1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 15 * redistribution must be conditioned upon including a substantially 16 * similar Disclaimer requirement for further binary redistribution. 17 * 18 * NO WARRANTY 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 22 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 23 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 24 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 27 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 29 * THE POSSIBILITY OF SUCH DAMAGES. 30 */ 31 32 #include <sys/cdefs.h> 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_rx_edma.h> 113 #include <dev/ath/if_ath_tx_edma.h> 114 #include <dev/ath/if_ath_beacon.h> 115 #include <dev/ath/if_ath_btcoex.h> 116 #include <dev/ath/if_ath_btcoex_mci.h> 117 #include <dev/ath/if_ath_spectral.h> 118 #include <dev/ath/if_ath_lna_div.h> 119 #include <dev/ath/if_athdfs.h> 120 #include <dev/ath/if_ath_ioctl.h> 121 #include <dev/ath/if_ath_descdma.h> 122 123 #ifdef ATH_TX99_DIAG 124 #include <dev/ath/ath_tx99/ath_tx99.h> 125 #endif 126 127 #ifdef ATH_DEBUG_ALQ 128 #include <dev/ath/if_ath_alq.h> 129 #endif 130 131 /* 132 * Only enable this if you're working on PS-POLL support. 133 */ 134 #define ATH_SW_PSQ 135 136 /* 137 * ATH_BCBUF determines the number of vap's that can transmit 138 * beacons and also (currently) the number of vap's that can 139 * have unique mac addresses/bssid. When staggering beacons 140 * 4 is probably a good max as otherwise the beacons become 141 * very closely spaced and there is limited time for cab q traffic 142 * to go out. You can burst beacons instead but that is not good 143 * for stations in power save and at some point you really want 144 * another radio (and channel). 145 * 146 * The limit on the number of mac addresses is tied to our use of 147 * the U/L bit and tracking addresses in a byte; it would be 148 * worthwhile to allow more for applications like proxy sta. 149 */ 150 CTASSERT(ATH_BCBUF <= 8); 151 152 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 153 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 154 const uint8_t [IEEE80211_ADDR_LEN], 155 const uint8_t [IEEE80211_ADDR_LEN]); 156 static void ath_vap_delete(struct ieee80211vap *); 157 static int ath_init(struct ath_softc *); 158 static void ath_stop(struct ath_softc *); 159 static int ath_reset_vap(struct ieee80211vap *, u_long); 160 static int ath_transmit(struct ieee80211com *, struct mbuf *); 161 static void ath_watchdog(void *); 162 static void ath_parent(struct ieee80211com *); 163 static void ath_fatal_proc(void *, int); 164 static void ath_bmiss_vap(struct ieee80211vap *); 165 static void ath_bmiss_proc(void *, int); 166 static void ath_tsfoor_proc(void *, int); 167 static void ath_key_update_begin(struct ieee80211vap *); 168 static void ath_key_update_end(struct ieee80211vap *); 169 static void ath_update_mcast_hw(struct ath_softc *); 170 static void ath_update_mcast(struct ieee80211com *); 171 static void ath_update_promisc(struct ieee80211com *); 172 static void ath_updateslot(struct ieee80211com *); 173 static void ath_bstuck_proc(void *, int); 174 static void ath_reset_proc(void *, int); 175 static int ath_desc_alloc(struct ath_softc *); 176 static void ath_desc_free(struct ath_softc *); 177 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 178 const uint8_t [IEEE80211_ADDR_LEN]); 179 static void ath_node_cleanup(struct ieee80211_node *); 180 static void ath_node_free(struct ieee80211_node *); 181 static void ath_node_getsignal(const struct ieee80211_node *, 182 int8_t *, int8_t *); 183 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 184 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 185 static int ath_tx_setup(struct ath_softc *, int, int); 186 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 187 static void ath_tx_cleanup(struct ath_softc *); 188 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 189 int dosched); 190 static void ath_tx_proc_q0(void *, int); 191 static void ath_tx_proc_q0123(void *, int); 192 static void ath_tx_proc(void *, int); 193 static void ath_txq_sched_tasklet(void *, int); 194 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 195 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 196 static void ath_scan_start(struct ieee80211com *); 197 static void ath_scan_end(struct ieee80211com *); 198 static void ath_set_channel(struct ieee80211com *); 199 #ifdef ATH_ENABLE_11N 200 static void ath_update_chw(struct ieee80211com *); 201 #endif /* ATH_ENABLE_11N */ 202 static int ath_set_quiet_ie(struct ieee80211_node *, uint8_t *); 203 static void ath_calibrate(void *); 204 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 205 static void ath_setup_stationkey(struct ieee80211_node *); 206 static void ath_newassoc(struct ieee80211_node *, int); 207 static int ath_setregdomain(struct ieee80211com *, 208 struct ieee80211_regdomain *, int, 209 struct ieee80211_channel []); 210 static void ath_getradiocaps(struct ieee80211com *, int, int *, 211 struct ieee80211_channel []); 212 static int ath_getchannels(struct ath_softc *); 213 214 static int ath_rate_setup(struct ath_softc *, u_int mode); 215 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 216 217 static void ath_announce(struct ath_softc *); 218 219 static void ath_dfs_tasklet(void *, int); 220 static void ath_node_powersave(struct ieee80211_node *, int); 221 static int ath_node_set_tim(struct ieee80211_node *, int); 222 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 223 224 #ifdef IEEE80211_SUPPORT_TDMA 225 #include <dev/ath/if_ath_tdma.h> 226 #endif 227 228 SYSCTL_DECL(_hw_ath); 229 230 /* XXX validate sysctl values */ 231 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 232 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 233 0, "long chip calibration interval (secs)"); 234 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 235 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 236 0, "short chip calibration interval (msecs)"); 237 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 238 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 239 0, "reset chip calibration results (secs)"); 240 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 241 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 242 0, "ANI calibration (msecs)"); 243 244 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 245 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 246 0, "rx buffers allocated"); 247 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 248 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 249 0, "tx buffers allocated"); 250 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 251 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 252 0, "tx (mgmt) buffers allocated"); 253 254 int ath_bstuck_threshold = 4; /* max missed beacons */ 255 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 256 0, "max missed beacon xmits before chip reset"); 257 258 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 259 260 void 261 ath_legacy_attach_comp_func(struct ath_softc *sc) 262 { 263 264 /* 265 * Special case certain configurations. Note the 266 * CAB queue is handled by these specially so don't 267 * include them when checking the txq setup mask. 268 */ 269 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 270 case 0x01: 271 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 272 break; 273 case 0x0f: 274 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 275 break; 276 default: 277 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 278 break; 279 } 280 } 281 282 /* 283 * Set the target power mode. 284 * 285 * If this is called during a point in time where 286 * the hardware is being programmed elsewhere, it will 287 * simply store it away and update it when all current 288 * uses of the hardware are completed. 289 * 290 * If the chip is going into network sleep or power off, then 291 * we will wait until all uses of the chip are done before 292 * going into network sleep or power off. 293 * 294 * If the chip is being programmed full-awake, then immediately 295 * program it full-awake so we can actually stay awake rather than 296 * the chip potentially going to sleep underneath us. 297 */ 298 void 299 _ath_power_setpower(struct ath_softc *sc, int power_state, int selfgen, 300 const char *file, int line) 301 { 302 ATH_LOCK_ASSERT(sc); 303 304 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d, target=%d, cur=%d\n", 305 __func__, 306 file, 307 line, 308 power_state, 309 sc->sc_powersave_refcnt, 310 sc->sc_target_powerstate, 311 sc->sc_cur_powerstate); 312 313 sc->sc_target_powerstate = power_state; 314 315 /* 316 * Don't program the chip into network sleep if the chip 317 * is being programmed elsewhere. 318 * 319 * However, if the chip is being programmed /awake/, force 320 * the chip awake so we stay awake. 321 */ 322 if ((sc->sc_powersave_refcnt == 0 || power_state == HAL_PM_AWAKE) && 323 power_state != sc->sc_cur_powerstate) { 324 sc->sc_cur_powerstate = power_state; 325 ath_hal_setpower(sc->sc_ah, power_state); 326 327 /* 328 * If the NIC is force-awake, then set the 329 * self-gen frame state appropriately. 330 * 331 * If the nic is in network sleep or full-sleep, 332 * we let the above call leave the self-gen 333 * state as "sleep". 334 */ 335 if (selfgen && 336 sc->sc_cur_powerstate == HAL_PM_AWAKE && 337 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 338 ath_hal_setselfgenpower(sc->sc_ah, 339 sc->sc_target_selfgen_state); 340 } 341 } 342 } 343 344 /* 345 * Set the current self-generated frames state. 346 * 347 * This is separate from the target power mode. The chip may be 348 * awake but the desired state is "sleep", so frames sent to the 349 * destination has PWRMGT=1 in the 802.11 header. The NIC also 350 * needs to know to set PWRMGT=1 in self-generated frames. 351 */ 352 void 353 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 354 { 355 356 ATH_LOCK_ASSERT(sc); 357 358 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 359 __func__, 360 file, 361 line, 362 power_state, 363 sc->sc_target_selfgen_state); 364 365 sc->sc_target_selfgen_state = power_state; 366 367 /* 368 * If the NIC is force-awake, then set the power state. 369 * Network-state and full-sleep will already transition it to 370 * mark self-gen frames as sleeping - and we can't 371 * guarantee the NIC is awake to program the self-gen frame 372 * setting anyway. 373 */ 374 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 375 ath_hal_setselfgenpower(sc->sc_ah, power_state); 376 } 377 } 378 379 /* 380 * Set the hardware power mode and take a reference. 381 * 382 * This doesn't update the target power mode in the driver; 383 * it just updates the hardware power state. 384 * 385 * XXX it should only ever force the hardware awake; it should 386 * never be called to set it asleep. 387 */ 388 void 389 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 390 { 391 ATH_LOCK_ASSERT(sc); 392 393 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 394 __func__, 395 file, 396 line, 397 power_state, 398 sc->sc_powersave_refcnt); 399 400 sc->sc_powersave_refcnt++; 401 402 /* 403 * Only do the power state change if we're not programming 404 * it elsewhere. 405 */ 406 if (power_state != sc->sc_cur_powerstate) { 407 ath_hal_setpower(sc->sc_ah, power_state); 408 sc->sc_cur_powerstate = power_state; 409 /* 410 * Adjust the self-gen powerstate if appropriate. 411 */ 412 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 413 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 414 ath_hal_setselfgenpower(sc->sc_ah, 415 sc->sc_target_selfgen_state); 416 } 417 } 418 } 419 420 /* 421 * Restore the power save mode to what it once was. 422 * 423 * This will decrement the reference counter and once it hits 424 * zero, it'll restore the powersave state. 425 */ 426 void 427 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 428 { 429 430 ATH_LOCK_ASSERT(sc); 431 432 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 433 __func__, 434 file, 435 line, 436 sc->sc_powersave_refcnt, 437 sc->sc_target_powerstate); 438 439 if (sc->sc_powersave_refcnt == 0) 440 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 441 else 442 sc->sc_powersave_refcnt--; 443 444 if (sc->sc_powersave_refcnt == 0 && 445 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 446 sc->sc_cur_powerstate = sc->sc_target_powerstate; 447 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 448 } 449 450 /* 451 * Adjust the self-gen powerstate if appropriate. 452 */ 453 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 454 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 455 ath_hal_setselfgenpower(sc->sc_ah, 456 sc->sc_target_selfgen_state); 457 } 458 459 } 460 461 /* 462 * Configure the initial HAL configuration values based on bus 463 * specific parameters. 464 * 465 * Some PCI IDs and other information may need tweaking. 466 * 467 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable 468 * if BT antenna diversity isn't enabled. 469 * 470 * So, let's also figure out how to enable BT diversity for AR9485. 471 */ 472 static void 473 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config) 474 { 475 /* XXX TODO: only for PCI devices? */ 476 477 if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) { 478 ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */ 479 ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE; 480 ah_config->ath_hal_min_gainidx = AH_TRUE; 481 ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88; 482 /* XXX low_rssi_thresh */ 483 /* XXX fast_div_bias */ 484 device_printf(sc->sc_dev, "configuring for %s\n", 485 (sc->sc_pci_devinfo & ATH_PCI_CUS198) ? 486 "CUS198" : "CUS230"); 487 } 488 489 if (sc->sc_pci_devinfo & ATH_PCI_CUS217) 490 device_printf(sc->sc_dev, "CUS217 card detected\n"); 491 492 if (sc->sc_pci_devinfo & ATH_PCI_CUS252) 493 device_printf(sc->sc_dev, "CUS252 card detected\n"); 494 495 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT) 496 device_printf(sc->sc_dev, "WB335 1-ANT card detected\n"); 497 498 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT) 499 device_printf(sc->sc_dev, "WB335 2-ANT card detected\n"); 500 501 if (sc->sc_pci_devinfo & ATH_PCI_BT_ANT_DIV) 502 device_printf(sc->sc_dev, 503 "Bluetooth Antenna Diversity card detected\n"); 504 505 if (sc->sc_pci_devinfo & ATH_PCI_KILLER) 506 device_printf(sc->sc_dev, "Killer Wireless card detected\n"); 507 508 #if 0 509 /* 510 * Some WB335 cards do not support antenna diversity. Since 511 * we use a hardcoded value for AR9565 instead of using the 512 * EEPROM/OTP data, remove the combining feature from 513 * the HW capabilities bitmap. 514 */ 515 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 516 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV)) 517 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB; 518 } 519 520 if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) { 521 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV; 522 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n"); 523 } 524 #endif 525 526 if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) { 527 ah_config->ath_hal_pcie_waen = 0x0040473b; 528 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n"); 529 } 530 531 #if 0 532 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) { 533 ah->config.no_pll_pwrsave = true; 534 device_printf(sc->sc_dev, "Disable PLL PowerSave\n"); 535 } 536 #endif 537 538 } 539 540 /* 541 * Attempt to fetch the MAC address from the kernel environment. 542 * 543 * Returns 0, macaddr in macaddr if successful; -1 otherwise. 544 */ 545 static int 546 ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr) 547 { 548 char devid_str[32]; 549 int local_mac = 0; 550 char *local_macstr; 551 552 /* 553 * Fetch from the kenv rather than using hints. 554 * 555 * Hints would be nice but the transition to dynamic 556 * hints/kenv doesn't happen early enough for this 557 * to work reliably (eg on anything embedded.) 558 */ 559 snprintf(devid_str, 32, "hint.%s.%d.macaddr", 560 device_get_name(sc->sc_dev), 561 device_get_unit(sc->sc_dev)); 562 563 if ((local_macstr = kern_getenv(devid_str)) != NULL) { 564 uint32_t tmpmac[ETHER_ADDR_LEN]; 565 int count; 566 int i; 567 568 /* Have a MAC address; should use it */ 569 device_printf(sc->sc_dev, 570 "Overriding MAC address from environment: '%s'\n", 571 local_macstr); 572 573 /* Extract out the MAC address */ 574 count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x", 575 &tmpmac[0], &tmpmac[1], 576 &tmpmac[2], &tmpmac[3], 577 &tmpmac[4], &tmpmac[5]); 578 if (count == 6) { 579 /* Valid! */ 580 local_mac = 1; 581 for (i = 0; i < ETHER_ADDR_LEN; i++) 582 macaddr[i] = tmpmac[i]; 583 } 584 /* Done! */ 585 freeenv(local_macstr); 586 local_macstr = NULL; 587 } 588 589 if (local_mac) 590 return (0); 591 return (-1); 592 } 593 594 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 595 #define HAL_MODE_HT40 \ 596 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 597 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 598 int 599 ath_attach(u_int16_t devid, struct ath_softc *sc) 600 { 601 struct ieee80211com *ic = &sc->sc_ic; 602 struct ath_hal *ah = NULL; 603 HAL_STATUS status; 604 int error = 0, i; 605 u_int wmodes; 606 int rx_chainmask, tx_chainmask; 607 HAL_OPS_CONFIG ah_config; 608 609 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 610 611 ic->ic_softc = sc; 612 ic->ic_name = device_get_nameunit(sc->sc_dev); 613 614 /* 615 * Configure the initial configuration data. 616 * 617 * This is stuff that may be needed early during attach 618 * rather than done via configuration calls later. 619 */ 620 bzero(&ah_config, sizeof(ah_config)); 621 ath_setup_hal_config(sc, &ah_config); 622 623 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 624 sc->sc_eepromdata, &ah_config, &status); 625 if (ah == NULL) { 626 device_printf(sc->sc_dev, 627 "unable to attach hardware; HAL status %u\n", status); 628 error = ENXIO; 629 goto bad; 630 } 631 sc->sc_ah = ah; 632 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 633 #ifdef ATH_DEBUG 634 sc->sc_debug = ath_debug; 635 #endif 636 637 /* 638 * Force the chip awake during setup, just to keep 639 * the HAL/driver power tracking happy. 640 * 641 * There are some methods (eg ath_hal_setmac()) 642 * that poke the hardware. 643 */ 644 ATH_LOCK(sc); 645 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 646 ATH_UNLOCK(sc); 647 648 /* 649 * Setup the DMA/EDMA functions based on the current 650 * hardware support. 651 * 652 * This is required before the descriptors are allocated. 653 */ 654 if (ath_hal_hasedma(sc->sc_ah)) { 655 sc->sc_isedma = 1; 656 ath_recv_setup_edma(sc); 657 ath_xmit_setup_edma(sc); 658 } else { 659 ath_recv_setup_legacy(sc); 660 ath_xmit_setup_legacy(sc); 661 } 662 663 if (ath_hal_hasmybeacon(sc->sc_ah)) { 664 sc->sc_do_mybeacon = 1; 665 } 666 667 /* 668 * Check if the MAC has multi-rate retry support. 669 * We do this by trying to setup a fake extended 670 * descriptor. MAC's that don't have support will 671 * return false w/o doing anything. MAC's that do 672 * support it will return true w/o doing anything. 673 */ 674 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 675 676 /* 677 * Check if the device has hardware counters for PHY 678 * errors. If so we need to enable the MIB interrupt 679 * so we can act on stat triggers. 680 */ 681 if (ath_hal_hwphycounters(ah)) 682 sc->sc_needmib = 1; 683 684 /* 685 * Get the hardware key cache size. 686 */ 687 sc->sc_keymax = ath_hal_keycachesize(ah); 688 if (sc->sc_keymax > ATH_KEYMAX) { 689 device_printf(sc->sc_dev, 690 "Warning, using only %u of %u key cache slots\n", 691 ATH_KEYMAX, sc->sc_keymax); 692 sc->sc_keymax = ATH_KEYMAX; 693 } 694 /* 695 * Reset the key cache since some parts do not 696 * reset the contents on initial power up. 697 */ 698 for (i = 0; i < sc->sc_keymax; i++) 699 ath_hal_keyreset(ah, i); 700 701 /* 702 * Collect the default channel list. 703 */ 704 error = ath_getchannels(sc); 705 if (error != 0) 706 goto bad; 707 708 /* 709 * Setup rate tables for all potential media types. 710 */ 711 ath_rate_setup(sc, IEEE80211_MODE_11A); 712 ath_rate_setup(sc, IEEE80211_MODE_11B); 713 ath_rate_setup(sc, IEEE80211_MODE_11G); 714 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 715 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 716 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 717 ath_rate_setup(sc, IEEE80211_MODE_11NA); 718 ath_rate_setup(sc, IEEE80211_MODE_11NG); 719 ath_rate_setup(sc, IEEE80211_MODE_HALF); 720 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 721 722 /* NB: setup here so ath_rate_update is happy */ 723 ath_setcurmode(sc, IEEE80211_MODE_11A); 724 725 /* 726 * Allocate TX descriptors and populate the lists. 727 */ 728 error = ath_desc_alloc(sc); 729 if (error != 0) { 730 device_printf(sc->sc_dev, 731 "failed to allocate TX descriptors: %d\n", error); 732 goto bad; 733 } 734 error = ath_txdma_setup(sc); 735 if (error != 0) { 736 device_printf(sc->sc_dev, 737 "failed to allocate TX descriptors: %d\n", error); 738 goto bad; 739 } 740 741 /* 742 * Allocate RX descriptors and populate the lists. 743 */ 744 error = ath_rxdma_setup(sc); 745 if (error != 0) { 746 device_printf(sc->sc_dev, 747 "failed to allocate RX descriptors: %d\n", error); 748 goto bad; 749 } 750 751 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 752 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 753 754 ATH_TXBUF_LOCK_INIT(sc); 755 756 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 757 taskqueue_thread_enqueue, &sc->sc_tq); 758 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 759 device_get_nameunit(sc->sc_dev)); 760 761 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 762 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 763 TASK_INIT(&sc->sc_tsfoortask, 0, ath_tsfoor_proc, sc); 764 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 765 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 766 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 767 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 768 769 /* 770 * Allocate hardware transmit queues: one queue for 771 * beacon frames and one data queue for each QoS 772 * priority. Note that the hal handles resetting 773 * these queues at the needed time. 774 * 775 * XXX PS-Poll 776 */ 777 sc->sc_bhalq = ath_beaconq_setup(sc); 778 if (sc->sc_bhalq == (u_int) -1) { 779 device_printf(sc->sc_dev, 780 "unable to setup a beacon xmit queue!\n"); 781 error = EIO; 782 goto bad2; 783 } 784 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 785 if (sc->sc_cabq == NULL) { 786 device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n"); 787 error = EIO; 788 goto bad2; 789 } 790 /* NB: insure BK queue is the lowest priority h/w queue */ 791 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 792 device_printf(sc->sc_dev, 793 "unable to setup xmit queue for %s traffic!\n", 794 ieee80211_wme_acnames[WME_AC_BK]); 795 error = EIO; 796 goto bad2; 797 } 798 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 799 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 800 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 801 /* 802 * Not enough hardware tx queues to properly do WME; 803 * just punt and assign them all to the same h/w queue. 804 * We could do a better job of this if, for example, 805 * we allocate queues when we switch from station to 806 * AP mode. 807 */ 808 if (sc->sc_ac2q[WME_AC_VI] != NULL) 809 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 810 if (sc->sc_ac2q[WME_AC_BE] != NULL) 811 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 812 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 813 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 814 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 815 } 816 817 /* 818 * Attach the TX completion function. 819 * 820 * The non-EDMA chips may have some special case optimisations; 821 * this method gives everyone a chance to attach cleanly. 822 */ 823 sc->sc_tx.xmit_attach_comp_func(sc); 824 825 /* 826 * Setup rate control. Some rate control modules 827 * call back to change the anntena state so expose 828 * the necessary entry points. 829 * XXX maybe belongs in struct ath_ratectrl? 830 */ 831 sc->sc_setdefantenna = ath_setdefantenna; 832 sc->sc_rc = ath_rate_attach(sc); 833 if (sc->sc_rc == NULL) { 834 error = EIO; 835 goto bad2; 836 } 837 838 /* Attach DFS module */ 839 if (! ath_dfs_attach(sc)) { 840 device_printf(sc->sc_dev, 841 "%s: unable to attach DFS\n", __func__); 842 error = EIO; 843 goto bad2; 844 } 845 846 /* Attach spectral module */ 847 if (ath_spectral_attach(sc) < 0) { 848 device_printf(sc->sc_dev, 849 "%s: unable to attach spectral\n", __func__); 850 error = EIO; 851 goto bad2; 852 } 853 854 /* Attach bluetooth coexistence module */ 855 if (ath_btcoex_attach(sc) < 0) { 856 device_printf(sc->sc_dev, 857 "%s: unable to attach bluetooth coexistence\n", __func__); 858 error = EIO; 859 goto bad2; 860 } 861 862 /* Attach LNA diversity module */ 863 if (ath_lna_div_attach(sc) < 0) { 864 device_printf(sc->sc_dev, 865 "%s: unable to attach LNA diversity\n", __func__); 866 error = EIO; 867 goto bad2; 868 } 869 870 /* Start DFS processing tasklet */ 871 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 872 873 /* Configure LED state */ 874 sc->sc_blinking = 0; 875 sc->sc_ledstate = 1; 876 sc->sc_ledon = 0; /* low true */ 877 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 878 callout_init(&sc->sc_ledtimer, 1); 879 880 /* 881 * Don't setup hardware-based blinking. 882 * 883 * Although some NICs may have this configured in the 884 * default reset register values, the user may wish 885 * to alter which pins have which function. 886 * 887 * The reference driver attaches the MAC network LED to GPIO1 and 888 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 889 * NIC has these reversed. 890 */ 891 sc->sc_hardled = (1 == 0); 892 sc->sc_led_net_pin = -1; 893 sc->sc_led_pwr_pin = -1; 894 /* 895 * Auto-enable soft led processing for IBM cards and for 896 * 5211 minipci cards. Users can also manually enable/disable 897 * support with a sysctl. 