1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_rx_edma.h> 113 #include <dev/ath/if_ath_tx_edma.h> 114 #include <dev/ath/if_ath_beacon.h> 115 #include <dev/ath/if_ath_btcoex.h> 116 #include <dev/ath/if_ath_spectral.h> 117 #include <dev/ath/if_ath_lna_div.h> 118 #include <dev/ath/if_athdfs.h> 119 120 #ifdef ATH_TX99_DIAG 121 #include <dev/ath/ath_tx99/ath_tx99.h> 122 #endif 123 124 #ifdef ATH_DEBUG_ALQ 125 #include <dev/ath/if_ath_alq.h> 126 #endif 127 128 /* 129 * Only enable this if you're working on PS-POLL support. 130 */ 131 #define ATH_SW_PSQ 132 133 /* 134 * ATH_BCBUF determines the number of vap's that can transmit 135 * beacons and also (currently) the number of vap's that can 136 * have unique mac addresses/bssid. When staggering beacons 137 * 4 is probably a good max as otherwise the beacons become 138 * very closely spaced and there is limited time for cab q traffic 139 * to go out. You can burst beacons instead but that is not good 140 * for stations in power save and at some point you really want 141 * another radio (and channel). 142 * 143 * The limit on the number of mac addresses is tied to our use of 144 * the U/L bit and tracking addresses in a byte; it would be 145 * worthwhile to allow more for applications like proxy sta. 146 */ 147 CTASSERT(ATH_BCBUF <= 8); 148 149 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 150 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 151 const uint8_t [IEEE80211_ADDR_LEN], 152 const uint8_t [IEEE80211_ADDR_LEN]); 153 static void ath_vap_delete(struct ieee80211vap *); 154 static void ath_init(void *); 155 static void ath_stop_locked(struct ifnet *); 156 static void ath_stop(struct ifnet *); 157 static int ath_reset_vap(struct ieee80211vap *, u_long); 158 static int ath_transmit(struct ifnet *ifp, struct mbuf *m); 159 static void ath_qflush(struct ifnet *ifp); 160 static int ath_media_change(struct ifnet *); 161 static void ath_watchdog(void *); 162 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 163 static void ath_fatal_proc(void *, int); 164 static void ath_bmiss_vap(struct ieee80211vap *); 165 static void ath_bmiss_proc(void *, int); 166 static void ath_key_update_begin(struct ieee80211vap *); 167 static void ath_key_update_end(struct ieee80211vap *); 168 static void ath_update_mcast_hw(struct ath_softc *); 169 static void ath_update_mcast(struct ifnet *); 170 static void ath_update_promisc(struct ifnet *); 171 static void ath_updateslot(struct ifnet *); 172 static void ath_bstuck_proc(void *, int); 173 static void ath_reset_proc(void *, int); 174 static int ath_desc_alloc(struct ath_softc *); 175 static void ath_desc_free(struct ath_softc *); 176 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 177 const uint8_t [IEEE80211_ADDR_LEN]); 178 static void ath_node_cleanup(struct ieee80211_node *); 179 static void ath_node_free(struct ieee80211_node *); 180 static void ath_node_getsignal(const struct ieee80211_node *, 181 int8_t *, int8_t *); 182 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 183 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 184 static int ath_tx_setup(struct ath_softc *, int, int); 185 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 186 static void ath_tx_cleanup(struct ath_softc *); 187 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 188 int dosched); 189 static void ath_tx_proc_q0(void *, int); 190 static void ath_tx_proc_q0123(void *, int); 191 static void ath_tx_proc(void *, int); 192 static void ath_txq_sched_tasklet(void *, int); 193 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 194 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 195 static void ath_scan_start(struct ieee80211com *); 196 static void ath_scan_end(struct ieee80211com *); 197 static void ath_set_channel(struct ieee80211com *); 198 #ifdef ATH_ENABLE_11N 199 static void ath_update_chw(struct ieee80211com *); 200 #endif /* ATH_ENABLE_11N */ 201 static void ath_calibrate(void *); 202 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 203 static void ath_setup_stationkey(struct ieee80211_node *); 204 static void ath_newassoc(struct ieee80211_node *, int); 205 static int ath_setregdomain(struct ieee80211com *, 206 struct ieee80211_regdomain *, int, 207 struct ieee80211_channel []); 208 static void ath_getradiocaps(struct ieee80211com *, int, int *, 209 struct ieee80211_channel []); 210 static int ath_getchannels(struct ath_softc *); 211 212 static int ath_rate_setup(struct ath_softc *, u_int mode); 213 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 214 215 static void ath_announce(struct ath_softc *); 216 217 static void ath_dfs_tasklet(void *, int); 218 static void ath_node_powersave(struct ieee80211_node *, int); 219 static int ath_node_set_tim(struct ieee80211_node *, int); 220 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 221 222 #ifdef IEEE80211_SUPPORT_TDMA 223 #include <dev/ath/if_ath_tdma.h> 224 #endif 225 226 SYSCTL_DECL(_hw_ath); 227 228 /* XXX validate sysctl values */ 229 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 230 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 231 0, "long chip calibration interval (secs)"); 232 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 233 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 234 0, "short chip calibration interval (msecs)"); 235 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 236 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 237 0, "reset chip calibration results (secs)"); 238 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 239 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 240 0, "ANI calibration (msecs)"); 241 242 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 243 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 244 0, "rx buffers allocated"); 245 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 246 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 247 0, "tx buffers allocated"); 248 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 249 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 250 0, "tx (mgmt) buffers allocated"); 251 252 int ath_bstuck_threshold = 4; /* max missed beacons */ 253 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 254 0, "max missed beacon xmits before chip reset"); 255 256 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 257 258 void 259 ath_legacy_attach_comp_func(struct ath_softc *sc) 260 { 261 262 /* 263 * Special case certain configurations. Note the 264 * CAB queue is handled by these specially so don't 265 * include them when checking the txq setup mask. 266 */ 267 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 268 case 0x01: 269 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 270 break; 271 case 0x0f: 272 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 273 break; 274 default: 275 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 276 break; 277 } 278 } 279 280 /* 281 * Set the target power mode. 282 * 283 * If this is called during a point in time where 284 * the hardware is being programmed elsewhere, it will 285 * simply store it away and update it when all current 286 * uses of the hardware are completed. 287 */ 288 void 289 _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line) 290 { 291 ATH_LOCK_ASSERT(sc); 292 293 sc->sc_target_powerstate = power_state; 294 295 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 296 __func__, 297 file, 298 line, 299 power_state, 300 sc->sc_powersave_refcnt); 301 302 if (sc->sc_powersave_refcnt == 0 && 303 power_state != sc->sc_cur_powerstate) { 304 sc->sc_cur_powerstate = power_state; 305 ath_hal_setpower(sc->sc_ah, power_state); 306 307 /* 308 * If the NIC is force-awake, then set the 309 * self-gen frame state appropriately. 310 * 311 * If the nic is in network sleep or full-sleep, 312 * we let the above call leave the self-gen 313 * state as "sleep". 314 */ 315 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 316 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 317 ath_hal_setselfgenpower(sc->sc_ah, 318 sc->sc_target_selfgen_state); 319 } 320 } 321 } 322 323 /* 324 * Set the current self-generated frames state. 325 * 326 * This is separate from the target power mode. The chip may be 327 * awake but the desired state is "sleep", so frames sent to the 328 * destination has PWRMGT=1 in the 802.11 header. The NIC also 329 * needs to know to set PWRMGT=1 in self-generated frames. 330 */ 331 void 332 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 333 { 334 335 ATH_LOCK_ASSERT(sc); 336 337 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 338 __func__, 339 file, 340 line, 341 power_state, 342 sc->sc_target_selfgen_state); 343 344 sc->sc_target_selfgen_state = power_state; 345 346 /* 347 * If the NIC is force-awake, then set the power state. 348 * Network-state and full-sleep will already transition it to 349 * mark self-gen frames as sleeping - and we can't 350 * guarantee the NIC is awake to program the self-gen frame 351 * setting anyway. 352 */ 353 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 354 ath_hal_setselfgenpower(sc->sc_ah, power_state); 355 } 356 } 357 358 /* 359 * Set the hardware power mode and take a reference. 360 * 361 * This doesn't update the target power mode in the driver; 362 * it just updates the hardware power state. 363 * 364 * XXX it should only ever force the hardware awake; it should 365 * never be called to set it asleep. 366 */ 367 void 368 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 369 { 370 ATH_LOCK_ASSERT(sc); 371 372 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 373 __func__, 374 file, 375 line, 376 power_state, 377 sc->sc_powersave_refcnt); 378 379 sc->sc_powersave_refcnt++; 380 381 if (power_state != sc->sc_cur_powerstate) { 382 ath_hal_setpower(sc->sc_ah, power_state); 383 sc->sc_cur_powerstate = power_state; 384 385 /* 386 * Adjust the self-gen powerstate if appropriate. 387 */ 388 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 389 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 390 ath_hal_setselfgenpower(sc->sc_ah, 391 sc->sc_target_selfgen_state); 392 } 393 394 } 395 } 396 397 /* 398 * Restore the power save mode to what it once was. 399 * 400 * This will decrement the reference counter and once it hits 401 * zero, it'll restore the powersave state. 402 */ 403 void 404 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 405 { 406 407 ATH_LOCK_ASSERT(sc); 408 409 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 410 __func__, 411 file, 412 line, 413 sc->sc_powersave_refcnt, 414 sc->sc_target_powerstate); 415 416 if (sc->sc_powersave_refcnt == 0) 417 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 418 else 419 sc->sc_powersave_refcnt--; 420 421 if (sc->sc_powersave_refcnt == 0 && 422 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 423 sc->sc_cur_powerstate = sc->sc_target_powerstate; 424 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 425 } 426 427 /* 428 * Adjust the self-gen powerstate if appropriate. 429 */ 430 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 431 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 432 ath_hal_setselfgenpower(sc->sc_ah, 433 sc->sc_target_selfgen_state); 434 } 435 436 } 437 438 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 439 #define HAL_MODE_HT40 \ 440 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 441 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 442 int 443 ath_attach(u_int16_t devid, struct ath_softc *sc) 444 { 445 struct ifnet *ifp; 446 struct ieee80211com *ic; 447 struct ath_hal *ah = NULL; 448 HAL_STATUS status; 449 int error = 0, i; 450 u_int wmodes; 451 uint8_t macaddr[IEEE80211_ADDR_LEN]; 452 int rx_chainmask, tx_chainmask; 453 454 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 455 456 CURVNET_SET(vnet0); 457 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 458 if (ifp == NULL) { 459 device_printf(sc->sc_dev, "can not if_alloc()\n"); 460 error = ENOSPC; 461 CURVNET_RESTORE(); 462 goto bad; 463 } 464 ic = ifp->if_l2com; 465 466 /* set these up early for if_printf use */ 467 if_initname(ifp, device_get_name(sc->sc_dev), 468 device_get_unit(sc->sc_dev)); 469 CURVNET_RESTORE(); 470 471 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 472 sc->sc_eepromdata, &status); 473 if (ah == NULL) { 474 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 475 status); 476 error = ENXIO; 477 goto bad; 478 } 479 sc->sc_ah = ah; 480 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 481 #ifdef ATH_DEBUG 482 sc->sc_debug = ath_debug; 483 #endif 484 485 /* 486 * Setup the DMA/EDMA functions based on the current 487 * hardware support. 488 * 489 * This is required before the descriptors are allocated. 490 */ 491 if (ath_hal_hasedma(sc->sc_ah)) { 492 sc->sc_isedma = 1; 493 ath_recv_setup_edma(sc); 494 ath_xmit_setup_edma(sc); 495 } else { 496 ath_recv_setup_legacy(sc); 497 ath_xmit_setup_legacy(sc); 498 } 499 500 if (ath_hal_hasmybeacon(sc->sc_ah)) { 501 sc->sc_do_mybeacon = 1; 502 } 503 504 /* 505 * Check if the MAC has multi-rate retry support. 506 * We do this by trying to setup a fake extended 507 * descriptor. MAC's that don't have support will 508 * return false w/o doing anything. MAC's that do 509 * support it will return true w/o doing anything. 510 */ 511 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 512 513 /* 514 * Check if the device has hardware counters for PHY 515 * errors. If so we need to enable the MIB interrupt 516 * so we can act on stat triggers. 517 */ 518 if (ath_hal_hwphycounters(ah)) 519 sc->sc_needmib = 1; 520 521 /* 522 * Get the hardware key cache size. 523 */ 524 sc->sc_keymax = ath_hal_keycachesize(ah); 525 if (sc->sc_keymax > ATH_KEYMAX) { 526 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 527 ATH_KEYMAX, sc->sc_keymax); 528 sc->sc_keymax = ATH_KEYMAX; 529 } 530 /* 531 * Reset the key cache since some parts do not 532 * reset the contents on initial power up. 533 */ 534 for (i = 0; i < sc->sc_keymax; i++) 535 ath_hal_keyreset(ah, i); 536 537 /* 538 * Collect the default channel list. 539 */ 540 error = ath_getchannels(sc); 541 if (error != 0) 542 goto bad; 543 544 /* 545 * Setup rate tables for all potential media types. 546 */ 547 ath_rate_setup(sc, IEEE80211_MODE_11A); 548 ath_rate_setup(sc, IEEE80211_MODE_11B); 549 ath_rate_setup(sc, IEEE80211_MODE_11G); 550 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 551 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 552 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 553 ath_rate_setup(sc, IEEE80211_MODE_11NA); 554 ath_rate_setup(sc, IEEE80211_MODE_11NG); 555 ath_rate_setup(sc, IEEE80211_MODE_HALF); 556 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 557 558 /* NB: setup here so ath_rate_update is happy */ 559 ath_setcurmode(sc, IEEE80211_MODE_11A); 560 561 /* 562 * Allocate TX descriptors and populate the lists. 563 */ 564 error = ath_desc_alloc(sc); 565 if (error != 0) { 566 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 567 error); 568 goto bad; 569 } 570 error = ath_txdma_setup(sc); 571 if (error != 0) { 572 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 573 error); 574 goto bad; 575 } 576 577 /* 578 * Allocate RX descriptors and populate the lists. 