1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 #include "opt_wlan.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/sysctl.h> 47 #include <sys/mbuf.h> 48 #include <sys/malloc.h> 49 #include <sys/lock.h> 50 #include <sys/mutex.h> 51 #include <sys/kernel.h> 52 #include <sys/socket.h> 53 #include <sys/sockio.h> 54 #include <sys/errno.h> 55 #include <sys/callout.h> 56 #include <sys/bus.h> 57 #include <sys/endian.h> 58 #include <sys/kthread.h> 59 #include <sys/taskqueue.h> 60 #include <sys/priv.h> 61 62 #include <machine/bus.h> 63 64 #include <net/if.h> 65 #include <net/if_dl.h> 66 #include <net/if_media.h> 67 #include <net/if_types.h> 68 #include <net/if_arp.h> 69 #include <net/ethernet.h> 70 #include <net/if_llc.h> 71 72 #include <net80211/ieee80211_var.h> 73 #include <net80211/ieee80211_regdomain.h> 74 #ifdef IEEE80211_SUPPORT_SUPERG 75 #include <net80211/ieee80211_superg.h> 76 #endif 77 #ifdef IEEE80211_SUPPORT_TDMA 78 #include <net80211/ieee80211_tdma.h> 79 #endif 80 81 #include <net/bpf.h> 82 83 #ifdef INET 84 #include <netinet/in.h> 85 #include <netinet/if_ether.h> 86 #endif 87 88 #include <dev/ath/if_athvar.h> 89 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 90 #include <dev/ath/ath_hal/ah_diagcodes.h> 91 92 #include <dev/ath/if_ath_debug.h> 93 #include <dev/ath/if_ath_misc.h> 94 #include <dev/ath/if_ath_tx.h> 95 96 #ifdef ATH_TX99_DIAG 97 #include <dev/ath/ath_tx99/ath_tx99.h> 98 #endif 99 100 /* 101 * ATH_BCBUF determines the number of vap's that can transmit 102 * beacons and also (currently) the number of vap's that can 103 * have unique mac addresses/bssid. When staggering beacons 104 * 4 is probably a good max as otherwise the beacons become 105 * very closely spaced and there is limited time for cab q traffic 106 * to go out. You can burst beacons instead but that is not good 107 * for stations in power save and at some point you really want 108 * another radio (and channel). 109 * 110 * The limit on the number of mac addresses is tied to our use of 111 * the U/L bit and tracking addresses in a byte; it would be 112 * worthwhile to allow more for applications like proxy sta. 113 */ 114 CTASSERT(ATH_BCBUF <= 8); 115 116 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 117 const char name[IFNAMSIZ], int unit, int opmode, 118 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 119 const uint8_t mac[IEEE80211_ADDR_LEN]); 120 static void ath_vap_delete(struct ieee80211vap *); 121 static void ath_init(void *); 122 static void ath_stop_locked(struct ifnet *); 123 static void ath_stop(struct ifnet *); 124 static void ath_start(struct ifnet *); 125 static int ath_reset(struct ifnet *); 126 static int ath_reset_vap(struct ieee80211vap *, u_long); 127 static int ath_media_change(struct ifnet *); 128 static void ath_watchdog(void *); 129 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 130 static void ath_fatal_proc(void *, int); 131 static void ath_bmiss_vap(struct ieee80211vap *); 132 static void ath_bmiss_proc(void *, int); 133 static int ath_keyset(struct ath_softc *, const struct ieee80211_key *, 134 struct ieee80211_node *); 135 static int ath_key_alloc(struct ieee80211vap *, 136 struct ieee80211_key *, 137 ieee80211_keyix *, ieee80211_keyix *); 138 static int ath_key_delete(struct ieee80211vap *, 139 const struct ieee80211_key *); 140 static int ath_key_set(struct ieee80211vap *, const struct ieee80211_key *, 141 const u_int8_t mac[IEEE80211_ADDR_LEN]); 142 static void ath_key_update_begin(struct ieee80211vap *); 143 static void ath_key_update_end(struct ieee80211vap *); 144 static void ath_update_mcast(struct ifnet *); 145 static void ath_update_promisc(struct ifnet *); 146 static void ath_mode_init(struct ath_softc *); 147 static void ath_setslottime(struct ath_softc *); 148 static void ath_updateslot(struct ifnet *); 149 static int ath_beaconq_setup(struct ath_hal *); 150 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 151 static void ath_beacon_update(struct ieee80211vap *, int item); 152 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 153 static void ath_beacon_proc(void *, int); 154 static struct ath_buf *ath_beacon_generate(struct ath_softc *, 155 struct ieee80211vap *); 156 static void ath_bstuck_proc(void *, int); 157 static void ath_beacon_return(struct ath_softc *, struct ath_buf *); 158 static void ath_beacon_free(struct ath_softc *); 159 static void ath_beacon_config(struct ath_softc *, struct ieee80211vap *); 160 static void ath_descdma_cleanup(struct ath_softc *sc, 161 struct ath_descdma *, ath_bufhead *); 162 static int ath_desc_alloc(struct ath_softc *); 163 static void ath_desc_free(struct ath_softc *); 164 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 165 const uint8_t [IEEE80211_ADDR_LEN]); 166 static void ath_node_free(struct ieee80211_node *); 167 static void ath_node_getsignal(const struct ieee80211_node *, 168 int8_t *, int8_t *); 169 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 170 static void ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 171 int subtype, int rssi, int nf); 172 static void ath_setdefantenna(struct ath_softc *, u_int); 173 static void ath_rx_proc(void *, int); 174 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 175 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 176 static int ath_tx_setup(struct ath_softc *, int, int); 177 static int ath_wme_update(struct ieee80211com *); 178 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 179 static void ath_tx_cleanup(struct ath_softc *); 180 static void ath_tx_proc_q0(void *, int); 181 static void ath_tx_proc_q0123(void *, int); 182 static void ath_tx_proc(void *, int); 183 static void ath_tx_draintxq(struct ath_softc *, struct ath_txq *); 184 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 185 static void ath_draintxq(struct ath_softc *); 186 static void ath_stoprecv(struct ath_softc *); 187 static int ath_startrecv(struct ath_softc *); 188 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 189 static void ath_scan_start(struct ieee80211com *); 190 static void ath_scan_end(struct ieee80211com *); 191 static void ath_set_channel(struct ieee80211com *); 192 static void ath_calibrate(void *); 193 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 194 static void ath_setup_stationkey(struct ieee80211_node *); 195 static void ath_newassoc(struct ieee80211_node *, int); 196 static int ath_setregdomain(struct ieee80211com *, 197 struct ieee80211_regdomain *, int, 198 struct ieee80211_channel []); 199 static void ath_getradiocaps(struct ieee80211com *, int, int *, 200 struct ieee80211_channel []); 201 static int ath_getchannels(struct ath_softc *); 202 static void ath_led_event(struct ath_softc *, int); 203 204 static int ath_rate_setup(struct ath_softc *, u_int mode); 205 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 206 207 static void ath_sysctlattach(struct ath_softc *); 208 static void ath_announce(struct ath_softc *); 209 static void ath_sysctl_stats_attach(struct ath_softc *sc); 210 211 #ifdef IEEE80211_SUPPORT_TDMA 212 static void ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, 213 u_int32_t bintval); 214 static void ath_tdma_bintvalsetup(struct ath_softc *sc, 215 const struct ieee80211_tdma_state *tdma); 216 static void ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap); 217 static void ath_tdma_update(struct ieee80211_node *ni, 218 const struct ieee80211_tdma_param *tdma, int); 219 static void ath_tdma_beacon_send(struct ath_softc *sc, 220 struct ieee80211vap *vap); 221 222 static __inline void 223 ath_hal_setcca(struct ath_hal *ah, int ena) 224 { 225 /* 226 * NB: fill me in; this is not provided by default because disabling 227 * CCA in most locales violates regulatory. 228 */ 229 } 230 231 static __inline int 232 ath_hal_getcca(struct ath_hal *ah) 233 { 234 u_int32_t diag; 235 if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK) 236 return 1; 237 return ((diag & 0x500000) == 0); 238 } 239 240 #define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */ 241 #define TDMA_LPF_LEN 6 242 #define TDMA_DUMMY_MARKER 0x127 243 #define TDMA_EP_MUL(x, mul) ((x) * (mul)) 244 #define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER)) 245 #define TDMA_LPF(x, y, len) \ 246 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y)) 247 #define TDMA_SAMPLE(x, y) do { \ 248 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \ 249 } while (0) 250 #define TDMA_EP_RND(x,mul) \ 251 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 252 #define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER) 253 #endif /* IEEE80211_SUPPORT_TDMA */ 254 255 SYSCTL_DECL(_hw_ath); 256 257 /* XXX validate sysctl values */ 258 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 259 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 260 0, "long chip calibration interval (secs)"); 261 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 262 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 263 0, "short chip calibration interval (msecs)"); 264 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 265 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 266 0, "reset chip calibration results (secs)"); 267 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 268 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 269 0, "ANI calibration (msecs)"); 270 271 static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 272 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 273 0, "rx buffers allocated"); 274 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 275 static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 276 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 277 0, "tx buffers allocated"); 278 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 279 280 static int ath_bstuck_threshold = 4; /* max missed beacons */ 281 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 282 0, "max missed beacon xmits before chip reset"); 283 284 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 285 286 int 287 ath_attach(u_int16_t devid, struct ath_softc *sc) 288 { 289 struct ifnet *ifp; 290 struct ieee80211com *ic; 291 struct ath_hal *ah = NULL; 292 HAL_STATUS status; 293 int error = 0, i; 294 u_int wmodes; 295 uint8_t macaddr[IEEE80211_ADDR_LEN]; 296 297 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 298 299 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 300 if (ifp == NULL) { 301 device_printf(sc->sc_dev, "can not if_alloc()\n"); 302 error = ENOSPC; 303 goto bad; 304 } 305 ic = ifp->if_l2com; 306 307 /* set these up early for if_printf use */ 308 if_initname(ifp, device_get_name(sc->sc_dev), 309 device_get_unit(sc->sc_dev)); 310 311 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, sc->sc_eepromdata, &status); 312 if (ah == NULL) { 313 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 314 status); 315 error = ENXIO; 316 goto bad; 317 } 318 sc->sc_ah = ah; 319 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 320 #ifdef ATH_DEBUG 321 sc->sc_debug = ath_debug; 322 #endif 323 324 /* 325 * Check if the MAC has multi-rate retry support. 326 * We do this by trying to setup a fake extended 327 * descriptor. MAC's that don't have support will 328 * return false w/o doing anything. MAC's that do 329 * support it will return true w/o doing anything. 330 */ 331 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 332 333 /* 334 * Check if the device has hardware counters for PHY 335 * errors. If so we need to enable the MIB interrupt 336 * so we can act on stat triggers. 337 */ 338 if (ath_hal_hwphycounters(ah)) 339 sc->sc_needmib = 1; 340 341 /* 342 * Get the hardware key cache size. 343 */ 344 sc->sc_keymax = ath_hal_keycachesize(ah); 345 if (sc->sc_keymax > ATH_KEYMAX) { 346 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 347 ATH_KEYMAX, sc->sc_keymax); 348 sc->sc_keymax = ATH_KEYMAX; 349 } 350 /* 351 * Reset the key cache since some parts do not 352 * reset the contents on initial power up. 353 */ 354 for (i = 0; i < sc->sc_keymax; i++) 355 ath_hal_keyreset(ah, i); 356 357 /* 358 * Collect the default channel list. 359 */ 360 error = ath_getchannels(sc); 361 if (error != 0) 362 goto bad; 363 364 /* 365 * Setup rate tables for all potential media types. 366 */ 367 ath_rate_setup(sc, IEEE80211_MODE_11A); 368 ath_rate_setup(sc, IEEE80211_MODE_11B); 369 ath_rate_setup(sc, IEEE80211_MODE_11G); 370 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 371 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 372 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 373 ath_rate_setup(sc, IEEE80211_MODE_11NA); 374 ath_rate_setup(sc, IEEE80211_MODE_11NG); 375 ath_rate_setup(sc, IEEE80211_MODE_HALF); 376 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 377 378 /* NB: setup here so ath_rate_update is happy */ 379 ath_setcurmode(sc, IEEE80211_MODE_11A); 380 381 /* 382 * Allocate tx+rx descriptors and populate the lists. 383 */ 384 error = ath_desc_alloc(sc); 385 if (error != 0) { 386 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 387 goto bad; 388 } 389 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 390 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 391 392 ATH_TXBUF_LOCK_INIT(sc); 393 394 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 395 taskqueue_thread_enqueue, &sc->sc_tq); 396 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 397 "%s taskq", ifp->if_xname); 398 399 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc); 400 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 401 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 402 403 /* 404 * Allocate hardware transmit queues: one queue for 405 * beacon frames and one data queue for each QoS 406 * priority. Note that the hal handles resetting 407 * these queues at the needed time. 408 * 409 * XXX PS-Poll 410 */ 411 sc->sc_bhalq = ath_beaconq_setup(ah); 412 if (sc->sc_bhalq == (u_int) -1) { 413 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 414 error = EIO; 415 goto bad2; 416 } 417 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 418 if (sc->sc_cabq == NULL) { 419 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 420 error = EIO; 421 goto bad2; 422 } 423 /* NB: insure BK queue is the lowest priority h/w queue */ 424 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 425 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 426 ieee80211_wme_acnames[WME_AC_BK]); 427 error = EIO; 428 goto bad2; 429 } 430 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 431 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 432 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 433 /* 434 * Not enough hardware tx queues to properly do WME; 435 * just punt and assign them all to the same h/w queue. 436 * We could do a better job of this if, for example, 437 * we allocate queues when we switch from station to 438 * AP mode. 439 */ 440 if (sc->sc_ac2q[WME_AC_VI] != NULL) 441 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 442 if (sc->sc_ac2q[WME_AC_BE] != NULL) 443 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 444 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 445 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 446 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 447 } 448 449 /* 450 * Special case certain configurations. Note the 451 * CAB queue is handled by these specially so don't 452 * include them when checking the txq setup mask. 453 */ 454 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 455 case 0x01: 456 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 457 break; 458 case 0x0f: 459 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 460 break; 461 default: 462 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 463 break; 464 } 465 466 /* 467 * Setup rate control. Some rate control modules 468 * call back to change the anntena state so expose 469 * the necessary entry points. 470 * XXX maybe belongs in struct ath_ratectrl? 471 */ 472 sc->sc_setdefantenna = ath_setdefantenna; 473 sc->sc_rc = ath_rate_attach(sc); 474 if (sc->sc_rc == NULL) { 475 error = EIO; 476 goto bad2; 477 } 478 479 sc->sc_blinking = 0; 480 sc->sc_ledstate = 1; 481 sc->sc_ledon = 0; /* low true */ 482 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 483 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 484 /* 485 * Auto-enable soft led processing for IBM cards and for 486 * 5211 minipci cards. Users can also manually enable/disable 487 * support with a sysctl. 488 */ 489 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 490 if (sc->sc_softled) { 491 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin, 492 HAL_GPIO_MUX_MAC_NETWORK_LED); 493 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 494 } 495 496 ifp->if_softc = sc; 497 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 498 ifp->if_start = ath_start; 499 ifp->if_ioctl = ath_ioctl; 500 ifp->if_init = ath_init; 501 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 502 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 503 IFQ_SET_READY(&ifp->if_snd); 504 505 ic->ic_ifp = ifp; 506 /* XXX not right but it's not used anywhere important */ 507 ic->ic_phytype = IEEE80211_T_OFDM; 508 ic->ic_opmode = IEEE80211_M_STA; 509 ic->ic_caps = 510 IEEE80211_C_STA /* station mode */ 511 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 512 | IEEE80211_C_HOSTAP /* hostap mode */ 513 | IEEE80211_C_MONITOR /* monitor mode */ 514 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 515 | IEEE80211_C_WDS /* 4-address traffic works */ 516 | IEEE80211_C_MBSS /* mesh point link mode */ 517 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 518 | IEEE80211_C_SHSLOT /* short slot time supported */ 519 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 520 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 521 | IEEE80211_C_TXFRAG /* handle tx frags */ 522 ; 523 /* 524 * Query the hal to figure out h/w crypto support. 525 */ 526 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 527 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 528 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 529 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 530 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 531 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 532 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 533 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 534 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 535 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 536 /* 537 * Check if h/w does the MIC and/or whether the 538 * separate key cache entries are required to 539 * handle both tx+rx MIC keys. 540 */ 541 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 542 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 543 /* 544 * If the h/w supports storing tx+rx MIC keys 545 * in one cache slot automatically enable use. 546 */ 547 if (ath_hal_hastkipsplit(ah) || 548 !ath_hal_settkipsplit(ah, AH_FALSE)) 549 sc->sc_splitmic = 1; 550 /* 551 * If the h/w can do TKIP MIC together with WME then 552 * we use it; otherwise we force the MIC to be done 553 * in software by the net80211 layer. 554 */ 555 if (ath_hal_haswmetkipmic(ah)) 556 sc->sc_wmetkipmic = 1; 557 } 558 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 559 /* 560 * Check for multicast key search support. 561 */ 562 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 563 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 564 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 565 } 566 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 567 /* 568 * Mark key cache slots associated with global keys 569 * as in use. If we knew TKIP was not to be used we 570 * could leave the +32, +64, and +32+64 slots free. 571 */ 572 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 573 setbit(sc->sc_keymap, i); 574 setbit(sc->sc_keymap, i+64); 575 if (sc->sc_splitmic) { 576 setbit(sc->sc_keymap, i+32); 577 setbit(sc->sc_keymap, i+32+64); 578 } 579 } 580 /* 581 * TPC support can be done either with a global cap or 582 * per-packet support. The latter is not available on 583 * all parts. We're a bit pedantic here as all parts 584 * support a global cap. 585 */ 586 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 587 ic->ic_caps |= IEEE80211_C_TXPMGT; 588 589 /* 590 * Mark WME capability only if we have sufficient 591 * hardware queues to do proper priority scheduling. 592 */ 593 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 594 ic->ic_caps |= IEEE80211_C_WME; 595 /* 596 * Check for misc other capabilities. 597 */ 598 if (ath_hal_hasbursting(ah)) 599 ic->ic_caps |= IEEE80211_C_BURST; 600 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 601 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 602 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 603 if (ath_hal_hasfastframes(ah)) 604 ic->ic_caps |= IEEE80211_C_FF; 605 wmodes = ath_hal_getwirelessmodes(ah); 606 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 607 ic->ic_caps |= IEEE80211_C_TURBOP; 608 #ifdef IEEE80211_SUPPORT_TDMA 609 if (ath_hal_macversion(ah) > 0x78) { 610 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 611 ic->ic_tdma_update = ath_tdma_update; 612 } 613 #endif 614 /* 615 * Indicate we need the 802.11 header padded to a 616 * 32-bit boundary for 4-address and QoS frames. 617 */ 618 ic->ic_flags |= IEEE80211_F_DATAPAD; 619 620 /* 621 * Query the hal about antenna support. 622 */ 623 sc->sc_defant = ath_hal_getdefantenna(ah); 624 625 /* 626 * Not all chips have the VEOL support we want to 627 * use with IBSS beacons; check here for it. 628 */ 629 sc->sc_hasveol = ath_hal_hasveol(ah); 630 631 /* get mac address from hardware */ 632 ath_hal_getmac(ah, macaddr); 633 if (sc->sc_hasbmask) 634 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 635 636 /* NB: used to size node table key mapping array */ 637 ic->ic_max_keyix = sc->sc_keymax; 638 /* call MI attach routine. */ 639 ieee80211_ifattach(ic, macaddr); 640 ic->ic_setregdomain = ath_setregdomain; 641 ic->ic_getradiocaps = ath_getradiocaps; 642 sc->sc_opmode = HAL_M_STA; 643 644 /* override default methods */ 645 ic->ic_newassoc = ath_newassoc; 646 ic->ic_updateslot = ath_updateslot; 647 ic->ic_wme.wme_update = ath_wme_update; 648 ic->ic_vap_create = ath_vap_create; 649 ic->ic_vap_delete = ath_vap_delete; 650 ic->ic_raw_xmit = ath_raw_xmit; 651 ic->ic_update_mcast = ath_update_mcast; 652 ic->ic_update_promisc = ath_update_promisc; 653 ic->ic_node_alloc = ath_node_alloc; 654 sc->sc_node_free = ic->ic_node_free; 655 ic->ic_node_free = ath_node_free; 656 ic->ic_node_getsignal = ath_node_getsignal; 657 ic->ic_scan_start = ath_scan_start; 658 ic->ic_scan_end = ath_scan_end; 659 ic->ic_set_channel = ath_set_channel; 660 661 ieee80211_radiotap_attach(ic, 662 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 663 ATH_TX_RADIOTAP_PRESENT, 664 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 665 ATH_RX_RADIOTAP_PRESENT); 666 667 /* 668 * Setup dynamic sysctl's now that country code and 669 * regdomain are available from the hal. 670 */ 671 ath_sysctlattach(sc); 672 ath_sysctl_stats_attach(sc); 673 674 if (bootverbose) 675 ieee80211_announce(ic); 676 ath_announce(sc); 677 return 0; 678 bad2: 679 ath_tx_cleanup(sc); 680 ath_desc_free(sc); 681 bad: 682 if (ah) 683 ath_hal_detach(ah); 684 if (ifp != NULL) 685 if_free(ifp); 686 sc->sc_invalid = 1; 687 return error; 688 } 689 690 int 691 ath_detach(struct ath_softc *sc) 692 { 693 struct ifnet *ifp = sc->sc_ifp; 694 695 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 696 __func__, ifp->if_flags); 697 698 /* 699 * NB: the order of these is important: 700 * o stop the chip so no more interrupts will fire 701 * o call the 802.11 layer before detaching the hal to 702 * insure callbacks into the driver to delete global 703 * key cache entries can be handled 704 * o free the taskqueue which drains any pending tasks 705 * o reclaim the tx queue data structures after calling 706 * the 802.11 layer as we'll get called back to reclaim 707 * node state and potentially want to use them 708 * o to cleanup the tx queues the hal is called, so detach 709 * it last 710 * Other than that, it's straightforward... 711 */ 712 ath_stop(ifp); 713 ieee80211_ifdetach(ifp->if_l2com); 714 taskqueue_free(sc->sc_tq); 715 #ifdef ATH_TX99_DIAG 716 if (sc->sc_tx99 != NULL) 717 sc->sc_tx99->detach(sc->sc_tx99); 718 #endif 719 ath_rate_detach(sc->sc_rc); 720 ath_desc_free(sc); 721 ath_tx_cleanup(sc); 722 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 723 if_free(ifp); 724 725 return 0; 726 } 727 728 /* 729 * MAC address handling for multiple BSS on the same radio. 730 * The first vap uses the MAC address from the EEPROM. For 731 * subsequent vap's we set the U/L bit (bit 1) in the MAC 732 * address and use the next six bits as an index. 733 */ 734 static void 735 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 736 { 737 int i; 738 739 if (clone && sc->sc_hasbmask) { 740 /* NB: we only do this if h/w supports multiple bssid */ 741 for (i = 0; i < 8; i++) 742 if ((sc->sc_bssidmask & (1<<i)) == 0) 743 break; 744 if (i != 0) 745 mac[0] |= (i << 2)|0x2; 746 } else 747 i = 0; 748 sc->sc_bssidmask |= 1<<i; 749 sc->sc_hwbssidmask[0] &= ~mac[0]; 750 if (i == 0) 751 sc->sc_nbssid0++; 752 } 753 754 static void 755 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 756 { 757 int i = mac[0] >> 2; 758 uint8_t mask; 759 760 if (i != 0 || --sc->sc_nbssid0 == 0) { 761 sc->sc_bssidmask &= ~(1<<i); 762 /* recalculate bssid mask from remaining addresses */ 763 mask = 0xff; 764 for (i = 1; i < 8; i++) 765 if (sc->sc_bssidmask & (1<<i)) 766 mask &= ~((i<<2)|0x2); 767 sc->sc_hwbssidmask[0] |= mask; 768 } 769 } 770 771 /* 772 * Assign a beacon xmit slot. We try to space out 773 * assignments so when beacons are staggered the 774 * traffic coming out of the cab q has maximal time 775 * to go out before the next beacon is scheduled. 776 */ 777 static int 778 assign_bslot(struct ath_softc *sc) 779 { 780 u_int slot, free; 781 782 free = 0; 783 for (slot = 0; slot < ATH_BCBUF; slot++) 784 if (sc->sc_bslot[slot] == NULL) { 785 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 786 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 787 return slot; 788 free = slot; 789 /* NB: keep looking for a double slot */ 790 } 791 return free; 792 } 793 794 static struct ieee80211vap * 795 ath_vap_create(struct ieee80211com *ic, 796 const char name[IFNAMSIZ], int unit, int opmode, int flags, 797 const uint8_t bssid[IEEE80211_ADDR_LEN], 798 const uint8_t mac0[IEEE80211_ADDR_LEN]) 799 { 800 struct ath_softc *sc = ic->ic_ifp->if_softc; 801 struct ath_vap *avp; 802 struct ieee80211vap *vap; 803 uint8_t mac[IEEE80211_ADDR_LEN]; 804 int ic_opmode, needbeacon, error; 805 806 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 807 M_80211_VAP, M_WAITOK | M_ZERO); 808 needbeacon = 0; 809 IEEE80211_ADDR_COPY(mac, mac0); 810 811 ATH_LOCK(sc); 812 ic_opmode = opmode; /* default to opmode of new vap */ 813 switch (opmode) { 814 case IEEE80211_M_STA: 815 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 816 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 817 goto bad; 818 } 819 if (sc->sc_nvaps) { 820 /* 821 * With multiple vaps we must fall back 822 * to s/w beacon miss handling. 