1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_tx_edma.h> 113 #include <dev/ath/if_ath_beacon.h> 114 #include <dev/ath/if_ath_spectral.h> 115 #include <dev/ath/if_athdfs.h> 116 117 #ifdef ATH_TX99_DIAG 118 #include <dev/ath/ath_tx99/ath_tx99.h> 119 #endif 120 121 #ifdef ATH_DEBUG_ALQ 122 #include <dev/ath/if_ath_alq.h> 123 #endif 124 125 /* 126 * Only enable this if you're working on PS-POLL support. 127 */ 128 #define ATH_SW_PSQ 129 130 /* 131 * ATH_BCBUF determines the number of vap's that can transmit 132 * beacons and also (currently) the number of vap's that can 133 * have unique mac addresses/bssid. When staggering beacons 134 * 4 is probably a good max as otherwise the beacons become 135 * very closely spaced and there is limited time for cab q traffic 136 * to go out. You can burst beacons instead but that is not good 137 * for stations in power save and at some point you really want 138 * another radio (and channel). 139 * 140 * The limit on the number of mac addresses is tied to our use of 141 * the U/L bit and tracking addresses in a byte; it would be 142 * worthwhile to allow more for applications like proxy sta. 143 */ 144 CTASSERT(ATH_BCBUF <= 8); 145 146 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 147 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 148 const uint8_t [IEEE80211_ADDR_LEN], 149 const uint8_t [IEEE80211_ADDR_LEN]); 150 static void ath_vap_delete(struct ieee80211vap *); 151 static void ath_init(void *); 152 static void ath_stop_locked(struct ifnet *); 153 static void ath_stop(struct ifnet *); 154 static int ath_reset_vap(struct ieee80211vap *, u_long); 155 static int ath_transmit(struct ifnet *ifp, struct mbuf *m); 156 static void ath_qflush(struct ifnet *ifp); 157 static int ath_media_change(struct ifnet *); 158 static void ath_watchdog(void *); 159 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 160 static void ath_fatal_proc(void *, int); 161 static void ath_bmiss_vap(struct ieee80211vap *); 162 static void ath_bmiss_proc(void *, int); 163 static void ath_key_update_begin(struct ieee80211vap *); 164 static void ath_key_update_end(struct ieee80211vap *); 165 static void ath_update_mcast(struct ifnet *); 166 static void ath_update_promisc(struct ifnet *); 167 static void ath_updateslot(struct ifnet *); 168 static void ath_bstuck_proc(void *, int); 169 static void ath_reset_proc(void *, int); 170 static int ath_desc_alloc(struct ath_softc *); 171 static void ath_desc_free(struct ath_softc *); 172 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 173 const uint8_t [IEEE80211_ADDR_LEN]); 174 static void ath_node_cleanup(struct ieee80211_node *); 175 static void ath_node_free(struct ieee80211_node *); 176 static void ath_node_getsignal(const struct ieee80211_node *, 177 int8_t *, int8_t *); 178 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 179 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 180 static int ath_tx_setup(struct ath_softc *, int, int); 181 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 182 static void ath_tx_cleanup(struct ath_softc *); 183 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 184 int dosched); 185 static void ath_tx_proc_q0(void *, int); 186 static void ath_tx_proc_q0123(void *, int); 187 static void ath_tx_proc(void *, int); 188 static void ath_txq_sched_tasklet(void *, int); 189 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 190 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 191 static void ath_scan_start(struct ieee80211com *); 192 static void ath_scan_end(struct ieee80211com *); 193 static void ath_set_channel(struct ieee80211com *); 194 #ifdef ATH_ENABLE_11N 195 static void ath_update_chw(struct ieee80211com *); 196 #endif /* ATH_ENABLE_11N */ 197 static void ath_calibrate(void *); 198 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 199 static void ath_setup_stationkey(struct ieee80211_node *); 200 static void ath_newassoc(struct ieee80211_node *, int); 201 static int ath_setregdomain(struct ieee80211com *, 202 struct ieee80211_regdomain *, int, 203 struct ieee80211_channel []); 204 static void ath_getradiocaps(struct ieee80211com *, int, int *, 205 struct ieee80211_channel []); 206 static int ath_getchannels(struct ath_softc *); 207 208 static int ath_rate_setup(struct ath_softc *, u_int mode); 209 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 210 211 static void ath_announce(struct ath_softc *); 212 213 static void ath_dfs_tasklet(void *, int); 214 static void ath_node_powersave(struct ieee80211_node *, int); 215 static int ath_node_set_tim(struct ieee80211_node *, int); 216 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 217 218 #ifdef IEEE80211_SUPPORT_TDMA 219 #include <dev/ath/if_ath_tdma.h> 220 #endif 221 222 SYSCTL_DECL(_hw_ath); 223 224 /* XXX validate sysctl values */ 225 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 226 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 227 0, "long chip calibration interval (secs)"); 228 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 229 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 230 0, "short chip calibration interval (msecs)"); 231 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 232 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 233 0, "reset chip calibration results (secs)"); 234 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 235 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 236 0, "ANI calibration (msecs)"); 237 238 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 239 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 240 0, "rx buffers allocated"); 241 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 242 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 243 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 244 0, "tx buffers allocated"); 245 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 246 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 247 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 248 0, "tx (mgmt) buffers allocated"); 249 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 250 251 int ath_bstuck_threshold = 4; /* max missed beacons */ 252 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 253 0, "max missed beacon xmits before chip reset"); 254 255 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 256 257 void 258 ath_legacy_attach_comp_func(struct ath_softc *sc) 259 { 260 261 /* 262 * Special case certain configurations. Note the 263 * CAB queue is handled by these specially so don't 264 * include them when checking the txq setup mask. 265 */ 266 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 267 case 0x01: 268 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 269 break; 270 case 0x0f: 271 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 272 break; 273 default: 274 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 275 break; 276 } 277 } 278 279 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 280 #define HAL_MODE_HT40 \ 281 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 282 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 283 int 284 ath_attach(u_int16_t devid, struct ath_softc *sc) 285 { 286 struct ifnet *ifp; 287 struct ieee80211com *ic; 288 struct ath_hal *ah = NULL; 289 HAL_STATUS status; 290 int error = 0, i; 291 u_int wmodes; 292 uint8_t macaddr[IEEE80211_ADDR_LEN]; 293 int rx_chainmask, tx_chainmask; 294 295 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 296 297 CURVNET_SET(vnet0); 298 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 299 if (ifp == NULL) { 300 device_printf(sc->sc_dev, "can not if_alloc()\n"); 301 error = ENOSPC; 302 CURVNET_RESTORE(); 303 goto bad; 304 } 305 ic = ifp->if_l2com; 306 307 /* set these up early for if_printf use */ 308 if_initname(ifp, device_get_name(sc->sc_dev), 309 device_get_unit(sc->sc_dev)); 310 CURVNET_RESTORE(); 311 312 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 313 sc->sc_eepromdata, &status); 314 if (ah == NULL) { 315 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 316 status); 317 error = ENXIO; 318 goto bad; 319 } 320 sc->sc_ah = ah; 321 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 322 #ifdef ATH_DEBUG 323 sc->sc_debug = ath_debug; 324 #endif 325 326 /* 327 * Setup the DMA/EDMA functions based on the current 328 * hardware support. 329 * 330 * This is required before the descriptors are allocated. 331 */ 332 if (ath_hal_hasedma(sc->sc_ah)) { 333 sc->sc_isedma = 1; 334 ath_recv_setup_edma(sc); 335 ath_xmit_setup_edma(sc); 336 } else { 337 ath_recv_setup_legacy(sc); 338 ath_xmit_setup_legacy(sc); 339 } 340 341 /* 342 * Check if the MAC has multi-rate retry support. 343 * We do this by trying to setup a fake extended 344 * descriptor. MAC's that don't have support will 345 * return false w/o doing anything. MAC's that do 346 * support it will return true w/o doing anything. 347 */ 348 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 349 350 /* 351 * Check if the device has hardware counters for PHY 352 * errors. If so we need to enable the MIB interrupt 353 * so we can act on stat triggers. 354 */ 355 if (ath_hal_hwphycounters(ah)) 356 sc->sc_needmib = 1; 357 358 /* 359 * Get the hardware key cache size. 360 */ 361 sc->sc_keymax = ath_hal_keycachesize(ah); 362 if (sc->sc_keymax > ATH_KEYMAX) { 363 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 364 ATH_KEYMAX, sc->sc_keymax); 365 sc->sc_keymax = ATH_KEYMAX; 366 } 367 /* 368 * Reset the key cache since some parts do not 369 * reset the contents on initial power up. 370 */ 371 for (i = 0; i < sc->sc_keymax; i++) 372 ath_hal_keyreset(ah, i); 373 374 /* 375 * Collect the default channel list. 376 */ 377 error = ath_getchannels(sc); 378 if (error != 0) 379 goto bad; 380 381 /* 382 * Setup rate tables for all potential media types. 383 */ 384 ath_rate_setup(sc, IEEE80211_MODE_11A); 385 ath_rate_setup(sc, IEEE80211_MODE_11B); 386 ath_rate_setup(sc, IEEE80211_MODE_11G); 387 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 388 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 389 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 390 ath_rate_setup(sc, IEEE80211_MODE_11NA); 391 ath_rate_setup(sc, IEEE80211_MODE_11NG); 392 ath_rate_setup(sc, IEEE80211_MODE_HALF); 393 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 394 395 /* NB: setup here so ath_rate_update is happy */ 396 ath_setcurmode(sc, IEEE80211_MODE_11A); 397 398 /* 399 * Allocate TX descriptors and populate the lists. 400 */ 401 error = ath_desc_alloc(sc); 402 if (error != 0) { 403 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 404 error); 405 goto bad; 406 } 407 error = ath_txdma_setup(sc); 408 if (error != 0) { 409 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 410 error); 411 goto bad; 412 } 413 414 /* 415 * Allocate RX descriptors and populate the lists. 416 */ 417 error = ath_rxdma_setup(sc); 418 if (error != 0) { 419 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 420 error); 421 goto bad; 422 } 423 424 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 425 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 426 427 ATH_TXBUF_LOCK_INIT(sc); 428 429 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 430 taskqueue_thread_enqueue, &sc->sc_tq); 431 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 432 "%s taskq", ifp->if_xname); 433 434 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 435 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 436 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 437 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 438 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 439 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 440 441 /* 442 * Allocate hardware transmit queues: one queue for 443 * beacon frames and one data queue for each QoS 444 * priority. Note that the hal handles resetting 445 * these queues at the needed time. 446 * 447 * XXX PS-Poll 448 */ 449 sc->sc_bhalq = ath_beaconq_setup(sc); 450 if (sc->sc_bhalq == (u_int) -1) { 451 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 452 error = EIO; 453 goto bad2; 454 } 455 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 456 if (sc->sc_cabq == NULL) { 457 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 458 error = EIO; 459 goto bad2; 460 } 461 /* NB: insure BK queue is the lowest priority h/w queue */ 462 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 463 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 464 ieee80211_wme_acnames[WME_AC_BK]); 465 error = EIO; 466 goto bad2; 467 } 468 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 469 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 470 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 471 /* 472 * Not enough hardware tx queues to properly do WME; 473 * just punt and assign them all to the same h/w queue. 474 * We could do a better job of this if, for example, 475 * we allocate queues when we switch from station to 476 * AP mode. 477 */ 478 if (sc->sc_ac2q[WME_AC_VI] != NULL) 479 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 480 if (sc->sc_ac2q[WME_AC_BE] != NULL) 481 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 482 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 483 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 484 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 485 } 486 487 /* 488 * Attach the TX completion function. 489 * 490 * The non-EDMA chips may have some special case optimisations; 491 * this method gives everyone a chance to attach cleanly. 492 */ 493 sc->sc_tx.xmit_attach_comp_func(sc); 494 495 /* 496 * Setup rate control. Some rate control modules 497 * call back to change the anntena state so expose 498 * the necessary entry points. 499 * XXX maybe belongs in struct ath_ratectrl? 500 */ 501 sc->sc_setdefantenna = ath_setdefantenna; 502 sc->sc_rc = ath_rate_attach(sc); 503 if (sc->sc_rc == NULL) { 504 error = EIO; 505 goto bad2; 506 } 507 508 /* Attach DFS module */ 509 if (! ath_dfs_attach(sc)) { 510 device_printf(sc->sc_dev, 511 "%s: unable to attach DFS\n", __func__); 512 error = EIO; 513 goto bad2; 514 } 515 516 /* Attach spectral module */ 517 if (ath_spectral_attach(sc) < 0) { 518 device_printf(sc->sc_dev, 519 "%s: unable to attach spectral\n", __func__); 520 error = EIO; 521 goto bad2; 522 } 523 524 /* Start DFS processing tasklet */ 525 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 526 527 /* Configure LED state */ 528 sc->sc_blinking = 0; 529 sc->sc_ledstate = 1; 530 sc->sc_ledon = 0; /* low true */ 531 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 532 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 533 534 /* 535 * Don't setup hardware-based blinking. 536 * 537 * Although some NICs may have this configured in the 538 * default reset register values, the user may wish 539 * to alter which pins have which function. 540 * 541 * The reference driver attaches the MAC network LED to GPIO1 and 542 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 543 * NIC has these reversed. 544 */ 545 sc->sc_hardled = (1 == 0); 546 sc->sc_led_net_pin = -1; 547 sc->sc_led_pwr_pin = -1; 548 /* 549 * Auto-enable soft led processing for IBM cards and for 550 * 5211 minipci cards. Users can also manually enable/disable 551 * support with a sysctl. 552 */ 553 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 554 ath_led_config(sc); 555 ath_hal_setledstate(ah, HAL_LED_INIT); 556 557 ifp->if_softc = sc; 558 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 559 ifp->if_transmit = ath_transmit; 560 ifp->if_qflush = ath_qflush; 561 ifp->if_ioctl = ath_ioctl; 562 ifp->if_init = ath_init; 563 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 564 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 565 IFQ_SET_READY(&ifp->if_snd); 566 567 ic->ic_ifp = ifp; 568 /* XXX not right but it's not used anywhere important */ 569 ic->ic_phytype = IEEE80211_T_OFDM; 570 ic->ic_opmode = IEEE80211_M_STA; 571 ic->ic_caps = 572 IEEE80211_C_STA /* station mode */ 573 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 574 | IEEE80211_C_HOSTAP /* hostap mode */ 575 | IEEE80211_C_MONITOR /* monitor mode */ 576 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 577 | IEEE80211_C_WDS /* 4-address traffic works */ 578 | IEEE80211_C_MBSS /* mesh point link mode */ 579 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 580 | IEEE80211_C_SHSLOT /* short slot time supported */ 581 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 582 #ifndef ATH_ENABLE_11N 583 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 584 #endif 585 | IEEE80211_C_TXFRAG /* handle tx frags */ 586 #ifdef ATH_ENABLE_DFS 587 | IEEE80211_C_DFS /* Enable radar detection */ 588 #endif 589 ; 590 /* 591 * Query the hal to figure out h/w crypto support. 592 */ 593 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 594 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 595 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 596 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 597 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 598 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 599 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 600 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 601 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 602 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 603 /* 604 * Check if h/w does the MIC and/or whether the 605 * separate key cache entries are required to 606 * handle both tx+rx MIC keys. 607 */ 608 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 609 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 610 /* 611 * If the h/w supports storing tx+rx MIC keys 612 * in one cache slot automatically enable use. 613 */ 614 if (ath_hal_hastkipsplit(ah) || 615 !ath_hal_settkipsplit(ah, AH_FALSE)) 616 sc->sc_splitmic = 1; 617 /* 618 * If the h/w can do TKIP MIC together with WME then 619 * we use it; otherwise we force the MIC to be done 620 * in software by the net80211 layer. 621 */ 622 if (ath_hal_haswmetkipmic(ah)) 623 sc->sc_wmetkipmic = 1; 624 } 625 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 626 /* 627 * Check for multicast key search support. 628 */ 629 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 630 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 631 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 632 } 633 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 634 /* 635 * Mark key cache slots associated with global keys 636 * as in use. If we knew TKIP was not to be used we 637 * could leave the +32, +64, and +32+64 slots free. 638 */ 639 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 640 setbit(sc->sc_keymap, i); 641 setbit(sc->sc_keymap, i+64); 642 if (sc->sc_splitmic) { 643 setbit(sc->sc_keymap, i+32); 644 setbit(sc->sc_keymap, i+32+64); 645 } 646 } 647 /* 648 * TPC support can be done either with a global cap or 649 * per-packet support. The latter is not available on 650 * all parts. We're a bit pedantic here as all parts 651 * support a global cap. 652 */ 653 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 654 ic->ic_caps |= IEEE80211_C_TXPMGT; 655 656 /* 657 * Mark WME capability only if we have sufficient 658 * hardware queues to do proper priority scheduling. 659 */ 660 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 661 ic->ic_caps |= IEEE80211_C_WME; 662 /* 663 * Check for misc other capabilities. 664 */ 665 if (ath_hal_hasbursting(ah)) 666 ic->ic_caps |= IEEE80211_C_BURST; 667 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 668 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 669 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 670 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 671 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 672 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 673 if (ath_hal_hasfastframes(ah)) 674 ic->ic_caps |= IEEE80211_C_FF; 675 wmodes = ath_hal_getwirelessmodes(ah); 676 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 677 ic->ic_caps |= IEEE80211_C_TURBOP; 678 #ifdef IEEE80211_SUPPORT_TDMA 679 if (ath_hal_macversion(ah) > 0x78) { 680 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 681 ic->ic_tdma_update = ath_tdma_update; 682 } 683 #endif 684 685 /* 686 * TODO: enforce that at least this many frames are available 687 * in the txbuf list before allowing data frames (raw or 688 * otherwise) to be transmitted. 689 */ 690 sc->sc_txq_data_minfree = 10; 691 /* 692 * Leave this as default to maintain legacy behaviour. 693 * Shortening the cabq/mcastq may end up causing some 694 * undesirable behaviour. 695 */ 696 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 697 698 /* 699 * How deep can the node software TX queue get whilst it's asleep. 700 */ 701 sc->sc_txq_node_psq_maxdepth = 16; 702 703 /* 704 * Default the maximum queue depth for a given node 705 * to 1/4'th the TX buffers, or 64, whichever 706 * is larger. 707 */ 708 sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4); 709 710 /* Enable CABQ by default */ 711 sc->sc_cabq_enable = 1; 712 713 /* 714 * Allow the TX and RX chainmasks to be overridden by 715 * environment variables and/or device.hints. 716 * 717 * This must be done early - before the hardware is 718 * calibrated or before the 802.11n stream calculation 719 * is done. 720 */ 721 if (resource_int_value(device_get_name(sc->sc_dev), 722 device_get_unit(sc->sc_dev), "rx_chainmask", 723 &rx_chainmask) == 0) { 724 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 725 rx_chainmask); 726 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 727 } 728 if (resource_int_value(device_get_name(sc->sc_dev), 729 device_get_unit(sc->sc_dev), "tx_chainmask", 730 &tx_chainmask) == 0) { 731 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 732 tx_chainmask); 733 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 734 } 735 736 /* 737 * Query the TX/RX chainmask configuration. 738 * 739 * This is only relevant for 11n devices. 740 */ 741 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 742 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 743 744 /* 745 * Disable MRR with protected frames by default. 746 * Only 802.11n series NICs can handle this. 747 */ 748 sc->sc_mrrprot = 0; /* XXX should be a capability */ 749 750 /* 751 * Query the enterprise mode information the HAL. 752 */ 753 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 754 &sc->sc_ent_cfg) == HAL_OK) 755 sc->sc_use_ent = 1; 756 757 #ifdef ATH_ENABLE_11N 758 /* 759 * Query HT capabilities 760 */ 761 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 762 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 763 uint32_t rxs, txs; 764 765 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 766 767 sc->sc_mrrprot = 1; /* XXX should be a capability */ 768 769 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 770 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 771 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 772 | IEEE80211_HTCAP_MAXAMSDU_3839 773 /* max A-MSDU length */ 774 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 775 ; 776 777 /* 778 * Enable short-GI for HT20 only if the hardware 779 * advertises support. 780 * Notably, anything earlier than the AR9287 doesn't. 781 */ 782 if ((ath_hal_getcapability(ah, 783 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 784 (wmodes & HAL_MODE_HT20)) { 785 device_printf(sc->sc_dev, 786 "[HT] enabling short-GI in 20MHz mode\n"); 787 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 788 } 789 790 if (wmodes & HAL_MODE_HT40) 791 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 792 | IEEE80211_HTCAP_SHORTGI40; 793 794 /* 795 * TX/RX streams need to be taken into account when 796 * negotiating which MCS rates it'll receive and 797 * what MCS rates are available for TX. 798 */ 799 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 800 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 801 ic->ic_txstream = txs; 802 ic->ic_rxstream = rxs; 803 804 /* 805 * Setup TX and RX STBC based on what the HAL allows and 806 * the currently configured chainmask set. 807 * Ie - don't enable STBC TX if only one chain is enabled. 