1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_beacon.h> 112 #include <dev/ath/if_athdfs.h> 113 114 #ifdef ATH_TX99_DIAG 115 #include <dev/ath/ath_tx99/ath_tx99.h> 116 #endif 117 118 #define ATH_KTR_INTR KTR_SPARE4 119 #define ATH_KTR_ERR KTR_SPARE3 120 121 /* 122 * ATH_BCBUF determines the number of vap's that can transmit 123 * beacons and also (currently) the number of vap's that can 124 * have unique mac addresses/bssid. When staggering beacons 125 * 4 is probably a good max as otherwise the beacons become 126 * very closely spaced and there is limited time for cab q traffic 127 * to go out. You can burst beacons instead but that is not good 128 * for stations in power save and at some point you really want 129 * another radio (and channel). 130 * 131 * The limit on the number of mac addresses is tied to our use of 132 * the U/L bit and tracking addresses in a byte; it would be 133 * worthwhile to allow more for applications like proxy sta. 134 */ 135 CTASSERT(ATH_BCBUF <= 8); 136 137 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 138 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 139 const uint8_t [IEEE80211_ADDR_LEN], 140 const uint8_t [IEEE80211_ADDR_LEN]); 141 static void ath_vap_delete(struct ieee80211vap *); 142 static void ath_init(void *); 143 static void ath_stop_locked(struct ifnet *); 144 static void ath_stop(struct ifnet *); 145 static int ath_reset_vap(struct ieee80211vap *, u_long); 146 static int ath_media_change(struct ifnet *); 147 static void ath_watchdog(void *); 148 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 149 static void ath_fatal_proc(void *, int); 150 static void ath_bmiss_vap(struct ieee80211vap *); 151 static void ath_bmiss_proc(void *, int); 152 static void ath_key_update_begin(struct ieee80211vap *); 153 static void ath_key_update_end(struct ieee80211vap *); 154 static void ath_update_mcast(struct ifnet *); 155 static void ath_update_promisc(struct ifnet *); 156 static void ath_updateslot(struct ifnet *); 157 static void ath_bstuck_proc(void *, int); 158 static void ath_reset_proc(void *, int); 159 static void ath_descdma_cleanup(struct ath_softc *sc, 160 struct ath_descdma *, ath_bufhead *); 161 static int ath_desc_alloc(struct ath_softc *); 162 static void ath_desc_free(struct ath_softc *); 163 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 164 const uint8_t [IEEE80211_ADDR_LEN]); 165 static void ath_node_cleanup(struct ieee80211_node *); 166 static void ath_node_free(struct ieee80211_node *); 167 static void ath_node_getsignal(const struct ieee80211_node *, 168 int8_t *, int8_t *); 169 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 170 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 171 static int ath_tx_setup(struct ath_softc *, int, int); 172 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 173 static void ath_tx_cleanup(struct ath_softc *); 174 static void ath_tx_proc_q0(void *, int); 175 static void ath_tx_proc_q0123(void *, int); 176 static void ath_tx_proc(void *, int); 177 static void ath_txq_sched_tasklet(void *, int); 178 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 179 static void ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type); 180 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 181 static void ath_scan_start(struct ieee80211com *); 182 static void ath_scan_end(struct ieee80211com *); 183 static void ath_set_channel(struct ieee80211com *); 184 #ifdef ATH_ENABLE_11N 185 static void ath_update_chw(struct ieee80211com *); 186 #endif /* ATH_ENABLE_11N */ 187 static void ath_calibrate(void *); 188 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 189 static void ath_setup_stationkey(struct ieee80211_node *); 190 static void ath_newassoc(struct ieee80211_node *, int); 191 static int ath_setregdomain(struct ieee80211com *, 192 struct ieee80211_regdomain *, int, 193 struct ieee80211_channel []); 194 static void ath_getradiocaps(struct ieee80211com *, int, int *, 195 struct ieee80211_channel []); 196 static int ath_getchannels(struct ath_softc *); 197 198 static int ath_rate_setup(struct ath_softc *, u_int mode); 199 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 200 201 static void ath_announce(struct ath_softc *); 202 203 static void ath_dfs_tasklet(void *, int); 204 205 #ifdef IEEE80211_SUPPORT_TDMA 206 #include <dev/ath/if_ath_tdma.h> 207 #endif 208 209 #if 0 210 #define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */ 211 #define TDMA_LPF_LEN 6 212 #define TDMA_DUMMY_MARKER 0x127 213 #define TDMA_EP_MUL(x, mul) ((x) * (mul)) 214 #define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER)) 215 #define TDMA_LPF(x, y, len) \ 216 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y)) 217 #define TDMA_SAMPLE(x, y) do { \ 218 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \ 219 } while (0) 220 #define TDMA_EP_RND(x,mul) \ 221 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 222 #define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER) 223 #endif /* IEEE80211_SUPPORT_TDMA */ 224 225 SYSCTL_DECL(_hw_ath); 226 227 /* XXX validate sysctl values */ 228 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 229 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 230 0, "long chip calibration interval (secs)"); 231 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 232 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 233 0, "short chip calibration interval (msecs)"); 234 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 235 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 236 0, "reset chip calibration results (secs)"); 237 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 238 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 239 0, "ANI calibration (msecs)"); 240 241 static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 242 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 243 0, "rx buffers allocated"); 244 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 245 static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 246 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 247 0, "tx buffers allocated"); 248 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 249 250 int ath_bstuck_threshold = 4; /* max missed beacons */ 251 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 252 0, "max missed beacon xmits before chip reset"); 253 254 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 255 256 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 257 #define HAL_MODE_HT40 \ 258 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 259 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 260 int 261 ath_attach(u_int16_t devid, struct ath_softc *sc) 262 { 263 struct ifnet *ifp; 264 struct ieee80211com *ic; 265 struct ath_hal *ah = NULL; 266 HAL_STATUS status; 267 int error = 0, i; 268 u_int wmodes; 269 uint8_t macaddr[IEEE80211_ADDR_LEN]; 270 int rx_chainmask, tx_chainmask; 271 272 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 273 274 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 275 if (ifp == NULL) { 276 device_printf(sc->sc_dev, "can not if_alloc()\n"); 277 error = ENOSPC; 278 goto bad; 279 } 280 ic = ifp->if_l2com; 281 282 /* set these up early for if_printf use */ 283 if_initname(ifp, device_get_name(sc->sc_dev), 284 device_get_unit(sc->sc_dev)); 285 286 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 287 sc->sc_eepromdata, &status); 288 if (ah == NULL) { 289 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 290 status); 291 error = ENXIO; 292 goto bad; 293 } 294 sc->sc_ah = ah; 295 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 296 #ifdef ATH_DEBUG 297 sc->sc_debug = ath_debug; 298 #endif 299 300 /* 301 * Check if the MAC has multi-rate retry support. 302 * We do this by trying to setup a fake extended 303 * descriptor. MAC's that don't have support will 304 * return false w/o doing anything. MAC's that do 305 * support it will return true w/o doing anything. 306 */ 307 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 308 309 /* 310 * Check if the device has hardware counters for PHY 311 * errors. If so we need to enable the MIB interrupt 312 * so we can act on stat triggers. 313 */ 314 if (ath_hal_hwphycounters(ah)) 315 sc->sc_needmib = 1; 316 317 /* 318 * Get the hardware key cache size. 319 */ 320 sc->sc_keymax = ath_hal_keycachesize(ah); 321 if (sc->sc_keymax > ATH_KEYMAX) { 322 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 323 ATH_KEYMAX, sc->sc_keymax); 324 sc->sc_keymax = ATH_KEYMAX; 325 } 326 /* 327 * Reset the key cache since some parts do not 328 * reset the contents on initial power up. 329 */ 330 for (i = 0; i < sc->sc_keymax; i++) 331 ath_hal_keyreset(ah, i); 332 333 /* 334 * Collect the default channel list. 335 */ 336 error = ath_getchannels(sc); 337 if (error != 0) 338 goto bad; 339 340 /* 341 * Setup rate tables for all potential media types. 342 */ 343 ath_rate_setup(sc, IEEE80211_MODE_11A); 344 ath_rate_setup(sc, IEEE80211_MODE_11B); 345 ath_rate_setup(sc, IEEE80211_MODE_11G); 346 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 347 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 348 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 349 ath_rate_setup(sc, IEEE80211_MODE_11NA); 350 ath_rate_setup(sc, IEEE80211_MODE_11NG); 351 ath_rate_setup(sc, IEEE80211_MODE_HALF); 352 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 353 354 /* NB: setup here so ath_rate_update is happy */ 355 ath_setcurmode(sc, IEEE80211_MODE_11A); 356 357 /* 358 * Allocate tx+rx descriptors and populate the lists. 359 */ 360 error = ath_desc_alloc(sc); 361 if (error != 0) { 362 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 363 goto bad; 364 } 365 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 366 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 367 368 ATH_TXBUF_LOCK_INIT(sc); 369 370 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 371 taskqueue_thread_enqueue, &sc->sc_tq); 372 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 373 "%s taskq", ifp->if_xname); 374 375 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc); 376 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 377 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 378 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 379 TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc); 380 TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc); 381 382 /* 383 * Allocate hardware transmit queues: one queue for 384 * beacon frames and one data queue for each QoS 385 * priority. Note that the hal handles resetting 386 * these queues at the needed time. 387 * 388 * XXX PS-Poll 389 */ 390 sc->sc_bhalq = ath_beaconq_setup(ah); 391 if (sc->sc_bhalq == (u_int) -1) { 392 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 393 error = EIO; 394 goto bad2; 395 } 396 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 397 if (sc->sc_cabq == NULL) { 398 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 399 error = EIO; 400 goto bad2; 401 } 402 /* NB: insure BK queue is the lowest priority h/w queue */ 403 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 404 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 405 ieee80211_wme_acnames[WME_AC_BK]); 406 error = EIO; 407 goto bad2; 408 } 409 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 410 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 411 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 412 /* 413 * Not enough hardware tx queues to properly do WME; 414 * just punt and assign them all to the same h/w queue. 415 * We could do a better job of this if, for example, 416 * we allocate queues when we switch from station to 417 * AP mode. 418 */ 419 if (sc->sc_ac2q[WME_AC_VI] != NULL) 420 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 421 if (sc->sc_ac2q[WME_AC_BE] != NULL) 422 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 423 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 424 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 425 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 426 } 427 428 /* 429 * Special case certain configurations. Note the 430 * CAB queue is handled by these specially so don't 431 * include them when checking the txq setup mask. 432 */ 433 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 434 case 0x01: 435 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 436 break; 437 case 0x0f: 438 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 439 break; 440 default: 441 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 442 break; 443 } 444 445 /* 446 * Setup rate control. Some rate control modules 447 * call back to change the anntena state so expose 448 * the necessary entry points. 449 * XXX maybe belongs in struct ath_ratectrl? 450 */ 451 sc->sc_setdefantenna = ath_setdefantenna; 452 sc->sc_rc = ath_rate_attach(sc); 453 if (sc->sc_rc == NULL) { 454 error = EIO; 455 goto bad2; 456 } 457 458 /* Attach DFS module */ 459 if (! ath_dfs_attach(sc)) { 460 device_printf(sc->sc_dev, 461 "%s: unable to attach DFS\n", __func__); 462 error = EIO; 463 goto bad2; 464 } 465 466 /* Start DFS processing tasklet */ 467 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 468 469 /* Configure LED state */ 470 sc->sc_blinking = 0; 471 sc->sc_ledstate = 1; 472 sc->sc_ledon = 0; /* low true */ 473 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 474 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 475 476 /* 477 * Don't setup hardware-based blinking. 478 * 479 * Although some NICs may have this configured in the 480 * default reset register values, the user may wish 481 * to alter which pins have which function. 482 * 483 * The reference driver attaches the MAC network LED to GPIO1 and 484 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 485 * NIC has these reversed. 486 */ 487 sc->sc_hardled = (1 == 0); 488 sc->sc_led_net_pin = -1; 489 sc->sc_led_pwr_pin = -1; 490 /* 491 * Auto-enable soft led processing for IBM cards and for 492 * 5211 minipci cards. Users can also manually enable/disable 493 * support with a sysctl. 494 */ 495 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 496 ath_led_config(sc); 497 ath_hal_setledstate(ah, HAL_LED_INIT); 498 499 ifp->if_softc = sc; 500 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 501 ifp->if_start = ath_start; 502 ifp->if_ioctl = ath_ioctl; 503 ifp->if_init = ath_init; 504 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 505 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 506 IFQ_SET_READY(&ifp->if_snd); 507 508 ic->ic_ifp = ifp; 509 /* XXX not right but it's not used anywhere important */ 510 ic->ic_phytype = IEEE80211_T_OFDM; 511 ic->ic_opmode = IEEE80211_M_STA; 512 ic->ic_caps = 513 IEEE80211_C_STA /* station mode */ 514 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 515 | IEEE80211_C_HOSTAP /* hostap mode */ 516 | IEEE80211_C_MONITOR /* monitor mode */ 517 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 518 | IEEE80211_C_WDS /* 4-address traffic works */ 519 | IEEE80211_C_MBSS /* mesh point link mode */ 520 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 521 | IEEE80211_C_SHSLOT /* short slot time supported */ 522 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 523 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 524 | IEEE80211_C_TXFRAG /* handle tx frags */ 525 #ifdef ATH_ENABLE_DFS 526 | IEEE80211_C_DFS /* Enable radar detection */ 527 #endif 528 ; 529 /* 530 * Query the hal to figure out h/w crypto support. 531 */ 532 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 533 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 534 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 535 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 536 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 537 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 538 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 539 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 540 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 541 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 542 /* 543 * Check if h/w does the MIC and/or whether the 544 * separate key cache entries are required to 545 * handle both tx+rx MIC keys. 546 */ 547 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 548 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 549 /* 550 * If the h/w supports storing tx+rx MIC keys 551 * in one cache slot automatically enable use. 552 */ 553 if (ath_hal_hastkipsplit(ah) || 554 !ath_hal_settkipsplit(ah, AH_FALSE)) 555 sc->sc_splitmic = 1; 556 /* 557 * If the h/w can do TKIP MIC together with WME then 558 * we use it; otherwise we force the MIC to be done 559 * in software by the net80211 layer. 560 */ 561 if (ath_hal_haswmetkipmic(ah)) 562 sc->sc_wmetkipmic = 1; 563 } 564 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 565 /* 566 * Check for multicast key search support. 567 */ 568 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 569 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 570 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 571 } 572 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 573 /* 574 * Mark key cache slots associated with global keys 575 * as in use. If we knew TKIP was not to be used we 576 * could leave the +32, +64, and +32+64 slots free. 577 */ 578 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 579 setbit(sc->sc_keymap, i); 580 setbit(sc->sc_keymap, i+64); 581 if (sc->sc_splitmic) { 582 setbit(sc->sc_keymap, i+32); 583 setbit(sc->sc_keymap, i+32+64); 584 } 585 } 586 /* 587 * TPC support can be done either with a global cap or 588 * per-packet support. The latter is not available on 589 * all parts. We're a bit pedantic here as all parts 590 * support a global cap. 591 */ 592 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 593 ic->ic_caps |= IEEE80211_C_TXPMGT; 594 595 /* 596 * Mark WME capability only if we have sufficient 597 * hardware queues to do proper priority scheduling. 598 */ 599 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 600 ic->ic_caps |= IEEE80211_C_WME; 601 /* 602 * Check for misc other capabilities. 