579 */ 580 error = ath_rxdma_setup(sc); 581 if (error != 0) { 582 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 583 error); 584 goto bad; 585 } 586 587 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 588 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 589 590 ATH_TXBUF_LOCK_INIT(sc); 591 592 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 593 taskqueue_thread_enqueue, &sc->sc_tq); 594 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 595 "%s taskq", ifp->if_xname); 596 597 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 598 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 599 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 600 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 601 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 602 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 603 604 /* 605 * Allocate hardware transmit queues: one queue for 606 * beacon frames and one data queue for each QoS 607 * priority. Note that the hal handles resetting 608 * these queues at the needed time. 609 * 610 * XXX PS-Poll 611 */ 612 sc->sc_bhalq = ath_beaconq_setup(sc); 613 if (sc->sc_bhalq == (u_int) -1) { 614 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 615 error = EIO; 616 goto bad2; 617 } 618 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 619 if (sc->sc_cabq == NULL) { 620 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 621 error = EIO; 622 goto bad2; 623 } 624 /* NB: insure BK queue is the lowest priority h/w queue */ 625 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 626 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 627 ieee80211_wme_acnames[WME_AC_BK]); 628 error = EIO; 629 goto bad2; 630 } 631 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 632 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 633 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 634 /* 635 * Not enough hardware tx queues to properly do WME; 636 * just punt and assign them all to the same h/w queue. 637 * We could do a better job of this if, for example, 638 * we allocate queues when we switch from station to 639 * AP mode. 640 */ 641 if (sc->sc_ac2q[WME_AC_VI] != NULL) 642 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 643 if (sc->sc_ac2q[WME_AC_BE] != NULL) 644 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 645 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 646 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 647 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 648 } 649 650 /* 651 * Attach the TX completion function. 652 * 653 * The non-EDMA chips may have some special case optimisations; 654 * this method gives everyone a chance to attach cleanly. 655 */ 656 sc->sc_tx.xmit_attach_comp_func(sc); 657 658 /* 659 * Setup rate control. Some rate control modules 660 * call back to change the anntena state so expose 661 * the necessary entry points. 662 * XXX maybe belongs in struct ath_ratectrl? 663 */ 664 sc->sc_setdefantenna = ath_setdefantenna; 665 sc->sc_rc = ath_rate_attach(sc); 666 if (sc->sc_rc == NULL) { 667 error = EIO; 668 goto bad2; 669 } 670 671 /* Attach DFS module */ 672 if (! ath_dfs_attach(sc)) { 673 device_printf(sc->sc_dev, 674 "%s: unable to attach DFS\n", __func__); 675 error = EIO; 676 goto bad2; 677 } 678 679 /* Attach spectral module */ 680 if (ath_spectral_attach(sc) < 0) { 681 device_printf(sc->sc_dev, 682 "%s: unable to attach spectral\n", __func__); 683 error = EIO; 684 goto bad2; 685 } 686 687 /* Attach bluetooth coexistence module */ 688 if (ath_btcoex_attach(sc) < 0) { 689 device_printf(sc->sc_dev, 690 "%s: unable to attach bluetooth coexistence\n", __func__); 691 error = EIO; 692 goto bad2; 693 } 694 695 /* Attach LNA diversity module */ 696 if (ath_lna_div_attach(sc) < 0) { 697 device_printf(sc->sc_dev, 698 "%s: unable to attach LNA diversity\n", __func__); 699 error = EIO; 700 goto bad2; 701 } 702 703 /* Start DFS processing tasklet */ 704 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 705 706 /* Configure LED state */ 707 sc->sc_blinking = 0; 708 sc->sc_ledstate = 1; 709 sc->sc_ledon = 0; /* low true */ 710 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 711 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 712 713 /* 714 * Don't setup hardware-based blinking. 715 * 716 * Although some NICs may have this configured in the 717 * default reset register values, the user may wish 718 * to alter which pins have which function. 719 * 720 * The reference driver attaches the MAC network LED to GPIO1 and 721 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 722 * NIC has these reversed. 723 */ 724 sc->sc_hardled = (1 == 0); 725 sc->sc_led_net_pin = -1; 726 sc->sc_led_pwr_pin = -1; 727 /* 728 * Auto-enable soft led processing for IBM cards and for 729 * 5211 minipci cards. Users can also manually enable/disable 730 * support with a sysctl. 731 */ 732 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 733 ath_led_config(sc); 734 ath_hal_setledstate(ah, HAL_LED_INIT); 735 736 ifp->if_softc = sc; 737 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 738 ifp->if_transmit = ath_transmit; 739 ifp->if_qflush = ath_qflush; 740 ifp->if_ioctl = ath_ioctl; 741 ifp->if_init = ath_init; 742 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 743 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 744 IFQ_SET_READY(&ifp->if_snd); 745 746 ic->ic_ifp = ifp; 747 /* XXX not right but it's not used anywhere important */ 748 ic->ic_phytype = IEEE80211_T_OFDM; 749 ic->ic_opmode = IEEE80211_M_STA; 750 ic->ic_caps = 751 IEEE80211_C_STA /* station mode */ 752 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 753 | IEEE80211_C_HOSTAP /* hostap mode */ 754 | IEEE80211_C_MONITOR /* monitor mode */ 755 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 756 | IEEE80211_C_WDS /* 4-address traffic works */ 757 | IEEE80211_C_MBSS /* mesh point link mode */ 758 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 759 | IEEE80211_C_SHSLOT /* short slot time supported */ 760 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 761 #ifndef ATH_ENABLE_11N 762 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 763 #endif 764 | IEEE80211_C_TXFRAG /* handle tx frags */ 765 #ifdef ATH_ENABLE_DFS 766 | IEEE80211_C_DFS /* Enable radar detection */ 767 #endif 768 | IEEE80211_C_PMGT /* Station side power mgmt */ 769 | IEEE80211_C_SWSLEEP 770 ; 771 /* 772 * Query the hal to figure out h/w crypto support. 773 */ 774 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 775 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 776 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 777 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 778 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 779 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 780 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 781 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 782 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 783 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 784 /* 785 * Check if h/w does the MIC and/or whether the 786 * separate key cache entries are required to 787 * handle both tx+rx MIC keys. 788 */ 789 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 790 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 791 /* 792 * If the h/w supports storing tx+rx MIC keys 793 * in one cache slot automatically enable use. 794 */ 795 if (ath_hal_hastkipsplit(ah) || 796 !ath_hal_settkipsplit(ah, AH_FALSE)) 797 sc->sc_splitmic = 1; 798 /* 799 * If the h/w can do TKIP MIC together with WME then 800 * we use it; otherwise we force the MIC to be done 801 * in software by the net80211 layer. 802 */ 803 if (ath_hal_haswmetkipmic(ah)) 804 sc->sc_wmetkipmic = 1; 805 } 806 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 807 /* 808 * Check for multicast key search support. 809 */ 810 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 811 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 812 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 813 } 814 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 815 /* 816 * Mark key cache slots associated with global keys 817 * as in use. If we knew TKIP was not to be used we 818 * could leave the +32, +64, and +32+64 slots free. 819 */ 820 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 821 setbit(sc->sc_keymap, i); 822 setbit(sc->sc_keymap, i+64); 823 if (sc->sc_splitmic) { 824 setbit(sc->sc_keymap, i+32); 825 setbit(sc->sc_keymap, i+32+64); 826 } 827 } 828 /* 829 * TPC support can be done either with a global cap or 830 * per-packet support. The latter is not available on 831 * all parts. We're a bit pedantic here as all parts 832 * support a global cap. 833 */ 834 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 835 ic->ic_caps |= IEEE80211_C_TXPMGT; 836 837 /* 838 * Mark WME capability only if we have sufficient 839 * hardware queues to do proper priority scheduling. 840 */ 841 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 842 ic->ic_caps |= IEEE80211_C_WME; 843 /* 844 * Check for misc other capabilities. 845 */ 846 if (ath_hal_hasbursting(ah)) 847 ic->ic_caps |= IEEE80211_C_BURST; 848 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 849 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 850 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 851 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 852 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 853 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 854 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 855 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 856 857 if (ath_hal_hasfastframes(ah)) 858 ic->ic_caps |= IEEE80211_C_FF; 859 wmodes = ath_hal_getwirelessmodes(ah); 860 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 861 ic->ic_caps |= IEEE80211_C_TURBOP; 862 #ifdef IEEE80211_SUPPORT_TDMA 863 if (ath_hal_macversion(ah) > 0x78) { 864 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 865 ic->ic_tdma_update = ath_tdma_update; 866 } 867 #endif 868 869 /* 870 * TODO: enforce that at least this many frames are available 871 * in the txbuf list before allowing data frames (raw or 872 * otherwise) to be transmitted. 873 */ 874 sc->sc_txq_data_minfree = 10; 875 /* 876 * Leave this as default to maintain legacy behaviour. 877 * Shortening the cabq/mcastq may end up causing some 878 * undesirable behaviour. 879 */ 880 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 881 882 /* 883 * How deep can the node software TX queue get whilst it's asleep. 884 */ 885 sc->sc_txq_node_psq_maxdepth = 16; 886 887 /* 888 * Default the maximum queue depth for a given node 889 * to 1/4'th the TX buffers, or 64, whichever 890 * is larger. 891 */ 892 sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4); 893 894 /* Enable CABQ by default */ 895 sc->sc_cabq_enable = 1; 896 897 /* 898 * Allow the TX and RX chainmasks to be overridden by 899 * environment variables and/or device.hints. 900 * 901 * This must be done early - before the hardware is 902 * calibrated or before the 802.11n stream calculation 903 * is done. 904 */ 905 if (resource_int_value(device_get_name(sc->sc_dev), 906 device_get_unit(sc->sc_dev), "rx_chainmask", 907 &rx_chainmask) == 0) { 908 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 909 rx_chainmask); 910 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 911 } 912 if (resource_int_value(device_get_name(sc->sc_dev), 913 device_get_unit(sc->sc_dev), "tx_chainmask", 914 &tx_chainmask) == 0) { 915 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 916 tx_chainmask); 917 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 918 } 919 920 /* 921 * Query the TX/RX chainmask configuration. 922 * 923 * This is only relevant for 11n devices. 924 */ 925 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 926 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 927 928 /* 929 * Disable MRR with protected frames by default. 930 * Only 802.11n series NICs can handle this. 931 */ 932 sc->sc_mrrprot = 0; /* XXX should be a capability */ 933 934 /* 935 * Query the enterprise mode information the HAL. 936 */ 937 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 938 &sc->sc_ent_cfg) == HAL_OK) 939 sc->sc_use_ent = 1; 940 941 #ifdef ATH_ENABLE_11N 942 /* 943 * Query HT capabilities 944 */ 945 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 946 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 947 uint32_t rxs, txs; 948 949 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 950 951 sc->sc_mrrprot = 1; /* XXX should be a capability */ 952 953 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 954 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 955 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 956 | IEEE80211_HTCAP_MAXAMSDU_3839 957 /* max A-MSDU length */ 958 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 959 ; 960 961 /* 962 * Enable short-GI for HT20 only if the hardware 963 * advertises support. 964 * Notably, anything earlier than the AR9287 doesn't. 965 */ 966 if ((ath_hal_getcapability(ah, 967 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 968 (wmodes & HAL_MODE_HT20)) { 969 device_printf(sc->sc_dev, 970 "[HT] enabling short-GI in 20MHz mode\n"); 971 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 972 } 973 974 if (wmodes & HAL_MODE_HT40) 975 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 976 | IEEE80211_HTCAP_SHORTGI40; 977 978 /* 979 * TX/RX streams need to be taken into account when 980 * negotiating which MCS rates it'll receive and 981 * what MCS rates are available for TX. 982 */ 983 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 984 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 985 ic->ic_txstream = txs; 986 ic->ic_rxstream = rxs; 987 988 /* 989 * Setup TX and RX STBC based on what the HAL allows and 990 * the currently configured chainmask set. 991 * Ie - don't enable STBC TX if only one chain is enabled. 992 * STBC RX is fine on a single RX chain; it just won't 993 * provide any real benefit. 994 */ 995 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 996 NULL) == HAL_OK) { 997 sc->sc_rx_stbc = 1; 998 device_printf(sc->sc_dev, 999 "[HT] 1 stream STBC receive enabled\n"); 1000 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1001 } 1002 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1003 NULL) == HAL_OK) { 1004 sc->sc_tx_stbc = 1; 1005 device_printf(sc->sc_dev, 1006 "[HT] 1 stream STBC transmit enabled\n"); 1007 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1008 } 1009 1010 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1011 &sc->sc_rts_aggr_limit); 1012 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1013 device_printf(sc->sc_dev, 1014 "[HT] RTS aggregates limited to %d KiB\n", 1015 sc->sc_rts_aggr_limit / 1024); 1016 1017 device_printf(sc->sc_dev, 1018 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1019 } 1020 #endif 1021 1022 /* 1023 * Initial aggregation settings. 1024 */ 1025 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1026 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1027 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1028 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1029 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1030 sc->sc_delim_min_pad = 0; 1031 1032 /* 1033 * Check if the hardware requires PCI register serialisation. 1034 * Some of the Owl based MACs require this. 1035 */ 1036 if (mp_ncpus > 1 && 1037 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1038 0, NULL) == HAL_OK) { 1039 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1040 device_printf(sc->sc_dev, 1041 "Enabling register serialisation\n"); 1042 } 1043 1044 /* 1045 * Initialise the deferred completed RX buffer list. 1046 */ 1047 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1048 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1049 1050 /* 1051 * Indicate we need the 802.11 header padded to a 1052 * 32-bit boundary for 4-address and QoS frames. 1053 */ 1054 ic->ic_flags |= IEEE80211_F_DATAPAD; 1055 1056 /* 1057 * Query the hal about antenna support. 