1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_rx_edma.h> 113 #include <dev/ath/if_ath_tx_edma.h> 114 #include <dev/ath/if_ath_beacon.h> 115 #include <dev/ath/if_ath_btcoex.h> 116 #include <dev/ath/if_ath_btcoex_mci.h> 117 #include <dev/ath/if_ath_spectral.h> 118 #include <dev/ath/if_ath_lna_div.h> 119 #include <dev/ath/if_athdfs.h> 120 #include <dev/ath/if_ath_ioctl.h> 121 #include <dev/ath/if_ath_descdma.h> 122 123 #ifdef ATH_TX99_DIAG 124 #include <dev/ath/ath_tx99/ath_tx99.h> 125 #endif 126 127 #ifdef ATH_DEBUG_ALQ 128 #include <dev/ath/if_ath_alq.h> 129 #endif 130 131 /* 132 * Only enable this if you're working on PS-POLL support. 133 */ 134 #define ATH_SW_PSQ 135 136 /* 137 * ATH_BCBUF determines the number of vap's that can transmit 138 * beacons and also (currently) the number of vap's that can 139 * have unique mac addresses/bssid. When staggering beacons 140 * 4 is probably a good max as otherwise the beacons become 141 * very closely spaced and there is limited time for cab q traffic 142 * to go out. You can burst beacons instead but that is not good 143 * for stations in power save and at some point you really want 144 * another radio (and channel). 145 * 146 * The limit on the number of mac addresses is tied to our use of 147 * the U/L bit and tracking addresses in a byte; it would be 148 * worthwhile to allow more for applications like proxy sta. 149 */ 150 CTASSERT(ATH_BCBUF <= 8); 151 152 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 153 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 154 const uint8_t [IEEE80211_ADDR_LEN], 155 const uint8_t [IEEE80211_ADDR_LEN]); 156 static void ath_vap_delete(struct ieee80211vap *); 157 static int ath_init(struct ath_softc *); 158 static void ath_stop(struct ath_softc *); 159 static int ath_reset_vap(struct ieee80211vap *, u_long); 160 static int ath_transmit(struct ieee80211com *, struct mbuf *); 161 static int ath_media_change(struct ifnet *); 162 static void ath_watchdog(void *); 163 static void ath_parent(struct ieee80211com *); 164 static void ath_fatal_proc(void *, int); 165 static void ath_bmiss_vap(struct ieee80211vap *); 166 static void ath_bmiss_proc(void *, int); 167 static void ath_key_update_begin(struct ieee80211vap *); 168 static void ath_key_update_end(struct ieee80211vap *); 169 static void ath_update_mcast_hw(struct ath_softc *); 170 static void ath_update_mcast(struct ieee80211com *); 171 static void ath_update_promisc(struct ieee80211com *); 172 static void ath_updateslot(struct ieee80211com *); 173 static void ath_bstuck_proc(void *, int); 174 static void ath_reset_proc(void *, int); 175 static int ath_desc_alloc(struct ath_softc *); 176 static void ath_desc_free(struct ath_softc *); 177 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 178 const uint8_t [IEEE80211_ADDR_LEN]); 179 static void ath_node_cleanup(struct ieee80211_node *); 180 static void ath_node_free(struct ieee80211_node *); 181 static void ath_node_getsignal(const struct ieee80211_node *, 182 int8_t *, int8_t *); 183 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 184 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 185 static int ath_tx_setup(struct ath_softc *, int, int); 186 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 187 static void ath_tx_cleanup(struct ath_softc *); 188 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 189 int dosched); 190 static void ath_tx_proc_q0(void *, int); 191 static void ath_tx_proc_q0123(void *, int); 192 static void ath_tx_proc(void *, int); 193 static void ath_txq_sched_tasklet(void *, int); 194 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 195 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 196 static void ath_scan_start(struct ieee80211com *); 197 static void ath_scan_end(struct ieee80211com *); 198 static void ath_set_channel(struct ieee80211com *); 199 #ifdef ATH_ENABLE_11N 200 static void ath_update_chw(struct ieee80211com *); 201 #endif /* ATH_ENABLE_11N */ 202 static void ath_calibrate(void *); 203 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 204 static void ath_setup_stationkey(struct ieee80211_node *); 205 static void ath_newassoc(struct ieee80211_node *, int); 206 static int ath_setregdomain(struct ieee80211com *, 207 struct ieee80211_regdomain *, int, 208 struct ieee80211_channel []); 209 static void ath_getradiocaps(struct ieee80211com *, int, int *, 210 struct ieee80211_channel []); 211 static int ath_getchannels(struct ath_softc *); 212 213 static int ath_rate_setup(struct ath_softc *, u_int mode); 214 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 215 216 static void ath_announce(struct ath_softc *); 217 218 static void ath_dfs_tasklet(void *, int); 219 static void ath_node_powersave(struct ieee80211_node *, int); 220 static int ath_node_set_tim(struct ieee80211_node *, int); 221 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 222 223 #ifdef IEEE80211_SUPPORT_TDMA 224 #include <dev/ath/if_ath_tdma.h> 225 #endif 226 227 SYSCTL_DECL(_hw_ath); 228 229 /* XXX validate sysctl values */ 230 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 231 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 232 0, "long chip calibration interval (secs)"); 233 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 234 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 235 0, "short chip calibration interval (msecs)"); 236 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 237 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 238 0, "reset chip calibration results (secs)"); 239 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 240 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 241 0, "ANI calibration (msecs)"); 242 243 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 244 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 245 0, "rx buffers allocated"); 246 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 247 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 248 0, "tx buffers allocated"); 249 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 250 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 251 0, "tx (mgmt) buffers allocated"); 252 253 int ath_bstuck_threshold = 4; /* max missed beacons */ 254 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 255 0, "max missed beacon xmits before chip reset"); 256 257 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 258 259 void 260 ath_legacy_attach_comp_func(struct ath_softc *sc) 261 { 262 263 /* 264 * Special case certain configurations. Note the 265 * CAB queue is handled by these specially so don't 266 * include them when checking the txq setup mask. 267 */ 268 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 269 case 0x01: 270 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 271 break; 272 case 0x0f: 273 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 274 break; 275 default: 276 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 277 break; 278 } 279 } 280 281 /* 282 * Set the target power mode. 283 * 284 * If this is called during a point in time where 285 * the hardware is being programmed elsewhere, it will 286 * simply store it away and update it when all current 287 * uses of the hardware are completed. 288 * 289 * If the chip is going into network sleep or power off, then 290 * we will wait until all uses of the chip are done before 291 * going into network sleep or power off. 292 * 293 * If the chip is being programmed full-awake, then immediately 294 * program it full-awake so we can actually stay awake rather than 295 * the chip potentially going to sleep underneath us. 296 */ 297 void 298 _ath_power_setpower(struct ath_softc *sc, int power_state, int selfgen, 299 const char *file, int line) 300 { 301 ATH_LOCK_ASSERT(sc); 302 303 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d, target=%d, cur=%d\n", 304 __func__, 305 file, 306 line, 307 power_state, 308 sc->sc_powersave_refcnt, 309 sc->sc_target_powerstate, 310 sc->sc_cur_powerstate); 311 312 sc->sc_target_powerstate = power_state; 313 314 /* 315 * Don't program the chip into network sleep if the chip 316 * is being programmed elsewhere. 317 * 318 * However, if the chip is being programmed /awake/, force 319 * the chip awake so we stay awake. 320 */ 321 if ((sc->sc_powersave_refcnt == 0 || power_state == HAL_PM_AWAKE) && 322 power_state != sc->sc_cur_powerstate) { 323 sc->sc_cur_powerstate = power_state; 324 ath_hal_setpower(sc->sc_ah, power_state); 325 326 /* 327 * If the NIC is force-awake, then set the 328 * self-gen frame state appropriately. 329 * 330 * If the nic is in network sleep or full-sleep, 331 * we let the above call leave the self-gen 332 * state as "sleep". 333 */ 334 if (selfgen && 335 sc->sc_cur_powerstate == HAL_PM_AWAKE && 336 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 337 ath_hal_setselfgenpower(sc->sc_ah, 338 sc->sc_target_selfgen_state); 339 } 340 } 341 } 342 343 /* 344 * Set the current self-generated frames state. 345 * 346 * This is separate from the target power mode. The chip may be 347 * awake but the desired state is "sleep", so frames sent to the 348 * destination has PWRMGT=1 in the 802.11 header. The NIC also 349 * needs to know to set PWRMGT=1 in self-generated frames. 350 */ 351 void 352 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 353 { 354 355 ATH_LOCK_ASSERT(sc); 356 357 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 358 __func__, 359 file, 360 line, 361 power_state, 362 sc->sc_target_selfgen_state); 363 364 sc->sc_target_selfgen_state = power_state; 365 366 /* 367 * If the NIC is force-awake, then set the power state. 368 * Network-state and full-sleep will already transition it to 369 * mark self-gen frames as sleeping - and we can't 370 * guarantee the NIC is awake to program the self-gen frame 371 * setting anyway. 372 */ 373 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 374 ath_hal_setselfgenpower(sc->sc_ah, power_state); 375 } 376 } 377 378 /* 379 * Set the hardware power mode and take a reference. 380 * 381 * This doesn't update the target power mode in the driver; 382 * it just updates the hardware power state. 383 * 384 * XXX it should only ever force the hardware awake; it should 385 * never be called to set it asleep. 386 */ 387 void 388 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 389 { 390 ATH_LOCK_ASSERT(sc); 391 392 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 393 __func__, 394 file, 395 line, 396 power_state, 397 sc->sc_powersave_refcnt); 398 399 sc->sc_powersave_refcnt++; 400 401 /* 402 * Only do the power state change if we're not programming 403 * it elsewhere. 404 */ 405 if (power_state != sc->sc_cur_powerstate) { 406 ath_hal_setpower(sc->sc_ah, power_state); 407 sc->sc_cur_powerstate = power_state; 408 /* 409 * Adjust the self-gen powerstate if appropriate. 410 */ 411 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 412 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 413 ath_hal_setselfgenpower(sc->sc_ah, 414 sc->sc_target_selfgen_state); 415 } 416 } 417 } 418 419 /* 420 * Restore the power save mode to what it once was. 421 * 422 * This will decrement the reference counter and once it hits 423 * zero, it'll restore the powersave state. 424 */ 425 void 426 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 427 { 428 429 ATH_LOCK_ASSERT(sc); 430 431 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 432 __func__, 433 file, 434 line, 435 sc->sc_powersave_refcnt, 436 sc->sc_target_powerstate); 437 438 if (sc->sc_powersave_refcnt == 0) 439 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 440 else 441 sc->sc_powersave_refcnt--; 442 443 if (sc->sc_powersave_refcnt == 0 && 444 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 445 sc->sc_cur_powerstate = sc->sc_target_powerstate; 446 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 447 } 448 449 /* 450 * Adjust the self-gen powerstate if appropriate. 451 */ 452 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 453 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 454 ath_hal_setselfgenpower(sc->sc_ah, 455 sc->sc_target_selfgen_state); 456 } 457 458 } 459 460 /* 461 * Configure the initial HAL configuration values based on bus 462 * specific parameters. 463 * 464 * Some PCI IDs and other information may need tweaking. 465 * 466 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable 467 * if BT antenna diversity isn't enabled. 468 * 469 * So, let's also figure out how to enable BT diversity for AR9485. 470 */ 471 static void 472 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config) 473 { 474 /* XXX TODO: only for PCI devices? */ 475 476 if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) { 477 ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */ 478 ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE; 479 ah_config->ath_hal_min_gainidx = AH_TRUE; 480 ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88; 481 /* XXX low_rssi_thresh */ 482 /* XXX fast_div_bias */ 483 device_printf(sc->sc_dev, "configuring for %s\n", 484 (sc->sc_pci_devinfo & ATH_PCI_CUS198) ? 485 "CUS198" : "CUS230"); 486 } 487 488 if (sc->sc_pci_devinfo & ATH_PCI_CUS217) 489 device_printf(sc->sc_dev, "CUS217 card detected\n"); 490 491 if (sc->sc_pci_devinfo & ATH_PCI_CUS252) 492 device_printf(sc->sc_dev, "CUS252 card detected\n"); 493 494 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT) 495 device_printf(sc->sc_dev, "WB335 1-ANT card detected\n"); 496 497 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT) 498 device_printf(sc->sc_dev, "WB335 2-ANT card detected\n"); 499 500 if (sc->sc_pci_devinfo & ATH_PCI_BT_ANT_DIV) 501 device_printf(sc->sc_dev, 502 "Bluetooth Antenna Diversity card detected\n"); 503 504 if (sc->sc_pci_devinfo & ATH_PCI_KILLER) 505 device_printf(sc->sc_dev, "Killer Wireless card detected\n"); 506 507 #if 0 508 /* 509 * Some WB335 cards do not support antenna diversity. Since 510 * we use a hardcoded value for AR9565 instead of using the 511 * EEPROM/OTP data, remove the combining feature from 512 * the HW capabilities bitmap. 513 */ 514 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 515 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV)) 516 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB; 517 } 518 519 if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) { 520 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV; 521 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n"); 522 } 523 #endif 524 525 if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) { 526 ah_config->ath_hal_pcie_waen = 0x0040473b; 527 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n"); 528 } 529 530 #if 0 531 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) { 532 ah->config.no_pll_pwrsave = true; 533 device_printf(sc->sc_dev, "Disable PLL PowerSave\n"); 534 } 535 #endif 536 537 } 538 539 /* 540 * Attempt to fetch the MAC address from the kernel environment. 541 * 542 * Returns 0, macaddr in macaddr if successful; -1 otherwise. 543 */ 544 static int 545 ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr) 546 { 547 char devid_str[32]; 548 int local_mac = 0; 549 char *local_macstr; 550 551 /* 552 * Fetch from the kenv rather than using hints. 553 * 554 * Hints would be nice but the transition to dynamic 555 * hints/kenv doesn't happen early enough for this 556 * to work reliably (eg on anything embedded.) 557 */ 558 snprintf(devid_str, 32, "hint.%s.%d.macaddr", 559 device_get_name(sc->sc_dev), 560 device_get_unit(sc->sc_dev)); 561 562 if ((local_macstr = kern_getenv(devid_str)) != NULL) { 563 uint32_t tmpmac[ETHER_ADDR_LEN]; 564 int count; 565 int i; 566 567 /* Have a MAC address; should use it */ 568 device_printf(sc->sc_dev, 569 "Overriding MAC address from environment: '%s'\n", 570 local_macstr); 571 572 /* Extract out the MAC address */ 573 count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x", 574 &tmpmac[0], &tmpmac[1], 575 &tmpmac[2], &tmpmac[3], 576 &tmpmac[4], &tmpmac[5]); 577 if (count == 6) { 578 /* Valid! */ 579 local_mac = 1; 580 for (i = 0; i < ETHER_ADDR_LEN; i++) 581 macaddr[i] = tmpmac[i]; 582 } 583 /* Done! */ 584 freeenv(local_macstr); 585 local_macstr = NULL; 586 } 587 588 if (local_mac) 589 return (0); 590 return (-1); 591 } 592 593 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 594 #define HAL_MODE_HT40 \ 595 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 596 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 597 int 598 ath_attach(u_int16_t devid, struct ath_softc *sc) 599 { 600 struct ieee80211com *ic = &sc->sc_ic; 601 struct ath_hal *ah = NULL; 602 HAL_STATUS status; 603 int error = 0, i; 604 u_int wmodes; 605 int rx_chainmask, tx_chainmask; 606 HAL_OPS_CONFIG ah_config; 607 608 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 609 610 ic->ic_softc = sc; 611 ic->ic_name = device_get_nameunit(sc->sc_dev); 612 613 /* 614 * Configure the initial configuration data. 615 * 616 * This is stuff that may be needed early during attach 617 * rather than done via configuration calls later. 618 */ 619 bzero(&ah_config, sizeof(ah_config)); 620 ath_setup_hal_config(sc, &ah_config); 621 622 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 623 sc->sc_eepromdata, &ah_config, &status); 624 if (ah == NULL) { 625 device_printf(sc->sc_dev, 626 "unable to attach hardware; HAL status %u\n", status); 627 error = ENXIO; 628 goto bad; 629 } 630 sc->sc_ah = ah; 631 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 632 #ifdef ATH_DEBUG 633 sc->sc_debug = ath_debug; 634 #endif 635 636 /* 637 * Setup the DMA/EDMA functions based on the current 638 * hardware support. 639 * 640 * This is required before the descriptors are allocated. 641 */ 642 if (ath_hal_hasedma(sc->sc_ah)) { 643 sc->sc_isedma = 1; 644 ath_recv_setup_edma(sc); 645 ath_xmit_setup_edma(sc); 646 } else { 647 ath_recv_setup_legacy(sc); 648 ath_xmit_setup_legacy(sc); 649 } 650 651 if (ath_hal_hasmybeacon(sc->sc_ah)) { 652 sc->sc_do_mybeacon = 1; 653 } 654 655 /* 656 * Check if the MAC has multi-rate retry support. 657 * We do this by trying to setup a fake extended 658 * descriptor. MAC's that don't have support will 659 * return false w/o doing anything. MAC's that do 660 * support it will return true w/o doing anything. 661 */ 662 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 663 664 /* 665 * Check if the device has hardware counters for PHY 666 * errors. If so we need to enable the MIB interrupt 667 * so we can act on stat triggers. 668 */ 669 if (ath_hal_hwphycounters(ah)) 670 sc->sc_needmib = 1; 671 672 /* 673 * Get the hardware key cache size. 674 */ 675 sc->sc_keymax = ath_hal_keycachesize(ah); 676 if (sc->sc_keymax > ATH_KEYMAX) { 677 device_printf(sc->sc_dev, 678 "Warning, using only %u of %u key cache slots\n", 679 ATH_KEYMAX, sc->sc_keymax); 680 sc->sc_keymax = ATH_KEYMAX; 681 } 682 /* 683 * Reset the key cache since some parts do not 684 * reset the contents on initial power up. 685 */ 686 for (i = 0; i < sc->sc_keymax; i++) 687 ath_hal_keyreset(ah, i); 688 689 /* 690 * Collect the default channel list. 691 */ 692 error = ath_getchannels(sc); 693 if (error != 0) 694 goto bad; 695 696 /* 697 * Setup rate tables for all potential media types. 698 */ 699 ath_rate_setup(sc, IEEE80211_MODE_11A); 700 ath_rate_setup(sc, IEEE80211_MODE_11B); 701 ath_rate_setup(sc, IEEE80211_MODE_11G); 702 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 703 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 704 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 705 ath_rate_setup(sc, IEEE80211_MODE_11NA); 706 ath_rate_setup(sc, IEEE80211_MODE_11NG); 707 ath_rate_setup(sc, IEEE80211_MODE_HALF); 708 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 709 710 /* NB: setup here so ath_rate_update is happy */ 711 ath_setcurmode(sc, IEEE80211_MODE_11A); 712 713 /* 714 * Allocate TX descriptors and populate the lists. 715 */ 716 error = ath_desc_alloc(sc); 717 if (error != 0) { 718 device_printf(sc->sc_dev, 719 "failed to allocate TX descriptors: %d\n", error); 720 goto bad; 721 } 722 error = ath_txdma_setup(sc); 723 if (error != 0) { 724 device_printf(sc->sc_dev, 725 "failed to allocate TX descriptors: %d\n", error); 726 goto bad; 727 } 728 729 /* 730 * Allocate RX descriptors and populate the lists. 731 */ 732 error = ath_rxdma_setup(sc); 733 if (error != 0) { 734 device_printf(sc->sc_dev, 735 "failed to allocate RX descriptors: %d\n", error); 736 goto bad; 737 } 738 739 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 740 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 741 742 ATH_TXBUF_LOCK_INIT(sc); 743 744 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 745 taskqueue_thread_enqueue, &sc->sc_tq); 746 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 747 device_get_nameunit(sc->sc_dev)); 748 749 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 750 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 751 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 752 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 753 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 754 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 755 756 /* 757 * Allocate hardware transmit queues: one queue for 758 * beacon frames and one data queue for each QoS 759 * priority. Note that the hal handles resetting 760 * these queues at the needed time. 761 * 762 * XXX PS-Poll 763 */ 764 sc->sc_bhalq = ath_beaconq_setup(sc); 765 if (sc->sc_bhalq == (u_int) -1) { 766 device_printf(sc->sc_dev, 767 "unable to setup a beacon xmit queue!\n"); 768 error = EIO; 769 goto bad2; 770 } 771 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 772 if (sc->sc_cabq == NULL) { 773 device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n"); 774 error = EIO; 775 goto bad2; 776 } 777 /* NB: insure BK queue is the lowest priority h/w queue */ 778 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 779 device_printf(sc->sc_dev, 780 "unable to setup xmit queue for %s traffic!\n", 781 ieee80211_wme_acnames[WME_AC_BK]); 782 error = EIO; 783 goto bad2; 784 } 785 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 786 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 787 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 788 /* 789 * Not enough hardware tx queues to properly do WME; 790 * just punt and assign them all to the same h/w queue. 791 * We could do a better job of this if, for example, 792 * we allocate queues when we switch from station to 793 * AP mode. 794 */ 795 if (sc->sc_ac2q[WME_AC_VI] != NULL) 796 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 797 if (sc->sc_ac2q[WME_AC_BE] != NULL) 798 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 799 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 800 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 801 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 802 } 803 804 /* 805 * Attach the TX completion function. 806 * 807 * The non-EDMA chips may have some special case optimisations; 808 * this method gives everyone a chance to attach cleanly. 809 */ 810 sc->sc_tx.xmit_attach_comp_func(sc); 811 812 /* 813 * Setup rate control. Some rate control modules 814 * call back to change the anntena state so expose 815 * the necessary entry points. 816 * XXX maybe belongs in struct ath_ratectrl? 817 */ 818 sc->sc_setdefantenna = ath_setdefantenna; 819 sc->sc_rc = ath_rate_attach(sc); 820 if (sc->sc_rc == NULL) { 821 error = EIO; 822 goto bad2; 823 } 824 825 /* Attach DFS module */ 826 if (! ath_dfs_attach(sc)) { 827 device_printf(sc->sc_dev, 828 "%s: unable to attach DFS\n", __func__); 829 error = EIO; 830 goto bad2; 831 } 832 833 /* Attach spectral module */ 834 if (ath_spectral_attach(sc) < 0) { 835 device_printf(sc->sc_dev, 836 "%s: unable to attach spectral\n", __func__); 837 error = EIO; 838 goto bad2; 839 } 840 841 /* Attach bluetooth coexistence module */ 842 if (ath_btcoex_attach(sc) < 0) { 843 device_printf(sc->sc_dev, 844 "%s: unable to attach bluetooth coexistence\n", __func__); 845 error = EIO; 846 goto bad2; 847 } 848 849 /* Attach LNA diversity module */ 850 if (ath_lna_div_attach(sc) < 0) { 851 device_printf(sc->sc_dev, 852 "%s: unable to attach LNA diversity\n", __func__); 853 error = EIO; 854 goto bad2; 855 } 856 857 /* Start DFS processing tasklet */ 858 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 859 860 /* Configure LED state */ 861 sc->sc_blinking = 0; 862 sc->sc_ledstate = 1; 863 sc->sc_ledon = 0; /* low true */ 864 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 865 callout_init(&sc->sc_ledtimer, 1); 866 867 /* 868 * Don't setup hardware-based blinking. 869 * 870 * Although some NICs may have this configured in the 871 * default reset register values, the user may wish 872 * to alter which pins have which function. 