH_RESET_DEFAULT); 2628 ath_beacon_free(sc); /* XXX not needed */ 2629 } 2630 2631 /* And now, restore the current power state */ 2632 ath_power_restore_power_state(sc); 2633 } 2634 2635 /* 2636 * Wait until all pending TX/RX has completed. 2637 * 2638 * This waits until all existing transmit, receive and interrupts 2639 * have completed. It's assumed that the caller has first 2640 * grabbed the reset lock so it doesn't try to do overlapping 2641 * chip resets. 2642 */ 2643 #define MAX_TXRX_ITERATIONS 100 2644 static void 2645 ath_txrx_stop_locked(struct ath_softc *sc) 2646 { 2647 int i = MAX_TXRX_ITERATIONS; 2648 2649 ATH_UNLOCK_ASSERT(sc); 2650 ATH_PCU_LOCK_ASSERT(sc); 2651 2652 /* 2653 * Sleep until all the pending operations have completed. 2654 * 2655 * The caller must ensure that reset has been incremented 2656 * or the pending operations may continue being queued. 2657 */ 2658 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2659 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2660 if (i <= 0) 2661 break; 2662 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2663 msecs_to_ticks(10)); 2664 i--; 2665 } 2666 2667 if (i <= 0) 2668 device_printf(sc->sc_dev, 2669 "%s: didn't finish after %d iterations\n", 2670 __func__, MAX_TXRX_ITERATIONS); 2671 } 2672 #undef MAX_TXRX_ITERATIONS 2673 2674 #if 0 2675 static void 2676 ath_txrx_stop(struct ath_softc *sc) 2677 { 2678 ATH_UNLOCK_ASSERT(sc); 2679 ATH_PCU_UNLOCK_ASSERT(sc); 2680 2681 ATH_PCU_LOCK(sc); 2682 ath_txrx_stop_locked(sc); 2683 ATH_PCU_UNLOCK(sc); 2684 } 2685 #endif 2686 2687 static void 2688 ath_txrx_start(struct ath_softc *sc) 2689 { 2690 2691 taskqueue_unblock(sc->sc_tq); 2692 } 2693 2694 /* 2695 * Grab the reset lock, and wait around until noone else 2696 * is trying to do anything with it. 2697 * 2698 * This is totally horrible but we can't hold this lock for 2699 * long enough to do TX/RX or we end up with net80211/ip stack 2700 * LORs and eventual deadlock. 2701 * 2702 * "dowait" signals whether to spin, waiting for the reset 2703 * lock count to reach 0. This should (for now) only be used 2704 * during the reset path, as the rest of the code may not 2705 * be locking-reentrant enough to behave correctly. 2706 * 2707 * Another, cleaner way should be found to serialise all of 2708 * these operations. 2709 */ 2710 #define MAX_RESET_ITERATIONS 25 2711 static int 2712 ath_reset_grablock(struct ath_softc *sc, int dowait) 2713 { 2714 int w = 0; 2715 int i = MAX_RESET_ITERATIONS; 2716 2717 ATH_PCU_LOCK_ASSERT(sc); 2718 do { 2719 if (sc->sc_inreset_cnt == 0) { 2720 w = 1; 2721 break; 2722 } 2723 if (dowait == 0) { 2724 w = 0; 2725 break; 2726 } 2727 ATH_PCU_UNLOCK(sc); 2728 /* 2729 * 1 tick is likely not enough time for long calibrations 2730 * to complete. So we should wait quite a while. 2731 */ 2732 pause("ath_reset_grablock", msecs_to_ticks(100)); 2733 i--; 2734 ATH_PCU_LOCK(sc); 2735 } while (i > 0); 2736 2737 /* 2738 * We always increment the refcounter, regardless 2739 * of whether we succeeded to get it in an exclusive 2740 * way. 2741 */ 2742 sc->sc_inreset_cnt++; 2743 2744 if (i <= 0) 2745 device_printf(sc->sc_dev, 2746 "%s: didn't finish after %d iterations\n", 2747 __func__, MAX_RESET_ITERATIONS); 2748 2749 if (w == 0) 2750 device_printf(sc->sc_dev, 2751 "%s: warning, recursive reset path!\n", 2752 __func__); 2753 2754 return w; 2755 } 2756 #undef MAX_RESET_ITERATIONS 2757 2758 /* 2759 * XXX TODO: write ath_reset_releaselock 2760 */ 2761 2762 static void 2763 ath_stop(struct ifnet *ifp) 2764 { 2765 struct ath_softc *sc = ifp->if_softc; 2766 2767 ATH_LOCK(sc); 2768 ath_stop_locked(ifp); 2769 ATH_UNLOCK(sc); 2770 } 2771 2772 /* 2773 * Reset the hardware w/o losing operational state. This is 2774 * basically a more efficient way of doing ath_stop, ath_init, 2775 * followed by state transitions to the current 802.11 2776 * operational state. Used to recover from various errors and 2777 * to reset or reload hardware state. 2778 */ 2779 int 2780 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2781 { 2782 struct ath_softc *sc = ifp->if_softc; 2783 struct ieee80211com *ic = ifp->if_l2com; 2784 struct ath_hal *ah = sc->sc_ah; 2785 HAL_STATUS status; 2786 int i; 2787 2788 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2789 2790 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2791 ATH_PCU_UNLOCK_ASSERT(sc); 2792 ATH_UNLOCK_ASSERT(sc); 2793 2794 /* Try to (stop any further TX/RX from occuring */ 2795 taskqueue_block(sc->sc_tq); 2796 2797 /* 2798 * Wake the hardware up. 2799 */ 2800 ATH_LOCK(sc); 2801 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2802 ATH_UNLOCK(sc); 2803 2804 ATH_PCU_LOCK(sc); 2805 2806 /* 2807 * Grab the reset lock before TX/RX is stopped. 2808 * 2809 * This is needed to ensure that when the TX/RX actually does finish, 2810 * no further TX/RX/reset runs in parallel with this. 2811 */ 2812 if (ath_reset_grablock(sc, 1) == 0) { 2813 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2814 __func__); 2815 } 2816 2817 /* disable interrupts */ 2818 ath_hal_intrset(ah, 0); 2819 2820 /* 2821 * Now, ensure that any in progress TX/RX completes before we 2822 * continue. 2823 */ 2824 ath_txrx_stop_locked(sc); 2825 2826 ATH_PCU_UNLOCK(sc); 2827 2828 /* 2829 * Regardless of whether we're doing a no-loss flush or 2830 * not, stop the PCU and handle what's in the RX queue. 2831 * That way frames aren't dropped which shouldn't be. 2832 */ 2833 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2834 ath_rx_flush(sc); 2835 2836 /* 2837 * Should now wait for pending TX/RX to complete 2838 * and block future ones from occuring. This needs to be 2839 * done before the TX queue is drained. 2840 */ 2841 ath_draintxq(sc, reset_type); /* stop xmit side */ 2842 2843 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2844 /* NB: indicate channel change so we do a full reset */ 2845 ath_update_chainmasks(sc, ic->ic_curchan); 2846 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2847 sc->sc_cur_rxchainmask); 2848 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2849 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2850 __func__, status); 2851 sc->sc_diversity = ath_hal_getdiversity(ah); 2852 2853 ATH_RX_LOCK(sc); 2854 sc->sc_rx_stopped = 1; 2855 sc->sc_rx_resetted = 1; 2856 ATH_RX_UNLOCK(sc); 2857 2858 /* Let DFS at it in case it's a DFS channel */ 2859 ath_dfs_radar_enable(sc, ic->ic_curchan); 2860 2861 /* Let spectral at in case spectral is enabled */ 2862 ath_spectral_enable(sc, ic->ic_curchan); 2863 2864 /* 2865 * Let bluetooth coexistence at in case it's needed for this channel 2866 */ 2867 ath_btcoex_enable(sc, ic->ic_curchan); 2868 2869 /* 2870 * If we're doing TDMA, enforce the TXOP limitation for chips that 2871 * support it. 2872 */ 2873 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2874 ath_hal_setenforcetxop(sc->sc_ah, 1); 2875 else 2876 ath_hal_setenforcetxop(sc->sc_ah, 0); 2877 2878 if (ath_startrecv(sc) != 0) /* restart recv */ 2879 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2880 /* 2881 * We may be doing a reset in response to an ioctl 2882 * that changes the channel so update any state that 2883 * might change as a result. 2884 */ 2885 ath_chan_change(sc, ic->ic_curchan); 2886 if (sc->sc_beacons) { /* restart beacons */ 2887 #ifdef IEEE80211_SUPPORT_TDMA 2888 if (sc->sc_tdma) 2889 ath_tdma_config(sc, NULL); 2890 else 2891 #endif 2892 ath_beacon_config(sc, NULL); 2893 } 2894 2895 /* 2896 * Release the reset lock and re-enable interrupts here. 2897 * If an interrupt was being processed in ath_intr(), 2898 * it would disable interrupts at this point. So we have 2899 * to atomically enable interrupts and decrement the 2900 * reset counter - this way ath_intr() doesn't end up 2901 * disabling interrupts without a corresponding enable 2902 * in the rest or channel change path. 2903 * 2904 * Grab the TX reference in case we need to transmit. 2905 * That way a parallel transmit doesn't. 2906 */ 2907 ATH_PCU_LOCK(sc); 2908 sc->sc_inreset_cnt--; 2909 sc->sc_txstart_cnt++; 2910 /* XXX only do this if sc_inreset_cnt == 0? */ 2911 ath_hal_intrset(ah, sc->sc_imask); 2912 ATH_PCU_UNLOCK(sc); 2913 2914 /* 2915 * TX and RX can be started here. If it were started with 2916 * sc_inreset_cnt > 0, the TX and RX path would abort. 2917 * Thus if this is a nested call through the reset or 2918 * channel change code, TX completion will occur but 2919 * RX completion and ath_start / ath_tx_start will not 2920 * run. 2921 */ 2922 2923 /* Restart TX/RX as needed */ 2924 ath_txrx_start(sc); 2925 2926 /* XXX TODO: we need to hold the tx refcount here! */ 2927 2928 /* Restart TX completion and pending TX */ 2929 if (reset_type == ATH_RESET_NOLOSS) { 2930 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2931 if (ATH_TXQ_SETUP(sc, i)) { 2932 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2933 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2934 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2935 2936 ATH_TX_LOCK(sc); 2937 ath_txq_sched(sc, &sc->sc_txq[i]); 2938 ATH_TX_UNLOCK(sc); 2939 } 2940 } 2941 } 2942 2943 /* 2944 * This may have been set during an ath_start() call which 2945 * set this once it detected a concurrent TX was going on. 2946 * So, clear it. 2947 */ 2948 IF_LOCK(&ifp->if_snd); 2949 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2950 IF_UNLOCK(&ifp->if_snd); 2951 2952 ATH_LOCK(sc); 2953 ath_power_restore_power_state(sc); 2954 ATH_UNLOCK(sc); 2955 2956 ATH_PCU_LOCK(sc); 2957 sc->sc_txstart_cnt--; 2958 ATH_PCU_UNLOCK(sc); 2959 2960 /* Handle any frames in the TX queue */ 2961 /* 2962 * XXX should this be done by the caller, rather than 2963 * ath_reset() ? 2964 */ 2965 ath_tx_kick(sc); /* restart xmit */ 2966 return 0; 2967 } 2968 2969 static int 2970 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2971 { 2972 struct ieee80211com *ic = vap->iv_ic; 2973 struct ifnet *ifp = ic->ic_ifp; 2974 struct ath_softc *sc = ifp->if_softc; 2975 struct ath_hal *ah = sc->sc_ah; 2976 2977 switch (cmd) { 2978 case IEEE80211_IOC_TXPOWER: 2979 /* 2980 * If per-packet TPC is enabled, then we have nothing 2981 * to do; otherwise we need to force the global limit. 2982 * All this can happen directly; no need to reset. 2983 */ 2984 if (!ath_hal_gettpc(ah)) 2985 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2986 return 0; 2987 } 2988 /* XXX? Full or NOLOSS? */ 2989 return ath_reset(ifp, ATH_RESET_FULL); 2990 } 2991 2992 struct ath_buf * 2993 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2994 { 2995 struct ath_buf *bf; 2996 2997 ATH_TXBUF_LOCK_ASSERT(sc); 2998 2999 if (btype == ATH_BUFTYPE_MGMT) 3000 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 3001 else 3002 bf = TAILQ_FIRST(&sc->sc_txbuf); 3003 3004 if (bf == NULL) { 3005 sc->sc_stats.ast_tx_getnobuf++; 3006 } else { 3007 if (bf->bf_flags & ATH_BUF_BUSY) { 3008 sc->sc_stats.ast_tx_getbusybuf++; 3009 bf = NULL; 3010 } 3011 } 3012 3013 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 3014 if (btype == ATH_BUFTYPE_MGMT) 3015 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 3016 else { 3017 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 3018 sc->sc_txbuf_cnt--; 3019 3020 /* 3021 * This shuldn't happen; however just to be 3022 * safe print a warning and fudge the txbuf 3023 * count. 3024 */ 3025 if (sc->sc_txbuf_cnt < 0) { 3026 device_printf(sc->sc_dev, 3027 "%s: sc_txbuf_cnt < 0?\n", 3028 __func__); 3029 sc->sc_txbuf_cnt = 0; 3030 } 3031 } 3032 } else 3033 bf = NULL; 3034 3035 if (bf == NULL) { 3036 /* XXX should check which list, mgmt or otherwise */ 3037 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 3038 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 3039 "out of xmit buffers" : "xmit buffer busy"); 3040 return NULL; 3041 } 3042 3043 /* XXX TODO: should do this at buffer list initialisation */ 3044 /* XXX (then, ensure the buffer has the right flag set) */ 3045 bf->bf_flags = 0; 3046 if (btype == ATH_BUFTYPE_MGMT) 3047 bf->bf_flags |= ATH_BUF_MGMT; 3048 else 3049 bf->bf_flags &= (~ATH_BUF_MGMT); 3050 3051 /* Valid bf here; clear some basic fields */ 3052 bf->bf_next = NULL; /* XXX just to be sure */ 3053 bf->bf_last = NULL; /* XXX again, just to be sure */ 3054 bf->bf_comp = NULL; /* XXX again, just to be sure */ 3055 bzero(&bf->bf_state, sizeof(bf->bf_state)); 3056 3057 /* 3058 * Track the descriptor ID only if doing EDMA 3059 */ 3060 if (sc->sc_isedma) { 3061 bf->bf_descid = sc->sc_txbuf_descid; 3062 sc->sc_txbuf_descid++; 3063 } 3064 3065 return bf; 3066 } 3067 3068 /* 3069 * When retrying a software frame, buffers marked ATH_BUF_BUSY 3070 * can't be thrown back on the queue as they could still be 3071 * in use by the hardware. 3072 * 3073 * This duplicates the buffer, or returns NULL. 3074 * 3075 * The descriptor is also copied but the link pointers and 3076 * the DMA segments aren't copied; this frame should thus 3077 * be again passed through the descriptor setup/chain routines 3078 * so the link is correct. 3079 * 3080 * The caller must free the buffer using ath_freebuf(). 3081 */ 3082 struct ath_buf * 3083 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 3084 { 3085 struct ath_buf *tbf; 3086 3087 tbf = ath_getbuf(sc, 3088 (bf->bf_flags & ATH_BUF_MGMT) ? 3089 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 3090 if (tbf == NULL) 3091 return NULL; /* XXX failure? Why? */ 3092 3093 /* Copy basics */ 3094 tbf->bf_next = NULL; 3095 tbf->bf_nseg = bf->bf_nseg; 3096 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 3097 tbf->bf_status = bf->bf_status; 3098 tbf->bf_m = bf->bf_m; 3099 tbf->bf_node = bf->bf_node; 3100 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 3101 /* will be setup by the chain/setup function */ 3102 tbf->bf_lastds = NULL; 3103 /* for now, last == self */ 3104 tbf->bf_last = tbf; 3105 tbf->bf_comp = bf->bf_comp; 3106 3107 /* NOTE: DMA segments will be setup by the setup/chain functions */ 3108 3109 /* The caller has to re-init the descriptor + links */ 3110 3111 /* 3112 * Free the DMA mapping here, before we NULL the mbuf. 3113 * We must only call bus_dmamap_unload() once per mbuf chain 3114 * or behaviour is undefined. 3115 */ 3116 if (bf->bf_m != NULL) { 3117 /* 3118 * XXX is this POSTWRITE call required? 3119 */ 3120 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3121 BUS_DMASYNC_POSTWRITE); 3122 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3123 } 3124 3125 bf->bf_m = NULL; 3126 bf->bf_node = NULL; 3127 3128 /* Copy state */ 3129 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3130 3131 return tbf; 3132 } 3133 3134 struct ath_buf * 3135 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3136 { 3137 struct ath_buf *bf; 3138 3139 ATH_TXBUF_LOCK(sc); 3140 bf = _ath_getbuf_locked(sc, btype); 3141 /* 3142 * If a mgmt buffer was requested but we're out of those, 3143 * try requesting a normal one. 3144 */ 3145 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3146 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3147 ATH_TXBUF_UNLOCK(sc); 3148 if (bf == NULL) { 3149 struct ifnet *ifp = sc->sc_ifp; 3150 3151 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3152 sc->sc_stats.ast_tx_qstop++; 3153 IF_LOCK(&ifp->if_snd); 3154 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3155 IF_UNLOCK(&ifp->if_snd); 3156 } 3157 return bf; 3158 } 3159 3160 static void 3161 ath_qflush(struct ifnet *ifp) 3162 { 3163 3164 /* XXX TODO */ 3165 } 3166 3167 /* 3168 * Transmit a single frame. 3169 * 3170 * net80211 will free the node reference if the transmit 3171 * fails, so don't free the node reference here. 3172 */ 3173 static int 3174 ath_transmit(struct ifnet *ifp, struct mbuf *m) 3175 { 3176 struct ieee80211com *ic = ifp->if_l2com; 3177 struct ath_softc *sc = ic->ic_ifp->if_softc; 3178 struct ieee80211_node *ni; 3179 struct mbuf *next; 3180 struct ath_buf *bf; 3181 ath_bufhead frags; 3182 int retval = 0; 3183 3184 /* 3185 * Tell the reset path that we're currently transmitting. 3186 */ 3187 ATH_PCU_LOCK(sc); 3188 if (sc->sc_inreset_cnt > 0) { 3189 DPRINTF(sc, ATH_DEBUG_XMIT, 3190 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3191 ATH_PCU_UNLOCK(sc); 3192 IF_LOCK(&ifp->if_snd); 3193 sc->sc_stats.ast_tx_qstop++; 3194 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3195 IF_UNLOCK(&ifp->if_snd); 3196 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3197 return (ENOBUFS); /* XXX should be EINVAL or? */ 3198 } 3199 sc->sc_txstart_cnt++; 3200 ATH_PCU_UNLOCK(sc); 3201 3202 /* Wake the hardware up already */ 3203 ATH_LOCK(sc); 3204 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3205 ATH_UNLOCK(sc); 3206 3207 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3208 /* 3209 * Grab the TX lock - it's ok to do this here; we haven't 3210 * yet started transmitting. 