808 * STBC RX is fine on a single RX chain; it just won't 809 * provide any real benefit. 810 */ 811 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 812 NULL) == HAL_OK) { 813 sc->sc_rx_stbc = 1; 814 device_printf(sc->sc_dev, 815 "[HT] 1 stream STBC receive enabled\n"); 816 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 817 } 818 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 819 NULL) == HAL_OK) { 820 sc->sc_tx_stbc = 1; 821 device_printf(sc->sc_dev, 822 "[HT] 1 stream STBC transmit enabled\n"); 823 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 824 } 825 826 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 827 &sc->sc_rts_aggr_limit); 828 if (sc->sc_rts_aggr_limit != (64 * 1024)) 829 device_printf(sc->sc_dev, 830 "[HT] RTS aggregates limited to %d KiB\n", 831 sc->sc_rts_aggr_limit / 1024); 832 833 device_printf(sc->sc_dev, 834 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 835 } 836 #endif 837 838 /* 839 * Initial aggregation settings. 840 */ 841 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 842 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 843 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 844 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 845 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 846 sc->sc_delim_min_pad = 0; 847 848 /* 849 * Check if the hardware requires PCI register serialisation. 850 * Some of the Owl based MACs require this. 851 */ 852 if (mp_ncpus > 1 && 853 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 854 0, NULL) == HAL_OK) { 855 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 856 device_printf(sc->sc_dev, 857 "Enabling register serialisation\n"); 858 } 859 860 /* 861 * Initialise the deferred completed RX buffer list. 862 */ 863 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 864 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 865 866 /* 867 * Indicate we need the 802.11 header padded to a 868 * 32-bit boundary for 4-address and QoS frames. 869 */ 870 ic->ic_flags |= IEEE80211_F_DATAPAD; 871 872 /* 873 * Query the hal about antenna support. 874 */ 875 sc->sc_defant = ath_hal_getdefantenna(ah); 876 877 /* 878 * Not all chips have the VEOL support we want to 879 * use with IBSS beacons; check here for it. 880 */ 881 sc->sc_hasveol = ath_hal_hasveol(ah); 882 883 /* get mac address from hardware */ 884 ath_hal_getmac(ah, macaddr); 885 if (sc->sc_hasbmask) 886 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 887 888 /* NB: used to size node table key mapping array */ 889 ic->ic_max_keyix = sc->sc_keymax; 890 /* call MI attach routine. */ 891 ieee80211_ifattach(ic, macaddr); 892 ic->ic_setregdomain = ath_setregdomain; 893 ic->ic_getradiocaps = ath_getradiocaps; 894 sc->sc_opmode = HAL_M_STA; 895 896 /* override default methods */ 897 ic->ic_newassoc = ath_newassoc; 898 ic->ic_updateslot = ath_updateslot; 899 ic->ic_wme.wme_update = ath_wme_update; 900 ic->ic_vap_create = ath_vap_create; 901 ic->ic_vap_delete = ath_vap_delete; 902 ic->ic_raw_xmit = ath_raw_xmit; 903 ic->ic_update_mcast = ath_update_mcast; 904 ic->ic_update_promisc = ath_update_promisc; 905 ic->ic_node_alloc = ath_node_alloc; 906 sc->sc_node_free = ic->ic_node_free; 907 ic->ic_node_free = ath_node_free; 908 sc->sc_node_cleanup = ic->ic_node_cleanup; 909 ic->ic_node_cleanup = ath_node_cleanup; 910 ic->ic_node_getsignal = ath_node_getsignal; 911 ic->ic_scan_start = ath_scan_start; 912 ic->ic_scan_end = ath_scan_end; 913 ic->ic_set_channel = ath_set_channel; 914 #ifdef ATH_ENABLE_11N 915 /* 802.11n specific - but just override anyway */ 916 sc->sc_addba_request = ic->ic_addba_request; 917 sc->sc_addba_response = ic->ic_addba_response; 918 sc->sc_addba_stop = ic->ic_addba_stop; 919 sc->sc_bar_response = ic->ic_bar_response; 920 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 921 922 ic->ic_addba_request = ath_addba_request; 923 ic->ic_addba_response = ath_addba_response; 924 ic->ic_addba_response_timeout = ath_addba_response_timeout; 925 ic->ic_addba_stop = ath_addba_stop; 926 ic->ic_bar_response = ath_bar_response; 927 928 ic->ic_update_chw = ath_update_chw; 929 #endif /* ATH_ENABLE_11N */ 930 931 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 932 /* 933 * There's one vendor bitmap entry in the RX radiotap 934 * header; make sure that's taken into account. 935 */ 936 ieee80211_radiotap_attachv(ic, 937 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 938 ATH_TX_RADIOTAP_PRESENT, 939 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 940 ATH_RX_RADIOTAP_PRESENT); 941 #else 942 /* 943 * No vendor bitmap/extensions are present. 944 */ 945 ieee80211_radiotap_attach(ic, 946 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 947 ATH_TX_RADIOTAP_PRESENT, 948 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 949 ATH_RX_RADIOTAP_PRESENT); 950 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 951 952 /* 953 * Setup the ALQ logging if required 954 */ 955 #ifdef ATH_DEBUG_ALQ 956 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 957 if_ath_alq_setcfg(&sc->sc_alq, 958 sc->sc_ah->ah_macVersion, 959 sc->sc_ah->ah_macRev, 960 sc->sc_ah->ah_phyRev, 961 sc->sc_ah->ah_magic); 962 #endif 963 964 /* 965 * Setup dynamic sysctl's now that country code and 966 * regdomain are available from the hal. 967 */ 968 ath_sysctlattach(sc); 969 ath_sysctl_stats_attach(sc); 970 ath_sysctl_hal_attach(sc); 971 972 if (bootverbose) 973 ieee80211_announce(ic); 974 ath_announce(sc); 975 return 0; 976 bad2: 977 ath_tx_cleanup(sc); 978 ath_desc_free(sc); 979 ath_txdma_teardown(sc); 980 ath_rxdma_teardown(sc); 981 bad: 982 if (ah) 983 ath_hal_detach(ah); 984 985 /* 986 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE.. 987 */ 988 if (ifp != NULL && ifp->if_vnet) { 989 CURVNET_SET(ifp->if_vnet); 990 if_free(ifp); 991 CURVNET_RESTORE(); 992 } else if (ifp != NULL) 993 if_free(ifp); 994 sc->sc_invalid = 1; 995 return error; 996 } 997 998 int 999 ath_detach(struct ath_softc *sc) 1000 { 1001 struct ifnet *ifp = sc->sc_ifp; 1002 1003 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1004 __func__, ifp->if_flags); 1005 1006 /* 1007 * NB: the order of these is important: 1008 * o stop the chip so no more interrupts will fire 1009 * o call the 802.11 layer before detaching the hal to 1010 * insure callbacks into the driver to delete global 1011 * key cache entries can be handled 1012 * o free the taskqueue which drains any pending tasks 1013 * o reclaim the tx queue data structures after calling 1014 * the 802.11 layer as we'll get called back to reclaim 1015 * node state and potentially want to use them 1016 * o to cleanup the tx queues the hal is called, so detach 1017 * it last 1018 * Other than that, it's straightforward... 1019 */ 1020 ath_stop(ifp); 1021 ieee80211_ifdetach(ifp->if_l2com); 1022 taskqueue_free(sc->sc_tq); 1023 #ifdef ATH_TX99_DIAG 1024 if (sc->sc_tx99 != NULL) 1025 sc->sc_tx99->detach(sc->sc_tx99); 1026 #endif 1027 ath_rate_detach(sc->sc_rc); 1028 #ifdef ATH_DEBUG_ALQ 1029 if_ath_alq_tidyup(&sc->sc_alq); 1030 #endif 1031 ath_spectral_detach(sc); 1032 ath_dfs_detach(sc); 1033 ath_desc_free(sc); 1034 ath_txdma_teardown(sc); 1035 ath_rxdma_teardown(sc); 1036 ath_tx_cleanup(sc); 1037 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1038 1039 CURVNET_SET(ifp->if_vnet); 1040 if_free(ifp); 1041 CURVNET_RESTORE(); 1042 1043 return 0; 1044 } 1045 1046 /* 1047 * MAC address handling for multiple BSS on the same radio. 1048 * The first vap uses the MAC address from the EEPROM. For 1049 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1050 * address and use the next six bits as an index. 1051 */ 1052 static void 1053 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1054 { 1055 int i; 1056 1057 if (clone && sc->sc_hasbmask) { 1058 /* NB: we only do this if h/w supports multiple bssid */ 1059 for (i = 0; i < 8; i++) 1060 if ((sc->sc_bssidmask & (1<<i)) == 0) 1061 break; 1062 if (i != 0) 1063 mac[0] |= (i << 2)|0x2; 1064 } else 1065 i = 0; 1066 sc->sc_bssidmask |= 1<<i; 1067 sc->sc_hwbssidmask[0] &= ~mac[0]; 1068 if (i == 0) 1069 sc->sc_nbssid0++; 1070 } 1071 1072 static void 1073 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1074 { 1075 int i = mac[0] >> 2; 1076 uint8_t mask; 1077 1078 if (i != 0 || --sc->sc_nbssid0 == 0) { 1079 sc->sc_bssidmask &= ~(1<<i); 1080 /* recalculate bssid mask from remaining addresses */ 1081 mask = 0xff; 1082 for (i = 1; i < 8; i++) 1083 if (sc->sc_bssidmask & (1<<i)) 1084 mask &= ~((i<<2)|0x2); 1085 sc->sc_hwbssidmask[0] |= mask; 1086 } 1087 } 1088 1089 /* 1090 * Assign a beacon xmit slot. We try to space out 1091 * assignments so when beacons are staggered the 1092 * traffic coming out of the cab q has maximal time 1093 * to go out before the next beacon is scheduled. 1094 */ 1095 static int 1096 assign_bslot(struct ath_softc *sc) 1097 { 1098 u_int slot, free; 1099 1100 free = 0; 1101 for (slot = 0; slot < ATH_BCBUF; slot++) 1102 if (sc->sc_bslot[slot] == NULL) { 1103 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1104 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1105 return slot; 1106 free = slot; 1107 /* NB: keep looking for a double slot */ 1108 } 1109 return free; 1110 } 1111 1112 static struct ieee80211vap * 1113 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1114 enum ieee80211_opmode opmode, int flags, 1115 const uint8_t bssid[IEEE80211_ADDR_LEN], 1116 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1117 { 1118 struct ath_softc *sc = ic->ic_ifp->if_softc; 1119 struct ath_vap *avp; 1120 struct ieee80211vap *vap; 1121 uint8_t mac[IEEE80211_ADDR_LEN]; 1122 int needbeacon, error; 1123 enum ieee80211_opmode ic_opmode; 1124 1125 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1126 M_80211_VAP, M_WAITOK | M_ZERO); 1127 needbeacon = 0; 1128 IEEE80211_ADDR_COPY(mac, mac0); 1129 1130 ATH_LOCK(sc); 1131 ic_opmode = opmode; /* default to opmode of new vap */ 1132 switch (opmode) { 1133 case IEEE80211_M_STA: 1134 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1135 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1136 goto bad; 1137 } 1138 if (sc->sc_nvaps) { 1139 /* 1140 * With multiple vaps we must fall back 1141 * to s/w beacon miss handling. 1142 */ 1143 flags |= IEEE80211_CLONE_NOBEACONS; 1144 } 1145 if (flags & IEEE80211_CLONE_NOBEACONS) { 1146 /* 1147 * Station mode w/o beacons are implemented w/ AP mode. 1148 */ 1149 ic_opmode = IEEE80211_M_HOSTAP; 1150 } 1151 break; 1152 case IEEE80211_M_IBSS: 1153 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1154 device_printf(sc->sc_dev, 1155 "only 1 ibss vap supported\n"); 1156 goto bad; 1157 } 1158 needbeacon = 1; 1159 break; 1160 case IEEE80211_M_AHDEMO: 1161 #ifdef IEEE80211_SUPPORT_TDMA 1162 if (flags & IEEE80211_CLONE_TDMA) { 1163 if (sc->sc_nvaps != 0) { 1164 device_printf(sc->sc_dev, 1165 "only 1 tdma vap supported\n"); 1166 goto bad; 1167 } 1168 needbeacon = 1; 1169 flags |= IEEE80211_CLONE_NOBEACONS; 1170 } 1171 /* fall thru... */ 1172 #endif 1173 case IEEE80211_M_MONITOR: 1174 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1175 /* 1176 * Adopt existing mode. Adding a monitor or ahdemo 1177 * vap to an existing configuration is of dubious 1178 * value but should be ok. 1179 */ 1180 /* XXX not right for monitor mode */ 1181 ic_opmode = ic->ic_opmode; 1182 } 1183 break; 1184 case IEEE80211_M_HOSTAP: 1185 case IEEE80211_M_MBSS: 1186 needbeacon = 1; 1187 break; 1188 case IEEE80211_M_WDS: 1189 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1190 device_printf(sc->sc_dev, 1191 "wds not supported in sta mode\n"); 1192 goto bad; 1193 } 1194 /* 1195 * Silently remove any request for a unique 1196 * bssid; WDS vap's always share the local 1197 * mac address. 1198 */ 1199 flags &= ~IEEE80211_CLONE_BSSID; 1200 if (sc->sc_nvaps == 0) 1201 ic_opmode = IEEE80211_M_HOSTAP; 1202 else 1203 ic_opmode = ic->ic_opmode; 1204 break; 1205 default: 1206 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1207 goto bad; 1208 } 1209 /* 1210 * Check that a beacon buffer is available; the code below assumes it. 1211 */ 1212 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1213 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1214 goto bad; 1215 } 1216 1217 /* STA, AHDEMO? */ 1218 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1219 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1220 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1221 } 1222 1223 vap = &avp->av_vap; 1224 /* XXX can't hold mutex across if_alloc */ 1225 ATH_UNLOCK(sc); 1226 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1227 bssid, mac); 1228 ATH_LOCK(sc); 1229 if (error != 0) { 1230 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1231 __func__, error); 1232 goto bad2; 1233 } 1234 1235 /* h/w crypto support */ 1236 vap->iv_key_alloc = ath_key_alloc; 1237 vap->iv_key_delete = ath_key_delete; 1238 vap->iv_key_set = ath_key_set; 1239 vap->iv_key_update_begin = ath_key_update_begin; 1240 vap->iv_key_update_end = ath_key_update_end; 1241 1242 /* override various methods */ 1243 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1244 vap->iv_recv_mgmt = ath_recv_mgmt; 1245 vap->iv_reset = ath_reset_vap; 1246 vap->iv_update_beacon = ath_beacon_update; 1247 avp->av_newstate = vap->iv_newstate; 1248 vap->iv_newstate = ath_newstate; 1249 avp->av_bmiss = vap->iv_bmiss; 1250 vap->iv_bmiss = ath_bmiss_vap; 1251 1252 avp->av_node_ps = vap->iv_node_ps; 1253 vap->iv_node_ps = ath_node_powersave; 1254 1255 avp->av_set_tim = vap->iv_set_tim; 1256 vap->iv_set_tim = ath_node_set_tim; 1257 1258 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1259 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1260 1261 /* Set default parameters */ 1262 1263 /* 1264 * Anything earlier than some AR9300 series MACs don't 1265 * support a smaller MPDU density. 1266 */ 1267 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1268 /* 1269 * All NICs can handle the maximum size, however 1270 * AR5416 based MACs can only TX aggregates w/ RTS 1271 * protection when the total aggregate size is <= 8k. 1272 * However, for now that's enforced by the TX path. 1273 */ 1274 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1275 1276 avp->av_bslot = -1; 1277 if (needbeacon) { 1278 /* 1279 * Allocate beacon state and setup the q for buffered 1280 * multicast frames. We know a beacon buffer is 1281 * available because we checked above. 1282 */ 1283 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1284 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1285 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1286 /* 1287 * Assign the vap to a beacon xmit slot. As above 1288 * this cannot fail to find a free one. 1289 */ 1290 avp->av_bslot = assign_bslot(sc); 1291 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1292 ("beacon slot %u not empty", avp->av_bslot)); 1293 sc->sc_bslot[avp->av_bslot] = vap; 1294 sc->sc_nbcnvaps++; 1295 } 1296 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1297 /* 1298 * Multple vaps are to transmit beacons and we 1299 * have h/w support for TSF adjusting; enable 1300 * use of staggered beacons. 1301 */ 1302 sc->sc_stagbeacons = 1; 1303 } 1304 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1305 } 1306 1307 ic->ic_opmode = ic_opmode; 1308 if (opmode != IEEE80211_M_WDS) { 1309 sc->sc_nvaps++; 1310 if (opmode == IEEE80211_M_STA) 1311 sc->sc_nstavaps++; 1312 if (opmode == IEEE80211_M_MBSS) 1313 sc->sc_nmeshvaps++; 1314 } 1315 switch (ic_opmode) { 1316 case IEEE80211_M_IBSS: 1317 sc->sc_opmode = HAL_M_IBSS; 1318 break; 1319 case IEEE80211_M_STA: 1320 sc->sc_opmode = HAL_M_STA; 1321 break; 1322 case IEEE80211_M_AHDEMO: 1323 #ifdef IEEE80211_SUPPORT_TDMA 1324 if (vap->iv_caps & IEEE80211_C_TDMA) { 1325 sc->sc_tdma = 1; 1326 /* NB: disable tsf adjust */ 1327 sc->sc_stagbeacons = 0; 1328 } 1329 /* 1330 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1331 * just ap mode. 1332 */ 1333 /* fall thru... */ 1334 #endif 1335 case IEEE80211_M_HOSTAP: 1336 case IEEE80211_M_MBSS: 1337 sc->sc_opmode = HAL_M_HOSTAP; 1338 break; 1339 case IEEE80211_M_MONITOR: 1340 sc->sc_opmode = HAL_M_MONITOR; 1341 break; 1342 default: 1343 /* XXX should not happen */ 1344 break; 1345 } 1346 if (sc->sc_hastsfadd) { 1347 /* 1348 * Configure whether or not TSF adjust should be done. 1349 */ 1350 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1351 } 1352 if (flags & IEEE80211_CLONE_NOBEACONS) { 1353 /* 1354 * Enable s/w beacon miss handling. 1355 */ 1356 sc->sc_swbmiss = 1; 1357 } 1358 ATH_UNLOCK(sc); 1359 1360 /* complete setup */ 1361 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1362 return vap; 1363 bad2: 1364 reclaim_address(sc, mac); 1365 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1366 bad: 1367 free(avp, M_80211_VAP); 1368 ATH_UNLOCK(sc); 1369 return NULL; 1370 } 1371 1372 static void 1373 ath_vap_delete(struct ieee80211vap *vap) 1374 { 1375 struct ieee80211com *ic = vap->iv_ic; 1376 struct ifnet *ifp = ic->ic_ifp; 1377 struct ath_softc *sc = ifp->if_softc; 1378 struct ath_hal *ah = sc->sc_ah; 1379 struct ath_vap *avp = ATH_VAP(vap); 1380 1381 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1382 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1383 /* 1384 * Quiesce the hardware while we remove the vap. In 1385 * particular we need to reclaim all references to 1386 * the vap state by any frames pending on the tx queues. 1387 */ 1388 ath_hal_intrset(ah, 0); /* disable interrupts */ 1389 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1390 /* XXX Do all frames from all vaps/nodes need draining here? */ 1391 ath_stoprecv(sc, 1); /* stop recv side */ 1392 } 1393 1394 ieee80211_vap_detach(vap); 1395 1396 /* 1397 * XXX Danger Will Robinson! Danger! 1398 * 1399 * Because ieee80211_vap_detach() can queue a frame (the station 1400 * diassociate message?) after we've drained the TXQ and 1401 * flushed the software TXQ, we will end up with a frame queued 1402 * to a node whose vap is about to be freed. 1403 * 1404 * To work around this, flush the hardware/software again. 1405 * This may be racy - the ath task may be running and the packet 1406 * may be being scheduled between sw->hw txq. Tsk. 1407 * 1408 * TODO: figure out why a new node gets allocated somewhere around 1409 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1410 * call!) 1411 */ 1412 1413 ath_draintxq(sc, ATH_RESET_DEFAULT); 1414 1415 ATH_LOCK(sc); 1416 /* 1417 * Reclaim beacon state. Note this must be done before 1418 * the vap instance is reclaimed as we may have a reference 1419 * to it in the buffer for the beacon frame. 1420 */ 1421 if (avp->av_bcbuf != NULL) { 1422 if (avp->av_bslot != -1) { 1423 sc->sc_bslot[avp->av_bslot] = NULL; 1424 sc->sc_nbcnvaps--; 1425 } 1426 ath_beacon_return(sc, avp->av_bcbuf); 1427 avp->av_bcbuf = NULL; 1428 if (sc->sc_nbcnvaps == 0) { 1429 sc->sc_stagbeacons = 0; 1430 if (sc->sc_hastsfadd) 1431 ath_hal_settsfadjust(sc->sc_ah, 0); 1432 } 1433 /* 1434 * Reclaim any pending mcast frames for the vap. 1435 */ 1436 ath_tx_draintxq(sc, &avp->av_mcastq); 1437 } 1438 /* 1439 * Update bookkeeping. 1440 */ 1441 if (vap->iv_opmode == IEEE80211_M_STA) { 1442 sc->sc_nstavaps--; 1443 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1444 sc->sc_swbmiss = 0; 1445 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1446 vap->iv_opmode == IEEE80211_M_MBSS) { 1447 reclaim_address(sc, vap->iv_myaddr); 1448 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1449 if (vap->iv_opmode == IEEE80211_M_MBSS) 1450 sc->sc_nmeshvaps--; 1451 } 1452 if (vap->iv_opmode != IEEE80211_M_WDS) 1453 sc->sc_nvaps--; 1454 #ifdef IEEE80211_SUPPORT_TDMA 1455 /* TDMA operation ceases when the last vap is destroyed */ 1456 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1457 sc->sc_tdma = 0; 1458 sc->sc_swbmiss = 0; 1459 } 1460 #endif 1461 free(avp, M_80211_VAP); 1462 1463 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1464 /* 1465 * Restart rx+tx machines if still running (RUNNING will 1466 * be reset if we just destroyed the last vap). 1467 */ 1468 if (ath_startrecv(sc) != 0) 1469 if_printf(ifp, "%s: unable to restart recv logic\n", 1470 __func__); 1471 if (sc->sc_beacons) { /* restart beacons */ 1472 #ifdef IEEE80211_SUPPORT_TDMA 1473 if (sc->sc_tdma) 1474 ath_tdma_config(sc, NULL); 1475 else 1476 #endif 1477 ath_beacon_config(sc, NULL); 1478 } 1479 ath_hal_intrset(ah, sc->sc_imask); 1480 } 1481 ATH_UNLOCK(sc); 1482 } 1483 1484 void 1485 ath_suspend(struct ath_softc *sc) 1486 { 1487 struct ifnet *ifp = sc->sc_ifp; 1488 struct ieee80211com *ic = ifp->if_l2com; 1489 1490 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1491 __func__, ifp->if_flags); 1492 1493 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1494 1495 ieee80211_suspend_all(ic); 1496 /* 1497 * NB: don't worry about putting the chip in low power 1498 * mode; pci will power off our socket on suspend and 1499 * CardBus detaches the device. 1500 */ 1501 1502 /* 1503 * XXX ensure none of the taskqueues are running 1504 * XXX ensure sc_invalid is 1 1505 * XXX ensure the calibration callout is disabled 1506 */ 1507 1508 /* Disable the PCIe PHY, complete with workarounds */ 1509 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1510 } 1511 1512 /* 1513 * Reset the key cache since some parts do not reset the 1514 * contents on resume. First we clear all entries, then 1515 * re-load keys that the 802.11 layer assumes are setup 1516 * in h/w. 1517 */ 1518 static void 1519 ath_reset_keycache(struct ath_softc *sc) 1520 { 1521 struct ifnet *ifp = sc->sc_ifp; 1522 struct ieee80211com *ic = ifp->if_l2com; 1523 struct ath_hal *ah = sc->sc_ah; 1524 int i; 1525 1526 for (i = 0; i < sc->sc_keymax; i++) 1527 ath_hal_keyreset(ah, i); 1528 ieee80211_crypto_reload_keys(ic); 1529 } 1530 1531 /* 1532 * Fetch the current chainmask configuration based on the current 1533 * operating channel and options. 1534 */ 1535 static void 1536 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1537 { 1538 1539 /* 1540 * Set TX chainmask to the currently configured chainmask; 1541 * the TX chainmask depends upon the current operating mode. 1542 */ 1543 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1544 if (IEEE80211_IS_CHAN_HT(chan)) { 1545 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1546 } else { 1547 sc->sc_cur_txchainmask = 1; 1548 } 1549 1550 DPRINTF(sc, ATH_DEBUG_RESET, 1551 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1552 __func__, 1553 sc->sc_cur_txchainmask, 1554 sc->sc_cur_rxchainmask); 1555 } 1556 1557 void 1558 ath_resume(struct ath_softc *sc) 1559 { 1560 struct ifnet *ifp = sc->sc_ifp; 1561 struct ieee80211com *ic = ifp->if_l2com; 1562 struct ath_hal *ah = sc->sc_ah; 1563 HAL_STATUS status; 1564 1565 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1566 __func__, ifp->if_flags); 1567 1568 /* Re-enable PCIe, re-enable the PCIe bus */ 1569 ath_hal_enablepcie(ah, 0, 0); 1570 1571 /* 1572 * Must reset the chip before we reload the 1573 * keycache as we were powered down on suspend. 1574 */ 1575 ath_update_chainmasks(sc, 1576 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1577 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1578 sc->sc_cur_rxchainmask); 1579 ath_hal_reset(ah, sc->sc_opmode, 1580 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1581 AH_FALSE, &status); 1582 ath_reset_keycache(sc); 1583 1584 /* Let DFS at it in case it's a DFS channel */ 1585 ath_dfs_radar_enable(sc, ic->ic_curchan); 1586 1587 /* Let spectral at in case spectral is enabled */ 1588 ath_spectral_enable(sc, ic->ic_curchan); 1589 1590 /* 1591 * If we're doing TDMA, enforce the TXOP limitation for chips that 1592 * support it. 1593 */ 1594 if (sc->sc_hasenforcetxop && sc->sc_tdma) 1595 ath_hal_setenforcetxop(sc->sc_ah, 1); 1596 else 1597 ath_hal_setenforcetxop(sc->sc_ah, 0); 1598 1599 /* Restore the LED configuration */ 1600 ath_led_config(sc); 1601 ath_hal_setledstate(ah, HAL_LED_INIT); 1602 1603 if (sc->sc_resume_up) 1604 ieee80211_resume_all(ic); 1605 1606 /* XXX beacons ? */ 1607 } 1608 1609 void 1610 ath_shutdown(struct ath_softc *sc) 1611 { 1612 struct ifnet *ifp = sc->sc_ifp; 1613 1614 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1615 __func__, ifp->if_flags); 1616 1617 ath_stop(ifp); 1618 /* NB: no point powering down chip as we're about to reboot */ 1619 } 1620 1621 /* 1622 * Interrupt handler. Most of the actual processing is deferred. 