873 * 874 * The reference driver attaches the MAC network LED to GPIO1 and 875 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 876 * NIC has these reversed. 877 */ 878 sc->sc_hardled = (1 == 0); 879 sc->sc_led_net_pin = -1; 880 sc->sc_led_pwr_pin = -1; 881 /* 882 * Auto-enable soft led processing for IBM cards and for 883 * 5211 minipci cards. Users can also manually enable/disable 884 * support with a sysctl. 885 */ 886 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 887 ath_led_config(sc); 888 ath_hal_setledstate(ah, HAL_LED_INIT); 889 890 /* XXX not right but it's not used anywhere important */ 891 ic->ic_phytype = IEEE80211_T_OFDM; 892 ic->ic_opmode = IEEE80211_M_STA; 893 ic->ic_caps = 894 IEEE80211_C_STA /* station mode */ 895 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 896 | IEEE80211_C_HOSTAP /* hostap mode */ 897 | IEEE80211_C_MONITOR /* monitor mode */ 898 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 899 | IEEE80211_C_WDS /* 4-address traffic works */ 900 | IEEE80211_C_MBSS /* mesh point link mode */ 901 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 902 | IEEE80211_C_SHSLOT /* short slot time supported */ 903 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 904 #ifndef ATH_ENABLE_11N 905 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 906 #endif 907 | IEEE80211_C_TXFRAG /* handle tx frags */ 908 #ifdef ATH_ENABLE_DFS 909 | IEEE80211_C_DFS /* Enable radar detection */ 910 #endif 911 | IEEE80211_C_PMGT /* Station side power mgmt */ 912 | IEEE80211_C_SWSLEEP 913 ; 914 /* 915 * Query the hal to figure out h/w crypto support. 916 */ 917 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 918 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 919 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 920 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 921 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 922 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 923 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 924 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 925 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 926 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 927 /* 928 * Check if h/w does the MIC and/or whether the 929 * separate key cache entries are required to 930 * handle both tx+rx MIC keys. 931 */ 932 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 933 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 934 /* 935 * If the h/w supports storing tx+rx MIC keys 936 * in one cache slot automatically enable use. 937 */ 938 if (ath_hal_hastkipsplit(ah) || 939 !ath_hal_settkipsplit(ah, AH_FALSE)) 940 sc->sc_splitmic = 1; 941 /* 942 * If the h/w can do TKIP MIC together with WME then 943 * we use it; otherwise we force the MIC to be done 944 * in software by the net80211 layer. 945 */ 946 if (ath_hal_haswmetkipmic(ah)) 947 sc->sc_wmetkipmic = 1; 948 } 949 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 950 /* 951 * Check for multicast key search support. 952 */ 953 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 954 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 955 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 956 } 957 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 958 /* 959 * Mark key cache slots associated with global keys 960 * as in use. If we knew TKIP was not to be used we 961 * could leave the +32, +64, and +32+64 slots free. 962 */ 963 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 964 setbit(sc->sc_keymap, i); 965 setbit(sc->sc_keymap, i+64); 966 if (sc->sc_splitmic) { 967 setbit(sc->sc_keymap, i+32); 968 setbit(sc->sc_keymap, i+32+64); 969 } 970 } 971 /* 972 * TPC support can be done either with a global cap or 973 * per-packet support. The latter is not available on 974 * all parts. We're a bit pedantic here as all parts 975 * support a global cap. 976 */ 977 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 978 ic->ic_caps |= IEEE80211_C_TXPMGT; 979 980 /* 981 * Mark WME capability only if we have sufficient 982 * hardware queues to do proper priority scheduling. 983 */ 984 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 985 ic->ic_caps |= IEEE80211_C_WME; 986 /* 987 * Check for misc other capabilities. 988 */ 989 if (ath_hal_hasbursting(ah)) 990 ic->ic_caps |= IEEE80211_C_BURST; 991 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 992 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 993 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 994 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 995 996 /* XXX TODO: just make this a "store tx/rx timestamp length" operation */ 997 if (ath_hal_get_rx_tsf_prec(ah, &i)) { 998 if (i == 32) { 999 sc->sc_rxtsf32 = 1; 1000 } 1001 if (bootverbose) 1002 device_printf(sc->sc_dev, "RX timestamp: %d bits\n", i); 1003 } 1004 if (ath_hal_get_tx_tsf_prec(ah, &i)) { 1005 if (bootverbose) 1006 device_printf(sc->sc_dev, "TX timestamp: %d bits\n", i); 1007 } 1008 1009 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 1010 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 1011 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 1012 1013 if (ath_hal_hasfastframes(ah)) 1014 ic->ic_caps |= IEEE80211_C_FF; 1015 wmodes = ath_hal_getwirelessmodes(ah); 1016 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 1017 ic->ic_caps |= IEEE80211_C_TURBOP; 1018 #ifdef IEEE80211_SUPPORT_TDMA 1019 if (ath_hal_macversion(ah) > 0x78) { 1020 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 1021 ic->ic_tdma_update = ath_tdma_update; 1022 } 1023 #endif 1024 1025 /* 1026 * TODO: enforce that at least this many frames are available 1027 * in the txbuf list before allowing data frames (raw or 1028 * otherwise) to be transmitted. 1029 */ 1030 sc->sc_txq_data_minfree = 10; 1031 1032 /* 1033 * Shorten this to 64 packets, or 1/4 ath_txbuf, whichever 1034 * is smaller. 1035 * 1036 * Anything bigger can potentially see the cabq consume 1037 * almost all buffers, starving everything else, only to 1038 * see most fail to transmit in the given beacon interval. 1039 */ 1040 sc->sc_txq_mcastq_maxdepth = MIN(64, ath_txbuf / 4); 1041 1042 /* 1043 * How deep can the node software TX queue get whilst it's asleep. 1044 */ 1045 sc->sc_txq_node_psq_maxdepth = 16; 1046 1047 /* 1048 * Default the maximum queue to to 1/4'th the TX buffers, or 1049 * 64, whichever is smaller. 1050 */ 1051 sc->sc_txq_node_maxdepth = MIN(64, ath_txbuf / 4); 1052 1053 /* Enable CABQ by default */ 1054 sc->sc_cabq_enable = 1; 1055 1056 /* 1057 * Allow the TX and RX chainmasks to be overridden by 1058 * environment variables and/or device.hints. 1059 * 1060 * This must be done early - before the hardware is 1061 * calibrated or before the 802.11n stream calculation 1062 * is done. 1063 */ 1064 if (resource_int_value(device_get_name(sc->sc_dev), 1065 device_get_unit(sc->sc_dev), "rx_chainmask", 1066 &rx_chainmask) == 0) { 1067 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 1068 rx_chainmask); 1069 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 1070 } 1071 if (resource_int_value(device_get_name(sc->sc_dev), 1072 device_get_unit(sc->sc_dev), "tx_chainmask", 1073 &tx_chainmask) == 0) { 1074 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 1075 tx_chainmask); 1076 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 1077 } 1078 1079 /* 1080 * Query the TX/RX chainmask configuration. 1081 * 1082 * This is only relevant for 11n devices. 1083 */ 1084 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 1085 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 1086 1087 /* 1088 * Disable MRR with protected frames by default. 1089 * Only 802.11n series NICs can handle this. 1090 */ 1091 sc->sc_mrrprot = 0; /* XXX should be a capability */ 1092 1093 /* 1094 * Query the enterprise mode information the HAL. 1095 */ 1096 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 1097 &sc->sc_ent_cfg) == HAL_OK) 1098 sc->sc_use_ent = 1; 1099 1100 #ifdef ATH_ENABLE_11N 1101 /* 1102 * Query HT capabilities 1103 */ 1104 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 1105 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 1106 uint32_t rxs, txs; 1107 uint32_t ldpc; 1108 1109 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 1110 1111 sc->sc_mrrprot = 1; /* XXX should be a capability */ 1112 1113 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 1114 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 1115 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 1116 | IEEE80211_HTCAP_MAXAMSDU_3839 1117 /* max A-MSDU length */ 1118 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 1119 1120 /* 1121 * Enable short-GI for HT20 only if the hardware 1122 * advertises support. 1123 * Notably, anything earlier than the AR9287 doesn't. 1124 */ 1125 if ((ath_hal_getcapability(ah, 1126 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 1127 (wmodes & HAL_MODE_HT20)) { 1128 device_printf(sc->sc_dev, 1129 "[HT] enabling short-GI in 20MHz mode\n"); 1130 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 1131 } 1132 1133 if (wmodes & HAL_MODE_HT40) 1134 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 1135 | IEEE80211_HTCAP_SHORTGI40; 1136 1137 /* 1138 * TX/RX streams need to be taken into account when 1139 * negotiating which MCS rates it'll receive and 1140 * what MCS rates are available for TX. 1141 */ 1142 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 1143 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 1144 ic->ic_txstream = txs; 1145 ic->ic_rxstream = rxs; 1146 1147 /* 1148 * Setup TX and RX STBC based on what the HAL allows and 1149 * the currently configured chainmask set. 1150 * Ie - don't enable STBC TX if only one chain is enabled. 1151 * STBC RX is fine on a single RX chain; it just won't 1152 * provide any real benefit. 1153 */ 1154 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 1155 NULL) == HAL_OK) { 1156 sc->sc_rx_stbc = 1; 1157 device_printf(sc->sc_dev, 1158 "[HT] 1 stream STBC receive enabled\n"); 1159 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1160 } 1161 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1162 NULL) == HAL_OK) { 1163 sc->sc_tx_stbc = 1; 1164 device_printf(sc->sc_dev, 1165 "[HT] 1 stream STBC transmit enabled\n"); 1166 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1167 } 1168 1169 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1170 &sc->sc_rts_aggr_limit); 1171 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1172 device_printf(sc->sc_dev, 1173 "[HT] RTS aggregates limited to %d KiB\n", 1174 sc->sc_rts_aggr_limit / 1024); 1175 1176 /* 1177 * LDPC 1178 */ 1179 if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc)) 1180 == HAL_OK && (ldpc == 1)) { 1181 sc->sc_has_ldpc = 1; 1182 device_printf(sc->sc_dev, 1183 "[HT] LDPC transmit/receive enabled\n"); 1184 ic->ic_htcaps |= IEEE80211_HTCAP_LDPC | 1185 IEEE80211_HTC_TXLDPC; 1186 } 1187 1188 1189 device_printf(sc->sc_dev, 1190 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1191 } 1192 #endif 1193 1194 /* 1195 * Initial aggregation settings. 1196 */ 1197 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1198 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1199 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1200 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1201 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1202 sc->sc_delim_min_pad = 0; 1203 1204 /* 1205 * Check if the hardware requires PCI register serialisation. 1206 * Some of the Owl based MACs require this. 1207 */ 1208 if (mp_ncpus > 1 && 1209 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1210 0, NULL) == HAL_OK) { 1211 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1212 device_printf(sc->sc_dev, 1213 "Enabling register serialisation\n"); 1214 } 1215 1216 /* 1217 * Initialise the deferred completed RX buffer list. 1218 */ 1219 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1220 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1221 1222 /* 1223 * Indicate we need the 802.11 header padded to a 1224 * 32-bit boundary for 4-address and QoS frames. 1225 */ 1226 ic->ic_flags |= IEEE80211_F_DATAPAD; 1227 1228 /* 1229 * Query the hal about antenna support. 1230 */ 1231 sc->sc_defant = ath_hal_getdefantenna(ah); 1232 1233 /* 1234 * Not all chips have the VEOL support we want to 1235 * use with IBSS beacons; check here for it. 1236 */ 1237 sc->sc_hasveol = ath_hal_hasveol(ah); 1238 1239 /* get mac address from kenv first, then hardware */ 1240 if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) { 1241 /* Tell the HAL now about the new MAC */ 1242 ath_hal_setmac(ah, ic->ic_macaddr); 1243 } else { 1244 ath_hal_getmac(ah, ic->ic_macaddr); 1245 } 1246 1247 if (sc->sc_hasbmask) 1248 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1249 1250 /* NB: used to size node table key mapping array */ 1251 ic->ic_max_keyix = sc->sc_keymax; 1252 /* call MI attach routine. */ 1253 ieee80211_ifattach(ic); 1254 ic->ic_setregdomain = ath_setregdomain; 1255 ic->ic_getradiocaps = ath_getradiocaps; 1256 sc->sc_opmode = HAL_M_STA; 1257 1258 /* override default methods */ 1259 ic->ic_ioctl = ath_ioctl; 1260 ic->ic_parent = ath_parent; 1261 ic->ic_transmit = ath_transmit; 1262 ic->ic_newassoc = ath_newassoc; 1263 ic->ic_updateslot = ath_updateslot; 1264 ic->ic_wme.wme_update = ath_wme_update; 1265 ic->ic_vap_create = ath_vap_create; 1266 ic->ic_vap_delete = ath_vap_delete; 1267 ic->ic_raw_xmit = ath_raw_xmit; 1268 ic->ic_update_mcast = ath_update_mcast; 1269 ic->ic_update_promisc = ath_update_promisc; 1270 ic->ic_node_alloc = ath_node_alloc; 1271 sc->sc_node_free = ic->ic_node_free; 1272 ic->ic_node_free = ath_node_free; 1273 sc->sc_node_cleanup = ic->ic_node_cleanup; 1274 ic->ic_node_cleanup = ath_node_cleanup; 1275 ic->ic_node_getsignal = ath_node_getsignal; 1276 ic->ic_scan_start = ath_scan_start; 1277 ic->ic_scan_end = ath_scan_end; 1278 ic->ic_set_channel = ath_set_channel; 1279 #ifdef ATH_ENABLE_11N 1280 /* 802.11n specific - but just override anyway */ 1281 sc->sc_addba_request = ic->ic_addba_request; 1282 sc->sc_addba_response = ic->ic_addba_response; 1283 sc->sc_addba_stop = ic->ic_addba_stop; 1284 sc->sc_bar_response = ic->ic_bar_response; 1285 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1286 1287 ic->ic_addba_request = ath_addba_request; 1288 ic->ic_addba_response = ath_addba_response; 1289 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1290 ic->ic_addba_stop = ath_addba_stop; 1291 ic->ic_bar_response = ath_bar_response; 1292 1293 ic->ic_update_chw = ath_update_chw; 1294 #endif /* ATH_ENABLE_11N */ 1295 1296 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1297 /* 1298 * There's one vendor bitmap entry in the RX radiotap 1299 * header; make sure that's taken into account. 1300 */ 1301 ieee80211_radiotap_attachv(ic, 1302 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1303 ATH_TX_RADIOTAP_PRESENT, 1304 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1305 ATH_RX_RADIOTAP_PRESENT); 1306 #else 1307 /* 1308 * No vendor bitmap/extensions are present. 1309 */ 1310 ieee80211_radiotap_attach(ic, 1311 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1312 ATH_TX_RADIOTAP_PRESENT, 1313 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1314 ATH_RX_RADIOTAP_PRESENT); 1315 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1316 1317 /* 1318 * Setup the ALQ logging if required 1319 */ 1320 #ifdef ATH_DEBUG_ALQ 1321 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1322 if_ath_alq_setcfg(&sc->sc_alq, 1323 sc->sc_ah->ah_macVersion, 1324 sc->sc_ah->ah_macRev, 1325 sc->sc_ah->ah_phyRev, 1326 sc->sc_ah->ah_magic); 1327 #endif 1328 1329 /* 1330 * Setup dynamic sysctl's now that country code and 1331 * regdomain are available from the hal. 1332 */ 1333 ath_sysctlattach(sc); 1334 ath_sysctl_stats_attach(sc); 1335 ath_sysctl_hal_attach(sc); 1336 1337 if (bootverbose) 1338 ieee80211_announce(ic); 1339 ath_announce(sc); 1340 1341 /* 1342 * Put it to sleep for now. 1343 */ 1344 ATH_LOCK(sc); 1345 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1); 1346 ATH_UNLOCK(sc); 1347 1348 return 0; 1349 bad2: 1350 ath_tx_cleanup(sc); 1351 ath_desc_free(sc); 1352 ath_txdma_teardown(sc); 1353 ath_rxdma_teardown(sc); 1354 bad: 1355 if (ah) 1356 ath_hal_detach(ah); 1357 sc->sc_invalid = 1; 1358 return error; 1359 } 1360 1361 int 1362 ath_detach(struct ath_softc *sc) 1363 { 1364 1365 /* 1366 * NB: the order of these is important: 1367 * o stop the chip so no more interrupts will fire 1368 * o call the 802.11 layer before detaching the hal to 1369 * insure callbacks into the driver to delete global 1370 * key cache entries can be handled 1371 * o free the taskqueue which drains any pending tasks 1372 * o reclaim the tx queue data structures after calling 1373 * the 802.11 layer as we'll get called back to reclaim 1374 * node state and potentially want to use them 1375 * o to cleanup the tx queues the hal is called, so detach 1376 * it last 1377 * Other than that, it's straightforward... 1378 */ 1379 1380 /* 1381 * XXX Wake the hardware up first. ath_stop() will still 1382 * wake it up first, but I'd rather do it here just to 1383 * ensure it's awake. 1384 */ 1385 ATH_LOCK(sc); 1386 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1387 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 1388 1389 /* 1390 * Stop things cleanly. 1391 */ 1392 ath_stop(sc); 1393 ATH_UNLOCK(sc); 1394 1395 ieee80211_ifdetach(&sc->sc_ic); 1396 taskqueue_free(sc->sc_tq); 1397 #ifdef ATH_TX99_DIAG 1398 if (sc->sc_tx99 != NULL) 1399 sc->sc_tx99->detach(sc->sc_tx99); 1400 #endif 1401 ath_rate_detach(sc->sc_rc); 1402 #ifdef ATH_DEBUG_ALQ 1403 if_ath_alq_tidyup(&sc->sc_alq); 1404 #endif 1405 ath_lna_div_detach(sc); 1406 ath_btcoex_detach(sc); 1407 ath_spectral_detach(sc); 1408 ath_dfs_detach(sc); 1409 ath_desc_free(sc); 1410 ath_txdma_teardown(sc); 1411 ath_rxdma_teardown(sc); 1412 ath_tx_cleanup(sc); 1413 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1414 1415 return 0; 1416 } 1417 1418 /* 1419 * MAC address handling for multiple BSS on the same radio. 1420 * The first vap uses the MAC address from the EEPROM. For 1421 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1422 * address and use the next six bits as an index. 1423 */ 1424 static void 1425 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1426 { 1427 int i; 1428 1429 if (clone && sc->sc_hasbmask) { 1430 /* NB: we only do this if h/w supports multiple bssid */ 1431 for (i = 0; i < 8; i++) 1432 if ((sc->sc_bssidmask & (1<<i)) == 0) 1433 break; 1434 if (i != 0) 1435 mac[0] |= (i << 2)|0x2; 1436 } else 1437 i = 0; 1438 sc->sc_bssidmask |= 1<<i; 1439 sc->sc_hwbssidmask[0] &= ~mac[0]; 1440 if (i == 0) 1441 sc->sc_nbssid0++; 1442 } 1443 1444 static void 1445 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1446 { 1447 int i = mac[0] >> 2; 1448 uint8_t mask; 1449 1450 if (i != 0 || --sc->sc_nbssid0 == 0) { 1451 sc->sc_bssidmask &= ~(1<<i); 1452 /* recalculate bssid mask from remaining addresses */ 1453 mask = 0xff; 1454 for (i = 1; i < 8; i++) 1455 if (sc->sc_bssidmask & (1<<i)) 1456 mask &= ~((i<<2)|0x2); 1457 sc->sc_hwbssidmask[0] |= mask; 1458 } 1459 } 1460 1461 /* 1462 * Assign a beacon xmit slot. We try to space out 1463 * assignments so when beacons are staggered the 1464 * traffic coming out of the cab q has maximal time 1465 * to go out before the next beacon is scheduled. 1466 */ 1467 static int 1468 assign_bslot(struct ath_softc *sc) 1469 { 1470 u_int slot, free; 1471 1472 free = 0; 1473 for (slot = 0; slot < ATH_BCBUF; slot++) 1474 if (sc->sc_bslot[slot] == NULL) { 1475 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1476 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1477 return slot; 1478 free = slot; 1479 /* NB: keep looking for a double slot */ 1480 } 1481 return free; 1482 } 1483 1484 static struct ieee80211vap * 1485 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1486 enum ieee80211_opmode opmode, int flags, 1487 const uint8_t bssid[IEEE80211_ADDR_LEN], 1488 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1489 { 1490 struct ath_softc *sc = ic->ic_softc; 1491 struct ath_vap *avp; 1492 struct ieee80211vap *vap; 1493 uint8_t mac[IEEE80211_ADDR_LEN]; 1494 int needbeacon, error; 1495 enum ieee80211_opmode ic_opmode; 1496 1497 avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1498 needbeacon = 0; 1499 IEEE80211_ADDR_COPY(mac, mac0); 1500 1501 ATH_LOCK(sc); 1502 ic_opmode = opmode; /* default to opmode of new vap */ 1503 switch (opmode) { 1504 case IEEE80211_M_STA: 1505 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1506 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1507 goto bad; 1508 } 1509 if (sc->sc_nvaps) { 1510 /* 1511 * With multiple vaps we must fall back 1512 * to s/w beacon miss handling. 1513 */ 1514 flags |= IEEE80211_CLONE_NOBEACONS; 1515 } 1516 if (flags & IEEE80211_CLONE_NOBEACONS) { 1517 /* 1518 * Station mode w/o beacons are implemented w/ AP mode. 1519 */ 1520 ic_opmode = IEEE80211_M_HOSTAP; 1521 } 1522 break; 1523 case IEEE80211_M_IBSS: 1524 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1525 device_printf(sc->sc_dev, 1526 "only 1 ibss vap supported\n"); 1527 goto bad; 1528 } 1529 needbeacon = 1; 1530 break; 1531 case IEEE80211_M_AHDEMO: 1532 #ifdef IEEE80211_SUPPORT_TDMA 1533 if (flags & IEEE80211_CLONE_TDMA) { 1534 if (sc->sc_nvaps != 0) { 1535 device_printf(sc->sc_dev, 1536 "only 1 tdma vap supported\n"); 1537 goto bad; 1538 } 1539 needbeacon = 1; 1540 flags |= IEEE80211_CLONE_NOBEACONS; 1541 } 1542 /* fall thru... */ 1543 #endif 1544 case IEEE80211_M_MONITOR: 1545 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1546 /* 1547 * Adopt existing mode. Adding a monitor or ahdemo 1548 * vap to an existing configuration is of dubious 1549 * value but should be ok. 1550 */ 1551 /* XXX not right for monitor mode */ 1552 ic_opmode = ic->ic_opmode; 1553 } 1554 break; 1555 case IEEE80211_M_HOSTAP: 1556 case IEEE80211_M_MBSS: 1557 needbeacon = 1; 1558 break; 1559 case IEEE80211_M_WDS: 1560 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1561 device_printf(sc->sc_dev, 1562 "wds not supported in sta mode\n"); 1563 goto bad; 1564 } 1565 /* 1566 * Silently remove any request for a unique 1567 * bssid; WDS vap's always share the local 1568 * mac address. 1569 */ 1570 flags &= ~IEEE80211_CLONE_BSSID; 1571 if (sc->sc_nvaps == 0) 1572 ic_opmode = IEEE80211_M_HOSTAP; 1573 else 1574 ic_opmode = ic->ic_opmode; 1575 break; 1576 default: 1577 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1578 goto bad; 1579 } 1580 /* 1581 * Check that a beacon buffer is available; the code below assumes it. 1582 */ 1583 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1584 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1585 goto bad; 1586 } 1587 1588 /* STA, AHDEMO? */ 1589 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1590 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1591 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1592 } 1593 1594 vap = &avp->av_vap; 1595 /* XXX can't hold mutex across if_alloc */ 1596 ATH_UNLOCK(sc); 1597 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1598 ATH_LOCK(sc); 1599 if (error != 0) { 1600 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1601 __func__, error); 1602 goto bad2; 1603 } 1604 1605 /* h/w crypto support */ 1606 vap->iv_key_alloc = ath_key_alloc; 1607 vap->iv_key_delete = ath_key_delete; 1608 vap->iv_key_set = ath_key_set; 1609 vap->iv_key_update_begin = ath_key_update_begin; 1610 vap->iv_key_update_end = ath_key_update_end; 1611 1612 /* override various methods */ 1613 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1614 vap->iv_recv_mgmt = ath_recv_mgmt; 1615 vap->iv_reset = ath_reset_vap; 1616 vap->iv_update_beacon = ath_beacon_update; 1617 avp->av_newstate = vap->iv_newstate; 1618 vap->iv_newstate = ath_newstate; 1619 avp->av_bmiss = vap->iv_bmiss; 1620 vap->iv_bmiss = ath_bmiss_vap; 1621 1622 avp->av_node_ps = vap->iv_node_ps; 1623 vap->iv_node_ps = ath_node_powersave; 1624 1625 avp->av_set_tim = vap->iv_set_tim; 1626 vap->iv_set_tim = ath_node_set_tim; 1627 1628 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1629 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1630 1631 /* Set default parameters */ 1632 1633 /* 1634 * Anything earlier than some AR9300 series MACs don't 1635 * support a smaller MPDU density. 1636 */ 1637 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1638 /* 1639 * All NICs can handle the maximum size, however 1640 * AR5416 based MACs can only TX aggregates w/ RTS 1641 * protection when the total aggregate size is <= 8k. 1642 * However, for now that's enforced by the TX path. 1643 */ 1644 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1645 vap->iv_ampdu_limit = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1646 1647 avp->av_bslot = -1; 1648 if (needbeacon) { 1649 /* 1650 * Allocate beacon state and setup the q for buffered 1651 * multicast frames. We know a beacon buffer is 1652 * available because we checked above. 