1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_tx_edma.h> 113 #include <dev/ath/if_ath_beacon.h> 114 #include <dev/ath/if_athdfs.h> 115 116 #ifdef ATH_TX99_DIAG 117 #include <dev/ath/ath_tx99/ath_tx99.h> 118 #endif 119 120 /* 121 * ATH_BCBUF determines the number of vap's that can transmit 122 * beacons and also (currently) the number of vap's that can 123 * have unique mac addresses/bssid. When staggering beacons 124 * 4 is probably a good max as otherwise the beacons become 125 * very closely spaced and there is limited time for cab q traffic 126 * to go out. You can burst beacons instead but that is not good 127 * for stations in power save and at some point you really want 128 * another radio (and channel). 129 * 130 * The limit on the number of mac addresses is tied to our use of 131 * the U/L bit and tracking addresses in a byte; it would be 132 * worthwhile to allow more for applications like proxy sta. 133 */ 134 CTASSERT(ATH_BCBUF <= 8); 135 136 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 137 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 138 const uint8_t [IEEE80211_ADDR_LEN], 139 const uint8_t [IEEE80211_ADDR_LEN]); 140 static void ath_vap_delete(struct ieee80211vap *); 141 static void ath_init(void *); 142 static void ath_stop_locked(struct ifnet *); 143 static void ath_stop(struct ifnet *); 144 static int ath_reset_vap(struct ieee80211vap *, u_long); 145 static int ath_media_change(struct ifnet *); 146 static void ath_watchdog(void *); 147 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 148 static void ath_fatal_proc(void *, int); 149 static void ath_bmiss_vap(struct ieee80211vap *); 150 static void ath_bmiss_proc(void *, int); 151 static void ath_key_update_begin(struct ieee80211vap *); 152 static void ath_key_update_end(struct ieee80211vap *); 153 static void ath_update_mcast(struct ifnet *); 154 static void ath_update_promisc(struct ifnet *); 155 static void ath_updateslot(struct ifnet *); 156 static void ath_bstuck_proc(void *, int); 157 static void ath_reset_proc(void *, int); 158 static int ath_desc_alloc(struct ath_softc *); 159 static void ath_desc_free(struct ath_softc *); 160 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 161 const uint8_t [IEEE80211_ADDR_LEN]); 162 static void ath_node_cleanup(struct ieee80211_node *); 163 static void ath_node_free(struct ieee80211_node *); 164 static void ath_node_getsignal(const struct ieee80211_node *, 165 int8_t *, int8_t *); 166 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 167 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 168 static int ath_tx_setup(struct ath_softc *, int, int); 169 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 170 static void ath_tx_cleanup(struct ath_softc *); 171 static void ath_tx_proc_q0(void *, int); 172 static void ath_tx_proc_q0123(void *, int); 173 static void ath_tx_proc(void *, int); 174 static void ath_txq_sched_tasklet(void *, int); 175 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 176 static void ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type); 177 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 178 static void ath_scan_start(struct ieee80211com *); 179 static void ath_scan_end(struct ieee80211com *); 180 static void ath_set_channel(struct ieee80211com *); 181 #ifdef ATH_ENABLE_11N 182 static void ath_update_chw(struct ieee80211com *); 183 #endif /* ATH_ENABLE_11N */ 184 static void ath_calibrate(void *); 185 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 186 static void ath_setup_stationkey(struct ieee80211_node *); 187 static void ath_newassoc(struct ieee80211_node *, int); 188 static int ath_setregdomain(struct ieee80211com *, 189 struct ieee80211_regdomain *, int, 190 struct ieee80211_channel []); 191 static void ath_getradiocaps(struct ieee80211com *, int, int *, 192 struct ieee80211_channel []); 193 static int ath_getchannels(struct ath_softc *); 194 195 static int ath_rate_setup(struct ath_softc *, u_int mode); 196 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 197 198 static void ath_announce(struct ath_softc *); 199 200 static void ath_dfs_tasklet(void *, int); 201 202 #ifdef IEEE80211_SUPPORT_TDMA 203 #include <dev/ath/if_ath_tdma.h> 204 #endif 205 206 #if 0 207 #define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */ 208 #define TDMA_LPF_LEN 6 209 #define TDMA_DUMMY_MARKER 0x127 210 #define TDMA_EP_MUL(x, mul) ((x) * (mul)) 211 #define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER)) 212 #define TDMA_LPF(x, y, len) \ 213 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y)) 214 #define TDMA_SAMPLE(x, y) do { \ 215 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \ 216 } while (0) 217 #define TDMA_EP_RND(x,mul) \ 218 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 219 #define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER) 220 #endif /* IEEE80211_SUPPORT_TDMA */ 221 222 SYSCTL_DECL(_hw_ath); 223 224 /* XXX validate sysctl values */ 225 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 226 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 227 0, "long chip calibration interval (secs)"); 228 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 229 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 230 0, "short chip calibration interval (msecs)"); 231 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 232 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 233 0, "reset chip calibration results (secs)"); 234 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 235 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 236 0, "ANI calibration (msecs)"); 237 238 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 239 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 240 0, "rx buffers allocated"); 241 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 242 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 243 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 244 0, "tx buffers allocated"); 245 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 246 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 247 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 248 0, "tx (mgmt) buffers allocated"); 249 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 250 251 int ath_bstuck_threshold = 4; /* max missed beacons */ 252 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 253 0, "max missed beacon xmits before chip reset"); 254 255 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 256 257 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 258 #define HAL_MODE_HT40 \ 259 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 260 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 261 int 262 ath_attach(u_int16_t devid, struct ath_softc *sc) 263 { 264 struct ifnet *ifp; 265 struct ieee80211com *ic; 266 struct ath_hal *ah = NULL; 267 HAL_STATUS status; 268 int error = 0, i; 269 u_int wmodes; 270 uint8_t macaddr[IEEE80211_ADDR_LEN]; 271 int rx_chainmask, tx_chainmask; 272 273 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 274 275 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 276 if (ifp == NULL) { 277 device_printf(sc->sc_dev, "can not if_alloc()\n"); 278 error = ENOSPC; 279 goto bad; 280 } 281 ic = ifp->if_l2com; 282 283 /* set these up early for if_printf use */ 284 if_initname(ifp, device_get_name(sc->sc_dev), 285 device_get_unit(sc->sc_dev)); 286 287 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 288 sc->sc_eepromdata, &status); 289 if (ah == NULL) { 290 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 291 status); 292 error = ENXIO; 293 goto bad; 294 } 295 sc->sc_ah = ah; 296 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 297 #ifdef ATH_DEBUG 298 sc->sc_debug = ath_debug; 299 #endif 300 301 /* 302 * Setup the DMA/EDMA functions based on the current 303 * hardware support. 304 * 305 * This is required before the descriptors are allocated. 306 */ 307 if (ath_hal_hasedma(sc->sc_ah)) { 308 sc->sc_isedma = 1; 309 ath_recv_setup_edma(sc); 310 ath_xmit_setup_edma(sc); 311 } else { 312 ath_recv_setup_legacy(sc); 313 ath_xmit_setup_legacy(sc); 314 } 315 316 /* 317 * Check if the MAC has multi-rate retry support. 318 * We do this by trying to setup a fake extended 319 * descriptor. MAC's that don't have support will 320 * return false w/o doing anything. MAC's that do 321 * support it will return true w/o doing anything. 322 */ 323 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 324 325 /* 326 * Check if the device has hardware counters for PHY 327 * errors. If so we need to enable the MIB interrupt 328 * so we can act on stat triggers. 329 */ 330 if (ath_hal_hwphycounters(ah)) 331 sc->sc_needmib = 1; 332 333 /* 334 * Get the hardware key cache size. 335 */ 336 sc->sc_keymax = ath_hal_keycachesize(ah); 337 if (sc->sc_keymax > ATH_KEYMAX) { 338 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 339 ATH_KEYMAX, sc->sc_keymax); 340 sc->sc_keymax = ATH_KEYMAX; 341 } 342 /* 343 * Reset the key cache since some parts do not 344 * reset the contents on initial power up. 345 */ 346 for (i = 0; i < sc->sc_keymax; i++) 347 ath_hal_keyreset(ah, i); 348 349 /* 350 * Collect the default channel list. 351 */ 352 error = ath_getchannels(sc); 353 if (error != 0) 354 goto bad; 355 356 /* 357 * Setup rate tables for all potential media types. 358 */ 359 ath_rate_setup(sc, IEEE80211_MODE_11A); 360 ath_rate_setup(sc, IEEE80211_MODE_11B); 361 ath_rate_setup(sc, IEEE80211_MODE_11G); 362 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 363 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 364 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 365 ath_rate_setup(sc, IEEE80211_MODE_11NA); 366 ath_rate_setup(sc, IEEE80211_MODE_11NG); 367 ath_rate_setup(sc, IEEE80211_MODE_HALF); 368 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 369 370 /* NB: setup here so ath_rate_update is happy */ 371 ath_setcurmode(sc, IEEE80211_MODE_11A); 372 373 /* 374 * Allocate TX descriptors and populate the lists. 375 */ 376 error = ath_desc_alloc(sc); 377 if (error != 0) { 378 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 379 error); 380 goto bad; 381 } 382 error = ath_txdma_setup(sc); 383 if (error != 0) { 384 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 385 error); 386 goto bad; 387 } 388 389 /* 390 * Allocate RX descriptors and populate the lists. 391 */ 392 error = ath_rxdma_setup(sc); 393 if (error != 0) { 394 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 395 error); 396 goto bad; 397 } 398 399 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 400 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 401 402 ATH_TXBUF_LOCK_INIT(sc); 403 404 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 405 taskqueue_thread_enqueue, &sc->sc_tq); 406 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 407 "%s taskq", ifp->if_xname); 408 409 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 410 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 411 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 412 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 413 TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc); 414 TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc); 415 416 /* 417 * Allocate hardware transmit queues: one queue for 418 * beacon frames and one data queue for each QoS 419 * priority. Note that the hal handles resetting 420 * these queues at the needed time. 421 * 422 * XXX PS-Poll 423 */ 424 sc->sc_bhalq = ath_beaconq_setup(ah); 425 if (sc->sc_bhalq == (u_int) -1) { 426 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 427 error = EIO; 428 goto bad2; 429 } 430 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 431 if (sc->sc_cabq == NULL) { 432 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 433 error = EIO; 434 goto bad2; 435 } 436 /* NB: insure BK queue is the lowest priority h/w queue */ 437 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 438 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 439 ieee80211_wme_acnames[WME_AC_BK]); 440 error = EIO; 441 goto bad2; 442 } 443 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 444 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 445 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 446 /* 447 * Not enough hardware tx queues to properly do WME; 448 * just punt and assign them all to the same h/w queue. 449 * We could do a better job of this if, for example, 450 * we allocate queues when we switch from station to 451 * AP mode. 452 */ 453 if (sc->sc_ac2q[WME_AC_VI] != NULL) 454 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 455 if (sc->sc_ac2q[WME_AC_BE] != NULL) 456 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 457 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 458 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 459 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 460 } 461 462 /* 463 * Special case certain configurations. Note the 464 * CAB queue is handled by these specially so don't 465 * include them when checking the txq setup mask. 466 */ 467 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 468 case 0x01: 469 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 470 break; 471 case 0x0f: 472 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 473 break; 474 default: 475 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 476 break; 477 } 478 479 /* 480 * Setup rate control. Some rate control modules 481 * call back to change the anntena state so expose 482 * the necessary entry points. 483 * XXX maybe belongs in struct ath_ratectrl? 484 */ 485 sc->sc_setdefantenna = ath_setdefantenna; 486 sc->sc_rc = ath_rate_attach(sc); 487 if (sc->sc_rc == NULL) { 488 error = EIO; 489 goto bad2; 490 } 491 492 /* Attach DFS module */ 493 if (! ath_dfs_attach(sc)) { 494 device_printf(sc->sc_dev, 495 "%s: unable to attach DFS\n", __func__); 496 error = EIO; 497 goto bad2; 498 } 499 500 /* Start DFS processing tasklet */ 501 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 502 503 /* Configure LED state */ 504 sc->sc_blinking = 0; 505 sc->sc_ledstate = 1; 506 sc->sc_ledon = 0; /* low true */ 507 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 508 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 509 510 /* 511 * Don't setup hardware-based blinking. 512 * 513 * Although some NICs may have this configured in the 514 * default reset register values, the user may wish 515 * to alter which pins have which function. 516 * 517 * The reference driver attaches the MAC network LED to GPIO1 and 518 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 519 * NIC has these reversed. 520 */ 521 sc->sc_hardled = (1 == 0); 522 sc->sc_led_net_pin = -1; 523 sc->sc_led_pwr_pin = -1; 524 /* 525 * Auto-enable soft led processing for IBM cards and for 526 * 5211 minipci cards. Users can also manually enable/disable 527 * support with a sysctl. 528 */ 529 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 530 ath_led_config(sc); 531 ath_hal_setledstate(ah, HAL_LED_INIT); 532 533 ifp->if_softc = sc; 534 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 535 ifp->if_start = ath_start; 536 ifp->if_ioctl = ath_ioctl; 537 ifp->if_init = ath_init; 538 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 539 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 540 IFQ_SET_READY(&ifp->if_snd); 541 542 ic->ic_ifp = ifp; 543 /* XXX not right but it's not used anywhere important */ 544 ic->ic_phytype = IEEE80211_T_OFDM; 545 ic->ic_opmode = IEEE80211_M_STA; 546 ic->ic_caps = 547 IEEE80211_C_STA /* station mode */ 548 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 549 | IEEE80211_C_HOSTAP /* hostap mode */ 550 | IEEE80211_C_MONITOR /* monitor mode */ 551 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 552 | IEEE80211_C_WDS /* 4-address traffic works */ 553 | IEEE80211_C_MBSS /* mesh point link mode */ 554 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 555 | IEEE80211_C_SHSLOT /* short slot time supported */ 556 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 557 #ifndef ATH_ENABLE_11N 558 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 559 #endif 560 | IEEE80211_C_TXFRAG /* handle tx frags */ 561 #ifdef ATH_ENABLE_DFS 562 | IEEE80211_C_DFS /* Enable radar detection */ 563 #endif 564 ; 565 /* 566 * Query the hal to figure out h/w crypto support. 567 */ 568 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 569 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 570 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 571 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 572 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 573 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 574 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 575 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 576 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 577 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 578 /* 579 * Check if h/w does the MIC and/or whether the 580 * separate key cache entries are required to 581 * handle both tx+rx MIC keys. 582 */ 583 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 584 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 585 /* 586 * If the h/w supports storing tx+rx MIC keys 587 * in one cache slot automatically enable use. 588 */ 589 if (ath_hal_hastkipsplit(ah) || 590 !ath_hal_settkipsplit(ah, AH_FALSE)) 591 sc->sc_splitmic = 1; 592 /* 593 * If the h/w can do TKIP MIC together with WME then 594 * we use it; otherwise we force the MIC to be done 595 * in software by the net80211 layer. 596 */ 597 if (ath_hal_haswmetkipmic(ah)) 598 sc->sc_wmetkipmic = 1; 599 } 600 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 601 /* 602 * Check for multicast key search support. 603 */ 604 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 605 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 606 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 607 } 608 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 609 /* 610 * Mark key cache slots associated with global keys 611 * as in use. If we knew TKIP was not to be used we 612 * could leave the +32, +64, and +32+64 slots free. 613 */ 614 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 615 setbit(sc->sc_keymap, i); 616 setbit(sc->sc_keymap, i+64); 617 if (sc->sc_splitmic) { 618 setbit(sc->sc_keymap, i+32); 619 setbit(sc->sc_keymap, i+32+64); 620 } 621 } 622 /* 623 * TPC support can be done either with a global cap or 624 * per-packet support. The latter is not available on 625 * all parts. We're a bit pedantic here as all parts 626 * support a global cap. 627 */ 628 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 629 ic->ic_caps |= IEEE80211_C_TXPMGT; 630 631 /* 632 * Mark WME capability only if we have sufficient 633 * hardware queues to do proper priority scheduling. 634 */ 635 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 636 ic->ic_caps |= IEEE80211_C_WME; 637 /* 638 * Check for misc other capabilities. 639 */ 640 if (ath_hal_hasbursting(ah)) 641 ic->ic_caps |= IEEE80211_C_BURST; 642 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 643 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 644 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 645 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 646 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 647 if (ath_hal_hasfastframes(ah)) 648 ic->ic_caps |= IEEE80211_C_FF; 649 wmodes = ath_hal_getwirelessmodes(ah); 650 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 651 ic->ic_caps |= IEEE80211_C_TURBOP; 652 #ifdef IEEE80211_SUPPORT_TDMA 653 if (ath_hal_macversion(ah) > 0x78) { 654 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 655 ic->ic_tdma_update = ath_tdma_update; 656 } 657 #endif 658 659 /* 660 * TODO: enforce that at least this many frames are available 661 * in the txbuf list before allowing data frames (raw or 662 * otherwise) to be transmitted. 