823 */ 824 flags |= IEEE80211_CLONE_NOBEACONS; 825 } 826 if (flags & IEEE80211_CLONE_NOBEACONS) { 827 /* 828 * Station mode w/o beacons are implemented w/ AP mode. 829 */ 830 ic_opmode = IEEE80211_M_HOSTAP; 831 } 832 break; 833 case IEEE80211_M_IBSS: 834 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 835 device_printf(sc->sc_dev, 836 "only 1 ibss vap supported\n"); 837 goto bad; 838 } 839 needbeacon = 1; 840 break; 841 case IEEE80211_M_AHDEMO: 842 #ifdef IEEE80211_SUPPORT_TDMA 843 if (flags & IEEE80211_CLONE_TDMA) { 844 if (sc->sc_nvaps != 0) { 845 device_printf(sc->sc_dev, 846 "only 1 tdma vap supported\n"); 847 goto bad; 848 } 849 needbeacon = 1; 850 flags |= IEEE80211_CLONE_NOBEACONS; 851 } 852 /* fall thru... */ 853 #endif 854 case IEEE80211_M_MONITOR: 855 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 856 /* 857 * Adopt existing mode. Adding a monitor or ahdemo 858 * vap to an existing configuration is of dubious 859 * value but should be ok. 860 */ 861 /* XXX not right for monitor mode */ 862 ic_opmode = ic->ic_opmode; 863 } 864 break; 865 case IEEE80211_M_HOSTAP: 866 case IEEE80211_M_MBSS: 867 needbeacon = 1; 868 break; 869 case IEEE80211_M_WDS: 870 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 871 device_printf(sc->sc_dev, 872 "wds not supported in sta mode\n"); 873 goto bad; 874 } 875 /* 876 * Silently remove any request for a unique 877 * bssid; WDS vap's always share the local 878 * mac address. 879 */ 880 flags &= ~IEEE80211_CLONE_BSSID; 881 if (sc->sc_nvaps == 0) 882 ic_opmode = IEEE80211_M_HOSTAP; 883 else 884 ic_opmode = ic->ic_opmode; 885 break; 886 default: 887 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 888 goto bad; 889 } 890 /* 891 * Check that a beacon buffer is available; the code below assumes it. 892 */ 893 if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) { 894 device_printf(sc->sc_dev, "no beacon buffer available\n"); 895 goto bad; 896 } 897 898 /* STA, AHDEMO? */ 899 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 900 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 901 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 902 } 903 904 vap = &avp->av_vap; 905 /* XXX can't hold mutex across if_alloc */ 906 ATH_UNLOCK(sc); 907 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 908 bssid, mac); 909 ATH_LOCK(sc); 910 if (error != 0) { 911 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 912 __func__, error); 913 goto bad2; 914 } 915 916 /* h/w crypto support */ 917 vap->iv_key_alloc = ath_key_alloc; 918 vap->iv_key_delete = ath_key_delete; 919 vap->iv_key_set = ath_key_set; 920 vap->iv_key_update_begin = ath_key_update_begin; 921 vap->iv_key_update_end = ath_key_update_end; 922 923 /* override various methods */ 924 avp->av_recv_mgmt = vap->iv_recv_mgmt; 925 vap->iv_recv_mgmt = ath_recv_mgmt; 926 vap->iv_reset = ath_reset_vap; 927 vap->iv_update_beacon = ath_beacon_update; 928 avp->av_newstate = vap->iv_newstate; 929 vap->iv_newstate = ath_newstate; 930 avp->av_bmiss = vap->iv_bmiss; 931 vap->iv_bmiss = ath_bmiss_vap; 932 933 avp->av_bslot = -1; 934 if (needbeacon) { 935 /* 936 * Allocate beacon state and setup the q for buffered 937 * multicast frames. We know a beacon buffer is 938 * available because we checked above. 939 */ 940 avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf); 941 STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list); 942 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 943 /* 944 * Assign the vap to a beacon xmit slot. As above 945 * this cannot fail to find a free one. 946 */ 947 avp->av_bslot = assign_bslot(sc); 948 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 949 ("beacon slot %u not empty", avp->av_bslot)); 950 sc->sc_bslot[avp->av_bslot] = vap; 951 sc->sc_nbcnvaps++; 952 } 953 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 954 /* 955 * Multple vaps are to transmit beacons and we 956 * have h/w support for TSF adjusting; enable 957 * use of staggered beacons. 958 */ 959 sc->sc_stagbeacons = 1; 960 } 961 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 962 } 963 964 ic->ic_opmode = ic_opmode; 965 if (opmode != IEEE80211_M_WDS) { 966 sc->sc_nvaps++; 967 if (opmode == IEEE80211_M_STA) 968 sc->sc_nstavaps++; 969 if (opmode == IEEE80211_M_MBSS) 970 sc->sc_nmeshvaps++; 971 } 972 switch (ic_opmode) { 973 case IEEE80211_M_IBSS: 974 sc->sc_opmode = HAL_M_IBSS; 975 break; 976 case IEEE80211_M_STA: 977 sc->sc_opmode = HAL_M_STA; 978 break; 979 case IEEE80211_M_AHDEMO: 980 #ifdef IEEE80211_SUPPORT_TDMA 981 if (vap->iv_caps & IEEE80211_C_TDMA) { 982 sc->sc_tdma = 1; 983 /* NB: disable tsf adjust */ 984 sc->sc_stagbeacons = 0; 985 } 986 /* 987 * NB: adhoc demo mode is a pseudo mode; to the hal it's 988 * just ap mode. 989 */ 990 /* fall thru... */ 991 #endif 992 case IEEE80211_M_HOSTAP: 993 case IEEE80211_M_MBSS: 994 sc->sc_opmode = HAL_M_HOSTAP; 995 break; 996 case IEEE80211_M_MONITOR: 997 sc->sc_opmode = HAL_M_MONITOR; 998 break; 999 default: 1000 /* XXX should not happen */ 1001 break; 1002 } 1003 if (sc->sc_hastsfadd) { 1004 /* 1005 * Configure whether or not TSF adjust should be done. 1006 */ 1007 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1008 } 1009 if (flags & IEEE80211_CLONE_NOBEACONS) { 1010 /* 1011 * Enable s/w beacon miss handling. 1012 */ 1013 sc->sc_swbmiss = 1; 1014 } 1015 ATH_UNLOCK(sc); 1016 1017 /* complete setup */ 1018 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1019 return vap; 1020 bad2: 1021 reclaim_address(sc, mac); 1022 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1023 bad: 1024 free(avp, M_80211_VAP); 1025 ATH_UNLOCK(sc); 1026 return NULL; 1027 } 1028 1029 static void 1030 ath_vap_delete(struct ieee80211vap *vap) 1031 { 1032 struct ieee80211com *ic = vap->iv_ic; 1033 struct ifnet *ifp = ic->ic_ifp; 1034 struct ath_softc *sc = ifp->if_softc; 1035 struct ath_hal *ah = sc->sc_ah; 1036 struct ath_vap *avp = ATH_VAP(vap); 1037 1038 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1039 /* 1040 * Quiesce the hardware while we remove the vap. In 1041 * particular we need to reclaim all references to 1042 * the vap state by any frames pending on the tx queues. 1043 */ 1044 ath_hal_intrset(ah, 0); /* disable interrupts */ 1045 ath_draintxq(sc); /* stop xmit side */ 1046 ath_stoprecv(sc); /* stop recv side */ 1047 } 1048 1049 ieee80211_vap_detach(vap); 1050 ATH_LOCK(sc); 1051 /* 1052 * Reclaim beacon state. Note this must be done before 1053 * the vap instance is reclaimed as we may have a reference 1054 * to it in the buffer for the beacon frame. 1055 */ 1056 if (avp->av_bcbuf != NULL) { 1057 if (avp->av_bslot != -1) { 1058 sc->sc_bslot[avp->av_bslot] = NULL; 1059 sc->sc_nbcnvaps--; 1060 } 1061 ath_beacon_return(sc, avp->av_bcbuf); 1062 avp->av_bcbuf = NULL; 1063 if (sc->sc_nbcnvaps == 0) { 1064 sc->sc_stagbeacons = 0; 1065 if (sc->sc_hastsfadd) 1066 ath_hal_settsfadjust(sc->sc_ah, 0); 1067 } 1068 /* 1069 * Reclaim any pending mcast frames for the vap. 1070 */ 1071 ath_tx_draintxq(sc, &avp->av_mcastq); 1072 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1073 } 1074 /* 1075 * Update bookkeeping. 1076 */ 1077 if (vap->iv_opmode == IEEE80211_M_STA) { 1078 sc->sc_nstavaps--; 1079 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1080 sc->sc_swbmiss = 0; 1081 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1082 vap->iv_opmode == IEEE80211_M_MBSS) { 1083 reclaim_address(sc, vap->iv_myaddr); 1084 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1085 if (vap->iv_opmode == IEEE80211_M_MBSS) 1086 sc->sc_nmeshvaps--; 1087 } 1088 if (vap->iv_opmode != IEEE80211_M_WDS) 1089 sc->sc_nvaps--; 1090 #ifdef IEEE80211_SUPPORT_TDMA 1091 /* TDMA operation ceases when the last vap is destroyed */ 1092 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1093 sc->sc_tdma = 0; 1094 sc->sc_swbmiss = 0; 1095 } 1096 #endif 1097 ATH_UNLOCK(sc); 1098 free(avp, M_80211_VAP); 1099 1100 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1101 /* 1102 * Restart rx+tx machines if still running (RUNNING will 1103 * be reset if we just destroyed the last vap). 1104 */ 1105 if (ath_startrecv(sc) != 0) 1106 if_printf(ifp, "%s: unable to restart recv logic\n", 1107 __func__); 1108 if (sc->sc_beacons) { /* restart beacons */ 1109 #ifdef IEEE80211_SUPPORT_TDMA 1110 if (sc->sc_tdma) 1111 ath_tdma_config(sc, NULL); 1112 else 1113 #endif 1114 ath_beacon_config(sc, NULL); 1115 } 1116 ath_hal_intrset(ah, sc->sc_imask); 1117 } 1118 } 1119 1120 void 1121 ath_suspend(struct ath_softc *sc) 1122 { 1123 struct ifnet *ifp = sc->sc_ifp; 1124 struct ieee80211com *ic = ifp->if_l2com; 1125 1126 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1127 __func__, ifp->if_flags); 1128 1129 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1130 if (ic->ic_opmode == IEEE80211_M_STA) 1131 ath_stop(ifp); 1132 else 1133 ieee80211_suspend_all(ic); 1134 /* 1135 * NB: don't worry about putting the chip in low power 1136 * mode; pci will power off our socket on suspend and 1137 * CardBus detaches the device. 1138 */ 1139 } 1140 1141 /* 1142 * Reset the key cache since some parts do not reset the 1143 * contents on resume. First we clear all entries, then 1144 * re-load keys that the 802.11 layer assumes are setup 1145 * in h/w. 1146 */ 1147 static void 1148 ath_reset_keycache(struct ath_softc *sc) 1149 { 1150 struct ifnet *ifp = sc->sc_ifp; 1151 struct ieee80211com *ic = ifp->if_l2com; 1152 struct ath_hal *ah = sc->sc_ah; 1153 int i; 1154 1155 for (i = 0; i < sc->sc_keymax; i++) 1156 ath_hal_keyreset(ah, i); 1157 ieee80211_crypto_reload_keys(ic); 1158 } 1159 1160 void 1161 ath_resume(struct ath_softc *sc) 1162 { 1163 struct ifnet *ifp = sc->sc_ifp; 1164 struct ieee80211com *ic = ifp->if_l2com; 1165 struct ath_hal *ah = sc->sc_ah; 1166 HAL_STATUS status; 1167 1168 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1169 __func__, ifp->if_flags); 1170 1171 /* 1172 * Must reset the chip before we reload the 1173 * keycache as we were powered down on suspend. 1174 */ 1175 ath_hal_reset(ah, sc->sc_opmode, 1176 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1177 AH_FALSE, &status); 1178 ath_reset_keycache(sc); 1179 if (sc->sc_resume_up) { 1180 if (ic->ic_opmode == IEEE80211_M_STA) { 1181 ath_init(sc); 1182 /* 1183 * Program the beacon registers using the last rx'd 1184 * beacon frame and enable sync on the next beacon 1185 * we see. This should handle the case where we 1186 * wakeup and find the same AP and also the case where 1187 * we wakeup and need to roam. For the latter we 1188 * should get bmiss events that trigger a roam. 1189 */ 1190 ath_beacon_config(sc, NULL); 1191 sc->sc_syncbeacon = 1; 1192 } else 1193 ieee80211_resume_all(ic); 1194 } 1195 if (sc->sc_softled) { 1196 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin, 1197 HAL_GPIO_MUX_MAC_NETWORK_LED); 1198 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 1199 } 1200 } 1201 1202 void 1203 ath_shutdown(struct ath_softc *sc) 1204 { 1205 struct ifnet *ifp = sc->sc_ifp; 1206 1207 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1208 __func__, ifp->if_flags); 1209 1210 ath_stop(ifp); 1211 /* NB: no point powering down chip as we're about to reboot */ 1212 } 1213 1214 /* 1215 * Interrupt handler. Most of the actual processing is deferred. 1216 */ 1217 void 1218 ath_intr(void *arg) 1219 { 1220 struct ath_softc *sc = arg; 1221 struct ifnet *ifp = sc->sc_ifp; 1222 struct ath_hal *ah = sc->sc_ah; 1223 HAL_INT status; 1224 1225 if (sc->sc_invalid) { 1226 /* 1227 * The hardware is not ready/present, don't touch anything. 1228 * Note this can happen early on if the IRQ is shared. 1229 */ 1230 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1231 return; 1232 } 1233 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 1234 return; 1235 if ((ifp->if_flags & IFF_UP) == 0 || 1236 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1237 HAL_INT status; 1238 1239 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1240 __func__, ifp->if_flags); 1241 ath_hal_getisr(ah, &status); /* clear ISR */ 1242 ath_hal_intrset(ah, 0); /* disable further intr's */ 1243 return; 1244 } 1245 /* 1246 * Figure out the reason(s) for the interrupt. Note 1247 * that the hal returns a pseudo-ISR that may include 1248 * bits we haven't explicitly enabled so we mask the 1249 * value to insure we only process bits we requested. 1250 */ 1251 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1252 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1253 status &= sc->sc_imask; /* discard unasked for bits */ 1254 if (status & HAL_INT_FATAL) { 1255 sc->sc_stats.ast_hardware++; 1256 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1257 ath_fatal_proc(sc, 0); 1258 } else { 1259 if (status & HAL_INT_SWBA) { 1260 /* 1261 * Software beacon alert--time to send a beacon. 1262 * Handle beacon transmission directly; deferring 1263 * this is too slow to meet timing constraints 1264 * under load. 1265 */ 1266 #ifdef IEEE80211_SUPPORT_TDMA 1267 if (sc->sc_tdma) { 1268 if (sc->sc_tdmaswba == 0) { 1269 struct ieee80211com *ic = ifp->if_l2com; 1270 struct ieee80211vap *vap = 1271 TAILQ_FIRST(&ic->ic_vaps); 1272 ath_tdma_beacon_send(sc, vap); 1273 sc->sc_tdmaswba = 1274 vap->iv_tdma->tdma_bintval; 1275 } else 1276 sc->sc_tdmaswba--; 1277 } else 1278 #endif 1279 { 1280 ath_beacon_proc(sc, 0); 1281 #ifdef IEEE80211_SUPPORT_SUPERG 1282 /* 1283 * Schedule the rx taskq in case there's no 1284 * traffic so any frames held on the staging 1285 * queue are aged and potentially flushed. 1286 */ 1287 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1288 #endif 1289 } 1290 } 1291 if (status & HAL_INT_RXEOL) { 1292 /* 1293 * NB: the hardware should re-read the link when 1294 * RXE bit is written, but it doesn't work at 1295 * least on older hardware revs. 1296 */ 1297 sc->sc_stats.ast_rxeol++; 1298 sc->sc_rxlink = NULL; 1299 } 1300 if (status & HAL_INT_TXURN) { 1301 sc->sc_stats.ast_txurn++; 1302 /* bump tx trigger level */ 1303 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1304 } 1305 if (status & HAL_INT_RX) 1306 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1307 if (status & HAL_INT_TX) 1308 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1309 if (status & HAL_INT_BMISS) { 1310 sc->sc_stats.ast_bmiss++; 1311 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1312 } 1313 if (status & HAL_INT_MIB) { 1314 sc->sc_stats.ast_mib++; 1315 /* 1316 * Disable interrupts until we service the MIB 1317 * interrupt; otherwise it will continue to fire. 1318 */ 1319 ath_hal_intrset(ah, 0); 1320 /* 1321 * Let the hal handle the event. We assume it will 1322 * clear whatever condition caused the interrupt. 1323 */ 1324 ath_hal_mibevent(ah, &sc->sc_halstats); 1325 ath_hal_intrset(ah, sc->sc_imask); 1326 } 1327 if (status & HAL_INT_RXORN) { 1328 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1329 sc->sc_stats.ast_rxorn++; 1330 } 1331 } 1332 } 1333 1334 static void 1335 ath_fatal_proc(void *arg, int pending) 1336 { 1337 struct ath_softc *sc = arg; 1338 struct ifnet *ifp = sc->sc_ifp; 1339 u_int32_t *state; 1340 u_int32_t len; 1341 void *sp; 1342 1343 if_printf(ifp, "hardware error; resetting\n"); 1344 /* 1345 * Fatal errors are unrecoverable. Typically these 1346 * are caused by DMA errors. Collect h/w state from 1347 * the hal so we can diagnose what's going on. 1348 */ 1349 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1350 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1351 state = sp; 1352 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1353 state[0], state[1] , state[2], state[3], 1354 state[4], state[5]); 1355 } 1356 ath_reset(ifp); 1357 } 1358 1359 static void 1360 ath_bmiss_vap(struct ieee80211vap *vap) 1361 { 1362 /* 1363 * Workaround phantom bmiss interrupts by sanity-checking 1364 * the time of our last rx'd frame. If it is within the 1365 * beacon miss interval then ignore the interrupt. If it's 1366 * truly a bmiss we'll get another interrupt soon and that'll 1367 * be dispatched up for processing. Note this applies only 1368 * for h/w beacon miss events. 1369 */ 1370 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1371 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1372 struct ath_softc *sc = ifp->if_softc; 1373 u_int64_t lastrx = sc->sc_lastrx; 1374 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1375 u_int bmisstimeout = 1376 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1377 1378 DPRINTF(sc, ATH_DEBUG_BEACON, 1379 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1380 __func__, (unsigned long long) tsf, 1381 (unsigned long long)(tsf - lastrx), 1382 (unsigned long long) lastrx, bmisstimeout); 1383 1384 if (tsf - lastrx <= bmisstimeout) { 1385 sc->sc_stats.ast_bmiss_phantom++; 1386 return; 1387 } 1388 } 1389 ATH_VAP(vap)->av_bmiss(vap); 1390 } 1391 1392 static int 1393 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1394 { 1395 uint32_t rsize; 1396 void *sp; 1397 1398 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1399 return 0; 1400 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1401 *hangs = *(uint32_t *)sp; 1402 return 1; 1403 } 1404 1405 static void 1406 ath_bmiss_proc(void *arg, int pending) 1407 { 1408 struct ath_softc *sc = arg; 1409 struct ifnet *ifp = sc->sc_ifp; 1410 uint32_t hangs; 1411 1412 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1413 1414 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1415 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1416 ath_reset(ifp); 1417 } else 1418 ieee80211_beacon_miss(ifp->if_l2com); 1419 } 1420 1421 /* 1422 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1423 * calcs together with WME. If necessary disable the crypto 1424 * hardware and mark the 802.11 state so keys will be setup 1425 * with the MIC work done in software. 1426 */ 1427 static void 1428 ath_settkipmic(struct ath_softc *sc) 1429 { 1430 struct ifnet *ifp = sc->sc_ifp; 1431 struct ieee80211com *ic = ifp->if_l2com; 1432 1433 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1434 if (ic->ic_flags & IEEE80211_F_WME) { 1435 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1436 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1437 } else { 1438 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1439 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1440 } 1441 } 1442 } 1443 1444 static void 1445 ath_init(void *arg) 1446 { 1447 struct ath_softc *sc = (struct ath_softc *) arg; 1448 struct ifnet *ifp = sc->sc_ifp; 1449 struct ieee80211com *ic = ifp->if_l2com; 1450 struct ath_hal *ah = sc->sc_ah; 1451 HAL_STATUS status; 1452 1453 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1454 __func__, ifp->if_flags); 1455 1456 ATH_LOCK(sc); 1457 /* 1458 * Stop anything previously setup. This is safe 1459 * whether this is the first time through or not. 1460 */ 1461 ath_stop_locked(ifp); 1462 1463 /* 1464 * The basic interface to setting the hardware in a good 1465 * state is ``reset''. On return the hardware is known to 1466 * be powered up and with interrupts disabled. This must 1467 * be followed by initialization of the appropriate bits 1468 * and then setup of the interrupt mask. 1469 */ 1470 ath_settkipmic(sc); 1471 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1472 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1473 status); 1474 ATH_UNLOCK(sc); 1475 return; 1476 } 1477 ath_chan_change(sc, ic->ic_curchan); 1478 1479 /* 1480 * Likewise this is set during reset so update 1481 * state cached in the driver. 1482 */ 1483 sc->sc_diversity = ath_hal_getdiversity(ah); 1484 sc->sc_lastlongcal = 0; 1485 sc->sc_resetcal = 1; 1486 sc->sc_lastcalreset = 0; 1487 sc->sc_lastani = 0; 1488 sc->sc_lastshortcal = 0; 1489 sc->sc_doresetcal = AH_FALSE; 1490 1491 /* 1492 * Setup the hardware after reset: the key cache 1493 * is filled as needed and the receive engine is 1494 * set going. Frame transmit is handled entirely 1495 * in the frame output path; there's nothing to do 1496 * here except setup the interrupt mask. 1497 */ 1498 if (ath_startrecv(sc) != 0) { 1499 if_printf(ifp, "unable to start recv logic\n"); 1500 ATH_UNLOCK(sc); 1501 return; 1502 } 1503 1504 /* 1505 * Enable interrupts. 1506 */ 1507 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1508 | HAL_INT_RXEOL | HAL_INT_RXORN 1509 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1510 /* 1511 * Enable MIB interrupts when there are hardware phy counters. 1512 * Note we only do this (at the moment) for station mode. 1513 */ 1514 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1515 sc->sc_imask |= HAL_INT_MIB; 1516 1517 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1518 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1519 ath_hal_intrset(ah, sc->sc_imask); 1520 1521 ATH_UNLOCK(sc); 1522 1523 #ifdef ATH_TX99_DIAG 1524 if (sc->sc_tx99 != NULL) 1525 sc->sc_tx99->start(sc->sc_tx99); 1526 else 1527 #endif 1528 ieee80211_start_all(ic); /* start all vap's */ 1529 } 1530 1531 static void 1532 ath_stop_locked(struct ifnet *ifp) 1533 { 1534 struct ath_softc *sc = ifp->if_softc; 1535 struct ath_hal *ah = sc->sc_ah; 1536 1537 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1538 __func__, sc->sc_invalid, ifp->if_flags); 1539 1540 ATH_LOCK_ASSERT(sc); 1541 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1542 /* 1543 * Shutdown the hardware and driver: 1544 * reset 802.11 state machine 1545 * turn off timers 1546 * disable interrupts 1547 * turn off the radio 1548 * clear transmit machinery 1549 * clear receive machinery 1550 * drain and release tx queues 1551 * reclaim beacon resources 1552 * power down hardware 1553 * 1554 * Note that some of this work is not possible if the 1555 * hardware is gone (invalid). 1556 */ 1557 #ifdef ATH_TX99_DIAG 1558 if (sc->sc_tx99 != NULL) 1559 sc->sc_tx99->stop(sc->sc_tx99); 1560 #endif 1561 callout_stop(&sc->sc_wd_ch); 1562 sc->sc_wd_timer = 0; 1563 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1564 if (!sc->sc_invalid) { 1565 if (sc->sc_softled) { 1566 callout_stop(&sc->sc_ledtimer); 1567 ath_hal_gpioset(ah, sc->sc_ledpin, 1568 !sc->sc_ledon); 1569 sc->sc_blinking = 0; 1570 } 1571 ath_hal_intrset(ah, 0); 1572 } 1573 ath_draintxq(sc); 1574 if (!sc->sc_invalid) { 1575 ath_stoprecv(sc); 1576 ath_hal_phydisable(ah); 1577 } else 1578 sc->sc_rxlink = NULL; 1579 ath_beacon_free(sc); /* XXX not needed */ 1580 } 1581 } 1582 1583 static void 1584 ath_stop(struct ifnet *ifp) 1585 { 1586 struct ath_softc *sc = ifp->if_softc; 1587 1588 ATH_LOCK(sc); 1589 ath_stop_locked(ifp); 1590 ATH_UNLOCK(sc); 1591 } 1592 1593 /* 1594 * Reset the hardware w/o losing operational state. This is 1595 * basically a more efficient way of doing ath_stop, ath_init, 1596 * followed by state transitions to the current 802.11 1597 * operational state. Used to recover from various errors and 1598 * to reset or reload hardware state. 1599 */ 1600 static int 1601 ath_reset(struct ifnet *ifp) 1602 { 1603 struct ath_softc *sc = ifp->if_softc; 1604 struct ieee80211com *ic = ifp->if_l2com; 1605 struct ath_hal *ah = sc->sc_ah; 1606 HAL_STATUS status; 1607 1608 ath_hal_intrset(ah, 0); /* disable interrupts */ 1609 ath_draintxq(sc); /* stop xmit side */ 1610 ath_stoprecv(sc); /* stop recv side */ 1611 ath_settkipmic(sc); /* configure TKIP MIC handling */ 1612 /* NB: indicate channel change so we do a full reset */ 1613 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 1614 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1615 __func__, status); 1616 sc->sc_diversity = ath_hal_getdiversity(ah); 1617 if (ath_startrecv(sc) != 0) /* restart recv */ 1618 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1619 /* 1620 * We may be doing a reset in response to an ioctl 1621 * that changes the channel so update any state that 1622 * might change as a result. 1623 */ 1624 ath_chan_change(sc, ic->ic_curchan); 1625 if (sc->sc_beacons) { /* restart beacons */ 1626 #ifdef IEEE80211_SUPPORT_TDMA 1627 if (sc->sc_tdma) 1628 ath_tdma_config(sc, NULL); 1629 else 1630 #endif 1631 ath_beacon_config(sc, NULL); 1632 } 1633 ath_hal_intrset(ah, sc->sc_imask); 1634 1635 ath_start(ifp); /* restart xmit */ 1636 return 0; 1637 } 1638 1639 static int 1640 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 1641 { 1642 struct ieee80211com *ic = vap->iv_ic; 1643 struct ifnet *ifp = ic->ic_ifp; 1644 struct ath_softc *sc = ifp->if_softc; 1645 struct ath_hal *ah = sc->sc_ah; 1646 1647 switch (cmd) { 1648 case IEEE80211_IOC_TXPOWER: 1649 /* 1650 * If per-packet TPC is enabled, then we have nothing 1651 * to do; otherwise we need to force the global limit. 1652 * All this can happen directly; no need to reset. 1653 */ 1654 if (!ath_hal_gettpc(ah)) 1655 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 1656 return 0; 1657 } 1658 return ath_reset(ifp); 1659 } 1660 1661 struct ath_buf * 1662 _ath_getbuf_locked(struct ath_softc *sc) 1663 { 1664 struct ath_buf *bf; 1665 1666 ATH_TXBUF_LOCK_ASSERT(sc); 1667 1668 bf = STAILQ_FIRST(&sc->sc_txbuf); 1669 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) 1670 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1671 else 1672 bf = NULL; 1673 if (bf == NULL) { 1674 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 1675 STAILQ_FIRST(&sc->sc_txbuf) == NULL ? 1676 "out of xmit buffers" : "xmit buffer busy"); 1677 } 1678 return bf; 1679 } 1680 1681 struct ath_buf * 1682 ath_getbuf(struct ath_softc *sc) 1683 { 1684 struct ath_buf *bf; 1685 1686 ATH_TXBUF_LOCK(sc); 1687 bf = _ath_getbuf_locked(sc); 1688 if (bf == NULL) { 1689 struct ifnet *ifp = sc->sc_ifp; 1690 1691 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 1692 sc->sc_stats.ast_tx_qstop++; 1693 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1694 } 1695 ATH_TXBUF_UNLOCK(sc); 1696 return bf; 1697 } 1698 1699 static void 1700 ath_start(struct ifnet *ifp) 1701 { 1702 struct ath_softc *sc = ifp->if_softc; 1703 struct ieee80211_node *ni; 1704 struct ath_buf *bf; 1705 struct mbuf *m, *next; 1706 ath_bufhead frags; 1707 1708 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 1709 return; 1710 for (;;) { 1711 /* 1712 * Grab a TX buffer and associated resources. 