3211 */ 3212 ATH_TX_LOCK(sc); 3213 3214 /* 3215 * Node reference, if there's one. 3216 */ 3217 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3218 3219 /* 3220 * Enforce how deep a node queue can get. 3221 * 3222 * XXX it would be nicer if we kept an mbuf queue per 3223 * node and only whacked them into ath_bufs when we 3224 * are ready to schedule some traffic from them. 3225 * .. that may come later. 3226 * 3227 * XXX we should also track the per-node hardware queue 3228 * depth so it is easy to limit the _SUM_ of the swq and 3229 * hwq frames. Since we only schedule two HWQ frames 3230 * at a time, this should be OK for now. 3231 */ 3232 if ((!(m->m_flags & M_EAPOL)) && 3233 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3234 sc->sc_stats.ast_tx_nodeq_overflow++; 3235 m_freem(m); 3236 m = NULL; 3237 retval = ENOBUFS; 3238 goto finish; 3239 } 3240 3241 /* 3242 * Check how many TX buffers are available. 3243 * 3244 * If this is for non-EAPOL traffic, just leave some 3245 * space free in order for buffer cloning and raw 3246 * frame transmission to occur. 3247 * 3248 * If it's for EAPOL traffic, ignore this for now. 3249 * Management traffic will be sent via the raw transmit 3250 * method which bypasses this check. 3251 * 3252 * This is needed to ensure that EAPOL frames during 3253 * (re) keying have a chance to go out. 3254 * 3255 * See kern/138379 for more information. 3256 */ 3257 if ((!(m->m_flags & M_EAPOL)) && 3258 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3259 sc->sc_stats.ast_tx_nobuf++; 3260 m_freem(m); 3261 m = NULL; 3262 retval = ENOBUFS; 3263 goto finish; 3264 } 3265 3266 /* 3267 * Grab a TX buffer and associated resources. 3268 * 3269 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3270 * That way even with temporary buffer exhaustion due to 3271 * the data path doesn't leave us without the ability 3272 * to transmit management frames. 3273 * 3274 * Otherwise allocate a normal buffer. 3275 */ 3276 if (m->m_flags & M_EAPOL) 3277 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3278 else 3279 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3280 3281 if (bf == NULL) { 3282 /* 3283 * If we failed to allocate a buffer, fail. 3284 * 3285 * We shouldn't fail normally, due to the check 3286 * above. 3287 */ 3288 sc->sc_stats.ast_tx_nobuf++; 3289 IF_LOCK(&ifp->if_snd); 3290 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3291 IF_UNLOCK(&ifp->if_snd); 3292 m_freem(m); 3293 m = NULL; 3294 retval = ENOBUFS; 3295 goto finish; 3296 } 3297 3298 /* 3299 * At this point we have a buffer; so we need to free it 3300 * if we hit any error conditions. 3301 */ 3302 3303 /* 3304 * Check for fragmentation. If this frame 3305 * has been broken up verify we have enough 3306 * buffers to send all the fragments so all 3307 * go out or none... 3308 */ 3309 TAILQ_INIT(&frags); 3310 if ((m->m_flags & M_FRAG) && 3311 !ath_txfrag_setup(sc, &frags, m, ni)) { 3312 DPRINTF(sc, ATH_DEBUG_XMIT, 3313 "%s: out of txfrag buffers\n", __func__); 3314 sc->sc_stats.ast_tx_nofrag++; 3315 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3316 ath_freetx(m); 3317 goto bad; 3318 } 3319 3320 /* 3321 * At this point if we have any TX fragments, then we will 3322 * have bumped the node reference once for each of those. 3323 */ 3324 3325 /* 3326 * XXX Is there anything actually _enforcing_ that the 3327 * fragments are being transmitted in one hit, rather than 3328 * being interleaved with other transmissions on that 3329 * hardware queue? 3330 * 3331 * The ATH TX output lock is the only thing serialising this 3332 * right now. 3333 */ 3334 3335 /* 3336 * Calculate the "next fragment" length field in ath_buf 3337 * in order to let the transmit path know enough about 3338 * what to next write to the hardware. 3339 */ 3340 if (m->m_flags & M_FRAG) { 3341 struct ath_buf *fbf = bf; 3342 struct ath_buf *n_fbf = NULL; 3343 struct mbuf *fm = m->m_nextpkt; 3344 3345 /* 3346 * We need to walk the list of fragments and set 3347 * the next size to the following buffer. 3348 * However, the first buffer isn't in the frag 3349 * list, so we have to do some gymnastics here. 3350 */ 3351 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3352 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3353 fbf = n_fbf; 3354 fm = fm->m_nextpkt; 3355 } 3356 } 3357 3358 /* 3359 * Bump the ifp output counter. 3360 * 3361 * XXX should use atomics? 3362 */ 3363 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 3364 nextfrag: 3365 /* 3366 * Pass the frame to the h/w for transmission. 3367 * Fragmented frames have each frag chained together 3368 * with m_nextpkt. We know there are sufficient ath_buf's 3369 * to send all the frags because of work done by 3370 * ath_txfrag_setup. We leave m_nextpkt set while 3371 * calling ath_tx_start so it can use it to extend the 3372 * the tx duration to cover the subsequent frag and 3373 * so it can reclaim all the mbufs in case of an error; 3374 * ath_tx_start clears m_nextpkt once it commits to 3375 * handing the frame to the hardware. 3376 * 3377 * Note: if this fails, then the mbufs are freed but 3378 * not the node reference. 3379 */ 3380 next = m->m_nextpkt; 3381 if (ath_tx_start(sc, ni, bf, m)) { 3382 bad: 3383 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3384 reclaim: 3385 bf->bf_m = NULL; 3386 bf->bf_node = NULL; 3387 ATH_TXBUF_LOCK(sc); 3388 ath_returnbuf_head(sc, bf); 3389 /* 3390 * Free the rest of the node references and 3391 * buffers for the fragment list. 3392 */ 3393 ath_txfrag_cleanup(sc, &frags, ni); 3394 ATH_TXBUF_UNLOCK(sc); 3395 retval = ENOBUFS; 3396 goto finish; 3397 } 3398 3399 /* 3400 * Check here if the node is in power save state. 3401 */ 3402 ath_tx_update_tim(sc, ni, 1); 3403 3404 if (next != NULL) { 3405 /* 3406 * Beware of state changing between frags. 3407 * XXX check sta power-save state? 3408 */ 3409 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3410 DPRINTF(sc, ATH_DEBUG_XMIT, 3411 "%s: flush fragmented packet, state %s\n", 3412 __func__, 3413 ieee80211_state_name[ni->ni_vap->iv_state]); 3414 /* XXX dmamap */ 3415 ath_freetx(next); 3416 goto reclaim; 3417 } 3418 m = next; 3419 bf = TAILQ_FIRST(&frags); 3420 KASSERT(bf != NULL, ("no buf for txfrag")); 3421 TAILQ_REMOVE(&frags, bf, bf_list); 3422 goto nextfrag; 3423 } 3424 3425 /* 3426 * Bump watchdog timer. 3427 */ 3428 sc->sc_wd_timer = 5; 3429 3430 finish: 3431 ATH_TX_UNLOCK(sc); 3432 3433 /* 3434 * Finished transmitting! 3435 */ 3436 ATH_PCU_LOCK(sc); 3437 sc->sc_txstart_cnt--; 3438 ATH_PCU_UNLOCK(sc); 3439 3440 /* Sleep the hardware if required */ 3441 ATH_LOCK(sc); 3442 ath_power_restore_power_state(sc); 3443 ATH_UNLOCK(sc); 3444 3445 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3446 3447 return (retval); 3448 } 3449 3450 static int 3451 ath_media_change(struct ifnet *ifp) 3452 { 3453 int error = ieee80211_media_change(ifp); 3454 /* NB: only the fixed rate can change and that doesn't need a reset */ 3455 return (error == ENETRESET ? 0 : error); 3456 } 3457 3458 /* 3459 * Block/unblock tx+rx processing while a key change is done. 3460 * We assume the caller serializes key management operations 3461 * so we only need to worry about synchronization with other 3462 * uses that originate in the driver. 3463 */ 3464 static void 3465 ath_key_update_begin(struct ieee80211vap *vap) 3466 { 3467 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3468 struct ath_softc *sc = ifp->if_softc; 3469 3470 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3471 taskqueue_block(sc->sc_tq); 3472 } 3473 3474 static void 3475 ath_key_update_end(struct ieee80211vap *vap) 3476 { 3477 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3478 struct ath_softc *sc = ifp->if_softc; 3479 3480 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3481 taskqueue_unblock(sc->sc_tq); 3482 } 3483 3484 static void 3485 ath_update_promisc(struct ifnet *ifp) 3486 { 3487 struct ath_softc *sc = ifp->if_softc; 3488 u_int32_t rfilt; 3489 3490 /* configure rx filter */ 3491 ATH_LOCK(sc); 3492 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3493 rfilt = ath_calcrxfilter(sc); 3494 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3495 ath_power_restore_power_state(sc); 3496 ATH_UNLOCK(sc); 3497 3498 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3499 } 3500 3501 /* 3502 * Driver-internal mcast update call. 3503 * 3504 * Assumes the hardware is already awake. 3505 */ 3506 static void 3507 ath_update_mcast_hw(struct ath_softc *sc) 3508 { 3509 struct ifnet *ifp = sc->sc_ifp; 3510 u_int32_t mfilt[2]; 3511 3512 /* calculate and install multicast filter */ 3513 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 3514 struct ifmultiaddr *ifma; 3515 /* 3516 * Merge multicast addresses to form the hardware filter. 3517 */ 3518 mfilt[0] = mfilt[1] = 0; 3519 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 3520 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3521 caddr_t dl; 3522 u_int32_t val; 3523 u_int8_t pos; 3524 3525 /* calculate XOR of eight 6bit values */ 3526 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 3527 val = LE_READ_4(dl + 0); 3528 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3529 val = LE_READ_4(dl + 3); 3530 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3531 pos &= 0x3f; 3532 mfilt[pos / 32] |= (1 << (pos % 32)); 3533 } 3534 if_maddr_runlock(ifp); 3535 } else 3536 mfilt[0] = mfilt[1] = ~0; 3537 3538 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3539 3540 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3541 __func__, mfilt[0], mfilt[1]); 3542 } 3543 3544 /* 3545 * Called from the net80211 layer - force the hardware 3546 * awake before operating. 3547 */ 3548 static void 3549 ath_update_mcast(struct ifnet *ifp) 3550 { 3551 struct ath_softc *sc = ifp->if_softc; 3552 3553 ATH_LOCK(sc); 3554 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3555 ATH_UNLOCK(sc); 3556 3557 ath_update_mcast_hw(sc); 3558 3559 ATH_LOCK(sc); 3560 ath_power_restore_power_state(sc); 3561 ATH_UNLOCK(sc); 3562 } 3563 3564 void 3565 ath_mode_init(struct ath_softc *sc) 3566 { 3567 struct ifnet *ifp = sc->sc_ifp; 3568 struct ath_hal *ah = sc->sc_ah; 3569 u_int32_t rfilt; 3570 3571 /* configure rx filter */ 3572 rfilt = ath_calcrxfilter(sc); 3573 ath_hal_setrxfilter(ah, rfilt); 3574 3575 /* configure operational mode */ 3576 ath_hal_setopmode(ah); 3577 3578 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 3579 "%s: ah=%p, ifp=%p, if_addr=%p\n", 3580 __func__, 3581 ah, 3582 ifp, 3583 (ifp == NULL) ? NULL : ifp->if_addr); 3584 3585 /* handle any link-level address change */ 3586 ath_hal_setmac(ah, IF_LLADDR(ifp)); 3587 3588 /* calculate and install multicast filter */ 3589 ath_update_mcast_hw(sc); 3590 } 3591 3592 /* 3593 * Set the slot time based on the current setting. 3594 */ 3595 void 3596 ath_setslottime(struct ath_softc *sc) 3597 { 3598 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3599 struct ath_hal *ah = sc->sc_ah; 3600 u_int usec; 3601 3602 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3603 usec = 13; 3604 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3605 usec = 21; 3606 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3607 /* honor short/long slot time only in 11g */ 3608 /* XXX shouldn't honor on pure g or turbo g channel */ 3609 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3610 usec = HAL_SLOT_TIME_9; 3611 else 3612 usec = HAL_SLOT_TIME_20; 3613 } else 3614 usec = HAL_SLOT_TIME_9; 3615 3616 DPRINTF(sc, ATH_DEBUG_RESET, 3617 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3618 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3619 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3620 3621 /* Wake up the hardware first before updating the slot time */ 3622 ATH_LOCK(sc); 3623 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3624 ath_hal_setslottime(ah, usec); 3625 ath_power_restore_power_state(sc); 3626 sc->sc_updateslot = OK; 3627 ATH_UNLOCK(sc); 3628 } 3629 3630 /* 3631 * Callback from the 802.11 layer to update the 3632 * slot time based on the current setting. 3633 */ 3634 static void 3635 ath_updateslot(struct ifnet *ifp) 3636 { 3637 struct ath_softc *sc = ifp->if_softc; 3638 struct ieee80211com *ic = ifp->if_l2com; 3639 3640 /* 3641 * When not coordinating the BSS, change the hardware 3642 * immediately. For other operation we defer the change 3643 * until beacon updates have propagated to the stations. 3644 * 3645 * XXX sc_updateslot isn't changed behind a lock? 3646 */ 3647 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3648 ic->ic_opmode == IEEE80211_M_MBSS) 3649 sc->sc_updateslot = UPDATE; 3650 else 3651 ath_setslottime(sc); 3652 } 3653 3654 /* 3655 * Append the contents of src to dst; both queues 3656 * are assumed to be locked. 3657 */ 3658 void 3659 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3660 { 3661 3662 ATH_TXQ_LOCK_ASSERT(src); 3663 ATH_TXQ_LOCK_ASSERT(dst); 3664 3665 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3666 dst->axq_link = src->axq_link; 3667 src->axq_link = NULL; 3668 dst->axq_depth += src->axq_depth; 3669 dst->axq_aggr_depth += src->axq_aggr_depth; 3670 src->axq_depth = 0; 3671 src->axq_aggr_depth = 0; 3672 } 3673 3674 /* 3675 * Reset the hardware, with no loss. 3676 * 3677 * This can't be used for a general case reset. 3678 */ 3679 static void 3680 ath_reset_proc(void *arg, int pending) 3681 { 3682 struct ath_softc *sc = arg; 3683 struct ifnet *ifp = sc->sc_ifp; 3684 3685 #if 0 3686 if_printf(ifp, "%s: resetting\n", __func__); 3687 #endif 3688 ath_reset(ifp, ATH_RESET_NOLOSS); 3689 } 3690 3691 /* 3692 * Reset the hardware after detecting beacons have stopped. 3693 */ 3694 static void 3695 ath_bstuck_proc(void *arg, int pending) 3696 { 3697 struct ath_softc *sc = arg; 3698 struct ifnet *ifp = sc->sc_ifp; 3699 uint32_t hangs = 0; 3700 3701 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3702 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 3703 3704 #ifdef ATH_DEBUG_ALQ 3705 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3706 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3707 #endif 3708 3709 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3710 sc->sc_bmisscount); 3711 sc->sc_stats.ast_bstuck++; 3712 /* 3713 * This assumes that there's no simultaneous channel mode change 3714 * occuring. 3715 */ 3716 ath_reset(ifp, ATH_RESET_NOLOSS); 3717 } 3718 3719 static void 3720 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3721 { 3722 bus_addr_t *paddr = (bus_addr_t*) arg; 3723 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3724 *paddr = segs->ds_addr; 3725 } 3726 3727 /* 3728 * Allocate the descriptors and appropriate DMA tag/setup. 3729 * 3730 * For some situations (eg EDMA TX completion), there isn't a requirement 3731 * for the ath_buf entries to be allocated. 3732 */ 3733 int 3734 ath_descdma_alloc_desc(struct ath_softc *sc, 3735 struct ath_descdma *dd, ath_bufhead *head, 3736 const char *name, int ds_size, int ndesc) 3737 { 3738 #define DS2PHYS(_dd, _ds) \ 3739 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3740 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3741 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3742 struct ifnet *ifp = sc->sc_ifp; 3743 int error; 3744 3745 dd->dd_descsize = ds_size; 3746 3747 DPRINTF(sc, ATH_DEBUG_RESET, 3748 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 3749 __func__, name, ndesc, dd->dd_descsize); 3750 3751 dd->dd_name = name; 3752 dd->dd_desc_len = dd->dd_descsize * ndesc; 3753 3754 /* 3755 * Merlin work-around: 3756 * Descriptors that cross the 4KB boundary can't be used. 3757 * Assume one skipped descriptor per 4KB page. 3758 */ 3759 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3760 int numpages = dd->dd_desc_len / 4096; 3761 dd->dd_desc_len += ds_size * numpages; 3762 } 3763 3764 /* 3765 * Setup DMA descriptor area. 3766 * 3767 * BUS_DMA_ALLOCNOW is not used; we never use bounce 3768 * buffers for the descriptors themselves. 