663 */ 664 sc->sc_txq_data_minfree = 10; 665 /* 666 * Leave this as default to maintain legacy behaviour. 667 * Shortening the cabq/mcastq may end up causing some 668 * undesirable behaviour. 669 */ 670 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 671 672 /* 673 * Allow the TX and RX chainmasks to be overridden by 674 * environment variables and/or device.hints. 675 * 676 * This must be done early - before the hardware is 677 * calibrated or before the 802.11n stream calculation 678 * is done. 679 */ 680 if (resource_int_value(device_get_name(sc->sc_dev), 681 device_get_unit(sc->sc_dev), "rx_chainmask", 682 &rx_chainmask) == 0) { 683 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 684 rx_chainmask); 685 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 686 } 687 if (resource_int_value(device_get_name(sc->sc_dev), 688 device_get_unit(sc->sc_dev), "tx_chainmask", 689 &tx_chainmask) == 0) { 690 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 691 tx_chainmask); 692 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 693 } 694 695 #ifdef ATH_ENABLE_11N 696 /* 697 * Query HT capabilities 698 */ 699 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 700 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 701 int rxs, txs; 702 703 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 704 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 705 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 706 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 707 | IEEE80211_HTCAP_MAXAMSDU_3839 708 /* max A-MSDU length */ 709 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 710 ; 711 712 /* 713 * Enable short-GI for HT20 only if the hardware 714 * advertises support. 715 * Notably, anything earlier than the AR9287 doesn't. 716 */ 717 if ((ath_hal_getcapability(ah, 718 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 719 (wmodes & HAL_MODE_HT20)) { 720 device_printf(sc->sc_dev, 721 "[HT] enabling short-GI in 20MHz mode\n"); 722 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 723 } 724 725 if (wmodes & HAL_MODE_HT40) 726 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 727 | IEEE80211_HTCAP_SHORTGI40; 728 729 /* 730 * TX/RX streams need to be taken into account when 731 * negotiating which MCS rates it'll receive and 732 * what MCS rates are available for TX. 733 */ 734 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 735 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 736 737 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 738 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 739 740 ic->ic_txstream = txs; 741 ic->ic_rxstream = rxs; 742 743 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 744 &sc->sc_rts_aggr_limit); 745 if (sc->sc_rts_aggr_limit != (64 * 1024)) 746 device_printf(sc->sc_dev, 747 "[HT] RTS aggregates limited to %d KiB\n", 748 sc->sc_rts_aggr_limit / 1024); 749 750 device_printf(sc->sc_dev, 751 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 752 } 753 #endif 754 755 /* 756 * Initial aggregation settings. 757 */ 758 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 759 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 760 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 761 762 /* 763 * Check if the hardware requires PCI register serialisation. 764 * Some of the Owl based MACs require this. 765 */ 766 if (mp_ncpus > 1 && 767 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 768 0, NULL) == HAL_OK) { 769 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 770 device_printf(sc->sc_dev, 771 "Enabling register serialisation\n"); 772 } 773 774 /* 775 * Indicate we need the 802.11 header padded to a 776 * 32-bit boundary for 4-address and QoS frames. 777 */ 778 ic->ic_flags |= IEEE80211_F_DATAPAD; 779 780 /* 781 * Query the hal about antenna support. 782 */ 783 sc->sc_defant = ath_hal_getdefantenna(ah); 784 785 /* 786 * Not all chips have the VEOL support we want to 787 * use with IBSS beacons; check here for it. 788 */ 789 sc->sc_hasveol = ath_hal_hasveol(ah); 790 791 /* get mac address from hardware */ 792 ath_hal_getmac(ah, macaddr); 793 if (sc->sc_hasbmask) 794 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 795 796 /* NB: used to size node table key mapping array */ 797 ic->ic_max_keyix = sc->sc_keymax; 798 /* call MI attach routine. */ 799 ieee80211_ifattach(ic, macaddr); 800 ic->ic_setregdomain = ath_setregdomain; 801 ic->ic_getradiocaps = ath_getradiocaps; 802 sc->sc_opmode = HAL_M_STA; 803 804 /* override default methods */ 805 ic->ic_newassoc = ath_newassoc; 806 ic->ic_updateslot = ath_updateslot; 807 ic->ic_wme.wme_update = ath_wme_update; 808 ic->ic_vap_create = ath_vap_create; 809 ic->ic_vap_delete = ath_vap_delete; 810 ic->ic_raw_xmit = ath_raw_xmit; 811 ic->ic_update_mcast = ath_update_mcast; 812 ic->ic_update_promisc = ath_update_promisc; 813 ic->ic_node_alloc = ath_node_alloc; 814 sc->sc_node_free = ic->ic_node_free; 815 ic->ic_node_free = ath_node_free; 816 sc->sc_node_cleanup = ic->ic_node_cleanup; 817 ic->ic_node_cleanup = ath_node_cleanup; 818 ic->ic_node_getsignal = ath_node_getsignal; 819 ic->ic_scan_start = ath_scan_start; 820 ic->ic_scan_end = ath_scan_end; 821 ic->ic_set_channel = ath_set_channel; 822 #ifdef ATH_ENABLE_11N 823 /* 802.11n specific - but just override anyway */ 824 sc->sc_addba_request = ic->ic_addba_request; 825 sc->sc_addba_response = ic->ic_addba_response; 826 sc->sc_addba_stop = ic->ic_addba_stop; 827 sc->sc_bar_response = ic->ic_bar_response; 828 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 829 830 ic->ic_addba_request = ath_addba_request; 831 ic->ic_addba_response = ath_addba_response; 832 ic->ic_addba_response_timeout = ath_addba_response_timeout; 833 ic->ic_addba_stop = ath_addba_stop; 834 ic->ic_bar_response = ath_bar_response; 835 836 ic->ic_update_chw = ath_update_chw; 837 #endif /* ATH_ENABLE_11N */ 838 839 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 840 /* 841 * There's one vendor bitmap entry in the RX radiotap 842 * header; make sure that's taken into account. 843 */ 844 ieee80211_radiotap_attachv(ic, 845 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 846 ATH_TX_RADIOTAP_PRESENT, 847 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 848 ATH_RX_RADIOTAP_PRESENT); 849 #else 850 /* 851 * No vendor bitmap/extensions are present. 852 */ 853 ieee80211_radiotap_attach(ic, 854 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 855 ATH_TX_RADIOTAP_PRESENT, 856 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 857 ATH_RX_RADIOTAP_PRESENT); 858 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 859 860 /* 861 * Setup dynamic sysctl's now that country code and 862 * regdomain are available from the hal. 863 */ 864 ath_sysctlattach(sc); 865 ath_sysctl_stats_attach(sc); 866 ath_sysctl_hal_attach(sc); 867 868 if (bootverbose) 869 ieee80211_announce(ic); 870 ath_announce(sc); 871 return 0; 872 bad2: 873 ath_tx_cleanup(sc); 874 ath_desc_free(sc); 875 ath_txdma_teardown(sc); 876 ath_rxdma_teardown(sc); 877 bad: 878 if (ah) 879 ath_hal_detach(ah); 880 if (ifp != NULL) 881 if_free(ifp); 882 sc->sc_invalid = 1; 883 return error; 884 } 885 886 int 887 ath_detach(struct ath_softc *sc) 888 { 889 struct ifnet *ifp = sc->sc_ifp; 890 891 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 892 __func__, ifp->if_flags); 893 894 /* 895 * NB: the order of these is important: 896 * o stop the chip so no more interrupts will fire 897 * o call the 802.11 layer before detaching the hal to 898 * insure callbacks into the driver to delete global 899 * key cache entries can be handled 900 * o free the taskqueue which drains any pending tasks 901 * o reclaim the tx queue data structures after calling 902 * the 802.11 layer as we'll get called back to reclaim 903 * node state and potentially want to use them 904 * o to cleanup the tx queues the hal is called, so detach 905 * it last 906 * Other than that, it's straightforward... 907 */ 908 ath_stop(ifp); 909 ieee80211_ifdetach(ifp->if_l2com); 910 taskqueue_free(sc->sc_tq); 911 #ifdef ATH_TX99_DIAG 912 if (sc->sc_tx99 != NULL) 913 sc->sc_tx99->detach(sc->sc_tx99); 914 #endif 915 ath_rate_detach(sc->sc_rc); 916 917 ath_dfs_detach(sc); 918 ath_desc_free(sc); 919 ath_rxdma_teardown(sc); 920 ath_tx_cleanup(sc); 921 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 922 if_free(ifp); 923 924 return 0; 925 } 926 927 /* 928 * MAC address handling for multiple BSS on the same radio. 929 * The first vap uses the MAC address from the EEPROM. For 930 * subsequent vap's we set the U/L bit (bit 1) in the MAC 931 * address and use the next six bits as an index. 932 */ 933 static void 934 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 935 { 936 int i; 937 938 if (clone && sc->sc_hasbmask) { 939 /* NB: we only do this if h/w supports multiple bssid */ 940 for (i = 0; i < 8; i++) 941 if ((sc->sc_bssidmask & (1<<i)) == 0) 942 break; 943 if (i != 0) 944 mac[0] |= (i << 2)|0x2; 945 } else 946 i = 0; 947 sc->sc_bssidmask |= 1<<i; 948 sc->sc_hwbssidmask[0] &= ~mac[0]; 949 if (i == 0) 950 sc->sc_nbssid0++; 951 } 952 953 static void 954 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 955 { 956 int i = mac[0] >> 2; 957 uint8_t mask; 958 959 if (i != 0 || --sc->sc_nbssid0 == 0) { 960 sc->sc_bssidmask &= ~(1<<i); 961 /* recalculate bssid mask from remaining addresses */ 962 mask = 0xff; 963 for (i = 1; i < 8; i++) 964 if (sc->sc_bssidmask & (1<<i)) 965 mask &= ~((i<<2)|0x2); 966 sc->sc_hwbssidmask[0] |= mask; 967 } 968 } 969 970 /* 971 * Assign a beacon xmit slot. We try to space out 972 * assignments so when beacons are staggered the 973 * traffic coming out of the cab q has maximal time 974 * to go out before the next beacon is scheduled. 975 */ 976 static int 977 assign_bslot(struct ath_softc *sc) 978 { 979 u_int slot, free; 980 981 free = 0; 982 for (slot = 0; slot < ATH_BCBUF; slot++) 983 if (sc->sc_bslot[slot] == NULL) { 984 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 985 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 986 return slot; 987 free = slot; 988 /* NB: keep looking for a double slot */ 989 } 990 return free; 991 } 992 993 static struct ieee80211vap * 994 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 995 enum ieee80211_opmode opmode, int flags, 996 const uint8_t bssid[IEEE80211_ADDR_LEN], 997 const uint8_t mac0[IEEE80211_ADDR_LEN]) 998 { 999 struct ath_softc *sc = ic->ic_ifp->if_softc; 1000 struct ath_vap *avp; 1001 struct ieee80211vap *vap; 1002 uint8_t mac[IEEE80211_ADDR_LEN]; 1003 int needbeacon, error; 1004 enum ieee80211_opmode ic_opmode; 1005 1006 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1007 M_80211_VAP, M_WAITOK | M_ZERO); 1008 needbeacon = 0; 1009 IEEE80211_ADDR_COPY(mac, mac0); 1010 1011 ATH_LOCK(sc); 1012 ic_opmode = opmode; /* default to opmode of new vap */ 1013 switch (opmode) { 1014 case IEEE80211_M_STA: 1015 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1016 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1017 goto bad; 1018 } 1019 if (sc->sc_nvaps) { 1020 /* 1021 * With multiple vaps we must fall back 1022 * to s/w beacon miss handling. 1023 */ 1024 flags |= IEEE80211_CLONE_NOBEACONS; 1025 } 1026 if (flags & IEEE80211_CLONE_NOBEACONS) { 1027 /* 1028 * Station mode w/o beacons are implemented w/ AP mode. 1029 */ 1030 ic_opmode = IEEE80211_M_HOSTAP; 1031 } 1032 break; 1033 case IEEE80211_M_IBSS: 1034 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1035 device_printf(sc->sc_dev, 1036 "only 1 ibss vap supported\n"); 1037 goto bad; 1038 } 1039 needbeacon = 1; 1040 break; 1041 case IEEE80211_M_AHDEMO: 1042 #ifdef IEEE80211_SUPPORT_TDMA 1043 if (flags & IEEE80211_CLONE_TDMA) { 1044 if (sc->sc_nvaps != 0) { 1045 device_printf(sc->sc_dev, 1046 "only 1 tdma vap supported\n"); 1047 goto bad; 1048 } 1049 needbeacon = 1; 1050 flags |= IEEE80211_CLONE_NOBEACONS; 1051 } 1052 /* fall thru... */ 1053 #endif 1054 case IEEE80211_M_MONITOR: 1055 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1056 /* 1057 * Adopt existing mode. Adding a monitor or ahdemo 1058 * vap to an existing configuration is of dubious 1059 * value but should be ok. 1060 */ 1061 /* XXX not right for monitor mode */ 1062 ic_opmode = ic->ic_opmode; 1063 } 1064 break; 1065 case IEEE80211_M_HOSTAP: 1066 case IEEE80211_M_MBSS: 1067 needbeacon = 1; 1068 break; 1069 case IEEE80211_M_WDS: 1070 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1071 device_printf(sc->sc_dev, 1072 "wds not supported in sta mode\n"); 1073 goto bad; 1074 } 1075 /* 1076 * Silently remove any request for a unique 1077 * bssid; WDS vap's always share the local 1078 * mac address. 1079 */ 1080 flags &= ~IEEE80211_CLONE_BSSID; 1081 if (sc->sc_nvaps == 0) 1082 ic_opmode = IEEE80211_M_HOSTAP; 1083 else 1084 ic_opmode = ic->ic_opmode; 1085 break; 1086 default: 1087 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1088 goto bad; 1089 } 1090 /* 1091 * Check that a beacon buffer is available; the code below assumes it. 1092 */ 1093 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1094 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1095 goto bad; 1096 } 1097 1098 /* STA, AHDEMO? */ 1099 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1100 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1101 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1102 } 1103 1104 vap = &avp->av_vap; 1105 /* XXX can't hold mutex across if_alloc */ 1106 ATH_UNLOCK(sc); 1107 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1108 bssid, mac); 1109 ATH_LOCK(sc); 1110 if (error != 0) { 1111 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1112 __func__, error); 1113 goto bad2; 1114 } 1115 1116 /* h/w crypto support */ 1117 vap->iv_key_alloc = ath_key_alloc; 1118 vap->iv_key_delete = ath_key_delete; 1119 vap->iv_key_set = ath_key_set; 1120 vap->iv_key_update_begin = ath_key_update_begin; 1121 vap->iv_key_update_end = ath_key_update_end; 1122 1123 /* override various methods */ 1124 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1125 vap->iv_recv_mgmt = ath_recv_mgmt; 1126 vap->iv_reset = ath_reset_vap; 1127 vap->iv_update_beacon = ath_beacon_update; 1128 avp->av_newstate = vap->iv_newstate; 1129 vap->iv_newstate = ath_newstate; 1130 avp->av_bmiss = vap->iv_bmiss; 1131 vap->iv_bmiss = ath_bmiss_vap; 1132 1133 /* Set default parameters */ 1134 1135 /* 1136 * Anything earlier than some AR9300 series MACs don't 1137 * support a smaller MPDU density. 1138 */ 1139 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1140 /* 1141 * All NICs can handle the maximum size, however 1142 * AR5416 based MACs can only TX aggregates w/ RTS 1143 * protection when the total aggregate size is <= 8k. 1144 * However, for now that's enforced by the TX path. 1145 */ 1146 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1147 1148 avp->av_bslot = -1; 1149 if (needbeacon) { 1150 /* 1151 * Allocate beacon state and setup the q for buffered 1152 * multicast frames. We know a beacon buffer is 1153 * available because we checked above. 1154 */ 1155 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1156 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1157 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1158 /* 1159 * Assign the vap to a beacon xmit slot. As above 1160 * this cannot fail to find a free one. 1161 */ 1162 avp->av_bslot = assign_bslot(sc); 1163 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1164 ("beacon slot %u not empty", avp->av_bslot)); 1165 sc->sc_bslot[avp->av_bslot] = vap; 1166 sc->sc_nbcnvaps++; 1167 } 1168 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1169 /* 1170 * Multple vaps are to transmit beacons and we 1171 * have h/w support for TSF adjusting; enable 1172 * use of staggered beacons. 1173 */ 1174 sc->sc_stagbeacons = 1; 1175 } 1176 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1177 } 1178 1179 ic->ic_opmode = ic_opmode; 1180 if (opmode != IEEE80211_M_WDS) { 1181 sc->sc_nvaps++; 1182 if (opmode == IEEE80211_M_STA) 1183 sc->sc_nstavaps++; 1184 if (opmode == IEEE80211_M_MBSS) 1185 sc->sc_nmeshvaps++; 1186 } 1187 switch (ic_opmode) { 1188 case IEEE80211_M_IBSS: 1189 sc->sc_opmode = HAL_M_IBSS; 1190 break; 1191 case IEEE80211_M_STA: 1192 sc->sc_opmode = HAL_M_STA; 1193 break; 1194 case IEEE80211_M_AHDEMO: 1195 #ifdef IEEE80211_SUPPORT_TDMA 1196 if (vap->iv_caps & IEEE80211_C_TDMA) { 1197 sc->sc_tdma = 1; 1198 /* NB: disable tsf adjust */ 1199 sc->sc_stagbeacons = 0; 1200 } 1201 /* 1202 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1203 * just ap mode. 1204 */ 1205 /* fall thru... */ 1206 #endif 1207 case IEEE80211_M_HOSTAP: 1208 case IEEE80211_M_MBSS: 1209 sc->sc_opmode = HAL_M_HOSTAP; 1210 break; 1211 case IEEE80211_M_MONITOR: 1212 sc->sc_opmode = HAL_M_MONITOR; 1213 break; 1214 default: 1215 /* XXX should not happen */ 1216 break; 1217 } 1218 if (sc->sc_hastsfadd) { 1219 /* 1220 * Configure whether or not TSF adjust should be done. 1221 */ 1222 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1223 } 1224 if (flags & IEEE80211_CLONE_NOBEACONS) { 1225 /* 1226 * Enable s/w beacon miss handling. 1227 */ 1228 sc->sc_swbmiss = 1; 1229 } 1230 ATH_UNLOCK(sc); 1231 1232 /* complete setup */ 1233 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1234 return vap; 1235 bad2: 1236 reclaim_address(sc, mac); 1237 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1238 bad: 1239 free(avp, M_80211_VAP); 1240 ATH_UNLOCK(sc); 1241 return NULL; 1242 } 1243 1244 static void 1245 ath_vap_delete(struct ieee80211vap *vap) 1246 { 1247 struct ieee80211com *ic = vap->iv_ic; 1248 struct ifnet *ifp = ic->ic_ifp; 1249 struct ath_softc *sc = ifp->if_softc; 1250 struct ath_hal *ah = sc->sc_ah; 1251 struct ath_vap *avp = ATH_VAP(vap); 1252 1253 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1254 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1255 /* 1256 * Quiesce the hardware while we remove the vap. In 1257 * particular we need to reclaim all references to 1258 * the vap state by any frames pending on the tx queues. 1259 */ 1260 ath_hal_intrset(ah, 0); /* disable interrupts */ 1261 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1262 /* XXX Do all frames from all vaps/nodes need draining here? */ 1263 ath_stoprecv(sc, 1); /* stop recv side */ 1264 } 1265 1266 ieee80211_vap_detach(vap); 1267 1268 /* 1269 * XXX Danger Will Robinson! Danger! 1270 * 1271 * Because ieee80211_vap_detach() can queue a frame (the station 1272 * diassociate message?) after we've drained the TXQ and 1273 * flushed the software TXQ, we will end up with a frame queued 1274 * to a node whose vap is about to be freed. 1275 * 1276 * To work around this, flush the hardware/software again. 1277 * This may be racy - the ath task may be running and the packet 1278 * may be being scheduled between sw->hw txq. Tsk. 1279 * 1280 * TODO: figure out why a new node gets allocated somewhere around 1281 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1282 * call!) 1283 */ 1284 1285 ath_draintxq(sc, ATH_RESET_DEFAULT); 1286 1287 ATH_LOCK(sc); 1288 /* 1289 * Reclaim beacon state. Note this must be done before 1290 * the vap instance is reclaimed as we may have a reference 1291 * to it in the buffer for the beacon frame. 