1713 */ 1714 bf = ath_getbuf(sc); 1715 if (bf == NULL) 1716 break; 1717 1718 IFQ_DEQUEUE(&ifp->if_snd, m); 1719 if (m == NULL) { 1720 ATH_TXBUF_LOCK(sc); 1721 STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 1722 ATH_TXBUF_UNLOCK(sc); 1723 break; 1724 } 1725 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1726 /* 1727 * Check for fragmentation. If this frame 1728 * has been broken up verify we have enough 1729 * buffers to send all the fragments so all 1730 * go out or none... 1731 */ 1732 STAILQ_INIT(&frags); 1733 if ((m->m_flags & M_FRAG) && 1734 !ath_txfrag_setup(sc, &frags, m, ni)) { 1735 DPRINTF(sc, ATH_DEBUG_XMIT, 1736 "%s: out of txfrag buffers\n", __func__); 1737 sc->sc_stats.ast_tx_nofrag++; 1738 ifp->if_oerrors++; 1739 ath_freetx(m); 1740 goto bad; 1741 } 1742 ifp->if_opackets++; 1743 nextfrag: 1744 /* 1745 * Pass the frame to the h/w for transmission. 1746 * Fragmented frames have each frag chained together 1747 * with m_nextpkt. We know there are sufficient ath_buf's 1748 * to send all the frags because of work done by 1749 * ath_txfrag_setup. We leave m_nextpkt set while 1750 * calling ath_tx_start so it can use it to extend the 1751 * the tx duration to cover the subsequent frag and 1752 * so it can reclaim all the mbufs in case of an error; 1753 * ath_tx_start clears m_nextpkt once it commits to 1754 * handing the frame to the hardware. 1755 */ 1756 next = m->m_nextpkt; 1757 if (ath_tx_start(sc, ni, bf, m)) { 1758 bad: 1759 ifp->if_oerrors++; 1760 reclaim: 1761 bf->bf_m = NULL; 1762 bf->bf_node = NULL; 1763 ATH_TXBUF_LOCK(sc); 1764 STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 1765 ath_txfrag_cleanup(sc, &frags, ni); 1766 ATH_TXBUF_UNLOCK(sc); 1767 if (ni != NULL) 1768 ieee80211_free_node(ni); 1769 continue; 1770 } 1771 if (next != NULL) { 1772 /* 1773 * Beware of state changing between frags. 1774 * XXX check sta power-save state? 1775 */ 1776 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 1777 DPRINTF(sc, ATH_DEBUG_XMIT, 1778 "%s: flush fragmented packet, state %s\n", 1779 __func__, 1780 ieee80211_state_name[ni->ni_vap->iv_state]); 1781 ath_freetx(next); 1782 goto reclaim; 1783 } 1784 m = next; 1785 bf = STAILQ_FIRST(&frags); 1786 KASSERT(bf != NULL, ("no buf for txfrag")); 1787 STAILQ_REMOVE_HEAD(&frags, bf_list); 1788 goto nextfrag; 1789 } 1790 1791 sc->sc_wd_timer = 5; 1792 } 1793 } 1794 1795 static int 1796 ath_media_change(struct ifnet *ifp) 1797 { 1798 int error = ieee80211_media_change(ifp); 1799 /* NB: only the fixed rate can change and that doesn't need a reset */ 1800 return (error == ENETRESET ? 0 : error); 1801 } 1802 1803 #ifdef ATH_DEBUG 1804 static void 1805 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix, 1806 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1807 { 1808 static const char *ciphers[] = { 1809 "WEP", 1810 "AES-OCB", 1811 "AES-CCM", 1812 "CKIP", 1813 "TKIP", 1814 "CLR", 1815 }; 1816 int i, n; 1817 1818 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); 1819 for (i = 0, n = hk->kv_len; i < n; i++) 1820 printf("%02x", hk->kv_val[i]); 1821 printf(" mac %s", ether_sprintf(mac)); 1822 if (hk->kv_type == HAL_CIPHER_TKIP) { 1823 printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic"); 1824 for (i = 0; i < sizeof(hk->kv_mic); i++) 1825 printf("%02x", hk->kv_mic[i]); 1826 if (!sc->sc_splitmic) { 1827 printf(" txmic "); 1828 for (i = 0; i < sizeof(hk->kv_txmic); i++) 1829 printf("%02x", hk->kv_txmic[i]); 1830 } 1831 } 1832 printf("\n"); 1833 } 1834 #endif 1835 1836 /* 1837 * Set a TKIP key into the hardware. This handles the 1838 * potential distribution of key state to multiple key 1839 * cache slots for TKIP. 1840 */ 1841 static int 1842 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, 1843 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1844 { 1845 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) 1846 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; 1847 struct ath_hal *ah = sc->sc_ah; 1848 1849 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, 1850 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher)); 1851 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { 1852 if (sc->sc_splitmic) { 1853 /* 1854 * TX key goes at first index, RX key at the rx index. 1855 * The hal handles the MIC keys at index+64. 1856 */ 1857 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); 1858 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 1859 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid)) 1860 return 0; 1861 1862 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1863 KEYPRINTF(sc, k->wk_keyix+32, hk, mac); 1864 /* XXX delete tx key on failure? */ 1865 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac); 1866 } else { 1867 /* 1868 * Room for both TX+RX MIC keys in one key cache 1869 * slot, just set key at the first index; the hal 1870 * will handle the rest. 1871 */ 1872 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1873 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 1874 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1875 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 1876 } 1877 } else if (k->wk_flags & IEEE80211_KEY_XMIT) { 1878 if (sc->sc_splitmic) { 1879 /* 1880 * NB: must pass MIC key in expected location when 1881 * the keycache only holds one MIC key per entry. 1882 */ 1883 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic)); 1884 } else 1885 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 1886 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1887 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 1888 } else if (k->wk_flags & IEEE80211_KEY_RECV) { 1889 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1890 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1891 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 1892 } 1893 return 0; 1894 #undef IEEE80211_KEY_XR 1895 } 1896 1897 /* 1898 * Set a net80211 key into the hardware. This handles the 1899 * potential distribution of key state to multiple key 1900 * cache slots for TKIP with hardware MIC support. 1901 */ 1902 static int 1903 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k, 1904 struct ieee80211_node *bss) 1905 { 1906 #define N(a) (sizeof(a)/sizeof(a[0])) 1907 static const u_int8_t ciphermap[] = { 1908 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ 1909 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ 1910 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ 1911 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ 1912 (u_int8_t) -1, /* 4 is not allocated */ 1913 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ 1914 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ 1915 }; 1916 struct ath_hal *ah = sc->sc_ah; 1917 const struct ieee80211_cipher *cip = k->wk_cipher; 1918 u_int8_t gmac[IEEE80211_ADDR_LEN]; 1919 const u_int8_t *mac; 1920 HAL_KEYVAL hk; 1921 1922 memset(&hk, 0, sizeof(hk)); 1923 /* 1924 * Software crypto uses a "clear key" so non-crypto 1925 * state kept in the key cache are maintained and 1926 * so that rx frames have an entry to match. 1927 */ 1928 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { 1929 KASSERT(cip->ic_cipher < N(ciphermap), 1930 ("invalid cipher type %u", cip->ic_cipher)); 1931 hk.kv_type = ciphermap[cip->ic_cipher]; 1932 hk.kv_len = k->wk_keylen; 1933 memcpy(hk.kv_val, k->wk_key, k->wk_keylen); 1934 } else 1935 hk.kv_type = HAL_CIPHER_CLR; 1936 1937 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) { 1938 /* 1939 * Group keys on hardware that supports multicast frame 1940 * key search use a MAC that is the sender's address with 1941 * the high bit set instead of the app-specified address. 1942 */ 1943 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr); 1944 gmac[0] |= 0x80; 1945 mac = gmac; 1946 } else 1947 mac = k->wk_macaddr; 1948 1949 if (hk.kv_type == HAL_CIPHER_TKIP && 1950 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 1951 return ath_keyset_tkip(sc, k, &hk, mac); 1952 } else { 1953 KEYPRINTF(sc, k->wk_keyix, &hk, mac); 1954 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac); 1955 } 1956 #undef N 1957 } 1958 1959 /* 1960 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1961 * each key, one for decrypt/encrypt and the other for the MIC. 1962 */ 1963 static u_int16_t 1964 key_alloc_2pair(struct ath_softc *sc, 1965 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1966 { 1967 #define N(a) (sizeof(a)/sizeof(a[0])) 1968 u_int i, keyix; 1969 1970 KASSERT(sc->sc_splitmic, ("key cache !split")); 1971 /* XXX could optimize */ 1972 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1973 u_int8_t b = sc->sc_keymap[i]; 1974 if (b != 0xff) { 1975 /* 1976 * One or more slots in this byte are free. 1977 */ 1978 keyix = i*NBBY; 1979 while (b & 1) { 1980 again: 1981 keyix++; 1982 b >>= 1; 1983 } 1984 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ 1985 if (isset(sc->sc_keymap, keyix+32) || 1986 isset(sc->sc_keymap, keyix+64) || 1987 isset(sc->sc_keymap, keyix+32+64)) { 1988 /* full pair unavailable */ 1989 /* XXX statistic */ 1990 if (keyix == (i+1)*NBBY) { 1991 /* no slots were appropriate, advance */ 1992 continue; 1993 } 1994 goto again; 1995 } 1996 setbit(sc->sc_keymap, keyix); 1997 setbit(sc->sc_keymap, keyix+64); 1998 setbit(sc->sc_keymap, keyix+32); 1999 setbit(sc->sc_keymap, keyix+32+64); 2000 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 2001 "%s: key pair %u,%u %u,%u\n", 2002 __func__, keyix, keyix+64, 2003 keyix+32, keyix+32+64); 2004 *txkeyix = keyix; 2005 *rxkeyix = keyix+32; 2006 return 1; 2007 } 2008 } 2009 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 2010 return 0; 2011 #undef N 2012 } 2013 2014 /* 2015 * Allocate tx/rx key slots for TKIP. We allocate two slots for 2016 * each key, one for decrypt/encrypt and the other for the MIC. 2017 */ 2018 static u_int16_t 2019 key_alloc_pair(struct ath_softc *sc, 2020 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 2021 { 2022 #define N(a) (sizeof(a)/sizeof(a[0])) 2023 u_int i, keyix; 2024 2025 KASSERT(!sc->sc_splitmic, ("key cache split")); 2026 /* XXX could optimize */ 2027 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 2028 u_int8_t b = sc->sc_keymap[i]; 2029 if (b != 0xff) { 2030 /* 2031 * One or more slots in this byte are free. 2032 */ 2033 keyix = i*NBBY; 2034 while (b & 1) { 2035 again: 2036 keyix++; 2037 b >>= 1; 2038 } 2039 if (isset(sc->sc_keymap, keyix+64)) { 2040 /* full pair unavailable */ 2041 /* XXX statistic */ 2042 if (keyix == (i+1)*NBBY) { 2043 /* no slots were appropriate, advance */ 2044 continue; 2045 } 2046 goto again; 2047 } 2048 setbit(sc->sc_keymap, keyix); 2049 setbit(sc->sc_keymap, keyix+64); 2050 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 2051 "%s: key pair %u,%u\n", 2052 __func__, keyix, keyix+64); 2053 *txkeyix = *rxkeyix = keyix; 2054 return 1; 2055 } 2056 } 2057 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 2058 return 0; 2059 #undef N 2060 } 2061 2062 /* 2063 * Allocate a single key cache slot. 2064 */ 2065 static int 2066 key_alloc_single(struct ath_softc *sc, 2067 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 2068 { 2069 #define N(a) (sizeof(a)/sizeof(a[0])) 2070 u_int i, keyix; 2071 2072 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ 2073 for (i = 0; i < N(sc->sc_keymap); i++) { 2074 u_int8_t b = sc->sc_keymap[i]; 2075 if (b != 0xff) { 2076 /* 2077 * One or more slots are free. 2078 */ 2079 keyix = i*NBBY; 2080 while (b & 1) 2081 keyix++, b >>= 1; 2082 setbit(sc->sc_keymap, keyix); 2083 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", 2084 __func__, keyix); 2085 *txkeyix = *rxkeyix = keyix; 2086 return 1; 2087 } 2088 } 2089 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); 2090 return 0; 2091 #undef N 2092 } 2093 2094 /* 2095 * Allocate one or more key cache slots for a uniacst key. The 2096 * key itself is needed only to identify the cipher. For hardware 2097 * TKIP with split cipher+MIC keys we allocate two key cache slot 2098 * pairs so that we can setup separate TX and RX MIC keys. Note 2099 * that the MIC key for a TKIP key at slot i is assumed by the 2100 * hardware to be at slot i+64. This limits TKIP keys to the first 2101 * 64 entries. 2102 */ 2103 static int 2104 ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, 2105 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 2106 { 2107 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 2108 2109 /* 2110 * Group key allocation must be handled specially for 2111 * parts that do not support multicast key cache search 2112 * functionality. For those parts the key id must match 2113 * the h/w key index so lookups find the right key. On 2114 * parts w/ the key search facility we install the sender's 2115 * mac address (with the high bit set) and let the hardware 2116 * find the key w/o using the key id. This is preferred as 2117 * it permits us to support multiple users for adhoc and/or 2118 * multi-station operation. 2119 */ 2120 if (k->wk_keyix != IEEE80211_KEYIX_NONE) { 2121 /* 2122 * Only global keys should have key index assigned. 2123 */ 2124 if (!(&vap->iv_nw_keys[0] <= k && 2125 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { 2126 /* should not happen */ 2127 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 2128 "%s: bogus group key\n", __func__); 2129 return 0; 2130 } 2131 if (vap->iv_opmode != IEEE80211_M_HOSTAP || 2132 !(k->wk_flags & IEEE80211_KEY_GROUP) || 2133 !sc->sc_mcastkey) { 2134 /* 2135 * XXX we pre-allocate the global keys so 2136 * have no way to check if they've already 2137 * been allocated. 2138 */ 2139 *keyix = *rxkeyix = k - vap->iv_nw_keys; 2140 return 1; 2141 } 2142 /* 2143 * Group key and device supports multicast key search. 2144 */ 2145 k->wk_keyix = IEEE80211_KEYIX_NONE; 2146 } 2147 2148 /* 2149 * We allocate two pair for TKIP when using the h/w to do 2150 * the MIC. For everything else, including software crypto, 2151 * we allocate a single entry. Note that s/w crypto requires 2152 * a pass-through slot on the 5211 and 5212. The 5210 does 2153 * not support pass-through cache entries and we map all 2154 * those requests to slot 0. 2155 */ 2156 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 2157 return key_alloc_single(sc, keyix, rxkeyix); 2158 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && 2159 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 2160 if (sc->sc_splitmic) 2161 return key_alloc_2pair(sc, keyix, rxkeyix); 2162 else 2163 return key_alloc_pair(sc, keyix, rxkeyix); 2164 } else { 2165 return key_alloc_single(sc, keyix, rxkeyix); 2166 } 2167 } 2168 2169 /* 2170 * Delete an entry in the key cache allocated by ath_key_alloc. 2171 */ 2172 static int 2173 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 2174 { 2175 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 2176 struct ath_hal *ah = sc->sc_ah; 2177 const struct ieee80211_cipher *cip = k->wk_cipher; 2178 u_int keyix = k->wk_keyix; 2179 2180 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); 2181 2182 ath_hal_keyreset(ah, keyix); 2183 /* 2184 * Handle split tx/rx keying required for TKIP with h/w MIC. 2185 */ 2186 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 2187 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) 2188 ath_hal_keyreset(ah, keyix+32); /* RX key */ 2189 if (keyix >= IEEE80211_WEP_NKID) { 2190 /* 2191 * Don't touch keymap entries for global keys so 2192 * they are never considered for dynamic allocation. 2193 */ 2194 clrbit(sc->sc_keymap, keyix); 2195 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 2196 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 2197 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ 2198 if (sc->sc_splitmic) { 2199 /* +32 for RX key, +32+64 for RX key MIC */ 2200 clrbit(sc->sc_keymap, keyix+32); 2201 clrbit(sc->sc_keymap, keyix+32+64); 2202 } 2203 } 2204 } 2205 return 1; 2206 } 2207 2208 /* 2209 * Set the key cache contents for the specified key. Key cache 2210 * slot(s) must already have been allocated by ath_key_alloc. 2211 */ 2212 static int 2213 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k, 2214 const u_int8_t mac[IEEE80211_ADDR_LEN]) 2215 { 2216 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 2217 2218 return ath_keyset(sc, k, vap->iv_bss); 2219 } 2220 2221 /* 2222 * Block/unblock tx+rx processing while a key change is done. 2223 * We assume the caller serializes key management operations 2224 * so we only need to worry about synchronization with other 2225 * uses that originate in the driver. 2226 */ 2227 static void 2228 ath_key_update_begin(struct ieee80211vap *vap) 2229 { 2230 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2231 struct ath_softc *sc = ifp->if_softc; 2232 2233 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2234 taskqueue_block(sc->sc_tq); 2235 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2236 } 2237 2238 static void 2239 ath_key_update_end(struct ieee80211vap *vap) 2240 { 2241 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2242 struct ath_softc *sc = ifp->if_softc; 2243 2244 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2245 IF_UNLOCK(&ifp->if_snd); 2246 taskqueue_unblock(sc->sc_tq); 2247 } 2248 2249 /* 2250 * Calculate the receive filter according to the 2251 * operating mode and state: 2252 * 2253 * o always accept unicast, broadcast, and multicast traffic 2254 * o accept PHY error frames when hardware doesn't have MIB support 2255 * to count and we need them for ANI (sta mode only until recently) 2256 * and we are not scanning (ANI is disabled) 2257 * NB: older hal's add rx filter bits out of sight and we need to 2258 * blindly preserve them 2259 * o probe request frames are accepted only when operating in 2260 * hostap, adhoc, mesh, or monitor modes 2261 * o enable promiscuous mode 2262 * - when in monitor mode 2263 * - if interface marked PROMISC (assumes bridge setting is filtered) 2264 * o accept beacons: 2265 * - when operating in station mode for collecting rssi data when 2266 * the station is otherwise quiet, or 2267 * - when operating in adhoc mode so the 802.11 layer creates 2268 * node table entries for peers, 2269 * - when scanning 2270 * - when doing s/w beacon miss (e.g. for ap+sta) 2271 * - when operating in ap mode in 11g to detect overlapping bss that 2272 * require protection 2273 * - when operating in mesh mode to detect neighbors 2274 * o accept control frames: 2275 * - when in monitor mode 2276 * XXX HT protection for 11n 2277 */ 2278 static u_int32_t 2279 ath_calcrxfilter(struct ath_softc *sc) 2280 { 2281 struct ifnet *ifp = sc->sc_ifp; 2282 struct ieee80211com *ic = ifp->if_l2com; 2283 u_int32_t rfilt; 2284 2285 rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 2286 if (!sc->sc_needmib && !sc->sc_scanning) 2287 rfilt |= HAL_RX_FILTER_PHYERR; 2288 if (ic->ic_opmode != IEEE80211_M_STA) 2289 rfilt |= HAL_RX_FILTER_PROBEREQ; 2290 /* XXX ic->ic_monvaps != 0? */ 2291 if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC)) 2292 rfilt |= HAL_RX_FILTER_PROM; 2293 if (ic->ic_opmode == IEEE80211_M_STA || 2294 ic->ic_opmode == IEEE80211_M_IBSS || 2295 sc->sc_swbmiss || sc->sc_scanning) 2296 rfilt |= HAL_RX_FILTER_BEACON; 2297 /* 2298 * NB: We don't recalculate the rx filter when 2299 * ic_protmode changes; otherwise we could do 2300 * this only when ic_protmode != NONE. 2301 */ 2302 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 2303 IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) 2304 rfilt |= HAL_RX_FILTER_BEACON; 2305 if (sc->sc_nmeshvaps) { 2306 rfilt |= HAL_RX_FILTER_BEACON; 2307 if (sc->sc_hasbmatch) 2308 rfilt |= HAL_RX_FILTER_BSSID; 2309 else 2310 rfilt |= HAL_RX_FILTER_PROM; 2311 } 2312 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2313 rfilt |= HAL_RX_FILTER_CONTROL; 2314 if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) 2315 rfilt |= HAL_RX_FILTER_COMPBAR; 2316 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n", 2317 __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags); 2318 return rfilt; 2319 } 2320 2321 static void 2322 ath_update_promisc(struct ifnet *ifp) 2323 { 2324 struct ath_softc *sc = ifp->if_softc; 2325 u_int32_t rfilt; 2326 2327 /* configure rx filter */ 2328 rfilt = ath_calcrxfilter(sc); 2329 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2330 2331 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2332 } 2333 2334 static void 2335 ath_update_mcast(struct ifnet *ifp) 2336 { 2337 struct ath_softc *sc = ifp->if_softc; 2338 u_int32_t mfilt[2]; 2339 2340 /* calculate and install multicast filter */ 2341 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2342 struct ifmultiaddr *ifma; 2343 /* 2344 * Merge multicast addresses to form the hardware filter. 2345 */ 2346 mfilt[0] = mfilt[1] = 0; 2347 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2348 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2349 caddr_t dl; 2350 u_int32_t val; 2351 u_int8_t pos; 2352 2353 /* calculate XOR of eight 6bit values */ 2354 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2355 val = LE_READ_4(dl + 0); 2356 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2357 val = LE_READ_4(dl + 3); 2358 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2359 pos &= 0x3f; 2360 mfilt[pos / 32] |= (1 << (pos % 32)); 2361 } 2362 if_maddr_runlock(ifp); 2363 } else 2364 mfilt[0] = mfilt[1] = ~0; 2365 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2366 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2367 __func__, mfilt[0], mfilt[1]); 2368 } 2369 2370 static void 2371 ath_mode_init(struct ath_softc *sc) 2372 { 2373 struct ifnet *ifp = sc->sc_ifp; 2374 struct ath_hal *ah = sc->sc_ah; 2375 u_int32_t rfilt; 2376 2377 /* configure rx filter */ 2378 rfilt = ath_calcrxfilter(sc); 2379 ath_hal_setrxfilter(ah, rfilt); 2380 2381 /* configure operational mode */ 2382 ath_hal_setopmode(ah); 2383 2384 /* handle any link-level address change */ 2385 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2386 2387 /* calculate and install multicast filter */ 2388 ath_update_mcast(ifp); 2389 } 2390 2391 /* 2392 * Set the slot time based on the current setting. 2393 */ 2394 static void 2395 ath_setslottime(struct ath_softc *sc) 2396 { 2397 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2398 struct ath_hal *ah = sc->sc_ah; 2399 u_int usec; 2400 2401 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2402 usec = 13; 2403 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2404 usec = 21; 2405 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2406 /* honor short/long slot time only in 11g */ 2407 /* XXX shouldn't honor on pure g or turbo g channel */ 2408 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2409 usec = HAL_SLOT_TIME_9; 2410 else 2411 usec = HAL_SLOT_TIME_20; 2412 } else 2413 usec = HAL_SLOT_TIME_9; 2414 2415 DPRINTF(sc, ATH_DEBUG_RESET, 2416 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2417 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2418 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2419 2420 ath_hal_setslottime(ah, usec); 2421 sc->sc_updateslot = OK; 2422 } 2423 2424 /* 2425 * Callback from the 802.11 layer to update the 2426 * slot time based on the current setting. 2427 */ 2428 static void 2429 ath_updateslot(struct ifnet *ifp) 2430 { 2431 struct ath_softc *sc = ifp->if_softc; 2432 struct ieee80211com *ic = ifp->if_l2com; 2433 2434 /* 2435 * When not coordinating the BSS, change the hardware 2436 * immediately. For other operation we defer the change 2437 * until beacon updates have propagated to the stations. 2438 */ 2439 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2440 ic->ic_opmode == IEEE80211_M_MBSS) 2441 sc->sc_updateslot = UPDATE; 2442 else 2443 ath_setslottime(sc); 2444 } 2445 2446 /* 2447 * Setup a h/w transmit queue for beacons. 2448 */ 2449 static int 2450 ath_beaconq_setup(struct ath_hal *ah) 2451 { 2452 HAL_TXQ_INFO qi; 2453 2454 memset(&qi, 0, sizeof(qi)); 2455 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2456 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2457 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2458 /* NB: for dynamic turbo, don't enable any other interrupts */ 2459 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2460 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2461 } 2462 2463 /* 2464 * Setup the transmit queue parameters for the beacon queue. 2465 */ 2466 static int 2467 ath_beaconq_config(struct ath_softc *sc) 2468 { 2469 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2470 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2471 struct ath_hal *ah = sc->sc_ah; 2472 HAL_TXQ_INFO qi; 2473 2474 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2475 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2476 ic->ic_opmode == IEEE80211_M_MBSS) { 2477 /* 2478 * Always burst out beacon and CAB traffic. 2479 */ 2480 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2481 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2482 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2483 } else { 2484 struct wmeParams *wmep = 2485 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2486 /* 2487 * Adhoc mode; important thing is to use 2x cwmin. 2488 */ 2489 qi.tqi_aifs = wmep->wmep_aifsn; 2490 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2491 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2492 } 2493 2494 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2495 device_printf(sc->sc_dev, "unable to update parameters for " 2496 "beacon hardware queue!\n"); 2497 return 0; 2498 } else { 2499 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2500 return 1; 2501 } 2502 #undef ATH_EXPONENT_TO_VALUE 2503 } 2504 2505 /* 2506 * Allocate and setup an initial beacon frame. 2507 */ 2508 static int 2509 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2510 { 2511 struct ieee80211vap *vap = ni->ni_vap; 2512 struct ath_vap *avp = ATH_VAP(vap); 2513 struct ath_buf *bf; 2514 struct mbuf *m; 2515 int error; 2516 2517 bf = avp->av_bcbuf; 2518 if (bf->bf_m != NULL) { 2519 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2520 m_freem(bf->bf_m); 2521 bf->bf_m = NULL; 2522 } 2523 if (bf->bf_node != NULL) { 2524 ieee80211_free_node(bf->bf_node); 2525 bf->bf_node = NULL; 2526 } 2527 2528 /* 2529 * NB: the beacon data buffer must be 32-bit aligned; 2530 * we assume the mbuf routines will return us something 2531 * with this alignment (perhaps should assert). 