1653 */ 1654 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1655 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1656 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1657 /* 1658 * Assign the vap to a beacon xmit slot. As above 1659 * this cannot fail to find a free one. 1660 */ 1661 avp->av_bslot = assign_bslot(sc); 1662 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1663 ("beacon slot %u not empty", avp->av_bslot)); 1664 sc->sc_bslot[avp->av_bslot] = vap; 1665 sc->sc_nbcnvaps++; 1666 } 1667 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1668 /* 1669 * Multple vaps are to transmit beacons and we 1670 * have h/w support for TSF adjusting; enable 1671 * use of staggered beacons. 1672 */ 1673 sc->sc_stagbeacons = 1; 1674 } 1675 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1676 } 1677 1678 ic->ic_opmode = ic_opmode; 1679 if (opmode != IEEE80211_M_WDS) { 1680 sc->sc_nvaps++; 1681 if (opmode == IEEE80211_M_STA) 1682 sc->sc_nstavaps++; 1683 if (opmode == IEEE80211_M_MBSS) 1684 sc->sc_nmeshvaps++; 1685 } 1686 switch (ic_opmode) { 1687 case IEEE80211_M_IBSS: 1688 sc->sc_opmode = HAL_M_IBSS; 1689 break; 1690 case IEEE80211_M_STA: 1691 sc->sc_opmode = HAL_M_STA; 1692 break; 1693 case IEEE80211_M_AHDEMO: 1694 #ifdef IEEE80211_SUPPORT_TDMA 1695 if (vap->iv_caps & IEEE80211_C_TDMA) { 1696 sc->sc_tdma = 1; 1697 /* NB: disable tsf adjust */ 1698 sc->sc_stagbeacons = 0; 1699 } 1700 /* 1701 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1702 * just ap mode. 1703 */ 1704 /* fall thru... */ 1705 #endif 1706 case IEEE80211_M_HOSTAP: 1707 case IEEE80211_M_MBSS: 1708 sc->sc_opmode = HAL_M_HOSTAP; 1709 break; 1710 case IEEE80211_M_MONITOR: 1711 sc->sc_opmode = HAL_M_MONITOR; 1712 break; 1713 default: 1714 /* XXX should not happen */ 1715 break; 1716 } 1717 if (sc->sc_hastsfadd) { 1718 /* 1719 * Configure whether or not TSF adjust should be done. 1720 */ 1721 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1722 } 1723 if (flags & IEEE80211_CLONE_NOBEACONS) { 1724 /* 1725 * Enable s/w beacon miss handling. 1726 */ 1727 sc->sc_swbmiss = 1; 1728 } 1729 ATH_UNLOCK(sc); 1730 1731 /* complete setup */ 1732 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status, 1733 mac); 1734 return vap; 1735 bad2: 1736 reclaim_address(sc, mac); 1737 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1738 bad: 1739 free(avp, M_80211_VAP); 1740 ATH_UNLOCK(sc); 1741 return NULL; 1742 } 1743 1744 static void 1745 ath_vap_delete(struct ieee80211vap *vap) 1746 { 1747 struct ieee80211com *ic = vap->iv_ic; 1748 struct ath_softc *sc = ic->ic_softc; 1749 struct ath_hal *ah = sc->sc_ah; 1750 struct ath_vap *avp = ATH_VAP(vap); 1751 1752 ATH_LOCK(sc); 1753 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1754 ATH_UNLOCK(sc); 1755 1756 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1757 if (sc->sc_running) { 1758 /* 1759 * Quiesce the hardware while we remove the vap. In 1760 * particular we need to reclaim all references to 1761 * the vap state by any frames pending on the tx queues. 1762 */ 1763 ath_hal_intrset(ah, 0); /* disable interrupts */ 1764 /* XXX Do all frames from all vaps/nodes need draining here? */ 1765 ath_stoprecv(sc, 1); /* stop recv side */ 1766 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1767 } 1768 1769 /* .. leave the hardware awake for now. */ 1770 1771 ieee80211_vap_detach(vap); 1772 1773 /* 1774 * XXX Danger Will Robinson! Danger! 1775 * 1776 * Because ieee80211_vap_detach() can queue a frame (the station 1777 * diassociate message?) after we've drained the TXQ and 1778 * flushed the software TXQ, we will end up with a frame queued 1779 * to a node whose vap is about to be freed. 1780 * 1781 * To work around this, flush the hardware/software again. 1782 * This may be racy - the ath task may be running and the packet 1783 * may be being scheduled between sw->hw txq. Tsk. 1784 * 1785 * TODO: figure out why a new node gets allocated somewhere around 1786 * here (after the ath_tx_swq() call; and after an ath_stop() 1787 * call!) 1788 */ 1789 1790 ath_draintxq(sc, ATH_RESET_DEFAULT); 1791 1792 ATH_LOCK(sc); 1793 /* 1794 * Reclaim beacon state. Note this must be done before 1795 * the vap instance is reclaimed as we may have a reference 1796 * to it in the buffer for the beacon frame. 1797 */ 1798 if (avp->av_bcbuf != NULL) { 1799 if (avp->av_bslot != -1) { 1800 sc->sc_bslot[avp->av_bslot] = NULL; 1801 sc->sc_nbcnvaps--; 1802 } 1803 ath_beacon_return(sc, avp->av_bcbuf); 1804 avp->av_bcbuf = NULL; 1805 if (sc->sc_nbcnvaps == 0) { 1806 sc->sc_stagbeacons = 0; 1807 if (sc->sc_hastsfadd) 1808 ath_hal_settsfadjust(sc->sc_ah, 0); 1809 } 1810 /* 1811 * Reclaim any pending mcast frames for the vap. 1812 */ 1813 ath_tx_draintxq(sc, &avp->av_mcastq); 1814 } 1815 /* 1816 * Update bookkeeping. 1817 */ 1818 if (vap->iv_opmode == IEEE80211_M_STA) { 1819 sc->sc_nstavaps--; 1820 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1821 sc->sc_swbmiss = 0; 1822 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1823 vap->iv_opmode == IEEE80211_M_MBSS) { 1824 reclaim_address(sc, vap->iv_myaddr); 1825 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1826 if (vap->iv_opmode == IEEE80211_M_MBSS) 1827 sc->sc_nmeshvaps--; 1828 } 1829 if (vap->iv_opmode != IEEE80211_M_WDS) 1830 sc->sc_nvaps--; 1831 #ifdef IEEE80211_SUPPORT_TDMA 1832 /* TDMA operation ceases when the last vap is destroyed */ 1833 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1834 sc->sc_tdma = 0; 1835 sc->sc_swbmiss = 0; 1836 } 1837 #endif 1838 free(avp, M_80211_VAP); 1839 1840 if (sc->sc_running) { 1841 /* 1842 * Restart rx+tx machines if still running (RUNNING will 1843 * be reset if we just destroyed the last vap). 1844 */ 1845 if (ath_startrecv(sc) != 0) 1846 device_printf(sc->sc_dev, 1847 "%s: unable to restart recv logic\n", __func__); 1848 if (sc->sc_beacons) { /* restart beacons */ 1849 #ifdef IEEE80211_SUPPORT_TDMA 1850 if (sc->sc_tdma) 1851 ath_tdma_config(sc, NULL); 1852 else 1853 #endif 1854 ath_beacon_config(sc, NULL); 1855 } 1856 ath_hal_intrset(ah, sc->sc_imask); 1857 } 1858 1859 /* Ok, let the hardware asleep. */ 1860 ath_power_restore_power_state(sc); 1861 ATH_UNLOCK(sc); 1862 } 1863 1864 void 1865 ath_suspend(struct ath_softc *sc) 1866 { 1867 struct ieee80211com *ic = &sc->sc_ic; 1868 1869 sc->sc_resume_up = ic->ic_nrunning != 0; 1870 1871 ieee80211_suspend_all(ic); 1872 /* 1873 * NB: don't worry about putting the chip in low power 1874 * mode; pci will power off our socket on suspend and 1875 * CardBus detaches the device. 1876 * 1877 * XXX TODO: well, that's great, except for non-cardbus 1878 * devices! 1879 */ 1880 1881 /* 1882 * XXX This doesn't wait until all pending taskqueue 1883 * items and parallel transmit/receive/other threads 1884 * are running! 1885 */ 1886 ath_hal_intrset(sc->sc_ah, 0); 1887 taskqueue_block(sc->sc_tq); 1888 1889 ATH_LOCK(sc); 1890 callout_stop(&sc->sc_cal_ch); 1891 ATH_UNLOCK(sc); 1892 1893 /* 1894 * XXX ensure sc_invalid is 1 1895 */ 1896 1897 /* Disable the PCIe PHY, complete with workarounds */ 1898 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1899 } 1900 1901 /* 1902 * Reset the key cache since some parts do not reset the 1903 * contents on resume. First we clear all entries, then 1904 * re-load keys that the 802.11 layer assumes are setup 1905 * in h/w. 1906 */ 1907 static void 1908 ath_reset_keycache(struct ath_softc *sc) 1909 { 1910 struct ieee80211com *ic = &sc->sc_ic; 1911 struct ath_hal *ah = sc->sc_ah; 1912 int i; 1913 1914 ATH_LOCK(sc); 1915 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1916 for (i = 0; i < sc->sc_keymax; i++) 1917 ath_hal_keyreset(ah, i); 1918 ath_power_restore_power_state(sc); 1919 ATH_UNLOCK(sc); 1920 ieee80211_crypto_reload_keys(ic); 1921 } 1922 1923 /* 1924 * Fetch the current chainmask configuration based on the current 1925 * operating channel and options. 1926 */ 1927 static void 1928 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1929 { 1930 1931 /* 1932 * Set TX chainmask to the currently configured chainmask; 1933 * the TX chainmask depends upon the current operating mode. 1934 */ 1935 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1936 if (IEEE80211_IS_CHAN_HT(chan)) { 1937 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1938 } else { 1939 sc->sc_cur_txchainmask = 1; 1940 } 1941 1942 DPRINTF(sc, ATH_DEBUG_RESET, 1943 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1944 __func__, 1945 sc->sc_cur_txchainmask, 1946 sc->sc_cur_rxchainmask); 1947 } 1948 1949 void 1950 ath_resume(struct ath_softc *sc) 1951 { 1952 struct ieee80211com *ic = &sc->sc_ic; 1953 struct ath_hal *ah = sc->sc_ah; 1954 HAL_STATUS status; 1955 1956 ath_hal_enablepcie(ah, 0, 0); 1957 1958 /* 1959 * Must reset the chip before we reload the 1960 * keycache as we were powered down on suspend. 1961 */ 1962 ath_update_chainmasks(sc, 1963 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1964 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1965 sc->sc_cur_rxchainmask); 1966 1967 /* Ensure we set the current power state to on */ 1968 ATH_LOCK(sc); 1969 ath_power_setselfgen(sc, HAL_PM_AWAKE); 1970 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1971 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 1972 ATH_UNLOCK(sc); 1973 1974 ath_hal_reset(ah, sc->sc_opmode, 1975 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1976 AH_FALSE, HAL_RESET_NORMAL, &status); 1977 ath_reset_keycache(sc); 1978 1979 ATH_RX_LOCK(sc); 1980 sc->sc_rx_stopped = 1; 1981 sc->sc_rx_resetted = 1; 1982 ATH_RX_UNLOCK(sc); 1983 1984 /* Let DFS at it in case it's a DFS channel */ 1985 ath_dfs_radar_enable(sc, ic->ic_curchan); 1986 1987 /* Let spectral at in case spectral is enabled */ 1988 ath_spectral_enable(sc, ic->ic_curchan); 1989 1990 /* 1991 * Let bluetooth coexistence at in case it's needed for this channel 1992 */ 1993 ath_btcoex_enable(sc, ic->ic_curchan); 1994 1995 /* 1996 * If we're doing TDMA, enforce the TXOP limitation for chips that 1997 * support it. 1998 */ 1999 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2000 ath_hal_setenforcetxop(sc->sc_ah, 1); 2001 else 2002 ath_hal_setenforcetxop(sc->sc_ah, 0); 2003 2004 /* Restore the LED configuration */ 2005 ath_led_config(sc); 2006 ath_hal_setledstate(ah, HAL_LED_INIT); 2007 2008 if (sc->sc_resume_up) 2009 ieee80211_resume_all(ic); 2010 2011 ATH_LOCK(sc); 2012 ath_power_restore_power_state(sc); 2013 ATH_UNLOCK(sc); 2014 2015 /* XXX beacons ? */ 2016 } 2017 2018 void 2019 ath_shutdown(struct ath_softc *sc) 2020 { 2021 2022 ATH_LOCK(sc); 2023 ath_stop(sc); 2024 ATH_UNLOCK(sc); 2025 /* NB: no point powering down chip as we're about to reboot */ 2026 } 2027 2028 /* 2029 * Interrupt handler. Most of the actual processing is deferred. 2030 */ 2031 void 2032 ath_intr(void *arg) 2033 { 2034 struct ath_softc *sc = arg; 2035 struct ath_hal *ah = sc->sc_ah; 2036 HAL_INT status = 0; 2037 uint32_t txqs; 2038 2039 /* 2040 * If we're inside a reset path, just print a warning and 2041 * clear the ISR. The reset routine will finish it for us. 2042 */ 2043 ATH_PCU_LOCK(sc); 2044 if (sc->sc_inreset_cnt) { 2045 HAL_INT status; 2046 ath_hal_getisr(ah, &status); /* clear ISR */ 2047 ath_hal_intrset(ah, 0); /* disable further intr's */ 2048 DPRINTF(sc, ATH_DEBUG_ANY, 2049 "%s: in reset, ignoring: status=0x%x\n", 2050 __func__, status); 2051 ATH_PCU_UNLOCK(sc); 2052 return; 2053 } 2054 2055 if (sc->sc_invalid) { 2056 /* 2057 * The hardware is not ready/present, don't touch anything. 2058 * Note this can happen early on if the IRQ is shared. 2059 */ 2060 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 2061 ATH_PCU_UNLOCK(sc); 2062 return; 2063 } 2064 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 2065 ATH_PCU_UNLOCK(sc); 2066 return; 2067 } 2068 2069 ATH_LOCK(sc); 2070 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2071 ATH_UNLOCK(sc); 2072 2073 if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) { 2074 HAL_INT status; 2075 2076 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n", 2077 __func__, sc->sc_ic.ic_nrunning, sc->sc_running); 2078 ath_hal_getisr(ah, &status); /* clear ISR */ 2079 ath_hal_intrset(ah, 0); /* disable further intr's */ 2080 ATH_PCU_UNLOCK(sc); 2081 2082 ATH_LOCK(sc); 2083 ath_power_restore_power_state(sc); 2084 ATH_UNLOCK(sc); 2085 return; 2086 } 2087 2088 /* 2089 * Figure out the reason(s) for the interrupt. Note 2090 * that the hal returns a pseudo-ISR that may include 2091 * bits we haven't explicitly enabled so we mask the 2092 * value to insure we only process bits we requested. 2093 */ 2094 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 2095 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 2096 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 2097 #ifdef ATH_DEBUG_ALQ 2098 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 2099 ah->ah_syncstate); 2100 #endif /* ATH_DEBUG_ALQ */ 2101 #ifdef ATH_KTR_INTR_DEBUG 2102 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 2103 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 2104 ah->ah_intrstate[0], 2105 ah->ah_intrstate[1], 2106 ah->ah_intrstate[2], 2107 ah->ah_intrstate[3], 2108 ah->ah_intrstate[6]); 2109 #endif 2110 2111 /* Squirrel away SYNC interrupt debugging */ 2112 if (ah->ah_syncstate != 0) { 2113 int i; 2114 for (i = 0; i < 32; i++) 2115 if (ah->ah_syncstate & (i << i)) 2116 sc->sc_intr_stats.sync_intr[i]++; 2117 } 2118 2119 status &= sc->sc_imask; /* discard unasked for bits */ 2120 2121 /* Short-circuit un-handled interrupts */ 2122 if (status == 0x0) { 2123 ATH_PCU_UNLOCK(sc); 2124 2125 ATH_LOCK(sc); 2126 ath_power_restore_power_state(sc); 2127 ATH_UNLOCK(sc); 2128 2129 return; 2130 } 2131 2132 /* 2133 * Take a note that we're inside the interrupt handler, so 2134 * the reset routines know to wait. 2135 */ 2136 sc->sc_intr_cnt++; 2137 ATH_PCU_UNLOCK(sc); 2138 2139 /* 2140 * Handle the interrupt. We won't run concurrent with the reset 2141 * or channel change routines as they'll wait for sc_intr_cnt 2142 * to be 0 before continuing. 2143 */ 2144 if (status & HAL_INT_FATAL) { 2145 sc->sc_stats.ast_hardware++; 2146 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 2147 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 2148 } else { 2149 if (status & HAL_INT_SWBA) { 2150 /* 2151 * Software beacon alert--time to send a beacon. 2152 * Handle beacon transmission directly; deferring 2153 * this is too slow to meet timing constraints 2154 * under load. 2155 */ 2156 #ifdef IEEE80211_SUPPORT_TDMA 2157 if (sc->sc_tdma) { 2158 if (sc->sc_tdmaswba == 0) { 2159 struct ieee80211com *ic = &sc->sc_ic; 2160 struct ieee80211vap *vap = 2161 TAILQ_FIRST(&ic->ic_vaps); 2162 ath_tdma_beacon_send(sc, vap); 2163 sc->sc_tdmaswba = 2164 vap->iv_tdma->tdma_bintval; 2165 } else 2166 sc->sc_tdmaswba--; 2167 } else 2168 #endif 2169 { 2170 ath_beacon_proc(sc, 0); 2171 #ifdef IEEE80211_SUPPORT_SUPERG 2172 /* 2173 * Schedule the rx taskq in case there's no 2174 * traffic so any frames held on the staging 2175 * queue are aged and potentially flushed. 2176 */ 2177 sc->sc_rx.recv_sched(sc, 1); 2178 #endif 2179 } 2180 } 2181 if (status & HAL_INT_RXEOL) { 2182 int imask; 2183 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2184 if (! sc->sc_isedma) { 2185 ATH_PCU_LOCK(sc); 2186 /* 2187 * NB: the hardware should re-read the link when 2188 * RXE bit is written, but it doesn't work at 2189 * least on older hardware revs. 2190 */ 2191 sc->sc_stats.ast_rxeol++; 2192 /* 2193 * Disable RXEOL/RXORN - prevent an interrupt 2194 * storm until the PCU logic can be reset. 2195 * In case the interface is reset some other 2196 * way before "sc_kickpcu" is called, don't 2197 * modify sc_imask - that way if it is reset 2198 * by a call to ath_reset() somehow, the 2199 * interrupt mask will be correctly reprogrammed. 2200 */ 2201 imask = sc->sc_imask; 2202 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2203 ath_hal_intrset(ah, imask); 2204 /* 2205 * Only blank sc_rxlink if we've not yet kicked 2206 * the PCU. 2207 * 2208 * This isn't entirely correct - the correct solution 2209 * would be to have a PCU lock and engage that for 2210 * the duration of the PCU fiddling; which would include 2211 * running the RX process. Otherwise we could end up 2212 * messing up the RX descriptor chain and making the 2213 * RX desc list much shorter. 2214 */ 2215 if (! sc->sc_kickpcu) 2216 sc->sc_rxlink = NULL; 2217 sc->sc_kickpcu = 1; 2218 ATH_PCU_UNLOCK(sc); 2219 } 2220 /* 2221 * Enqueue an RX proc to handle whatever 2222 * is in the RX queue. 2223 * This will then kick the PCU if required. 2224 */ 2225 sc->sc_rx.recv_sched(sc, 1); 2226 } 2227 if (status & HAL_INT_TXURN) { 2228 sc->sc_stats.ast_txurn++; 2229 /* bump tx trigger level */ 2230 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2231 } 2232 /* 2233 * Handle both the legacy and RX EDMA interrupt bits. 2234 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2235 */ 2236 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2237 sc->sc_stats.ast_rx_intr++; 2238 sc->sc_rx.recv_sched(sc, 1); 2239 } 2240 if (status & HAL_INT_TX) { 2241 sc->sc_stats.ast_tx_intr++; 2242 /* 2243 * Grab all the currently set bits in the HAL txq bitmap 2244 * and blank them. This is the only place we should be 2245 * doing this. 2246 */ 2247 if (! sc->sc_isedma) { 2248 ATH_PCU_LOCK(sc); 2249 txqs = 0xffffffff; 2250 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2251 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2252 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2253 txqs, 2254 sc->sc_txq_active, 2255 sc->sc_txq_active | txqs); 2256 sc->sc_txq_active |= txqs; 2257 ATH_PCU_UNLOCK(sc); 2258 } 2259 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2260 } 2261 if (status & HAL_INT_BMISS) { 2262 sc->sc_stats.ast_bmiss++; 2263 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2264 } 2265 if (status & HAL_INT_GTT) 2266 sc->sc_stats.ast_tx_timeout++; 2267 if (status & HAL_INT_CST) 2268 sc->sc_stats.ast_tx_cst++; 2269 if (status & HAL_INT_MIB) { 2270 sc->sc_stats.ast_mib++; 2271 ATH_PCU_LOCK(sc); 2272 /* 2273 * Disable interrupts until we service the MIB 2274 * interrupt; otherwise it will continue to fire. 2275 */ 2276 ath_hal_intrset(ah, 0); 2277 /* 2278 * Let the hal handle the event. We assume it will 2279 * clear whatever condition caused the interrupt. 2280 */ 2281 ath_hal_mibevent(ah, &sc->sc_halstats); 2282 /* 2283 * Don't reset the interrupt if we've just 2284 * kicked the PCU, or we may get a nested 2285 * RXEOL before the rxproc has had a chance 2286 * to run. 2287 */ 2288 if (sc->sc_kickpcu == 0) 2289 ath_hal_intrset(ah, sc->sc_imask); 2290 ATH_PCU_UNLOCK(sc); 2291 } 2292 if (status & HAL_INT_RXORN) { 2293 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2294 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2295 sc->sc_stats.ast_rxorn++; 2296 } 2297 if (status & HAL_INT_TSFOOR) { 2298 /* out of range beacon - wake the chip up, 2299 * but don't modify self-gen frame config */ 2300 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2301 sc->sc_syncbeacon = 1; 2302 ATH_LOCK(sc); 2303 ath_power_setpower(sc, HAL_PM_AWAKE, 0); 2304 ATH_UNLOCK(sc); 2305 } 2306 if (status & HAL_INT_MCI) { 2307 ath_btcoex_mci_intr(sc); 2308 } 2309 } 2310 ATH_PCU_LOCK(sc); 2311 sc->sc_intr_cnt--; 2312 ATH_PCU_UNLOCK(sc); 2313 2314 ATH_LOCK(sc); 2315 ath_power_restore_power_state(sc); 2316 ATH_UNLOCK(sc); 2317 } 2318 2319 static void 2320 ath_fatal_proc(void *arg, int pending) 2321 { 2322 struct ath_softc *sc = arg; 2323 u_int32_t *state; 2324 u_int32_t len; 2325 void *sp; 2326 2327 if (sc->sc_invalid) 2328 return; 2329 2330 device_printf(sc->sc_dev, "hardware error; resetting\n"); 2331 /* 2332 * Fatal errors are unrecoverable. Typically these 2333 * are caused by DMA errors. Collect h/w state from 2334 * the hal so we can diagnose what's going on. 2335 */ 2336 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2337 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2338 state = sp; 2339 device_printf(sc->sc_dev, 2340 "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0], 2341 state[1] , state[2], state[3], state[4], state[5]); 2342 } 2343 ath_reset(sc, ATH_RESET_NOLOSS); 2344 } 2345 2346 static void 2347 ath_bmiss_vap(struct ieee80211vap *vap) 2348 { 2349 struct ath_softc *sc = vap->iv_ic->ic_softc; 2350 2351 /* 2352 * Workaround phantom bmiss interrupts by sanity-checking 2353 * the time of our last rx'd frame. If it is within the 2354 * beacon miss interval then ignore the interrupt. If it's 2355 * truly a bmiss we'll get another interrupt soon and that'll 2356 * be dispatched up for processing. Note this applies only 2357 * for h/w beacon miss events. 2358 */ 2359 2360 /* 2361 * XXX TODO: Just read the TSF during the interrupt path; 2362 * that way we don't have to wake up again just to read it 2363 * again. 2364 */ 2365 ATH_LOCK(sc); 2366 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2367 ATH_UNLOCK(sc); 2368 2369 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2370 u_int64_t lastrx = sc->sc_lastrx; 2371 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2372 /* XXX should take a locked ref to iv_bss */ 2373 u_int bmisstimeout = 2374 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2375 2376 DPRINTF(sc, ATH_DEBUG_BEACON, 2377 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2378 __func__, (unsigned long long) tsf, 2379 (unsigned long long)(tsf - lastrx), 2380 (unsigned long long) lastrx, bmisstimeout); 2381 2382 if (tsf - lastrx <= bmisstimeout) { 2383 sc->sc_stats.ast_bmiss_phantom++; 2384 2385 ATH_LOCK(sc); 2386 ath_power_restore_power_state(sc); 2387 ATH_UNLOCK(sc); 2388 2389 return; 2390 } 2391 } 2392 2393 /* 2394 * Keep the hardware awake if it's asleep (and leave self-gen 2395 * frame config alone) until the next beacon, so we can resync 2396 * against the next beacon. 2397 * 2398 * This handles three common beacon miss cases in STA powersave mode - 2399 * (a) the beacon TBTT isnt a multiple of bintval; 2400 * (b) the beacon was missed; and 2401 * (c) the beacons are being delayed because the AP is busy and 2402 * isn't reliably able to meet its TBTT. 2403 */ 2404 ATH_LOCK(sc); 2405 ath_power_setpower(sc, HAL_PM_AWAKE, 0); 2406 ath_power_restore_power_state(sc); 2407 ATH_UNLOCK(sc); 2408 DPRINTF(sc, ATH_DEBUG_BEACON, 2409 "%s: forced awake; force syncbeacon=1\n", __func__); 2410 2411 /* 2412 * Attempt to force a beacon resync. 2413 */ 2414 sc->sc_syncbeacon = 1; 2415 2416 ATH_VAP(vap)->av_bmiss(vap); 2417 } 2418 2419 /* XXX this needs a force wakeup! */ 2420 int 2421 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2422 { 2423 uint32_t rsize; 2424 void *sp; 2425 2426 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2427 return 0; 2428 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2429 *hangs = *(uint32_t *)sp; 2430 return 1; 2431 } 2432 2433 static void 2434 ath_bmiss_proc(void *arg, int pending) 2435 { 2436 struct ath_softc *sc = arg; 2437 uint32_t hangs; 2438 2439 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2440 2441 ATH_LOCK(sc); 2442 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2443 ATH_UNLOCK(sc); 2444 2445 ath_beacon_miss(sc); 2446 2447 /* 2448 * Do a reset upon any becaon miss event. 2449 * 2450 * It may be a non-recognised RX clear hang which needs a reset 2451 * to clear. 2452 */ 2453 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2454 ath_reset(sc, ATH_RESET_NOLOSS); 2455 device_printf(sc->sc_dev, 2456 "bb hang detected (0x%x), resetting\n", hangs); 2457 } else { 2458 ath_reset(sc, ATH_RESET_NOLOSS); 2459 ieee80211_beacon_miss(&sc->sc_ic); 2460 } 2461 2462 /* Force a beacon resync, in case they've drifted */ 2463 sc->sc_syncbeacon = 1; 2464 2465 ATH_LOCK(sc); 2466 ath_power_restore_power_state(sc); 2467 ATH_UNLOCK(sc); 2468 } 2469 2470 /* 2471 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2472 * calcs together with WME. If necessary disable the crypto 2473 * hardware and mark the 802.11 state so keys will be setup 2474 * with the MIC work done in software. 2475 */ 2476 static void 2477 ath_settkipmic(struct ath_softc *sc) 2478 { 2479 struct ieee80211com *ic = &sc->sc_ic; 2480 2481 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2482 if (ic->ic_flags & IEEE80211_F_WME) { 2483 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2484 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2485 } else { 2486 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2487 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2488 } 2489 } 2490 } 2491 2492 static int 2493 ath_init(struct ath_softc *sc) 2494 { 2495 struct ieee80211com *ic = &sc->sc_ic; 2496 struct ath_hal *ah = sc->sc_ah; 2497 HAL_STATUS status; 2498 2499 ATH_LOCK_ASSERT(sc); 2500 2501 /* 2502 * Force the sleep state awake. 