1292 */ 1293 if (avp->av_bcbuf != NULL) { 1294 if (avp->av_bslot != -1) { 1295 sc->sc_bslot[avp->av_bslot] = NULL; 1296 sc->sc_nbcnvaps--; 1297 } 1298 ath_beacon_return(sc, avp->av_bcbuf); 1299 avp->av_bcbuf = NULL; 1300 if (sc->sc_nbcnvaps == 0) { 1301 sc->sc_stagbeacons = 0; 1302 if (sc->sc_hastsfadd) 1303 ath_hal_settsfadjust(sc->sc_ah, 0); 1304 } 1305 /* 1306 * Reclaim any pending mcast frames for the vap. 1307 */ 1308 ath_tx_draintxq(sc, &avp->av_mcastq); 1309 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1310 } 1311 /* 1312 * Update bookkeeping. 1313 */ 1314 if (vap->iv_opmode == IEEE80211_M_STA) { 1315 sc->sc_nstavaps--; 1316 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1317 sc->sc_swbmiss = 0; 1318 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1319 vap->iv_opmode == IEEE80211_M_MBSS) { 1320 reclaim_address(sc, vap->iv_myaddr); 1321 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1322 if (vap->iv_opmode == IEEE80211_M_MBSS) 1323 sc->sc_nmeshvaps--; 1324 } 1325 if (vap->iv_opmode != IEEE80211_M_WDS) 1326 sc->sc_nvaps--; 1327 #ifdef IEEE80211_SUPPORT_TDMA 1328 /* TDMA operation ceases when the last vap is destroyed */ 1329 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1330 sc->sc_tdma = 0; 1331 sc->sc_swbmiss = 0; 1332 } 1333 #endif 1334 free(avp, M_80211_VAP); 1335 1336 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1337 /* 1338 * Restart rx+tx machines if still running (RUNNING will 1339 * be reset if we just destroyed the last vap). 1340 */ 1341 if (ath_startrecv(sc) != 0) 1342 if_printf(ifp, "%s: unable to restart recv logic\n", 1343 __func__); 1344 if (sc->sc_beacons) { /* restart beacons */ 1345 #ifdef IEEE80211_SUPPORT_TDMA 1346 if (sc->sc_tdma) 1347 ath_tdma_config(sc, NULL); 1348 else 1349 #endif 1350 ath_beacon_config(sc, NULL); 1351 } 1352 ath_hal_intrset(ah, sc->sc_imask); 1353 } 1354 ATH_UNLOCK(sc); 1355 } 1356 1357 void 1358 ath_suspend(struct ath_softc *sc) 1359 { 1360 struct ifnet *ifp = sc->sc_ifp; 1361 struct ieee80211com *ic = ifp->if_l2com; 1362 1363 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1364 __func__, ifp->if_flags); 1365 1366 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1367 1368 ieee80211_suspend_all(ic); 1369 /* 1370 * NB: don't worry about putting the chip in low power 1371 * mode; pci will power off our socket on suspend and 1372 * CardBus detaches the device. 1373 */ 1374 1375 /* 1376 * XXX ensure none of the taskqueues are running 1377 * XXX ensure sc_invalid is 1 1378 * XXX ensure the calibration callout is disabled 1379 */ 1380 1381 /* Disable the PCIe PHY, complete with workarounds */ 1382 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1383 } 1384 1385 /* 1386 * Reset the key cache since some parts do not reset the 1387 * contents on resume. First we clear all entries, then 1388 * re-load keys that the 802.11 layer assumes are setup 1389 * in h/w. 1390 */ 1391 static void 1392 ath_reset_keycache(struct ath_softc *sc) 1393 { 1394 struct ifnet *ifp = sc->sc_ifp; 1395 struct ieee80211com *ic = ifp->if_l2com; 1396 struct ath_hal *ah = sc->sc_ah; 1397 int i; 1398 1399 for (i = 0; i < sc->sc_keymax; i++) 1400 ath_hal_keyreset(ah, i); 1401 ieee80211_crypto_reload_keys(ic); 1402 } 1403 1404 void 1405 ath_resume(struct ath_softc *sc) 1406 { 1407 struct ifnet *ifp = sc->sc_ifp; 1408 struct ieee80211com *ic = ifp->if_l2com; 1409 struct ath_hal *ah = sc->sc_ah; 1410 HAL_STATUS status; 1411 1412 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1413 __func__, ifp->if_flags); 1414 1415 /* Re-enable PCIe, re-enable the PCIe bus */ 1416 ath_hal_enablepcie(ah, 0, 0); 1417 1418 /* 1419 * Must reset the chip before we reload the 1420 * keycache as we were powered down on suspend. 1421 */ 1422 ath_hal_reset(ah, sc->sc_opmode, 1423 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1424 AH_FALSE, &status); 1425 ath_reset_keycache(sc); 1426 1427 /* Let DFS at it in case it's a DFS channel */ 1428 ath_dfs_radar_enable(sc, ic->ic_curchan); 1429 1430 /* Restore the LED configuration */ 1431 ath_led_config(sc); 1432 ath_hal_setledstate(ah, HAL_LED_INIT); 1433 1434 if (sc->sc_resume_up) 1435 ieee80211_resume_all(ic); 1436 1437 /* XXX beacons ? */ 1438 } 1439 1440 void 1441 ath_shutdown(struct ath_softc *sc) 1442 { 1443 struct ifnet *ifp = sc->sc_ifp; 1444 1445 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1446 __func__, ifp->if_flags); 1447 1448 ath_stop(ifp); 1449 /* NB: no point powering down chip as we're about to reboot */ 1450 } 1451 1452 /* 1453 * Interrupt handler. Most of the actual processing is deferred. 1454 */ 1455 void 1456 ath_intr(void *arg) 1457 { 1458 struct ath_softc *sc = arg; 1459 struct ifnet *ifp = sc->sc_ifp; 1460 struct ath_hal *ah = sc->sc_ah; 1461 HAL_INT status = 0; 1462 uint32_t txqs; 1463 1464 /* 1465 * If we're inside a reset path, just print a warning and 1466 * clear the ISR. The reset routine will finish it for us. 1467 */ 1468 ATH_PCU_LOCK(sc); 1469 if (sc->sc_inreset_cnt) { 1470 HAL_INT status; 1471 ath_hal_getisr(ah, &status); /* clear ISR */ 1472 ath_hal_intrset(ah, 0); /* disable further intr's */ 1473 DPRINTF(sc, ATH_DEBUG_ANY, 1474 "%s: in reset, ignoring: status=0x%x\n", 1475 __func__, status); 1476 ATH_PCU_UNLOCK(sc); 1477 return; 1478 } 1479 1480 if (sc->sc_invalid) { 1481 /* 1482 * The hardware is not ready/present, don't touch anything. 1483 * Note this can happen early on if the IRQ is shared. 1484 */ 1485 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1486 ATH_PCU_UNLOCK(sc); 1487 return; 1488 } 1489 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1490 ATH_PCU_UNLOCK(sc); 1491 return; 1492 } 1493 1494 if ((ifp->if_flags & IFF_UP) == 0 || 1495 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1496 HAL_INT status; 1497 1498 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1499 __func__, ifp->if_flags); 1500 ath_hal_getisr(ah, &status); /* clear ISR */ 1501 ath_hal_intrset(ah, 0); /* disable further intr's */ 1502 ATH_PCU_UNLOCK(sc); 1503 return; 1504 } 1505 1506 /* 1507 * Figure out the reason(s) for the interrupt. Note 1508 * that the hal returns a pseudo-ISR that may include 1509 * bits we haven't explicitly enabled so we mask the 1510 * value to insure we only process bits we requested. 1511 */ 1512 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1513 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1514 CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status); 1515 #ifdef ATH_KTR_INTR_DEBUG 1516 CTR5(ATH_KTR_INTR, 1517 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1518 ah->ah_intrstate[0], 1519 ah->ah_intrstate[1], 1520 ah->ah_intrstate[2], 1521 ah->ah_intrstate[3], 1522 ah->ah_intrstate[6]); 1523 #endif 1524 1525 /* Squirrel away SYNC interrupt debugging */ 1526 if (ah->ah_syncstate != 0) { 1527 int i; 1528 for (i = 0; i < 32; i++) 1529 if (ah->ah_syncstate & (i << i)) 1530 sc->sc_intr_stats.sync_intr[i]++; 1531 } 1532 1533 status &= sc->sc_imask; /* discard unasked for bits */ 1534 1535 /* Short-circuit un-handled interrupts */ 1536 if (status == 0x0) { 1537 ATH_PCU_UNLOCK(sc); 1538 return; 1539 } 1540 1541 /* 1542 * Take a note that we're inside the interrupt handler, so 1543 * the reset routines know to wait. 1544 */ 1545 sc->sc_intr_cnt++; 1546 ATH_PCU_UNLOCK(sc); 1547 1548 /* 1549 * Handle the interrupt. We won't run concurrent with the reset 1550 * or channel change routines as they'll wait for sc_intr_cnt 1551 * to be 0 before continuing. 1552 */ 1553 if (status & HAL_INT_FATAL) { 1554 sc->sc_stats.ast_hardware++; 1555 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1556 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1557 } else { 1558 if (status & HAL_INT_SWBA) { 1559 /* 1560 * Software beacon alert--time to send a beacon. 1561 * Handle beacon transmission directly; deferring 1562 * this is too slow to meet timing constraints 1563 * under load. 1564 */ 1565 #ifdef IEEE80211_SUPPORT_TDMA 1566 if (sc->sc_tdma) { 1567 if (sc->sc_tdmaswba == 0) { 1568 struct ieee80211com *ic = ifp->if_l2com; 1569 struct ieee80211vap *vap = 1570 TAILQ_FIRST(&ic->ic_vaps); 1571 ath_tdma_beacon_send(sc, vap); 1572 sc->sc_tdmaswba = 1573 vap->iv_tdma->tdma_bintval; 1574 } else 1575 sc->sc_tdmaswba--; 1576 } else 1577 #endif 1578 { 1579 ath_beacon_proc(sc, 0); 1580 #ifdef IEEE80211_SUPPORT_SUPERG 1581 /* 1582 * Schedule the rx taskq in case there's no 1583 * traffic so any frames held on the staging 1584 * queue are aged and potentially flushed. 1585 */ 1586 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1587 #endif 1588 } 1589 } 1590 if (status & HAL_INT_RXEOL) { 1591 int imask; 1592 CTR0(ATH_KTR_ERR, "ath_intr: RXEOL"); 1593 ATH_PCU_LOCK(sc); 1594 /* 1595 * NB: the hardware should re-read the link when 1596 * RXE bit is written, but it doesn't work at 1597 * least on older hardware revs. 1598 */ 1599 sc->sc_stats.ast_rxeol++; 1600 /* 1601 * Disable RXEOL/RXORN - prevent an interrupt 1602 * storm until the PCU logic can be reset. 1603 * In case the interface is reset some other 1604 * way before "sc_kickpcu" is called, don't 1605 * modify sc_imask - that way if it is reset 1606 * by a call to ath_reset() somehow, the 1607 * interrupt mask will be correctly reprogrammed. 1608 */ 1609 imask = sc->sc_imask; 1610 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1611 ath_hal_intrset(ah, imask); 1612 /* 1613 * Only blank sc_rxlink if we've not yet kicked 1614 * the PCU. 1615 * 1616 * This isn't entirely correct - the correct solution 1617 * would be to have a PCU lock and engage that for 1618 * the duration of the PCU fiddling; which would include 1619 * running the RX process. Otherwise we could end up 1620 * messing up the RX descriptor chain and making the 1621 * RX desc list much shorter. 1622 */ 1623 if (! sc->sc_kickpcu) 1624 sc->sc_rxlink = NULL; 1625 sc->sc_kickpcu = 1; 1626 /* 1627 * Enqueue an RX proc, to handled whatever 1628 * is in the RX queue. 1629 * This will then kick the PCU. 1630 */ 1631 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1632 ATH_PCU_UNLOCK(sc); 1633 } 1634 if (status & HAL_INT_TXURN) { 1635 sc->sc_stats.ast_txurn++; 1636 /* bump tx trigger level */ 1637 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1638 } 1639 /* 1640 * Handle both the legacy and RX EDMA interrupt bits. 1641 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1642 */ 1643 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1644 sc->sc_stats.ast_rx_intr++; 1645 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1646 } 1647 if (status & HAL_INT_TX) { 1648 sc->sc_stats.ast_tx_intr++; 1649 /* 1650 * Grab all the currently set bits in the HAL txq bitmap 1651 * and blank them. This is the only place we should be 1652 * doing this. 1653 */ 1654 ATH_PCU_LOCK(sc); 1655 txqs = 0xffffffff; 1656 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1657 sc->sc_txq_active |= txqs; 1658 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1659 ATH_PCU_UNLOCK(sc); 1660 } 1661 if (status & HAL_INT_BMISS) { 1662 sc->sc_stats.ast_bmiss++; 1663 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1664 } 1665 if (status & HAL_INT_GTT) 1666 sc->sc_stats.ast_tx_timeout++; 1667 if (status & HAL_INT_CST) 1668 sc->sc_stats.ast_tx_cst++; 1669 if (status & HAL_INT_MIB) { 1670 sc->sc_stats.ast_mib++; 1671 ATH_PCU_LOCK(sc); 1672 /* 1673 * Disable interrupts until we service the MIB 1674 * interrupt; otherwise it will continue to fire. 1675 */ 1676 ath_hal_intrset(ah, 0); 1677 /* 1678 * Let the hal handle the event. We assume it will 1679 * clear whatever condition caused the interrupt. 1680 */ 1681 ath_hal_mibevent(ah, &sc->sc_halstats); 1682 /* 1683 * Don't reset the interrupt if we've just 1684 * kicked the PCU, or we may get a nested 1685 * RXEOL before the rxproc has had a chance 1686 * to run. 1687 */ 1688 if (sc->sc_kickpcu == 0) 1689 ath_hal_intrset(ah, sc->sc_imask); 1690 ATH_PCU_UNLOCK(sc); 1691 } 1692 if (status & HAL_INT_RXORN) { 1693 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1694 CTR0(ATH_KTR_ERR, "ath_intr: RXORN"); 1695 sc->sc_stats.ast_rxorn++; 1696 } 1697 } 1698 ATH_PCU_LOCK(sc); 1699 sc->sc_intr_cnt--; 1700 ATH_PCU_UNLOCK(sc); 1701 } 1702 1703 static void 1704 ath_fatal_proc(void *arg, int pending) 1705 { 1706 struct ath_softc *sc = arg; 1707 struct ifnet *ifp = sc->sc_ifp; 1708 u_int32_t *state; 1709 u_int32_t len; 1710 void *sp; 1711 1712 if_printf(ifp, "hardware error; resetting\n"); 1713 /* 1714 * Fatal errors are unrecoverable. Typically these 1715 * are caused by DMA errors. Collect h/w state from 1716 * the hal so we can diagnose what's going on. 1717 */ 1718 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1719 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1720 state = sp; 1721 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1722 state[0], state[1] , state[2], state[3], 1723 state[4], state[5]); 1724 } 1725 ath_reset(ifp, ATH_RESET_NOLOSS); 1726 } 1727 1728 static void 1729 ath_bmiss_vap(struct ieee80211vap *vap) 1730 { 1731 /* 1732 * Workaround phantom bmiss interrupts by sanity-checking 1733 * the time of our last rx'd frame. If it is within the 1734 * beacon miss interval then ignore the interrupt. If it's 1735 * truly a bmiss we'll get another interrupt soon and that'll 1736 * be dispatched up for processing. Note this applies only 1737 * for h/w beacon miss events. 1738 */ 1739 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1740 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1741 struct ath_softc *sc = ifp->if_softc; 1742 u_int64_t lastrx = sc->sc_lastrx; 1743 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1744 /* XXX should take a locked ref to iv_bss */ 1745 u_int bmisstimeout = 1746 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1747 1748 DPRINTF(sc, ATH_DEBUG_BEACON, 1749 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1750 __func__, (unsigned long long) tsf, 1751 (unsigned long long)(tsf - lastrx), 1752 (unsigned long long) lastrx, bmisstimeout); 1753 1754 if (tsf - lastrx <= bmisstimeout) { 1755 sc->sc_stats.ast_bmiss_phantom++; 1756 return; 1757 } 1758 } 1759 ATH_VAP(vap)->av_bmiss(vap); 1760 } 1761 1762 static int 1763 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1764 { 1765 uint32_t rsize; 1766 void *sp; 1767 1768 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1769 return 0; 1770 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1771 *hangs = *(uint32_t *)sp; 1772 return 1; 1773 } 1774 1775 static void 1776 ath_bmiss_proc(void *arg, int pending) 1777 { 1778 struct ath_softc *sc = arg; 1779 struct ifnet *ifp = sc->sc_ifp; 1780 uint32_t hangs; 1781 1782 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1783 1784 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1785 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1786 ath_reset(ifp, ATH_RESET_NOLOSS); 1787 } else 1788 ieee80211_beacon_miss(ifp->if_l2com); 1789 } 1790 1791 /* 1792 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1793 * calcs together with WME. If necessary disable the crypto 1794 * hardware and mark the 802.11 state so keys will be setup 1795 * with the MIC work done in software. 1796 */ 1797 static void 1798 ath_settkipmic(struct ath_softc *sc) 1799 { 1800 struct ifnet *ifp = sc->sc_ifp; 1801 struct ieee80211com *ic = ifp->if_l2com; 1802 1803 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1804 if (ic->ic_flags & IEEE80211_F_WME) { 1805 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1806 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1807 } else { 1808 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1809 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1810 } 1811 } 1812 } 1813 1814 static void 1815 ath_init(void *arg) 1816 { 1817 struct ath_softc *sc = (struct ath_softc *) arg; 1818 struct ifnet *ifp = sc->sc_ifp; 1819 struct ieee80211com *ic = ifp->if_l2com; 1820 struct ath_hal *ah = sc->sc_ah; 1821 HAL_STATUS status; 1822 1823 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1824 __func__, ifp->if_flags); 1825 1826 ATH_LOCK(sc); 1827 /* 1828 * Stop anything previously setup. This is safe 1829 * whether this is the first time through or not. 1830 */ 1831 ath_stop_locked(ifp); 1832 1833 /* 1834 * The basic interface to setting the hardware in a good 1835 * state is ``reset''. On return the hardware is known to 1836 * be powered up and with interrupts disabled. This must 1837 * be followed by initialization of the appropriate bits 1838 * and then setup of the interrupt mask. 1839 */ 1840 ath_settkipmic(sc); 1841 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1842 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1843 status); 1844 ATH_UNLOCK(sc); 1845 return; 1846 } 1847 ath_chan_change(sc, ic->ic_curchan); 1848 1849 /* Let DFS at it in case it's a DFS channel */ 1850 ath_dfs_radar_enable(sc, ic->ic_curchan); 1851 1852 /* 1853 * Likewise this is set during reset so update 1854 * state cached in the driver. 1855 */ 1856 sc->sc_diversity = ath_hal_getdiversity(ah); 1857 sc->sc_lastlongcal = 0; 1858 sc->sc_resetcal = 1; 1859 sc->sc_lastcalreset = 0; 1860 sc->sc_lastani = 0; 1861 sc->sc_lastshortcal = 0; 1862 sc->sc_doresetcal = AH_FALSE; 1863 /* 1864 * Beacon timers were cleared here; give ath_newstate() 1865 * a hint that the beacon timers should be poked when 1866 * things transition to the RUN state. 1867 */ 1868 sc->sc_beacons = 0; 1869 1870 /* 1871 * Setup the hardware after reset: the key cache 1872 * is filled as needed and the receive engine is 1873 * set going. Frame transmit is handled entirely 1874 * in the frame output path; there's nothing to do 1875 * here except setup the interrupt mask. 1876 */ 1877 if (ath_startrecv(sc) != 0) { 1878 if_printf(ifp, "unable to start recv logic\n"); 1879 ATH_UNLOCK(sc); 1880 return; 1881 } 1882 1883 /* 1884 * Enable interrupts. 1885 */ 1886 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1887 | HAL_INT_RXEOL | HAL_INT_RXORN 1888 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1889 1890 /* 1891 * Enable RX EDMA bits. Note these overlap with 1892 * HAL_INT_RX and HAL_INT_RXDESC respectively. 1893 */ 1894 if (sc->sc_isedma) 1895 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 1896 1897 /* 1898 * Enable MIB interrupts when there are hardware phy counters. 1899 * Note we only do this (at the moment) for station mode. 1900 */ 1901 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1902 sc->sc_imask |= HAL_INT_MIB; 1903 1904 /* Enable global TX timeout and carrier sense timeout if available */ 1905 if (ath_hal_gtxto_supported(ah)) 1906 sc->sc_imask |= HAL_INT_GTT; 1907 1908 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1909 __func__, sc->sc_imask); 1910 1911 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1912 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1913 ath_hal_intrset(ah, sc->sc_imask); 1914 1915 ATH_UNLOCK(sc); 1916 1917 #ifdef ATH_TX99_DIAG 1918 if (sc->sc_tx99 != NULL) 1919 sc->sc_tx99->start(sc->sc_tx99); 1920 else 1921 #endif 1922 ieee80211_start_all(ic); /* start all vap's */ 1923 } 1924 1925 static void 1926 ath_stop_locked(struct ifnet *ifp) 1927 { 1928 struct ath_softc *sc = ifp->if_softc; 1929 struct ath_hal *ah = sc->sc_ah; 1930 1931 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1932 __func__, sc->sc_invalid, ifp->if_flags); 1933 1934 ATH_LOCK_ASSERT(sc); 1935 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1936 /* 1937 * Shutdown the hardware and driver: 1938 * reset 802.11 state machine 1939 * turn off timers 1940 * disable interrupts 1941 * turn off the radio 1942 * clear transmit machinery 1943 * clear receive machinery 1944 * drain and release tx queues 1945 * reclaim beacon resources 1946 * power down hardware 1947 * 1948 * Note that some of this work is not possible if the 1949 * hardware is gone (invalid). 