2532 */ 2533 m = ieee80211_beacon_alloc(ni, &avp->av_boff); 2534 if (m == NULL) { 2535 device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__); 2536 sc->sc_stats.ast_be_nombuf++; 2537 return ENOMEM; 2538 } 2539 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 2540 bf->bf_segs, &bf->bf_nseg, 2541 BUS_DMA_NOWAIT); 2542 if (error != 0) { 2543 device_printf(sc->sc_dev, 2544 "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n", 2545 __func__, error); 2546 m_freem(m); 2547 return error; 2548 } 2549 2550 /* 2551 * Calculate a TSF adjustment factor required for staggered 2552 * beacons. Note that we assume the format of the beacon 2553 * frame leaves the tstamp field immediately following the 2554 * header. 2555 */ 2556 if (sc->sc_stagbeacons && avp->av_bslot > 0) { 2557 uint64_t tsfadjust; 2558 struct ieee80211_frame *wh; 2559 2560 /* 2561 * The beacon interval is in TU's; the TSF is in usecs. 2562 * We figure out how many TU's to add to align the timestamp 2563 * then convert to TSF units and handle byte swapping before 2564 * inserting it in the frame. The hardware will then add this 2565 * each time a beacon frame is sent. Note that we align vap's 2566 * 1..N and leave vap 0 untouched. This means vap 0 has a 2567 * timestamp in one beacon interval while the others get a 2568 * timstamp aligned to the next interval. 2569 */ 2570 tsfadjust = ni->ni_intval * 2571 (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF; 2572 tsfadjust = htole64(tsfadjust << 10); /* TU -> TSF */ 2573 2574 DPRINTF(sc, ATH_DEBUG_BEACON, 2575 "%s: %s beacons bslot %d intval %u tsfadjust %llu\n", 2576 __func__, sc->sc_stagbeacons ? "stagger" : "burst", 2577 avp->av_bslot, ni->ni_intval, 2578 (long long unsigned) le64toh(tsfadjust)); 2579 2580 wh = mtod(m, struct ieee80211_frame *); 2581 memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust)); 2582 } 2583 bf->bf_m = m; 2584 bf->bf_node = ieee80211_ref_node(ni); 2585 2586 return 0; 2587 } 2588 2589 /* 2590 * Setup the beacon frame for transmit. 2591 */ 2592 static void 2593 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2594 { 2595 #define USE_SHPREAMBLE(_ic) \ 2596 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2597 == IEEE80211_F_SHPREAMBLE) 2598 struct ieee80211_node *ni = bf->bf_node; 2599 struct ieee80211com *ic = ni->ni_ic; 2600 struct mbuf *m = bf->bf_m; 2601 struct ath_hal *ah = sc->sc_ah; 2602 struct ath_desc *ds; 2603 int flags, antenna; 2604 const HAL_RATE_TABLE *rt; 2605 u_int8_t rix, rate; 2606 2607 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n", 2608 __func__, m, m->m_len); 2609 2610 /* setup descriptors */ 2611 ds = bf->bf_desc; 2612 2613 flags = HAL_TXDESC_NOACK; 2614 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2615 ds->ds_link = bf->bf_daddr; /* self-linked */ 2616 flags |= HAL_TXDESC_VEOL; 2617 /* 2618 * Let hardware handle antenna switching. 2619 */ 2620 antenna = sc->sc_txantenna; 2621 } else { 2622 ds->ds_link = 0; 2623 /* 2624 * Switch antenna every 4 beacons. 2625 * XXX assumes two antenna 2626 */ 2627 if (sc->sc_txantenna != 0) 2628 antenna = sc->sc_txantenna; 2629 else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0) 2630 antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1); 2631 else 2632 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2633 } 2634 2635 KASSERT(bf->bf_nseg == 1, 2636 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 2637 ds->ds_data = bf->bf_segs[0].ds_addr; 2638 /* 2639 * Calculate rate code. 2640 * XXX everything at min xmit rate 2641 */ 2642 rix = 0; 2643 rt = sc->sc_currates; 2644 rate = rt->info[rix].rateCode; 2645 if (USE_SHPREAMBLE(ic)) 2646 rate |= rt->info[rix].shortPreamble; 2647 ath_hal_setuptxdesc(ah, ds 2648 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2649 , sizeof(struct ieee80211_frame)/* header length */ 2650 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2651 , ni->ni_txpower /* txpower XXX */ 2652 , rate, 1 /* series 0 rate/tries */ 2653 , HAL_TXKEYIX_INVALID /* no encryption */ 2654 , antenna /* antenna mode */ 2655 , flags /* no ack, veol for beacons */ 2656 , 0 /* rts/cts rate */ 2657 , 0 /* rts/cts duration */ 2658 ); 2659 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2660 ath_hal_filltxdesc(ah, ds 2661 , roundup(m->m_len, 4) /* buffer length */ 2662 , AH_TRUE /* first segment */ 2663 , AH_TRUE /* last segment */ 2664 , ds /* first descriptor */ 2665 ); 2666 #if 0 2667 ath_desc_swap(ds); 2668 #endif 2669 #undef USE_SHPREAMBLE 2670 } 2671 2672 static void 2673 ath_beacon_update(struct ieee80211vap *vap, int item) 2674 { 2675 struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff; 2676 2677 setbit(bo->bo_flags, item); 2678 } 2679 2680 /* 2681 * Append the contents of src to dst; both queues 2682 * are assumed to be locked. 2683 */ 2684 static void 2685 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2686 { 2687 STAILQ_CONCAT(&dst->axq_q, &src->axq_q); 2688 dst->axq_link = src->axq_link; 2689 src->axq_link = NULL; 2690 dst->axq_depth += src->axq_depth; 2691 src->axq_depth = 0; 2692 } 2693 2694 /* 2695 * Transmit a beacon frame at SWBA. Dynamic updates to the 2696 * frame contents are done as needed and the slot time is 2697 * also adjusted based on current state. 2698 */ 2699 static void 2700 ath_beacon_proc(void *arg, int pending) 2701 { 2702 struct ath_softc *sc = arg; 2703 struct ath_hal *ah = sc->sc_ah; 2704 struct ieee80211vap *vap; 2705 struct ath_buf *bf; 2706 int slot, otherant; 2707 uint32_t bfaddr; 2708 2709 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2710 __func__, pending); 2711 /* 2712 * Check if the previous beacon has gone out. If 2713 * not don't try to post another, skip this period 2714 * and wait for the next. Missed beacons indicate 2715 * a problem and should not occur. If we miss too 2716 * many consecutive beacons reset the device. 2717 */ 2718 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2719 sc->sc_bmisscount++; 2720 sc->sc_stats.ast_be_missed++; 2721 DPRINTF(sc, ATH_DEBUG_BEACON, 2722 "%s: missed %u consecutive beacons\n", 2723 __func__, sc->sc_bmisscount); 2724 if (sc->sc_bmisscount >= ath_bstuck_threshold) 2725 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 2726 return; 2727 } 2728 if (sc->sc_bmisscount != 0) { 2729 DPRINTF(sc, ATH_DEBUG_BEACON, 2730 "%s: resume beacon xmit after %u misses\n", 2731 __func__, sc->sc_bmisscount); 2732 sc->sc_bmisscount = 0; 2733 } 2734 2735 if (sc->sc_stagbeacons) { /* staggered beacons */ 2736 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2737 uint32_t tsftu; 2738 2739 tsftu = ath_hal_gettsf32(ah) >> 10; 2740 /* XXX lintval */ 2741 slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval; 2742 vap = sc->sc_bslot[(slot+1) % ATH_BCBUF]; 2743 bfaddr = 0; 2744 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 2745 bf = ath_beacon_generate(sc, vap); 2746 if (bf != NULL) 2747 bfaddr = bf->bf_daddr; 2748 } 2749 } else { /* burst'd beacons */ 2750 uint32_t *bflink = &bfaddr; 2751 2752 for (slot = 0; slot < ATH_BCBUF; slot++) { 2753 vap = sc->sc_bslot[slot]; 2754 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 2755 bf = ath_beacon_generate(sc, vap); 2756 if (bf != NULL) { 2757 *bflink = bf->bf_daddr; 2758 bflink = &bf->bf_desc->ds_link; 2759 } 2760 } 2761 } 2762 *bflink = 0; /* terminate list */ 2763 } 2764 2765 /* 2766 * Handle slot time change when a non-ERP station joins/leaves 2767 * an 11g network. The 802.11 layer notifies us via callback, 2768 * we mark updateslot, then wait one beacon before effecting 2769 * the change. This gives associated stations at least one 2770 * beacon interval to note the state change. 2771 */ 2772 /* XXX locking */ 2773 if (sc->sc_updateslot == UPDATE) { 2774 sc->sc_updateslot = COMMIT; /* commit next beacon */ 2775 sc->sc_slotupdate = slot; 2776 } else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot) 2777 ath_setslottime(sc); /* commit change to h/w */ 2778 2779 /* 2780 * Check recent per-antenna transmit statistics and flip 2781 * the default antenna if noticeably more frames went out 2782 * on the non-default antenna. 2783 * XXX assumes 2 anntenae 2784 */ 2785 if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) { 2786 otherant = sc->sc_defant & 1 ? 2 : 1; 2787 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 2788 ath_setdefantenna(sc, otherant); 2789 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 2790 } 2791 2792 if (bfaddr != 0) { 2793 /* 2794 * Stop any current dma and put the new frame on the queue. 2795 * This should never fail since we check above that no frames 2796 * are still pending on the queue. 2797 */ 2798 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 2799 DPRINTF(sc, ATH_DEBUG_ANY, 2800 "%s: beacon queue %u did not stop?\n", 2801 __func__, sc->sc_bhalq); 2802 } 2803 /* NB: cabq traffic should already be queued and primed */ 2804 ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr); 2805 ath_hal_txstart(ah, sc->sc_bhalq); 2806 2807 sc->sc_stats.ast_be_xmit++; 2808 } 2809 } 2810 2811 static struct ath_buf * 2812 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap) 2813 { 2814 struct ath_vap *avp = ATH_VAP(vap); 2815 struct ath_txq *cabq = sc->sc_cabq; 2816 struct ath_buf *bf; 2817 struct mbuf *m; 2818 int nmcastq, error; 2819 2820 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 2821 ("not running, state %d", vap->iv_state)); 2822 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 2823 2824 /* 2825 * Update dynamic beacon contents. If this returns 2826 * non-zero then we need to remap the memory because 2827 * the beacon frame changed size (probably because 2828 * of the TIM bitmap). 2829 */ 2830 bf = avp->av_bcbuf; 2831 m = bf->bf_m; 2832 nmcastq = avp->av_mcastq.axq_depth; 2833 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) { 2834 /* XXX too conservative? */ 2835 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2836 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 2837 bf->bf_segs, &bf->bf_nseg, 2838 BUS_DMA_NOWAIT); 2839 if (error != 0) { 2840 if_printf(vap->iv_ifp, 2841 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 2842 __func__, error); 2843 return NULL; 2844 } 2845 } 2846 if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) { 2847 DPRINTF(sc, ATH_DEBUG_BEACON, 2848 "%s: cabq did not drain, mcastq %u cabq %u\n", 2849 __func__, nmcastq, cabq->axq_depth); 2850 sc->sc_stats.ast_cabq_busy++; 2851 if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) { 2852 /* 2853 * CABQ traffic from a previous vap is still pending. 2854 * We must drain the q before this beacon frame goes 2855 * out as otherwise this vap's stations will get cab 2856 * frames from a different vap. 2857 * XXX could be slow causing us to miss DBA 2858 */ 2859 ath_tx_draintxq(sc, cabq); 2860 } 2861 } 2862 ath_beacon_setup(sc, bf); 2863 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 2864 2865 /* 2866 * Enable the CAB queue before the beacon queue to 2867 * insure cab frames are triggered by this beacon. 2868 */ 2869 if (avp->av_boff.bo_tim[4] & 1) { 2870 struct ath_hal *ah = sc->sc_ah; 2871 2872 /* NB: only at DTIM */ 2873 ATH_TXQ_LOCK(cabq); 2874 ATH_TXQ_LOCK(&avp->av_mcastq); 2875 if (nmcastq) { 2876 struct ath_buf *bfm; 2877 2878 /* 2879 * Move frames from the s/w mcast q to the h/w cab q. 2880 * XXX MORE_DATA bit 2881 */ 2882 bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q); 2883 if (cabq->axq_link != NULL) { 2884 *cabq->axq_link = bfm->bf_daddr; 2885 } else 2886 ath_hal_puttxbuf(ah, cabq->axq_qnum, 2887 bfm->bf_daddr); 2888 ath_txqmove(cabq, &avp->av_mcastq); 2889 2890 sc->sc_stats.ast_cabq_xmit += nmcastq; 2891 } 2892 /* NB: gated by beacon so safe to start here */ 2893 ath_hal_txstart(ah, cabq->axq_qnum); 2894 ATH_TXQ_UNLOCK(cabq); 2895 ATH_TXQ_UNLOCK(&avp->av_mcastq); 2896 } 2897 return bf; 2898 } 2899 2900 static void 2901 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap) 2902 { 2903 struct ath_vap *avp = ATH_VAP(vap); 2904 struct ath_hal *ah = sc->sc_ah; 2905 struct ath_buf *bf; 2906 struct mbuf *m; 2907 int error; 2908 2909 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 2910 2911 /* 2912 * Update dynamic beacon contents. If this returns 2913 * non-zero then we need to remap the memory because 2914 * the beacon frame changed size (probably because 2915 * of the TIM bitmap). 2916 */ 2917 bf = avp->av_bcbuf; 2918 m = bf->bf_m; 2919 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) { 2920 /* XXX too conservative? */ 2921 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2922 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 2923 bf->bf_segs, &bf->bf_nseg, 2924 BUS_DMA_NOWAIT); 2925 if (error != 0) { 2926 if_printf(vap->iv_ifp, 2927 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 2928 __func__, error); 2929 return; 2930 } 2931 } 2932 ath_beacon_setup(sc, bf); 2933 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 2934 2935 /* NB: caller is known to have already stopped tx dma */ 2936 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 2937 ath_hal_txstart(ah, sc->sc_bhalq); 2938 } 2939 2940 /* 2941 * Reset the hardware after detecting beacons have stopped. 2942 */ 2943 static void 2944 ath_bstuck_proc(void *arg, int pending) 2945 { 2946 struct ath_softc *sc = arg; 2947 struct ifnet *ifp = sc->sc_ifp; 2948 2949 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2950 sc->sc_bmisscount); 2951 sc->sc_stats.ast_bstuck++; 2952 ath_reset(ifp); 2953 } 2954 2955 /* 2956 * Reclaim beacon resources and return buffer to the pool. 2957 */ 2958 static void 2959 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf) 2960 { 2961 2962 if (bf->bf_m != NULL) { 2963 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2964 m_freem(bf->bf_m); 2965 bf->bf_m = NULL; 2966 } 2967 if (bf->bf_node != NULL) { 2968 ieee80211_free_node(bf->bf_node); 2969 bf->bf_node = NULL; 2970 } 2971 STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list); 2972 } 2973 2974 /* 2975 * Reclaim beacon resources. 2976 */ 2977 static void 2978 ath_beacon_free(struct ath_softc *sc) 2979 { 2980 struct ath_buf *bf; 2981 2982 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 2983 if (bf->bf_m != NULL) { 2984 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2985 m_freem(bf->bf_m); 2986 bf->bf_m = NULL; 2987 } 2988 if (bf->bf_node != NULL) { 2989 ieee80211_free_node(bf->bf_node); 2990 bf->bf_node = NULL; 2991 } 2992 } 2993 } 2994 2995 /* 2996 * Configure the beacon and sleep timers. 2997 * 2998 * When operating as an AP this resets the TSF and sets 2999 * up the hardware to notify us when we need to issue beacons. 3000 * 3001 * When operating in station mode this sets up the beacon 3002 * timers according to the timestamp of the last received 3003 * beacon and the current TSF, configures PCF and DTIM 3004 * handling, programs the sleep registers so the hardware 3005 * will wakeup in time to receive beacons, and configures 3006 * the beacon miss handling so we'll receive a BMISS 3007 * interrupt when we stop seeing beacons from the AP 3008 * we've associated with. 3009 */ 3010 static void 3011 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap) 3012 { 3013 #define TSF_TO_TU(_h,_l) \ 3014 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 3015 #define FUDGE 2 3016 struct ath_hal *ah = sc->sc_ah; 3017 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3018 struct ieee80211_node *ni; 3019 u_int32_t nexttbtt, intval, tsftu; 3020 u_int64_t tsf; 3021 3022 if (vap == NULL) 3023 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 3024 ni = vap->iv_bss; 3025 3026 /* extract tstamp from last beacon and convert to TU */ 3027 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 3028 LE_READ_4(ni->ni_tstamp.data)); 3029 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3030 ic->ic_opmode == IEEE80211_M_MBSS) { 3031 /* 3032 * For multi-bss ap/mesh support beacons are either staggered 3033 * evenly over N slots or burst together. For the former 3034 * arrange for the SWBA to be delivered for each slot. 3035 * Slots that are not occupied will generate nothing. 3036 */ 3037 /* NB: the beacon interval is kept internally in TU's */ 3038 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3039 if (sc->sc_stagbeacons) 3040 intval /= ATH_BCBUF; 3041 } else { 3042 /* NB: the beacon interval is kept internally in TU's */ 3043 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3044 } 3045 if (nexttbtt == 0) /* e.g. for ap mode */ 3046 nexttbtt = intval; 3047 else if (intval) /* NB: can be 0 for monitor mode */ 3048 nexttbtt = roundup(nexttbtt, intval); 3049 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 3050 __func__, nexttbtt, intval, ni->ni_intval); 3051 if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) { 3052 HAL_BEACON_STATE bs; 3053 int dtimperiod, dtimcount; 3054 int cfpperiod, cfpcount; 3055 3056 /* 3057 * Setup dtim and cfp parameters according to 3058 * last beacon we received (which may be none). 3059 */ 3060 dtimperiod = ni->ni_dtim_period; 3061 if (dtimperiod <= 0) /* NB: 0 if not known */ 3062 dtimperiod = 1; 3063 dtimcount = ni->ni_dtim_count; 3064 if (dtimcount >= dtimperiod) /* NB: sanity check */ 3065 dtimcount = 0; /* XXX? */ 3066 cfpperiod = 1; /* NB: no PCF support yet */ 3067 cfpcount = 0; 3068 /* 3069 * Pull nexttbtt forward to reflect the current 3070 * TSF and calculate dtim+cfp state for the result. 3071 */ 3072 tsf = ath_hal_gettsf64(ah); 3073 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3074 do { 3075 nexttbtt += intval; 3076 if (--dtimcount < 0) { 3077 dtimcount = dtimperiod - 1; 3078 if (--cfpcount < 0) 3079 cfpcount = cfpperiod - 1; 3080 } 3081 } while (nexttbtt < tsftu); 3082 memset(&bs, 0, sizeof(bs)); 3083 bs.bs_intval = intval; 3084 bs.bs_nexttbtt = nexttbtt; 3085 bs.bs_dtimperiod = dtimperiod*intval; 3086 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 3087 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 3088 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 3089 bs.bs_cfpmaxduration = 0; 3090 #if 0 3091 /* 3092 * The 802.11 layer records the offset to the DTIM 3093 * bitmap while receiving beacons; use it here to 3094 * enable h/w detection of our AID being marked in 3095 * the bitmap vector (to indicate frames for us are 3096 * pending at the AP). 3097 * XXX do DTIM handling in s/w to WAR old h/w bugs 3098 * XXX enable based on h/w rev for newer chips 3099 */ 3100 bs.bs_timoffset = ni->ni_timoff; 3101 #endif 3102 /* 3103 * Calculate the number of consecutive beacons to miss 3104 * before taking a BMISS interrupt. 3105 * Note that we clamp the result to at most 10 beacons. 3106 */ 3107 bs.bs_bmissthreshold = vap->iv_bmissthreshold; 3108 if (bs.bs_bmissthreshold > 10) 3109 bs.bs_bmissthreshold = 10; 3110 else if (bs.bs_bmissthreshold <= 0) 3111 bs.bs_bmissthreshold = 1; 3112 3113 /* 3114 * Calculate sleep duration. The configuration is 3115 * given in ms. We insure a multiple of the beacon 3116 * period is used. Also, if the sleep duration is 3117 * greater than the DTIM period then it makes senses 3118 * to make it a multiple of that. 3119 * 3120 * XXX fixed at 100ms 3121 */ 3122 bs.bs_sleepduration = 3123 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 3124 if (bs.bs_sleepduration > bs.bs_dtimperiod) 3125 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 3126 3127 DPRINTF(sc, ATH_DEBUG_BEACON, 3128 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 3129 , __func__ 3130 , tsf, tsftu 3131 , bs.bs_intval 3132 , bs.bs_nexttbtt 3133 , bs.bs_dtimperiod 3134 , bs.bs_nextdtim 3135 , bs.bs_bmissthreshold 3136 , bs.bs_sleepduration 3137 , bs.bs_cfpperiod 3138 , bs.bs_cfpmaxduration 3139 , bs.bs_cfpnext 3140 , bs.bs_timoffset 3141 ); 3142 ath_hal_intrset(ah, 0); 3143 ath_hal_beacontimers(ah, &bs); 3144 sc->sc_imask |= HAL_INT_BMISS; 3145 ath_hal_intrset(ah, sc->sc_imask); 3146 } else { 3147 ath_hal_intrset(ah, 0); 3148 if (nexttbtt == intval) 3149 intval |= HAL_BEACON_RESET_TSF; 3150 if (ic->ic_opmode == IEEE80211_M_IBSS) { 3151 /* 3152 * In IBSS mode enable the beacon timers but only 3153 * enable SWBA interrupts if we need to manually 3154 * prepare beacon frames. Otherwise we use a 3155 * self-linked tx descriptor and let the hardware 3156 * deal with things. 3157 */ 3158 intval |= HAL_BEACON_ENA; 3159 if (!sc->sc_hasveol) 3160 sc->sc_imask |= HAL_INT_SWBA; 3161 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 3162 /* 3163 * Pull nexttbtt forward to reflect 3164 * the current TSF. 3165 */ 3166 tsf = ath_hal_gettsf64(ah); 3167 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3168 do { 3169 nexttbtt += intval; 3170 } while (nexttbtt < tsftu); 3171 } 3172 ath_beaconq_config(sc); 3173 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3174 ic->ic_opmode == IEEE80211_M_MBSS) { 3175 /* 3176 * In AP/mesh mode we enable the beacon timers 3177 * and SWBA interrupts to prepare beacon frames. 3178 */ 3179 intval |= HAL_BEACON_ENA; 3180 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 3181 ath_beaconq_config(sc); 3182 } 3183 ath_hal_beaconinit(ah, nexttbtt, intval); 3184 sc->sc_bmisscount = 0; 3185 ath_hal_intrset(ah, sc->sc_imask); 3186 /* 3187 * When using a self-linked beacon descriptor in 3188 * ibss mode load it once here. 3189 */ 3190 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 3191 ath_beacon_start_adhoc(sc, vap); 3192 } 3193 sc->sc_syncbeacon = 0; 3194 #undef FUDGE 3195 #undef TSF_TO_TU 3196 } 3197 3198 static void 3199 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3200 { 3201 bus_addr_t *paddr = (bus_addr_t*) arg; 3202 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3203 *paddr = segs->ds_addr; 3204 } 3205 3206 static int 3207 ath_descdma_setup(struct ath_softc *sc, 3208 struct ath_descdma *dd, ath_bufhead *head, 3209 const char *name, int nbuf, int ndesc) 3210 { 3211 #define DS2PHYS(_dd, _ds) \ 3212 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3213 struct ifnet *ifp = sc->sc_ifp; 3214 struct ath_desc *ds; 3215 struct ath_buf *bf; 3216 int i, bsize, error; 3217 3218 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 3219 __func__, name, nbuf, ndesc); 3220 3221 dd->dd_name = name; 3222 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; 3223 3224 /* 3225 * Setup DMA descriptor area. 3226 */ 3227 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3228 PAGE_SIZE, 0, /* alignment, bounds */ 3229 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3230 BUS_SPACE_MAXADDR, /* highaddr */ 3231 NULL, NULL, /* filter, filterarg */ 3232 dd->dd_desc_len, /* maxsize */ 3233 1, /* nsegments */ 3234 dd->dd_desc_len, /* maxsegsize */ 3235 BUS_DMA_ALLOCNOW, /* flags */ 3236 NULL, /* lockfunc */ 3237 NULL, /* lockarg */ 3238 &dd->dd_dmat); 3239 if (error != 0) { 3240 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3241 return error; 3242 } 3243 3244 /* allocate descriptors */ 3245 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 3246 if (error != 0) { 3247 if_printf(ifp, "unable to create dmamap for %s descriptors, " 3248 "error %u\n", dd->dd_name, error); 3249 goto fail0; 3250 } 3251 3252 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3253 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3254 &dd->dd_dmamap); 3255 if (error != 0) { 3256 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3257 "error %u\n", nbuf * ndesc, dd->dd_name, error); 3258 goto fail1; 3259 } 3260 3261 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3262 dd->dd_desc, dd->dd_desc_len, 3263 ath_load_cb, &dd->dd_desc_paddr, 3264 BUS_DMA_NOWAIT); 3265 if (error != 0) { 3266 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3267 dd->dd_name, error); 3268 goto fail2; 3269 } 3270 3271 ds = dd->dd_desc; 3272 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3273 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 3274 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 3275 3276 /* allocate rx buffers */ 3277 bsize = sizeof(struct ath_buf) * nbuf; 3278 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3279 if (bf == NULL) { 3280 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3281 dd->dd_name, bsize); 3282 goto fail3; 3283 } 3284 dd->dd_bufptr = bf; 3285 3286 STAILQ_INIT(head); 3287 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { 3288 bf->bf_desc = ds; 3289 bf->bf_daddr = DS2PHYS(dd, ds); 3290 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3291 &bf->bf_dmamap); 3292 if (error != 0) { 3293 if_printf(ifp, "unable to create dmamap for %s " 3294 "buffer %u, error %u\n", dd->dd_name, i, error); 3295 ath_descdma_cleanup(sc, dd, head); 3296 return error; 3297 } 3298 STAILQ_INSERT_TAIL(head, bf, bf_list); 3299 } 3300 return 0; 3301 fail3: 3302 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3303 fail2: 3304 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3305 fail1: 3306 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3307 fail0: 3308 bus_dma_tag_destroy(dd->dd_dmat); 3309 memset(dd, 0, sizeof(*dd)); 3310 return error; 3311 #undef DS2PHYS 3312 } 3313 3314 static void 3315 ath_descdma_cleanup(struct ath_softc *sc, 3316 struct ath_descdma *dd, ath_bufhead *head) 3317 { 3318 struct ath_buf *bf; 3319 struct ieee80211_node *ni; 3320 3321 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3322 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3323 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3324 bus_dma_tag_destroy(dd->dd_dmat); 3325 3326 STAILQ_FOREACH(bf, head, bf_list) { 3327 if (bf->bf_m) { 3328 m_freem(bf->bf_m); 3329 bf->bf_m = NULL; 3330 } 3331 if (bf->bf_dmamap != NULL) { 3332 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3333 bf->bf_dmamap = NULL; 3334 } 3335 ni = bf->bf_node; 3336 bf->bf_node = NULL; 3337 if (ni != NULL) { 3338 /* 3339 * Reclaim node reference. 