3769 */ 3770 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3771 PAGE_SIZE, 0, /* alignment, bounds */ 3772 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3773 BUS_SPACE_MAXADDR, /* highaddr */ 3774 NULL, NULL, /* filter, filterarg */ 3775 dd->dd_desc_len, /* maxsize */ 3776 1, /* nsegments */ 3777 dd->dd_desc_len, /* maxsegsize */ 3778 0, /* flags */ 3779 NULL, /* lockfunc */ 3780 NULL, /* lockarg */ 3781 &dd->dd_dmat); 3782 if (error != 0) { 3783 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3784 return error; 3785 } 3786 3787 /* allocate descriptors */ 3788 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3789 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3790 &dd->dd_dmamap); 3791 if (error != 0) { 3792 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3793 "error %u\n", ndesc, dd->dd_name, error); 3794 goto fail1; 3795 } 3796 3797 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3798 dd->dd_desc, dd->dd_desc_len, 3799 ath_load_cb, &dd->dd_desc_paddr, 3800 BUS_DMA_NOWAIT); 3801 if (error != 0) { 3802 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3803 dd->dd_name, error); 3804 goto fail2; 3805 } 3806 3807 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3808 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 3809 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 3810 /*XXX*/ (u_long) dd->dd_desc_len); 3811 3812 return (0); 3813 3814 fail2: 3815 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3816 fail1: 3817 bus_dma_tag_destroy(dd->dd_dmat); 3818 memset(dd, 0, sizeof(*dd)); 3819 return error; 3820 #undef DS2PHYS 3821 #undef ATH_DESC_4KB_BOUND_CHECK 3822 } 3823 3824 int 3825 ath_descdma_setup(struct ath_softc *sc, 3826 struct ath_descdma *dd, ath_bufhead *head, 3827 const char *name, int ds_size, int nbuf, int ndesc) 3828 { 3829 #define DS2PHYS(_dd, _ds) \ 3830 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3831 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3832 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3833 struct ifnet *ifp = sc->sc_ifp; 3834 uint8_t *ds; 3835 struct ath_buf *bf; 3836 int i, bsize, error; 3837 3838 /* Allocate descriptors */ 3839 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 3840 nbuf * ndesc); 3841 3842 /* Assume any errors during allocation were dealt with */ 3843 if (error != 0) { 3844 return (error); 3845 } 3846 3847 ds = (uint8_t *) dd->dd_desc; 3848 3849 /* allocate rx buffers */ 3850 bsize = sizeof(struct ath_buf) * nbuf; 3851 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3852 if (bf == NULL) { 3853 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3854 dd->dd_name, bsize); 3855 goto fail3; 3856 } 3857 dd->dd_bufptr = bf; 3858 3859 TAILQ_INIT(head); 3860 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 3861 bf->bf_desc = (struct ath_desc *) ds; 3862 bf->bf_daddr = DS2PHYS(dd, ds); 3863 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3864 /* 3865 * Merlin WAR: Skip descriptor addresses which 3866 * cause 4KB boundary crossing along any point 3867 * in the descriptor. 3868 */ 3869 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3870 dd->dd_descsize)) { 3871 /* Start at the next page */ 3872 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3873 bf->bf_desc = (struct ath_desc *) ds; 3874 bf->bf_daddr = DS2PHYS(dd, ds); 3875 } 3876 } 3877 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3878 &bf->bf_dmamap); 3879 if (error != 0) { 3880 if_printf(ifp, "unable to create dmamap for %s " 3881 "buffer %u, error %u\n", dd->dd_name, i, error); 3882 ath_descdma_cleanup(sc, dd, head); 3883 return error; 3884 } 3885 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3886 TAILQ_INSERT_TAIL(head, bf, bf_list); 3887 } 3888 3889 /* 3890 * XXX TODO: ensure that ds doesn't overflow the descriptor 3891 * allocation otherwise weird stuff will occur and crash your 3892 * machine. 3893 */ 3894 return 0; 3895 /* XXX this should likely just call ath_descdma_cleanup() */ 3896 fail3: 3897 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3898 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3899 bus_dma_tag_destroy(dd->dd_dmat); 3900 memset(dd, 0, sizeof(*dd)); 3901 return error; 3902 #undef DS2PHYS 3903 #undef ATH_DESC_4KB_BOUND_CHECK 3904 } 3905 3906 /* 3907 * Allocate ath_buf entries but no descriptor contents. 3908 * 3909 * This is for RX EDMA where the descriptors are the header part of 3910 * the RX buffer. 3911 */ 3912 int 3913 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3914 struct ath_descdma *dd, ath_bufhead *head, 3915 const char *name, int nbuf, int rx_status_len) 3916 { 3917 struct ifnet *ifp = sc->sc_ifp; 3918 struct ath_buf *bf; 3919 int i, bsize, error; 3920 3921 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3922 __func__, name, nbuf); 3923 3924 dd->dd_name = name; 3925 /* 3926 * This is (mostly) purely for show. We're not allocating any actual 3927 * descriptors here as EDMA RX has the descriptor be part 3928 * of the RX buffer. 3929 * 3930 * However, dd_desc_len is used by ath_descdma_free() to determine 3931 * whether we have already freed this DMA mapping. 3932 */ 3933 dd->dd_desc_len = rx_status_len * nbuf; 3934 dd->dd_descsize = rx_status_len; 3935 3936 /* allocate rx buffers */ 3937 bsize = sizeof(struct ath_buf) * nbuf; 3938 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3939 if (bf == NULL) { 3940 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3941 dd->dd_name, bsize); 3942 error = ENOMEM; 3943 goto fail3; 3944 } 3945 dd->dd_bufptr = bf; 3946 3947 TAILQ_INIT(head); 3948 for (i = 0; i < nbuf; i++, bf++) { 3949 bf->bf_desc = NULL; 3950 bf->bf_daddr = 0; 3951 bf->bf_lastds = NULL; /* Just an initial value */ 3952 3953 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3954 &bf->bf_dmamap); 3955 if (error != 0) { 3956 if_printf(ifp, "unable to create dmamap for %s " 3957 "buffer %u, error %u\n", dd->dd_name, i, error); 3958 ath_descdma_cleanup(sc, dd, head); 3959 return error; 3960 } 3961 TAILQ_INSERT_TAIL(head, bf, bf_list); 3962 } 3963 return 0; 3964 fail3: 3965 memset(dd, 0, sizeof(*dd)); 3966 return error; 3967 } 3968 3969 void 3970 ath_descdma_cleanup(struct ath_softc *sc, 3971 struct ath_descdma *dd, ath_bufhead *head) 3972 { 3973 struct ath_buf *bf; 3974 struct ieee80211_node *ni; 3975 int do_warning = 0; 3976 3977 if (dd->dd_dmamap != 0) { 3978 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3979 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3980 bus_dma_tag_destroy(dd->dd_dmat); 3981 } 3982 3983 if (head != NULL) { 3984 TAILQ_FOREACH(bf, head, bf_list) { 3985 if (bf->bf_m) { 3986 /* 3987 * XXX warn if there's buffers here. 3988 * XXX it should have been freed by the 3989 * owner! 3990 */ 3991 3992 if (do_warning == 0) { 3993 do_warning = 1; 3994 device_printf(sc->sc_dev, 3995 "%s: %s: mbuf should've been" 3996 " unmapped/freed!\n", 3997 __func__, 3998 dd->dd_name); 3999 } 4000 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4001 BUS_DMASYNC_POSTREAD); 4002 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4003 m_freem(bf->bf_m); 4004 bf->bf_m = NULL; 4005 } 4006 if (bf->bf_dmamap != NULL) { 4007 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 4008 bf->bf_dmamap = NULL; 4009 } 4010 ni = bf->bf_node; 4011 bf->bf_node = NULL; 4012 if (ni != NULL) { 4013 /* 4014 * Reclaim node reference. 4015 */ 4016 ieee80211_free_node(ni); 4017 } 4018 } 4019 } 4020 4021 if (head != NULL) 4022 TAILQ_INIT(head); 4023 4024 if (dd->dd_bufptr != NULL) 4025 free(dd->dd_bufptr, M_ATHDEV); 4026 memset(dd, 0, sizeof(*dd)); 4027 } 4028 4029 static int 4030 ath_desc_alloc(struct ath_softc *sc) 4031 { 4032 int error; 4033 4034 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 4035 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 4036 if (error != 0) { 4037 return error; 4038 } 4039 sc->sc_txbuf_cnt = ath_txbuf; 4040 4041 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 4042 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 4043 ATH_TXDESC); 4044 if (error != 0) { 4045 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 4046 return error; 4047 } 4048 4049 /* 4050 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 4051 * flag doesn't have to be set in ath_getbuf_locked(). 4052 */ 4053 4054 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 4055 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 4056 if (error != 0) { 4057 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 4058 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 4059 &sc->sc_txbuf_mgmt); 4060 return error; 4061 } 4062 return 0; 4063 } 4064 4065 static void 4066 ath_desc_free(struct ath_softc *sc) 4067 { 4068 4069 if (sc->sc_bdma.dd_desc_len != 0) 4070 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 4071 if (sc->sc_txdma.dd_desc_len != 0) 4072 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 4073 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 4074 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 4075 &sc->sc_txbuf_mgmt); 4076 } 4077 4078 static struct ieee80211_node * 4079 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 4080 { 4081 struct ieee80211com *ic = vap->iv_ic; 4082 struct ath_softc *sc = ic->ic_ifp->if_softc; 4083 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 4084 struct ath_node *an; 4085 4086 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 4087 if (an == NULL) { 4088 /* XXX stat+msg */ 4089 return NULL; 4090 } 4091 ath_rate_node_init(sc, an); 4092 4093 /* Setup the mutex - there's no associd yet so set the name to NULL */ 4094 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 4095 device_get_nameunit(sc->sc_dev), an); 4096 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 4097 4098 /* XXX setup ath_tid */ 4099 ath_tx_tid_init(sc, an); 4100 4101 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 4102 return &an->an_node; 4103 } 4104 4105 static void 4106 ath_node_cleanup(struct ieee80211_node *ni) 4107 { 4108 struct ieee80211com *ic = ni->ni_ic; 4109 struct ath_softc *sc = ic->ic_ifp->if_softc; 4110 4111 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 4112 ni->ni_macaddr, ":", ATH_NODE(ni)); 4113 4114 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 4115 ath_tx_node_flush(sc, ATH_NODE(ni)); 4116 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 4117 sc->sc_node_cleanup(ni); 4118 } 4119 4120 static void 4121 ath_node_free(struct ieee80211_node *ni) 4122 { 4123 struct ieee80211com *ic = ni->ni_ic; 4124 struct ath_softc *sc = ic->ic_ifp->if_softc; 4125 4126 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 4127 ni->ni_macaddr, ":", ATH_NODE(ni)); 4128 mtx_destroy(&ATH_NODE(ni)->an_mtx); 4129 sc->sc_node_free(ni); 4130 } 4131 4132 static void 4133 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 4134 { 4135 struct ieee80211com *ic = ni->ni_ic; 4136 struct ath_softc *sc = ic->ic_ifp->if_softc; 4137 struct ath_hal *ah = sc->sc_ah; 4138 4139 *rssi = ic->ic_node_getrssi(ni); 4140 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 4141 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 4142 else 4143 *noise = -95; /* nominally correct */ 4144 } 4145 4146 /* 4147 * Set the default antenna. 4148 */ 4149 void 4150 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 4151 { 4152 struct ath_hal *ah = sc->sc_ah; 4153 4154 /* XXX block beacon interrupts */ 4155 ath_hal_setdefantenna(ah, antenna); 4156 if (sc->sc_defant != antenna) 4157 sc->sc_stats.ast_ant_defswitch++; 4158 sc->sc_defant = antenna; 4159 sc->sc_rxotherant = 0; 4160 } 4161 4162 static void 4163 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4164 { 4165 txq->axq_qnum = qnum; 4166 txq->axq_ac = 0; 4167 txq->axq_depth = 0; 4168 txq->axq_aggr_depth = 0; 4169 txq->axq_intrcnt = 0; 4170 txq->axq_link = NULL; 4171 txq->axq_softc = sc; 4172 TAILQ_INIT(&txq->axq_q); 4173 TAILQ_INIT(&txq->axq_tidq); 4174 TAILQ_INIT(&txq->fifo.axq_q); 4175 ATH_TXQ_LOCK_INIT(sc, txq); 4176 } 4177 4178 /* 4179 * Setup a h/w transmit queue. 4180 */ 4181 static struct ath_txq * 4182 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4183 { 4184 #define N(a) (sizeof(a)/sizeof(a[0])) 4185 struct ath_hal *ah = sc->sc_ah; 4186 HAL_TXQ_INFO qi; 4187 int qnum; 4188 4189 memset(&qi, 0, sizeof(qi)); 4190 qi.tqi_subtype = subtype; 4191 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4192 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4193 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4194 /* 4195 * Enable interrupts only for EOL and DESC conditions. 4196 * We mark tx descriptors to receive a DESC interrupt 4197 * when a tx queue gets deep; otherwise waiting for the 4198 * EOL to reap descriptors. Note that this is done to 4199 * reduce interrupt load and this only defers reaping 4200 * descriptors, never transmitting frames. Aside from 4201 * reducing interrupts this also permits more concurrency. 4202 * The only potential downside is if the tx queue backs 4203 * up in which case the top half of the kernel may backup 4204 * due to a lack of tx descriptors. 4205 */ 4206 if (sc->sc_isedma) 4207 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4208 HAL_TXQ_TXOKINT_ENABLE; 4209 else 4210 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4211 HAL_TXQ_TXDESCINT_ENABLE; 4212 4213 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4214 if (qnum == -1) { 4215 /* 4216 * NB: don't print a message, this happens 4217 * normally on parts with too few tx queues 4218 */ 4219 return NULL; 4220 } 4221 if (qnum >= N(sc->sc_txq)) { 4222 device_printf(sc->sc_dev, 4223 "hal qnum %u out of range, max %zu!\n", 4224 qnum, N(sc->sc_txq)); 4225 ath_hal_releasetxqueue(ah, qnum); 4226 return NULL; 4227 } 4228 if (!ATH_TXQ_SETUP(sc, qnum)) { 4229 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4230 sc->sc_txqsetup |= 1<<qnum; 4231 } 4232 return &sc->sc_txq[qnum]; 4233 #undef N 4234 } 4235 4236 /* 4237 * Setup a hardware data transmit queue for the specified 4238 * access control. The hal may not support all requested 4239 * queues in which case it will return a reference to a 4240 * previously setup queue. We record the mapping from ac's 4241 * to h/w queues for use by ath_tx_start and also track 4242 * the set of h/w queues being used to optimize work in the 4243 * transmit interrupt handler and related routines. 4244 */ 4245 static int 4246 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4247 { 4248 #define N(a) (sizeof(a)/sizeof(a[0])) 4249 struct ath_txq *txq; 4250 4251 if (ac >= N(sc->sc_ac2q)) { 4252 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4253 ac, N(sc->sc_ac2q)); 4254 return 0; 4255 } 4256 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4257 if (txq != NULL) { 4258 txq->axq_ac = ac; 4259 sc->sc_ac2q[ac] = txq; 4260 return 1; 4261 } else 4262 return 0; 4263 #undef N 4264 } 4265 4266 /* 4267 * Update WME parameters for a transmit queue. 4268 */ 4269 static int 4270 ath_txq_update(struct ath_softc *sc, int ac) 4271 { 4272 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4273 #define ATH_TXOP_TO_US(v) (v<<5) 4274 struct ifnet *ifp = sc->sc_ifp; 4275 struct ieee80211com *ic = ifp->if_l2com; 4276 struct ath_txq *txq = sc->sc_ac2q[ac]; 4277 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4278 struct ath_hal *ah = sc->sc_ah; 4279 HAL_TXQ_INFO qi; 4280 4281 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4282 #ifdef IEEE80211_SUPPORT_TDMA 4283 if (sc->sc_tdma) { 4284 /* 4285 * AIFS is zero so there's no pre-transmit wait. The 4286 * burst time defines the slot duration and is configured 4287 * through net80211. The QCU is setup to not do post-xmit 4288 * back off, lockout all lower-priority QCU's, and fire 4289 * off the DMA beacon alert timer which is setup based 4290 * on the slot configuration. 4291 */ 4292 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4293 | HAL_TXQ_TXERRINT_ENABLE 4294 | HAL_TXQ_TXURNINT_ENABLE 4295 | HAL_TXQ_TXEOLINT_ENABLE 4296 | HAL_TXQ_DBA_GATED 4297 | HAL_TXQ_BACKOFF_DISABLE 4298 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4299 ; 4300 qi.tqi_aifs = 0; 4301 /* XXX +dbaprep? */ 4302 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4303 qi.tqi_burstTime = qi.tqi_readyTime; 4304 } else { 4305 #endif 4306 /* 4307 * XXX shouldn't this just use the default flags 4308 * used in the previous queue setup? 4309 */ 4310 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4311 | HAL_TXQ_TXERRINT_ENABLE 4312 | HAL_TXQ_TXDESCINT_ENABLE 4313 | HAL_TXQ_TXURNINT_ENABLE 4314 | HAL_TXQ_TXEOLINT_ENABLE 4315 ; 4316 qi.tqi_aifs = wmep->wmep_aifsn; 4317 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4318 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4319 qi.tqi_readyTime = 0; 4320 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 4321 #ifdef IEEE80211_SUPPORT_TDMA 4322 } 4323 #endif 4324 4325 DPRINTF(sc, ATH_DEBUG_RESET, 4326 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4327 __func__, txq->axq_qnum, qi.tqi_qflags, 4328 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4329 4330 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4331 if_printf(ifp, "unable to update hardware queue " 4332 "parameters for %s traffic!\n", 4333 ieee80211_wme_acnames[ac]); 4334 return 0; 4335 } else { 4336 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4337 return 1; 4338 } 4339 #undef ATH_TXOP_TO_US 4340 #undef ATH_EXPONENT_TO_VALUE 4341 } 4342 4343 /* 4344 * Callback from the 802.11 layer to update WME parameters. 4345 */ 4346 int 4347 ath_wme_update(struct ieee80211com *ic) 4348 { 4349 struct ath_softc *sc = ic->ic_ifp->if_softc; 4350 4351 return !ath_txq_update(sc, WME_AC_BE) || 4352 !ath_txq_update(sc, WME_AC_BK) || 4353 !ath_txq_update(sc, WME_AC_VI) || 4354 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4355 } 4356 4357 /* 4358 * Reclaim resources for a setup queue. 