2503 */ 2504 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2505 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2506 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 2507 2508 /* 2509 * Stop anything previously setup. This is safe 2510 * whether this is the first time through or not. 2511 */ 2512 ath_stop(sc); 2513 2514 /* 2515 * The basic interface to setting the hardware in a good 2516 * state is ``reset''. On return the hardware is known to 2517 * be powered up and with interrupts disabled. This must 2518 * be followed by initialization of the appropriate bits 2519 * and then setup of the interrupt mask. 2520 */ 2521 ath_settkipmic(sc); 2522 ath_update_chainmasks(sc, ic->ic_curchan); 2523 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2524 sc->sc_cur_rxchainmask); 2525 2526 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, 2527 HAL_RESET_NORMAL, &status)) { 2528 device_printf(sc->sc_dev, 2529 "unable to reset hardware; hal status %u\n", status); 2530 return (ENODEV); 2531 } 2532 2533 ATH_RX_LOCK(sc); 2534 sc->sc_rx_stopped = 1; 2535 sc->sc_rx_resetted = 1; 2536 ATH_RX_UNLOCK(sc); 2537 2538 ath_chan_change(sc, ic->ic_curchan); 2539 2540 /* Let DFS at it in case it's a DFS channel */ 2541 ath_dfs_radar_enable(sc, ic->ic_curchan); 2542 2543 /* Let spectral at in case spectral is enabled */ 2544 ath_spectral_enable(sc, ic->ic_curchan); 2545 2546 /* 2547 * Let bluetooth coexistence at in case it's needed for this channel 2548 */ 2549 ath_btcoex_enable(sc, ic->ic_curchan); 2550 2551 /* 2552 * If we're doing TDMA, enforce the TXOP limitation for chips that 2553 * support it. 2554 */ 2555 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2556 ath_hal_setenforcetxop(sc->sc_ah, 1); 2557 else 2558 ath_hal_setenforcetxop(sc->sc_ah, 0); 2559 2560 /* 2561 * Likewise this is set during reset so update 2562 * state cached in the driver. 2563 */ 2564 sc->sc_diversity = ath_hal_getdiversity(ah); 2565 sc->sc_lastlongcal = ticks; 2566 sc->sc_resetcal = 1; 2567 sc->sc_lastcalreset = 0; 2568 sc->sc_lastani = ticks; 2569 sc->sc_lastshortcal = ticks; 2570 sc->sc_doresetcal = AH_FALSE; 2571 /* 2572 * Beacon timers were cleared here; give ath_newstate() 2573 * a hint that the beacon timers should be poked when 2574 * things transition to the RUN state. 2575 */ 2576 sc->sc_beacons = 0; 2577 2578 /* 2579 * Setup the hardware after reset: the key cache 2580 * is filled as needed and the receive engine is 2581 * set going. Frame transmit is handled entirely 2582 * in the frame output path; there's nothing to do 2583 * here except setup the interrupt mask. 2584 */ 2585 if (ath_startrecv(sc) != 0) { 2586 device_printf(sc->sc_dev, "unable to start recv logic\n"); 2587 ath_power_restore_power_state(sc); 2588 return (ENODEV); 2589 } 2590 2591 /* 2592 * Enable interrupts. 2593 */ 2594 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2595 | HAL_INT_RXORN | HAL_INT_TXURN 2596 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2597 2598 /* 2599 * Enable RX EDMA bits. Note these overlap with 2600 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2601 */ 2602 if (sc->sc_isedma) 2603 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2604 2605 /* 2606 * If we're an EDMA NIC, we don't care about RXEOL. 2607 * Writing a new descriptor in will simply restart 2608 * RX DMA. 2609 */ 2610 if (! sc->sc_isedma) 2611 sc->sc_imask |= HAL_INT_RXEOL; 2612 2613 /* 2614 * Enable MCI interrupt for MCI devices. 2615 */ 2616 if (sc->sc_btcoex_mci) 2617 sc->sc_imask |= HAL_INT_MCI; 2618 2619 /* 2620 * Enable MIB interrupts when there are hardware phy counters. 2621 * Note we only do this (at the moment) for station mode. 2622 */ 2623 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2624 sc->sc_imask |= HAL_INT_MIB; 2625 2626 /* 2627 * XXX add capability for this. 2628 * 2629 * If we're in STA mode (and maybe IBSS?) then register for 2630 * TSFOOR interrupts. 2631 */ 2632 if (ic->ic_opmode == IEEE80211_M_STA) 2633 sc->sc_imask |= HAL_INT_TSFOOR; 2634 2635 /* Enable global TX timeout and carrier sense timeout if available */ 2636 if (ath_hal_gtxto_supported(ah)) 2637 sc->sc_imask |= HAL_INT_GTT; 2638 2639 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2640 __func__, sc->sc_imask); 2641 2642 sc->sc_running = 1; 2643 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2644 ath_hal_intrset(ah, sc->sc_imask); 2645 2646 ath_power_restore_power_state(sc); 2647 2648 return (0); 2649 } 2650 2651 static void 2652 ath_stop(struct ath_softc *sc) 2653 { 2654 struct ath_hal *ah = sc->sc_ah; 2655 2656 ATH_LOCK_ASSERT(sc); 2657 2658 /* 2659 * Wake the hardware up before fiddling with it. 2660 */ 2661 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2662 2663 if (sc->sc_running) { 2664 /* 2665 * Shutdown the hardware and driver: 2666 * reset 802.11 state machine 2667 * turn off timers 2668 * disable interrupts 2669 * turn off the radio 2670 * clear transmit machinery 2671 * clear receive machinery 2672 * drain and release tx queues 2673 * reclaim beacon resources 2674 * power down hardware 2675 * 2676 * Note that some of this work is not possible if the 2677 * hardware is gone (invalid). 2678 */ 2679 #ifdef ATH_TX99_DIAG 2680 if (sc->sc_tx99 != NULL) 2681 sc->sc_tx99->stop(sc->sc_tx99); 2682 #endif 2683 callout_stop(&sc->sc_wd_ch); 2684 sc->sc_wd_timer = 0; 2685 sc->sc_running = 0; 2686 if (!sc->sc_invalid) { 2687 if (sc->sc_softled) { 2688 callout_stop(&sc->sc_ledtimer); 2689 ath_hal_gpioset(ah, sc->sc_ledpin, 2690 !sc->sc_ledon); 2691 sc->sc_blinking = 0; 2692 } 2693 ath_hal_intrset(ah, 0); 2694 } 2695 /* XXX we should stop RX regardless of whether it's valid */ 2696 if (!sc->sc_invalid) { 2697 ath_stoprecv(sc, 1); 2698 ath_hal_phydisable(ah); 2699 } else 2700 sc->sc_rxlink = NULL; 2701 ath_draintxq(sc, ATH_RESET_DEFAULT); 2702 ath_beacon_free(sc); /* XXX not needed */ 2703 } 2704 2705 /* And now, restore the current power state */ 2706 ath_power_restore_power_state(sc); 2707 } 2708 2709 /* 2710 * Wait until all pending TX/RX has completed. 2711 * 2712 * This waits until all existing transmit, receive and interrupts 2713 * have completed. It's assumed that the caller has first 2714 * grabbed the reset lock so it doesn't try to do overlapping 2715 * chip resets. 2716 */ 2717 #define MAX_TXRX_ITERATIONS 100 2718 static void 2719 ath_txrx_stop_locked(struct ath_softc *sc) 2720 { 2721 int i = MAX_TXRX_ITERATIONS; 2722 2723 ATH_UNLOCK_ASSERT(sc); 2724 ATH_PCU_LOCK_ASSERT(sc); 2725 2726 /* 2727 * Sleep until all the pending operations have completed. 2728 * 2729 * The caller must ensure that reset has been incremented 2730 * or the pending operations may continue being queued. 2731 */ 2732 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2733 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2734 if (i <= 0) 2735 break; 2736 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2737 msecs_to_ticks(10)); 2738 i--; 2739 } 2740 2741 if (i <= 0) 2742 device_printf(sc->sc_dev, 2743 "%s: didn't finish after %d iterations\n", 2744 __func__, MAX_TXRX_ITERATIONS); 2745 } 2746 #undef MAX_TXRX_ITERATIONS 2747 2748 #if 0 2749 static void 2750 ath_txrx_stop(struct ath_softc *sc) 2751 { 2752 ATH_UNLOCK_ASSERT(sc); 2753 ATH_PCU_UNLOCK_ASSERT(sc); 2754 2755 ATH_PCU_LOCK(sc); 2756 ath_txrx_stop_locked(sc); 2757 ATH_PCU_UNLOCK(sc); 2758 } 2759 #endif 2760 2761 static void 2762 ath_txrx_start(struct ath_softc *sc) 2763 { 2764 2765 taskqueue_unblock(sc->sc_tq); 2766 } 2767 2768 /* 2769 * Grab the reset lock, and wait around until no one else 2770 * is trying to do anything with it. 2771 * 2772 * This is totally horrible but we can't hold this lock for 2773 * long enough to do TX/RX or we end up with net80211/ip stack 2774 * LORs and eventual deadlock. 2775 * 2776 * "dowait" signals whether to spin, waiting for the reset 2777 * lock count to reach 0. This should (for now) only be used 2778 * during the reset path, as the rest of the code may not 2779 * be locking-reentrant enough to behave correctly. 2780 * 2781 * Another, cleaner way should be found to serialise all of 2782 * these operations. 2783 */ 2784 #define MAX_RESET_ITERATIONS 25 2785 static int 2786 ath_reset_grablock(struct ath_softc *sc, int dowait) 2787 { 2788 int w = 0; 2789 int i = MAX_RESET_ITERATIONS; 2790 2791 ATH_PCU_LOCK_ASSERT(sc); 2792 do { 2793 if (sc->sc_inreset_cnt == 0) { 2794 w = 1; 2795 break; 2796 } 2797 if (dowait == 0) { 2798 w = 0; 2799 break; 2800 } 2801 ATH_PCU_UNLOCK(sc); 2802 /* 2803 * 1 tick is likely not enough time for long calibrations 2804 * to complete. So we should wait quite a while. 2805 */ 2806 pause("ath_reset_grablock", msecs_to_ticks(100)); 2807 i--; 2808 ATH_PCU_LOCK(sc); 2809 } while (i > 0); 2810 2811 /* 2812 * We always increment the refcounter, regardless 2813 * of whether we succeeded to get it in an exclusive 2814 * way. 2815 */ 2816 sc->sc_inreset_cnt++; 2817 2818 if (i <= 0) 2819 device_printf(sc->sc_dev, 2820 "%s: didn't finish after %d iterations\n", 2821 __func__, MAX_RESET_ITERATIONS); 2822 2823 if (w == 0) 2824 device_printf(sc->sc_dev, 2825 "%s: warning, recursive reset path!\n", 2826 __func__); 2827 2828 return w; 2829 } 2830 #undef MAX_RESET_ITERATIONS 2831 2832 /* 2833 * Reset the hardware w/o losing operational state. This is 2834 * basically a more efficient way of doing ath_stop, ath_init, 2835 * followed by state transitions to the current 802.11 2836 * operational state. Used to recover from various errors and 2837 * to reset or reload hardware state. 2838 */ 2839 int 2840 ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 2841 { 2842 struct ieee80211com *ic = &sc->sc_ic; 2843 struct ath_hal *ah = sc->sc_ah; 2844 HAL_STATUS status; 2845 int i; 2846 2847 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2848 2849 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2850 ATH_PCU_UNLOCK_ASSERT(sc); 2851 ATH_UNLOCK_ASSERT(sc); 2852 2853 /* Try to (stop any further TX/RX from occurring */ 2854 taskqueue_block(sc->sc_tq); 2855 2856 /* 2857 * Wake the hardware up. 2858 */ 2859 ATH_LOCK(sc); 2860 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2861 ATH_UNLOCK(sc); 2862 2863 ATH_PCU_LOCK(sc); 2864 2865 /* 2866 * Grab the reset lock before TX/RX is stopped. 2867 * 2868 * This is needed to ensure that when the TX/RX actually does finish, 2869 * no further TX/RX/reset runs in parallel with this. 2870 */ 2871 if (ath_reset_grablock(sc, 1) == 0) { 2872 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2873 __func__); 2874 } 2875 2876 /* disable interrupts */ 2877 ath_hal_intrset(ah, 0); 2878 2879 /* 2880 * Now, ensure that any in progress TX/RX completes before we 2881 * continue. 2882 */ 2883 ath_txrx_stop_locked(sc); 2884 2885 ATH_PCU_UNLOCK(sc); 2886 2887 /* 2888 * Regardless of whether we're doing a no-loss flush or 2889 * not, stop the PCU and handle what's in the RX queue. 2890 * That way frames aren't dropped which shouldn't be. 2891 */ 2892 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2893 ath_rx_flush(sc); 2894 2895 /* 2896 * Should now wait for pending TX/RX to complete 2897 * and block future ones from occurring. This needs to be 2898 * done before the TX queue is drained. 2899 */ 2900 ath_draintxq(sc, reset_type); /* stop xmit side */ 2901 2902 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2903 /* NB: indicate channel change so we do a full reset */ 2904 ath_update_chainmasks(sc, ic->ic_curchan); 2905 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2906 sc->sc_cur_rxchainmask); 2907 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, 2908 HAL_RESET_NORMAL, &status)) 2909 device_printf(sc->sc_dev, 2910 "%s: unable to reset hardware; hal status %u\n", 2911 __func__, status); 2912 sc->sc_diversity = ath_hal_getdiversity(ah); 2913 2914 ATH_RX_LOCK(sc); 2915 sc->sc_rx_stopped = 1; 2916 sc->sc_rx_resetted = 1; 2917 ATH_RX_UNLOCK(sc); 2918 2919 /* Let DFS at it in case it's a DFS channel */ 2920 ath_dfs_radar_enable(sc, ic->ic_curchan); 2921 2922 /* Let spectral at in case spectral is enabled */ 2923 ath_spectral_enable(sc, ic->ic_curchan); 2924 2925 /* 2926 * Let bluetooth coexistence at in case it's needed for this channel 2927 */ 2928 ath_btcoex_enable(sc, ic->ic_curchan); 2929 2930 /* 2931 * If we're doing TDMA, enforce the TXOP limitation for chips that 2932 * support it. 2933 */ 2934 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2935 ath_hal_setenforcetxop(sc->sc_ah, 1); 2936 else 2937 ath_hal_setenforcetxop(sc->sc_ah, 0); 2938 2939 if (ath_startrecv(sc) != 0) /* restart recv */ 2940 device_printf(sc->sc_dev, 2941 "%s: unable to start recv logic\n", __func__); 2942 /* 2943 * We may be doing a reset in response to an ioctl 2944 * that changes the channel so update any state that 2945 * might change as a result. 2946 */ 2947 ath_chan_change(sc, ic->ic_curchan); 2948 if (sc->sc_beacons) { /* restart beacons */ 2949 #ifdef IEEE80211_SUPPORT_TDMA 2950 if (sc->sc_tdma) 2951 ath_tdma_config(sc, NULL); 2952 else 2953 #endif 2954 ath_beacon_config(sc, NULL); 2955 } 2956 2957 /* 2958 * Release the reset lock and re-enable interrupts here. 2959 * If an interrupt was being processed in ath_intr(), 2960 * it would disable interrupts at this point. So we have 2961 * to atomically enable interrupts and decrement the 2962 * reset counter - this way ath_intr() doesn't end up 2963 * disabling interrupts without a corresponding enable 2964 * in the rest or channel change path. 2965 * 2966 * Grab the TX reference in case we need to transmit. 2967 * That way a parallel transmit doesn't. 2968 */ 2969 ATH_PCU_LOCK(sc); 2970 sc->sc_inreset_cnt--; 2971 sc->sc_txstart_cnt++; 2972 /* XXX only do this if sc_inreset_cnt == 0? */ 2973 ath_hal_intrset(ah, sc->sc_imask); 2974 ATH_PCU_UNLOCK(sc); 2975 2976 /* 2977 * TX and RX can be started here. If it were started with 2978 * sc_inreset_cnt > 0, the TX and RX path would abort. 2979 * Thus if this is a nested call through the reset or 2980 * channel change code, TX completion will occur but 2981 * RX completion and ath_start / ath_tx_start will not 2982 * run. 2983 */ 2984 2985 /* Restart TX/RX as needed */ 2986 ath_txrx_start(sc); 2987 2988 /* XXX TODO: we need to hold the tx refcount here! */ 2989 2990 /* Restart TX completion and pending TX */ 2991 if (reset_type == ATH_RESET_NOLOSS) { 2992 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2993 if (ATH_TXQ_SETUP(sc, i)) { 2994 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2995 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2996 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2997 2998 ATH_TX_LOCK(sc); 2999 ath_txq_sched(sc, &sc->sc_txq[i]); 3000 ATH_TX_UNLOCK(sc); 3001 } 3002 } 3003 } 3004 3005 ATH_LOCK(sc); 3006 ath_power_restore_power_state(sc); 3007 ATH_UNLOCK(sc); 3008 3009 ATH_PCU_LOCK(sc); 3010 sc->sc_txstart_cnt--; 3011 ATH_PCU_UNLOCK(sc); 3012 3013 /* Handle any frames in the TX queue */ 3014 /* 3015 * XXX should this be done by the caller, rather than 3016 * ath_reset() ? 3017 */ 3018 ath_tx_kick(sc); /* restart xmit */ 3019 return 0; 3020 } 3021 3022 static int 3023 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 3024 { 3025 struct ieee80211com *ic = vap->iv_ic; 3026 struct ath_softc *sc = ic->ic_softc; 3027 struct ath_hal *ah = sc->sc_ah; 3028 3029 switch (cmd) { 3030 case IEEE80211_IOC_TXPOWER: 3031 /* 3032 * If per-packet TPC is enabled, then we have nothing 3033 * to do; otherwise we need to force the global limit. 3034 * All this can happen directly; no need to reset. 3035 */ 3036 if (!ath_hal_gettpc(ah)) 3037 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 3038 return 0; 3039 } 3040 /* XXX? Full or NOLOSS? */ 3041 return ath_reset(sc, ATH_RESET_FULL); 3042 } 3043 3044 struct ath_buf * 3045 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 3046 { 3047 struct ath_buf *bf; 3048 3049 ATH_TXBUF_LOCK_ASSERT(sc); 3050 3051 if (btype == ATH_BUFTYPE_MGMT) 3052 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 3053 else 3054 bf = TAILQ_FIRST(&sc->sc_txbuf); 3055 3056 if (bf == NULL) { 3057 sc->sc_stats.ast_tx_getnobuf++; 3058 } else { 3059 if (bf->bf_flags & ATH_BUF_BUSY) { 3060 sc->sc_stats.ast_tx_getbusybuf++; 3061 bf = NULL; 3062 } 3063 } 3064 3065 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 3066 if (btype == ATH_BUFTYPE_MGMT) 3067 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 3068 else { 3069 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 3070 sc->sc_txbuf_cnt--; 3071 3072 /* 3073 * This shuldn't happen; however just to be 3074 * safe print a warning and fudge the txbuf 3075 * count. 3076 */ 3077 if (sc->sc_txbuf_cnt < 0) { 3078 device_printf(sc->sc_dev, 3079 "%s: sc_txbuf_cnt < 0?\n", 3080 __func__); 3081 sc->sc_txbuf_cnt = 0; 3082 } 3083 } 3084 } else 3085 bf = NULL; 3086 3087 if (bf == NULL) { 3088 /* XXX should check which list, mgmt or otherwise */ 3089 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 3090 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 3091 "out of xmit buffers" : "xmit buffer busy"); 3092 return NULL; 3093 } 3094 3095 /* XXX TODO: should do this at buffer list initialisation */ 3096 /* XXX (then, ensure the buffer has the right flag set) */ 3097 bf->bf_flags = 0; 3098 if (btype == ATH_BUFTYPE_MGMT) 3099 bf->bf_flags |= ATH_BUF_MGMT; 3100 else 3101 bf->bf_flags &= (~ATH_BUF_MGMT); 3102 3103 /* Valid bf here; clear some basic fields */ 3104 bf->bf_next = NULL; /* XXX just to be sure */ 3105 bf->bf_last = NULL; /* XXX again, just to be sure */ 3106 bf->bf_comp = NULL; /* XXX again, just to be sure */ 3107 bzero(&bf->bf_state, sizeof(bf->bf_state)); 3108 3109 /* 3110 * Track the descriptor ID only if doing EDMA 3111 */ 3112 if (sc->sc_isedma) { 3113 bf->bf_descid = sc->sc_txbuf_descid; 3114 sc->sc_txbuf_descid++; 3115 } 3116 3117 return bf; 3118 } 3119 3120 /* 3121 * When retrying a software frame, buffers marked ATH_BUF_BUSY 3122 * can't be thrown back on the queue as they could still be 3123 * in use by the hardware. 3124 * 3125 * This duplicates the buffer, or returns NULL. 3126 * 3127 * The descriptor is also copied but the link pointers and 3128 * the DMA segments aren't copied; this frame should thus 3129 * be again passed through the descriptor setup/chain routines 3130 * so the link is correct. 3131 * 3132 * The caller must free the buffer using ath_freebuf(). 3133 */ 3134 struct ath_buf * 3135 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 3136 { 3137 struct ath_buf *tbf; 3138 3139 tbf = ath_getbuf(sc, 3140 (bf->bf_flags & ATH_BUF_MGMT) ? 3141 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 3142 if (tbf == NULL) 3143 return NULL; /* XXX failure? Why? */ 3144 3145 /* Copy basics */ 3146 tbf->bf_next = NULL; 3147 tbf->bf_nseg = bf->bf_nseg; 3148 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 3149 tbf->bf_status = bf->bf_status; 3150 tbf->bf_m = bf->bf_m; 3151 tbf->bf_node = bf->bf_node; 3152 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 3153 /* will be setup by the chain/setup function */ 3154 tbf->bf_lastds = NULL; 3155 /* for now, last == self */ 3156 tbf->bf_last = tbf; 3157 tbf->bf_comp = bf->bf_comp; 3158 3159 /* NOTE: DMA segments will be setup by the setup/chain functions */ 3160 3161 /* The caller has to re-init the descriptor + links */ 3162 3163 /* 3164 * Free the DMA mapping here, before we NULL the mbuf. 3165 * We must only call bus_dmamap_unload() once per mbuf chain 3166 * or behaviour is undefined. 3167 */ 3168 if (bf->bf_m != NULL) { 3169 /* 3170 * XXX is this POSTWRITE call required? 3171 */ 3172 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3173 BUS_DMASYNC_POSTWRITE); 3174 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3175 } 3176 3177 bf->bf_m = NULL; 3178 bf->bf_node = NULL; 3179 3180 /* Copy state */ 3181 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3182 3183 return tbf; 3184 } 3185 3186 struct ath_buf * 3187 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3188 { 3189 struct ath_buf *bf; 3190 3191 ATH_TXBUF_LOCK(sc); 3192 bf = _ath_getbuf_locked(sc, btype); 3193 /* 3194 * If a mgmt buffer was requested but we're out of those, 3195 * try requesting a normal one. 3196 */ 3197 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3198 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3199 ATH_TXBUF_UNLOCK(sc); 3200 if (bf == NULL) { 3201 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3202 sc->sc_stats.ast_tx_qstop++; 3203 } 3204 return bf; 3205 } 3206 3207 /* 3208 * Transmit a single frame. 3209 * 3210 * net80211 will free the node reference if the transmit 3211 * fails, so don't free the node reference here. 3212 */ 3213 static int 3214 ath_transmit(struct ieee80211com *ic, struct mbuf *m) 3215 { 3216 struct ath_softc *sc = ic->ic_softc; 3217 struct ieee80211_node *ni; 3218 struct mbuf *next; 3219 struct ath_buf *bf; 3220 ath_bufhead frags; 3221 int retval = 0; 3222 3223 /* 3224 * Tell the reset path that we're currently transmitting. 3225 */ 3226 ATH_PCU_LOCK(sc); 3227 if (sc->sc_inreset_cnt > 0) { 3228 DPRINTF(sc, ATH_DEBUG_XMIT, 3229 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3230 ATH_PCU_UNLOCK(sc); 3231 sc->sc_stats.ast_tx_qstop++; 3232 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3233 return (ENOBUFS); /* XXX should be EINVAL or? */ 3234 } 3235 sc->sc_txstart_cnt++; 3236 ATH_PCU_UNLOCK(sc); 3237 3238 /* Wake the hardware up already */ 3239 ATH_LOCK(sc); 3240 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3241 ATH_UNLOCK(sc); 3242 3243 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3244 /* 3245 * Grab the TX lock - it's ok to do this here; we haven't 3246 * yet started transmitting. 3247 */ 3248 ATH_TX_LOCK(sc); 3249 3250 /* 3251 * Node reference, if there's one. 3252 */ 3253 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3254 3255 /* 3256 * Enforce how deep a node queue can get. 3257 * 3258 * XXX it would be nicer if we kept an mbuf queue per 3259 * node and only whacked them into ath_bufs when we 3260 * are ready to schedule some traffic from them. 3261 * .. that may come later. 3262 * 3263 * XXX we should also track the per-node hardware queue 3264 * depth so it is easy to limit the _SUM_ of the swq and 3265 * hwq frames. Since we only schedule two HWQ frames 3266 * at a time, this should be OK for now. 3267 */ 3268 if ((!(m->m_flags & M_EAPOL)) && 3269 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3270 sc->sc_stats.ast_tx_nodeq_overflow++; 3271 retval = ENOBUFS; 3272 goto finish; 3273 } 3274 3275 /* 3276 * Check how many TX buffers are available. 3277 * 3278 * If this is for non-EAPOL traffic, just leave some 3279 * space free in order for buffer cloning and raw 3280 * frame transmission to occur. 3281 * 3282 * If it's for EAPOL traffic, ignore this for now. 3283 * Management traffic will be sent via the raw transmit 3284 * method which bypasses this check. 3285 * 3286 * This is needed to ensure that EAPOL frames during 3287 * (re) keying have a chance to go out. 3288 * 3289 * See kern/138379 for more information. 3290 */ 3291 if ((!(m->m_flags & M_EAPOL)) && 3292 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3293 sc->sc_stats.ast_tx_nobuf++; 3294 retval = ENOBUFS; 3295 goto finish; 3296 } 3297 3298 /* 3299 * Grab a TX buffer and associated resources. 3300 * 3301 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3302 * That way even with temporary buffer exhaustion due to 3303 * the data path doesn't leave us without the ability 3304 * to transmit management frames. 3305 * 3306 * Otherwise allocate a normal buffer. 3307 */ 3308 if (m->m_flags & M_EAPOL) 3309 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3310 else 3311 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3312 3313 if (bf == NULL) { 3314 /* 3315 * If we failed to allocate a buffer, fail. 3316 * 3317 * We shouldn't fail normally, due to the check 3318 * above. 3319 */ 3320 sc->sc_stats.ast_tx_nobuf++; 3321 retval = ENOBUFS; 3322 goto finish; 3323 } 3324 3325 /* 3326 * At this point we have a buffer; so we need to free it 3327 * if we hit any error conditions. 3328 */ 3329 3330 /* 3331 * Check for fragmentation. If this frame 3332 * has been broken up verify we have enough 3333 * buffers to send all the fragments so all 3334 * go out or none... 3335 */ 3336 TAILQ_INIT(&frags); 3337 if ((m->m_flags & M_FRAG) && 3338 !ath_txfrag_setup(sc, &frags, m, ni)) { 3339 DPRINTF(sc, ATH_DEBUG_XMIT, 3340 "%s: out of txfrag buffers\n", __func__); 3341 sc->sc_stats.ast_tx_nofrag++; 3342 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3343 /* 3344 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes, 3345 * we shouldn't free it but return back. 3346 */ 3347 ieee80211_free_mbuf(m); 3348 m = NULL; 3349 goto bad; 3350 } 3351 3352 /* 3353 * At this point if we have any TX fragments, then we will 3354 * have bumped the node reference once for each of those. 