3340 */ 3341 ieee80211_free_node(ni); 3342 } 3343 } 3344 3345 STAILQ_INIT(head); 3346 free(dd->dd_bufptr, M_ATHDEV); 3347 memset(dd, 0, sizeof(*dd)); 3348 } 3349 3350 static int 3351 ath_desc_alloc(struct ath_softc *sc) 3352 { 3353 int error; 3354 3355 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 3356 "rx", ath_rxbuf, 1); 3357 if (error != 0) 3358 return error; 3359 3360 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3361 "tx", ath_txbuf, ATH_TXDESC); 3362 if (error != 0) { 3363 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3364 return error; 3365 } 3366 3367 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3368 "beacon", ATH_BCBUF, 1); 3369 if (error != 0) { 3370 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3371 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3372 return error; 3373 } 3374 return 0; 3375 } 3376 3377 static void 3378 ath_desc_free(struct ath_softc *sc) 3379 { 3380 3381 if (sc->sc_bdma.dd_desc_len != 0) 3382 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3383 if (sc->sc_txdma.dd_desc_len != 0) 3384 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3385 if (sc->sc_rxdma.dd_desc_len != 0) 3386 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3387 } 3388 3389 static struct ieee80211_node * 3390 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3391 { 3392 struct ieee80211com *ic = vap->iv_ic; 3393 struct ath_softc *sc = ic->ic_ifp->if_softc; 3394 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3395 struct ath_node *an; 3396 3397 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3398 if (an == NULL) { 3399 /* XXX stat+msg */ 3400 return NULL; 3401 } 3402 ath_rate_node_init(sc, an); 3403 3404 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3405 return &an->an_node; 3406 } 3407 3408 static void 3409 ath_node_free(struct ieee80211_node *ni) 3410 { 3411 struct ieee80211com *ic = ni->ni_ic; 3412 struct ath_softc *sc = ic->ic_ifp->if_softc; 3413 3414 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3415 3416 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3417 sc->sc_node_free(ni); 3418 } 3419 3420 static void 3421 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3422 { 3423 struct ieee80211com *ic = ni->ni_ic; 3424 struct ath_softc *sc = ic->ic_ifp->if_softc; 3425 struct ath_hal *ah = sc->sc_ah; 3426 3427 *rssi = ic->ic_node_getrssi(ni); 3428 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3429 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3430 else 3431 *noise = -95; /* nominally correct */ 3432 } 3433 3434 static int 3435 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 3436 { 3437 struct ath_hal *ah = sc->sc_ah; 3438 int error; 3439 struct mbuf *m; 3440 struct ath_desc *ds; 3441 3442 m = bf->bf_m; 3443 if (m == NULL) { 3444 /* 3445 * NB: by assigning a page to the rx dma buffer we 3446 * implicitly satisfy the Atheros requirement that 3447 * this buffer be cache-line-aligned and sized to be 3448 * multiple of the cache line size. Not doing this 3449 * causes weird stuff to happen (for the 5210 at least). 3450 */ 3451 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 3452 if (m == NULL) { 3453 DPRINTF(sc, ATH_DEBUG_ANY, 3454 "%s: no mbuf/cluster\n", __func__); 3455 sc->sc_stats.ast_rx_nombuf++; 3456 return ENOMEM; 3457 } 3458 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 3459 3460 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, 3461 bf->bf_dmamap, m, 3462 bf->bf_segs, &bf->bf_nseg, 3463 BUS_DMA_NOWAIT); 3464 if (error != 0) { 3465 DPRINTF(sc, ATH_DEBUG_ANY, 3466 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n", 3467 __func__, error); 3468 sc->sc_stats.ast_rx_busdma++; 3469 m_freem(m); 3470 return error; 3471 } 3472 KASSERT(bf->bf_nseg == 1, 3473 ("multi-segment packet; nseg %u", bf->bf_nseg)); 3474 bf->bf_m = m; 3475 } 3476 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 3477 3478 /* 3479 * Setup descriptors. For receive we always terminate 3480 * the descriptor list with a self-linked entry so we'll 3481 * not get overrun under high load (as can happen with a 3482 * 5212 when ANI processing enables PHY error frames). 3483 * 3484 * To insure the last descriptor is self-linked we create 3485 * each descriptor as self-linked and add it to the end. As 3486 * each additional descriptor is added the previous self-linked 3487 * entry is ``fixed'' naturally. This should be safe even 3488 * if DMA is happening. When processing RX interrupts we 3489 * never remove/process the last, self-linked, entry on the 3490 * descriptor list. This insures the hardware always has 3491 * someplace to write a new frame. 3492 */ 3493 ds = bf->bf_desc; 3494 ds->ds_link = bf->bf_daddr; /* link to self */ 3495 ds->ds_data = bf->bf_segs[0].ds_addr; 3496 ath_hal_setuprxdesc(ah, ds 3497 , m->m_len /* buffer size */ 3498 , 0 3499 ); 3500 3501 if (sc->sc_rxlink != NULL) 3502 *sc->sc_rxlink = bf->bf_daddr; 3503 sc->sc_rxlink = &ds->ds_link; 3504 return 0; 3505 } 3506 3507 /* 3508 * Extend 15-bit time stamp from rx descriptor to 3509 * a full 64-bit TSF using the specified TSF. 3510 */ 3511 static __inline u_int64_t 3512 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf) 3513 { 3514 if ((tsf & 0x7fff) < rstamp) 3515 tsf -= 0x8000; 3516 return ((tsf &~ 0x7fff) | rstamp); 3517 } 3518 3519 /* 3520 * Intercept management frames to collect beacon rssi data 3521 * and to do ibss merges. 3522 */ 3523 static void 3524 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 3525 int subtype, int rssi, int nf) 3526 { 3527 struct ieee80211vap *vap = ni->ni_vap; 3528 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 3529 3530 /* 3531 * Call up first so subsequent work can use information 3532 * potentially stored in the node (e.g. for ibss merge). 3533 */ 3534 ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf); 3535 switch (subtype) { 3536 case IEEE80211_FC0_SUBTYPE_BEACON: 3537 /* update rssi statistics for use by the hal */ 3538 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 3539 if (sc->sc_syncbeacon && 3540 ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) { 3541 /* 3542 * Resync beacon timers using the tsf of the beacon 3543 * frame we just received. 3544 */ 3545 ath_beacon_config(sc, vap); 3546 } 3547 /* fall thru... */ 3548 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 3549 if (vap->iv_opmode == IEEE80211_M_IBSS && 3550 vap->iv_state == IEEE80211_S_RUN) { 3551 uint32_t rstamp = sc->sc_lastrs->rs_tstamp; 3552 uint64_t tsf = ath_extend_tsf(rstamp, 3553 ath_hal_gettsf64(sc->sc_ah)); 3554 /* 3555 * Handle ibss merge as needed; check the tsf on the 3556 * frame before attempting the merge. The 802.11 spec 3557 * says the station should change it's bssid to match 3558 * the oldest station with the same ssid, where oldest 3559 * is determined by the tsf. Note that hardware 3560 * reconfiguration happens through callback to 3561 * ath_newstate as the state machine will go from 3562 * RUN -> RUN when this happens. 3563 */ 3564 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 3565 DPRINTF(sc, ATH_DEBUG_STATE, 3566 "ibss merge, rstamp %u tsf %ju " 3567 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 3568 (uintmax_t)ni->ni_tstamp.tsf); 3569 (void) ieee80211_ibss_merge(ni); 3570 } 3571 } 3572 break; 3573 } 3574 } 3575 3576 /* 3577 * Set the default antenna. 3578 */ 3579 static void 3580 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3581 { 3582 struct ath_hal *ah = sc->sc_ah; 3583 3584 /* XXX block beacon interrupts */ 3585 ath_hal_setdefantenna(ah, antenna); 3586 if (sc->sc_defant != antenna) 3587 sc->sc_stats.ast_ant_defswitch++; 3588 sc->sc_defant = antenna; 3589 sc->sc_rxotherant = 0; 3590 } 3591 3592 static void 3593 ath_rx_tap(struct ifnet *ifp, struct mbuf *m, 3594 const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf) 3595 { 3596 #define CHAN_HT20 htole32(IEEE80211_CHAN_HT20) 3597 #define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U) 3598 #define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D) 3599 #define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D) 3600 struct ath_softc *sc = ifp->if_softc; 3601 const HAL_RATE_TABLE *rt; 3602 uint8_t rix; 3603 3604 rt = sc->sc_currates; 3605 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3606 rix = rt->rateCodeToIndex[rs->rs_rate]; 3607 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 3608 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 3609 #ifdef AH_SUPPORT_AR5416 3610 sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT; 3611 if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */ 3612 struct ieee80211com *ic = ifp->if_l2com; 3613 3614 if ((rs->rs_flags & HAL_RX_2040) == 0) 3615 sc->sc_rx_th.wr_chan_flags |= CHAN_HT20; 3616 else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan)) 3617 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U; 3618 else 3619 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D; 3620 if ((rs->rs_flags & HAL_RX_GI) == 0) 3621 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; 3622 } 3623 #endif 3624 sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf)); 3625 if (rs->rs_status & HAL_RXERR_CRC) 3626 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 3627 /* XXX propagate other error flags from descriptor */ 3628 sc->sc_rx_th.wr_antnoise = nf; 3629 sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi; 3630 sc->sc_rx_th.wr_antenna = rs->rs_antenna; 3631 #undef CHAN_HT 3632 #undef CHAN_HT20 3633 #undef CHAN_HT40U 3634 #undef CHAN_HT40D 3635 } 3636 3637 static void 3638 ath_handle_micerror(struct ieee80211com *ic, 3639 struct ieee80211_frame *wh, int keyix) 3640 { 3641 struct ieee80211_node *ni; 3642 3643 /* XXX recheck MIC to deal w/ chips that lie */ 3644 /* XXX discard MIC errors on !data frames */ 3645 ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh); 3646 if (ni != NULL) { 3647 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix); 3648 ieee80211_free_node(ni); 3649 } 3650 } 3651 3652 static void 3653 ath_rx_proc(void *arg, int npending) 3654 { 3655 #define PA2DESC(_sc, _pa) \ 3656 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 3657 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 3658 struct ath_softc *sc = arg; 3659 struct ath_buf *bf; 3660 struct ifnet *ifp = sc->sc_ifp; 3661 struct ieee80211com *ic = ifp->if_l2com; 3662 struct ath_hal *ah = sc->sc_ah; 3663 struct ath_desc *ds; 3664 struct ath_rx_status *rs; 3665 struct mbuf *m; 3666 struct ieee80211_node *ni; 3667 int len, type, ngood; 3668 u_int phyerr; 3669 HAL_STATUS status; 3670 int16_t nf; 3671 u_int64_t tsf; 3672 3673 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 3674 ngood = 0; 3675 nf = ath_hal_getchannoise(ah, sc->sc_curchan); 3676 sc->sc_stats.ast_rx_noise = nf; 3677 tsf = ath_hal_gettsf64(ah); 3678 do { 3679 bf = STAILQ_FIRST(&sc->sc_rxbuf); 3680 if (bf == NULL) { /* NB: shouldn't happen */ 3681 if_printf(ifp, "%s: no buffer!\n", __func__); 3682 break; 3683 } 3684 m = bf->bf_m; 3685 if (m == NULL) { /* NB: shouldn't happen */ 3686 /* 3687 * If mbuf allocation failed previously there 3688 * will be no mbuf; try again to re-populate it. 3689 */ 3690 /* XXX make debug msg */ 3691 if_printf(ifp, "%s: no mbuf!\n", __func__); 3692 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 3693 goto rx_next; 3694 } 3695 ds = bf->bf_desc; 3696 if (ds->ds_link == bf->bf_daddr) { 3697 /* NB: never process the self-linked entry at the end */ 3698 break; 3699 } 3700 /* XXX sync descriptor memory */ 3701 /* 3702 * Must provide the virtual address of the current 3703 * descriptor, the physical address, and the virtual 3704 * address of the next descriptor in the h/w chain. 3705 * This allows the HAL to look ahead to see if the 3706 * hardware is done with a descriptor by checking the 3707 * done bit in the following descriptor and the address 3708 * of the current descriptor the DMA engine is working 3709 * on. All this is necessary because of our use of 3710 * a self-linked list to avoid rx overruns. 3711 */ 3712 rs = &bf->bf_status.ds_rxstat; 3713 status = ath_hal_rxprocdesc(ah, ds, 3714 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 3715 #ifdef ATH_DEBUG 3716 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 3717 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 3718 #endif 3719 if (status == HAL_EINPROGRESS) 3720 break; 3721 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 3722 if (rs->rs_status != 0) { 3723 if (rs->rs_status & HAL_RXERR_CRC) 3724 sc->sc_stats.ast_rx_crcerr++; 3725 if (rs->rs_status & HAL_RXERR_FIFO) 3726 sc->sc_stats.ast_rx_fifoerr++; 3727 if (rs->rs_status & HAL_RXERR_PHY) { 3728 sc->sc_stats.ast_rx_phyerr++; 3729 phyerr = rs->rs_phyerr & 0x1f; 3730 sc->sc_stats.ast_rx_phy[phyerr]++; 3731 goto rx_error; /* NB: don't count in ierrors */ 3732 } 3733 if (rs->rs_status & HAL_RXERR_DECRYPT) { 3734 /* 3735 * Decrypt error. If the error occurred 3736 * because there was no hardware key, then 3737 * let the frame through so the upper layers 3738 * can process it. This is necessary for 5210 3739 * parts which have no way to setup a ``clear'' 3740 * key cache entry. 3741 * 3742 * XXX do key cache faulting 3743 */ 3744 if (rs->rs_keyix == HAL_RXKEYIX_INVALID) 3745 goto rx_accept; 3746 sc->sc_stats.ast_rx_badcrypt++; 3747 } 3748 if (rs->rs_status & HAL_RXERR_MIC) { 3749 sc->sc_stats.ast_rx_badmic++; 3750 /* 3751 * Do minimal work required to hand off 3752 * the 802.11 header for notification. 3753 */ 3754 /* XXX frag's and qos frames */ 3755 len = rs->rs_datalen; 3756 if (len >= sizeof (struct ieee80211_frame)) { 3757 bus_dmamap_sync(sc->sc_dmat, 3758 bf->bf_dmamap, 3759 BUS_DMASYNC_POSTREAD); 3760 ath_handle_micerror(ic, 3761 mtod(m, struct ieee80211_frame *), 3762 sc->sc_splitmic ? 3763 rs->rs_keyix-32 : rs->rs_keyix); 3764 } 3765 } 3766 ifp->if_ierrors++; 3767 rx_error: 3768 /* 3769 * Cleanup any pending partial frame. 3770 */ 3771 if (sc->sc_rxpending != NULL) { 3772 m_freem(sc->sc_rxpending); 3773 sc->sc_rxpending = NULL; 3774 } 3775 /* 3776 * When a tap is present pass error frames 3777 * that have been requested. By default we 3778 * pass decrypt+mic errors but others may be 3779 * interesting (e.g. crc). 3780 */ 3781 if (ieee80211_radiotap_active(ic) && 3782 (rs->rs_status & sc->sc_monpass)) { 3783 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3784 BUS_DMASYNC_POSTREAD); 3785 /* NB: bpf needs the mbuf length setup */ 3786 len = rs->rs_datalen; 3787 m->m_pkthdr.len = m->m_len = len; 3788 ath_rx_tap(ifp, m, rs, tsf, nf); 3789 ieee80211_radiotap_rx_all(ic, m); 3790 } 3791 /* XXX pass MIC errors up for s/w reclaculation */ 3792 goto rx_next; 3793 } 3794 rx_accept: 3795 /* 3796 * Sync and unmap the frame. At this point we're 3797 * committed to passing the mbuf somewhere so clear 3798 * bf_m; this means a new mbuf must be allocated 3799 * when the rx descriptor is setup again to receive 3800 * another frame. 3801 */ 3802 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3803 BUS_DMASYNC_POSTREAD); 3804 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3805 bf->bf_m = NULL; 3806 3807 len = rs->rs_datalen; 3808 m->m_len = len; 3809 3810 if (rs->rs_more) { 3811 /* 3812 * Frame spans multiple descriptors; save 3813 * it for the next completed descriptor, it 3814 * will be used to construct a jumbogram. 3815 */ 3816 if (sc->sc_rxpending != NULL) { 3817 /* NB: max frame size is currently 2 clusters */ 3818 sc->sc_stats.ast_rx_toobig++; 3819 m_freem(sc->sc_rxpending); 3820 } 3821 m->m_pkthdr.rcvif = ifp; 3822 m->m_pkthdr.len = len; 3823 sc->sc_rxpending = m; 3824 goto rx_next; 3825 } else if (sc->sc_rxpending != NULL) { 3826 /* 3827 * This is the second part of a jumbogram, 3828 * chain it to the first mbuf, adjust the 3829 * frame length, and clear the rxpending state. 3830 */ 3831 sc->sc_rxpending->m_next = m; 3832 sc->sc_rxpending->m_pkthdr.len += len; 3833 m = sc->sc_rxpending; 3834 sc->sc_rxpending = NULL; 3835 } else { 3836 /* 3837 * Normal single-descriptor receive; setup 3838 * the rcvif and packet length. 3839 */ 3840 m->m_pkthdr.rcvif = ifp; 3841 m->m_pkthdr.len = len; 3842 } 3843 3844 ifp->if_ipackets++; 3845 sc->sc_stats.ast_ant_rx[rs->rs_antenna]++; 3846 3847 /* 3848 * Populate the rx status block. When there are bpf 3849 * listeners we do the additional work to provide 3850 * complete status. Otherwise we fill in only the 3851 * material required by ieee80211_input. Note that 3852 * noise setting is filled in above. 3853 */ 3854 if (ieee80211_radiotap_active(ic)) 3855 ath_rx_tap(ifp, m, rs, tsf, nf); 3856 3857 /* 3858 * From this point on we assume the frame is at least 3859 * as large as ieee80211_frame_min; verify that. 3860 */ 3861 if (len < IEEE80211_MIN_LEN) { 3862 if (!ieee80211_radiotap_active(ic)) { 3863 DPRINTF(sc, ATH_DEBUG_RECV, 3864 "%s: short packet %d\n", __func__, len); 3865 sc->sc_stats.ast_rx_tooshort++; 3866 } else { 3867 /* NB: in particular this captures ack's */ 3868 ieee80211_radiotap_rx_all(ic, m); 3869 } 3870 m_freem(m); 3871 goto rx_next; 3872 } 3873 3874 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 3875 const HAL_RATE_TABLE *rt = sc->sc_currates; 3876 uint8_t rix = rt->rateCodeToIndex[rs->rs_rate]; 3877 3878 ieee80211_dump_pkt(ic, mtod(m, caddr_t), len, 3879 sc->sc_hwmap[rix].ieeerate, rs->rs_rssi); 3880 } 3881 3882 m_adj(m, -IEEE80211_CRC_LEN); 3883 3884 /* 3885 * Locate the node for sender, track state, and then 3886 * pass the (referenced) node up to the 802.11 layer 3887 * for its use. 3888 */ 3889 ni = ieee80211_find_rxnode_withkey(ic, 3890 mtod(m, const struct ieee80211_frame_min *), 3891 rs->rs_keyix == HAL_RXKEYIX_INVALID ? 3892 IEEE80211_KEYIX_NONE : rs->rs_keyix); 3893 sc->sc_lastrs = rs; 3894 if (ni != NULL) { 3895 /* tag AMPDU aggregates for reorder processing */ 3896 if (ni->ni_flags & IEEE80211_NODE_HT) 3897 m->m_flags |= M_AMPDU; 3898 3899 /* 3900 * Sending station is known, dispatch directly. 3901 */ 3902 type = ieee80211_input(ni, m, rs->rs_rssi, nf); 3903 ieee80211_free_node(ni); 3904 /* 3905 * Arrange to update the last rx timestamp only for 3906 * frames from our ap when operating in station mode. 3907 * This assumes the rx key is always setup when 3908 * associated. 3909 */ 3910 if (ic->ic_opmode == IEEE80211_M_STA && 3911 rs->rs_keyix != HAL_RXKEYIX_INVALID) 3912 ngood++; 3913 } else { 3914 type = ieee80211_input_all(ic, m, rs->rs_rssi, nf); 3915 } 3916 /* 3917 * Track rx rssi and do any rx antenna management. 3918 */ 3919 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi); 3920 if (sc->sc_diversity) { 3921 /* 3922 * When using fast diversity, change the default rx 3923 * antenna if diversity chooses the other antenna 3 3924 * times in a row. 3925 */ 3926 if (sc->sc_defant != rs->rs_antenna) { 3927 if (++sc->sc_rxotherant >= 3) 3928 ath_setdefantenna(sc, rs->rs_antenna); 3929 } else 3930 sc->sc_rxotherant = 0; 3931 } 3932 if (sc->sc_softled) { 3933 /* 3934 * Blink for any data frame. Otherwise do a 3935 * heartbeat-style blink when idle. The latter 3936 * is mainly for station mode where we depend on 3937 * periodic beacon frames to trigger the poll event. 3938 */ 3939 if (type == IEEE80211_FC0_TYPE_DATA) { 3940 const HAL_RATE_TABLE *rt = sc->sc_currates; 3941 ath_led_event(sc, 3942 rt->rateCodeToIndex[rs->rs_rate]); 3943 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 3944 ath_led_event(sc, 0); 3945 } 3946 rx_next: 3947 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 3948 } while (ath_rxbuf_init(sc, bf) == 0); 3949 3950 /* rx signal state monitoring */ 3951 ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan); 3952 if (ngood) 3953 sc->sc_lastrx = tsf; 3954 3955 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) { 3956 #ifdef IEEE80211_SUPPORT_SUPERG 3957 ieee80211_ff_age_all(ic, 100); 3958 #endif 3959 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 3960 ath_start(ifp); 3961 } 3962 #undef PA2DESC 3963 } 3964 3965 static void 3966 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3967 { 3968 txq->axq_qnum = qnum; 3969 txq->axq_ac = 0; 3970 txq->axq_depth = 0; 3971 txq->axq_intrcnt = 0; 3972 txq->axq_link = NULL; 3973 STAILQ_INIT(&txq->axq_q); 3974 ATH_TXQ_LOCK_INIT(sc, txq); 3975 } 3976 3977 /* 3978 * Setup a h/w transmit queue. 3979 */ 3980 static struct ath_txq * 3981 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3982 { 3983 #define N(a) (sizeof(a)/sizeof(a[0])) 3984 struct ath_hal *ah = sc->sc_ah; 3985 HAL_TXQ_INFO qi; 3986 int qnum; 3987 3988 memset(&qi, 0, sizeof(qi)); 3989 qi.tqi_subtype = subtype; 3990 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3991 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3992 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3993 /* 3994 * Enable interrupts only for EOL and DESC conditions. 3995 * We mark tx descriptors to receive a DESC interrupt 3996 * when a tx queue gets deep; otherwise waiting for the 3997 * EOL to reap descriptors. Note that this is done to 3998 * reduce interrupt load and this only defers reaping 3999 * descriptors, never transmitting frames. Aside from 4000 * reducing interrupts this also permits more concurrency. 4001 * The only potential downside is if the tx queue backs 4002 * up in which case the top half of the kernel may backup 4003 * due to a lack of tx descriptors. 4004 */ 4005 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 4006 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4007 if (qnum == -1) { 4008 /* 4009 * NB: don't print a message, this happens 4010 * normally on parts with too few tx queues 4011 */ 4012 return NULL; 4013 } 4014 if (qnum >= N(sc->sc_txq)) { 4015 device_printf(sc->sc_dev, 4016 "hal qnum %u out of range, max %zu!\n", 4017 qnum, N(sc->sc_txq)); 4018 ath_hal_releasetxqueue(ah, qnum); 4019 return NULL; 4020 } 4021 if (!ATH_TXQ_SETUP(sc, qnum)) { 4022 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4023 sc->sc_txqsetup |= 1<<qnum; 4024 } 4025 return &sc->sc_txq[qnum]; 4026 #undef N 4027 } 4028 4029 /* 4030 * Setup a hardware data transmit queue for the specified 4031 * access control. The hal may not support all requested 4032 * queues in which case it will return a reference to a 4033 * previously setup queue. We record the mapping from ac's 4034 * to h/w queues for use by ath_tx_start and also track 4035 * the set of h/w queues being used to optimize work in the 4036 * transmit interrupt handler and related routines. 4037 */ 4038 static int 4039 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4040 { 4041 #define N(a) (sizeof(a)/sizeof(a[0])) 4042 struct ath_txq *txq; 4043 4044 if (ac >= N(sc->sc_ac2q)) { 4045 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4046 ac, N(sc->sc_ac2q)); 4047 return 0; 4048 } 4049 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4050 if (txq != NULL) { 4051 txq->axq_ac = ac; 4052 sc->sc_ac2q[ac] = txq; 4053 return 1; 4054 } else 4055 return 0; 4056 #undef N 4057 } 4058 4059 /* 4060 * Update WME parameters for a transmit queue. 4061 */ 4062 static int 4063 ath_txq_update(struct ath_softc *sc, int ac) 4064 { 4065 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4066 #define ATH_TXOP_TO_US(v) (v<<5) 4067 struct ifnet *ifp = sc->sc_ifp; 4068 struct ieee80211com *ic = ifp->if_l2com; 4069 struct ath_txq *txq = sc->sc_ac2q[ac]; 4070 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4071 struct ath_hal *ah = sc->sc_ah; 4072 HAL_TXQ_INFO qi; 4073 4074 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4075 #ifdef IEEE80211_SUPPORT_TDMA 4076 if (sc->sc_tdma) { 4077 /* 4078 * AIFS is zero so there's no pre-transmit wait. The 4079 * burst time defines the slot duration and is configured 4080 * through net80211. The QCU is setup to not do post-xmit 4081 * back off, lockout all lower-priority QCU's, and fire 4082 * off the DMA beacon alert timer which is setup based 4083 * on the slot configuration. 4084 */ 4085 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4086 | HAL_TXQ_TXERRINT_ENABLE 4087 | HAL_TXQ_TXURNINT_ENABLE 4088 | HAL_TXQ_TXEOLINT_ENABLE 4089 | HAL_TXQ_DBA_GATED 4090 | HAL_TXQ_BACKOFF_DISABLE 4091 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4092 ; 4093 qi.tqi_aifs = 0; 4094 /* XXX +dbaprep? */ 4095 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4096 qi.tqi_burstTime = qi.tqi_readyTime; 4097 } else { 4098 #endif 4099 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4100 | HAL_TXQ_TXERRINT_ENABLE 4101 | HAL_TXQ_TXDESCINT_ENABLE 4102 | HAL_TXQ_TXURNINT_ENABLE 4103 ; 4104 qi.tqi_aifs = wmep->wmep_aifsn; 4105 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4106 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4107 qi.tqi_readyTime = 0; 4108 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 4109 #ifdef IEEE80211_SUPPORT_TDMA 4110 } 4111 #endif 4112 4113 DPRINTF(sc, ATH_DEBUG_RESET, 4114 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4115 __func__, txq->axq_qnum, qi.tqi_qflags, 4116 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4117 4118 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4119 if_printf(ifp, "unable to update hardware queue " 4120 "parameters for %s traffic!\n", 4121 ieee80211_wme_acnames[ac]); 4122 return 0; 4123 } else { 4124 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4125 return 1; 4126 } 4127 #undef ATH_TXOP_TO_US 4128 #undef ATH_EXPONENT_TO_VALUE 4129 } 4130 4131 /* 4132 * Callback from the 802.11 layer to update WME parameters. 4133 */ 4134 static int 4135 ath_wme_update(struct ieee80211com *ic) 4136 { 4137 struct ath_softc *sc = ic->ic_ifp->if_softc; 4138 4139 return !ath_txq_update(sc, WME_AC_BE) || 4140 !ath_txq_update(sc, WME_AC_BK) || 4141 !ath_txq_update(sc, WME_AC_VI) || 4142 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4143 } 4144 4145 /* 4146 * Reclaim resources for a setup queue. 4147 */ 4148 static void 4149 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4150 { 4151 4152 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4153 ATH_TXQ_LOCK_DESTROY(txq); 4154 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4155 } 4156 4157 /* 4158 * Reclaim all tx queue resources. 4159 */ 4160 static void 4161 ath_tx_cleanup(struct ath_softc *sc) 4162 { 4163 int i; 4164 4165 ATH_TXBUF_LOCK_DESTROY(sc); 4166 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4167 if (ATH_TXQ_SETUP(sc, i)) 4168 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4169 } 4170 4171 /* 4172 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4173 * using the current rates in sc_rixmap. 4174 */ 4175 int 4176 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4177 { 4178 int rix = sc->sc_rixmap[rate]; 4179 /* NB: return lowest rix for invalid rate */ 4180 return (rix == 0xff ? 0 : rix); 4181 } 4182 4183 /* 4184 * Process completed xmit descriptors from the specified queue. 4185 */ 4186 static int 4187 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 4188 { 4189 struct ath_hal *ah = sc->sc_ah; 4190 struct ifnet *ifp = sc->sc_ifp; 4191 struct ieee80211com *ic = ifp->if_l2com; 4192 struct ath_buf *bf, *last; 4193 struct ath_desc *ds, *ds0; 4194 struct ath_tx_status *ts; 4195 struct ieee80211_node *ni; 4196 struct ath_node *an; 4197 int sr, lr, pri, nacked; 4198 HAL_STATUS status; 4199 4200 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4201 __func__, txq->axq_qnum, 4202 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4203 txq->axq_link); 4204 nacked = 0; 4205 for (;;) { 4206 ATH_TXQ_LOCK(txq); 4207 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4208 bf = STAILQ_FIRST(&txq->axq_q); 4209 if (bf == NULL) { 4210 ATH_TXQ_UNLOCK(txq); 4211 break; 4212 } 4213 ds0 = &bf->bf_desc[0]; 4214 ds = &bf->bf_desc[bf->bf_nseg - 1]; 4215 ts = &bf->bf_status.ds_txstat; 4216 status = ath_hal_txprocdesc(ah, ds, ts); 4217 #ifdef ATH_DEBUG 4218 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4219 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4220 status == HAL_OK); 4221 #endif 4222 if (status == HAL_EINPROGRESS) { 4223 ATH_TXQ_UNLOCK(txq); 4224 break; 4225 } 4226 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 4227 #ifdef IEEE80211_SUPPORT_TDMA 4228 if (txq->axq_depth > 0) { 4229 /* 4230 * More frames follow. Mark the buffer busy 4231 * so it's not re-used while the hardware may 4232 * still re-read the link field in the descriptor. 