898 */ 899 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 900 ath_led_config(sc); 901 ath_hal_setledstate(ah, HAL_LED_INIT); 902 903 /* XXX not right but it's not used anywhere important */ 904 ic->ic_phytype = IEEE80211_T_OFDM; 905 ic->ic_opmode = IEEE80211_M_STA; 906 ic->ic_caps = 907 IEEE80211_C_STA /* station mode */ 908 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 909 | IEEE80211_C_HOSTAP /* hostap mode */ 910 | IEEE80211_C_MONITOR /* monitor mode */ 911 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 912 | IEEE80211_C_WDS /* 4-address traffic works */ 913 | IEEE80211_C_MBSS /* mesh point link mode */ 914 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 915 | IEEE80211_C_SHSLOT /* short slot time supported */ 916 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 917 #ifndef ATH_ENABLE_11N 918 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 919 #endif 920 | IEEE80211_C_TXFRAG /* handle tx frags */ 921 #ifdef ATH_ENABLE_DFS 922 | IEEE80211_C_DFS /* Enable radar detection */ 923 #endif 924 | IEEE80211_C_PMGT /* Station side power mgmt */ 925 | IEEE80211_C_SWSLEEP 926 ; 927 /* 928 * Query the hal to figure out h/w crypto support. 929 */ 930 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 931 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 932 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 933 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 934 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 935 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 936 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 937 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 938 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 939 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 940 /* 941 * Check if h/w does the MIC and/or whether the 942 * separate key cache entries are required to 943 * handle both tx+rx MIC keys. 944 */ 945 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 946 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 947 /* 948 * If the h/w supports storing tx+rx MIC keys 949 * in one cache slot automatically enable use. 950 */ 951 if (ath_hal_hastkipsplit(ah) || 952 !ath_hal_settkipsplit(ah, AH_FALSE)) 953 sc->sc_splitmic = 1; 954 /* 955 * If the h/w can do TKIP MIC together with WME then 956 * we use it; otherwise we force the MIC to be done 957 * in software by the net80211 layer. 958 */ 959 if (ath_hal_haswmetkipmic(ah)) 960 sc->sc_wmetkipmic = 1; 961 } 962 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 963 /* 964 * Check for multicast key search support. 965 */ 966 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 967 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 968 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 969 } 970 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 971 /* 972 * Mark key cache slots associated with global keys 973 * as in use. If we knew TKIP was not to be used we 974 * could leave the +32, +64, and +32+64 slots free. 975 */ 976 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 977 setbit(sc->sc_keymap, i); 978 setbit(sc->sc_keymap, i+64); 979 if (sc->sc_splitmic) { 980 setbit(sc->sc_keymap, i+32); 981 setbit(sc->sc_keymap, i+32+64); 982 } 983 } 984 /* 985 * TPC support can be done either with a global cap or 986 * per-packet support. The latter is not available on 987 * all parts. We're a bit pedantic here as all parts 988 * support a global cap. 989 */ 990 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 991 ic->ic_caps |= IEEE80211_C_TXPMGT; 992 993 /* 994 * Mark WME capability only if we have sufficient 995 * hardware queues to do proper priority scheduling. 996 */ 997 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 998 ic->ic_caps |= IEEE80211_C_WME; 999 /* 1000 * Check for misc other capabilities. 1001 */ 1002 if (ath_hal_hasbursting(ah)) 1003 ic->ic_caps |= IEEE80211_C_BURST; 1004 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 1005 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 1006 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 1007 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 1008 1009 /* XXX TODO: just make this a "store tx/rx timestamp length" operation */ 1010 if (ath_hal_get_rx_tsf_prec(ah, &i)) { 1011 if (i == 32) { 1012 sc->sc_rxtsf32 = 1; 1013 } 1014 if (bootverbose) 1015 device_printf(sc->sc_dev, "RX timestamp: %d bits\n", i); 1016 } 1017 if (ath_hal_get_tx_tsf_prec(ah, &i)) { 1018 if (bootverbose) 1019 device_printf(sc->sc_dev, "TX timestamp: %d bits\n", i); 1020 } 1021 1022 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 1023 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 1024 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 1025 1026 /* 1027 * Some WB335 cards do not support antenna diversity. Since 1028 * we use a hardcoded value for AR9565 instead of using the 1029 * EEPROM/OTP data, remove the combining feature from 1030 * the HW capabilities bitmap. 1031 */ 1032 /* 1033 * XXX TODO: check reference driver and ath9k for what to do 1034 * here for WB335. I think we have to actually disable the 1035 * LNA div processing in the HAL and instead use the hard 1036 * coded values; and then use BT diversity. 1037 * 1038 * .. but also need to setup MCI too for WB335.. 1039 */ 1040 #if 0 1041 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 1042 device_printf(sc->sc_dev, "%s: WB335: disabling LNA mixer diversity\n", 1043 __func__); 1044 sc->sc_dolnadiv = 0; 1045 } 1046 #endif 1047 1048 if (ath_hal_hasfastframes(ah)) 1049 ic->ic_caps |= IEEE80211_C_FF; 1050 wmodes = ath_hal_getwirelessmodes(ah); 1051 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 1052 ic->ic_caps |= IEEE80211_C_TURBOP; 1053 #ifdef IEEE80211_SUPPORT_TDMA 1054 if (ath_hal_macversion(ah) > 0x78) { 1055 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 1056 ic->ic_tdma_update = ath_tdma_update; 1057 } 1058 #endif 1059 1060 /* 1061 * TODO: enforce that at least this many frames are available 1062 * in the txbuf list before allowing data frames (raw or 1063 * otherwise) to be transmitted. 1064 */ 1065 sc->sc_txq_data_minfree = 10; 1066 1067 /* 1068 * Shorten this to 64 packets, or 1/4 ath_txbuf, whichever 1069 * is smaller. 1070 * 1071 * Anything bigger can potentially see the cabq consume 1072 * almost all buffers, starving everything else, only to 1073 * see most fail to transmit in the given beacon interval. 1074 */ 1075 sc->sc_txq_mcastq_maxdepth = MIN(64, ath_txbuf / 4); 1076 1077 /* 1078 * How deep can the node software TX queue get whilst it's asleep. 1079 */ 1080 sc->sc_txq_node_psq_maxdepth = 16; 1081 1082 /* 1083 * Default the maximum queue to 1/4'th the TX buffers, or 1084 * 128, whichever is smaller. 1085 * 1086 * Set it to 128 instead of the previous default (64) because 1087 * at 64, two full A-MPDU subframes of 32 frames each is 1088 * enough to treat this node queue as full and all subsequent 1089 * traffic is dropped. Setting it to 128 means there'll 1090 * hopefully be another 64 frames in the software queue 1091 * to begin making A-MPDU frames out of. 1092 */ 1093 sc->sc_txq_node_maxdepth = MIN(128, ath_txbuf / 4); 1094 1095 /* Enable CABQ by default */ 1096 sc->sc_cabq_enable = 1; 1097 1098 /* 1099 * Allow the TX and RX chainmasks to be overridden by 1100 * environment variables and/or device.hints. 1101 * 1102 * This must be done early - before the hardware is 1103 * calibrated or before the 802.11n stream calculation 1104 * is done. 1105 */ 1106 if (resource_int_value(device_get_name(sc->sc_dev), 1107 device_get_unit(sc->sc_dev), "rx_chainmask", 1108 &rx_chainmask) == 0) { 1109 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 1110 rx_chainmask); 1111 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 1112 } 1113 if (resource_int_value(device_get_name(sc->sc_dev), 1114 device_get_unit(sc->sc_dev), "tx_chainmask", 1115 &tx_chainmask) == 0) { 1116 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 1117 tx_chainmask); 1118 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 1119 } 1120 1121 /* 1122 * Query the TX/RX chainmask configuration. 1123 * 1124 * This is only relevant for 11n devices. 1125 */ 1126 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 1127 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 1128 1129 /* 1130 * Disable MRR with protected frames by default. 1131 * Only 802.11n series NICs can handle this. 1132 */ 1133 sc->sc_mrrprot = 0; /* XXX should be a capability */ 1134 1135 /* 1136 * Query the enterprise mode information the HAL. 1137 */ 1138 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 1139 &sc->sc_ent_cfg) == HAL_OK) 1140 sc->sc_use_ent = 1; 1141 1142 #ifdef ATH_ENABLE_11N 1143 /* 1144 * Query HT capabilities 1145 */ 1146 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 1147 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 1148 uint32_t rxs, txs; 1149 uint32_t ldpc; 1150 1151 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 1152 1153 sc->sc_mrrprot = 1; /* XXX should be a capability */ 1154 1155 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 1156 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 1157 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 1158 | IEEE80211_HTCAP_MAXAMSDU_3839 1159 /* max A-MSDU length */ 1160 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 1161 1162 /* 1163 * Enable short-GI for HT20 only if the hardware 1164 * advertises support. 1165 * Notably, anything earlier than the AR9287 doesn't. 1166 */ 1167 if ((ath_hal_getcapability(ah, 1168 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 1169 (wmodes & HAL_MODE_HT20)) { 1170 device_printf(sc->sc_dev, 1171 "[HT] enabling short-GI in 20MHz mode\n"); 1172 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 1173 } 1174 1175 if (wmodes & HAL_MODE_HT40) 1176 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 1177 | IEEE80211_HTCAP_SHORTGI40; 1178 1179 /* 1180 * TX/RX streams need to be taken into account when 1181 * negotiating which MCS rates it'll receive and 1182 * what MCS rates are available for TX. 1183 */ 1184 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 1185 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 1186 ic->ic_txstream = txs; 1187 ic->ic_rxstream = rxs; 1188 1189 /* 1190 * Setup TX and RX STBC based on what the HAL allows and 1191 * the currently configured chainmask set. 1192 * Ie - don't enable STBC TX if only one chain is enabled. 1193 * STBC RX is fine on a single RX chain; it just won't 1194 * provide any real benefit. 1195 */ 1196 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 1197 NULL) == HAL_OK) { 1198 sc->sc_rx_stbc = 1; 1199 device_printf(sc->sc_dev, 1200 "[HT] 1 stream STBC receive enabled\n"); 1201 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1202 } 1203 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1204 NULL) == HAL_OK) { 1205 sc->sc_tx_stbc = 1; 1206 device_printf(sc->sc_dev, 1207 "[HT] 1 stream STBC transmit enabled\n"); 1208 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1209 } 1210 1211 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1212 &sc->sc_rts_aggr_limit); 1213 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1214 device_printf(sc->sc_dev, 1215 "[HT] RTS aggregates limited to %d KiB\n", 1216 sc->sc_rts_aggr_limit / 1024); 1217 1218 /* 1219 * LDPC 1220 */ 1221 if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc)) 1222 == HAL_OK && (ldpc == 1)) { 1223 sc->sc_has_ldpc = 1; 1224 device_printf(sc->sc_dev, 1225 "[HT] LDPC transmit/receive enabled\n"); 1226 ic->ic_htcaps |= IEEE80211_HTCAP_LDPC | 1227 IEEE80211_HTC_TXLDPC; 1228 } 1229 1230 device_printf(sc->sc_dev, 1231 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1232 } 1233 #endif 1234 1235 /* 1236 * Initial aggregation settings. 1237 */ 1238 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1239 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1240 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1241 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1242 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1243 sc->sc_delim_min_pad = 0; 1244 1245 /* 1246 * Check if the hardware requires PCI register serialisation. 1247 * Some of the Owl based MACs require this. 1248 */ 1249 if (mp_ncpus > 1 && 1250 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1251 0, NULL) == HAL_OK) { 1252 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1253 device_printf(sc->sc_dev, 1254 "Enabling register serialisation\n"); 1255 } 1256 1257 /* 1258 * Initialise the deferred completed RX buffer list. 1259 */ 1260 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1261 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1262 1263 /* 1264 * Indicate we need the 802.11 header padded to a 1265 * 32-bit boundary for 4-address and QoS frames. 1266 */ 1267 ic->ic_flags |= IEEE80211_F_DATAPAD; 1268 1269 /* 1270 * Query the hal about antenna support. 1271 */ 1272 sc->sc_defant = ath_hal_getdefantenna(ah); 1273 1274 /* 1275 * Not all chips have the VEOL support we want to 1276 * use with IBSS beacons; check here for it. 1277 */ 1278 sc->sc_hasveol = ath_hal_hasveol(ah); 1279 1280 /* get mac address from kenv first, then hardware */ 1281 if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) { 1282 /* Tell the HAL now about the new MAC */ 1283 ath_hal_setmac(ah, ic->ic_macaddr); 1284 } else { 1285 ath_hal_getmac(ah, ic->ic_macaddr); 1286 } 1287 1288 if (sc->sc_hasbmask) 1289 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1290 1291 /* NB: used to size node table key mapping array */ 1292 ic->ic_max_keyix = sc->sc_keymax; 1293 /* call MI attach routine. */ 1294 ieee80211_ifattach(ic); 1295 ic->ic_setregdomain = ath_setregdomain; 1296 ic->ic_getradiocaps = ath_getradiocaps; 1297 sc->sc_opmode = HAL_M_STA; 1298 1299 /* override default methods */ 1300 ic->ic_ioctl = ath_ioctl; 1301 ic->ic_parent = ath_parent; 1302 ic->ic_transmit = ath_transmit; 1303 ic->ic_newassoc = ath_newassoc; 1304 ic->ic_updateslot = ath_updateslot; 1305 ic->ic_wme.wme_update = ath_wme_update; 1306 ic->ic_vap_create = ath_vap_create; 1307 ic->ic_vap_delete = ath_vap_delete; 1308 ic->ic_raw_xmit = ath_raw_xmit; 1309 ic->ic_update_mcast = ath_update_mcast; 1310 ic->ic_update_promisc = ath_update_promisc; 1311 ic->ic_node_alloc = ath_node_alloc; 1312 sc->sc_node_free = ic->ic_node_free; 1313 ic->ic_node_free = ath_node_free; 1314 sc->sc_node_cleanup = ic->ic_node_cleanup; 1315 ic->ic_node_cleanup = ath_node_cleanup; 1316 ic->ic_node_getsignal = ath_node_getsignal; 1317 ic->ic_scan_start = ath_scan_start; 1318 ic->ic_scan_end = ath_scan_end; 1319 ic->ic_set_channel = ath_set_channel; 1320 #ifdef ATH_ENABLE_11N 1321 /* 802.11n specific - but just override anyway */ 1322 sc->sc_addba_request = ic->ic_addba_request; 1323 sc->sc_addba_response = ic->ic_addba_response; 1324 sc->sc_addba_stop = ic->ic_addba_stop; 1325 sc->sc_bar_response = ic->ic_bar_response; 1326 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1327 1328 ic->ic_addba_request = ath_addba_request; 1329 ic->ic_addba_response = ath_addba_response; 1330 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1331 ic->ic_addba_stop = ath_addba_stop; 1332 ic->ic_bar_response = ath_bar_response; 1333 1334 ic->ic_update_chw = ath_update_chw; 1335 #endif /* ATH_ENABLE_11N */ 1336 ic->ic_set_quiet = ath_set_quiet_ie; 1337 1338 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1339 /* 1340 * There's one vendor bitmap entry in the RX radiotap 1341 * header; make sure that's taken into account. 1342 */ 1343 ieee80211_radiotap_attachv(ic, 1344 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1345 ATH_TX_RADIOTAP_PRESENT, 1346 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1347 ATH_RX_RADIOTAP_PRESENT); 1348 #else 1349 /* 1350 * No vendor bitmap/extensions are present. 1351 */ 1352 ieee80211_radiotap_attach(ic, 1353 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1354 ATH_TX_RADIOTAP_PRESENT, 1355 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1356 ATH_RX_RADIOTAP_PRESENT); 1357 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1358 1359 /* 1360 * Setup the ALQ logging if required 1361 */ 1362 #ifdef ATH_DEBUG_ALQ 1363 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1364 if_ath_alq_setcfg(&sc->sc_alq, 1365 sc->sc_ah->ah_macVersion, 1366 sc->sc_ah->ah_macRev, 1367 sc->sc_ah->ah_phyRev, 1368 sc->sc_ah->ah_magic); 1369 #endif 1370 1371 /* 1372 * Setup dynamic sysctl's now that country code and 1373 * regdomain are available from the hal. 1374 */ 1375 ath_sysctlattach(sc); 1376 ath_sysctl_stats_attach(sc); 1377 ath_sysctl_hal_attach(sc); 1378 1379 if (bootverbose) 1380 ieee80211_announce(ic); 1381 ath_announce(sc); 1382 1383 /* 1384 * Put it to sleep for now. 1385 */ 1386 ATH_LOCK(sc); 1387 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1); 1388 ATH_UNLOCK(sc); 1389 1390 return 0; 1391 bad2: 1392 ath_tx_cleanup(sc); 1393 ath_desc_free(sc); 1394 ath_txdma_teardown(sc); 1395 ath_rxdma_teardown(sc); 1396 1397 bad: 1398 if (ah) 1399 ath_hal_detach(ah); 1400 sc->sc_invalid = 1; 1401 return error; 1402 } 1403 1404 int 1405 ath_detach(struct ath_softc *sc) 1406 { 1407 1408 /* 1409 * NB: the order of these is important: 1410 * o stop the chip so no more interrupts will fire 1411 * o call the 802.11 layer before detaching the hal to 1412 * insure callbacks into the driver to delete global 1413 * key cache entries can be handled 1414 * o free the taskqueue which drains any pending tasks 1415 * o reclaim the tx queue data structures after calling 1416 * the 802.11 layer as we'll get called back to reclaim 1417 * node state and potentially want to use them 1418 * o to cleanup the tx queues the hal is called, so detach 1419 * it last 1420 * Other than that, it's straightforward... 1421 */ 1422 1423 /* 1424 * XXX Wake the hardware up first. ath_stop() will still 1425 * wake it up first, but I'd rather do it here just to 1426 * ensure it's awake. 1427 */ 1428 ATH_LOCK(sc); 1429 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1430 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 1431 1432 /* 1433 * Stop things cleanly. 1434 */ 1435 ath_stop(sc); 1436 ATH_UNLOCK(sc); 1437 1438 ieee80211_ifdetach(&sc->sc_ic); 1439 taskqueue_free(sc->sc_tq); 1440 #ifdef ATH_TX99_DIAG 1441 if (sc->sc_tx99 != NULL) 1442 sc->sc_tx99->detach(sc->sc_tx99); 1443 #endif 1444 ath_rate_detach(sc->sc_rc); 1445 #ifdef ATH_DEBUG_ALQ 1446 if_ath_alq_tidyup(&sc->sc_alq); 1447 #endif 1448 ath_lna_div_detach(sc); 1449 ath_btcoex_detach(sc); 1450 ath_spectral_detach(sc); 1451 ath_dfs_detach(sc); 1452 ath_desc_free(sc); 1453 ath_txdma_teardown(sc); 1454 ath_rxdma_teardown(sc); 1455 ath_tx_cleanup(sc); 1456 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1457 1458 return 0; 1459 } 1460 1461 /* 1462 * MAC address handling for multiple BSS on the same radio. 1463 * The first vap uses the MAC address from the EEPROM. For 1464 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1465 * address and use the next six bits as an index. 1466 */ 1467 static void 1468 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1469 { 1470 int i; 1471 1472 if (clone && sc->sc_hasbmask) { 1473 /* NB: we only do this if h/w supports multiple bssid */ 1474 for (i = 0; i < 8; i++) 1475 if ((sc->sc_bssidmask & (1<<i)) == 0) 1476 break; 1477 if (i != 0) 1478 mac[0] |= (i << 2)|0x2; 1479 } else 1480 i = 0; 1481 sc->sc_bssidmask |= 1<<i; 1482 sc->sc_hwbssidmask[0] &= ~mac[0]; 1483 if (i == 0) 1484 sc->sc_nbssid0++; 1485 } 1486 1487 static void 1488 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1489 { 1490 int i = mac[0] >> 2; 1491 uint8_t mask; 1492 1493 if (i != 0 || --sc->sc_nbssid0 == 0) { 1494 sc->sc_bssidmask &= ~(1<<i); 1495 /* recalculate bssid mask from remaining addresses */ 1496 mask = 0xff; 1497 for (i = 1; i < 8; i++) 1498 if (sc->sc_bssidmask & (1<<i)) 1499 mask &= ~((i<<2)|0x2); 1500 sc->sc_hwbssidmask[0] |= mask; 1501 } 1502 } 1503 1504 /* 1505 * Assign a beacon xmit slot. We try to space out 1506 * assignments so when beacons are staggered the 1507 * traffic coming out of the cab q has maximal time 1508 * to go out before the next beacon is scheduled. 1509 */ 1510 static int 1511 assign_bslot(struct ath_softc *sc) 1512 { 1513 u_int slot, free; 1514 1515 free = 0; 1516 for (slot = 0; slot < ATH_BCBUF; slot++) 1517 if (sc->sc_bslot[slot] == NULL) { 1518 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1519 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1520 return slot; 1521 free = slot; 1522 /* NB: keep looking for a double slot */ 1523 } 1524 return free; 1525 } 1526 1527 static struct ieee80211vap * 1528 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1529 enum ieee80211_opmode opmode, int flags, 1530 const uint8_t bssid[IEEE80211_ADDR_LEN], 1531 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1532 { 1533 struct ath_softc *sc = ic->ic_softc; 1534 struct ath_vap *avp; 1535 struct ieee80211vap *vap; 1536 uint8_t mac[IEEE80211_ADDR_LEN]; 1537 int needbeacon, error; 1538 enum ieee80211_opmode ic_opmode; 1539 1540 avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1541 needbeacon = 0; 1542 IEEE80211_ADDR_COPY(mac, mac0); 1543 1544 ATH_LOCK(sc); 1545 ic_opmode = opmode; /* default to opmode of new vap */ 1546 switch (opmode) { 1547 case IEEE80211_M_STA: 1548 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1549 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1550 goto bad; 1551 } 1552 if (sc->sc_nvaps) { 1553 /* 1554 * With multiple vaps we must fall back 1555 * to s/w beacon miss handling. 1556 */ 1557 flags |= IEEE80211_CLONE_NOBEACONS; 1558 } 1559 if (flags & IEEE80211_CLONE_NOBEACONS) { 1560 /* 1561 * Station mode w/o beacons are implemented w/ AP mode. 1562 */ 1563 ic_opmode = IEEE80211_M_HOSTAP; 1564 } 1565 break; 1566 case IEEE80211_M_IBSS: 1567 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1568 device_printf(sc->sc_dev, 1569 "only 1 ibss vap supported\n"); 1570 goto bad; 1571 } 1572 needbeacon = 1; 1573 break; 1574 case IEEE80211_M_AHDEMO: 1575 #ifdef IEEE80211_SUPPORT_TDMA 1576 if (flags & IEEE80211_CLONE_TDMA) { 1577 if (sc->sc_nvaps != 0) { 1578 device_printf(sc->sc_dev, 1579 "only 1 tdma vap supported\n"); 1580 goto bad; 1581 } 1582 needbeacon = 1; 1583 flags |= IEEE80211_CLONE_NOBEACONS; 1584 } 1585 /* fall thru... */ 1586 #endif 1587 case IEEE80211_M_MONITOR: 1588 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1589 /* 1590 * Adopt existing mode. Adding a monitor or ahdemo 1591 * vap to an existing configuration is of dubious 1592 * value but should be ok. 1593 */ 1594 /* XXX not right for monitor mode */ 1595 ic_opmode = ic->ic_opmode; 1596 } 1597 break; 1598 case IEEE80211_M_HOSTAP: 1599 case IEEE80211_M_MBSS: 1600 needbeacon = 1; 1601 break; 1602 case IEEE80211_M_WDS: 1603 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1604 device_printf(sc->sc_dev, 1605 "wds not supported in sta mode\n"); 1606 goto bad; 1607 } 1608 /* 1609 * Silently remove any request for a unique 1610 * bssid; WDS vap's always share the local 1611 * mac address. 1612 */ 1613 flags &= ~IEEE80211_CLONE_BSSID; 1614 if (sc->sc_nvaps == 0) 1615 ic_opmode = IEEE80211_M_HOSTAP; 1616 else 1617 ic_opmode = ic->ic_opmode; 1618 break; 1619 default: 1620 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1621 goto bad; 1622 } 1623 /* 1624 * Check that a beacon buffer is available; the code below assumes it. 1625 */ 1626 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1627 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1628 goto bad; 1629 } 1630 1631 /* STA, AHDEMO? */ 1632 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS || opmode == IEEE80211_M_STA) { 1633 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1634 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1635 } 1636 1637 vap = &avp->av_vap; 1638 /* XXX can't hold mutex across if_alloc */ 1639 ATH_UNLOCK(sc); 1640 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1641 ATH_LOCK(sc); 1642 if (error != 0) { 1643 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1644 __func__, error); 1645 goto bad2; 1646 } 1647 1648 /* h/w crypto support */ 1649 vap->iv_key_alloc = ath_key_alloc; 1650 vap->iv_key_delete = ath_key_delete; 1651 vap->iv_key_set = ath_key_set; 1652 vap->iv_key_update_begin = ath_key_update_begin; 1653 vap->iv_key_update_end = ath_key_update_end; 1654 1655 /* override various methods */ 1656 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1657 vap->iv_recv_mgmt = ath_recv_mgmt; 1658 vap->iv_reset = ath_reset_vap; 1659 vap->iv_update_beacon = ath_beacon_update; 1660 avp->av_newstate = vap->iv_newstate; 1661 vap->iv_newstate = ath_newstate; 1662 avp->av_bmiss = vap->iv_bmiss; 1663 vap->iv_bmiss = ath_bmiss_vap; 1664 1665 avp->av_node_ps = vap->iv_node_ps; 1666 vap->iv_node_ps = ath_node_powersave; 1667 1668 avp->av_set_tim = vap->iv_set_tim; 1669 vap->iv_set_tim = ath_node_set_tim; 1670 1671 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1672 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1673 1674 /* Set default parameters */ 1675 1676 /* 1677 * Anything earlier than some AR9300 series MACs don't 1678 * support a smaller MPDU density. 1679 */ 1680 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1681 /* 1682 * All NICs can handle the maximum size, however 1683 * AR5416 based MACs can only TX aggregates w/ RTS 1684 * protection when the total aggregate size is <= 8k. 1685 * However, for now that's enforced by the TX path. 1686 */ 1687 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1688 vap->iv_ampdu_limit = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1689 1690 avp->av_bslot = -1; 1691 if (needbeacon) { 1692 /* 1693 * Allocate beacon state and setup the q for buffered 1694 * multicast frames. We know a beacon buffer is 1695 * available because we checked above. 1696 */ 1697 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1698 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1699 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1700 /* 1701 * Assign the vap to a beacon xmit slot. As above 1702 * this cannot fail to find a free one. 1703 */ 1704 avp->av_bslot = assign_bslot(sc); 1705 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1706 ("beacon slot %u not empty", avp->av_bslot)); 1707 sc->sc_bslot[avp->av_bslot] = vap; 1708 sc->sc_nbcnvaps++; 1709 } 1710 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1711 /* 1712 * Multple vaps are to transmit beacons and we 1713 * have h/w support for TSF adjusting; enable 1714 * use of staggered beacons. 1715 */ 1716 sc->sc_stagbeacons = 1; 1717 } 1718 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1719 } 1720 1721 ic->ic_opmode = ic_opmode; 1722 if (opmode != IEEE80211_M_WDS) { 1723 sc->sc_nvaps++; 1724 if (opmode == IEEE80211_M_STA) 1725 sc->sc_nstavaps++; 1726 if (opmode == IEEE80211_M_MBSS) 1727 sc->sc_nmeshvaps++; 1728 } 1729 switch (ic_opmode) { 1730 case IEEE80211_M_IBSS: 1731 sc->sc_opmode = HAL_M_IBSS; 1732 break; 1733 case IEEE80211_M_STA: 1734 sc->sc_opmode = HAL_M_STA; 1735 break; 1736 case IEEE80211_M_AHDEMO: 1737 #ifdef IEEE80211_SUPPORT_TDMA 1738 if (vap->iv_caps & IEEE80211_C_TDMA) { 1739 sc->sc_tdma = 1; 1740 /* NB: disable tsf adjust */ 1741 sc->sc_stagbeacons = 0; 1742 } 1743 /* 1744 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1745 * just ap mode. 1746 */ 1747 /* fall thru... */ 1748 #endif 1749 case IEEE80211_M_HOSTAP: 1750 case IEEE80211_M_MBSS: 1751 sc->sc_opmode = HAL_M_HOSTAP; 1752 break; 1753 case IEEE80211_M_MONITOR: 1754 sc->sc_opmode = HAL_M_MONITOR; 1755 break; 1756 default: 1757 /* XXX should not happen */ 1758 break; 1759 } 1760 if (sc->sc_hastsfadd) { 1761 /* 1762 * Configure whether or not TSF adjust should be done. 1763 */ 1764 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1765 } 1766 if (flags & IEEE80211_CLONE_NOBEACONS) { 1767 /* 1768 * Enable s/w beacon miss handling. 