1623 */ 1624 void 1625 ath_intr(void *arg) 1626 { 1627 struct ath_softc *sc = arg; 1628 struct ifnet *ifp = sc->sc_ifp; 1629 struct ath_hal *ah = sc->sc_ah; 1630 HAL_INT status = 0; 1631 uint32_t txqs; 1632 1633 /* 1634 * If we're inside a reset path, just print a warning and 1635 * clear the ISR. The reset routine will finish it for us. 1636 */ 1637 ATH_PCU_LOCK(sc); 1638 if (sc->sc_inreset_cnt) { 1639 HAL_INT status; 1640 ath_hal_getisr(ah, &status); /* clear ISR */ 1641 ath_hal_intrset(ah, 0); /* disable further intr's */ 1642 DPRINTF(sc, ATH_DEBUG_ANY, 1643 "%s: in reset, ignoring: status=0x%x\n", 1644 __func__, status); 1645 ATH_PCU_UNLOCK(sc); 1646 return; 1647 } 1648 1649 if (sc->sc_invalid) { 1650 /* 1651 * The hardware is not ready/present, don't touch anything. 1652 * Note this can happen early on if the IRQ is shared. 1653 */ 1654 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1655 ATH_PCU_UNLOCK(sc); 1656 return; 1657 } 1658 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1659 ATH_PCU_UNLOCK(sc); 1660 return; 1661 } 1662 1663 if ((ifp->if_flags & IFF_UP) == 0 || 1664 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1665 HAL_INT status; 1666 1667 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1668 __func__, ifp->if_flags); 1669 ath_hal_getisr(ah, &status); /* clear ISR */ 1670 ath_hal_intrset(ah, 0); /* disable further intr's */ 1671 ATH_PCU_UNLOCK(sc); 1672 return; 1673 } 1674 1675 /* 1676 * Figure out the reason(s) for the interrupt. Note 1677 * that the hal returns a pseudo-ISR that may include 1678 * bits we haven't explicitly enabled so we mask the 1679 * value to insure we only process bits we requested. 1680 */ 1681 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1682 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1683 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 1684 #ifdef ATH_DEBUG_ALQ 1685 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 1686 ah->ah_syncstate); 1687 #endif /* ATH_DEBUG_ALQ */ 1688 #ifdef ATH_KTR_INTR_DEBUG 1689 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 1690 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1691 ah->ah_intrstate[0], 1692 ah->ah_intrstate[1], 1693 ah->ah_intrstate[2], 1694 ah->ah_intrstate[3], 1695 ah->ah_intrstate[6]); 1696 #endif 1697 1698 /* Squirrel away SYNC interrupt debugging */ 1699 if (ah->ah_syncstate != 0) { 1700 int i; 1701 for (i = 0; i < 32; i++) 1702 if (ah->ah_syncstate & (i << i)) 1703 sc->sc_intr_stats.sync_intr[i]++; 1704 } 1705 1706 status &= sc->sc_imask; /* discard unasked for bits */ 1707 1708 /* Short-circuit un-handled interrupts */ 1709 if (status == 0x0) { 1710 ATH_PCU_UNLOCK(sc); 1711 return; 1712 } 1713 1714 /* 1715 * Take a note that we're inside the interrupt handler, so 1716 * the reset routines know to wait. 1717 */ 1718 sc->sc_intr_cnt++; 1719 ATH_PCU_UNLOCK(sc); 1720 1721 /* 1722 * Handle the interrupt. We won't run concurrent with the reset 1723 * or channel change routines as they'll wait for sc_intr_cnt 1724 * to be 0 before continuing. 1725 */ 1726 if (status & HAL_INT_FATAL) { 1727 sc->sc_stats.ast_hardware++; 1728 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1729 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1730 } else { 1731 if (status & HAL_INT_SWBA) { 1732 /* 1733 * Software beacon alert--time to send a beacon. 1734 * Handle beacon transmission directly; deferring 1735 * this is too slow to meet timing constraints 1736 * under load. 1737 */ 1738 #ifdef IEEE80211_SUPPORT_TDMA 1739 if (sc->sc_tdma) { 1740 if (sc->sc_tdmaswba == 0) { 1741 struct ieee80211com *ic = ifp->if_l2com; 1742 struct ieee80211vap *vap = 1743 TAILQ_FIRST(&ic->ic_vaps); 1744 ath_tdma_beacon_send(sc, vap); 1745 sc->sc_tdmaswba = 1746 vap->iv_tdma->tdma_bintval; 1747 } else 1748 sc->sc_tdmaswba--; 1749 } else 1750 #endif 1751 { 1752 ath_beacon_proc(sc, 0); 1753 #ifdef IEEE80211_SUPPORT_SUPERG 1754 /* 1755 * Schedule the rx taskq in case there's no 1756 * traffic so any frames held on the staging 1757 * queue are aged and potentially flushed. 1758 */ 1759 sc->sc_rx.recv_sched(sc, 1); 1760 #endif 1761 } 1762 } 1763 if (status & HAL_INT_RXEOL) { 1764 int imask; 1765 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 1766 ATH_PCU_LOCK(sc); 1767 /* 1768 * NB: the hardware should re-read the link when 1769 * RXE bit is written, but it doesn't work at 1770 * least on older hardware revs. 1771 */ 1772 sc->sc_stats.ast_rxeol++; 1773 /* 1774 * Disable RXEOL/RXORN - prevent an interrupt 1775 * storm until the PCU logic can be reset. 1776 * In case the interface is reset some other 1777 * way before "sc_kickpcu" is called, don't 1778 * modify sc_imask - that way if it is reset 1779 * by a call to ath_reset() somehow, the 1780 * interrupt mask will be correctly reprogrammed. 1781 */ 1782 imask = sc->sc_imask; 1783 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1784 ath_hal_intrset(ah, imask); 1785 /* 1786 * Only blank sc_rxlink if we've not yet kicked 1787 * the PCU. 1788 * 1789 * This isn't entirely correct - the correct solution 1790 * would be to have a PCU lock and engage that for 1791 * the duration of the PCU fiddling; which would include 1792 * running the RX process. Otherwise we could end up 1793 * messing up the RX descriptor chain and making the 1794 * RX desc list much shorter. 1795 */ 1796 if (! sc->sc_kickpcu) 1797 sc->sc_rxlink = NULL; 1798 sc->sc_kickpcu = 1; 1799 ATH_PCU_UNLOCK(sc); 1800 /* 1801 * Enqueue an RX proc, to handled whatever 1802 * is in the RX queue. 1803 * This will then kick the PCU. 1804 */ 1805 sc->sc_rx.recv_sched(sc, 1); 1806 } 1807 if (status & HAL_INT_TXURN) { 1808 sc->sc_stats.ast_txurn++; 1809 /* bump tx trigger level */ 1810 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1811 } 1812 /* 1813 * Handle both the legacy and RX EDMA interrupt bits. 1814 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1815 */ 1816 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1817 sc->sc_stats.ast_rx_intr++; 1818 sc->sc_rx.recv_sched(sc, 1); 1819 } 1820 if (status & HAL_INT_TX) { 1821 sc->sc_stats.ast_tx_intr++; 1822 /* 1823 * Grab all the currently set bits in the HAL txq bitmap 1824 * and blank them. This is the only place we should be 1825 * doing this. 1826 */ 1827 if (! sc->sc_isedma) { 1828 ATH_PCU_LOCK(sc); 1829 txqs = 0xffffffff; 1830 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1831 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 1832 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 1833 txqs, 1834 sc->sc_txq_active, 1835 sc->sc_txq_active | txqs); 1836 sc->sc_txq_active |= txqs; 1837 ATH_PCU_UNLOCK(sc); 1838 } 1839 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1840 } 1841 if (status & HAL_INT_BMISS) { 1842 sc->sc_stats.ast_bmiss++; 1843 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1844 } 1845 if (status & HAL_INT_GTT) 1846 sc->sc_stats.ast_tx_timeout++; 1847 if (status & HAL_INT_CST) 1848 sc->sc_stats.ast_tx_cst++; 1849 if (status & HAL_INT_MIB) { 1850 sc->sc_stats.ast_mib++; 1851 ATH_PCU_LOCK(sc); 1852 /* 1853 * Disable interrupts until we service the MIB 1854 * interrupt; otherwise it will continue to fire. 1855 */ 1856 ath_hal_intrset(ah, 0); 1857 /* 1858 * Let the hal handle the event. We assume it will 1859 * clear whatever condition caused the interrupt. 1860 */ 1861 ath_hal_mibevent(ah, &sc->sc_halstats); 1862 /* 1863 * Don't reset the interrupt if we've just 1864 * kicked the PCU, or we may get a nested 1865 * RXEOL before the rxproc has had a chance 1866 * to run. 1867 */ 1868 if (sc->sc_kickpcu == 0) 1869 ath_hal_intrset(ah, sc->sc_imask); 1870 ATH_PCU_UNLOCK(sc); 1871 } 1872 if (status & HAL_INT_RXORN) { 1873 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1874 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 1875 sc->sc_stats.ast_rxorn++; 1876 } 1877 } 1878 ATH_PCU_LOCK(sc); 1879 sc->sc_intr_cnt--; 1880 ATH_PCU_UNLOCK(sc); 1881 } 1882 1883 static void 1884 ath_fatal_proc(void *arg, int pending) 1885 { 1886 struct ath_softc *sc = arg; 1887 struct ifnet *ifp = sc->sc_ifp; 1888 u_int32_t *state; 1889 u_int32_t len; 1890 void *sp; 1891 1892 if_printf(ifp, "hardware error; resetting\n"); 1893 /* 1894 * Fatal errors are unrecoverable. Typically these 1895 * are caused by DMA errors. Collect h/w state from 1896 * the hal so we can diagnose what's going on. 1897 */ 1898 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1899 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1900 state = sp; 1901 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1902 state[0], state[1] , state[2], state[3], 1903 state[4], state[5]); 1904 } 1905 ath_reset(ifp, ATH_RESET_NOLOSS); 1906 } 1907 1908 static void 1909 ath_bmiss_vap(struct ieee80211vap *vap) 1910 { 1911 /* 1912 * Workaround phantom bmiss interrupts by sanity-checking 1913 * the time of our last rx'd frame. If it is within the 1914 * beacon miss interval then ignore the interrupt. If it's 1915 * truly a bmiss we'll get another interrupt soon and that'll 1916 * be dispatched up for processing. Note this applies only 1917 * for h/w beacon miss events. 1918 */ 1919 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1920 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1921 struct ath_softc *sc = ifp->if_softc; 1922 u_int64_t lastrx = sc->sc_lastrx; 1923 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1924 /* XXX should take a locked ref to iv_bss */ 1925 u_int bmisstimeout = 1926 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1927 1928 DPRINTF(sc, ATH_DEBUG_BEACON, 1929 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1930 __func__, (unsigned long long) tsf, 1931 (unsigned long long)(tsf - lastrx), 1932 (unsigned long long) lastrx, bmisstimeout); 1933 1934 if (tsf - lastrx <= bmisstimeout) { 1935 sc->sc_stats.ast_bmiss_phantom++; 1936 return; 1937 } 1938 } 1939 ATH_VAP(vap)->av_bmiss(vap); 1940 } 1941 1942 int 1943 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1944 { 1945 uint32_t rsize; 1946 void *sp; 1947 1948 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1949 return 0; 1950 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1951 *hangs = *(uint32_t *)sp; 1952 return 1; 1953 } 1954 1955 static void 1956 ath_bmiss_proc(void *arg, int pending) 1957 { 1958 struct ath_softc *sc = arg; 1959 struct ifnet *ifp = sc->sc_ifp; 1960 uint32_t hangs; 1961 1962 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1963 1964 /* 1965 * Do a reset upon any becaon miss event. 1966 * 1967 * It may be a non-recognised RX clear hang which needs a reset 1968 * to clear. 1969 */ 1970 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1971 ath_reset(ifp, ATH_RESET_NOLOSS); 1972 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1973 } else { 1974 ath_reset(ifp, ATH_RESET_NOLOSS); 1975 ieee80211_beacon_miss(ifp->if_l2com); 1976 } 1977 } 1978 1979 /* 1980 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1981 * calcs together with WME. If necessary disable the crypto 1982 * hardware and mark the 802.11 state so keys will be setup 1983 * with the MIC work done in software. 1984 */ 1985 static void 1986 ath_settkipmic(struct ath_softc *sc) 1987 { 1988 struct ifnet *ifp = sc->sc_ifp; 1989 struct ieee80211com *ic = ifp->if_l2com; 1990 1991 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1992 if (ic->ic_flags & IEEE80211_F_WME) { 1993 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1994 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1995 } else { 1996 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1997 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1998 } 1999 } 2000 } 2001 2002 static void 2003 ath_init(void *arg) 2004 { 2005 struct ath_softc *sc = (struct ath_softc *) arg; 2006 struct ifnet *ifp = sc->sc_ifp; 2007 struct ieee80211com *ic = ifp->if_l2com; 2008 struct ath_hal *ah = sc->sc_ah; 2009 HAL_STATUS status; 2010 2011 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 2012 __func__, ifp->if_flags); 2013 2014 ATH_LOCK(sc); 2015 /* 2016 * Stop anything previously setup. This is safe 2017 * whether this is the first time through or not. 2018 */ 2019 ath_stop_locked(ifp); 2020 2021 /* 2022 * The basic interface to setting the hardware in a good 2023 * state is ``reset''. On return the hardware is known to 2024 * be powered up and with interrupts disabled. This must 2025 * be followed by initialization of the appropriate bits 2026 * and then setup of the interrupt mask. 2027 */ 2028 ath_settkipmic(sc); 2029 ath_update_chainmasks(sc, ic->ic_curchan); 2030 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2031 sc->sc_cur_rxchainmask); 2032 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 2033 if_printf(ifp, "unable to reset hardware; hal status %u\n", 2034 status); 2035 ATH_UNLOCK(sc); 2036 return; 2037 } 2038 ath_chan_change(sc, ic->ic_curchan); 2039 2040 /* Let DFS at it in case it's a DFS channel */ 2041 ath_dfs_radar_enable(sc, ic->ic_curchan); 2042 2043 /* Let spectral at in case spectral is enabled */ 2044 ath_spectral_enable(sc, ic->ic_curchan); 2045 2046 /* 2047 * If we're doing TDMA, enforce the TXOP limitation for chips that 2048 * support it. 2049 */ 2050 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2051 ath_hal_setenforcetxop(sc->sc_ah, 1); 2052 else 2053 ath_hal_setenforcetxop(sc->sc_ah, 0); 2054 2055 /* 2056 * Likewise this is set during reset so update 2057 * state cached in the driver. 2058 */ 2059 sc->sc_diversity = ath_hal_getdiversity(ah); 2060 sc->sc_lastlongcal = 0; 2061 sc->sc_resetcal = 1; 2062 sc->sc_lastcalreset = 0; 2063 sc->sc_lastani = 0; 2064 sc->sc_lastshortcal = 0; 2065 sc->sc_doresetcal = AH_FALSE; 2066 /* 2067 * Beacon timers were cleared here; give ath_newstate() 2068 * a hint that the beacon timers should be poked when 2069 * things transition to the RUN state. 2070 */ 2071 sc->sc_beacons = 0; 2072 2073 /* 2074 * Setup the hardware after reset: the key cache 2075 * is filled as needed and the receive engine is 2076 * set going. Frame transmit is handled entirely 2077 * in the frame output path; there's nothing to do 2078 * here except setup the interrupt mask. 2079 */ 2080 if (ath_startrecv(sc) != 0) { 2081 if_printf(ifp, "unable to start recv logic\n"); 2082 ATH_UNLOCK(sc); 2083 return; 2084 } 2085 2086 /* 2087 * Enable interrupts. 2088 */ 2089 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2090 | HAL_INT_RXEOL | HAL_INT_RXORN 2091 | HAL_INT_TXURN 2092 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2093 2094 /* 2095 * Enable RX EDMA bits. Note these overlap with 2096 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2097 */ 2098 if (sc->sc_isedma) 2099 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2100 2101 /* 2102 * Enable MIB interrupts when there are hardware phy counters. 2103 * Note we only do this (at the moment) for station mode. 2104 */ 2105 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2106 sc->sc_imask |= HAL_INT_MIB; 2107 2108 /* Enable global TX timeout and carrier sense timeout if available */ 2109 if (ath_hal_gtxto_supported(ah)) 2110 sc->sc_imask |= HAL_INT_GTT; 2111 2112 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2113 __func__, sc->sc_imask); 2114 2115 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2116 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2117 ath_hal_intrset(ah, sc->sc_imask); 2118 2119 ATH_UNLOCK(sc); 2120 2121 #ifdef ATH_TX99_DIAG 2122 if (sc->sc_tx99 != NULL) 2123 sc->sc_tx99->start(sc->sc_tx99); 2124 else 2125 #endif 2126 ieee80211_start_all(ic); /* start all vap's */ 2127 } 2128 2129 static void 2130 ath_stop_locked(struct ifnet *ifp) 2131 { 2132 struct ath_softc *sc = ifp->if_softc; 2133 struct ath_hal *ah = sc->sc_ah; 2134 2135 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 2136 __func__, sc->sc_invalid, ifp->if_flags); 2137 2138 ATH_LOCK_ASSERT(sc); 2139 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2140 /* 2141 * Shutdown the hardware and driver: 2142 * reset 802.11 state machine 2143 * turn off timers 2144 * disable interrupts 2145 * turn off the radio 2146 * clear transmit machinery 2147 * clear receive machinery 2148 * drain and release tx queues 2149 * reclaim beacon resources 2150 * power down hardware 2151 * 2152 * Note that some of this work is not possible if the 2153 * hardware is gone (invalid). 2154 */ 2155 #ifdef ATH_TX99_DIAG 2156 if (sc->sc_tx99 != NULL) 2157 sc->sc_tx99->stop(sc->sc_tx99); 2158 #endif 2159 callout_stop(&sc->sc_wd_ch); 2160 sc->sc_wd_timer = 0; 2161 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2162 if (!sc->sc_invalid) { 2163 if (sc->sc_softled) { 2164 callout_stop(&sc->sc_ledtimer); 2165 ath_hal_gpioset(ah, sc->sc_ledpin, 2166 !sc->sc_ledon); 2167 sc->sc_blinking = 0; 2168 } 2169 ath_hal_intrset(ah, 0); 2170 } 2171 ath_draintxq(sc, ATH_RESET_DEFAULT); 2172 if (!sc->sc_invalid) { 2173 ath_stoprecv(sc, 1); 2174 ath_hal_phydisable(ah); 2175 } else 2176 sc->sc_rxlink = NULL; 2177 ath_beacon_free(sc); /* XXX not needed */ 2178 } 2179 } 2180 2181 #define MAX_TXRX_ITERATIONS 1000 2182 static void 2183 ath_txrx_stop_locked(struct ath_softc *sc) 2184 { 2185 int i = MAX_TXRX_ITERATIONS; 2186 2187 ATH_UNLOCK_ASSERT(sc); 2188 ATH_PCU_LOCK_ASSERT(sc); 2189 2190 /* 2191 * Sleep until all the pending operations have completed. 2192 * 2193 * The caller must ensure that reset has been incremented 2194 * or the pending operations may continue being queued. 2195 */ 2196 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2197 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2198 if (i <= 0) 2199 break; 2200 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 2201 i--; 2202 } 2203 2204 if (i <= 0) 2205 device_printf(sc->sc_dev, 2206 "%s: didn't finish after %d iterations\n", 2207 __func__, MAX_TXRX_ITERATIONS); 2208 } 2209 #undef MAX_TXRX_ITERATIONS 2210 2211 #if 0 2212 static void 2213 ath_txrx_stop(struct ath_softc *sc) 2214 { 2215 ATH_UNLOCK_ASSERT(sc); 2216 ATH_PCU_UNLOCK_ASSERT(sc); 2217 2218 ATH_PCU_LOCK(sc); 2219 ath_txrx_stop_locked(sc); 2220 ATH_PCU_UNLOCK(sc); 2221 } 2222 #endif 2223 2224 static void 2225 ath_txrx_start(struct ath_softc *sc) 2226 { 2227 2228 taskqueue_unblock(sc->sc_tq); 2229 } 2230 2231 /* 2232 * Grab the reset lock, and wait around until noone else 2233 * is trying to do anything with it. 2234 * 2235 * This is totally horrible but we can't hold this lock for 2236 * long enough to do TX/RX or we end up with net80211/ip stack 2237 * LORs and eventual deadlock. 2238 * 2239 * "dowait" signals whether to spin, waiting for the reset 2240 * lock count to reach 0. This should (for now) only be used 2241 * during the reset path, as the rest of the code may not 2242 * be locking-reentrant enough to behave correctly. 2243 * 2244 * Another, cleaner way should be found to serialise all of 2245 * these operations. 2246 */ 2247 #define MAX_RESET_ITERATIONS 10 2248 static int 2249 ath_reset_grablock(struct ath_softc *sc, int dowait) 2250 { 2251 int w = 0; 2252 int i = MAX_RESET_ITERATIONS; 2253 2254 ATH_PCU_LOCK_ASSERT(sc); 2255 do { 2256 if (sc->sc_inreset_cnt == 0) { 2257 w = 1; 2258 break; 2259 } 2260 if (dowait == 0) { 2261 w = 0; 2262 break; 2263 } 2264 ATH_PCU_UNLOCK(sc); 2265 pause("ath_reset_grablock", 1); 2266 i--; 2267 ATH_PCU_LOCK(sc); 2268 } while (i > 0); 2269 2270 /* 2271 * We always increment the refcounter, regardless 2272 * of whether we succeeded to get it in an exclusive 2273 * way. 2274 */ 2275 sc->sc_inreset_cnt++; 2276 2277 if (i <= 0) 2278 device_printf(sc->sc_dev, 2279 "%s: didn't finish after %d iterations\n", 2280 __func__, MAX_RESET_ITERATIONS); 2281 2282 if (w == 0) 2283 device_printf(sc->sc_dev, 2284 "%s: warning, recursive reset path!\n", 2285 __func__); 2286 2287 return w; 2288 } 2289 #undef MAX_RESET_ITERATIONS 2290 2291 /* 2292 * XXX TODO: write ath_reset_releaselock 2293 */ 2294 2295 static void 2296 ath_stop(struct ifnet *ifp) 2297 { 2298 struct ath_softc *sc = ifp->if_softc; 2299 2300 ATH_LOCK(sc); 2301 ath_stop_locked(ifp); 2302 ATH_UNLOCK(sc); 2303 } 2304 2305 /* 2306 * Reset the hardware w/o losing operational state. This is 2307 * basically a more efficient way of doing ath_stop, ath_init, 2308 * followed by state transitions to the current 802.11 2309 * operational state. Used to recover from various errors and 2310 * to reset or reload hardware state. 2311 */ 2312 int 2313 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2314 { 2315 struct ath_softc *sc = ifp->if_softc; 2316 struct ieee80211com *ic = ifp->if_l2com; 2317 struct ath_hal *ah = sc->sc_ah; 2318 HAL_STATUS status; 2319 int i; 2320 2321 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2322 2323 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2324 ATH_PCU_UNLOCK_ASSERT(sc); 2325 ATH_UNLOCK_ASSERT(sc); 2326 2327 /* Try to (stop any further TX/RX from occuring */ 2328 taskqueue_block(sc->sc_tq); 2329 2330 ATH_PCU_LOCK(sc); 2331 ath_hal_intrset(ah, 0); /* disable interrupts */ 2332 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2333 if (ath_reset_grablock(sc, 1) == 0) { 2334 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2335 __func__); 2336 } 2337 ATH_PCU_UNLOCK(sc); 2338 2339 /* 2340 * Should now wait for pending TX/RX to complete 2341 * and block future ones from occuring. This needs to be 2342 * done before the TX queue is drained. 2343 */ 2344 ath_draintxq(sc, reset_type); /* stop xmit side */ 2345 2346 /* 2347 * Regardless of whether we're doing a no-loss flush or 2348 * not, stop the PCU and handle what's in the RX queue. 2349 * That way frames aren't dropped which shouldn't be. 2350 */ 2351 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2352 ath_rx_flush(sc); 2353 2354 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2355 /* NB: indicate channel change so we do a full reset */ 2356 ath_update_chainmasks(sc, ic->ic_curchan); 2357 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2358 sc->sc_cur_rxchainmask); 2359 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2360 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2361 __func__, status); 2362 sc->sc_diversity = ath_hal_getdiversity(ah); 2363 2364 /* Let DFS at it in case it's a DFS channel */ 2365 ath_dfs_radar_enable(sc, ic->ic_curchan); 2366 2367 /* Let spectral at in case spectral is enabled */ 2368 ath_spectral_enable(sc, ic->ic_curchan); 2369 2370 /* 2371 * If we're doing TDMA, enforce the TXOP limitation for chips that 2372 * support it. 2373 */ 2374 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2375 ath_hal_setenforcetxop(sc->sc_ah, 1); 2376 else 2377 ath_hal_setenforcetxop(sc->sc_ah, 0); 2378 2379 if (ath_startrecv(sc) != 0) /* restart recv */ 2380 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2381 /* 2382 * We may be doing a reset in response to an ioctl 2383 * that changes the channel so update any state that 2384 * might change as a result. 2385 */ 2386 ath_chan_change(sc, ic->ic_curchan); 2387 if (sc->sc_beacons) { /* restart beacons */ 2388 #ifdef IEEE80211_SUPPORT_TDMA 2389 if (sc->sc_tdma) 2390 ath_tdma_config(sc, NULL); 2391 else 2392 #endif 2393 ath_beacon_config(sc, NULL); 2394 } 2395 2396 /* 2397 * Release the reset lock and re-enable interrupts here. 2398 * If an interrupt was being processed in ath_intr(), 2399 * it would disable interrupts at this point. So we have 2400 * to atomically enable interrupts and decrement the 2401 * reset counter - this way ath_intr() doesn't end up 2402 * disabling interrupts without a corresponding enable 2403 * in the rest or channel change path. 2404 */ 2405 ATH_PCU_LOCK(sc); 2406 sc->sc_inreset_cnt--; 2407 /* XXX only do this if sc_inreset_cnt == 0? */ 2408 ath_hal_intrset(ah, sc->sc_imask); 2409 ATH_PCU_UNLOCK(sc); 2410 2411 /* 2412 * TX and RX can be started here. If it were started with 2413 * sc_inreset_cnt > 0, the TX and RX path would abort. 