1950 */ 1951 #ifdef ATH_TX99_DIAG 1952 if (sc->sc_tx99 != NULL) 1953 sc->sc_tx99->stop(sc->sc_tx99); 1954 #endif 1955 callout_stop(&sc->sc_wd_ch); 1956 sc->sc_wd_timer = 0; 1957 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1958 if (!sc->sc_invalid) { 1959 if (sc->sc_softled) { 1960 callout_stop(&sc->sc_ledtimer); 1961 ath_hal_gpioset(ah, sc->sc_ledpin, 1962 !sc->sc_ledon); 1963 sc->sc_blinking = 0; 1964 } 1965 ath_hal_intrset(ah, 0); 1966 } 1967 ath_draintxq(sc, ATH_RESET_DEFAULT); 1968 if (!sc->sc_invalid) { 1969 ath_stoprecv(sc, 1); 1970 ath_hal_phydisable(ah); 1971 } else 1972 sc->sc_rxlink = NULL; 1973 ath_beacon_free(sc); /* XXX not needed */ 1974 } 1975 } 1976 1977 #define MAX_TXRX_ITERATIONS 1000 1978 static void 1979 ath_txrx_stop_locked(struct ath_softc *sc) 1980 { 1981 int i = MAX_TXRX_ITERATIONS; 1982 1983 ATH_UNLOCK_ASSERT(sc); 1984 ATH_PCU_LOCK_ASSERT(sc); 1985 1986 /* 1987 * Sleep until all the pending operations have completed. 1988 * 1989 * The caller must ensure that reset has been incremented 1990 * or the pending operations may continue being queued. 1991 */ 1992 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 1993 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 1994 if (i <= 0) 1995 break; 1996 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 1997 i--; 1998 } 1999 2000 if (i <= 0) 2001 device_printf(sc->sc_dev, 2002 "%s: didn't finish after %d iterations\n", 2003 __func__, MAX_TXRX_ITERATIONS); 2004 } 2005 #undef MAX_TXRX_ITERATIONS 2006 2007 #if 0 2008 static void 2009 ath_txrx_stop(struct ath_softc *sc) 2010 { 2011 ATH_UNLOCK_ASSERT(sc); 2012 ATH_PCU_UNLOCK_ASSERT(sc); 2013 2014 ATH_PCU_LOCK(sc); 2015 ath_txrx_stop_locked(sc); 2016 ATH_PCU_UNLOCK(sc); 2017 } 2018 #endif 2019 2020 static void 2021 ath_txrx_start(struct ath_softc *sc) 2022 { 2023 2024 taskqueue_unblock(sc->sc_tq); 2025 } 2026 2027 /* 2028 * Grab the reset lock, and wait around until noone else 2029 * is trying to do anything with it. 2030 * 2031 * This is totally horrible but we can't hold this lock for 2032 * long enough to do TX/RX or we end up with net80211/ip stack 2033 * LORs and eventual deadlock. 2034 * 2035 * "dowait" signals whether to spin, waiting for the reset 2036 * lock count to reach 0. This should (for now) only be used 2037 * during the reset path, as the rest of the code may not 2038 * be locking-reentrant enough to behave correctly. 2039 * 2040 * Another, cleaner way should be found to serialise all of 2041 * these operations. 2042 */ 2043 #define MAX_RESET_ITERATIONS 10 2044 static int 2045 ath_reset_grablock(struct ath_softc *sc, int dowait) 2046 { 2047 int w = 0; 2048 int i = MAX_RESET_ITERATIONS; 2049 2050 ATH_PCU_LOCK_ASSERT(sc); 2051 do { 2052 if (sc->sc_inreset_cnt == 0) { 2053 w = 1; 2054 break; 2055 } 2056 if (dowait == 0) { 2057 w = 0; 2058 break; 2059 } 2060 ATH_PCU_UNLOCK(sc); 2061 pause("ath_reset_grablock", 1); 2062 i--; 2063 ATH_PCU_LOCK(sc); 2064 } while (i > 0); 2065 2066 /* 2067 * We always increment the refcounter, regardless 2068 * of whether we succeeded to get it in an exclusive 2069 * way. 2070 */ 2071 sc->sc_inreset_cnt++; 2072 2073 if (i <= 0) 2074 device_printf(sc->sc_dev, 2075 "%s: didn't finish after %d iterations\n", 2076 __func__, MAX_RESET_ITERATIONS); 2077 2078 if (w == 0) 2079 device_printf(sc->sc_dev, 2080 "%s: warning, recursive reset path!\n", 2081 __func__); 2082 2083 return w; 2084 } 2085 #undef MAX_RESET_ITERATIONS 2086 2087 /* 2088 * XXX TODO: write ath_reset_releaselock 2089 */ 2090 2091 static void 2092 ath_stop(struct ifnet *ifp) 2093 { 2094 struct ath_softc *sc = ifp->if_softc; 2095 2096 ATH_LOCK(sc); 2097 ath_stop_locked(ifp); 2098 ATH_UNLOCK(sc); 2099 } 2100 2101 /* 2102 * Reset the hardware w/o losing operational state. This is 2103 * basically a more efficient way of doing ath_stop, ath_init, 2104 * followed by state transitions to the current 802.11 2105 * operational state. Used to recover from various errors and 2106 * to reset or reload hardware state. 2107 */ 2108 int 2109 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2110 { 2111 struct ath_softc *sc = ifp->if_softc; 2112 struct ieee80211com *ic = ifp->if_l2com; 2113 struct ath_hal *ah = sc->sc_ah; 2114 HAL_STATUS status; 2115 int i; 2116 2117 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2118 2119 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2120 ATH_PCU_UNLOCK_ASSERT(sc); 2121 ATH_UNLOCK_ASSERT(sc); 2122 2123 /* Try to (stop any further TX/RX from occuring */ 2124 taskqueue_block(sc->sc_tq); 2125 2126 ATH_PCU_LOCK(sc); 2127 ath_hal_intrset(ah, 0); /* disable interrupts */ 2128 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2129 if (ath_reset_grablock(sc, 1) == 0) { 2130 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2131 __func__); 2132 } 2133 ATH_PCU_UNLOCK(sc); 2134 2135 /* 2136 * Should now wait for pending TX/RX to complete 2137 * and block future ones from occuring. This needs to be 2138 * done before the TX queue is drained. 2139 */ 2140 ath_draintxq(sc, reset_type); /* stop xmit side */ 2141 2142 /* 2143 * Regardless of whether we're doing a no-loss flush or 2144 * not, stop the PCU and handle what's in the RX queue. 2145 * That way frames aren't dropped which shouldn't be. 2146 */ 2147 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2148 ath_rx_flush(sc); 2149 2150 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2151 /* NB: indicate channel change so we do a full reset */ 2152 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2153 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2154 __func__, status); 2155 sc->sc_diversity = ath_hal_getdiversity(ah); 2156 2157 /* Let DFS at it in case it's a DFS channel */ 2158 ath_dfs_radar_enable(sc, ic->ic_curchan); 2159 2160 if (ath_startrecv(sc) != 0) /* restart recv */ 2161 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2162 /* 2163 * We may be doing a reset in response to an ioctl 2164 * that changes the channel so update any state that 2165 * might change as a result. 2166 */ 2167 ath_chan_change(sc, ic->ic_curchan); 2168 if (sc->sc_beacons) { /* restart beacons */ 2169 #ifdef IEEE80211_SUPPORT_TDMA 2170 if (sc->sc_tdma) 2171 ath_tdma_config(sc, NULL); 2172 else 2173 #endif 2174 ath_beacon_config(sc, NULL); 2175 } 2176 2177 /* 2178 * Release the reset lock and re-enable interrupts here. 2179 * If an interrupt was being processed in ath_intr(), 2180 * it would disable interrupts at this point. So we have 2181 * to atomically enable interrupts and decrement the 2182 * reset counter - this way ath_intr() doesn't end up 2183 * disabling interrupts without a corresponding enable 2184 * in the rest or channel change path. 2185 */ 2186 ATH_PCU_LOCK(sc); 2187 sc->sc_inreset_cnt--; 2188 /* XXX only do this if sc_inreset_cnt == 0? */ 2189 ath_hal_intrset(ah, sc->sc_imask); 2190 ATH_PCU_UNLOCK(sc); 2191 2192 /* 2193 * TX and RX can be started here. If it were started with 2194 * sc_inreset_cnt > 0, the TX and RX path would abort. 2195 * Thus if this is a nested call through the reset or 2196 * channel change code, TX completion will occur but 2197 * RX completion and ath_start / ath_tx_start will not 2198 * run. 2199 */ 2200 2201 /* Restart TX/RX as needed */ 2202 ath_txrx_start(sc); 2203 2204 /* XXX Restart TX completion and pending TX */ 2205 if (reset_type == ATH_RESET_NOLOSS) { 2206 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2207 if (ATH_TXQ_SETUP(sc, i)) { 2208 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2209 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2210 ath_txq_sched(sc, &sc->sc_txq[i]); 2211 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2212 } 2213 } 2214 } 2215 2216 /* 2217 * This may have been set during an ath_start() call which 2218 * set this once it detected a concurrent TX was going on. 2219 * So, clear it. 2220 */ 2221 IF_LOCK(&ifp->if_snd); 2222 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2223 IF_UNLOCK(&ifp->if_snd); 2224 2225 /* Handle any frames in the TX queue */ 2226 /* 2227 * XXX should this be done by the caller, rather than 2228 * ath_reset() ? 2229 */ 2230 ath_start(ifp); /* restart xmit */ 2231 return 0; 2232 } 2233 2234 static int 2235 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2236 { 2237 struct ieee80211com *ic = vap->iv_ic; 2238 struct ifnet *ifp = ic->ic_ifp; 2239 struct ath_softc *sc = ifp->if_softc; 2240 struct ath_hal *ah = sc->sc_ah; 2241 2242 switch (cmd) { 2243 case IEEE80211_IOC_TXPOWER: 2244 /* 2245 * If per-packet TPC is enabled, then we have nothing 2246 * to do; otherwise we need to force the global limit. 2247 * All this can happen directly; no need to reset. 2248 */ 2249 if (!ath_hal_gettpc(ah)) 2250 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2251 return 0; 2252 } 2253 /* XXX? Full or NOLOSS? */ 2254 return ath_reset(ifp, ATH_RESET_FULL); 2255 } 2256 2257 struct ath_buf * 2258 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2259 { 2260 struct ath_buf *bf; 2261 2262 ATH_TXBUF_LOCK_ASSERT(sc); 2263 2264 if (btype == ATH_BUFTYPE_MGMT) 2265 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2266 else 2267 bf = TAILQ_FIRST(&sc->sc_txbuf); 2268 2269 if (bf == NULL) { 2270 sc->sc_stats.ast_tx_getnobuf++; 2271 } else { 2272 if (bf->bf_flags & ATH_BUF_BUSY) { 2273 sc->sc_stats.ast_tx_getbusybuf++; 2274 bf = NULL; 2275 } 2276 } 2277 2278 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2279 if (btype == ATH_BUFTYPE_MGMT) 2280 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2281 else { 2282 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2283 sc->sc_txbuf_cnt--; 2284 2285 /* 2286 * This shuldn't happen; however just to be 2287 * safe print a warning and fudge the txbuf 2288 * count. 2289 */ 2290 if (sc->sc_txbuf_cnt < 0) { 2291 device_printf(sc->sc_dev, 2292 "%s: sc_txbuf_cnt < 0?\n", 2293 __func__); 2294 sc->sc_txbuf_cnt = 0; 2295 } 2296 } 2297 } else 2298 bf = NULL; 2299 2300 if (bf == NULL) { 2301 /* XXX should check which list, mgmt or otherwise */ 2302 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2303 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2304 "out of xmit buffers" : "xmit buffer busy"); 2305 return NULL; 2306 } 2307 2308 /* XXX TODO: should do this at buffer list initialisation */ 2309 /* XXX (then, ensure the buffer has the right flag set) */ 2310 if (btype == ATH_BUFTYPE_MGMT) 2311 bf->bf_flags |= ATH_BUF_MGMT; 2312 else 2313 bf->bf_flags &= (~ATH_BUF_MGMT); 2314 2315 /* Valid bf here; clear some basic fields */ 2316 bf->bf_next = NULL; /* XXX just to be sure */ 2317 bf->bf_last = NULL; /* XXX again, just to be sure */ 2318 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2319 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2320 2321 return bf; 2322 } 2323 2324 /* 2325 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2326 * can't be thrown back on the queue as they could still be 2327 * in use by the hardware. 2328 * 2329 * This duplicates the buffer, or returns NULL. 2330 * 2331 * The descriptor is also copied but the link pointers and 2332 * the DMA segments aren't copied; this frame should thus 2333 * be again passed through the descriptor setup/chain routines 2334 * so the link is correct. 2335 * 2336 * The caller must free the buffer using ath_freebuf(). 2337 * 2338 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2339 * XXX in the TX pathway when retries are needed. 2340 * XXX Figure out how to keep some buffers free, or factor the 2341 * XXX number of busy buffers into the xmit path (ath_start()) 2342 * XXX so we don't over-commit. 2343 */ 2344 struct ath_buf * 2345 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2346 { 2347 struct ath_buf *tbf; 2348 2349 tbf = ath_getbuf(sc, 2350 (bf->bf_flags & ATH_BUF_MGMT) ? 2351 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2352 if (tbf == NULL) 2353 return NULL; /* XXX failure? Why? */ 2354 2355 /* Copy basics */ 2356 tbf->bf_next = NULL; 2357 tbf->bf_nseg = bf->bf_nseg; 2358 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2359 tbf->bf_status = bf->bf_status; 2360 tbf->bf_m = bf->bf_m; 2361 tbf->bf_node = bf->bf_node; 2362 /* will be setup by the chain/setup function */ 2363 tbf->bf_lastds = NULL; 2364 /* for now, last == self */ 2365 tbf->bf_last = tbf; 2366 tbf->bf_comp = bf->bf_comp; 2367 2368 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2369 2370 /* The caller has to re-init the descriptor + links */ 2371 2372 /* Copy state */ 2373 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2374 2375 return tbf; 2376 } 2377 2378 struct ath_buf * 2379 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2380 { 2381 struct ath_buf *bf; 2382 2383 ATH_TXBUF_LOCK(sc); 2384 bf = _ath_getbuf_locked(sc, btype); 2385 /* 2386 * If a mgmt buffer was requested but we're out of those, 2387 * try requesting a normal one. 2388 */ 2389 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2390 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2391 ATH_TXBUF_UNLOCK(sc); 2392 if (bf == NULL) { 2393 struct ifnet *ifp = sc->sc_ifp; 2394 2395 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2396 sc->sc_stats.ast_tx_qstop++; 2397 IF_LOCK(&ifp->if_snd); 2398 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2399 IF_UNLOCK(&ifp->if_snd); 2400 } 2401 return bf; 2402 } 2403 2404 void 2405 ath_start(struct ifnet *ifp) 2406 { 2407 struct ath_softc *sc = ifp->if_softc; 2408 struct ieee80211_node *ni; 2409 struct ath_buf *bf; 2410 struct mbuf *m, *next; 2411 ath_bufhead frags; 2412 2413 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2414 return; 2415 2416 /* XXX is it ok to hold the ATH_LOCK here? */ 2417 ATH_PCU_LOCK(sc); 2418 if (sc->sc_inreset_cnt > 0) { 2419 device_printf(sc->sc_dev, 2420 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2421 ATH_PCU_UNLOCK(sc); 2422 IF_LOCK(&ifp->if_snd); 2423 sc->sc_stats.ast_tx_qstop++; 2424 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2425 IF_UNLOCK(&ifp->if_snd); 2426 return; 2427 } 2428 sc->sc_txstart_cnt++; 2429 ATH_PCU_UNLOCK(sc); 2430 2431 for (;;) { 2432 ATH_TXBUF_LOCK(sc); 2433 if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) { 2434 /* XXX increment counter? */ 2435 ATH_TXBUF_UNLOCK(sc); 2436 IF_LOCK(&ifp->if_snd); 2437 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2438 IF_UNLOCK(&ifp->if_snd); 2439 break; 2440 } 2441 ATH_TXBUF_UNLOCK(sc); 2442 2443 /* 2444 * Grab a TX buffer and associated resources. 2445 */ 2446 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2447 if (bf == NULL) 2448 break; 2449 2450 IFQ_DEQUEUE(&ifp->if_snd, m); 2451 if (m == NULL) { 2452 ATH_TXBUF_LOCK(sc); 2453 ath_returnbuf_head(sc, bf); 2454 ATH_TXBUF_UNLOCK(sc); 2455 break; 2456 } 2457 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2458 /* 2459 * Check for fragmentation. If this frame 2460 * has been broken up verify we have enough 2461 * buffers to send all the fragments so all 2462 * go out or none... 2463 */ 2464 TAILQ_INIT(&frags); 2465 if ((m->m_flags & M_FRAG) && 2466 !ath_txfrag_setup(sc, &frags, m, ni)) { 2467 DPRINTF(sc, ATH_DEBUG_XMIT, 2468 "%s: out of txfrag buffers\n", __func__); 2469 sc->sc_stats.ast_tx_nofrag++; 2470 ifp->if_oerrors++; 2471 ath_freetx(m); 2472 goto bad; 2473 } 2474 ifp->if_opackets++; 2475 nextfrag: 2476 /* 2477 * Pass the frame to the h/w for transmission. 2478 * Fragmented frames have each frag chained together 2479 * with m_nextpkt. We know there are sufficient ath_buf's 2480 * to send all the frags because of work done by 2481 * ath_txfrag_setup. We leave m_nextpkt set while 2482 * calling ath_tx_start so it can use it to extend the 2483 * the tx duration to cover the subsequent frag and 2484 * so it can reclaim all the mbufs in case of an error; 2485 * ath_tx_start clears m_nextpkt once it commits to 2486 * handing the frame to the hardware. 2487 */ 2488 next = m->m_nextpkt; 2489 if (ath_tx_start(sc, ni, bf, m)) { 2490 bad: 2491 ifp->if_oerrors++; 2492 reclaim: 2493 bf->bf_m = NULL; 2494 bf->bf_node = NULL; 2495 ATH_TXBUF_LOCK(sc); 2496 ath_returnbuf_head(sc, bf); 2497 ath_txfrag_cleanup(sc, &frags, ni); 2498 ATH_TXBUF_UNLOCK(sc); 2499 if (ni != NULL) 2500 ieee80211_free_node(ni); 2501 continue; 2502 } 2503 if (next != NULL) { 2504 /* 2505 * Beware of state changing between frags. 2506 * XXX check sta power-save state? 2507 */ 2508 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2509 DPRINTF(sc, ATH_DEBUG_XMIT, 2510 "%s: flush fragmented packet, state %s\n", 2511 __func__, 2512 ieee80211_state_name[ni->ni_vap->iv_state]); 2513 ath_freetx(next); 2514 goto reclaim; 2515 } 2516 m = next; 2517 bf = TAILQ_FIRST(&frags); 2518 KASSERT(bf != NULL, ("no buf for txfrag")); 2519 TAILQ_REMOVE(&frags, bf, bf_list); 2520 goto nextfrag; 2521 } 2522 2523 sc->sc_wd_timer = 5; 2524 } 2525 2526 ATH_PCU_LOCK(sc); 2527 sc->sc_txstart_cnt--; 2528 ATH_PCU_UNLOCK(sc); 2529 } 2530 2531 static int 2532 ath_media_change(struct ifnet *ifp) 2533 { 2534 int error = ieee80211_media_change(ifp); 2535 /* NB: only the fixed rate can change and that doesn't need a reset */ 2536 return (error == ENETRESET ? 0 : error); 2537 } 2538 2539 /* 2540 * Block/unblock tx+rx processing while a key change is done. 2541 * We assume the caller serializes key management operations 2542 * so we only need to worry about synchronization with other 2543 * uses that originate in the driver. 2544 */ 2545 static void 2546 ath_key_update_begin(struct ieee80211vap *vap) 2547 { 2548 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2549 struct ath_softc *sc = ifp->if_softc; 2550 2551 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2552 taskqueue_block(sc->sc_tq); 2553 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2554 } 2555 2556 static void 2557 ath_key_update_end(struct ieee80211vap *vap) 2558 { 2559 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2560 struct ath_softc *sc = ifp->if_softc; 2561 2562 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2563 IF_UNLOCK(&ifp->if_snd); 2564 taskqueue_unblock(sc->sc_tq); 2565 } 2566 2567 static void 2568 ath_update_promisc(struct ifnet *ifp) 2569 { 2570 struct ath_softc *sc = ifp->if_softc; 2571 u_int32_t rfilt; 2572 2573 /* configure rx filter */ 2574 rfilt = ath_calcrxfilter(sc); 2575 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2576 2577 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2578 } 2579 2580 static void 2581 ath_update_mcast(struct ifnet *ifp) 2582 { 2583 struct ath_softc *sc = ifp->if_softc; 2584 u_int32_t mfilt[2]; 2585 2586 /* calculate and install multicast filter */ 2587 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2588 struct ifmultiaddr *ifma; 2589 /* 2590 * Merge multicast addresses to form the hardware filter. 