1769 */ 1770 sc->sc_swbmiss = 1; 1771 } 1772 ATH_UNLOCK(sc); 1773 1774 /* complete setup */ 1775 ieee80211_vap_attach(vap, ieee80211_media_change, 1776 ieee80211_media_status, mac); 1777 return vap; 1778 bad2: 1779 reclaim_address(sc, mac); 1780 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1781 bad: 1782 free(avp, M_80211_VAP); 1783 ATH_UNLOCK(sc); 1784 return NULL; 1785 } 1786 1787 static void 1788 ath_vap_delete(struct ieee80211vap *vap) 1789 { 1790 struct ieee80211com *ic = vap->iv_ic; 1791 struct ath_softc *sc = ic->ic_softc; 1792 struct ath_hal *ah = sc->sc_ah; 1793 struct ath_vap *avp = ATH_VAP(vap); 1794 1795 ATH_LOCK(sc); 1796 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1797 ATH_UNLOCK(sc); 1798 1799 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1800 if (sc->sc_running) { 1801 /* 1802 * Quiesce the hardware while we remove the vap. In 1803 * particular we need to reclaim all references to 1804 * the vap state by any frames pending on the tx queues. 1805 */ 1806 ath_hal_intrset(ah, 0); /* disable interrupts */ 1807 /* XXX Do all frames from all vaps/nodes need draining here? */ 1808 ath_stoprecv(sc, 1); /* stop recv side */ 1809 ath_rx_flush(sc); 1810 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1811 } 1812 1813 /* .. leave the hardware awake for now. */ 1814 1815 ieee80211_vap_detach(vap); 1816 1817 /* 1818 * XXX Danger Will Robinson! Danger! 1819 * 1820 * Because ieee80211_vap_detach() can queue a frame (the station 1821 * diassociate message?) after we've drained the TXQ and 1822 * flushed the software TXQ, we will end up with a frame queued 1823 * to a node whose vap is about to be freed. 1824 * 1825 * To work around this, flush the hardware/software again. 1826 * This may be racy - the ath task may be running and the packet 1827 * may be being scheduled between sw->hw txq. Tsk. 1828 * 1829 * TODO: figure out why a new node gets allocated somewhere around 1830 * here (after the ath_tx_swq() call; and after an ath_stop() 1831 * call!) 1832 */ 1833 1834 ath_draintxq(sc, ATH_RESET_DEFAULT); 1835 1836 ATH_LOCK(sc); 1837 /* 1838 * Reclaim beacon state. Note this must be done before 1839 * the vap instance is reclaimed as we may have a reference 1840 * to it in the buffer for the beacon frame. 1841 */ 1842 if (avp->av_bcbuf != NULL) { 1843 if (avp->av_bslot != -1) { 1844 sc->sc_bslot[avp->av_bslot] = NULL; 1845 sc->sc_nbcnvaps--; 1846 } 1847 ath_beacon_return(sc, avp->av_bcbuf); 1848 avp->av_bcbuf = NULL; 1849 if (sc->sc_nbcnvaps == 0) { 1850 sc->sc_stagbeacons = 0; 1851 if (sc->sc_hastsfadd) 1852 ath_hal_settsfadjust(sc->sc_ah, 0); 1853 } 1854 /* 1855 * Reclaim any pending mcast frames for the vap. 1856 */ 1857 ath_tx_draintxq(sc, &avp->av_mcastq); 1858 } 1859 /* 1860 * Update bookkeeping. 1861 */ 1862 if (vap->iv_opmode == IEEE80211_M_STA) { 1863 sc->sc_nstavaps--; 1864 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1865 sc->sc_swbmiss = 0; 1866 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1867 vap->iv_opmode == IEEE80211_M_STA || 1868 vap->iv_opmode == IEEE80211_M_MBSS) { 1869 reclaim_address(sc, vap->iv_myaddr); 1870 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1871 if (vap->iv_opmode == IEEE80211_M_MBSS) 1872 sc->sc_nmeshvaps--; 1873 } 1874 if (vap->iv_opmode != IEEE80211_M_WDS) 1875 sc->sc_nvaps--; 1876 #ifdef IEEE80211_SUPPORT_TDMA 1877 /* TDMA operation ceases when the last vap is destroyed */ 1878 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1879 sc->sc_tdma = 0; 1880 sc->sc_swbmiss = 0; 1881 } 1882 #endif 1883 free(avp, M_80211_VAP); 1884 1885 if (sc->sc_running) { 1886 /* 1887 * Restart rx+tx machines if still running (RUNNING will 1888 * be reset if we just destroyed the last vap). 1889 */ 1890 if (ath_startrecv(sc) != 0) 1891 device_printf(sc->sc_dev, 1892 "%s: unable to restart recv logic\n", __func__); 1893 if (sc->sc_beacons) { /* restart beacons */ 1894 #ifdef IEEE80211_SUPPORT_TDMA 1895 if (sc->sc_tdma) 1896 ath_tdma_config(sc, NULL); 1897 else 1898 #endif 1899 ath_beacon_config(sc, NULL); 1900 } 1901 ath_hal_intrset(ah, sc->sc_imask); 1902 } 1903 1904 /* Ok, let the hardware asleep. */ 1905 ath_power_restore_power_state(sc); 1906 ATH_UNLOCK(sc); 1907 } 1908 1909 void 1910 ath_suspend(struct ath_softc *sc) 1911 { 1912 struct ieee80211com *ic = &sc->sc_ic; 1913 1914 sc->sc_resume_up = ic->ic_nrunning != 0; 1915 1916 ieee80211_suspend_all(ic); 1917 /* 1918 * NB: don't worry about putting the chip in low power 1919 * mode; pci will power off our socket on suspend and 1920 * CardBus detaches the device. 1921 * 1922 * XXX TODO: well, that's great, except for non-cardbus 1923 * devices! 1924 */ 1925 1926 /* 1927 * XXX This doesn't wait until all pending taskqueue 1928 * items and parallel transmit/receive/other threads 1929 * are running! 1930 */ 1931 ath_hal_intrset(sc->sc_ah, 0); 1932 taskqueue_block(sc->sc_tq); 1933 1934 ATH_LOCK(sc); 1935 callout_stop(&sc->sc_cal_ch); 1936 ATH_UNLOCK(sc); 1937 1938 /* 1939 * XXX ensure sc_invalid is 1 1940 */ 1941 1942 /* Disable the PCIe PHY, complete with workarounds */ 1943 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1944 } 1945 1946 /* 1947 * Reset the key cache since some parts do not reset the 1948 * contents on resume. First we clear all entries, then 1949 * re-load keys that the 802.11 layer assumes are setup 1950 * in h/w. 1951 */ 1952 static void 1953 ath_reset_keycache(struct ath_softc *sc) 1954 { 1955 struct ieee80211com *ic = &sc->sc_ic; 1956 struct ath_hal *ah = sc->sc_ah; 1957 int i; 1958 1959 ATH_LOCK(sc); 1960 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1961 for (i = 0; i < sc->sc_keymax; i++) 1962 ath_hal_keyreset(ah, i); 1963 ath_power_restore_power_state(sc); 1964 ATH_UNLOCK(sc); 1965 ieee80211_crypto_reload_keys(ic); 1966 } 1967 1968 /* 1969 * Fetch the current chainmask configuration based on the current 1970 * operating channel and options. 1971 */ 1972 static void 1973 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1974 { 1975 1976 /* 1977 * Set TX chainmask to the currently configured chainmask; 1978 * the TX chainmask depends upon the current operating mode. 1979 */ 1980 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1981 if (IEEE80211_IS_CHAN_HT(chan)) { 1982 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1983 } else { 1984 sc->sc_cur_txchainmask = 1; 1985 } 1986 1987 DPRINTF(sc, ATH_DEBUG_RESET, 1988 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1989 __func__, 1990 sc->sc_cur_txchainmask, 1991 sc->sc_cur_rxchainmask); 1992 } 1993 1994 void 1995 ath_resume(struct ath_softc *sc) 1996 { 1997 struct ieee80211com *ic = &sc->sc_ic; 1998 struct ath_hal *ah = sc->sc_ah; 1999 HAL_STATUS status; 2000 2001 ath_hal_enablepcie(ah, 0, 0); 2002 2003 /* 2004 * Must reset the chip before we reload the 2005 * keycache as we were powered down on suspend. 2006 */ 2007 ath_update_chainmasks(sc, 2008 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 2009 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2010 sc->sc_cur_rxchainmask); 2011 2012 /* Ensure we set the current power state to on */ 2013 ATH_LOCK(sc); 2014 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2015 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2016 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 2017 ATH_UNLOCK(sc); 2018 2019 ath_hal_reset(ah, sc->sc_opmode, 2020 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 2021 AH_FALSE, HAL_RESET_NORMAL, &status); 2022 ath_reset_keycache(sc); 2023 2024 ATH_RX_LOCK(sc); 2025 sc->sc_rx_stopped = 1; 2026 sc->sc_rx_resetted = 1; 2027 ATH_RX_UNLOCK(sc); 2028 2029 /* Let DFS at it in case it's a DFS channel */ 2030 ath_dfs_radar_enable(sc, ic->ic_curchan); 2031 2032 /* Let spectral at in case spectral is enabled */ 2033 ath_spectral_enable(sc, ic->ic_curchan); 2034 2035 /* 2036 * Let bluetooth coexistence at in case it's needed for this channel 2037 */ 2038 ath_btcoex_enable(sc, ic->ic_curchan); 2039 2040 /* 2041 * If we're doing TDMA, enforce the TXOP limitation for chips that 2042 * support it. 2043 */ 2044 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2045 ath_hal_setenforcetxop(sc->sc_ah, 1); 2046 else 2047 ath_hal_setenforcetxop(sc->sc_ah, 0); 2048 2049 /* Restore the LED configuration */ 2050 ath_led_config(sc); 2051 ath_hal_setledstate(ah, HAL_LED_INIT); 2052 2053 if (sc->sc_resume_up) 2054 ieee80211_resume_all(ic); 2055 2056 ATH_LOCK(sc); 2057 ath_power_restore_power_state(sc); 2058 ATH_UNLOCK(sc); 2059 2060 /* XXX beacons ? */ 2061 } 2062 2063 void 2064 ath_shutdown(struct ath_softc *sc) 2065 { 2066 2067 ATH_LOCK(sc); 2068 ath_stop(sc); 2069 ATH_UNLOCK(sc); 2070 /* NB: no point powering down chip as we're about to reboot */ 2071 } 2072 2073 /* 2074 * Interrupt handler. Most of the actual processing is deferred. 2075 */ 2076 void 2077 ath_intr(void *arg) 2078 { 2079 struct ath_softc *sc = arg; 2080 struct ath_hal *ah = sc->sc_ah; 2081 HAL_INT status = 0; 2082 uint32_t txqs; 2083 2084 /* 2085 * If we're inside a reset path, just print a warning and 2086 * clear the ISR. The reset routine will finish it for us. 2087 */ 2088 ATH_PCU_LOCK(sc); 2089 if (sc->sc_inreset_cnt) { 2090 HAL_INT status; 2091 ath_hal_getisr(ah, &status); /* clear ISR */ 2092 ath_hal_intrset(ah, 0); /* disable further intr's */ 2093 DPRINTF(sc, ATH_DEBUG_ANY, 2094 "%s: in reset, ignoring: status=0x%x\n", 2095 __func__, status); 2096 ATH_PCU_UNLOCK(sc); 2097 return; 2098 } 2099 2100 if (sc->sc_invalid) { 2101 /* 2102 * The hardware is not ready/present, don't touch anything. 2103 * Note this can happen early on if the IRQ is shared. 2104 */ 2105 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 2106 ATH_PCU_UNLOCK(sc); 2107 return; 2108 } 2109 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 2110 ATH_PCU_UNLOCK(sc); 2111 return; 2112 } 2113 2114 ATH_LOCK(sc); 2115 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2116 ATH_UNLOCK(sc); 2117 2118 if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) { 2119 HAL_INT status; 2120 2121 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n", 2122 __func__, sc->sc_ic.ic_nrunning, sc->sc_running); 2123 ath_hal_getisr(ah, &status); /* clear ISR */ 2124 ath_hal_intrset(ah, 0); /* disable further intr's */ 2125 ATH_PCU_UNLOCK(sc); 2126 2127 ATH_LOCK(sc); 2128 ath_power_restore_power_state(sc); 2129 ATH_UNLOCK(sc); 2130 return; 2131 } 2132 2133 /* 2134 * Figure out the reason(s) for the interrupt. Note 2135 * that the hal returns a pseudo-ISR that may include 2136 * bits we haven't explicitly enabled so we mask the 2137 * value to insure we only process bits we requested. 2138 */ 2139 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 2140 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 2141 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 2142 #ifdef ATH_DEBUG_ALQ 2143 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 2144 ah->ah_syncstate); 2145 #endif /* ATH_DEBUG_ALQ */ 2146 #ifdef ATH_KTR_INTR_DEBUG 2147 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 2148 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 2149 ah->ah_intrstate[0], 2150 ah->ah_intrstate[1], 2151 ah->ah_intrstate[2], 2152 ah->ah_intrstate[3], 2153 ah->ah_intrstate[6]); 2154 #endif 2155 2156 /* Squirrel away SYNC interrupt debugging */ 2157 if (ah->ah_syncstate != 0) { 2158 int i; 2159 for (i = 0; i < 32; i++) 2160 if (ah->ah_syncstate & (1 << i)) 2161 sc->sc_intr_stats.sync_intr[i]++; 2162 } 2163 2164 status &= sc->sc_imask; /* discard unasked for bits */ 2165 2166 /* Short-circuit un-handled interrupts */ 2167 if (status == 0x0) { 2168 ATH_PCU_UNLOCK(sc); 2169 2170 ATH_LOCK(sc); 2171 ath_power_restore_power_state(sc); 2172 ATH_UNLOCK(sc); 2173 2174 return; 2175 } 2176 2177 /* 2178 * Take a note that we're inside the interrupt handler, so 2179 * the reset routines know to wait. 2180 */ 2181 sc->sc_intr_cnt++; 2182 ATH_PCU_UNLOCK(sc); 2183 2184 /* 2185 * Handle the interrupt. We won't run concurrent with the reset 2186 * or channel change routines as they'll wait for sc_intr_cnt 2187 * to be 0 before continuing. 2188 */ 2189 if (status & HAL_INT_FATAL) { 2190 sc->sc_stats.ast_hardware++; 2191 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 2192 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 2193 } else { 2194 if (status & HAL_INT_SWBA) { 2195 /* 2196 * Software beacon alert--time to send a beacon. 2197 * Handle beacon transmission directly; deferring 2198 * this is too slow to meet timing constraints 2199 * under load. 2200 */ 2201 #ifdef IEEE80211_SUPPORT_TDMA 2202 if (sc->sc_tdma) { 2203 if (sc->sc_tdmaswba == 0) { 2204 struct ieee80211com *ic = &sc->sc_ic; 2205 struct ieee80211vap *vap = 2206 TAILQ_FIRST(&ic->ic_vaps); 2207 ath_tdma_beacon_send(sc, vap); 2208 sc->sc_tdmaswba = 2209 vap->iv_tdma->tdma_bintval; 2210 } else 2211 sc->sc_tdmaswba--; 2212 } else 2213 #endif 2214 { 2215 ath_beacon_proc(sc, 0); 2216 #ifdef IEEE80211_SUPPORT_SUPERG 2217 /* 2218 * Schedule the rx taskq in case there's no 2219 * traffic so any frames held on the staging 2220 * queue are aged and potentially flushed. 2221 */ 2222 sc->sc_rx.recv_sched(sc, 1); 2223 #endif 2224 } 2225 } 2226 if (status & HAL_INT_RXEOL) { 2227 int imask; 2228 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2229 if (! sc->sc_isedma) { 2230 ATH_PCU_LOCK(sc); 2231 /* 2232 * NB: the hardware should re-read the link when 2233 * RXE bit is written, but it doesn't work at 2234 * least on older hardware revs. 2235 */ 2236 sc->sc_stats.ast_rxeol++; 2237 /* 2238 * Disable RXEOL/RXORN - prevent an interrupt 2239 * storm until the PCU logic can be reset. 2240 * In case the interface is reset some other 2241 * way before "sc_kickpcu" is called, don't 2242 * modify sc_imask - that way if it is reset 2243 * by a call to ath_reset() somehow, the 2244 * interrupt mask will be correctly reprogrammed. 2245 */ 2246 imask = sc->sc_imask; 2247 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2248 ath_hal_intrset(ah, imask); 2249 /* 2250 * Only blank sc_rxlink if we've not yet kicked 2251 * the PCU. 2252 * 2253 * This isn't entirely correct - the correct solution 2254 * would be to have a PCU lock and engage that for 2255 * the duration of the PCU fiddling; which would include 2256 * running the RX process. Otherwise we could end up 2257 * messing up the RX descriptor chain and making the 2258 * RX desc list much shorter. 2259 */ 2260 if (! sc->sc_kickpcu) 2261 sc->sc_rxlink = NULL; 2262 sc->sc_kickpcu = 1; 2263 ATH_PCU_UNLOCK(sc); 2264 } 2265 /* 2266 * Enqueue an RX proc to handle whatever 2267 * is in the RX queue. 2268 * This will then kick the PCU if required. 2269 */ 2270 sc->sc_rx.recv_sched(sc, 1); 2271 } 2272 if (status & HAL_INT_TXURN) { 2273 sc->sc_stats.ast_txurn++; 2274 /* bump tx trigger level */ 2275 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2276 } 2277 /* 2278 * Handle both the legacy and RX EDMA interrupt bits. 2279 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2280 */ 2281 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2282 sc->sc_stats.ast_rx_intr++; 2283 sc->sc_rx.recv_sched(sc, 1); 2284 } 2285 if (status & HAL_INT_TX) { 2286 sc->sc_stats.ast_tx_intr++; 2287 /* 2288 * Grab all the currently set bits in the HAL txq bitmap 2289 * and blank them. This is the only place we should be 2290 * doing this. 2291 */ 2292 if (! sc->sc_isedma) { 2293 ATH_PCU_LOCK(sc); 2294 txqs = 0xffffffff; 2295 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2296 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2297 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2298 txqs, 2299 sc->sc_txq_active, 2300 sc->sc_txq_active | txqs); 2301 sc->sc_txq_active |= txqs; 2302 ATH_PCU_UNLOCK(sc); 2303 } 2304 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2305 } 2306 if (status & HAL_INT_BMISS) { 2307 sc->sc_stats.ast_bmiss++; 2308 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2309 } 2310 if (status & HAL_INT_GTT) 2311 sc->sc_stats.ast_tx_timeout++; 2312 if (status & HAL_INT_CST) 2313 sc->sc_stats.ast_tx_cst++; 2314 if (status & HAL_INT_MIB) { 2315 sc->sc_stats.ast_mib++; 2316 ATH_PCU_LOCK(sc); 2317 /* 2318 * Disable interrupts until we service the MIB 2319 * interrupt; otherwise it will continue to fire. 2320 */ 2321 ath_hal_intrset(ah, 0); 2322 /* 2323 * Let the hal handle the event. We assume it will 2324 * clear whatever condition caused the interrupt. 2325 */ 2326 ath_hal_mibevent(ah, &sc->sc_halstats); 2327 /* 2328 * Don't reset the interrupt if we've just 2329 * kicked the PCU, or we may get a nested 2330 * RXEOL before the rxproc has had a chance 2331 * to run. 2332 */ 2333 if (sc->sc_kickpcu == 0) 2334 ath_hal_intrset(ah, sc->sc_imask); 2335 ATH_PCU_UNLOCK(sc); 2336 } 2337 if (status & HAL_INT_RXORN) { 2338 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2339 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2340 sc->sc_stats.ast_rxorn++; 2341 } 2342 if (status & HAL_INT_TSFOOR) { 2343 /* 2344 * out of range beacon - wake the chip up, 2345 * but don't modify self-gen frame config. 2346 * Do a full reset to clear any potential stuck 2347 * PHY/MAC that generated this condition. 2348 */ 2349 sc->sc_stats.ast_tsfoor++; 2350 ATH_LOCK(sc); 2351 ath_power_setpower(sc, HAL_PM_AWAKE, 0); 2352 ATH_UNLOCK(sc); 2353 taskqueue_enqueue(sc->sc_tq, &sc->sc_tsfoortask); 2354 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2355 } 2356 if (status & HAL_INT_MCI) { 2357 ath_btcoex_mci_intr(sc); 2358 } 2359 } 2360 ATH_PCU_LOCK(sc); 2361 sc->sc_intr_cnt--; 2362 ATH_PCU_UNLOCK(sc); 2363 2364 ATH_LOCK(sc); 2365 ath_power_restore_power_state(sc); 2366 ATH_UNLOCK(sc); 2367 } 2368 2369 static void 2370 ath_fatal_proc(void *arg, int pending) 2371 { 2372 struct ath_softc *sc = arg; 2373 u_int32_t *state; 2374 u_int32_t len; 2375 void *sp; 2376 2377 if (sc->sc_invalid) 2378 return; 2379 2380 device_printf(sc->sc_dev, "hardware error; resetting\n"); 2381 /* 2382 * Fatal errors are unrecoverable. Typically these 2383 * are caused by DMA errors. Collect h/w state from 2384 * the hal so we can diagnose what's going on. 2385 */ 2386 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2387 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2388 state = sp; 2389 device_printf(sc->sc_dev, 2390 "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0], 2391 state[1] , state[2], state[3], state[4], state[5]); 2392 } 2393 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 2394 } 2395 2396 static void 2397 ath_bmiss_vap(struct ieee80211vap *vap) 2398 { 2399 struct ath_softc *sc = vap->iv_ic->ic_softc; 2400 2401 /* 2402 * Workaround phantom bmiss interrupts by sanity-checking 2403 * the time of our last rx'd frame. If it is within the 2404 * beacon miss interval then ignore the interrupt. If it's 2405 * truly a bmiss we'll get another interrupt soon and that'll 2406 * be dispatched up for processing. Note this applies only 2407 * for h/w beacon miss events. 2408 */ 2409 2410 /* 2411 * XXX TODO: Just read the TSF during the interrupt path; 2412 * that way we don't have to wake up again just to read it 2413 * again. 2414 */ 2415 ATH_LOCK(sc); 2416 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2417 ATH_UNLOCK(sc); 2418 2419 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2420 u_int64_t lastrx = sc->sc_lastrx; 2421 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2422 /* XXX should take a locked ref to iv_bss */ 2423 u_int bmisstimeout = 2424 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2425 2426 DPRINTF(sc, ATH_DEBUG_BEACON, 2427 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2428 __func__, (unsigned long long) tsf, 2429 (unsigned long long)(tsf - lastrx), 2430 (unsigned long long) lastrx, bmisstimeout); 2431 2432 if (tsf - lastrx <= bmisstimeout) { 2433 sc->sc_stats.ast_bmiss_phantom++; 2434 2435 ATH_LOCK(sc); 2436 ath_power_restore_power_state(sc); 2437 ATH_UNLOCK(sc); 2438 2439 return; 2440 } 2441 } 2442 2443 /* 2444 * Keep the hardware awake if it's asleep (and leave self-gen 2445 * frame config alone) until the next beacon, so we can resync 2446 * against the next beacon. 2447 * 2448 * This handles three common beacon miss cases in STA powersave mode - 2449 * (a) the beacon TBTT isnt a multiple of bintval; 2450 * (b) the beacon was missed; and 2451 * (c) the beacons are being delayed because the AP is busy and 2452 * isn't reliably able to meet its TBTT. 2453 */ 2454 ATH_LOCK(sc); 2455 ath_power_setpower(sc, HAL_PM_AWAKE, 0); 2456 ath_power_restore_power_state(sc); 2457 ATH_UNLOCK(sc); 2458 2459 DPRINTF(sc, ATH_DEBUG_BEACON, 2460 "%s: forced awake; force syncbeacon=1\n", __func__); 2461 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2462 /* 2463 * Attempt to force a beacon resync. 2464 */ 2465 sc->sc_syncbeacon = 1; 2466 } 2467 2468 ATH_VAP(vap)->av_bmiss(vap); 2469 } 2470 2471 /* XXX this needs a force wakeup! */ 2472 int 2473 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2474 { 2475 uint32_t rsize; 2476 void *sp; 2477 2478 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2479 return 0; 2480 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2481 *hangs = *(uint32_t *)sp; 2482 return 1; 2483 } 2484 2485 static void 2486 ath_bmiss_proc(void *arg, int pending) 2487 { 2488 struct ath_softc *sc = arg; 2489 uint32_t hangs; 2490 2491 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2492 2493 ATH_LOCK(sc); 2494 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2495 ATH_UNLOCK(sc); 2496 2497 ath_beacon_miss(sc); 2498 2499 /* 2500 * Do a reset upon any beacon miss event. 2501 * 2502 * It may be a non-recognised RX clear hang which needs a reset 2503 * to clear. 2504 */ 2505 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2506 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_BBPANIC); 2507 device_printf(sc->sc_dev, 2508 "bb hang detected (0x%x), resetting\n", hangs); 2509 } else { 2510 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 2511 ieee80211_beacon_miss(&sc->sc_ic); 2512 } 2513 2514 /* Force a beacon resync, in case they've drifted */ 2515 sc->sc_syncbeacon = 1; 2516 2517 ATH_LOCK(sc); 2518 ath_power_restore_power_state(sc); 2519 ATH_UNLOCK(sc); 2520 } 2521 2522 /* 2523 * Handle a TSF out of range interrupt in STA mode. 2524 * 2525 * This may be due to a partially deaf looking radio, so 2526 * do a full reset just in case it is indeed deaf and 2527 * resync the beacon. 2528 */ 2529 static void 2530 ath_tsfoor_proc(void *arg, int pending) 2531 { 2532 struct ath_softc *sc = arg; 2533 2534 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2535 2536 ATH_LOCK(sc); 2537 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2538 ATH_UNLOCK(sc); 2539 2540 /* 2541 * Do a full reset after any TSFOOR. It's possible that 2542 * we've gone deaf or partially deaf (eg due to calibration 2543 * failures) and this should clean things up a bit. 2544 */ 2545 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 2546 2547 /* Force a beacon resync, in case they've drifted */ 2548 sc->sc_syncbeacon = 1; 2549 2550 ATH_LOCK(sc); 2551 ath_power_restore_power_state(sc); 2552 ATH_UNLOCK(sc); 2553 } 2554 2555 /* 2556 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2557 * calcs together with WME. If necessary disable the crypto 2558 * hardware and mark the 802.11 state so keys will be setup 2559 * with the MIC work done in software. 2560 */ 2561 static void 2562 ath_settkipmic(struct ath_softc *sc) 2563 { 2564 struct ieee80211com *ic = &sc->sc_ic; 2565 2566 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2567 if (ic->ic_flags & IEEE80211_F_WME) { 2568 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2569 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2570 } else { 2571 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2572 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2573 } 2574 } 2575 } 2576 2577 static void 2578 ath_vap_clear_quiet_ie(struct ath_softc *sc) 2579 { 2580 struct ieee80211com *ic = &sc->sc_ic; 2581 struct ieee80211vap *vap; 2582 struct ath_vap *avp; 2583 2584 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2585 avp = ATH_VAP(vap); 2586 /* Quiet time handling - ensure we resync */ 2587 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 2588 } 2589 } 2590 2591 static int 2592 ath_init(struct ath_softc *sc) 2593 { 2594 struct ieee80211com *ic = &sc->sc_ic; 2595 struct ath_hal *ah = sc->sc_ah; 2596 HAL_STATUS status; 2597 2598 ATH_LOCK_ASSERT(sc); 2599 2600 /* 2601 * Force the sleep state awake. 2602 */ 2603 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2604 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2605 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 2606 2607 /* 2608 * Stop anything previously setup. This is safe 2609 * whether this is the first time through or not. 2610 */ 2611 ath_stop(sc); 2612 2613 /* 2614 * The basic interface to setting the hardware in a good 2615 * state is ``reset''. On return the hardware is known to 2616 * be powered up and with interrupts disabled. This must 2617 * be followed by initialization of the appropriate bits 2618 * and then setup of the interrupt mask. 2619 */ 2620 ath_settkipmic(sc); 2621 ath_update_chainmasks(sc, ic->ic_curchan); 2622 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2623 sc->sc_cur_rxchainmask); 2624 2625 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, 2626 HAL_RESET_NORMAL, &status)) { 2627 device_printf(sc->sc_dev, 2628 "unable to reset hardware; hal status %u\n", status); 2629 return (ENODEV); 2630 } 2631 2632 ATH_RX_LOCK(sc); 2633 sc->sc_rx_stopped = 1; 2634 sc->sc_rx_resetted = 1; 2635 ATH_RX_UNLOCK(sc); 2636 2637 /* Clear quiet IE state for each VAP */ 2638 ath_vap_clear_quiet_ie(sc); 2639 2640 ath_chan_change(sc, ic->ic_curchan); 2641 2642 /* Let DFS at it in case it's a DFS channel */ 2643 ath_dfs_radar_enable(sc, ic->ic_curchan); 2644 2645 /* Let spectral at in case spectral is enabled */ 2646 ath_spectral_enable(sc, ic->ic_curchan); 2647 2648 /* 2649 * Let bluetooth coexistence at in case it's needed for this channel 2650 */ 2651 ath_btcoex_enable(sc, ic->ic_curchan); 2652 2653 /* 2654 * If we're doing TDMA, enforce the TXOP limitation for chips that 2655 * support it. 2656 */ 2657 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2658 ath_hal_setenforcetxop(sc->sc_ah, 1); 2659 else 2660 ath_hal_setenforcetxop(sc->sc_ah, 0); 2661 2662 /* 2663 * Likewise this is set during reset so update 2664 * state cached in the driver. 