603 */ 604 if (ath_hal_hasbursting(ah)) 605 ic->ic_caps |= IEEE80211_C_BURST; 606 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 607 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 608 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 609 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 610 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 611 if (ath_hal_hasfastframes(ah)) 612 ic->ic_caps |= IEEE80211_C_FF; 613 wmodes = ath_hal_getwirelessmodes(ah); 614 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 615 ic->ic_caps |= IEEE80211_C_TURBOP; 616 #ifdef IEEE80211_SUPPORT_TDMA 617 if (ath_hal_macversion(ah) > 0x78) { 618 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 619 ic->ic_tdma_update = ath_tdma_update; 620 } 621 #endif 622 623 /* 624 * TODO: enforce that at least this many frames are available 625 * in the txbuf list before allowing data frames (raw or 626 * otherwise) to be transmitted. 627 */ 628 sc->sc_txq_data_minfree = 10; 629 /* 630 * Leave this as default to maintain legacy behaviour. 631 * Shortening the cabq/mcastq may end up causing some 632 * undesirable behaviour. 633 */ 634 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 635 636 /* 637 * Allow the TX and RX chainmasks to be overridden by 638 * environment variables and/or device.hints. 639 * 640 * This must be done early - before the hardware is 641 * calibrated or before the 802.11n stream calculation 642 * is done. 643 */ 644 if (resource_int_value(device_get_name(sc->sc_dev), 645 device_get_unit(sc->sc_dev), "rx_chainmask", 646 &rx_chainmask) == 0) { 647 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 648 rx_chainmask); 649 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 650 } 651 if (resource_int_value(device_get_name(sc->sc_dev), 652 device_get_unit(sc->sc_dev), "tx_chainmask", 653 &tx_chainmask) == 0) { 654 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 655 tx_chainmask); 656 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 657 } 658 659 /* 660 * The if_ath 11n support is completely not ready for normal use. 661 * Enabling this option will likely break everything and everything. 662 * Don't think of doing that unless you know what you're doing. 663 */ 664 665 #ifdef ATH_ENABLE_11N 666 /* 667 * Query HT capabilities 668 */ 669 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 670 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 671 int rxs, txs; 672 673 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 674 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 675 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 676 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 677 | IEEE80211_HTCAP_MAXAMSDU_3839 678 /* max A-MSDU length */ 679 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 680 ; 681 682 /* 683 * Enable short-GI for HT20 only if the hardware 684 * advertises support. 685 * Notably, anything earlier than the AR9287 doesn't. 686 */ 687 if ((ath_hal_getcapability(ah, 688 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 689 (wmodes & HAL_MODE_HT20)) { 690 device_printf(sc->sc_dev, 691 "[HT] enabling short-GI in 20MHz mode\n"); 692 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 693 } 694 695 if (wmodes & HAL_MODE_HT40) 696 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 697 | IEEE80211_HTCAP_SHORTGI40; 698 699 /* 700 * TX/RX streams need to be taken into account when 701 * negotiating which MCS rates it'll receive and 702 * what MCS rates are available for TX. 703 */ 704 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 705 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 706 707 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 708 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 709 710 ic->ic_txstream = txs; 711 ic->ic_rxstream = rxs; 712 713 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 714 &sc->sc_rts_aggr_limit); 715 if (sc->sc_rts_aggr_limit != (64 * 1024)) 716 device_printf(sc->sc_dev, 717 "[HT] RTS aggregates limited to %d KiB\n", 718 sc->sc_rts_aggr_limit / 1024); 719 720 device_printf(sc->sc_dev, 721 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 722 } 723 #endif 724 725 /* 726 * Check if the hardware requires PCI register serialisation. 727 * Some of the Owl based MACs require this. 728 */ 729 if (mp_ncpus > 1 && 730 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 731 0, NULL) == HAL_OK) { 732 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 733 device_printf(sc->sc_dev, 734 "Enabling register serialisation\n"); 735 } 736 737 /* 738 * Indicate we need the 802.11 header padded to a 739 * 32-bit boundary for 4-address and QoS frames. 740 */ 741 ic->ic_flags |= IEEE80211_F_DATAPAD; 742 743 /* 744 * Query the hal about antenna support. 745 */ 746 sc->sc_defant = ath_hal_getdefantenna(ah); 747 748 /* 749 * Not all chips have the VEOL support we want to 750 * use with IBSS beacons; check here for it. 751 */ 752 sc->sc_hasveol = ath_hal_hasveol(ah); 753 754 /* get mac address from hardware */ 755 ath_hal_getmac(ah, macaddr); 756 if (sc->sc_hasbmask) 757 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 758 759 /* NB: used to size node table key mapping array */ 760 ic->ic_max_keyix = sc->sc_keymax; 761 /* call MI attach routine. */ 762 ieee80211_ifattach(ic, macaddr); 763 ic->ic_setregdomain = ath_setregdomain; 764 ic->ic_getradiocaps = ath_getradiocaps; 765 sc->sc_opmode = HAL_M_STA; 766 767 /* override default methods */ 768 ic->ic_newassoc = ath_newassoc; 769 ic->ic_updateslot = ath_updateslot; 770 ic->ic_wme.wme_update = ath_wme_update; 771 ic->ic_vap_create = ath_vap_create; 772 ic->ic_vap_delete = ath_vap_delete; 773 ic->ic_raw_xmit = ath_raw_xmit; 774 ic->ic_update_mcast = ath_update_mcast; 775 ic->ic_update_promisc = ath_update_promisc; 776 ic->ic_node_alloc = ath_node_alloc; 777 sc->sc_node_free = ic->ic_node_free; 778 ic->ic_node_free = ath_node_free; 779 sc->sc_node_cleanup = ic->ic_node_cleanup; 780 ic->ic_node_cleanup = ath_node_cleanup; 781 ic->ic_node_getsignal = ath_node_getsignal; 782 ic->ic_scan_start = ath_scan_start; 783 ic->ic_scan_end = ath_scan_end; 784 ic->ic_set_channel = ath_set_channel; 785 #ifdef ATH_ENABLE_11N 786 /* 802.11n specific - but just override anyway */ 787 sc->sc_addba_request = ic->ic_addba_request; 788 sc->sc_addba_response = ic->ic_addba_response; 789 sc->sc_addba_stop = ic->ic_addba_stop; 790 sc->sc_bar_response = ic->ic_bar_response; 791 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 792 793 ic->ic_addba_request = ath_addba_request; 794 ic->ic_addba_response = ath_addba_response; 795 ic->ic_addba_response_timeout = ath_addba_response_timeout; 796 ic->ic_addba_stop = ath_addba_stop; 797 ic->ic_bar_response = ath_bar_response; 798 799 ic->ic_update_chw = ath_update_chw; 800 #endif /* ATH_ENABLE_11N */ 801 802 ieee80211_radiotap_attach(ic, 803 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 804 ATH_TX_RADIOTAP_PRESENT, 805 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 806 ATH_RX_RADIOTAP_PRESENT); 807 808 /* 809 * Setup dynamic sysctl's now that country code and 810 * regdomain are available from the hal. 811 */ 812 ath_sysctlattach(sc); 813 ath_sysctl_stats_attach(sc); 814 ath_sysctl_hal_attach(sc); 815 816 if (bootverbose) 817 ieee80211_announce(ic); 818 ath_announce(sc); 819 return 0; 820 bad2: 821 ath_tx_cleanup(sc); 822 ath_desc_free(sc); 823 bad: 824 if (ah) 825 ath_hal_detach(ah); 826 if (ifp != NULL) 827 if_free(ifp); 828 sc->sc_invalid = 1; 829 return error; 830 } 831 832 int 833 ath_detach(struct ath_softc *sc) 834 { 835 struct ifnet *ifp = sc->sc_ifp; 836 837 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 838 __func__, ifp->if_flags); 839 840 /* 841 * NB: the order of these is important: 842 * o stop the chip so no more interrupts will fire 843 * o call the 802.11 layer before detaching the hal to 844 * insure callbacks into the driver to delete global 845 * key cache entries can be handled 846 * o free the taskqueue which drains any pending tasks 847 * o reclaim the tx queue data structures after calling 848 * the 802.11 layer as we'll get called back to reclaim 849 * node state and potentially want to use them 850 * o to cleanup the tx queues the hal is called, so detach 851 * it last 852 * Other than that, it's straightforward... 853 */ 854 ath_stop(ifp); 855 ieee80211_ifdetach(ifp->if_l2com); 856 taskqueue_free(sc->sc_tq); 857 #ifdef ATH_TX99_DIAG 858 if (sc->sc_tx99 != NULL) 859 sc->sc_tx99->detach(sc->sc_tx99); 860 #endif 861 ath_rate_detach(sc->sc_rc); 862 863 ath_dfs_detach(sc); 864 ath_desc_free(sc); 865 ath_tx_cleanup(sc); 866 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 867 if_free(ifp); 868 869 return 0; 870 } 871 872 /* 873 * MAC address handling for multiple BSS on the same radio. 874 * The first vap uses the MAC address from the EEPROM. For 875 * subsequent vap's we set the U/L bit (bit 1) in the MAC 876 * address and use the next six bits as an index. 877 */ 878 static void 879 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 880 { 881 int i; 882 883 if (clone && sc->sc_hasbmask) { 884 /* NB: we only do this if h/w supports multiple bssid */ 885 for (i = 0; i < 8; i++) 886 if ((sc->sc_bssidmask & (1<<i)) == 0) 887 break; 888 if (i != 0) 889 mac[0] |= (i << 2)|0x2; 890 } else 891 i = 0; 892 sc->sc_bssidmask |= 1<<i; 893 sc->sc_hwbssidmask[0] &= ~mac[0]; 894 if (i == 0) 895 sc->sc_nbssid0++; 896 } 897 898 static void 899 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 900 { 901 int i = mac[0] >> 2; 902 uint8_t mask; 903 904 if (i != 0 || --sc->sc_nbssid0 == 0) { 905 sc->sc_bssidmask &= ~(1<<i); 906 /* recalculate bssid mask from remaining addresses */ 907 mask = 0xff; 908 for (i = 1; i < 8; i++) 909 if (sc->sc_bssidmask & (1<<i)) 910 mask &= ~((i<<2)|0x2); 911 sc->sc_hwbssidmask[0] |= mask; 912 } 913 } 914 915 /* 916 * Assign a beacon xmit slot. We try to space out 917 * assignments so when beacons are staggered the 918 * traffic coming out of the cab q has maximal time 919 * to go out before the next beacon is scheduled. 920 */ 921 static int 922 assign_bslot(struct ath_softc *sc) 923 { 924 u_int slot, free; 925 926 free = 0; 927 for (slot = 0; slot < ATH_BCBUF; slot++) 928 if (sc->sc_bslot[slot] == NULL) { 929 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 930 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 931 return slot; 932 free = slot; 933 /* NB: keep looking for a double slot */ 934 } 935 return free; 936 } 937 938 static struct ieee80211vap * 939 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 940 enum ieee80211_opmode opmode, int flags, 941 const uint8_t bssid[IEEE80211_ADDR_LEN], 942 const uint8_t mac0[IEEE80211_ADDR_LEN]) 943 { 944 struct ath_softc *sc = ic->ic_ifp->if_softc; 945 struct ath_vap *avp; 946 struct ieee80211vap *vap; 947 uint8_t mac[IEEE80211_ADDR_LEN]; 948 int needbeacon, error; 949 enum ieee80211_opmode ic_opmode; 950 951 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 952 M_80211_VAP, M_WAITOK | M_ZERO); 953 needbeacon = 0; 954 IEEE80211_ADDR_COPY(mac, mac0); 955 956 ATH_LOCK(sc); 957 ic_opmode = opmode; /* default to opmode of new vap */ 958 switch (opmode) { 959 case IEEE80211_M_STA: 960 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 961 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 962 goto bad; 963 } 964 if (sc->sc_nvaps) { 965 /* 966 * With multiple vaps we must fall back 967 * to s/w beacon miss handling. 968 */ 969 flags |= IEEE80211_CLONE_NOBEACONS; 970 } 971 if (flags & IEEE80211_CLONE_NOBEACONS) { 972 /* 973 * Station mode w/o beacons are implemented w/ AP mode. 974 */ 975 ic_opmode = IEEE80211_M_HOSTAP; 976 } 977 break; 978 case IEEE80211_M_IBSS: 979 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 980 device_printf(sc->sc_dev, 981 "only 1 ibss vap supported\n"); 982 goto bad; 983 } 984 needbeacon = 1; 985 break; 986 case IEEE80211_M_AHDEMO: 987 #ifdef IEEE80211_SUPPORT_TDMA 988 if (flags & IEEE80211_CLONE_TDMA) { 989 if (sc->sc_nvaps != 0) { 990 device_printf(sc->sc_dev, 991 "only 1 tdma vap supported\n"); 992 goto bad; 993 } 994 needbeacon = 1; 995 flags |= IEEE80211_CLONE_NOBEACONS; 996 } 997 /* fall thru... */ 998 #endif 999 case IEEE80211_M_MONITOR: 1000 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1001 /* 1002 * Adopt existing mode. Adding a monitor or ahdemo 1003 * vap to an existing configuration is of dubious 1004 * value but should be ok. 1005 */ 1006 /* XXX not right for monitor mode */ 1007 ic_opmode = ic->ic_opmode; 1008 } 1009 break; 1010 case IEEE80211_M_HOSTAP: 1011 case IEEE80211_M_MBSS: 1012 needbeacon = 1; 1013 break; 1014 case IEEE80211_M_WDS: 1015 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1016 device_printf(sc->sc_dev, 1017 "wds not supported in sta mode\n"); 1018 goto bad; 1019 } 1020 /* 1021 * Silently remove any request for a unique 1022 * bssid; WDS vap's always share the local 1023 * mac address. 1024 */ 1025 flags &= ~IEEE80211_CLONE_BSSID; 1026 if (sc->sc_nvaps == 0) 1027 ic_opmode = IEEE80211_M_HOSTAP; 1028 else 1029 ic_opmode = ic->ic_opmode; 1030 break; 1031 default: 1032 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1033 goto bad; 1034 } 1035 /* 1036 * Check that a beacon buffer is available; the code below assumes it. 1037 */ 1038 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1039 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1040 goto bad; 1041 } 1042 1043 /* STA, AHDEMO? */ 1044 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1045 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1046 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1047 } 1048 1049 vap = &avp->av_vap; 1050 /* XXX can't hold mutex across if_alloc */ 1051 ATH_UNLOCK(sc); 1052 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1053 bssid, mac); 1054 ATH_LOCK(sc); 1055 if (error != 0) { 1056 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1057 __func__, error); 1058 goto bad2; 1059 } 1060 1061 /* h/w crypto support */ 1062 vap->iv_key_alloc = ath_key_alloc; 1063 vap->iv_key_delete = ath_key_delete; 1064 vap->iv_key_set = ath_key_set; 1065 vap->iv_key_update_begin = ath_key_update_begin; 1066 vap->iv_key_update_end = ath_key_update_end; 1067 1068 /* override various methods */ 1069 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1070 vap->iv_recv_mgmt = ath_recv_mgmt; 1071 vap->iv_reset = ath_reset_vap; 1072 vap->iv_update_beacon = ath_beacon_update; 1073 avp->av_newstate = vap->iv_newstate; 1074 vap->iv_newstate = ath_newstate; 1075 avp->av_bmiss = vap->iv_bmiss; 1076 vap->iv_bmiss = ath_bmiss_vap; 1077 1078 /* Set default parameters */ 1079 1080 /* 1081 * Anything earlier than some AR9300 series MACs don't 1082 * support a smaller MPDU density. 1083 */ 1084 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1085 /* 1086 * All NICs can handle the maximum size, however 1087 * AR5416 based MACs can only TX aggregates w/ RTS 1088 * protection when the total aggregate size is <= 8k. 1089 * However, for now that's enforced by the TX path. 1090 */ 1091 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1092 1093 avp->av_bslot = -1; 1094 if (needbeacon) { 1095 /* 1096 * Allocate beacon state and setup the q for buffered 1097 * multicast frames. We know a beacon buffer is 1098 * available because we checked above. 1099 */ 1100 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1101 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1102 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1103 /* 1104 * Assign the vap to a beacon xmit slot. As above 1105 * this cannot fail to find a free one. 1106 */ 1107 avp->av_bslot = assign_bslot(sc); 1108 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1109 ("beacon slot %u not empty", avp->av_bslot)); 1110 sc->sc_bslot[avp->av_bslot] = vap; 1111 sc->sc_nbcnvaps++; 1112 } 1113 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1114 /* 1115 * Multple vaps are to transmit beacons and we 1116 * have h/w support for TSF adjusting; enable 1117 * use of staggered beacons. 1118 */ 1119 sc->sc_stagbeacons = 1; 1120 } 1121 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1122 } 1123 1124 ic->ic_opmode = ic_opmode; 1125 if (opmode != IEEE80211_M_WDS) { 1126 sc->sc_nvaps++; 1127 if (opmode == IEEE80211_M_STA) 1128 sc->sc_nstavaps++; 1129 if (opmode == IEEE80211_M_MBSS) 1130 sc->sc_nmeshvaps++; 1131 } 1132 switch (ic_opmode) { 1133 case IEEE80211_M_IBSS: 1134 sc->sc_opmode = HAL_M_IBSS; 1135 break; 1136 case IEEE80211_M_STA: 1137 sc->sc_opmode = HAL_M_STA; 1138 break; 1139 case IEEE80211_M_AHDEMO: 1140 #ifdef IEEE80211_SUPPORT_TDMA 1141 if (vap->iv_caps & IEEE80211_C_TDMA) { 1142 sc->sc_tdma = 1; 1143 /* NB: disable tsf adjust */ 1144 sc->sc_stagbeacons = 0; 1145 } 1146 /* 1147 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1148 * just ap mode. 1149 */ 1150 /* fall thru... */ 1151 #endif 1152 case IEEE80211_M_HOSTAP: 1153 case IEEE80211_M_MBSS: 1154 sc->sc_opmode = HAL_M_HOSTAP; 1155 break; 1156 case IEEE80211_M_MONITOR: 1157 sc->sc_opmode = HAL_M_MONITOR; 1158 break; 1159 default: 1160 /* XXX should not happen */ 1161 break; 1162 } 1163 if (sc->sc_hastsfadd) { 1164 /* 1165 * Configure whether or not TSF adjust should be done. 1166 */ 1167 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1168 } 1169 if (flags & IEEE80211_CLONE_NOBEACONS) { 1170 /* 1171 * Enable s/w beacon miss handling. 1172 */ 1173 sc->sc_swbmiss = 1; 1174 } 1175 ATH_UNLOCK(sc); 1176 1177 /* complete setup */ 1178 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1179 return vap; 1180 bad2: 1181 reclaim_address(sc, mac); 1182 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1183 bad: 1184 free(avp, M_80211_VAP); 1185 ATH_UNLOCK(sc); 1186 return NULL; 1187 } 1188 1189 static void 1190 ath_vap_delete(struct ieee80211vap *vap) 1191 { 1192 struct ieee80211com *ic = vap->iv_ic; 1193 struct ifnet *ifp = ic->ic_ifp; 1194 struct ath_softc *sc = ifp->if_softc; 1195 struct ath_hal *ah = sc->sc_ah; 1196 struct ath_vap *avp = ATH_VAP(vap); 1197 1198 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1199 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1200 /* 1201 * Quiesce the hardware while we remove the vap. In 1202 * particular we need to reclaim all references to 1203 * the vap state by any frames pending on the tx queues. 1204 */ 1205 ath_hal_intrset(ah, 0); /* disable interrupts */ 1206 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1207 /* XXX Do all frames from all vaps/nodes need draining here? */ 1208 ath_stoprecv(sc, 1); /* stop recv side */ 1209 } 1210 1211 ieee80211_vap_detach(vap); 1212 1213 /* 1214 * XXX Danger Will Robinson! Danger! 1215 * 1216 * Because ieee80211_vap_detach() can queue a frame (the station 1217 * diassociate message?) after we've drained the TXQ and 1218 * flushed the software TXQ, we will end up with a frame queued 1219 * to a node whose vap is about to be freed. 1220 * 1221 * To work around this, flush the hardware/software again. 