2591 */ 2592 mfilt[0] = mfilt[1] = 0; 2593 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2594 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2595 caddr_t dl; 2596 u_int32_t val; 2597 u_int8_t pos; 2598 2599 /* calculate XOR of eight 6bit values */ 2600 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2601 val = LE_READ_4(dl + 0); 2602 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2603 val = LE_READ_4(dl + 3); 2604 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2605 pos &= 0x3f; 2606 mfilt[pos / 32] |= (1 << (pos % 32)); 2607 } 2608 if_maddr_runlock(ifp); 2609 } else 2610 mfilt[0] = mfilt[1] = ~0; 2611 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2612 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2613 __func__, mfilt[0], mfilt[1]); 2614 } 2615 2616 void 2617 ath_mode_init(struct ath_softc *sc) 2618 { 2619 struct ifnet *ifp = sc->sc_ifp; 2620 struct ath_hal *ah = sc->sc_ah; 2621 u_int32_t rfilt; 2622 2623 /* configure rx filter */ 2624 rfilt = ath_calcrxfilter(sc); 2625 ath_hal_setrxfilter(ah, rfilt); 2626 2627 /* configure operational mode */ 2628 ath_hal_setopmode(ah); 2629 2630 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 2631 "%s: ah=%p, ifp=%p, if_addr=%p\n", 2632 __func__, 2633 ah, 2634 ifp, 2635 (ifp == NULL) ? NULL : ifp->if_addr); 2636 2637 /* handle any link-level address change */ 2638 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2639 2640 /* calculate and install multicast filter */ 2641 ath_update_mcast(ifp); 2642 } 2643 2644 /* 2645 * Set the slot time based on the current setting. 2646 */ 2647 void 2648 ath_setslottime(struct ath_softc *sc) 2649 { 2650 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2651 struct ath_hal *ah = sc->sc_ah; 2652 u_int usec; 2653 2654 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2655 usec = 13; 2656 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2657 usec = 21; 2658 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2659 /* honor short/long slot time only in 11g */ 2660 /* XXX shouldn't honor on pure g or turbo g channel */ 2661 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2662 usec = HAL_SLOT_TIME_9; 2663 else 2664 usec = HAL_SLOT_TIME_20; 2665 } else 2666 usec = HAL_SLOT_TIME_9; 2667 2668 DPRINTF(sc, ATH_DEBUG_RESET, 2669 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2670 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2671 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2672 2673 ath_hal_setslottime(ah, usec); 2674 sc->sc_updateslot = OK; 2675 } 2676 2677 /* 2678 * Callback from the 802.11 layer to update the 2679 * slot time based on the current setting. 2680 */ 2681 static void 2682 ath_updateslot(struct ifnet *ifp) 2683 { 2684 struct ath_softc *sc = ifp->if_softc; 2685 struct ieee80211com *ic = ifp->if_l2com; 2686 2687 /* 2688 * When not coordinating the BSS, change the hardware 2689 * immediately. For other operation we defer the change 2690 * until beacon updates have propagated to the stations. 2691 */ 2692 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2693 ic->ic_opmode == IEEE80211_M_MBSS) 2694 sc->sc_updateslot = UPDATE; 2695 else 2696 ath_setslottime(sc); 2697 } 2698 2699 /* 2700 * Append the contents of src to dst; both queues 2701 * are assumed to be locked. 2702 */ 2703 void 2704 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2705 { 2706 2707 ATH_TXQ_LOCK_ASSERT(dst); 2708 ATH_TXQ_LOCK_ASSERT(src); 2709 2710 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2711 dst->axq_link = src->axq_link; 2712 src->axq_link = NULL; 2713 dst->axq_depth += src->axq_depth; 2714 dst->axq_aggr_depth += src->axq_aggr_depth; 2715 src->axq_depth = 0; 2716 src->axq_aggr_depth = 0; 2717 } 2718 2719 /* 2720 * Reset the hardware, with no loss. 2721 * 2722 * This can't be used for a general case reset. 2723 */ 2724 static void 2725 ath_reset_proc(void *arg, int pending) 2726 { 2727 struct ath_softc *sc = arg; 2728 struct ifnet *ifp = sc->sc_ifp; 2729 2730 #if 0 2731 if_printf(ifp, "%s: resetting\n", __func__); 2732 #endif 2733 ath_reset(ifp, ATH_RESET_NOLOSS); 2734 } 2735 2736 /* 2737 * Reset the hardware after detecting beacons have stopped. 2738 */ 2739 static void 2740 ath_bstuck_proc(void *arg, int pending) 2741 { 2742 struct ath_softc *sc = arg; 2743 struct ifnet *ifp = sc->sc_ifp; 2744 uint32_t hangs = 0; 2745 2746 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2747 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2748 2749 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2750 sc->sc_bmisscount); 2751 sc->sc_stats.ast_bstuck++; 2752 /* 2753 * This assumes that there's no simultaneous channel mode change 2754 * occuring. 2755 */ 2756 ath_reset(ifp, ATH_RESET_NOLOSS); 2757 } 2758 2759 static void 2760 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2761 { 2762 bus_addr_t *paddr = (bus_addr_t*) arg; 2763 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2764 *paddr = segs->ds_addr; 2765 } 2766 2767 int 2768 ath_descdma_setup(struct ath_softc *sc, 2769 struct ath_descdma *dd, ath_bufhead *head, 2770 const char *name, int ds_size, int nbuf, int ndesc) 2771 { 2772 #define DS2PHYS(_dd, _ds) \ 2773 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2774 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2775 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2776 struct ifnet *ifp = sc->sc_ifp; 2777 uint8_t *ds; 2778 struct ath_buf *bf; 2779 int i, bsize, error; 2780 2781 dd->dd_descsize = ds_size; 2782 2783 DPRINTF(sc, ATH_DEBUG_RESET, 2784 "%s: %s DMA: %u buffers %u desc/buf, %d bytes per descriptor\n", 2785 __func__, name, nbuf, ndesc, dd->dd_descsize); 2786 2787 dd->dd_name = name; 2788 dd->dd_desc_len = dd->dd_descsize * nbuf * ndesc; 2789 2790 /* 2791 * Merlin work-around: 2792 * Descriptors that cross the 4KB boundary can't be used. 2793 * Assume one skipped descriptor per 4KB page. 2794 */ 2795 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2796 int numdescpage = 4096 / (dd->dd_descsize * ndesc); 2797 dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096; 2798 } 2799 2800 /* 2801 * Setup DMA descriptor area. 2802 */ 2803 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 2804 PAGE_SIZE, 0, /* alignment, bounds */ 2805 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2806 BUS_SPACE_MAXADDR, /* highaddr */ 2807 NULL, NULL, /* filter, filterarg */ 2808 dd->dd_desc_len, /* maxsize */ 2809 1, /* nsegments */ 2810 dd->dd_desc_len, /* maxsegsize */ 2811 BUS_DMA_ALLOCNOW, /* flags */ 2812 NULL, /* lockfunc */ 2813 NULL, /* lockarg */ 2814 &dd->dd_dmat); 2815 if (error != 0) { 2816 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 2817 return error; 2818 } 2819 2820 /* allocate descriptors */ 2821 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2822 if (error != 0) { 2823 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2824 "error %u\n", dd->dd_name, error); 2825 goto fail0; 2826 } 2827 2828 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 2829 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 2830 &dd->dd_dmamap); 2831 if (error != 0) { 2832 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2833 "error %u\n", nbuf * ndesc, dd->dd_name, error); 2834 goto fail1; 2835 } 2836 2837 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 2838 dd->dd_desc, dd->dd_desc_len, 2839 ath_load_cb, &dd->dd_desc_paddr, 2840 BUS_DMA_NOWAIT); 2841 if (error != 0) { 2842 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2843 dd->dd_name, error); 2844 goto fail2; 2845 } 2846 2847 ds = (uint8_t *) dd->dd_desc; 2848 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2849 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 2850 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 2851 2852 /* allocate rx buffers */ 2853 bsize = sizeof(struct ath_buf) * nbuf; 2854 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2855 if (bf == NULL) { 2856 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2857 dd->dd_name, bsize); 2858 goto fail3; 2859 } 2860 dd->dd_bufptr = bf; 2861 2862 TAILQ_INIT(head); 2863 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 2864 bf->bf_desc = (struct ath_desc *) ds; 2865 bf->bf_daddr = DS2PHYS(dd, ds); 2866 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2867 /* 2868 * Merlin WAR: Skip descriptor addresses which 2869 * cause 4KB boundary crossing along any point 2870 * in the descriptor. 2871 */ 2872 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 2873 dd->dd_descsize * ndesc)) { 2874 /* Start at the next page */ 2875 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 2876 bf->bf_desc = (struct ath_desc *) ds; 2877 bf->bf_daddr = DS2PHYS(dd, ds); 2878 } 2879 } 2880 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 2881 &bf->bf_dmamap); 2882 if (error != 0) { 2883 if_printf(ifp, "unable to create dmamap for %s " 2884 "buffer %u, error %u\n", dd->dd_name, i, error); 2885 ath_descdma_cleanup(sc, dd, head); 2886 return error; 2887 } 2888 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 2889 TAILQ_INSERT_TAIL(head, bf, bf_list); 2890 } 2891 return 0; 2892 fail3: 2893 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2894 fail2: 2895 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2896 fail1: 2897 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2898 fail0: 2899 bus_dma_tag_destroy(dd->dd_dmat); 2900 memset(dd, 0, sizeof(*dd)); 2901 return error; 2902 #undef DS2PHYS 2903 #undef ATH_DESC_4KB_BOUND_CHECK 2904 } 2905 2906 /* 2907 * Allocate ath_buf entries but no descriptor contents. 2908 * 2909 * This is for RX EDMA where the descriptors are the header part of 2910 * the RX buffer. 2911 */ 2912 int 2913 ath_descdma_setup_rx_edma(struct ath_softc *sc, 2914 struct ath_descdma *dd, ath_bufhead *head, 2915 const char *name, int nbuf, int rx_status_len) 2916 { 2917 struct ifnet *ifp = sc->sc_ifp; 2918 struct ath_buf *bf; 2919 int i, bsize, error; 2920 2921 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 2922 __func__, name, nbuf); 2923 2924 dd->dd_name = name; 2925 /* 2926 * This is (mostly) purely for show. We're not allocating any actual 2927 * descriptors here as EDMA RX has the descriptor be part 2928 * of the RX buffer. 2929 * 2930 * However, dd_desc_len is used by ath_descdma_free() to determine 2931 * whether we have already freed this DMA mapping. 2932 */ 2933 dd->dd_desc_len = rx_status_len * nbuf; 2934 dd->dd_descsize = rx_status_len; 2935 2936 /* allocate rx buffers */ 2937 bsize = sizeof(struct ath_buf) * nbuf; 2938 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2939 if (bf == NULL) { 2940 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2941 dd->dd_name, bsize); 2942 error = ENOMEM; 2943 goto fail3; 2944 } 2945 dd->dd_bufptr = bf; 2946 2947 TAILQ_INIT(head); 2948 for (i = 0; i < nbuf; i++, bf++) { 2949 bf->bf_desc = NULL; 2950 bf->bf_daddr = 0; 2951 bf->bf_lastds = NULL; /* Just an initial value */ 2952 2953 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 2954 &bf->bf_dmamap); 2955 if (error != 0) { 2956 if_printf(ifp, "unable to create dmamap for %s " 2957 "buffer %u, error %u\n", dd->dd_name, i, error); 2958 ath_descdma_cleanup(sc, dd, head); 2959 return error; 2960 } 2961 TAILQ_INSERT_TAIL(head, bf, bf_list); 2962 } 2963 return 0; 2964 fail3: 2965 memset(dd, 0, sizeof(*dd)); 2966 return error; 2967 } 2968 2969 void 2970 ath_descdma_cleanup(struct ath_softc *sc, 2971 struct ath_descdma *dd, ath_bufhead *head) 2972 { 2973 struct ath_buf *bf; 2974 struct ieee80211_node *ni; 2975 2976 if (dd->dd_dmamap != 0) { 2977 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2978 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2979 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2980 bus_dma_tag_destroy(dd->dd_dmat); 2981 } 2982 2983 TAILQ_FOREACH(bf, head, bf_list) { 2984 if (bf->bf_m) { 2985 m_freem(bf->bf_m); 2986 bf->bf_m = NULL; 2987 } 2988 if (bf->bf_dmamap != NULL) { 2989 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2990 bf->bf_dmamap = NULL; 2991 } 2992 ni = bf->bf_node; 2993 bf->bf_node = NULL; 2994 if (ni != NULL) { 2995 /* 2996 * Reclaim node reference. 2997 */ 2998 ieee80211_free_node(ni); 2999 } 3000 } 3001 3002 TAILQ_INIT(head); 3003 free(dd->dd_bufptr, M_ATHDEV); 3004 memset(dd, 0, sizeof(*dd)); 3005 } 3006 3007 static int 3008 ath_desc_alloc(struct ath_softc *sc) 3009 { 3010 int error; 3011 3012 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3013 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC); 3014 if (error != 0) { 3015 return error; 3016 } 3017 sc->sc_txbuf_cnt = ath_txbuf; 3018 3019 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3020 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3021 ATH_TXDESC); 3022 if (error != 0) { 3023 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3024 return error; 3025 } 3026 3027 /* 3028 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3029 * flag doesn't have to be set in ath_getbuf_locked(). 3030 */ 3031 3032 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3033 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3034 if (error != 0) { 3035 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3036 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3037 &sc->sc_txbuf_mgmt); 3038 return error; 3039 } 3040 return 0; 3041 } 3042 3043 static void 3044 ath_desc_free(struct ath_softc *sc) 3045 { 3046 3047 if (sc->sc_bdma.dd_desc_len != 0) 3048 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3049 if (sc->sc_txdma.dd_desc_len != 0) 3050 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3051 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3052 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3053 &sc->sc_txbuf_mgmt); 3054 } 3055 3056 static struct ieee80211_node * 3057 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3058 { 3059 struct ieee80211com *ic = vap->iv_ic; 3060 struct ath_softc *sc = ic->ic_ifp->if_softc; 3061 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3062 struct ath_node *an; 3063 3064 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3065 if (an == NULL) { 3066 /* XXX stat+msg */ 3067 return NULL; 3068 } 3069 ath_rate_node_init(sc, an); 3070 3071 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3072 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3073 device_get_nameunit(sc->sc_dev), an); 3074 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3075 3076 /* XXX setup ath_tid */ 3077 ath_tx_tid_init(sc, an); 3078 3079 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3080 return &an->an_node; 3081 } 3082 3083 static void 3084 ath_node_cleanup(struct ieee80211_node *ni) 3085 { 3086 struct ieee80211com *ic = ni->ni_ic; 3087 struct ath_softc *sc = ic->ic_ifp->if_softc; 3088 3089 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3090 ath_tx_node_flush(sc, ATH_NODE(ni)); 3091 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3092 sc->sc_node_cleanup(ni); 3093 } 3094 3095 static void 3096 ath_node_free(struct ieee80211_node *ni) 3097 { 3098 struct ieee80211com *ic = ni->ni_ic; 3099 struct ath_softc *sc = ic->ic_ifp->if_softc; 3100 3101 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3102 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3103 sc->sc_node_free(ni); 3104 } 3105 3106 static void 3107 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3108 { 3109 struct ieee80211com *ic = ni->ni_ic; 3110 struct ath_softc *sc = ic->ic_ifp->if_softc; 3111 struct ath_hal *ah = sc->sc_ah; 3112 3113 *rssi = ic->ic_node_getrssi(ni); 3114 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3115 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3116 else 3117 *noise = -95; /* nominally correct */ 3118 } 3119 3120 /* 3121 * Set the default antenna. 3122 */ 3123 void 3124 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3125 { 3126 struct ath_hal *ah = sc->sc_ah; 3127 3128 /* XXX block beacon interrupts */ 3129 ath_hal_setdefantenna(ah, antenna); 3130 if (sc->sc_defant != antenna) 3131 sc->sc_stats.ast_ant_defswitch++; 3132 sc->sc_defant = antenna; 3133 sc->sc_rxotherant = 0; 3134 } 3135 3136 static void 3137 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3138 { 3139 txq->axq_qnum = qnum; 3140 txq->axq_ac = 0; 3141 txq->axq_depth = 0; 3142 txq->axq_aggr_depth = 0; 3143 txq->axq_intrcnt = 0; 3144 txq->axq_link = NULL; 3145 txq->axq_softc = sc; 3146 TAILQ_INIT(&txq->axq_q); 3147 TAILQ_INIT(&txq->axq_tidq); 3148 ATH_TXQ_LOCK_INIT(sc, txq); 3149 } 3150 3151 /* 3152 * Setup a h/w transmit queue. 3153 */ 3154 static struct ath_txq * 3155 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3156 { 3157 #define N(a) (sizeof(a)/sizeof(a[0])) 3158 struct ath_hal *ah = sc->sc_ah; 3159 HAL_TXQ_INFO qi; 3160 int qnum; 3161 3162 memset(&qi, 0, sizeof(qi)); 3163 qi.tqi_subtype = subtype; 3164 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3165 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3166 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3167 /* 3168 * Enable interrupts only for EOL and DESC conditions. 3169 * We mark tx descriptors to receive a DESC interrupt 3170 * when a tx queue gets deep; otherwise waiting for the 3171 * EOL to reap descriptors. Note that this is done to 3172 * reduce interrupt load and this only defers reaping 3173 * descriptors, never transmitting frames. Aside from 3174 * reducing interrupts this also permits more concurrency. 3175 * The only potential downside is if the tx queue backs 3176 * up in which case the top half of the kernel may backup 3177 * due to a lack of tx descriptors. 3178 */ 3179 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3180 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3181 if (qnum == -1) { 3182 /* 3183 * NB: don't print a message, this happens 3184 * normally on parts with too few tx queues 3185 */ 3186 return NULL; 3187 } 3188 if (qnum >= N(sc->sc_txq)) { 3189 device_printf(sc->sc_dev, 3190 "hal qnum %u out of range, max %zu!\n", 3191 qnum, N(sc->sc_txq)); 3192 ath_hal_releasetxqueue(ah, qnum); 3193 return NULL; 3194 } 3195 if (!ATH_TXQ_SETUP(sc, qnum)) { 3196 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3197 sc->sc_txqsetup |= 1<<qnum; 3198 } 3199 return &sc->sc_txq[qnum]; 3200 #undef N 3201 } 3202 3203 /* 3204 * Setup a hardware data transmit queue for the specified 3205 * access control. The hal may not support all requested 3206 * queues in which case it will return a reference to a 3207 * previously setup queue. We record the mapping from ac's 3208 * to h/w queues for use by ath_tx_start and also track 3209 * the set of h/w queues being used to optimize work in the 3210 * transmit interrupt handler and related routines. 3211 */ 3212 static int 3213 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3214 { 3215 #define N(a) (sizeof(a)/sizeof(a[0])) 3216 struct ath_txq *txq; 3217 3218 if (ac >= N(sc->sc_ac2q)) { 3219 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3220 ac, N(sc->sc_ac2q)); 3221 return 0; 3222 } 3223 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3224 if (txq != NULL) { 3225 txq->axq_ac = ac; 3226 sc->sc_ac2q[ac] = txq; 3227 return 1; 3228 } else 3229 return 0; 3230 #undef N 3231 } 3232 3233 /* 3234 * Update WME parameters for a transmit queue. 3235 */ 3236 static int 3237 ath_txq_update(struct ath_softc *sc, int ac) 3238 { 3239 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3240 #define ATH_TXOP_TO_US(v) (v<<5) 3241 struct ifnet *ifp = sc->sc_ifp; 3242 struct ieee80211com *ic = ifp->if_l2com; 3243 struct ath_txq *txq = sc->sc_ac2q[ac]; 3244 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3245 struct ath_hal *ah = sc->sc_ah; 3246 HAL_TXQ_INFO qi; 3247 3248 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3249 #ifdef IEEE80211_SUPPORT_TDMA 3250 if (sc->sc_tdma) { 3251 /* 3252 * AIFS is zero so there's no pre-transmit wait. The 3253 * burst time defines the slot duration and is configured 3254 * through net80211. The QCU is setup to not do post-xmit 3255 * back off, lockout all lower-priority QCU's, and fire 3256 * off the DMA beacon alert timer which is setup based 3257 * on the slot configuration. 