4359 */ 4360 static void 4361 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4362 { 4363 4364 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4365 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4366 ATH_TXQ_LOCK_DESTROY(txq); 4367 } 4368 4369 /* 4370 * Reclaim all tx queue resources. 4371 */ 4372 static void 4373 ath_tx_cleanup(struct ath_softc *sc) 4374 { 4375 int i; 4376 4377 ATH_TXBUF_LOCK_DESTROY(sc); 4378 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4379 if (ATH_TXQ_SETUP(sc, i)) 4380 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4381 } 4382 4383 /* 4384 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4385 * using the current rates in sc_rixmap. 4386 */ 4387 int 4388 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4389 { 4390 int rix = sc->sc_rixmap[rate]; 4391 /* NB: return lowest rix for invalid rate */ 4392 return (rix == 0xff ? 0 : rix); 4393 } 4394 4395 static void 4396 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4397 struct ath_buf *bf) 4398 { 4399 struct ieee80211_node *ni = bf->bf_node; 4400 struct ifnet *ifp = sc->sc_ifp; 4401 struct ieee80211com *ic = ifp->if_l2com; 4402 int sr, lr, pri; 4403 4404 if (ts->ts_status == 0) { 4405 u_int8_t txant = ts->ts_antenna; 4406 sc->sc_stats.ast_ant_tx[txant]++; 4407 sc->sc_ant_tx[txant]++; 4408 if (ts->ts_finaltsi != 0) 4409 sc->sc_stats.ast_tx_altrate++; 4410 pri = M_WME_GETAC(bf->bf_m); 4411 if (pri >= WME_AC_VO) 4412 ic->ic_wme.wme_hipri_traffic++; 4413 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4414 ni->ni_inact = ni->ni_inact_reload; 4415 } else { 4416 if (ts->ts_status & HAL_TXERR_XRETRY) 4417 sc->sc_stats.ast_tx_xretries++; 4418 if (ts->ts_status & HAL_TXERR_FIFO) 4419 sc->sc_stats.ast_tx_fifoerr++; 4420 if (ts->ts_status & HAL_TXERR_FILT) 4421 sc->sc_stats.ast_tx_filtered++; 4422 if (ts->ts_status & HAL_TXERR_XTXOP) 4423 sc->sc_stats.ast_tx_xtxop++; 4424 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4425 sc->sc_stats.ast_tx_timerexpired++; 4426 4427 if (bf->bf_m->m_flags & M_FF) 4428 sc->sc_stats.ast_ff_txerr++; 4429 } 4430 /* XXX when is this valid? */ 4431 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4432 sc->sc_stats.ast_tx_desccfgerr++; 4433 /* 4434 * This can be valid for successful frame transmission! 4435 * If there's a TX FIFO underrun during aggregate transmission, 4436 * the MAC will pad the rest of the aggregate with delimiters. 4437 * If a BA is returned, the frame is marked as "OK" and it's up 4438 * to the TX completion code to notice which frames weren't 4439 * successfully transmitted. 4440 */ 4441 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4442 sc->sc_stats.ast_tx_data_underrun++; 4443 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4444 sc->sc_stats.ast_tx_delim_underrun++; 4445 4446 sr = ts->ts_shortretry; 4447 lr = ts->ts_longretry; 4448 sc->sc_stats.ast_tx_shortretry += sr; 4449 sc->sc_stats.ast_tx_longretry += lr; 4450 4451 } 4452 4453 /* 4454 * The default completion. If fail is 1, this means 4455 * "please don't retry the frame, and just return -1 status 4456 * to the net80211 stack. 4457 */ 4458 void 4459 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4460 { 4461 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4462 int st; 4463 4464 if (fail == 1) 4465 st = -1; 4466 else 4467 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4468 ts->ts_status : HAL_TXERR_XRETRY; 4469 4470 #if 0 4471 if (bf->bf_state.bfs_dobaw) 4472 device_printf(sc->sc_dev, 4473 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4474 __func__, 4475 bf, 4476 SEQNO(bf->bf_state.bfs_seqno)); 4477 #endif 4478 if (bf->bf_next != NULL) 4479 device_printf(sc->sc_dev, 4480 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4481 __func__, 4482 bf, 4483 SEQNO(bf->bf_state.bfs_seqno)); 4484 4485 /* 4486 * Check if the node software queue is empty; if so 4487 * then clear the TIM. 4488 * 4489 * This needs to be done before the buffer is freed as 4490 * otherwise the node reference will have been released 4491 * and the node may not actually exist any longer. 4492 * 4493 * XXX I don't like this belonging here, but it's cleaner 4494 * to do it here right now then all the other places 4495 * where ath_tx_default_comp() is called. 4496 * 4497 * XXX TODO: during drain, ensure that the callback is 4498 * being called so we get a chance to update the TIM. 4499 */ 4500 if (bf->bf_node) { 4501 ATH_TX_LOCK(sc); 4502 ath_tx_update_tim(sc, bf->bf_node, 0); 4503 ATH_TX_UNLOCK(sc); 4504 } 4505 4506 /* 4507 * Do any tx complete callback. Note this must 4508 * be done before releasing the node reference. 4509 * This will free the mbuf, release the net80211 4510 * node and recycle the ath_buf. 4511 */ 4512 ath_tx_freebuf(sc, bf, st); 4513 } 4514 4515 /* 4516 * Update rate control with the given completion status. 4517 */ 4518 void 4519 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4520 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4521 int nframes, int nbad) 4522 { 4523 struct ath_node *an; 4524 4525 /* Only for unicast frames */ 4526 if (ni == NULL) 4527 return; 4528 4529 an = ATH_NODE(ni); 4530 ATH_NODE_UNLOCK_ASSERT(an); 4531 4532 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4533 ATH_NODE_LOCK(an); 4534 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4535 ATH_NODE_UNLOCK(an); 4536 } 4537 } 4538 4539 /* 4540 * Process the completion of the given buffer. 4541 * 4542 * This calls the rate control update and then the buffer completion. 4543 * This will either free the buffer or requeue it. In any case, the 4544 * bf pointer should be treated as invalid after this function is called. 4545 */ 4546 void 4547 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4548 struct ath_tx_status *ts, struct ath_buf *bf) 4549 { 4550 struct ieee80211_node *ni = bf->bf_node; 4551 4552 ATH_TX_UNLOCK_ASSERT(sc); 4553 ATH_TXQ_UNLOCK_ASSERT(txq); 4554 4555 /* If unicast frame, update general statistics */ 4556 if (ni != NULL) { 4557 /* update statistics */ 4558 ath_tx_update_stats(sc, ts, bf); 4559 } 4560 4561 /* 4562 * Call the completion handler. 4563 * The completion handler is responsible for 4564 * calling the rate control code. 4565 * 4566 * Frames with no completion handler get the 4567 * rate control code called here. 4568 */ 4569 if (bf->bf_comp == NULL) { 4570 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4571 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4572 /* 4573 * XXX assume this isn't an aggregate 4574 * frame. 4575 */ 4576 ath_tx_update_ratectrl(sc, ni, 4577 bf->bf_state.bfs_rc, ts, 4578 bf->bf_state.bfs_pktlen, 1, 4579 (ts->ts_status == 0 ? 0 : 1)); 4580 } 4581 ath_tx_default_comp(sc, bf, 0); 4582 } else 4583 bf->bf_comp(sc, bf, 0); 4584 } 4585 4586 4587 4588 /* 4589 * Process completed xmit descriptors from the specified queue. 4590 * Kick the packet scheduler if needed. This can occur from this 4591 * particular task. 4592 */ 4593 static int 4594 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4595 { 4596 struct ath_hal *ah = sc->sc_ah; 4597 struct ath_buf *bf; 4598 struct ath_desc *ds; 4599 struct ath_tx_status *ts; 4600 struct ieee80211_node *ni; 4601 #ifdef IEEE80211_SUPPORT_SUPERG 4602 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4603 #endif /* IEEE80211_SUPPORT_SUPERG */ 4604 int nacked; 4605 HAL_STATUS status; 4606 4607 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4608 __func__, txq->axq_qnum, 4609 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4610 txq->axq_link); 4611 4612 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4613 "ath_tx_processq: txq=%u head %p link %p depth %p", 4614 txq->axq_qnum, 4615 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4616 txq->axq_link, 4617 txq->axq_depth); 4618 4619 nacked = 0; 4620 for (;;) { 4621 ATH_TXQ_LOCK(txq); 4622 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4623 bf = TAILQ_FIRST(&txq->axq_q); 4624 if (bf == NULL) { 4625 ATH_TXQ_UNLOCK(txq); 4626 break; 4627 } 4628 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4629 ts = &bf->bf_status.ds_txstat; 4630 4631 status = ath_hal_txprocdesc(ah, ds, ts); 4632 #ifdef ATH_DEBUG 4633 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4634 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4635 status == HAL_OK); 4636 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4637 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4638 status == HAL_OK); 4639 #endif 4640 #ifdef ATH_DEBUG_ALQ 4641 if (if_ath_alq_checkdebug(&sc->sc_alq, 4642 ATH_ALQ_EDMA_TXSTATUS)) { 4643 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4644 sc->sc_tx_statuslen, 4645 (char *) ds); 4646 } 4647 #endif 4648 4649 if (status == HAL_EINPROGRESS) { 4650 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4651 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4652 txq->axq_qnum, bf, ds); 4653 ATH_TXQ_UNLOCK(txq); 4654 break; 4655 } 4656 ATH_TXQ_REMOVE(txq, bf, bf_list); 4657 4658 /* 4659 * Sanity check. 4660 */ 4661 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4662 device_printf(sc->sc_dev, 4663 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4664 __func__, 4665 txq->axq_qnum, 4666 bf, 4667 bf->bf_state.bfs_tx_queue); 4668 } 4669 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4670 device_printf(sc->sc_dev, 4671 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4672 __func__, 4673 txq->axq_qnum, 4674 bf->bf_last, 4675 bf->bf_last->bf_state.bfs_tx_queue); 4676 } 4677 4678 #if 0 4679 if (txq->axq_depth > 0) { 4680 /* 4681 * More frames follow. Mark the buffer busy 4682 * so it's not re-used while the hardware may 4683 * still re-read the link field in the descriptor. 4684 * 4685 * Use the last buffer in an aggregate as that 4686 * is where the hardware may be - intermediate 4687 * descriptors won't be "busy". 4688 */ 4689 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4690 } else 4691 txq->axq_link = NULL; 4692 #else 4693 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4694 #endif 4695 if (bf->bf_state.bfs_aggr) 4696 txq->axq_aggr_depth--; 4697 4698 ni = bf->bf_node; 4699 4700 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4701 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4702 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4703 /* 4704 * If unicast frame was ack'd update RSSI, 4705 * including the last rx time used to 4706 * workaround phantom bmiss interrupts. 4707 */ 4708 if (ni != NULL && ts->ts_status == 0 && 4709 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4710 nacked++; 4711 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4712 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4713 ts->ts_rssi); 4714 } 4715 ATH_TXQ_UNLOCK(txq); 4716 4717 /* 4718 * Update statistics and call completion 4719 */ 4720 ath_tx_process_buf_completion(sc, txq, ts, bf); 4721 4722 /* XXX at this point, bf and ni may be totally invalid */ 4723 } 4724 #ifdef IEEE80211_SUPPORT_SUPERG 4725 /* 4726 * Flush fast-frame staging queue when traffic slows. 4727 */ 4728 if (txq->axq_depth <= 1) 4729 ieee80211_ff_flush(ic, txq->axq_ac); 4730 #endif 4731 4732 /* Kick the software TXQ scheduler */ 4733 if (dosched) { 4734 ATH_TX_LOCK(sc); 4735 ath_txq_sched(sc, txq); 4736 ATH_TX_UNLOCK(sc); 4737 } 4738 4739 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4740 "ath_tx_processq: txq=%u: done", 4741 txq->axq_qnum); 4742 4743 return nacked; 4744 } 4745 4746 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4747 4748 /* 4749 * Deferred processing of transmit interrupt; special-cased 4750 * for a single hardware transmit queue (e.g. 5210 and 5211). 4751 */ 4752 static void 4753 ath_tx_proc_q0(void *arg, int npending) 4754 { 4755 struct ath_softc *sc = arg; 4756 struct ifnet *ifp = sc->sc_ifp; 4757 uint32_t txqs; 4758 4759 ATH_PCU_LOCK(sc); 4760 sc->sc_txproc_cnt++; 4761 txqs = sc->sc_txq_active; 4762 sc->sc_txq_active &= ~txqs; 4763 ATH_PCU_UNLOCK(sc); 4764 4765 ATH_LOCK(sc); 4766 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4767 ATH_UNLOCK(sc); 4768 4769 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4770 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4771 4772 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4773 /* XXX why is lastrx updated in tx code? */ 4774 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4775 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4776 ath_tx_processq(sc, sc->sc_cabq, 1); 4777 IF_LOCK(&ifp->if_snd); 4778 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4779 IF_UNLOCK(&ifp->if_snd); 4780 sc->sc_wd_timer = 0; 4781 4782 if (sc->sc_softled) 4783 ath_led_event(sc, sc->sc_txrix); 4784 4785 ATH_PCU_LOCK(sc); 4786 sc->sc_txproc_cnt--; 4787 ATH_PCU_UNLOCK(sc); 4788 4789 ATH_LOCK(sc); 4790 ath_power_restore_power_state(sc); 4791 ATH_UNLOCK(sc); 4792 4793 ath_tx_kick(sc); 4794 } 4795 4796 /* 4797 * Deferred processing of transmit interrupt; special-cased 4798 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4799 */ 4800 static void 4801 ath_tx_proc_q0123(void *arg, int npending) 4802 { 4803 struct ath_softc *sc = arg; 4804 struct ifnet *ifp = sc->sc_ifp; 4805 int nacked; 4806 uint32_t txqs; 4807 4808 ATH_PCU_LOCK(sc); 4809 sc->sc_txproc_cnt++; 4810 txqs = sc->sc_txq_active; 4811 sc->sc_txq_active &= ~txqs; 4812 ATH_PCU_UNLOCK(sc); 4813 4814 ATH_LOCK(sc); 4815 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4816 ATH_UNLOCK(sc); 4817 4818 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4819 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4820 4821 /* 4822 * Process each active queue. 4823 */ 4824 nacked = 0; 4825 if (TXQACTIVE(txqs, 0)) 4826 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4827 if (TXQACTIVE(txqs, 1)) 4828 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4829 if (TXQACTIVE(txqs, 2)) 4830 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4831 if (TXQACTIVE(txqs, 3)) 4832 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4833 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4834 ath_tx_processq(sc, sc->sc_cabq, 1); 4835 if (nacked) 4836 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4837 4838 IF_LOCK(&ifp->if_snd); 4839 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4840 IF_UNLOCK(&ifp->if_snd); 4841 sc->sc_wd_timer = 0; 4842 4843 if (sc->sc_softled) 4844 ath_led_event(sc, sc->sc_txrix); 4845 4846 ATH_PCU_LOCK(sc); 4847 sc->sc_txproc_cnt--; 4848 ATH_PCU_UNLOCK(sc); 4849 4850 ATH_LOCK(sc); 4851 ath_power_restore_power_state(sc); 4852 ATH_UNLOCK(sc); 4853 4854 ath_tx_kick(sc); 4855 } 4856 4857 /* 4858 * Deferred processing of transmit interrupt. 4859 */ 4860 static void 4861 ath_tx_proc(void *arg, int npending) 4862 { 4863 struct ath_softc *sc = arg; 4864 struct ifnet *ifp = sc->sc_ifp; 4865 int i, nacked; 4866 uint32_t txqs; 4867 4868 ATH_PCU_LOCK(sc); 4869 sc->sc_txproc_cnt++; 4870 txqs = sc->sc_txq_active; 4871 sc->sc_txq_active &= ~txqs; 4872 ATH_PCU_UNLOCK(sc); 4873 4874 ATH_LOCK(sc); 4875 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4876 ATH_UNLOCK(sc); 4877 4878 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4879 4880 /* 4881 * Process each active queue. 4882 */ 4883 nacked = 0; 4884 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4885 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4886 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4887 if (nacked) 4888 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4889 4890 /* XXX check this inside of IF_LOCK? */ 4891 IF_LOCK(&ifp->if_snd); 4892 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4893 IF_UNLOCK(&ifp->if_snd); 4894 sc->sc_wd_timer = 0; 4895 4896 if (sc->sc_softled) 4897 ath_led_event(sc, sc->sc_txrix); 4898 4899 ATH_PCU_LOCK(sc); 4900 sc->sc_txproc_cnt--; 4901 ATH_PCU_UNLOCK(sc); 4902 4903 ATH_LOCK(sc); 4904 ath_power_restore_power_state(sc); 4905 ATH_UNLOCK(sc); 4906 4907 ath_tx_kick(sc); 4908 } 4909 #undef TXQACTIVE 4910 4911 /* 4912 * Deferred processing of TXQ rescheduling. 4913 */ 4914 static void 4915 ath_txq_sched_tasklet(void *arg, int npending) 4916 { 4917 struct ath_softc *sc = arg; 4918 int i; 4919 4920 /* XXX is skipping ok? */ 4921 ATH_PCU_LOCK(sc); 4922 #if 0 4923 if (sc->sc_inreset_cnt > 0) { 4924 device_printf(sc->sc_dev, 4925 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4926 ATH_PCU_UNLOCK(sc); 4927 return; 4928 } 4929 #endif 4930 sc->sc_txproc_cnt++; 4931 ATH_PCU_UNLOCK(sc); 4932 4933 ATH_LOCK(sc); 4934 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4935 ATH_UNLOCK(sc); 4936 4937 ATH_TX_LOCK(sc); 4938 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4939 if (ATH_TXQ_SETUP(sc, i)) { 4940 ath_txq_sched(sc, &sc->sc_txq[i]); 4941 } 4942 } 4943 ATH_TX_UNLOCK(sc); 4944 4945 ATH_LOCK(sc); 4946 ath_power_restore_power_state(sc); 4947 ATH_UNLOCK(sc); 4948 4949 ATH_PCU_LOCK(sc); 4950 sc->sc_txproc_cnt--; 4951 ATH_PCU_UNLOCK(sc); 4952 } 4953 4954 void 4955 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4956 { 4957 4958 ATH_TXBUF_LOCK_ASSERT(sc); 4959 4960 if (bf->bf_flags & ATH_BUF_MGMT) 4961 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4962 else { 4963 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4964 sc->sc_txbuf_cnt++; 4965 if (sc->sc_txbuf_cnt > ath_txbuf) { 4966 device_printf(sc->sc_dev, 4967 "%s: sc_txbuf_cnt > %d?