2414 * Thus if this is a nested call through the reset or 2415 * channel change code, TX completion will occur but 2416 * RX completion and ath_start / ath_tx_start will not 2417 * run. 2418 */ 2419 2420 /* Restart TX/RX as needed */ 2421 ath_txrx_start(sc); 2422 2423 /* Restart TX completion and pending TX */ 2424 if (reset_type == ATH_RESET_NOLOSS) { 2425 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2426 if (ATH_TXQ_SETUP(sc, i)) { 2427 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2428 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2429 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2430 2431 ATH_TX_LOCK(sc); 2432 ath_txq_sched(sc, &sc->sc_txq[i]); 2433 ATH_TX_UNLOCK(sc); 2434 } 2435 } 2436 } 2437 2438 /* 2439 * This may have been set during an ath_start() call which 2440 * set this once it detected a concurrent TX was going on. 2441 * So, clear it. 2442 */ 2443 IF_LOCK(&ifp->if_snd); 2444 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2445 IF_UNLOCK(&ifp->if_snd); 2446 2447 /* Handle any frames in the TX queue */ 2448 /* 2449 * XXX should this be done by the caller, rather than 2450 * ath_reset() ? 2451 */ 2452 ath_tx_kick(sc); /* restart xmit */ 2453 return 0; 2454 } 2455 2456 static int 2457 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2458 { 2459 struct ieee80211com *ic = vap->iv_ic; 2460 struct ifnet *ifp = ic->ic_ifp; 2461 struct ath_softc *sc = ifp->if_softc; 2462 struct ath_hal *ah = sc->sc_ah; 2463 2464 switch (cmd) { 2465 case IEEE80211_IOC_TXPOWER: 2466 /* 2467 * If per-packet TPC is enabled, then we have nothing 2468 * to do; otherwise we need to force the global limit. 2469 * All this can happen directly; no need to reset. 2470 */ 2471 if (!ath_hal_gettpc(ah)) 2472 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2473 return 0; 2474 } 2475 /* XXX? Full or NOLOSS? */ 2476 return ath_reset(ifp, ATH_RESET_FULL); 2477 } 2478 2479 struct ath_buf * 2480 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2481 { 2482 struct ath_buf *bf; 2483 2484 ATH_TXBUF_LOCK_ASSERT(sc); 2485 2486 if (btype == ATH_BUFTYPE_MGMT) 2487 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2488 else 2489 bf = TAILQ_FIRST(&sc->sc_txbuf); 2490 2491 if (bf == NULL) { 2492 sc->sc_stats.ast_tx_getnobuf++; 2493 } else { 2494 if (bf->bf_flags & ATH_BUF_BUSY) { 2495 sc->sc_stats.ast_tx_getbusybuf++; 2496 bf = NULL; 2497 } 2498 } 2499 2500 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2501 if (btype == ATH_BUFTYPE_MGMT) 2502 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2503 else { 2504 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2505 sc->sc_txbuf_cnt--; 2506 2507 /* 2508 * This shuldn't happen; however just to be 2509 * safe print a warning and fudge the txbuf 2510 * count. 2511 */ 2512 if (sc->sc_txbuf_cnt < 0) { 2513 device_printf(sc->sc_dev, 2514 "%s: sc_txbuf_cnt < 0?\n", 2515 __func__); 2516 sc->sc_txbuf_cnt = 0; 2517 } 2518 } 2519 } else 2520 bf = NULL; 2521 2522 if (bf == NULL) { 2523 /* XXX should check which list, mgmt or otherwise */ 2524 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2525 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2526 "out of xmit buffers" : "xmit buffer busy"); 2527 return NULL; 2528 } 2529 2530 /* XXX TODO: should do this at buffer list initialisation */ 2531 /* XXX (then, ensure the buffer has the right flag set) */ 2532 bf->bf_flags = 0; 2533 if (btype == ATH_BUFTYPE_MGMT) 2534 bf->bf_flags |= ATH_BUF_MGMT; 2535 else 2536 bf->bf_flags &= (~ATH_BUF_MGMT); 2537 2538 /* Valid bf here; clear some basic fields */ 2539 bf->bf_next = NULL; /* XXX just to be sure */ 2540 bf->bf_last = NULL; /* XXX again, just to be sure */ 2541 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2542 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2543 2544 /* 2545 * Track the descriptor ID only if doing EDMA 2546 */ 2547 if (sc->sc_isedma) { 2548 bf->bf_descid = sc->sc_txbuf_descid; 2549 sc->sc_txbuf_descid++; 2550 } 2551 2552 return bf; 2553 } 2554 2555 /* 2556 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2557 * can't be thrown back on the queue as they could still be 2558 * in use by the hardware. 2559 * 2560 * This duplicates the buffer, or returns NULL. 2561 * 2562 * The descriptor is also copied but the link pointers and 2563 * the DMA segments aren't copied; this frame should thus 2564 * be again passed through the descriptor setup/chain routines 2565 * so the link is correct. 2566 * 2567 * The caller must free the buffer using ath_freebuf(). 2568 */ 2569 struct ath_buf * 2570 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 2571 { 2572 struct ath_buf *tbf; 2573 2574 tbf = ath_getbuf(sc, 2575 (bf->bf_flags & ATH_BUF_MGMT) ? 2576 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2577 if (tbf == NULL) 2578 return NULL; /* XXX failure? Why? */ 2579 2580 /* Copy basics */ 2581 tbf->bf_next = NULL; 2582 tbf->bf_nseg = bf->bf_nseg; 2583 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 2584 tbf->bf_status = bf->bf_status; 2585 tbf->bf_m = bf->bf_m; 2586 tbf->bf_node = bf->bf_node; 2587 /* will be setup by the chain/setup function */ 2588 tbf->bf_lastds = NULL; 2589 /* for now, last == self */ 2590 tbf->bf_last = tbf; 2591 tbf->bf_comp = bf->bf_comp; 2592 2593 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2594 2595 /* The caller has to re-init the descriptor + links */ 2596 2597 /* 2598 * Free the DMA mapping here, before we NULL the mbuf. 2599 * We must only call bus_dmamap_unload() once per mbuf chain 2600 * or behaviour is undefined. 2601 */ 2602 if (bf->bf_m != NULL) { 2603 /* 2604 * XXX is this POSTWRITE call required? 2605 */ 2606 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 2607 BUS_DMASYNC_POSTWRITE); 2608 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2609 } 2610 2611 bf->bf_m = NULL; 2612 bf->bf_node = NULL; 2613 2614 /* Copy state */ 2615 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2616 2617 return tbf; 2618 } 2619 2620 struct ath_buf * 2621 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2622 { 2623 struct ath_buf *bf; 2624 2625 ATH_TXBUF_LOCK(sc); 2626 bf = _ath_getbuf_locked(sc, btype); 2627 /* 2628 * If a mgmt buffer was requested but we're out of those, 2629 * try requesting a normal one. 2630 */ 2631 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2632 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2633 ATH_TXBUF_UNLOCK(sc); 2634 if (bf == NULL) { 2635 struct ifnet *ifp = sc->sc_ifp; 2636 2637 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2638 sc->sc_stats.ast_tx_qstop++; 2639 IF_LOCK(&ifp->if_snd); 2640 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2641 IF_UNLOCK(&ifp->if_snd); 2642 } 2643 return bf; 2644 } 2645 2646 static void 2647 ath_qflush(struct ifnet *ifp) 2648 { 2649 2650 /* XXX TODO */ 2651 } 2652 2653 /* 2654 * Transmit a single frame. 2655 * 2656 * net80211 will free the node reference if the transmit 2657 * fails, so don't free the node reference here. 2658 */ 2659 static int 2660 ath_transmit(struct ifnet *ifp, struct mbuf *m) 2661 { 2662 struct ieee80211com *ic = ifp->if_l2com; 2663 struct ath_softc *sc = ic->ic_ifp->if_softc; 2664 struct ieee80211_node *ni; 2665 struct mbuf *next; 2666 struct ath_buf *bf; 2667 ath_bufhead frags; 2668 int retval = 0; 2669 2670 /* 2671 * Tell the reset path that we're currently transmitting. 2672 */ 2673 ATH_PCU_LOCK(sc); 2674 if (sc->sc_inreset_cnt > 0) { 2675 device_printf(sc->sc_dev, 2676 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2677 ATH_PCU_UNLOCK(sc); 2678 IF_LOCK(&ifp->if_snd); 2679 sc->sc_stats.ast_tx_qstop++; 2680 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2681 IF_UNLOCK(&ifp->if_snd); 2682 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 2683 return (ENOBUFS); /* XXX should be EINVAL or? */ 2684 } 2685 sc->sc_txstart_cnt++; 2686 ATH_PCU_UNLOCK(sc); 2687 2688 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 2689 /* 2690 * Grab the TX lock - it's ok to do this here; we haven't 2691 * yet started transmitting. 2692 */ 2693 ATH_TX_LOCK(sc); 2694 2695 /* 2696 * Node reference, if there's one. 2697 */ 2698 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2699 2700 /* 2701 * Enforce how deep a node queue can get. 2702 * 2703 * XXX it would be nicer if we kept an mbuf queue per 2704 * node and only whacked them into ath_bufs when we 2705 * are ready to schedule some traffic from them. 2706 * .. that may come later. 2707 * 2708 * XXX we should also track the per-node hardware queue 2709 * depth so it is easy to limit the _SUM_ of the swq and 2710 * hwq frames. Since we only schedule two HWQ frames 2711 * at a time, this should be OK for now. 2712 */ 2713 if ((!(m->m_flags & M_EAPOL)) && 2714 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 2715 sc->sc_stats.ast_tx_nodeq_overflow++; 2716 m_freem(m); 2717 m = NULL; 2718 retval = ENOBUFS; 2719 goto finish; 2720 } 2721 2722 /* 2723 * Check how many TX buffers are available. 2724 * 2725 * If this is for non-EAPOL traffic, just leave some 2726 * space free in order for buffer cloning and raw 2727 * frame transmission to occur. 2728 * 2729 * If it's for EAPOL traffic, ignore this for now. 2730 * Management traffic will be sent via the raw transmit 2731 * method which bypasses this check. 2732 * 2733 * This is needed to ensure that EAPOL frames during 2734 * (re) keying have a chance to go out. 2735 * 2736 * See kern/138379 for more information. 2737 */ 2738 if ((!(m->m_flags & M_EAPOL)) && 2739 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 2740 sc->sc_stats.ast_tx_nobuf++; 2741 m_freem(m); 2742 m = NULL; 2743 retval = ENOBUFS; 2744 goto finish; 2745 } 2746 2747 /* 2748 * Grab a TX buffer and associated resources. 2749 * 2750 * If it's an EAPOL frame, allocate a MGMT ath_buf. 2751 * That way even with temporary buffer exhaustion due to 2752 * the data path doesn't leave us without the ability 2753 * to transmit management frames. 2754 * 2755 * Otherwise allocate a normal buffer. 2756 */ 2757 if (m->m_flags & M_EAPOL) 2758 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 2759 else 2760 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2761 2762 if (bf == NULL) { 2763 /* 2764 * If we failed to allocate a buffer, fail. 2765 * 2766 * We shouldn't fail normally, due to the check 2767 * above. 2768 */ 2769 sc->sc_stats.ast_tx_nobuf++; 2770 IF_LOCK(&ifp->if_snd); 2771 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2772 IF_UNLOCK(&ifp->if_snd); 2773 m_freem(m); 2774 m = NULL; 2775 retval = ENOBUFS; 2776 goto finish; 2777 } 2778 2779 /* 2780 * At this point we have a buffer; so we need to free it 2781 * if we hit any error conditions. 2782 */ 2783 2784 /* 2785 * Check for fragmentation. If this frame 2786 * has been broken up verify we have enough 2787 * buffers to send all the fragments so all 2788 * go out or none... 2789 */ 2790 TAILQ_INIT(&frags); 2791 if ((m->m_flags & M_FRAG) && 2792 !ath_txfrag_setup(sc, &frags, m, ni)) { 2793 DPRINTF(sc, ATH_DEBUG_XMIT, 2794 "%s: out of txfrag buffers\n", __func__); 2795 sc->sc_stats.ast_tx_nofrag++; 2796 ifp->if_oerrors++; 2797 ath_freetx(m); 2798 goto bad; 2799 } 2800 2801 /* 2802 * At this point if we have any TX fragments, then we will 2803 * have bumped the node reference once for each of those. 2804 */ 2805 2806 /* 2807 * XXX Is there anything actually _enforcing_ that the 2808 * fragments are being transmitted in one hit, rather than 2809 * being interleaved with other transmissions on that 2810 * hardware queue? 2811 * 2812 * The ATH TX output lock is the only thing serialising this 2813 * right now. 2814 */ 2815 2816 /* 2817 * Calculate the "next fragment" length field in ath_buf 2818 * in order to let the transmit path know enough about 2819 * what to next write to the hardware. 2820 */ 2821 if (m->m_flags & M_FRAG) { 2822 struct ath_buf *fbf = bf; 2823 struct ath_buf *n_fbf = NULL; 2824 struct mbuf *fm = m->m_nextpkt; 2825 2826 /* 2827 * We need to walk the list of fragments and set 2828 * the next size to the following buffer. 2829 * However, the first buffer isn't in the frag 2830 * list, so we have to do some gymnastics here. 2831 */ 2832 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 2833 fbf->bf_nextfraglen = fm->m_pkthdr.len; 2834 fbf = n_fbf; 2835 fm = fm->m_nextpkt; 2836 } 2837 } 2838 2839 /* 2840 * Bump the ifp output counter. 2841 * 2842 * XXX should use atomics? 2843 */ 2844 ifp->if_opackets++; 2845 nextfrag: 2846 /* 2847 * Pass the frame to the h/w for transmission. 2848 * Fragmented frames have each frag chained together 2849 * with m_nextpkt. We know there are sufficient ath_buf's 2850 * to send all the frags because of work done by 2851 * ath_txfrag_setup. We leave m_nextpkt set while 2852 * calling ath_tx_start so it can use it to extend the 2853 * the tx duration to cover the subsequent frag and 2854 * so it can reclaim all the mbufs in case of an error; 2855 * ath_tx_start clears m_nextpkt once it commits to 2856 * handing the frame to the hardware. 2857 * 2858 * Note: if this fails, then the mbufs are freed but 2859 * not the node reference. 2860 */ 2861 next = m->m_nextpkt; 2862 if (ath_tx_start(sc, ni, bf, m)) { 2863 bad: 2864 ifp->if_oerrors++; 2865 reclaim: 2866 bf->bf_m = NULL; 2867 bf->bf_node = NULL; 2868 ATH_TXBUF_LOCK(sc); 2869 ath_returnbuf_head(sc, bf); 2870 /* 2871 * Free the rest of the node references and 2872 * buffers for the fragment list. 2873 */ 2874 ath_txfrag_cleanup(sc, &frags, ni); 2875 ATH_TXBUF_UNLOCK(sc); 2876 retval = ENOBUFS; 2877 goto finish; 2878 } 2879 2880 /* 2881 * Check here if the node is in power save state. 2882 */ 2883 ath_tx_update_tim(sc, ni, 1); 2884 2885 if (next != NULL) { 2886 /* 2887 * Beware of state changing between frags. 2888 * XXX check sta power-save state? 2889 */ 2890 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2891 DPRINTF(sc, ATH_DEBUG_XMIT, 2892 "%s: flush fragmented packet, state %s\n", 2893 __func__, 2894 ieee80211_state_name[ni->ni_vap->iv_state]); 2895 /* XXX dmamap */ 2896 ath_freetx(next); 2897 goto reclaim; 2898 } 2899 m = next; 2900 bf = TAILQ_FIRST(&frags); 2901 KASSERT(bf != NULL, ("no buf for txfrag")); 2902 TAILQ_REMOVE(&frags, bf, bf_list); 2903 goto nextfrag; 2904 } 2905 2906 /* 2907 * Bump watchdog timer. 2908 */ 2909 sc->sc_wd_timer = 5; 2910 2911 finish: 2912 ATH_TX_UNLOCK(sc); 2913 2914 /* 2915 * Finished transmitting! 2916 */ 2917 ATH_PCU_LOCK(sc); 2918 sc->sc_txstart_cnt--; 2919 ATH_PCU_UNLOCK(sc); 2920 2921 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 2922 2923 return (retval); 2924 } 2925 2926 static int 2927 ath_media_change(struct ifnet *ifp) 2928 { 2929 int error = ieee80211_media_change(ifp); 2930 /* NB: only the fixed rate can change and that doesn't need a reset */ 2931 return (error == ENETRESET ? 0 : error); 2932 } 2933 2934 /* 2935 * Block/unblock tx+rx processing while a key change is done. 2936 * We assume the caller serializes key management operations 2937 * so we only need to worry about synchronization with other 2938 * uses that originate in the driver. 2939 */ 2940 static void 2941 ath_key_update_begin(struct ieee80211vap *vap) 2942 { 2943 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2944 struct ath_softc *sc = ifp->if_softc; 2945 2946 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2947 taskqueue_block(sc->sc_tq); 2948 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2949 } 2950 2951 static void 2952 ath_key_update_end(struct ieee80211vap *vap) 2953 { 2954 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2955 struct ath_softc *sc = ifp->if_softc; 2956 2957 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2958 IF_UNLOCK(&ifp->if_snd); 2959 taskqueue_unblock(sc->sc_tq); 2960 } 2961 2962 static void 2963 ath_update_promisc(struct ifnet *ifp) 2964 { 2965 struct ath_softc *sc = ifp->if_softc; 2966 u_int32_t rfilt; 2967 2968 /* configure rx filter */ 2969 rfilt = ath_calcrxfilter(sc); 2970 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2971 2972 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2973 } 2974 2975 static void 2976 ath_update_mcast(struct ifnet *ifp) 2977 { 2978 struct ath_softc *sc = ifp->if_softc; 2979 u_int32_t mfilt[2]; 2980 2981 /* calculate and install multicast filter */ 2982 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2983 struct ifmultiaddr *ifma; 2984 /* 2985 * Merge multicast addresses to form the hardware filter. 2986 */ 2987 mfilt[0] = mfilt[1] = 0; 2988 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2989 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2990 caddr_t dl; 2991 u_int32_t val; 2992 u_int8_t pos; 2993 2994 /* calculate XOR of eight 6bit values */ 2995 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2996 val = LE_READ_4(dl + 0); 2997 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2998 val = LE_READ_4(dl + 3); 2999 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3000 pos &= 0x3f; 3001 mfilt[pos / 32] |= (1 << (pos % 32)); 3002 } 3003 if_maddr_runlock(ifp); 3004 } else 3005 mfilt[0] = mfilt[1] = ~0; 3006 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3007 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3008 __func__, mfilt[0], mfilt[1]); 3009 } 3010 3011 void 3012 ath_mode_init(struct ath_softc *sc) 3013 { 3014 struct ifnet *ifp = sc->sc_ifp; 3015 struct ath_hal *ah = sc->sc_ah; 3016 u_int32_t rfilt; 3017 3018 /* configure rx filter */ 3019 rfilt = ath_calcrxfilter(sc); 3020 ath_hal_setrxfilter(ah, rfilt); 3021 3022 /* configure operational mode */ 3023 ath_hal_setopmode(ah); 3024 3025 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 3026 "%s: ah=%p, ifp=%p, if_addr=%p\n", 3027 __func__, 3028 ah, 3029 ifp, 3030 (ifp == NULL) ? NULL : ifp->if_addr); 3031 3032 /* handle any link-level address change */ 3033 ath_hal_setmac(ah, IF_LLADDR(ifp)); 3034 3035 /* calculate and install multicast filter */ 3036 ath_update_mcast(ifp); 3037 } 3038 3039 /* 3040 * Set the slot time based on the current setting. 3041 */ 3042 void 3043 ath_setslottime(struct ath_softc *sc) 3044 { 3045 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3046 struct ath_hal *ah = sc->sc_ah; 3047 u_int usec; 3048 3049 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3050 usec = 13; 3051 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3052 usec = 21; 3053 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3054 /* honor short/long slot time only in 11g */ 3055 /* XXX shouldn't honor on pure g or turbo g channel */ 3056 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3057 usec = HAL_SLOT_TIME_9; 3058 else 3059 usec = HAL_SLOT_TIME_20; 3060 } else 3061 usec = HAL_SLOT_TIME_9; 3062 3063 DPRINTF(sc, ATH_DEBUG_RESET, 3064 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3065 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3066 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3067 3068 ath_hal_setslottime(ah, usec); 3069 sc->sc_updateslot = OK; 3070 } 3071 3072 /* 3073 * Callback from the 802.11 layer to update the 3074 * slot time based on the current setting. 3075 */ 3076 static void 3077 ath_updateslot(struct ifnet *ifp) 3078 { 3079 struct ath_softc *sc = ifp->if_softc; 3080 struct ieee80211com *ic = ifp->if_l2com; 3081 3082 /* 3083 * When not coordinating the BSS, change the hardware 3084 * immediately. For other operation we defer the change 3085 * until beacon updates have propagated to the stations. 3086 */ 3087 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3088 ic->ic_opmode == IEEE80211_M_MBSS) 3089 sc->sc_updateslot = UPDATE; 3090 else 3091 ath_setslottime(sc); 3092 } 3093 3094 /* 3095 * Append the contents of src to dst; both queues 3096 * are assumed to be locked. 3097 */ 3098 void 3099 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3100 { 3101 3102 ATH_TXQ_LOCK_ASSERT(src); 3103 ATH_TXQ_LOCK_ASSERT(dst); 3104 3105 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3106 dst->axq_link = src->axq_link; 3107 src->axq_link = NULL; 3108 dst->axq_depth += src->axq_depth; 3109 dst->axq_aggr_depth += src->axq_aggr_depth; 3110 src->axq_depth = 0; 3111 src->axq_aggr_depth = 0; 3112 } 3113 3114 /* 3115 * Reset the hardware, with no loss. 3116 * 3117 * This can't be used for a general case reset. 3118 */ 3119 static void 3120 ath_reset_proc(void *arg, int pending) 3121 { 3122 struct ath_softc *sc = arg; 3123 struct ifnet *ifp = sc->sc_ifp; 3124 3125 #if 0 3126 if_printf(ifp, "%s: resetting\n", __func__); 3127 #endif 3128 ath_reset(ifp, ATH_RESET_NOLOSS); 3129 } 3130 3131 /* 3132 * Reset the hardware after detecting beacons have stopped. 3133 */ 3134 static void 3135 ath_bstuck_proc(void *arg, int pending) 3136 { 3137 struct ath_softc *sc = arg; 3138 struct ifnet *ifp = sc->sc_ifp; 3139 uint32_t hangs = 0; 3140 3141 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3142 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 3143 3144 #ifdef ATH_DEBUG_ALQ 3145 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3146 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3147 #endif 3148 3149 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3150 sc->sc_bmisscount); 3151 sc->sc_stats.ast_bstuck++; 3152 /* 3153 * This assumes that there's no simultaneous channel mode change 3154 * occuring. 3155 */ 3156 ath_reset(ifp, ATH_RESET_NOLOSS); 3157 } 3158 3159 static void 3160 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3161 { 3162 bus_addr_t *paddr = (bus_addr_t*) arg; 3163 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3164 *paddr = segs->ds_addr; 3165 } 3166 3167 /* 3168 * Allocate the descriptors and appropriate DMA tag/setup. 3169 * 3170 * For some situations (eg EDMA TX completion), there isn't a requirement 3171 * for the ath_buf entries to be allocated. 3172 */ 3173 int 3174 ath_descdma_alloc_desc(struct ath_softc *sc, 3175 struct ath_descdma *dd, ath_bufhead *head, 3176 const char *name, int ds_size, int ndesc) 3177 { 3178 #define DS2PHYS(_dd, _ds) \ 3179 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3180 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3181 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3182 struct ifnet *ifp = sc->sc_ifp; 3183 int error; 3184 3185 dd->dd_descsize = ds_size; 3186 3187 DPRINTF(sc, ATH_DEBUG_RESET, 3188 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 3189 __func__, name, ndesc, dd->dd_descsize); 3190 3191 dd->dd_name = name; 3192 dd->dd_desc_len = dd->dd_descsize * ndesc; 3193 3194 /* 3195 * Merlin work-around: 3196 * Descriptors that cross the 4KB boundary can't be used. 3197 * Assume one skipped descriptor per 4KB page. 3198 */ 3199 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3200 int numpages = dd->dd_desc_len / 4096; 3201 dd->dd_desc_len += ds_size * numpages; 3202 } 3203 3204 /* 3205 * Setup DMA descriptor area. 3206 * 3207 * BUS_DMA_ALLOCNOW is not used; we never use bounce 3208 * buffers for the descriptors themselves. 