1222 * This may be racy - the ath task may be running and the packet 1223 * may be being scheduled between sw->hw txq. Tsk. 1224 * 1225 * TODO: figure out why a new node gets allocated somewhere around 1226 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1227 * call!) 1228 */ 1229 1230 ath_draintxq(sc, ATH_RESET_DEFAULT); 1231 1232 ATH_LOCK(sc); 1233 /* 1234 * Reclaim beacon state. Note this must be done before 1235 * the vap instance is reclaimed as we may have a reference 1236 * to it in the buffer for the beacon frame. 1237 */ 1238 if (avp->av_bcbuf != NULL) { 1239 if (avp->av_bslot != -1) { 1240 sc->sc_bslot[avp->av_bslot] = NULL; 1241 sc->sc_nbcnvaps--; 1242 } 1243 ath_beacon_return(sc, avp->av_bcbuf); 1244 avp->av_bcbuf = NULL; 1245 if (sc->sc_nbcnvaps == 0) { 1246 sc->sc_stagbeacons = 0; 1247 if (sc->sc_hastsfadd) 1248 ath_hal_settsfadjust(sc->sc_ah, 0); 1249 } 1250 /* 1251 * Reclaim any pending mcast frames for the vap. 1252 */ 1253 ath_tx_draintxq(sc, &avp->av_mcastq); 1254 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1255 } 1256 /* 1257 * Update bookkeeping. 1258 */ 1259 if (vap->iv_opmode == IEEE80211_M_STA) { 1260 sc->sc_nstavaps--; 1261 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1262 sc->sc_swbmiss = 0; 1263 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1264 vap->iv_opmode == IEEE80211_M_MBSS) { 1265 reclaim_address(sc, vap->iv_myaddr); 1266 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1267 if (vap->iv_opmode == IEEE80211_M_MBSS) 1268 sc->sc_nmeshvaps--; 1269 } 1270 if (vap->iv_opmode != IEEE80211_M_WDS) 1271 sc->sc_nvaps--; 1272 #ifdef IEEE80211_SUPPORT_TDMA 1273 /* TDMA operation ceases when the last vap is destroyed */ 1274 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1275 sc->sc_tdma = 0; 1276 sc->sc_swbmiss = 0; 1277 } 1278 #endif 1279 free(avp, M_80211_VAP); 1280 1281 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1282 /* 1283 * Restart rx+tx machines if still running (RUNNING will 1284 * be reset if we just destroyed the last vap). 1285 */ 1286 if (ath_startrecv(sc) != 0) 1287 if_printf(ifp, "%s: unable to restart recv logic\n", 1288 __func__); 1289 if (sc->sc_beacons) { /* restart beacons */ 1290 #ifdef IEEE80211_SUPPORT_TDMA 1291 if (sc->sc_tdma) 1292 ath_tdma_config(sc, NULL); 1293 else 1294 #endif 1295 ath_beacon_config(sc, NULL); 1296 } 1297 ath_hal_intrset(ah, sc->sc_imask); 1298 } 1299 ATH_UNLOCK(sc); 1300 } 1301 1302 void 1303 ath_suspend(struct ath_softc *sc) 1304 { 1305 struct ifnet *ifp = sc->sc_ifp; 1306 struct ieee80211com *ic = ifp->if_l2com; 1307 1308 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1309 __func__, ifp->if_flags); 1310 1311 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1312 if (ic->ic_opmode == IEEE80211_M_STA) 1313 ath_stop(ifp); 1314 else 1315 ieee80211_suspend_all(ic); 1316 /* 1317 * NB: don't worry about putting the chip in low power 1318 * mode; pci will power off our socket on suspend and 1319 * CardBus detaches the device. 1320 */ 1321 } 1322 1323 /* 1324 * Reset the key cache since some parts do not reset the 1325 * contents on resume. First we clear all entries, then 1326 * re-load keys that the 802.11 layer assumes are setup 1327 * in h/w. 1328 */ 1329 static void 1330 ath_reset_keycache(struct ath_softc *sc) 1331 { 1332 struct ifnet *ifp = sc->sc_ifp; 1333 struct ieee80211com *ic = ifp->if_l2com; 1334 struct ath_hal *ah = sc->sc_ah; 1335 int i; 1336 1337 for (i = 0; i < sc->sc_keymax; i++) 1338 ath_hal_keyreset(ah, i); 1339 ieee80211_crypto_reload_keys(ic); 1340 } 1341 1342 void 1343 ath_resume(struct ath_softc *sc) 1344 { 1345 struct ifnet *ifp = sc->sc_ifp; 1346 struct ieee80211com *ic = ifp->if_l2com; 1347 struct ath_hal *ah = sc->sc_ah; 1348 HAL_STATUS status; 1349 1350 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1351 __func__, ifp->if_flags); 1352 1353 /* 1354 * Must reset the chip before we reload the 1355 * keycache as we were powered down on suspend. 1356 */ 1357 ath_hal_reset(ah, sc->sc_opmode, 1358 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1359 AH_FALSE, &status); 1360 ath_reset_keycache(sc); 1361 1362 /* Let DFS at it in case it's a DFS channel */ 1363 ath_dfs_radar_enable(sc, ic->ic_curchan); 1364 1365 /* Restore the LED configuration */ 1366 ath_led_config(sc); 1367 ath_hal_setledstate(ah, HAL_LED_INIT); 1368 1369 if (sc->sc_resume_up) { 1370 if (ic->ic_opmode == IEEE80211_M_STA) { 1371 ath_init(sc); 1372 ath_hal_setledstate(ah, HAL_LED_RUN); 1373 /* 1374 * Program the beacon registers using the last rx'd 1375 * beacon frame and enable sync on the next beacon 1376 * we see. This should handle the case where we 1377 * wakeup and find the same AP and also the case where 1378 * we wakeup and need to roam. For the latter we 1379 * should get bmiss events that trigger a roam. 1380 */ 1381 ath_beacon_config(sc, NULL); 1382 sc->sc_syncbeacon = 1; 1383 } else 1384 ieee80211_resume_all(ic); 1385 } 1386 1387 /* XXX beacons ? */ 1388 } 1389 1390 void 1391 ath_shutdown(struct ath_softc *sc) 1392 { 1393 struct ifnet *ifp = sc->sc_ifp; 1394 1395 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1396 __func__, ifp->if_flags); 1397 1398 ath_stop(ifp); 1399 /* NB: no point powering down chip as we're about to reboot */ 1400 } 1401 1402 /* 1403 * Interrupt handler. Most of the actual processing is deferred. 1404 */ 1405 void 1406 ath_intr(void *arg) 1407 { 1408 struct ath_softc *sc = arg; 1409 struct ifnet *ifp = sc->sc_ifp; 1410 struct ath_hal *ah = sc->sc_ah; 1411 HAL_INT status = 0; 1412 uint32_t txqs; 1413 1414 /* 1415 * If we're inside a reset path, just print a warning and 1416 * clear the ISR. The reset routine will finish it for us. 1417 */ 1418 ATH_PCU_LOCK(sc); 1419 if (sc->sc_inreset_cnt) { 1420 HAL_INT status; 1421 ath_hal_getisr(ah, &status); /* clear ISR */ 1422 ath_hal_intrset(ah, 0); /* disable further intr's */ 1423 DPRINTF(sc, ATH_DEBUG_ANY, 1424 "%s: in reset, ignoring: status=0x%x\n", 1425 __func__, status); 1426 ATH_PCU_UNLOCK(sc); 1427 return; 1428 } 1429 1430 if (sc->sc_invalid) { 1431 /* 1432 * The hardware is not ready/present, don't touch anything. 1433 * Note this can happen early on if the IRQ is shared. 1434 */ 1435 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1436 ATH_PCU_UNLOCK(sc); 1437 return; 1438 } 1439 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1440 ATH_PCU_UNLOCK(sc); 1441 return; 1442 } 1443 1444 if ((ifp->if_flags & IFF_UP) == 0 || 1445 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1446 HAL_INT status; 1447 1448 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1449 __func__, ifp->if_flags); 1450 ath_hal_getisr(ah, &status); /* clear ISR */ 1451 ath_hal_intrset(ah, 0); /* disable further intr's */ 1452 ATH_PCU_UNLOCK(sc); 1453 return; 1454 } 1455 1456 /* 1457 * Figure out the reason(s) for the interrupt. Note 1458 * that the hal returns a pseudo-ISR that may include 1459 * bits we haven't explicitly enabled so we mask the 1460 * value to insure we only process bits we requested. 1461 */ 1462 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1463 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1464 CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status); 1465 #ifdef ATH_KTR_INTR_DEBUG 1466 CTR5(ATH_KTR_INTR, 1467 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1468 ah->ah_intrstate[0], 1469 ah->ah_intrstate[1], 1470 ah->ah_intrstate[2], 1471 ah->ah_intrstate[3], 1472 ah->ah_intrstate[6]); 1473 #endif 1474 1475 /* Squirrel away SYNC interrupt debugging */ 1476 if (ah->ah_syncstate != 0) { 1477 int i; 1478 for (i = 0; i < 32; i++) 1479 if (ah->ah_syncstate & (i << i)) 1480 sc->sc_intr_stats.sync_intr[i]++; 1481 } 1482 1483 status &= sc->sc_imask; /* discard unasked for bits */ 1484 1485 /* Short-circuit un-handled interrupts */ 1486 if (status == 0x0) { 1487 ATH_PCU_UNLOCK(sc); 1488 return; 1489 } 1490 1491 /* 1492 * Take a note that we're inside the interrupt handler, so 1493 * the reset routines know to wait. 1494 */ 1495 sc->sc_intr_cnt++; 1496 ATH_PCU_UNLOCK(sc); 1497 1498 /* 1499 * Handle the interrupt. We won't run concurrent with the reset 1500 * or channel change routines as they'll wait for sc_intr_cnt 1501 * to be 0 before continuing. 1502 */ 1503 if (status & HAL_INT_FATAL) { 1504 sc->sc_stats.ast_hardware++; 1505 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1506 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1507 } else { 1508 if (status & HAL_INT_SWBA) { 1509 /* 1510 * Software beacon alert--time to send a beacon. 1511 * Handle beacon transmission directly; deferring 1512 * this is too slow to meet timing constraints 1513 * under load. 1514 */ 1515 #ifdef IEEE80211_SUPPORT_TDMA 1516 if (sc->sc_tdma) { 1517 if (sc->sc_tdmaswba == 0) { 1518 struct ieee80211com *ic = ifp->if_l2com; 1519 struct ieee80211vap *vap = 1520 TAILQ_FIRST(&ic->ic_vaps); 1521 ath_tdma_beacon_send(sc, vap); 1522 sc->sc_tdmaswba = 1523 vap->iv_tdma->tdma_bintval; 1524 } else 1525 sc->sc_tdmaswba--; 1526 } else 1527 #endif 1528 { 1529 ath_beacon_proc(sc, 0); 1530 #ifdef IEEE80211_SUPPORT_SUPERG 1531 /* 1532 * Schedule the rx taskq in case there's no 1533 * traffic so any frames held on the staging 1534 * queue are aged and potentially flushed. 1535 */ 1536 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1537 #endif 1538 } 1539 } 1540 if (status & HAL_INT_RXEOL) { 1541 int imask; 1542 CTR0(ATH_KTR_ERR, "ath_intr: RXEOL"); 1543 ATH_PCU_LOCK(sc); 1544 /* 1545 * NB: the hardware should re-read the link when 1546 * RXE bit is written, but it doesn't work at 1547 * least on older hardware revs. 1548 */ 1549 sc->sc_stats.ast_rxeol++; 1550 /* 1551 * Disable RXEOL/RXORN - prevent an interrupt 1552 * storm until the PCU logic can be reset. 1553 * In case the interface is reset some other 1554 * way before "sc_kickpcu" is called, don't 1555 * modify sc_imask - that way if it is reset 1556 * by a call to ath_reset() somehow, the 1557 * interrupt mask will be correctly reprogrammed. 1558 */ 1559 imask = sc->sc_imask; 1560 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1561 ath_hal_intrset(ah, imask); 1562 /* 1563 * Only blank sc_rxlink if we've not yet kicked 1564 * the PCU. 1565 * 1566 * This isn't entirely correct - the correct solution 1567 * would be to have a PCU lock and engage that for 1568 * the duration of the PCU fiddling; which would include 1569 * running the RX process. Otherwise we could end up 1570 * messing up the RX descriptor chain and making the 1571 * RX desc list much shorter. 1572 */ 1573 if (! sc->sc_kickpcu) 1574 sc->sc_rxlink = NULL; 1575 sc->sc_kickpcu = 1; 1576 /* 1577 * Enqueue an RX proc, to handled whatever 1578 * is in the RX queue. 1579 * This will then kick the PCU. 1580 */ 1581 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1582 ATH_PCU_UNLOCK(sc); 1583 } 1584 if (status & HAL_INT_TXURN) { 1585 sc->sc_stats.ast_txurn++; 1586 /* bump tx trigger level */ 1587 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1588 } 1589 if (status & HAL_INT_RX) { 1590 sc->sc_stats.ast_rx_intr++; 1591 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1592 } 1593 if (status & HAL_INT_TX) { 1594 sc->sc_stats.ast_tx_intr++; 1595 /* 1596 * Grab all the currently set bits in the HAL txq bitmap 1597 * and blank them. This is the only place we should be 1598 * doing this. 1599 */ 1600 ATH_PCU_LOCK(sc); 1601 txqs = 0xffffffff; 1602 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1603 sc->sc_txq_active |= txqs; 1604 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1605 ATH_PCU_UNLOCK(sc); 1606 } 1607 if (status & HAL_INT_BMISS) { 1608 sc->sc_stats.ast_bmiss++; 1609 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1610 } 1611 if (status & HAL_INT_GTT) 1612 sc->sc_stats.ast_tx_timeout++; 1613 if (status & HAL_INT_CST) 1614 sc->sc_stats.ast_tx_cst++; 1615 if (status & HAL_INT_MIB) { 1616 sc->sc_stats.ast_mib++; 1617 ATH_PCU_LOCK(sc); 1618 /* 1619 * Disable interrupts until we service the MIB 1620 * interrupt; otherwise it will continue to fire. 1621 */ 1622 ath_hal_intrset(ah, 0); 1623 /* 1624 * Let the hal handle the event. We assume it will 1625 * clear whatever condition caused the interrupt. 1626 */ 1627 ath_hal_mibevent(ah, &sc->sc_halstats); 1628 /* 1629 * Don't reset the interrupt if we've just 1630 * kicked the PCU, or we may get a nested 1631 * RXEOL before the rxproc has had a chance 1632 * to run. 1633 */ 1634 if (sc->sc_kickpcu == 0) 1635 ath_hal_intrset(ah, sc->sc_imask); 1636 ATH_PCU_UNLOCK(sc); 1637 } 1638 if (status & HAL_INT_RXORN) { 1639 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1640 CTR0(ATH_KTR_ERR, "ath_intr: RXORN"); 1641 sc->sc_stats.ast_rxorn++; 1642 } 1643 } 1644 ATH_PCU_LOCK(sc); 1645 sc->sc_intr_cnt--; 1646 ATH_PCU_UNLOCK(sc); 1647 } 1648 1649 static void 1650 ath_fatal_proc(void *arg, int pending) 1651 { 1652 struct ath_softc *sc = arg; 1653 struct ifnet *ifp = sc->sc_ifp; 1654 u_int32_t *state; 1655 u_int32_t len; 1656 void *sp; 1657 1658 if_printf(ifp, "hardware error; resetting\n"); 1659 /* 1660 * Fatal errors are unrecoverable. Typically these 1661 * are caused by DMA errors. Collect h/w state from 1662 * the hal so we can diagnose what's going on. 1663 */ 1664 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1665 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1666 state = sp; 1667 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1668 state[0], state[1] , state[2], state[3], 1669 state[4], state[5]); 1670 } 1671 ath_reset(ifp, ATH_RESET_NOLOSS); 1672 } 1673 1674 static void 1675 ath_bmiss_vap(struct ieee80211vap *vap) 1676 { 1677 /* 1678 * Workaround phantom bmiss interrupts by sanity-checking 1679 * the time of our last rx'd frame. If it is within the 1680 * beacon miss interval then ignore the interrupt. If it's 1681 * truly a bmiss we'll get another interrupt soon and that'll 1682 * be dispatched up for processing. Note this applies only 1683 * for h/w beacon miss events. 1684 */ 1685 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1686 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1687 struct ath_softc *sc = ifp->if_softc; 1688 u_int64_t lastrx = sc->sc_lastrx; 1689 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1690 /* XXX should take a locked ref to iv_bss */ 1691 u_int bmisstimeout = 1692 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1693 1694 DPRINTF(sc, ATH_DEBUG_BEACON, 1695 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1696 __func__, (unsigned long long) tsf, 1697 (unsigned long long)(tsf - lastrx), 1698 (unsigned long long) lastrx, bmisstimeout); 1699 1700 if (tsf - lastrx <= bmisstimeout) { 1701 sc->sc_stats.ast_bmiss_phantom++; 1702 return; 1703 } 1704 } 1705 ATH_VAP(vap)->av_bmiss(vap); 1706 } 1707 1708 static int 1709 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1710 { 1711 uint32_t rsize; 1712 void *sp; 1713 1714 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1715 return 0; 1716 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1717 *hangs = *(uint32_t *)sp; 1718 return 1; 1719 } 1720 1721 static void 1722 ath_bmiss_proc(void *arg, int pending) 1723 { 1724 struct ath_softc *sc = arg; 1725 struct ifnet *ifp = sc->sc_ifp; 1726 uint32_t hangs; 1727 1728 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1729 1730 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1731 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1732 ath_reset(ifp, ATH_RESET_NOLOSS); 1733 } else 1734 ieee80211_beacon_miss(ifp->if_l2com); 1735 } 1736 1737 /* 1738 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1739 * calcs together with WME. If necessary disable the crypto 1740 * hardware and mark the 802.11 state so keys will be setup 1741 * with the MIC work done in software. 1742 */ 1743 static void 1744 ath_settkipmic(struct ath_softc *sc) 1745 { 1746 struct ifnet *ifp = sc->sc_ifp; 1747 struct ieee80211com *ic = ifp->if_l2com; 1748 1749 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1750 if (ic->ic_flags & IEEE80211_F_WME) { 1751 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1752 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1753 } else { 1754 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1755 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1756 } 1757 } 1758 } 1759 1760 static void 1761 ath_init(void *arg) 1762 { 1763 struct ath_softc *sc = (struct ath_softc *) arg; 1764 struct ifnet *ifp = sc->sc_ifp; 1765 struct ieee80211com *ic = ifp->if_l2com; 1766 struct ath_hal *ah = sc->sc_ah; 1767 HAL_STATUS status; 1768 1769 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1770 __func__, ifp->if_flags); 1771 1772 ATH_LOCK(sc); 1773 /* 1774 * Stop anything previously setup. This is safe 1775 * whether this is the first time through or not. 1776 */ 1777 ath_stop_locked(ifp); 1778 1779 /* 1780 * The basic interface to setting the hardware in a good 1781 * state is ``reset''. On return the hardware is known to 1782 * be powered up and with interrupts disabled. This must 1783 * be followed by initialization of the appropriate bits 1784 * and then setup of the interrupt mask. 1785 */ 1786 ath_settkipmic(sc); 1787 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1788 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1789 status); 1790 ATH_UNLOCK(sc); 1791 return; 1792 } 1793 ath_chan_change(sc, ic->ic_curchan); 1794 1795 /* Let DFS at it in case it's a DFS channel */ 1796 ath_dfs_radar_enable(sc, ic->ic_curchan); 1797 1798 /* 1799 * Likewise this is set during reset so update 1800 * state cached in the driver. 1801 */ 1802 sc->sc_diversity = ath_hal_getdiversity(ah); 1803 sc->sc_lastlongcal = 0; 1804 sc->sc_resetcal = 1; 1805 sc->sc_lastcalreset = 0; 1806 sc->sc_lastani = 0; 1807 sc->sc_lastshortcal = 0; 1808 sc->sc_doresetcal = AH_FALSE; 1809 /* 1810 * Beacon timers were cleared here; give ath_newstate() 1811 * a hint that the beacon timers should be poked when 1812 * things transition to the RUN state. 1813 */ 1814 sc->sc_beacons = 0; 1815 1816 /* 1817 * Initial aggregation settings. 1818 */ 1819 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 1820 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1821 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1822 1823 /* 1824 * Setup the hardware after reset: the key cache 1825 * is filled as needed and the receive engine is 1826 * set going. Frame transmit is handled entirely 1827 * in the frame output path; there's nothing to do 1828 * here except setup the interrupt mask. 1829 */ 1830 if (ath_startrecv(sc) != 0) { 1831 if_printf(ifp, "unable to start recv logic\n"); 1832 ATH_UNLOCK(sc); 1833 return; 1834 } 1835 1836 /* 1837 * Enable interrupts. 