\n", 4968 __func__, 4969 ath_txbuf); 4970 sc->sc_txbuf_cnt = ath_txbuf; 4971 } 4972 } 4973 } 4974 4975 void 4976 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4977 { 4978 4979 ATH_TXBUF_LOCK_ASSERT(sc); 4980 4981 if (bf->bf_flags & ATH_BUF_MGMT) 4982 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4983 else { 4984 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4985 sc->sc_txbuf_cnt++; 4986 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4987 device_printf(sc->sc_dev, 4988 "%s: sc_txbuf_cnt > %d?\n", 4989 __func__, 4990 ATH_TXBUF); 4991 sc->sc_txbuf_cnt = ATH_TXBUF; 4992 } 4993 } 4994 } 4995 4996 /* 4997 * Free the holding buffer if it exists 4998 */ 4999 void 5000 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 5001 { 5002 ATH_TXBUF_UNLOCK_ASSERT(sc); 5003 ATH_TXQ_LOCK_ASSERT(txq); 5004 5005 if (txq->axq_holdingbf == NULL) 5006 return; 5007 5008 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 5009 5010 ATH_TXBUF_LOCK(sc); 5011 ath_returnbuf_tail(sc, txq->axq_holdingbf); 5012 ATH_TXBUF_UNLOCK(sc); 5013 5014 txq->axq_holdingbf = NULL; 5015 } 5016 5017 /* 5018 * Add this buffer to the holding queue, freeing the previous 5019 * one if it exists. 5020 */ 5021 static void 5022 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 5023 { 5024 struct ath_txq *txq; 5025 5026 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 5027 5028 ATH_TXBUF_UNLOCK_ASSERT(sc); 5029 ATH_TXQ_LOCK_ASSERT(txq); 5030 5031 /* XXX assert ATH_BUF_BUSY is set */ 5032 5033 /* XXX assert the tx queue is under the max number */ 5034 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 5035 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 5036 __func__, 5037 bf, 5038 bf->bf_state.bfs_tx_queue); 5039 bf->bf_flags &= ~ATH_BUF_BUSY; 5040 ath_returnbuf_tail(sc, bf); 5041 return; 5042 } 5043 ath_txq_freeholdingbuf(sc, txq); 5044 txq->axq_holdingbf = bf; 5045 } 5046 5047 /* 5048 * Return a buffer to the pool and update the 'busy' flag on the 5049 * previous 'tail' entry. 5050 * 5051 * This _must_ only be called when the buffer is involved in a completed 5052 * TX. The logic is that if it was part of an active TX, the previous 5053 * buffer on the list is now not involved in a halted TX DMA queue, waiting 5054 * for restart (eg for TDMA.) 5055 * 5056 * The caller must free the mbuf and recycle the node reference. 5057 * 5058 * XXX This method of handling busy / holding buffers is insanely stupid. 5059 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 5060 * be much nicer if buffers in the processq() methods would instead be 5061 * always completed there (pushed onto a txq or ath_bufhead) so we knew 5062 * exactly what hardware queue they came from in the first place. 5063 */ 5064 void 5065 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 5066 { 5067 struct ath_txq *txq; 5068 5069 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 5070 5071 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 5072 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 5073 5074 /* 5075 * If this buffer is busy, push it onto the holding queue. 5076 */ 5077 if (bf->bf_flags & ATH_BUF_BUSY) { 5078 ATH_TXQ_LOCK(txq); 5079 ath_txq_addholdingbuf(sc, bf); 5080 ATH_TXQ_UNLOCK(txq); 5081 return; 5082 } 5083 5084 /* 5085 * Not a busy buffer, so free normally 5086 */ 5087 ATH_TXBUF_LOCK(sc); 5088 ath_returnbuf_tail(sc, bf); 5089 ATH_TXBUF_UNLOCK(sc); 5090 } 5091 5092 /* 5093 * This is currently used by ath_tx_draintxq() and 5094 * ath_tx_tid_free_pkts(). 5095 * 5096 * It recycles a single ath_buf. 5097 */ 5098 void 5099 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 5100 { 5101 struct ieee80211_node *ni = bf->bf_node; 5102 struct mbuf *m0 = bf->bf_m; 5103 5104 /* 5105 * Make sure that we only sync/unload if there's an mbuf. 5106 * If not (eg we cloned a buffer), the unload will have already 5107 * occured. 5108 */ 5109 if (bf->bf_m != NULL) { 5110 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 5111 BUS_DMASYNC_POSTWRITE); 5112 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 5113 } 5114 5115 bf->bf_node = NULL; 5116 bf->bf_m = NULL; 5117 5118 /* Free the buffer, it's not needed any longer */ 5119 ath_freebuf(sc, bf); 5120 5121 /* Pass the buffer back to net80211 - completing it */ 5122 ieee80211_tx_complete(ni, m0, status); 5123 } 5124 5125 static struct ath_buf * 5126 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 5127 { 5128 struct ath_buf *bf; 5129 5130 ATH_TXQ_LOCK_ASSERT(txq); 5131 5132 /* 5133 * Drain the FIFO queue first, then if it's 5134 * empty, move to the normal frame queue. 5135 */ 5136 bf = TAILQ_FIRST(&txq->fifo.axq_q); 5137 if (bf != NULL) { 5138 /* 5139 * Is it the last buffer in this set? 5140 * Decrement the FIFO counter. 5141 */ 5142 if (bf->bf_flags & ATH_BUF_FIFOEND) { 5143 if (txq->axq_fifo_depth == 0) { 5144 device_printf(sc->sc_dev, 5145 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 5146 __func__, 5147 txq->axq_qnum, 5148 txq->fifo.axq_depth); 5149 } else 5150 txq->axq_fifo_depth--; 5151 } 5152 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 5153 return (bf); 5154 } 5155 5156 /* 5157 * Debugging! 5158 */ 5159 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 5160 device_printf(sc->sc_dev, 5161 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 5162 __func__, 5163 txq->axq_qnum, 5164 txq->axq_fifo_depth, 5165 txq->fifo.axq_depth); 5166 } 5167 5168 /* 5169 * Now drain the pending queue. 5170 */ 5171 bf = TAILQ_FIRST(&txq->axq_q); 5172 if (bf == NULL) { 5173 txq->axq_link = NULL; 5174 return (NULL); 5175 } 5176 ATH_TXQ_REMOVE(txq, bf, bf_list); 5177 return (bf); 5178 } 5179 5180 void 5181 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5182 { 5183 #ifdef ATH_DEBUG 5184 struct ath_hal *ah = sc->sc_ah; 5185 #endif 5186 struct ath_buf *bf; 5187 u_int ix; 5188 5189 /* 5190 * NB: this assumes output has been stopped and 5191 * we do not need to block ath_tx_proc 5192 */ 5193 for (ix = 0;; ix++) { 5194 ATH_TXQ_LOCK(txq); 5195 bf = ath_tx_draintxq_get_one(sc, txq); 5196 if (bf == NULL) { 5197 ATH_TXQ_UNLOCK(txq); 5198 break; 5199 } 5200 if (bf->bf_state.bfs_aggr) 5201 txq->axq_aggr_depth--; 5202 #ifdef ATH_DEBUG 5203 if (sc->sc_debug & ATH_DEBUG_RESET) { 5204 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5205 int status = 0; 5206 5207 /* 5208 * EDMA operation has a TX completion FIFO 5209 * separate from the TX descriptor, so this 5210 * method of checking the "completion" status 5211 * is wrong. 5212 */ 5213 if (! sc->sc_isedma) { 5214 status = (ath_hal_txprocdesc(ah, 5215 bf->bf_lastds, 5216 &bf->bf_status.ds_txstat) == HAL_OK); 5217 } 5218 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 5219 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5220 bf->bf_m->m_len, 0, -1); 5221 } 5222 #endif /* ATH_DEBUG */ 5223 /* 5224 * Since we're now doing magic in the completion 5225 * functions, we -must- call it for aggregation 5226 * destinations or BAW tracking will get upset. 5227 */ 5228 /* 5229 * Clear ATH_BUF_BUSY; the completion handler 5230 * will free the buffer. 5231 */ 5232 ATH_TXQ_UNLOCK(txq); 5233 bf->bf_flags &= ~ATH_BUF_BUSY; 5234 if (bf->bf_comp) 5235 bf->bf_comp(sc, bf, 1); 5236 else 5237 ath_tx_default_comp(sc, bf, 1); 5238 } 5239 5240 /* 5241 * Free the holding buffer if it exists 5242 */ 5243 ATH_TXQ_LOCK(txq); 5244 ath_txq_freeholdingbuf(sc, txq); 5245 ATH_TXQ_UNLOCK(txq); 5246 5247 /* 5248 * Drain software queued frames which are on 5249 * active TIDs. 5250 */ 5251 ath_tx_txq_drain(sc, txq); 5252 } 5253 5254 static void 5255 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5256 { 5257 struct ath_hal *ah = sc->sc_ah; 5258 5259 ATH_TXQ_LOCK_ASSERT(txq); 5260 5261 DPRINTF(sc, ATH_DEBUG_RESET, 5262 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 5263 "link %p, holdingbf=%p\n", 5264 __func__, 5265 txq->axq_qnum, 5266 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5267 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 5268 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 5269 txq->axq_flags, 5270 txq->axq_link, 5271 txq->axq_holdingbf); 5272 5273 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5274 /* We've stopped TX DMA, so mark this as stopped. */ 5275 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 5276 5277 #ifdef ATH_DEBUG 5278 if ((sc->sc_debug & ATH_DEBUG_RESET) 5279 && (txq->axq_holdingbf != NULL)) { 5280 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 5281 } 5282 #endif 5283 } 5284 5285 int 5286 ath_stoptxdma(struct ath_softc *sc) 5287 { 5288 struct ath_hal *ah = sc->sc_ah; 5289 int i; 5290 5291 /* XXX return value */ 5292 if (sc->sc_invalid) 5293 return 0; 5294 5295 if (!sc->sc_invalid) { 5296 /* don't touch the hardware if marked invalid */ 5297 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5298 __func__, sc->sc_bhalq, 5299 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5300 NULL); 5301 5302 /* stop the beacon queue */ 5303 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5304 5305 /* Stop the data queues */ 5306 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5307 if (ATH_TXQ_SETUP(sc, i)) { 5308 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5309 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5310 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5311 } 5312 } 5313 } 5314 5315 return 1; 5316 } 5317 5318 #ifdef ATH_DEBUG 5319 void 5320 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 5321 { 5322 struct ath_hal *ah = sc->sc_ah; 5323 struct ath_buf *bf; 5324 int i = 0; 5325 5326 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 5327 return; 5328 5329 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 5330 __func__, txq->axq_qnum); 5331 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 5332 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 5333 ath_hal_txprocdesc(ah, bf->bf_lastds, 5334 &bf->bf_status.ds_txstat) == HAL_OK); 5335 i++; 5336 } 5337 device_printf(sc->sc_dev, "%s: Q%d: end\n", 5338 __func__, txq->axq_qnum); 5339 } 5340 #endif /* ATH_DEBUG */ 5341 5342 /* 5343 * Drain the transmit queues and reclaim resources. 5344 */ 5345 void 5346 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5347 { 5348 struct ath_hal *ah = sc->sc_ah; 5349 struct ifnet *ifp = sc->sc_ifp; 5350 int i; 5351 struct ath_buf *bf_last; 5352 5353 (void) ath_stoptxdma(sc); 5354 5355 /* 5356 * Dump the queue contents 5357 */ 5358 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5359 /* 5360 * XXX TODO: should we just handle the completed TX frames 5361 * here, whether or not the reset is a full one or not? 5362 */ 5363 if (ATH_TXQ_SETUP(sc, i)) { 5364 #ifdef ATH_DEBUG 5365 if (sc->sc_debug & ATH_DEBUG_RESET) 5366 ath_tx_dump(sc, &sc->sc_txq[i]); 5367 #endif /* ATH_DEBUG */ 5368 if (reset_type == ATH_RESET_NOLOSS) { 5369 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5370 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5371 /* 5372 * Free the holding buffer; DMA is now 5373 * stopped. 5374 */ 5375 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 5376 /* 5377 * Setup the link pointer to be the 5378 * _last_ buffer/descriptor in the list. 5379 * If there's nothing in the list, set it 5380 * to NULL. 5381 */ 5382 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5383 axq_q_s); 5384 if (bf_last != NULL) { 5385 ath_hal_gettxdesclinkptr(ah, 5386 bf_last->bf_lastds, 5387 &sc->sc_txq[i].axq_link); 5388 } else { 5389 sc->sc_txq[i].axq_link = NULL; 5390 } 5391 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5392 } else 5393 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5394 } 5395 } 5396 #ifdef ATH_DEBUG 5397 if (sc->sc_debug & ATH_DEBUG_RESET) { 5398 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5399 if (bf != NULL && bf->bf_m != NULL) { 5400 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5401 ath_hal_txprocdesc(ah, bf->bf_lastds, 5402 &bf->bf_status.ds_txstat) == HAL_OK); 5403 ieee80211_dump_pkt(ifp->if_l2com, 5404 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5405 0, -1); 5406 } 5407 } 5408 #endif /* ATH_DEBUG */ 5409 IF_LOCK(&ifp->if_snd); 5410 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5411 IF_UNLOCK(&ifp->if_snd); 5412 sc->sc_wd_timer = 0; 5413 } 5414 5415 /* 5416 * Update internal state after a channel change. 5417 */ 5418 static void 5419 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5420 { 5421 enum ieee80211_phymode mode; 5422 5423 /* 5424 * Change channels and update the h/w rate map 5425 * if we're switching; e.g. 11a to 11b/g. 5426 */ 5427 mode = ieee80211_chan2mode(chan); 5428 if (mode != sc->sc_curmode) 5429 ath_setcurmode(sc, mode); 5430 sc->sc_curchan = chan; 5431 } 5432 5433 /* 5434 * Set/change channels. If the channel is really being changed, 5435 * it's done by resetting the chip. To accomplish this we must 5436 * first cleanup any pending DMA, then restart stuff after a la 5437 * ath_init. 5438 */ 5439 static int 5440 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5441 { 5442 struct ifnet *ifp = sc->sc_ifp; 5443 struct ieee80211com *ic = ifp->if_l2com; 5444 struct ath_hal *ah = sc->sc_ah; 5445 int ret = 0; 5446 5447 /* Treat this as an interface reset */ 5448 ATH_PCU_UNLOCK_ASSERT(sc); 5449 ATH_UNLOCK_ASSERT(sc); 5450 5451 /* (Try to) stop TX/RX from occuring */ 5452 taskqueue_block(sc->sc_tq); 5453 5454 ATH_PCU_LOCK(sc); 5455 5456 /* Disable interrupts */ 5457 ath_hal_intrset(ah, 0); 5458 5459 /* Stop new RX/TX/interrupt completion */ 5460 if (ath_reset_grablock(sc, 1) == 0) { 5461 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5462 __func__); 5463 } 5464 5465 /* Stop pending RX/TX completion */ 5466 ath_txrx_stop_locked(sc); 5467 5468 ATH_PCU_UNLOCK(sc); 5469 5470 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5471 __func__, ieee80211_chan2ieee(ic, chan), 5472 chan->ic_freq, chan->ic_flags); 5473 if (chan != sc->sc_curchan) { 5474 HAL_STATUS status; 5475 /* 5476 * To switch channels clear any pending DMA operations; 5477 * wait long enough for the RX fifo to drain, reset the 5478 * hardware at the new frequency, and then re-enable 5479 * the relevant bits of the h/w. 5480 */ 5481 #if 0 5482 ath_hal_intrset(ah, 0); /* disable interrupts */ 5483 #endif 5484 ath_stoprecv(sc, 1); /* turn off frame recv */ 5485 /* 5486 * First, handle completed TX/RX frames. 5487 */ 5488 ath_rx_flush(sc); 5489 ath_draintxq(sc, ATH_RESET_NOLOSS); 5490 /* 5491 * Next, flush the non-scheduled frames. 5492 */ 5493 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5494 5495 ath_update_chainmasks(sc, chan); 5496 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5497 sc->sc_cur_rxchainmask); 5498 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 5499 if_printf(ifp, "%s: unable to reset " 5500 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5501 __func__, ieee80211_chan2ieee(ic, chan), 5502 chan->ic_freq, chan->ic_flags, status); 5503 ret = EIO; 5504 goto finish; 5505 } 5506 sc->sc_diversity = ath_hal_getdiversity(ah); 5507 5508 ATH_RX_LOCK(sc); 5509 sc->sc_rx_stopped = 1; 5510 sc->sc_rx_resetted = 1; 5511 ATH_RX_UNLOCK(sc); 5512 5513 /* Let DFS at it in case it's a DFS channel */ 5514 ath_dfs_radar_enable(sc, chan); 5515 5516 /* Let spectral at in case spectral is enabled */ 5517 ath_spectral_enable(sc, chan); 5518 5519 /* 5520 * Let bluetooth coexistence at in case it's needed for this 5521 * channel 5522 */ 5523 ath_btcoex_enable(sc, ic->ic_curchan); 5524 5525 /* 5526 * If we're doing TDMA, enforce the TXOP limitation for chips 5527 * that support it. 5528 */ 5529 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5530 ath_hal_setenforcetxop(sc->sc_ah, 1); 5531 else 5532 ath_hal_setenforcetxop(sc->sc_ah, 0); 5533 5534 /* 5535 * Re-enable rx framework. 5536 */ 5537 if (ath_startrecv(sc) != 0) { 5538 if_printf(ifp, "%s: unable to restart recv logic\n", 5539 __func__); 5540 ret = EIO; 5541 goto finish; 5542 } 5543 5544 /* 5545 * Change channels and update the h/w rate map 5546 * if we're switching; e.g. 11a to 11b/g. 5547 */ 5548 ath_chan_change(sc, chan); 5549 5550 /* 5551 * Reset clears the beacon timers; reset them 5552 * here if needed. 5553 */ 5554 if (sc->sc_beacons) { /* restart beacons */ 5555 #ifdef IEEE80211_SUPPORT_TDMA 5556 if (sc->sc_tdma) 5557 ath_tdma_config(sc, NULL); 5558 else 5559 #endif 5560 ath_beacon_config(sc, NULL); 5561 } 5562 5563 /* 5564 * Re-enable interrupts. 