1058 */ 1059 sc->sc_defant = ath_hal_getdefantenna(ah); 1060 1061 /* 1062 * Not all chips have the VEOL support we want to 1063 * use with IBSS beacons; check here for it. 1064 */ 1065 sc->sc_hasveol = ath_hal_hasveol(ah); 1066 1067 /* get mac address from hardware */ 1068 ath_hal_getmac(ah, macaddr); 1069 if (sc->sc_hasbmask) 1070 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1071 1072 /* NB: used to size node table key mapping array */ 1073 ic->ic_max_keyix = sc->sc_keymax; 1074 /* call MI attach routine. */ 1075 ieee80211_ifattach(ic, macaddr); 1076 ic->ic_setregdomain = ath_setregdomain; 1077 ic->ic_getradiocaps = ath_getradiocaps; 1078 sc->sc_opmode = HAL_M_STA; 1079 1080 /* override default methods */ 1081 ic->ic_newassoc = ath_newassoc; 1082 ic->ic_updateslot = ath_updateslot; 1083 ic->ic_wme.wme_update = ath_wme_update; 1084 ic->ic_vap_create = ath_vap_create; 1085 ic->ic_vap_delete = ath_vap_delete; 1086 ic->ic_raw_xmit = ath_raw_xmit; 1087 ic->ic_update_mcast = ath_update_mcast; 1088 ic->ic_update_promisc = ath_update_promisc; 1089 ic->ic_node_alloc = ath_node_alloc; 1090 sc->sc_node_free = ic->ic_node_free; 1091 ic->ic_node_free = ath_node_free; 1092 sc->sc_node_cleanup = ic->ic_node_cleanup; 1093 ic->ic_node_cleanup = ath_node_cleanup; 1094 ic->ic_node_getsignal = ath_node_getsignal; 1095 ic->ic_scan_start = ath_scan_start; 1096 ic->ic_scan_end = ath_scan_end; 1097 ic->ic_set_channel = ath_set_channel; 1098 #ifdef ATH_ENABLE_11N 1099 /* 802.11n specific - but just override anyway */ 1100 sc->sc_addba_request = ic->ic_addba_request; 1101 sc->sc_addba_response = ic->ic_addba_response; 1102 sc->sc_addba_stop = ic->ic_addba_stop; 1103 sc->sc_bar_response = ic->ic_bar_response; 1104 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1105 1106 ic->ic_addba_request = ath_addba_request; 1107 ic->ic_addba_response = ath_addba_response; 1108 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1109 ic->ic_addba_stop = ath_addba_stop; 1110 ic->ic_bar_response = ath_bar_response; 1111 1112 ic->ic_update_chw = ath_update_chw; 1113 #endif /* ATH_ENABLE_11N */ 1114 1115 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1116 /* 1117 * There's one vendor bitmap entry in the RX radiotap 1118 * header; make sure that's taken into account. 1119 */ 1120 ieee80211_radiotap_attachv(ic, 1121 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1122 ATH_TX_RADIOTAP_PRESENT, 1123 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1124 ATH_RX_RADIOTAP_PRESENT); 1125 #else 1126 /* 1127 * No vendor bitmap/extensions are present. 1128 */ 1129 ieee80211_radiotap_attach(ic, 1130 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1131 ATH_TX_RADIOTAP_PRESENT, 1132 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1133 ATH_RX_RADIOTAP_PRESENT); 1134 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1135 1136 /* 1137 * Setup the ALQ logging if required 1138 */ 1139 #ifdef ATH_DEBUG_ALQ 1140 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1141 if_ath_alq_setcfg(&sc->sc_alq, 1142 sc->sc_ah->ah_macVersion, 1143 sc->sc_ah->ah_macRev, 1144 sc->sc_ah->ah_phyRev, 1145 sc->sc_ah->ah_magic); 1146 #endif 1147 1148 /* 1149 * Setup dynamic sysctl's now that country code and 1150 * regdomain are available from the hal. 1151 */ 1152 ath_sysctlattach(sc); 1153 ath_sysctl_stats_attach(sc); 1154 ath_sysctl_hal_attach(sc); 1155 1156 if (bootverbose) 1157 ieee80211_announce(ic); 1158 ath_announce(sc); 1159 1160 /* 1161 * Put it to sleep for now. 1162 */ 1163 ATH_LOCK(sc); 1164 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 1165 ATH_UNLOCK(sc); 1166 1167 return 0; 1168 bad2: 1169 ath_tx_cleanup(sc); 1170 ath_desc_free(sc); 1171 ath_txdma_teardown(sc); 1172 ath_rxdma_teardown(sc); 1173 bad: 1174 if (ah) 1175 ath_hal_detach(ah); 1176 1177 /* 1178 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE.. 1179 */ 1180 if (ifp != NULL && ifp->if_vnet) { 1181 CURVNET_SET(ifp->if_vnet); 1182 if_free(ifp); 1183 CURVNET_RESTORE(); 1184 } else if (ifp != NULL) 1185 if_free(ifp); 1186 sc->sc_invalid = 1; 1187 return error; 1188 } 1189 1190 int 1191 ath_detach(struct ath_softc *sc) 1192 { 1193 struct ifnet *ifp = sc->sc_ifp; 1194 1195 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1196 __func__, ifp->if_flags); 1197 1198 /* 1199 * NB: the order of these is important: 1200 * o stop the chip so no more interrupts will fire 1201 * o call the 802.11 layer before detaching the hal to 1202 * insure callbacks into the driver to delete global 1203 * key cache entries can be handled 1204 * o free the taskqueue which drains any pending tasks 1205 * o reclaim the tx queue data structures after calling 1206 * the 802.11 layer as we'll get called back to reclaim 1207 * node state and potentially want to use them 1208 * o to cleanup the tx queues the hal is called, so detach 1209 * it last 1210 * Other than that, it's straightforward... 1211 */ 1212 1213 /* 1214 * XXX Wake the hardware up first. ath_stop() will still 1215 * wake it up first, but I'd rather do it here just to 1216 * ensure it's awake. 1217 */ 1218 ATH_LOCK(sc); 1219 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1220 ath_power_setpower(sc, HAL_PM_AWAKE); 1221 ATH_UNLOCK(sc); 1222 1223 /* 1224 * Stop things cleanly. 1225 */ 1226 ath_stop(ifp); 1227 1228 ieee80211_ifdetach(ifp->if_l2com); 1229 taskqueue_free(sc->sc_tq); 1230 #ifdef ATH_TX99_DIAG 1231 if (sc->sc_tx99 != NULL) 1232 sc->sc_tx99->detach(sc->sc_tx99); 1233 #endif 1234 ath_rate_detach(sc->sc_rc); 1235 #ifdef ATH_DEBUG_ALQ 1236 if_ath_alq_tidyup(&sc->sc_alq); 1237 #endif 1238 ath_lna_div_detach(sc); 1239 ath_btcoex_detach(sc); 1240 ath_spectral_detach(sc); 1241 ath_dfs_detach(sc); 1242 ath_desc_free(sc); 1243 ath_txdma_teardown(sc); 1244 ath_rxdma_teardown(sc); 1245 ath_tx_cleanup(sc); 1246 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1247 1248 CURVNET_SET(ifp->if_vnet); 1249 if_free(ifp); 1250 CURVNET_RESTORE(); 1251 1252 return 0; 1253 } 1254 1255 /* 1256 * MAC address handling for multiple BSS on the same radio. 1257 * The first vap uses the MAC address from the EEPROM. For 1258 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1259 * address and use the next six bits as an index. 1260 */ 1261 static void 1262 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1263 { 1264 int i; 1265 1266 if (clone && sc->sc_hasbmask) { 1267 /* NB: we only do this if h/w supports multiple bssid */ 1268 for (i = 0; i < 8; i++) 1269 if ((sc->sc_bssidmask & (1<<i)) == 0) 1270 break; 1271 if (i != 0) 1272 mac[0] |= (i << 2)|0x2; 1273 } else 1274 i = 0; 1275 sc->sc_bssidmask |= 1<<i; 1276 sc->sc_hwbssidmask[0] &= ~mac[0]; 1277 if (i == 0) 1278 sc->sc_nbssid0++; 1279 } 1280 1281 static void 1282 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1283 { 1284 int i = mac[0] >> 2; 1285 uint8_t mask; 1286 1287 if (i != 0 || --sc->sc_nbssid0 == 0) { 1288 sc->sc_bssidmask &= ~(1<<i); 1289 /* recalculate bssid mask from remaining addresses */ 1290 mask = 0xff; 1291 for (i = 1; i < 8; i++) 1292 if (sc->sc_bssidmask & (1<<i)) 1293 mask &= ~((i<<2)|0x2); 1294 sc->sc_hwbssidmask[0] |= mask; 1295 } 1296 } 1297 1298 /* 1299 * Assign a beacon xmit slot. We try to space out 1300 * assignments so when beacons are staggered the 1301 * traffic coming out of the cab q has maximal time 1302 * to go out before the next beacon is scheduled. 1303 */ 1304 static int 1305 assign_bslot(struct ath_softc *sc) 1306 { 1307 u_int slot, free; 1308 1309 free = 0; 1310 for (slot = 0; slot < ATH_BCBUF; slot++) 1311 if (sc->sc_bslot[slot] == NULL) { 1312 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1313 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1314 return slot; 1315 free = slot; 1316 /* NB: keep looking for a double slot */ 1317 } 1318 return free; 1319 } 1320 1321 static struct ieee80211vap * 1322 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1323 enum ieee80211_opmode opmode, int flags, 1324 const uint8_t bssid[IEEE80211_ADDR_LEN], 1325 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1326 { 1327 struct ath_softc *sc = ic->ic_ifp->if_softc; 1328 struct ath_vap *avp; 1329 struct ieee80211vap *vap; 1330 uint8_t mac[IEEE80211_ADDR_LEN]; 1331 int needbeacon, error; 1332 enum ieee80211_opmode ic_opmode; 1333 1334 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1335 M_80211_VAP, M_WAITOK | M_ZERO); 1336 needbeacon = 0; 1337 IEEE80211_ADDR_COPY(mac, mac0); 1338 1339 ATH_LOCK(sc); 1340 ic_opmode = opmode; /* default to opmode of new vap */ 1341 switch (opmode) { 1342 case IEEE80211_M_STA: 1343 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1344 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1345 goto bad; 1346 } 1347 if (sc->sc_nvaps) { 1348 /* 1349 * With multiple vaps we must fall back 1350 * to s/w beacon miss handling. 1351 */ 1352 flags |= IEEE80211_CLONE_NOBEACONS; 1353 } 1354 if (flags & IEEE80211_CLONE_NOBEACONS) { 1355 /* 1356 * Station mode w/o beacons are implemented w/ AP mode. 1357 */ 1358 ic_opmode = IEEE80211_M_HOSTAP; 1359 } 1360 break; 1361 case IEEE80211_M_IBSS: 1362 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1363 device_printf(sc->sc_dev, 1364 "only 1 ibss vap supported\n"); 1365 goto bad; 1366 } 1367 needbeacon = 1; 1368 break; 1369 case IEEE80211_M_AHDEMO: 1370 #ifdef IEEE80211_SUPPORT_TDMA 1371 if (flags & IEEE80211_CLONE_TDMA) { 1372 if (sc->sc_nvaps != 0) { 1373 device_printf(sc->sc_dev, 1374 "only 1 tdma vap supported\n"); 1375 goto bad; 1376 } 1377 needbeacon = 1; 1378 flags |= IEEE80211_CLONE_NOBEACONS; 1379 } 1380 /* fall thru... */ 1381 #endif 1382 case IEEE80211_M_MONITOR: 1383 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1384 /* 1385 * Adopt existing mode. Adding a monitor or ahdemo 1386 * vap to an existing configuration is of dubious 1387 * value but should be ok. 1388 */ 1389 /* XXX not right for monitor mode */ 1390 ic_opmode = ic->ic_opmode; 1391 } 1392 break; 1393 case IEEE80211_M_HOSTAP: 1394 case IEEE80211_M_MBSS: 1395 needbeacon = 1; 1396 break; 1397 case IEEE80211_M_WDS: 1398 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1399 device_printf(sc->sc_dev, 1400 "wds not supported in sta mode\n"); 1401 goto bad; 1402 } 1403 /* 1404 * Silently remove any request for a unique 1405 * bssid; WDS vap's always share the local 1406 * mac address. 1407 */ 1408 flags &= ~IEEE80211_CLONE_BSSID; 1409 if (sc->sc_nvaps == 0) 1410 ic_opmode = IEEE80211_M_HOSTAP; 1411 else 1412 ic_opmode = ic->ic_opmode; 1413 break; 1414 default: 1415 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1416 goto bad; 1417 } 1418 /* 1419 * Check that a beacon buffer is available; the code below assumes it. 1420 */ 1421 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1422 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1423 goto bad; 1424 } 1425 1426 /* STA, AHDEMO? */ 1427 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1428 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1429 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1430 } 1431 1432 vap = &avp->av_vap; 1433 /* XXX can't hold mutex across if_alloc */ 1434 ATH_UNLOCK(sc); 1435 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1436 bssid, mac); 1437 ATH_LOCK(sc); 1438 if (error != 0) { 1439 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1440 __func__, error); 1441 goto bad2; 1442 } 1443 1444 /* h/w crypto support */ 1445 vap->iv_key_alloc = ath_key_alloc; 1446 vap->iv_key_delete = ath_key_delete; 1447 vap->iv_key_set = ath_key_set; 1448 vap->iv_key_update_begin = ath_key_update_begin; 1449 vap->iv_key_update_end = ath_key_update_end; 1450 1451 /* override various methods */ 1452 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1453 vap->iv_recv_mgmt = ath_recv_mgmt; 1454 vap->iv_reset = ath_reset_vap; 1455 vap->iv_update_beacon = ath_beacon_update; 1456 avp->av_newstate = vap->iv_newstate; 1457 vap->iv_newstate = ath_newstate; 1458 avp->av_bmiss = vap->iv_bmiss; 1459 vap->iv_bmiss = ath_bmiss_vap; 1460 1461 avp->av_node_ps = vap->iv_node_ps; 1462 vap->iv_node_ps = ath_node_powersave; 1463 1464 avp->av_set_tim = vap->iv_set_tim; 1465 vap->iv_set_tim = ath_node_set_tim; 1466 1467 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1468 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1469 1470 /* Set default parameters */ 1471 1472 /* 1473 * Anything earlier than some AR9300 series MACs don't 1474 * support a smaller MPDU density. 1475 */ 1476 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1477 /* 1478 * All NICs can handle the maximum size, however 1479 * AR5416 based MACs can only TX aggregates w/ RTS 1480 * protection when the total aggregate size is <= 8k. 1481 * However, for now that's enforced by the TX path. 1482 */ 1483 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1484 1485 avp->av_bslot = -1; 1486 if (needbeacon) { 1487 /* 1488 * Allocate beacon state and setup the q for buffered 1489 * multicast frames. We know a beacon buffer is 1490 * available because we checked above. 1491 */ 1492 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1493 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1494 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1495 /* 1496 * Assign the vap to a beacon xmit slot. As above 1497 * this cannot fail to find a free one. 1498 */ 1499 avp->av_bslot = assign_bslot(sc); 1500 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1501 ("beacon slot %u not empty", avp->av_bslot)); 1502 sc->sc_bslot[avp->av_bslot] = vap; 1503 sc->sc_nbcnvaps++; 1504 } 1505 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1506 /* 1507 * Multple vaps are to transmit beacons and we 1508 * have h/w support for TSF adjusting; enable 1509 * use of staggered beacons. 1510 */ 1511 sc->sc_stagbeacons = 1; 1512 } 1513 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1514 } 1515 1516 ic->ic_opmode = ic_opmode; 1517 if (opmode != IEEE80211_M_WDS) { 1518 sc->sc_nvaps++; 1519 if (opmode == IEEE80211_M_STA) 1520 sc->sc_nstavaps++; 1521 if (opmode == IEEE80211_M_MBSS) 1522 sc->sc_nmeshvaps++; 1523 } 1524 switch (ic_opmode) { 1525 case IEEE80211_M_IBSS: 1526 sc->sc_opmode = HAL_M_IBSS; 1527 break; 1528 case IEEE80211_M_STA: 1529 sc->sc_opmode = HAL_M_STA; 1530 break; 1531 case IEEE80211_M_AHDEMO: 1532 #ifdef IEEE80211_SUPPORT_TDMA 1533 if (vap->iv_caps & IEEE80211_C_TDMA) { 1534 sc->sc_tdma = 1; 1535 /* NB: disable tsf adjust */ 1536 sc->sc_stagbeacons = 0; 1537 } 1538 /* 1539 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1540 * just ap mode. 1541 */ 1542 /* fall thru... */ 1543 #endif 1544 case IEEE80211_M_HOSTAP: 1545 case IEEE80211_M_MBSS: 1546 sc->sc_opmode = HAL_M_HOSTAP; 1547 break; 1548 case IEEE80211_M_MONITOR: 1549 sc->sc_opmode = HAL_M_MONITOR; 1550 break; 1551 default: 1552 /* XXX should not happen */ 1553 break; 1554 } 1555 if (sc->sc_hastsfadd) { 1556 /* 1557 * Configure whether or not TSF adjust should be done. 1558 */ 1559 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1560 } 1561 if (flags & IEEE80211_CLONE_NOBEACONS) { 1562 /* 1563 * Enable s/w beacon miss handling. 1564 */ 1565 sc->sc_swbmiss = 1; 1566 } 1567 ATH_UNLOCK(sc); 1568 1569 /* complete setup */ 1570 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1571 return vap; 1572 bad2: 1573 reclaim_address(sc, mac); 1574 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1575 bad: 1576 free(avp, M_80211_VAP); 1577 ATH_UNLOCK(sc); 1578 return NULL; 1579 } 1580 1581 static void 1582 ath_vap_delete(struct ieee80211vap *vap) 1583 { 1584 struct ieee80211com *ic = vap->iv_ic; 1585 struct ifnet *ifp = ic->ic_ifp; 1586 struct ath_softc *sc = ifp->if_softc; 1587 struct ath_hal *ah = sc->sc_ah; 1588 struct ath_vap *avp = ATH_VAP(vap); 1589 1590 ATH_LOCK(sc); 1591 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1592 ATH_UNLOCK(sc); 1593 1594 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1595 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1596 /* 1597 * Quiesce the hardware while we remove the vap. In 1598 * particular we need to reclaim all references to 1599 * the vap state by any frames pending on the tx queues. 