3209 */ 3210 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3211 PAGE_SIZE, 0, /* alignment, bounds */ 3212 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3213 BUS_SPACE_MAXADDR, /* highaddr */ 3214 NULL, NULL, /* filter, filterarg */ 3215 dd->dd_desc_len, /* maxsize */ 3216 1, /* nsegments */ 3217 dd->dd_desc_len, /* maxsegsize */ 3218 0, /* flags */ 3219 NULL, /* lockfunc */ 3220 NULL, /* lockarg */ 3221 &dd->dd_dmat); 3222 if (error != 0) { 3223 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3224 return error; 3225 } 3226 3227 /* allocate descriptors */ 3228 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3229 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3230 &dd->dd_dmamap); 3231 if (error != 0) { 3232 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3233 "error %u\n", ndesc, dd->dd_name, error); 3234 goto fail1; 3235 } 3236 3237 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3238 dd->dd_desc, dd->dd_desc_len, 3239 ath_load_cb, &dd->dd_desc_paddr, 3240 BUS_DMA_NOWAIT); 3241 if (error != 0) { 3242 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3243 dd->dd_name, error); 3244 goto fail2; 3245 } 3246 3247 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3248 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 3249 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 3250 /*XXX*/ (u_long) dd->dd_desc_len); 3251 3252 return (0); 3253 3254 fail2: 3255 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3256 fail1: 3257 bus_dma_tag_destroy(dd->dd_dmat); 3258 memset(dd, 0, sizeof(*dd)); 3259 return error; 3260 #undef DS2PHYS 3261 #undef ATH_DESC_4KB_BOUND_CHECK 3262 } 3263 3264 int 3265 ath_descdma_setup(struct ath_softc *sc, 3266 struct ath_descdma *dd, ath_bufhead *head, 3267 const char *name, int ds_size, int nbuf, int ndesc) 3268 { 3269 #define DS2PHYS(_dd, _ds) \ 3270 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3271 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3272 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3273 struct ifnet *ifp = sc->sc_ifp; 3274 uint8_t *ds; 3275 struct ath_buf *bf; 3276 int i, bsize, error; 3277 3278 /* Allocate descriptors */ 3279 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 3280 nbuf * ndesc); 3281 3282 /* Assume any errors during allocation were dealt with */ 3283 if (error != 0) { 3284 return (error); 3285 } 3286 3287 ds = (uint8_t *) dd->dd_desc; 3288 3289 /* allocate rx buffers */ 3290 bsize = sizeof(struct ath_buf) * nbuf; 3291 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3292 if (bf == NULL) { 3293 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3294 dd->dd_name, bsize); 3295 goto fail3; 3296 } 3297 dd->dd_bufptr = bf; 3298 3299 TAILQ_INIT(head); 3300 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 3301 bf->bf_desc = (struct ath_desc *) ds; 3302 bf->bf_daddr = DS2PHYS(dd, ds); 3303 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3304 /* 3305 * Merlin WAR: Skip descriptor addresses which 3306 * cause 4KB boundary crossing along any point 3307 * in the descriptor. 3308 */ 3309 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3310 dd->dd_descsize)) { 3311 /* Start at the next page */ 3312 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3313 bf->bf_desc = (struct ath_desc *) ds; 3314 bf->bf_daddr = DS2PHYS(dd, ds); 3315 } 3316 } 3317 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3318 &bf->bf_dmamap); 3319 if (error != 0) { 3320 if_printf(ifp, "unable to create dmamap for %s " 3321 "buffer %u, error %u\n", dd->dd_name, i, error); 3322 ath_descdma_cleanup(sc, dd, head); 3323 return error; 3324 } 3325 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3326 TAILQ_INSERT_TAIL(head, bf, bf_list); 3327 } 3328 3329 /* 3330 * XXX TODO: ensure that ds doesn't overflow the descriptor 3331 * allocation otherwise weird stuff will occur and crash your 3332 * machine. 3333 */ 3334 return 0; 3335 /* XXX this should likely just call ath_descdma_cleanup() */ 3336 fail3: 3337 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3338 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3339 bus_dma_tag_destroy(dd->dd_dmat); 3340 memset(dd, 0, sizeof(*dd)); 3341 return error; 3342 #undef DS2PHYS 3343 #undef ATH_DESC_4KB_BOUND_CHECK 3344 } 3345 3346 /* 3347 * Allocate ath_buf entries but no descriptor contents. 3348 * 3349 * This is for RX EDMA where the descriptors are the header part of 3350 * the RX buffer. 3351 */ 3352 int 3353 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3354 struct ath_descdma *dd, ath_bufhead *head, 3355 const char *name, int nbuf, int rx_status_len) 3356 { 3357 struct ifnet *ifp = sc->sc_ifp; 3358 struct ath_buf *bf; 3359 int i, bsize, error; 3360 3361 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3362 __func__, name, nbuf); 3363 3364 dd->dd_name = name; 3365 /* 3366 * This is (mostly) purely for show. We're not allocating any actual 3367 * descriptors here as EDMA RX has the descriptor be part 3368 * of the RX buffer. 3369 * 3370 * However, dd_desc_len is used by ath_descdma_free() to determine 3371 * whether we have already freed this DMA mapping. 3372 */ 3373 dd->dd_desc_len = rx_status_len * nbuf; 3374 dd->dd_descsize = rx_status_len; 3375 3376 /* allocate rx buffers */ 3377 bsize = sizeof(struct ath_buf) * nbuf; 3378 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3379 if (bf == NULL) { 3380 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3381 dd->dd_name, bsize); 3382 error = ENOMEM; 3383 goto fail3; 3384 } 3385 dd->dd_bufptr = bf; 3386 3387 TAILQ_INIT(head); 3388 for (i = 0; i < nbuf; i++, bf++) { 3389 bf->bf_desc = NULL; 3390 bf->bf_daddr = 0; 3391 bf->bf_lastds = NULL; /* Just an initial value */ 3392 3393 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3394 &bf->bf_dmamap); 3395 if (error != 0) { 3396 if_printf(ifp, "unable to create dmamap for %s " 3397 "buffer %u, error %u\n", dd->dd_name, i, error); 3398 ath_descdma_cleanup(sc, dd, head); 3399 return error; 3400 } 3401 TAILQ_INSERT_TAIL(head, bf, bf_list); 3402 } 3403 return 0; 3404 fail3: 3405 memset(dd, 0, sizeof(*dd)); 3406 return error; 3407 } 3408 3409 void 3410 ath_descdma_cleanup(struct ath_softc *sc, 3411 struct ath_descdma *dd, ath_bufhead *head) 3412 { 3413 struct ath_buf *bf; 3414 struct ieee80211_node *ni; 3415 int do_warning = 0; 3416 3417 if (dd->dd_dmamap != 0) { 3418 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3419 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3420 bus_dma_tag_destroy(dd->dd_dmat); 3421 } 3422 3423 if (head != NULL) { 3424 TAILQ_FOREACH(bf, head, bf_list) { 3425 if (bf->bf_m) { 3426 /* 3427 * XXX warn if there's buffers here. 3428 * XXX it should have been freed by the 3429 * owner! 3430 */ 3431 3432 if (do_warning == 0) { 3433 do_warning = 1; 3434 device_printf(sc->sc_dev, 3435 "%s: %s: mbuf should've been" 3436 " unmapped/freed!\n", 3437 __func__, 3438 dd->dd_name); 3439 } 3440 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3441 BUS_DMASYNC_POSTREAD); 3442 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3443 m_freem(bf->bf_m); 3444 bf->bf_m = NULL; 3445 } 3446 if (bf->bf_dmamap != NULL) { 3447 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3448 bf->bf_dmamap = NULL; 3449 } 3450 ni = bf->bf_node; 3451 bf->bf_node = NULL; 3452 if (ni != NULL) { 3453 /* 3454 * Reclaim node reference. 3455 */ 3456 ieee80211_free_node(ni); 3457 } 3458 } 3459 } 3460 3461 if (head != NULL) 3462 TAILQ_INIT(head); 3463 3464 if (dd->dd_bufptr != NULL) 3465 free(dd->dd_bufptr, M_ATHDEV); 3466 memset(dd, 0, sizeof(*dd)); 3467 } 3468 3469 static int 3470 ath_desc_alloc(struct ath_softc *sc) 3471 { 3472 int error; 3473 3474 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3475 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3476 if (error != 0) { 3477 return error; 3478 } 3479 sc->sc_txbuf_cnt = ath_txbuf; 3480 3481 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3482 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3483 ATH_TXDESC); 3484 if (error != 0) { 3485 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3486 return error; 3487 } 3488 3489 /* 3490 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3491 * flag doesn't have to be set in ath_getbuf_locked(). 3492 */ 3493 3494 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3495 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3496 if (error != 0) { 3497 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3498 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3499 &sc->sc_txbuf_mgmt); 3500 return error; 3501 } 3502 return 0; 3503 } 3504 3505 static void 3506 ath_desc_free(struct ath_softc *sc) 3507 { 3508 3509 if (sc->sc_bdma.dd_desc_len != 0) 3510 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3511 if (sc->sc_txdma.dd_desc_len != 0) 3512 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3513 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3514 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3515 &sc->sc_txbuf_mgmt); 3516 } 3517 3518 static struct ieee80211_node * 3519 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3520 { 3521 struct ieee80211com *ic = vap->iv_ic; 3522 struct ath_softc *sc = ic->ic_ifp->if_softc; 3523 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3524 struct ath_node *an; 3525 3526 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3527 if (an == NULL) { 3528 /* XXX stat+msg */ 3529 return NULL; 3530 } 3531 ath_rate_node_init(sc, an); 3532 3533 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3534 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3535 device_get_nameunit(sc->sc_dev), an); 3536 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3537 3538 /* XXX setup ath_tid */ 3539 ath_tx_tid_init(sc, an); 3540 3541 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 3542 return &an->an_node; 3543 } 3544 3545 static void 3546 ath_node_cleanup(struct ieee80211_node *ni) 3547 { 3548 struct ieee80211com *ic = ni->ni_ic; 3549 struct ath_softc *sc = ic->ic_ifp->if_softc; 3550 3551 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3552 ni->ni_macaddr, ":", ATH_NODE(ni)); 3553 3554 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3555 ath_tx_node_flush(sc, ATH_NODE(ni)); 3556 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3557 sc->sc_node_cleanup(ni); 3558 } 3559 3560 static void 3561 ath_node_free(struct ieee80211_node *ni) 3562 { 3563 struct ieee80211com *ic = ni->ni_ic; 3564 struct ath_softc *sc = ic->ic_ifp->if_softc; 3565 3566 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3567 ni->ni_macaddr, ":", ATH_NODE(ni)); 3568 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3569 sc->sc_node_free(ni); 3570 } 3571 3572 static void 3573 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3574 { 3575 struct ieee80211com *ic = ni->ni_ic; 3576 struct ath_softc *sc = ic->ic_ifp->if_softc; 3577 struct ath_hal *ah = sc->sc_ah; 3578 3579 *rssi = ic->ic_node_getrssi(ni); 3580 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3581 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3582 else 3583 *noise = -95; /* nominally correct */ 3584 } 3585 3586 /* 3587 * Set the default antenna. 3588 */ 3589 void 3590 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3591 { 3592 struct ath_hal *ah = sc->sc_ah; 3593 3594 /* XXX block beacon interrupts */ 3595 ath_hal_setdefantenna(ah, antenna); 3596 if (sc->sc_defant != antenna) 3597 sc->sc_stats.ast_ant_defswitch++; 3598 sc->sc_defant = antenna; 3599 sc->sc_rxotherant = 0; 3600 } 3601 3602 static void 3603 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3604 { 3605 txq->axq_qnum = qnum; 3606 txq->axq_ac = 0; 3607 txq->axq_depth = 0; 3608 txq->axq_aggr_depth = 0; 3609 txq->axq_intrcnt = 0; 3610 txq->axq_link = NULL; 3611 txq->axq_softc = sc; 3612 TAILQ_INIT(&txq->axq_q); 3613 TAILQ_INIT(&txq->axq_tidq); 3614 TAILQ_INIT(&txq->fifo.axq_q); 3615 ATH_TXQ_LOCK_INIT(sc, txq); 3616 } 3617 3618 /* 3619 * Setup a h/w transmit queue. 3620 */ 3621 static struct ath_txq * 3622 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3623 { 3624 #define N(a) (sizeof(a)/sizeof(a[0])) 3625 struct ath_hal *ah = sc->sc_ah; 3626 HAL_TXQ_INFO qi; 3627 int qnum; 3628 3629 memset(&qi, 0, sizeof(qi)); 3630 qi.tqi_subtype = subtype; 3631 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3632 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3633 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3634 /* 3635 * Enable interrupts only for EOL and DESC conditions. 3636 * We mark tx descriptors to receive a DESC interrupt 3637 * when a tx queue gets deep; otherwise waiting for the 3638 * EOL to reap descriptors. Note that this is done to 3639 * reduce interrupt load and this only defers reaping 3640 * descriptors, never transmitting frames. Aside from 3641 * reducing interrupts this also permits more concurrency. 3642 * The only potential downside is if the tx queue backs 3643 * up in which case the top half of the kernel may backup 3644 * due to a lack of tx descriptors. 3645 */ 3646 if (sc->sc_isedma) 3647 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3648 HAL_TXQ_TXOKINT_ENABLE; 3649 else 3650 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3651 HAL_TXQ_TXDESCINT_ENABLE; 3652 3653 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3654 if (qnum == -1) { 3655 /* 3656 * NB: don't print a message, this happens 3657 * normally on parts with too few tx queues 3658 */ 3659 return NULL; 3660 } 3661 if (qnum >= N(sc->sc_txq)) { 3662 device_printf(sc->sc_dev, 3663 "hal qnum %u out of range, max %zu!\n", 3664 qnum, N(sc->sc_txq)); 3665 ath_hal_releasetxqueue(ah, qnum); 3666 return NULL; 3667 } 3668 if (!ATH_TXQ_SETUP(sc, qnum)) { 3669 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3670 sc->sc_txqsetup |= 1<<qnum; 3671 } 3672 return &sc->sc_txq[qnum]; 3673 #undef N 3674 } 3675 3676 /* 3677 * Setup a hardware data transmit queue for the specified 3678 * access control. The hal may not support all requested 3679 * queues in which case it will return a reference to a 3680 * previously setup queue. We record the mapping from ac's 3681 * to h/w queues for use by ath_tx_start and also track 3682 * the set of h/w queues being used to optimize work in the 3683 * transmit interrupt handler and related routines. 3684 */ 3685 static int 3686 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3687 { 3688 #define N(a) (sizeof(a)/sizeof(a[0])) 3689 struct ath_txq *txq; 3690 3691 if (ac >= N(sc->sc_ac2q)) { 3692 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3693 ac, N(sc->sc_ac2q)); 3694 return 0; 3695 } 3696 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3697 if (txq != NULL) { 3698 txq->axq_ac = ac; 3699 sc->sc_ac2q[ac] = txq; 3700 return 1; 3701 } else 3702 return 0; 3703 #undef N 3704 } 3705 3706 /* 3707 * Update WME parameters for a transmit queue. 3708 */ 3709 static int 3710 ath_txq_update(struct ath_softc *sc, int ac) 3711 { 3712 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3713 #define ATH_TXOP_TO_US(v) (v<<5) 3714 struct ifnet *ifp = sc->sc_ifp; 3715 struct ieee80211com *ic = ifp->if_l2com; 3716 struct ath_txq *txq = sc->sc_ac2q[ac]; 3717 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3718 struct ath_hal *ah = sc->sc_ah; 3719 HAL_TXQ_INFO qi; 3720 3721 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3722 #ifdef IEEE80211_SUPPORT_TDMA 3723 if (sc->sc_tdma) { 3724 /* 3725 * AIFS is zero so there's no pre-transmit wait. The 3726 * burst time defines the slot duration and is configured 3727 * through net80211. The QCU is setup to not do post-xmit 3728 * back off, lockout all lower-priority QCU's, and fire 3729 * off the DMA beacon alert timer which is setup based 3730 * on the slot configuration. 3731 */ 3732 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3733 | HAL_TXQ_TXERRINT_ENABLE 3734 | HAL_TXQ_TXURNINT_ENABLE 3735 | HAL_TXQ_TXEOLINT_ENABLE 3736 | HAL_TXQ_DBA_GATED 3737 | HAL_TXQ_BACKOFF_DISABLE 3738 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3739 ; 3740 qi.tqi_aifs = 0; 3741 /* XXX +dbaprep? */ 3742 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3743 qi.tqi_burstTime = qi.tqi_readyTime; 3744 } else { 3745 #endif 3746 /* 3747 * XXX shouldn't this just use the default flags 3748 * used in the previous queue setup? 3749 */ 3750 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3751 | HAL_TXQ_TXERRINT_ENABLE 3752 | HAL_TXQ_TXDESCINT_ENABLE 3753 | HAL_TXQ_TXURNINT_ENABLE 3754 | HAL_TXQ_TXEOLINT_ENABLE 3755 ; 3756 qi.tqi_aifs = wmep->wmep_aifsn; 3757 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3758 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3759 qi.tqi_readyTime = 0; 3760 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3761 #ifdef IEEE80211_SUPPORT_TDMA 3762 } 3763 #endif 3764 3765 DPRINTF(sc, ATH_DEBUG_RESET, 3766 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3767 __func__, txq->axq_qnum, qi.tqi_qflags, 3768 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3769 3770 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3771 if_printf(ifp, "unable to update hardware queue " 3772 "parameters for %s traffic!\n", 3773 ieee80211_wme_acnames[ac]); 3774 return 0; 3775 } else { 3776 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3777 return 1; 3778 } 3779 #undef ATH_TXOP_TO_US 3780 #undef ATH_EXPONENT_TO_VALUE 3781 } 3782 3783 /* 3784 * Callback from the 802.11 layer to update WME parameters. 3785 */ 3786 int 3787 ath_wme_update(struct ieee80211com *ic) 3788 { 3789 struct ath_softc *sc = ic->ic_ifp->if_softc; 3790 3791 return !ath_txq_update(sc, WME_AC_BE) || 3792 !ath_txq_update(sc, WME_AC_BK) || 3793 !ath_txq_update(sc, WME_AC_VI) || 3794 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3795 } 3796 3797 /* 3798 * Reclaim resources for a setup queue. 3799 */ 3800 static void 3801 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3802 { 3803 3804 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3805 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3806 ATH_TXQ_LOCK_DESTROY(txq); 3807 } 3808 3809 /* 3810 * Reclaim all tx queue resources. 3811 */ 3812 static void 3813 ath_tx_cleanup(struct ath_softc *sc) 3814 { 3815 int i; 3816 3817 ATH_TXBUF_LOCK_DESTROY(sc); 3818 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3819 if (ATH_TXQ_SETUP(sc, i)) 3820 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3821 } 3822 3823 /* 3824 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3825 * using the current rates in sc_rixmap. 3826 */ 3827 int 3828 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3829 { 3830 int rix = sc->sc_rixmap[rate]; 3831 /* NB: return lowest rix for invalid rate */ 3832 return (rix == 0xff ? 0 : rix); 3833 } 3834 3835 static void 3836 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3837 struct ath_buf *bf) 3838 { 3839 struct ieee80211_node *ni = bf->bf_node; 3840 struct ifnet *ifp = sc->sc_ifp; 3841 struct ieee80211com *ic = ifp->if_l2com; 3842 int sr, lr, pri; 3843 3844 if (ts->ts_status == 0) { 3845 u_int8_t txant = ts->ts_antenna; 3846 sc->sc_stats.ast_ant_tx[txant]++; 3847 sc->sc_ant_tx[txant]++; 3848 if (ts->ts_finaltsi != 0) 3849 sc->sc_stats.ast_tx_altrate++; 3850 pri = M_WME_GETAC(bf->bf_m); 3851 if (pri >= WME_AC_VO) 3852 ic->ic_wme.wme_hipri_traffic++; 3853 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3854 ni->ni_inact = ni->ni_inact_reload; 3855 } else { 3856 if (ts->ts_status & HAL_TXERR_XRETRY) 3857 sc->sc_stats.ast_tx_xretries++; 3858 if (ts->ts_status & HAL_TXERR_FIFO) 3859 sc->sc_stats.ast_tx_fifoerr++; 3860 if (ts->ts_status & HAL_TXERR_FILT) 3861 sc->sc_stats.ast_tx_filtered++; 3862 if (ts->ts_status & HAL_TXERR_XTXOP) 3863 sc->sc_stats.ast_tx_xtxop++; 3864 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3865 sc->sc_stats.ast_tx_timerexpired++; 3866 3867 if (bf->bf_m->m_flags & M_FF) 3868 sc->sc_stats.ast_ff_txerr++; 3869 } 3870 /* XXX when is this valid? */ 3871 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 3872 sc->sc_stats.ast_tx_desccfgerr++; 3873 /* 3874 * This can be valid for successful frame transmission! 3875 * If there's a TX FIFO underrun during aggregate transmission, 3876 * the MAC will pad the rest of the aggregate with delimiters. 3877 * If a BA is returned, the frame is marked as "OK" and it's up 3878 * to the TX completion code to notice which frames weren't 3879 * successfully transmitted. 3880 */ 3881 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 3882 sc->sc_stats.ast_tx_data_underrun++; 3883 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 3884 sc->sc_stats.ast_tx_delim_underrun++; 3885 3886 sr = ts->ts_shortretry; 3887 lr = ts->ts_longretry; 3888 sc->sc_stats.ast_tx_shortretry += sr; 3889 sc->sc_stats.ast_tx_longretry += lr; 3890 3891 } 3892 3893 /* 3894 * The default completion. If fail is 1, this means 3895 * "please don't retry the frame, and just return -1 status 3896 * to the net80211 stack. 3897 */ 3898 void 3899 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3900 { 3901 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3902 int st; 3903 3904 if (fail == 1) 3905 st = -1; 3906 else 3907 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3908 ts->ts_status : HAL_TXERR_XRETRY; 3909 3910 #if 0 3911 if (bf->bf_state.bfs_dobaw) 3912 device_printf(sc->sc_dev, 3913 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3914 __func__, 3915 bf, 3916 SEQNO(bf->bf_state.bfs_seqno)); 3917 #endif 3918 if (bf->bf_next != NULL) 3919 device_printf(sc->sc_dev, 3920 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3921 __func__, 3922 bf, 3923 SEQNO(bf->bf_state.bfs_seqno)); 3924 3925 /* 3926 * Check if the node software queue is empty; if so 3927 * then clear the TIM. 3928 * 3929 * This needs to be done before the buffer is freed as 3930 * otherwise the node reference will have been released 3931 * and the node may not actually exist any longer. 3932 * 3933 * XXX I don't like this belonging here, but it's cleaner 3934 * to do it here right now then all the other places 3935 * where ath_tx_default_comp() is called. 3936 * 3937 * XXX TODO: during drain, ensure that the callback is 3938 * being called so we get a chance to update the TIM. 3939 */ 3940 if (bf->bf_node) { 3941 ATH_TX_LOCK(sc); 3942 ath_tx_update_tim(sc, bf->bf_node, 0); 3943 ATH_TX_UNLOCK(sc); 3944 } 3945 3946 /* 3947 * Do any tx complete callback. Note this must 3948 * be done before releasing the node reference. 3949 * This will free the mbuf, release the net80211 3950 * node and recycle the ath_buf. 3951 */ 3952 ath_tx_freebuf(sc, bf, st); 3953 } 3954 3955 /* 3956 * Update rate control with the given completion status. 3957 */ 3958 void 3959 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3960 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3961 int nframes, int nbad) 3962 { 3963 struct ath_node *an; 3964 3965 /* Only for unicast frames */ 3966 if (ni == NULL) 3967 return; 3968 3969 an = ATH_NODE(ni); 3970 ATH_NODE_UNLOCK_ASSERT(an); 3971 3972 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3973 ATH_NODE_LOCK(an); 3974 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3975 ATH_NODE_UNLOCK(an); 3976 } 3977 } 3978 3979 /* 3980 * Process the completion of the given buffer. 3981 * 3982 * This calls the rate control update and then the buffer completion. 3983 * This will either free the buffer or requeue it. In any case, the 3984 * bf pointer should be treated as invalid after this function is called. 3985 */ 3986 void 3987 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 3988 struct ath_tx_status *ts, struct ath_buf *bf) 3989 { 3990 struct ieee80211_node *ni = bf->bf_node; 3991 struct ath_node *an = NULL; 3992 3993 ATH_TX_UNLOCK_ASSERT(sc); 3994 ATH_TXQ_UNLOCK_ASSERT(txq); 3995 3996 /* If unicast frame, update general statistics */ 3997 if (ni != NULL) { 3998 an = ATH_NODE(ni); 3999 /* update statistics */ 4000 ath_tx_update_stats(sc, ts, bf); 4001 } 4002 4003 /* 4004 * Call the completion handler. 4005 * The completion handler is responsible for 4006 * calling the rate control code. 4007 * 4008 * Frames with no completion handler get the 4009 * rate control code called here. 4010 */ 4011 if (bf->bf_comp == NULL) { 4012 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4013 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4014 /* 4015 * XXX assume this isn't an aggregate 4016 * frame. 4017 */ 4018 ath_tx_update_ratectrl(sc, ni, 4019 bf->bf_state.bfs_rc, ts, 4020 bf->bf_state.bfs_pktlen, 1, 4021 (ts->ts_status == 0 ? 0 : 1)); 4022 } 4023 ath_tx_default_comp(sc, bf, 0); 4024 } else 4025 bf->bf_comp(sc, bf, 0); 4026 } 4027 4028 4029 4030 /* 4031 * Process completed xmit descriptors from the specified queue. 