3355 */ 3356 3357 /* 3358 * XXX Is there anything actually _enforcing_ that the 3359 * fragments are being transmitted in one hit, rather than 3360 * being interleaved with other transmissions on that 3361 * hardware queue? 3362 * 3363 * The ATH TX output lock is the only thing serialising this 3364 * right now. 3365 */ 3366 3367 /* 3368 * Calculate the "next fragment" length field in ath_buf 3369 * in order to let the transmit path know enough about 3370 * what to next write to the hardware. 3371 */ 3372 if (m->m_flags & M_FRAG) { 3373 struct ath_buf *fbf = bf; 3374 struct ath_buf *n_fbf = NULL; 3375 struct mbuf *fm = m->m_nextpkt; 3376 3377 /* 3378 * We need to walk the list of fragments and set 3379 * the next size to the following buffer. 3380 * However, the first buffer isn't in the frag 3381 * list, so we have to do some gymnastics here. 3382 */ 3383 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3384 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3385 fbf = n_fbf; 3386 fm = fm->m_nextpkt; 3387 } 3388 } 3389 3390 nextfrag: 3391 /* 3392 * Pass the frame to the h/w for transmission. 3393 * Fragmented frames have each frag chained together 3394 * with m_nextpkt. We know there are sufficient ath_buf's 3395 * to send all the frags because of work done by 3396 * ath_txfrag_setup. We leave m_nextpkt set while 3397 * calling ath_tx_start so it can use it to extend the 3398 * the tx duration to cover the subsequent frag and 3399 * so it can reclaim all the mbufs in case of an error; 3400 * ath_tx_start clears m_nextpkt once it commits to 3401 * handing the frame to the hardware. 3402 * 3403 * Note: if this fails, then the mbufs are freed but 3404 * not the node reference. 3405 * 3406 * So, we now have to free the node reference ourselves here 3407 * and return OK up to the stack. 3408 */ 3409 next = m->m_nextpkt; 3410 if (ath_tx_start(sc, ni, bf, m)) { 3411 bad: 3412 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3413 reclaim: 3414 bf->bf_m = NULL; 3415 bf->bf_node = NULL; 3416 ATH_TXBUF_LOCK(sc); 3417 ath_returnbuf_head(sc, bf); 3418 /* 3419 * Free the rest of the node references and 3420 * buffers for the fragment list. 3421 */ 3422 ath_txfrag_cleanup(sc, &frags, ni); 3423 ATH_TXBUF_UNLOCK(sc); 3424 3425 /* 3426 * XXX: And free the node/return OK; ath_tx_start() may have 3427 * modified the buffer. We currently have no way to 3428 * signify that the mbuf was freed but there was an error. 3429 */ 3430 ieee80211_free_node(ni); 3431 retval = 0; 3432 goto finish; 3433 } 3434 3435 /* 3436 * Check here if the node is in power save state. 3437 */ 3438 ath_tx_update_tim(sc, ni, 1); 3439 3440 if (next != NULL) { 3441 /* 3442 * Beware of state changing between frags. 3443 * XXX check sta power-save state? 3444 */ 3445 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3446 DPRINTF(sc, ATH_DEBUG_XMIT, 3447 "%s: flush fragmented packet, state %s\n", 3448 __func__, 3449 ieee80211_state_name[ni->ni_vap->iv_state]); 3450 /* XXX dmamap */ 3451 ieee80211_free_mbuf(next); 3452 goto reclaim; 3453 } 3454 m = next; 3455 bf = TAILQ_FIRST(&frags); 3456 KASSERT(bf != NULL, ("no buf for txfrag")); 3457 TAILQ_REMOVE(&frags, bf, bf_list); 3458 goto nextfrag; 3459 } 3460 3461 /* 3462 * Bump watchdog timer. 3463 */ 3464 sc->sc_wd_timer = 5; 3465 3466 finish: 3467 ATH_TX_UNLOCK(sc); 3468 3469 /* 3470 * Finished transmitting! 3471 */ 3472 ATH_PCU_LOCK(sc); 3473 sc->sc_txstart_cnt--; 3474 ATH_PCU_UNLOCK(sc); 3475 3476 /* Sleep the hardware if required */ 3477 ATH_LOCK(sc); 3478 ath_power_restore_power_state(sc); 3479 ATH_UNLOCK(sc); 3480 3481 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3482 3483 return (retval); 3484 } 3485 3486 static int 3487 ath_media_change(struct ifnet *ifp) 3488 { 3489 int error = ieee80211_media_change(ifp); 3490 /* NB: only the fixed rate can change and that doesn't need a reset */ 3491 return (error == ENETRESET ? 0 : error); 3492 } 3493 3494 /* 3495 * Block/unblock tx+rx processing while a key change is done. 3496 * We assume the caller serializes key management operations 3497 * so we only need to worry about synchronization with other 3498 * uses that originate in the driver. 3499 */ 3500 static void 3501 ath_key_update_begin(struct ieee80211vap *vap) 3502 { 3503 struct ath_softc *sc = vap->iv_ic->ic_softc; 3504 3505 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3506 taskqueue_block(sc->sc_tq); 3507 } 3508 3509 static void 3510 ath_key_update_end(struct ieee80211vap *vap) 3511 { 3512 struct ath_softc *sc = vap->iv_ic->ic_softc; 3513 3514 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3515 taskqueue_unblock(sc->sc_tq); 3516 } 3517 3518 static void 3519 ath_update_promisc(struct ieee80211com *ic) 3520 { 3521 struct ath_softc *sc = ic->ic_softc; 3522 u_int32_t rfilt; 3523 3524 /* configure rx filter */ 3525 ATH_LOCK(sc); 3526 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3527 rfilt = ath_calcrxfilter(sc); 3528 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3529 ath_power_restore_power_state(sc); 3530 ATH_UNLOCK(sc); 3531 3532 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3533 } 3534 3535 /* 3536 * Driver-internal mcast update call. 3537 * 3538 * Assumes the hardware is already awake. 3539 */ 3540 static void 3541 ath_update_mcast_hw(struct ath_softc *sc) 3542 { 3543 struct ieee80211com *ic = &sc->sc_ic; 3544 u_int32_t mfilt[2]; 3545 3546 /* calculate and install multicast filter */ 3547 if (ic->ic_allmulti == 0) { 3548 struct ieee80211vap *vap; 3549 struct ifnet *ifp; 3550 struct ifmultiaddr *ifma; 3551 3552 /* 3553 * Merge multicast addresses to form the hardware filter. 3554 */ 3555 mfilt[0] = mfilt[1] = 0; 3556 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 3557 ifp = vap->iv_ifp; 3558 if_maddr_rlock(ifp); 3559 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3560 caddr_t dl; 3561 uint32_t val; 3562 uint8_t pos; 3563 3564 /* calculate XOR of eight 6bit values */ 3565 dl = LLADDR((struct sockaddr_dl *) 3566 ifma->ifma_addr); 3567 val = le32dec(dl + 0); 3568 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ 3569 val; 3570 val = le32dec(dl + 3); 3571 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ 3572 val; 3573 pos &= 0x3f; 3574 mfilt[pos / 32] |= (1 << (pos % 32)); 3575 } 3576 if_maddr_runlock(ifp); 3577 } 3578 } else 3579 mfilt[0] = mfilt[1] = ~0; 3580 3581 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3582 3583 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3584 __func__, mfilt[0], mfilt[1]); 3585 } 3586 3587 /* 3588 * Called from the net80211 layer - force the hardware 3589 * awake before operating. 3590 */ 3591 static void 3592 ath_update_mcast(struct ieee80211com *ic) 3593 { 3594 struct ath_softc *sc = ic->ic_softc; 3595 3596 ATH_LOCK(sc); 3597 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3598 ATH_UNLOCK(sc); 3599 3600 ath_update_mcast_hw(sc); 3601 3602 ATH_LOCK(sc); 3603 ath_power_restore_power_state(sc); 3604 ATH_UNLOCK(sc); 3605 } 3606 3607 void 3608 ath_mode_init(struct ath_softc *sc) 3609 { 3610 struct ieee80211com *ic = &sc->sc_ic; 3611 struct ath_hal *ah = sc->sc_ah; 3612 u_int32_t rfilt; 3613 3614 /* configure rx filter */ 3615 rfilt = ath_calcrxfilter(sc); 3616 ath_hal_setrxfilter(ah, rfilt); 3617 3618 /* configure operational mode */ 3619 ath_hal_setopmode(ah); 3620 3621 /* handle any link-level address change */ 3622 ath_hal_setmac(ah, ic->ic_macaddr); 3623 3624 /* calculate and install multicast filter */ 3625 ath_update_mcast_hw(sc); 3626 } 3627 3628 /* 3629 * Set the slot time based on the current setting. 3630 */ 3631 void 3632 ath_setslottime(struct ath_softc *sc) 3633 { 3634 struct ieee80211com *ic = &sc->sc_ic; 3635 struct ath_hal *ah = sc->sc_ah; 3636 u_int usec; 3637 3638 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3639 usec = 13; 3640 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3641 usec = 21; 3642 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3643 /* honor short/long slot time only in 11g */ 3644 /* XXX shouldn't honor on pure g or turbo g channel */ 3645 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3646 usec = HAL_SLOT_TIME_9; 3647 else 3648 usec = HAL_SLOT_TIME_20; 3649 } else 3650 usec = HAL_SLOT_TIME_9; 3651 3652 DPRINTF(sc, ATH_DEBUG_RESET, 3653 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3654 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3655 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3656 3657 /* Wake up the hardware first before updating the slot time */ 3658 ATH_LOCK(sc); 3659 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3660 ath_hal_setslottime(ah, usec); 3661 ath_power_restore_power_state(sc); 3662 sc->sc_updateslot = OK; 3663 ATH_UNLOCK(sc); 3664 } 3665 3666 /* 3667 * Callback from the 802.11 layer to update the 3668 * slot time based on the current setting. 3669 */ 3670 static void 3671 ath_updateslot(struct ieee80211com *ic) 3672 { 3673 struct ath_softc *sc = ic->ic_softc; 3674 3675 /* 3676 * When not coordinating the BSS, change the hardware 3677 * immediately. For other operation we defer the change 3678 * until beacon updates have propagated to the stations. 3679 * 3680 * XXX sc_updateslot isn't changed behind a lock? 3681 */ 3682 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3683 ic->ic_opmode == IEEE80211_M_MBSS) 3684 sc->sc_updateslot = UPDATE; 3685 else 3686 ath_setslottime(sc); 3687 } 3688 3689 /* 3690 * Append the contents of src to dst; both queues 3691 * are assumed to be locked. 3692 */ 3693 void 3694 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3695 { 3696 3697 ATH_TXQ_LOCK_ASSERT(src); 3698 ATH_TXQ_LOCK_ASSERT(dst); 3699 3700 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3701 dst->axq_link = src->axq_link; 3702 src->axq_link = NULL; 3703 dst->axq_depth += src->axq_depth; 3704 dst->axq_aggr_depth += src->axq_aggr_depth; 3705 src->axq_depth = 0; 3706 src->axq_aggr_depth = 0; 3707 } 3708 3709 /* 3710 * Reset the hardware, with no loss. 3711 * 3712 * This can't be used for a general case reset. 3713 */ 3714 static void 3715 ath_reset_proc(void *arg, int pending) 3716 { 3717 struct ath_softc *sc = arg; 3718 3719 #if 0 3720 device_printf(sc->sc_dev, "%s: resetting\n", __func__); 3721 #endif 3722 ath_reset(sc, ATH_RESET_NOLOSS); 3723 } 3724 3725 /* 3726 * Reset the hardware after detecting beacons have stopped. 3727 */ 3728 static void 3729 ath_bstuck_proc(void *arg, int pending) 3730 { 3731 struct ath_softc *sc = arg; 3732 uint32_t hangs = 0; 3733 3734 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3735 device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs); 3736 3737 #ifdef ATH_DEBUG_ALQ 3738 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3739 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3740 #endif 3741 3742 device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n", 3743 sc->sc_bmisscount); 3744 sc->sc_stats.ast_bstuck++; 3745 /* 3746 * This assumes that there's no simultaneous channel mode change 3747 * occurring. 3748 */ 3749 ath_reset(sc, ATH_RESET_NOLOSS); 3750 } 3751 3752 static int 3753 ath_desc_alloc(struct ath_softc *sc) 3754 { 3755 int error; 3756 3757 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3758 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3759 if (error != 0) { 3760 return error; 3761 } 3762 sc->sc_txbuf_cnt = ath_txbuf; 3763 3764 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3765 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3766 ATH_TXDESC); 3767 if (error != 0) { 3768 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3769 return error; 3770 } 3771 3772 /* 3773 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3774 * flag doesn't have to be set in ath_getbuf_locked(). 3775 */ 3776 3777 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3778 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3779 if (error != 0) { 3780 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3781 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3782 &sc->sc_txbuf_mgmt); 3783 return error; 3784 } 3785 return 0; 3786 } 3787 3788 static void 3789 ath_desc_free(struct ath_softc *sc) 3790 { 3791 3792 if (sc->sc_bdma.dd_desc_len != 0) 3793 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3794 if (sc->sc_txdma.dd_desc_len != 0) 3795 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3796 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3797 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3798 &sc->sc_txbuf_mgmt); 3799 } 3800 3801 static struct ieee80211_node * 3802 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3803 { 3804 struct ieee80211com *ic = vap->iv_ic; 3805 struct ath_softc *sc = ic->ic_softc; 3806 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3807 struct ath_node *an; 3808 3809 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3810 if (an == NULL) { 3811 /* XXX stat+msg */ 3812 return NULL; 3813 } 3814 ath_rate_node_init(sc, an); 3815 3816 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3817 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3818 device_get_nameunit(sc->sc_dev), an); 3819 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3820 3821 /* XXX setup ath_tid */ 3822 ath_tx_tid_init(sc, an); 3823 3824 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 3825 return &an->an_node; 3826 } 3827 3828 static void 3829 ath_node_cleanup(struct ieee80211_node *ni) 3830 { 3831 struct ieee80211com *ic = ni->ni_ic; 3832 struct ath_softc *sc = ic->ic_softc; 3833 3834 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3835 ni->ni_macaddr, ":", ATH_NODE(ni)); 3836 3837 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3838 ath_tx_node_flush(sc, ATH_NODE(ni)); 3839 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3840 sc->sc_node_cleanup(ni); 3841 } 3842 3843 static void 3844 ath_node_free(struct ieee80211_node *ni) 3845 { 3846 struct ieee80211com *ic = ni->ni_ic; 3847 struct ath_softc *sc = ic->ic_softc; 3848 3849 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3850 ni->ni_macaddr, ":", ATH_NODE(ni)); 3851 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3852 sc->sc_node_free(ni); 3853 } 3854 3855 static void 3856 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3857 { 3858 struct ieee80211com *ic = ni->ni_ic; 3859 struct ath_softc *sc = ic->ic_softc; 3860 struct ath_hal *ah = sc->sc_ah; 3861 3862 *rssi = ic->ic_node_getrssi(ni); 3863 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3864 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3865 else 3866 *noise = -95; /* nominally correct */ 3867 } 3868 3869 /* 3870 * Set the default antenna. 3871 */ 3872 void 3873 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3874 { 3875 struct ath_hal *ah = sc->sc_ah; 3876 3877 /* XXX block beacon interrupts */ 3878 ath_hal_setdefantenna(ah, antenna); 3879 if (sc->sc_defant != antenna) 3880 sc->sc_stats.ast_ant_defswitch++; 3881 sc->sc_defant = antenna; 3882 sc->sc_rxotherant = 0; 3883 } 3884 3885 static void 3886 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3887 { 3888 txq->axq_qnum = qnum; 3889 txq->axq_ac = 0; 3890 txq->axq_depth = 0; 3891 txq->axq_aggr_depth = 0; 3892 txq->axq_intrcnt = 0; 3893 txq->axq_link = NULL; 3894 txq->axq_softc = sc; 3895 TAILQ_INIT(&txq->axq_q); 3896 TAILQ_INIT(&txq->axq_tidq); 3897 TAILQ_INIT(&txq->fifo.axq_q); 3898 ATH_TXQ_LOCK_INIT(sc, txq); 3899 } 3900 3901 /* 3902 * Setup a h/w transmit queue. 3903 */ 3904 static struct ath_txq * 3905 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3906 { 3907 struct ath_hal *ah = sc->sc_ah; 3908 HAL_TXQ_INFO qi; 3909 int qnum; 3910 3911 memset(&qi, 0, sizeof(qi)); 3912 qi.tqi_subtype = subtype; 3913 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3914 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3915 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3916 /* 3917 * Enable interrupts only for EOL and DESC conditions. 3918 * We mark tx descriptors to receive a DESC interrupt 3919 * when a tx queue gets deep; otherwise waiting for the 3920 * EOL to reap descriptors. Note that this is done to 3921 * reduce interrupt load and this only defers reaping 3922 * descriptors, never transmitting frames. Aside from 3923 * reducing interrupts this also permits more concurrency. 3924 * The only potential downside is if the tx queue backs 3925 * up in which case the top half of the kernel may backup 3926 * due to a lack of tx descriptors. 3927 */ 3928 if (sc->sc_isedma) 3929 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3930 HAL_TXQ_TXOKINT_ENABLE; 3931 else 3932 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3933 HAL_TXQ_TXDESCINT_ENABLE; 3934 3935 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3936 if (qnum == -1) { 3937 /* 3938 * NB: don't print a message, this happens 3939 * normally on parts with too few tx queues 3940 */ 3941 return NULL; 3942 } 3943 if (qnum >= nitems(sc->sc_txq)) { 3944 device_printf(sc->sc_dev, 3945 "hal qnum %u out of range, max %zu!\n", 3946 qnum, nitems(sc->sc_txq)); 3947 ath_hal_releasetxqueue(ah, qnum); 3948 return NULL; 3949 } 3950 if (!ATH_TXQ_SETUP(sc, qnum)) { 3951 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3952 sc->sc_txqsetup |= 1<<qnum; 3953 } 3954 return &sc->sc_txq[qnum]; 3955 } 3956 3957 /* 3958 * Setup a hardware data transmit queue for the specified 3959 * access control. The hal may not support all requested 3960 * queues in which case it will return a reference to a 3961 * previously setup queue. We record the mapping from ac's 3962 * to h/w queues for use by ath_tx_start and also track 3963 * the set of h/w queues being used to optimize work in the 3964 * transmit interrupt handler and related routines. 3965 */ 3966 static int 3967 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3968 { 3969 struct ath_txq *txq; 3970 3971 if (ac >= nitems(sc->sc_ac2q)) { 3972 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3973 ac, nitems(sc->sc_ac2q)); 3974 return 0; 3975 } 3976 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3977 if (txq != NULL) { 3978 txq->axq_ac = ac; 3979 sc->sc_ac2q[ac] = txq; 3980 return 1; 3981 } else 3982 return 0; 3983 } 3984 3985 /* 3986 * Update WME parameters for a transmit queue. 3987 */ 3988 static int 3989 ath_txq_update(struct ath_softc *sc, int ac) 3990 { 3991 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3992 struct ieee80211com *ic = &sc->sc_ic; 3993 struct ath_txq *txq = sc->sc_ac2q[ac]; 3994 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3995 struct ath_hal *ah = sc->sc_ah; 3996 HAL_TXQ_INFO qi; 3997 3998 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3999 #ifdef IEEE80211_SUPPORT_TDMA 4000 if (sc->sc_tdma) { 4001 /* 4002 * AIFS is zero so there's no pre-transmit wait. The 4003 * burst time defines the slot duration and is configured 4004 * through net80211. The QCU is setup to not do post-xmit 4005 * back off, lockout all lower-priority QCU's, and fire 4006 * off the DMA beacon alert timer which is setup based 4007 * on the slot configuration. 4008 */ 4009 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4010 | HAL_TXQ_TXERRINT_ENABLE 4011 | HAL_TXQ_TXURNINT_ENABLE 4012 | HAL_TXQ_TXEOLINT_ENABLE 4013 | HAL_TXQ_DBA_GATED 4014 | HAL_TXQ_BACKOFF_DISABLE 4015 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4016 ; 4017 qi.tqi_aifs = 0; 4018 /* XXX +dbaprep? */ 4019 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4020 qi.tqi_burstTime = qi.tqi_readyTime; 4021 } else { 4022 #endif 4023 /* 4024 * XXX shouldn't this just use the default flags 4025 * used in the previous queue setup? 4026 */ 4027 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4028 | HAL_TXQ_TXERRINT_ENABLE 4029 | HAL_TXQ_TXDESCINT_ENABLE 4030 | HAL_TXQ_TXURNINT_ENABLE 4031 | HAL_TXQ_TXEOLINT_ENABLE 4032 ; 4033 qi.tqi_aifs = wmep->wmep_aifsn; 4034 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4035 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4036 qi.tqi_readyTime = 0; 4037 qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit); 4038 #ifdef IEEE80211_SUPPORT_TDMA 4039 } 4040 #endif 4041 4042 DPRINTF(sc, ATH_DEBUG_RESET, 4043 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4044 __func__, txq->axq_qnum, qi.tqi_qflags, 4045 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4046 4047 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4048 device_printf(sc->sc_dev, "unable to update hardware queue " 4049 "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]); 4050 return 0; 4051 } else { 4052 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4053 return 1; 4054 } 4055 #undef ATH_EXPONENT_TO_VALUE 4056 } 4057 4058 /* 4059 * Callback from the 802.11 layer to update WME parameters. 4060 */ 4061 int 4062 ath_wme_update(struct ieee80211com *ic) 4063 { 4064 struct ath_softc *sc = ic->ic_softc; 4065 4066 return !ath_txq_update(sc, WME_AC_BE) || 4067 !ath_txq_update(sc, WME_AC_BK) || 4068 !ath_txq_update(sc, WME_AC_VI) || 4069 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4070 } 4071 4072 /* 4073 * Reclaim resources for a setup queue. 4074 */ 4075 static void 4076 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4077 { 4078 4079 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4080 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4081 ATH_TXQ_LOCK_DESTROY(txq); 4082 } 4083 4084 /* 4085 * Reclaim all tx queue resources. 4086 */ 4087 static void 4088 ath_tx_cleanup(struct ath_softc *sc) 4089 { 4090 int i; 4091 4092 ATH_TXBUF_LOCK_DESTROY(sc); 4093 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4094 if (ATH_TXQ_SETUP(sc, i)) 4095 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4096 } 4097 4098 /* 4099 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4100 * using the current rates in sc_rixmap. 4101 */ 4102 int 4103 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4104 { 4105 int rix = sc->sc_rixmap[rate]; 4106 /* NB: return lowest rix for invalid rate */ 4107 return (rix == 0xff ? 0 : rix); 4108 } 4109 4110 static void 4111 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4112 struct ath_buf *bf) 4113 { 4114 struct ieee80211_node *ni = bf->bf_node; 4115 struct ieee80211com *ic = &sc->sc_ic; 4116 int sr, lr, pri; 4117 4118 if (ts->ts_status == 0) { 4119 u_int8_t txant = ts->ts_antenna; 4120 sc->sc_stats.ast_ant_tx[txant]++; 4121 sc->sc_ant_tx[txant]++; 4122 if (ts->ts_finaltsi != 0) 4123 sc->sc_stats.ast_tx_altrate++; 4124 pri = M_WME_GETAC(bf->bf_m); 4125 if (pri >= WME_AC_VO) 4126 ic->ic_wme.wme_hipri_traffic++; 4127 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4128 ni->ni_inact = ni->ni_inact_reload; 4129 } else { 4130 if (ts->ts_status & HAL_TXERR_XRETRY) 4131 sc->sc_stats.ast_tx_xretries++; 4132 if (ts->ts_status & HAL_TXERR_FIFO) 4133 sc->sc_stats.ast_tx_fifoerr++; 4134 if (ts->ts_status & HAL_TXERR_FILT) 4135 sc->sc_stats.ast_tx_filtered++; 4136 if (ts->ts_status & HAL_TXERR_XTXOP) 4137 sc->sc_stats.ast_tx_xtxop++; 4138 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4139 sc->sc_stats.ast_tx_timerexpired++; 4140 4141 if (bf->bf_m->m_flags & M_FF) 4142 sc->sc_stats.ast_ff_txerr++; 4143 } 4144 /* XXX when is this valid? */ 4145 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4146 sc->sc_stats.ast_tx_desccfgerr++; 4147 /* 4148 * This can be valid for successful frame transmission! 4149 * If there's a TX FIFO underrun during aggregate transmission, 4150 * the MAC will pad the rest of the aggregate with delimiters. 4151 * If a BA is returned, the frame is marked as "OK" and it's up 4152 * to the TX completion code to notice which frames weren't 4153 * successfully transmitted. 4154 */ 4155 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4156 sc->sc_stats.ast_tx_data_underrun++; 4157 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4158 sc->sc_stats.ast_tx_delim_underrun++; 4159 4160 sr = ts->ts_shortretry; 4161 lr = ts->ts_longretry; 4162 sc->sc_stats.ast_tx_shortretry += sr; 4163 sc->sc_stats.ast_tx_longretry += lr; 4164 4165 } 4166 4167 /* 4168 * The default completion. If fail is 1, this means 4169 * "please don't retry the frame, and just return -1 status 4170 * to the net80211 stack. 