1600 */ 1601 ath_hal_intrset(ah, 0); /* disable interrupts */ 1602 /* XXX Do all frames from all vaps/nodes need draining here? */ 1603 ath_stoprecv(sc, 1); /* stop recv side */ 1604 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1605 } 1606 1607 /* .. leave the hardware awake for now. */ 1608 1609 ieee80211_vap_detach(vap); 1610 1611 /* 1612 * XXX Danger Will Robinson! Danger! 1613 * 1614 * Because ieee80211_vap_detach() can queue a frame (the station 1615 * diassociate message?) after we've drained the TXQ and 1616 * flushed the software TXQ, we will end up with a frame queued 1617 * to a node whose vap is about to be freed. 1618 * 1619 * To work around this, flush the hardware/software again. 1620 * This may be racy - the ath task may be running and the packet 1621 * may be being scheduled between sw->hw txq. Tsk. 1622 * 1623 * TODO: figure out why a new node gets allocated somewhere around 1624 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1625 * call!) 1626 */ 1627 1628 ath_draintxq(sc, ATH_RESET_DEFAULT); 1629 1630 ATH_LOCK(sc); 1631 /* 1632 * Reclaim beacon state. Note this must be done before 1633 * the vap instance is reclaimed as we may have a reference 1634 * to it in the buffer for the beacon frame. 1635 */ 1636 if (avp->av_bcbuf != NULL) { 1637 if (avp->av_bslot != -1) { 1638 sc->sc_bslot[avp->av_bslot] = NULL; 1639 sc->sc_nbcnvaps--; 1640 } 1641 ath_beacon_return(sc, avp->av_bcbuf); 1642 avp->av_bcbuf = NULL; 1643 if (sc->sc_nbcnvaps == 0) { 1644 sc->sc_stagbeacons = 0; 1645 if (sc->sc_hastsfadd) 1646 ath_hal_settsfadjust(sc->sc_ah, 0); 1647 } 1648 /* 1649 * Reclaim any pending mcast frames for the vap. 1650 */ 1651 ath_tx_draintxq(sc, &avp->av_mcastq); 1652 } 1653 /* 1654 * Update bookkeeping. 1655 */ 1656 if (vap->iv_opmode == IEEE80211_M_STA) { 1657 sc->sc_nstavaps--; 1658 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1659 sc->sc_swbmiss = 0; 1660 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1661 vap->iv_opmode == IEEE80211_M_MBSS) { 1662 reclaim_address(sc, vap->iv_myaddr); 1663 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1664 if (vap->iv_opmode == IEEE80211_M_MBSS) 1665 sc->sc_nmeshvaps--; 1666 } 1667 if (vap->iv_opmode != IEEE80211_M_WDS) 1668 sc->sc_nvaps--; 1669 #ifdef IEEE80211_SUPPORT_TDMA 1670 /* TDMA operation ceases when the last vap is destroyed */ 1671 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1672 sc->sc_tdma = 0; 1673 sc->sc_swbmiss = 0; 1674 } 1675 #endif 1676 free(avp, M_80211_VAP); 1677 1678 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1679 /* 1680 * Restart rx+tx machines if still running (RUNNING will 1681 * be reset if we just destroyed the last vap). 1682 */ 1683 if (ath_startrecv(sc) != 0) 1684 if_printf(ifp, "%s: unable to restart recv logic\n", 1685 __func__); 1686 if (sc->sc_beacons) { /* restart beacons */ 1687 #ifdef IEEE80211_SUPPORT_TDMA 1688 if (sc->sc_tdma) 1689 ath_tdma_config(sc, NULL); 1690 else 1691 #endif 1692 ath_beacon_config(sc, NULL); 1693 } 1694 ath_hal_intrset(ah, sc->sc_imask); 1695 } 1696 1697 /* Ok, let the hardware asleep. */ 1698 ath_power_restore_power_state(sc); 1699 ATH_UNLOCK(sc); 1700 } 1701 1702 void 1703 ath_suspend(struct ath_softc *sc) 1704 { 1705 struct ifnet *ifp = sc->sc_ifp; 1706 struct ieee80211com *ic = ifp->if_l2com; 1707 1708 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1709 __func__, ifp->if_flags); 1710 1711 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1712 1713 ieee80211_suspend_all(ic); 1714 /* 1715 * NB: don't worry about putting the chip in low power 1716 * mode; pci will power off our socket on suspend and 1717 * CardBus detaches the device. 1718 * 1719 * XXX TODO: well, that's great, except for non-cardbus 1720 * devices! 1721 */ 1722 1723 /* 1724 * XXX This doesn't wait until all pending taskqueue 1725 * items and parallel transmit/receive/other threads 1726 * are running! 1727 */ 1728 ath_hal_intrset(sc->sc_ah, 0); 1729 taskqueue_block(sc->sc_tq); 1730 callout_drain(&sc->sc_cal_ch); 1731 1732 /* 1733 * XXX ensure sc_invalid is 1 1734 */ 1735 1736 /* Disable the PCIe PHY, complete with workarounds */ 1737 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1738 } 1739 1740 /* 1741 * Reset the key cache since some parts do not reset the 1742 * contents on resume. First we clear all entries, then 1743 * re-load keys that the 802.11 layer assumes are setup 1744 * in h/w. 1745 */ 1746 static void 1747 ath_reset_keycache(struct ath_softc *sc) 1748 { 1749 struct ifnet *ifp = sc->sc_ifp; 1750 struct ieee80211com *ic = ifp->if_l2com; 1751 struct ath_hal *ah = sc->sc_ah; 1752 int i; 1753 1754 ATH_LOCK(sc); 1755 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1756 for (i = 0; i < sc->sc_keymax; i++) 1757 ath_hal_keyreset(ah, i); 1758 ath_power_restore_power_state(sc); 1759 ATH_UNLOCK(sc); 1760 ieee80211_crypto_reload_keys(ic); 1761 } 1762 1763 /* 1764 * Fetch the current chainmask configuration based on the current 1765 * operating channel and options. 1766 */ 1767 static void 1768 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1769 { 1770 1771 /* 1772 * Set TX chainmask to the currently configured chainmask; 1773 * the TX chainmask depends upon the current operating mode. 1774 */ 1775 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1776 if (IEEE80211_IS_CHAN_HT(chan)) { 1777 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1778 } else { 1779 sc->sc_cur_txchainmask = 1; 1780 } 1781 1782 DPRINTF(sc, ATH_DEBUG_RESET, 1783 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1784 __func__, 1785 sc->sc_cur_txchainmask, 1786 sc->sc_cur_rxchainmask); 1787 } 1788 1789 void 1790 ath_resume(struct ath_softc *sc) 1791 { 1792 struct ifnet *ifp = sc->sc_ifp; 1793 struct ieee80211com *ic = ifp->if_l2com; 1794 struct ath_hal *ah = sc->sc_ah; 1795 HAL_STATUS status; 1796 1797 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1798 __func__, ifp->if_flags); 1799 1800 /* Re-enable PCIe, re-enable the PCIe bus */ 1801 ath_hal_enablepcie(ah, 0, 0); 1802 1803 /* 1804 * Must reset the chip before we reload the 1805 * keycache as we were powered down on suspend. 1806 */ 1807 ath_update_chainmasks(sc, 1808 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1809 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1810 sc->sc_cur_rxchainmask); 1811 1812 /* Ensure we set the current power state to on */ 1813 ATH_LOCK(sc); 1814 ath_power_setselfgen(sc, HAL_PM_AWAKE); 1815 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1816 ath_power_setpower(sc, HAL_PM_AWAKE); 1817 ATH_UNLOCK(sc); 1818 1819 ath_hal_reset(ah, sc->sc_opmode, 1820 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1821 AH_FALSE, &status); 1822 ath_reset_keycache(sc); 1823 1824 ATH_RX_LOCK(sc); 1825 sc->sc_rx_stopped = 1; 1826 sc->sc_rx_resetted = 1; 1827 ATH_RX_UNLOCK(sc); 1828 1829 /* Let DFS at it in case it's a DFS channel */ 1830 ath_dfs_radar_enable(sc, ic->ic_curchan); 1831 1832 /* Let spectral at in case spectral is enabled */ 1833 ath_spectral_enable(sc, ic->ic_curchan); 1834 1835 /* 1836 * Let bluetooth coexistence at in case it's needed for this channel 1837 */ 1838 ath_btcoex_enable(sc, ic->ic_curchan); 1839 1840 /* 1841 * If we're doing TDMA, enforce the TXOP limitation for chips that 1842 * support it. 1843 */ 1844 if (sc->sc_hasenforcetxop && sc->sc_tdma) 1845 ath_hal_setenforcetxop(sc->sc_ah, 1); 1846 else 1847 ath_hal_setenforcetxop(sc->sc_ah, 0); 1848 1849 /* Restore the LED configuration */ 1850 ath_led_config(sc); 1851 ath_hal_setledstate(ah, HAL_LED_INIT); 1852 1853 if (sc->sc_resume_up) 1854 ieee80211_resume_all(ic); 1855 1856 ATH_LOCK(sc); 1857 ath_power_restore_power_state(sc); 1858 ATH_UNLOCK(sc); 1859 1860 /* XXX beacons ? */ 1861 } 1862 1863 void 1864 ath_shutdown(struct ath_softc *sc) 1865 { 1866 struct ifnet *ifp = sc->sc_ifp; 1867 1868 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1869 __func__, ifp->if_flags); 1870 1871 ath_stop(ifp); 1872 /* NB: no point powering down chip as we're about to reboot */ 1873 } 1874 1875 /* 1876 * Interrupt handler. Most of the actual processing is deferred. 1877 */ 1878 void 1879 ath_intr(void *arg) 1880 { 1881 struct ath_softc *sc = arg; 1882 struct ifnet *ifp = sc->sc_ifp; 1883 struct ath_hal *ah = sc->sc_ah; 1884 HAL_INT status = 0; 1885 uint32_t txqs; 1886 1887 /* 1888 * If we're inside a reset path, just print a warning and 1889 * clear the ISR. The reset routine will finish it for us. 1890 */ 1891 ATH_PCU_LOCK(sc); 1892 if (sc->sc_inreset_cnt) { 1893 HAL_INT status; 1894 ath_hal_getisr(ah, &status); /* clear ISR */ 1895 ath_hal_intrset(ah, 0); /* disable further intr's */ 1896 DPRINTF(sc, ATH_DEBUG_ANY, 1897 "%s: in reset, ignoring: status=0x%x\n", 1898 __func__, status); 1899 ATH_PCU_UNLOCK(sc); 1900 return; 1901 } 1902 1903 if (sc->sc_invalid) { 1904 /* 1905 * The hardware is not ready/present, don't touch anything. 1906 * Note this can happen early on if the IRQ is shared. 1907 */ 1908 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1909 ATH_PCU_UNLOCK(sc); 1910 return; 1911 } 1912 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1913 ATH_PCU_UNLOCK(sc); 1914 return; 1915 } 1916 1917 ATH_LOCK(sc); 1918 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1919 ATH_UNLOCK(sc); 1920 1921 if ((ifp->if_flags & IFF_UP) == 0 || 1922 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1923 HAL_INT status; 1924 1925 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1926 __func__, ifp->if_flags); 1927 ath_hal_getisr(ah, &status); /* clear ISR */ 1928 ath_hal_intrset(ah, 0); /* disable further intr's */ 1929 ATH_PCU_UNLOCK(sc); 1930 1931 ATH_LOCK(sc); 1932 ath_power_restore_power_state(sc); 1933 ATH_UNLOCK(sc); 1934 return; 1935 } 1936 1937 /* 1938 * Figure out the reason(s) for the interrupt. Note 1939 * that the hal returns a pseudo-ISR that may include 1940 * bits we haven't explicitly enabled so we mask the 1941 * value to insure we only process bits we requested. 1942 */ 1943 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1944 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1945 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 1946 #ifdef ATH_DEBUG_ALQ 1947 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 1948 ah->ah_syncstate); 1949 #endif /* ATH_DEBUG_ALQ */ 1950 #ifdef ATH_KTR_INTR_DEBUG 1951 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 1952 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1953 ah->ah_intrstate[0], 1954 ah->ah_intrstate[1], 1955 ah->ah_intrstate[2], 1956 ah->ah_intrstate[3], 1957 ah->ah_intrstate[6]); 1958 #endif 1959 1960 /* Squirrel away SYNC interrupt debugging */ 1961 if (ah->ah_syncstate != 0) { 1962 int i; 1963 for (i = 0; i < 32; i++) 1964 if (ah->ah_syncstate & (i << i)) 1965 sc->sc_intr_stats.sync_intr[i]++; 1966 } 1967 1968 status &= sc->sc_imask; /* discard unasked for bits */ 1969 1970 /* Short-circuit un-handled interrupts */ 1971 if (status == 0x0) { 1972 ATH_PCU_UNLOCK(sc); 1973 1974 ATH_LOCK(sc); 1975 ath_power_restore_power_state(sc); 1976 ATH_UNLOCK(sc); 1977 1978 return; 1979 } 1980 1981 /* 1982 * Take a note that we're inside the interrupt handler, so 1983 * the reset routines know to wait. 1984 */ 1985 sc->sc_intr_cnt++; 1986 ATH_PCU_UNLOCK(sc); 1987 1988 /* 1989 * Handle the interrupt. We won't run concurrent with the reset 1990 * or channel change routines as they'll wait for sc_intr_cnt 1991 * to be 0 before continuing. 1992 */ 1993 if (status & HAL_INT_FATAL) { 1994 sc->sc_stats.ast_hardware++; 1995 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1996 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1997 } else { 1998 if (status & HAL_INT_SWBA) { 1999 /* 2000 * Software beacon alert--time to send a beacon. 2001 * Handle beacon transmission directly; deferring 2002 * this is too slow to meet timing constraints 2003 * under load. 2004 */ 2005 #ifdef IEEE80211_SUPPORT_TDMA 2006 if (sc->sc_tdma) { 2007 if (sc->sc_tdmaswba == 0) { 2008 struct ieee80211com *ic = ifp->if_l2com; 2009 struct ieee80211vap *vap = 2010 TAILQ_FIRST(&ic->ic_vaps); 2011 ath_tdma_beacon_send(sc, vap); 2012 sc->sc_tdmaswba = 2013 vap->iv_tdma->tdma_bintval; 2014 } else 2015 sc->sc_tdmaswba--; 2016 } else 2017 #endif 2018 { 2019 ath_beacon_proc(sc, 0); 2020 #ifdef IEEE80211_SUPPORT_SUPERG 2021 /* 2022 * Schedule the rx taskq in case there's no 2023 * traffic so any frames held on the staging 2024 * queue are aged and potentially flushed. 2025 */ 2026 sc->sc_rx.recv_sched(sc, 1); 2027 #endif 2028 } 2029 } 2030 if (status & HAL_INT_RXEOL) { 2031 int imask; 2032 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2033 if (! sc->sc_isedma) { 2034 ATH_PCU_LOCK(sc); 2035 /* 2036 * NB: the hardware should re-read the link when 2037 * RXE bit is written, but it doesn't work at 2038 * least on older hardware revs. 2039 */ 2040 sc->sc_stats.ast_rxeol++; 2041 /* 2042 * Disable RXEOL/RXORN - prevent an interrupt 2043 * storm until the PCU logic can be reset. 2044 * In case the interface is reset some other 2045 * way before "sc_kickpcu" is called, don't 2046 * modify sc_imask - that way if it is reset 2047 * by a call to ath_reset() somehow, the 2048 * interrupt mask will be correctly reprogrammed. 2049 */ 2050 imask = sc->sc_imask; 2051 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2052 ath_hal_intrset(ah, imask); 2053 /* 2054 * Only blank sc_rxlink if we've not yet kicked 2055 * the PCU. 2056 * 2057 * This isn't entirely correct - the correct solution 2058 * would be to have a PCU lock and engage that for 2059 * the duration of the PCU fiddling; which would include 2060 * running the RX process. Otherwise we could end up 2061 * messing up the RX descriptor chain and making the 2062 * RX desc list much shorter. 2063 */ 2064 if (! sc->sc_kickpcu) 2065 sc->sc_rxlink = NULL; 2066 sc->sc_kickpcu = 1; 2067 ATH_PCU_UNLOCK(sc); 2068 } 2069 /* 2070 * Enqueue an RX proc to handle whatever 2071 * is in the RX queue. 2072 * This will then kick the PCU if required. 2073 */ 2074 sc->sc_rx.recv_sched(sc, 1); 2075 } 2076 if (status & HAL_INT_TXURN) { 2077 sc->sc_stats.ast_txurn++; 2078 /* bump tx trigger level */ 2079 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2080 } 2081 /* 2082 * Handle both the legacy and RX EDMA interrupt bits. 2083 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2084 */ 2085 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2086 sc->sc_stats.ast_rx_intr++; 2087 sc->sc_rx.recv_sched(sc, 1); 2088 } 2089 if (status & HAL_INT_TX) { 2090 sc->sc_stats.ast_tx_intr++; 2091 /* 2092 * Grab all the currently set bits in the HAL txq bitmap 2093 * and blank them. This is the only place we should be 2094 * doing this. 2095 */ 2096 if (! sc->sc_isedma) { 2097 ATH_PCU_LOCK(sc); 2098 txqs = 0xffffffff; 2099 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2100 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2101 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2102 txqs, 2103 sc->sc_txq_active, 2104 sc->sc_txq_active | txqs); 2105 sc->sc_txq_active |= txqs; 2106 ATH_PCU_UNLOCK(sc); 2107 } 2108 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2109 } 2110 if (status & HAL_INT_BMISS) { 2111 sc->sc_stats.ast_bmiss++; 2112 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2113 } 2114 if (status & HAL_INT_GTT) 2115 sc->sc_stats.ast_tx_timeout++; 2116 if (status & HAL_INT_CST) 2117 sc->sc_stats.ast_tx_cst++; 2118 if (status & HAL_INT_MIB) { 2119 sc->sc_stats.ast_mib++; 2120 ATH_PCU_LOCK(sc); 2121 /* 2122 * Disable interrupts until we service the MIB 2123 * interrupt; otherwise it will continue to fire. 2124 */ 2125 ath_hal_intrset(ah, 0); 2126 /* 2127 * Let the hal handle the event. We assume it will 2128 * clear whatever condition caused the interrupt. 