4032 * Kick the packet scheduler if needed. This can occur from this 4033 * particular task. 4034 */ 4035 static int 4036 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4037 { 4038 struct ath_hal *ah = sc->sc_ah; 4039 struct ath_buf *bf; 4040 struct ath_desc *ds; 4041 struct ath_tx_status *ts; 4042 struct ieee80211_node *ni; 4043 #ifdef IEEE80211_SUPPORT_SUPERG 4044 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4045 #endif /* IEEE80211_SUPPORT_SUPERG */ 4046 int nacked; 4047 HAL_STATUS status; 4048 4049 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4050 __func__, txq->axq_qnum, 4051 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4052 txq->axq_link); 4053 4054 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4055 "ath_tx_processq: txq=%u head %p link %p depth %p", 4056 txq->axq_qnum, 4057 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4058 txq->axq_link, 4059 txq->axq_depth); 4060 4061 nacked = 0; 4062 for (;;) { 4063 ATH_TXQ_LOCK(txq); 4064 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4065 bf = TAILQ_FIRST(&txq->axq_q); 4066 if (bf == NULL) { 4067 ATH_TXQ_UNLOCK(txq); 4068 break; 4069 } 4070 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4071 ts = &bf->bf_status.ds_txstat; 4072 4073 status = ath_hal_txprocdesc(ah, ds, ts); 4074 #ifdef ATH_DEBUG 4075 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4076 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4077 status == HAL_OK); 4078 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4079 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4080 status == HAL_OK); 4081 #endif 4082 #ifdef ATH_DEBUG_ALQ 4083 if (if_ath_alq_checkdebug(&sc->sc_alq, 4084 ATH_ALQ_EDMA_TXSTATUS)) { 4085 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4086 sc->sc_tx_statuslen, 4087 (char *) ds); 4088 } 4089 #endif 4090 4091 if (status == HAL_EINPROGRESS) { 4092 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4093 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4094 txq->axq_qnum, bf, ds); 4095 ATH_TXQ_UNLOCK(txq); 4096 break; 4097 } 4098 ATH_TXQ_REMOVE(txq, bf, bf_list); 4099 4100 /* 4101 * Sanity check. 4102 */ 4103 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4104 device_printf(sc->sc_dev, 4105 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4106 __func__, 4107 txq->axq_qnum, 4108 bf, 4109 bf->bf_state.bfs_tx_queue); 4110 } 4111 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4112 device_printf(sc->sc_dev, 4113 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4114 __func__, 4115 txq->axq_qnum, 4116 bf->bf_last, 4117 bf->bf_last->bf_state.bfs_tx_queue); 4118 } 4119 4120 #if 0 4121 if (txq->axq_depth > 0) { 4122 /* 4123 * More frames follow. Mark the buffer busy 4124 * so it's not re-used while the hardware may 4125 * still re-read the link field in the descriptor. 4126 * 4127 * Use the last buffer in an aggregate as that 4128 * is where the hardware may be - intermediate 4129 * descriptors won't be "busy". 4130 */ 4131 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4132 } else 4133 txq->axq_link = NULL; 4134 #else 4135 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4136 #endif 4137 if (bf->bf_state.bfs_aggr) 4138 txq->axq_aggr_depth--; 4139 4140 ni = bf->bf_node; 4141 4142 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4143 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4144 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4145 /* 4146 * If unicast frame was ack'd update RSSI, 4147 * including the last rx time used to 4148 * workaround phantom bmiss interrupts. 4149 */ 4150 if (ni != NULL && ts->ts_status == 0 && 4151 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4152 nacked++; 4153 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4154 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4155 ts->ts_rssi); 4156 } 4157 ATH_TXQ_UNLOCK(txq); 4158 4159 /* 4160 * Update statistics and call completion 4161 */ 4162 ath_tx_process_buf_completion(sc, txq, ts, bf); 4163 4164 /* XXX at this point, bf and ni may be totally invalid */ 4165 } 4166 #ifdef IEEE80211_SUPPORT_SUPERG 4167 /* 4168 * Flush fast-frame staging queue when traffic slows. 4169 */ 4170 if (txq->axq_depth <= 1) 4171 ieee80211_ff_flush(ic, txq->axq_ac); 4172 #endif 4173 4174 /* Kick the software TXQ scheduler */ 4175 if (dosched) { 4176 ATH_TX_LOCK(sc); 4177 ath_txq_sched(sc, txq); 4178 ATH_TX_UNLOCK(sc); 4179 } 4180 4181 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4182 "ath_tx_processq: txq=%u: done", 4183 txq->axq_qnum); 4184 4185 return nacked; 4186 } 4187 4188 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4189 4190 /* 4191 * Deferred processing of transmit interrupt; special-cased 4192 * for a single hardware transmit queue (e.g. 5210 and 5211). 4193 */ 4194 static void 4195 ath_tx_proc_q0(void *arg, int npending) 4196 { 4197 struct ath_softc *sc = arg; 4198 struct ifnet *ifp = sc->sc_ifp; 4199 uint32_t txqs; 4200 4201 ATH_PCU_LOCK(sc); 4202 sc->sc_txproc_cnt++; 4203 txqs = sc->sc_txq_active; 4204 sc->sc_txq_active &= ~txqs; 4205 ATH_PCU_UNLOCK(sc); 4206 4207 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4208 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4209 4210 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4211 /* XXX why is lastrx updated in tx code? */ 4212 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4213 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4214 ath_tx_processq(sc, sc->sc_cabq, 1); 4215 IF_LOCK(&ifp->if_snd); 4216 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4217 IF_UNLOCK(&ifp->if_snd); 4218 sc->sc_wd_timer = 0; 4219 4220 if (sc->sc_softled) 4221 ath_led_event(sc, sc->sc_txrix); 4222 4223 ATH_PCU_LOCK(sc); 4224 sc->sc_txproc_cnt--; 4225 ATH_PCU_UNLOCK(sc); 4226 4227 ath_tx_kick(sc); 4228 } 4229 4230 /* 4231 * Deferred processing of transmit interrupt; special-cased 4232 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4233 */ 4234 static void 4235 ath_tx_proc_q0123(void *arg, int npending) 4236 { 4237 struct ath_softc *sc = arg; 4238 struct ifnet *ifp = sc->sc_ifp; 4239 int nacked; 4240 uint32_t txqs; 4241 4242 ATH_PCU_LOCK(sc); 4243 sc->sc_txproc_cnt++; 4244 txqs = sc->sc_txq_active; 4245 sc->sc_txq_active &= ~txqs; 4246 ATH_PCU_UNLOCK(sc); 4247 4248 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4249 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4250 4251 /* 4252 * Process each active queue. 4253 */ 4254 nacked = 0; 4255 if (TXQACTIVE(txqs, 0)) 4256 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4257 if (TXQACTIVE(txqs, 1)) 4258 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4259 if (TXQACTIVE(txqs, 2)) 4260 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4261 if (TXQACTIVE(txqs, 3)) 4262 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4263 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4264 ath_tx_processq(sc, sc->sc_cabq, 1); 4265 if (nacked) 4266 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4267 4268 IF_LOCK(&ifp->if_snd); 4269 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4270 IF_UNLOCK(&ifp->if_snd); 4271 sc->sc_wd_timer = 0; 4272 4273 if (sc->sc_softled) 4274 ath_led_event(sc, sc->sc_txrix); 4275 4276 ATH_PCU_LOCK(sc); 4277 sc->sc_txproc_cnt--; 4278 ATH_PCU_UNLOCK(sc); 4279 4280 ath_tx_kick(sc); 4281 } 4282 4283 /* 4284 * Deferred processing of transmit interrupt. 4285 */ 4286 static void 4287 ath_tx_proc(void *arg, int npending) 4288 { 4289 struct ath_softc *sc = arg; 4290 struct ifnet *ifp = sc->sc_ifp; 4291 int i, nacked; 4292 uint32_t txqs; 4293 4294 ATH_PCU_LOCK(sc); 4295 sc->sc_txproc_cnt++; 4296 txqs = sc->sc_txq_active; 4297 sc->sc_txq_active &= ~txqs; 4298 ATH_PCU_UNLOCK(sc); 4299 4300 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4301 4302 /* 4303 * Process each active queue. 4304 */ 4305 nacked = 0; 4306 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4307 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4308 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4309 if (nacked) 4310 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4311 4312 /* XXX check this inside of IF_LOCK? */ 4313 IF_LOCK(&ifp->if_snd); 4314 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4315 IF_UNLOCK(&ifp->if_snd); 4316 sc->sc_wd_timer = 0; 4317 4318 if (sc->sc_softled) 4319 ath_led_event(sc, sc->sc_txrix); 4320 4321 ATH_PCU_LOCK(sc); 4322 sc->sc_txproc_cnt--; 4323 ATH_PCU_UNLOCK(sc); 4324 4325 ath_tx_kick(sc); 4326 } 4327 #undef TXQACTIVE 4328 4329 /* 4330 * Deferred processing of TXQ rescheduling. 4331 */ 4332 static void 4333 ath_txq_sched_tasklet(void *arg, int npending) 4334 { 4335 struct ath_softc *sc = arg; 4336 int i; 4337 4338 /* XXX is skipping ok? */ 4339 ATH_PCU_LOCK(sc); 4340 #if 0 4341 if (sc->sc_inreset_cnt > 0) { 4342 device_printf(sc->sc_dev, 4343 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4344 ATH_PCU_UNLOCK(sc); 4345 return; 4346 } 4347 #endif 4348 sc->sc_txproc_cnt++; 4349 ATH_PCU_UNLOCK(sc); 4350 4351 ATH_TX_LOCK(sc); 4352 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4353 if (ATH_TXQ_SETUP(sc, i)) { 4354 ath_txq_sched(sc, &sc->sc_txq[i]); 4355 } 4356 } 4357 ATH_TX_UNLOCK(sc); 4358 4359 ATH_PCU_LOCK(sc); 4360 sc->sc_txproc_cnt--; 4361 ATH_PCU_UNLOCK(sc); 4362 } 4363 4364 void 4365 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4366 { 4367 4368 ATH_TXBUF_LOCK_ASSERT(sc); 4369 4370 if (bf->bf_flags & ATH_BUF_MGMT) 4371 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4372 else { 4373 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4374 sc->sc_txbuf_cnt++; 4375 if (sc->sc_txbuf_cnt > ath_txbuf) { 4376 device_printf(sc->sc_dev, 4377 "%s: sc_txbuf_cnt > %d?\n", 4378 __func__, 4379 ath_txbuf); 4380 sc->sc_txbuf_cnt = ath_txbuf; 4381 } 4382 } 4383 } 4384 4385 void 4386 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4387 { 4388 4389 ATH_TXBUF_LOCK_ASSERT(sc); 4390 4391 if (bf->bf_flags & ATH_BUF_MGMT) 4392 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4393 else { 4394 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4395 sc->sc_txbuf_cnt++; 4396 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4397 device_printf(sc->sc_dev, 4398 "%s: sc_txbuf_cnt > %d?\n", 4399 __func__, 4400 ATH_TXBUF); 4401 sc->sc_txbuf_cnt = ATH_TXBUF; 4402 } 4403 } 4404 } 4405 4406 /* 4407 * Free the holding buffer if it exists 4408 */ 4409 void 4410 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4411 { 4412 ATH_TXBUF_UNLOCK_ASSERT(sc); 4413 ATH_TXQ_LOCK_ASSERT(txq); 4414 4415 if (txq->axq_holdingbf == NULL) 4416 return; 4417 4418 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4419 4420 ATH_TXBUF_LOCK(sc); 4421 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4422 ATH_TXBUF_UNLOCK(sc); 4423 4424 txq->axq_holdingbf = NULL; 4425 } 4426 4427 /* 4428 * Add this buffer to the holding queue, freeing the previous 4429 * one if it exists. 4430 */ 4431 static void 4432 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4433 { 4434 struct ath_txq *txq; 4435 4436 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4437 4438 ATH_TXBUF_UNLOCK_ASSERT(sc); 4439 ATH_TXQ_LOCK_ASSERT(txq); 4440 4441 /* XXX assert ATH_BUF_BUSY is set */ 4442 4443 /* XXX assert the tx queue is under the max number */ 4444 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4445 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4446 __func__, 4447 bf, 4448 bf->bf_state.bfs_tx_queue); 4449 bf->bf_flags &= ~ATH_BUF_BUSY; 4450 ath_returnbuf_tail(sc, bf); 4451 return; 4452 } 4453 ath_txq_freeholdingbuf(sc, txq); 4454 txq->axq_holdingbf = bf; 4455 } 4456 4457 /* 4458 * Return a buffer to the pool and update the 'busy' flag on the 4459 * previous 'tail' entry. 4460 * 4461 * This _must_ only be called when the buffer is involved in a completed 4462 * TX. The logic is that if it was part of an active TX, the previous 4463 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4464 * for restart (eg for TDMA.) 4465 * 4466 * The caller must free the mbuf and recycle the node reference. 4467 * 4468 * XXX This method of handling busy / holding buffers is insanely stupid. 4469 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4470 * be much nicer if buffers in the processq() methods would instead be 4471 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4472 * exactly what hardware queue they came from in the first place. 4473 */ 4474 void 4475 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4476 { 4477 struct ath_txq *txq; 4478 4479 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4480 4481 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4482 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4483 4484 /* 4485 * If this buffer is busy, push it onto the holding queue. 4486 */ 4487 if (bf->bf_flags & ATH_BUF_BUSY) { 4488 ATH_TXQ_LOCK(txq); 4489 ath_txq_addholdingbuf(sc, bf); 4490 ATH_TXQ_UNLOCK(txq); 4491 return; 4492 } 4493 4494 /* 4495 * Not a busy buffer, so free normally 4496 */ 4497 ATH_TXBUF_LOCK(sc); 4498 ath_returnbuf_tail(sc, bf); 4499 ATH_TXBUF_UNLOCK(sc); 4500 } 4501 4502 /* 4503 * This is currently used by ath_tx_draintxq() and 4504 * ath_tx_tid_free_pkts(). 4505 * 4506 * It recycles a single ath_buf. 4507 */ 4508 void 4509 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4510 { 4511 struct ieee80211_node *ni = bf->bf_node; 4512 struct mbuf *m0 = bf->bf_m; 4513 4514 /* 4515 * Make sure that we only sync/unload if there's an mbuf. 4516 * If not (eg we cloned a buffer), the unload will have already 4517 * occured. 4518 */ 4519 if (bf->bf_m != NULL) { 4520 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4521 BUS_DMASYNC_POSTWRITE); 4522 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4523 } 4524 4525 bf->bf_node = NULL; 4526 bf->bf_m = NULL; 4527 4528 /* Free the buffer, it's not needed any longer */ 4529 ath_freebuf(sc, bf); 4530 4531 if (ni != NULL) { 4532 /* 4533 * Do any callback and reclaim the node reference. 4534 */ 4535 if (m0->m_flags & M_TXCB) 4536 ieee80211_process_callback(ni, m0, status); 4537 ieee80211_free_node(ni); 4538 } 4539 4540 /* Finally, we don't need this mbuf any longer */ 4541 m_freem(m0); 4542 } 4543 4544 static struct ath_buf * 4545 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4546 { 4547 struct ath_buf *bf; 4548 4549 ATH_TXQ_LOCK_ASSERT(txq); 4550 4551 /* 4552 * Drain the FIFO queue first, then if it's 4553 * empty, move to the normal frame queue. 4554 */ 4555 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4556 if (bf != NULL) { 4557 /* 4558 * Is it the last buffer in this set? 4559 * Decrement the FIFO counter. 4560 */ 4561 if (bf->bf_flags & ATH_BUF_FIFOEND) { 4562 if (txq->axq_fifo_depth == 0) { 4563 device_printf(sc->sc_dev, 4564 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 4565 __func__, 4566 txq->axq_qnum, 4567 txq->fifo.axq_depth); 4568 } else 4569 txq->axq_fifo_depth--; 4570 } 4571 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 4572 return (bf); 4573 } 4574 4575 /* 4576 * Debugging! 4577 */ 4578 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 4579 device_printf(sc->sc_dev, 4580 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 4581 __func__, 4582 txq->axq_qnum, 4583 txq->axq_fifo_depth, 4584 txq->fifo.axq_depth); 4585 } 4586 4587 /* 4588 * Now drain the pending queue. 4589 */ 4590 bf = TAILQ_FIRST(&txq->axq_q); 4591 if (bf == NULL) { 4592 txq->axq_link = NULL; 4593 return (NULL); 4594 } 4595 ATH_TXQ_REMOVE(txq, bf, bf_list); 4596 return (bf); 4597 } 4598 4599 void 4600 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4601 { 4602 #ifdef ATH_DEBUG 4603 struct ath_hal *ah = sc->sc_ah; 4604 #endif 4605 struct ath_buf *bf; 4606 u_int ix; 4607 4608 /* 4609 * NB: this assumes output has been stopped and 4610 * we do not need to block ath_tx_proc 4611 */ 4612 for (ix = 0;; ix++) { 4613 ATH_TXQ_LOCK(txq); 4614 bf = ath_tx_draintxq_get_one(sc, txq); 4615 if (bf == NULL) { 4616 ATH_TXQ_UNLOCK(txq); 4617 break; 4618 } 4619 if (bf->bf_state.bfs_aggr) 4620 txq->axq_aggr_depth--; 4621 #ifdef ATH_DEBUG 4622 if (sc->sc_debug & ATH_DEBUG_RESET) { 4623 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4624 int status = 0; 4625 4626 /* 4627 * EDMA operation has a TX completion FIFO 4628 * separate from the TX descriptor, so this 4629 * method of checking the "completion" status 4630 * is wrong. 4631 */ 4632 if (! sc->sc_isedma) { 4633 status = (ath_hal_txprocdesc(ah, 4634 bf->bf_lastds, 4635 &bf->bf_status.ds_txstat) == HAL_OK); 4636 } 4637 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4638 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4639 bf->bf_m->m_len, 0, -1); 4640 } 4641 #endif /* ATH_DEBUG */ 4642 /* 4643 * Since we're now doing magic in the completion 4644 * functions, we -must- call it for aggregation 4645 * destinations or BAW tracking will get upset. 4646 */ 4647 /* 4648 * Clear ATH_BUF_BUSY; the completion handler 4649 * will free the buffer. 4650 */ 4651 ATH_TXQ_UNLOCK(txq); 4652 bf->bf_flags &= ~ATH_BUF_BUSY; 4653 if (bf->bf_comp) 4654 bf->bf_comp(sc, bf, 1); 4655 else 4656 ath_tx_default_comp(sc, bf, 1); 4657 } 4658 4659 /* 4660 * Free the holding buffer if it exists 4661 */ 4662 ATH_TXQ_LOCK(txq); 4663 ath_txq_freeholdingbuf(sc, txq); 4664 ATH_TXQ_UNLOCK(txq); 4665 4666 /* 4667 * Drain software queued frames which are on 4668 * active TIDs. 4669 */ 4670 ath_tx_txq_drain(sc, txq); 4671 } 4672 4673 static void 4674 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4675 { 4676 struct ath_hal *ah = sc->sc_ah; 4677 4678 ATH_TXQ_LOCK_ASSERT(txq); 4679 4680 DPRINTF(sc, ATH_DEBUG_RESET, 4681 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 4682 "link %p, holdingbf=%p\n", 4683 __func__, 4684 txq->axq_qnum, 4685 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4686 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 4687 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 4688 txq->axq_flags, 4689 txq->axq_link, 4690 txq->axq_holdingbf); 4691 4692 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4693 /* We've stopped TX DMA, so mark this as stopped. */ 4694 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 4695 4696 #ifdef ATH_DEBUG 4697 if ((sc->sc_debug & ATH_DEBUG_RESET) 4698 && (txq->axq_holdingbf != NULL)) { 4699 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 4700 } 4701 #endif 4702 } 4703 4704 int 4705 ath_stoptxdma(struct ath_softc *sc) 4706 { 4707 struct ath_hal *ah = sc->sc_ah; 4708 int i; 4709 4710 /* XXX return value */ 4711 if (sc->sc_invalid) 4712 return 0; 4713 4714 if (!sc->sc_invalid) { 4715 /* don't touch the hardware if marked invalid */ 4716 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4717 __func__, sc->sc_bhalq, 4718 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4719 NULL); 4720 4721 /* stop the beacon queue */ 4722 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4723 4724 /* Stop the data queues */ 4725 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4726 if (ATH_TXQ_SETUP(sc, i)) { 4727 ATH_TXQ_LOCK(&sc->sc_txq[i]); 4728 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4729 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 4730 } 4731 } 4732 } 4733 4734 return 1; 4735 } 4736 4737 #ifdef ATH_DEBUG 4738 void 4739 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 4740 { 4741 struct ath_hal *ah = sc->sc_ah; 4742 struct ath_buf *bf; 4743 int i = 0; 4744 4745 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 4746 return; 4747 4748 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 4749 __func__, txq->axq_qnum); 4750 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 4751 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 4752 ath_hal_txprocdesc(ah, bf->bf_lastds, 4753 &bf->bf_status.ds_txstat) == HAL_OK); 4754 i++; 4755 } 4756 device_printf(sc->sc_dev, "%s: Q%d: end\n", 4757 __func__, txq->axq_qnum); 4758 } 4759 #endif /* ATH_DEBUG */ 4760 4761 /* 4762 * Drain the transmit queues and reclaim resources. 4763 */ 4764 void 4765 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4766 { 4767 struct ath_hal *ah = sc->sc_ah; 4768 struct ifnet *ifp = sc->sc_ifp; 4769 int i; 4770 struct ath_buf *bf_last; 4771 4772 (void) ath_stoptxdma(sc); 4773 4774 /* 4775 * Dump the queue contents 4776 */ 4777 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4778 /* 4779 * XXX TODO: should we just handle the completed TX frames 4780 * here, whether or not the reset is a full one or not? 4781 */ 4782 if (ATH_TXQ_SETUP(sc, i)) { 4783 #ifdef ATH_DEBUG 4784 if (sc->sc_debug & ATH_DEBUG_RESET) 4785 ath_tx_dump(sc, &sc->sc_txq[i]); 4786 #endif /* ATH_DEBUG */ 4787 if (reset_type == ATH_RESET_NOLOSS) { 4788 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4789 ATH_TXQ_LOCK(&sc->sc_txq[i]); 4790 /* 4791 * Free the holding buffer; DMA is now 4792 * stopped. 4793 */ 4794 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 4795 /* 4796 * Setup the link pointer to be the 4797 * _last_ buffer/descriptor in the list. 4798 * If there's nothing in the list, set it 4799 * to NULL. 4800 */ 4801 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 4802 axq_q_s); 4803 if (bf_last != NULL) { 4804 ath_hal_gettxdesclinkptr(ah, 4805 bf_last->bf_lastds, 4806 &sc->sc_txq[i].axq_link); 4807 } else { 4808 sc->sc_txq[i].axq_link = NULL; 4809 } 4810 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 4811 } else 4812 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4813 } 4814 } 4815 #ifdef ATH_DEBUG 4816 if (sc->sc_debug & ATH_DEBUG_RESET) { 4817 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 4818 if (bf != NULL && bf->bf_m != NULL) { 4819 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4820 ath_hal_txprocdesc(ah, bf->bf_lastds, 4821 &bf->bf_status.ds_txstat) == HAL_OK); 4822 ieee80211_dump_pkt(ifp->if_l2com, 4823 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4824 0, -1); 4825 } 4826 } 4827 #endif /* ATH_DEBUG */ 4828 IF_LOCK(&ifp->if_snd); 4829 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4830 IF_UNLOCK(&ifp->if_snd); 4831 sc->sc_wd_timer = 0; 4832 } 4833 4834 /* 4835 * Update internal state after a channel change. 4836 */ 4837 static void 4838 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4839 { 4840 enum ieee80211_phymode mode; 4841 4842 /* 4843 * Change channels and update the h/w rate map 4844 * if we're switching; e.g. 11a to 11b/g. 4845 */ 4846 mode = ieee80211_chan2mode(chan); 4847 if (mode != sc->sc_curmode) 4848 ath_setcurmode(sc, mode); 4849 sc->sc_curchan = chan; 4850 } 4851 4852 /* 4853 * Set/change channels. If the channel is really being changed, 4854 * it's done by resetting the chip. To accomplish this we must 4855 * first cleanup any pending DMA, then restart stuff after a la 4856 * ath_init. 4857 */ 4858 static int 4859 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4860 { 4861 struct ifnet *ifp = sc->sc_ifp; 4862 struct ieee80211com *ic = ifp->if_l2com; 4863 struct ath_hal *ah = sc->sc_ah; 4864 int ret = 0; 4865 4866 /* Treat this as an interface reset */ 4867 ATH_PCU_UNLOCK_ASSERT(sc); 4868 ATH_UNLOCK_ASSERT(sc); 4869 4870 /* (Try to) stop TX/RX from occuring */ 4871 taskqueue_block(sc->sc_tq); 4872 4873 ATH_PCU_LOCK(sc); 4874 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4875 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4876 if (ath_reset_grablock(sc, 1) == 0) { 4877 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4878 __func__); 4879 } 4880 ATH_PCU_UNLOCK(sc); 4881 4882 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4883 __func__, ieee80211_chan2ieee(ic, chan), 4884 chan->ic_freq, chan->ic_flags); 4885 if (chan != sc->sc_curchan) { 4886 HAL_STATUS status; 4887 /* 4888 * To switch channels clear any pending DMA operations; 4889 * wait long enough for the RX fifo to drain, reset the 4890 * hardware at the new frequency, and then re-enable 4891 * the relevant bits of the h/w. 4892 */ 4893 #if 0 4894 ath_hal_intrset(ah, 0); /* disable interrupts */ 4895 #endif 4896 ath_stoprecv(sc, 1); /* turn off frame recv */ 4897 /* 4898 * First, handle completed TX/RX frames. 4899 */ 4900 ath_rx_flush(sc); 4901 ath_draintxq(sc, ATH_RESET_NOLOSS); 4902 /* 4903 * Next, flush the non-scheduled frames. 