4233 */ 4234 bf->bf_flags |= ATH_BUF_BUSY; 4235 } else 4236 #else 4237 if (txq->axq_depth == 0) 4238 #endif 4239 txq->axq_link = NULL; 4240 ATH_TXQ_UNLOCK(txq); 4241 4242 ni = bf->bf_node; 4243 if (ni != NULL) { 4244 an = ATH_NODE(ni); 4245 if (ts->ts_status == 0) { 4246 u_int8_t txant = ts->ts_antenna; 4247 sc->sc_stats.ast_ant_tx[txant]++; 4248 sc->sc_ant_tx[txant]++; 4249 if (ts->ts_finaltsi != 0) 4250 sc->sc_stats.ast_tx_altrate++; 4251 pri = M_WME_GETAC(bf->bf_m); 4252 if (pri >= WME_AC_VO) 4253 ic->ic_wme.wme_hipri_traffic++; 4254 if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) 4255 ni->ni_inact = ni->ni_inact_reload; 4256 } else { 4257 if (ts->ts_status & HAL_TXERR_XRETRY) 4258 sc->sc_stats.ast_tx_xretries++; 4259 if (ts->ts_status & HAL_TXERR_FIFO) 4260 sc->sc_stats.ast_tx_fifoerr++; 4261 if (ts->ts_status & HAL_TXERR_FILT) 4262 sc->sc_stats.ast_tx_filtered++; 4263 if (bf->bf_m->m_flags & M_FF) 4264 sc->sc_stats.ast_ff_txerr++; 4265 } 4266 sr = ts->ts_shortretry; 4267 lr = ts->ts_longretry; 4268 sc->sc_stats.ast_tx_shortretry += sr; 4269 sc->sc_stats.ast_tx_longretry += lr; 4270 /* 4271 * Hand the descriptor to the rate control algorithm. 4272 */ 4273 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4274 (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) { 4275 /* 4276 * If frame was ack'd update statistics, 4277 * including the last rx time used to 4278 * workaround phantom bmiss interrupts. 4279 */ 4280 if (ts->ts_status == 0) { 4281 nacked++; 4282 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4283 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4284 ts->ts_rssi); 4285 } 4286 ath_rate_tx_complete(sc, an, bf); 4287 } 4288 /* 4289 * Do any tx complete callback. Note this must 4290 * be done before releasing the node reference. 4291 */ 4292 if (bf->bf_m->m_flags & M_TXCB) 4293 ieee80211_process_callback(ni, bf->bf_m, 4294 (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ? 4295 ts->ts_status : HAL_TXERR_XRETRY); 4296 ieee80211_free_node(ni); 4297 } 4298 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4299 BUS_DMASYNC_POSTWRITE); 4300 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4301 4302 m_freem(bf->bf_m); 4303 bf->bf_m = NULL; 4304 bf->bf_node = NULL; 4305 4306 ATH_TXBUF_LOCK(sc); 4307 last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list); 4308 if (last != NULL) 4309 last->bf_flags &= ~ATH_BUF_BUSY; 4310 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4311 ATH_TXBUF_UNLOCK(sc); 4312 } 4313 #ifdef IEEE80211_SUPPORT_SUPERG 4314 /* 4315 * Flush fast-frame staging queue when traffic slows. 4316 */ 4317 if (txq->axq_depth <= 1) 4318 ieee80211_ff_flush(ic, txq->axq_ac); 4319 #endif 4320 return nacked; 4321 } 4322 4323 static __inline int 4324 txqactive(struct ath_hal *ah, int qnum) 4325 { 4326 u_int32_t txqs = 1<<qnum; 4327 ath_hal_gettxintrtxqs(ah, &txqs); 4328 return (txqs & (1<<qnum)); 4329 } 4330 4331 /* 4332 * Deferred processing of transmit interrupt; special-cased 4333 * for a single hardware transmit queue (e.g. 5210 and 5211). 4334 */ 4335 static void 4336 ath_tx_proc_q0(void *arg, int npending) 4337 { 4338 struct ath_softc *sc = arg; 4339 struct ifnet *ifp = sc->sc_ifp; 4340 4341 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0])) 4342 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4343 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 4344 ath_tx_processq(sc, sc->sc_cabq); 4345 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4346 sc->sc_wd_timer = 0; 4347 4348 if (sc->sc_softled) 4349 ath_led_event(sc, sc->sc_txrix); 4350 4351 ath_start(ifp); 4352 } 4353 4354 /* 4355 * Deferred processing of transmit interrupt; special-cased 4356 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4357 */ 4358 static void 4359 ath_tx_proc_q0123(void *arg, int npending) 4360 { 4361 struct ath_softc *sc = arg; 4362 struct ifnet *ifp = sc->sc_ifp; 4363 int nacked; 4364 4365 /* 4366 * Process each active queue. 4367 */ 4368 nacked = 0; 4369 if (txqactive(sc->sc_ah, 0)) 4370 nacked += ath_tx_processq(sc, &sc->sc_txq[0]); 4371 if (txqactive(sc->sc_ah, 1)) 4372 nacked += ath_tx_processq(sc, &sc->sc_txq[1]); 4373 if (txqactive(sc->sc_ah, 2)) 4374 nacked += ath_tx_processq(sc, &sc->sc_txq[2]); 4375 if (txqactive(sc->sc_ah, 3)) 4376 nacked += ath_tx_processq(sc, &sc->sc_txq[3]); 4377 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 4378 ath_tx_processq(sc, sc->sc_cabq); 4379 if (nacked) 4380 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4381 4382 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4383 sc->sc_wd_timer = 0; 4384 4385 if (sc->sc_softled) 4386 ath_led_event(sc, sc->sc_txrix); 4387 4388 ath_start(ifp); 4389 } 4390 4391 /* 4392 * Deferred processing of transmit interrupt. 4393 */ 4394 static void 4395 ath_tx_proc(void *arg, int npending) 4396 { 4397 struct ath_softc *sc = arg; 4398 struct ifnet *ifp = sc->sc_ifp; 4399 int i, nacked; 4400 4401 /* 4402 * Process each active queue. 4403 */ 4404 nacked = 0; 4405 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4406 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i)) 4407 nacked += ath_tx_processq(sc, &sc->sc_txq[i]); 4408 if (nacked) 4409 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4410 4411 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4412 sc->sc_wd_timer = 0; 4413 4414 if (sc->sc_softled) 4415 ath_led_event(sc, sc->sc_txrix); 4416 4417 ath_start(ifp); 4418 } 4419 4420 static void 4421 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4422 { 4423 #ifdef ATH_DEBUG 4424 struct ath_hal *ah = sc->sc_ah; 4425 #endif 4426 struct ieee80211_node *ni; 4427 struct ath_buf *bf; 4428 u_int ix; 4429 4430 /* 4431 * NB: this assumes output has been stopped and 4432 * we do not need to block ath_tx_proc 4433 */ 4434 ATH_TXBUF_LOCK(sc); 4435 bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list); 4436 if (bf != NULL) 4437 bf->bf_flags &= ~ATH_BUF_BUSY; 4438 ATH_TXBUF_UNLOCK(sc); 4439 for (ix = 0;; ix++) { 4440 ATH_TXQ_LOCK(txq); 4441 bf = STAILQ_FIRST(&txq->axq_q); 4442 if (bf == NULL) { 4443 txq->axq_link = NULL; 4444 ATH_TXQ_UNLOCK(txq); 4445 break; 4446 } 4447 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 4448 ATH_TXQ_UNLOCK(txq); 4449 #ifdef ATH_DEBUG 4450 if (sc->sc_debug & ATH_DEBUG_RESET) { 4451 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4452 4453 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, 4454 ath_hal_txprocdesc(ah, bf->bf_desc, 4455 &bf->bf_status.ds_txstat) == HAL_OK); 4456 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4457 bf->bf_m->m_len, 0, -1); 4458 } 4459 #endif /* ATH_DEBUG */ 4460 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4461 ni = bf->bf_node; 4462 bf->bf_node = NULL; 4463 if (ni != NULL) { 4464 /* 4465 * Do any callback and reclaim the node reference. 4466 */ 4467 if (bf->bf_m->m_flags & M_TXCB) 4468 ieee80211_process_callback(ni, bf->bf_m, -1); 4469 ieee80211_free_node(ni); 4470 } 4471 m_freem(bf->bf_m); 4472 bf->bf_m = NULL; 4473 bf->bf_flags &= ~ATH_BUF_BUSY; 4474 4475 ATH_TXBUF_LOCK(sc); 4476 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4477 ATH_TXBUF_UNLOCK(sc); 4478 } 4479 } 4480 4481 static void 4482 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4483 { 4484 struct ath_hal *ah = sc->sc_ah; 4485 4486 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4487 __func__, txq->axq_qnum, 4488 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4489 txq->axq_link); 4490 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4491 } 4492 4493 /* 4494 * Drain the transmit queues and reclaim resources. 4495 */ 4496 static void 4497 ath_draintxq(struct ath_softc *sc) 4498 { 4499 struct ath_hal *ah = sc->sc_ah; 4500 struct ifnet *ifp = sc->sc_ifp; 4501 int i; 4502 4503 /* XXX return value */ 4504 if (!sc->sc_invalid) { 4505 /* don't touch the hardware if marked invalid */ 4506 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4507 __func__, sc->sc_bhalq, 4508 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4509 NULL); 4510 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4511 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4512 if (ATH_TXQ_SETUP(sc, i)) 4513 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4514 } 4515 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4516 if (ATH_TXQ_SETUP(sc, i)) 4517 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4518 #ifdef ATH_DEBUG 4519 if (sc->sc_debug & ATH_DEBUG_RESET) { 4520 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf); 4521 if (bf != NULL && bf->bf_m != NULL) { 4522 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4523 ath_hal_txprocdesc(ah, bf->bf_desc, 4524 &bf->bf_status.ds_txstat) == HAL_OK); 4525 ieee80211_dump_pkt(ifp->if_l2com, 4526 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4527 0, -1); 4528 } 4529 } 4530 #endif /* ATH_DEBUG */ 4531 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4532 sc->sc_wd_timer = 0; 4533 } 4534 4535 /* 4536 * Disable the receive h/w in preparation for a reset. 4537 */ 4538 static void 4539 ath_stoprecv(struct ath_softc *sc) 4540 { 4541 #define PA2DESC(_sc, _pa) \ 4542 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 4543 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 4544 struct ath_hal *ah = sc->sc_ah; 4545 4546 ath_hal_stoppcurecv(ah); /* disable PCU */ 4547 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 4548 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 4549 DELAY(3000); /* 3ms is long enough for 1 frame */ 4550 #ifdef ATH_DEBUG 4551 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 4552 struct ath_buf *bf; 4553 u_int ix; 4554 4555 printf("%s: rx queue %p, link %p\n", __func__, 4556 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 4557 ix = 0; 4558 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4559 struct ath_desc *ds = bf->bf_desc; 4560 struct ath_rx_status *rs = &bf->bf_status.ds_rxstat; 4561 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 4562 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 4563 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 4564 ath_printrxbuf(sc, bf, ix, status == HAL_OK); 4565 ix++; 4566 } 4567 } 4568 #endif 4569 if (sc->sc_rxpending != NULL) { 4570 m_freem(sc->sc_rxpending); 4571 sc->sc_rxpending = NULL; 4572 } 4573 sc->sc_rxlink = NULL; /* just in case */ 4574 #undef PA2DESC 4575 } 4576 4577 /* 4578 * Enable the receive h/w following a reset. 4579 */ 4580 static int 4581 ath_startrecv(struct ath_softc *sc) 4582 { 4583 struct ath_hal *ah = sc->sc_ah; 4584 struct ath_buf *bf; 4585 4586 sc->sc_rxlink = NULL; 4587 sc->sc_rxpending = NULL; 4588 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4589 int error = ath_rxbuf_init(sc, bf); 4590 if (error != 0) { 4591 DPRINTF(sc, ATH_DEBUG_RECV, 4592 "%s: ath_rxbuf_init failed %d\n", 4593 __func__, error); 4594 return error; 4595 } 4596 } 4597 4598 bf = STAILQ_FIRST(&sc->sc_rxbuf); 4599 ath_hal_putrxbuf(ah, bf->bf_daddr); 4600 ath_hal_rxena(ah); /* enable recv descriptors */ 4601 ath_mode_init(sc); /* set filters, etc. */ 4602 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4603 return 0; 4604 } 4605 4606 /* 4607 * Update internal state after a channel change. 4608 */ 4609 static void 4610 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4611 { 4612 enum ieee80211_phymode mode; 4613 4614 /* 4615 * Change channels and update the h/w rate map 4616 * if we're switching; e.g. 11a to 11b/g. 4617 */ 4618 mode = ieee80211_chan2mode(chan); 4619 if (mode != sc->sc_curmode) 4620 ath_setcurmode(sc, mode); 4621 sc->sc_curchan = chan; 4622 } 4623 4624 /* 4625 * Set/change channels. If the channel is really being changed, 4626 * it's done by resetting the chip. To accomplish this we must 4627 * first cleanup any pending DMA, then restart stuff after a la 4628 * ath_init. 4629 */ 4630 static int 4631 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4632 { 4633 struct ifnet *ifp = sc->sc_ifp; 4634 struct ieee80211com *ic = ifp->if_l2com; 4635 struct ath_hal *ah = sc->sc_ah; 4636 4637 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4638 __func__, ieee80211_chan2ieee(ic, chan), 4639 chan->ic_freq, chan->ic_flags); 4640 if (chan != sc->sc_curchan) { 4641 HAL_STATUS status; 4642 /* 4643 * To switch channels clear any pending DMA operations; 4644 * wait long enough for the RX fifo to drain, reset the 4645 * hardware at the new frequency, and then re-enable 4646 * the relevant bits of the h/w. 4647 */ 4648 ath_hal_intrset(ah, 0); /* disable interrupts */ 4649 ath_draintxq(sc); /* clear pending tx frames */ 4650 ath_stoprecv(sc); /* turn off frame recv */ 4651 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4652 if_printf(ifp, "%s: unable to reset " 4653 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4654 __func__, ieee80211_chan2ieee(ic, chan), 4655 chan->ic_freq, chan->ic_flags, status); 4656 return EIO; 4657 } 4658 sc->sc_diversity = ath_hal_getdiversity(ah); 4659 4660 /* 4661 * Re-enable rx framework. 4662 */ 4663 if (ath_startrecv(sc) != 0) { 4664 if_printf(ifp, "%s: unable to restart recv logic\n", 4665 __func__); 4666 return EIO; 4667 } 4668 4669 /* 4670 * Change channels and update the h/w rate map 4671 * if we're switching; e.g. 11a to 11b/g. 4672 */ 4673 ath_chan_change(sc, chan); 4674 4675 /* 4676 * Re-enable interrupts. 4677 */ 4678 ath_hal_intrset(ah, sc->sc_imask); 4679 } 4680 return 0; 4681 } 4682 4683 /* 4684 * Periodically recalibrate the PHY to account 4685 * for temperature/environment changes. 4686 */ 4687 static void 4688 ath_calibrate(void *arg) 4689 { 4690 struct ath_softc *sc = arg; 4691 struct ath_hal *ah = sc->sc_ah; 4692 struct ifnet *ifp = sc->sc_ifp; 4693 struct ieee80211com *ic = ifp->if_l2com; 4694 HAL_BOOL longCal, isCalDone; 4695 HAL_BOOL aniCal, shortCal = AH_FALSE; 4696 int nextcal; 4697 4698 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4699 goto restart; 4700 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4701 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4702 if (sc->sc_doresetcal) 4703 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4704 4705 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4706 if (aniCal) { 4707 sc->sc_stats.ast_ani_cal++; 4708 sc->sc_lastani = ticks; 4709 ath_hal_ani_poll(ah, sc->sc_curchan); 4710 } 4711 4712 if (longCal) { 4713 sc->sc_stats.ast_per_cal++; 4714 sc->sc_lastlongcal = ticks; 4715 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4716 /* 4717 * Rfgain is out of bounds, reset the chip 4718 * to load new gain values. 4719 */ 4720 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4721 "%s: rfgain change\n", __func__); 4722 sc->sc_stats.ast_per_rfgain++; 4723 ath_reset(ifp); 4724 } 4725 /* 4726 * If this long cal is after an idle period, then 4727 * reset the data collection state so we start fresh. 4728 */ 4729 if (sc->sc_resetcal) { 4730 (void) ath_hal_calreset(ah, sc->sc_curchan); 4731 sc->sc_lastcalreset = ticks; 4732 sc->sc_lastshortcal = ticks; 4733 sc->sc_resetcal = 0; 4734 sc->sc_doresetcal = AH_TRUE; 4735 } 4736 } 4737 4738 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4739 if (shortCal || longCal) { 4740 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4741 if (longCal) { 4742 /* 4743 * Calibrate noise floor data again in case of change. 4744 */ 4745 ath_hal_process_noisefloor(ah); 4746 } 4747 } else { 4748 DPRINTF(sc, ATH_DEBUG_ANY, 4749 "%s: calibration of channel %u failed\n", 4750 __func__, sc->sc_curchan->ic_freq); 4751 sc->sc_stats.ast_per_calfail++; 4752 } 4753 if (shortCal) 4754 sc->sc_lastshortcal = ticks; 4755 } 4756 if (!isCalDone) { 4757 restart: 4758 /* 4759 * Use a shorter interval to potentially collect multiple 4760 * data samples required to complete calibration. Once 4761 * we're told the work is done we drop back to a longer 4762 * interval between requests. We're more aggressive doing 4763 * work when operating as an AP to improve operation right 4764 * after startup. 4765 */ 4766 sc->sc_lastshortcal = ticks; 4767 nextcal = ath_shortcalinterval*hz/1000; 4768 if (sc->sc_opmode != HAL_M_HOSTAP) 4769 nextcal *= 10; 4770 sc->sc_doresetcal = AH_TRUE; 4771 } else { 4772 /* nextcal should be the shortest time for next event */ 4773 nextcal = ath_longcalinterval*hz; 4774 if (sc->sc_lastcalreset == 0) 4775 sc->sc_lastcalreset = sc->sc_lastlongcal; 4776 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4777 sc->sc_resetcal = 1; /* setup reset next trip */ 4778 sc->sc_doresetcal = AH_FALSE; 4779 } 4780 /* ANI calibration may occur more often than short/long/resetcal */ 4781 if (ath_anicalinterval > 0) 4782 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4783 4784 if (nextcal != 0) { 4785 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4786 __func__, nextcal, isCalDone ? "" : "!"); 4787 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4788 } else { 4789 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4790 __func__); 4791 /* NB: don't rearm timer */ 4792 } 4793 } 4794 4795 static void 4796 ath_scan_start(struct ieee80211com *ic) 4797 { 4798 struct ifnet *ifp = ic->ic_ifp; 4799 struct ath_softc *sc = ifp->if_softc; 4800 struct ath_hal *ah = sc->sc_ah; 4801 u_int32_t rfilt; 4802 4803 /* XXX calibration timer? */ 4804 4805 sc->sc_scanning = 1; 4806 sc->sc_syncbeacon = 0; 4807 rfilt = ath_calcrxfilter(sc); 4808 ath_hal_setrxfilter(ah, rfilt); 4809 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4810 4811 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4812 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4813 } 4814 4815 static void 4816 ath_scan_end(struct ieee80211com *ic) 4817 { 4818 struct ifnet *ifp = ic->ic_ifp; 4819 struct ath_softc *sc = ifp->if_softc; 4820 struct ath_hal *ah = sc->sc_ah; 4821 u_int32_t rfilt; 4822 4823 sc->sc_scanning = 0; 4824 rfilt = ath_calcrxfilter(sc); 4825 ath_hal_setrxfilter(ah, rfilt); 4826 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4827 4828 ath_hal_process_noisefloor(ah); 4829 4830 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4831 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4832 sc->sc_curaid); 4833 } 4834 4835 static void 4836 ath_set_channel(struct ieee80211com *ic) 4837 { 4838 struct ifnet *ifp = ic->ic_ifp; 4839 struct ath_softc *sc = ifp->if_softc; 4840 4841 (void) ath_chan_set(sc, ic->ic_curchan); 4842 /* 4843 * If we are returning to our bss channel then mark state 4844 * so the next recv'd beacon's tsf will be used to sync the 4845 * beacon timers. Note that since we only hear beacons in 4846 * sta/ibss mode this has no effect in other operating modes. 4847 */ 4848 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4849 sc->sc_syncbeacon = 1; 4850 } 4851 4852 /* 4853 * Walk the vap list and check if there any vap's in RUN state. 4854 */ 4855 static int 4856 ath_isanyrunningvaps(struct ieee80211vap *this) 4857 { 4858 struct ieee80211com *ic = this->iv_ic; 4859 struct ieee80211vap *vap; 4860 4861 IEEE80211_LOCK_ASSERT(ic); 4862 4863 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4864 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4865 return 1; 4866 } 4867 return 0; 4868 } 4869 4870 static int 4871 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4872 { 4873 struct ieee80211com *ic = vap->iv_ic; 4874 struct ath_softc *sc = ic->ic_ifp->if_softc; 4875 struct ath_vap *avp = ATH_VAP(vap); 4876 struct ath_hal *ah = sc->sc_ah; 4877 struct ieee80211_node *ni = NULL; 4878 int i, error, stamode; 4879 u_int32_t rfilt; 4880 static const HAL_LED_STATE leds[] = { 4881 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4882 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4883 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4884 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4885 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4886 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4887 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4888 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4889 }; 4890 4891 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4892 ieee80211_state_name[vap->iv_state], 4893 ieee80211_state_name[nstate]); 4894 4895 callout_drain(&sc->sc_cal_ch); 4896 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4897 4898 if (nstate == IEEE80211_S_SCAN) { 4899 /* 4900 * Scanning: turn off beacon miss and don't beacon. 4901 * Mark beacon state so when we reach RUN state we'll 4902 * [re]setup beacons. Unblock the task q thread so 4903 * deferred interrupt processing is done. 4904 */ 4905 ath_hal_intrset(ah, 4906 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4907 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4908 sc->sc_beacons = 0; 4909 taskqueue_unblock(sc->sc_tq); 4910 } 4911 4912 ni = vap->iv_bss; 4913 rfilt = ath_calcrxfilter(sc); 4914 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4915 vap->iv_opmode == IEEE80211_M_AHDEMO || 4916 vap->iv_opmode == IEEE80211_M_IBSS); 4917 if (stamode && nstate == IEEE80211_S_RUN) { 4918 sc->sc_curaid = ni->ni_associd; 4919 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4920 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4921 } 4922 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4923 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4924 ath_hal_setrxfilter(ah, rfilt); 4925 4926 /* XXX is this to restore keycache on resume? */ 4927 if (vap->iv_opmode != IEEE80211_M_STA && 4928 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4929 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4930 if (ath_hal_keyisvalid(ah, i)) 4931 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4932 } 4933 4934 /* 4935 * Invoke the parent method to do net80211 work. 4936 */ 4937 error = avp->av_newstate(vap, nstate, arg); 4938 if (error != 0) 4939 goto bad; 4940 4941 if (nstate == IEEE80211_S_RUN) { 4942 /* NB: collect bss node again, it may have changed */ 4943 ni = vap->iv_bss; 4944 4945 DPRINTF(sc, ATH_DEBUG_STATE, 4946 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 4947 "capinfo 0x%04x chan %d\n", __func__, 4948 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 4949 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 4950 4951 switch (vap->iv_opmode) { 4952 #ifdef IEEE80211_SUPPORT_TDMA 4953 case IEEE80211_M_AHDEMO: 4954 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 4955 break; 4956 /* fall thru... */ 4957 #endif 4958 case IEEE80211_M_HOSTAP: 4959 case IEEE80211_M_IBSS: 4960 case IEEE80211_M_MBSS: 4961 /* 4962 * Allocate and setup the beacon frame. 4963 * 4964 * Stop any previous beacon DMA. This may be 4965 * necessary, for example, when an ibss merge 4966 * causes reconfiguration; there will be a state 4967 * transition from RUN->RUN that means we may 4968 * be called with beacon transmission active. 4969 */ 4970 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4971 4972 error = ath_beacon_alloc(sc, ni); 4973 if (error != 0) 4974 goto bad; 4975 /* 4976 * If joining an adhoc network defer beacon timer 4977 * configuration to the next beacon frame so we 4978 * have a current TSF to use. Otherwise we're 4979 * starting an ibss/bss so there's no need to delay; 4980 * if this is the first vap moving to RUN state, then 4981 * beacon state needs to be [re]configured. 4982 */ 4983 if (vap->iv_opmode == IEEE80211_M_IBSS && 4984 ni->ni_tstamp.tsf != 0) { 4985 sc->sc_syncbeacon = 1; 4986 } else if (!sc->sc_beacons) { 4987 #ifdef IEEE80211_SUPPORT_TDMA 4988 if (vap->iv_caps & IEEE80211_C_TDMA) 4989 ath_tdma_config(sc, vap); 4990 else 4991 #endif 4992 ath_beacon_config(sc, vap); 4993 sc->sc_beacons = 1; 4994 } 4995 break; 4996 case IEEE80211_M_STA: 4997 /* 4998 * Defer beacon timer configuration to the next 4999 * beacon frame so we have a current TSF to use 5000 * (any TSF collected when scanning is likely old). 5001 */ 5002 sc->sc_syncbeacon = 1; 5003 break; 5004 case IEEE80211_M_MONITOR: 5005 /* 5006 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5007 * transitions so we must re-enable interrupts here to 5008 * handle the case of a single monitor mode vap. 5009 */ 5010 ath_hal_intrset(ah, sc->sc_imask); 5011 break; 5012 case IEEE80211_M_WDS: 5013 break; 5014 default: 5015 break; 5016 } 5017 /* 5018 * Let the hal process statistics collected during a 5019 * scan so it can provide calibrated noise floor data. 5020 */ 5021 ath_hal_process_noisefloor(ah); 5022 /* 5023 * Reset rssi stats; maybe not the best place... 5024 */ 5025 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5026 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5027 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5028 /* 5029 * Finally, start any timers and the task q thread 5030 * (in case we didn't go through SCAN state). 5031 */ 5032 if (ath_longcalinterval != 0) { 5033 /* start periodic recalibration timer */ 5034 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5035 } else { 5036 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5037 "%s: calibration disabled\n", __func__); 5038 } 5039 taskqueue_unblock(sc->sc_tq); 5040 } else if (nstate == IEEE80211_S_INIT) { 5041 /* 5042 * If there are no vaps left in RUN state then 5043 * shutdown host/driver operation: 5044 * o disable interrupts 5045 * o disable the task queue thread 5046 * o mark beacon processing as stopped 5047 */ 5048 if (!ath_isanyrunningvaps(vap)) { 5049 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5050 /* disable interrupts */ 5051 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5052 taskqueue_block(sc->sc_tq); 5053 sc->sc_beacons = 0; 5054 } 5055 #ifdef IEEE80211_SUPPORT_TDMA 5056 ath_hal_setcca(ah, AH_TRUE); 5057 #endif 5058 } 5059 bad: 5060 return error; 5061 } 5062 5063 /* 5064 * Allocate a key cache slot to the station so we can 5065 * setup a mapping from key index to node. The key cache 5066 * slot is needed for managing antenna state and for 5067 * compression when stations do not use crypto. We do 5068 * it uniliaterally here; if crypto is employed this slot 5069 * will be reassigned. 5070 */ 5071 static void 5072 ath_setup_stationkey(struct ieee80211_node *ni) 5073 { 5074 struct ieee80211vap *vap = ni->ni_vap; 5075 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5076 ieee80211_keyix keyix, rxkeyix; 5077 5078 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5079 /* 5080 * Key cache is full; we'll fall back to doing 5081 * the more expensive lookup in software. Note 5082 * this also means no h/w compression. 