1838 */ 1839 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1840 | HAL_INT_RXEOL | HAL_INT_RXORN 1841 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1842 /* 1843 * Enable MIB interrupts when there are hardware phy counters. 1844 * Note we only do this (at the moment) for station mode. 1845 */ 1846 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1847 sc->sc_imask |= HAL_INT_MIB; 1848 1849 /* Enable global TX timeout and carrier sense timeout if available */ 1850 if (ath_hal_gtxto_supported(ah)) 1851 sc->sc_imask |= HAL_INT_GTT; 1852 1853 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1854 __func__, sc->sc_imask); 1855 1856 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1857 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1858 ath_hal_intrset(ah, sc->sc_imask); 1859 1860 ATH_UNLOCK(sc); 1861 1862 #ifdef ATH_TX99_DIAG 1863 if (sc->sc_tx99 != NULL) 1864 sc->sc_tx99->start(sc->sc_tx99); 1865 else 1866 #endif 1867 ieee80211_start_all(ic); /* start all vap's */ 1868 } 1869 1870 static void 1871 ath_stop_locked(struct ifnet *ifp) 1872 { 1873 struct ath_softc *sc = ifp->if_softc; 1874 struct ath_hal *ah = sc->sc_ah; 1875 1876 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1877 __func__, sc->sc_invalid, ifp->if_flags); 1878 1879 ATH_LOCK_ASSERT(sc); 1880 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1881 /* 1882 * Shutdown the hardware and driver: 1883 * reset 802.11 state machine 1884 * turn off timers 1885 * disable interrupts 1886 * turn off the radio 1887 * clear transmit machinery 1888 * clear receive machinery 1889 * drain and release tx queues 1890 * reclaim beacon resources 1891 * power down hardware 1892 * 1893 * Note that some of this work is not possible if the 1894 * hardware is gone (invalid). 1895 */ 1896 #ifdef ATH_TX99_DIAG 1897 if (sc->sc_tx99 != NULL) 1898 sc->sc_tx99->stop(sc->sc_tx99); 1899 #endif 1900 callout_stop(&sc->sc_wd_ch); 1901 sc->sc_wd_timer = 0; 1902 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1903 if (!sc->sc_invalid) { 1904 if (sc->sc_softled) { 1905 callout_stop(&sc->sc_ledtimer); 1906 ath_hal_gpioset(ah, sc->sc_ledpin, 1907 !sc->sc_ledon); 1908 sc->sc_blinking = 0; 1909 } 1910 ath_hal_intrset(ah, 0); 1911 } 1912 ath_draintxq(sc, ATH_RESET_DEFAULT); 1913 if (!sc->sc_invalid) { 1914 ath_stoprecv(sc, 1); 1915 ath_hal_phydisable(ah); 1916 } else 1917 sc->sc_rxlink = NULL; 1918 ath_beacon_free(sc); /* XXX not needed */ 1919 } 1920 } 1921 1922 #define MAX_TXRX_ITERATIONS 1000 1923 static void 1924 ath_txrx_stop_locked(struct ath_softc *sc) 1925 { 1926 int i = MAX_TXRX_ITERATIONS; 1927 1928 ATH_UNLOCK_ASSERT(sc); 1929 ATH_PCU_LOCK_ASSERT(sc); 1930 1931 /* 1932 * Sleep until all the pending operations have completed. 1933 * 1934 * The caller must ensure that reset has been incremented 1935 * or the pending operations may continue being queued. 1936 */ 1937 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 1938 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 1939 if (i <= 0) 1940 break; 1941 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 1942 i--; 1943 } 1944 1945 if (i <= 0) 1946 device_printf(sc->sc_dev, 1947 "%s: didn't finish after %d iterations\n", 1948 __func__, MAX_TXRX_ITERATIONS); 1949 } 1950 #undef MAX_TXRX_ITERATIONS 1951 1952 #if 0 1953 static void 1954 ath_txrx_stop(struct ath_softc *sc) 1955 { 1956 ATH_UNLOCK_ASSERT(sc); 1957 ATH_PCU_UNLOCK_ASSERT(sc); 1958 1959 ATH_PCU_LOCK(sc); 1960 ath_txrx_stop_locked(sc); 1961 ATH_PCU_UNLOCK(sc); 1962 } 1963 #endif 1964 1965 static void 1966 ath_txrx_start(struct ath_softc *sc) 1967 { 1968 1969 taskqueue_unblock(sc->sc_tq); 1970 } 1971 1972 /* 1973 * Grab the reset lock, and wait around until noone else 1974 * is trying to do anything with it. 1975 * 1976 * This is totally horrible but we can't hold this lock for 1977 * long enough to do TX/RX or we end up with net80211/ip stack 1978 * LORs and eventual deadlock. 1979 * 1980 * "dowait" signals whether to spin, waiting for the reset 1981 * lock count to reach 0. This should (for now) only be used 1982 * during the reset path, as the rest of the code may not 1983 * be locking-reentrant enough to behave correctly. 1984 * 1985 * Another, cleaner way should be found to serialise all of 1986 * these operations. 1987 */ 1988 #define MAX_RESET_ITERATIONS 10 1989 static int 1990 ath_reset_grablock(struct ath_softc *sc, int dowait) 1991 { 1992 int w = 0; 1993 int i = MAX_RESET_ITERATIONS; 1994 1995 ATH_PCU_LOCK_ASSERT(sc); 1996 do { 1997 if (sc->sc_inreset_cnt == 0) { 1998 w = 1; 1999 break; 2000 } 2001 if (dowait == 0) { 2002 w = 0; 2003 break; 2004 } 2005 ATH_PCU_UNLOCK(sc); 2006 pause("ath_reset_grablock", 1); 2007 i--; 2008 ATH_PCU_LOCK(sc); 2009 } while (i > 0); 2010 2011 /* 2012 * We always increment the refcounter, regardless 2013 * of whether we succeeded to get it in an exclusive 2014 * way. 2015 */ 2016 sc->sc_inreset_cnt++; 2017 2018 if (i <= 0) 2019 device_printf(sc->sc_dev, 2020 "%s: didn't finish after %d iterations\n", 2021 __func__, MAX_RESET_ITERATIONS); 2022 2023 if (w == 0) 2024 device_printf(sc->sc_dev, 2025 "%s: warning, recursive reset path!\n", 2026 __func__); 2027 2028 return w; 2029 } 2030 #undef MAX_RESET_ITERATIONS 2031 2032 /* 2033 * XXX TODO: write ath_reset_releaselock 2034 */ 2035 2036 static void 2037 ath_stop(struct ifnet *ifp) 2038 { 2039 struct ath_softc *sc = ifp->if_softc; 2040 2041 ATH_LOCK(sc); 2042 ath_stop_locked(ifp); 2043 ATH_UNLOCK(sc); 2044 } 2045 2046 /* 2047 * Reset the hardware w/o losing operational state. This is 2048 * basically a more efficient way of doing ath_stop, ath_init, 2049 * followed by state transitions to the current 802.11 2050 * operational state. Used to recover from various errors and 2051 * to reset or reload hardware state. 2052 */ 2053 int 2054 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2055 { 2056 struct ath_softc *sc = ifp->if_softc; 2057 struct ieee80211com *ic = ifp->if_l2com; 2058 struct ath_hal *ah = sc->sc_ah; 2059 HAL_STATUS status; 2060 int i; 2061 2062 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2063 2064 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2065 ATH_PCU_UNLOCK_ASSERT(sc); 2066 ATH_UNLOCK_ASSERT(sc); 2067 2068 /* Try to (stop any further TX/RX from occuring */ 2069 taskqueue_block(sc->sc_tq); 2070 2071 ATH_PCU_LOCK(sc); 2072 ath_hal_intrset(ah, 0); /* disable interrupts */ 2073 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2074 if (ath_reset_grablock(sc, 1) == 0) { 2075 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2076 __func__); 2077 } 2078 ATH_PCU_UNLOCK(sc); 2079 2080 /* 2081 * Should now wait for pending TX/RX to complete 2082 * and block future ones from occuring. This needs to be 2083 * done before the TX queue is drained. 2084 */ 2085 ath_draintxq(sc, reset_type); /* stop xmit side */ 2086 2087 /* 2088 * Regardless of whether we're doing a no-loss flush or 2089 * not, stop the PCU and handle what's in the RX queue. 2090 * That way frames aren't dropped which shouldn't be. 2091 */ 2092 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2093 ath_rx_proc(sc, 0); 2094 2095 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2096 /* NB: indicate channel change so we do a full reset */ 2097 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2098 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2099 __func__, status); 2100 sc->sc_diversity = ath_hal_getdiversity(ah); 2101 2102 /* Let DFS at it in case it's a DFS channel */ 2103 ath_dfs_radar_enable(sc, ic->ic_curchan); 2104 2105 if (ath_startrecv(sc) != 0) /* restart recv */ 2106 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2107 /* 2108 * We may be doing a reset in response to an ioctl 2109 * that changes the channel so update any state that 2110 * might change as a result. 2111 */ 2112 ath_chan_change(sc, ic->ic_curchan); 2113 if (sc->sc_beacons) { /* restart beacons */ 2114 #ifdef IEEE80211_SUPPORT_TDMA 2115 if (sc->sc_tdma) 2116 ath_tdma_config(sc, NULL); 2117 else 2118 #endif 2119 ath_beacon_config(sc, NULL); 2120 } 2121 2122 /* 2123 * Release the reset lock and re-enable interrupts here. 2124 * If an interrupt was being processed in ath_intr(), 2125 * it would disable interrupts at this point. So we have 2126 * to atomically enable interrupts and decrement the 2127 * reset counter - this way ath_intr() doesn't end up 2128 * disabling interrupts without a corresponding enable 2129 * in the rest or channel change path. 2130 */ 2131 ATH_PCU_LOCK(sc); 2132 sc->sc_inreset_cnt--; 2133 /* XXX only do this if sc_inreset_cnt == 0? */ 2134 ath_hal_intrset(ah, sc->sc_imask); 2135 ATH_PCU_UNLOCK(sc); 2136 2137 /* 2138 * TX and RX can be started here. If it were started with 2139 * sc_inreset_cnt > 0, the TX and RX path would abort. 2140 * Thus if this is a nested call through the reset or 2141 * channel change code, TX completion will occur but 2142 * RX completion and ath_start / ath_tx_start will not 2143 * run. 2144 */ 2145 2146 /* Restart TX/RX as needed */ 2147 ath_txrx_start(sc); 2148 2149 /* XXX Restart TX completion and pending TX */ 2150 if (reset_type == ATH_RESET_NOLOSS) { 2151 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2152 if (ATH_TXQ_SETUP(sc, i)) { 2153 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2154 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2155 ath_txq_sched(sc, &sc->sc_txq[i]); 2156 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2157 } 2158 } 2159 } 2160 2161 /* 2162 * This may have been set during an ath_start() call which 2163 * set this once it detected a concurrent TX was going on. 2164 * So, clear it. 2165 */ 2166 IF_LOCK(&ifp->if_snd); 2167 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2168 IF_UNLOCK(&ifp->if_snd); 2169 2170 /* Handle any frames in the TX queue */ 2171 /* 2172 * XXX should this be done by the caller, rather than 2173 * ath_reset() ? 2174 */ 2175 ath_start(ifp); /* restart xmit */ 2176 return 0; 2177 } 2178 2179 static int 2180 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2181 { 2182 struct ieee80211com *ic = vap->iv_ic; 2183 struct ifnet *ifp = ic->ic_ifp; 2184 struct ath_softc *sc = ifp->if_softc; 2185 struct ath_hal *ah = sc->sc_ah; 2186 2187 switch (cmd) { 2188 case IEEE80211_IOC_TXPOWER: 2189 /* 2190 * If per-packet TPC is enabled, then we have nothing 2191 * to do; otherwise we need to force the global limit. 2192 * All this can happen directly; no need to reset. 2193 */ 2194 if (!ath_hal_gettpc(ah)) 2195 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2196 return 0; 2197 } 2198 /* XXX? Full or NOLOSS? */ 2199 return ath_reset(ifp, ATH_RESET_FULL); 2200 } 2201 2202 struct ath_buf * 2203 _ath_getbuf_locked(struct ath_softc *sc) 2204 { 2205 struct ath_buf *bf; 2206 2207 ATH_TXBUF_LOCK_ASSERT(sc); 2208 2209 bf = TAILQ_FIRST(&sc->sc_txbuf); 2210 if (bf == NULL) { 2211 sc->sc_stats.ast_tx_getnobuf++; 2212 } else { 2213 if (bf->bf_flags & ATH_BUF_BUSY) { 2214 sc->sc_stats.ast_tx_getbusybuf++; 2215 bf = NULL; 2216 } 2217 } 2218 2219 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) 2220 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2221 else 2222 bf = NULL; 2223 2224 if (bf == NULL) { 2225 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2226 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2227 "out of xmit buffers" : "xmit buffer busy"); 2228 return NULL; 2229 } 2230 2231 /* Valid bf here; clear some basic fields */ 2232 bf->bf_next = NULL; /* XXX just to be sure */ 2233 bf->bf_last = NULL; /* XXX again, just to be sure */ 2234 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2235 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2236 2237 return bf; 2238 } 2239 2240 /* 2241 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2242 * can't be thrown back on the queue as they could still be 2243 * in use by the hardware. 2244 * 2245 * This duplicates the buffer, or returns NULL. 2246 * 2247 * The descriptor is also copied but the link pointers and 2248 * the DMA segments aren't copied; this frame should thus 2249 * be again passed through the descriptor setup/chain routines 2250 * so the link is correct. 2251 * 2252 * The caller must free the buffer using ath_freebuf(). 2253 * 2254 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2255 * XXX in the TX pathway when retries are needed. 2256 * XXX Figure out how to keep some buffers free, or factor the 2257 * XXX number of busy buffers into the xmit path (ath_start()) 2258 * XXX so we don't over-commit. 2259 */ 2260 struct ath_buf * 2261 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2262 { 2263 struct ath_buf *tbf; 2264 2265 tbf = ath_getbuf(sc); 2266 if (tbf == NULL) 2267 return NULL; /* XXX failure? Why? */ 2268 2269 /* Copy basics */ 2270 tbf->bf_next = NULL; 2271 tbf->bf_nseg = bf->bf_nseg; 2272 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2273 tbf->bf_status = bf->bf_status; 2274 tbf->bf_m = bf->bf_m; 2275 tbf->bf_node = bf->bf_node; 2276 /* will be setup by the chain/setup function */ 2277 tbf->bf_lastds = NULL; 2278 /* for now, last == self */ 2279 tbf->bf_last = tbf; 2280 tbf->bf_comp = bf->bf_comp; 2281 2282 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2283 2284 /* The caller has to re-init the descriptor + links */ 2285 2286 /* Copy state */ 2287 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2288 2289 return tbf; 2290 } 2291 2292 struct ath_buf * 2293 ath_getbuf(struct ath_softc *sc) 2294 { 2295 struct ath_buf *bf; 2296 2297 ATH_TXBUF_LOCK(sc); 2298 bf = _ath_getbuf_locked(sc); 2299 ATH_TXBUF_UNLOCK(sc); 2300 if (bf == NULL) { 2301 struct ifnet *ifp = sc->sc_ifp; 2302 2303 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2304 sc->sc_stats.ast_tx_qstop++; 2305 IF_LOCK(&ifp->if_snd); 2306 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2307 IF_UNLOCK(&ifp->if_snd); 2308 } 2309 return bf; 2310 } 2311 2312 void 2313 ath_start(struct ifnet *ifp) 2314 { 2315 struct ath_softc *sc = ifp->if_softc; 2316 struct ieee80211_node *ni; 2317 struct ath_buf *bf; 2318 struct mbuf *m, *next; 2319 ath_bufhead frags; 2320 2321 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2322 return; 2323 2324 /* XXX is it ok to hold the ATH_LOCK here? */ 2325 ATH_PCU_LOCK(sc); 2326 if (sc->sc_inreset_cnt > 0) { 2327 device_printf(sc->sc_dev, 2328 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2329 ATH_PCU_UNLOCK(sc); 2330 IF_LOCK(&ifp->if_snd); 2331 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2332 IF_UNLOCK(&ifp->if_snd); 2333 return; 2334 } 2335 sc->sc_txstart_cnt++; 2336 ATH_PCU_UNLOCK(sc); 2337 2338 for (;;) { 2339 /* 2340 * Grab a TX buffer and associated resources. 2341 */ 2342 bf = ath_getbuf(sc); 2343 if (bf == NULL) 2344 break; 2345 2346 IFQ_DEQUEUE(&ifp->if_snd, m); 2347 if (m == NULL) { 2348 ATH_TXBUF_LOCK(sc); 2349 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2350 ATH_TXBUF_UNLOCK(sc); 2351 break; 2352 } 2353 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2354 /* 2355 * Check for fragmentation. If this frame 2356 * has been broken up verify we have enough 2357 * buffers to send all the fragments so all 2358 * go out or none... 2359 */ 2360 TAILQ_INIT(&frags); 2361 if ((m->m_flags & M_FRAG) && 2362 !ath_txfrag_setup(sc, &frags, m, ni)) { 2363 DPRINTF(sc, ATH_DEBUG_XMIT, 2364 "%s: out of txfrag buffers\n", __func__); 2365 sc->sc_stats.ast_tx_nofrag++; 2366 ifp->if_oerrors++; 2367 ath_freetx(m); 2368 goto bad; 2369 } 2370 ifp->if_opackets++; 2371 nextfrag: 2372 /* 2373 * Pass the frame to the h/w for transmission. 2374 * Fragmented frames have each frag chained together 2375 * with m_nextpkt. We know there are sufficient ath_buf's 2376 * to send all the frags because of work done by 2377 * ath_txfrag_setup. We leave m_nextpkt set while 2378 * calling ath_tx_start so it can use it to extend the 2379 * the tx duration to cover the subsequent frag and 2380 * so it can reclaim all the mbufs in case of an error; 2381 * ath_tx_start clears m_nextpkt once it commits to 2382 * handing the frame to the hardware. 2383 */ 2384 next = m->m_nextpkt; 2385 if (ath_tx_start(sc, ni, bf, m)) { 2386 bad: 2387 ifp->if_oerrors++; 2388 reclaim: 2389 bf->bf_m = NULL; 2390 bf->bf_node = NULL; 2391 ATH_TXBUF_LOCK(sc); 2392 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2393 ath_txfrag_cleanup(sc, &frags, ni); 2394 ATH_TXBUF_UNLOCK(sc); 2395 if (ni != NULL) 2396 ieee80211_free_node(ni); 2397 continue; 2398 } 2399 if (next != NULL) { 2400 /* 2401 * Beware of state changing between frags. 2402 * XXX check sta power-save state? 2403 */ 2404 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2405 DPRINTF(sc, ATH_DEBUG_XMIT, 2406 "%s: flush fragmented packet, state %s\n", 2407 __func__, 2408 ieee80211_state_name[ni->ni_vap->iv_state]); 2409 ath_freetx(next); 2410 goto reclaim; 2411 } 2412 m = next; 2413 bf = TAILQ_FIRST(&frags); 2414 KASSERT(bf != NULL, ("no buf for txfrag")); 2415 TAILQ_REMOVE(&frags, bf, bf_list); 2416 goto nextfrag; 2417 } 2418 2419 sc->sc_wd_timer = 5; 2420 } 2421 2422 ATH_PCU_LOCK(sc); 2423 sc->sc_txstart_cnt--; 2424 ATH_PCU_UNLOCK(sc); 2425 } 2426 2427 static int 2428 ath_media_change(struct ifnet *ifp) 2429 { 2430 int error = ieee80211_media_change(ifp); 2431 /* NB: only the fixed rate can change and that doesn't need a reset */ 2432 return (error == ENETRESET ? 0 : error); 2433 } 2434 2435 /* 2436 * Block/unblock tx+rx processing while a key change is done. 2437 * We assume the caller serializes key management operations 2438 * so we only need to worry about synchronization with other 2439 * uses that originate in the driver. 2440 */ 2441 static void 2442 ath_key_update_begin(struct ieee80211vap *vap) 2443 { 2444 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2445 struct ath_softc *sc = ifp->if_softc; 2446 2447 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2448 taskqueue_block(sc->sc_tq); 2449 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2450 } 2451 2452 static void 2453 ath_key_update_end(struct ieee80211vap *vap) 2454 { 2455 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2456 struct ath_softc *sc = ifp->if_softc; 2457 2458 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2459 IF_UNLOCK(&ifp->if_snd); 2460 taskqueue_unblock(sc->sc_tq); 2461 } 2462 2463 static void 2464 ath_update_promisc(struct ifnet *ifp) 2465 { 2466 struct ath_softc *sc = ifp->if_softc; 2467 u_int32_t rfilt; 2468 2469 /* configure rx filter */ 2470 rfilt = ath_calcrxfilter(sc); 2471 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2472 2473 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2474 } 2475 2476 static void 2477 ath_update_mcast(struct ifnet *ifp) 2478 { 2479 struct ath_softc *sc = ifp->if_softc; 2480 u_int32_t mfilt[2]; 2481 2482 /* calculate and install multicast filter */ 2483 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2484 struct ifmultiaddr *ifma; 2485 /* 2486 * Merge multicast addresses to form the hardware filter. 