4171 */ 4172 void 4173 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4174 { 4175 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4176 int st; 4177 4178 if (fail == 1) 4179 st = -1; 4180 else 4181 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4182 ts->ts_status : HAL_TXERR_XRETRY; 4183 4184 #if 0 4185 if (bf->bf_state.bfs_dobaw) 4186 device_printf(sc->sc_dev, 4187 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4188 __func__, 4189 bf, 4190 SEQNO(bf->bf_state.bfs_seqno)); 4191 #endif 4192 if (bf->bf_next != NULL) 4193 device_printf(sc->sc_dev, 4194 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4195 __func__, 4196 bf, 4197 SEQNO(bf->bf_state.bfs_seqno)); 4198 4199 /* 4200 * Check if the node software queue is empty; if so 4201 * then clear the TIM. 4202 * 4203 * This needs to be done before the buffer is freed as 4204 * otherwise the node reference will have been released 4205 * and the node may not actually exist any longer. 4206 * 4207 * XXX I don't like this belonging here, but it's cleaner 4208 * to do it here right now then all the other places 4209 * where ath_tx_default_comp() is called. 4210 * 4211 * XXX TODO: during drain, ensure that the callback is 4212 * being called so we get a chance to update the TIM. 4213 */ 4214 if (bf->bf_node) { 4215 ATH_TX_LOCK(sc); 4216 ath_tx_update_tim(sc, bf->bf_node, 0); 4217 ATH_TX_UNLOCK(sc); 4218 } 4219 4220 /* 4221 * Do any tx complete callback. Note this must 4222 * be done before releasing the node reference. 4223 * This will free the mbuf, release the net80211 4224 * node and recycle the ath_buf. 4225 */ 4226 ath_tx_freebuf(sc, bf, st); 4227 } 4228 4229 /* 4230 * Update rate control with the given completion status. 4231 */ 4232 void 4233 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4234 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4235 int nframes, int nbad) 4236 { 4237 struct ath_node *an; 4238 4239 /* Only for unicast frames */ 4240 if (ni == NULL) 4241 return; 4242 4243 an = ATH_NODE(ni); 4244 ATH_NODE_UNLOCK_ASSERT(an); 4245 4246 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4247 ATH_NODE_LOCK(an); 4248 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4249 ATH_NODE_UNLOCK(an); 4250 } 4251 } 4252 4253 /* 4254 * Process the completion of the given buffer. 4255 * 4256 * This calls the rate control update and then the buffer completion. 4257 * This will either free the buffer or requeue it. In any case, the 4258 * bf pointer should be treated as invalid after this function is called. 4259 */ 4260 void 4261 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4262 struct ath_tx_status *ts, struct ath_buf *bf) 4263 { 4264 struct ieee80211_node *ni = bf->bf_node; 4265 4266 ATH_TX_UNLOCK_ASSERT(sc); 4267 ATH_TXQ_UNLOCK_ASSERT(txq); 4268 4269 /* If unicast frame, update general statistics */ 4270 if (ni != NULL) { 4271 /* update statistics */ 4272 ath_tx_update_stats(sc, ts, bf); 4273 } 4274 4275 /* 4276 * Call the completion handler. 4277 * The completion handler is responsible for 4278 * calling the rate control code. 4279 * 4280 * Frames with no completion handler get the 4281 * rate control code called here. 4282 */ 4283 if (bf->bf_comp == NULL) { 4284 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4285 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4286 /* 4287 * XXX assume this isn't an aggregate 4288 * frame. 4289 */ 4290 ath_tx_update_ratectrl(sc, ni, 4291 bf->bf_state.bfs_rc, ts, 4292 bf->bf_state.bfs_pktlen, 1, 4293 (ts->ts_status == 0 ? 0 : 1)); 4294 } 4295 ath_tx_default_comp(sc, bf, 0); 4296 } else 4297 bf->bf_comp(sc, bf, 0); 4298 } 4299 4300 4301 4302 /* 4303 * Process completed xmit descriptors from the specified queue. 4304 * Kick the packet scheduler if needed. This can occur from this 4305 * particular task. 4306 */ 4307 static int 4308 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4309 { 4310 struct ath_hal *ah = sc->sc_ah; 4311 struct ath_buf *bf; 4312 struct ath_desc *ds; 4313 struct ath_tx_status *ts; 4314 struct ieee80211_node *ni; 4315 #ifdef IEEE80211_SUPPORT_SUPERG 4316 struct ieee80211com *ic = &sc->sc_ic; 4317 #endif /* IEEE80211_SUPPORT_SUPERG */ 4318 int nacked; 4319 HAL_STATUS status; 4320 4321 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4322 __func__, txq->axq_qnum, 4323 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4324 txq->axq_link); 4325 4326 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4327 "ath_tx_processq: txq=%u head %p link %p depth %p", 4328 txq->axq_qnum, 4329 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4330 txq->axq_link, 4331 txq->axq_depth); 4332 4333 nacked = 0; 4334 for (;;) { 4335 ATH_TXQ_LOCK(txq); 4336 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4337 bf = TAILQ_FIRST(&txq->axq_q); 4338 if (bf == NULL) { 4339 ATH_TXQ_UNLOCK(txq); 4340 break; 4341 } 4342 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4343 ts = &bf->bf_status.ds_txstat; 4344 4345 status = ath_hal_txprocdesc(ah, ds, ts); 4346 #ifdef ATH_DEBUG 4347 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4348 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4349 status == HAL_OK); 4350 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4351 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4352 status == HAL_OK); 4353 #endif 4354 #ifdef ATH_DEBUG_ALQ 4355 if (if_ath_alq_checkdebug(&sc->sc_alq, 4356 ATH_ALQ_EDMA_TXSTATUS)) { 4357 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4358 sc->sc_tx_statuslen, 4359 (char *) ds); 4360 } 4361 #endif 4362 4363 if (status == HAL_EINPROGRESS) { 4364 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4365 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4366 txq->axq_qnum, bf, ds); 4367 ATH_TXQ_UNLOCK(txq); 4368 break; 4369 } 4370 ATH_TXQ_REMOVE(txq, bf, bf_list); 4371 4372 /* 4373 * Sanity check. 4374 */ 4375 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4376 device_printf(sc->sc_dev, 4377 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4378 __func__, 4379 txq->axq_qnum, 4380 bf, 4381 bf->bf_state.bfs_tx_queue); 4382 } 4383 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4384 device_printf(sc->sc_dev, 4385 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4386 __func__, 4387 txq->axq_qnum, 4388 bf->bf_last, 4389 bf->bf_last->bf_state.bfs_tx_queue); 4390 } 4391 4392 #if 0 4393 if (txq->axq_depth > 0) { 4394 /* 4395 * More frames follow. Mark the buffer busy 4396 * so it's not re-used while the hardware may 4397 * still re-read the link field in the descriptor. 4398 * 4399 * Use the last buffer in an aggregate as that 4400 * is where the hardware may be - intermediate 4401 * descriptors won't be "busy". 4402 */ 4403 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4404 } else 4405 txq->axq_link = NULL; 4406 #else 4407 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4408 #endif 4409 if (bf->bf_state.bfs_aggr) 4410 txq->axq_aggr_depth--; 4411 4412 ni = bf->bf_node; 4413 4414 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4415 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4416 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4417 /* 4418 * If unicast frame was ack'd update RSSI, 4419 * including the last rx time used to 4420 * workaround phantom bmiss interrupts. 4421 */ 4422 if (ni != NULL && ts->ts_status == 0 && 4423 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4424 nacked++; 4425 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4426 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4427 ts->ts_rssi); 4428 } 4429 ATH_TXQ_UNLOCK(txq); 4430 4431 /* 4432 * Update statistics and call completion 4433 */ 4434 ath_tx_process_buf_completion(sc, txq, ts, bf); 4435 4436 /* XXX at this point, bf and ni may be totally invalid */ 4437 } 4438 #ifdef IEEE80211_SUPPORT_SUPERG 4439 /* 4440 * Flush fast-frame staging queue when traffic slows. 4441 */ 4442 if (txq->axq_depth <= 1) 4443 ieee80211_ff_flush(ic, txq->axq_ac); 4444 #endif 4445 4446 /* Kick the software TXQ scheduler */ 4447 if (dosched) { 4448 ATH_TX_LOCK(sc); 4449 ath_txq_sched(sc, txq); 4450 ATH_TX_UNLOCK(sc); 4451 } 4452 4453 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4454 "ath_tx_processq: txq=%u: done", 4455 txq->axq_qnum); 4456 4457 return nacked; 4458 } 4459 4460 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4461 4462 /* 4463 * Deferred processing of transmit interrupt; special-cased 4464 * for a single hardware transmit queue (e.g. 5210 and 5211). 4465 */ 4466 static void 4467 ath_tx_proc_q0(void *arg, int npending) 4468 { 4469 struct ath_softc *sc = arg; 4470 uint32_t txqs; 4471 4472 ATH_PCU_LOCK(sc); 4473 sc->sc_txproc_cnt++; 4474 txqs = sc->sc_txq_active; 4475 sc->sc_txq_active &= ~txqs; 4476 ATH_PCU_UNLOCK(sc); 4477 4478 ATH_LOCK(sc); 4479 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4480 ATH_UNLOCK(sc); 4481 4482 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4483 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4484 4485 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4486 /* XXX why is lastrx updated in tx code? */ 4487 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4488 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4489 ath_tx_processq(sc, sc->sc_cabq, 1); 4490 sc->sc_wd_timer = 0; 4491 4492 if (sc->sc_softled) 4493 ath_led_event(sc, sc->sc_txrix); 4494 4495 ATH_PCU_LOCK(sc); 4496 sc->sc_txproc_cnt--; 4497 ATH_PCU_UNLOCK(sc); 4498 4499 ATH_LOCK(sc); 4500 ath_power_restore_power_state(sc); 4501 ATH_UNLOCK(sc); 4502 4503 ath_tx_kick(sc); 4504 } 4505 4506 /* 4507 * Deferred processing of transmit interrupt; special-cased 4508 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4509 */ 4510 static void 4511 ath_tx_proc_q0123(void *arg, int npending) 4512 { 4513 struct ath_softc *sc = arg; 4514 int nacked; 4515 uint32_t txqs; 4516 4517 ATH_PCU_LOCK(sc); 4518 sc->sc_txproc_cnt++; 4519 txqs = sc->sc_txq_active; 4520 sc->sc_txq_active &= ~txqs; 4521 ATH_PCU_UNLOCK(sc); 4522 4523 ATH_LOCK(sc); 4524 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4525 ATH_UNLOCK(sc); 4526 4527 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4528 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4529 4530 /* 4531 * Process each active queue. 4532 */ 4533 nacked = 0; 4534 if (TXQACTIVE(txqs, 0)) 4535 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4536 if (TXQACTIVE(txqs, 1)) 4537 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4538 if (TXQACTIVE(txqs, 2)) 4539 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4540 if (TXQACTIVE(txqs, 3)) 4541 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4542 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4543 ath_tx_processq(sc, sc->sc_cabq, 1); 4544 if (nacked) 4545 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4546 4547 sc->sc_wd_timer = 0; 4548 4549 if (sc->sc_softled) 4550 ath_led_event(sc, sc->sc_txrix); 4551 4552 ATH_PCU_LOCK(sc); 4553 sc->sc_txproc_cnt--; 4554 ATH_PCU_UNLOCK(sc); 4555 4556 ATH_LOCK(sc); 4557 ath_power_restore_power_state(sc); 4558 ATH_UNLOCK(sc); 4559 4560 ath_tx_kick(sc); 4561 } 4562 4563 /* 4564 * Deferred processing of transmit interrupt. 4565 */ 4566 static void 4567 ath_tx_proc(void *arg, int npending) 4568 { 4569 struct ath_softc *sc = arg; 4570 int i, nacked; 4571 uint32_t txqs; 4572 4573 ATH_PCU_LOCK(sc); 4574 sc->sc_txproc_cnt++; 4575 txqs = sc->sc_txq_active; 4576 sc->sc_txq_active &= ~txqs; 4577 ATH_PCU_UNLOCK(sc); 4578 4579 ATH_LOCK(sc); 4580 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4581 ATH_UNLOCK(sc); 4582 4583 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4584 4585 /* 4586 * Process each active queue. 4587 */ 4588 nacked = 0; 4589 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4590 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4591 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4592 if (nacked) 4593 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4594 4595 sc->sc_wd_timer = 0; 4596 4597 if (sc->sc_softled) 4598 ath_led_event(sc, sc->sc_txrix); 4599 4600 ATH_PCU_LOCK(sc); 4601 sc->sc_txproc_cnt--; 4602 ATH_PCU_UNLOCK(sc); 4603 4604 ATH_LOCK(sc); 4605 ath_power_restore_power_state(sc); 4606 ATH_UNLOCK(sc); 4607 4608 ath_tx_kick(sc); 4609 } 4610 #undef TXQACTIVE 4611 4612 /* 4613 * Deferred processing of TXQ rescheduling. 4614 */ 4615 static void 4616 ath_txq_sched_tasklet(void *arg, int npending) 4617 { 4618 struct ath_softc *sc = arg; 4619 int i; 4620 4621 /* XXX is skipping ok? */ 4622 ATH_PCU_LOCK(sc); 4623 #if 0 4624 if (sc->sc_inreset_cnt > 0) { 4625 device_printf(sc->sc_dev, 4626 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4627 ATH_PCU_UNLOCK(sc); 4628 return; 4629 } 4630 #endif 4631 sc->sc_txproc_cnt++; 4632 ATH_PCU_UNLOCK(sc); 4633 4634 ATH_LOCK(sc); 4635 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4636 ATH_UNLOCK(sc); 4637 4638 ATH_TX_LOCK(sc); 4639 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4640 if (ATH_TXQ_SETUP(sc, i)) { 4641 ath_txq_sched(sc, &sc->sc_txq[i]); 4642 } 4643 } 4644 ATH_TX_UNLOCK(sc); 4645 4646 ATH_LOCK(sc); 4647 ath_power_restore_power_state(sc); 4648 ATH_UNLOCK(sc); 4649 4650 ATH_PCU_LOCK(sc); 4651 sc->sc_txproc_cnt--; 4652 ATH_PCU_UNLOCK(sc); 4653 } 4654 4655 void 4656 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4657 { 4658 4659 ATH_TXBUF_LOCK_ASSERT(sc); 4660 4661 if (bf->bf_flags & ATH_BUF_MGMT) 4662 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4663 else { 4664 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4665 sc->sc_txbuf_cnt++; 4666 if (sc->sc_txbuf_cnt > ath_txbuf) { 4667 device_printf(sc->sc_dev, 4668 "%s: sc_txbuf_cnt > %d?\n", 4669 __func__, 4670 ath_txbuf); 4671 sc->sc_txbuf_cnt = ath_txbuf; 4672 } 4673 } 4674 } 4675 4676 void 4677 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4678 { 4679 4680 ATH_TXBUF_LOCK_ASSERT(sc); 4681 4682 if (bf->bf_flags & ATH_BUF_MGMT) 4683 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4684 else { 4685 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4686 sc->sc_txbuf_cnt++; 4687 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4688 device_printf(sc->sc_dev, 4689 "%s: sc_txbuf_cnt > %d?\n", 4690 __func__, 4691 ATH_TXBUF); 4692 sc->sc_txbuf_cnt = ATH_TXBUF; 4693 } 4694 } 4695 } 4696 4697 /* 4698 * Free the holding buffer if it exists 4699 */ 4700 void 4701 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4702 { 4703 ATH_TXBUF_UNLOCK_ASSERT(sc); 4704 ATH_TXQ_LOCK_ASSERT(txq); 4705 4706 if (txq->axq_holdingbf == NULL) 4707 return; 4708 4709 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4710 4711 ATH_TXBUF_LOCK(sc); 4712 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4713 ATH_TXBUF_UNLOCK(sc); 4714 4715 txq->axq_holdingbf = NULL; 4716 } 4717 4718 /* 4719 * Add this buffer to the holding queue, freeing the previous 4720 * one if it exists. 4721 */ 4722 static void 4723 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4724 { 4725 struct ath_txq *txq; 4726 4727 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4728 4729 ATH_TXBUF_UNLOCK_ASSERT(sc); 4730 ATH_TXQ_LOCK_ASSERT(txq); 4731 4732 /* XXX assert ATH_BUF_BUSY is set */ 4733 4734 /* XXX assert the tx queue is under the max number */ 4735 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4736 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4737 __func__, 4738 bf, 4739 bf->bf_state.bfs_tx_queue); 4740 bf->bf_flags &= ~ATH_BUF_BUSY; 4741 ath_returnbuf_tail(sc, bf); 4742 return; 4743 } 4744 ath_txq_freeholdingbuf(sc, txq); 4745 txq->axq_holdingbf = bf; 4746 } 4747 4748 /* 4749 * Return a buffer to the pool and update the 'busy' flag on the 4750 * previous 'tail' entry. 4751 * 4752 * This _must_ only be called when the buffer is involved in a completed 4753 * TX. The logic is that if it was part of an active TX, the previous 4754 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4755 * for restart (eg for TDMA.) 4756 * 4757 * The caller must free the mbuf and recycle the node reference. 4758 * 4759 * XXX This method of handling busy / holding buffers is insanely stupid. 4760 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4761 * be much nicer if buffers in the processq() methods would instead be 4762 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4763 * exactly what hardware queue they came from in the first place. 4764 */ 4765 void 4766 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4767 { 4768 struct ath_txq *txq; 4769 4770 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4771 4772 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4773 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4774 4775 /* 4776 * If this buffer is busy, push it onto the holding queue. 4777 */ 4778 if (bf->bf_flags & ATH_BUF_BUSY) { 4779 ATH_TXQ_LOCK(txq); 4780 ath_txq_addholdingbuf(sc, bf); 4781 ATH_TXQ_UNLOCK(txq); 4782 return; 4783 } 4784 4785 /* 4786 * Not a busy buffer, so free normally 4787 */ 4788 ATH_TXBUF_LOCK(sc); 4789 ath_returnbuf_tail(sc, bf); 4790 ATH_TXBUF_UNLOCK(sc); 4791 } 4792 4793 /* 4794 * This is currently used by ath_tx_draintxq() and 4795 * ath_tx_tid_free_pkts(). 4796 * 4797 * It recycles a single ath_buf. 4798 */ 4799 void 4800 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4801 { 4802 struct ieee80211_node *ni = bf->bf_node; 4803 struct mbuf *m0 = bf->bf_m; 4804 4805 /* 4806 * Make sure that we only sync/unload if there's an mbuf. 4807 * If not (eg we cloned a buffer), the unload will have already 4808 * occurred. 4809 */ 4810 if (bf->bf_m != NULL) { 4811 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4812 BUS_DMASYNC_POSTWRITE); 4813 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4814 } 4815 4816 bf->bf_node = NULL; 4817 bf->bf_m = NULL; 4818 4819 /* Free the buffer, it's not needed any longer */ 4820 ath_freebuf(sc, bf); 4821 4822 /* Pass the buffer back to net80211 - completing it */ 4823 ieee80211_tx_complete(ni, m0, status); 4824 } 4825 4826 static struct ath_buf * 4827 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4828 { 4829 struct ath_buf *bf; 4830 4831 ATH_TXQ_LOCK_ASSERT(txq); 4832 4833 /* 4834 * Drain the FIFO queue first, then if it's 4835 * empty, move to the normal frame queue. 4836 */ 4837 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4838 if (bf != NULL) { 4839 /* 4840 * Is it the last buffer in this set? 4841 * Decrement the FIFO counter. 4842 */ 4843 if (bf->bf_flags & ATH_BUF_FIFOEND) { 4844 if (txq->axq_fifo_depth == 0) { 4845 device_printf(sc->sc_dev, 4846 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 4847 __func__, 4848 txq->axq_qnum, 4849 txq->fifo.axq_depth); 4850 } else 4851 txq->axq_fifo_depth--; 4852 } 4853 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 4854 return (bf); 4855 } 4856 4857 /* 4858 * Debugging! 4859 */ 4860 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 4861 device_printf(sc->sc_dev, 4862 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 4863 __func__, 4864 txq->axq_qnum, 4865 txq->axq_fifo_depth, 4866 txq->fifo.axq_depth); 4867 } 4868 4869 /* 4870 * Now drain the pending queue. 4871 */ 4872 bf = TAILQ_FIRST(&txq->axq_q); 4873 if (bf == NULL) { 4874 txq->axq_link = NULL; 4875 return (NULL); 4876 } 4877 ATH_TXQ_REMOVE(txq, bf, bf_list); 4878 return (bf); 4879 } 4880 4881 void 4882 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4883 { 4884 #ifdef ATH_DEBUG 4885 struct ath_hal *ah = sc->sc_ah; 4886 #endif 4887 struct ath_buf *bf; 4888 u_int ix; 4889 4890 /* 4891 * NB: this assumes output has been stopped and 4892 * we do not need to block ath_tx_proc 4893 */ 4894 for (ix = 0;; ix++) { 4895 ATH_TXQ_LOCK(txq); 4896 bf = ath_tx_draintxq_get_one(sc, txq); 4897 if (bf == NULL) { 4898 ATH_TXQ_UNLOCK(txq); 4899 break; 4900 } 4901 if (bf->bf_state.bfs_aggr) 4902 txq->axq_aggr_depth--; 4903 #ifdef ATH_DEBUG 4904 if (sc->sc_debug & ATH_DEBUG_RESET) { 4905 struct ieee80211com *ic = &sc->sc_ic; 4906 int status = 0; 4907 4908 /* 4909 * EDMA operation has a TX completion FIFO 4910 * separate from the TX descriptor, so this 4911 * method of checking the "completion" status 4912 * is wrong. 4913 */ 4914 if (! sc->sc_isedma) { 4915 status = (ath_hal_txprocdesc(ah, 4916 bf->bf_lastds, 4917 &bf->bf_status.ds_txstat) == HAL_OK); 4918 } 4919 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4920 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4921 bf->bf_m->m_len, 0, -1); 4922 } 4923 #endif /* ATH_DEBUG */ 4924 /* 4925 * Since we're now doing magic in the completion 4926 * functions, we -must- call it for aggregation 4927 * destinations or BAW tracking will get upset. 4928 */ 4929 /* 4930 * Clear ATH_BUF_BUSY; the completion handler 4931 * will free the buffer. 4932 */ 4933 ATH_TXQ_UNLOCK(txq); 4934 bf->bf_flags &= ~ATH_BUF_BUSY; 4935 if (bf->bf_comp) 4936 bf->bf_comp(sc, bf, 1); 4937 else 4938 ath_tx_default_comp(sc, bf, 1); 4939 } 4940 4941 /* 4942 * Free the holding buffer if it exists 4943 */ 4944 ATH_TXQ_LOCK(txq); 4945 ath_txq_freeholdingbuf(sc, txq); 4946 ATH_TXQ_UNLOCK(txq); 4947 4948 /* 4949 * Drain software queued frames which are on 4950 * active TIDs. 4951 */ 4952 ath_tx_txq_drain(sc, txq); 4953 } 4954 4955 static void 4956 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4957 { 4958 struct ath_hal *ah = sc->sc_ah; 4959 4960 ATH_TXQ_LOCK_ASSERT(txq); 4961 4962 DPRINTF(sc, ATH_DEBUG_RESET, 4963 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 4964 "link %p, holdingbf=%p\n", 4965 __func__, 4966 txq->axq_qnum, 4967 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4968 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 4969 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 4970 txq->axq_flags, 4971 txq->axq_link, 4972 txq->axq_holdingbf); 4973 4974 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4975 /* We've stopped TX DMA, so mark this as stopped. */ 4976 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 4977 4978 #ifdef ATH_DEBUG 4979 if ((sc->sc_debug & ATH_DEBUG_RESET) 4980 && (txq->axq_holdingbf != NULL)) { 4981 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 4982 } 4983 #endif 4984 } 4985 4986 int 4987 ath_stoptxdma(struct ath_softc *sc) 4988 { 4989 struct ath_hal *ah = sc->sc_ah; 4990 int i; 4991 4992 /* XXX return value */ 4993 if (sc->sc_invalid) 4994 return 0; 4995 4996 if (!sc->sc_invalid) { 4997 /* don't touch the hardware if marked invalid */ 4998 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4999 __func__, sc->sc_bhalq, 5000 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5001 NULL); 5002 5003 /* stop the beacon queue */ 5004 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5005 5006 /* Stop the data queues */ 5007 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5008 if (ATH_TXQ_SETUP(sc, i)) { 5009 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5010 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5011 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5012 } 5013 } 5014 } 5015 5016 return 1; 5017 } 5018 5019 #ifdef ATH_DEBUG 5020 void 5021 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 5022 { 5023 struct ath_hal *ah = sc->sc_ah; 5024 struct ath_buf *bf; 5025 int i = 0; 5026 5027 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 5028 return; 5029 5030 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 5031 __func__, txq->axq_qnum); 5032 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 5033 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 5034 ath_hal_txprocdesc(ah, bf->bf_lastds, 5035 &bf->bf_status.ds_txstat) == HAL_OK); 5036 i++; 5037 } 5038 device_printf(sc->sc_dev, "%s: Q%d: end\n", 5039 __func__, txq->axq_qnum); 5040 } 5041 #endif /* ATH_DEBUG */ 5042 5043 /* 5044 * Drain the transmit queues and reclaim resources. 5045 */ 5046 void 5047 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5048 { 5049 struct ath_hal *ah = sc->sc_ah; 5050 struct ath_buf *bf_last; 5051 int i; 5052 5053 (void) ath_stoptxdma(sc); 5054 5055 /* 5056 * Dump the queue contents 5057 */ 5058 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5059 /* 5060 * XXX TODO: should we just handle the completed TX frames 5061 * here, whether or not the reset is a full one or not? 5062 */ 5063 if (ATH_TXQ_SETUP(sc, i)) { 5064 #ifdef ATH_DEBUG 5065 if (sc->sc_debug & ATH_DEBUG_RESET) 5066 ath_tx_dump(sc, &sc->sc_txq[i]); 5067 #endif /* ATH_DEBUG */ 5068 if (reset_type == ATH_RESET_NOLOSS) { 5069 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5070 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5071 /* 5072 * Free the holding buffer; DMA is now 5073 * stopped. 5074 */ 5075 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 5076 /* 5077 * Setup the link pointer to be the 5078 * _last_ buffer/descriptor in the list. 5079 * If there's nothing in the list, set it 5080 * to NULL. 5081 */ 5082 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5083 axq_q_s); 5084 if (bf_last != NULL) { 5085 ath_hal_gettxdesclinkptr(ah, 5086 bf_last->bf_lastds, 5087 &sc->sc_txq[i].axq_link); 5088 } else { 5089 sc->sc_txq[i].axq_link = NULL; 5090 } 5091 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5092 } else 5093 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5094 } 5095 } 5096 #ifdef ATH_DEBUG 5097 if (sc->sc_debug & ATH_DEBUG_RESET) { 5098 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5099 if (bf != NULL && bf->bf_m != NULL) { 5100 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5101 ath_hal_txprocdesc(ah, bf->bf_lastds, 5102 &bf->bf_status.ds_txstat) == HAL_OK); 5103 ieee80211_dump_pkt(&sc->sc_ic, 5104 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5105 0, -1); 5106 } 5107 } 5108 #endif /* ATH_DEBUG */ 5109 sc->sc_wd_timer = 0; 5110 } 5111 5112 /* 5113 * Update internal state after a channel change. 