5565 */ 5566 #if 0 5567 ath_hal_intrset(ah, sc->sc_imask); 5568 #endif 5569 } 5570 5571 finish: 5572 ATH_PCU_LOCK(sc); 5573 sc->sc_inreset_cnt--; 5574 /* XXX only do this if sc_inreset_cnt == 0? */ 5575 ath_hal_intrset(ah, sc->sc_imask); 5576 ATH_PCU_UNLOCK(sc); 5577 5578 IF_LOCK(&ifp->if_snd); 5579 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5580 IF_UNLOCK(&ifp->if_snd); 5581 ath_txrx_start(sc); 5582 /* XXX ath_start? */ 5583 5584 return ret; 5585 } 5586 5587 /* 5588 * Periodically recalibrate the PHY to account 5589 * for temperature/environment changes. 5590 */ 5591 static void 5592 ath_calibrate(void *arg) 5593 { 5594 struct ath_softc *sc = arg; 5595 struct ath_hal *ah = sc->sc_ah; 5596 struct ifnet *ifp = sc->sc_ifp; 5597 struct ieee80211com *ic = ifp->if_l2com; 5598 HAL_BOOL longCal, isCalDone = AH_TRUE; 5599 HAL_BOOL aniCal, shortCal = AH_FALSE; 5600 int nextcal; 5601 5602 /* 5603 * Force the hardware awake for ANI work. 5604 */ 5605 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5606 5607 /* Skip trying to do this if we're in reset */ 5608 if (sc->sc_inreset_cnt) 5609 goto restart; 5610 5611 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5612 goto restart; 5613 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5614 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5615 if (sc->sc_doresetcal) 5616 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5617 5618 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5619 if (aniCal) { 5620 sc->sc_stats.ast_ani_cal++; 5621 sc->sc_lastani = ticks; 5622 ath_hal_ani_poll(ah, sc->sc_curchan); 5623 } 5624 5625 if (longCal) { 5626 sc->sc_stats.ast_per_cal++; 5627 sc->sc_lastlongcal = ticks; 5628 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5629 /* 5630 * Rfgain is out of bounds, reset the chip 5631 * to load new gain values. 5632 */ 5633 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5634 "%s: rfgain change\n", __func__); 5635 sc->sc_stats.ast_per_rfgain++; 5636 sc->sc_resetcal = 0; 5637 sc->sc_doresetcal = AH_TRUE; 5638 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5639 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5640 ath_power_restore_power_state(sc); 5641 return; 5642 } 5643 /* 5644 * If this long cal is after an idle period, then 5645 * reset the data collection state so we start fresh. 5646 */ 5647 if (sc->sc_resetcal) { 5648 (void) ath_hal_calreset(ah, sc->sc_curchan); 5649 sc->sc_lastcalreset = ticks; 5650 sc->sc_lastshortcal = ticks; 5651 sc->sc_resetcal = 0; 5652 sc->sc_doresetcal = AH_TRUE; 5653 } 5654 } 5655 5656 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5657 if (shortCal || longCal) { 5658 isCalDone = AH_FALSE; 5659 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5660 if (longCal) { 5661 /* 5662 * Calibrate noise floor data again in case of change. 5663 */ 5664 ath_hal_process_noisefloor(ah); 5665 } 5666 } else { 5667 DPRINTF(sc, ATH_DEBUG_ANY, 5668 "%s: calibration of channel %u failed\n", 5669 __func__, sc->sc_curchan->ic_freq); 5670 sc->sc_stats.ast_per_calfail++; 5671 } 5672 if (shortCal) 5673 sc->sc_lastshortcal = ticks; 5674 } 5675 if (!isCalDone) { 5676 restart: 5677 /* 5678 * Use a shorter interval to potentially collect multiple 5679 * data samples required to complete calibration. Once 5680 * we're told the work is done we drop back to a longer 5681 * interval between requests. We're more aggressive doing 5682 * work when operating as an AP to improve operation right 5683 * after startup. 5684 */ 5685 sc->sc_lastshortcal = ticks; 5686 nextcal = ath_shortcalinterval*hz/1000; 5687 if (sc->sc_opmode != HAL_M_HOSTAP) 5688 nextcal *= 10; 5689 sc->sc_doresetcal = AH_TRUE; 5690 } else { 5691 /* nextcal should be the shortest time for next event */ 5692 nextcal = ath_longcalinterval*hz; 5693 if (sc->sc_lastcalreset == 0) 5694 sc->sc_lastcalreset = sc->sc_lastlongcal; 5695 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5696 sc->sc_resetcal = 1; /* setup reset next trip */ 5697 sc->sc_doresetcal = AH_FALSE; 5698 } 5699 /* ANI calibration may occur more often than short/long/resetcal */ 5700 if (ath_anicalinterval > 0) 5701 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5702 5703 if (nextcal != 0) { 5704 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5705 __func__, nextcal, isCalDone ? "" : "!"); 5706 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5707 } else { 5708 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5709 __func__); 5710 /* NB: don't rearm timer */ 5711 } 5712 /* 5713 * Restore power state now that we're done. 5714 */ 5715 ath_power_restore_power_state(sc); 5716 } 5717 5718 static void 5719 ath_scan_start(struct ieee80211com *ic) 5720 { 5721 struct ifnet *ifp = ic->ic_ifp; 5722 struct ath_softc *sc = ifp->if_softc; 5723 struct ath_hal *ah = sc->sc_ah; 5724 u_int32_t rfilt; 5725 5726 /* XXX calibration timer? */ 5727 5728 ATH_LOCK(sc); 5729 sc->sc_scanning = 1; 5730 sc->sc_syncbeacon = 0; 5731 rfilt = ath_calcrxfilter(sc); 5732 ATH_UNLOCK(sc); 5733 5734 ATH_PCU_LOCK(sc); 5735 ath_hal_setrxfilter(ah, rfilt); 5736 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5737 ATH_PCU_UNLOCK(sc); 5738 5739 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5740 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5741 } 5742 5743 static void 5744 ath_scan_end(struct ieee80211com *ic) 5745 { 5746 struct ifnet *ifp = ic->ic_ifp; 5747 struct ath_softc *sc = ifp->if_softc; 5748 struct ath_hal *ah = sc->sc_ah; 5749 u_int32_t rfilt; 5750 5751 ATH_LOCK(sc); 5752 sc->sc_scanning = 0; 5753 rfilt = ath_calcrxfilter(sc); 5754 ATH_UNLOCK(sc); 5755 5756 ATH_PCU_LOCK(sc); 5757 ath_hal_setrxfilter(ah, rfilt); 5758 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5759 5760 ath_hal_process_noisefloor(ah); 5761 ATH_PCU_UNLOCK(sc); 5762 5763 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5764 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5765 sc->sc_curaid); 5766 } 5767 5768 #ifdef ATH_ENABLE_11N 5769 /* 5770 * For now, just do a channel change. 5771 * 5772 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5773 * control state and resetting the hardware without dropping frames out 5774 * of the queue. 5775 * 5776 * The unfortunate trouble here is making absolutely sure that the 5777 * channel width change has propagated enough so the hardware 5778 * absolutely isn't handed bogus frames for it's current operating 5779 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5780 * does occur in parallel, we need to make certain we've blocked 5781 * any further ongoing TX (and RX, that can cause raw TX) 5782 * before we do this. 5783 */ 5784 static void 5785 ath_update_chw(struct ieee80211com *ic) 5786 { 5787 struct ifnet *ifp = ic->ic_ifp; 5788 struct ath_softc *sc = ifp->if_softc; 5789 5790 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5791 ath_set_channel(ic); 5792 } 5793 #endif /* ATH_ENABLE_11N */ 5794 5795 static void 5796 ath_set_channel(struct ieee80211com *ic) 5797 { 5798 struct ifnet *ifp = ic->ic_ifp; 5799 struct ath_softc *sc = ifp->if_softc; 5800 5801 ATH_LOCK(sc); 5802 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5803 ATH_UNLOCK(sc); 5804 5805 (void) ath_chan_set(sc, ic->ic_curchan); 5806 /* 5807 * If we are returning to our bss channel then mark state 5808 * so the next recv'd beacon's tsf will be used to sync the 5809 * beacon timers. Note that since we only hear beacons in 5810 * sta/ibss mode this has no effect in other operating modes. 5811 */ 5812 ATH_LOCK(sc); 5813 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5814 sc->sc_syncbeacon = 1; 5815 ath_power_restore_power_state(sc); 5816 ATH_UNLOCK(sc); 5817 } 5818 5819 /* 5820 * Walk the vap list and check if there any vap's in RUN state. 5821 */ 5822 static int 5823 ath_isanyrunningvaps(struct ieee80211vap *this) 5824 { 5825 struct ieee80211com *ic = this->iv_ic; 5826 struct ieee80211vap *vap; 5827 5828 IEEE80211_LOCK_ASSERT(ic); 5829 5830 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5831 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5832 return 1; 5833 } 5834 return 0; 5835 } 5836 5837 static int 5838 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5839 { 5840 struct ieee80211com *ic = vap->iv_ic; 5841 struct ath_softc *sc = ic->ic_ifp->if_softc; 5842 struct ath_vap *avp = ATH_VAP(vap); 5843 struct ath_hal *ah = sc->sc_ah; 5844 struct ieee80211_node *ni = NULL; 5845 int i, error, stamode; 5846 u_int32_t rfilt; 5847 int csa_run_transition = 0; 5848 enum ieee80211_state ostate = vap->iv_state; 5849 5850 static const HAL_LED_STATE leds[] = { 5851 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5852 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5853 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5854 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5855 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5856 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5857 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5858 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5859 }; 5860 5861 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5862 ieee80211_state_name[ostate], 5863 ieee80211_state_name[nstate]); 5864 5865 /* 5866 * net80211 _should_ have the comlock asserted at this point. 5867 * There are some comments around the calls to vap->iv_newstate 5868 * which indicate that it (newstate) may end up dropping the 5869 * lock. This and the subsequent lock assert check after newstate 5870 * are an attempt to catch these and figure out how/why. 5871 */ 5872 IEEE80211_LOCK_ASSERT(ic); 5873 5874 /* Before we touch the hardware - wake it up */ 5875 ATH_LOCK(sc); 5876 /* 5877 * If the NIC is in anything other than SLEEP state, 5878 * we need to ensure that self-generated frames are 5879 * set for PWRMGT=0. Otherwise we may end up with 5880 * strange situations. 5881 * 5882 * XXX TODO: is this actually the case? :-) 5883 */ 5884 if (nstate != IEEE80211_S_SLEEP) 5885 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5886 5887 /* 5888 * Now, wake the thing up. 5889 */ 5890 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5891 ATH_UNLOCK(sc); 5892 5893 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5894 csa_run_transition = 1; 5895 5896 callout_drain(&sc->sc_cal_ch); 5897 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5898 5899 if (nstate == IEEE80211_S_SCAN) { 5900 /* 5901 * Scanning: turn off beacon miss and don't beacon. 5902 * Mark beacon state so when we reach RUN state we'll 5903 * [re]setup beacons. Unblock the task q thread so 5904 * deferred interrupt processing is done. 5905 */ 5906 5907 /* Ensure we stay awake during scan */ 5908 ATH_LOCK(sc); 5909 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5910 ath_power_setpower(sc, HAL_PM_AWAKE); 5911 ATH_UNLOCK(sc); 5912 5913 ath_hal_intrset(ah, 5914 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5915 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5916 sc->sc_beacons = 0; 5917 taskqueue_unblock(sc->sc_tq); 5918 } 5919 5920 ni = ieee80211_ref_node(vap->iv_bss); 5921 rfilt = ath_calcrxfilter(sc); 5922 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5923 vap->iv_opmode == IEEE80211_M_AHDEMO || 5924 vap->iv_opmode == IEEE80211_M_IBSS); 5925 5926 /* 5927 * XXX Dont need to do this (and others) if we've transitioned 5928 * from SLEEP->RUN. 5929 */ 5930 if (stamode && nstate == IEEE80211_S_RUN) { 5931 sc->sc_curaid = ni->ni_associd; 5932 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5933 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5934 } 5935 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5936 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5937 ath_hal_setrxfilter(ah, rfilt); 5938 5939 /* XXX is this to restore keycache on resume? */ 5940 if (vap->iv_opmode != IEEE80211_M_STA && 5941 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5942 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5943 if (ath_hal_keyisvalid(ah, i)) 5944 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5945 } 5946 5947 /* 5948 * Invoke the parent method to do net80211 work. 5949 */ 5950 error = avp->av_newstate(vap, nstate, arg); 5951 if (error != 0) 5952 goto bad; 5953 5954 /* 5955 * See above: ensure av_newstate() doesn't drop the lock 5956 * on us. 5957 */ 5958 IEEE80211_LOCK_ASSERT(ic); 5959 5960 if (nstate == IEEE80211_S_RUN) { 5961 /* NB: collect bss node again, it may have changed */ 5962 ieee80211_free_node(ni); 5963 ni = ieee80211_ref_node(vap->iv_bss); 5964 5965 DPRINTF(sc, ATH_DEBUG_STATE, 5966 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5967 "capinfo 0x%04x chan %d\n", __func__, 5968 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5969 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5970 5971 switch (vap->iv_opmode) { 5972 #ifdef IEEE80211_SUPPORT_TDMA 5973 case IEEE80211_M_AHDEMO: 5974 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5975 break; 5976 /* fall thru... */ 5977 #endif 5978 case IEEE80211_M_HOSTAP: 5979 case IEEE80211_M_IBSS: 5980 case IEEE80211_M_MBSS: 5981 /* 5982 * Allocate and setup the beacon frame. 5983 * 5984 * Stop any previous beacon DMA. This may be 5985 * necessary, for example, when an ibss merge 5986 * causes reconfiguration; there will be a state 5987 * transition from RUN->RUN that means we may 5988 * be called with beacon transmission active. 5989 */ 5990 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5991 5992 error = ath_beacon_alloc(sc, ni); 5993 if (error != 0) 5994 goto bad; 5995 /* 5996 * If joining an adhoc network defer beacon timer 5997 * configuration to the next beacon frame so we 5998 * have a current TSF to use. Otherwise we're 5999 * starting an ibss/bss so there's no need to delay; 6000 * if this is the first vap moving to RUN state, then 6001 * beacon state needs to be [re]configured. 6002 */ 6003 if (vap->iv_opmode == IEEE80211_M_IBSS && 6004 ni->ni_tstamp.tsf != 0) { 6005 sc->sc_syncbeacon = 1; 6006 } else if (!sc->sc_beacons) { 6007 #ifdef IEEE80211_SUPPORT_TDMA 6008 if (vap->iv_caps & IEEE80211_C_TDMA) 6009 ath_tdma_config(sc, vap); 6010 else 6011 #endif 6012 ath_beacon_config(sc, vap); 6013 sc->sc_beacons = 1; 6014 } 6015 break; 6016 case IEEE80211_M_STA: 6017 /* 6018 * Defer beacon timer configuration to the next 6019 * beacon frame so we have a current TSF to use 6020 * (any TSF collected when scanning is likely old). 6021 * However if it's due to a CSA -> RUN transition, 6022 * force a beacon update so we pick up a lack of 6023 * beacons from an AP in CAC and thus force a 6024 * scan. 6025 * 6026 * And, there's also corner cases here where 6027 * after a scan, the AP may have disappeared. 6028 * In that case, we may not receive an actual 6029 * beacon to update the beacon timer and thus we 6030 * won't get notified of the missing beacons. 6031 */ 6032 if (ostate != IEEE80211_S_RUN && 6033 ostate != IEEE80211_S_SLEEP) { 6034 DPRINTF(sc, ATH_DEBUG_BEACON, 6035 "%s: STA; syncbeacon=1\n", __func__); 6036 sc->sc_syncbeacon = 1; 6037 6038 if (csa_run_transition) 6039 ath_beacon_config(sc, vap); 6040 6041 /* 6042 * PR: kern/175227 6043 * 6044 * Reconfigure beacons during reset; as otherwise 6045 * we won't get the beacon timers reprogrammed 6046 * after a reset and thus we won't pick up a 6047 * beacon miss interrupt. 6048 * 6049 * Hopefully we'll see a beacon before the BMISS 6050 * timer fires (too often), leading to a STA 6051 * disassociation. 6052 */ 6053 sc->sc_beacons = 1; 6054 } 6055 break; 6056 case IEEE80211_M_MONITOR: 6057 /* 6058 * Monitor mode vaps have only INIT->RUN and RUN->RUN 6059 * transitions so we must re-enable interrupts here to 6060 * handle the case of a single monitor mode vap. 6061 */ 6062 ath_hal_intrset(ah, sc->sc_imask); 6063 break; 6064 case IEEE80211_M_WDS: 6065 break; 6066 default: 6067 break; 6068 } 6069 /* 6070 * Let the hal process statistics collected during a 6071 * scan so it can provide calibrated noise floor data. 6072 */ 6073 ath_hal_process_noisefloor(ah); 6074 /* 6075 * Reset rssi stats; maybe not the best place... 6076 */ 6077 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 6078 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 6079 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 6080 6081 /* 6082 * Force awake for RUN mode. 6083 */ 6084 ATH_LOCK(sc); 6085 ath_power_setselfgen(sc, HAL_PM_AWAKE); 6086 ath_power_setpower(sc, HAL_PM_AWAKE); 6087 ATH_UNLOCK(sc); 6088 6089 /* 6090 * Finally, start any timers and the task q thread 6091 * (in case we didn't go through SCAN state). 