2665 */ 2666 sc->sc_diversity = ath_hal_getdiversity(ah); 2667 sc->sc_lastlongcal = ticks; 2668 sc->sc_resetcal = 1; 2669 sc->sc_lastcalreset = 0; 2670 sc->sc_lastani = ticks; 2671 sc->sc_lastshortcal = ticks; 2672 sc->sc_doresetcal = AH_FALSE; 2673 /* 2674 * Beacon timers were cleared here; give ath_newstate() 2675 * a hint that the beacon timers should be poked when 2676 * things transition to the RUN state. 2677 */ 2678 sc->sc_beacons = 0; 2679 2680 /* 2681 * Setup the hardware after reset: the key cache 2682 * is filled as needed and the receive engine is 2683 * set going. Frame transmit is handled entirely 2684 * in the frame output path; there's nothing to do 2685 * here except setup the interrupt mask. 2686 */ 2687 if (ath_startrecv(sc) != 0) { 2688 device_printf(sc->sc_dev, "unable to start recv logic\n"); 2689 ath_power_restore_power_state(sc); 2690 return (ENODEV); 2691 } 2692 2693 /* 2694 * Enable interrupts. 2695 */ 2696 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2697 | HAL_INT_RXORN | HAL_INT_TXURN 2698 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2699 2700 /* 2701 * Enable RX EDMA bits. Note these overlap with 2702 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2703 */ 2704 if (sc->sc_isedma) 2705 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2706 2707 /* 2708 * If we're an EDMA NIC, we don't care about RXEOL. 2709 * Writing a new descriptor in will simply restart 2710 * RX DMA. 2711 */ 2712 if (! sc->sc_isedma) 2713 sc->sc_imask |= HAL_INT_RXEOL; 2714 2715 /* 2716 * Enable MCI interrupt for MCI devices. 2717 */ 2718 if (sc->sc_btcoex_mci) 2719 sc->sc_imask |= HAL_INT_MCI; 2720 2721 /* 2722 * Enable MIB interrupts when there are hardware phy counters. 2723 * Note we only do this (at the moment) for station mode. 2724 */ 2725 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2726 sc->sc_imask |= HAL_INT_MIB; 2727 2728 /* 2729 * XXX add capability for this. 2730 * 2731 * If we're in STA mode (and maybe IBSS?) then register for 2732 * TSFOOR interrupts. 2733 */ 2734 if (ic->ic_opmode == IEEE80211_M_STA) 2735 sc->sc_imask |= HAL_INT_TSFOOR; 2736 2737 /* Enable global TX timeout and carrier sense timeout if available */ 2738 if (ath_hal_gtxto_supported(ah)) 2739 sc->sc_imask |= HAL_INT_GTT; 2740 2741 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2742 __func__, sc->sc_imask); 2743 2744 sc->sc_running = 1; 2745 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2746 ath_hal_intrset(ah, sc->sc_imask); 2747 2748 ath_power_restore_power_state(sc); 2749 2750 return (0); 2751 } 2752 2753 static void 2754 ath_stop(struct ath_softc *sc) 2755 { 2756 struct ath_hal *ah = sc->sc_ah; 2757 2758 ATH_LOCK_ASSERT(sc); 2759 2760 /* 2761 * Wake the hardware up before fiddling with it. 2762 */ 2763 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2764 2765 if (sc->sc_running) { 2766 /* 2767 * Shutdown the hardware and driver: 2768 * reset 802.11 state machine 2769 * turn off timers 2770 * disable interrupts 2771 * turn off the radio 2772 * clear transmit machinery 2773 * clear receive machinery 2774 * drain and release tx queues 2775 * reclaim beacon resources 2776 * power down hardware 2777 * 2778 * Note that some of this work is not possible if the 2779 * hardware is gone (invalid). 2780 */ 2781 #ifdef ATH_TX99_DIAG 2782 if (sc->sc_tx99 != NULL) 2783 sc->sc_tx99->stop(sc->sc_tx99); 2784 #endif 2785 callout_stop(&sc->sc_wd_ch); 2786 sc->sc_wd_timer = 0; 2787 sc->sc_running = 0; 2788 if (!sc->sc_invalid) { 2789 if (sc->sc_softled) { 2790 callout_stop(&sc->sc_ledtimer); 2791 ath_hal_gpioset(ah, sc->sc_ledpin, 2792 !sc->sc_ledon); 2793 sc->sc_blinking = 0; 2794 } 2795 ath_hal_intrset(ah, 0); 2796 } 2797 /* XXX we should stop RX regardless of whether it's valid */ 2798 if (!sc->sc_invalid) { 2799 ath_stoprecv(sc, 1); 2800 ath_hal_phydisable(ah); 2801 } else 2802 sc->sc_rxlink = NULL; 2803 ath_draintxq(sc, ATH_RESET_DEFAULT); 2804 ath_beacon_free(sc); /* XXX not needed */ 2805 } 2806 2807 /* And now, restore the current power state */ 2808 ath_power_restore_power_state(sc); 2809 } 2810 2811 /* 2812 * Wait until all pending TX/RX has completed. 2813 * 2814 * This waits until all existing transmit, receive and interrupts 2815 * have completed. It's assumed that the caller has first 2816 * grabbed the reset lock so it doesn't try to do overlapping 2817 * chip resets. 2818 */ 2819 #define MAX_TXRX_ITERATIONS 100 2820 static void 2821 ath_txrx_stop_locked(struct ath_softc *sc) 2822 { 2823 int i = MAX_TXRX_ITERATIONS; 2824 2825 ATH_UNLOCK_ASSERT(sc); 2826 ATH_PCU_LOCK_ASSERT(sc); 2827 2828 /* 2829 * Sleep until all the pending operations have completed. 2830 * 2831 * The caller must ensure that reset has been incremented 2832 * or the pending operations may continue being queued. 2833 */ 2834 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2835 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2836 if (i <= 0) 2837 break; 2838 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2839 msecs_to_ticks(10)); 2840 i--; 2841 } 2842 2843 if (i <= 0) 2844 device_printf(sc->sc_dev, 2845 "%s: didn't finish after %d iterations\n", 2846 __func__, MAX_TXRX_ITERATIONS); 2847 } 2848 #undef MAX_TXRX_ITERATIONS 2849 2850 #if 0 2851 static void 2852 ath_txrx_stop(struct ath_softc *sc) 2853 { 2854 ATH_UNLOCK_ASSERT(sc); 2855 ATH_PCU_UNLOCK_ASSERT(sc); 2856 2857 ATH_PCU_LOCK(sc); 2858 ath_txrx_stop_locked(sc); 2859 ATH_PCU_UNLOCK(sc); 2860 } 2861 #endif 2862 2863 static void 2864 ath_txrx_start(struct ath_softc *sc) 2865 { 2866 2867 taskqueue_unblock(sc->sc_tq); 2868 } 2869 2870 /* 2871 * Grab the reset lock, and wait around until no one else 2872 * is trying to do anything with it. 2873 * 2874 * This is totally horrible but we can't hold this lock for 2875 * long enough to do TX/RX or we end up with net80211/ip stack 2876 * LORs and eventual deadlock. 2877 * 2878 * "dowait" signals whether to spin, waiting for the reset 2879 * lock count to reach 0. This should (for now) only be used 2880 * during the reset path, as the rest of the code may not 2881 * be locking-reentrant enough to behave correctly. 2882 * 2883 * Another, cleaner way should be found to serialise all of 2884 * these operations. 2885 */ 2886 #define MAX_RESET_ITERATIONS 25 2887 static int 2888 ath_reset_grablock(struct ath_softc *sc, int dowait) 2889 { 2890 int w = 0; 2891 int i = MAX_RESET_ITERATIONS; 2892 2893 ATH_PCU_LOCK_ASSERT(sc); 2894 do { 2895 if (sc->sc_inreset_cnt == 0) { 2896 w = 1; 2897 break; 2898 } 2899 if (dowait == 0) { 2900 w = 0; 2901 break; 2902 } 2903 ATH_PCU_UNLOCK(sc); 2904 /* 2905 * 1 tick is likely not enough time for long calibrations 2906 * to complete. So we should wait quite a while. 2907 */ 2908 pause("ath_reset_grablock", msecs_to_ticks(100)); 2909 i--; 2910 ATH_PCU_LOCK(sc); 2911 } while (i > 0); 2912 2913 /* 2914 * We always increment the refcounter, regardless 2915 * of whether we succeeded to get it in an exclusive 2916 * way. 2917 */ 2918 sc->sc_inreset_cnt++; 2919 2920 if (i <= 0) 2921 device_printf(sc->sc_dev, 2922 "%s: didn't finish after %d iterations\n", 2923 __func__, MAX_RESET_ITERATIONS); 2924 2925 if (w == 0) 2926 device_printf(sc->sc_dev, 2927 "%s: warning, recursive reset path!\n", 2928 __func__); 2929 2930 return w; 2931 } 2932 #undef MAX_RESET_ITERATIONS 2933 2934 /* 2935 * Reset the hardware w/o losing operational state. This is 2936 * basically a more efficient way of doing ath_stop, ath_init, 2937 * followed by state transitions to the current 802.11 2938 * operational state. Used to recover from various errors and 2939 * to reset or reload hardware state. 2940 */ 2941 int 2942 ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type, 2943 HAL_RESET_TYPE ah_reset_type) 2944 { 2945 struct ieee80211com *ic = &sc->sc_ic; 2946 struct ath_hal *ah = sc->sc_ah; 2947 HAL_STATUS status; 2948 int i; 2949 2950 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2951 2952 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2953 ATH_PCU_UNLOCK_ASSERT(sc); 2954 ATH_UNLOCK_ASSERT(sc); 2955 2956 /* Try to (stop any further TX/RX from occurring */ 2957 taskqueue_block(sc->sc_tq); 2958 2959 /* 2960 * Wake the hardware up. 2961 */ 2962 ATH_LOCK(sc); 2963 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2964 ATH_UNLOCK(sc); 2965 2966 ATH_PCU_LOCK(sc); 2967 2968 /* 2969 * Grab the reset lock before TX/RX is stopped. 2970 * 2971 * This is needed to ensure that when the TX/RX actually does finish, 2972 * no further TX/RX/reset runs in parallel with this. 2973 */ 2974 if (ath_reset_grablock(sc, 1) == 0) { 2975 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2976 __func__); 2977 } 2978 2979 /* disable interrupts */ 2980 ath_hal_intrset(ah, 0); 2981 2982 /* 2983 * Now, ensure that any in progress TX/RX completes before we 2984 * continue. 2985 */ 2986 ath_txrx_stop_locked(sc); 2987 2988 ATH_PCU_UNLOCK(sc); 2989 2990 /* 2991 * Regardless of whether we're doing a no-loss flush or 2992 * not, stop the PCU and handle what's in the RX queue. 2993 * That way frames aren't dropped which shouldn't be. 2994 */ 2995 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2996 ath_rx_flush(sc); 2997 2998 /* 2999 * Should now wait for pending TX/RX to complete 3000 * and block future ones from occurring. This needs to be 3001 * done before the TX queue is drained. 3002 */ 3003 ath_draintxq(sc, reset_type); /* stop xmit side */ 3004 3005 ath_settkipmic(sc); /* configure TKIP MIC handling */ 3006 /* NB: indicate channel change so we do a full reset */ 3007 ath_update_chainmasks(sc, ic->ic_curchan); 3008 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 3009 sc->sc_cur_rxchainmask); 3010 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, 3011 ah_reset_type, &status)) 3012 device_printf(sc->sc_dev, 3013 "%s: unable to reset hardware; hal status %u\n", 3014 __func__, status); 3015 sc->sc_diversity = ath_hal_getdiversity(ah); 3016 3017 ATH_RX_LOCK(sc); 3018 sc->sc_rx_stopped = 1; 3019 sc->sc_rx_resetted = 1; 3020 ATH_RX_UNLOCK(sc); 3021 3022 /* Quiet time handling - ensure we resync */ 3023 ath_vap_clear_quiet_ie(sc); 3024 3025 /* Let DFS at it in case it's a DFS channel */ 3026 ath_dfs_radar_enable(sc, ic->ic_curchan); 3027 3028 /* Let spectral at in case spectral is enabled */ 3029 ath_spectral_enable(sc, ic->ic_curchan); 3030 3031 /* 3032 * Let bluetooth coexistence at in case it's needed for this channel 3033 */ 3034 ath_btcoex_enable(sc, ic->ic_curchan); 3035 3036 /* 3037 * If we're doing TDMA, enforce the TXOP limitation for chips that 3038 * support it. 3039 */ 3040 if (sc->sc_hasenforcetxop && sc->sc_tdma) 3041 ath_hal_setenforcetxop(sc->sc_ah, 1); 3042 else 3043 ath_hal_setenforcetxop(sc->sc_ah, 0); 3044 3045 if (ath_startrecv(sc) != 0) /* restart recv */ 3046 device_printf(sc->sc_dev, 3047 "%s: unable to start recv logic\n", __func__); 3048 /* 3049 * We may be doing a reset in response to an ioctl 3050 * that changes the channel so update any state that 3051 * might change as a result. 3052 */ 3053 ath_chan_change(sc, ic->ic_curchan); 3054 if (sc->sc_beacons) { /* restart beacons */ 3055 #ifdef IEEE80211_SUPPORT_TDMA 3056 if (sc->sc_tdma) 3057 ath_tdma_config(sc, NULL); 3058 else 3059 #endif 3060 ath_beacon_config(sc, NULL); 3061 } 3062 3063 /* 3064 * Release the reset lock and re-enable interrupts here. 3065 * If an interrupt was being processed in ath_intr(), 3066 * it would disable interrupts at this point. So we have 3067 * to atomically enable interrupts and decrement the 3068 * reset counter - this way ath_intr() doesn't end up 3069 * disabling interrupts without a corresponding enable 3070 * in the rest or channel change path. 3071 * 3072 * Grab the TX reference in case we need to transmit. 3073 * That way a parallel transmit doesn't. 3074 */ 3075 ATH_PCU_LOCK(sc); 3076 sc->sc_inreset_cnt--; 3077 sc->sc_txstart_cnt++; 3078 /* XXX only do this if sc_inreset_cnt == 0? */ 3079 ath_hal_intrset(ah, sc->sc_imask); 3080 ATH_PCU_UNLOCK(sc); 3081 3082 /* 3083 * TX and RX can be started here. If it were started with 3084 * sc_inreset_cnt > 0, the TX and RX path would abort. 3085 * Thus if this is a nested call through the reset or 3086 * channel change code, TX completion will occur but 3087 * RX completion and ath_start / ath_tx_start will not 3088 * run. 3089 */ 3090 3091 /* Restart TX/RX as needed */ 3092 ath_txrx_start(sc); 3093 3094 /* XXX TODO: we need to hold the tx refcount here! */ 3095 3096 /* Restart TX completion and pending TX */ 3097 if (reset_type == ATH_RESET_NOLOSS) { 3098 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3099 if (ATH_TXQ_SETUP(sc, i)) { 3100 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3101 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 3102 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3103 3104 ATH_TX_LOCK(sc); 3105 ath_txq_sched(sc, &sc->sc_txq[i]); 3106 ATH_TX_UNLOCK(sc); 3107 } 3108 } 3109 } 3110 3111 ATH_LOCK(sc); 3112 ath_power_restore_power_state(sc); 3113 ATH_UNLOCK(sc); 3114 3115 ATH_PCU_LOCK(sc); 3116 sc->sc_txstart_cnt--; 3117 ATH_PCU_UNLOCK(sc); 3118 3119 /* Handle any frames in the TX queue */ 3120 /* 3121 * XXX should this be done by the caller, rather than 3122 * ath_reset() ? 3123 */ 3124 ath_tx_kick(sc); /* restart xmit */ 3125 return 0; 3126 } 3127 3128 static int 3129 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 3130 { 3131 struct ieee80211com *ic = vap->iv_ic; 3132 struct ath_softc *sc = ic->ic_softc; 3133 struct ath_hal *ah = sc->sc_ah; 3134 3135 switch (cmd) { 3136 case IEEE80211_IOC_TXPOWER: 3137 /* 3138 * If per-packet TPC is enabled, then we have nothing 3139 * to do; otherwise we need to force the global limit. 3140 * All this can happen directly; no need to reset. 3141 */ 3142 if (!ath_hal_gettpc(ah)) 3143 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 3144 return 0; 3145 } 3146 /* XXX? Full or NOLOSS? */ 3147 return ath_reset(sc, ATH_RESET_FULL, HAL_RESET_NORMAL); 3148 } 3149 3150 struct ath_buf * 3151 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 3152 { 3153 struct ath_buf *bf; 3154 3155 ATH_TXBUF_LOCK_ASSERT(sc); 3156 3157 if (btype == ATH_BUFTYPE_MGMT) 3158 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 3159 else 3160 bf = TAILQ_FIRST(&sc->sc_txbuf); 3161 3162 if (bf == NULL) { 3163 sc->sc_stats.ast_tx_getnobuf++; 3164 } else { 3165 if (bf->bf_flags & ATH_BUF_BUSY) { 3166 sc->sc_stats.ast_tx_getbusybuf++; 3167 bf = NULL; 3168 } 3169 } 3170 3171 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 3172 if (btype == ATH_BUFTYPE_MGMT) 3173 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 3174 else { 3175 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 3176 sc->sc_txbuf_cnt--; 3177 3178 /* 3179 * This shuldn't happen; however just to be 3180 * safe print a warning and fudge the txbuf 3181 * count. 3182 */ 3183 if (sc->sc_txbuf_cnt < 0) { 3184 device_printf(sc->sc_dev, 3185 "%s: sc_txbuf_cnt < 0?\n", 3186 __func__); 3187 sc->sc_txbuf_cnt = 0; 3188 } 3189 } 3190 } else 3191 bf = NULL; 3192 3193 if (bf == NULL) { 3194 /* XXX should check which list, mgmt or otherwise */ 3195 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 3196 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 3197 "out of xmit buffers" : "xmit buffer busy"); 3198 return NULL; 3199 } 3200 3201 /* XXX TODO: should do this at buffer list initialisation */ 3202 /* XXX (then, ensure the buffer has the right flag set) */ 3203 bf->bf_flags = 0; 3204 if (btype == ATH_BUFTYPE_MGMT) 3205 bf->bf_flags |= ATH_BUF_MGMT; 3206 else 3207 bf->bf_flags &= (~ATH_BUF_MGMT); 3208 3209 /* Valid bf here; clear some basic fields */ 3210 bf->bf_next = NULL; /* XXX just to be sure */ 3211 bf->bf_last = NULL; /* XXX again, just to be sure */ 3212 bf->bf_comp = NULL; /* XXX again, just to be sure */ 3213 bzero(&bf->bf_state, sizeof(bf->bf_state)); 3214 3215 /* 3216 * Track the descriptor ID only if doing EDMA 3217 */ 3218 if (sc->sc_isedma) { 3219 bf->bf_descid = sc->sc_txbuf_descid; 3220 sc->sc_txbuf_descid++; 3221 } 3222 3223 return bf; 3224 } 3225 3226 /* 3227 * When retrying a software frame, buffers marked ATH_BUF_BUSY 3228 * can't be thrown back on the queue as they could still be 3229 * in use by the hardware. 3230 * 3231 * This duplicates the buffer, or returns NULL. 3232 * 3233 * The descriptor is also copied but the link pointers and 3234 * the DMA segments aren't copied; this frame should thus 3235 * be again passed through the descriptor setup/chain routines 3236 * so the link is correct. 3237 * 3238 * The caller must free the buffer using ath_freebuf(). 3239 */ 3240 struct ath_buf * 3241 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 3242 { 3243 struct ath_buf *tbf; 3244 3245 tbf = ath_getbuf(sc, 3246 (bf->bf_flags & ATH_BUF_MGMT) ? 3247 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 3248 if (tbf == NULL) 3249 return NULL; /* XXX failure? Why? */ 3250 3251 /* Copy basics */ 3252 tbf->bf_next = NULL; 3253 tbf->bf_nseg = bf->bf_nseg; 3254 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 3255 tbf->bf_status = bf->bf_status; 3256 tbf->bf_m = bf->bf_m; 3257 tbf->bf_node = bf->bf_node; 3258 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 3259 /* will be setup by the chain/setup function */ 3260 tbf->bf_lastds = NULL; 3261 /* for now, last == self */ 3262 tbf->bf_last = tbf; 3263 tbf->bf_comp = bf->bf_comp; 3264 3265 /* NOTE: DMA segments will be setup by the setup/chain functions */ 3266 3267 /* The caller has to re-init the descriptor + links */ 3268 3269 /* 3270 * Free the DMA mapping here, before we NULL the mbuf. 3271 * We must only call bus_dmamap_unload() once per mbuf chain 3272 * or behaviour is undefined. 3273 */ 3274 if (bf->bf_m != NULL) { 3275 /* 3276 * XXX is this POSTWRITE call required? 3277 */ 3278 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3279 BUS_DMASYNC_POSTWRITE); 3280 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3281 } 3282 3283 bf->bf_m = NULL; 3284 bf->bf_node = NULL; 3285 3286 /* Copy state */ 3287 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3288 3289 return tbf; 3290 } 3291 3292 struct ath_buf * 3293 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3294 { 3295 struct ath_buf *bf; 3296 3297 ATH_TXBUF_LOCK(sc); 3298 bf = _ath_getbuf_locked(sc, btype); 3299 /* 3300 * If a mgmt buffer was requested but we're out of those, 3301 * try requesting a normal one. 3302 */ 3303 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3304 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3305 ATH_TXBUF_UNLOCK(sc); 3306 if (bf == NULL) { 3307 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3308 sc->sc_stats.ast_tx_qstop++; 3309 } 3310 return bf; 3311 } 3312 3313 /* 3314 * Transmit a single frame. 3315 * 3316 * net80211 will free the node reference if the transmit 3317 * fails, so don't free the node reference here. 3318 */ 3319 static int 3320 ath_transmit(struct ieee80211com *ic, struct mbuf *m) 3321 { 3322 struct ath_softc *sc = ic->ic_softc; 3323 struct ieee80211_node *ni; 3324 struct mbuf *next; 3325 struct ath_buf *bf; 3326 ath_bufhead frags; 3327 int retval = 0; 3328 3329 /* 3330 * Tell the reset path that we're currently transmitting. 3331 */ 3332 ATH_PCU_LOCK(sc); 3333 if (sc->sc_inreset_cnt > 0) { 3334 DPRINTF(sc, ATH_DEBUG_XMIT, 3335 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3336 ATH_PCU_UNLOCK(sc); 3337 sc->sc_stats.ast_tx_qstop++; 3338 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3339 return (ENOBUFS); /* XXX should be EINVAL or? */ 3340 } 3341 sc->sc_txstart_cnt++; 3342 ATH_PCU_UNLOCK(sc); 3343 3344 /* Wake the hardware up already */ 3345 ATH_LOCK(sc); 3346 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3347 ATH_UNLOCK(sc); 3348 3349 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3350 /* 3351 * Grab the TX lock - it's ok to do this here; we haven't 3352 * yet started transmitting. 3353 */ 3354 ATH_TX_LOCK(sc); 3355 3356 /* 3357 * Node reference, if there's one. 3358 */ 3359 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3360 3361 /* 3362 * Enforce how deep a node queue can get. 3363 * 3364 * XXX it would be nicer if we kept an mbuf queue per 3365 * node and only whacked them into ath_bufs when we 3366 * are ready to schedule some traffic from them. 3367 * .. that may come later. 3368 * 3369 * XXX we should also track the per-node hardware queue 3370 * depth so it is easy to limit the _SUM_ of the swq and 3371 * hwq frames. Since we only schedule two HWQ frames 3372 * at a time, this should be OK for now. 3373 */ 3374 if ((!(m->m_flags & M_EAPOL)) && 3375 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3376 sc->sc_stats.ast_tx_nodeq_overflow++; 3377 retval = ENOBUFS; 3378 goto finish; 3379 } 3380 3381 /* 3382 * Check how many TX buffers are available. 3383 * 3384 * If this is for non-EAPOL traffic, just leave some 3385 * space free in order for buffer cloning and raw 3386 * frame transmission to occur. 3387 * 3388 * If it's for EAPOL traffic, ignore this for now. 3389 * Management traffic will be sent via the raw transmit 3390 * method which bypasses this check. 3391 * 3392 * This is needed to ensure that EAPOL frames during 3393 * (re) keying have a chance to go out. 3394 * 3395 * See kern/138379 for more information. 3396 */ 3397 if ((!(m->m_flags & M_EAPOL)) && 3398 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3399 sc->sc_stats.ast_tx_nobuf++; 3400 retval = ENOBUFS; 3401 goto finish; 3402 } 3403 3404 /* 3405 * Grab a TX buffer and associated resources. 3406 * 3407 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3408 * That way even with temporary buffer exhaustion due to 3409 * the data path doesn't leave us without the ability 3410 * to transmit management frames. 3411 * 3412 * Otherwise allocate a normal buffer. 3413 */ 3414 if (m->m_flags & M_EAPOL) 3415 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3416 else 3417 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3418 3419 if (bf == NULL) { 3420 /* 3421 * If we failed to allocate a buffer, fail. 3422 * 3423 * We shouldn't fail normally, due to the check 3424 * above. 3425 */ 3426 sc->sc_stats.ast_tx_nobuf++; 3427 retval = ENOBUFS; 3428 goto finish; 3429 } 3430 3431 /* 3432 * At this point we have a buffer; so we need to free it 3433 * if we hit any error conditions. 3434 */ 3435 3436 /* 3437 * Check for fragmentation. If this frame 3438 * has been broken up verify we have enough 3439 * buffers to send all the fragments so all 3440 * go out or none... 3441 */ 3442 TAILQ_INIT(&frags); 3443 if ((m->m_flags & M_FRAG) && 3444 !ath_txfrag_setup(sc, &frags, m, ni)) { 3445 DPRINTF(sc, ATH_DEBUG_XMIT, 3446 "%s: out of txfrag buffers\n", __func__); 3447 sc->sc_stats.ast_tx_nofrag++; 3448 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3449 /* 3450 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes, 3451 * we shouldn't free it but return back. 3452 */ 3453 ieee80211_free_mbuf(m); 3454 m = NULL; 3455 goto bad; 3456 } 3457 3458 /* 3459 * At this point if we have any TX fragments, then we will 3460 * have bumped the node reference once for each of those. 3461 */ 3462 3463 /* 3464 * XXX Is there anything actually _enforcing_ that the 3465 * fragments are being transmitted in one hit, rather than 3466 * being interleaved with other transmissions on that 3467 * hardware queue? 3468 * 3469 * The ATH TX output lock is the only thing serialising this 3470 * right now. 3471 */ 3472 3473 /* 3474 * Calculate the "next fragment" length field in ath_buf 3475 * in order to let the transmit path know enough about 3476 * what to next write to the hardware. 3477 */ 3478 if (m->m_flags & M_FRAG) { 3479 struct ath_buf *fbf = bf; 3480 struct ath_buf *n_fbf = NULL; 3481 struct mbuf *fm = m->m_nextpkt; 3482 3483 /* 3484 * We need to walk the list of fragments and set 3485 * the next size to the following buffer. 3486 * However, the first buffer isn't in the frag 3487 * list, so we have to do some gymnastics here. 3488 */ 3489 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3490 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3491 fbf = n_fbf; 3492 fm = fm->m_nextpkt; 3493 } 3494 } 3495 3496 nextfrag: 3497 /* 3498 * Pass the frame to the h/w for transmission. 3499 * Fragmented frames have each frag chained together 3500 * with m_nextpkt. We know there are sufficient ath_buf's 3501 * to send all the frags because of work done by 3502 * ath_txfrag_setup. We leave m_nextpkt set while 3503 * calling ath_tx_start so it can use it to extend the 3504 * the tx duration to cover the subsequent frag and 3505 * so it can reclaim all the mbufs in case of an error; 3506 * ath_tx_start clears m_nextpkt once it commits to 3507 * handing the frame to the hardware. 3508 * 3509 * Note: if this fails, then the mbufs are freed but 3510 * not the node reference. 3511 * 3512 * So, we now have to free the node reference ourselves here 3513 * and return OK up to the stack. 3514 */ 3515 next = m->m_nextpkt; 3516 if (ath_tx_start(sc, ni, bf, m)) { 3517 bad: 3518 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3519 reclaim: 3520 bf->bf_m = NULL; 3521 bf->bf_node = NULL; 3522 ATH_TXBUF_LOCK(sc); 3523 ath_returnbuf_head(sc, bf); 3524 /* 3525 * Free the rest of the node references and 3526 * buffers for the fragment list. 3527 */ 3528 ath_txfrag_cleanup(sc, &frags, ni); 3529 ATH_TXBUF_UNLOCK(sc); 3530 3531 /* 3532 * XXX: And free the node/return OK; ath_tx_start() may have 3533 * modified the buffer. We currently have no way to 3534 * signify that the mbuf was freed but there was an error. 3535 */ 3536 ieee80211_free_node(ni); 3537 retval = 0; 3538 goto finish; 3539 } 3540 3541 /* 3542 * Check here if the node is in power save state. 3543 */ 3544 ath_tx_update_tim(sc, ni, 1); 3545 3546 if (next != NULL) { 3547 /* 3548 * Beware of state changing between frags. 3549 * XXX check sta power-save state? 3550 */ 3551 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3552 DPRINTF(sc, ATH_DEBUG_XMIT, 3553 "%s: flush fragmented packet, state %s\n", 3554 __func__, 3555 ieee80211_state_name[ni->ni_vap->iv_state]); 3556 /* XXX dmamap */ 3557 ieee80211_free_mbuf(next); 3558 goto reclaim; 3559 } 3560 m = next; 3561 bf = TAILQ_FIRST(&frags); 3562 KASSERT(bf != NULL, ("no buf for txfrag")); 3563 TAILQ_REMOVE(&frags, bf, bf_list); 3564 goto nextfrag; 3565 } 3566 3567 /* 3568 * Bump watchdog timer. 