5114 */ 5115 static void 5116 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5117 { 5118 enum ieee80211_phymode mode; 5119 5120 /* 5121 * Change channels and update the h/w rate map 5122 * if we're switching; e.g. 11a to 11b/g. 5123 */ 5124 mode = ieee80211_chan2mode(chan); 5125 if (mode != sc->sc_curmode) 5126 ath_setcurmode(sc, mode); 5127 sc->sc_curchan = chan; 5128 } 5129 5130 /* 5131 * Set/change channels. If the channel is really being changed, 5132 * it's done by resetting the chip. To accomplish this we must 5133 * first cleanup any pending DMA, then restart stuff after a la 5134 * ath_init. 5135 */ 5136 static int 5137 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5138 { 5139 struct ieee80211com *ic = &sc->sc_ic; 5140 struct ath_hal *ah = sc->sc_ah; 5141 int ret = 0; 5142 5143 /* Treat this as an interface reset */ 5144 ATH_PCU_UNLOCK_ASSERT(sc); 5145 ATH_UNLOCK_ASSERT(sc); 5146 5147 /* (Try to) stop TX/RX from occurring */ 5148 taskqueue_block(sc->sc_tq); 5149 5150 ATH_PCU_LOCK(sc); 5151 5152 /* Disable interrupts */ 5153 ath_hal_intrset(ah, 0); 5154 5155 /* Stop new RX/TX/interrupt completion */ 5156 if (ath_reset_grablock(sc, 1) == 0) { 5157 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5158 __func__); 5159 } 5160 5161 /* Stop pending RX/TX completion */ 5162 ath_txrx_stop_locked(sc); 5163 5164 ATH_PCU_UNLOCK(sc); 5165 5166 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5167 __func__, ieee80211_chan2ieee(ic, chan), 5168 chan->ic_freq, chan->ic_flags); 5169 if (chan != sc->sc_curchan) { 5170 HAL_STATUS status; 5171 /* 5172 * To switch channels clear any pending DMA operations; 5173 * wait long enough for the RX fifo to drain, reset the 5174 * hardware at the new frequency, and then re-enable 5175 * the relevant bits of the h/w. 5176 */ 5177 #if 0 5178 ath_hal_intrset(ah, 0); /* disable interrupts */ 5179 #endif 5180 ath_stoprecv(sc, 1); /* turn off frame recv */ 5181 /* 5182 * First, handle completed TX/RX frames. 5183 */ 5184 ath_rx_flush(sc); 5185 ath_draintxq(sc, ATH_RESET_NOLOSS); 5186 /* 5187 * Next, flush the non-scheduled frames. 5188 */ 5189 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5190 5191 ath_update_chainmasks(sc, chan); 5192 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5193 sc->sc_cur_rxchainmask); 5194 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, 5195 HAL_RESET_NORMAL, &status)) { 5196 device_printf(sc->sc_dev, "%s: unable to reset " 5197 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5198 __func__, ieee80211_chan2ieee(ic, chan), 5199 chan->ic_freq, chan->ic_flags, status); 5200 ret = EIO; 5201 goto finish; 5202 } 5203 sc->sc_diversity = ath_hal_getdiversity(ah); 5204 5205 ATH_RX_LOCK(sc); 5206 sc->sc_rx_stopped = 1; 5207 sc->sc_rx_resetted = 1; 5208 ATH_RX_UNLOCK(sc); 5209 5210 /* Let DFS at it in case it's a DFS channel */ 5211 ath_dfs_radar_enable(sc, chan); 5212 5213 /* Let spectral at in case spectral is enabled */ 5214 ath_spectral_enable(sc, chan); 5215 5216 /* 5217 * Let bluetooth coexistence at in case it's needed for this 5218 * channel 5219 */ 5220 ath_btcoex_enable(sc, ic->ic_curchan); 5221 5222 /* 5223 * If we're doing TDMA, enforce the TXOP limitation for chips 5224 * that support it. 5225 */ 5226 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5227 ath_hal_setenforcetxop(sc->sc_ah, 1); 5228 else 5229 ath_hal_setenforcetxop(sc->sc_ah, 0); 5230 5231 /* 5232 * Re-enable rx framework. 5233 */ 5234 if (ath_startrecv(sc) != 0) { 5235 device_printf(sc->sc_dev, 5236 "%s: unable to restart recv logic\n", __func__); 5237 ret = EIO; 5238 goto finish; 5239 } 5240 5241 /* 5242 * Change channels and update the h/w rate map 5243 * if we're switching; e.g. 11a to 11b/g. 5244 */ 5245 ath_chan_change(sc, chan); 5246 5247 /* 5248 * Reset clears the beacon timers; reset them 5249 * here if needed. 5250 */ 5251 if (sc->sc_beacons) { /* restart beacons */ 5252 #ifdef IEEE80211_SUPPORT_TDMA 5253 if (sc->sc_tdma) 5254 ath_tdma_config(sc, NULL); 5255 else 5256 #endif 5257 ath_beacon_config(sc, NULL); 5258 } 5259 5260 /* 5261 * Re-enable interrupts. 5262 */ 5263 #if 0 5264 ath_hal_intrset(ah, sc->sc_imask); 5265 #endif 5266 } 5267 5268 finish: 5269 ATH_PCU_LOCK(sc); 5270 sc->sc_inreset_cnt--; 5271 /* XXX only do this if sc_inreset_cnt == 0? */ 5272 ath_hal_intrset(ah, sc->sc_imask); 5273 ATH_PCU_UNLOCK(sc); 5274 5275 ath_txrx_start(sc); 5276 /* XXX ath_start? */ 5277 5278 return ret; 5279 } 5280 5281 /* 5282 * Periodically recalibrate the PHY to account 5283 * for temperature/environment changes. 5284 */ 5285 static void 5286 ath_calibrate(void *arg) 5287 { 5288 struct ath_softc *sc = arg; 5289 struct ath_hal *ah = sc->sc_ah; 5290 struct ieee80211com *ic = &sc->sc_ic; 5291 HAL_BOOL longCal, isCalDone = AH_TRUE; 5292 HAL_BOOL aniCal, shortCal = AH_FALSE; 5293 int nextcal; 5294 5295 ATH_LOCK_ASSERT(sc); 5296 5297 /* 5298 * Force the hardware awake for ANI work. 5299 */ 5300 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5301 5302 /* Skip trying to do this if we're in reset */ 5303 if (sc->sc_inreset_cnt) 5304 goto restart; 5305 5306 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5307 goto restart; 5308 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5309 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5310 if (sc->sc_doresetcal) 5311 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5312 5313 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5314 if (aniCal) { 5315 sc->sc_stats.ast_ani_cal++; 5316 sc->sc_lastani = ticks; 5317 ath_hal_ani_poll(ah, sc->sc_curchan); 5318 } 5319 5320 if (longCal) { 5321 sc->sc_stats.ast_per_cal++; 5322 sc->sc_lastlongcal = ticks; 5323 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5324 /* 5325 * Rfgain is out of bounds, reset the chip 5326 * to load new gain values. 5327 */ 5328 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5329 "%s: rfgain change\n", __func__); 5330 sc->sc_stats.ast_per_rfgain++; 5331 sc->sc_resetcal = 0; 5332 sc->sc_doresetcal = AH_TRUE; 5333 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5334 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5335 ath_power_restore_power_state(sc); 5336 return; 5337 } 5338 /* 5339 * If this long cal is after an idle period, then 5340 * reset the data collection state so we start fresh. 5341 */ 5342 if (sc->sc_resetcal) { 5343 (void) ath_hal_calreset(ah, sc->sc_curchan); 5344 sc->sc_lastcalreset = ticks; 5345 sc->sc_lastshortcal = ticks; 5346 sc->sc_resetcal = 0; 5347 sc->sc_doresetcal = AH_TRUE; 5348 } 5349 } 5350 5351 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5352 if (shortCal || longCal) { 5353 isCalDone = AH_FALSE; 5354 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5355 if (longCal) { 5356 /* 5357 * Calibrate noise floor data again in case of change. 5358 */ 5359 ath_hal_process_noisefloor(ah); 5360 } 5361 } else { 5362 DPRINTF(sc, ATH_DEBUG_ANY, 5363 "%s: calibration of channel %u failed\n", 5364 __func__, sc->sc_curchan->ic_freq); 5365 sc->sc_stats.ast_per_calfail++; 5366 } 5367 if (shortCal) 5368 sc->sc_lastshortcal = ticks; 5369 } 5370 if (!isCalDone) { 5371 restart: 5372 /* 5373 * Use a shorter interval to potentially collect multiple 5374 * data samples required to complete calibration. Once 5375 * we're told the work is done we drop back to a longer 5376 * interval between requests. We're more aggressive doing 5377 * work when operating as an AP to improve operation right 5378 * after startup. 5379 */ 5380 sc->sc_lastshortcal = ticks; 5381 nextcal = ath_shortcalinterval*hz/1000; 5382 if (sc->sc_opmode != HAL_M_HOSTAP) 5383 nextcal *= 10; 5384 sc->sc_doresetcal = AH_TRUE; 5385 } else { 5386 /* nextcal should be the shortest time for next event */ 5387 nextcal = ath_longcalinterval*hz; 5388 if (sc->sc_lastcalreset == 0) 5389 sc->sc_lastcalreset = sc->sc_lastlongcal; 5390 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5391 sc->sc_resetcal = 1; /* setup reset next trip */ 5392 sc->sc_doresetcal = AH_FALSE; 5393 } 5394 /* ANI calibration may occur more often than short/long/resetcal */ 5395 if (ath_anicalinterval > 0) 5396 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5397 5398 if (nextcal != 0) { 5399 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5400 __func__, nextcal, isCalDone ? "" : "!"); 5401 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5402 } else { 5403 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5404 __func__); 5405 /* NB: don't rearm timer */ 5406 } 5407 /* 5408 * Restore power state now that we're done. 5409 */ 5410 ath_power_restore_power_state(sc); 5411 } 5412 5413 static void 5414 ath_scan_start(struct ieee80211com *ic) 5415 { 5416 struct ath_softc *sc = ic->ic_softc; 5417 struct ath_hal *ah = sc->sc_ah; 5418 u_int32_t rfilt; 5419 5420 /* XXX calibration timer? */ 5421 /* XXXGL: is constant ieee80211broadcastaddr a correct choice? */ 5422 5423 ATH_LOCK(sc); 5424 sc->sc_scanning = 1; 5425 sc->sc_syncbeacon = 0; 5426 rfilt = ath_calcrxfilter(sc); 5427 ATH_UNLOCK(sc); 5428 5429 ATH_PCU_LOCK(sc); 5430 ath_hal_setrxfilter(ah, rfilt); 5431 ath_hal_setassocid(ah, ieee80211broadcastaddr, 0); 5432 ATH_PCU_UNLOCK(sc); 5433 5434 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5435 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr)); 5436 } 5437 5438 static void 5439 ath_scan_end(struct ieee80211com *ic) 5440 { 5441 struct ath_softc *sc = ic->ic_softc; 5442 struct ath_hal *ah = sc->sc_ah; 5443 u_int32_t rfilt; 5444 5445 ATH_LOCK(sc); 5446 sc->sc_scanning = 0; 5447 rfilt = ath_calcrxfilter(sc); 5448 ATH_UNLOCK(sc); 5449 5450 ATH_PCU_LOCK(sc); 5451 ath_hal_setrxfilter(ah, rfilt); 5452 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5453 5454 ath_hal_process_noisefloor(ah); 5455 ATH_PCU_UNLOCK(sc); 5456 5457 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5458 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5459 sc->sc_curaid); 5460 } 5461 5462 #ifdef ATH_ENABLE_11N 5463 /* 5464 * For now, just do a channel change. 5465 * 5466 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5467 * control state and resetting the hardware without dropping frames out 5468 * of the queue. 5469 * 5470 * The unfortunate trouble here is making absolutely sure that the 5471 * channel width change has propagated enough so the hardware 5472 * absolutely isn't handed bogus frames for it's current operating 5473 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5474 * does occur in parallel, we need to make certain we've blocked 5475 * any further ongoing TX (and RX, that can cause raw TX) 5476 * before we do this. 5477 */ 5478 static void 5479 ath_update_chw(struct ieee80211com *ic) 5480 { 5481 struct ath_softc *sc = ic->ic_softc; 5482 5483 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5484 ath_set_channel(ic); 5485 } 5486 #endif /* ATH_ENABLE_11N */ 5487 5488 static void 5489 ath_set_channel(struct ieee80211com *ic) 5490 { 5491 struct ath_softc *sc = ic->ic_softc; 5492 5493 ATH_LOCK(sc); 5494 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5495 ATH_UNLOCK(sc); 5496 5497 (void) ath_chan_set(sc, ic->ic_curchan); 5498 /* 5499 * If we are returning to our bss channel then mark state 5500 * so the next recv'd beacon's tsf will be used to sync the 5501 * beacon timers. Note that since we only hear beacons in 5502 * sta/ibss mode this has no effect in other operating modes. 5503 */ 5504 ATH_LOCK(sc); 5505 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5506 sc->sc_syncbeacon = 1; 5507 ath_power_restore_power_state(sc); 5508 ATH_UNLOCK(sc); 5509 } 5510 5511 /* 5512 * Walk the vap list and check if there any vap's in RUN state. 5513 */ 5514 static int 5515 ath_isanyrunningvaps(struct ieee80211vap *this) 5516 { 5517 struct ieee80211com *ic = this->iv_ic; 5518 struct ieee80211vap *vap; 5519 5520 IEEE80211_LOCK_ASSERT(ic); 5521 5522 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5523 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5524 return 1; 5525 } 5526 return 0; 5527 } 5528 5529 static int 5530 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5531 { 5532 struct ieee80211com *ic = vap->iv_ic; 5533 struct ath_softc *sc = ic->ic_softc; 5534 struct ath_vap *avp = ATH_VAP(vap); 5535 struct ath_hal *ah = sc->sc_ah; 5536 struct ieee80211_node *ni = NULL; 5537 int i, error, stamode; 5538 u_int32_t rfilt; 5539 int csa_run_transition = 0; 5540 enum ieee80211_state ostate = vap->iv_state; 5541 5542 static const HAL_LED_STATE leds[] = { 5543 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5544 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5545 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5546 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5547 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5548 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5549 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5550 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5551 }; 5552 5553 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5554 ieee80211_state_name[ostate], 5555 ieee80211_state_name[nstate]); 5556 5557 /* 5558 * net80211 _should_ have the comlock asserted at this point. 5559 * There are some comments around the calls to vap->iv_newstate 5560 * which indicate that it (newstate) may end up dropping the 5561 * lock. This and the subsequent lock assert check after newstate 5562 * are an attempt to catch these and figure out how/why. 5563 */ 5564 IEEE80211_LOCK_ASSERT(ic); 5565 5566 /* Before we touch the hardware - wake it up */ 5567 ATH_LOCK(sc); 5568 /* 5569 * If the NIC is in anything other than SLEEP state, 5570 * we need to ensure that self-generated frames are 5571 * set for PWRMGT=0. Otherwise we may end up with 5572 * strange situations. 5573 * 5574 * XXX TODO: is this actually the case? :-) 5575 */ 5576 if (nstate != IEEE80211_S_SLEEP) 5577 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5578 5579 /* 5580 * Now, wake the thing up. 5581 */ 5582 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5583 5584 /* 5585 * And stop the calibration callout whilst we have 5586 * ATH_LOCK held. 5587 */ 5588 callout_stop(&sc->sc_cal_ch); 5589 ATH_UNLOCK(sc); 5590 5591 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5592 csa_run_transition = 1; 5593 5594 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5595 5596 if (nstate == IEEE80211_S_SCAN) { 5597 /* 5598 * Scanning: turn off beacon miss and don't beacon. 5599 * Mark beacon state so when we reach RUN state we'll 5600 * [re]setup beacons. Unblock the task q thread so 5601 * deferred interrupt processing is done. 5602 */ 5603 5604 /* Ensure we stay awake during scan */ 5605 ATH_LOCK(sc); 5606 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5607 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 5608 ATH_UNLOCK(sc); 5609 5610 ath_hal_intrset(ah, 5611 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5612 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5613 sc->sc_beacons = 0; 5614 taskqueue_unblock(sc->sc_tq); 5615 } 5616 5617 ni = ieee80211_ref_node(vap->iv_bss); 5618 rfilt = ath_calcrxfilter(sc); 5619 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5620 vap->iv_opmode == IEEE80211_M_AHDEMO || 5621 vap->iv_opmode == IEEE80211_M_IBSS); 5622 5623 /* 5624 * XXX Dont need to do this (and others) if we've transitioned 5625 * from SLEEP->RUN. 5626 */ 5627 if (stamode && nstate == IEEE80211_S_RUN) { 5628 sc->sc_curaid = ni->ni_associd; 5629 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5630 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5631 } 5632 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5633 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5634 ath_hal_setrxfilter(ah, rfilt); 5635 5636 /* XXX is this to restore keycache on resume? */ 5637 if (vap->iv_opmode != IEEE80211_M_STA && 5638 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5639 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5640 if (ath_hal_keyisvalid(ah, i)) 5641 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5642 } 5643 5644 /* 5645 * Invoke the parent method to do net80211 work. 5646 */ 5647 error = avp->av_newstate(vap, nstate, arg); 5648 if (error != 0) 5649 goto bad; 5650 5651 /* 5652 * See above: ensure av_newstate() doesn't drop the lock 5653 * on us. 5654 */ 5655 IEEE80211_LOCK_ASSERT(ic); 5656 5657 if (nstate == IEEE80211_S_RUN) { 5658 /* NB: collect bss node again, it may have changed */ 5659 ieee80211_free_node(ni); 5660 ni = ieee80211_ref_node(vap->iv_bss); 5661 5662 DPRINTF(sc, ATH_DEBUG_STATE, 5663 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5664 "capinfo 0x%04x chan %d\n", __func__, 5665 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5666 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5667 5668 switch (vap->iv_opmode) { 5669 #ifdef IEEE80211_SUPPORT_TDMA 5670 case IEEE80211_M_AHDEMO: 5671 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5672 break; 5673 /* fall thru... */ 5674 #endif 5675 case IEEE80211_M_HOSTAP: 5676 case IEEE80211_M_IBSS: 5677 case IEEE80211_M_MBSS: 5678 /* 5679 * Allocate and setup the beacon frame. 5680 * 5681 * Stop any previous beacon DMA. This may be 5682 * necessary, for example, when an ibss merge 5683 * causes reconfiguration; there will be a state 5684 * transition from RUN->RUN that means we may 5685 * be called with beacon transmission active. 5686 */ 5687 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5688 5689 error = ath_beacon_alloc(sc, ni); 5690 if (error != 0) 5691 goto bad; 5692 /* 5693 * If joining an adhoc network defer beacon timer 5694 * configuration to the next beacon frame so we 5695 * have a current TSF to use. Otherwise we're 5696 * starting an ibss/bss so there's no need to delay; 5697 * if this is the first vap moving to RUN state, then 5698 * beacon state needs to be [re]configured. 5699 */ 5700 if (vap->iv_opmode == IEEE80211_M_IBSS && 5701 ni->ni_tstamp.tsf != 0) { 5702 sc->sc_syncbeacon = 1; 5703 } else if (!sc->sc_beacons) { 5704 #ifdef IEEE80211_SUPPORT_TDMA 5705 if (vap->iv_caps & IEEE80211_C_TDMA) 5706 ath_tdma_config(sc, vap); 5707 else 5708 #endif 5709 ath_beacon_config(sc, vap); 5710 sc->sc_beacons = 1; 5711 } 5712 break; 5713 case IEEE80211_M_STA: 5714 /* 5715 * Defer beacon timer configuration to the next 5716 * beacon frame so we have a current TSF to use 5717 * (any TSF collected when scanning is likely old). 5718 * However if it's due to a CSA -> RUN transition, 5719 * force a beacon update so we pick up a lack of 5720 * beacons from an AP in CAC and thus force a 5721 * scan. 5722 * 5723 * And, there's also corner cases here where 5724 * after a scan, the AP may have disappeared. 5725 * In that case, we may not receive an actual 5726 * beacon to update the beacon timer and thus we 5727 * won't get notified of the missing beacons. 5728 */ 5729 if (ostate != IEEE80211_S_RUN && 5730 ostate != IEEE80211_S_SLEEP) { 5731 DPRINTF(sc, ATH_DEBUG_BEACON, 5732 "%s: STA; syncbeacon=1\n", __func__); 5733 sc->sc_syncbeacon = 1; 5734 5735 if (csa_run_transition) 5736 ath_beacon_config(sc, vap); 5737 5738 /* 5739 * PR: kern/175227 5740 * 5741 * Reconfigure beacons during reset; as otherwise 5742 * we won't get the beacon timers reprogrammed 5743 * after a reset and thus we won't pick up a 5744 * beacon miss interrupt. 5745 * 5746 * Hopefully we'll see a beacon before the BMISS 5747 * timer fires (too often), leading to a STA 5748 * disassociation. 5749 */ 5750 sc->sc_beacons = 1; 5751 } 5752 break; 5753 case IEEE80211_M_MONITOR: 5754 /* 5755 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5756 * transitions so we must re-enable interrupts here to 5757 * handle the case of a single monitor mode vap. 5758 */ 5759 ath_hal_intrset(ah, sc->sc_imask); 5760 break; 5761 case IEEE80211_M_WDS: 5762 break; 5763 default: 5764 break; 5765 } 5766 /* 5767 * Let the hal process statistics collected during a 5768 * scan so it can provide calibrated noise floor data. 5769 */ 5770 ath_hal_process_noisefloor(ah); 5771 /* 5772 * Reset rssi stats; maybe not the best place... 5773 */ 5774 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5775 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5776 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5777 5778 /* 5779 * Force awake for RUN mode. 5780 */ 5781 ATH_LOCK(sc); 5782 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5783 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 5784 5785 /* 5786 * Finally, start any timers and the task q thread 5787 * (in case we didn't go through SCAN state). 5788 */ 5789 if (ath_longcalinterval != 0) { 5790 /* start periodic recalibration timer */ 5791 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5792 } else { 5793 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5794 "%s: calibration disabled\n", __func__); 5795 } 5796 ATH_UNLOCK(sc); 5797 5798 taskqueue_unblock(sc->sc_tq); 5799 } else if (nstate == IEEE80211_S_INIT) { 5800 /* 5801 * If there are no vaps left in RUN state then 5802 * shutdown host/driver operation: 5803 * o disable interrupts 5804 * o disable the task queue thread 5805 * o mark beacon processing as stopped 5806 */ 5807 if (!ath_isanyrunningvaps(vap)) { 5808 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5809 /* disable interrupts */ 5810 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5811 taskqueue_block(sc->sc_tq); 5812 sc->sc_beacons = 0; 5813 } 5814 #ifdef IEEE80211_SUPPORT_TDMA 5815 ath_hal_setcca(ah, AH_TRUE); 5816 #endif 5817 } else if (nstate == IEEE80211_S_SLEEP) { 5818 /* We're going to sleep, so transition appropriately */ 5819 /* For now, only do this if we're a single STA vap */ 5820 if (sc->sc_nvaps == 1 && 5821 vap->iv_opmode == IEEE80211_M_STA) { 5822 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 5823 ATH_LOCK(sc); 5824 /* 5825 * Always at least set the self-generated 5826 * frame config to set PWRMGT=1. 5827 */ 5828 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 5829 5830 /* 5831 * If we're not syncing beacons, transition 5832 * to NETWORK_SLEEP. 5833 * 5834 * We stay awake if syncbeacon > 0 in case 5835 * we need to listen for some beacons otherwise 5836 * our beacon timer config may be wrong. 5837 */ 5838 if (sc->sc_syncbeacon == 0) { 5839 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP, 1); 5840 } 5841 ATH_UNLOCK(sc); 5842 } 5843 } 5844 bad: 5845 ieee80211_free_node(ni); 5846 5847 /* 5848 * Restore the power state - either to what it was, or 5849 * to network_sleep if it's alright. 5850 */ 5851 ATH_LOCK(sc); 5852 ath_power_restore_power_state(sc); 5853 ATH_UNLOCK(sc); 5854 return error; 5855 } 5856 5857 /* 5858 * Allocate a key cache slot to the station so we can 5859 * setup a mapping from key index to node. The key cache 5860 * slot is needed for managing antenna state and for 5861 * compression when stations do not use crypto. We do 5862 * it uniliaterally here; if crypto is employed this slot 5863 * will be reassigned. 5864 */ 5865 static void 5866 ath_setup_stationkey(struct ieee80211_node *ni) 5867 { 5868 struct ieee80211vap *vap = ni->ni_vap; 5869 struct ath_softc *sc = vap->iv_ic->ic_softc; 5870 ieee80211_keyix keyix, rxkeyix; 5871 5872 /* XXX should take a locked ref to vap->iv_bss */ 5873 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5874 /* 5875 * Key cache is full; we'll fall back to doing 5876 * the more expensive lookup in software. Note 5877 * this also means no h/w compression. 5878 */ 5879 /* XXX msg+statistic */ 5880 } else { 5881 /* XXX locking? */ 5882 ni->ni_ucastkey.wk_keyix = keyix; 5883 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5884 /* NB: must mark device key to get called back on delete */ 5885 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5886 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5887 /* NB: this will create a pass-thru key entry */ 5888 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5889 } 5890 } 5891 5892 /* 5893 * Setup driver-specific state for a newly associated node. 5894 * Note that we're called also on a re-associate, the isnew 5895 * param tells us if this is the first time or not. 5896 */ 5897 static void 5898 ath_newassoc(struct ieee80211_node *ni, int isnew) 5899 { 5900 struct ath_node *an = ATH_NODE(ni); 5901 struct ieee80211vap *vap = ni->ni_vap; 5902 struct ath_softc *sc = vap->iv_ic->ic_softc; 5903 const struct ieee80211_txparam *tp = ni->ni_txparms; 5904 5905 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5906 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5907 5908 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 5909 __func__, 5910 ni->ni_macaddr, 5911 ":", 5912 isnew, 5913 an->an_is_powersave); 5914 5915 ATH_NODE_LOCK(an); 5916 ath_rate_newassoc(sc, an, isnew); 5917 ATH_NODE_UNLOCK(an); 5918 5919 if (isnew && 5920 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5921 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5922 ath_setup_stationkey(ni); 5923 5924 /* 5925 * If we're reassociating, make sure that any paused queues 5926 * get unpaused. 