2487 */ 2488 mfilt[0] = mfilt[1] = 0; 2489 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2490 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2491 caddr_t dl; 2492 u_int32_t val; 2493 u_int8_t pos; 2494 2495 /* calculate XOR of eight 6bit values */ 2496 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2497 val = LE_READ_4(dl + 0); 2498 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2499 val = LE_READ_4(dl + 3); 2500 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2501 pos &= 0x3f; 2502 mfilt[pos / 32] |= (1 << (pos % 32)); 2503 } 2504 if_maddr_runlock(ifp); 2505 } else 2506 mfilt[0] = mfilt[1] = ~0; 2507 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2508 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2509 __func__, mfilt[0], mfilt[1]); 2510 } 2511 2512 void 2513 ath_mode_init(struct ath_softc *sc) 2514 { 2515 struct ifnet *ifp = sc->sc_ifp; 2516 struct ath_hal *ah = sc->sc_ah; 2517 u_int32_t rfilt; 2518 2519 /* configure rx filter */ 2520 rfilt = ath_calcrxfilter(sc); 2521 ath_hal_setrxfilter(ah, rfilt); 2522 2523 /* configure operational mode */ 2524 ath_hal_setopmode(ah); 2525 2526 /* handle any link-level address change */ 2527 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2528 2529 /* calculate and install multicast filter */ 2530 ath_update_mcast(ifp); 2531 } 2532 2533 /* 2534 * Set the slot time based on the current setting. 2535 */ 2536 void 2537 ath_setslottime(struct ath_softc *sc) 2538 { 2539 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2540 struct ath_hal *ah = sc->sc_ah; 2541 u_int usec; 2542 2543 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2544 usec = 13; 2545 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2546 usec = 21; 2547 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2548 /* honor short/long slot time only in 11g */ 2549 /* XXX shouldn't honor on pure g or turbo g channel */ 2550 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2551 usec = HAL_SLOT_TIME_9; 2552 else 2553 usec = HAL_SLOT_TIME_20; 2554 } else 2555 usec = HAL_SLOT_TIME_9; 2556 2557 DPRINTF(sc, ATH_DEBUG_RESET, 2558 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2559 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2560 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2561 2562 ath_hal_setslottime(ah, usec); 2563 sc->sc_updateslot = OK; 2564 } 2565 2566 /* 2567 * Callback from the 802.11 layer to update the 2568 * slot time based on the current setting. 2569 */ 2570 static void 2571 ath_updateslot(struct ifnet *ifp) 2572 { 2573 struct ath_softc *sc = ifp->if_softc; 2574 struct ieee80211com *ic = ifp->if_l2com; 2575 2576 /* 2577 * When not coordinating the BSS, change the hardware 2578 * immediately. For other operation we defer the change 2579 * until beacon updates have propagated to the stations. 2580 */ 2581 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2582 ic->ic_opmode == IEEE80211_M_MBSS) 2583 sc->sc_updateslot = UPDATE; 2584 else 2585 ath_setslottime(sc); 2586 } 2587 2588 /* 2589 * Append the contents of src to dst; both queues 2590 * are assumed to be locked. 2591 */ 2592 void 2593 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2594 { 2595 2596 ATH_TXQ_LOCK_ASSERT(dst); 2597 ATH_TXQ_LOCK_ASSERT(src); 2598 2599 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2600 dst->axq_link = src->axq_link; 2601 src->axq_link = NULL; 2602 dst->axq_depth += src->axq_depth; 2603 dst->axq_aggr_depth += src->axq_aggr_depth; 2604 src->axq_depth = 0; 2605 src->axq_aggr_depth = 0; 2606 } 2607 2608 /* 2609 * Reset the hardware, with no loss. 2610 * 2611 * This can't be used for a general case reset. 2612 */ 2613 static void 2614 ath_reset_proc(void *arg, int pending) 2615 { 2616 struct ath_softc *sc = arg; 2617 struct ifnet *ifp = sc->sc_ifp; 2618 2619 #if 0 2620 if_printf(ifp, "%s: resetting\n", __func__); 2621 #endif 2622 ath_reset(ifp, ATH_RESET_NOLOSS); 2623 } 2624 2625 /* 2626 * Reset the hardware after detecting beacons have stopped. 2627 */ 2628 static void 2629 ath_bstuck_proc(void *arg, int pending) 2630 { 2631 struct ath_softc *sc = arg; 2632 struct ifnet *ifp = sc->sc_ifp; 2633 uint32_t hangs = 0; 2634 2635 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2636 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2637 2638 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2639 sc->sc_bmisscount); 2640 sc->sc_stats.ast_bstuck++; 2641 /* 2642 * This assumes that there's no simultaneous channel mode change 2643 * occuring. 2644 */ 2645 ath_reset(ifp, ATH_RESET_NOLOSS); 2646 } 2647 2648 static void 2649 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2650 { 2651 bus_addr_t *paddr = (bus_addr_t*) arg; 2652 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2653 *paddr = segs->ds_addr; 2654 } 2655 2656 static int 2657 ath_descdma_setup(struct ath_softc *sc, 2658 struct ath_descdma *dd, ath_bufhead *head, 2659 const char *name, int nbuf, int ndesc) 2660 { 2661 #define DS2PHYS(_dd, _ds) \ 2662 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2663 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2664 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2665 struct ifnet *ifp = sc->sc_ifp; 2666 uint8_t *ds; 2667 struct ath_buf *bf; 2668 int i, bsize, error; 2669 int desc_len; 2670 2671 desc_len = sizeof(struct ath_desc); 2672 2673 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 2674 __func__, name, nbuf, ndesc); 2675 2676 dd->dd_name = name; 2677 dd->dd_desc_len = desc_len * nbuf * ndesc; 2678 2679 /* 2680 * Merlin work-around: 2681 * Descriptors that cross the 4KB boundary can't be used. 2682 * Assume one skipped descriptor per 4KB page. 2683 */ 2684 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2685 int numdescpage = 4096 / (desc_len * ndesc); 2686 dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096; 2687 } 2688 2689 /* 2690 * Setup DMA descriptor area. 2691 */ 2692 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 2693 PAGE_SIZE, 0, /* alignment, bounds */ 2694 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2695 BUS_SPACE_MAXADDR, /* highaddr */ 2696 NULL, NULL, /* filter, filterarg */ 2697 dd->dd_desc_len, /* maxsize */ 2698 1, /* nsegments */ 2699 dd->dd_desc_len, /* maxsegsize */ 2700 BUS_DMA_ALLOCNOW, /* flags */ 2701 NULL, /* lockfunc */ 2702 NULL, /* lockarg */ 2703 &dd->dd_dmat); 2704 if (error != 0) { 2705 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 2706 return error; 2707 } 2708 2709 /* allocate descriptors */ 2710 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2711 if (error != 0) { 2712 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2713 "error %u\n", dd->dd_name, error); 2714 goto fail0; 2715 } 2716 2717 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 2718 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 2719 &dd->dd_dmamap); 2720 if (error != 0) { 2721 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2722 "error %u\n", nbuf * ndesc, dd->dd_name, error); 2723 goto fail1; 2724 } 2725 2726 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 2727 dd->dd_desc, dd->dd_desc_len, 2728 ath_load_cb, &dd->dd_desc_paddr, 2729 BUS_DMA_NOWAIT); 2730 if (error != 0) { 2731 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2732 dd->dd_name, error); 2733 goto fail2; 2734 } 2735 2736 ds = (uint8_t *) dd->dd_desc; 2737 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2738 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 2739 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 2740 2741 /* allocate rx buffers */ 2742 bsize = sizeof(struct ath_buf) * nbuf; 2743 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2744 if (bf == NULL) { 2745 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2746 dd->dd_name, bsize); 2747 goto fail3; 2748 } 2749 dd->dd_bufptr = bf; 2750 2751 TAILQ_INIT(head); 2752 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) { 2753 bf->bf_desc = (struct ath_desc *) ds; 2754 bf->bf_daddr = DS2PHYS(dd, ds); 2755 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2756 /* 2757 * Merlin WAR: Skip descriptor addresses which 2758 * cause 4KB boundary crossing along any point 2759 * in the descriptor. 2760 */ 2761 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 2762 desc_len * ndesc)) { 2763 /* Start at the next page */ 2764 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 2765 bf->bf_desc = (struct ath_desc *) ds; 2766 bf->bf_daddr = DS2PHYS(dd, ds); 2767 } 2768 } 2769 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 2770 &bf->bf_dmamap); 2771 if (error != 0) { 2772 if_printf(ifp, "unable to create dmamap for %s " 2773 "buffer %u, error %u\n", dd->dd_name, i, error); 2774 ath_descdma_cleanup(sc, dd, head); 2775 return error; 2776 } 2777 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 2778 TAILQ_INSERT_TAIL(head, bf, bf_list); 2779 } 2780 return 0; 2781 fail3: 2782 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2783 fail2: 2784 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2785 fail1: 2786 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2787 fail0: 2788 bus_dma_tag_destroy(dd->dd_dmat); 2789 memset(dd, 0, sizeof(*dd)); 2790 return error; 2791 #undef DS2PHYS 2792 #undef ATH_DESC_4KB_BOUND_CHECK 2793 } 2794 2795 static void 2796 ath_descdma_cleanup(struct ath_softc *sc, 2797 struct ath_descdma *dd, ath_bufhead *head) 2798 { 2799 struct ath_buf *bf; 2800 struct ieee80211_node *ni; 2801 2802 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2803 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2804 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2805 bus_dma_tag_destroy(dd->dd_dmat); 2806 2807 TAILQ_FOREACH(bf, head, bf_list) { 2808 if (bf->bf_m) { 2809 m_freem(bf->bf_m); 2810 bf->bf_m = NULL; 2811 } 2812 if (bf->bf_dmamap != NULL) { 2813 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2814 bf->bf_dmamap = NULL; 2815 } 2816 ni = bf->bf_node; 2817 bf->bf_node = NULL; 2818 if (ni != NULL) { 2819 /* 2820 * Reclaim node reference. 2821 */ 2822 ieee80211_free_node(ni); 2823 } 2824 } 2825 2826 TAILQ_INIT(head); 2827 free(dd->dd_bufptr, M_ATHDEV); 2828 memset(dd, 0, sizeof(*dd)); 2829 } 2830 2831 static int 2832 ath_desc_alloc(struct ath_softc *sc) 2833 { 2834 int error; 2835 2836 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 2837 "rx", ath_rxbuf, 1); 2838 if (error != 0) 2839 return error; 2840 2841 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 2842 "tx", ath_txbuf, ATH_TXDESC); 2843 if (error != 0) { 2844 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2845 return error; 2846 } 2847 2848 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 2849 "beacon", ATH_BCBUF, 1); 2850 if (error != 0) { 2851 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2852 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2853 return error; 2854 } 2855 return 0; 2856 } 2857 2858 static void 2859 ath_desc_free(struct ath_softc *sc) 2860 { 2861 2862 if (sc->sc_bdma.dd_desc_len != 0) 2863 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 2864 if (sc->sc_txdma.dd_desc_len != 0) 2865 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2866 if (sc->sc_rxdma.dd_desc_len != 0) 2867 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2868 } 2869 2870 static struct ieee80211_node * 2871 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 2872 { 2873 struct ieee80211com *ic = vap->iv_ic; 2874 struct ath_softc *sc = ic->ic_ifp->if_softc; 2875 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 2876 struct ath_node *an; 2877 2878 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 2879 if (an == NULL) { 2880 /* XXX stat+msg */ 2881 return NULL; 2882 } 2883 ath_rate_node_init(sc, an); 2884 2885 /* Setup the mutex - there's no associd yet so set the name to NULL */ 2886 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 2887 device_get_nameunit(sc->sc_dev), an); 2888 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 2889 2890 /* XXX setup ath_tid */ 2891 ath_tx_tid_init(sc, an); 2892 2893 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 2894 return &an->an_node; 2895 } 2896 2897 static void 2898 ath_node_cleanup(struct ieee80211_node *ni) 2899 { 2900 struct ieee80211com *ic = ni->ni_ic; 2901 struct ath_softc *sc = ic->ic_ifp->if_softc; 2902 2903 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 2904 ath_tx_node_flush(sc, ATH_NODE(ni)); 2905 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 2906 sc->sc_node_cleanup(ni); 2907 } 2908 2909 static void 2910 ath_node_free(struct ieee80211_node *ni) 2911 { 2912 struct ieee80211com *ic = ni->ni_ic; 2913 struct ath_softc *sc = ic->ic_ifp->if_softc; 2914 2915 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 2916 mtx_destroy(&ATH_NODE(ni)->an_mtx); 2917 sc->sc_node_free(ni); 2918 } 2919 2920 static void 2921 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 2922 { 2923 struct ieee80211com *ic = ni->ni_ic; 2924 struct ath_softc *sc = ic->ic_ifp->if_softc; 2925 struct ath_hal *ah = sc->sc_ah; 2926 2927 *rssi = ic->ic_node_getrssi(ni); 2928 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 2929 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 2930 else 2931 *noise = -95; /* nominally correct */ 2932 } 2933 2934 /* 2935 * Set the default antenna. 2936 */ 2937 void 2938 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 2939 { 2940 struct ath_hal *ah = sc->sc_ah; 2941 2942 /* XXX block beacon interrupts */ 2943 ath_hal_setdefantenna(ah, antenna); 2944 if (sc->sc_defant != antenna) 2945 sc->sc_stats.ast_ant_defswitch++; 2946 sc->sc_defant = antenna; 2947 sc->sc_rxotherant = 0; 2948 } 2949 2950 static void 2951 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 2952 { 2953 txq->axq_qnum = qnum; 2954 txq->axq_ac = 0; 2955 txq->axq_depth = 0; 2956 txq->axq_aggr_depth = 0; 2957 txq->axq_intrcnt = 0; 2958 txq->axq_link = NULL; 2959 txq->axq_softc = sc; 2960 TAILQ_INIT(&txq->axq_q); 2961 TAILQ_INIT(&txq->axq_tidq); 2962 ATH_TXQ_LOCK_INIT(sc, txq); 2963 } 2964 2965 /* 2966 * Setup a h/w transmit queue. 2967 */ 2968 static struct ath_txq * 2969 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 2970 { 2971 #define N(a) (sizeof(a)/sizeof(a[0])) 2972 struct ath_hal *ah = sc->sc_ah; 2973 HAL_TXQ_INFO qi; 2974 int qnum; 2975 2976 memset(&qi, 0, sizeof(qi)); 2977 qi.tqi_subtype = subtype; 2978 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2979 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2980 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2981 /* 2982 * Enable interrupts only for EOL and DESC conditions. 2983 * We mark tx descriptors to receive a DESC interrupt 2984 * when a tx queue gets deep; otherwise waiting for the 2985 * EOL to reap descriptors. Note that this is done to 2986 * reduce interrupt load and this only defers reaping 2987 * descriptors, never transmitting frames. Aside from 2988 * reducing interrupts this also permits more concurrency. 2989 * The only potential downside is if the tx queue backs 2990 * up in which case the top half of the kernel may backup 2991 * due to a lack of tx descriptors. 2992 */ 2993 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 2994 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 2995 if (qnum == -1) { 2996 /* 2997 * NB: don't print a message, this happens 2998 * normally on parts with too few tx queues 2999 */ 3000 return NULL; 3001 } 3002 if (qnum >= N(sc->sc_txq)) { 3003 device_printf(sc->sc_dev, 3004 "hal qnum %u out of range, max %zu!\n", 3005 qnum, N(sc->sc_txq)); 3006 ath_hal_releasetxqueue(ah, qnum); 3007 return NULL; 3008 } 3009 if (!ATH_TXQ_SETUP(sc, qnum)) { 3010 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3011 sc->sc_txqsetup |= 1<<qnum; 3012 } 3013 return &sc->sc_txq[qnum]; 3014 #undef N 3015 } 3016 3017 /* 3018 * Setup a hardware data transmit queue for the specified 3019 * access control. The hal may not support all requested 3020 * queues in which case it will return a reference to a 3021 * previously setup queue. We record the mapping from ac's 3022 * to h/w queues for use by ath_tx_start and also track 3023 * the set of h/w queues being used to optimize work in the 3024 * transmit interrupt handler and related routines. 3025 */ 3026 static int 3027 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3028 { 3029 #define N(a) (sizeof(a)/sizeof(a[0])) 3030 struct ath_txq *txq; 3031 3032 if (ac >= N(sc->sc_ac2q)) { 3033 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3034 ac, N(sc->sc_ac2q)); 3035 return 0; 3036 } 3037 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3038 if (txq != NULL) { 3039 txq->axq_ac = ac; 3040 sc->sc_ac2q[ac] = txq; 3041 return 1; 3042 } else 3043 return 0; 3044 #undef N 3045 } 3046 3047 /* 3048 * Update WME parameters for a transmit queue. 3049 */ 3050 static int 3051 ath_txq_update(struct ath_softc *sc, int ac) 3052 { 3053 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3054 #define ATH_TXOP_TO_US(v) (v<<5) 3055 struct ifnet *ifp = sc->sc_ifp; 3056 struct ieee80211com *ic = ifp->if_l2com; 3057 struct ath_txq *txq = sc->sc_ac2q[ac]; 3058 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3059 struct ath_hal *ah = sc->sc_ah; 3060 HAL_TXQ_INFO qi; 3061 3062 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3063 #ifdef IEEE80211_SUPPORT_TDMA 3064 if (sc->sc_tdma) { 3065 /* 3066 * AIFS is zero so there's no pre-transmit wait. The 3067 * burst time defines the slot duration and is configured 3068 * through net80211. The QCU is setup to not do post-xmit 3069 * back off, lockout all lower-priority QCU's, and fire 3070 * off the DMA beacon alert timer which is setup based 3071 * on the slot configuration. 3072 */ 3073 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3074 | HAL_TXQ_TXERRINT_ENABLE 3075 | HAL_TXQ_TXURNINT_ENABLE 3076 | HAL_TXQ_TXEOLINT_ENABLE 3077 | HAL_TXQ_DBA_GATED 3078 | HAL_TXQ_BACKOFF_DISABLE 3079 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3080 ; 3081 qi.tqi_aifs = 0; 3082 /* XXX +dbaprep? */ 3083 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3084 qi.tqi_burstTime = qi.tqi_readyTime; 3085 } else { 3086 #endif 3087 /* 3088 * XXX shouldn't this just use the default flags 3089 * used in the previous queue setup? 