3569 */ 3570 sc->sc_wd_timer = 5; 3571 3572 finish: 3573 ATH_TX_UNLOCK(sc); 3574 3575 /* 3576 * Finished transmitting! 3577 */ 3578 ATH_PCU_LOCK(sc); 3579 sc->sc_txstart_cnt--; 3580 ATH_PCU_UNLOCK(sc); 3581 3582 /* Sleep the hardware if required */ 3583 ATH_LOCK(sc); 3584 ath_power_restore_power_state(sc); 3585 ATH_UNLOCK(sc); 3586 3587 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3588 3589 return (retval); 3590 } 3591 3592 /* 3593 * Block/unblock tx+rx processing while a key change is done. 3594 * We assume the caller serializes key management operations 3595 * so we only need to worry about synchronization with other 3596 * uses that originate in the driver. 3597 */ 3598 static void 3599 ath_key_update_begin(struct ieee80211vap *vap) 3600 { 3601 struct ath_softc *sc = vap->iv_ic->ic_softc; 3602 3603 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3604 taskqueue_block(sc->sc_tq); 3605 } 3606 3607 static void 3608 ath_key_update_end(struct ieee80211vap *vap) 3609 { 3610 struct ath_softc *sc = vap->iv_ic->ic_softc; 3611 3612 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3613 taskqueue_unblock(sc->sc_tq); 3614 } 3615 3616 static void 3617 ath_update_promisc(struct ieee80211com *ic) 3618 { 3619 struct ath_softc *sc = ic->ic_softc; 3620 u_int32_t rfilt; 3621 3622 /* configure rx filter */ 3623 ATH_LOCK(sc); 3624 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3625 rfilt = ath_calcrxfilter(sc); 3626 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3627 ath_power_restore_power_state(sc); 3628 ATH_UNLOCK(sc); 3629 3630 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3631 } 3632 3633 static u_int 3634 ath_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 3635 { 3636 uint32_t val, *mfilt = arg; 3637 char *dl; 3638 uint8_t pos; 3639 3640 /* calculate XOR of eight 6bit values */ 3641 dl = LLADDR(sdl); 3642 val = le32dec(dl + 0); 3643 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3644 val = le32dec(dl + 3); 3645 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3646 pos &= 0x3f; 3647 mfilt[pos / 32] |= (1 << (pos % 32)); 3648 3649 return (1); 3650 } 3651 3652 /* 3653 * Driver-internal mcast update call. 3654 * 3655 * Assumes the hardware is already awake. 3656 */ 3657 static void 3658 ath_update_mcast_hw(struct ath_softc *sc) 3659 { 3660 struct ieee80211com *ic = &sc->sc_ic; 3661 u_int32_t mfilt[2]; 3662 3663 /* calculate and install multicast filter */ 3664 if (ic->ic_allmulti == 0) { 3665 struct ieee80211vap *vap; 3666 3667 /* 3668 * Merge multicast addresses to form the hardware filter. 3669 */ 3670 mfilt[0] = mfilt[1] = 0; 3671 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 3672 if_foreach_llmaddr(vap->iv_ifp, ath_hash_maddr, &mfilt); 3673 } else 3674 mfilt[0] = mfilt[1] = ~0; 3675 3676 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3677 3678 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3679 __func__, mfilt[0], mfilt[1]); 3680 } 3681 3682 /* 3683 * Called from the net80211 layer - force the hardware 3684 * awake before operating. 3685 */ 3686 static void 3687 ath_update_mcast(struct ieee80211com *ic) 3688 { 3689 struct ath_softc *sc = ic->ic_softc; 3690 3691 ATH_LOCK(sc); 3692 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3693 ATH_UNLOCK(sc); 3694 3695 ath_update_mcast_hw(sc); 3696 3697 ATH_LOCK(sc); 3698 ath_power_restore_power_state(sc); 3699 ATH_UNLOCK(sc); 3700 } 3701 3702 void 3703 ath_mode_init(struct ath_softc *sc) 3704 { 3705 struct ieee80211com *ic = &sc->sc_ic; 3706 struct ath_hal *ah = sc->sc_ah; 3707 u_int32_t rfilt; 3708 3709 /* XXX power state? */ 3710 3711 /* configure rx filter */ 3712 rfilt = ath_calcrxfilter(sc); 3713 ath_hal_setrxfilter(ah, rfilt); 3714 3715 /* configure operational mode */ 3716 ath_hal_setopmode(ah); 3717 3718 /* handle any link-level address change */ 3719 ath_hal_setmac(ah, ic->ic_macaddr); 3720 3721 /* calculate and install multicast filter */ 3722 ath_update_mcast_hw(sc); 3723 } 3724 3725 /* 3726 * Set the slot time based on the current setting. 3727 */ 3728 void 3729 ath_setslottime(struct ath_softc *sc) 3730 { 3731 struct ieee80211com *ic = &sc->sc_ic; 3732 struct ath_hal *ah = sc->sc_ah; 3733 u_int usec; 3734 3735 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3736 usec = 13; 3737 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3738 usec = 21; 3739 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3740 /* honor short/long slot time only in 11g */ 3741 /* XXX shouldn't honor on pure g or turbo g channel */ 3742 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3743 usec = HAL_SLOT_TIME_9; 3744 else 3745 usec = HAL_SLOT_TIME_20; 3746 } else 3747 usec = HAL_SLOT_TIME_9; 3748 3749 DPRINTF(sc, ATH_DEBUG_RESET, 3750 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3751 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3752 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3753 3754 /* Wake up the hardware first before updating the slot time */ 3755 ATH_LOCK(sc); 3756 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3757 ath_hal_setslottime(ah, usec); 3758 ath_power_restore_power_state(sc); 3759 sc->sc_updateslot = OK; 3760 ATH_UNLOCK(sc); 3761 } 3762 3763 /* 3764 * Callback from the 802.11 layer to update the 3765 * slot time based on the current setting. 3766 */ 3767 static void 3768 ath_updateslot(struct ieee80211com *ic) 3769 { 3770 struct ath_softc *sc = ic->ic_softc; 3771 3772 /* 3773 * When not coordinating the BSS, change the hardware 3774 * immediately. For other operation we defer the change 3775 * until beacon updates have propagated to the stations. 3776 * 3777 * XXX sc_updateslot isn't changed behind a lock? 3778 */ 3779 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3780 ic->ic_opmode == IEEE80211_M_MBSS) 3781 sc->sc_updateslot = UPDATE; 3782 else 3783 ath_setslottime(sc); 3784 } 3785 3786 /* 3787 * Append the contents of src to dst; both queues 3788 * are assumed to be locked. 3789 */ 3790 void 3791 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3792 { 3793 3794 ATH_TXQ_LOCK_ASSERT(src); 3795 ATH_TXQ_LOCK_ASSERT(dst); 3796 3797 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3798 dst->axq_link = src->axq_link; 3799 src->axq_link = NULL; 3800 dst->axq_depth += src->axq_depth; 3801 dst->axq_aggr_depth += src->axq_aggr_depth; 3802 src->axq_depth = 0; 3803 src->axq_aggr_depth = 0; 3804 } 3805 3806 /* 3807 * Reset the hardware, with no loss. 3808 * 3809 * This can't be used for a general case reset. 3810 */ 3811 static void 3812 ath_reset_proc(void *arg, int pending) 3813 { 3814 struct ath_softc *sc = arg; 3815 3816 #if 0 3817 device_printf(sc->sc_dev, "%s: resetting\n", __func__); 3818 #endif 3819 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 3820 } 3821 3822 /* 3823 * Reset the hardware after detecting beacons have stopped. 3824 */ 3825 static void 3826 ath_bstuck_proc(void *arg, int pending) 3827 { 3828 struct ath_softc *sc = arg; 3829 uint32_t hangs = 0; 3830 3831 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3832 device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs); 3833 3834 #ifdef ATH_DEBUG_ALQ 3835 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3836 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3837 #endif 3838 3839 device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n", 3840 sc->sc_bmisscount); 3841 sc->sc_stats.ast_bstuck++; 3842 /* 3843 * This assumes that there's no simultaneous channel mode change 3844 * occurring. 3845 */ 3846 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 3847 } 3848 3849 static int 3850 ath_desc_alloc(struct ath_softc *sc) 3851 { 3852 int error; 3853 3854 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3855 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3856 if (error != 0) { 3857 return error; 3858 } 3859 sc->sc_txbuf_cnt = ath_txbuf; 3860 3861 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3862 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3863 ATH_TXDESC); 3864 if (error != 0) { 3865 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3866 return error; 3867 } 3868 3869 /* 3870 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3871 * flag doesn't have to be set in ath_getbuf_locked(). 3872 */ 3873 3874 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3875 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3876 if (error != 0) { 3877 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3878 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3879 &sc->sc_txbuf_mgmt); 3880 return error; 3881 } 3882 return 0; 3883 } 3884 3885 static void 3886 ath_desc_free(struct ath_softc *sc) 3887 { 3888 3889 if (sc->sc_bdma.dd_desc_len != 0) 3890 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3891 if (sc->sc_txdma.dd_desc_len != 0) 3892 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3893 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3894 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3895 &sc->sc_txbuf_mgmt); 3896 } 3897 3898 static struct ieee80211_node * 3899 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3900 { 3901 struct ieee80211com *ic = vap->iv_ic; 3902 struct ath_softc *sc = ic->ic_softc; 3903 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3904 struct ath_node *an; 3905 3906 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3907 if (an == NULL) { 3908 /* XXX stat+msg */ 3909 return NULL; 3910 } 3911 ath_rate_node_init(sc, an); 3912 3913 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3914 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3915 device_get_nameunit(sc->sc_dev), an); 3916 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3917 3918 /* XXX setup ath_tid */ 3919 ath_tx_tid_init(sc, an); 3920 3921 an->an_node_stats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 3922 an->an_node_stats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 3923 an->an_node_stats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 3924 3925 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 3926 return &an->an_node; 3927 } 3928 3929 static void 3930 ath_node_cleanup(struct ieee80211_node *ni) 3931 { 3932 struct ieee80211com *ic = ni->ni_ic; 3933 struct ath_softc *sc = ic->ic_softc; 3934 3935 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3936 ni->ni_macaddr, ":", ATH_NODE(ni)); 3937 3938 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3939 ath_tx_node_flush(sc, ATH_NODE(ni)); 3940 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3941 sc->sc_node_cleanup(ni); 3942 } 3943 3944 static void 3945 ath_node_free(struct ieee80211_node *ni) 3946 { 3947 struct ieee80211com *ic = ni->ni_ic; 3948 struct ath_softc *sc = ic->ic_softc; 3949 3950 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3951 ni->ni_macaddr, ":", ATH_NODE(ni)); 3952 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3953 sc->sc_node_free(ni); 3954 } 3955 3956 static void 3957 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3958 { 3959 struct ieee80211com *ic = ni->ni_ic; 3960 struct ath_softc *sc = ic->ic_softc; 3961 struct ath_hal *ah = sc->sc_ah; 3962 3963 *rssi = ic->ic_node_getrssi(ni); 3964 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3965 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3966 else 3967 *noise = -95; /* nominally correct */ 3968 } 3969 3970 /* 3971 * Set the default antenna. 3972 */ 3973 void 3974 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3975 { 3976 struct ath_hal *ah = sc->sc_ah; 3977 3978 /* XXX block beacon interrupts */ 3979 ath_hal_setdefantenna(ah, antenna); 3980 if (sc->sc_defant != antenna) 3981 sc->sc_stats.ast_ant_defswitch++; 3982 sc->sc_defant = antenna; 3983 sc->sc_rxotherant = 0; 3984 } 3985 3986 static void 3987 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3988 { 3989 txq->axq_qnum = qnum; 3990 txq->axq_ac = 0; 3991 txq->axq_depth = 0; 3992 txq->axq_aggr_depth = 0; 3993 txq->axq_intrcnt = 0; 3994 txq->axq_link = NULL; 3995 txq->axq_softc = sc; 3996 TAILQ_INIT(&txq->axq_q); 3997 TAILQ_INIT(&txq->axq_tidq); 3998 TAILQ_INIT(&txq->fifo.axq_q); 3999 ATH_TXQ_LOCK_INIT(sc, txq); 4000 } 4001 4002 /* 4003 * Setup a h/w transmit queue. 4004 */ 4005 static struct ath_txq * 4006 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4007 { 4008 struct ath_hal *ah = sc->sc_ah; 4009 HAL_TXQ_INFO qi; 4010 int qnum; 4011 4012 memset(&qi, 0, sizeof(qi)); 4013 qi.tqi_subtype = subtype; 4014 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4015 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4016 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4017 /* 4018 * Enable interrupts only for EOL and DESC conditions. 4019 * We mark tx descriptors to receive a DESC interrupt 4020 * when a tx queue gets deep; otherwise waiting for the 4021 * EOL to reap descriptors. Note that this is done to 4022 * reduce interrupt load and this only defers reaping 4023 * descriptors, never transmitting frames. Aside from 4024 * reducing interrupts this also permits more concurrency. 4025 * The only potential downside is if the tx queue backs 4026 * up in which case the top half of the kernel may backup 4027 * due to a lack of tx descriptors. 4028 */ 4029 if (sc->sc_isedma) 4030 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4031 HAL_TXQ_TXOKINT_ENABLE; 4032 else 4033 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4034 HAL_TXQ_TXDESCINT_ENABLE; 4035 4036 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4037 if (qnum == -1) { 4038 /* 4039 * NB: don't print a message, this happens 4040 * normally on parts with too few tx queues 4041 */ 4042 return NULL; 4043 } 4044 if (qnum >= nitems(sc->sc_txq)) { 4045 device_printf(sc->sc_dev, 4046 "hal qnum %u out of range, max %zu!\n", 4047 qnum, nitems(sc->sc_txq)); 4048 ath_hal_releasetxqueue(ah, qnum); 4049 return NULL; 4050 } 4051 if (!ATH_TXQ_SETUP(sc, qnum)) { 4052 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4053 sc->sc_txqsetup |= 1<<qnum; 4054 } 4055 return &sc->sc_txq[qnum]; 4056 } 4057 4058 /* 4059 * Setup a hardware data transmit queue for the specified 4060 * access control. The hal may not support all requested 4061 * queues in which case it will return a reference to a 4062 * previously setup queue. We record the mapping from ac's 4063 * to h/w queues for use by ath_tx_start and also track 4064 * the set of h/w queues being used to optimize work in the 4065 * transmit interrupt handler and related routines. 4066 */ 4067 static int 4068 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4069 { 4070 struct ath_txq *txq; 4071 4072 if (ac >= nitems(sc->sc_ac2q)) { 4073 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4074 ac, nitems(sc->sc_ac2q)); 4075 return 0; 4076 } 4077 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4078 if (txq != NULL) { 4079 txq->axq_ac = ac; 4080 sc->sc_ac2q[ac] = txq; 4081 return 1; 4082 } else 4083 return 0; 4084 } 4085 4086 /* 4087 * Update WME parameters for a transmit queue. 4088 */ 4089 static int 4090 ath_txq_update(struct ath_softc *sc, int ac) 4091 { 4092 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4093 struct ieee80211com *ic = &sc->sc_ic; 4094 struct ath_txq *txq = sc->sc_ac2q[ac]; 4095 struct chanAccParams chp; 4096 struct wmeParams *wmep; 4097 struct ath_hal *ah = sc->sc_ah; 4098 HAL_TXQ_INFO qi; 4099 4100 ieee80211_wme_ic_getparams(ic, &chp); 4101 wmep = &chp.cap_wmeParams[ac]; 4102 4103 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4104 #ifdef IEEE80211_SUPPORT_TDMA 4105 if (sc->sc_tdma) { 4106 /* 4107 * AIFS is zero so there's no pre-transmit wait. The 4108 * burst time defines the slot duration and is configured 4109 * through net80211. The QCU is setup to not do post-xmit 4110 * back off, lockout all lower-priority QCU's, and fire 4111 * off the DMA beacon alert timer which is setup based 4112 * on the slot configuration. 4113 */ 4114 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4115 | HAL_TXQ_TXERRINT_ENABLE 4116 | HAL_TXQ_TXURNINT_ENABLE 4117 | HAL_TXQ_TXEOLINT_ENABLE 4118 | HAL_TXQ_DBA_GATED 4119 | HAL_TXQ_BACKOFF_DISABLE 4120 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4121 ; 4122 qi.tqi_aifs = 0; 4123 /* XXX +dbaprep? */ 4124 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4125 qi.tqi_burstTime = qi.tqi_readyTime; 4126 } else { 4127 #endif 4128 /* 4129 * XXX shouldn't this just use the default flags 4130 * used in the previous queue setup? 4131 */ 4132 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4133 | HAL_TXQ_TXERRINT_ENABLE 4134 | HAL_TXQ_TXDESCINT_ENABLE 4135 | HAL_TXQ_TXURNINT_ENABLE 4136 | HAL_TXQ_TXEOLINT_ENABLE 4137 ; 4138 qi.tqi_aifs = wmep->wmep_aifsn; 4139 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4140 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4141 qi.tqi_readyTime = 0; 4142 qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit); 4143 #ifdef IEEE80211_SUPPORT_TDMA 4144 } 4145 #endif 4146 4147 DPRINTF(sc, ATH_DEBUG_RESET, 4148 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4149 __func__, txq->axq_qnum, qi.tqi_qflags, 4150 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4151 4152 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4153 device_printf(sc->sc_dev, "unable to update hardware queue " 4154 "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]); 4155 return 0; 4156 } else { 4157 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4158 return 1; 4159 } 4160 #undef ATH_EXPONENT_TO_VALUE 4161 } 4162 4163 /* 4164 * Callback from the 802.11 layer to update WME parameters. 4165 */ 4166 int 4167 ath_wme_update(struct ieee80211com *ic) 4168 { 4169 struct ath_softc *sc = ic->ic_softc; 4170 4171 return !ath_txq_update(sc, WME_AC_BE) || 4172 !ath_txq_update(sc, WME_AC_BK) || 4173 !ath_txq_update(sc, WME_AC_VI) || 4174 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4175 } 4176 4177 /* 4178 * Reclaim resources for a setup queue. 4179 */ 4180 static void 4181 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4182 { 4183 4184 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4185 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4186 ATH_TXQ_LOCK_DESTROY(txq); 4187 } 4188 4189 /* 4190 * Reclaim all tx queue resources. 4191 */ 4192 static void 4193 ath_tx_cleanup(struct ath_softc *sc) 4194 { 4195 int i; 4196 4197 ATH_TXBUF_LOCK_DESTROY(sc); 4198 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4199 if (ATH_TXQ_SETUP(sc, i)) 4200 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4201 } 4202 4203 /* 4204 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4205 * using the current rates in sc_rixmap. 4206 */ 4207 int 4208 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4209 { 4210 int rix = sc->sc_rixmap[rate]; 4211 /* NB: return lowest rix for invalid rate */ 4212 return (rix == 0xff ? 0 : rix); 4213 } 4214 4215 static void 4216 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4217 struct ath_buf *bf) 4218 { 4219 struct ieee80211_node *ni = bf->bf_node; 4220 struct ieee80211com *ic = &sc->sc_ic; 4221 int sr, lr, pri; 4222 4223 if (ts->ts_status == 0) { 4224 u_int8_t txant = ts->ts_antenna; 4225 /* 4226 * Handle weird/corrupted tx antenna field 4227 */ 4228 if (txant >= ATH_IOCTL_STATS_NUM_TX_ANTENNA) 4229 txant = 0; 4230 sc->sc_stats.ast_ant_tx[txant]++; 4231 sc->sc_ant_tx[txant]++; 4232 if (ts->ts_finaltsi != 0) 4233 sc->sc_stats.ast_tx_altrate++; 4234 4235 /* XXX TODO: should do per-pri conuters */ 4236 pri = M_WME_GETAC(bf->bf_m); 4237 if (pri >= WME_AC_VO) 4238 ic->ic_wme.wme_hipri_traffic++; 4239 4240 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4241 ni->ni_inact = ni->ni_inact_reload; 4242 } else { 4243 if (ts->ts_status & HAL_TXERR_XRETRY) 4244 sc->sc_stats.ast_tx_xretries++; 4245 if (ts->ts_status & HAL_TXERR_FIFO) 4246 sc->sc_stats.ast_tx_fifoerr++; 4247 if (ts->ts_status & HAL_TXERR_FILT) 4248 sc->sc_stats.ast_tx_filtered++; 4249 if (ts->ts_status & HAL_TXERR_XTXOP) 4250 sc->sc_stats.ast_tx_xtxop++; 4251 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4252 sc->sc_stats.ast_tx_timerexpired++; 4253 4254 if (bf->bf_m->m_flags & M_FF) 4255 sc->sc_stats.ast_ff_txerr++; 4256 } 4257 /* XXX when is this valid? */ 4258 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4259 sc->sc_stats.ast_tx_desccfgerr++; 4260 /* 4261 * This can be valid for successful frame transmission! 4262 * If there's a TX FIFO underrun during aggregate transmission, 4263 * the MAC will pad the rest of the aggregate with delimiters. 4264 * If a BA is returned, the frame is marked as "OK" and it's up 4265 * to the TX completion code to notice which frames weren't 4266 * successfully transmitted. 4267 */ 4268 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4269 sc->sc_stats.ast_tx_data_underrun++; 4270 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4271 sc->sc_stats.ast_tx_delim_underrun++; 4272 4273 sr = ts->ts_shortretry; 4274 lr = ts->ts_longretry; 4275 sc->sc_stats.ast_tx_shortretry += sr; 4276 sc->sc_stats.ast_tx_longretry += lr; 4277 4278 } 4279 4280 /* 4281 * The default completion. If fail is 1, this means 4282 * "please don't retry the frame, and just return -1 status 4283 * to the net80211 stack. 4284 */ 4285 void 4286 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4287 { 4288 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4289 int st; 4290 4291 if (fail == 1) 4292 st = -1; 4293 else 4294 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4295 ts->ts_status : HAL_TXERR_XRETRY; 4296 4297 #if 0 4298 if (bf->bf_state.bfs_dobaw) 4299 device_printf(sc->sc_dev, 4300 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4301 __func__, 4302 bf, 4303 SEQNO(bf->bf_state.bfs_seqno)); 4304 #endif 4305 if (bf->bf_next != NULL) 4306 device_printf(sc->sc_dev, 4307 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4308 __func__, 4309 bf, 4310 SEQNO(bf->bf_state.bfs_seqno)); 4311 4312 /* 4313 * Check if the node software queue is empty; if so 4314 * then clear the TIM. 4315 * 4316 * This needs to be done before the buffer is freed as 4317 * otherwise the node reference will have been released 4318 * and the node may not actually exist any longer. 4319 * 4320 * XXX I don't like this belonging here, but it's cleaner 4321 * to do it here right now then all the other places 4322 * where ath_tx_default_comp() is called. 4323 * 4324 * XXX TODO: during drain, ensure that the callback is 4325 * being called so we get a chance to update the TIM. 4326 */ 4327 if (bf->bf_node) { 4328 ATH_TX_LOCK(sc); 4329 ath_tx_update_tim(sc, bf->bf_node, 0); 4330 ATH_TX_UNLOCK(sc); 4331 } 4332 4333 /* 4334 * Do any tx complete callback. Note this must 4335 * be done before releasing the node reference. 4336 * This will free the mbuf, release the net80211 4337 * node and recycle the ath_buf. 4338 */ 4339 ath_tx_freebuf(sc, bf, st); 4340 } 4341 4342 /* 4343 * Update rate control with the given completion status. 4344 */ 4345 void 4346 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4347 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4348 int rc_framelen, int nframes, int nbad) 4349 { 4350 struct ath_node *an; 4351 4352 /* Only for unicast frames */ 4353 if (ni == NULL) 4354 return; 4355 4356 an = ATH_NODE(ni); 4357 ATH_NODE_UNLOCK_ASSERT(an); 4358 4359 /* 4360 * XXX TODO: teach the rate control about TXERR_FILT and 4361 * see about handling it (eg see how many attempts were 4362 * made before it got filtered and account for that.) 4363 */ 4364 4365 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4366 ATH_NODE_LOCK(an); 4367 ath_rate_tx_complete(sc, an, rc, ts, frmlen, rc_framelen, 4368 nframes, nbad); 4369 ATH_NODE_UNLOCK(an); 4370 } 4371 } 4372 4373 /* 4374 * Process the completion of the given buffer. 4375 * 4376 * This calls the rate control update and then the buffer completion. 4377 * This will either free the buffer or requeue it. In any case, the 4378 * bf pointer should be treated as invalid after this function is called. 4379 */ 4380 void 4381 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4382 struct ath_tx_status *ts, struct ath_buf *bf) 4383 { 4384 struct ieee80211_node *ni = bf->bf_node; 4385 4386 ATH_TX_UNLOCK_ASSERT(sc); 4387 ATH_TXQ_UNLOCK_ASSERT(txq); 4388 4389 /* If unicast frame, update general statistics */ 4390 if (ni != NULL) { 4391 /* update statistics */ 4392 ath_tx_update_stats(sc, ts, bf); 4393 } 4394 4395 /* 4396 * Call the completion handler. 4397 * The completion handler is responsible for 4398 * calling the rate control code. 4399 * 4400 * Frames with no completion handler get the 4401 * rate control code called here. 4402 */ 4403 if (bf->bf_comp == NULL) { 4404 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4405 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4406 /* 4407 * XXX assume this isn't an aggregate 4408 * frame. 4409 * 4410 * XXX TODO: also do this for filtered frames? 4411 * Once rate control knows about them? 4412 */ 4413 ath_tx_update_ratectrl(sc, ni, 4414 bf->bf_state.bfs_rc, ts, 4415 bf->bf_state.bfs_pktlen, 4416 bf->bf_state.bfs_pktlen, 4417 1, 4418 (ts->ts_status == 0 ? 0 : 1)); 4419 } 4420 ath_tx_default_comp(sc, bf, 0); 4421 } else 4422 bf->bf_comp(sc, bf, 0); 4423 } 4424 4425 /* 4426 * Process completed xmit descriptors from the specified queue. 4427 * Kick the packet scheduler if needed. This can occur from this 4428 * particular task. 4429 */ 4430 static int 4431 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4432 { 4433 struct ath_hal *ah = sc->sc_ah; 4434 struct ath_buf *bf; 4435 struct ath_desc *ds; 4436 struct ath_tx_status *ts; 4437 struct ieee80211_node *ni; 4438 #ifdef IEEE80211_SUPPORT_SUPERG 4439 struct ieee80211com *ic = &sc->sc_ic; 4440 #endif /* IEEE80211_SUPPORT_SUPERG */ 4441 int nacked; 4442 HAL_STATUS status; 4443 4444 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4445 __func__, txq->axq_qnum, 4446 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4447 txq->axq_link); 4448 4449 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4450 "ath_tx_processq: txq=%u head %p link %p depth %p", 4451 txq->axq_qnum, 4452 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4453 txq->axq_link, 4454 txq->axq_depth); 4455 4456 nacked = 0; 4457 for (;;) { 4458 ATH_TXQ_LOCK(txq); 4459 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4460 bf = TAILQ_FIRST(&txq->axq_q); 4461 if (bf == NULL) { 4462 ATH_TXQ_UNLOCK(txq); 4463 break; 4464 } 4465 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4466 ts = &bf->bf_status.ds_txstat; 4467 4468 status = ath_hal_txprocdesc(ah, ds, ts); 4469 #ifdef ATH_DEBUG 4470 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4471 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4472 status == HAL_OK); 4473 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4474 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4475 status == HAL_OK); 4476 #endif 4477 #ifdef ATH_DEBUG_ALQ 4478 if (if_ath_alq_checkdebug(&sc->sc_alq, 4479 ATH_ALQ_EDMA_TXSTATUS)) { 4480 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4481 sc->sc_tx_statuslen, 4482 (char *) ds); 4483 } 4484 #endif 4485 4486 if (status == HAL_EINPROGRESS) { 4487 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4488 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4489 txq->axq_qnum, bf, ds); 4490 ATH_TXQ_UNLOCK(txq); 4491 break; 4492 } 4493 ATH_TXQ_REMOVE(txq, bf, bf_list); 4494 4495 /* 4496 * Sanity check. 