2129 */ 2130 ath_hal_mibevent(ah, &sc->sc_halstats); 2131 /* 2132 * Don't reset the interrupt if we've just 2133 * kicked the PCU, or we may get a nested 2134 * RXEOL before the rxproc has had a chance 2135 * to run. 2136 */ 2137 if (sc->sc_kickpcu == 0) 2138 ath_hal_intrset(ah, sc->sc_imask); 2139 ATH_PCU_UNLOCK(sc); 2140 } 2141 if (status & HAL_INT_RXORN) { 2142 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2143 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2144 sc->sc_stats.ast_rxorn++; 2145 } 2146 if (status & HAL_INT_TSFOOR) { 2147 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2148 sc->sc_syncbeacon = 1; 2149 } 2150 } 2151 ATH_PCU_LOCK(sc); 2152 sc->sc_intr_cnt--; 2153 ATH_PCU_UNLOCK(sc); 2154 2155 ATH_LOCK(sc); 2156 ath_power_restore_power_state(sc); 2157 ATH_UNLOCK(sc); 2158 } 2159 2160 static void 2161 ath_fatal_proc(void *arg, int pending) 2162 { 2163 struct ath_softc *sc = arg; 2164 struct ifnet *ifp = sc->sc_ifp; 2165 u_int32_t *state; 2166 u_int32_t len; 2167 void *sp; 2168 2169 if_printf(ifp, "hardware error; resetting\n"); 2170 /* 2171 * Fatal errors are unrecoverable. Typically these 2172 * are caused by DMA errors. Collect h/w state from 2173 * the hal so we can diagnose what's going on. 2174 */ 2175 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2176 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2177 state = sp; 2178 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 2179 state[0], state[1] , state[2], state[3], 2180 state[4], state[5]); 2181 } 2182 ath_reset(ifp, ATH_RESET_NOLOSS); 2183 } 2184 2185 static void 2186 ath_bmiss_vap(struct ieee80211vap *vap) 2187 { 2188 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 2189 2190 /* 2191 * Workaround phantom bmiss interrupts by sanity-checking 2192 * the time of our last rx'd frame. If it is within the 2193 * beacon miss interval then ignore the interrupt. If it's 2194 * truly a bmiss we'll get another interrupt soon and that'll 2195 * be dispatched up for processing. Note this applies only 2196 * for h/w beacon miss events. 2197 */ 2198 2199 /* 2200 * XXX TODO: Just read the TSF during the interrupt path; 2201 * that way we don't have to wake up again just to read it 2202 * again. 2203 */ 2204 ATH_LOCK(sc); 2205 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2206 ATH_UNLOCK(sc); 2207 2208 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2209 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2210 struct ath_softc *sc = ifp->if_softc; 2211 u_int64_t lastrx = sc->sc_lastrx; 2212 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2213 /* XXX should take a locked ref to iv_bss */ 2214 u_int bmisstimeout = 2215 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2216 2217 DPRINTF(sc, ATH_DEBUG_BEACON, 2218 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2219 __func__, (unsigned long long) tsf, 2220 (unsigned long long)(tsf - lastrx), 2221 (unsigned long long) lastrx, bmisstimeout); 2222 2223 if (tsf - lastrx <= bmisstimeout) { 2224 sc->sc_stats.ast_bmiss_phantom++; 2225 2226 ATH_LOCK(sc); 2227 ath_power_restore_power_state(sc); 2228 ATH_UNLOCK(sc); 2229 2230 return; 2231 } 2232 } 2233 2234 /* 2235 * There's no need to keep the hardware awake during the call 2236 * to av_bmiss(). 2237 */ 2238 ATH_LOCK(sc); 2239 ath_power_restore_power_state(sc); 2240 ATH_UNLOCK(sc); 2241 2242 /* 2243 * Attempt to force a beacon resync. 2244 */ 2245 sc->sc_syncbeacon = 1; 2246 2247 ATH_VAP(vap)->av_bmiss(vap); 2248 } 2249 2250 /* XXX this needs a force wakeup! */ 2251 int 2252 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2253 { 2254 uint32_t rsize; 2255 void *sp; 2256 2257 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2258 return 0; 2259 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2260 *hangs = *(uint32_t *)sp; 2261 return 1; 2262 } 2263 2264 static void 2265 ath_bmiss_proc(void *arg, int pending) 2266 { 2267 struct ath_softc *sc = arg; 2268 struct ifnet *ifp = sc->sc_ifp; 2269 uint32_t hangs; 2270 2271 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2272 2273 ATH_LOCK(sc); 2274 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2275 ATH_UNLOCK(sc); 2276 2277 ath_beacon_miss(sc); 2278 2279 /* 2280 * Do a reset upon any becaon miss event. 2281 * 2282 * It may be a non-recognised RX clear hang which needs a reset 2283 * to clear. 2284 */ 2285 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2286 ath_reset(ifp, ATH_RESET_NOLOSS); 2287 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 2288 } else { 2289 ath_reset(ifp, ATH_RESET_NOLOSS); 2290 ieee80211_beacon_miss(ifp->if_l2com); 2291 } 2292 2293 /* Force a beacon resync, in case they've drifted */ 2294 sc->sc_syncbeacon = 1; 2295 2296 ATH_LOCK(sc); 2297 ath_power_restore_power_state(sc); 2298 ATH_UNLOCK(sc); 2299 } 2300 2301 /* 2302 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2303 * calcs together with WME. If necessary disable the crypto 2304 * hardware and mark the 802.11 state so keys will be setup 2305 * with the MIC work done in software. 2306 */ 2307 static void 2308 ath_settkipmic(struct ath_softc *sc) 2309 { 2310 struct ifnet *ifp = sc->sc_ifp; 2311 struct ieee80211com *ic = ifp->if_l2com; 2312 2313 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2314 if (ic->ic_flags & IEEE80211_F_WME) { 2315 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2316 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2317 } else { 2318 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2319 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2320 } 2321 } 2322 } 2323 2324 static void 2325 ath_init(void *arg) 2326 { 2327 struct ath_softc *sc = (struct ath_softc *) arg; 2328 struct ifnet *ifp = sc->sc_ifp; 2329 struct ieee80211com *ic = ifp->if_l2com; 2330 struct ath_hal *ah = sc->sc_ah; 2331 HAL_STATUS status; 2332 2333 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 2334 __func__, ifp->if_flags); 2335 2336 ATH_LOCK(sc); 2337 /* 2338 * Force the sleep state awake. 2339 */ 2340 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2341 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2342 ath_power_setpower(sc, HAL_PM_AWAKE); 2343 2344 /* 2345 * Stop anything previously setup. This is safe 2346 * whether this is the first time through or not. 2347 */ 2348 ath_stop_locked(ifp); 2349 2350 /* 2351 * The basic interface to setting the hardware in a good 2352 * state is ``reset''. On return the hardware is known to 2353 * be powered up and with interrupts disabled. This must 2354 * be followed by initialization of the appropriate bits 2355 * and then setup of the interrupt mask. 2356 */ 2357 ath_settkipmic(sc); 2358 ath_update_chainmasks(sc, ic->ic_curchan); 2359 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2360 sc->sc_cur_rxchainmask); 2361 2362 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 2363 if_printf(ifp, "unable to reset hardware; hal status %u\n", 2364 status); 2365 ATH_UNLOCK(sc); 2366 return; 2367 } 2368 2369 ATH_RX_LOCK(sc); 2370 sc->sc_rx_stopped = 1; 2371 sc->sc_rx_resetted = 1; 2372 ATH_RX_UNLOCK(sc); 2373 2374 ath_chan_change(sc, ic->ic_curchan); 2375 2376 /* Let DFS at it in case it's a DFS channel */ 2377 ath_dfs_radar_enable(sc, ic->ic_curchan); 2378 2379 /* Let spectral at in case spectral is enabled */ 2380 ath_spectral_enable(sc, ic->ic_curchan); 2381 2382 /* 2383 * Let bluetooth coexistence at in case it's needed for this channel 2384 */ 2385 ath_btcoex_enable(sc, ic->ic_curchan); 2386 2387 /* 2388 * If we're doing TDMA, enforce the TXOP limitation for chips that 2389 * support it. 2390 */ 2391 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2392 ath_hal_setenforcetxop(sc->sc_ah, 1); 2393 else 2394 ath_hal_setenforcetxop(sc->sc_ah, 0); 2395 2396 /* 2397 * Likewise this is set during reset so update 2398 * state cached in the driver. 2399 */ 2400 sc->sc_diversity = ath_hal_getdiversity(ah); 2401 sc->sc_lastlongcal = 0; 2402 sc->sc_resetcal = 1; 2403 sc->sc_lastcalreset = 0; 2404 sc->sc_lastani = 0; 2405 sc->sc_lastshortcal = 0; 2406 sc->sc_doresetcal = AH_FALSE; 2407 /* 2408 * Beacon timers were cleared here; give ath_newstate() 2409 * a hint that the beacon timers should be poked when 2410 * things transition to the RUN state. 2411 */ 2412 sc->sc_beacons = 0; 2413 2414 /* 2415 * Setup the hardware after reset: the key cache 2416 * is filled as needed and the receive engine is 2417 * set going. Frame transmit is handled entirely 2418 * in the frame output path; there's nothing to do 2419 * here except setup the interrupt mask. 2420 */ 2421 if (ath_startrecv(sc) != 0) { 2422 if_printf(ifp, "unable to start recv logic\n"); 2423 ath_power_restore_power_state(sc); 2424 ATH_UNLOCK(sc); 2425 return; 2426 } 2427 2428 /* 2429 * Enable interrupts. 2430 */ 2431 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2432 | HAL_INT_RXORN | HAL_INT_TXURN 2433 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2434 2435 /* 2436 * Enable RX EDMA bits. Note these overlap with 2437 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2438 */ 2439 if (sc->sc_isedma) 2440 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2441 2442 /* 2443 * If we're an EDMA NIC, we don't care about RXEOL. 2444 * Writing a new descriptor in will simply restart 2445 * RX DMA. 2446 */ 2447 if (! sc->sc_isedma) 2448 sc->sc_imask |= HAL_INT_RXEOL; 2449 2450 /* 2451 * Enable MIB interrupts when there are hardware phy counters. 2452 * Note we only do this (at the moment) for station mode. 2453 */ 2454 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2455 sc->sc_imask |= HAL_INT_MIB; 2456 2457 /* 2458 * XXX add capability for this. 2459 * 2460 * If we're in STA mode (and maybe IBSS?) then register for 2461 * TSFOOR interrupts. 2462 */ 2463 if (ic->ic_opmode == IEEE80211_M_STA) 2464 sc->sc_imask |= HAL_INT_TSFOOR; 2465 2466 /* Enable global TX timeout and carrier sense timeout if available */ 2467 if (ath_hal_gtxto_supported(ah)) 2468 sc->sc_imask |= HAL_INT_GTT; 2469 2470 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2471 __func__, sc->sc_imask); 2472 2473 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2474 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2475 ath_hal_intrset(ah, sc->sc_imask); 2476 2477 ath_power_restore_power_state(sc); 2478 ATH_UNLOCK(sc); 2479 2480 #ifdef ATH_TX99_DIAG 2481 if (sc->sc_tx99 != NULL) 2482 sc->sc_tx99->start(sc->sc_tx99); 2483 else 2484 #endif 2485 ieee80211_start_all(ic); /* start all vap's */ 2486 } 2487 2488 static void 2489 ath_stop_locked(struct ifnet *ifp) 2490 { 2491 struct ath_softc *sc = ifp->if_softc; 2492 struct ath_hal *ah = sc->sc_ah; 2493 2494 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 2495 __func__, sc->sc_invalid, ifp->if_flags); 2496 2497 ATH_LOCK_ASSERT(sc); 2498 2499 /* 2500 * Wake the hardware up before fiddling with it. 2501 */ 2502 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2503 2504 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2505 /* 2506 * Shutdown the hardware and driver: 2507 * reset 802.11 state machine 2508 * turn off timers 2509 * disable interrupts 2510 * turn off the radio 2511 * clear transmit machinery 2512 * clear receive machinery 2513 * drain and release tx queues 2514 * reclaim beacon resources 2515 * power down hardware 2516 * 2517 * Note that some of this work is not possible if the 2518 * hardware is gone (invalid). 2519 */ 2520 #ifdef ATH_TX99_DIAG 2521 if (sc->sc_tx99 != NULL) 2522 sc->sc_tx99->stop(sc->sc_tx99); 2523 #endif 2524 callout_stop(&sc->sc_wd_ch); 2525 sc->sc_wd_timer = 0; 2526 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2527 if (!sc->sc_invalid) { 2528 if (sc->sc_softled) { 2529 callout_stop(&sc->sc_ledtimer); 2530 ath_hal_gpioset(ah, sc->sc_ledpin, 2531 !sc->sc_ledon); 2532 sc->sc_blinking = 0; 2533 } 2534 ath_hal_intrset(ah, 0); 2535 } 2536 /* XXX we should stop RX regardless of whether it's valid */ 2537 if (!sc->sc_invalid) { 2538 ath_stoprecv(sc, 1); 2539 ath_hal_phydisable(ah); 2540 } else 2541 sc->sc_rxlink = NULL; 2542 ath_draintxq(sc, ATH_RESET_DEFAULT); 2543 ath_beacon_free(sc); /* XXX not needed */ 2544 } 2545 2546 /* And now, restore the current power state */ 2547 ath_power_restore_power_state(sc); 2548 } 2549 2550 /* 2551 * Wait until all pending TX/RX has completed. 2552 * 2553 * This waits until all existing transmit, receive and interrupts 2554 * have completed. It's assumed that the caller has first 2555 * grabbed the reset lock so it doesn't try to do overlapping 2556 * chip resets. 2557 */ 2558 #define MAX_TXRX_ITERATIONS 100 2559 static void 2560 ath_txrx_stop_locked(struct ath_softc *sc) 2561 { 2562 int i = MAX_TXRX_ITERATIONS; 2563 2564 ATH_UNLOCK_ASSERT(sc); 2565 ATH_PCU_LOCK_ASSERT(sc); 2566 2567 /* 2568 * Sleep until all the pending operations have completed. 2569 * 2570 * The caller must ensure that reset has been incremented 2571 * or the pending operations may continue being queued. 2572 */ 2573 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2574 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2575 if (i <= 0) 2576 break; 2577 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2578 msecs_to_ticks(10)); 2579 i--; 2580 } 2581 2582 if (i <= 0) 2583 device_printf(sc->sc_dev, 2584 "%s: didn't finish after %d iterations\n", 2585 __func__, MAX_TXRX_ITERATIONS); 2586 } 2587 #undef MAX_TXRX_ITERATIONS 2588 2589 #if 0 2590 static void 2591 ath_txrx_stop(struct ath_softc *sc) 2592 { 2593 ATH_UNLOCK_ASSERT(sc); 2594 ATH_PCU_UNLOCK_ASSERT(sc); 2595 2596 ATH_PCU_LOCK(sc); 2597 ath_txrx_stop_locked(sc); 2598 ATH_PCU_UNLOCK(sc); 2599 } 2600 #endif 2601 2602 static void 2603 ath_txrx_start(struct ath_softc *sc) 2604 { 2605 2606 taskqueue_unblock(sc->sc_tq); 2607 } 2608 2609 /* 2610 * Grab the reset lock, and wait around until noone else 2611 * is trying to do anything with it. 2612 * 2613 * This is totally horrible but we can't hold this lock for 2614 * long enough to do TX/RX or we end up with net80211/ip stack 2615 * LORs and eventual deadlock. 2616 * 2617 * "dowait" signals whether to spin, waiting for the reset 2618 * lock count to reach 0. This should (for now) only be used 2619 * during the reset path, as the rest of the code may not 2620 * be locking-reentrant enough to behave correctly. 2621 * 2622 * Another, cleaner way should be found to serialise all of 2623 * these operations. 2624 */ 2625 #define MAX_RESET_ITERATIONS 25 2626 static int 2627 ath_reset_grablock(struct ath_softc *sc, int dowait) 2628 { 2629 int w = 0; 2630 int i = MAX_RESET_ITERATIONS; 2631 2632 ATH_PCU_LOCK_ASSERT(sc); 2633 do { 2634 if (sc->sc_inreset_cnt == 0) { 2635 w = 1; 2636 break; 2637 } 2638 if (dowait == 0) { 2639 w = 0; 2640 break; 2641 } 2642 ATH_PCU_UNLOCK(sc); 2643 /* 2644 * 1 tick is likely not enough time for long calibrations 2645 * to complete. So we should wait quite a while. 2646 */ 2647 pause("ath_reset_grablock", msecs_to_ticks(100)); 2648 i--; 2649 ATH_PCU_LOCK(sc); 2650 } while (i > 0); 2651 2652 /* 2653 * We always increment the refcounter, regardless 2654 * of whether we succeeded to get it in an exclusive 2655 * way. 2656 */ 2657 sc->sc_inreset_cnt++; 2658 2659 if (i <= 0) 2660 device_printf(sc->sc_dev, 2661 "%s: didn't finish after %d iterations\n", 2662 __func__, MAX_RESET_ITERATIONS); 2663 2664 if (w == 0) 2665 device_printf(sc->sc_dev, 2666 "%s: warning, recursive reset path!