3090 */ 3091 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3092 | HAL_TXQ_TXERRINT_ENABLE 3093 | HAL_TXQ_TXDESCINT_ENABLE 3094 | HAL_TXQ_TXURNINT_ENABLE 3095 | HAL_TXQ_TXEOLINT_ENABLE 3096 ; 3097 qi.tqi_aifs = wmep->wmep_aifsn; 3098 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3099 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3100 qi.tqi_readyTime = 0; 3101 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3102 #ifdef IEEE80211_SUPPORT_TDMA 3103 } 3104 #endif 3105 3106 DPRINTF(sc, ATH_DEBUG_RESET, 3107 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3108 __func__, txq->axq_qnum, qi.tqi_qflags, 3109 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3110 3111 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3112 if_printf(ifp, "unable to update hardware queue " 3113 "parameters for %s traffic!\n", 3114 ieee80211_wme_acnames[ac]); 3115 return 0; 3116 } else { 3117 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3118 return 1; 3119 } 3120 #undef ATH_TXOP_TO_US 3121 #undef ATH_EXPONENT_TO_VALUE 3122 } 3123 3124 /* 3125 * Callback from the 802.11 layer to update WME parameters. 3126 */ 3127 int 3128 ath_wme_update(struct ieee80211com *ic) 3129 { 3130 struct ath_softc *sc = ic->ic_ifp->if_softc; 3131 3132 return !ath_txq_update(sc, WME_AC_BE) || 3133 !ath_txq_update(sc, WME_AC_BK) || 3134 !ath_txq_update(sc, WME_AC_VI) || 3135 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3136 } 3137 3138 /* 3139 * Reclaim resources for a setup queue. 3140 */ 3141 static void 3142 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3143 { 3144 3145 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3146 ATH_TXQ_LOCK_DESTROY(txq); 3147 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3148 } 3149 3150 /* 3151 * Reclaim all tx queue resources. 3152 */ 3153 static void 3154 ath_tx_cleanup(struct ath_softc *sc) 3155 { 3156 int i; 3157 3158 ATH_TXBUF_LOCK_DESTROY(sc); 3159 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3160 if (ATH_TXQ_SETUP(sc, i)) 3161 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3162 } 3163 3164 /* 3165 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3166 * using the current rates in sc_rixmap. 3167 */ 3168 int 3169 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3170 { 3171 int rix = sc->sc_rixmap[rate]; 3172 /* NB: return lowest rix for invalid rate */ 3173 return (rix == 0xff ? 0 : rix); 3174 } 3175 3176 static void 3177 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3178 struct ath_buf *bf) 3179 { 3180 struct ieee80211_node *ni = bf->bf_node; 3181 struct ifnet *ifp = sc->sc_ifp; 3182 struct ieee80211com *ic = ifp->if_l2com; 3183 int sr, lr, pri; 3184 3185 if (ts->ts_status == 0) { 3186 u_int8_t txant = ts->ts_antenna; 3187 sc->sc_stats.ast_ant_tx[txant]++; 3188 sc->sc_ant_tx[txant]++; 3189 if (ts->ts_finaltsi != 0) 3190 sc->sc_stats.ast_tx_altrate++; 3191 pri = M_WME_GETAC(bf->bf_m); 3192 if (pri >= WME_AC_VO) 3193 ic->ic_wme.wme_hipri_traffic++; 3194 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3195 ni->ni_inact = ni->ni_inact_reload; 3196 } else { 3197 if (ts->ts_status & HAL_TXERR_XRETRY) 3198 sc->sc_stats.ast_tx_xretries++; 3199 if (ts->ts_status & HAL_TXERR_FIFO) 3200 sc->sc_stats.ast_tx_fifoerr++; 3201 if (ts->ts_status & HAL_TXERR_FILT) 3202 sc->sc_stats.ast_tx_filtered++; 3203 if (ts->ts_status & HAL_TXERR_XTXOP) 3204 sc->sc_stats.ast_tx_xtxop++; 3205 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3206 sc->sc_stats.ast_tx_timerexpired++; 3207 3208 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 3209 sc->sc_stats.ast_tx_data_underrun++; 3210 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 3211 sc->sc_stats.ast_tx_delim_underrun++; 3212 3213 if (bf->bf_m->m_flags & M_FF) 3214 sc->sc_stats.ast_ff_txerr++; 3215 } 3216 /* XXX when is this valid? */ 3217 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 3218 sc->sc_stats.ast_tx_desccfgerr++; 3219 3220 sr = ts->ts_shortretry; 3221 lr = ts->ts_longretry; 3222 sc->sc_stats.ast_tx_shortretry += sr; 3223 sc->sc_stats.ast_tx_longretry += lr; 3224 3225 } 3226 3227 /* 3228 * The default completion. If fail is 1, this means 3229 * "please don't retry the frame, and just return -1 status 3230 * to the net80211 stack. 3231 */ 3232 void 3233 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3234 { 3235 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3236 int st; 3237 3238 if (fail == 1) 3239 st = -1; 3240 else 3241 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3242 ts->ts_status : HAL_TXERR_XRETRY; 3243 3244 if (bf->bf_state.bfs_dobaw) 3245 device_printf(sc->sc_dev, 3246 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3247 __func__, 3248 bf, 3249 SEQNO(bf->bf_state.bfs_seqno)); 3250 if (bf->bf_next != NULL) 3251 device_printf(sc->sc_dev, 3252 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3253 __func__, 3254 bf, 3255 SEQNO(bf->bf_state.bfs_seqno)); 3256 3257 /* 3258 * Do any tx complete callback. Note this must 3259 * be done before releasing the node reference. 3260 * This will free the mbuf, release the net80211 3261 * node and recycle the ath_buf. 3262 */ 3263 ath_tx_freebuf(sc, bf, st); 3264 } 3265 3266 /* 3267 * Update rate control with the given completion status. 3268 */ 3269 void 3270 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3271 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3272 int nframes, int nbad) 3273 { 3274 struct ath_node *an; 3275 3276 /* Only for unicast frames */ 3277 if (ni == NULL) 3278 return; 3279 3280 an = ATH_NODE(ni); 3281 3282 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3283 ATH_NODE_LOCK(an); 3284 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3285 ATH_NODE_UNLOCK(an); 3286 } 3287 } 3288 3289 /* 3290 * Update the busy status of the last frame on the free list. 3291 * When doing TDMA, the busy flag tracks whether the hardware 3292 * currently points to this buffer or not, and thus gated DMA 3293 * may restart by re-reading the last descriptor in this 3294 * buffer. 3295 * 3296 * This should be called in the completion function once one 3297 * of the buffers has been used. 3298 */ 3299 static void 3300 ath_tx_update_busy(struct ath_softc *sc) 3301 { 3302 struct ath_buf *last; 3303 3304 /* 3305 * Since the last frame may still be marked 3306 * as ATH_BUF_BUSY, unmark it here before 3307 * finishing the frame processing. 3308 * Since we've completed a frame (aggregate 3309 * or otherwise), the hardware has moved on 3310 * and is no longer referencing the previous 3311 * descriptor. 3312 */ 3313 ATH_TXBUF_LOCK_ASSERT(sc); 3314 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3315 if (last != NULL) 3316 last->bf_flags &= ~ATH_BUF_BUSY; 3317 } 3318 3319 3320 /* 3321 * Process completed xmit descriptors from the specified queue. 3322 * Kick the packet scheduler if needed. This can occur from this 3323 * particular task. 3324 */ 3325 static int 3326 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3327 { 3328 struct ath_hal *ah = sc->sc_ah; 3329 struct ath_buf *bf; 3330 struct ath_desc *ds; 3331 struct ath_tx_status *ts; 3332 struct ieee80211_node *ni; 3333 struct ath_node *an; 3334 #ifdef IEEE80211_SUPPORT_SUPERG 3335 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3336 #endif /* IEEE80211_SUPPORT_SUPERG */ 3337 int nacked; 3338 HAL_STATUS status; 3339 3340 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3341 __func__, txq->axq_qnum, 3342 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3343 txq->axq_link); 3344 nacked = 0; 3345 for (;;) { 3346 ATH_TXQ_LOCK(txq); 3347 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3348 bf = TAILQ_FIRST(&txq->axq_q); 3349 if (bf == NULL) { 3350 ATH_TXQ_UNLOCK(txq); 3351 break; 3352 } 3353 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3354 ts = &bf->bf_status.ds_txstat; 3355 status = ath_hal_txprocdesc(ah, ds, ts); 3356 #ifdef ATH_DEBUG 3357 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3358 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3359 status == HAL_OK); 3360 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) { 3361 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3362 status == HAL_OK); 3363 } 3364 #endif 3365 if (status == HAL_EINPROGRESS) { 3366 ATH_TXQ_UNLOCK(txq); 3367 break; 3368 } 3369 ATH_TXQ_REMOVE(txq, bf, bf_list); 3370 #ifdef IEEE80211_SUPPORT_TDMA 3371 if (txq->axq_depth > 0) { 3372 /* 3373 * More frames follow. Mark the buffer busy 3374 * so it's not re-used while the hardware may 3375 * still re-read the link field in the descriptor. 3376 * 3377 * Use the last buffer in an aggregate as that 3378 * is where the hardware may be - intermediate 3379 * descriptors won't be "busy". 3380 */ 3381 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3382 } else 3383 #else 3384 if (txq->axq_depth == 0) 3385 #endif 3386 txq->axq_link = NULL; 3387 if (bf->bf_state.bfs_aggr) 3388 txq->axq_aggr_depth--; 3389 3390 ni = bf->bf_node; 3391 /* 3392 * If unicast frame was ack'd update RSSI, 3393 * including the last rx time used to 3394 * workaround phantom bmiss interrupts. 3395 */ 3396 if (ni != NULL && ts->ts_status == 0 && 3397 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3398 nacked++; 3399 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3400 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3401 ts->ts_rssi); 3402 } 3403 ATH_TXQ_UNLOCK(txq); 3404 3405 /* If unicast frame, update general statistics */ 3406 if (ni != NULL) { 3407 an = ATH_NODE(ni); 3408 /* update statistics */ 3409 ath_tx_update_stats(sc, ts, bf); 3410 } 3411 3412 /* 3413 * Call the completion handler. 3414 * The completion handler is responsible for 3415 * calling the rate control code. 3416 * 3417 * Frames with no completion handler get the 3418 * rate control code called here. 3419 */ 3420 if (bf->bf_comp == NULL) { 3421 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3422 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3423 /* 3424 * XXX assume this isn't an aggregate 3425 * frame. 3426 */ 3427 ath_tx_update_ratectrl(sc, ni, 3428 bf->bf_state.bfs_rc, ts, 3429 bf->bf_state.bfs_pktlen, 1, 3430 (ts->ts_status == 0 ? 0 : 1)); 3431 } 3432 ath_tx_default_comp(sc, bf, 0); 3433 } else 3434 bf->bf_comp(sc, bf, 0); 3435 } 3436 #ifdef IEEE80211_SUPPORT_SUPERG 3437 /* 3438 * Flush fast-frame staging queue when traffic slows. 3439 */ 3440 if (txq->axq_depth <= 1) 3441 ieee80211_ff_flush(ic, txq->axq_ac); 3442 #endif 3443 3444 /* Kick the TXQ scheduler */ 3445 if (dosched) { 3446 ATH_TXQ_LOCK(txq); 3447 ath_txq_sched(sc, txq); 3448 ATH_TXQ_UNLOCK(txq); 3449 } 3450 3451 return nacked; 3452 } 3453 3454 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3455 3456 /* 3457 * Deferred processing of transmit interrupt; special-cased 3458 * for a single hardware transmit queue (e.g. 5210 and 5211). 3459 */ 3460 static void 3461 ath_tx_proc_q0(void *arg, int npending) 3462 { 3463 struct ath_softc *sc = arg; 3464 struct ifnet *ifp = sc->sc_ifp; 3465 uint32_t txqs; 3466 3467 ATH_PCU_LOCK(sc); 3468 sc->sc_txproc_cnt++; 3469 txqs = sc->sc_txq_active; 3470 sc->sc_txq_active &= ~txqs; 3471 ATH_PCU_UNLOCK(sc); 3472 3473 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 3474 /* XXX why is lastrx updated in tx code? */ 3475 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3476 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3477 ath_tx_processq(sc, sc->sc_cabq, 1); 3478 IF_LOCK(&ifp->if_snd); 3479 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3480 IF_UNLOCK(&ifp->if_snd); 3481 sc->sc_wd_timer = 0; 3482 3483 if (sc->sc_softled) 3484 ath_led_event(sc, sc->sc_txrix); 3485 3486 ATH_PCU_LOCK(sc); 3487 sc->sc_txproc_cnt--; 3488 ATH_PCU_UNLOCK(sc); 3489 3490 ath_start(ifp); 3491 } 3492 3493 /* 3494 * Deferred processing of transmit interrupt; special-cased 3495 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3496 */ 3497 static void 3498 ath_tx_proc_q0123(void *arg, int npending) 3499 { 3500 struct ath_softc *sc = arg; 3501 struct ifnet *ifp = sc->sc_ifp; 3502 int nacked; 3503 uint32_t txqs; 3504 3505 ATH_PCU_LOCK(sc); 3506 sc->sc_txproc_cnt++; 3507 txqs = sc->sc_txq_active; 3508 sc->sc_txq_active &= ~txqs; 3509 ATH_PCU_UNLOCK(sc); 3510 3511 /* 3512 * Process each active queue. 3513 */ 3514 nacked = 0; 3515 if (TXQACTIVE(txqs, 0)) 3516 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 3517 if (TXQACTIVE(txqs, 1)) 3518 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 3519 if (TXQACTIVE(txqs, 2)) 3520 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 3521 if (TXQACTIVE(txqs, 3)) 3522 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 3523 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3524 ath_tx_processq(sc, sc->sc_cabq, 1); 3525 if (nacked) 3526 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3527 3528 IF_LOCK(&ifp->if_snd); 3529 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3530 IF_UNLOCK(&ifp->if_snd); 3531 sc->sc_wd_timer = 0; 3532 3533 if (sc->sc_softled) 3534 ath_led_event(sc, sc->sc_txrix); 3535 3536 ATH_PCU_LOCK(sc); 3537 sc->sc_txproc_cnt--; 3538 ATH_PCU_UNLOCK(sc); 3539 3540 ath_start(ifp); 3541 } 3542 3543 /* 3544 * Deferred processing of transmit interrupt. 3545 */ 3546 static void 3547 ath_tx_proc(void *arg, int npending) 3548 { 3549 struct ath_softc *sc = arg; 3550 struct ifnet *ifp = sc->sc_ifp; 3551 int i, nacked; 3552 uint32_t txqs; 3553 3554 ATH_PCU_LOCK(sc); 3555 sc->sc_txproc_cnt++; 3556 txqs = sc->sc_txq_active; 3557 sc->sc_txq_active &= ~txqs; 3558 ATH_PCU_UNLOCK(sc); 3559 3560 /* 3561 * Process each active queue. 3562 */ 3563 nacked = 0; 3564 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3565 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 3566 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 3567 if (nacked) 3568 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3569 3570 /* XXX check this inside of IF_LOCK? */ 3571 IF_LOCK(&ifp->if_snd); 3572 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3573 IF_UNLOCK(&ifp->if_snd); 3574 sc->sc_wd_timer = 0; 3575 3576 if (sc->sc_softled) 3577 ath_led_event(sc, sc->sc_txrix); 3578 3579 ATH_PCU_LOCK(sc); 3580 sc->sc_txproc_cnt--; 3581 ATH_PCU_UNLOCK(sc); 3582 3583 ath_start(ifp); 3584 } 3585 #undef TXQACTIVE 3586 3587 /* 3588 * Deferred processing of TXQ rescheduling. 3589 */ 3590 static void 3591 ath_txq_sched_tasklet(void *arg, int npending) 3592 { 3593 struct ath_softc *sc = arg; 3594 int i; 3595 3596 /* XXX is skipping ok? */ 3597 ATH_PCU_LOCK(sc); 3598 #if 0 3599 if (sc->sc_inreset_cnt > 0) { 3600 device_printf(sc->sc_dev, 3601 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 3602 ATH_PCU_UNLOCK(sc); 3603 return; 3604 } 3605 #endif 3606 sc->sc_txproc_cnt++; 3607 ATH_PCU_UNLOCK(sc); 3608 3609 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3610 if (ATH_TXQ_SETUP(sc, i)) { 3611 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3612 ath_txq_sched(sc, &sc->sc_txq[i]); 3613 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3614 } 3615 } 3616 3617 ATH_PCU_LOCK(sc); 3618 sc->sc_txproc_cnt--; 3619 ATH_PCU_UNLOCK(sc); 3620 } 3621 3622 /* 3623 * Return a buffer to the pool and update the 'busy' flag on the 3624 * previous 'tail' entry. 3625 * 3626 * This _must_ only be called when the buffer is involved in a completed 3627 * TX. The logic is that if it was part of an active TX, the previous 3628 * buffer on the list is now not involved in a halted TX DMA queue, waiting 3629 * for restart (eg for TDMA.) 3630 * 3631 * The caller must free the mbuf and recycle the node reference. 3632 */ 3633 void 3634 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 3635 { 3636 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3637 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 3638 3639 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 3640 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 3641 3642 ATH_TXBUF_LOCK(sc); 3643 ath_tx_update_busy(sc); 3644 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3645 ATH_TXBUF_UNLOCK(sc); 3646 } 3647 3648 /* 3649 * This is currently used by ath_tx_draintxq() and 3650 * ath_tx_tid_free_pkts(). 3651 * 3652 * It recycles a single ath_buf. 3653 */ 3654 void 3655 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 3656 { 3657 struct ieee80211_node *ni = bf->bf_node; 3658 struct mbuf *m0 = bf->bf_m; 3659 3660 bf->bf_node = NULL; 3661 bf->bf_m = NULL; 3662 3663 /* Free the buffer, it's not needed any longer */ 3664 ath_freebuf(sc, bf); 3665 3666 if (ni != NULL) { 3667 /* 3668 * Do any callback and reclaim the node reference. 3669 */ 3670 if (m0->m_flags & M_TXCB) 3671 ieee80211_process_callback(ni, m0, status); 3672 ieee80211_free_node(ni); 3673 } 3674 m_freem(m0); 3675 3676 /* 3677 * XXX the buffer used to be freed -after-, but the DMA map was 3678 * freed where ath_freebuf() now is. I've no idea what this 3679 * will do. 3680 */ 3681 } 3682 3683 void 3684 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 3685 { 3686 #ifdef ATH_DEBUG 3687 struct ath_hal *ah = sc->sc_ah; 3688 #endif 3689 struct ath_buf *bf; 3690 u_int ix; 3691 3692 /* 3693 * NB: this assumes output has been stopped and 3694 * we do not need to block ath_tx_proc 3695 */ 3696 ATH_TXBUF_LOCK(sc); 3697 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3698 if (bf != NULL) 3699 bf->bf_flags &= ~ATH_BUF_BUSY; 3700 ATH_TXBUF_UNLOCK(sc); 3701 3702 for (ix = 0;; ix++) { 3703 ATH_TXQ_LOCK(txq); 3704 bf = TAILQ_FIRST(&txq->axq_q); 3705 if (bf == NULL) { 3706 txq->axq_link = NULL; 3707 ATH_TXQ_UNLOCK(txq); 3708 break; 3709 } 3710 ATH_TXQ_REMOVE(txq, bf, bf_list); 3711 if (bf->bf_state.bfs_aggr) 3712 txq->axq_aggr_depth--; 3713 #ifdef ATH_DEBUG 3714 if (sc->sc_debug & ATH_DEBUG_RESET) { 3715 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3716 3717 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, 3718 ath_hal_txprocdesc(ah, bf->bf_lastds, 3719 &bf->bf_status.ds_txstat) == HAL_OK); 3720 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 3721 bf->bf_m->m_len, 0, -1); 3722 } 3723 #endif /* ATH_DEBUG */ 3724 /* 3725 * Since we're now doing magic in the completion 3726 * functions, we -must- call it for aggregation 3727 * destinations or BAW tracking will get upset. 3728 */ 3729 /* 3730 * Clear ATH_BUF_BUSY; the completion handler 3731 * will free the buffer. 