3258 */ 3259 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3260 | HAL_TXQ_TXERRINT_ENABLE 3261 | HAL_TXQ_TXURNINT_ENABLE 3262 | HAL_TXQ_TXEOLINT_ENABLE 3263 | HAL_TXQ_DBA_GATED 3264 | HAL_TXQ_BACKOFF_DISABLE 3265 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3266 ; 3267 qi.tqi_aifs = 0; 3268 /* XXX +dbaprep? */ 3269 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3270 qi.tqi_burstTime = qi.tqi_readyTime; 3271 } else { 3272 #endif 3273 /* 3274 * XXX shouldn't this just use the default flags 3275 * used in the previous queue setup? 3276 */ 3277 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3278 | HAL_TXQ_TXERRINT_ENABLE 3279 | HAL_TXQ_TXDESCINT_ENABLE 3280 | HAL_TXQ_TXURNINT_ENABLE 3281 | HAL_TXQ_TXEOLINT_ENABLE 3282 ; 3283 qi.tqi_aifs = wmep->wmep_aifsn; 3284 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3285 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3286 qi.tqi_readyTime = 0; 3287 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3288 #ifdef IEEE80211_SUPPORT_TDMA 3289 } 3290 #endif 3291 3292 DPRINTF(sc, ATH_DEBUG_RESET, 3293 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3294 __func__, txq->axq_qnum, qi.tqi_qflags, 3295 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3296 3297 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3298 if_printf(ifp, "unable to update hardware queue " 3299 "parameters for %s traffic!\n", 3300 ieee80211_wme_acnames[ac]); 3301 return 0; 3302 } else { 3303 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3304 return 1; 3305 } 3306 #undef ATH_TXOP_TO_US 3307 #undef ATH_EXPONENT_TO_VALUE 3308 } 3309 3310 /* 3311 * Callback from the 802.11 layer to update WME parameters. 3312 */ 3313 int 3314 ath_wme_update(struct ieee80211com *ic) 3315 { 3316 struct ath_softc *sc = ic->ic_ifp->if_softc; 3317 3318 return !ath_txq_update(sc, WME_AC_BE) || 3319 !ath_txq_update(sc, WME_AC_BK) || 3320 !ath_txq_update(sc, WME_AC_VI) || 3321 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3322 } 3323 3324 /* 3325 * Reclaim resources for a setup queue. 3326 */ 3327 static void 3328 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3329 { 3330 3331 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3332 ATH_TXQ_LOCK_DESTROY(txq); 3333 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3334 } 3335 3336 /* 3337 * Reclaim all tx queue resources. 3338 */ 3339 static void 3340 ath_tx_cleanup(struct ath_softc *sc) 3341 { 3342 int i; 3343 3344 ATH_TXBUF_LOCK_DESTROY(sc); 3345 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3346 if (ATH_TXQ_SETUP(sc, i)) 3347 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3348 } 3349 3350 /* 3351 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3352 * using the current rates in sc_rixmap. 3353 */ 3354 int 3355 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3356 { 3357 int rix = sc->sc_rixmap[rate]; 3358 /* NB: return lowest rix for invalid rate */ 3359 return (rix == 0xff ? 0 : rix); 3360 } 3361 3362 static void 3363 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3364 struct ath_buf *bf) 3365 { 3366 struct ieee80211_node *ni = bf->bf_node; 3367 struct ifnet *ifp = sc->sc_ifp; 3368 struct ieee80211com *ic = ifp->if_l2com; 3369 int sr, lr, pri; 3370 3371 if (ts->ts_status == 0) { 3372 u_int8_t txant = ts->ts_antenna; 3373 sc->sc_stats.ast_ant_tx[txant]++; 3374 sc->sc_ant_tx[txant]++; 3375 if (ts->ts_finaltsi != 0) 3376 sc->sc_stats.ast_tx_altrate++; 3377 pri = M_WME_GETAC(bf->bf_m); 3378 if (pri >= WME_AC_VO) 3379 ic->ic_wme.wme_hipri_traffic++; 3380 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3381 ni->ni_inact = ni->ni_inact_reload; 3382 } else { 3383 if (ts->ts_status & HAL_TXERR_XRETRY) 3384 sc->sc_stats.ast_tx_xretries++; 3385 if (ts->ts_status & HAL_TXERR_FIFO) 3386 sc->sc_stats.ast_tx_fifoerr++; 3387 if (ts->ts_status & HAL_TXERR_FILT) 3388 sc->sc_stats.ast_tx_filtered++; 3389 if (ts->ts_status & HAL_TXERR_XTXOP) 3390 sc->sc_stats.ast_tx_xtxop++; 3391 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3392 sc->sc_stats.ast_tx_timerexpired++; 3393 3394 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 3395 sc->sc_stats.ast_tx_data_underrun++; 3396 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 3397 sc->sc_stats.ast_tx_delim_underrun++; 3398 3399 if (bf->bf_m->m_flags & M_FF) 3400 sc->sc_stats.ast_ff_txerr++; 3401 } 3402 /* XXX when is this valid? */ 3403 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 3404 sc->sc_stats.ast_tx_desccfgerr++; 3405 3406 sr = ts->ts_shortretry; 3407 lr = ts->ts_longretry; 3408 sc->sc_stats.ast_tx_shortretry += sr; 3409 sc->sc_stats.ast_tx_longretry += lr; 3410 3411 } 3412 3413 /* 3414 * The default completion. If fail is 1, this means 3415 * "please don't retry the frame, and just return -1 status 3416 * to the net80211 stack. 3417 */ 3418 void 3419 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3420 { 3421 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3422 int st; 3423 3424 if (fail == 1) 3425 st = -1; 3426 else 3427 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3428 ts->ts_status : HAL_TXERR_XRETRY; 3429 3430 if (bf->bf_state.bfs_dobaw) 3431 device_printf(sc->sc_dev, 3432 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3433 __func__, 3434 bf, 3435 SEQNO(bf->bf_state.bfs_seqno)); 3436 if (bf->bf_next != NULL) 3437 device_printf(sc->sc_dev, 3438 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3439 __func__, 3440 bf, 3441 SEQNO(bf->bf_state.bfs_seqno)); 3442 3443 /* 3444 * Do any tx complete callback. Note this must 3445 * be done before releasing the node reference. 3446 * This will free the mbuf, release the net80211 3447 * node and recycle the ath_buf. 3448 */ 3449 ath_tx_freebuf(sc, bf, st); 3450 } 3451 3452 /* 3453 * Update rate control with the given completion status. 3454 */ 3455 void 3456 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3457 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3458 int nframes, int nbad) 3459 { 3460 struct ath_node *an; 3461 3462 /* Only for unicast frames */ 3463 if (ni == NULL) 3464 return; 3465 3466 an = ATH_NODE(ni); 3467 3468 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3469 ATH_NODE_LOCK(an); 3470 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3471 ATH_NODE_UNLOCK(an); 3472 } 3473 } 3474 3475 /* 3476 * Update the busy status of the last frame on the free list. 3477 * When doing TDMA, the busy flag tracks whether the hardware 3478 * currently points to this buffer or not, and thus gated DMA 3479 * may restart by re-reading the last descriptor in this 3480 * buffer. 3481 * 3482 * This should be called in the completion function once one 3483 * of the buffers has been used. 3484 */ 3485 static void 3486 ath_tx_update_busy(struct ath_softc *sc) 3487 { 3488 struct ath_buf *last; 3489 3490 /* 3491 * Since the last frame may still be marked 3492 * as ATH_BUF_BUSY, unmark it here before 3493 * finishing the frame processing. 3494 * Since we've completed a frame (aggregate 3495 * or otherwise), the hardware has moved on 3496 * and is no longer referencing the previous 3497 * descriptor. 3498 */ 3499 ATH_TXBUF_LOCK_ASSERT(sc); 3500 last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 3501 if (last != NULL) 3502 last->bf_flags &= ~ATH_BUF_BUSY; 3503 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3504 if (last != NULL) 3505 last->bf_flags &= ~ATH_BUF_BUSY; 3506 } 3507 3508 /* 3509 * Process completed xmit descriptors from the specified queue. 3510 * Kick the packet scheduler if needed. This can occur from this 3511 * particular task. 3512 */ 3513 static int 3514 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3515 { 3516 struct ath_hal *ah = sc->sc_ah; 3517 struct ath_buf *bf; 3518 struct ath_desc *ds; 3519 struct ath_tx_status *ts; 3520 struct ieee80211_node *ni; 3521 struct ath_node *an; 3522 #ifdef IEEE80211_SUPPORT_SUPERG 3523 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3524 #endif /* IEEE80211_SUPPORT_SUPERG */ 3525 int nacked; 3526 HAL_STATUS status; 3527 3528 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3529 __func__, txq->axq_qnum, 3530 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3531 txq->axq_link); 3532 nacked = 0; 3533 for (;;) { 3534 ATH_TXQ_LOCK(txq); 3535 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3536 bf = TAILQ_FIRST(&txq->axq_q); 3537 if (bf == NULL) { 3538 ATH_TXQ_UNLOCK(txq); 3539 break; 3540 } 3541 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3542 ts = &bf->bf_status.ds_txstat; 3543 status = ath_hal_txprocdesc(ah, ds, ts); 3544 #ifdef ATH_DEBUG 3545 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3546 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3547 status == HAL_OK); 3548 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) { 3549 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3550 status == HAL_OK); 3551 } 3552 #endif 3553 if (status == HAL_EINPROGRESS) { 3554 ATH_TXQ_UNLOCK(txq); 3555 break; 3556 } 3557 ATH_TXQ_REMOVE(txq, bf, bf_list); 3558 #ifdef IEEE80211_SUPPORT_TDMA 3559 if (txq->axq_depth > 0) { 3560 /* 3561 * More frames follow. Mark the buffer busy 3562 * so it's not re-used while the hardware may 3563 * still re-read the link field in the descriptor. 3564 * 3565 * Use the last buffer in an aggregate as that 3566 * is where the hardware may be - intermediate 3567 * descriptors won't be "busy". 3568 */ 3569 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3570 } else 3571 #else 3572 if (txq->axq_depth == 0) 3573 #endif 3574 txq->axq_link = NULL; 3575 if (bf->bf_state.bfs_aggr) 3576 txq->axq_aggr_depth--; 3577 3578 ni = bf->bf_node; 3579 /* 3580 * If unicast frame was ack'd update RSSI, 3581 * including the last rx time used to 3582 * workaround phantom bmiss interrupts. 3583 */ 3584 if (ni != NULL && ts->ts_status == 0 && 3585 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3586 nacked++; 3587 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3588 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3589 ts->ts_rssi); 3590 } 3591 ATH_TXQ_UNLOCK(txq); 3592 3593 /* If unicast frame, update general statistics */ 3594 if (ni != NULL) { 3595 an = ATH_NODE(ni); 3596 /* update statistics */ 3597 ath_tx_update_stats(sc, ts, bf); 3598 } 3599 3600 /* 3601 * Call the completion handler. 3602 * The completion handler is responsible for 3603 * calling the rate control code. 3604 * 3605 * Frames with no completion handler get the 3606 * rate control code called here. 3607 */ 3608 if (bf->bf_comp == NULL) { 3609 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3610 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3611 /* 3612 * XXX assume this isn't an aggregate 3613 * frame. 3614 */ 3615 ath_tx_update_ratectrl(sc, ni, 3616 bf->bf_state.bfs_rc, ts, 3617 bf->bf_state.bfs_pktlen, 1, 3618 (ts->ts_status == 0 ? 0 : 1)); 3619 } 3620 ath_tx_default_comp(sc, bf, 0); 3621 } else 3622 bf->bf_comp(sc, bf, 0); 3623 } 3624 #ifdef IEEE80211_SUPPORT_SUPERG 3625 /* 3626 * Flush fast-frame staging queue when traffic slows. 3627 */ 3628 if (txq->axq_depth <= 1) 3629 ieee80211_ff_flush(ic, txq->axq_ac); 3630 #endif 3631 3632 /* Kick the TXQ scheduler */ 3633 if (dosched) { 3634 ATH_TXQ_LOCK(txq); 3635 ath_txq_sched(sc, txq); 3636 ATH_TXQ_UNLOCK(txq); 3637 } 3638 3639 return nacked; 3640 } 3641 3642 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3643 3644 /* 3645 * Deferred processing of transmit interrupt; special-cased 3646 * for a single hardware transmit queue (e.g. 5210 and 5211). 3647 */ 3648 static void 3649 ath_tx_proc_q0(void *arg, int npending) 3650 { 3651 struct ath_softc *sc = arg; 3652 struct ifnet *ifp = sc->sc_ifp; 3653 uint32_t txqs; 3654 3655 ATH_PCU_LOCK(sc); 3656 sc->sc_txproc_cnt++; 3657 txqs = sc->sc_txq_active; 3658 sc->sc_txq_active &= ~txqs; 3659 ATH_PCU_UNLOCK(sc); 3660 3661 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 3662 /* XXX why is lastrx updated in tx code? */ 3663 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3664 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3665 ath_tx_processq(sc, sc->sc_cabq, 1); 3666 IF_LOCK(&ifp->if_snd); 3667 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3668 IF_UNLOCK(&ifp->if_snd); 3669 sc->sc_wd_timer = 0; 3670 3671 if (sc->sc_softled) 3672 ath_led_event(sc, sc->sc_txrix); 3673 3674 ATH_PCU_LOCK(sc); 3675 sc->sc_txproc_cnt--; 3676 ATH_PCU_UNLOCK(sc); 3677 3678 ath_tx_kick(sc); 3679 } 3680 3681 /* 3682 * Deferred processing of transmit interrupt; special-cased 3683 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3684 */ 3685 static void 3686 ath_tx_proc_q0123(void *arg, int npending) 3687 { 3688 struct ath_softc *sc = arg; 3689 struct ifnet *ifp = sc->sc_ifp; 3690 int nacked; 3691 uint32_t txqs; 3692 3693 ATH_PCU_LOCK(sc); 3694 sc->sc_txproc_cnt++; 3695 txqs = sc->sc_txq_active; 3696 sc->sc_txq_active &= ~txqs; 3697 ATH_PCU_UNLOCK(sc); 3698 3699 /* 3700 * Process each active queue. 3701 */ 3702 nacked = 0; 3703 if (TXQACTIVE(txqs, 0)) 3704 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 3705 if (TXQACTIVE(txqs, 1)) 3706 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 3707 if (TXQACTIVE(txqs, 2)) 3708 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 3709 if (TXQACTIVE(txqs, 3)) 3710 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 3711 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3712 ath_tx_processq(sc, sc->sc_cabq, 1); 3713 if (nacked) 3714 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3715 3716 IF_LOCK(&ifp->if_snd); 3717 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3718 IF_UNLOCK(&ifp->if_snd); 3719 sc->sc_wd_timer = 0; 3720 3721 if (sc->sc_softled) 3722 ath_led_event(sc, sc->sc_txrix); 3723 3724 ATH_PCU_LOCK(sc); 3725 sc->sc_txproc_cnt--; 3726 ATH_PCU_UNLOCK(sc); 3727 3728 ath_tx_kick(sc); 3729 } 3730 3731 /* 3732 * Deferred processing of transmit interrupt. 3733 */ 3734 static void 3735 ath_tx_proc(void *arg, int npending) 3736 { 3737 struct ath_softc *sc = arg; 3738 struct ifnet *ifp = sc->sc_ifp; 3739 int i, nacked; 3740 uint32_t txqs; 3741 3742 ATH_PCU_LOCK(sc); 3743 sc->sc_txproc_cnt++; 3744 txqs = sc->sc_txq_active; 3745 sc->sc_txq_active &= ~txqs; 3746 ATH_PCU_UNLOCK(sc); 3747 3748 /* 3749 * Process each active queue. 3750 */ 3751 nacked = 0; 3752 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3753 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 3754 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 3755 if (nacked) 3756 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3757 3758 /* XXX check this inside of IF_LOCK? */ 3759 IF_LOCK(&ifp->if_snd); 3760 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3761 IF_UNLOCK(&ifp->if_snd); 3762 sc->sc_wd_timer = 0; 3763 3764 if (sc->sc_softled) 3765 ath_led_event(sc, sc->sc_txrix); 3766 3767 ATH_PCU_LOCK(sc); 3768 sc->sc_txproc_cnt--; 3769 ATH_PCU_UNLOCK(sc); 3770 3771 ath_tx_kick(sc); 3772 } 3773 #undef TXQACTIVE 3774 3775 /* 3776 * Deferred processing of TXQ rescheduling. 3777 */ 3778 static void 3779 ath_txq_sched_tasklet(void *arg, int npending) 3780 { 3781 struct ath_softc *sc = arg; 3782 int i; 3783 3784 /* XXX is skipping ok? */ 3785 ATH_PCU_LOCK(sc); 3786 #if 0 3787 if (sc->sc_inreset_cnt > 0) { 3788 device_printf(sc->sc_dev, 3789 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 3790 ATH_PCU_UNLOCK(sc); 3791 return; 3792 } 3793 #endif 3794 sc->sc_txproc_cnt++; 3795 ATH_PCU_UNLOCK(sc); 3796 3797 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3798 if (ATH_TXQ_SETUP(sc, i)) { 3799 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3800 ath_txq_sched(sc, &sc->sc_txq[i]); 3801 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3802 } 3803 } 3804 3805 ATH_PCU_LOCK(sc); 3806 sc->sc_txproc_cnt--; 3807 ATH_PCU_UNLOCK(sc); 3808 } 3809 3810 void 3811 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 3812 { 3813 3814 ATH_TXBUF_LOCK_ASSERT(sc); 3815 3816 if (bf->bf_flags & ATH_BUF_MGMT) 3817 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 3818 else { 3819 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3820 sc->sc_txbuf_cnt++; 3821 if (sc->sc_txbuf_cnt > ath_txbuf) { 3822 device_printf(sc->sc_dev, 3823 "%s: sc_txbuf_cnt > %d?\n", 3824 __func__, 3825 ath_txbuf); 3826 sc->sc_txbuf_cnt = ath_txbuf; 3827 } 3828 } 3829 } 3830 3831 void 3832 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 3833 { 3834 3835 ATH_TXBUF_LOCK_ASSERT(sc); 3836 3837 if (bf->bf_flags & ATH_BUF_MGMT) 3838 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 3839 else { 3840 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 3841 sc->sc_txbuf_cnt++; 3842 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 3843 device_printf(sc->sc_dev, 3844 "%s: sc_txbuf_cnt > %d?\n", 3845 __func__, 3846 ATH_TXBUF); 3847 sc->sc_txbuf_cnt = ATH_TXBUF; 3848 } 3849 } 3850 } 3851 3852 /* 3853 * Return a buffer to the pool and update the 'busy' flag on the 3854 * previous 'tail' entry. 3855 * 3856 * This _must_ only be called when the buffer is involved in a completed 3857 * TX. The logic is that if it was part of an active TX, the previous 3858 * buffer on the list is now not involved in a halted TX DMA queue, waiting 3859 * for restart (eg for TDMA.) 3860 * 3861 * The caller must free the mbuf and recycle the node reference. 3862 */ 3863 void 3864 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 3865 { 3866 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3867 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 3868 3869 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 3870 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 3871 3872 ATH_TXBUF_LOCK(sc); 3873 ath_tx_update_busy(sc); 3874 ath_returnbuf_tail(sc, bf); 3875 ATH_TXBUF_UNLOCK(sc); 3876 } 3877 3878 /* 3879 * This is currently used by ath_tx_draintxq() and 3880 * ath_tx_tid_free_pkts(). 3881 * 3882 * It recycles a single ath_buf. 3883 */ 3884 void 3885 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 3886 { 3887 struct ieee80211_node *ni = bf->bf_node; 3888 struct mbuf *m0 = bf->bf_m; 3889 3890 bf->bf_node = NULL; 3891 bf->bf_m = NULL; 3892 3893 /* Free the buffer, it's not needed any longer */ 3894 ath_freebuf(sc, bf); 3895 3896 if (ni != NULL) { 3897 /* 3898 * Do any callback and reclaim the node reference. 3899 */ 3900 if (m0->m_flags & M_TXCB) 3901 ieee80211_process_callback(ni, m0, status); 3902 ieee80211_free_node(ni); 3903 } 3904 m_freem(m0); 3905 3906 /* 3907 * XXX the buffer used to be freed -after-, but the DMA map was 3908 * freed where ath_freebuf() now is. I've no idea what this 3909 * will do. 3910 */ 3911 } 3912 3913 void 3914 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 3915 { 3916 #ifdef ATH_DEBUG 3917 struct ath_hal *ah = sc->sc_ah; 3918 #endif 3919 struct ath_buf *bf; 3920 u_int ix; 3921 3922 /* 3923 * NB: this assumes output has been stopped and 3924 * we do not need to block ath_tx_proc 3925 */ 3926 ATH_TXBUF_LOCK(sc); 3927 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3928 if (bf != NULL) 3929 bf->bf_flags &= ~ATH_BUF_BUSY; 3930 bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 3931 if (bf != NULL) 3932 bf->bf_flags &= ~ATH_BUF_BUSY; 3933 ATH_TXBUF_UNLOCK(sc); 3934 3935 for (ix = 0;; ix++) { 3936 ATH_TXQ_LOCK(txq); 3937 bf = TAILQ_FIRST(&txq->axq_q); 3938 if (bf == NULL) { 3939 txq->axq_link = NULL; 3940 ATH_TXQ_UNLOCK(txq); 3941 break; 3942 } 3943 ATH_TXQ_REMOVE(txq, bf, bf_list); 3944 if (bf->bf_state.bfs_aggr) 3945 txq->axq_aggr_depth--; 3946 #ifdef ATH_DEBUG 3947 if (sc->sc_debug & ATH_DEBUG_RESET) { 3948 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3949 3950 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, 3951 ath_hal_txprocdesc(ah, bf->bf_lastds, 3952 &bf->bf_status.ds_txstat) == HAL_OK); 3953 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 3954 bf->bf_m->m_len, 0, -1); 3955 } 3956 #endif /* ATH_DEBUG */ 3957 /* 3958 * Since we're now doing magic in the completion 3959 * functions, we -must- call it for aggregation 3960 * destinations or BAW tracking will get upset. 