4904 */ 4905 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4906 4907 ath_update_chainmasks(sc, chan); 4908 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 4909 sc->sc_cur_rxchainmask); 4910 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4911 if_printf(ifp, "%s: unable to reset " 4912 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4913 __func__, ieee80211_chan2ieee(ic, chan), 4914 chan->ic_freq, chan->ic_flags, status); 4915 ret = EIO; 4916 goto finish; 4917 } 4918 sc->sc_diversity = ath_hal_getdiversity(ah); 4919 4920 /* Let DFS at it in case it's a DFS channel */ 4921 ath_dfs_radar_enable(sc, chan); 4922 4923 /* Let spectral at in case spectral is enabled */ 4924 ath_spectral_enable(sc, chan); 4925 4926 /* 4927 * If we're doing TDMA, enforce the TXOP limitation for chips 4928 * that support it. 4929 */ 4930 if (sc->sc_hasenforcetxop && sc->sc_tdma) 4931 ath_hal_setenforcetxop(sc->sc_ah, 1); 4932 else 4933 ath_hal_setenforcetxop(sc->sc_ah, 0); 4934 4935 /* 4936 * Re-enable rx framework. 4937 */ 4938 if (ath_startrecv(sc) != 0) { 4939 if_printf(ifp, "%s: unable to restart recv logic\n", 4940 __func__); 4941 ret = EIO; 4942 goto finish; 4943 } 4944 4945 /* 4946 * Change channels and update the h/w rate map 4947 * if we're switching; e.g. 11a to 11b/g. 4948 */ 4949 ath_chan_change(sc, chan); 4950 4951 /* 4952 * Reset clears the beacon timers; reset them 4953 * here if needed. 4954 */ 4955 if (sc->sc_beacons) { /* restart beacons */ 4956 #ifdef IEEE80211_SUPPORT_TDMA 4957 if (sc->sc_tdma) 4958 ath_tdma_config(sc, NULL); 4959 else 4960 #endif 4961 ath_beacon_config(sc, NULL); 4962 } 4963 4964 /* 4965 * Re-enable interrupts. 4966 */ 4967 #if 0 4968 ath_hal_intrset(ah, sc->sc_imask); 4969 #endif 4970 } 4971 4972 finish: 4973 ATH_PCU_LOCK(sc); 4974 sc->sc_inreset_cnt--; 4975 /* XXX only do this if sc_inreset_cnt == 0? */ 4976 ath_hal_intrset(ah, sc->sc_imask); 4977 ATH_PCU_UNLOCK(sc); 4978 4979 IF_LOCK(&ifp->if_snd); 4980 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4981 IF_UNLOCK(&ifp->if_snd); 4982 ath_txrx_start(sc); 4983 /* XXX ath_start? */ 4984 4985 return ret; 4986 } 4987 4988 /* 4989 * Periodically recalibrate the PHY to account 4990 * for temperature/environment changes. 4991 */ 4992 static void 4993 ath_calibrate(void *arg) 4994 { 4995 struct ath_softc *sc = arg; 4996 struct ath_hal *ah = sc->sc_ah; 4997 struct ifnet *ifp = sc->sc_ifp; 4998 struct ieee80211com *ic = ifp->if_l2com; 4999 HAL_BOOL longCal, isCalDone = AH_TRUE; 5000 HAL_BOOL aniCal, shortCal = AH_FALSE; 5001 int nextcal; 5002 5003 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5004 goto restart; 5005 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5006 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5007 if (sc->sc_doresetcal) 5008 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5009 5010 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5011 if (aniCal) { 5012 sc->sc_stats.ast_ani_cal++; 5013 sc->sc_lastani = ticks; 5014 ath_hal_ani_poll(ah, sc->sc_curchan); 5015 } 5016 5017 if (longCal) { 5018 sc->sc_stats.ast_per_cal++; 5019 sc->sc_lastlongcal = ticks; 5020 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5021 /* 5022 * Rfgain is out of bounds, reset the chip 5023 * to load new gain values. 5024 */ 5025 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5026 "%s: rfgain change\n", __func__); 5027 sc->sc_stats.ast_per_rfgain++; 5028 sc->sc_resetcal = 0; 5029 sc->sc_doresetcal = AH_TRUE; 5030 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5031 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5032 return; 5033 } 5034 /* 5035 * If this long cal is after an idle period, then 5036 * reset the data collection state so we start fresh. 5037 */ 5038 if (sc->sc_resetcal) { 5039 (void) ath_hal_calreset(ah, sc->sc_curchan); 5040 sc->sc_lastcalreset = ticks; 5041 sc->sc_lastshortcal = ticks; 5042 sc->sc_resetcal = 0; 5043 sc->sc_doresetcal = AH_TRUE; 5044 } 5045 } 5046 5047 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5048 if (shortCal || longCal) { 5049 isCalDone = AH_FALSE; 5050 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5051 if (longCal) { 5052 /* 5053 * Calibrate noise floor data again in case of change. 5054 */ 5055 ath_hal_process_noisefloor(ah); 5056 } 5057 } else { 5058 DPRINTF(sc, ATH_DEBUG_ANY, 5059 "%s: calibration of channel %u failed\n", 5060 __func__, sc->sc_curchan->ic_freq); 5061 sc->sc_stats.ast_per_calfail++; 5062 } 5063 if (shortCal) 5064 sc->sc_lastshortcal = ticks; 5065 } 5066 if (!isCalDone) { 5067 restart: 5068 /* 5069 * Use a shorter interval to potentially collect multiple 5070 * data samples required to complete calibration. Once 5071 * we're told the work is done we drop back to a longer 5072 * interval between requests. We're more aggressive doing 5073 * work when operating as an AP to improve operation right 5074 * after startup. 5075 */ 5076 sc->sc_lastshortcal = ticks; 5077 nextcal = ath_shortcalinterval*hz/1000; 5078 if (sc->sc_opmode != HAL_M_HOSTAP) 5079 nextcal *= 10; 5080 sc->sc_doresetcal = AH_TRUE; 5081 } else { 5082 /* nextcal should be the shortest time for next event */ 5083 nextcal = ath_longcalinterval*hz; 5084 if (sc->sc_lastcalreset == 0) 5085 sc->sc_lastcalreset = sc->sc_lastlongcal; 5086 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5087 sc->sc_resetcal = 1; /* setup reset next trip */ 5088 sc->sc_doresetcal = AH_FALSE; 5089 } 5090 /* ANI calibration may occur more often than short/long/resetcal */ 5091 if (ath_anicalinterval > 0) 5092 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5093 5094 if (nextcal != 0) { 5095 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5096 __func__, nextcal, isCalDone ? "" : "!"); 5097 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5098 } else { 5099 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5100 __func__); 5101 /* NB: don't rearm timer */ 5102 } 5103 } 5104 5105 static void 5106 ath_scan_start(struct ieee80211com *ic) 5107 { 5108 struct ifnet *ifp = ic->ic_ifp; 5109 struct ath_softc *sc = ifp->if_softc; 5110 struct ath_hal *ah = sc->sc_ah; 5111 u_int32_t rfilt; 5112 5113 /* XXX calibration timer? */ 5114 5115 ATH_LOCK(sc); 5116 sc->sc_scanning = 1; 5117 sc->sc_syncbeacon = 0; 5118 rfilt = ath_calcrxfilter(sc); 5119 ATH_UNLOCK(sc); 5120 5121 ATH_PCU_LOCK(sc); 5122 ath_hal_setrxfilter(ah, rfilt); 5123 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5124 ATH_PCU_UNLOCK(sc); 5125 5126 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5127 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5128 } 5129 5130 static void 5131 ath_scan_end(struct ieee80211com *ic) 5132 { 5133 struct ifnet *ifp = ic->ic_ifp; 5134 struct ath_softc *sc = ifp->if_softc; 5135 struct ath_hal *ah = sc->sc_ah; 5136 u_int32_t rfilt; 5137 5138 ATH_LOCK(sc); 5139 sc->sc_scanning = 0; 5140 rfilt = ath_calcrxfilter(sc); 5141 ATH_UNLOCK(sc); 5142 5143 ATH_PCU_LOCK(sc); 5144 ath_hal_setrxfilter(ah, rfilt); 5145 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5146 5147 ath_hal_process_noisefloor(ah); 5148 ATH_PCU_UNLOCK(sc); 5149 5150 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5151 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5152 sc->sc_curaid); 5153 } 5154 5155 #ifdef ATH_ENABLE_11N 5156 /* 5157 * For now, just do a channel change. 5158 * 5159 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5160 * control state and resetting the hardware without dropping frames out 5161 * of the queue. 5162 * 5163 * The unfortunate trouble here is making absolutely sure that the 5164 * channel width change has propagated enough so the hardware 5165 * absolutely isn't handed bogus frames for it's current operating 5166 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5167 * does occur in parallel, we need to make certain we've blocked 5168 * any further ongoing TX (and RX, that can cause raw TX) 5169 * before we do this. 5170 */ 5171 static void 5172 ath_update_chw(struct ieee80211com *ic) 5173 { 5174 struct ifnet *ifp = ic->ic_ifp; 5175 struct ath_softc *sc = ifp->if_softc; 5176 5177 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5178 ath_set_channel(ic); 5179 } 5180 #endif /* ATH_ENABLE_11N */ 5181 5182 static void 5183 ath_set_channel(struct ieee80211com *ic) 5184 { 5185 struct ifnet *ifp = ic->ic_ifp; 5186 struct ath_softc *sc = ifp->if_softc; 5187 5188 (void) ath_chan_set(sc, ic->ic_curchan); 5189 /* 5190 * If we are returning to our bss channel then mark state 5191 * so the next recv'd beacon's tsf will be used to sync the 5192 * beacon timers. Note that since we only hear beacons in 5193 * sta/ibss mode this has no effect in other operating modes. 5194 */ 5195 ATH_LOCK(sc); 5196 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5197 sc->sc_syncbeacon = 1; 5198 ATH_UNLOCK(sc); 5199 } 5200 5201 /* 5202 * Walk the vap list and check if there any vap's in RUN state. 5203 */ 5204 static int 5205 ath_isanyrunningvaps(struct ieee80211vap *this) 5206 { 5207 struct ieee80211com *ic = this->iv_ic; 5208 struct ieee80211vap *vap; 5209 5210 IEEE80211_LOCK_ASSERT(ic); 5211 5212 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5213 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5214 return 1; 5215 } 5216 return 0; 5217 } 5218 5219 static int 5220 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5221 { 5222 struct ieee80211com *ic = vap->iv_ic; 5223 struct ath_softc *sc = ic->ic_ifp->if_softc; 5224 struct ath_vap *avp = ATH_VAP(vap); 5225 struct ath_hal *ah = sc->sc_ah; 5226 struct ieee80211_node *ni = NULL; 5227 int i, error, stamode; 5228 u_int32_t rfilt; 5229 int csa_run_transition = 0; 5230 5231 static const HAL_LED_STATE leds[] = { 5232 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5233 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5234 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5235 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5236 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5237 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5238 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5239 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5240 }; 5241 5242 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5243 ieee80211_state_name[vap->iv_state], 5244 ieee80211_state_name[nstate]); 5245 5246 /* 5247 * net80211 _should_ have the comlock asserted at this point. 5248 * There are some comments around the calls to vap->iv_newstate 5249 * which indicate that it (newstate) may end up dropping the 5250 * lock. This and the subsequent lock assert check after newstate 5251 * are an attempt to catch these and figure out how/why. 5252 */ 5253 IEEE80211_LOCK_ASSERT(ic); 5254 5255 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5256 csa_run_transition = 1; 5257 5258 callout_drain(&sc->sc_cal_ch); 5259 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5260 5261 if (nstate == IEEE80211_S_SCAN) { 5262 /* 5263 * Scanning: turn off beacon miss and don't beacon. 5264 * Mark beacon state so when we reach RUN state we'll 5265 * [re]setup beacons. Unblock the task q thread so 5266 * deferred interrupt processing is done. 5267 */ 5268 ath_hal_intrset(ah, 5269 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5270 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5271 sc->sc_beacons = 0; 5272 taskqueue_unblock(sc->sc_tq); 5273 } 5274 5275 ni = ieee80211_ref_node(vap->iv_bss); 5276 rfilt = ath_calcrxfilter(sc); 5277 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5278 vap->iv_opmode == IEEE80211_M_AHDEMO || 5279 vap->iv_opmode == IEEE80211_M_IBSS); 5280 if (stamode && nstate == IEEE80211_S_RUN) { 5281 sc->sc_curaid = ni->ni_associd; 5282 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5283 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5284 } 5285 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5286 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5287 ath_hal_setrxfilter(ah, rfilt); 5288 5289 /* XXX is this to restore keycache on resume? */ 5290 if (vap->iv_opmode != IEEE80211_M_STA && 5291 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5292 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5293 if (ath_hal_keyisvalid(ah, i)) 5294 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5295 } 5296 5297 /* 5298 * Invoke the parent method to do net80211 work. 5299 */ 5300 error = avp->av_newstate(vap, nstate, arg); 5301 if (error != 0) 5302 goto bad; 5303 5304 /* 5305 * See above: ensure av_newstate() doesn't drop the lock 5306 * on us. 5307 */ 5308 IEEE80211_LOCK_ASSERT(ic); 5309 5310 if (nstate == IEEE80211_S_RUN) { 5311 /* NB: collect bss node again, it may have changed */ 5312 ieee80211_free_node(ni); 5313 ni = ieee80211_ref_node(vap->iv_bss); 5314 5315 DPRINTF(sc, ATH_DEBUG_STATE, 5316 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5317 "capinfo 0x%04x chan %d\n", __func__, 5318 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5319 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5320 5321 switch (vap->iv_opmode) { 5322 #ifdef IEEE80211_SUPPORT_TDMA 5323 case IEEE80211_M_AHDEMO: 5324 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5325 break; 5326 /* fall thru... */ 5327 #endif 5328 case IEEE80211_M_HOSTAP: 5329 case IEEE80211_M_IBSS: 5330 case IEEE80211_M_MBSS: 5331 /* 5332 * Allocate and setup the beacon frame. 5333 * 5334 * Stop any previous beacon DMA. This may be 5335 * necessary, for example, when an ibss merge 5336 * causes reconfiguration; there will be a state 5337 * transition from RUN->RUN that means we may 5338 * be called with beacon transmission active. 5339 */ 5340 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5341 5342 error = ath_beacon_alloc(sc, ni); 5343 if (error != 0) 5344 goto bad; 5345 /* 5346 * If joining an adhoc network defer beacon timer 5347 * configuration to the next beacon frame so we 5348 * have a current TSF to use. Otherwise we're 5349 * starting an ibss/bss so there's no need to delay; 5350 * if this is the first vap moving to RUN state, then 5351 * beacon state needs to be [re]configured. 5352 */ 5353 if (vap->iv_opmode == IEEE80211_M_IBSS && 5354 ni->ni_tstamp.tsf != 0) { 5355 sc->sc_syncbeacon = 1; 5356 } else if (!sc->sc_beacons) { 5357 #ifdef IEEE80211_SUPPORT_TDMA 5358 if (vap->iv_caps & IEEE80211_C_TDMA) 5359 ath_tdma_config(sc, vap); 5360 else 5361 #endif 5362 ath_beacon_config(sc, vap); 5363 sc->sc_beacons = 1; 5364 } 5365 break; 5366 case IEEE80211_M_STA: 5367 /* 5368 * Defer beacon timer configuration to the next 5369 * beacon frame so we have a current TSF to use 5370 * (any TSF collected when scanning is likely old). 5371 * However if it's due to a CSA -> RUN transition, 5372 * force a beacon update so we pick up a lack of 5373 * beacons from an AP in CAC and thus force a 5374 * scan. 5375 * 5376 * And, there's also corner cases here where 5377 * after a scan, the AP may have disappeared. 5378 * In that case, we may not receive an actual 5379 * beacon to update the beacon timer and thus we 5380 * won't get notified of the missing beacons. 5381 */ 5382 sc->sc_syncbeacon = 1; 5383 #if 0 5384 if (csa_run_transition) 5385 #endif 5386 ath_beacon_config(sc, vap); 5387 5388 /* 5389 * PR: kern/175227 5390 * 5391 * Reconfigure beacons during reset; as otherwise 5392 * we won't get the beacon timers reprogrammed 5393 * after a reset and thus we won't pick up a 5394 * beacon miss interrupt. 5395 * 5396 * Hopefully we'll see a beacon before the BMISS 5397 * timer fires (too often), leading to a STA 5398 * disassociation. 5399 */ 5400 sc->sc_beacons = 1; 5401 break; 5402 case IEEE80211_M_MONITOR: 5403 /* 5404 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5405 * transitions so we must re-enable interrupts here to 5406 * handle the case of a single monitor mode vap. 5407 */ 5408 ath_hal_intrset(ah, sc->sc_imask); 5409 break; 5410 case IEEE80211_M_WDS: 5411 break; 5412 default: 5413 break; 5414 } 5415 /* 5416 * Let the hal process statistics collected during a 5417 * scan so it can provide calibrated noise floor data. 5418 */ 5419 ath_hal_process_noisefloor(ah); 5420 /* 5421 * Reset rssi stats; maybe not the best place... 5422 */ 5423 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5424 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5425 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5426 /* 5427 * Finally, start any timers and the task q thread 5428 * (in case we didn't go through SCAN state). 5429 */ 5430 if (ath_longcalinterval != 0) { 5431 /* start periodic recalibration timer */ 5432 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5433 } else { 5434 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5435 "%s: calibration disabled\n", __func__); 5436 } 5437 taskqueue_unblock(sc->sc_tq); 5438 } else if (nstate == IEEE80211_S_INIT) { 5439 /* 5440 * If there are no vaps left in RUN state then 5441 * shutdown host/driver operation: 5442 * o disable interrupts 5443 * o disable the task queue thread 5444 * o mark beacon processing as stopped 5445 */ 5446 if (!ath_isanyrunningvaps(vap)) { 5447 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5448 /* disable interrupts */ 5449 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5450 taskqueue_block(sc->sc_tq); 5451 sc->sc_beacons = 0; 5452 } 5453 #ifdef IEEE80211_SUPPORT_TDMA 5454 ath_hal_setcca(ah, AH_TRUE); 5455 #endif 5456 } 5457 bad: 5458 ieee80211_free_node(ni); 5459 return error; 5460 } 5461 5462 /* 5463 * Allocate a key cache slot to the station so we can 5464 * setup a mapping from key index to node. The key cache 5465 * slot is needed for managing antenna state and for 5466 * compression when stations do not use crypto. We do 5467 * it uniliaterally here; if crypto is employed this slot 5468 * will be reassigned. 5469 */ 5470 static void 5471 ath_setup_stationkey(struct ieee80211_node *ni) 5472 { 5473 struct ieee80211vap *vap = ni->ni_vap; 5474 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5475 ieee80211_keyix keyix, rxkeyix; 5476 5477 /* XXX should take a locked ref to vap->iv_bss */ 5478 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5479 /* 5480 * Key cache is full; we'll fall back to doing 5481 * the more expensive lookup in software. Note 5482 * this also means no h/w compression. 5483 */ 5484 /* XXX msg+statistic */ 5485 } else { 5486 /* XXX locking? */ 5487 ni->ni_ucastkey.wk_keyix = keyix; 5488 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5489 /* NB: must mark device key to get called back on delete */ 5490 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5491 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5492 /* NB: this will create a pass-thru key entry */ 5493 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5494 } 5495 } 5496 5497 /* 5498 * Setup driver-specific state for a newly associated node. 5499 * Note that we're called also on a re-associate, the isnew 5500 * param tells us if this is the first time or not. 5501 */ 5502 static void 5503 ath_newassoc(struct ieee80211_node *ni, int isnew) 5504 { 5505 struct ath_node *an = ATH_NODE(ni); 5506 struct ieee80211vap *vap = ni->ni_vap; 5507 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5508 const struct ieee80211_txparam *tp = ni->ni_txparms; 5509 5510 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5511 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5512 5513 ath_rate_newassoc(sc, an, isnew); 5514 5515 if (isnew && 5516 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5517 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5518 ath_setup_stationkey(ni); 5519 5520 /* 5521 * If we're reassociating, make sure that any paused queues 5522 * get unpaused. 5523 * 5524 * Now, we may hvae frames in the hardware queue for this node. 5525 * So if we are reassociating and there are frames in the queue, 5526 * we need to go through the cleanup path to ensure that they're 5527 * marked as non-aggregate. 5528 */ 5529 if (! isnew) { 5530 DPRINTF(sc, ATH_DEBUG_NODE, 5531 "%s: %6D: reassoc; is_powersave=%d\n", 5532 __func__, 5533 ni->ni_macaddr, 5534 ":", 5535 an->an_is_powersave); 5536 5537 /* XXX for now, we can't hold the lock across assoc */ 5538 ath_tx_node_reassoc(sc, an); 5539 5540 /* XXX for now, we can't hold the lock across wakeup */ 5541 if (an->an_is_powersave) 5542 ath_tx_node_wakeup(sc, an); 5543 } 5544 } 5545 5546 static int 5547 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5548 int nchans, struct ieee80211_channel chans[]) 5549 { 5550 struct ath_softc *sc = ic->ic_ifp->if_softc; 5551 struct ath_hal *ah = sc->sc_ah; 5552 HAL_STATUS status; 5553 5554 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5555 "%s: rd %u cc %u location %c%s\n", 5556 __func__, reg->regdomain, reg->country, reg->location, 5557 reg->ecm ? " ecm" : ""); 5558 5559 status = ath_hal_set_channels(ah, chans, nchans, 5560 reg->country, reg->regdomain); 5561 if (status != HAL_OK) { 5562 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5563 __func__, status); 5564 return EINVAL; /* XXX */ 5565 } 5566 5567 return 0; 5568 } 5569 5570 static void 5571 ath_getradiocaps(struct ieee80211com *ic, 5572 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5573 { 5574 struct ath_softc *sc = ic->ic_ifp->if_softc; 5575 struct ath_hal *ah = sc->sc_ah; 5576 5577 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5578 __func__, SKU_DEBUG, CTRY_DEFAULT); 5579 5580 /* XXX check return */ 5581 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5582 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5583 5584 } 5585 5586 static int 5587 ath_getchannels(struct ath_softc *sc) 5588 { 5589 struct ifnet *ifp = sc->sc_ifp; 5590 struct ieee80211com *ic = ifp->if_l2com; 5591 struct ath_hal *ah = sc->sc_ah; 5592 HAL_STATUS status; 5593 5594 /* 5595 * Collect channel set based on EEPROM contents. 