3732 */ 3733 ATH_TXQ_UNLOCK(txq); 3734 bf->bf_flags &= ~ATH_BUF_BUSY; 3735 if (bf->bf_comp) 3736 bf->bf_comp(sc, bf, 1); 3737 else 3738 ath_tx_default_comp(sc, bf, 1); 3739 } 3740 3741 /* 3742 * Drain software queued frames which are on 3743 * active TIDs. 3744 */ 3745 ath_tx_txq_drain(sc, txq); 3746 } 3747 3748 static void 3749 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 3750 { 3751 struct ath_hal *ah = sc->sc_ah; 3752 3753 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 3754 __func__, txq->axq_qnum, 3755 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 3756 txq->axq_link); 3757 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 3758 } 3759 3760 static int 3761 ath_stoptxdma(struct ath_softc *sc) 3762 { 3763 struct ath_hal *ah = sc->sc_ah; 3764 int i; 3765 3766 /* XXX return value */ 3767 if (sc->sc_invalid) 3768 return 0; 3769 3770 if (!sc->sc_invalid) { 3771 /* don't touch the hardware if marked invalid */ 3772 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 3773 __func__, sc->sc_bhalq, 3774 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 3775 NULL); 3776 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 3777 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3778 if (ATH_TXQ_SETUP(sc, i)) 3779 ath_tx_stopdma(sc, &sc->sc_txq[i]); 3780 } 3781 3782 return 1; 3783 } 3784 3785 /* 3786 * Drain the transmit queues and reclaim resources. 3787 */ 3788 static void 3789 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 3790 { 3791 #ifdef ATH_DEBUG 3792 struct ath_hal *ah = sc->sc_ah; 3793 #endif 3794 struct ifnet *ifp = sc->sc_ifp; 3795 int i; 3796 3797 (void) ath_stoptxdma(sc); 3798 3799 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3800 /* 3801 * XXX TODO: should we just handle the completed TX frames 3802 * here, whether or not the reset is a full one or not? 3803 */ 3804 if (ATH_TXQ_SETUP(sc, i)) { 3805 if (reset_type == ATH_RESET_NOLOSS) 3806 ath_tx_processq(sc, &sc->sc_txq[i], 0); 3807 else 3808 ath_tx_draintxq(sc, &sc->sc_txq[i]); 3809 } 3810 } 3811 #ifdef ATH_DEBUG 3812 if (sc->sc_debug & ATH_DEBUG_RESET) { 3813 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 3814 if (bf != NULL && bf->bf_m != NULL) { 3815 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 3816 ath_hal_txprocdesc(ah, bf->bf_lastds, 3817 &bf->bf_status.ds_txstat) == HAL_OK); 3818 ieee80211_dump_pkt(ifp->if_l2com, 3819 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 3820 0, -1); 3821 } 3822 } 3823 #endif /* ATH_DEBUG */ 3824 IF_LOCK(&ifp->if_snd); 3825 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3826 IF_UNLOCK(&ifp->if_snd); 3827 sc->sc_wd_timer = 0; 3828 } 3829 3830 /* 3831 * Update internal state after a channel change. 3832 */ 3833 static void 3834 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 3835 { 3836 enum ieee80211_phymode mode; 3837 3838 /* 3839 * Change channels and update the h/w rate map 3840 * if we're switching; e.g. 11a to 11b/g. 3841 */ 3842 mode = ieee80211_chan2mode(chan); 3843 if (mode != sc->sc_curmode) 3844 ath_setcurmode(sc, mode); 3845 sc->sc_curchan = chan; 3846 } 3847 3848 /* 3849 * Set/change channels. If the channel is really being changed, 3850 * it's done by resetting the chip. To accomplish this we must 3851 * first cleanup any pending DMA, then restart stuff after a la 3852 * ath_init. 3853 */ 3854 static int 3855 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 3856 { 3857 struct ifnet *ifp = sc->sc_ifp; 3858 struct ieee80211com *ic = ifp->if_l2com; 3859 struct ath_hal *ah = sc->sc_ah; 3860 int ret = 0; 3861 3862 /* Treat this as an interface reset */ 3863 ATH_PCU_UNLOCK_ASSERT(sc); 3864 ATH_UNLOCK_ASSERT(sc); 3865 3866 /* (Try to) stop TX/RX from occuring */ 3867 taskqueue_block(sc->sc_tq); 3868 3869 ATH_PCU_LOCK(sc); 3870 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 3871 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 3872 if (ath_reset_grablock(sc, 1) == 0) { 3873 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 3874 __func__); 3875 } 3876 ATH_PCU_UNLOCK(sc); 3877 3878 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 3879 __func__, ieee80211_chan2ieee(ic, chan), 3880 chan->ic_freq, chan->ic_flags); 3881 if (chan != sc->sc_curchan) { 3882 HAL_STATUS status; 3883 /* 3884 * To switch channels clear any pending DMA operations; 3885 * wait long enough for the RX fifo to drain, reset the 3886 * hardware at the new frequency, and then re-enable 3887 * the relevant bits of the h/w. 3888 */ 3889 #if 0 3890 ath_hal_intrset(ah, 0); /* disable interrupts */ 3891 #endif 3892 ath_stoprecv(sc, 1); /* turn off frame recv */ 3893 /* 3894 * First, handle completed TX/RX frames. 3895 */ 3896 ath_rx_proc(sc, 0); 3897 ath_draintxq(sc, ATH_RESET_NOLOSS); 3898 /* 3899 * Next, flush the non-scheduled frames. 3900 */ 3901 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 3902 3903 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 3904 if_printf(ifp, "%s: unable to reset " 3905 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 3906 __func__, ieee80211_chan2ieee(ic, chan), 3907 chan->ic_freq, chan->ic_flags, status); 3908 ret = EIO; 3909 goto finish; 3910 } 3911 sc->sc_diversity = ath_hal_getdiversity(ah); 3912 3913 /* Let DFS at it in case it's a DFS channel */ 3914 ath_dfs_radar_enable(sc, chan); 3915 3916 /* 3917 * Re-enable rx framework. 3918 */ 3919 if (ath_startrecv(sc) != 0) { 3920 if_printf(ifp, "%s: unable to restart recv logic\n", 3921 __func__); 3922 ret = EIO; 3923 goto finish; 3924 } 3925 3926 /* 3927 * Change channels and update the h/w rate map 3928 * if we're switching; e.g. 11a to 11b/g. 3929 */ 3930 ath_chan_change(sc, chan); 3931 3932 /* 3933 * Reset clears the beacon timers; reset them 3934 * here if needed. 3935 */ 3936 if (sc->sc_beacons) { /* restart beacons */ 3937 #ifdef IEEE80211_SUPPORT_TDMA 3938 if (sc->sc_tdma) 3939 ath_tdma_config(sc, NULL); 3940 else 3941 #endif 3942 ath_beacon_config(sc, NULL); 3943 } 3944 3945 /* 3946 * Re-enable interrupts. 3947 */ 3948 #if 0 3949 ath_hal_intrset(ah, sc->sc_imask); 3950 #endif 3951 } 3952 3953 finish: 3954 ATH_PCU_LOCK(sc); 3955 sc->sc_inreset_cnt--; 3956 /* XXX only do this if sc_inreset_cnt == 0? */ 3957 ath_hal_intrset(ah, sc->sc_imask); 3958 ATH_PCU_UNLOCK(sc); 3959 3960 IF_LOCK(&ifp->if_snd); 3961 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3962 IF_UNLOCK(&ifp->if_snd); 3963 ath_txrx_start(sc); 3964 /* XXX ath_start? */ 3965 3966 return ret; 3967 } 3968 3969 /* 3970 * Periodically recalibrate the PHY to account 3971 * for temperature/environment changes. 3972 */ 3973 static void 3974 ath_calibrate(void *arg) 3975 { 3976 struct ath_softc *sc = arg; 3977 struct ath_hal *ah = sc->sc_ah; 3978 struct ifnet *ifp = sc->sc_ifp; 3979 struct ieee80211com *ic = ifp->if_l2com; 3980 HAL_BOOL longCal, isCalDone; 3981 HAL_BOOL aniCal, shortCal = AH_FALSE; 3982 int nextcal; 3983 3984 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 3985 goto restart; 3986 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 3987 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 3988 if (sc->sc_doresetcal) 3989 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 3990 3991 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 3992 if (aniCal) { 3993 sc->sc_stats.ast_ani_cal++; 3994 sc->sc_lastani = ticks; 3995 ath_hal_ani_poll(ah, sc->sc_curchan); 3996 } 3997 3998 if (longCal) { 3999 sc->sc_stats.ast_per_cal++; 4000 sc->sc_lastlongcal = ticks; 4001 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4002 /* 4003 * Rfgain is out of bounds, reset the chip 4004 * to load new gain values. 4005 */ 4006 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4007 "%s: rfgain change\n", __func__); 4008 sc->sc_stats.ast_per_rfgain++; 4009 sc->sc_resetcal = 0; 4010 sc->sc_doresetcal = AH_TRUE; 4011 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4012 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4013 return; 4014 } 4015 /* 4016 * If this long cal is after an idle period, then 4017 * reset the data collection state so we start fresh. 4018 */ 4019 if (sc->sc_resetcal) { 4020 (void) ath_hal_calreset(ah, sc->sc_curchan); 4021 sc->sc_lastcalreset = ticks; 4022 sc->sc_lastshortcal = ticks; 4023 sc->sc_resetcal = 0; 4024 sc->sc_doresetcal = AH_TRUE; 4025 } 4026 } 4027 4028 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4029 if (shortCal || longCal) { 4030 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4031 if (longCal) { 4032 /* 4033 * Calibrate noise floor data again in case of change. 4034 */ 4035 ath_hal_process_noisefloor(ah); 4036 } 4037 } else { 4038 DPRINTF(sc, ATH_DEBUG_ANY, 4039 "%s: calibration of channel %u failed\n", 4040 __func__, sc->sc_curchan->ic_freq); 4041 sc->sc_stats.ast_per_calfail++; 4042 } 4043 if (shortCal) 4044 sc->sc_lastshortcal = ticks; 4045 } 4046 if (!isCalDone) { 4047 restart: 4048 /* 4049 * Use a shorter interval to potentially collect multiple 4050 * data samples required to complete calibration. Once 4051 * we're told the work is done we drop back to a longer 4052 * interval between requests. We're more aggressive doing 4053 * work when operating as an AP to improve operation right 4054 * after startup. 4055 */ 4056 sc->sc_lastshortcal = ticks; 4057 nextcal = ath_shortcalinterval*hz/1000; 4058 if (sc->sc_opmode != HAL_M_HOSTAP) 4059 nextcal *= 10; 4060 sc->sc_doresetcal = AH_TRUE; 4061 } else { 4062 /* nextcal should be the shortest time for next event */ 4063 nextcal = ath_longcalinterval*hz; 4064 if (sc->sc_lastcalreset == 0) 4065 sc->sc_lastcalreset = sc->sc_lastlongcal; 4066 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4067 sc->sc_resetcal = 1; /* setup reset next trip */ 4068 sc->sc_doresetcal = AH_FALSE; 4069 } 4070 /* ANI calibration may occur more often than short/long/resetcal */ 4071 if (ath_anicalinterval > 0) 4072 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4073 4074 if (nextcal != 0) { 4075 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4076 __func__, nextcal, isCalDone ? "" : "!"); 4077 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4078 } else { 4079 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4080 __func__); 4081 /* NB: don't rearm timer */ 4082 } 4083 } 4084 4085 static void 4086 ath_scan_start(struct ieee80211com *ic) 4087 { 4088 struct ifnet *ifp = ic->ic_ifp; 4089 struct ath_softc *sc = ifp->if_softc; 4090 struct ath_hal *ah = sc->sc_ah; 4091 u_int32_t rfilt; 4092 4093 /* XXX calibration timer? */ 4094 4095 ATH_LOCK(sc); 4096 sc->sc_scanning = 1; 4097 sc->sc_syncbeacon = 0; 4098 rfilt = ath_calcrxfilter(sc); 4099 ATH_UNLOCK(sc); 4100 4101 ATH_PCU_LOCK(sc); 4102 ath_hal_setrxfilter(ah, rfilt); 4103 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4104 ATH_PCU_UNLOCK(sc); 4105 4106 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4107 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4108 } 4109 4110 static void 4111 ath_scan_end(struct ieee80211com *ic) 4112 { 4113 struct ifnet *ifp = ic->ic_ifp; 4114 struct ath_softc *sc = ifp->if_softc; 4115 struct ath_hal *ah = sc->sc_ah; 4116 u_int32_t rfilt; 4117 4118 ATH_LOCK(sc); 4119 sc->sc_scanning = 0; 4120 rfilt = ath_calcrxfilter(sc); 4121 ATH_UNLOCK(sc); 4122 4123 ATH_PCU_LOCK(sc); 4124 ath_hal_setrxfilter(ah, rfilt); 4125 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4126 4127 ath_hal_process_noisefloor(ah); 4128 ATH_PCU_UNLOCK(sc); 4129 4130 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4131 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4132 sc->sc_curaid); 4133 } 4134 4135 #ifdef ATH_ENABLE_11N 4136 /* 4137 * For now, just do a channel change. 4138 * 4139 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4140 * control state and resetting the hardware without dropping frames out 4141 * of the queue. 4142 * 4143 * The unfortunate trouble here is making absolutely sure that the 4144 * channel width change has propagated enough so the hardware 4145 * absolutely isn't handed bogus frames for it's current operating 4146 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4147 * does occur in parallel, we need to make certain we've blocked 4148 * any further ongoing TX (and RX, that can cause raw TX) 4149 * before we do this. 4150 */ 4151 static void 4152 ath_update_chw(struct ieee80211com *ic) 4153 { 4154 struct ifnet *ifp = ic->ic_ifp; 4155 struct ath_softc *sc = ifp->if_softc; 4156 4157 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4158 ath_set_channel(ic); 4159 } 4160 #endif /* ATH_ENABLE_11N */ 4161 4162 static void 4163 ath_set_channel(struct ieee80211com *ic) 4164 { 4165 struct ifnet *ifp = ic->ic_ifp; 4166 struct ath_softc *sc = ifp->if_softc; 4167 4168 (void) ath_chan_set(sc, ic->ic_curchan); 4169 /* 4170 * If we are returning to our bss channel then mark state 4171 * so the next recv'd beacon's tsf will be used to sync the 4172 * beacon timers. Note that since we only hear beacons in 4173 * sta/ibss mode this has no effect in other operating modes. 4174 */ 4175 ATH_LOCK(sc); 4176 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4177 sc->sc_syncbeacon = 1; 4178 ATH_UNLOCK(sc); 4179 } 4180 4181 /* 4182 * Walk the vap list and check if there any vap's in RUN state. 4183 */ 4184 static int 4185 ath_isanyrunningvaps(struct ieee80211vap *this) 4186 { 4187 struct ieee80211com *ic = this->iv_ic; 4188 struct ieee80211vap *vap; 4189 4190 IEEE80211_LOCK_ASSERT(ic); 4191 4192 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4193 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4194 return 1; 4195 } 4196 return 0; 4197 } 4198 4199 static int 4200 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4201 { 4202 struct ieee80211com *ic = vap->iv_ic; 4203 struct ath_softc *sc = ic->ic_ifp->if_softc; 4204 struct ath_vap *avp = ATH_VAP(vap); 4205 struct ath_hal *ah = sc->sc_ah; 4206 struct ieee80211_node *ni = NULL; 4207 int i, error, stamode; 4208 u_int32_t rfilt; 4209 int csa_run_transition = 0; 4210 static const HAL_LED_STATE leds[] = { 4211 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4212 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4213 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4214 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4215 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4216 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4217 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4218 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4219 }; 4220 4221 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4222 ieee80211_state_name[vap->iv_state], 4223 ieee80211_state_name[nstate]); 4224 4225 /* 4226 * net80211 _should_ have the comlock asserted at this point. 4227 * There are some comments around the calls to vap->iv_newstate 4228 * which indicate that it (newstate) may end up dropping the 4229 * lock. This and the subsequent lock assert check after newstate 4230 * are an attempt to catch these and figure out how/why. 4231 */ 4232 IEEE80211_LOCK_ASSERT(ic); 4233 4234 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4235 csa_run_transition = 1; 4236 4237 callout_drain(&sc->sc_cal_ch); 4238 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4239 4240 if (nstate == IEEE80211_S_SCAN) { 4241 /* 4242 * Scanning: turn off beacon miss and don't beacon. 4243 * Mark beacon state so when we reach RUN state we'll 4244 * [re]setup beacons. Unblock the task q thread so 4245 * deferred interrupt processing is done. 4246 */ 4247 ath_hal_intrset(ah, 4248 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4249 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4250 sc->sc_beacons = 0; 4251 taskqueue_unblock(sc->sc_tq); 4252 } 4253 4254 ni = ieee80211_ref_node(vap->iv_bss); 4255 rfilt = ath_calcrxfilter(sc); 4256 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4257 vap->iv_opmode == IEEE80211_M_AHDEMO || 4258 vap->iv_opmode == IEEE80211_M_IBSS); 4259 if (stamode && nstate == IEEE80211_S_RUN) { 4260 sc->sc_curaid = ni->ni_associd; 4261 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4262 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4263 } 4264 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4265 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4266 ath_hal_setrxfilter(ah, rfilt); 4267 4268 /* XXX is this to restore keycache on resume? */ 4269 if (vap->iv_opmode != IEEE80211_M_STA && 4270 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4271 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4272 if (ath_hal_keyisvalid(ah, i)) 4273 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4274 } 4275 4276 /* 4277 * Invoke the parent method to do net80211 work. 4278 */ 4279 error = avp->av_newstate(vap, nstate, arg); 4280 if (error != 0) 4281 goto bad; 4282 4283 /* 4284 * See above: ensure av_newstate() doesn't drop the lock 4285 * on us. 4286 */ 4287 IEEE80211_LOCK_ASSERT(ic); 4288 4289 if (nstate == IEEE80211_S_RUN) { 4290 /* NB: collect bss node again, it may have changed */ 4291 ieee80211_free_node(ni); 4292 ni = ieee80211_ref_node(vap->iv_bss); 4293 4294 DPRINTF(sc, ATH_DEBUG_STATE, 4295 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 4296 "capinfo 0x%04x chan %d\n", __func__, 4297 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 4298 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 4299 4300 switch (vap->iv_opmode) { 4301 #ifdef IEEE80211_SUPPORT_TDMA 4302 case IEEE80211_M_AHDEMO: 4303 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 4304 break; 4305 /* fall thru... */ 4306 #endif 4307 case IEEE80211_M_HOSTAP: 4308 case IEEE80211_M_IBSS: 4309 case IEEE80211_M_MBSS: 4310 /* 4311 * Allocate and setup the beacon frame. 4312 * 4313 * Stop any previous beacon DMA. This may be 4314 * necessary, for example, when an ibss merge 4315 * causes reconfiguration; there will be a state 4316 * transition from RUN->RUN that means we may 4317 * be called with beacon transmission active. 4318 */ 4319 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4320 4321 error = ath_beacon_alloc(sc, ni); 4322 if (error != 0) 4323 goto bad; 4324 /* 4325 * If joining an adhoc network defer beacon timer 4326 * configuration to the next beacon frame so we 4327 * have a current TSF to use. Otherwise we're 4328 * starting an ibss/bss so there's no need to delay; 4329 * if this is the first vap moving to RUN state, then 4330 * beacon state needs to be [re]configured. 4331 */ 4332 if (vap->iv_opmode == IEEE80211_M_IBSS && 4333 ni->ni_tstamp.tsf != 0) { 4334 sc->sc_syncbeacon = 1; 4335 } else if (!sc->sc_beacons) { 4336 #ifdef IEEE80211_SUPPORT_TDMA 4337 if (vap->iv_caps & IEEE80211_C_TDMA) 4338 ath_tdma_config(sc, vap); 4339 else 4340 #endif 4341 ath_beacon_config(sc, vap); 4342 sc->sc_beacons = 1; 4343 } 4344 break; 4345 case IEEE80211_M_STA: 4346 /* 4347 * Defer beacon timer configuration to the next 4348 * beacon frame so we have a current TSF to use 4349 * (any TSF collected when scanning is likely old). 