5083 */ 5084 /* XXX msg+statistic */ 5085 } else { 5086 /* XXX locking? */ 5087 ni->ni_ucastkey.wk_keyix = keyix; 5088 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5089 /* NB: must mark device key to get called back on delete */ 5090 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5091 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5092 /* NB: this will create a pass-thru key entry */ 5093 ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss); 5094 } 5095 } 5096 5097 /* 5098 * Setup driver-specific state for a newly associated node. 5099 * Note that we're called also on a re-associate, the isnew 5100 * param tells us if this is the first time or not. 5101 */ 5102 static void 5103 ath_newassoc(struct ieee80211_node *ni, int isnew) 5104 { 5105 struct ath_node *an = ATH_NODE(ni); 5106 struct ieee80211vap *vap = ni->ni_vap; 5107 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5108 const struct ieee80211_txparam *tp = ni->ni_txparms; 5109 5110 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5111 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5112 5113 ath_rate_newassoc(sc, an, isnew); 5114 if (isnew && 5115 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5116 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5117 ath_setup_stationkey(ni); 5118 } 5119 5120 static int 5121 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5122 int nchans, struct ieee80211_channel chans[]) 5123 { 5124 struct ath_softc *sc = ic->ic_ifp->if_softc; 5125 struct ath_hal *ah = sc->sc_ah; 5126 HAL_STATUS status; 5127 5128 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5129 "%s: rd %u cc %u location %c%s\n", 5130 __func__, reg->regdomain, reg->country, reg->location, 5131 reg->ecm ? " ecm" : ""); 5132 5133 status = ath_hal_set_channels(ah, chans, nchans, 5134 reg->country, reg->regdomain); 5135 if (status != HAL_OK) { 5136 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5137 __func__, status); 5138 return EINVAL; /* XXX */ 5139 } 5140 return 0; 5141 } 5142 5143 static void 5144 ath_getradiocaps(struct ieee80211com *ic, 5145 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5146 { 5147 struct ath_softc *sc = ic->ic_ifp->if_softc; 5148 struct ath_hal *ah = sc->sc_ah; 5149 5150 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5151 __func__, SKU_DEBUG, CTRY_DEFAULT); 5152 5153 /* XXX check return */ 5154 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5155 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5156 5157 } 5158 5159 static int 5160 ath_getchannels(struct ath_softc *sc) 5161 { 5162 struct ifnet *ifp = sc->sc_ifp; 5163 struct ieee80211com *ic = ifp->if_l2com; 5164 struct ath_hal *ah = sc->sc_ah; 5165 HAL_STATUS status; 5166 5167 /* 5168 * Collect channel set based on EEPROM contents. 5169 */ 5170 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5171 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5172 if (status != HAL_OK) { 5173 if_printf(ifp, "%s: unable to collect channel list from hal, " 5174 "status %d\n", __func__, status); 5175 return EINVAL; 5176 } 5177 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5178 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5179 /* XXX map Atheros sku's to net80211 SKU's */ 5180 /* XXX net80211 types too small */ 5181 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5182 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5183 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5184 ic->ic_regdomain.isocc[1] = ' '; 5185 5186 ic->ic_regdomain.ecm = 1; 5187 ic->ic_regdomain.location = 'I'; 5188 5189 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5190 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5191 __func__, sc->sc_eerd, sc->sc_eecc, 5192 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5193 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5194 return 0; 5195 } 5196 5197 static void 5198 ath_led_done(void *arg) 5199 { 5200 struct ath_softc *sc = arg; 5201 5202 sc->sc_blinking = 0; 5203 } 5204 5205 /* 5206 * Turn the LED off: flip the pin and then set a timer so no 5207 * update will happen for the specified duration. 5208 */ 5209 static void 5210 ath_led_off(void *arg) 5211 { 5212 struct ath_softc *sc = arg; 5213 5214 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 5215 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 5216 } 5217 5218 /* 5219 * Blink the LED according to the specified on/off times. 5220 */ 5221 static void 5222 ath_led_blink(struct ath_softc *sc, int on, int off) 5223 { 5224 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 5225 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 5226 sc->sc_blinking = 1; 5227 sc->sc_ledoff = off; 5228 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 5229 } 5230 5231 static void 5232 ath_led_event(struct ath_softc *sc, int rix) 5233 { 5234 sc->sc_ledevent = ticks; /* time of last event */ 5235 if (sc->sc_blinking) /* don't interrupt active blink */ 5236 return; 5237 ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff); 5238 } 5239 5240 static int 5241 ath_rate_setup(struct ath_softc *sc, u_int mode) 5242 { 5243 struct ath_hal *ah = sc->sc_ah; 5244 const HAL_RATE_TABLE *rt; 5245 5246 switch (mode) { 5247 case IEEE80211_MODE_11A: 5248 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5249 break; 5250 case IEEE80211_MODE_HALF: 5251 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5252 break; 5253 case IEEE80211_MODE_QUARTER: 5254 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5255 break; 5256 case IEEE80211_MODE_11B: 5257 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5258 break; 5259 case IEEE80211_MODE_11G: 5260 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5261 break; 5262 case IEEE80211_MODE_TURBO_A: 5263 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5264 break; 5265 case IEEE80211_MODE_TURBO_G: 5266 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5267 break; 5268 case IEEE80211_MODE_STURBO_A: 5269 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5270 break; 5271 case IEEE80211_MODE_11NA: 5272 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 5273 break; 5274 case IEEE80211_MODE_11NG: 5275 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 5276 break; 5277 default: 5278 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5279 __func__, mode); 5280 return 0; 5281 } 5282 sc->sc_rates[mode] = rt; 5283 return (rt != NULL); 5284 } 5285 5286 static void 5287 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5288 { 5289 #define N(a) (sizeof(a)/sizeof(a[0])) 5290 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5291 static const struct { 5292 u_int rate; /* tx/rx 802.11 rate */ 5293 u_int16_t timeOn; /* LED on time (ms) */ 5294 u_int16_t timeOff; /* LED off time (ms) */ 5295 } blinkrates[] = { 5296 { 108, 40, 10 }, 5297 { 96, 44, 11 }, 5298 { 72, 50, 13 }, 5299 { 48, 57, 14 }, 5300 { 36, 67, 16 }, 5301 { 24, 80, 20 }, 5302 { 22, 100, 25 }, 5303 { 18, 133, 34 }, 5304 { 12, 160, 40 }, 5305 { 10, 200, 50 }, 5306 { 6, 240, 58 }, 5307 { 4, 267, 66 }, 5308 { 2, 400, 100 }, 5309 { 0, 500, 130 }, 5310 /* XXX half/quarter rates */ 5311 }; 5312 const HAL_RATE_TABLE *rt; 5313 int i, j; 5314 5315 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5316 rt = sc->sc_rates[mode]; 5317 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5318 for (i = 0; i < rt->rateCount; i++) { 5319 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5320 if (rt->info[i].phy != IEEE80211_T_HT) 5321 sc->sc_rixmap[ieeerate] = i; 5322 else 5323 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 5324 } 5325 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5326 for (i = 0; i < N(sc->sc_hwmap); i++) { 5327 if (i >= rt->rateCount) { 5328 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5329 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5330 continue; 5331 } 5332 sc->sc_hwmap[i].ieeerate = 5333 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5334 if (rt->info[i].phy == IEEE80211_T_HT) 5335 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 5336 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5337 if (rt->info[i].shortPreamble || 5338 rt->info[i].phy == IEEE80211_T_OFDM) 5339 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5340 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 5341 for (j = 0; j < N(blinkrates)-1; j++) 5342 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5343 break; 5344 /* NB: this uses the last entry if the rate isn't found */ 5345 /* XXX beware of overlow */ 5346 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5347 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5348 } 5349 sc->sc_currates = rt; 5350 sc->sc_curmode = mode; 5351 /* 5352 * All protection frames are transmited at 2Mb/s for 5353 * 11g, otherwise at 1Mb/s. 5354 */ 5355 if (mode == IEEE80211_MODE_11G) 5356 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 5357 else 5358 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 5359 /* NB: caller is responsible for resetting rate control state */ 5360 #undef N 5361 } 5362 5363 static void 5364 ath_watchdog(void *arg) 5365 { 5366 struct ath_softc *sc = arg; 5367 5368 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 5369 struct ifnet *ifp = sc->sc_ifp; 5370 uint32_t hangs; 5371 5372 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 5373 hangs != 0) { 5374 if_printf(ifp, "%s hang detected (0x%x)\n", 5375 hangs & 0xff ? "bb" : "mac", hangs); 5376 } else 5377 if_printf(ifp, "device timeout\n"); 5378 ath_reset(ifp); 5379 ifp->if_oerrors++; 5380 sc->sc_stats.ast_watchdog++; 5381 } 5382 callout_schedule(&sc->sc_wd_ch, hz); 5383 } 5384 5385 #ifdef ATH_DIAGAPI 5386 /* 5387 * Diagnostic interface to the HAL. This is used by various 5388 * tools to do things like retrieve register contents for 5389 * debugging. The mechanism is intentionally opaque so that 5390 * it can change frequently w/o concern for compatiblity. 5391 */ 5392 static int 5393 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5394 { 5395 struct ath_hal *ah = sc->sc_ah; 5396 u_int id = ad->ad_id & ATH_DIAG_ID; 5397 void *indata = NULL; 5398 void *outdata = NULL; 5399 u_int32_t insize = ad->ad_in_size; 5400 u_int32_t outsize = ad->ad_out_size; 5401 int error = 0; 5402 5403 if (ad->ad_id & ATH_DIAG_IN) { 5404 /* 5405 * Copy in data. 5406 */ 5407 indata = malloc(insize, M_TEMP, M_NOWAIT); 5408 if (indata == NULL) { 5409 error = ENOMEM; 5410 goto bad; 5411 } 5412 error = copyin(ad->ad_in_data, indata, insize); 5413 if (error) 5414 goto bad; 5415 } 5416 if (ad->ad_id & ATH_DIAG_DYN) { 5417 /* 5418 * Allocate a buffer for the results (otherwise the HAL 5419 * returns a pointer to a buffer where we can read the 5420 * results). Note that we depend on the HAL leaving this 5421 * pointer for us to use below in reclaiming the buffer; 5422 * may want to be more defensive. 5423 */ 5424 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5425 if (outdata == NULL) { 5426 error = ENOMEM; 5427 goto bad; 5428 } 5429 } 5430 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5431 if (outsize < ad->ad_out_size) 5432 ad->ad_out_size = outsize; 5433 if (outdata != NULL) 5434 error = copyout(outdata, ad->ad_out_data, 5435 ad->ad_out_size); 5436 } else { 5437 error = EINVAL; 5438 } 5439 bad: 5440 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5441 free(indata, M_TEMP); 5442 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5443 free(outdata, M_TEMP); 5444 return error; 5445 } 5446 #endif /* ATH_DIAGAPI */ 5447 5448 static int 5449 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5450 { 5451 #define IS_RUNNING(ifp) \ 5452 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5453 struct ath_softc *sc = ifp->if_softc; 5454 struct ieee80211com *ic = ifp->if_l2com; 5455 struct ifreq *ifr = (struct ifreq *)data; 5456 const HAL_RATE_TABLE *rt; 5457 int error = 0; 5458 5459 switch (cmd) { 5460 case SIOCSIFFLAGS: 5461 ATH_LOCK(sc); 5462 if (IS_RUNNING(ifp)) { 5463 /* 5464 * To avoid rescanning another access point, 5465 * do not call ath_init() here. Instead, 5466 * only reflect promisc mode settings. 5467 */ 5468 ath_mode_init(sc); 5469 } else if (ifp->if_flags & IFF_UP) { 5470 /* 5471 * Beware of being called during attach/detach 5472 * to reset promiscuous mode. In that case we 5473 * will still be marked UP but not RUNNING. 5474 * However trying to re-init the interface 5475 * is the wrong thing to do as we've already 5476 * torn down much of our state. There's 5477 * probably a better way to deal with this. 5478 */ 5479 if (!sc->sc_invalid) 5480 ath_init(sc); /* XXX lose error */ 5481 } else { 5482 ath_stop_locked(ifp); 5483 #ifdef notyet 5484 /* XXX must wakeup in places like ath_vap_delete */ 5485 if (!sc->sc_invalid) 5486 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5487 #endif 5488 } 5489 ATH_UNLOCK(sc); 5490 break; 5491 case SIOCGIFMEDIA: 5492 case SIOCSIFMEDIA: 5493 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5494 break; 5495 case SIOCGATHSTATS: 5496 /* NB: embed these numbers to get a consistent view */ 5497 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5498 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5499 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5500 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5501 #ifdef IEEE80211_SUPPORT_TDMA 5502 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5503 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5504 #endif 5505 rt = sc->sc_currates; 5506 /* XXX HT rates */ 5507 sc->sc_stats.ast_tx_rate = 5508 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5509 return copyout(&sc->sc_stats, 5510 ifr->ifr_data, sizeof (sc->sc_stats)); 5511 case SIOCZATHSTATS: 5512 error = priv_check(curthread, PRIV_DRIVER); 5513 if (error == 0) 5514 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 5515 break; 5516 #ifdef ATH_DIAGAPI 5517 case SIOCGATHDIAG: 5518 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5519 break; 5520 #endif 5521 case SIOCGIFADDR: 5522 error = ether_ioctl(ifp, cmd, data); 5523 break; 5524 default: 5525 error = EINVAL; 5526 break; 5527 } 5528 return error; 5529 #undef IS_RUNNING 5530 } 5531 5532 static int 5533 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS) 5534 { 5535 struct ath_softc *sc = arg1; 5536 u_int slottime = ath_hal_getslottime(sc->sc_ah); 5537 int error; 5538 5539 error = sysctl_handle_int(oidp, &slottime, 0, req); 5540 if (error || !req->newptr) 5541 return error; 5542 return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0; 5543 } 5544 5545 static int 5546 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS) 5547 { 5548 struct ath_softc *sc = arg1; 5549 u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah); 5550 int error; 5551 5552 error = sysctl_handle_int(oidp, &acktimeout, 0, req); 5553 if (error || !req->newptr) 5554 return error; 5555 return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0; 5556 } 5557 5558 static int 5559 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS) 5560 { 5561 struct ath_softc *sc = arg1; 5562 u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah); 5563 int error; 5564 5565 error = sysctl_handle_int(oidp, &ctstimeout, 0, req); 5566 if (error || !req->newptr) 5567 return error; 5568 return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0; 5569 } 5570 5571 static int 5572 ath_sysctl_softled(SYSCTL_HANDLER_ARGS) 5573 { 5574 struct ath_softc *sc = arg1; 5575 int softled = sc->sc_softled; 5576 int error; 5577 5578 error = sysctl_handle_int(oidp, &softled, 0, req); 5579 if (error || !req->newptr) 5580 return error; 5581 softled = (softled != 0); 5582 if (softled != sc->sc_softled) { 5583 if (softled) { 5584 /* NB: handle any sc_ledpin change */ 5585 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin, 5586 HAL_GPIO_MUX_MAC_NETWORK_LED); 5587 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, 5588 !sc->sc_ledon); 5589 } 5590 sc->sc_softled = softled; 5591 } 5592 return 0; 5593 } 5594 5595 static int 5596 ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS) 5597 { 5598 struct ath_softc *sc = arg1; 5599 int ledpin = sc->sc_ledpin; 5600 int error; 5601 5602 error = sysctl_handle_int(oidp, &ledpin, 0, req); 5603 if (error || !req->newptr) 5604 return error; 5605 if (ledpin != sc->sc_ledpin) { 5606 sc->sc_ledpin = ledpin; 5607 if (sc->sc_softled) { 5608 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin, 5609 HAL_GPIO_MUX_MAC_NETWORK_LED); 5610 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, 5611 !sc->sc_ledon); 5612 } 5613 } 5614 return 0; 5615 } 5616 5617 static int 5618 ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS) 5619 { 5620 struct ath_softc *sc = arg1; 5621 u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah); 5622 int error; 5623 5624 error = sysctl_handle_int(oidp, &txantenna, 0, req); 5625 if (!error && req->newptr) { 5626 /* XXX assumes 2 antenna ports */ 5627 if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B) 5628 return EINVAL; 5629 ath_hal_setantennaswitch(sc->sc_ah, txantenna); 5630 /* 5631 * NB: with the switch locked this isn't meaningful, 5632 * but set it anyway so things like radiotap get 5633 * consistent info in their data. 5634 */ 5635 sc->sc_txantenna = txantenna; 5636 } 5637 return error; 5638 } 5639 5640 static int 5641 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS) 5642 { 5643 struct ath_softc *sc = arg1; 5644 u_int defantenna = ath_hal_getdefantenna(sc->sc_ah); 5645 int error; 5646 5647 error = sysctl_handle_int(oidp, &defantenna, 0, req); 5648 if (!error && req->newptr) 5649 ath_hal_setdefantenna(sc->sc_ah, defantenna); 5650 return error; 5651 } 5652 5653 static int 5654 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS) 5655 { 5656 struct ath_softc *sc = arg1; 5657 u_int diversity = ath_hal_getdiversity(sc->sc_ah); 5658 int error; 5659 5660 error = sysctl_handle_int(oidp, &diversity, 0, req); 5661 if (error || !req->newptr) 5662 return error; 5663 if (!ath_hal_setdiversity(sc->sc_ah, diversity)) 5664 return EINVAL; 5665 sc->sc_diversity = diversity; 5666 return 0; 5667 } 5668 5669 static int 5670 ath_sysctl_diag(SYSCTL_HANDLER_ARGS) 5671 { 5672 struct ath_softc *sc = arg1; 5673 u_int32_t diag; 5674 int error; 5675 5676 if (!ath_hal_getdiag(sc->sc_ah, &diag)) 5677 return EINVAL; 5678 error = sysctl_handle_int(oidp, &diag, 0, req); 5679 if (error || !req->newptr) 5680 return error; 5681 return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0; 5682 } 5683 5684 static int 5685 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS) 5686 { 5687 struct ath_softc *sc = arg1; 5688 struct ifnet *ifp = sc->sc_ifp; 5689 u_int32_t scale; 5690 int error; 5691 5692 (void) ath_hal_gettpscale(sc->sc_ah, &scale); 5693 error = sysctl_handle_int(oidp, &scale, 0, req); 5694 if (error || !req->newptr) 5695 return error; 5696 return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : 5697 (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0; 5698 } 5699 5700 static int 5701 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS) 5702 { 5703 struct ath_softc *sc = arg1; 5704 u_int tpc = ath_hal_gettpc(sc->sc_ah); 5705 int error; 5706 5707 error = sysctl_handle_int(oidp, &tpc, 0, req); 5708 if (error || !req->newptr) 5709 return error; 5710 return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0; 5711 } 5712 5713 static int 5714 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS) 5715 { 5716 struct ath_softc *sc = arg1; 5717 struct ifnet *ifp = sc->sc_ifp; 5718 struct ath_hal *ah = sc->sc_ah; 5719 u_int rfkill = ath_hal_getrfkill(ah); 5720 int error; 5721 5722 error = sysctl_handle_int(oidp, &rfkill, 0, req); 5723 if (error || !req->newptr) 5724 return error; 5725 if (rfkill == ath_hal_getrfkill(ah)) /* unchanged */ 5726 return 0; 5727 if (!ath_hal_setrfkill(ah, rfkill)) 5728 return EINVAL; 5729 return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0; 5730 } 5731 5732 static int 5733 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS) 5734 { 5735 struct ath_softc *sc = arg1; 5736 u_int rfsilent; 5737 int error; 5738 5739 (void) ath_hal_getrfsilent(sc->sc_ah, &rfsilent); 5740 error = sysctl_handle_int(oidp, &rfsilent, 0, req); 5741 if (error || !req->newptr) 5742 return error; 5743 if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent)) 5744 return EINVAL; 5745 sc->sc_rfsilentpin = rfsilent & 0x1c; 5746 sc->sc_rfsilentpol = (rfsilent & 0x2) != 0; 5747 return 0; 5748 } 5749 5750 static int 5751 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS) 5752 { 5753 struct ath_softc *sc = arg1; 5754 u_int32_t tpack; 5755 int error; 5756 5757 (void) ath_hal_gettpack(sc->sc_ah, &tpack); 5758 error = sysctl_handle_int(oidp, &tpack, 0, req); 5759 if (error || !req->newptr) 5760 return error; 5761 return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0; 5762 } 5763 5764 static int 5765 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS) 5766 { 5767 struct ath_softc *sc = arg1; 5768 u_int32_t tpcts; 5769 int error; 5770 5771 (void) ath_hal_gettpcts(sc->sc_ah, &tpcts); 5772 error = sysctl_handle_int(oidp, &tpcts, 0, req); 5773 if (error || !req->newptr) 5774 return error; 5775 return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0; 5776 } 5777 5778 static int 5779 ath_sysctl_intmit(SYSCTL_HANDLER_ARGS) 5780 { 5781 struct ath_softc *sc = arg1; 5782 int intmit, error; 5783 5784 intmit = ath_hal_getintmit(sc->sc_ah); 5785 error = sysctl_handle_int(oidp, &intmit, 0, req); 5786 if (error || !req->newptr) 5787 return error; 5788 return !ath_hal_setintmit(sc->sc_ah, intmit) ? EINVAL : 0; 5789 } 5790 5791 #ifdef IEEE80211_SUPPORT_TDMA 5792 static int 5793 ath_sysctl_setcca(SYSCTL_HANDLER_ARGS) 5794 { 5795 struct ath_softc *sc = arg1; 5796 int setcca, error; 5797 5798 setcca = sc->sc_setcca; 5799 error = sysctl_handle_int(oidp, &setcca, 0, req); 5800 if (error || !req->newptr) 5801 return error; 5802 sc->sc_setcca = (setcca != 0); 5803 return 0; 5804 } 5805 #endif /* IEEE80211_SUPPORT_TDMA */ 5806 5807 static void 5808 ath_sysctlattach(struct ath_softc *sc) 5809 { 5810 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 5811 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 5812 struct ath_hal *ah = sc->sc_ah; 5813 5814 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5815 "countrycode", CTLFLAG_RD, &sc->sc_eecc, 0, 5816 "EEPROM country code"); 5817 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5818 "regdomain", CTLFLAG_RD, &sc->sc_eerd, 0, 5819 "EEPROM regdomain code"); 5820 #ifdef ATH_DEBUG 5821 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5822 "debug", CTLFLAG_RW, &sc->sc_debug, 0, 5823 "control debugging printfs"); 5824 #endif 5825 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5826 "slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5827 ath_sysctl_slottime, "I", "802.11 slot time (us)"); 5828 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5829 "acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5830 ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)"); 5831 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5832 "ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5833 ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)"); 5834 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5835 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5836 ath_sysctl_softled, "I", "enable/disable software LED support"); 5837 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5838 "ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5839 ath_sysctl_ledpin, "I", "GPIO pin connected to LED"); 5840 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5841 "ledon", CTLFLAG_RW, &sc->sc_ledon, 0, 5842 "setting to turn LED on"); 5843 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5844 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 5845 "idle time for inactivity LED (ticks)"); 5846 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5847 "txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5848 ath_sysctl_txantenna, "I", "antenna switch"); 5849 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5850 "rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5851 ath_sysctl_rxantenna, "I", "default/rx antenna"); 5852 if (ath_hal_hasdiversity(ah)) 5853 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5854 "diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5855 ath_sysctl_diversity, "I", "antenna diversity"); 5856 sc->sc_txintrperiod = ATH_TXINTR_PERIOD; 5857 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5858 "txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0, 5859 "tx descriptor batching"); 5860 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5861 "diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5862 ath_sysctl_diag, "I", "h/w diagnostic control"); 5863 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5864 "tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5865 ath_sysctl_tpscale, "I", "tx power scaling"); 5866 if (ath_hal_hastpc(ah)) { 5867 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5868 "tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5869 ath_sysctl_tpc, "I", "enable/disable per-packet TPC"); 5870 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5871 "tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5872 ath_sysctl_tpack, "I", "tx power for ack frames"); 5873 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5874 "tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5875 ath_sysctl_tpcts, "I", "tx power for cts frames"); 5876 } 5877 if (ath_hal_hasrfsilent(ah)) { 5878 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5879 "rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5880 ath_sysctl_rfsilent, "I", "h/w RF silent config"); 5881 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5882 "rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5883 ath_sysctl_rfkill, "I", "enable/disable RF kill switch"); 5884 } 5885 if (ath_hal_hasintmit(ah)) { 5886 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5887 "intmit", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5888 ath_sysctl_intmit, "I", "interference mitigation"); 5889 } 5890 sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC; 5891 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5892 "monpass", CTLFLAG_RW, &sc->sc_monpass, 0, 5893 "mask of error frames to pass when monitoring"); 5894 #ifdef IEEE80211_SUPPORT_TDMA 5895 if (ath_hal_macversion(ah) > 0x78) { 5896 sc->sc_tdmadbaprep = 2; 5897 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5898 "dbaprep", CTLFLAG_RW, &sc->sc_tdmadbaprep, 0, 5899 "TDMA DBA preparation time"); 5900 sc->sc_tdmaswbaprep = 10; 5901 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5902 "swbaprep", CTLFLAG_RW, &sc->sc_tdmaswbaprep, 0, 5903 "TDMA SWBA preparation time"); 5904 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5905 "guardtime", CTLFLAG_RW, &sc->sc_tdmaguard, 0, 5906 "TDMA slot guard time"); 5907 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5908 "superframe", CTLFLAG_RD, &sc->sc_tdmabintval, 0, 5909 "TDMA calculated super frame"); 5910 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5911 "setcca", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5912 ath_sysctl_setcca, "I", "enable CCA control"); 5913 } 5914 #endif 5915 } 5916 5917 /* 5918 * Announce various information on device/driver attach. 