3961 */ 3962 /* 3963 * Clear ATH_BUF_BUSY; the completion handler 3964 * will free the buffer. 3965 */ 3966 ATH_TXQ_UNLOCK(txq); 3967 bf->bf_flags &= ~ATH_BUF_BUSY; 3968 if (bf->bf_comp) 3969 bf->bf_comp(sc, bf, 1); 3970 else 3971 ath_tx_default_comp(sc, bf, 1); 3972 } 3973 3974 /* 3975 * Drain software queued frames which are on 3976 * active TIDs. 3977 */ 3978 ath_tx_txq_drain(sc, txq); 3979 } 3980 3981 static void 3982 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 3983 { 3984 struct ath_hal *ah = sc->sc_ah; 3985 3986 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 3987 __func__, txq->axq_qnum, 3988 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 3989 txq->axq_link); 3990 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 3991 } 3992 3993 static int 3994 ath_stoptxdma(struct ath_softc *sc) 3995 { 3996 struct ath_hal *ah = sc->sc_ah; 3997 int i; 3998 3999 /* XXX return value */ 4000 if (sc->sc_invalid) 4001 return 0; 4002 4003 if (!sc->sc_invalid) { 4004 /* don't touch the hardware if marked invalid */ 4005 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4006 __func__, sc->sc_bhalq, 4007 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4008 NULL); 4009 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4010 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4011 if (ATH_TXQ_SETUP(sc, i)) 4012 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4013 } 4014 4015 return 1; 4016 } 4017 4018 /* 4019 * Drain the transmit queues and reclaim resources. 4020 */ 4021 static void 4022 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4023 { 4024 #ifdef ATH_DEBUG 4025 struct ath_hal *ah = sc->sc_ah; 4026 #endif 4027 struct ifnet *ifp = sc->sc_ifp; 4028 int i; 4029 4030 (void) ath_stoptxdma(sc); 4031 4032 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4033 /* 4034 * XXX TODO: should we just handle the completed TX frames 4035 * here, whether or not the reset is a full one or not? 4036 */ 4037 if (ATH_TXQ_SETUP(sc, i)) { 4038 if (reset_type == ATH_RESET_NOLOSS) 4039 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4040 else 4041 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4042 } 4043 } 4044 #ifdef ATH_DEBUG 4045 if (sc->sc_debug & ATH_DEBUG_RESET) { 4046 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 4047 if (bf != NULL && bf->bf_m != NULL) { 4048 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4049 ath_hal_txprocdesc(ah, bf->bf_lastds, 4050 &bf->bf_status.ds_txstat) == HAL_OK); 4051 ieee80211_dump_pkt(ifp->if_l2com, 4052 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4053 0, -1); 4054 } 4055 } 4056 #endif /* ATH_DEBUG */ 4057 IF_LOCK(&ifp->if_snd); 4058 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4059 IF_UNLOCK(&ifp->if_snd); 4060 sc->sc_wd_timer = 0; 4061 } 4062 4063 /* 4064 * Update internal state after a channel change. 4065 */ 4066 static void 4067 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4068 { 4069 enum ieee80211_phymode mode; 4070 4071 /* 4072 * Change channels and update the h/w rate map 4073 * if we're switching; e.g. 11a to 11b/g. 4074 */ 4075 mode = ieee80211_chan2mode(chan); 4076 if (mode != sc->sc_curmode) 4077 ath_setcurmode(sc, mode); 4078 sc->sc_curchan = chan; 4079 } 4080 4081 /* 4082 * Set/change channels. If the channel is really being changed, 4083 * it's done by resetting the chip. To accomplish this we must 4084 * first cleanup any pending DMA, then restart stuff after a la 4085 * ath_init. 4086 */ 4087 static int 4088 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4089 { 4090 struct ifnet *ifp = sc->sc_ifp; 4091 struct ieee80211com *ic = ifp->if_l2com; 4092 struct ath_hal *ah = sc->sc_ah; 4093 int ret = 0; 4094 4095 /* Treat this as an interface reset */ 4096 ATH_PCU_UNLOCK_ASSERT(sc); 4097 ATH_UNLOCK_ASSERT(sc); 4098 4099 /* (Try to) stop TX/RX from occuring */ 4100 taskqueue_block(sc->sc_tq); 4101 4102 ATH_PCU_LOCK(sc); 4103 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4104 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4105 if (ath_reset_grablock(sc, 1) == 0) { 4106 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4107 __func__); 4108 } 4109 ATH_PCU_UNLOCK(sc); 4110 4111 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4112 __func__, ieee80211_chan2ieee(ic, chan), 4113 chan->ic_freq, chan->ic_flags); 4114 if (chan != sc->sc_curchan) { 4115 HAL_STATUS status; 4116 /* 4117 * To switch channels clear any pending DMA operations; 4118 * wait long enough for the RX fifo to drain, reset the 4119 * hardware at the new frequency, and then re-enable 4120 * the relevant bits of the h/w. 4121 */ 4122 #if 0 4123 ath_hal_intrset(ah, 0); /* disable interrupts */ 4124 #endif 4125 ath_stoprecv(sc, 1); /* turn off frame recv */ 4126 /* 4127 * First, handle completed TX/RX frames. 4128 */ 4129 ath_rx_flush(sc); 4130 ath_draintxq(sc, ATH_RESET_NOLOSS); 4131 /* 4132 * Next, flush the non-scheduled frames. 4133 */ 4134 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4135 4136 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4137 if_printf(ifp, "%s: unable to reset " 4138 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4139 __func__, ieee80211_chan2ieee(ic, chan), 4140 chan->ic_freq, chan->ic_flags, status); 4141 ret = EIO; 4142 goto finish; 4143 } 4144 sc->sc_diversity = ath_hal_getdiversity(ah); 4145 4146 /* Let DFS at it in case it's a DFS channel */ 4147 ath_dfs_radar_enable(sc, chan); 4148 4149 /* 4150 * Re-enable rx framework. 4151 */ 4152 if (ath_startrecv(sc) != 0) { 4153 if_printf(ifp, "%s: unable to restart recv logic\n", 4154 __func__); 4155 ret = EIO; 4156 goto finish; 4157 } 4158 4159 /* 4160 * Change channels and update the h/w rate map 4161 * if we're switching; e.g. 11a to 11b/g. 4162 */ 4163 ath_chan_change(sc, chan); 4164 4165 /* 4166 * Reset clears the beacon timers; reset them 4167 * here if needed. 4168 */ 4169 if (sc->sc_beacons) { /* restart beacons */ 4170 #ifdef IEEE80211_SUPPORT_TDMA 4171 if (sc->sc_tdma) 4172 ath_tdma_config(sc, NULL); 4173 else 4174 #endif 4175 ath_beacon_config(sc, NULL); 4176 } 4177 4178 /* 4179 * Re-enable interrupts. 4180 */ 4181 #if 0 4182 ath_hal_intrset(ah, sc->sc_imask); 4183 #endif 4184 } 4185 4186 finish: 4187 ATH_PCU_LOCK(sc); 4188 sc->sc_inreset_cnt--; 4189 /* XXX only do this if sc_inreset_cnt == 0? */ 4190 ath_hal_intrset(ah, sc->sc_imask); 4191 ATH_PCU_UNLOCK(sc); 4192 4193 IF_LOCK(&ifp->if_snd); 4194 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4195 IF_UNLOCK(&ifp->if_snd); 4196 ath_txrx_start(sc); 4197 /* XXX ath_start? */ 4198 4199 return ret; 4200 } 4201 4202 /* 4203 * Periodically recalibrate the PHY to account 4204 * for temperature/environment changes. 4205 */ 4206 static void 4207 ath_calibrate(void *arg) 4208 { 4209 struct ath_softc *sc = arg; 4210 struct ath_hal *ah = sc->sc_ah; 4211 struct ifnet *ifp = sc->sc_ifp; 4212 struct ieee80211com *ic = ifp->if_l2com; 4213 HAL_BOOL longCal, isCalDone; 4214 HAL_BOOL aniCal, shortCal = AH_FALSE; 4215 int nextcal; 4216 4217 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4218 goto restart; 4219 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4220 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4221 if (sc->sc_doresetcal) 4222 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4223 4224 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4225 if (aniCal) { 4226 sc->sc_stats.ast_ani_cal++; 4227 sc->sc_lastani = ticks; 4228 ath_hal_ani_poll(ah, sc->sc_curchan); 4229 } 4230 4231 if (longCal) { 4232 sc->sc_stats.ast_per_cal++; 4233 sc->sc_lastlongcal = ticks; 4234 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4235 /* 4236 * Rfgain is out of bounds, reset the chip 4237 * to load new gain values. 4238 */ 4239 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4240 "%s: rfgain change\n", __func__); 4241 sc->sc_stats.ast_per_rfgain++; 4242 sc->sc_resetcal = 0; 4243 sc->sc_doresetcal = AH_TRUE; 4244 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4245 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4246 return; 4247 } 4248 /* 4249 * If this long cal is after an idle period, then 4250 * reset the data collection state so we start fresh. 4251 */ 4252 if (sc->sc_resetcal) { 4253 (void) ath_hal_calreset(ah, sc->sc_curchan); 4254 sc->sc_lastcalreset = ticks; 4255 sc->sc_lastshortcal = ticks; 4256 sc->sc_resetcal = 0; 4257 sc->sc_doresetcal = AH_TRUE; 4258 } 4259 } 4260 4261 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4262 if (shortCal || longCal) { 4263 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4264 if (longCal) { 4265 /* 4266 * Calibrate noise floor data again in case of change. 4267 */ 4268 ath_hal_process_noisefloor(ah); 4269 } 4270 } else { 4271 DPRINTF(sc, ATH_DEBUG_ANY, 4272 "%s: calibration of channel %u failed\n", 4273 __func__, sc->sc_curchan->ic_freq); 4274 sc->sc_stats.ast_per_calfail++; 4275 } 4276 if (shortCal) 4277 sc->sc_lastshortcal = ticks; 4278 } 4279 if (!isCalDone) { 4280 restart: 4281 /* 4282 * Use a shorter interval to potentially collect multiple 4283 * data samples required to complete calibration. Once 4284 * we're told the work is done we drop back to a longer 4285 * interval between requests. We're more aggressive doing 4286 * work when operating as an AP to improve operation right 4287 * after startup. 4288 */ 4289 sc->sc_lastshortcal = ticks; 4290 nextcal = ath_shortcalinterval*hz/1000; 4291 if (sc->sc_opmode != HAL_M_HOSTAP) 4292 nextcal *= 10; 4293 sc->sc_doresetcal = AH_TRUE; 4294 } else { 4295 /* nextcal should be the shortest time for next event */ 4296 nextcal = ath_longcalinterval*hz; 4297 if (sc->sc_lastcalreset == 0) 4298 sc->sc_lastcalreset = sc->sc_lastlongcal; 4299 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4300 sc->sc_resetcal = 1; /* setup reset next trip */ 4301 sc->sc_doresetcal = AH_FALSE; 4302 } 4303 /* ANI calibration may occur more often than short/long/resetcal */ 4304 if (ath_anicalinterval > 0) 4305 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4306 4307 if (nextcal != 0) { 4308 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4309 __func__, nextcal, isCalDone ? "" : "!"); 4310 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4311 } else { 4312 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4313 __func__); 4314 /* NB: don't rearm timer */ 4315 } 4316 } 4317 4318 static void 4319 ath_scan_start(struct ieee80211com *ic) 4320 { 4321 struct ifnet *ifp = ic->ic_ifp; 4322 struct ath_softc *sc = ifp->if_softc; 4323 struct ath_hal *ah = sc->sc_ah; 4324 u_int32_t rfilt; 4325 4326 /* XXX calibration timer? */ 4327 4328 ATH_LOCK(sc); 4329 sc->sc_scanning = 1; 4330 sc->sc_syncbeacon = 0; 4331 rfilt = ath_calcrxfilter(sc); 4332 ATH_UNLOCK(sc); 4333 4334 ATH_PCU_LOCK(sc); 4335 ath_hal_setrxfilter(ah, rfilt); 4336 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4337 ATH_PCU_UNLOCK(sc); 4338 4339 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4340 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4341 } 4342 4343 static void 4344 ath_scan_end(struct ieee80211com *ic) 4345 { 4346 struct ifnet *ifp = ic->ic_ifp; 4347 struct ath_softc *sc = ifp->if_softc; 4348 struct ath_hal *ah = sc->sc_ah; 4349 u_int32_t rfilt; 4350 4351 ATH_LOCK(sc); 4352 sc->sc_scanning = 0; 4353 rfilt = ath_calcrxfilter(sc); 4354 ATH_UNLOCK(sc); 4355 4356 ATH_PCU_LOCK(sc); 4357 ath_hal_setrxfilter(ah, rfilt); 4358 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4359 4360 ath_hal_process_noisefloor(ah); 4361 ATH_PCU_UNLOCK(sc); 4362 4363 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4364 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4365 sc->sc_curaid); 4366 } 4367 4368 #ifdef ATH_ENABLE_11N 4369 /* 4370 * For now, just do a channel change. 4371 * 4372 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4373 * control state and resetting the hardware without dropping frames out 4374 * of the queue. 4375 * 4376 * The unfortunate trouble here is making absolutely sure that the 4377 * channel width change has propagated enough so the hardware 4378 * absolutely isn't handed bogus frames for it's current operating 4379 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4380 * does occur in parallel, we need to make certain we've blocked 4381 * any further ongoing TX (and RX, that can cause raw TX) 4382 * before we do this. 4383 */ 4384 static void 4385 ath_update_chw(struct ieee80211com *ic) 4386 { 4387 struct ifnet *ifp = ic->ic_ifp; 4388 struct ath_softc *sc = ifp->if_softc; 4389 4390 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4391 ath_set_channel(ic); 4392 } 4393 #endif /* ATH_ENABLE_11N */ 4394 4395 static void 4396 ath_set_channel(struct ieee80211com *ic) 4397 { 4398 struct ifnet *ifp = ic->ic_ifp; 4399 struct ath_softc *sc = ifp->if_softc; 4400 4401 (void) ath_chan_set(sc, ic->ic_curchan); 4402 /* 4403 * If we are returning to our bss channel then mark state 4404 * so the next recv'd beacon's tsf will be used to sync the 4405 * beacon timers. Note that since we only hear beacons in 4406 * sta/ibss mode this has no effect in other operating modes. 4407 */ 4408 ATH_LOCK(sc); 4409 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4410 sc->sc_syncbeacon = 1; 4411 ATH_UNLOCK(sc); 4412 } 4413 4414 /* 4415 * Walk the vap list and check if there any vap's in RUN state. 4416 */ 4417 static int 4418 ath_isanyrunningvaps(struct ieee80211vap *this) 4419 { 4420 struct ieee80211com *ic = this->iv_ic; 4421 struct ieee80211vap *vap; 4422 4423 IEEE80211_LOCK_ASSERT(ic); 4424 4425 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4426 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4427 return 1; 4428 } 4429 return 0; 4430 } 4431 4432 static int 4433 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4434 { 4435 struct ieee80211com *ic = vap->iv_ic; 4436 struct ath_softc *sc = ic->ic_ifp->if_softc; 4437 struct ath_vap *avp = ATH_VAP(vap); 4438 struct ath_hal *ah = sc->sc_ah; 4439 struct ieee80211_node *ni = NULL; 4440 int i, error, stamode; 4441 u_int32_t rfilt; 4442 int csa_run_transition = 0; 4443 static const HAL_LED_STATE leds[] = { 4444 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4445 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4446 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4447 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4448 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4449 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4450 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4451 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4452 }; 4453 4454 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4455 ieee80211_state_name[vap->iv_state], 4456 ieee80211_state_name[nstate]); 4457 4458 /* 4459 * net80211 _should_ have the comlock asserted at this point. 4460 * There are some comments around the calls to vap->iv_newstate 4461 * which indicate that it (newstate) may end up dropping the 4462 * lock. This and the subsequent lock assert check after newstate 4463 * are an attempt to catch these and figure out how/why. 4464 */ 4465 IEEE80211_LOCK_ASSERT(ic); 4466 4467 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4468 csa_run_transition = 1; 4469 4470 callout_drain(&sc->sc_cal_ch); 4471 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4472 4473 if (nstate == IEEE80211_S_SCAN) { 4474 /* 4475 * Scanning: turn off beacon miss and don't beacon. 4476 * Mark beacon state so when we reach RUN state we'll 4477 * [re]setup beacons. Unblock the task q thread so 4478 * deferred interrupt processing is done. 4479 */ 4480 ath_hal_intrset(ah, 4481 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4482 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4483 sc->sc_beacons = 0; 4484 taskqueue_unblock(sc->sc_tq); 4485 } 4486 4487 ni = ieee80211_ref_node(vap->iv_bss); 4488 rfilt = ath_calcrxfilter(sc); 4489 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4490 vap->iv_opmode == IEEE80211_M_AHDEMO || 4491 vap->iv_opmode == IEEE80211_M_IBSS); 4492 if (stamode && nstate == IEEE80211_S_RUN) { 4493 sc->sc_curaid = ni->ni_associd; 4494 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4495 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4496 } 4497 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4498 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4499 ath_hal_setrxfilter(ah, rfilt); 4500 4501 /* XXX is this to restore keycache on resume? */ 4502 if (vap->iv_opmode != IEEE80211_M_STA && 4503 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4504 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4505 if (ath_hal_keyisvalid(ah, i)) 4506 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4507 } 4508 4509 /* 4510 * Invoke the parent method to do net80211 work. 4511 */ 4512 error = avp->av_newstate(vap, nstate, arg); 4513 if (error != 0) 4514 goto bad; 4515 4516 /* 4517 * See above: ensure av_newstate() doesn't drop the lock 4518 * on us. 4519 */ 4520 IEEE80211_LOCK_ASSERT(ic); 4521 4522 if (nstate == IEEE80211_S_RUN) { 4523 /* NB: collect bss node again, it may have changed */ 4524 ieee80211_free_node(ni); 4525 ni = ieee80211_ref_node(vap->iv_bss); 4526 4527 DPRINTF(sc, ATH_DEBUG_STATE, 4528 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 4529 "capinfo 0x%04x chan %d\n", __func__, 4530 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 4531 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 4532 4533 switch (vap->iv_opmode) { 4534 #ifdef IEEE80211_SUPPORT_TDMA 4535 case IEEE80211_M_AHDEMO: 4536 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 4537 break; 4538 /* fall thru... */ 4539 #endif 4540 case IEEE80211_M_HOSTAP: 4541 case IEEE80211_M_IBSS: 4542 case IEEE80211_M_MBSS: 4543 /* 4544 * Allocate and setup the beacon frame. 4545 * 4546 * Stop any previous beacon DMA. This may be 4547 * necessary, for example, when an ibss merge 4548 * causes reconfiguration; there will be a state 4549 * transition from RUN->RUN that means we may 4550 * be called with beacon transmission active. 4551 */ 4552 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4553 4554 error = ath_beacon_alloc(sc, ni); 4555 if (error != 0) 4556 goto bad; 4557 /* 4558 * If joining an adhoc network defer beacon timer 4559 * configuration to the next beacon frame so we 4560 * have a current TSF to use. Otherwise we're 4561 * starting an ibss/bss so there's no need to delay; 4562 * if this is the first vap moving to RUN state, then 4563 * beacon state needs to be [re]configured. 4564 */ 4565 if (vap->iv_opmode == IEEE80211_M_IBSS && 4566 ni->ni_tstamp.tsf != 0) { 4567 sc->sc_syncbeacon = 1; 4568 } else if (!sc->sc_beacons) { 4569 #ifdef IEEE80211_SUPPORT_TDMA 4570 if (vap->iv_caps & IEEE80211_C_TDMA) 4571 ath_tdma_config(sc, vap); 4572 else 4573 #endif 4574 ath_beacon_config(sc, vap); 4575 sc->sc_beacons = 1; 4576 } 4577 break; 4578 case IEEE80211_M_STA: 4579 /* 4580 * Defer beacon timer configuration to the next 4581 * beacon frame so we have a current TSF to use 4582 * (any TSF collected when scanning is likely old). 