4497 */ 4498 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4499 device_printf(sc->sc_dev, 4500 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4501 __func__, 4502 txq->axq_qnum, 4503 bf, 4504 bf->bf_state.bfs_tx_queue); 4505 } 4506 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4507 device_printf(sc->sc_dev, 4508 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4509 __func__, 4510 txq->axq_qnum, 4511 bf->bf_last, 4512 bf->bf_last->bf_state.bfs_tx_queue); 4513 } 4514 4515 #if 0 4516 if (txq->axq_depth > 0) { 4517 /* 4518 * More frames follow. Mark the buffer busy 4519 * so it's not re-used while the hardware may 4520 * still re-read the link field in the descriptor. 4521 * 4522 * Use the last buffer in an aggregate as that 4523 * is where the hardware may be - intermediate 4524 * descriptors won't be "busy". 4525 */ 4526 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4527 } else 4528 txq->axq_link = NULL; 4529 #else 4530 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4531 #endif 4532 if (bf->bf_state.bfs_aggr) 4533 txq->axq_aggr_depth--; 4534 4535 ni = bf->bf_node; 4536 4537 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4538 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4539 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4540 /* 4541 * If unicast frame was ack'd update RSSI, 4542 * including the last rx time used to 4543 * workaround phantom bmiss interrupts. 4544 */ 4545 if (ni != NULL && ts->ts_status == 0 && 4546 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4547 nacked++; 4548 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4549 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4550 ts->ts_rssi); 4551 ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgtxrssi, 4552 ts->ts_rssi); 4553 } 4554 ATH_TXQ_UNLOCK(txq); 4555 4556 /* 4557 * Update statistics and call completion 4558 */ 4559 ath_tx_process_buf_completion(sc, txq, ts, bf); 4560 4561 /* XXX at this point, bf and ni may be totally invalid */ 4562 } 4563 #ifdef IEEE80211_SUPPORT_SUPERG 4564 /* 4565 * Flush fast-frame staging queue when traffic slows. 4566 */ 4567 if (txq->axq_depth <= 1) 4568 ieee80211_ff_flush(ic, txq->axq_ac); 4569 #endif 4570 4571 /* Kick the software TXQ scheduler */ 4572 if (dosched) { 4573 ATH_TX_LOCK(sc); 4574 ath_txq_sched(sc, txq); 4575 ATH_TX_UNLOCK(sc); 4576 } 4577 4578 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4579 "ath_tx_processq: txq=%u: done", 4580 txq->axq_qnum); 4581 4582 return nacked; 4583 } 4584 4585 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4586 4587 /* 4588 * Deferred processing of transmit interrupt; special-cased 4589 * for a single hardware transmit queue (e.g. 5210 and 5211). 4590 */ 4591 static void 4592 ath_tx_proc_q0(void *arg, int npending) 4593 { 4594 struct ath_softc *sc = arg; 4595 uint32_t txqs; 4596 4597 ATH_PCU_LOCK(sc); 4598 sc->sc_txproc_cnt++; 4599 txqs = sc->sc_txq_active; 4600 sc->sc_txq_active &= ~txqs; 4601 ATH_PCU_UNLOCK(sc); 4602 4603 ATH_LOCK(sc); 4604 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4605 ATH_UNLOCK(sc); 4606 4607 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4608 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4609 4610 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4611 /* XXX why is lastrx updated in tx code? */ 4612 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4613 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4614 ath_tx_processq(sc, sc->sc_cabq, 1); 4615 sc->sc_wd_timer = 0; 4616 4617 if (sc->sc_softled) 4618 ath_led_event(sc, sc->sc_txrix); 4619 4620 ATH_PCU_LOCK(sc); 4621 sc->sc_txproc_cnt--; 4622 ATH_PCU_UNLOCK(sc); 4623 4624 ATH_LOCK(sc); 4625 ath_power_restore_power_state(sc); 4626 ATH_UNLOCK(sc); 4627 4628 ath_tx_kick(sc); 4629 } 4630 4631 /* 4632 * Deferred processing of transmit interrupt; special-cased 4633 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4634 */ 4635 static void 4636 ath_tx_proc_q0123(void *arg, int npending) 4637 { 4638 struct ath_softc *sc = arg; 4639 int nacked; 4640 uint32_t txqs; 4641 4642 ATH_PCU_LOCK(sc); 4643 sc->sc_txproc_cnt++; 4644 txqs = sc->sc_txq_active; 4645 sc->sc_txq_active &= ~txqs; 4646 ATH_PCU_UNLOCK(sc); 4647 4648 ATH_LOCK(sc); 4649 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4650 ATH_UNLOCK(sc); 4651 4652 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4653 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4654 4655 /* 4656 * Process each active queue. 4657 */ 4658 nacked = 0; 4659 if (TXQACTIVE(txqs, 0)) 4660 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4661 if (TXQACTIVE(txqs, 1)) 4662 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4663 if (TXQACTIVE(txqs, 2)) 4664 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4665 if (TXQACTIVE(txqs, 3)) 4666 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4667 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4668 ath_tx_processq(sc, sc->sc_cabq, 1); 4669 if (nacked) 4670 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4671 4672 sc->sc_wd_timer = 0; 4673 4674 if (sc->sc_softled) 4675 ath_led_event(sc, sc->sc_txrix); 4676 4677 ATH_PCU_LOCK(sc); 4678 sc->sc_txproc_cnt--; 4679 ATH_PCU_UNLOCK(sc); 4680 4681 ATH_LOCK(sc); 4682 ath_power_restore_power_state(sc); 4683 ATH_UNLOCK(sc); 4684 4685 ath_tx_kick(sc); 4686 } 4687 4688 /* 4689 * Deferred processing of transmit interrupt. 4690 */ 4691 static void 4692 ath_tx_proc(void *arg, int npending) 4693 { 4694 struct ath_softc *sc = arg; 4695 int i, nacked; 4696 uint32_t txqs; 4697 4698 ATH_PCU_LOCK(sc); 4699 sc->sc_txproc_cnt++; 4700 txqs = sc->sc_txq_active; 4701 sc->sc_txq_active &= ~txqs; 4702 ATH_PCU_UNLOCK(sc); 4703 4704 ATH_LOCK(sc); 4705 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4706 ATH_UNLOCK(sc); 4707 4708 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4709 4710 /* 4711 * Process each active queue. 4712 */ 4713 nacked = 0; 4714 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4715 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4716 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4717 if (nacked) 4718 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4719 4720 sc->sc_wd_timer = 0; 4721 4722 if (sc->sc_softled) 4723 ath_led_event(sc, sc->sc_txrix); 4724 4725 ATH_PCU_LOCK(sc); 4726 sc->sc_txproc_cnt--; 4727 ATH_PCU_UNLOCK(sc); 4728 4729 ATH_LOCK(sc); 4730 ath_power_restore_power_state(sc); 4731 ATH_UNLOCK(sc); 4732 4733 ath_tx_kick(sc); 4734 } 4735 #undef TXQACTIVE 4736 4737 /* 4738 * Deferred processing of TXQ rescheduling. 4739 */ 4740 static void 4741 ath_txq_sched_tasklet(void *arg, int npending) 4742 { 4743 struct ath_softc *sc = arg; 4744 int i; 4745 4746 /* XXX is skipping ok? */ 4747 ATH_PCU_LOCK(sc); 4748 #if 0 4749 if (sc->sc_inreset_cnt > 0) { 4750 device_printf(sc->sc_dev, 4751 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4752 ATH_PCU_UNLOCK(sc); 4753 return; 4754 } 4755 #endif 4756 sc->sc_txproc_cnt++; 4757 ATH_PCU_UNLOCK(sc); 4758 4759 ATH_LOCK(sc); 4760 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4761 ATH_UNLOCK(sc); 4762 4763 ATH_TX_LOCK(sc); 4764 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4765 if (ATH_TXQ_SETUP(sc, i)) { 4766 ath_txq_sched(sc, &sc->sc_txq[i]); 4767 } 4768 } 4769 ATH_TX_UNLOCK(sc); 4770 4771 ATH_LOCK(sc); 4772 ath_power_restore_power_state(sc); 4773 ATH_UNLOCK(sc); 4774 4775 ATH_PCU_LOCK(sc); 4776 sc->sc_txproc_cnt--; 4777 ATH_PCU_UNLOCK(sc); 4778 } 4779 4780 void 4781 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4782 { 4783 4784 ATH_TXBUF_LOCK_ASSERT(sc); 4785 4786 if (bf->bf_flags & ATH_BUF_MGMT) 4787 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4788 else { 4789 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4790 sc->sc_txbuf_cnt++; 4791 if (sc->sc_txbuf_cnt > ath_txbuf) { 4792 device_printf(sc->sc_dev, 4793 "%s: sc_txbuf_cnt > %d?\n", 4794 __func__, 4795 ath_txbuf); 4796 sc->sc_txbuf_cnt = ath_txbuf; 4797 } 4798 } 4799 } 4800 4801 void 4802 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4803 { 4804 4805 ATH_TXBUF_LOCK_ASSERT(sc); 4806 4807 if (bf->bf_flags & ATH_BUF_MGMT) 4808 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4809 else { 4810 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4811 sc->sc_txbuf_cnt++; 4812 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4813 device_printf(sc->sc_dev, 4814 "%s: sc_txbuf_cnt > %d?\n", 4815 __func__, 4816 ATH_TXBUF); 4817 sc->sc_txbuf_cnt = ATH_TXBUF; 4818 } 4819 } 4820 } 4821 4822 /* 4823 * Free the holding buffer if it exists 4824 */ 4825 void 4826 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4827 { 4828 ATH_TXBUF_UNLOCK_ASSERT(sc); 4829 ATH_TXQ_LOCK_ASSERT(txq); 4830 4831 if (txq->axq_holdingbf == NULL) 4832 return; 4833 4834 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4835 4836 ATH_TXBUF_LOCK(sc); 4837 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4838 ATH_TXBUF_UNLOCK(sc); 4839 4840 txq->axq_holdingbf = NULL; 4841 } 4842 4843 /* 4844 * Add this buffer to the holding queue, freeing the previous 4845 * one if it exists. 4846 */ 4847 static void 4848 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4849 { 4850 struct ath_txq *txq; 4851 4852 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4853 4854 ATH_TXBUF_UNLOCK_ASSERT(sc); 4855 ATH_TXQ_LOCK_ASSERT(txq); 4856 4857 /* XXX assert ATH_BUF_BUSY is set */ 4858 4859 /* XXX assert the tx queue is under the max number */ 4860 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4861 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4862 __func__, 4863 bf, 4864 bf->bf_state.bfs_tx_queue); 4865 bf->bf_flags &= ~ATH_BUF_BUSY; 4866 ath_returnbuf_tail(sc, bf); 4867 return; 4868 } 4869 ath_txq_freeholdingbuf(sc, txq); 4870 txq->axq_holdingbf = bf; 4871 } 4872 4873 /* 4874 * Return a buffer to the pool and update the 'busy' flag on the 4875 * previous 'tail' entry. 4876 * 4877 * This _must_ only be called when the buffer is involved in a completed 4878 * TX. The logic is that if it was part of an active TX, the previous 4879 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4880 * for restart (eg for TDMA.) 4881 * 4882 * The caller must free the mbuf and recycle the node reference. 4883 * 4884 * XXX This method of handling busy / holding buffers is insanely stupid. 4885 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4886 * be much nicer if buffers in the processq() methods would instead be 4887 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4888 * exactly what hardware queue they came from in the first place. 4889 */ 4890 void 4891 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4892 { 4893 struct ath_txq *txq; 4894 4895 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4896 4897 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4898 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4899 4900 /* 4901 * If this buffer is busy, push it onto the holding queue. 4902 */ 4903 if (bf->bf_flags & ATH_BUF_BUSY) { 4904 ATH_TXQ_LOCK(txq); 4905 ath_txq_addholdingbuf(sc, bf); 4906 ATH_TXQ_UNLOCK(txq); 4907 return; 4908 } 4909 4910 /* 4911 * Not a busy buffer, so free normally 4912 */ 4913 ATH_TXBUF_LOCK(sc); 4914 ath_returnbuf_tail(sc, bf); 4915 ATH_TXBUF_UNLOCK(sc); 4916 } 4917 4918 /* 4919 * This is currently used by ath_tx_draintxq() and 4920 * ath_tx_tid_free_pkts(). 4921 * 4922 * It recycles a single ath_buf. 4923 */ 4924 void 4925 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4926 { 4927 struct ieee80211_node *ni = bf->bf_node; 4928 struct mbuf *m0 = bf->bf_m; 4929 4930 /* 4931 * Make sure that we only sync/unload if there's an mbuf. 4932 * If not (eg we cloned a buffer), the unload will have already 4933 * occurred. 4934 */ 4935 if (bf->bf_m != NULL) { 4936 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4937 BUS_DMASYNC_POSTWRITE); 4938 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4939 } 4940 4941 bf->bf_node = NULL; 4942 bf->bf_m = NULL; 4943 4944 /* Free the buffer, it's not needed any longer */ 4945 ath_freebuf(sc, bf); 4946 4947 /* Pass the buffer back to net80211 - completing it */ 4948 ieee80211_tx_complete(ni, m0, status); 4949 } 4950 4951 static struct ath_buf * 4952 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4953 { 4954 struct ath_buf *bf; 4955 4956 ATH_TXQ_LOCK_ASSERT(txq); 4957 4958 /* 4959 * Drain the FIFO queue first, then if it's 4960 * empty, move to the normal frame queue. 4961 */ 4962 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4963 if (bf != NULL) { 4964 /* 4965 * Is it the last buffer in this set? 4966 * Decrement the FIFO counter. 4967 */ 4968 if (bf->bf_flags & ATH_BUF_FIFOEND) { 4969 if (txq->axq_fifo_depth == 0) { 4970 device_printf(sc->sc_dev, 4971 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 4972 __func__, 4973 txq->axq_qnum, 4974 txq->fifo.axq_depth); 4975 } else 4976 txq->axq_fifo_depth--; 4977 } 4978 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 4979 return (bf); 4980 } 4981 4982 /* 4983 * Debugging! 4984 */ 4985 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 4986 device_printf(sc->sc_dev, 4987 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 4988 __func__, 4989 txq->axq_qnum, 4990 txq->axq_fifo_depth, 4991 txq->fifo.axq_depth); 4992 } 4993 4994 /* 4995 * Now drain the pending queue. 4996 */ 4997 bf = TAILQ_FIRST(&txq->axq_q); 4998 if (bf == NULL) { 4999 txq->axq_link = NULL; 5000 return (NULL); 5001 } 5002 ATH_TXQ_REMOVE(txq, bf, bf_list); 5003 return (bf); 5004 } 5005 5006 void 5007 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5008 { 5009 #ifdef ATH_DEBUG 5010 struct ath_hal *ah = sc->sc_ah; 5011 #endif 5012 struct ath_buf *bf; 5013 u_int ix; 5014 5015 /* 5016 * NB: this assumes output has been stopped and 5017 * we do not need to block ath_tx_proc 5018 */ 5019 for (ix = 0;; ix++) { 5020 ATH_TXQ_LOCK(txq); 5021 bf = ath_tx_draintxq_get_one(sc, txq); 5022 if (bf == NULL) { 5023 ATH_TXQ_UNLOCK(txq); 5024 break; 5025 } 5026 if (bf->bf_state.bfs_aggr) 5027 txq->axq_aggr_depth--; 5028 #ifdef ATH_DEBUG 5029 if (sc->sc_debug & ATH_DEBUG_RESET) { 5030 struct ieee80211com *ic = &sc->sc_ic; 5031 int status = 0; 5032 5033 /* 5034 * EDMA operation has a TX completion FIFO 5035 * separate from the TX descriptor, so this 5036 * method of checking the "completion" status 5037 * is wrong. 5038 */ 5039 if (! sc->sc_isedma) { 5040 status = (ath_hal_txprocdesc(ah, 5041 bf->bf_lastds, 5042 &bf->bf_status.ds_txstat) == HAL_OK); 5043 } 5044 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 5045 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5046 bf->bf_m->m_len, 0, -1); 5047 } 5048 #endif /* ATH_DEBUG */ 5049 /* 5050 * Since we're now doing magic in the completion 5051 * functions, we -must- call it for aggregation 5052 * destinations or BAW tracking will get upset. 5053 */ 5054 /* 5055 * Clear ATH_BUF_BUSY; the completion handler 5056 * will free the buffer. 5057 */ 5058 ATH_TXQ_UNLOCK(txq); 5059 bf->bf_flags &= ~ATH_BUF_BUSY; 5060 if (bf->bf_comp) 5061 bf->bf_comp(sc, bf, 1); 5062 else 5063 ath_tx_default_comp(sc, bf, 1); 5064 } 5065 5066 /* 5067 * Free the holding buffer if it exists 5068 */ 5069 ATH_TXQ_LOCK(txq); 5070 ath_txq_freeholdingbuf(sc, txq); 5071 ATH_TXQ_UNLOCK(txq); 5072 5073 /* 5074 * Drain software queued frames which are on 5075 * active TIDs. 5076 */ 5077 ath_tx_txq_drain(sc, txq); 5078 } 5079 5080 static void 5081 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5082 { 5083 struct ath_hal *ah = sc->sc_ah; 5084 5085 ATH_TXQ_LOCK_ASSERT(txq); 5086 5087 DPRINTF(sc, ATH_DEBUG_RESET, 5088 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 5089 "link %p, holdingbf=%p\n", 5090 __func__, 5091 txq->axq_qnum, 5092 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5093 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 5094 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 5095 txq->axq_flags, 5096 txq->axq_link, 5097 txq->axq_holdingbf); 5098 5099 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5100 /* We've stopped TX DMA, so mark this as stopped. */ 5101 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 5102 5103 #ifdef ATH_DEBUG 5104 if ((sc->sc_debug & ATH_DEBUG_RESET) 5105 && (txq->axq_holdingbf != NULL)) { 5106 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 5107 } 5108 #endif 5109 } 5110 5111 int 5112 ath_stoptxdma(struct ath_softc *sc) 5113 { 5114 struct ath_hal *ah = sc->sc_ah; 5115 int i; 5116 5117 /* XXX return value */ 5118 if (sc->sc_invalid) 5119 return 0; 5120 5121 if (!sc->sc_invalid) { 5122 /* don't touch the hardware if marked invalid */ 5123 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5124 __func__, sc->sc_bhalq, 5125 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5126 NULL); 5127 5128 /* stop the beacon queue */ 5129 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5130 5131 /* Stop the data queues */ 5132 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5133 if (ATH_TXQ_SETUP(sc, i)) { 5134 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5135 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5136 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5137 } 5138 } 5139 } 5140 5141 return 1; 5142 } 5143 5144 #ifdef ATH_DEBUG 5145 void 5146 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 5147 { 5148 struct ath_hal *ah = sc->sc_ah; 5149 struct ath_buf *bf; 5150 int i = 0; 5151 5152 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 5153 return; 5154 5155 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 5156 __func__, txq->axq_qnum); 5157 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 5158 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 5159 ath_hal_txprocdesc(ah, bf->bf_lastds, 5160 &bf->bf_status.ds_txstat) == HAL_OK); 5161 i++; 5162 } 5163 device_printf(sc->sc_dev, "%s: Q%d: end\n", 5164 __func__, txq->axq_qnum); 5165 } 5166 #endif /* ATH_DEBUG */ 5167 5168 /* 5169 * Drain the transmit queues and reclaim resources. 5170 */ 5171 void 5172 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5173 { 5174 struct ath_hal *ah = sc->sc_ah; 5175 struct ath_buf *bf_last; 5176 int i; 5177 5178 (void) ath_stoptxdma(sc); 5179 5180 /* 5181 * Dump the queue contents 5182 */ 5183 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5184 /* 5185 * XXX TODO: should we just handle the completed TX frames 5186 * here, whether or not the reset is a full one or not? 5187 */ 5188 if (ATH_TXQ_SETUP(sc, i)) { 5189 #ifdef ATH_DEBUG 5190 if (sc->sc_debug & ATH_DEBUG_RESET) 5191 ath_tx_dump(sc, &sc->sc_txq[i]); 5192 #endif /* ATH_DEBUG */ 5193 if (reset_type == ATH_RESET_NOLOSS) { 5194 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5195 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5196 /* 5197 * Free the holding buffer; DMA is now 5198 * stopped. 5199 */ 5200 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 5201 /* 5202 * Setup the link pointer to be the 5203 * _last_ buffer/descriptor in the list. 5204 * If there's nothing in the list, set it 5205 * to NULL. 5206 */ 5207 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5208 axq_q_s); 5209 if (bf_last != NULL) { 5210 ath_hal_gettxdesclinkptr(ah, 5211 bf_last->bf_lastds, 5212 &sc->sc_txq[i].axq_link); 5213 } else { 5214 sc->sc_txq[i].axq_link = NULL; 5215 } 5216 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5217 } else 5218 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5219 } 5220 } 5221 #ifdef ATH_DEBUG 5222 if (sc->sc_debug & ATH_DEBUG_RESET) { 5223 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5224 if (bf != NULL && bf->bf_m != NULL) { 5225 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5226 ath_hal_txprocdesc(ah, bf->bf_lastds, 5227 &bf->bf_status.ds_txstat) == HAL_OK); 5228 ieee80211_dump_pkt(&sc->sc_ic, 5229 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5230 0, -1); 5231 } 5232 } 5233 #endif /* ATH_DEBUG */ 5234 sc->sc_wd_timer = 0; 5235 } 5236 5237 /* 5238 * Update internal state after a channel change. 5239 */ 5240 static void 5241 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5242 { 5243 enum ieee80211_phymode mode; 5244 5245 /* 5246 * Change channels and update the h/w rate map 5247 * if we're switching; e.g. 11a to 11b/g. 5248 */ 5249 mode = ieee80211_chan2mode(chan); 5250 if (mode != sc->sc_curmode) 5251 ath_setcurmode(sc, mode); 5252 sc->sc_curchan = chan; 5253 } 5254 5255 /* 5256 * Set/change channels. If the channel is really being changed, 5257 * it's done by resetting the chip. To accomplish this we must 5258 * first cleanup any pending DMA, then restart stuff after a la 5259 * ath_init. 5260 */ 5261 static int 5262 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5263 { 5264 struct ieee80211com *ic = &sc->sc_ic; 5265 struct ath_hal *ah = sc->sc_ah; 5266 int ret = 0; 5267 5268 /* Treat this as an interface reset */ 5269 ATH_PCU_UNLOCK_ASSERT(sc); 5270 ATH_UNLOCK_ASSERT(sc); 5271 5272 /* (Try to) stop TX/RX from occurring */ 5273 taskqueue_block(sc->sc_tq); 5274 5275 ATH_PCU_LOCK(sc); 5276 5277 /* Disable interrupts */ 5278 ath_hal_intrset(ah, 0); 5279 5280 /* Stop new RX/TX/interrupt completion */ 5281 if (ath_reset_grablock(sc, 1) == 0) { 5282 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5283 __func__); 5284 } 5285 5286 /* Stop pending RX/TX completion */ 5287 ath_txrx_stop_locked(sc); 5288 5289 ATH_PCU_UNLOCK(sc); 5290 5291 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5292 __func__, ieee80211_chan2ieee(ic, chan), 5293 chan->ic_freq, chan->ic_flags); 5294 if (chan != sc->sc_curchan) { 5295 HAL_STATUS status; 5296 /* 5297 * To switch channels clear any pending DMA operations; 5298 * wait long enough for the RX fifo to drain, reset the 5299 * hardware at the new frequency, and then re-enable 5300 * the relevant bits of the h/w. 5301 */ 5302 #if 0 5303 ath_hal_intrset(ah, 0); /* disable interrupts */ 5304 #endif 5305 ath_stoprecv(sc, 1); /* turn off frame recv */ 5306 /* 5307 * First, handle completed TX/RX frames. 5308 */ 5309 ath_rx_flush(sc); 5310 ath_draintxq(sc, ATH_RESET_NOLOSS); 5311 /* 5312 * Next, flush the non-scheduled frames. 5313 */ 5314 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5315 5316 ath_update_chainmasks(sc, chan); 5317 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5318 sc->sc_cur_rxchainmask); 5319 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, 5320 HAL_RESET_NORMAL, &status)) { 5321 device_printf(sc->sc_dev, "%s: unable to reset " 5322 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5323 __func__, ieee80211_chan2ieee(ic, chan), 5324 chan->ic_freq, chan->ic_flags, status); 5325 ret = EIO; 5326 goto finish; 5327 } 5328 sc->sc_diversity = ath_hal_getdiversity(ah); 5329 5330 ATH_RX_LOCK(sc); 5331 sc->sc_rx_stopped = 1; 5332 sc->sc_rx_resetted = 1; 5333 ATH_RX_UNLOCK(sc); 5334 5335 /* Quiet time handling - ensure we resync */ 5336 ath_vap_clear_quiet_ie(sc); 5337 5338 /* Let DFS at it in case it's a DFS channel */ 5339 ath_dfs_radar_enable(sc, chan); 5340 5341 /* Let spectral at in case spectral is enabled */ 5342 ath_spectral_enable(sc, chan); 5343 5344 /* 5345 * Let bluetooth coexistence at in case it's needed for this 5346 * channel 5347 */ 5348 ath_btcoex_enable(sc, ic->ic_curchan); 5349 5350 /* 5351 * If we're doing TDMA, enforce the TXOP limitation for chips 5352 * that support it. 5353 */ 5354 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5355 ath_hal_setenforcetxop(sc->sc_ah, 1); 5356 else 5357 ath_hal_setenforcetxop(sc->sc_ah, 0); 5358 5359 /* 5360 * Re-enable rx framework. 5361 */ 5362 if (ath_startrecv(sc) != 0) { 5363 device_printf(sc->sc_dev, 5364 "%s: unable to restart recv logic\n", __func__); 5365 ret = EIO; 5366 goto finish; 5367 } 5368 5369 /* 5370 * Change channels and update the h/w rate map 5371 * if we're switching; e.g. 11a to 11b/g. 5372 */ 5373 ath_chan_change(sc, chan); 5374 5375 /* 5376 * Reset clears the beacon timers; reset them 5377 * here if needed. 5378 */ 5379 if (sc->sc_beacons) { /* restart beacons */ 5380 #ifdef IEEE80211_SUPPORT_TDMA 5381 if (sc->sc_tdma) 5382 ath_tdma_config(sc, NULL); 5383 else 5384 #endif 5385 ath_beacon_config(sc, NULL); 5386 } 5387 5388 /* 5389 * Re-enable interrupts. 5390 */ 5391 #if 0 5392 ath_hal_intrset(ah, sc->sc_imask); 5393 #endif 5394 } 5395 5396 finish: 5397 ATH_PCU_LOCK(sc); 5398 sc->sc_inreset_cnt--; 5399 /* XXX only do this if sc_inreset_cnt == 0? */ 5400 ath_hal_intrset(ah, sc->sc_imask); 5401 ATH_PCU_UNLOCK(sc); 5402 5403 ath_txrx_start(sc); 5404 /* XXX ath_start? */ 5405 5406 return ret; 5407 } 5408 5409 /* 5410 * Periodically recalibrate the PHY to account 5411 * for temperature/environment changes. 5412 */ 5413 static void 5414 ath_calibrate(void *arg) 5415 { 5416 struct ath_softc *sc = arg; 5417 struct ath_hal *ah = sc->sc_ah; 5418 struct ieee80211com *ic = &sc->sc_ic; 5419 HAL_BOOL longCal, isCalDone = AH_TRUE; 5420 HAL_BOOL aniCal, shortCal = AH_FALSE; 5421 int nextcal; 5422 5423 ATH_LOCK_ASSERT(sc); 5424 5425 /* 5426 * Force the hardware awake for ANI work. 5427 */ 5428 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5429 5430 /* Skip trying to do this if we're in reset */ 5431 if (sc->sc_inreset_cnt) 5432 goto restart; 5433 5434 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5435 goto restart; 5436 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5437 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5438 if (sc->sc_doresetcal) 5439 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5440 5441 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5442 if (aniCal) { 5443 sc->sc_stats.ast_ani_cal++; 5444 sc->sc_lastani = ticks; 5445 ath_hal_ani_poll(ah, sc->sc_curchan); 5446 } 5447 5448 if (longCal) { 5449 sc->sc_stats.ast_per_cal++; 5450 sc->sc_lastlongcal = ticks; 5451 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5452 /* 5453 * Rfgain is out of bounds, reset the chip 5454 * to load new gain values. 5455 */ 5456 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5457 "%s: rfgain change\n", __func__); 5458 sc->sc_stats.ast_per_rfgain++; 5459 sc->sc_resetcal = 0; 5460 sc->sc_doresetcal = AH_TRUE; 5461 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5462 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5463 ath_power_restore_power_state(sc); 5464 return; 5465 } 5466 /* 5467 * If this long cal is after an idle period, then 5468 * reset the data collection state so we start fresh. 