5596 */ 5597 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5598 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5599 if (status != HAL_OK) { 5600 if_printf(ifp, "%s: unable to collect channel list from hal, " 5601 "status %d\n", __func__, status); 5602 return EINVAL; 5603 } 5604 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5605 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5606 /* XXX map Atheros sku's to net80211 SKU's */ 5607 /* XXX net80211 types too small */ 5608 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5609 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5610 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5611 ic->ic_regdomain.isocc[1] = ' '; 5612 5613 ic->ic_regdomain.ecm = 1; 5614 ic->ic_regdomain.location = 'I'; 5615 5616 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5617 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5618 __func__, sc->sc_eerd, sc->sc_eecc, 5619 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5620 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5621 return 0; 5622 } 5623 5624 static int 5625 ath_rate_setup(struct ath_softc *sc, u_int mode) 5626 { 5627 struct ath_hal *ah = sc->sc_ah; 5628 const HAL_RATE_TABLE *rt; 5629 5630 switch (mode) { 5631 case IEEE80211_MODE_11A: 5632 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5633 break; 5634 case IEEE80211_MODE_HALF: 5635 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5636 break; 5637 case IEEE80211_MODE_QUARTER: 5638 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5639 break; 5640 case IEEE80211_MODE_11B: 5641 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5642 break; 5643 case IEEE80211_MODE_11G: 5644 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5645 break; 5646 case IEEE80211_MODE_TURBO_A: 5647 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5648 break; 5649 case IEEE80211_MODE_TURBO_G: 5650 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5651 break; 5652 case IEEE80211_MODE_STURBO_A: 5653 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5654 break; 5655 case IEEE80211_MODE_11NA: 5656 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 5657 break; 5658 case IEEE80211_MODE_11NG: 5659 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 5660 break; 5661 default: 5662 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5663 __func__, mode); 5664 return 0; 5665 } 5666 sc->sc_rates[mode] = rt; 5667 return (rt != NULL); 5668 } 5669 5670 static void 5671 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5672 { 5673 #define N(a) (sizeof(a)/sizeof(a[0])) 5674 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5675 static const struct { 5676 u_int rate; /* tx/rx 802.11 rate */ 5677 u_int16_t timeOn; /* LED on time (ms) */ 5678 u_int16_t timeOff; /* LED off time (ms) */ 5679 } blinkrates[] = { 5680 { 108, 40, 10 }, 5681 { 96, 44, 11 }, 5682 { 72, 50, 13 }, 5683 { 48, 57, 14 }, 5684 { 36, 67, 16 }, 5685 { 24, 80, 20 }, 5686 { 22, 100, 25 }, 5687 { 18, 133, 34 }, 5688 { 12, 160, 40 }, 5689 { 10, 200, 50 }, 5690 { 6, 240, 58 }, 5691 { 4, 267, 66 }, 5692 { 2, 400, 100 }, 5693 { 0, 500, 130 }, 5694 /* XXX half/quarter rates */ 5695 }; 5696 const HAL_RATE_TABLE *rt; 5697 int i, j; 5698 5699 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5700 rt = sc->sc_rates[mode]; 5701 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5702 for (i = 0; i < rt->rateCount; i++) { 5703 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5704 if (rt->info[i].phy != IEEE80211_T_HT) 5705 sc->sc_rixmap[ieeerate] = i; 5706 else 5707 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 5708 } 5709 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5710 for (i = 0; i < N(sc->sc_hwmap); i++) { 5711 if (i >= rt->rateCount) { 5712 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5713 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5714 continue; 5715 } 5716 sc->sc_hwmap[i].ieeerate = 5717 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5718 if (rt->info[i].phy == IEEE80211_T_HT) 5719 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 5720 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5721 if (rt->info[i].shortPreamble || 5722 rt->info[i].phy == IEEE80211_T_OFDM) 5723 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5724 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 5725 for (j = 0; j < N(blinkrates)-1; j++) 5726 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5727 break; 5728 /* NB: this uses the last entry if the rate isn't found */ 5729 /* XXX beware of overlow */ 5730 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5731 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5732 } 5733 sc->sc_currates = rt; 5734 sc->sc_curmode = mode; 5735 /* 5736 * All protection frames are transmited at 2Mb/s for 5737 * 11g, otherwise at 1Mb/s. 5738 */ 5739 if (mode == IEEE80211_MODE_11G) 5740 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 5741 else 5742 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 5743 /* NB: caller is responsible for resetting rate control state */ 5744 #undef N 5745 } 5746 5747 static void 5748 ath_watchdog(void *arg) 5749 { 5750 struct ath_softc *sc = arg; 5751 int do_reset = 0; 5752 5753 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 5754 struct ifnet *ifp = sc->sc_ifp; 5755 uint32_t hangs; 5756 5757 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 5758 hangs != 0) { 5759 if_printf(ifp, "%s hang detected (0x%x)\n", 5760 hangs & 0xff ? "bb" : "mac", hangs); 5761 } else 5762 if_printf(ifp, "device timeout\n"); 5763 do_reset = 1; 5764 ifp->if_oerrors++; 5765 sc->sc_stats.ast_watchdog++; 5766 } 5767 5768 /* 5769 * We can't hold the lock across the ath_reset() call. 5770 * 5771 * And since this routine can't hold a lock and sleep, 5772 * do the reset deferred. 5773 */ 5774 if (do_reset) { 5775 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5776 } 5777 5778 callout_schedule(&sc->sc_wd_ch, hz); 5779 } 5780 5781 /* 5782 * Fetch the rate control statistics for the given node. 5783 */ 5784 static int 5785 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 5786 { 5787 struct ath_node *an; 5788 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5789 struct ieee80211_node *ni; 5790 int error = 0; 5791 5792 /* Perform a lookup on the given node */ 5793 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 5794 if (ni == NULL) { 5795 error = EINVAL; 5796 goto bad; 5797 } 5798 5799 /* Lock the ath_node */ 5800 an = ATH_NODE(ni); 5801 ATH_NODE_LOCK(an); 5802 5803 /* Fetch the rate control stats for this node */ 5804 error = ath_rate_fetch_node_stats(sc, an, rs); 5805 5806 /* No matter what happens here, just drop through */ 5807 5808 /* Unlock the ath_node */ 5809 ATH_NODE_UNLOCK(an); 5810 5811 /* Unref the node */ 5812 ieee80211_node_decref(ni); 5813 5814 bad: 5815 return (error); 5816 } 5817 5818 #ifdef ATH_DIAGAPI 5819 /* 5820 * Diagnostic interface to the HAL. This is used by various 5821 * tools to do things like retrieve register contents for 5822 * debugging. The mechanism is intentionally opaque so that 5823 * it can change frequently w/o concern for compatiblity. 5824 */ 5825 static int 5826 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5827 { 5828 struct ath_hal *ah = sc->sc_ah; 5829 u_int id = ad->ad_id & ATH_DIAG_ID; 5830 void *indata = NULL; 5831 void *outdata = NULL; 5832 u_int32_t insize = ad->ad_in_size; 5833 u_int32_t outsize = ad->ad_out_size; 5834 int error = 0; 5835 5836 if (ad->ad_id & ATH_DIAG_IN) { 5837 /* 5838 * Copy in data. 5839 */ 5840 indata = malloc(insize, M_TEMP, M_NOWAIT); 5841 if (indata == NULL) { 5842 error = ENOMEM; 5843 goto bad; 5844 } 5845 error = copyin(ad->ad_in_data, indata, insize); 5846 if (error) 5847 goto bad; 5848 } 5849 if (ad->ad_id & ATH_DIAG_DYN) { 5850 /* 5851 * Allocate a buffer for the results (otherwise the HAL 5852 * returns a pointer to a buffer where we can read the 5853 * results). Note that we depend on the HAL leaving this 5854 * pointer for us to use below in reclaiming the buffer; 5855 * may want to be more defensive. 5856 */ 5857 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5858 if (outdata == NULL) { 5859 error = ENOMEM; 5860 goto bad; 5861 } 5862 } 5863 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5864 if (outsize < ad->ad_out_size) 5865 ad->ad_out_size = outsize; 5866 if (outdata != NULL) 5867 error = copyout(outdata, ad->ad_out_data, 5868 ad->ad_out_size); 5869 } else { 5870 error = EINVAL; 5871 } 5872 bad: 5873 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5874 free(indata, M_TEMP); 5875 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5876 free(outdata, M_TEMP); 5877 return error; 5878 } 5879 #endif /* ATH_DIAGAPI */ 5880 5881 static int 5882 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5883 { 5884 #define IS_RUNNING(ifp) \ 5885 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5886 struct ath_softc *sc = ifp->if_softc; 5887 struct ieee80211com *ic = ifp->if_l2com; 5888 struct ifreq *ifr = (struct ifreq *)data; 5889 const HAL_RATE_TABLE *rt; 5890 int error = 0; 5891 5892 switch (cmd) { 5893 case SIOCSIFFLAGS: 5894 ATH_LOCK(sc); 5895 if (IS_RUNNING(ifp)) { 5896 /* 5897 * To avoid rescanning another access point, 5898 * do not call ath_init() here. Instead, 5899 * only reflect promisc mode settings. 5900 */ 5901 ath_mode_init(sc); 5902 } else if (ifp->if_flags & IFF_UP) { 5903 /* 5904 * Beware of being called during attach/detach 5905 * to reset promiscuous mode. In that case we 5906 * will still be marked UP but not RUNNING. 5907 * However trying to re-init the interface 5908 * is the wrong thing to do as we've already 5909 * torn down much of our state. There's 5910 * probably a better way to deal with this. 5911 */ 5912 if (!sc->sc_invalid) 5913 ath_init(sc); /* XXX lose error */ 5914 } else { 5915 ath_stop_locked(ifp); 5916 #ifdef notyet 5917 /* XXX must wakeup in places like ath_vap_delete */ 5918 if (!sc->sc_invalid) 5919 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5920 #endif 5921 } 5922 ATH_UNLOCK(sc); 5923 break; 5924 case SIOCGIFMEDIA: 5925 case SIOCSIFMEDIA: 5926 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5927 break; 5928 case SIOCGATHSTATS: 5929 /* NB: embed these numbers to get a consistent view */ 5930 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5931 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5932 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5933 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5934 #ifdef IEEE80211_SUPPORT_TDMA 5935 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5936 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5937 #endif 5938 rt = sc->sc_currates; 5939 sc->sc_stats.ast_tx_rate = 5940 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5941 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 5942 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 5943 return copyout(&sc->sc_stats, 5944 ifr->ifr_data, sizeof (sc->sc_stats)); 5945 case SIOCGATHAGSTATS: 5946 return copyout(&sc->sc_aggr_stats, 5947 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 5948 case SIOCZATHSTATS: 5949 error = priv_check(curthread, PRIV_DRIVER); 5950 if (error == 0) { 5951 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 5952 memset(&sc->sc_aggr_stats, 0, 5953 sizeof(sc->sc_aggr_stats)); 5954 memset(&sc->sc_intr_stats, 0, 5955 sizeof(sc->sc_intr_stats)); 5956 } 5957 break; 5958 #ifdef ATH_DIAGAPI 5959 case SIOCGATHDIAG: 5960 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5961 break; 5962 case SIOCGATHPHYERR: 5963 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5964 break; 5965 #endif 5966 case SIOCGATHSPECTRAL: 5967 error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr); 5968 break; 5969 case SIOCGATHNODERATESTATS: 5970 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 5971 break; 5972 case SIOCGIFADDR: 5973 error = ether_ioctl(ifp, cmd, data); 5974 break; 5975 default: 5976 error = EINVAL; 5977 break; 5978 } 5979 return error; 5980 #undef IS_RUNNING 5981 } 5982 5983 /* 5984 * Announce various information on device/driver attach. 5985 */ 5986 static void 5987 ath_announce(struct ath_softc *sc) 5988 { 5989 struct ifnet *ifp = sc->sc_ifp; 5990 struct ath_hal *ah = sc->sc_ah; 5991 5992 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5993 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5994 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5995 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5996 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5997 if (bootverbose) { 5998 int i; 5999 for (i = 0; i <= WME_AC_VO; i++) { 6000 struct ath_txq *txq = sc->sc_ac2q[i]; 6001 if_printf(ifp, "Use hw queue %u for %s traffic\n", 6002 txq->axq_qnum, ieee80211_wme_acnames[i]); 6003 } 6004 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 6005 sc->sc_cabq->axq_qnum); 6006 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 6007 } 6008 if (ath_rxbuf != ATH_RXBUF) 6009 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 6010 if (ath_txbuf != ATH_TXBUF) 6011 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 6012 if (sc->sc_mcastkey && bootverbose) 6013 if_printf(ifp, "using multicast key search\n"); 6014 } 6015 6016 static void 6017 ath_dfs_tasklet(void *p, int npending) 6018 { 6019 struct ath_softc *sc = (struct ath_softc *) p; 6020 struct ifnet *ifp = sc->sc_ifp; 6021 struct ieee80211com *ic = ifp->if_l2com; 6022 6023 /* 6024 * If previous processing has found a radar event, 6025 * signal this to the net80211 layer to begin DFS 6026 * processing. 6027 */ 6028 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6029 /* DFS event found, initiate channel change */ 6030 /* 6031 * XXX doesn't currently tell us whether the event 6032 * XXX was found in the primary or extension 6033 * XXX channel! 6034 */ 6035 IEEE80211_LOCK(ic); 6036 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6037 IEEE80211_UNLOCK(ic); 6038 } 6039 } 6040 6041 /* 6042 * Enable/disable power save. This must be called with 6043 * no TX driver locks currently held, so it should only 6044 * be called from the RX path (which doesn't hold any 6045 * TX driver locks.) 6046 */ 6047 static void 6048 ath_node_powersave(struct ieee80211_node *ni, int enable) 6049 { 6050 #ifdef ATH_SW_PSQ 6051 struct ath_node *an = ATH_NODE(ni); 6052 struct ieee80211com *ic = ni->ni_ic; 6053 struct ath_softc *sc = ic->ic_ifp->if_softc; 6054 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6055 6056 /* XXX and no TXQ locks should be held here */ 6057 6058 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6059 __func__, 6060 ni->ni_macaddr, 6061 ":", 6062 !! enable); 6063 6064 /* Suspend or resume software queue handling */ 6065 if (enable) 6066 ath_tx_node_sleep(sc, an); 6067 else 6068 ath_tx_node_wakeup(sc, an); 6069 6070 /* Update net80211 state */ 6071 avp->av_node_ps(ni, enable); 6072 #else 6073 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6074 6075 /* Update net80211 state */ 6076 avp->av_node_ps(ni, enable); 6077 #endif/* ATH_SW_PSQ */ 6078 } 6079 6080 /* 6081 * Notification from net80211 that the powersave queue state has 6082 * changed. 6083 * 6084 * Since the software queue also may have some frames: 6085 * 6086 * + if the node software queue has frames and the TID state 6087 * is 0, we set the TIM; 6088 * + if the node and the stack are both empty, we clear the TIM bit. 6089 * + If the stack tries to set the bit, always set it. 6090 * + If the stack tries to clear the bit, only clear it if the 6091 * software queue in question is also cleared. 6092 * 6093 * TODO: this is called during node teardown; so let's ensure this 6094 * is all correctly handled and that the TIM bit is cleared. 6095 * It may be that the node flush is called _AFTER_ the net80211 6096 * stack clears the TIM. 6097 * 6098 * Here is the racy part. Since it's possible >1 concurrent, 6099 * overlapping TXes will appear complete with a TX completion in 6100 * another thread, it's possible that the concurrent TIM calls will 6101 * clash. We can't hold the node lock here because setting the 6102 * TIM grabs the net80211 comlock and this may cause a LOR. 6103 * The solution is either to totally serialise _everything_ at 6104 * this point (ie, all TX, completion and any reset/flush go into 6105 * one taskqueue) or a new "ath TIM lock" needs to be created that 6106 * just wraps the driver state change and this call to avp->av_set_tim(). 6107 * 6108 * The same race exists in the net80211 power save queue handling 6109 * as well. Since multiple transmitting threads may queue frames 6110 * into the driver, as well as ps-poll and the driver transmitting 6111 * frames (and thus clearing the psq), it's quite possible that 6112 * a packet entering the PSQ and a ps-poll being handled will 6113 * race, causing the TIM to be cleared and not re-set. 6114 */ 6115 static int 6116 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6117 { 6118 #ifdef ATH_SW_PSQ 6119 struct ieee80211com *ic = ni->ni_ic; 6120 struct ath_softc *sc = ic->ic_ifp->if_softc; 6121 struct ath_node *an = ATH_NODE(ni); 6122 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6123 int changed = 0; 6124 6125 ATH_TX_LOCK(sc); 6126 an->an_stack_psq = enable; 6127 6128 /* 6129 * This will get called for all operating modes, 6130 * even if avp->av_set_tim is unset. 6131 * It's currently set for hostap/ibss modes; but 6132 * the same infrastructure is used for both STA 6133 * and AP/IBSS node power save. 6134 */ 6135 if (avp->av_set_tim == NULL) { 6136 ATH_TX_UNLOCK(sc); 6137 return (0); 6138 } 6139 6140 /* 6141 * If setting the bit, always set it here. 6142 * If clearing the bit, only clear it if the 6143 * software queue is also empty. 6144 * 6145 * If the node has left power save, just clear the TIM 6146 * bit regardless of the state of the power save queue. 6147 * 6148 * XXX TODO: although atomics are used, it's quite possible 6149 * that a race will occur between this and setting/clearing 6150 * in another thread. TX completion will occur always in 6151 * one thread, however setting/clearing the TIM bit can come 6152 * from a variety of different process contexts! 6153 */ 6154 if (enable && an->an_tim_set == 1) { 6155 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6156 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6157 __func__, 6158 ni->ni_macaddr, 6159 ":", 6160 enable); 6161 ATH_TX_UNLOCK(sc); 6162 } else if (enable) { 6163 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6164 "%s: %6D: enable=%d, enabling TIM\n", 6165 __func__, 6166 ni->ni_macaddr, 6167 ":", 6168 enable); 6169 an->an_tim_set = 1; 6170 ATH_TX_UNLOCK(sc); 6171 changed = avp->av_set_tim(ni, enable); 6172 } else if (an->an_swq_depth == 0) { 6173 /* disable */ 6174 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6175 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6176 __func__, 6177 ni->ni_macaddr, 6178 ":", 6179 enable); 6180 an->an_tim_set = 0; 6181 ATH_TX_UNLOCK(sc); 6182 changed = avp->av_set_tim(ni, enable); 6183 } else if (! an->an_is_powersave) { 6184 /* 6185 * disable regardless; the node isn't in powersave now 6186 */ 6187 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6188 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6189 __func__, 6190 ni->ni_macaddr, 6191 ":", 6192 enable); 6193 an->an_tim_set = 0; 6194 ATH_TX_UNLOCK(sc); 6195 changed = avp->av_set_tim(ni, enable); 6196 } else { 6197 /* 6198 * psq disable, node is currently in powersave, node 6199 * software queue isn't empty, so don't clear the TIM bit 6200 * for now. 6201 */ 6202 ATH_TX_UNLOCK(sc); 6203 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6204 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6205 __func__, 6206 ni->ni_macaddr, 6207 ":", 6208 enable); 6209 changed = 0; 6210 } 6211 6212 return (changed); 6213 #else 6214 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6215 6216 /* 6217 * Some operating modes don't set av_set_tim(), so don't 6218 * update it here. 6219 */ 6220 if (avp->av_set_tim == NULL) 6221 return (0); 6222 6223 return (avp->av_set_tim(ni, enable)); 6224 #endif /* ATH_SW_PSQ */ 6225 } 6226 6227 /* 6228 * Set or update the TIM from the software queue. 6229 * 6230 * Check the software queue depth before attempting to do lock 6231 * anything; that avoids trying to obtain the lock. Then, 6232 * re-check afterwards to ensure nothing has changed in the 6233 * meantime. 6234 * 6235 * set: This is designed to be called from the TX path, after 6236 * a frame has been queued; to see if the swq > 0. 6237 * 6238 * clear: This is designed to be called from the buffer completion point 6239 * (right now it's ath_tx_default_comp()) where the state of 6240 * a software queue has changed. 6241 * 6242 * It makes sense to place it at buffer free / completion rather 6243 * than after each software queue operation, as there's no real 6244 * point in churning the TIM bit as the last frames in the software 6245 * queue are transmitted. If they fail and we retry them, we'd 6246 * just be setting the TIM bit again anyway. 6247 */ 6248 void 6249 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6250 int enable) 6251 { 6252 #ifdef ATH_SW_PSQ 6253 struct ath_node *an; 6254 struct ath_vap *avp; 6255 6256 /* Don't do this for broadcast/etc frames */ 6257 if (ni == NULL) 6258 return; 6259 6260 an = ATH_NODE(ni); 6261 avp = ATH_VAP(ni->ni_vap); 6262 6263 /* 6264 * And for operating modes without the TIM handler set, let's 6265 * just skip those. 6266 */ 6267 if (avp->av_set_tim == NULL) 6268 return; 6269 6270 ATH_TX_LOCK_ASSERT(sc); 6271 6272 if (enable) { 6273 if (an->an_is_powersave && 6274 an->an_tim_set == 0 && 6275 an->an_swq_depth != 0) { 6276 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6277 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6278 __func__, 6279 ni->ni_macaddr, 6280 ":"); 6281 an->an_tim_set = 1; 6282 (void) avp->av_set_tim(ni, 1); 6283 } 6284 } else { 6285 /* 6286 * Don't bother grabbing the lock unless the queue is empty. 6287 */ 6288 if (&an->an_swq_depth != 0) 6289 return; 6290 6291 if (an->an_is_powersave && 6292 an->an_stack_psq == 0 && 6293 an->an_tim_set == 1 && 6294 an->an_swq_depth == 0) { 6295 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6296 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6297 " clear!\n", 6298 __func__, 6299 ni->ni_macaddr, 6300 ":"); 6301 an->an_tim_set = 0; 6302 (void) avp->av_set_tim(ni, 0); 6303 } 6304 } 6305 #else 6306 return; 6307 #endif /* ATH_SW_PSQ */ 6308 } 6309 6310 /* 6311 * Received a ps-poll frame from net80211. 6312 * 6313 * Here we get a chance to serve out a software-queued frame ourselves 6314 * before we punt it to net80211 to transmit us one itself - either 6315 * because there's traffic in the net80211 psq, or a NULL frame to 6316 * indicate there's nothing else. 6317 */ 6318 static void 6319 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6320 { 6321 #ifdef ATH_SW_PSQ 6322 struct ath_node *an; 6323 struct ath_vap *avp; 6324 struct ieee80211com *ic = ni->ni_ic; 6325 struct ath_softc *sc = ic->ic_ifp->if_softc; 6326 int tid; 6327 6328 /* Just paranoia */ 6329 if (ni == NULL) 6330 return; 6331 6332 /* 6333 * Unassociated (temporary node) station. 6334 */ 6335 if (ni->ni_associd == 0) 6336 return; 6337 6338 /* 6339 * We do have an active node, so let's begin looking into it. 6340 */ 6341 an = ATH_NODE(ni); 6342 avp = ATH_VAP(ni->ni_vap); 6343 6344 /* 6345 * For now, we just call the original ps-poll method. 6346 * Once we're ready to flip this on: 6347 * 6348 * + Set leak to 1, as no matter what we're going to have 6349 * to send a frame; 6350 * + Check the software queue and if there's something in it, 6351 * schedule the highest TID thas has traffic from this node. 6352 * Then make sure we schedule the software scheduler to 6353 * run so it picks up said frame. 6354 * 6355 * That way whatever happens, we'll at least send _a_ frame 6356 * to the given node. 6357 * 6358 * Again, yes, it's crappy QoS if the node has multiple 6359 * TIDs worth of traffic - but let's get it working first 6360 * before we optimise it. 6361 * 6362 * Also yes, there's definitely latency here - we're not 6363 * direct dispatching to the hardware in this path (and 6364 * we're likely being called from the packet receive path, 6365 * so going back into TX may be a little hairy!) but again 6366 * I'd like to get this working first before optimising 6367 * turn-around time. 6368 */ 6369 6370 ATH_TX_LOCK(sc); 6371 6372 /* 6373 * Legacy - we're called and the node isn't asleep. 6374 * Immediately punt. 6375 */ 6376 if (! an->an_is_powersave) { 6377 device_printf(sc->sc_dev, 6378 "%s: %6D: not in powersave?\n", 6379 __func__, 6380 ni->ni_macaddr, 6381 ":"); 6382 ATH_TX_UNLOCK(sc); 6383 avp->av_recv_pspoll(ni, m); 6384 return; 6385 } 6386 6387 /* 6388 * We're in powersave. 6389 * 6390 * Leak a frame. 6391 */ 6392 an->an_leak_count = 1; 6393 6394 /* 6395 * Now, if there's no frames in the node, just punt to 6396 * recv_pspoll. 6397 * 6398 * Don't bother checking if the TIM bit is set, we really 6399 * only care if there are any frames here! 6400 */ 6401 if (an->an_swq_depth == 0) { 6402 ATH_TX_UNLOCK(sc); 6403 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6404 "%s: %6D: SWQ empty; punting to net80211\n", 6405 __func__, 6406 ni->ni_macaddr, 6407 ":"); 6408 avp->av_recv_pspoll(ni, m); 6409 return; 6410 } 6411 6412 /* 6413 * Ok, let's schedule the highest TID that has traffic 6414 * and then schedule something. 6415 */ 6416 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 6417 struct ath_tid *atid = &an->an_tid[tid]; 6418 /* 6419 * No frames? Skip. 6420 */ 6421 if (atid->axq_depth == 0) 6422 continue; 6423 ath_tx_tid_sched(sc, atid); 6424 /* 6425 * XXX we could do a direct call to the TXQ 6426 * scheduler code here to optimise latency 6427 * at the expense of a REALLY deep callstack. 6428 */ 6429 ATH_TX_UNLOCK(sc); 6430 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 6431 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6432 "%s: %6D: leaking frame to TID %d\n", 6433 __func__, 6434 ni->ni_macaddr, 6435 ":", 6436 tid); 6437 return; 6438 } 6439 6440 ATH_TX_UNLOCK(sc); 6441 6442 /* 6443 * XXX nothing in the TIDs at this point? Eek. 6444 */ 6445 device_printf(sc->sc_dev, "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 6446 __func__, 6447 ni->ni_macaddr, 6448 ":"); 6449 avp->av_recv_pspoll(ni, m); 6450 #else 6451 avp->av_recv_pspoll(ni, m); 6452 #endif /* ATH_SW_PSQ */ 6453 } 6454 6455 MODULE_VERSION(if_ath, 1); 6456 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6457 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 6458 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 6459 #endif 6460