4583 * However if it's due to a CSA -> RUN transition, 4584 * force a beacon update so we pick up a lack of 4585 * beacons from an AP in CAC and thus force a 4586 * scan. 4587 */ 4588 sc->sc_syncbeacon = 1; 4589 if (csa_run_transition) 4590 ath_beacon_config(sc, vap); 4591 break; 4592 case IEEE80211_M_MONITOR: 4593 /* 4594 * Monitor mode vaps have only INIT->RUN and RUN->RUN 4595 * transitions so we must re-enable interrupts here to 4596 * handle the case of a single monitor mode vap. 4597 */ 4598 ath_hal_intrset(ah, sc->sc_imask); 4599 break; 4600 case IEEE80211_M_WDS: 4601 break; 4602 default: 4603 break; 4604 } 4605 /* 4606 * Let the hal process statistics collected during a 4607 * scan so it can provide calibrated noise floor data. 4608 */ 4609 ath_hal_process_noisefloor(ah); 4610 /* 4611 * Reset rssi stats; maybe not the best place... 4612 */ 4613 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4614 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4615 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4616 /* 4617 * Finally, start any timers and the task q thread 4618 * (in case we didn't go through SCAN state). 4619 */ 4620 if (ath_longcalinterval != 0) { 4621 /* start periodic recalibration timer */ 4622 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4623 } else { 4624 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4625 "%s: calibration disabled\n", __func__); 4626 } 4627 taskqueue_unblock(sc->sc_tq); 4628 } else if (nstate == IEEE80211_S_INIT) { 4629 /* 4630 * If there are no vaps left in RUN state then 4631 * shutdown host/driver operation: 4632 * o disable interrupts 4633 * o disable the task queue thread 4634 * o mark beacon processing as stopped 4635 */ 4636 if (!ath_isanyrunningvaps(vap)) { 4637 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4638 /* disable interrupts */ 4639 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4640 taskqueue_block(sc->sc_tq); 4641 sc->sc_beacons = 0; 4642 } 4643 #ifdef IEEE80211_SUPPORT_TDMA 4644 ath_hal_setcca(ah, AH_TRUE); 4645 #endif 4646 } 4647 bad: 4648 ieee80211_free_node(ni); 4649 return error; 4650 } 4651 4652 /* 4653 * Allocate a key cache slot to the station so we can 4654 * setup a mapping from key index to node. The key cache 4655 * slot is needed for managing antenna state and for 4656 * compression when stations do not use crypto. We do 4657 * it uniliaterally here; if crypto is employed this slot 4658 * will be reassigned. 4659 */ 4660 static void 4661 ath_setup_stationkey(struct ieee80211_node *ni) 4662 { 4663 struct ieee80211vap *vap = ni->ni_vap; 4664 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4665 ieee80211_keyix keyix, rxkeyix; 4666 4667 /* XXX should take a locked ref to vap->iv_bss */ 4668 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4669 /* 4670 * Key cache is full; we'll fall back to doing 4671 * the more expensive lookup in software. Note 4672 * this also means no h/w compression. 4673 */ 4674 /* XXX msg+statistic */ 4675 } else { 4676 /* XXX locking? */ 4677 ni->ni_ucastkey.wk_keyix = keyix; 4678 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4679 /* NB: must mark device key to get called back on delete */ 4680 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 4681 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 4682 /* NB: this will create a pass-thru key entry */ 4683 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 4684 } 4685 } 4686 4687 /* 4688 * Setup driver-specific state for a newly associated node. 4689 * Note that we're called also on a re-associate, the isnew 4690 * param tells us if this is the first time or not. 4691 */ 4692 static void 4693 ath_newassoc(struct ieee80211_node *ni, int isnew) 4694 { 4695 struct ath_node *an = ATH_NODE(ni); 4696 struct ieee80211vap *vap = ni->ni_vap; 4697 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4698 const struct ieee80211_txparam *tp = ni->ni_txparms; 4699 4700 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 4701 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 4702 4703 ath_rate_newassoc(sc, an, isnew); 4704 if (isnew && 4705 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 4706 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4707 ath_setup_stationkey(ni); 4708 } 4709 4710 static int 4711 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 4712 int nchans, struct ieee80211_channel chans[]) 4713 { 4714 struct ath_softc *sc = ic->ic_ifp->if_softc; 4715 struct ath_hal *ah = sc->sc_ah; 4716 HAL_STATUS status; 4717 4718 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4719 "%s: rd %u cc %u location %c%s\n", 4720 __func__, reg->regdomain, reg->country, reg->location, 4721 reg->ecm ? " ecm" : ""); 4722 4723 status = ath_hal_set_channels(ah, chans, nchans, 4724 reg->country, reg->regdomain); 4725 if (status != HAL_OK) { 4726 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 4727 __func__, status); 4728 return EINVAL; /* XXX */ 4729 } 4730 4731 return 0; 4732 } 4733 4734 static void 4735 ath_getradiocaps(struct ieee80211com *ic, 4736 int maxchans, int *nchans, struct ieee80211_channel chans[]) 4737 { 4738 struct ath_softc *sc = ic->ic_ifp->if_softc; 4739 struct ath_hal *ah = sc->sc_ah; 4740 4741 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 4742 __func__, SKU_DEBUG, CTRY_DEFAULT); 4743 4744 /* XXX check return */ 4745 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 4746 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 4747 4748 } 4749 4750 static int 4751 ath_getchannels(struct ath_softc *sc) 4752 { 4753 struct ifnet *ifp = sc->sc_ifp; 4754 struct ieee80211com *ic = ifp->if_l2com; 4755 struct ath_hal *ah = sc->sc_ah; 4756 HAL_STATUS status; 4757 4758 /* 4759 * Collect channel set based on EEPROM contents. 4760 */ 4761 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 4762 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 4763 if (status != HAL_OK) { 4764 if_printf(ifp, "%s: unable to collect channel list from hal, " 4765 "status %d\n", __func__, status); 4766 return EINVAL; 4767 } 4768 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 4769 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 4770 /* XXX map Atheros sku's to net80211 SKU's */ 4771 /* XXX net80211 types too small */ 4772 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 4773 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 4774 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 4775 ic->ic_regdomain.isocc[1] = ' '; 4776 4777 ic->ic_regdomain.ecm = 1; 4778 ic->ic_regdomain.location = 'I'; 4779 4780 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4781 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 4782 __func__, sc->sc_eerd, sc->sc_eecc, 4783 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 4784 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 4785 return 0; 4786 } 4787 4788 static int 4789 ath_rate_setup(struct ath_softc *sc, u_int mode) 4790 { 4791 struct ath_hal *ah = sc->sc_ah; 4792 const HAL_RATE_TABLE *rt; 4793 4794 switch (mode) { 4795 case IEEE80211_MODE_11A: 4796 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 4797 break; 4798 case IEEE80211_MODE_HALF: 4799 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 4800 break; 4801 case IEEE80211_MODE_QUARTER: 4802 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 4803 break; 4804 case IEEE80211_MODE_11B: 4805 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 4806 break; 4807 case IEEE80211_MODE_11G: 4808 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 4809 break; 4810 case IEEE80211_MODE_TURBO_A: 4811 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 4812 break; 4813 case IEEE80211_MODE_TURBO_G: 4814 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 4815 break; 4816 case IEEE80211_MODE_STURBO_A: 4817 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 4818 break; 4819 case IEEE80211_MODE_11NA: 4820 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 4821 break; 4822 case IEEE80211_MODE_11NG: 4823 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 4824 break; 4825 default: 4826 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 4827 __func__, mode); 4828 return 0; 4829 } 4830 sc->sc_rates[mode] = rt; 4831 return (rt != NULL); 4832 } 4833 4834 static void 4835 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 4836 { 4837 #define N(a) (sizeof(a)/sizeof(a[0])) 4838 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 4839 static const struct { 4840 u_int rate; /* tx/rx 802.11 rate */ 4841 u_int16_t timeOn; /* LED on time (ms) */ 4842 u_int16_t timeOff; /* LED off time (ms) */ 4843 } blinkrates[] = { 4844 { 108, 40, 10 }, 4845 { 96, 44, 11 }, 4846 { 72, 50, 13 }, 4847 { 48, 57, 14 }, 4848 { 36, 67, 16 }, 4849 { 24, 80, 20 }, 4850 { 22, 100, 25 }, 4851 { 18, 133, 34 }, 4852 { 12, 160, 40 }, 4853 { 10, 200, 50 }, 4854 { 6, 240, 58 }, 4855 { 4, 267, 66 }, 4856 { 2, 400, 100 }, 4857 { 0, 500, 130 }, 4858 /* XXX half/quarter rates */ 4859 }; 4860 const HAL_RATE_TABLE *rt; 4861 int i, j; 4862 4863 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 4864 rt = sc->sc_rates[mode]; 4865 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 4866 for (i = 0; i < rt->rateCount; i++) { 4867 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 4868 if (rt->info[i].phy != IEEE80211_T_HT) 4869 sc->sc_rixmap[ieeerate] = i; 4870 else 4871 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 4872 } 4873 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 4874 for (i = 0; i < N(sc->sc_hwmap); i++) { 4875 if (i >= rt->rateCount) { 4876 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 4877 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 4878 continue; 4879 } 4880 sc->sc_hwmap[i].ieeerate = 4881 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 4882 if (rt->info[i].phy == IEEE80211_T_HT) 4883 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 4884 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 4885 if (rt->info[i].shortPreamble || 4886 rt->info[i].phy == IEEE80211_T_OFDM) 4887 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 4888 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 4889 for (j = 0; j < N(blinkrates)-1; j++) 4890 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 4891 break; 4892 /* NB: this uses the last entry if the rate isn't found */ 4893 /* XXX beware of overlow */ 4894 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 4895 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 4896 } 4897 sc->sc_currates = rt; 4898 sc->sc_curmode = mode; 4899 /* 4900 * All protection frames are transmited at 2Mb/s for 4901 * 11g, otherwise at 1Mb/s. 4902 */ 4903 if (mode == IEEE80211_MODE_11G) 4904 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 4905 else 4906 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 4907 /* NB: caller is responsible for resetting rate control state */ 4908 #undef N 4909 } 4910 4911 static void 4912 ath_watchdog(void *arg) 4913 { 4914 struct ath_softc *sc = arg; 4915 int do_reset = 0; 4916 4917 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 4918 struct ifnet *ifp = sc->sc_ifp; 4919 uint32_t hangs; 4920 4921 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 4922 hangs != 0) { 4923 if_printf(ifp, "%s hang detected (0x%x)\n", 4924 hangs & 0xff ? "bb" : "mac", hangs); 4925 } else 4926 if_printf(ifp, "device timeout\n"); 4927 do_reset = 1; 4928 ifp->if_oerrors++; 4929 sc->sc_stats.ast_watchdog++; 4930 } 4931 4932 /* 4933 * We can't hold the lock across the ath_reset() call. 4934 * 4935 * And since this routine can't hold a lock and sleep, 4936 * do the reset deferred. 4937 */ 4938 if (do_reset) { 4939 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4940 } 4941 4942 callout_schedule(&sc->sc_wd_ch, hz); 4943 } 4944 4945 /* 4946 * Fetch the rate control statistics for the given node. 4947 */ 4948 static int 4949 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 4950 { 4951 struct ath_node *an; 4952 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4953 struct ieee80211_node *ni; 4954 int error = 0; 4955 4956 /* Perform a lookup on the given node */ 4957 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 4958 if (ni == NULL) { 4959 error = EINVAL; 4960 goto bad; 4961 } 4962 4963 /* Lock the ath_node */ 4964 an = ATH_NODE(ni); 4965 ATH_NODE_LOCK(an); 4966 4967 /* Fetch the rate control stats for this node */ 4968 error = ath_rate_fetch_node_stats(sc, an, rs); 4969 4970 /* No matter what happens here, just drop through */ 4971 4972 /* Unlock the ath_node */ 4973 ATH_NODE_UNLOCK(an); 4974 4975 /* Unref the node */ 4976 ieee80211_node_decref(ni); 4977 4978 bad: 4979 return (error); 4980 } 4981 4982 #ifdef ATH_DIAGAPI 4983 /* 4984 * Diagnostic interface to the HAL. This is used by various 4985 * tools to do things like retrieve register contents for 4986 * debugging. The mechanism is intentionally opaque so that 4987 * it can change frequently w/o concern for compatiblity. 4988 */ 4989 static int 4990 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 4991 { 4992 struct ath_hal *ah = sc->sc_ah; 4993 u_int id = ad->ad_id & ATH_DIAG_ID; 4994 void *indata = NULL; 4995 void *outdata = NULL; 4996 u_int32_t insize = ad->ad_in_size; 4997 u_int32_t outsize = ad->ad_out_size; 4998 int error = 0; 4999 5000 if (ad->ad_id & ATH_DIAG_IN) { 5001 /* 5002 * Copy in data. 5003 */ 5004 indata = malloc(insize, M_TEMP, M_NOWAIT); 5005 if (indata == NULL) { 5006 error = ENOMEM; 5007 goto bad; 5008 } 5009 error = copyin(ad->ad_in_data, indata, insize); 5010 if (error) 5011 goto bad; 5012 } 5013 if (ad->ad_id & ATH_DIAG_DYN) { 5014 /* 5015 * Allocate a buffer for the results (otherwise the HAL 5016 * returns a pointer to a buffer where we can read the 5017 * results). Note that we depend on the HAL leaving this 5018 * pointer for us to use below in reclaiming the buffer; 5019 * may want to be more defensive. 5020 */ 5021 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5022 if (outdata == NULL) { 5023 error = ENOMEM; 5024 goto bad; 5025 } 5026 } 5027 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5028 if (outsize < ad->ad_out_size) 5029 ad->ad_out_size = outsize; 5030 if (outdata != NULL) 5031 error = copyout(outdata, ad->ad_out_data, 5032 ad->ad_out_size); 5033 } else { 5034 error = EINVAL; 5035 } 5036 bad: 5037 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5038 free(indata, M_TEMP); 5039 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5040 free(outdata, M_TEMP); 5041 return error; 5042 } 5043 #endif /* ATH_DIAGAPI */ 5044 5045 static int 5046 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5047 { 5048 #define IS_RUNNING(ifp) \ 5049 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5050 struct ath_softc *sc = ifp->if_softc; 5051 struct ieee80211com *ic = ifp->if_l2com; 5052 struct ifreq *ifr = (struct ifreq *)data; 5053 const HAL_RATE_TABLE *rt; 5054 int error = 0; 5055 5056 switch (cmd) { 5057 case SIOCSIFFLAGS: 5058 ATH_LOCK(sc); 5059 if (IS_RUNNING(ifp)) { 5060 /* 5061 * To avoid rescanning another access point, 5062 * do not call ath_init() here. Instead, 5063 * only reflect promisc mode settings. 5064 */ 5065 ath_mode_init(sc); 5066 } else if (ifp->if_flags & IFF_UP) { 5067 /* 5068 * Beware of being called during attach/detach 5069 * to reset promiscuous mode. In that case we 5070 * will still be marked UP but not RUNNING. 5071 * However trying to re-init the interface 5072 * is the wrong thing to do as we've already 5073 * torn down much of our state. There's 5074 * probably a better way to deal with this. 5075 */ 5076 if (!sc->sc_invalid) 5077 ath_init(sc); /* XXX lose error */ 5078 } else { 5079 ath_stop_locked(ifp); 5080 #ifdef notyet 5081 /* XXX must wakeup in places like ath_vap_delete */ 5082 if (!sc->sc_invalid) 5083 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5084 #endif 5085 } 5086 ATH_UNLOCK(sc); 5087 break; 5088 case SIOCGIFMEDIA: 5089 case SIOCSIFMEDIA: 5090 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5091 break; 5092 case SIOCGATHSTATS: 5093 /* NB: embed these numbers to get a consistent view */ 5094 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5095 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5096 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5097 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5098 #ifdef IEEE80211_SUPPORT_TDMA 5099 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5100 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5101 #endif 5102 rt = sc->sc_currates; 5103 sc->sc_stats.ast_tx_rate = 5104 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5105 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 5106 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 5107 return copyout(&sc->sc_stats, 5108 ifr->ifr_data, sizeof (sc->sc_stats)); 5109 case SIOCGATHAGSTATS: 5110 return copyout(&sc->sc_aggr_stats, 5111 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 5112 case SIOCZATHSTATS: 5113 error = priv_check(curthread, PRIV_DRIVER); 5114 if (error == 0) { 5115 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 5116 memset(&sc->sc_aggr_stats, 0, 5117 sizeof(sc->sc_aggr_stats)); 5118 memset(&sc->sc_intr_stats, 0, 5119 sizeof(sc->sc_intr_stats)); 5120 } 5121 break; 5122 #ifdef ATH_DIAGAPI 5123 case SIOCGATHDIAG: 5124 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5125 break; 5126 case SIOCGATHPHYERR: 5127 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5128 break; 5129 #endif 5130 case SIOCGATHNODERATESTATS: 5131 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 5132 break; 5133 case SIOCGIFADDR: 5134 error = ether_ioctl(ifp, cmd, data); 5135 break; 5136 default: 5137 error = EINVAL; 5138 break; 5139 } 5140 return error; 5141 #undef IS_RUNNING 5142 } 5143 5144 /* 5145 * Announce various information on device/driver attach. 5146 */ 5147 static void 5148 ath_announce(struct ath_softc *sc) 5149 { 5150 struct ifnet *ifp = sc->sc_ifp; 5151 struct ath_hal *ah = sc->sc_ah; 5152 5153 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5154 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5155 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5156 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5157 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5158 if (bootverbose) { 5159 int i; 5160 for (i = 0; i <= WME_AC_VO; i++) { 5161 struct ath_txq *txq = sc->sc_ac2q[i]; 5162 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5163 txq->axq_qnum, ieee80211_wme_acnames[i]); 5164 } 5165 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5166 sc->sc_cabq->axq_qnum); 5167 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5168 } 5169 if (ath_rxbuf != ATH_RXBUF) 5170 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5171 if (ath_txbuf != ATH_TXBUF) 5172 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5173 if (sc->sc_mcastkey && bootverbose) 5174 if_printf(ifp, "using multicast key search\n"); 5175 } 5176 5177 static void 5178 ath_dfs_tasklet(void *p, int npending) 5179 { 5180 struct ath_softc *sc = (struct ath_softc *) p; 5181 struct ifnet *ifp = sc->sc_ifp; 5182 struct ieee80211com *ic = ifp->if_l2com; 5183 5184 /* 5185 * If previous processing has found a radar event, 5186 * signal this to the net80211 layer to begin DFS 5187 * processing. 5188 */ 5189 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 5190 /* DFS event found, initiate channel change */ 5191 /* 5192 * XXX doesn't currently tell us whether the event 5193 * XXX was found in the primary or extension 5194 * XXX channel! 5195 */ 5196 IEEE80211_LOCK(ic); 5197 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 5198 IEEE80211_UNLOCK(ic); 5199 } 5200 } 5201 5202 MODULE_VERSION(if_ath, 1); 5203 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 5204 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 5205 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 5206 #endif 5207