6092 */ 6093 if (ath_longcalinterval != 0) { 6094 /* start periodic recalibration timer */ 6095 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6096 } else { 6097 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6098 "%s: calibration disabled\n", __func__); 6099 } 6100 6101 taskqueue_unblock(sc->sc_tq); 6102 } else if (nstate == IEEE80211_S_INIT) { 6103 /* 6104 * If there are no vaps left in RUN state then 6105 * shutdown host/driver operation: 6106 * o disable interrupts 6107 * o disable the task queue thread 6108 * o mark beacon processing as stopped 6109 */ 6110 if (!ath_isanyrunningvaps(vap)) { 6111 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 6112 /* disable interrupts */ 6113 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 6114 taskqueue_block(sc->sc_tq); 6115 sc->sc_beacons = 0; 6116 } 6117 #ifdef IEEE80211_SUPPORT_TDMA 6118 ath_hal_setcca(ah, AH_TRUE); 6119 #endif 6120 } else if (nstate == IEEE80211_S_SLEEP) { 6121 /* We're going to sleep, so transition appropriately */ 6122 /* For now, only do this if we're a single STA vap */ 6123 if (sc->sc_nvaps == 1 && 6124 vap->iv_opmode == IEEE80211_M_STA) { 6125 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 6126 ATH_LOCK(sc); 6127 /* 6128 * Always at least set the self-generated 6129 * frame config to set PWRMGT=1. 6130 */ 6131 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 6132 6133 /* 6134 * If we're not syncing beacons, transition 6135 * to NETWORK_SLEEP. 6136 * 6137 * We stay awake if syncbeacon > 0 in case 6138 * we need to listen for some beacons otherwise 6139 * our beacon timer config may be wrong. 6140 */ 6141 if (sc->sc_syncbeacon == 0) { 6142 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP); 6143 } 6144 ATH_UNLOCK(sc); 6145 } 6146 } 6147 bad: 6148 ieee80211_free_node(ni); 6149 6150 /* 6151 * Restore the power state - either to what it was, or 6152 * to network_sleep if it's alright. 6153 */ 6154 ATH_LOCK(sc); 6155 ath_power_restore_power_state(sc); 6156 ATH_UNLOCK(sc); 6157 return error; 6158 } 6159 6160 /* 6161 * Allocate a key cache slot to the station so we can 6162 * setup a mapping from key index to node. The key cache 6163 * slot is needed for managing antenna state and for 6164 * compression when stations do not use crypto. We do 6165 * it uniliaterally here; if crypto is employed this slot 6166 * will be reassigned. 6167 */ 6168 static void 6169 ath_setup_stationkey(struct ieee80211_node *ni) 6170 { 6171 struct ieee80211vap *vap = ni->ni_vap; 6172 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6173 ieee80211_keyix keyix, rxkeyix; 6174 6175 /* XXX should take a locked ref to vap->iv_bss */ 6176 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 6177 /* 6178 * Key cache is full; we'll fall back to doing 6179 * the more expensive lookup in software. Note 6180 * this also means no h/w compression. 6181 */ 6182 /* XXX msg+statistic */ 6183 } else { 6184 /* XXX locking? */ 6185 ni->ni_ucastkey.wk_keyix = keyix; 6186 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 6187 /* NB: must mark device key to get called back on delete */ 6188 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 6189 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 6190 /* NB: this will create a pass-thru key entry */ 6191 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 6192 } 6193 } 6194 6195 /* 6196 * Setup driver-specific state for a newly associated node. 6197 * Note that we're called also on a re-associate, the isnew 6198 * param tells us if this is the first time or not. 6199 */ 6200 static void 6201 ath_newassoc(struct ieee80211_node *ni, int isnew) 6202 { 6203 struct ath_node *an = ATH_NODE(ni); 6204 struct ieee80211vap *vap = ni->ni_vap; 6205 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6206 const struct ieee80211_txparam *tp = ni->ni_txparms; 6207 6208 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 6209 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 6210 6211 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 6212 __func__, 6213 ni->ni_macaddr, 6214 ":", 6215 isnew, 6216 an->an_is_powersave); 6217 6218 ATH_NODE_LOCK(an); 6219 ath_rate_newassoc(sc, an, isnew); 6220 ATH_NODE_UNLOCK(an); 6221 6222 if (isnew && 6223 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6224 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6225 ath_setup_stationkey(ni); 6226 6227 /* 6228 * If we're reassociating, make sure that any paused queues 6229 * get unpaused. 6230 * 6231 * Now, we may hvae frames in the hardware queue for this node. 6232 * So if we are reassociating and there are frames in the queue, 6233 * we need to go through the cleanup path to ensure that they're 6234 * marked as non-aggregate. 6235 */ 6236 if (! isnew) { 6237 DPRINTF(sc, ATH_DEBUG_NODE, 6238 "%s: %6D: reassoc; is_powersave=%d\n", 6239 __func__, 6240 ni->ni_macaddr, 6241 ":", 6242 an->an_is_powersave); 6243 6244 /* XXX for now, we can't hold the lock across assoc */ 6245 ath_tx_node_reassoc(sc, an); 6246 6247 /* XXX for now, we can't hold the lock across wakeup */ 6248 if (an->an_is_powersave) 6249 ath_tx_node_wakeup(sc, an); 6250 } 6251 } 6252 6253 static int 6254 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6255 int nchans, struct ieee80211_channel chans[]) 6256 { 6257 struct ath_softc *sc = ic->ic_ifp->if_softc; 6258 struct ath_hal *ah = sc->sc_ah; 6259 HAL_STATUS status; 6260 6261 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6262 "%s: rd %u cc %u location %c%s\n", 6263 __func__, reg->regdomain, reg->country, reg->location, 6264 reg->ecm ? " ecm" : ""); 6265 6266 status = ath_hal_set_channels(ah, chans, nchans, 6267 reg->country, reg->regdomain); 6268 if (status != HAL_OK) { 6269 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6270 __func__, status); 6271 return EINVAL; /* XXX */ 6272 } 6273 6274 return 0; 6275 } 6276 6277 static void 6278 ath_getradiocaps(struct ieee80211com *ic, 6279 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6280 { 6281 struct ath_softc *sc = ic->ic_ifp->if_softc; 6282 struct ath_hal *ah = sc->sc_ah; 6283 6284 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6285 __func__, SKU_DEBUG, CTRY_DEFAULT); 6286 6287 /* XXX check return */ 6288 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6289 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6290 6291 } 6292 6293 static int 6294 ath_getchannels(struct ath_softc *sc) 6295 { 6296 struct ifnet *ifp = sc->sc_ifp; 6297 struct ieee80211com *ic = ifp->if_l2com; 6298 struct ath_hal *ah = sc->sc_ah; 6299 HAL_STATUS status; 6300 6301 /* 6302 * Collect channel set based on EEPROM contents. 6303 */ 6304 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6305 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6306 if (status != HAL_OK) { 6307 if_printf(ifp, "%s: unable to collect channel list from hal, " 6308 "status %d\n", __func__, status); 6309 return EINVAL; 6310 } 6311 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6312 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6313 /* XXX map Atheros sku's to net80211 SKU's */ 6314 /* XXX net80211 types too small */ 6315 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6316 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6317 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6318 ic->ic_regdomain.isocc[1] = ' '; 6319 6320 ic->ic_regdomain.ecm = 1; 6321 ic->ic_regdomain.location = 'I'; 6322 6323 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6324 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6325 __func__, sc->sc_eerd, sc->sc_eecc, 6326 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6327 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6328 return 0; 6329 } 6330 6331 static int 6332 ath_rate_setup(struct ath_softc *sc, u_int mode) 6333 { 6334 struct ath_hal *ah = sc->sc_ah; 6335 const HAL_RATE_TABLE *rt; 6336 6337 switch (mode) { 6338 case IEEE80211_MODE_11A: 6339 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6340 break; 6341 case IEEE80211_MODE_HALF: 6342 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6343 break; 6344 case IEEE80211_MODE_QUARTER: 6345 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6346 break; 6347 case IEEE80211_MODE_11B: 6348 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6349 break; 6350 case IEEE80211_MODE_11G: 6351 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6352 break; 6353 case IEEE80211_MODE_TURBO_A: 6354 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6355 break; 6356 case IEEE80211_MODE_TURBO_G: 6357 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6358 break; 6359 case IEEE80211_MODE_STURBO_A: 6360 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6361 break; 6362 case IEEE80211_MODE_11NA: 6363 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6364 break; 6365 case IEEE80211_MODE_11NG: 6366 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6367 break; 6368 default: 6369 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6370 __func__, mode); 6371 return 0; 6372 } 6373 sc->sc_rates[mode] = rt; 6374 return (rt != NULL); 6375 } 6376 6377 static void 6378 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6379 { 6380 #define N(a) (sizeof(a)/sizeof(a[0])) 6381 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6382 static const struct { 6383 u_int rate; /* tx/rx 802.11 rate */ 6384 u_int16_t timeOn; /* LED on time (ms) */ 6385 u_int16_t timeOff; /* LED off time (ms) */ 6386 } blinkrates[] = { 6387 { 108, 40, 10 }, 6388 { 96, 44, 11 }, 6389 { 72, 50, 13 }, 6390 { 48, 57, 14 }, 6391 { 36, 67, 16 }, 6392 { 24, 80, 20 }, 6393 { 22, 100, 25 }, 6394 { 18, 133, 34 }, 6395 { 12, 160, 40 }, 6396 { 10, 200, 50 }, 6397 { 6, 240, 58 }, 6398 { 4, 267, 66 }, 6399 { 2, 400, 100 }, 6400 { 0, 500, 130 }, 6401 /* XXX half/quarter rates */ 6402 }; 6403 const HAL_RATE_TABLE *rt; 6404 int i, j; 6405 6406 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6407 rt = sc->sc_rates[mode]; 6408 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6409 for (i = 0; i < rt->rateCount; i++) { 6410 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6411 if (rt->info[i].phy != IEEE80211_T_HT) 6412 sc->sc_rixmap[ieeerate] = i; 6413 else 6414 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6415 } 6416 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6417 for (i = 0; i < N(sc->sc_hwmap); i++) { 6418 if (i >= rt->rateCount) { 6419 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6420 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6421 continue; 6422 } 6423 sc->sc_hwmap[i].ieeerate = 6424 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6425 if (rt->info[i].phy == IEEE80211_T_HT) 6426 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6427 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6428 if (rt->info[i].shortPreamble || 6429 rt->info[i].phy == IEEE80211_T_OFDM) 6430 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6431 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6432 for (j = 0; j < N(blinkrates)-1; j++) 6433 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6434 break; 6435 /* NB: this uses the last entry if the rate isn't found */ 6436 /* XXX beware of overlow */ 6437 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6438 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6439 } 6440 sc->sc_currates = rt; 6441 sc->sc_curmode = mode; 6442 /* 6443 * All protection frames are transmited at 2Mb/s for 6444 * 11g, otherwise at 1Mb/s. 6445 */ 6446 if (mode == IEEE80211_MODE_11G) 6447 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6448 else 6449 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6450 /* NB: caller is responsible for resetting rate control state */ 6451 #undef N 6452 } 6453 6454 static void 6455 ath_watchdog(void *arg) 6456 { 6457 struct ath_softc *sc = arg; 6458 int do_reset = 0; 6459 6460 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6461 struct ifnet *ifp = sc->sc_ifp; 6462 uint32_t hangs; 6463 6464 ATH_LOCK(sc); 6465 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6466 ATH_UNLOCK(sc); 6467 6468 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6469 hangs != 0) { 6470 if_printf(ifp, "%s hang detected (0x%x)\n", 6471 hangs & 0xff ? "bb" : "mac", hangs); 6472 } else 6473 if_printf(ifp, "device timeout\n"); 6474 do_reset = 1; 6475 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 6476 sc->sc_stats.ast_watchdog++; 6477 6478 ATH_LOCK(sc); 6479 ath_power_restore_power_state(sc); 6480 ATH_UNLOCK(sc); 6481 } 6482 6483 /* 6484 * We can't hold the lock across the ath_reset() call. 6485 * 6486 * And since this routine can't hold a lock and sleep, 6487 * do the reset deferred. 6488 */ 6489 if (do_reset) { 6490 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6491 } 6492 6493 callout_schedule(&sc->sc_wd_ch, hz); 6494 } 6495 6496 /* 6497 * Fetch the rate control statistics for the given node. 6498 */ 6499 static int 6500 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 6501 { 6502 struct ath_node *an; 6503 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 6504 struct ieee80211_node *ni; 6505 int error = 0; 6506 6507 /* Perform a lookup on the given node */ 6508 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 6509 if (ni == NULL) { 6510 error = EINVAL; 6511 goto bad; 6512 } 6513 6514 /* Lock the ath_node */ 6515 an = ATH_NODE(ni); 6516 ATH_NODE_LOCK(an); 6517 6518 /* Fetch the rate control stats for this node */ 6519 error = ath_rate_fetch_node_stats(sc, an, rs); 6520 6521 /* No matter what happens here, just drop through */ 6522 6523 /* Unlock the ath_node */ 6524 ATH_NODE_UNLOCK(an); 6525 6526 /* Unref the node */ 6527 ieee80211_node_decref(ni); 6528 6529 bad: 6530 return (error); 6531 } 6532 6533 #ifdef ATH_DIAGAPI 6534 /* 6535 * Diagnostic interface to the HAL. This is used by various 6536 * tools to do things like retrieve register contents for 6537 * debugging. The mechanism is intentionally opaque so that 6538 * it can change frequently w/o concern for compatiblity. 6539 */ 6540 static int 6541 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6542 { 6543 struct ath_hal *ah = sc->sc_ah; 6544 u_int id = ad->ad_id & ATH_DIAG_ID; 6545 void *indata = NULL; 6546 void *outdata = NULL; 6547 u_int32_t insize = ad->ad_in_size; 6548 u_int32_t outsize = ad->ad_out_size; 6549 int error = 0; 6550 6551 if (ad->ad_id & ATH_DIAG_IN) { 6552 /* 6553 * Copy in data. 6554 */ 6555 indata = malloc(insize, M_TEMP, M_NOWAIT); 6556 if (indata == NULL) { 6557 error = ENOMEM; 6558 goto bad; 6559 } 6560 error = copyin(ad->ad_in_data, indata, insize); 6561 if (error) 6562 goto bad; 6563 } 6564 if (ad->ad_id & ATH_DIAG_DYN) { 6565 /* 6566 * Allocate a buffer for the results (otherwise the HAL 6567 * returns a pointer to a buffer where we can read the 6568 * results). Note that we depend on the HAL leaving this 6569 * pointer for us to use below in reclaiming the buffer; 6570 * may want to be more defensive. 6571 */ 6572 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6573 if (outdata == NULL) { 6574 error = ENOMEM; 6575 goto bad; 6576 } 6577 } 6578 6579 6580 ATH_LOCK(sc); 6581 if (id != HAL_DIAG_REGS) 6582 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6583 ATH_UNLOCK(sc); 6584 6585 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6586 if (outsize < ad->ad_out_size) 6587 ad->ad_out_size = outsize; 6588 if (outdata != NULL) 6589 error = copyout(outdata, ad->ad_out_data, 6590 ad->ad_out_size); 6591 } else { 6592 error = EINVAL; 6593 } 6594 6595 ATH_LOCK(sc); 6596 if (id != HAL_DIAG_REGS) 6597 ath_power_restore_power_state(sc); 6598 ATH_UNLOCK(sc); 6599 6600 bad: 6601 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6602 free(indata, M_TEMP); 6603 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6604 free(outdata, M_TEMP); 6605 return error; 6606 } 6607 #endif /* ATH_DIAGAPI */ 6608 6609 static int 6610 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 6611 { 6612 #define IS_RUNNING(ifp) \ 6613 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 6614 struct ath_softc *sc = ifp->if_softc; 6615 struct ieee80211com *ic = ifp->if_l2com; 6616 struct ifreq *ifr = (struct ifreq *)data; 6617 const HAL_RATE_TABLE *rt; 6618 int error = 0; 6619 6620 switch (cmd) { 6621 case SIOCSIFFLAGS: 6622 if (IS_RUNNING(ifp)) { 6623 /* 6624 * To avoid rescanning another access point, 6625 * do not call ath_init() here. Instead, 6626 * only reflect promisc mode settings. 6627 */ 6628 ATH_LOCK(sc); 6629 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6630 ath_mode_init(sc); 6631 ath_power_restore_power_state(sc); 6632 ATH_UNLOCK(sc); 6633 } else if (ifp->if_flags & IFF_UP) { 6634 /* 6635 * Beware of being called during attach/detach 6636 * to reset promiscuous mode. In that case we 6637 * will still be marked UP but not RUNNING. 