5469 */ 5470 if (sc->sc_resetcal) { 5471 (void) ath_hal_calreset(ah, sc->sc_curchan); 5472 sc->sc_lastcalreset = ticks; 5473 sc->sc_lastshortcal = ticks; 5474 sc->sc_resetcal = 0; 5475 sc->sc_doresetcal = AH_TRUE; 5476 } 5477 } 5478 5479 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5480 if (shortCal || longCal) { 5481 isCalDone = AH_FALSE; 5482 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5483 if (longCal) { 5484 /* 5485 * Calibrate noise floor data again in case of change. 5486 */ 5487 ath_hal_process_noisefloor(ah); 5488 } 5489 } else { 5490 DPRINTF(sc, ATH_DEBUG_ANY, 5491 "%s: calibration of channel %u failed\n", 5492 __func__, sc->sc_curchan->ic_freq); 5493 sc->sc_stats.ast_per_calfail++; 5494 } 5495 /* 5496 * XXX TODO: get the NF calibration results from the HAL. 5497 * If we failed NF cal then schedule a hard reset to potentially 5498 * un-freeze the PHY. 5499 * 5500 * Note we have to be careful here to not get stuck in an 5501 * infinite NIC restart. Ideally we'd not restart if we 5502 * failed the first NF cal - that /can/ fail sometimes in 5503 * a noisy environment. 5504 * 5505 * Instead, we should likely temporarily shorten the longCal 5506 * period to happen pretty quickly and if a subsequent one 5507 * fails, do a full reset. 5508 */ 5509 if (shortCal) 5510 sc->sc_lastshortcal = ticks; 5511 } 5512 if (!isCalDone) { 5513 restart: 5514 /* 5515 * Use a shorter interval to potentially collect multiple 5516 * data samples required to complete calibration. Once 5517 * we're told the work is done we drop back to a longer 5518 * interval between requests. We're more aggressive doing 5519 * work when operating as an AP to improve operation right 5520 * after startup. 5521 */ 5522 sc->sc_lastshortcal = ticks; 5523 nextcal = ath_shortcalinterval*hz/1000; 5524 if (sc->sc_opmode != HAL_M_HOSTAP) 5525 nextcal *= 10; 5526 sc->sc_doresetcal = AH_TRUE; 5527 } else { 5528 /* nextcal should be the shortest time for next event */ 5529 nextcal = ath_longcalinterval*hz; 5530 if (sc->sc_lastcalreset == 0) 5531 sc->sc_lastcalreset = sc->sc_lastlongcal; 5532 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5533 sc->sc_resetcal = 1; /* setup reset next trip */ 5534 sc->sc_doresetcal = AH_FALSE; 5535 } 5536 /* ANI calibration may occur more often than short/long/resetcal */ 5537 if (ath_anicalinterval > 0) 5538 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5539 5540 if (nextcal != 0) { 5541 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5542 __func__, nextcal, isCalDone ? "" : "!"); 5543 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5544 } else { 5545 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5546 __func__); 5547 /* NB: don't rearm timer */ 5548 } 5549 /* 5550 * Restore power state now that we're done. 5551 */ 5552 ath_power_restore_power_state(sc); 5553 } 5554 5555 static void 5556 ath_scan_start(struct ieee80211com *ic) 5557 { 5558 struct ath_softc *sc = ic->ic_softc; 5559 struct ath_hal *ah = sc->sc_ah; 5560 u_int32_t rfilt; 5561 5562 /* XXX calibration timer? */ 5563 /* XXXGL: is constant ieee80211broadcastaddr a correct choice? */ 5564 5565 ATH_LOCK(sc); 5566 sc->sc_scanning = 1; 5567 sc->sc_syncbeacon = 0; 5568 rfilt = ath_calcrxfilter(sc); 5569 ATH_UNLOCK(sc); 5570 5571 ATH_PCU_LOCK(sc); 5572 ath_hal_setrxfilter(ah, rfilt); 5573 ath_hal_setassocid(ah, ieee80211broadcastaddr, 0); 5574 ATH_PCU_UNLOCK(sc); 5575 5576 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5577 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr)); 5578 } 5579 5580 static void 5581 ath_scan_end(struct ieee80211com *ic) 5582 { 5583 struct ath_softc *sc = ic->ic_softc; 5584 struct ath_hal *ah = sc->sc_ah; 5585 u_int32_t rfilt; 5586 5587 ATH_LOCK(sc); 5588 sc->sc_scanning = 0; 5589 rfilt = ath_calcrxfilter(sc); 5590 ATH_UNLOCK(sc); 5591 5592 ATH_PCU_LOCK(sc); 5593 ath_hal_setrxfilter(ah, rfilt); 5594 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5595 5596 ath_hal_process_noisefloor(ah); 5597 ATH_PCU_UNLOCK(sc); 5598 5599 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5600 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5601 sc->sc_curaid); 5602 } 5603 5604 #ifdef ATH_ENABLE_11N 5605 /* 5606 * For now, just do a channel change. 5607 * 5608 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5609 * control state and resetting the hardware without dropping frames out 5610 * of the queue. 5611 * 5612 * The unfortunate trouble here is making absolutely sure that the 5613 * channel width change has propagated enough so the hardware 5614 * absolutely isn't handed bogus frames for it's current operating 5615 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5616 * does occur in parallel, we need to make certain we've blocked 5617 * any further ongoing TX (and RX, that can cause raw TX) 5618 * before we do this. 5619 */ 5620 static void 5621 ath_update_chw(struct ieee80211com *ic) 5622 { 5623 struct ath_softc *sc = ic->ic_softc; 5624 5625 //DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5626 device_printf(sc->sc_dev, "%s: called\n", __func__); 5627 5628 /* 5629 * XXX TODO: schedule a tasklet that stops things without freeing, 5630 * walks the now stopped TX queue(s) looking for frames to retry 5631 * as if we TX filtered them (whch may mean dropping non-ampdu frames!) 5632 * but okay) then place them back on the software queue so they 5633 * can have the rate control lookup done again. 5634 */ 5635 ath_set_channel(ic); 5636 } 5637 #endif /* ATH_ENABLE_11N */ 5638 5639 /* 5640 * This is called by the beacon parsing routine in the receive 5641 * path to update the current quiet time information provided by 5642 * an AP. 5643 * 5644 * This is STA specific, it doesn't take the AP TBTT/beacon slot 5645 * offset into account. 5646 * 5647 * The quiet IE doesn't control the /now/ beacon interval - it 5648 * controls the upcoming beacon interval. So, when tbtt=1, 5649 * the quiet element programming shall be for the next beacon 5650 * interval. There's no tbtt=0 behaviour defined, so don't. 5651 * 5652 * Since we're programming the next quiet interval, we have 5653 * to keep in mind what we will see when the next beacon 5654 * is received with potentially a quiet IE. For example, if 5655 * quiet_period is 1, then we are always getting a quiet interval 5656 * each TBTT - so if we just program it in upon each beacon received, 5657 * it will constantly reflect the "next" TBTT and we will never 5658 * let the counter stay programmed correctly. 5659 * 5660 * So: 5661 * + the first time we see the quiet IE, program it and store 5662 * the details somewhere; 5663 * + if the quiet parameters don't change (ie, period/duration/offset) 5664 * then just leave the programming enabled; 5665 * + (we can "skip" beacons, so don't try to enforce tbttcount unless 5666 * you're willing to also do the skipped beacon math); 5667 * + if the quiet IE is removed, then halt quiet time. 5668 */ 5669 static int 5670 ath_set_quiet_ie(struct ieee80211_node *ni, uint8_t *ie) 5671 { 5672 struct ieee80211_quiet_ie *q; 5673 struct ieee80211vap *vap = ni->ni_vap; 5674 struct ath_vap *avp = ATH_VAP(vap); 5675 struct ieee80211com *ic = vap->iv_ic; 5676 struct ath_softc *sc = ic->ic_softc; 5677 5678 if (vap->iv_opmode != IEEE80211_M_STA) 5679 return (0); 5680 5681 /* Verify we have a quiet time IE */ 5682 if (ie == NULL) { 5683 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5684 "%s: called; NULL IE, disabling\n", __func__); 5685 5686 ath_hal_set_quiet(sc->sc_ah, 0, 0, 0, HAL_QUIET_DISABLE); 5687 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 5688 return (0); 5689 } 5690 5691 /* If we do, verify it's actually legit */ 5692 if (ie[0] != IEEE80211_ELEMID_QUIET) 5693 return 0; 5694 if (ie[1] != 6) 5695 return 0; 5696 5697 /* Note: this belongs in net80211, parsed out and everything */ 5698 q = (void *) ie; 5699 5700 /* 5701 * Compare what we have stored to what we last saw. 5702 * If they're the same then don't program in anything. 5703 */ 5704 if ((q->period == avp->quiet_ie.period) && 5705 (le16dec(&q->duration) == le16dec(&avp->quiet_ie.duration)) && 5706 (le16dec(&q->offset) == le16dec(&avp->quiet_ie.offset))) 5707 return (0); 5708 5709 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5710 "%s: called; tbttcount=%d, period=%d, duration=%d, offset=%d\n", 5711 __func__, 5712 (int) q->tbttcount, 5713 (int) q->period, 5714 (int) le16dec(&q->duration), 5715 (int) le16dec(&q->offset)); 5716 5717 /* 5718 * Don't program in garbage values. 5719 */ 5720 if ((le16dec(&q->duration) == 0) || 5721 (le16dec(&q->duration) >= ni->ni_intval)) { 5722 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5723 "%s: invalid duration (%d)\n", __func__, 5724 le16dec(&q->duration)); 5725 return (0); 5726 } 5727 /* 5728 * Can have a 0 offset, but not a duration - so just check 5729 * they don't exceed the intval. 5730 */ 5731 if (le16dec(&q->duration) + le16dec(&q->offset) >= ni->ni_intval) { 5732 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5733 "%s: invalid duration + offset (%d+%d)\n", __func__, 5734 le16dec(&q->duration), 5735 le16dec(&q->offset)); 5736 return (0); 5737 } 5738 if (q->tbttcount == 0) { 5739 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5740 "%s: invalid tbttcount (0)\n", __func__); 5741 return (0); 5742 } 5743 if (q->period == 0) { 5744 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5745 "%s: invalid period (0)\n", __func__); 5746 return (0); 5747 } 5748 5749 /* 5750 * This is a new quiet time IE config, so wait until tbttcount 5751 * is equal to 1, and program it in. 5752 */ 5753 if (q->tbttcount == 1) { 5754 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5755 "%s: programming\n", __func__); 5756 ath_hal_set_quiet(sc->sc_ah, 5757 q->period * ni->ni_intval, /* convert to TU */ 5758 le16dec(&q->duration), /* already in TU */ 5759 le16dec(&q->offset) + ni->ni_intval, 5760 HAL_QUIET_ENABLE | HAL_QUIET_ADD_CURRENT_TSF); 5761 /* 5762 * Note: no HAL_QUIET_ADD_SWBA_RESP_TIME; as this is for 5763 * STA mode 5764 */ 5765 5766 /* Update local state */ 5767 memcpy(&avp->quiet_ie, ie, sizeof(struct ieee80211_quiet_ie)); 5768 } 5769 5770 return (0); 5771 } 5772 5773 static void 5774 ath_set_channel(struct ieee80211com *ic) 5775 { 5776 struct ath_softc *sc = ic->ic_softc; 5777 5778 ATH_LOCK(sc); 5779 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5780 ATH_UNLOCK(sc); 5781 5782 (void) ath_chan_set(sc, ic->ic_curchan); 5783 /* 5784 * If we are returning to our bss channel then mark state 5785 * so the next recv'd beacon's tsf will be used to sync the 5786 * beacon timers. Note that since we only hear beacons in 5787 * sta/ibss mode this has no effect in other operating modes. 5788 */ 5789 ATH_LOCK(sc); 5790 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5791 sc->sc_syncbeacon = 1; 5792 ath_power_restore_power_state(sc); 5793 ATH_UNLOCK(sc); 5794 } 5795 5796 /* 5797 * Walk the vap list and check if there any vap's in RUN state. 5798 */ 5799 static int 5800 ath_isanyrunningvaps(struct ieee80211vap *this) 5801 { 5802 struct ieee80211com *ic = this->iv_ic; 5803 struct ieee80211vap *vap; 5804 5805 IEEE80211_LOCK_ASSERT(ic); 5806 5807 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5808 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5809 return 1; 5810 } 5811 return 0; 5812 } 5813 5814 static int 5815 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5816 { 5817 struct ieee80211com *ic = vap->iv_ic; 5818 struct ath_softc *sc = ic->ic_softc; 5819 struct ath_vap *avp = ATH_VAP(vap); 5820 struct ath_hal *ah = sc->sc_ah; 5821 struct ieee80211_node *ni = NULL; 5822 int i, error, stamode; 5823 u_int32_t rfilt; 5824 int csa_run_transition = 0; 5825 enum ieee80211_state ostate = vap->iv_state; 5826 5827 static const HAL_LED_STATE leds[] = { 5828 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5829 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5830 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5831 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5832 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5833 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5834 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5835 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5836 }; 5837 5838 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5839 ieee80211_state_name[ostate], 5840 ieee80211_state_name[nstate]); 5841 5842 /* 5843 * net80211 _should_ have the comlock asserted at this point. 5844 * There are some comments around the calls to vap->iv_newstate 5845 * which indicate that it (newstate) may end up dropping the 5846 * lock. This and the subsequent lock assert check after newstate 5847 * are an attempt to catch these and figure out how/why. 5848 */ 5849 IEEE80211_LOCK_ASSERT(ic); 5850 5851 /* Before we touch the hardware - wake it up */ 5852 ATH_LOCK(sc); 5853 /* 5854 * If the NIC is in anything other than SLEEP state, 5855 * we need to ensure that self-generated frames are 5856 * set for PWRMGT=0. Otherwise we may end up with 5857 * strange situations. 5858 * 5859 * XXX TODO: is this actually the case? :-) 5860 */ 5861 if (nstate != IEEE80211_S_SLEEP) 5862 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5863 5864 /* 5865 * Now, wake the thing up. 5866 */ 5867 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5868 5869 /* 5870 * And stop the calibration callout whilst we have 5871 * ATH_LOCK held. 5872 */ 5873 callout_stop(&sc->sc_cal_ch); 5874 ATH_UNLOCK(sc); 5875 5876 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5877 csa_run_transition = 1; 5878 5879 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5880 5881 if (nstate == IEEE80211_S_SCAN) { 5882 /* 5883 * Scanning: turn off beacon miss and don't beacon. 5884 * Mark beacon state so when we reach RUN state we'll 5885 * [re]setup beacons. Unblock the task q thread so 5886 * deferred interrupt processing is done. 5887 */ 5888 5889 /* Ensure we stay awake during scan */ 5890 ATH_LOCK(sc); 5891 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5892 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 5893 ATH_UNLOCK(sc); 5894 5895 ath_hal_intrset(ah, 5896 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5897 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5898 sc->sc_beacons = 0; 5899 taskqueue_unblock(sc->sc_tq); 5900 } 5901 5902 ni = ieee80211_ref_node(vap->iv_bss); 5903 rfilt = ath_calcrxfilter(sc); 5904 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5905 vap->iv_opmode == IEEE80211_M_AHDEMO || 5906 vap->iv_opmode == IEEE80211_M_IBSS); 5907 5908 /* 5909 * XXX Dont need to do this (and others) if we've transitioned 5910 * from SLEEP->RUN. 5911 */ 5912 if (stamode && nstate == IEEE80211_S_RUN) { 5913 sc->sc_curaid = ni->ni_associd; 5914 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5915 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5916 } 5917 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5918 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5919 ath_hal_setrxfilter(ah, rfilt); 5920 5921 /* XXX is this to restore keycache on resume? */ 5922 if (vap->iv_opmode != IEEE80211_M_STA && 5923 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5924 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5925 if (ath_hal_keyisvalid(ah, i)) 5926 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5927 } 5928 5929 /* 5930 * Invoke the parent method to do net80211 work. 5931 */ 5932 error = avp->av_newstate(vap, nstate, arg); 5933 if (error != 0) 5934 goto bad; 5935 5936 /* 5937 * See above: ensure av_newstate() doesn't drop the lock 5938 * on us. 5939 */ 5940 IEEE80211_LOCK_ASSERT(ic); 5941 5942 /* 5943 * XXX TODO: if nstate is _S_CAC, then we should disable 5944 * ACK processing until CAC is completed. 5945 */ 5946 5947 /* 5948 * XXX TODO: if we're on a passive channel, then we should 5949 * not allow any ACKs or self-generated frames until we hear 5950 * a beacon. Unfortunately there isn't a notification from 5951 * net80211 so perhaps we could slot that particular check 5952 * into the mgmt receive path and just ensure that we clear 5953 * it on RX of beacons in passive mode (and only clear it 5954 * once, obviously.) 5955 */ 5956 5957 /* 5958 * XXX TODO: net80211 should be tracking whether channels 5959 * have heard beacons and are thus considered "OK" for 5960 * transmitting - and then inform the driver about this 5961 * state change. That way if we hear an AP go quiet 5962 * (and nothing else is beaconing on a channel) the 5963 * channel can go back to being passive until another 5964 * beacon is heard. 5965 */ 5966 5967 /* 5968 * XXX TODO: if nstate is _S_CAC, then we should disable 5969 * ACK processing until CAC is completed. 5970 */ 5971 5972 /* 5973 * XXX TODO: if we're on a passive channel, then we should 5974 * not allow any ACKs or self-generated frames until we hear 5975 * a beacon. Unfortunately there isn't a notification from 5976 * net80211 so perhaps we could slot that particular check 5977 * into the mgmt receive path and just ensure that we clear 5978 * it on RX of beacons in passive mode (and only clear it 5979 * once, obviously.) 5980 */ 5981 5982 /* 5983 * XXX TODO: net80211 should be tracking whether channels 5984 * have heard beacons and are thus considered "OK" for 5985 * transmitting - and then inform the driver about this 5986 * state change. That way if we hear an AP go quiet 5987 * (and nothing else is beaconing on a channel) the 5988 * channel can go back to being passive until another 5989 * beacon is heard. 5990 */ 5991 5992 if (nstate == IEEE80211_S_RUN) { 5993 /* NB: collect bss node again, it may have changed */ 5994 ieee80211_free_node(ni); 5995 ni = ieee80211_ref_node(vap->iv_bss); 5996 5997 DPRINTF(sc, ATH_DEBUG_STATE, 5998 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5999 "capinfo 0x%04x chan %d\n", __func__, 6000 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 6001 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 6002 6003 switch (vap->iv_opmode) { 6004 #ifdef IEEE80211_SUPPORT_TDMA 6005 case IEEE80211_M_AHDEMO: 6006 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 6007 break; 6008 /* fall thru... */ 6009 #endif 6010 case IEEE80211_M_HOSTAP: 6011 case IEEE80211_M_IBSS: 6012 case IEEE80211_M_MBSS: 6013 6014 /* 6015 * TODO: Enable ACK processing (ie, clear AR_DIAG_ACK_DIS.) 6016 * For channels that are in CAC, we may have disabled 6017 * this during CAC to ensure we don't ACK frames 6018 * sent to us. 6019 */ 6020 6021 /* 6022 * Allocate and setup the beacon frame. 6023 * 6024 * Stop any previous beacon DMA. This may be 6025 * necessary, for example, when an ibss merge 6026 * causes reconfiguration; there will be a state 6027 * transition from RUN->RUN that means we may 6028 * be called with beacon transmission active. 6029 */ 6030 ath_hal_stoptxdma(ah, sc->sc_bhalq); 6031 6032 error = ath_beacon_alloc(sc, ni); 6033 if (error != 0) 6034 goto bad; 6035 /* 6036 * If joining an adhoc network defer beacon timer 6037 * configuration to the next beacon frame so we 6038 * have a current TSF to use. Otherwise we're 6039 * starting an ibss/bss so there's no need to delay; 6040 * if this is the first vap moving to RUN state, then 6041 * beacon state needs to be [re]configured. 6042 */ 6043 if (vap->iv_opmode == IEEE80211_M_IBSS && 6044 ni->ni_tstamp.tsf != 0) { 6045 sc->sc_syncbeacon = 1; 6046 } else if (!sc->sc_beacons) { 6047 #ifdef IEEE80211_SUPPORT_TDMA 6048 if (vap->iv_caps & IEEE80211_C_TDMA) 6049 ath_tdma_config(sc, vap); 6050 else 6051 #endif 6052 ath_beacon_config(sc, vap); 6053 sc->sc_beacons = 1; 6054 } 6055 break; 6056 case IEEE80211_M_STA: 6057 /* 6058 * Defer beacon timer configuration to the next 6059 * beacon frame so we have a current TSF to use 6060 * (any TSF collected when scanning is likely old). 6061 * However if it's due to a CSA -> RUN transition, 6062 * force a beacon update so we pick up a lack of 6063 * beacons from an AP in CAC and thus force a 6064 * scan. 6065 * 6066 * And, there's also corner cases here where 6067 * after a scan, the AP may have disappeared. 6068 * In that case, we may not receive an actual 6069 * beacon to update the beacon timer and thus we 6070 * won't get notified of the missing beacons. 6071 * 6072 * Also, don't do any of this if we're not running 6073 * with hardware beacon support, as that'll interfere 6074 * with an AP VAP. 6075 */ 6076 if (ostate != IEEE80211_S_RUN && 6077 ostate != IEEE80211_S_SLEEP) { 6078 6079 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 6080 DPRINTF(sc, ATH_DEBUG_BEACON, 6081 "%s: STA; syncbeacon=1\n", __func__); 6082 sc->sc_syncbeacon = 1; 6083 if (csa_run_transition) 6084 ath_beacon_config(sc, vap); 6085 } 6086 6087 /* Quiet time handling - ensure we resync */ 6088 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6089 6090 /* 6091 * PR: kern/175227 6092 * 6093 * Reconfigure beacons during reset; as otherwise 6094 * we won't get the beacon timers reprogrammed 6095 * after a reset and thus we won't pick up a 6096 * beacon miss interrupt. 6097 * 6098 * Hopefully we'll see a beacon before the BMISS 6099 * timer fires (too often), leading to a STA 6100 * disassociation. 6101 */ 6102 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 6103 sc->sc_beacons = 1; 6104 } 6105 } 6106 break; 6107 case IEEE80211_M_MONITOR: 6108 /* 6109 * Monitor mode vaps have only INIT->RUN and RUN->RUN 6110 * transitions so we must re-enable interrupts here to 6111 * handle the case of a single monitor mode vap. 6112 */ 6113 ath_hal_intrset(ah, sc->sc_imask); 6114 break; 6115 case IEEE80211_M_WDS: 6116 break; 6117 default: 6118 break; 6119 } 6120 /* 6121 * Let the hal process statistics collected during a 6122 * scan so it can provide calibrated noise floor data. 6123 */ 6124 ath_hal_process_noisefloor(ah); 6125 /* 6126 * Reset rssi stats; maybe not the best place... 6127 */ 6128 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 6129 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 6130 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 6131 6132 /* 6133 * Force awake for RUN mode. 6134 */ 6135 ATH_LOCK(sc); 6136 ath_power_setselfgen(sc, HAL_PM_AWAKE); 6137 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 6138 6139 /* 6140 * Finally, start any timers and the task q thread 6141 * (in case we didn't go through SCAN state). 6142 */ 6143 if (ath_longcalinterval != 0) { 6144 /* start periodic recalibration timer */ 6145 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6146 } else { 6147 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6148 "%s: calibration disabled\n", __func__); 6149 } 6150 ATH_UNLOCK(sc); 6151 6152 taskqueue_unblock(sc->sc_tq); 6153 } else if (nstate == IEEE80211_S_INIT) { 6154 /* Quiet time handling - ensure we resync */ 6155 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6156 6157 /* 6158 * If there are no vaps left in RUN state then 6159 * shutdown host/driver operation: 6160 * o disable interrupts 6161 * o disable the task queue thread 6162 * o mark beacon processing as stopped 6163 */ 6164 if (!ath_isanyrunningvaps(vap)) { 6165 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 6166 /* disable interrupts */ 6167 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 6168 taskqueue_block(sc->sc_tq); 6169 sc->sc_beacons = 0; 6170 } 6171 6172 /* 6173 * For at least STA mode we likely should clear the ANI 6174 * and NF calibration state and allow the NIC/HAL to figure 6175 * out optimal parameters at runtime. Otherwise if we 6176 * disassociate due to interference / deafness it may persist 6177 * when we reconnect. 6178 * 6179 * Note: may need to do this for other states too, not just 6180 * _S_INIT. 6181 */ 6182 #ifdef IEEE80211_SUPPORT_TDMA 6183 ath_hal_setcca(ah, AH_TRUE); 6184 #endif 6185 } else if (nstate == IEEE80211_S_SLEEP) { 6186 /* We're going to sleep, so transition appropriately */ 6187 /* For now, only do this if we're a single STA vap */ 6188 if (sc->sc_nvaps == 1 && 6189 vap->iv_opmode == IEEE80211_M_STA) { 6190 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 6191 ATH_LOCK(sc); 6192 /* 6193 * Always at least set the self-generated 6194 * frame config to set PWRMGT=1. 6195 */ 6196 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 6197 6198 /* 6199 * If we're not syncing beacons, transition 6200 * to NETWORK_SLEEP. 6201 * 6202 * We stay awake if syncbeacon > 0 in case 6203 * we need to listen for some beacons otherwise 6204 * our beacon timer config may be wrong. 6205 */ 6206 if (sc->sc_syncbeacon == 0) { 6207 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP, 1); 6208 } 6209 ATH_UNLOCK(sc); 6210 } 6211 6212 /* 6213 * Note - the ANI/calibration timer isn't re-enabled during 6214 * network sleep for now. One unfortunate side-effect is that 6215 * the PHY/airtime statistics aren't gathered on the channel 6216 * but I haven't yet tested to see if reading those registers 6217 * CAN occur during network sleep. 6218 * 6219 * This should be revisited in a future commit, even if it's 6220 * just to split out the airtime polling from ANI/calibration. 6221 */ 6222 } else if (nstate == IEEE80211_S_SCAN) { 6223 /* Quiet time handling - ensure we resync */ 6224 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6225 6226 /* 6227 * If we're in scan mode then startpcureceive() is 6228 * hopefully being called with "reset ANI" for this channel; 6229 * but once we attempt to reassociate we program in the previous 6230 * ANI values and.. not do any calibration until we're running. 6231 * This may mean we stay deaf unless we can associate successfully. 6232 * 6233 * So do kick off the cal timer to get NF/ANI going. 6234 */ 6235 ATH_LOCK(sc); 6236 if (ath_longcalinterval != 0) { 6237 /* start periodic recalibration timer */ 6238 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6239 } else { 6240 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6241 "%s: calibration disabled\n", __func__); 6242 } 6243 ATH_UNLOCK(sc); 6244 } 6245 bad: 6246 ieee80211_free_node(ni); 6247 6248 /* 6249 * Restore the power state - either to what it was, or 6250 * to network_sleep if it's alright. 6251 */ 6252 ATH_LOCK(sc); 6253 ath_power_restore_power_state(sc); 6254 ATH_UNLOCK(sc); 6255 return error; 6256 } 6257 6258 /* 6259 * Allocate a key cache slot to the station so we can 6260 * setup a mapping from key index to node. The key cache 6261 * slot is needed for managing antenna state and for 6262 * compression when stations do not use crypto. We do 6263 * it uniliaterally here; if crypto is employed this slot 6264 * will be reassigned. 