\n", 2667 __func__); 2668 2669 return w; 2670 } 2671 #undef MAX_RESET_ITERATIONS 2672 2673 /* 2674 * XXX TODO: write ath_reset_releaselock 2675 */ 2676 2677 static void 2678 ath_stop(struct ifnet *ifp) 2679 { 2680 struct ath_softc *sc = ifp->if_softc; 2681 2682 ATH_LOCK(sc); 2683 ath_stop_locked(ifp); 2684 ATH_UNLOCK(sc); 2685 } 2686 2687 /* 2688 * Reset the hardware w/o losing operational state. This is 2689 * basically a more efficient way of doing ath_stop, ath_init, 2690 * followed by state transitions to the current 802.11 2691 * operational state. Used to recover from various errors and 2692 * to reset or reload hardware state. 2693 */ 2694 int 2695 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2696 { 2697 struct ath_softc *sc = ifp->if_softc; 2698 struct ieee80211com *ic = ifp->if_l2com; 2699 struct ath_hal *ah = sc->sc_ah; 2700 HAL_STATUS status; 2701 int i; 2702 2703 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2704 2705 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2706 ATH_PCU_UNLOCK_ASSERT(sc); 2707 ATH_UNLOCK_ASSERT(sc); 2708 2709 /* Try to (stop any further TX/RX from occuring */ 2710 taskqueue_block(sc->sc_tq); 2711 2712 /* 2713 * Wake the hardware up. 2714 */ 2715 ATH_LOCK(sc); 2716 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2717 ATH_UNLOCK(sc); 2718 2719 ATH_PCU_LOCK(sc); 2720 2721 /* 2722 * Grab the reset lock before TX/RX is stopped. 2723 * 2724 * This is needed to ensure that when the TX/RX actually does finish, 2725 * no further TX/RX/reset runs in parallel with this. 2726 */ 2727 if (ath_reset_grablock(sc, 1) == 0) { 2728 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2729 __func__); 2730 } 2731 2732 /* disable interrupts */ 2733 ath_hal_intrset(ah, 0); 2734 2735 /* 2736 * Now, ensure that any in progress TX/RX completes before we 2737 * continue. 2738 */ 2739 ath_txrx_stop_locked(sc); 2740 2741 ATH_PCU_UNLOCK(sc); 2742 2743 /* 2744 * Regardless of whether we're doing a no-loss flush or 2745 * not, stop the PCU and handle what's in the RX queue. 2746 * That way frames aren't dropped which shouldn't be. 2747 */ 2748 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2749 ath_rx_flush(sc); 2750 2751 /* 2752 * Should now wait for pending TX/RX to complete 2753 * and block future ones from occuring. This needs to be 2754 * done before the TX queue is drained. 2755 */ 2756 ath_draintxq(sc, reset_type); /* stop xmit side */ 2757 2758 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2759 /* NB: indicate channel change so we do a full reset */ 2760 ath_update_chainmasks(sc, ic->ic_curchan); 2761 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2762 sc->sc_cur_rxchainmask); 2763 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2764 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2765 __func__, status); 2766 sc->sc_diversity = ath_hal_getdiversity(ah); 2767 2768 ATH_RX_LOCK(sc); 2769 sc->sc_rx_stopped = 1; 2770 sc->sc_rx_resetted = 1; 2771 ATH_RX_UNLOCK(sc); 2772 2773 /* Let DFS at it in case it's a DFS channel */ 2774 ath_dfs_radar_enable(sc, ic->ic_curchan); 2775 2776 /* Let spectral at in case spectral is enabled */ 2777 ath_spectral_enable(sc, ic->ic_curchan); 2778 2779 /* 2780 * Let bluetooth coexistence at in case it's needed for this channel 2781 */ 2782 ath_btcoex_enable(sc, ic->ic_curchan); 2783 2784 /* 2785 * If we're doing TDMA, enforce the TXOP limitation for chips that 2786 * support it. 2787 */ 2788 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2789 ath_hal_setenforcetxop(sc->sc_ah, 1); 2790 else 2791 ath_hal_setenforcetxop(sc->sc_ah, 0); 2792 2793 if (ath_startrecv(sc) != 0) /* restart recv */ 2794 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2795 /* 2796 * We may be doing a reset in response to an ioctl 2797 * that changes the channel so update any state that 2798 * might change as a result. 2799 */ 2800 ath_chan_change(sc, ic->ic_curchan); 2801 if (sc->sc_beacons) { /* restart beacons */ 2802 #ifdef IEEE80211_SUPPORT_TDMA 2803 if (sc->sc_tdma) 2804 ath_tdma_config(sc, NULL); 2805 else 2806 #endif 2807 ath_beacon_config(sc, NULL); 2808 } 2809 2810 /* 2811 * Release the reset lock and re-enable interrupts here. 2812 * If an interrupt was being processed in ath_intr(), 2813 * it would disable interrupts at this point. So we have 2814 * to atomically enable interrupts and decrement the 2815 * reset counter - this way ath_intr() doesn't end up 2816 * disabling interrupts without a corresponding enable 2817 * in the rest or channel change path. 2818 * 2819 * Grab the TX reference in case we need to transmit. 2820 * That way a parallel transmit doesn't. 2821 */ 2822 ATH_PCU_LOCK(sc); 2823 sc->sc_inreset_cnt--; 2824 sc->sc_txstart_cnt++; 2825 /* XXX only do this if sc_inreset_cnt == 0? */ 2826 ath_hal_intrset(ah, sc->sc_imask); 2827 ATH_PCU_UNLOCK(sc); 2828 2829 /* 2830 * TX and RX can be started here. If it were started with 2831 * sc_inreset_cnt > 0, the TX and RX path would abort. 2832 * Thus if this is a nested call through the reset or 2833 * channel change code, TX completion will occur but 2834 * RX completion and ath_start / ath_tx_start will not 2835 * run. 2836 */ 2837 2838 /* Restart TX/RX as needed */ 2839 ath_txrx_start(sc); 2840 2841 /* XXX TODO: we need to hold the tx refcount here! */ 2842 2843 /* Restart TX completion and pending TX */ 2844 if (reset_type == ATH_RESET_NOLOSS) { 2845 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2846 if (ATH_TXQ_SETUP(sc, i)) { 2847 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2848 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2849 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2850 2851 ATH_TX_LOCK(sc); 2852 ath_txq_sched(sc, &sc->sc_txq[i]); 2853 ATH_TX_UNLOCK(sc); 2854 } 2855 } 2856 } 2857 2858 /* 2859 * This may have been set during an ath_start() call which 2860 * set this once it detected a concurrent TX was going on. 2861 * So, clear it. 2862 */ 2863 IF_LOCK(&ifp->if_snd); 2864 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2865 IF_UNLOCK(&ifp->if_snd); 2866 2867 ATH_LOCK(sc); 2868 ath_power_restore_power_state(sc); 2869 ATH_UNLOCK(sc); 2870 2871 ATH_PCU_LOCK(sc); 2872 sc->sc_txstart_cnt--; 2873 ATH_PCU_UNLOCK(sc); 2874 2875 /* Handle any frames in the TX queue */ 2876 /* 2877 * XXX should this be done by the caller, rather than 2878 * ath_reset() ? 2879 */ 2880 ath_tx_kick(sc); /* restart xmit */ 2881 return 0; 2882 } 2883 2884 static int 2885 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2886 { 2887 struct ieee80211com *ic = vap->iv_ic; 2888 struct ifnet *ifp = ic->ic_ifp; 2889 struct ath_softc *sc = ifp->if_softc; 2890 struct ath_hal *ah = sc->sc_ah; 2891 2892 switch (cmd) { 2893 case IEEE80211_IOC_TXPOWER: 2894 /* 2895 * If per-packet TPC is enabled, then we have nothing 2896 * to do; otherwise we need to force the global limit. 2897 * All this can happen directly; no need to reset. 2898 */ 2899 if (!ath_hal_gettpc(ah)) 2900 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2901 return 0; 2902 } 2903 /* XXX? Full or NOLOSS? */ 2904 return ath_reset(ifp, ATH_RESET_FULL); 2905 } 2906 2907 struct ath_buf * 2908 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2909 { 2910 struct ath_buf *bf; 2911 2912 ATH_TXBUF_LOCK_ASSERT(sc); 2913 2914 if (btype == ATH_BUFTYPE_MGMT) 2915 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2916 else 2917 bf = TAILQ_FIRST(&sc->sc_txbuf); 2918 2919 if (bf == NULL) { 2920 sc->sc_stats.ast_tx_getnobuf++; 2921 } else { 2922 if (bf->bf_flags & ATH_BUF_BUSY) { 2923 sc->sc_stats.ast_tx_getbusybuf++; 2924 bf = NULL; 2925 } 2926 } 2927 2928 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2929 if (btype == ATH_BUFTYPE_MGMT) 2930 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2931 else { 2932 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2933 sc->sc_txbuf_cnt--; 2934 2935 /* 2936 * This shuldn't happen; however just to be 2937 * safe print a warning and fudge the txbuf 2938 * count. 2939 */ 2940 if (sc->sc_txbuf_cnt < 0) { 2941 device_printf(sc->sc_dev, 2942 "%s: sc_txbuf_cnt < 0?\n", 2943 __func__); 2944 sc->sc_txbuf_cnt = 0; 2945 } 2946 } 2947 } else 2948 bf = NULL; 2949 2950 if (bf == NULL) { 2951 /* XXX should check which list, mgmt or otherwise */ 2952 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2953 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2954 "out of xmit buffers" : "xmit buffer busy"); 2955 return NULL; 2956 } 2957 2958 /* XXX TODO: should do this at buffer list initialisation */ 2959 /* XXX (then, ensure the buffer has the right flag set) */ 2960 bf->bf_flags = 0; 2961 if (btype == ATH_BUFTYPE_MGMT) 2962 bf->bf_flags |= ATH_BUF_MGMT; 2963 else 2964 bf->bf_flags &= (~ATH_BUF_MGMT); 2965 2966 /* Valid bf here; clear some basic fields */ 2967 bf->bf_next = NULL; /* XXX just to be sure */ 2968 bf->bf_last = NULL; /* XXX again, just to be sure */ 2969 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2970 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2971 2972 /* 2973 * Track the descriptor ID only if doing EDMA 2974 */ 2975 if (sc->sc_isedma) { 2976 bf->bf_descid = sc->sc_txbuf_descid; 2977 sc->sc_txbuf_descid++; 2978 } 2979 2980 return bf; 2981 } 2982 2983 /* 2984 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2985 * can't be thrown back on the queue as they could still be 2986 * in use by the hardware. 2987 * 2988 * This duplicates the buffer, or returns NULL. 2989 * 2990 * The descriptor is also copied but the link pointers and 2991 * the DMA segments aren't copied; this frame should thus 2992 * be again passed through the descriptor setup/chain routines 2993 * so the link is correct. 2994 * 2995 * The caller must free the buffer using ath_freebuf(). 2996 */ 2997 struct ath_buf * 2998 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 2999 { 3000 struct ath_buf *tbf; 3001 3002 tbf = ath_getbuf(sc, 3003 (bf->bf_flags & ATH_BUF_MGMT) ? 3004 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 3005 if (tbf == NULL) 3006 return NULL; /* XXX failure? Why? */ 3007 3008 /* Copy basics */ 3009 tbf->bf_next = NULL; 3010 tbf->bf_nseg = bf->bf_nseg; 3011 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 3012 tbf->bf_status = bf->bf_status; 3013 tbf->bf_m = bf->bf_m; 3014 tbf->bf_node = bf->bf_node; 3015 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 3016 /* will be setup by the chain/setup function */ 3017 tbf->bf_lastds = NULL; 3018 /* for now, last == self */ 3019 tbf->bf_last = tbf; 3020 tbf->bf_comp = bf->bf_comp; 3021 3022 /* NOTE: DMA segments will be setup by the setup/chain functions */ 3023 3024 /* The caller has to re-init the descriptor + links */ 3025 3026 /* 3027 * Free the DMA mapping here, before we NULL the mbuf. 3028 * We must only call bus_dmamap_unload() once per mbuf chain 3029 * or behaviour is undefined. 3030 */ 3031 if (bf->bf_m != NULL) { 3032 /* 3033 * XXX is this POSTWRITE call required? 3034 */ 3035 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3036 BUS_DMASYNC_POSTWRITE); 3037 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3038 } 3039 3040 bf->bf_m = NULL; 3041 bf->bf_node = NULL; 3042 3043 /* Copy state */ 3044 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3045 3046 return tbf; 3047 } 3048 3049 struct ath_buf * 3050 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3051 { 3052 struct ath_buf *bf; 3053 3054 ATH_TXBUF_LOCK(sc); 3055 bf = _ath_getbuf_locked(sc, btype); 3056 /* 3057 * If a mgmt buffer was requested but we're out of those, 3058 * try requesting a normal one. 3059 */ 3060 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3061 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3062 ATH_TXBUF_UNLOCK(sc); 3063 if (bf == NULL) { 3064 struct ifnet *ifp = sc->sc_ifp; 3065 3066 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3067 sc->sc_stats.ast_tx_qstop++; 3068 IF_LOCK(&ifp->if_snd); 3069 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3070 IF_UNLOCK(&ifp->if_snd); 3071 } 3072 return bf; 3073 } 3074 3075 static void 3076 ath_qflush(struct ifnet *ifp) 3077 { 3078 3079 /* XXX TODO */ 3080 } 3081 3082 /* 3083 * Transmit a single frame. 3084 * 3085 * net80211 will free the node reference if the transmit 3086 * fails, so don't free the node reference here. 3087 */ 3088 static int 3089 ath_transmit(struct ifnet *ifp, struct mbuf *m) 3090 { 3091 struct ieee80211com *ic = ifp->if_l2com; 3092 struct ath_softc *sc = ic->ic_ifp->if_softc; 3093 struct ieee80211_node *ni; 3094 struct mbuf *next; 3095 struct ath_buf *bf; 3096 ath_bufhead frags; 3097 int retval = 0; 3098 3099 /* 3100 * Tell the reset path that we're currently transmitting. 3101 */ 3102 ATH_PCU_LOCK(sc); 3103 if (sc->sc_inreset_cnt > 0) { 3104 DPRINTF(sc, ATH_DEBUG_XMIT, 3105 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3106 ATH_PCU_UNLOCK(sc); 3107 IF_LOCK(&ifp->if_snd); 3108 sc->sc_stats.ast_tx_qstop++; 3109 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3110 IF_UNLOCK(&ifp->if_snd); 3111 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3112 return (ENOBUFS); /* XXX should be EINVAL or? */ 3113 } 3114 sc->sc_txstart_cnt++; 3115 ATH_PCU_UNLOCK(sc); 3116 3117 /* Wake the hardware up already */ 3118 ATH_LOCK(sc); 3119 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3120 ATH_UNLOCK(sc); 3121 3122 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3123 /* 3124 * Grab the TX lock - it's ok to do this here; we haven't 3125 * yet started transmitting. 3126 */ 3127 ATH_TX_LOCK(sc); 3128 3129 /* 3130 * Node reference, if there's one. 3131 */ 3132 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3133 3134 /* 3135 * Enforce how deep a node queue can get. 3136 * 3137 * XXX it would be nicer if we kept an mbuf queue per 3138 * node and only whacked them into ath_bufs when we 3139 * are ready to schedule some traffic from them. 3140 * .. that may come later. 3141 * 3142 * XXX we should also track the per-node hardware queue 3143 * depth so it is easy to limit the _SUM_ of the swq and 3144 * hwq frames. Since we only schedule two HWQ frames 3145 * at a time, this should be OK for now. 3146 */ 3147 if ((!(m->m_flags & M_EAPOL)) && 3148 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3149 sc->sc_stats.ast_tx_nodeq_overflow++; 3150 m_freem(m); 3151 m = NULL; 3152 retval = ENOBUFS; 3153 goto finish; 3154 } 3155 3156 /* 3157 * Check how many TX buffers are available. 3158 * 3159 * If this is for non-EAPOL traffic, just leave some 3160 * space free in order for buffer cloning and raw 3161 * frame transmission to occur. 3162 * 3163 * If it's for EAPOL traffic, ignore this for now. 3164 * Management traffic will be sent via the raw transmit 3165 * method which bypasses this check. 3166 * 3167 * This is needed to ensure that EAPOL frames during 3168 * (re) keying have a chance to go out. 3169 * 3170 * See kern/138379 for more information. 3171 */ 3172 if ((!(m->m_flags & M_EAPOL)) && 3173 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3174 sc->sc_stats.ast_tx_nobuf++; 3175 m_freem(m); 3176 m = NULL; 3177 retval = ENOBUFS; 3178 goto finish; 3179 } 3180 3181 /* 3182 * Grab a TX buffer and associated resources. 3183 * 3184 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3185 * That way even with temporary buffer exhaustion due to 3186 * the data path doesn't leave us without the ability 3187 * to transmit management frames. 3188 * 3189 * Otherwise allocate a normal buffer. 3190 */ 3191 if (m->m_flags & M_EAPOL) 3192 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3193 else 3194 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3195 3196 if (bf == NULL) { 3197 /* 3198 * If we failed to allocate a buffer, fail. 3199 * 3200 * We shouldn't fail normally, due to the check 3201 * above. 