4350 * However if it's due to a CSA -> RUN transition, 4351 * force a beacon update so we pick up a lack of 4352 * beacons from an AP in CAC and thus force a 4353 * scan. 4354 */ 4355 sc->sc_syncbeacon = 1; 4356 if (csa_run_transition) 4357 ath_beacon_config(sc, vap); 4358 break; 4359 case IEEE80211_M_MONITOR: 4360 /* 4361 * Monitor mode vaps have only INIT->RUN and RUN->RUN 4362 * transitions so we must re-enable interrupts here to 4363 * handle the case of a single monitor mode vap. 4364 */ 4365 ath_hal_intrset(ah, sc->sc_imask); 4366 break; 4367 case IEEE80211_M_WDS: 4368 break; 4369 default: 4370 break; 4371 } 4372 /* 4373 * Let the hal process statistics collected during a 4374 * scan so it can provide calibrated noise floor data. 4375 */ 4376 ath_hal_process_noisefloor(ah); 4377 /* 4378 * Reset rssi stats; maybe not the best place... 4379 */ 4380 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4381 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4382 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4383 /* 4384 * Finally, start any timers and the task q thread 4385 * (in case we didn't go through SCAN state). 4386 */ 4387 if (ath_longcalinterval != 0) { 4388 /* start periodic recalibration timer */ 4389 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4390 } else { 4391 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4392 "%s: calibration disabled\n", __func__); 4393 } 4394 taskqueue_unblock(sc->sc_tq); 4395 } else if (nstate == IEEE80211_S_INIT) { 4396 /* 4397 * If there are no vaps left in RUN state then 4398 * shutdown host/driver operation: 4399 * o disable interrupts 4400 * o disable the task queue thread 4401 * o mark beacon processing as stopped 4402 */ 4403 if (!ath_isanyrunningvaps(vap)) { 4404 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4405 /* disable interrupts */ 4406 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4407 taskqueue_block(sc->sc_tq); 4408 sc->sc_beacons = 0; 4409 } 4410 #ifdef IEEE80211_SUPPORT_TDMA 4411 ath_hal_setcca(ah, AH_TRUE); 4412 #endif 4413 } 4414 bad: 4415 ieee80211_free_node(ni); 4416 return error; 4417 } 4418 4419 /* 4420 * Allocate a key cache slot to the station so we can 4421 * setup a mapping from key index to node. The key cache 4422 * slot is needed for managing antenna state and for 4423 * compression when stations do not use crypto. We do 4424 * it uniliaterally here; if crypto is employed this slot 4425 * will be reassigned. 4426 */ 4427 static void 4428 ath_setup_stationkey(struct ieee80211_node *ni) 4429 { 4430 struct ieee80211vap *vap = ni->ni_vap; 4431 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4432 ieee80211_keyix keyix, rxkeyix; 4433 4434 /* XXX should take a locked ref to vap->iv_bss */ 4435 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4436 /* 4437 * Key cache is full; we'll fall back to doing 4438 * the more expensive lookup in software. Note 4439 * this also means no h/w compression. 4440 */ 4441 /* XXX msg+statistic */ 4442 } else { 4443 /* XXX locking? */ 4444 ni->ni_ucastkey.wk_keyix = keyix; 4445 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4446 /* NB: must mark device key to get called back on delete */ 4447 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 4448 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 4449 /* NB: this will create a pass-thru key entry */ 4450 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 4451 } 4452 } 4453 4454 /* 4455 * Setup driver-specific state for a newly associated node. 4456 * Note that we're called also on a re-associate, the isnew 4457 * param tells us if this is the first time or not. 4458 */ 4459 static void 4460 ath_newassoc(struct ieee80211_node *ni, int isnew) 4461 { 4462 struct ath_node *an = ATH_NODE(ni); 4463 struct ieee80211vap *vap = ni->ni_vap; 4464 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4465 const struct ieee80211_txparam *tp = ni->ni_txparms; 4466 4467 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 4468 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 4469 4470 ath_rate_newassoc(sc, an, isnew); 4471 if (isnew && 4472 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 4473 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4474 ath_setup_stationkey(ni); 4475 } 4476 4477 static int 4478 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 4479 int nchans, struct ieee80211_channel chans[]) 4480 { 4481 struct ath_softc *sc = ic->ic_ifp->if_softc; 4482 struct ath_hal *ah = sc->sc_ah; 4483 HAL_STATUS status; 4484 4485 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4486 "%s: rd %u cc %u location %c%s\n", 4487 __func__, reg->regdomain, reg->country, reg->location, 4488 reg->ecm ? " ecm" : ""); 4489 4490 status = ath_hal_set_channels(ah, chans, nchans, 4491 reg->country, reg->regdomain); 4492 if (status != HAL_OK) { 4493 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 4494 __func__, status); 4495 return EINVAL; /* XXX */ 4496 } 4497 4498 return 0; 4499 } 4500 4501 static void 4502 ath_getradiocaps(struct ieee80211com *ic, 4503 int maxchans, int *nchans, struct ieee80211_channel chans[]) 4504 { 4505 struct ath_softc *sc = ic->ic_ifp->if_softc; 4506 struct ath_hal *ah = sc->sc_ah; 4507 4508 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 4509 __func__, SKU_DEBUG, CTRY_DEFAULT); 4510 4511 /* XXX check return */ 4512 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 4513 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 4514 4515 } 4516 4517 static int 4518 ath_getchannels(struct ath_softc *sc) 4519 { 4520 struct ifnet *ifp = sc->sc_ifp; 4521 struct ieee80211com *ic = ifp->if_l2com; 4522 struct ath_hal *ah = sc->sc_ah; 4523 HAL_STATUS status; 4524 4525 /* 4526 * Collect channel set based on EEPROM contents. 4527 */ 4528 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 4529 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 4530 if (status != HAL_OK) { 4531 if_printf(ifp, "%s: unable to collect channel list from hal, " 4532 "status %d\n", __func__, status); 4533 return EINVAL; 4534 } 4535 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 4536 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 4537 /* XXX map Atheros sku's to net80211 SKU's */ 4538 /* XXX net80211 types too small */ 4539 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 4540 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 4541 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 4542 ic->ic_regdomain.isocc[1] = ' '; 4543 4544 ic->ic_regdomain.ecm = 1; 4545 ic->ic_regdomain.location = 'I'; 4546 4547 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4548 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 4549 __func__, sc->sc_eerd, sc->sc_eecc, 4550 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 4551 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 4552 return 0; 4553 } 4554 4555 static int 4556 ath_rate_setup(struct ath_softc *sc, u_int mode) 4557 { 4558 struct ath_hal *ah = sc->sc_ah; 4559 const HAL_RATE_TABLE *rt; 4560 4561 switch (mode) { 4562 case IEEE80211_MODE_11A: 4563 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 4564 break; 4565 case IEEE80211_MODE_HALF: 4566 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 4567 break; 4568 case IEEE80211_MODE_QUARTER: 4569 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 4570 break; 4571 case IEEE80211_MODE_11B: 4572 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 4573 break; 4574 case IEEE80211_MODE_11G: 4575 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 4576 break; 4577 case IEEE80211_MODE_TURBO_A: 4578 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 4579 break; 4580 case IEEE80211_MODE_TURBO_G: 4581 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 4582 break; 4583 case IEEE80211_MODE_STURBO_A: 4584 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 4585 break; 4586 case IEEE80211_MODE_11NA: 4587 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 4588 break; 4589 case IEEE80211_MODE_11NG: 4590 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 4591 break; 4592 default: 4593 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 4594 __func__, mode); 4595 return 0; 4596 } 4597 sc->sc_rates[mode] = rt; 4598 return (rt != NULL); 4599 } 4600 4601 static void 4602 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 4603 { 4604 #define N(a) (sizeof(a)/sizeof(a[0])) 4605 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 4606 static const struct { 4607 u_int rate; /* tx/rx 802.11 rate */ 4608 u_int16_t timeOn; /* LED on time (ms) */ 4609 u_int16_t timeOff; /* LED off time (ms) */ 4610 } blinkrates[] = { 4611 { 108, 40, 10 }, 4612 { 96, 44, 11 }, 4613 { 72, 50, 13 }, 4614 { 48, 57, 14 }, 4615 { 36, 67, 16 }, 4616 { 24, 80, 20 }, 4617 { 22, 100, 25 }, 4618 { 18, 133, 34 }, 4619 { 12, 160, 40 }, 4620 { 10, 200, 50 }, 4621 { 6, 240, 58 }, 4622 { 4, 267, 66 }, 4623 { 2, 400, 100 }, 4624 { 0, 500, 130 }, 4625 /* XXX half/quarter rates */ 4626 }; 4627 const HAL_RATE_TABLE *rt; 4628 int i, j; 4629 4630 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 4631 rt = sc->sc_rates[mode]; 4632 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 4633 for (i = 0; i < rt->rateCount; i++) { 4634 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 4635 if (rt->info[i].phy != IEEE80211_T_HT) 4636 sc->sc_rixmap[ieeerate] = i; 4637 else 4638 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 4639 } 4640 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 4641 for (i = 0; i < N(sc->sc_hwmap); i++) { 4642 if (i >= rt->rateCount) { 4643 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 4644 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 4645 continue; 4646 } 4647 sc->sc_hwmap[i].ieeerate = 4648 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 4649 if (rt->info[i].phy == IEEE80211_T_HT) 4650 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 4651 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 4652 if (rt->info[i].shortPreamble || 4653 rt->info[i].phy == IEEE80211_T_OFDM) 4654 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 4655 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 4656 for (j = 0; j < N(blinkrates)-1; j++) 4657 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 4658 break; 4659 /* NB: this uses the last entry if the rate isn't found */ 4660 /* XXX beware of overlow */ 4661 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 4662 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 4663 } 4664 sc->sc_currates = rt; 4665 sc->sc_curmode = mode; 4666 /* 4667 * All protection frames are transmited at 2Mb/s for 4668 * 11g, otherwise at 1Mb/s. 4669 */ 4670 if (mode == IEEE80211_MODE_11G) 4671 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 4672 else 4673 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 4674 /* NB: caller is responsible for resetting rate control state */ 4675 #undef N 4676 } 4677 4678 static void 4679 ath_watchdog(void *arg) 4680 { 4681 struct ath_softc *sc = arg; 4682 int do_reset = 0; 4683 4684 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 4685 struct ifnet *ifp = sc->sc_ifp; 4686 uint32_t hangs; 4687 4688 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 4689 hangs != 0) { 4690 if_printf(ifp, "%s hang detected (0x%x)\n", 4691 hangs & 0xff ? "bb" : "mac", hangs); 4692 } else 4693 if_printf(ifp, "device timeout\n"); 4694 do_reset = 1; 4695 ifp->if_oerrors++; 4696 sc->sc_stats.ast_watchdog++; 4697 } 4698 4699 /* 4700 * We can't hold the lock across the ath_reset() call. 4701 * 4702 * And since this routine can't hold a lock and sleep, 4703 * do the reset deferred. 4704 */ 4705 if (do_reset) { 4706 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4707 } 4708 4709 callout_schedule(&sc->sc_wd_ch, hz); 4710 } 4711 4712 #ifdef ATH_DIAGAPI 4713 /* 4714 * Diagnostic interface to the HAL. This is used by various 4715 * tools to do things like retrieve register contents for 4716 * debugging. The mechanism is intentionally opaque so that 4717 * it can change frequently w/o concern for compatiblity. 4718 */ 4719 static int 4720 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 4721 { 4722 struct ath_hal *ah = sc->sc_ah; 4723 u_int id = ad->ad_id & ATH_DIAG_ID; 4724 void *indata = NULL; 4725 void *outdata = NULL; 4726 u_int32_t insize = ad->ad_in_size; 4727 u_int32_t outsize = ad->ad_out_size; 4728 int error = 0; 4729 4730 if (ad->ad_id & ATH_DIAG_IN) { 4731 /* 4732 * Copy in data. 4733 */ 4734 indata = malloc(insize, M_TEMP, M_NOWAIT); 4735 if (indata == NULL) { 4736 error = ENOMEM; 4737 goto bad; 4738 } 4739 error = copyin(ad->ad_in_data, indata, insize); 4740 if (error) 4741 goto bad; 4742 } 4743 if (ad->ad_id & ATH_DIAG_DYN) { 4744 /* 4745 * Allocate a buffer for the results (otherwise the HAL 4746 * returns a pointer to a buffer where we can read the 4747 * results). Note that we depend on the HAL leaving this 4748 * pointer for us to use below in reclaiming the buffer; 4749 * may want to be more defensive. 4750 */ 4751 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 4752 if (outdata == NULL) { 4753 error = ENOMEM; 4754 goto bad; 4755 } 4756 } 4757 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 4758 if (outsize < ad->ad_out_size) 4759 ad->ad_out_size = outsize; 4760 if (outdata != NULL) 4761 error = copyout(outdata, ad->ad_out_data, 4762 ad->ad_out_size); 4763 } else { 4764 error = EINVAL; 4765 } 4766 bad: 4767 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 4768 free(indata, M_TEMP); 4769 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 4770 free(outdata, M_TEMP); 4771 return error; 4772 } 4773 #endif /* ATH_DIAGAPI */ 4774 4775 static int 4776 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 4777 { 4778 #define IS_RUNNING(ifp) \ 4779 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 4780 struct ath_softc *sc = ifp->if_softc; 4781 struct ieee80211com *ic = ifp->if_l2com; 4782 struct ifreq *ifr = (struct ifreq *)data; 4783 const HAL_RATE_TABLE *rt; 4784 int error = 0; 4785 4786 switch (cmd) { 4787 case SIOCSIFFLAGS: 4788 ATH_LOCK(sc); 4789 if (IS_RUNNING(ifp)) { 4790 /* 4791 * To avoid rescanning another access point, 4792 * do not call ath_init() here. Instead, 4793 * only reflect promisc mode settings. 4794 */ 4795 ath_mode_init(sc); 4796 } else if (ifp->if_flags & IFF_UP) { 4797 /* 4798 * Beware of being called during attach/detach 4799 * to reset promiscuous mode. In that case we 4800 * will still be marked UP but not RUNNING. 4801 * However trying to re-init the interface 4802 * is the wrong thing to do as we've already 4803 * torn down much of our state. There's 4804 * probably a better way to deal with this. 4805 */ 4806 if (!sc->sc_invalid) 4807 ath_init(sc); /* XXX lose error */ 4808 } else { 4809 ath_stop_locked(ifp); 4810 #ifdef notyet 4811 /* XXX must wakeup in places like ath_vap_delete */ 4812 if (!sc->sc_invalid) 4813 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 4814 #endif 4815 } 4816 ATH_UNLOCK(sc); 4817 break; 4818 case SIOCGIFMEDIA: 4819 case SIOCSIFMEDIA: 4820 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 4821 break; 4822 case SIOCGATHSTATS: 4823 /* NB: embed these numbers to get a consistent view */ 4824 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 4825 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 4826 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 4827 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 4828 #ifdef IEEE80211_SUPPORT_TDMA 4829 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 4830 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 4831 #endif 4832 rt = sc->sc_currates; 4833 sc->sc_stats.ast_tx_rate = 4834 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 4835 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 4836 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 4837 return copyout(&sc->sc_stats, 4838 ifr->ifr_data, sizeof (sc->sc_stats)); 4839 case SIOCZATHSTATS: 4840 error = priv_check(curthread, PRIV_DRIVER); 4841 if (error == 0) { 4842 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 4843 memset(&sc->sc_aggr_stats, 0, 4844 sizeof(sc->sc_aggr_stats)); 4845 memset(&sc->sc_intr_stats, 0, 4846 sizeof(sc->sc_intr_stats)); 4847 } 4848 break; 4849 #ifdef ATH_DIAGAPI 4850 case SIOCGATHDIAG: 4851 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 4852 break; 4853 case SIOCGATHPHYERR: 4854 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 4855 break; 4856 #endif 4857 case SIOCGIFADDR: 4858 error = ether_ioctl(ifp, cmd, data); 4859 break; 4860 default: 4861 error = EINVAL; 4862 break; 4863 } 4864 return error; 4865 #undef IS_RUNNING 4866 } 4867 4868 /* 4869 * Announce various information on device/driver attach. 4870 */ 4871 static void 4872 ath_announce(struct ath_softc *sc) 4873 { 4874 struct ifnet *ifp = sc->sc_ifp; 4875 struct ath_hal *ah = sc->sc_ah; 4876 4877 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 4878 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 4879 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 4880 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 4881 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 4882 if (bootverbose) { 4883 int i; 4884 for (i = 0; i <= WME_AC_VO; i++) { 4885 struct ath_txq *txq = sc->sc_ac2q[i]; 4886 if_printf(ifp, "Use hw queue %u for %s traffic\n", 4887 txq->axq_qnum, ieee80211_wme_acnames[i]); 4888 } 4889 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 4890 sc->sc_cabq->axq_qnum); 4891 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 4892 } 4893 if (ath_rxbuf != ATH_RXBUF) 4894 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 4895 if (ath_txbuf != ATH_TXBUF) 4896 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 4897 if (sc->sc_mcastkey && bootverbose) 4898 if_printf(ifp, "using multicast key search\n"); 4899 } 4900 4901 static void 4902 ath_dfs_tasklet(void *p, int npending) 4903 { 4904 struct ath_softc *sc = (struct ath_softc *) p; 4905 struct ifnet *ifp = sc->sc_ifp; 4906 struct ieee80211com *ic = ifp->if_l2com; 4907 4908 /* 4909 * If previous processing has found a radar event, 4910 * signal this to the net80211 layer to begin DFS 4911 * processing. 4912 */ 4913 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 4914 /* DFS event found, initiate channel change */ 4915 /* 4916 * XXX doesn't currently tell us whether the event 4917 * XXX was found in the primary or extension 4918 * XXX channel! 4919 */ 4920 IEEE80211_LOCK(ic); 4921 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 4922 IEEE80211_UNLOCK(ic); 4923 } 4924 } 4925 4926 MODULE_VERSION(if_ath, 1); 4927 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 4928 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 4929 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 4930 #endif 4931