6265 */ 6266 static void 6267 ath_setup_stationkey(struct ieee80211_node *ni) 6268 { 6269 struct ieee80211vap *vap = ni->ni_vap; 6270 struct ath_softc *sc = vap->iv_ic->ic_softc; 6271 ieee80211_keyix keyix, rxkeyix; 6272 6273 /* XXX should take a locked ref to vap->iv_bss */ 6274 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 6275 /* 6276 * Key cache is full; we'll fall back to doing 6277 * the more expensive lookup in software. Note 6278 * this also means no h/w compression. 6279 */ 6280 /* XXX msg+statistic */ 6281 } else { 6282 /* XXX locking? */ 6283 ni->ni_ucastkey.wk_keyix = keyix; 6284 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 6285 /* NB: must mark device key to get called back on delete */ 6286 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 6287 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 6288 /* NB: this will create a pass-thru key entry */ 6289 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 6290 } 6291 } 6292 6293 /* 6294 * Setup driver-specific state for a newly associated node. 6295 * Note that we're called also on a re-associate, the isnew 6296 * param tells us if this is the first time or not. 6297 */ 6298 static void 6299 ath_newassoc(struct ieee80211_node *ni, int isnew) 6300 { 6301 struct ath_node *an = ATH_NODE(ni); 6302 struct ieee80211vap *vap = ni->ni_vap; 6303 struct ath_softc *sc = vap->iv_ic->ic_softc; 6304 const struct ieee80211_txparam *tp = ni->ni_txparms; 6305 6306 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 6307 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 6308 6309 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 6310 __func__, 6311 ni->ni_macaddr, 6312 ":", 6313 isnew, 6314 an->an_is_powersave); 6315 6316 ATH_NODE_LOCK(an); 6317 ath_rate_newassoc(sc, an, isnew); 6318 ATH_NODE_UNLOCK(an); 6319 6320 if (isnew && 6321 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6322 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6323 ath_setup_stationkey(ni); 6324 6325 /* 6326 * If we're reassociating, make sure that any paused queues 6327 * get unpaused. 6328 * 6329 * Now, we may have frames in the hardware queue for this node. 6330 * So if we are reassociating and there are frames in the queue, 6331 * we need to go through the cleanup path to ensure that they're 6332 * marked as non-aggregate. 6333 */ 6334 if (! isnew) { 6335 DPRINTF(sc, ATH_DEBUG_NODE, 6336 "%s: %6D: reassoc; is_powersave=%d\n", 6337 __func__, 6338 ni->ni_macaddr, 6339 ":", 6340 an->an_is_powersave); 6341 6342 /* XXX for now, we can't hold the lock across assoc */ 6343 ath_tx_node_reassoc(sc, an); 6344 6345 /* XXX for now, we can't hold the lock across wakeup */ 6346 if (an->an_is_powersave) 6347 ath_tx_node_wakeup(sc, an); 6348 } 6349 } 6350 6351 static int 6352 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6353 int nchans, struct ieee80211_channel chans[]) 6354 { 6355 struct ath_softc *sc = ic->ic_softc; 6356 struct ath_hal *ah = sc->sc_ah; 6357 HAL_STATUS status; 6358 6359 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6360 "%s: rd %u cc %u location %c%s\n", 6361 __func__, reg->regdomain, reg->country, reg->location, 6362 reg->ecm ? " ecm" : ""); 6363 6364 status = ath_hal_set_channels(ah, chans, nchans, 6365 reg->country, reg->regdomain); 6366 if (status != HAL_OK) { 6367 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6368 __func__, status); 6369 return EINVAL; /* XXX */ 6370 } 6371 6372 return 0; 6373 } 6374 6375 static void 6376 ath_getradiocaps(struct ieee80211com *ic, 6377 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6378 { 6379 struct ath_softc *sc = ic->ic_softc; 6380 struct ath_hal *ah = sc->sc_ah; 6381 6382 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6383 __func__, SKU_DEBUG, CTRY_DEFAULT); 6384 6385 /* XXX check return */ 6386 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6387 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6388 6389 } 6390 6391 static int 6392 ath_getchannels(struct ath_softc *sc) 6393 { 6394 struct ieee80211com *ic = &sc->sc_ic; 6395 struct ath_hal *ah = sc->sc_ah; 6396 HAL_STATUS status; 6397 6398 /* 6399 * Collect channel set based on EEPROM contents. 6400 */ 6401 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6402 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6403 if (status != HAL_OK) { 6404 device_printf(sc->sc_dev, 6405 "%s: unable to collect channel list from hal, status %d\n", 6406 __func__, status); 6407 return EINVAL; 6408 } 6409 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6410 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6411 /* XXX map Atheros sku's to net80211 SKU's */ 6412 /* XXX net80211 types too small */ 6413 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6414 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6415 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6416 ic->ic_regdomain.isocc[1] = ' '; 6417 6418 ic->ic_regdomain.ecm = 1; 6419 ic->ic_regdomain.location = 'I'; 6420 6421 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6422 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6423 __func__, sc->sc_eerd, sc->sc_eecc, 6424 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6425 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6426 return 0; 6427 } 6428 6429 static int 6430 ath_rate_setup(struct ath_softc *sc, u_int mode) 6431 { 6432 struct ath_hal *ah = sc->sc_ah; 6433 const HAL_RATE_TABLE *rt; 6434 6435 switch (mode) { 6436 case IEEE80211_MODE_11A: 6437 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6438 break; 6439 case IEEE80211_MODE_HALF: 6440 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6441 break; 6442 case IEEE80211_MODE_QUARTER: 6443 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6444 break; 6445 case IEEE80211_MODE_11B: 6446 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6447 break; 6448 case IEEE80211_MODE_11G: 6449 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6450 break; 6451 case IEEE80211_MODE_TURBO_A: 6452 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6453 break; 6454 case IEEE80211_MODE_TURBO_G: 6455 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6456 break; 6457 case IEEE80211_MODE_STURBO_A: 6458 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6459 break; 6460 case IEEE80211_MODE_11NA: 6461 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6462 break; 6463 case IEEE80211_MODE_11NG: 6464 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6465 break; 6466 default: 6467 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6468 __func__, mode); 6469 return 0; 6470 } 6471 sc->sc_rates[mode] = rt; 6472 return (rt != NULL); 6473 } 6474 6475 static void 6476 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6477 { 6478 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6479 static const struct { 6480 u_int rate; /* tx/rx 802.11 rate */ 6481 u_int16_t timeOn; /* LED on time (ms) */ 6482 u_int16_t timeOff; /* LED off time (ms) */ 6483 } blinkrates[] = { 6484 { 108, 40, 10 }, 6485 { 96, 44, 11 }, 6486 { 72, 50, 13 }, 6487 { 48, 57, 14 }, 6488 { 36, 67, 16 }, 6489 { 24, 80, 20 }, 6490 { 22, 100, 25 }, 6491 { 18, 133, 34 }, 6492 { 12, 160, 40 }, 6493 { 10, 200, 50 }, 6494 { 6, 240, 58 }, 6495 { 4, 267, 66 }, 6496 { 2, 400, 100 }, 6497 { 0, 500, 130 }, 6498 /* XXX half/quarter rates */ 6499 }; 6500 const HAL_RATE_TABLE *rt; 6501 int i, j; 6502 6503 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6504 rt = sc->sc_rates[mode]; 6505 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6506 for (i = 0; i < rt->rateCount; i++) { 6507 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6508 if (rt->info[i].phy != IEEE80211_T_HT) 6509 sc->sc_rixmap[ieeerate] = i; 6510 else 6511 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6512 } 6513 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6514 for (i = 0; i < nitems(sc->sc_hwmap); i++) { 6515 if (i >= rt->rateCount) { 6516 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6517 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6518 continue; 6519 } 6520 sc->sc_hwmap[i].ieeerate = 6521 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6522 if (rt->info[i].phy == IEEE80211_T_HT) 6523 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6524 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6525 if (rt->info[i].shortPreamble || 6526 rt->info[i].phy == IEEE80211_T_OFDM) 6527 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6528 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6529 for (j = 0; j < nitems(blinkrates)-1; j++) 6530 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6531 break; 6532 /* NB: this uses the last entry if the rate isn't found */ 6533 /* XXX beware of overlow */ 6534 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6535 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6536 } 6537 sc->sc_currates = rt; 6538 sc->sc_curmode = mode; 6539 /* 6540 * All protection frames are transmitted at 2Mb/s for 6541 * 11g, otherwise at 1Mb/s. 6542 */ 6543 if (mode == IEEE80211_MODE_11G) 6544 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6545 else 6546 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6547 /* NB: caller is responsible for resetting rate control state */ 6548 } 6549 6550 static void 6551 ath_watchdog(void *arg) 6552 { 6553 struct ath_softc *sc = arg; 6554 struct ieee80211com *ic = &sc->sc_ic; 6555 int do_reset = 0; 6556 6557 ATH_LOCK_ASSERT(sc); 6558 6559 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6560 uint32_t hangs; 6561 6562 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6563 6564 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6565 hangs != 0) { 6566 device_printf(sc->sc_dev, "%s hang detected (0x%x)\n", 6567 hangs & 0xff ? "bb" : "mac", hangs); 6568 } else 6569 device_printf(sc->sc_dev, "device timeout\n"); 6570 do_reset = 1; 6571 counter_u64_add(ic->ic_oerrors, 1); 6572 sc->sc_stats.ast_watchdog++; 6573 6574 ath_power_restore_power_state(sc); 6575 } 6576 6577 /* 6578 * We can't hold the lock across the ath_reset() call. 6579 * 6580 * And since this routine can't hold a lock and sleep, 6581 * do the reset deferred. 6582 */ 6583 if (do_reset) { 6584 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6585 } 6586 6587 callout_schedule(&sc->sc_wd_ch, hz); 6588 } 6589 6590 static void 6591 ath_parent(struct ieee80211com *ic) 6592 { 6593 struct ath_softc *sc = ic->ic_softc; 6594 int error = EDOOFUS; 6595 6596 ATH_LOCK(sc); 6597 if (ic->ic_nrunning > 0) { 6598 /* 6599 * To avoid rescanning another access point, 6600 * do not call ath_init() here. Instead, 6601 * only reflect promisc mode settings. 6602 */ 6603 if (sc->sc_running) { 6604 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6605 ath_mode_init(sc); 6606 ath_power_restore_power_state(sc); 6607 } else if (!sc->sc_invalid) { 6608 /* 6609 * Beware of being called during attach/detach 6610 * to reset promiscuous mode. In that case we 6611 * will still be marked UP but not RUNNING. 6612 * However trying to re-init the interface 6613 * is the wrong thing to do as we've already 6614 * torn down much of our state. There's 6615 * probably a better way to deal with this. 6616 */ 6617 error = ath_init(sc); 6618 } 6619 } else { 6620 ath_stop(sc); 6621 if (!sc->sc_invalid) 6622 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1); 6623 } 6624 ATH_UNLOCK(sc); 6625 6626 if (error == 0) { 6627 #ifdef ATH_TX99_DIAG 6628 if (sc->sc_tx99 != NULL) 6629 sc->sc_tx99->start(sc->sc_tx99); 6630 else 6631 #endif 6632 ieee80211_start_all(ic); 6633 } 6634 } 6635 6636 /* 6637 * Announce various information on device/driver attach. 6638 */ 6639 static void 6640 ath_announce(struct ath_softc *sc) 6641 { 6642 struct ath_hal *ah = sc->sc_ah; 6643 6644 device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n", 6645 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6646 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6647 device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6648 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6649 if (bootverbose) { 6650 int i; 6651 for (i = 0; i <= WME_AC_VO; i++) { 6652 struct ath_txq *txq = sc->sc_ac2q[i]; 6653 device_printf(sc->sc_dev, 6654 "Use hw queue %u for %s traffic\n", 6655 txq->axq_qnum, ieee80211_wme_acnames[i]); 6656 } 6657 device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n", 6658 sc->sc_cabq->axq_qnum); 6659 device_printf(sc->sc_dev, "Use hw queue %u for beacons\n", 6660 sc->sc_bhalq); 6661 } 6662 if (ath_rxbuf != ATH_RXBUF) 6663 device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf); 6664 if (ath_txbuf != ATH_TXBUF) 6665 device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf); 6666 if (sc->sc_mcastkey && bootverbose) 6667 device_printf(sc->sc_dev, "using multicast key search\n"); 6668 } 6669 6670 static void 6671 ath_dfs_tasklet(void *p, int npending) 6672 { 6673 struct ath_softc *sc = (struct ath_softc *) p; 6674 struct ieee80211com *ic = &sc->sc_ic; 6675 6676 /* 6677 * If previous processing has found a radar event, 6678 * signal this to the net80211 layer to begin DFS 6679 * processing. 6680 */ 6681 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6682 /* DFS event found, initiate channel change */ 6683 6684 /* 6685 * XXX TODO: immediately disable ACK processing 6686 * on the current channel. This would be done 6687 * by setting AR_DIAG_ACK_DIS (AR5212; may be 6688 * different for others) until we are out of 6689 * CAC. 6690 */ 6691 6692 /* 6693 * XXX doesn't currently tell us whether the event 6694 * XXX was found in the primary or extension 6695 * XXX channel! 6696 */ 6697 IEEE80211_LOCK(ic); 6698 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6699 IEEE80211_UNLOCK(ic); 6700 } 6701 } 6702 6703 /* 6704 * Enable/disable power save. This must be called with 6705 * no TX driver locks currently held, so it should only 6706 * be called from the RX path (which doesn't hold any 6707 * TX driver locks.) 6708 */ 6709 static void 6710 ath_node_powersave(struct ieee80211_node *ni, int enable) 6711 { 6712 #ifdef ATH_SW_PSQ 6713 struct ath_node *an = ATH_NODE(ni); 6714 struct ieee80211com *ic = ni->ni_ic; 6715 struct ath_softc *sc = ic->ic_softc; 6716 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6717 6718 /* XXX and no TXQ locks should be held here */ 6719 6720 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6721 __func__, 6722 ni->ni_macaddr, 6723 ":", 6724 !! enable); 6725 6726 /* Suspend or resume software queue handling */ 6727 if (enable) 6728 ath_tx_node_sleep(sc, an); 6729 else 6730 ath_tx_node_wakeup(sc, an); 6731 6732 /* Update net80211 state */ 6733 avp->av_node_ps(ni, enable); 6734 #else 6735 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6736 6737 /* Update net80211 state */ 6738 avp->av_node_ps(ni, enable); 6739 #endif/* ATH_SW_PSQ */ 6740 } 6741 6742 /* 6743 * Notification from net80211 that the powersave queue state has 6744 * changed. 6745 * 6746 * Since the software queue also may have some frames: 6747 * 6748 * + if the node software queue has frames and the TID state 6749 * is 0, we set the TIM; 6750 * + if the node and the stack are both empty, we clear the TIM bit. 6751 * + If the stack tries to set the bit, always set it. 6752 * + If the stack tries to clear the bit, only clear it if the 6753 * software queue in question is also cleared. 6754 * 6755 * TODO: this is called during node teardown; so let's ensure this 6756 * is all correctly handled and that the TIM bit is cleared. 6757 * It may be that the node flush is called _AFTER_ the net80211 6758 * stack clears the TIM. 6759 * 6760 * Here is the racy part. Since it's possible >1 concurrent, 6761 * overlapping TXes will appear complete with a TX completion in 6762 * another thread, it's possible that the concurrent TIM calls will 6763 * clash. We can't hold the node lock here because setting the 6764 * TIM grabs the net80211 comlock and this may cause a LOR. 6765 * The solution is either to totally serialise _everything_ at 6766 * this point (ie, all TX, completion and any reset/flush go into 6767 * one taskqueue) or a new "ath TIM lock" needs to be created that 6768 * just wraps the driver state change and this call to avp->av_set_tim(). 6769 * 6770 * The same race exists in the net80211 power save queue handling 6771 * as well. Since multiple transmitting threads may queue frames 6772 * into the driver, as well as ps-poll and the driver transmitting 6773 * frames (and thus clearing the psq), it's quite possible that 6774 * a packet entering the PSQ and a ps-poll being handled will 6775 * race, causing the TIM to be cleared and not re-set. 6776 */ 6777 static int 6778 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6779 { 6780 #ifdef ATH_SW_PSQ 6781 struct ieee80211com *ic = ni->ni_ic; 6782 struct ath_softc *sc = ic->ic_softc; 6783 struct ath_node *an = ATH_NODE(ni); 6784 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6785 int changed = 0; 6786 6787 ATH_TX_LOCK(sc); 6788 an->an_stack_psq = enable; 6789 6790 /* 6791 * This will get called for all operating modes, 6792 * even if avp->av_set_tim is unset. 6793 * It's currently set for hostap/ibss modes; but 6794 * the same infrastructure is used for both STA 6795 * and AP/IBSS node power save. 6796 */ 6797 if (avp->av_set_tim == NULL) { 6798 ATH_TX_UNLOCK(sc); 6799 return (0); 6800 } 6801 6802 /* 6803 * If setting the bit, always set it here. 6804 * If clearing the bit, only clear it if the 6805 * software queue is also empty. 6806 * 6807 * If the node has left power save, just clear the TIM 6808 * bit regardless of the state of the power save queue. 6809 * 6810 * XXX TODO: although atomics are used, it's quite possible 6811 * that a race will occur between this and setting/clearing 6812 * in another thread. TX completion will occur always in 6813 * one thread, however setting/clearing the TIM bit can come 6814 * from a variety of different process contexts! 6815 */ 6816 if (enable && an->an_tim_set == 1) { 6817 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6818 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6819 __func__, 6820 ni->ni_macaddr, 6821 ":", 6822 enable); 6823 ATH_TX_UNLOCK(sc); 6824 } else if (enable) { 6825 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6826 "%s: %6D: enable=%d, enabling TIM\n", 6827 __func__, 6828 ni->ni_macaddr, 6829 ":", 6830 enable); 6831 an->an_tim_set = 1; 6832 ATH_TX_UNLOCK(sc); 6833 changed = avp->av_set_tim(ni, enable); 6834 } else if (an->an_swq_depth == 0) { 6835 /* disable */ 6836 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6837 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6838 __func__, 6839 ni->ni_macaddr, 6840 ":", 6841 enable); 6842 an->an_tim_set = 0; 6843 ATH_TX_UNLOCK(sc); 6844 changed = avp->av_set_tim(ni, enable); 6845 } else if (! an->an_is_powersave) { 6846 /* 6847 * disable regardless; the node isn't in powersave now 6848 */ 6849 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6850 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6851 __func__, 6852 ni->ni_macaddr, 6853 ":", 6854 enable); 6855 an->an_tim_set = 0; 6856 ATH_TX_UNLOCK(sc); 6857 changed = avp->av_set_tim(ni, enable); 6858 } else { 6859 /* 6860 * psq disable, node is currently in powersave, node 6861 * software queue isn't empty, so don't clear the TIM bit 6862 * for now. 6863 */ 6864 ATH_TX_UNLOCK(sc); 6865 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6866 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6867 __func__, 6868 ni->ni_macaddr, 6869 ":", 6870 enable); 6871 changed = 0; 6872 } 6873 6874 return (changed); 6875 #else 6876 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6877 6878 /* 6879 * Some operating modes don't set av_set_tim(), so don't 6880 * update it here. 6881 */ 6882 if (avp->av_set_tim == NULL) 6883 return (0); 6884 6885 return (avp->av_set_tim(ni, enable)); 6886 #endif /* ATH_SW_PSQ */ 6887 } 6888 6889 /* 6890 * Set or update the TIM from the software queue. 6891 * 6892 * Check the software queue depth before attempting to do lock 6893 * anything; that avoids trying to obtain the lock. Then, 6894 * re-check afterwards to ensure nothing has changed in the 6895 * meantime. 6896 * 6897 * set: This is designed to be called from the TX path, after 6898 * a frame has been queued; to see if the swq > 0. 6899 * 6900 * clear: This is designed to be called from the buffer completion point 6901 * (right now it's ath_tx_default_comp()) where the state of 6902 * a software queue has changed. 6903 * 6904 * It makes sense to place it at buffer free / completion rather 6905 * than after each software queue operation, as there's no real 6906 * point in churning the TIM bit as the last frames in the software 6907 * queue are transmitted. If they fail and we retry them, we'd 6908 * just be setting the TIM bit again anyway. 6909 */ 6910 void 6911 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6912 int enable) 6913 { 6914 #ifdef ATH_SW_PSQ 6915 struct ath_node *an; 6916 struct ath_vap *avp; 6917 6918 /* Don't do this for broadcast/etc frames */ 6919 if (ni == NULL) 6920 return; 6921 6922 an = ATH_NODE(ni); 6923 avp = ATH_VAP(ni->ni_vap); 6924 6925 /* 6926 * And for operating modes without the TIM handler set, let's 6927 * just skip those. 6928 */ 6929 if (avp->av_set_tim == NULL) 6930 return; 6931 6932 ATH_TX_LOCK_ASSERT(sc); 6933 6934 if (enable) { 6935 if (an->an_is_powersave && 6936 an->an_tim_set == 0 && 6937 an->an_swq_depth != 0) { 6938 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6939 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6940 __func__, 6941 ni->ni_macaddr, 6942 ":"); 6943 an->an_tim_set = 1; 6944 (void) avp->av_set_tim(ni, 1); 6945 } 6946 } else { 6947 /* 6948 * Don't bother grabbing the lock unless the queue is empty. 6949 */ 6950 if (an->an_swq_depth != 0) 6951 return; 6952 6953 if (an->an_is_powersave && 6954 an->an_stack_psq == 0 && 6955 an->an_tim_set == 1 && 6956 an->an_swq_depth == 0) { 6957 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6958 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6959 " clear!\n", 6960 __func__, 6961 ni->ni_macaddr, 6962 ":"); 6963 an->an_tim_set = 0; 6964 (void) avp->av_set_tim(ni, 0); 6965 } 6966 } 6967 #else 6968 return; 6969 #endif /* ATH_SW_PSQ */ 6970 } 6971 6972 /* 6973 * Received a ps-poll frame from net80211. 6974 * 6975 * Here we get a chance to serve out a software-queued frame ourselves 6976 * before we punt it to net80211 to transmit us one itself - either 6977 * because there's traffic in the net80211 psq, or a NULL frame to 6978 * indicate there's nothing else. 6979 */ 6980 static void 6981 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6982 { 6983 #ifdef ATH_SW_PSQ 6984 struct ath_node *an; 6985 struct ath_vap *avp; 6986 struct ieee80211com *ic = ni->ni_ic; 6987 struct ath_softc *sc = ic->ic_softc; 6988 int tid; 6989 6990 /* Just paranoia */ 6991 if (ni == NULL) 6992 return; 6993 6994 /* 6995 * Unassociated (temporary node) station. 6996 */ 6997 if (ni->ni_associd == 0) 6998 return; 6999 7000 /* 7001 * We do have an active node, so let's begin looking into it. 7002 */ 7003 an = ATH_NODE(ni); 7004 avp = ATH_VAP(ni->ni_vap); 7005 7006 /* 7007 * For now, we just call the original ps-poll method. 7008 * Once we're ready to flip this on: 7009 * 7010 * + Set leak to 1, as no matter what we're going to have 7011 * to send a frame; 7012 * + Check the software queue and if there's something in it, 7013 * schedule the highest TID thas has traffic from this node. 7014 * Then make sure we schedule the software scheduler to 7015 * run so it picks up said frame. 7016 * 7017 * That way whatever happens, we'll at least send _a_ frame 7018 * to the given node. 7019 * 7020 * Again, yes, it's crappy QoS if the node has multiple 7021 * TIDs worth of traffic - but let's get it working first 7022 * before we optimise it. 7023 * 7024 * Also yes, there's definitely latency here - we're not 7025 * direct dispatching to the hardware in this path (and 7026 * we're likely being called from the packet receive path, 7027 * so going back into TX may be a little hairy!) but again 7028 * I'd like to get this working first before optimising 7029 * turn-around time. 7030 */ 7031 7032 ATH_TX_LOCK(sc); 7033 7034 /* 7035 * Legacy - we're called and the node isn't asleep. 7036 * Immediately punt. 7037 */ 7038 if (! an->an_is_powersave) { 7039 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7040 "%s: %6D: not in powersave?\n", 7041 __func__, 7042 ni->ni_macaddr, 7043 ":"); 7044 ATH_TX_UNLOCK(sc); 7045 avp->av_recv_pspoll(ni, m); 7046 return; 7047 } 7048 7049 /* 7050 * We're in powersave. 7051 * 7052 * Leak a frame. 7053 */ 7054 an->an_leak_count = 1; 7055 7056 /* 7057 * Now, if there's no frames in the node, just punt to 7058 * recv_pspoll. 7059 * 7060 * Don't bother checking if the TIM bit is set, we really 7061 * only care if there are any frames here! 7062 */ 7063 if (an->an_swq_depth == 0) { 7064 ATH_TX_UNLOCK(sc); 7065 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7066 "%s: %6D: SWQ empty; punting to net80211\n", 7067 __func__, 7068 ni->ni_macaddr, 7069 ":"); 7070 avp->av_recv_pspoll(ni, m); 7071 return; 7072 } 7073 7074 /* 7075 * Ok, let's schedule the highest TID that has traffic 7076 * and then schedule something. 7077 */ 7078 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 7079 struct ath_tid *atid = &an->an_tid[tid]; 7080 /* 7081 * No frames? Skip. 7082 */ 7083 if (atid->axq_depth == 0) 7084 continue; 7085 ath_tx_tid_sched(sc, atid); 7086 /* 7087 * XXX we could do a direct call to the TXQ 7088 * scheduler code here to optimise latency 7089 * at the expense of a REALLY deep callstack. 7090 */ 7091 ATH_TX_UNLOCK(sc); 7092 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 7093 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7094 "%s: %6D: leaking frame to TID %d\n", 7095 __func__, 7096 ni->ni_macaddr, 7097 ":", 7098 tid); 7099 return; 7100 } 7101 7102 ATH_TX_UNLOCK(sc); 7103 7104 /* 7105 * XXX nothing in the TIDs at this point? Eek. 7106 */ 7107 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7108 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 7109 __func__, 7110 ni->ni_macaddr, 7111 ":"); 7112 avp->av_recv_pspoll(ni, m); 7113 #else 7114 avp->av_recv_pspoll(ni, m); 7115 #endif /* ATH_SW_PSQ */ 7116 } 7117 7118 MODULE_VERSION(ath_main, 1); 7119 MODULE_DEPEND(ath_main, wlan, 1, 1, 1); /* 802.11 media layer */ 7120 MODULE_DEPEND(ath_main, ath_rate, 1, 1, 1); 7121 MODULE_DEPEND(ath_main, ath_dfs, 1, 1, 1); 7122 MODULE_DEPEND(ath_main, ath_hal, 1, 1, 1); 7123 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ) 7124 MODULE_DEPEND(ath_main, alq, 1, 1, 1); 7125 #endif 7126