3202 */ 3203 sc->sc_stats.ast_tx_nobuf++; 3204 IF_LOCK(&ifp->if_snd); 3205 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3206 IF_UNLOCK(&ifp->if_snd); 3207 m_freem(m); 3208 m = NULL; 3209 retval = ENOBUFS; 3210 goto finish; 3211 } 3212 3213 /* 3214 * At this point we have a buffer; so we need to free it 3215 * if we hit any error conditions. 3216 */ 3217 3218 /* 3219 * Check for fragmentation. If this frame 3220 * has been broken up verify we have enough 3221 * buffers to send all the fragments so all 3222 * go out or none... 3223 */ 3224 TAILQ_INIT(&frags); 3225 if ((m->m_flags & M_FRAG) && 3226 !ath_txfrag_setup(sc, &frags, m, ni)) { 3227 DPRINTF(sc, ATH_DEBUG_XMIT, 3228 "%s: out of txfrag buffers\n", __func__); 3229 sc->sc_stats.ast_tx_nofrag++; 3230 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3231 ath_freetx(m); 3232 goto bad; 3233 } 3234 3235 /* 3236 * At this point if we have any TX fragments, then we will 3237 * have bumped the node reference once for each of those. 3238 */ 3239 3240 /* 3241 * XXX Is there anything actually _enforcing_ that the 3242 * fragments are being transmitted in one hit, rather than 3243 * being interleaved with other transmissions on that 3244 * hardware queue? 3245 * 3246 * The ATH TX output lock is the only thing serialising this 3247 * right now. 3248 */ 3249 3250 /* 3251 * Calculate the "next fragment" length field in ath_buf 3252 * in order to let the transmit path know enough about 3253 * what to next write to the hardware. 3254 */ 3255 if (m->m_flags & M_FRAG) { 3256 struct ath_buf *fbf = bf; 3257 struct ath_buf *n_fbf = NULL; 3258 struct mbuf *fm = m->m_nextpkt; 3259 3260 /* 3261 * We need to walk the list of fragments and set 3262 * the next size to the following buffer. 3263 * However, the first buffer isn't in the frag 3264 * list, so we have to do some gymnastics here. 3265 */ 3266 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3267 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3268 fbf = n_fbf; 3269 fm = fm->m_nextpkt; 3270 } 3271 } 3272 3273 /* 3274 * Bump the ifp output counter. 3275 * 3276 * XXX should use atomics? 3277 */ 3278 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 3279 nextfrag: 3280 /* 3281 * Pass the frame to the h/w for transmission. 3282 * Fragmented frames have each frag chained together 3283 * with m_nextpkt. We know there are sufficient ath_buf's 3284 * to send all the frags because of work done by 3285 * ath_txfrag_setup. We leave m_nextpkt set while 3286 * calling ath_tx_start so it can use it to extend the 3287 * the tx duration to cover the subsequent frag and 3288 * so it can reclaim all the mbufs in case of an error; 3289 * ath_tx_start clears m_nextpkt once it commits to 3290 * handing the frame to the hardware. 3291 * 3292 * Note: if this fails, then the mbufs are freed but 3293 * not the node reference. 3294 */ 3295 next = m->m_nextpkt; 3296 if (ath_tx_start(sc, ni, bf, m)) { 3297 bad: 3298 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3299 reclaim: 3300 bf->bf_m = NULL; 3301 bf->bf_node = NULL; 3302 ATH_TXBUF_LOCK(sc); 3303 ath_returnbuf_head(sc, bf); 3304 /* 3305 * Free the rest of the node references and 3306 * buffers for the fragment list. 3307 */ 3308 ath_txfrag_cleanup(sc, &frags, ni); 3309 ATH_TXBUF_UNLOCK(sc); 3310 retval = ENOBUFS; 3311 goto finish; 3312 } 3313 3314 /* 3315 * Check here if the node is in power save state. 3316 */ 3317 ath_tx_update_tim(sc, ni, 1); 3318 3319 if (next != NULL) { 3320 /* 3321 * Beware of state changing between frags. 3322 * XXX check sta power-save state? 3323 */ 3324 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3325 DPRINTF(sc, ATH_DEBUG_XMIT, 3326 "%s: flush fragmented packet, state %s\n", 3327 __func__, 3328 ieee80211_state_name[ni->ni_vap->iv_state]); 3329 /* XXX dmamap */ 3330 ath_freetx(next); 3331 goto reclaim; 3332 } 3333 m = next; 3334 bf = TAILQ_FIRST(&frags); 3335 KASSERT(bf != NULL, ("no buf for txfrag")); 3336 TAILQ_REMOVE(&frags, bf, bf_list); 3337 goto nextfrag; 3338 } 3339 3340 /* 3341 * Bump watchdog timer. 3342 */ 3343 sc->sc_wd_timer = 5; 3344 3345 finish: 3346 ATH_TX_UNLOCK(sc); 3347 3348 /* 3349 * Finished transmitting! 3350 */ 3351 ATH_PCU_LOCK(sc); 3352 sc->sc_txstart_cnt--; 3353 ATH_PCU_UNLOCK(sc); 3354 3355 /* Sleep the hardware if required */ 3356 ATH_LOCK(sc); 3357 ath_power_restore_power_state(sc); 3358 ATH_UNLOCK(sc); 3359 3360 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3361 3362 return (retval); 3363 } 3364 3365 static int 3366 ath_media_change(struct ifnet *ifp) 3367 { 3368 int error = ieee80211_media_change(ifp); 3369 /* NB: only the fixed rate can change and that doesn't need a reset */ 3370 return (error == ENETRESET ? 0 : error); 3371 } 3372 3373 /* 3374 * Block/unblock tx+rx processing while a key change is done. 3375 * We assume the caller serializes key management operations 3376 * so we only need to worry about synchronization with other 3377 * uses that originate in the driver. 3378 */ 3379 static void 3380 ath_key_update_begin(struct ieee80211vap *vap) 3381 { 3382 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3383 struct ath_softc *sc = ifp->if_softc; 3384 3385 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3386 taskqueue_block(sc->sc_tq); 3387 } 3388 3389 static void 3390 ath_key_update_end(struct ieee80211vap *vap) 3391 { 3392 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3393 struct ath_softc *sc = ifp->if_softc; 3394 3395 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3396 taskqueue_unblock(sc->sc_tq); 3397 } 3398 3399 static void 3400 ath_update_promisc(struct ifnet *ifp) 3401 { 3402 struct ath_softc *sc = ifp->if_softc; 3403 u_int32_t rfilt; 3404 3405 /* configure rx filter */ 3406 ATH_LOCK(sc); 3407 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3408 rfilt = ath_calcrxfilter(sc); 3409 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3410 ath_power_restore_power_state(sc); 3411 ATH_UNLOCK(sc); 3412 3413 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3414 } 3415 3416 /* 3417 * Driver-internal mcast update call. 3418 * 3419 * Assumes the hardware is already awake. 3420 */ 3421 static void 3422 ath_update_mcast_hw(struct ath_softc *sc) 3423 { 3424 struct ifnet *ifp = sc->sc_ifp; 3425 u_int32_t mfilt[2]; 3426 3427 /* calculate and install multicast filter */ 3428 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 3429 struct ifmultiaddr *ifma; 3430 /* 3431 * Merge multicast addresses to form the hardware filter. 3432 */ 3433 mfilt[0] = mfilt[1] = 0; 3434 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 3435 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3436 caddr_t dl; 3437 u_int32_t val; 3438 u_int8_t pos; 3439 3440 /* calculate XOR of eight 6bit values */ 3441 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 3442 val = LE_READ_4(dl + 0); 3443 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3444 val = LE_READ_4(dl + 3); 3445 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3446 pos &= 0x3f; 3447 mfilt[pos / 32] |= (1 << (pos % 32)); 3448 } 3449 if_maddr_runlock(ifp); 3450 } else 3451 mfilt[0] = mfilt[1] = ~0; 3452 3453 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3454 3455 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3456 __func__, mfilt[0], mfilt[1]); 3457 } 3458 3459 /* 3460 * Called from the net80211 layer - force the hardware 3461 * awake before operating. 3462 */ 3463 static void 3464 ath_update_mcast(struct ifnet *ifp) 3465 { 3466 struct ath_softc *sc = ifp->if_softc; 3467 3468 ATH_LOCK(sc); 3469 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3470 ATH_UNLOCK(sc); 3471 3472 ath_update_mcast_hw(sc); 3473 3474 ATH_LOCK(sc); 3475 ath_power_restore_power_state(sc); 3476 ATH_UNLOCK(sc); 3477 } 3478 3479 void 3480 ath_mode_init(struct ath_softc *sc) 3481 { 3482 struct ifnet *ifp = sc->sc_ifp; 3483 struct ath_hal *ah = sc->sc_ah; 3484 u_int32_t rfilt; 3485 3486 /* configure rx filter */ 3487 rfilt = ath_calcrxfilter(sc); 3488 ath_hal_setrxfilter(ah, rfilt); 3489 3490 /* configure operational mode */ 3491 ath_hal_setopmode(ah); 3492 3493 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 3494 "%s: ah=%p, ifp=%p, if_addr=%p\n", 3495 __func__, 3496 ah, 3497 ifp, 3498 (ifp == NULL) ? NULL : ifp->if_addr); 3499 3500 /* handle any link-level address change */ 3501 ath_hal_setmac(ah, IF_LLADDR(ifp)); 3502 3503 /* calculate and install multicast filter */ 3504 ath_update_mcast_hw(sc); 3505 } 3506 3507 /* 3508 * Set the slot time based on the current setting. 3509 */ 3510 void 3511 ath_setslottime(struct ath_softc *sc) 3512 { 3513 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3514 struct ath_hal *ah = sc->sc_ah; 3515 u_int usec; 3516 3517 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3518 usec = 13; 3519 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3520 usec = 21; 3521 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3522 /* honor short/long slot time only in 11g */ 3523 /* XXX shouldn't honor on pure g or turbo g channel */ 3524 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3525 usec = HAL_SLOT_TIME_9; 3526 else 3527 usec = HAL_SLOT_TIME_20; 3528 } else 3529 usec = HAL_SLOT_TIME_9; 3530 3531 DPRINTF(sc, ATH_DEBUG_RESET, 3532 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3533 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3534 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3535 3536 /* Wake up the hardware first before updating the slot time */ 3537 ATH_LOCK(sc); 3538 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3539 ath_hal_setslottime(ah, usec); 3540 ath_power_restore_power_state(sc); 3541 sc->sc_updateslot = OK; 3542 ATH_UNLOCK(sc); 3543 } 3544 3545 /* 3546 * Callback from the 802.11 layer to update the 3547 * slot time based on the current setting. 3548 */ 3549 static void 3550 ath_updateslot(struct ifnet *ifp) 3551 { 3552 struct ath_softc *sc = ifp->if_softc; 3553 struct ieee80211com *ic = ifp->if_l2com; 3554 3555 /* 3556 * When not coordinating the BSS, change the hardware 3557 * immediately. For other operation we defer the change 3558 * until beacon updates have propagated to the stations. 3559 * 3560 * XXX sc_updateslot isn't changed behind a lock? 3561 */ 3562 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3563 ic->ic_opmode == IEEE80211_M_MBSS) 3564 sc->sc_updateslot = UPDATE; 3565 else 3566 ath_setslottime(sc); 3567 } 3568 3569 /* 3570 * Append the contents of src to dst; both queues 3571 * are assumed to be locked. 3572 */ 3573 void 3574 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3575 { 3576 3577 ATH_TXQ_LOCK_ASSERT(src); 3578 ATH_TXQ_LOCK_ASSERT(dst); 3579 3580 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3581 dst->axq_link = src->axq_link; 3582 src->axq_link = NULL; 3583 dst->axq_depth += src->axq_depth; 3584 dst->axq_aggr_depth += src->axq_aggr_depth; 3585 src->axq_depth = 0; 3586 src->axq_aggr_depth = 0; 3587 } 3588 3589 /* 3590 * Reset the hardware, with no loss. 3591 * 3592 * This can't be used for a general case reset. 3593 */ 3594 static void 3595 ath_reset_proc(void *arg, int pending) 3596 { 3597 struct ath_softc *sc = arg; 3598 struct ifnet *ifp = sc->sc_ifp; 3599 3600 #if 0 3601 if_printf(ifp, "%s: resetting\n", __func__); 3602 #endif 3603 ath_reset(ifp, ATH_RESET_NOLOSS); 3604 } 3605 3606 /* 3607 * Reset the hardware after detecting beacons have stopped. 3608 */ 3609 static void 3610 ath_bstuck_proc(void *arg, int pending) 3611 { 3612 struct ath_softc *sc = arg; 3613 struct ifnet *ifp = sc->sc_ifp; 3614 uint32_t hangs = 0; 3615 3616 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3617 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 3618 3619 #ifdef ATH_DEBUG_ALQ 3620 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3621 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3622 #endif 3623 3624 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3625 sc->sc_bmisscount); 3626 sc->sc_stats.ast_bstuck++; 3627 /* 3628 * This assumes that there's no simultaneous channel mode change 3629 * occuring. 3630 */ 3631 ath_reset(ifp, ATH_RESET_NOLOSS); 3632 } 3633 3634 static void 3635 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3636 { 3637 bus_addr_t *paddr = (bus_addr_t*) arg; 3638 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3639 *paddr = segs->ds_addr; 3640 } 3641 3642 /* 3643 * Allocate the descriptors and appropriate DMA tag/setup. 3644 * 3645 * For some situations (eg EDMA TX completion), there isn't a requirement 3646 * for the ath_buf entries to be allocated. 3647 */ 3648 int 3649 ath_descdma_alloc_desc(struct ath_softc *sc, 3650 struct ath_descdma *dd, ath_bufhead *head, 3651 const char *name, int ds_size, int ndesc) 3652 { 3653 #define DS2PHYS(_dd, _ds) \ 3654 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3655 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3656 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3657 struct ifnet *ifp = sc->sc_ifp; 3658 int error; 3659 3660 dd->dd_descsize = ds_size; 3661 3662 DPRINTF(sc, ATH_DEBUG_RESET, 3663 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 3664 __func__, name, ndesc, dd->dd_descsize); 3665 3666 dd->dd_name = name; 3667 dd->dd_desc_len = dd->dd_descsize * ndesc; 3668 3669 /* 3670 * Merlin work-around: 3671 * Descriptors that cross the 4KB boundary can't be used. 3672 * Assume one skipped descriptor per 4KB page. 3673 */ 3674 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3675 int numpages = dd->dd_desc_len / 4096; 3676 dd->dd_desc_len += ds_size * numpages; 3677 } 3678 3679 /* 3680 * Setup DMA descriptor area. 3681 * 3682 * BUS_DMA_ALLOCNOW is not used; we never use bounce 3683 * buffers for the descriptors themselves. 3684 */ 3685 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3686 PAGE_SIZE, 0, /* alignment, bounds */ 3687 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3688 BUS_SPACE_MAXADDR, /* highaddr */ 3689 NULL, NULL, /* filter, filterarg */ 3690 dd->dd_desc_len, /* maxsize */ 3691 1, /* nsegments */ 3692 dd->dd_desc_len, /* maxsegsize */ 3693 0, /* flags */ 3694 NULL, /* lockfunc */ 3695 NULL, /* lockarg */ 3696 &dd->dd_dmat); 3697 if (error != 0) { 3698 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3699 return error; 3700 } 3701 3702 /* allocate descriptors */ 3703 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3704 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3705 &dd->dd_dmamap); 3706 if (error != 0) { 3707 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3708 "error %u\n", ndesc, dd->dd_name, error); 3709 goto fail1; 3710 } 3711 3712 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3713 dd->dd_desc, dd->dd_desc_len, 3714 ath_load_cb, &dd->dd_desc_paddr, 3715 BUS_DMA_NOWAIT); 3716 if (error != 0) { 3717 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3718 dd->dd_name, error); 3719 goto fail2; 3720 } 3721 3722 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3723 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 3724 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 3725 /*XXX*/ (u_long) dd->dd_desc_len); 3726 3727 return (0); 3728 3729 fail2: 3730 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3731 fail1: 3732 bus_dma_tag_destroy(dd->dd_dmat); 3733 memset(dd, 0, sizeof(*dd)); 3734 return error; 3735 #undef DS2PHYS 3736 #undef ATH_DESC_4KB_BOUND_CHECK 3737 } 3738 3739 int 3740 ath_descdma_setup(struct ath_softc *sc, 3741 struct ath_descdma *dd, ath_bufhead *head, 3742 const char *name, int ds_size, int nbuf, int ndesc) 3743 { 3744 #define DS2PHYS(_dd, _ds) \ 3745 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3746 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3747 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3748 struct ifnet *ifp = sc->sc_ifp; 3749 uint8_t *ds; 3750 struct ath_buf *bf; 3751 int i, bsize, error; 3752 3753 /* Allocate descriptors */ 3754 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 3755 nbuf * ndesc); 3756 3757 /* Assume any errors during allocation were dealt with */ 3758 if (error != 0) { 3759 return (error); 3760 } 3761 3762 ds = (uint8_t *) dd->dd_desc; 3763 3764 /* allocate rx buffers */ 3765 bsize = sizeof(struct ath_buf) * nbuf; 3766 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3767 if (bf == NULL) { 3768 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3769 dd->dd_name, bsize); 3770 goto fail3; 3771 } 3772 dd->dd_bufptr = bf; 3773 3774 TAILQ_INIT(head); 3775 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 3776 bf->bf_desc = (struct ath_desc *) ds; 3777 bf->bf_daddr = DS2PHYS(dd, ds); 3778 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3779 /* 3780 * Merlin WAR: Skip descriptor addresses which 3781 * cause 4KB boundary crossing along any point 3782 * in the descriptor. 