5919 */ 5920 static void 5921 ath_announce(struct ath_softc *sc) 5922 { 5923 struct ifnet *ifp = sc->sc_ifp; 5924 struct ath_hal *ah = sc->sc_ah; 5925 5926 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5927 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5928 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5929 if (bootverbose) { 5930 int i; 5931 for (i = 0; i <= WME_AC_VO; i++) { 5932 struct ath_txq *txq = sc->sc_ac2q[i]; 5933 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5934 txq->axq_qnum, ieee80211_wme_acnames[i]); 5935 } 5936 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5937 sc->sc_cabq->axq_qnum); 5938 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5939 } 5940 if (ath_rxbuf != ATH_RXBUF) 5941 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5942 if (ath_txbuf != ATH_TXBUF) 5943 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5944 if (sc->sc_mcastkey && bootverbose) 5945 if_printf(ifp, "using multicast key search\n"); 5946 } 5947 5948 #ifdef IEEE80211_SUPPORT_TDMA 5949 static __inline uint32_t 5950 ath_hal_getnexttbtt(struct ath_hal *ah) 5951 { 5952 #define AR_TIMER0 0x8028 5953 return OS_REG_READ(ah, AR_TIMER0); 5954 } 5955 5956 static __inline void 5957 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta) 5958 { 5959 /* XXX handle wrap/overflow */ 5960 OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta); 5961 } 5962 5963 static void 5964 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval) 5965 { 5966 struct ath_hal *ah = sc->sc_ah; 5967 HAL_BEACON_TIMERS bt; 5968 5969 bt.bt_intval = bintval | HAL_BEACON_ENA; 5970 bt.bt_nexttbtt = nexttbtt; 5971 bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep; 5972 bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep; 5973 bt.bt_nextatim = nexttbtt+1; 5974 ath_hal_beaconsettimers(ah, &bt); 5975 } 5976 5977 /* 5978 * Calculate the beacon interval. This is periodic in the 5979 * superframe for the bss. We assume each station is configured 5980 * identically wrt transmit rate so the guard time we calculate 5981 * above will be the same on all stations. Note we need to 5982 * factor in the xmit time because the hardware will schedule 5983 * a frame for transmit if the start of the frame is within 5984 * the burst time. When we get hardware that properly kills 5985 * frames in the PCU we can reduce/eliminate the guard time. 5986 * 5987 * Roundup to 1024 is so we have 1 TU buffer in the guard time 5988 * to deal with the granularity of the nexttbtt timer. 11n MAC's 5989 * with 1us timer granularity should allow us to reduce/eliminate 5990 * this. 5991 */ 5992 static void 5993 ath_tdma_bintvalsetup(struct ath_softc *sc, 5994 const struct ieee80211_tdma_state *tdma) 5995 { 5996 /* copy from vap state (XXX check all vaps have same value?) */ 5997 sc->sc_tdmaslotlen = tdma->tdma_slotlen; 5998 5999 sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) * 6000 tdma->tdma_slotcnt, 1024); 6001 sc->sc_tdmabintval >>= 10; /* TSF -> TU */ 6002 if (sc->sc_tdmabintval & 1) 6003 sc->sc_tdmabintval++; 6004 6005 if (tdma->tdma_slot == 0) { 6006 /* 6007 * Only slot 0 beacons; other slots respond. 6008 */ 6009 sc->sc_imask |= HAL_INT_SWBA; 6010 sc->sc_tdmaswba = 0; /* beacon immediately */ 6011 } else { 6012 /* XXX all vaps must be slot 0 or slot !0 */ 6013 sc->sc_imask &= ~HAL_INT_SWBA; 6014 } 6015 } 6016 6017 /* 6018 * Max 802.11 overhead. This assumes no 4-address frames and 6019 * the encapsulation done by ieee80211_encap (llc). We also 6020 * include potential crypto overhead. 6021 */ 6022 #define IEEE80211_MAXOVERHEAD \ 6023 (sizeof(struct ieee80211_qosframe) \ 6024 + sizeof(struct llc) \ 6025 + IEEE80211_ADDR_LEN \ 6026 + IEEE80211_WEP_IVLEN \ 6027 + IEEE80211_WEP_KIDLEN \ 6028 + IEEE80211_WEP_CRCLEN \ 6029 + IEEE80211_WEP_MICLEN \ 6030 + IEEE80211_CRC_LEN) 6031 6032 /* 6033 * Setup initially for tdma operation. Start the beacon 6034 * timers and enable SWBA if we are slot 0. Otherwise 6035 * we wait for slot 0 to arrive so we can sync up before 6036 * starting to transmit. 6037 */ 6038 static void 6039 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap) 6040 { 6041 struct ath_hal *ah = sc->sc_ah; 6042 struct ifnet *ifp = sc->sc_ifp; 6043 struct ieee80211com *ic = ifp->if_l2com; 6044 const struct ieee80211_txparam *tp; 6045 const struct ieee80211_tdma_state *tdma = NULL; 6046 int rix; 6047 6048 if (vap == NULL) { 6049 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 6050 if (vap == NULL) { 6051 if_printf(ifp, "%s: no vaps?\n", __func__); 6052 return; 6053 } 6054 } 6055 tp = vap->iv_bss->ni_txparms; 6056 /* 6057 * Calculate the guard time for each slot. This is the 6058 * time to send a maximal-size frame according to the 6059 * fixed/lowest transmit rate. Note that the interface 6060 * mtu does not include the 802.11 overhead so we must 6061 * tack that on (ath_hal_computetxtime includes the 6062 * preamble and plcp in it's calculation). 6063 */ 6064 tdma = vap->iv_tdma; 6065 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 6066 rix = ath_tx_findrix(sc, tp->ucastrate); 6067 else 6068 rix = ath_tx_findrix(sc, tp->mcastrate); 6069 /* XXX short preamble assumed */ 6070 sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates, 6071 ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE); 6072 6073 ath_hal_intrset(ah, 0); 6074 6075 ath_beaconq_config(sc); /* setup h/w beacon q */ 6076 if (sc->sc_setcca) 6077 ath_hal_setcca(ah, AH_FALSE); /* disable CCA */ 6078 ath_tdma_bintvalsetup(sc, tdma); /* calculate beacon interval */ 6079 ath_tdma_settimers(sc, sc->sc_tdmabintval, 6080 sc->sc_tdmabintval | HAL_BEACON_RESET_TSF); 6081 sc->sc_syncbeacon = 0; 6082 6083 sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER; 6084 sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER; 6085 6086 ath_hal_intrset(ah, sc->sc_imask); 6087 6088 DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u " 6089 "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__, 6090 tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt, 6091 tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval, 6092 sc->sc_tdmadbaprep); 6093 } 6094 6095 /* 6096 * Update tdma operation. Called from the 802.11 layer 6097 * when a beacon is received from the TDMA station operating 6098 * in the slot immediately preceding us in the bss. Use 6099 * the rx timestamp for the beacon frame to update our 6100 * beacon timers so we follow their schedule. Note that 6101 * by using the rx timestamp we implicitly include the 6102 * propagation delay in our schedule. 6103 */ 6104 static void 6105 ath_tdma_update(struct ieee80211_node *ni, 6106 const struct ieee80211_tdma_param *tdma, int changed) 6107 { 6108 #define TSF_TO_TU(_h,_l) \ 6109 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 6110 #define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10) 6111 struct ieee80211vap *vap = ni->ni_vap; 6112 struct ieee80211com *ic = ni->ni_ic; 6113 struct ath_softc *sc = ic->ic_ifp->if_softc; 6114 struct ath_hal *ah = sc->sc_ah; 6115 const HAL_RATE_TABLE *rt = sc->sc_currates; 6116 u_int64_t tsf, rstamp, nextslot; 6117 u_int32_t txtime, nextslottu, timer0; 6118 int32_t tudelta, tsfdelta; 6119 const struct ath_rx_status *rs; 6120 int rix; 6121 6122 sc->sc_stats.ast_tdma_update++; 6123 6124 /* 6125 * Check for and adopt configuration changes. 6126 */ 6127 if (changed != 0) { 6128 const struct ieee80211_tdma_state *ts = vap->iv_tdma; 6129 6130 ath_tdma_bintvalsetup(sc, ts); 6131 if (changed & TDMA_UPDATE_SLOTLEN) 6132 ath_wme_update(ic); 6133 6134 DPRINTF(sc, ATH_DEBUG_TDMA, 6135 "%s: adopt slot %u slotcnt %u slotlen %u us " 6136 "bintval %u TU\n", __func__, 6137 ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen, 6138 sc->sc_tdmabintval); 6139 6140 /* XXX right? */ 6141 ath_hal_intrset(ah, sc->sc_imask); 6142 /* NB: beacon timers programmed below */ 6143 } 6144 6145 /* extend rx timestamp to 64 bits */ 6146 rs = sc->sc_lastrs; 6147 tsf = ath_hal_gettsf64(ah); 6148 rstamp = ath_extend_tsf(rs->rs_tstamp, tsf); 6149 /* 6150 * The rx timestamp is set by the hardware on completing 6151 * reception (at the point where the rx descriptor is DMA'd 6152 * to the host). To find the start of our next slot we 6153 * must adjust this time by the time required to send 6154 * the packet just received. 6155 */ 6156 rix = rt->rateCodeToIndex[rs->rs_rate]; 6157 txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix, 6158 rt->info[rix].shortPreamble); 6159 /* NB: << 9 is to cvt to TU and /2 */ 6160 nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9); 6161 nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD; 6162 6163 /* 6164 * TIMER0 is the h/w's idea of NextTBTT (in TU's). Convert 6165 * to usecs and calculate the difference between what the 6166 * other station thinks and what we have programmed. This 6167 * lets us figure how to adjust our timers to match. The 6168 * adjustments are done by pulling the TSF forward and possibly 6169 * rewriting the beacon timers. 6170 */ 6171 timer0 = ath_hal_getnexttbtt(ah); 6172 tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0)); 6173 6174 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6175 "tsfdelta %d avg +%d/-%d\n", tsfdelta, 6176 TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam)); 6177 6178 if (tsfdelta < 0) { 6179 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6180 TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta); 6181 tsfdelta = -tsfdelta % 1024; 6182 nextslottu++; 6183 } else if (tsfdelta > 0) { 6184 TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta); 6185 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6186 tsfdelta = 1024 - (tsfdelta % 1024); 6187 nextslottu++; 6188 } else { 6189 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6190 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6191 } 6192 tudelta = nextslottu - timer0; 6193 6194 /* 6195 * Copy sender's timetstamp into tdma ie so they can 6196 * calculate roundtrip time. We submit a beacon frame 6197 * below after any timer adjustment. The frame goes out 6198 * at the next TBTT so the sender can calculate the 6199 * roundtrip by inspecting the tdma ie in our beacon frame. 6200 * 6201 * NB: This tstamp is subtlely preserved when 6202 * IEEE80211_BEACON_TDMA is marked (e.g. when the 6203 * slot position changes) because ieee80211_add_tdma 6204 * skips over the data. 6205 */ 6206 memcpy(ATH_VAP(vap)->av_boff.bo_tdma + 6207 __offsetof(struct ieee80211_tdma_param, tdma_tstamp), 6208 &ni->ni_tstamp.data, 8); 6209 #if 0 6210 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6211 "tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n", 6212 (unsigned long long) tsf, (unsigned long long) nextslot, 6213 (int)(nextslot - tsf), tsfdelta, 6214 nextslottu, timer0, tudelta); 6215 #endif 6216 /* 6217 * Adjust the beacon timers only when pulling them forward 6218 * or when going back by less than the beacon interval. 6219 * Negative jumps larger than the beacon interval seem to 6220 * cause the timers to stop and generally cause instability. 6221 * This basically filters out jumps due to missed beacons. 6222 */ 6223 if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) { 6224 ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval); 6225 sc->sc_stats.ast_tdma_timers++; 6226 } 6227 if (tsfdelta > 0) { 6228 ath_hal_adjusttsf(ah, tsfdelta); 6229 sc->sc_stats.ast_tdma_tsf++; 6230 } 6231 ath_tdma_beacon_send(sc, vap); /* prepare response */ 6232 #undef TU_TO_TSF 6233 #undef TSF_TO_TU 6234 } 6235 6236 /* 6237 * Transmit a beacon frame at SWBA. Dynamic updates 6238 * to the frame contents are done as needed. 6239 */ 6240 static void 6241 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap) 6242 { 6243 struct ath_hal *ah = sc->sc_ah; 6244 struct ath_buf *bf; 6245 int otherant; 6246 6247 /* 6248 * Check if the previous beacon has gone out. If 6249 * not don't try to post another, skip this period 6250 * and wait for the next. Missed beacons indicate 6251 * a problem and should not occur. If we miss too 6252 * many consecutive beacons reset the device. 6253 */ 6254 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 6255 sc->sc_bmisscount++; 6256 DPRINTF(sc, ATH_DEBUG_BEACON, 6257 "%s: missed %u consecutive beacons\n", 6258 __func__, sc->sc_bmisscount); 6259 if (sc->sc_bmisscount >= ath_bstuck_threshold) 6260 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 6261 return; 6262 } 6263 if (sc->sc_bmisscount != 0) { 6264 DPRINTF(sc, ATH_DEBUG_BEACON, 6265 "%s: resume beacon xmit after %u misses\n", 6266 __func__, sc->sc_bmisscount); 6267 sc->sc_bmisscount = 0; 6268 } 6269 6270 /* 6271 * Check recent per-antenna transmit statistics and flip 6272 * the default antenna if noticeably more frames went out 6273 * on the non-default antenna. 6274 * XXX assumes 2 anntenae 6275 */ 6276 if (!sc->sc_diversity) { 6277 otherant = sc->sc_defant & 1 ? 2 : 1; 6278 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 6279 ath_setdefantenna(sc, otherant); 6280 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 6281 } 6282 6283 bf = ath_beacon_generate(sc, vap); 6284 if (bf != NULL) { 6285 /* 6286 * Stop any current dma and put the new frame on the queue. 6287 * This should never fail since we check above that no frames 6288 * are still pending on the queue. 6289 */ 6290 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 6291 DPRINTF(sc, ATH_DEBUG_ANY, 6292 "%s: beacon queue %u did not stop?\n", 6293 __func__, sc->sc_bhalq); 6294 /* NB: the HAL still stops DMA, so proceed */ 6295 } 6296 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 6297 ath_hal_txstart(ah, sc->sc_bhalq); 6298 6299 sc->sc_stats.ast_be_xmit++; /* XXX per-vap? */ 6300 6301 /* 6302 * Record local TSF for our last send for use 6303 * in arbitrating slot collisions. 6304 */ 6305 vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah); 6306 } 6307 } 6308 #endif /* IEEE80211_SUPPORT_TDMA */ 6309 6310 static int 6311 ath_sysctl_clearstats(SYSCTL_HANDLER_ARGS) 6312 { 6313 struct ath_softc *sc = arg1; 6314 int val = 0; 6315 int error; 6316 6317 error = sysctl_handle_int(oidp, &val, 0, req); 6318 if (error || !req->newptr) 6319 return error; 6320 if (val == 0) 6321 return 0; /* Not clearing the stats is still valid */ 6322 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6323 val = 0; 6324 return 0; 6325 } 6326 6327 static void 6328 ath_sysctl_stats_attach(struct ath_softc *sc) 6329 { 6330 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 6331 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 6332 struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree); 6333 6334 /* Create "clear" node */ 6335 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6336 "clear_stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6337 ath_sysctl_clearstats, "I", "clear stats"); 6338 6339 /* Create stats node */ 6340 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 6341 NULL, "Statistics"); 6342 child = SYSCTL_CHILDREN(tree); 6343 6344 /* This was generated from if_athioctl.h */ 6345 6346 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_watchdog", CTLFLAG_RD, 6347 &sc->sc_stats.ast_watchdog, 0, "device reset by watchdog"); 6348 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_hardware", CTLFLAG_RD, 6349 &sc->sc_stats.ast_hardware, 0, "fatal hardware error interrupts"); 6350 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_bmiss", CTLFLAG_RD, 6351 &sc->sc_stats.ast_bmiss, 0, "beacon miss interrupts"); 6352 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_bmiss_phantom", CTLFLAG_RD, 6353 &sc->sc_stats.ast_bmiss_phantom, 0, "beacon miss interrupts"); 6354 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_bstuck", CTLFLAG_RD, 6355 &sc->sc_stats.ast_bstuck, 0, "beacon stuck interrupts"); 6356 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rxorn", CTLFLAG_RD, 6357 &sc->sc_stats.ast_rxorn, 0, "rx overrun interrupts"); 6358 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rxeol", CTLFLAG_RD, 6359 &sc->sc_stats.ast_rxeol, 0, "rx eol interrupts"); 6360 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_txurn", CTLFLAG_RD, 6361 &sc->sc_stats.ast_txurn, 0, "tx underrun interrupts"); 6362 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_mib", CTLFLAG_RD, 6363 &sc->sc_stats.ast_mib, 0, "mib interrupts"); 6364 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_intrcoal", CTLFLAG_RD, 6365 &sc->sc_stats.ast_intrcoal, 0, "interrupts coalesced"); 6366 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_packets", CTLFLAG_RD, 6367 &sc->sc_stats.ast_tx_packets, 0, "packet sent on the interface"); 6368 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_mgmt", CTLFLAG_RD, 6369 &sc->sc_stats.ast_tx_mgmt, 0, "management frames transmitted"); 6370 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_discard", CTLFLAG_RD, 6371 &sc->sc_stats.ast_tx_discard, 0, "frames discarded prior to assoc"); 6372 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_qstop", CTLFLAG_RD, 6373 &sc->sc_stats.ast_tx_qstop, 0, "output stopped 'cuz no buffer"); 6374 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_encap", CTLFLAG_RD, 6375 &sc->sc_stats.ast_tx_encap, 0, "tx encapsulation failed"); 6376 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nonode", CTLFLAG_RD, 6377 &sc->sc_stats.ast_tx_nonode, 0, "tx failed 'cuz no node"); 6378 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nombuf", CTLFLAG_RD, 6379 &sc->sc_stats.ast_tx_nombuf, 0, "tx failed 'cuz no mbuf"); 6380 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nomcl", CTLFLAG_RD, 6381 &sc->sc_stats.ast_tx_nomcl, 0, "tx failed 'cuz no cluster"); 6382 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_linear", CTLFLAG_RD, 6383 &sc->sc_stats.ast_tx_linear, 0, "tx linearized to cluster"); 6384 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nodata", CTLFLAG_RD, 6385 &sc->sc_stats.ast_tx_nodata, 0, "tx discarded empty frame"); 6386 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_busdma", CTLFLAG_RD, 6387 &sc->sc_stats.ast_tx_busdma, 0, "tx failed for dma resrcs"); 6388 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_xretries", CTLFLAG_RD, 6389 &sc->sc_stats.ast_tx_xretries, 0, "tx failed 'cuz too many retries"); 6390 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_fifoerr", CTLFLAG_RD, 6391 &sc->sc_stats.ast_tx_fifoerr, 0, "tx failed 'cuz FIFO underrun"); 6392 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_filtered", CTLFLAG_RD, 6393 &sc->sc_stats.ast_tx_filtered, 0, "tx failed 'cuz xmit filtered"); 6394 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_shortretry", CTLFLAG_RD, 6395 &sc->sc_stats.ast_tx_shortretry, 0, "tx on-chip retries (short)"); 6396 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_longretry", CTLFLAG_RD, 6397 &sc->sc_stats.ast_tx_longretry, 0, "tx on-chip retries (long)"); 6398 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_badrate", CTLFLAG_RD, 6399 &sc->sc_stats.ast_tx_badrate, 0, "tx failed 'cuz bogus xmit rate"); 6400 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_noack", CTLFLAG_RD, 6401 &sc->sc_stats.ast_tx_noack, 0, "tx frames with no ack marked"); 6402 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_rts", CTLFLAG_RD, 6403 &sc->sc_stats.ast_tx_rts, 0, "tx frames with rts enabled"); 6404 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_cts", CTLFLAG_RD, 6405 &sc->sc_stats.ast_tx_cts, 0, "tx frames with cts enabled"); 6406 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_shortpre", CTLFLAG_RD, 6407 &sc->sc_stats.ast_tx_shortpre, 0, "tx frames with short preamble"); 6408 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_altrate", CTLFLAG_RD, 6409 &sc->sc_stats.ast_tx_altrate, 0, "tx frames with alternate rate"); 6410 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_protect", CTLFLAG_RD, 6411 &sc->sc_stats.ast_tx_protect, 0, "tx frames with protection"); 6412 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_ctsburst", CTLFLAG_RD, 6413 &sc->sc_stats.ast_tx_ctsburst, 0, "tx frames with cts and bursting"); 6414 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_ctsext", CTLFLAG_RD, 6415 &sc->sc_stats.ast_tx_ctsext, 0, "tx frames with cts extension"); 6416 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_nombuf", CTLFLAG_RD, 6417 &sc->sc_stats.ast_rx_nombuf, 0, "rx setup failed 'cuz no mbuf"); 6418 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_busdma", CTLFLAG_RD, 6419 &sc->sc_stats.ast_rx_busdma, 0, "rx setup failed for dma resrcs"); 6420 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_orn", CTLFLAG_RD, 6421 &sc->sc_stats.ast_rx_orn, 0, "rx failed 'cuz of desc overrun"); 6422 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_crcerr", CTLFLAG_RD, 6423 &sc->sc_stats.ast_rx_crcerr, 0, "rx failed 'cuz of bad CRC"); 6424 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_fifoerr", CTLFLAG_RD, 6425 &sc->sc_stats.ast_rx_fifoerr, 0, "rx failed 'cuz of FIFO overrun"); 6426 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_badcrypt", CTLFLAG_RD, 6427 &sc->sc_stats.ast_rx_badcrypt, 0, "rx failed 'cuz decryption"); 6428 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_badmic", CTLFLAG_RD, 6429 &sc->sc_stats.ast_rx_badmic, 0, "rx failed 'cuz MIC failure"); 6430 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_phyerr", CTLFLAG_RD, 6431 &sc->sc_stats.ast_rx_phyerr, 0, "rx failed 'cuz of PHY err"); 6432 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_tooshort", CTLFLAG_RD, 6433 &sc->sc_stats.ast_rx_tooshort, 0, "rx discarded 'cuz frame too short"); 6434 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_toobig", CTLFLAG_RD, 6435 &sc->sc_stats.ast_rx_toobig, 0, "rx discarded 'cuz frame too large"); 6436 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_packets", CTLFLAG_RD, 6437 &sc->sc_stats.ast_rx_packets, 0, "packet recv on the interface"); 6438 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_mgt", CTLFLAG_RD, 6439 &sc->sc_stats.ast_rx_mgt, 0, "management frames received"); 6440 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_ctl", CTLFLAG_RD, 6441 &sc->sc_stats.ast_rx_ctl, 0, "rx discarded 'cuz ctl frame"); 6442 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_be_xmit", CTLFLAG_RD, 6443 &sc->sc_stats.ast_be_xmit, 0, "beacons transmitted"); 6444 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_be_nombuf", CTLFLAG_RD, 6445 &sc->sc_stats.ast_be_nombuf, 0, "beacon setup failed 'cuz no mbuf"); 6446 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_per_cal", CTLFLAG_RD, 6447 &sc->sc_stats.ast_per_cal, 0, "periodic calibration calls"); 6448 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_per_calfail", CTLFLAG_RD, 6449 &sc->sc_stats.ast_per_calfail, 0, "periodic calibration failed"); 6450 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_per_rfgain", CTLFLAG_RD, 6451 &sc->sc_stats.ast_per_rfgain, 0, "periodic calibration rfgain reset"); 6452 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rate_calls", CTLFLAG_RD, 6453 &sc->sc_stats.ast_rate_calls, 0, "rate control checks"); 6454 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rate_raise", CTLFLAG_RD, 6455 &sc->sc_stats.ast_rate_raise, 0, "rate control raised xmit rate"); 6456 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rate_drop", CTLFLAG_RD, 6457 &sc->sc_stats.ast_rate_drop, 0, "rate control dropped xmit rate"); 6458 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ant_defswitch", CTLFLAG_RD, 6459 &sc->sc_stats.ast_ant_defswitch, 0, "rx/default antenna switches"); 6460 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ant_txswitch", CTLFLAG_RD, 6461 &sc->sc_stats.ast_ant_txswitch, 0, "tx antenna switches"); 6462 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_cabq_xmit", CTLFLAG_RD, 6463 &sc->sc_stats.ast_cabq_xmit, 0, "cabq frames transmitted"); 6464 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_cabq_busy", CTLFLAG_RD, 6465 &sc->sc_stats.ast_cabq_busy, 0, "cabq found busy"); 6466 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_raw", CTLFLAG_RD, 6467 &sc->sc_stats.ast_tx_raw, 0, "tx frames through raw api"); 6468 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_txok", CTLFLAG_RD, 6469 &sc->sc_stats.ast_ff_txok, 0, "fast frames tx'd successfully"); 6470 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_txerr", CTLFLAG_RD, 6471 &sc->sc_stats.ast_ff_txerr, 0, "fast frames tx'd w/ error"); 6472 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_rx", CTLFLAG_RD, 6473 &sc->sc_stats.ast_ff_rx, 0, "fast frames rx'd"); 6474 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_flush", CTLFLAG_RD, 6475 &sc->sc_stats.ast_ff_flush, 0, "fast frames flushed from staging q"); 6476 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_qfull", CTLFLAG_RD, 6477 &sc->sc_stats.ast_tx_qfull, 0, "tx dropped 'cuz of queue limit"); 6478 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nobuf", CTLFLAG_RD, 6479 &sc->sc_stats.ast_tx_nobuf, 0, "tx dropped 'cuz no ath buffer"); 6480 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_update", CTLFLAG_RD, 6481 &sc->sc_stats.ast_tdma_update, 0, "TDMA slot timing updates"); 6482 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_timers", CTLFLAG_RD, 6483 &sc->sc_stats.ast_tdma_timers, 0, "TDMA slot update set beacon timers"); 6484 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_tsf", CTLFLAG_RD, 6485 &sc->sc_stats.ast_tdma_tsf, 0, "TDMA slot update set TSF"); 6486 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_ack", CTLFLAG_RD, 6487 &sc->sc_stats.ast_tdma_ack, 0, "TDMA tx failed 'cuz ACK required"); 6488 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_raw_fail", CTLFLAG_RD, 6489 &sc->sc_stats.ast_tx_raw_fail, 0, "raw tx failed 'cuz h/w down"); 6490 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nofrag", CTLFLAG_RD, 6491 &sc->sc_stats.ast_tx_nofrag, 0, "tx dropped 'cuz no ath frag buffer"); 6492 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_be_missed", CTLFLAG_RD, 6493 &sc->sc_stats.ast_be_missed, 0, "number of -missed- beacons"); 6494 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ani_cal", CTLFLAG_RD, 6495 &sc->sc_stats.ast_ani_cal, 0, "number of ANI polls"); 6496 } 6497