6638 * However trying to re-init the interface 6639 * is the wrong thing to do as we've already 6640 * torn down much of our state. There's 6641 * probably a better way to deal with this. 6642 */ 6643 if (!sc->sc_invalid) 6644 ath_init(sc); /* XXX lose error */ 6645 } else { 6646 ATH_LOCK(sc); 6647 ath_stop_locked(ifp); 6648 if (!sc->sc_invalid) 6649 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 6650 ATH_UNLOCK(sc); 6651 } 6652 break; 6653 case SIOCGIFMEDIA: 6654 case SIOCSIFMEDIA: 6655 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 6656 break; 6657 case SIOCGATHSTATS: 6658 /* NB: embed these numbers to get a consistent view */ 6659 sc->sc_stats.ast_tx_packets = ifp->if_get_counter(ifp, 6660 IFCOUNTER_OPACKETS); 6661 sc->sc_stats.ast_rx_packets = ifp->if_get_counter(ifp, 6662 IFCOUNTER_IPACKETS); 6663 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 6664 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 6665 #ifdef IEEE80211_SUPPORT_TDMA 6666 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 6667 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 6668 #endif 6669 rt = sc->sc_currates; 6670 sc->sc_stats.ast_tx_rate = 6671 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 6672 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 6673 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 6674 return copyout(&sc->sc_stats, 6675 ifr->ifr_data, sizeof (sc->sc_stats)); 6676 case SIOCGATHAGSTATS: 6677 return copyout(&sc->sc_aggr_stats, 6678 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 6679 case SIOCZATHSTATS: 6680 error = priv_check(curthread, PRIV_DRIVER); 6681 if (error == 0) { 6682 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6683 memset(&sc->sc_aggr_stats, 0, 6684 sizeof(sc->sc_aggr_stats)); 6685 memset(&sc->sc_intr_stats, 0, 6686 sizeof(sc->sc_intr_stats)); 6687 } 6688 break; 6689 #ifdef ATH_DIAGAPI 6690 case SIOCGATHDIAG: 6691 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 6692 break; 6693 case SIOCGATHPHYERR: 6694 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 6695 break; 6696 #endif 6697 case SIOCGATHSPECTRAL: 6698 error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr); 6699 break; 6700 case SIOCGATHNODERATESTATS: 6701 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 6702 break; 6703 case SIOCGIFADDR: 6704 error = ether_ioctl(ifp, cmd, data); 6705 break; 6706 default: 6707 error = EINVAL; 6708 break; 6709 } 6710 return error; 6711 #undef IS_RUNNING 6712 } 6713 6714 /* 6715 * Announce various information on device/driver attach. 6716 */ 6717 static void 6718 ath_announce(struct ath_softc *sc) 6719 { 6720 struct ifnet *ifp = sc->sc_ifp; 6721 struct ath_hal *ah = sc->sc_ah; 6722 6723 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 6724 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6725 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6726 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6727 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6728 if (bootverbose) { 6729 int i; 6730 for (i = 0; i <= WME_AC_VO; i++) { 6731 struct ath_txq *txq = sc->sc_ac2q[i]; 6732 if_printf(ifp, "Use hw queue %u for %s traffic\n", 6733 txq->axq_qnum, ieee80211_wme_acnames[i]); 6734 } 6735 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 6736 sc->sc_cabq->axq_qnum); 6737 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 6738 } 6739 if (ath_rxbuf != ATH_RXBUF) 6740 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 6741 if (ath_txbuf != ATH_TXBUF) 6742 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 6743 if (sc->sc_mcastkey && bootverbose) 6744 if_printf(ifp, "using multicast key search\n"); 6745 } 6746 6747 static void 6748 ath_dfs_tasklet(void *p, int npending) 6749 { 6750 struct ath_softc *sc = (struct ath_softc *) p; 6751 struct ifnet *ifp = sc->sc_ifp; 6752 struct ieee80211com *ic = ifp->if_l2com; 6753 6754 /* 6755 * If previous processing has found a radar event, 6756 * signal this to the net80211 layer to begin DFS 6757 * processing. 6758 */ 6759 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6760 /* DFS event found, initiate channel change */ 6761 /* 6762 * XXX doesn't currently tell us whether the event 6763 * XXX was found in the primary or extension 6764 * XXX channel! 6765 */ 6766 IEEE80211_LOCK(ic); 6767 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6768 IEEE80211_UNLOCK(ic); 6769 } 6770 } 6771 6772 /* 6773 * Enable/disable power save. This must be called with 6774 * no TX driver locks currently held, so it should only 6775 * be called from the RX path (which doesn't hold any 6776 * TX driver locks.) 6777 */ 6778 static void 6779 ath_node_powersave(struct ieee80211_node *ni, int enable) 6780 { 6781 #ifdef ATH_SW_PSQ 6782 struct ath_node *an = ATH_NODE(ni); 6783 struct ieee80211com *ic = ni->ni_ic; 6784 struct ath_softc *sc = ic->ic_ifp->if_softc; 6785 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6786 6787 /* XXX and no TXQ locks should be held here */ 6788 6789 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6790 __func__, 6791 ni->ni_macaddr, 6792 ":", 6793 !! enable); 6794 6795 /* Suspend or resume software queue handling */ 6796 if (enable) 6797 ath_tx_node_sleep(sc, an); 6798 else 6799 ath_tx_node_wakeup(sc, an); 6800 6801 /* Update net80211 state */ 6802 avp->av_node_ps(ni, enable); 6803 #else 6804 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6805 6806 /* Update net80211 state */ 6807 avp->av_node_ps(ni, enable); 6808 #endif/* ATH_SW_PSQ */ 6809 } 6810 6811 /* 6812 * Notification from net80211 that the powersave queue state has 6813 * changed. 6814 * 6815 * Since the software queue also may have some frames: 6816 * 6817 * + if the node software queue has frames and the TID state 6818 * is 0, we set the TIM; 6819 * + if the node and the stack are both empty, we clear the TIM bit. 6820 * + If the stack tries to set the bit, always set it. 6821 * + If the stack tries to clear the bit, only clear it if the 6822 * software queue in question is also cleared. 6823 * 6824 * TODO: this is called during node teardown; so let's ensure this 6825 * is all correctly handled and that the TIM bit is cleared. 6826 * It may be that the node flush is called _AFTER_ the net80211 6827 * stack clears the TIM. 6828 * 6829 * Here is the racy part. Since it's possible >1 concurrent, 6830 * overlapping TXes will appear complete with a TX completion in 6831 * another thread, it's possible that the concurrent TIM calls will 6832 * clash. We can't hold the node lock here because setting the 6833 * TIM grabs the net80211 comlock and this may cause a LOR. 6834 * The solution is either to totally serialise _everything_ at 6835 * this point (ie, all TX, completion and any reset/flush go into 6836 * one taskqueue) or a new "ath TIM lock" needs to be created that 6837 * just wraps the driver state change and this call to avp->av_set_tim(). 6838 * 6839 * The same race exists in the net80211 power save queue handling 6840 * as well. Since multiple transmitting threads may queue frames 6841 * into the driver, as well as ps-poll and the driver transmitting 6842 * frames (and thus clearing the psq), it's quite possible that 6843 * a packet entering the PSQ and a ps-poll being handled will 6844 * race, causing the TIM to be cleared and not re-set. 6845 */ 6846 static int 6847 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6848 { 6849 #ifdef ATH_SW_PSQ 6850 struct ieee80211com *ic = ni->ni_ic; 6851 struct ath_softc *sc = ic->ic_ifp->if_softc; 6852 struct ath_node *an = ATH_NODE(ni); 6853 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6854 int changed = 0; 6855 6856 ATH_TX_LOCK(sc); 6857 an->an_stack_psq = enable; 6858 6859 /* 6860 * This will get called for all operating modes, 6861 * even if avp->av_set_tim is unset. 6862 * It's currently set for hostap/ibss modes; but 6863 * the same infrastructure is used for both STA 6864 * and AP/IBSS node power save. 6865 */ 6866 if (avp->av_set_tim == NULL) { 6867 ATH_TX_UNLOCK(sc); 6868 return (0); 6869 } 6870 6871 /* 6872 * If setting the bit, always set it here. 6873 * If clearing the bit, only clear it if the 6874 * software queue is also empty. 6875 * 6876 * If the node has left power save, just clear the TIM 6877 * bit regardless of the state of the power save queue. 6878 * 6879 * XXX TODO: although atomics are used, it's quite possible 6880 * that a race will occur between this and setting/clearing 6881 * in another thread. TX completion will occur always in 6882 * one thread, however setting/clearing the TIM bit can come 6883 * from a variety of different process contexts! 6884 */ 6885 if (enable && an->an_tim_set == 1) { 6886 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6887 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6888 __func__, 6889 ni->ni_macaddr, 6890 ":", 6891 enable); 6892 ATH_TX_UNLOCK(sc); 6893 } else if (enable) { 6894 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6895 "%s: %6D: enable=%d, enabling TIM\n", 6896 __func__, 6897 ni->ni_macaddr, 6898 ":", 6899 enable); 6900 an->an_tim_set = 1; 6901 ATH_TX_UNLOCK(sc); 6902 changed = avp->av_set_tim(ni, enable); 6903 } else if (an->an_swq_depth == 0) { 6904 /* disable */ 6905 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6906 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6907 __func__, 6908 ni->ni_macaddr, 6909 ":", 6910 enable); 6911 an->an_tim_set = 0; 6912 ATH_TX_UNLOCK(sc); 6913 changed = avp->av_set_tim(ni, enable); 6914 } else if (! an->an_is_powersave) { 6915 /* 6916 * disable regardless; the node isn't in powersave now 6917 */ 6918 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6919 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6920 __func__, 6921 ni->ni_macaddr, 6922 ":", 6923 enable); 6924 an->an_tim_set = 0; 6925 ATH_TX_UNLOCK(sc); 6926 changed = avp->av_set_tim(ni, enable); 6927 } else { 6928 /* 6929 * psq disable, node is currently in powersave, node 6930 * software queue isn't empty, so don't clear the TIM bit 6931 * for now. 6932 */ 6933 ATH_TX_UNLOCK(sc); 6934 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6935 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6936 __func__, 6937 ni->ni_macaddr, 6938 ":", 6939 enable); 6940 changed = 0; 6941 } 6942 6943 return (changed); 6944 #else 6945 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6946 6947 /* 6948 * Some operating modes don't set av_set_tim(), so don't 6949 * update it here. 6950 */ 6951 if (avp->av_set_tim == NULL) 6952 return (0); 6953 6954 return (avp->av_set_tim(ni, enable)); 6955 #endif /* ATH_SW_PSQ */ 6956 } 6957 6958 /* 6959 * Set or update the TIM from the software queue. 6960 * 6961 * Check the software queue depth before attempting to do lock 6962 * anything; that avoids trying to obtain the lock. Then, 6963 * re-check afterwards to ensure nothing has changed in the 6964 * meantime. 6965 * 6966 * set: This is designed to be called from the TX path, after 6967 * a frame has been queued; to see if the swq > 0. 6968 * 6969 * clear: This is designed to be called from the buffer completion point 6970 * (right now it's ath_tx_default_comp()) where the state of 6971 * a software queue has changed. 6972 * 6973 * It makes sense to place it at buffer free / completion rather 6974 * than after each software queue operation, as there's no real 6975 * point in churning the TIM bit as the last frames in the software 6976 * queue are transmitted. If they fail and we retry them, we'd 6977 * just be setting the TIM bit again anyway. 6978 */ 6979 void 6980 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6981 int enable) 6982 { 6983 #ifdef ATH_SW_PSQ 6984 struct ath_node *an; 6985 struct ath_vap *avp; 6986 6987 /* Don't do this for broadcast/etc frames */ 6988 if (ni == NULL) 6989 return; 6990 6991 an = ATH_NODE(ni); 6992 avp = ATH_VAP(ni->ni_vap); 6993 6994 /* 6995 * And for operating modes without the TIM handler set, let's 6996 * just skip those. 6997 */ 6998 if (avp->av_set_tim == NULL) 6999 return; 7000 7001 ATH_TX_LOCK_ASSERT(sc); 7002 7003 if (enable) { 7004 if (an->an_is_powersave && 7005 an->an_tim_set == 0 && 7006 an->an_swq_depth != 0) { 7007 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7008 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 7009 __func__, 7010 ni->ni_macaddr, 7011 ":"); 7012 an->an_tim_set = 1; 7013 (void) avp->av_set_tim(ni, 1); 7014 } 7015 } else { 7016 /* 7017 * Don't bother grabbing the lock unless the queue is empty. 7018 */ 7019 if (&an->an_swq_depth != 0) 7020 return; 7021 7022 if (an->an_is_powersave && 7023 an->an_stack_psq == 0 && 7024 an->an_tim_set == 1 && 7025 an->an_swq_depth == 0) { 7026 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7027 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 7028 " clear!\n", 7029 __func__, 7030 ni->ni_macaddr, 7031 ":"); 7032 an->an_tim_set = 0; 7033 (void) avp->av_set_tim(ni, 0); 7034 } 7035 } 7036 #else 7037 return; 7038 #endif /* ATH_SW_PSQ */ 7039 } 7040 7041 /* 7042 * Received a ps-poll frame from net80211. 7043 * 7044 * Here we get a chance to serve out a software-queued frame ourselves 7045 * before we punt it to net80211 to transmit us one itself - either 7046 * because there's traffic in the net80211 psq, or a NULL frame to 7047 * indicate there's nothing else. 7048 */ 7049 static void 7050 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 7051 { 7052 #ifdef ATH_SW_PSQ 7053 struct ath_node *an; 7054 struct ath_vap *avp; 7055 struct ieee80211com *ic = ni->ni_ic; 7056 struct ath_softc *sc = ic->ic_ifp->if_softc; 7057 int tid; 7058 7059 /* Just paranoia */ 7060 if (ni == NULL) 7061 return; 7062 7063 /* 7064 * Unassociated (temporary node) station. 7065 */ 7066 if (ni->ni_associd == 0) 7067 return; 7068 7069 /* 7070 * We do have an active node, so let's begin looking into it. 7071 */ 7072 an = ATH_NODE(ni); 7073 avp = ATH_VAP(ni->ni_vap); 7074 7075 /* 7076 * For now, we just call the original ps-poll method. 7077 * Once we're ready to flip this on: 7078 * 7079 * + Set leak to 1, as no matter what we're going to have 7080 * to send a frame; 7081 * + Check the software queue and if there's something in it, 7082 * schedule the highest TID thas has traffic from this node. 7083 * Then make sure we schedule the software scheduler to 7084 * run so it picks up said frame. 7085 * 7086 * That way whatever happens, we'll at least send _a_ frame 7087 * to the given node. 7088 * 7089 * Again, yes, it's crappy QoS if the node has multiple 7090 * TIDs worth of traffic - but let's get it working first 7091 * before we optimise it. 7092 * 7093 * Also yes, there's definitely latency here - we're not 7094 * direct dispatching to the hardware in this path (and 7095 * we're likely being called from the packet receive path, 7096 * so going back into TX may be a little hairy!) but again 7097 * I'd like to get this working first before optimising 7098 * turn-around time. 7099 */ 7100 7101 ATH_TX_LOCK(sc); 7102 7103 /* 7104 * Legacy - we're called and the node isn't asleep. 7105 * Immediately punt. 7106 */ 7107 if (! an->an_is_powersave) { 7108 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7109 "%s: %6D: not in powersave?\n", 7110 __func__, 7111 ni->ni_macaddr, 7112 ":"); 7113 ATH_TX_UNLOCK(sc); 7114 avp->av_recv_pspoll(ni, m); 7115 return; 7116 } 7117 7118 /* 7119 * We're in powersave. 7120 * 7121 * Leak a frame. 7122 */ 7123 an->an_leak_count = 1; 7124 7125 /* 7126 * Now, if there's no frames in the node, just punt to 7127 * recv_pspoll. 7128 * 7129 * Don't bother checking if the TIM bit is set, we really 7130 * only care if there are any frames here! 7131 */ 7132 if (an->an_swq_depth == 0) { 7133 ATH_TX_UNLOCK(sc); 7134 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7135 "%s: %6D: SWQ empty; punting to net80211\n", 7136 __func__, 7137 ni->ni_macaddr, 7138 ":"); 7139 avp->av_recv_pspoll(ni, m); 7140 return; 7141 } 7142 7143 /* 7144 * Ok, let's schedule the highest TID that has traffic 7145 * and then schedule something. 7146 */ 7147 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 7148 struct ath_tid *atid = &an->an_tid[tid]; 7149 /* 7150 * No frames? Skip. 7151 */ 7152 if (atid->axq_depth == 0) 7153 continue; 7154 ath_tx_tid_sched(sc, atid); 7155 /* 7156 * XXX we could do a direct call to the TXQ 7157 * scheduler code here to optimise latency 7158 * at the expense of a REALLY deep callstack. 7159 */ 7160 ATH_TX_UNLOCK(sc); 7161 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 7162 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7163 "%s: %6D: leaking frame to TID %d\n", 7164 __func__, 7165 ni->ni_macaddr, 7166 ":", 7167 tid); 7168 return; 7169 } 7170 7171 ATH_TX_UNLOCK(sc); 7172 7173 /* 7174 * XXX nothing in the TIDs at this point? Eek. 7175 */ 7176 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7177 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 7178 __func__, 7179 ni->ni_macaddr, 7180 ":"); 7181 avp->av_recv_pspoll(ni, m); 7182 #else 7183 avp->av_recv_pspoll(ni, m); 7184 #endif /* ATH_SW_PSQ */ 7185 } 7186 7187 MODULE_VERSION(if_ath, 1); 7188 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 7189 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ) 7190 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 7191 #endif 7192