5927 * 5928 * Now, we may have frames in the hardware queue for this node. 5929 * So if we are reassociating and there are frames in the queue, 5930 * we need to go through the cleanup path to ensure that they're 5931 * marked as non-aggregate. 5932 */ 5933 if (! isnew) { 5934 DPRINTF(sc, ATH_DEBUG_NODE, 5935 "%s: %6D: reassoc; is_powersave=%d\n", 5936 __func__, 5937 ni->ni_macaddr, 5938 ":", 5939 an->an_is_powersave); 5940 5941 /* XXX for now, we can't hold the lock across assoc */ 5942 ath_tx_node_reassoc(sc, an); 5943 5944 /* XXX for now, we can't hold the lock across wakeup */ 5945 if (an->an_is_powersave) 5946 ath_tx_node_wakeup(sc, an); 5947 } 5948 } 5949 5950 static int 5951 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5952 int nchans, struct ieee80211_channel chans[]) 5953 { 5954 struct ath_softc *sc = ic->ic_softc; 5955 struct ath_hal *ah = sc->sc_ah; 5956 HAL_STATUS status; 5957 5958 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5959 "%s: rd %u cc %u location %c%s\n", 5960 __func__, reg->regdomain, reg->country, reg->location, 5961 reg->ecm ? " ecm" : ""); 5962 5963 status = ath_hal_set_channels(ah, chans, nchans, 5964 reg->country, reg->regdomain); 5965 if (status != HAL_OK) { 5966 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5967 __func__, status); 5968 return EINVAL; /* XXX */ 5969 } 5970 5971 return 0; 5972 } 5973 5974 static void 5975 ath_getradiocaps(struct ieee80211com *ic, 5976 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5977 { 5978 struct ath_softc *sc = ic->ic_softc; 5979 struct ath_hal *ah = sc->sc_ah; 5980 5981 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5982 __func__, SKU_DEBUG, CTRY_DEFAULT); 5983 5984 /* XXX check return */ 5985 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5986 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5987 5988 } 5989 5990 static int 5991 ath_getchannels(struct ath_softc *sc) 5992 { 5993 struct ieee80211com *ic = &sc->sc_ic; 5994 struct ath_hal *ah = sc->sc_ah; 5995 HAL_STATUS status; 5996 5997 /* 5998 * Collect channel set based on EEPROM contents. 5999 */ 6000 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6001 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6002 if (status != HAL_OK) { 6003 device_printf(sc->sc_dev, 6004 "%s: unable to collect channel list from hal, status %d\n", 6005 __func__, status); 6006 return EINVAL; 6007 } 6008 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6009 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6010 /* XXX map Atheros sku's to net80211 SKU's */ 6011 /* XXX net80211 types too small */ 6012 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6013 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6014 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6015 ic->ic_regdomain.isocc[1] = ' '; 6016 6017 ic->ic_regdomain.ecm = 1; 6018 ic->ic_regdomain.location = 'I'; 6019 6020 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6021 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6022 __func__, sc->sc_eerd, sc->sc_eecc, 6023 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6024 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6025 return 0; 6026 } 6027 6028 static int 6029 ath_rate_setup(struct ath_softc *sc, u_int mode) 6030 { 6031 struct ath_hal *ah = sc->sc_ah; 6032 const HAL_RATE_TABLE *rt; 6033 6034 switch (mode) { 6035 case IEEE80211_MODE_11A: 6036 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6037 break; 6038 case IEEE80211_MODE_HALF: 6039 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6040 break; 6041 case IEEE80211_MODE_QUARTER: 6042 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6043 break; 6044 case IEEE80211_MODE_11B: 6045 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6046 break; 6047 case IEEE80211_MODE_11G: 6048 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6049 break; 6050 case IEEE80211_MODE_TURBO_A: 6051 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6052 break; 6053 case IEEE80211_MODE_TURBO_G: 6054 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6055 break; 6056 case IEEE80211_MODE_STURBO_A: 6057 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6058 break; 6059 case IEEE80211_MODE_11NA: 6060 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6061 break; 6062 case IEEE80211_MODE_11NG: 6063 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6064 break; 6065 default: 6066 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6067 __func__, mode); 6068 return 0; 6069 } 6070 sc->sc_rates[mode] = rt; 6071 return (rt != NULL); 6072 } 6073 6074 static void 6075 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6076 { 6077 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6078 static const struct { 6079 u_int rate; /* tx/rx 802.11 rate */ 6080 u_int16_t timeOn; /* LED on time (ms) */ 6081 u_int16_t timeOff; /* LED off time (ms) */ 6082 } blinkrates[] = { 6083 { 108, 40, 10 }, 6084 { 96, 44, 11 }, 6085 { 72, 50, 13 }, 6086 { 48, 57, 14 }, 6087 { 36, 67, 16 }, 6088 { 24, 80, 20 }, 6089 { 22, 100, 25 }, 6090 { 18, 133, 34 }, 6091 { 12, 160, 40 }, 6092 { 10, 200, 50 }, 6093 { 6, 240, 58 }, 6094 { 4, 267, 66 }, 6095 { 2, 400, 100 }, 6096 { 0, 500, 130 }, 6097 /* XXX half/quarter rates */ 6098 }; 6099 const HAL_RATE_TABLE *rt; 6100 int i, j; 6101 6102 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6103 rt = sc->sc_rates[mode]; 6104 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6105 for (i = 0; i < rt->rateCount; i++) { 6106 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6107 if (rt->info[i].phy != IEEE80211_T_HT) 6108 sc->sc_rixmap[ieeerate] = i; 6109 else 6110 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6111 } 6112 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6113 for (i = 0; i < nitems(sc->sc_hwmap); i++) { 6114 if (i >= rt->rateCount) { 6115 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6116 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6117 continue; 6118 } 6119 sc->sc_hwmap[i].ieeerate = 6120 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6121 if (rt->info[i].phy == IEEE80211_T_HT) 6122 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6123 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6124 if (rt->info[i].shortPreamble || 6125 rt->info[i].phy == IEEE80211_T_OFDM) 6126 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6127 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6128 for (j = 0; j < nitems(blinkrates)-1; j++) 6129 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6130 break; 6131 /* NB: this uses the last entry if the rate isn't found */ 6132 /* XXX beware of overlow */ 6133 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6134 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6135 } 6136 sc->sc_currates = rt; 6137 sc->sc_curmode = mode; 6138 /* 6139 * All protection frames are transmitted at 2Mb/s for 6140 * 11g, otherwise at 1Mb/s. 6141 */ 6142 if (mode == IEEE80211_MODE_11G) 6143 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6144 else 6145 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6146 /* NB: caller is responsible for resetting rate control state */ 6147 } 6148 6149 static void 6150 ath_watchdog(void *arg) 6151 { 6152 struct ath_softc *sc = arg; 6153 struct ieee80211com *ic = &sc->sc_ic; 6154 int do_reset = 0; 6155 6156 ATH_LOCK_ASSERT(sc); 6157 6158 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6159 uint32_t hangs; 6160 6161 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6162 6163 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6164 hangs != 0) { 6165 device_printf(sc->sc_dev, "%s hang detected (0x%x)\n", 6166 hangs & 0xff ? "bb" : "mac", hangs); 6167 } else 6168 device_printf(sc->sc_dev, "device timeout\n"); 6169 do_reset = 1; 6170 counter_u64_add(ic->ic_oerrors, 1); 6171 sc->sc_stats.ast_watchdog++; 6172 6173 ath_power_restore_power_state(sc); 6174 } 6175 6176 /* 6177 * We can't hold the lock across the ath_reset() call. 6178 * 6179 * And since this routine can't hold a lock and sleep, 6180 * do the reset deferred. 6181 */ 6182 if (do_reset) { 6183 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6184 } 6185 6186 callout_schedule(&sc->sc_wd_ch, hz); 6187 } 6188 6189 static void 6190 ath_parent(struct ieee80211com *ic) 6191 { 6192 struct ath_softc *sc = ic->ic_softc; 6193 int error = EDOOFUS; 6194 6195 ATH_LOCK(sc); 6196 if (ic->ic_nrunning > 0) { 6197 /* 6198 * To avoid rescanning another access point, 6199 * do not call ath_init() here. Instead, 6200 * only reflect promisc mode settings. 6201 */ 6202 if (sc->sc_running) { 6203 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6204 ath_mode_init(sc); 6205 ath_power_restore_power_state(sc); 6206 } else if (!sc->sc_invalid) { 6207 /* 6208 * Beware of being called during attach/detach 6209 * to reset promiscuous mode. In that case we 6210 * will still be marked UP but not RUNNING. 6211 * However trying to re-init the interface 6212 * is the wrong thing to do as we've already 6213 * torn down much of our state. There's 6214 * probably a better way to deal with this. 6215 */ 6216 error = ath_init(sc); 6217 } 6218 } else { 6219 ath_stop(sc); 6220 if (!sc->sc_invalid) 6221 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1); 6222 } 6223 ATH_UNLOCK(sc); 6224 6225 if (error == 0) { 6226 #ifdef ATH_TX99_DIAG 6227 if (sc->sc_tx99 != NULL) 6228 sc->sc_tx99->start(sc->sc_tx99); 6229 else 6230 #endif 6231 ieee80211_start_all(ic); 6232 } 6233 } 6234 6235 /* 6236 * Announce various information on device/driver attach. 6237 */ 6238 static void 6239 ath_announce(struct ath_softc *sc) 6240 { 6241 struct ath_hal *ah = sc->sc_ah; 6242 6243 device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n", 6244 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6245 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6246 device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6247 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6248 if (bootverbose) { 6249 int i; 6250 for (i = 0; i <= WME_AC_VO; i++) { 6251 struct ath_txq *txq = sc->sc_ac2q[i]; 6252 device_printf(sc->sc_dev, 6253 "Use hw queue %u for %s traffic\n", 6254 txq->axq_qnum, ieee80211_wme_acnames[i]); 6255 } 6256 device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n", 6257 sc->sc_cabq->axq_qnum); 6258 device_printf(sc->sc_dev, "Use hw queue %u for beacons\n", 6259 sc->sc_bhalq); 6260 } 6261 if (ath_rxbuf != ATH_RXBUF) 6262 device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf); 6263 if (ath_txbuf != ATH_TXBUF) 6264 device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf); 6265 if (sc->sc_mcastkey && bootverbose) 6266 device_printf(sc->sc_dev, "using multicast key search\n"); 6267 } 6268 6269 static void 6270 ath_dfs_tasklet(void *p, int npending) 6271 { 6272 struct ath_softc *sc = (struct ath_softc *) p; 6273 struct ieee80211com *ic = &sc->sc_ic; 6274 6275 /* 6276 * If previous processing has found a radar event, 6277 * signal this to the net80211 layer to begin DFS 6278 * processing. 6279 */ 6280 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6281 /* DFS event found, initiate channel change */ 6282 /* 6283 * XXX doesn't currently tell us whether the event 6284 * XXX was found in the primary or extension 6285 * XXX channel! 6286 */ 6287 IEEE80211_LOCK(ic); 6288 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6289 IEEE80211_UNLOCK(ic); 6290 } 6291 } 6292 6293 /* 6294 * Enable/disable power save. This must be called with 6295 * no TX driver locks currently held, so it should only 6296 * be called from the RX path (which doesn't hold any 6297 * TX driver locks.) 6298 */ 6299 static void 6300 ath_node_powersave(struct ieee80211_node *ni, int enable) 6301 { 6302 #ifdef ATH_SW_PSQ 6303 struct ath_node *an = ATH_NODE(ni); 6304 struct ieee80211com *ic = ni->ni_ic; 6305 struct ath_softc *sc = ic->ic_softc; 6306 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6307 6308 /* XXX and no TXQ locks should be held here */ 6309 6310 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6311 __func__, 6312 ni->ni_macaddr, 6313 ":", 6314 !! enable); 6315 6316 /* Suspend or resume software queue handling */ 6317 if (enable) 6318 ath_tx_node_sleep(sc, an); 6319 else 6320 ath_tx_node_wakeup(sc, an); 6321 6322 /* Update net80211 state */ 6323 avp->av_node_ps(ni, enable); 6324 #else 6325 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6326 6327 /* Update net80211 state */ 6328 avp->av_node_ps(ni, enable); 6329 #endif/* ATH_SW_PSQ */ 6330 } 6331 6332 /* 6333 * Notification from net80211 that the powersave queue state has 6334 * changed. 6335 * 6336 * Since the software queue also may have some frames: 6337 * 6338 * + if the node software queue has frames and the TID state 6339 * is 0, we set the TIM; 6340 * + if the node and the stack are both empty, we clear the TIM bit. 6341 * + If the stack tries to set the bit, always set it. 6342 * + If the stack tries to clear the bit, only clear it if the 6343 * software queue in question is also cleared. 6344 * 6345 * TODO: this is called during node teardown; so let's ensure this 6346 * is all correctly handled and that the TIM bit is cleared. 6347 * It may be that the node flush is called _AFTER_ the net80211 6348 * stack clears the TIM. 6349 * 6350 * Here is the racy part. Since it's possible >1 concurrent, 6351 * overlapping TXes will appear complete with a TX completion in 6352 * another thread, it's possible that the concurrent TIM calls will 6353 * clash. We can't hold the node lock here because setting the 6354 * TIM grabs the net80211 comlock and this may cause a LOR. 6355 * The solution is either to totally serialise _everything_ at 6356 * this point (ie, all TX, completion and any reset/flush go into 6357 * one taskqueue) or a new "ath TIM lock" needs to be created that 6358 * just wraps the driver state change and this call to avp->av_set_tim(). 6359 * 6360 * The same race exists in the net80211 power save queue handling 6361 * as well. Since multiple transmitting threads may queue frames 6362 * into the driver, as well as ps-poll and the driver transmitting 6363 * frames (and thus clearing the psq), it's quite possible that 6364 * a packet entering the PSQ and a ps-poll being handled will 6365 * race, causing the TIM to be cleared and not re-set. 6366 */ 6367 static int 6368 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6369 { 6370 #ifdef ATH_SW_PSQ 6371 struct ieee80211com *ic = ni->ni_ic; 6372 struct ath_softc *sc = ic->ic_softc; 6373 struct ath_node *an = ATH_NODE(ni); 6374 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6375 int changed = 0; 6376 6377 ATH_TX_LOCK(sc); 6378 an->an_stack_psq = enable; 6379 6380 /* 6381 * This will get called for all operating modes, 6382 * even if avp->av_set_tim is unset. 6383 * It's currently set for hostap/ibss modes; but 6384 * the same infrastructure is used for both STA 6385 * and AP/IBSS node power save. 6386 */ 6387 if (avp->av_set_tim == NULL) { 6388 ATH_TX_UNLOCK(sc); 6389 return (0); 6390 } 6391 6392 /* 6393 * If setting the bit, always set it here. 6394 * If clearing the bit, only clear it if the 6395 * software queue is also empty. 6396 * 6397 * If the node has left power save, just clear the TIM 6398 * bit regardless of the state of the power save queue. 6399 * 6400 * XXX TODO: although atomics are used, it's quite possible 6401 * that a race will occur between this and setting/clearing 6402 * in another thread. TX completion will occur always in 6403 * one thread, however setting/clearing the TIM bit can come 6404 * from a variety of different process contexts! 6405 */ 6406 if (enable && an->an_tim_set == 1) { 6407 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6408 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6409 __func__, 6410 ni->ni_macaddr, 6411 ":", 6412 enable); 6413 ATH_TX_UNLOCK(sc); 6414 } else if (enable) { 6415 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6416 "%s: %6D: enable=%d, enabling TIM\n", 6417 __func__, 6418 ni->ni_macaddr, 6419 ":", 6420 enable); 6421 an->an_tim_set = 1; 6422 ATH_TX_UNLOCK(sc); 6423 changed = avp->av_set_tim(ni, enable); 6424 } else if (an->an_swq_depth == 0) { 6425 /* disable */ 6426 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6427 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6428 __func__, 6429 ni->ni_macaddr, 6430 ":", 6431 enable); 6432 an->an_tim_set = 0; 6433 ATH_TX_UNLOCK(sc); 6434 changed = avp->av_set_tim(ni, enable); 6435 } else if (! an->an_is_powersave) { 6436 /* 6437 * disable regardless; the node isn't in powersave now 6438 */ 6439 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6440 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6441 __func__, 6442 ni->ni_macaddr, 6443 ":", 6444 enable); 6445 an->an_tim_set = 0; 6446 ATH_TX_UNLOCK(sc); 6447 changed = avp->av_set_tim(ni, enable); 6448 } else { 6449 /* 6450 * psq disable, node is currently in powersave, node 6451 * software queue isn't empty, so don't clear the TIM bit 6452 * for now. 6453 */ 6454 ATH_TX_UNLOCK(sc); 6455 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6456 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6457 __func__, 6458 ni->ni_macaddr, 6459 ":", 6460 enable); 6461 changed = 0; 6462 } 6463 6464 return (changed); 6465 #else 6466 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6467 6468 /* 6469 * Some operating modes don't set av_set_tim(), so don't 6470 * update it here. 6471 */ 6472 if (avp->av_set_tim == NULL) 6473 return (0); 6474 6475 return (avp->av_set_tim(ni, enable)); 6476 #endif /* ATH_SW_PSQ */ 6477 } 6478 6479 /* 6480 * Set or update the TIM from the software queue. 6481 * 6482 * Check the software queue depth before attempting to do lock 6483 * anything; that avoids trying to obtain the lock. Then, 6484 * re-check afterwards to ensure nothing has changed in the 6485 * meantime. 6486 * 6487 * set: This is designed to be called from the TX path, after 6488 * a frame has been queued; to see if the swq > 0. 6489 * 6490 * clear: This is designed to be called from the buffer completion point 6491 * (right now it's ath_tx_default_comp()) where the state of 6492 * a software queue has changed. 6493 * 6494 * It makes sense to place it at buffer free / completion rather 6495 * than after each software queue operation, as there's no real 6496 * point in churning the TIM bit as the last frames in the software 6497 * queue are transmitted. If they fail and we retry them, we'd 6498 * just be setting the TIM bit again anyway. 6499 */ 6500 void 6501 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6502 int enable) 6503 { 6504 #ifdef ATH_SW_PSQ 6505 struct ath_node *an; 6506 struct ath_vap *avp; 6507 6508 /* Don't do this for broadcast/etc frames */ 6509 if (ni == NULL) 6510 return; 6511 6512 an = ATH_NODE(ni); 6513 avp = ATH_VAP(ni->ni_vap); 6514 6515 /* 6516 * And for operating modes without the TIM handler set, let's 6517 * just skip those. 6518 */ 6519 if (avp->av_set_tim == NULL) 6520 return; 6521 6522 ATH_TX_LOCK_ASSERT(sc); 6523 6524 if (enable) { 6525 if (an->an_is_powersave && 6526 an->an_tim_set == 0 && 6527 an->an_swq_depth != 0) { 6528 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6529 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6530 __func__, 6531 ni->ni_macaddr, 6532 ":"); 6533 an->an_tim_set = 1; 6534 (void) avp->av_set_tim(ni, 1); 6535 } 6536 } else { 6537 /* 6538 * Don't bother grabbing the lock unless the queue is empty. 6539 */ 6540 if (an->an_swq_depth != 0) 6541 return; 6542 6543 if (an->an_is_powersave && 6544 an->an_stack_psq == 0 && 6545 an->an_tim_set == 1 && 6546 an->an_swq_depth == 0) { 6547 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6548 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6549 " clear!\n", 6550 __func__, 6551 ni->ni_macaddr, 6552 ":"); 6553 an->an_tim_set = 0; 6554 (void) avp->av_set_tim(ni, 0); 6555 } 6556 } 6557 #else 6558 return; 6559 #endif /* ATH_SW_PSQ */ 6560 } 6561 6562 /* 6563 * Received a ps-poll frame from net80211. 6564 * 6565 * Here we get a chance to serve out a software-queued frame ourselves 6566 * before we punt it to net80211 to transmit us one itself - either 6567 * because there's traffic in the net80211 psq, or a NULL frame to 6568 * indicate there's nothing else. 6569 */ 6570 static void 6571 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6572 { 6573 #ifdef ATH_SW_PSQ 6574 struct ath_node *an; 6575 struct ath_vap *avp; 6576 struct ieee80211com *ic = ni->ni_ic; 6577 struct ath_softc *sc = ic->ic_softc; 6578 int tid; 6579 6580 /* Just paranoia */ 6581 if (ni == NULL) 6582 return; 6583 6584 /* 6585 * Unassociated (temporary node) station. 6586 */ 6587 if (ni->ni_associd == 0) 6588 return; 6589 6590 /* 6591 * We do have an active node, so let's begin looking into it. 6592 */ 6593 an = ATH_NODE(ni); 6594 avp = ATH_VAP(ni->ni_vap); 6595 6596 /* 6597 * For now, we just call the original ps-poll method. 6598 * Once we're ready to flip this on: 6599 * 6600 * + Set leak to 1, as no matter what we're going to have 6601 * to send a frame; 6602 * + Check the software queue and if there's something in it, 6603 * schedule the highest TID thas has traffic from this node. 6604 * Then make sure we schedule the software scheduler to 6605 * run so it picks up said frame. 6606 * 6607 * That way whatever happens, we'll at least send _a_ frame 6608 * to the given node. 6609 * 6610 * Again, yes, it's crappy QoS if the node has multiple 6611 * TIDs worth of traffic - but let's get it working first 6612 * before we optimise it. 6613 * 6614 * Also yes, there's definitely latency here - we're not 6615 * direct dispatching to the hardware in this path (and 6616 * we're likely being called from the packet receive path, 6617 * so going back into TX may be a little hairy!) but again 6618 * I'd like to get this working first before optimising 6619 * turn-around time. 6620 */ 6621 6622 ATH_TX_LOCK(sc); 6623 6624 /* 6625 * Legacy - we're called and the node isn't asleep. 6626 * Immediately punt. 6627 */ 6628 if (! an->an_is_powersave) { 6629 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6630 "%s: %6D: not in powersave?\n", 6631 __func__, 6632 ni->ni_macaddr, 6633 ":"); 6634 ATH_TX_UNLOCK(sc); 6635 avp->av_recv_pspoll(ni, m); 6636 return; 6637 } 6638 6639 /* 6640 * We're in powersave. 6641 * 6642 * Leak a frame. 6643 */ 6644 an->an_leak_count = 1; 6645 6646 /* 6647 * Now, if there's no frames in the node, just punt to 6648 * recv_pspoll. 6649 * 6650 * Don't bother checking if the TIM bit is set, we really 6651 * only care if there are any frames here! 6652 */ 6653 if (an->an_swq_depth == 0) { 6654 ATH_TX_UNLOCK(sc); 6655 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6656 "%s: %6D: SWQ empty; punting to net80211\n", 6657 __func__, 6658 ni->ni_macaddr, 6659 ":"); 6660 avp->av_recv_pspoll(ni, m); 6661 return; 6662 } 6663 6664 /* 6665 * Ok, let's schedule the highest TID that has traffic 6666 * and then schedule something. 6667 */ 6668 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 6669 struct ath_tid *atid = &an->an_tid[tid]; 6670 /* 6671 * No frames? Skip. 6672 */ 6673 if (atid->axq_depth == 0) 6674 continue; 6675 ath_tx_tid_sched(sc, atid); 6676 /* 6677 * XXX we could do a direct call to the TXQ 6678 * scheduler code here to optimise latency 6679 * at the expense of a REALLY deep callstack. 6680 */ 6681 ATH_TX_UNLOCK(sc); 6682 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 6683 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6684 "%s: %6D: leaking frame to TID %d\n", 6685 __func__, 6686 ni->ni_macaddr, 6687 ":", 6688 tid); 6689 return; 6690 } 6691 6692 ATH_TX_UNLOCK(sc); 6693 6694 /* 6695 * XXX nothing in the TIDs at this point? Eek. 6696 */ 6697 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6698 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 6699 __func__, 6700 ni->ni_macaddr, 6701 ":"); 6702 avp->av_recv_pspoll(ni, m); 6703 #else 6704 avp->av_recv_pspoll(ni, m); 6705 #endif /* ATH_SW_PSQ */ 6706 } 6707 6708 MODULE_VERSION(if_ath, 1); 6709 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6710 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ) 6711 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 6712 #endif 6713