3783 */ 3784 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3785 dd->dd_descsize)) { 3786 /* Start at the next page */ 3787 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3788 bf->bf_desc = (struct ath_desc *) ds; 3789 bf->bf_daddr = DS2PHYS(dd, ds); 3790 } 3791 } 3792 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3793 &bf->bf_dmamap); 3794 if (error != 0) { 3795 if_printf(ifp, "unable to create dmamap for %s " 3796 "buffer %u, error %u\n", dd->dd_name, i, error); 3797 ath_descdma_cleanup(sc, dd, head); 3798 return error; 3799 } 3800 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3801 TAILQ_INSERT_TAIL(head, bf, bf_list); 3802 } 3803 3804 /* 3805 * XXX TODO: ensure that ds doesn't overflow the descriptor 3806 * allocation otherwise weird stuff will occur and crash your 3807 * machine. 3808 */ 3809 return 0; 3810 /* XXX this should likely just call ath_descdma_cleanup() */ 3811 fail3: 3812 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3813 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3814 bus_dma_tag_destroy(dd->dd_dmat); 3815 memset(dd, 0, sizeof(*dd)); 3816 return error; 3817 #undef DS2PHYS 3818 #undef ATH_DESC_4KB_BOUND_CHECK 3819 } 3820 3821 /* 3822 * Allocate ath_buf entries but no descriptor contents. 3823 * 3824 * This is for RX EDMA where the descriptors are the header part of 3825 * the RX buffer. 3826 */ 3827 int 3828 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3829 struct ath_descdma *dd, ath_bufhead *head, 3830 const char *name, int nbuf, int rx_status_len) 3831 { 3832 struct ifnet *ifp = sc->sc_ifp; 3833 struct ath_buf *bf; 3834 int i, bsize, error; 3835 3836 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3837 __func__, name, nbuf); 3838 3839 dd->dd_name = name; 3840 /* 3841 * This is (mostly) purely for show. We're not allocating any actual 3842 * descriptors here as EDMA RX has the descriptor be part 3843 * of the RX buffer. 3844 * 3845 * However, dd_desc_len is used by ath_descdma_free() to determine 3846 * whether we have already freed this DMA mapping. 3847 */ 3848 dd->dd_desc_len = rx_status_len * nbuf; 3849 dd->dd_descsize = rx_status_len; 3850 3851 /* allocate rx buffers */ 3852 bsize = sizeof(struct ath_buf) * nbuf; 3853 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3854 if (bf == NULL) { 3855 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3856 dd->dd_name, bsize); 3857 error = ENOMEM; 3858 goto fail3; 3859 } 3860 dd->dd_bufptr = bf; 3861 3862 TAILQ_INIT(head); 3863 for (i = 0; i < nbuf; i++, bf++) { 3864 bf->bf_desc = NULL; 3865 bf->bf_daddr = 0; 3866 bf->bf_lastds = NULL; /* Just an initial value */ 3867 3868 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3869 &bf->bf_dmamap); 3870 if (error != 0) { 3871 if_printf(ifp, "unable to create dmamap for %s " 3872 "buffer %u, error %u\n", dd->dd_name, i, error); 3873 ath_descdma_cleanup(sc, dd, head); 3874 return error; 3875 } 3876 TAILQ_INSERT_TAIL(head, bf, bf_list); 3877 } 3878 return 0; 3879 fail3: 3880 memset(dd, 0, sizeof(*dd)); 3881 return error; 3882 } 3883 3884 void 3885 ath_descdma_cleanup(struct ath_softc *sc, 3886 struct ath_descdma *dd, ath_bufhead *head) 3887 { 3888 struct ath_buf *bf; 3889 struct ieee80211_node *ni; 3890 int do_warning = 0; 3891 3892 if (dd->dd_dmamap != 0) { 3893 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3894 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3895 bus_dma_tag_destroy(dd->dd_dmat); 3896 } 3897 3898 if (head != NULL) { 3899 TAILQ_FOREACH(bf, head, bf_list) { 3900 if (bf->bf_m) { 3901 /* 3902 * XXX warn if there's buffers here. 3903 * XXX it should have been freed by the 3904 * owner! 3905 */ 3906 3907 if (do_warning == 0) { 3908 do_warning = 1; 3909 device_printf(sc->sc_dev, 3910 "%s: %s: mbuf should've been" 3911 " unmapped/freed!\n", 3912 __func__, 3913 dd->dd_name); 3914 } 3915 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3916 BUS_DMASYNC_POSTREAD); 3917 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3918 m_freem(bf->bf_m); 3919 bf->bf_m = NULL; 3920 } 3921 if (bf->bf_dmamap != NULL) { 3922 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3923 bf->bf_dmamap = NULL; 3924 } 3925 ni = bf->bf_node; 3926 bf->bf_node = NULL; 3927 if (ni != NULL) { 3928 /* 3929 * Reclaim node reference. 3930 */ 3931 ieee80211_free_node(ni); 3932 } 3933 } 3934 } 3935 3936 if (head != NULL) 3937 TAILQ_INIT(head); 3938 3939 if (dd->dd_bufptr != NULL) 3940 free(dd->dd_bufptr, M_ATHDEV); 3941 memset(dd, 0, sizeof(*dd)); 3942 } 3943 3944 static int 3945 ath_desc_alloc(struct ath_softc *sc) 3946 { 3947 int error; 3948 3949 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3950 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3951 if (error != 0) { 3952 return error; 3953 } 3954 sc->sc_txbuf_cnt = ath_txbuf; 3955 3956 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3957 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3958 ATH_TXDESC); 3959 if (error != 0) { 3960 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3961 return error; 3962 } 3963 3964 /* 3965 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3966 * flag doesn't have to be set in ath_getbuf_locked(). 3967 */ 3968 3969 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3970 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3971 if (error != 0) { 3972 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3973 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3974 &sc->sc_txbuf_mgmt); 3975 return error; 3976 } 3977 return 0; 3978 } 3979 3980 static void 3981 ath_desc_free(struct ath_softc *sc) 3982 { 3983 3984 if (sc->sc_bdma.dd_desc_len != 0) 3985 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3986 if (sc->sc_txdma.dd_desc_len != 0) 3987 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3988 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3989 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3990 &sc->sc_txbuf_mgmt); 3991 } 3992 3993 static struct ieee80211_node * 3994 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3995 { 3996 struct ieee80211com *ic = vap->iv_ic; 3997 struct ath_softc *sc = ic->ic_ifp->if_softc; 3998 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3999 struct ath_node *an; 4000 4001 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 4002 if (an == NULL) { 4003 /* XXX stat+msg */ 4004 return NULL; 4005 } 4006 ath_rate_node_init(sc, an); 4007 4008 /* Setup the mutex - there's no associd yet so set the name to NULL */ 4009 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 4010 device_get_nameunit(sc->sc_dev), an); 4011 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 4012 4013 /* XXX setup ath_tid */ 4014 ath_tx_tid_init(sc, an); 4015 4016 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 4017 return &an->an_node; 4018 } 4019 4020 static void 4021 ath_node_cleanup(struct ieee80211_node *ni) 4022 { 4023 struct ieee80211com *ic = ni->ni_ic; 4024 struct ath_softc *sc = ic->ic_ifp->if_softc; 4025 4026 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 4027 ni->ni_macaddr, ":", ATH_NODE(ni)); 4028 4029 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 4030 ath_tx_node_flush(sc, ATH_NODE(ni)); 4031 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 4032 sc->sc_node_cleanup(ni); 4033 } 4034 4035 static void 4036 ath_node_free(struct ieee80211_node *ni) 4037 { 4038 struct ieee80211com *ic = ni->ni_ic; 4039 struct ath_softc *sc = ic->ic_ifp->if_softc; 4040 4041 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 4042 ni->ni_macaddr, ":", ATH_NODE(ni)); 4043 mtx_destroy(&ATH_NODE(ni)->an_mtx); 4044 sc->sc_node_free(ni); 4045 } 4046 4047 static void 4048 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 4049 { 4050 struct ieee80211com *ic = ni->ni_ic; 4051 struct ath_softc *sc = ic->ic_ifp->if_softc; 4052 struct ath_hal *ah = sc->sc_ah; 4053 4054 *rssi = ic->ic_node_getrssi(ni); 4055 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 4056 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 4057 else 4058 *noise = -95; /* nominally correct */ 4059 } 4060 4061 /* 4062 * Set the default antenna. 4063 */ 4064 void 4065 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 4066 { 4067 struct ath_hal *ah = sc->sc_ah; 4068 4069 /* XXX block beacon interrupts */ 4070 ath_hal_setdefantenna(ah, antenna); 4071 if (sc->sc_defant != antenna) 4072 sc->sc_stats.ast_ant_defswitch++; 4073 sc->sc_defant = antenna; 4074 sc->sc_rxotherant = 0; 4075 } 4076 4077 static void 4078 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4079 { 4080 txq->axq_qnum = qnum; 4081 txq->axq_ac = 0; 4082 txq->axq_depth = 0; 4083 txq->axq_aggr_depth = 0; 4084 txq->axq_intrcnt = 0; 4085 txq->axq_link = NULL; 4086 txq->axq_softc = sc; 4087 TAILQ_INIT(&txq->axq_q); 4088 TAILQ_INIT(&txq->axq_tidq); 4089 TAILQ_INIT(&txq->fifo.axq_q); 4090 ATH_TXQ_LOCK_INIT(sc, txq); 4091 } 4092 4093 /* 4094 * Setup a h/w transmit queue. 4095 */ 4096 static struct ath_txq * 4097 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4098 { 4099 #define N(a) (sizeof(a)/sizeof(a[0])) 4100 struct ath_hal *ah = sc->sc_ah; 4101 HAL_TXQ_INFO qi; 4102 int qnum; 4103 4104 memset(&qi, 0, sizeof(qi)); 4105 qi.tqi_subtype = subtype; 4106 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4107 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4108 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4109 /* 4110 * Enable interrupts only for EOL and DESC conditions. 4111 * We mark tx descriptors to receive a DESC interrupt 4112 * when a tx queue gets deep; otherwise waiting for the 4113 * EOL to reap descriptors. Note that this is done to 4114 * reduce interrupt load and this only defers reaping 4115 * descriptors, never transmitting frames. Aside from 4116 * reducing interrupts this also permits more concurrency. 4117 * The only potential downside is if the tx queue backs 4118 * up in which case the top half of the kernel may backup 4119 * due to a lack of tx descriptors. 4120 */ 4121 if (sc->sc_isedma) 4122 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4123 HAL_TXQ_TXOKINT_ENABLE; 4124 else 4125 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4126 HAL_TXQ_TXDESCINT_ENABLE; 4127 4128 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4129 if (qnum == -1) { 4130 /* 4131 * NB: don't print a message, this happens 4132 * normally on parts with too few tx queues 4133 */ 4134 return NULL; 4135 } 4136 if (qnum >= N(sc->sc_txq)) { 4137 device_printf(sc->sc_dev, 4138 "hal qnum %u out of range, max %zu!\n", 4139 qnum, N(sc->sc_txq)); 4140 ath_hal_releasetxqueue(ah, qnum); 4141 return NULL; 4142 } 4143 if (!ATH_TXQ_SETUP(sc, qnum)) { 4144 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4145 sc->sc_txqsetup |= 1<<qnum; 4146 } 4147 return &sc->sc_txq[qnum]; 4148 #undef N 4149 } 4150 4151 /* 4152 * Setup a hardware data transmit queue for the specified 4153 * access control. The hal may not support all requested 4154 * queues in which case it will return a reference to a 4155 * previously setup queue. We record the mapping from ac's 4156 * to h/w queues for use by ath_tx_start and also track 4157 * the set of h/w queues being used to optimize work in the 4158 * transmit interrupt handler and related routines. 4159 */ 4160 static int 4161 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4162 { 4163 #define N(a) (sizeof(a)/sizeof(a[0])) 4164 struct ath_txq *txq; 4165 4166 if (ac >= N(sc->sc_ac2q)) { 4167 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4168 ac, N(sc->sc_ac2q)); 4169 return 0; 4170 } 4171 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4172 if (txq != NULL) { 4173 txq->axq_ac = ac; 4174 sc->sc_ac2q[ac] = txq; 4175 return 1; 4176 } else 4177 return 0; 4178 #undef N 4179 } 4180 4181 /* 4182 * Update WME parameters for a transmit queue. 4183 */ 4184 static int 4185 ath_txq_update(struct ath_softc *sc, int ac) 4186 { 4187 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4188 #define ATH_TXOP_TO_US(v) (v<<5) 4189 struct ifnet *ifp = sc->sc_ifp; 4190 struct ieee80211com *ic = ifp->if_l2com; 4191 struct ath_txq *txq = sc->sc_ac2q[ac]; 4192 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4193 struct ath_hal *ah = sc->sc_ah; 4194 HAL_TXQ_INFO qi; 4195 4196 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4197 #ifdef IEEE80211_SUPPORT_TDMA 4198 if (sc->sc_tdma) { 4199 /* 4200 * AIFS is zero so there's no pre-transmit wait. The 4201 * burst time defines the slot duration and is configured 4202 * through net80211. The QCU is setup to not do post-xmit 4203 * back off, lockout all lower-priority QCU's, and fire 4204 * off the DMA beacon alert timer which is setup based 4205 * on the slot configuration. 4206 */ 4207 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4208 | HAL_TXQ_TXERRINT_ENABLE 4209 | HAL_TXQ_TXURNINT_ENABLE 4210 | HAL_TXQ_TXEOLINT_ENABLE 4211 | HAL_TXQ_DBA_GATED 4212 | HAL_TXQ_BACKOFF_DISABLE 4213 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4214 ; 4215 qi.tqi_aifs = 0; 4216 /* XXX +dbaprep? */ 4217 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4218 qi.tqi_burstTime = qi.tqi_readyTime; 4219 } else { 4220 #endif 4221 /* 4222 * XXX shouldn't this just use the default flags 4223 * used in the previous queue setup? 4224 */ 4225 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4226 | HAL_TXQ_TXERRINT_ENABLE 4227 | HAL_TXQ_TXDESCINT_ENABLE 4228 | HAL_TXQ_TXURNINT_ENABLE 4229 | HAL_TXQ_TXEOLINT_ENABLE 4230 ; 4231 qi.tqi_aifs = wmep->wmep_aifsn; 4232 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4233 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4234 qi.tqi_readyTime = 0; 4235 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 4236 #ifdef IEEE80211_SUPPORT_TDMA 4237 } 4238 #endif 4239 4240 DPRINTF(sc, ATH_DEBUG_RESET, 4241 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4242 __func__, txq->axq_qnum, qi.tqi_qflags, 4243 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4244 4245 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4246 if_printf(ifp, "unable to update hardware queue " 4247 "parameters for %s traffic!\n", 4248 ieee80211_wme_acnames[ac]); 4249 return 0; 4250 } else { 4251 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4252 return 1; 4253 } 4254 #undef ATH_TXOP_TO_US 4255 #undef ATH_EXPONENT_TO_VALUE 4256 } 4257 4258 /* 4259 * Callback from the 802.11 layer to update WME parameters. 4260 */ 4261 int 4262 ath_wme_update(struct ieee80211com *ic) 4263 { 4264 struct ath_softc *sc = ic->ic_ifp->if_softc; 4265 4266 return !ath_txq_update(sc, WME_AC_BE) || 4267 !ath_txq_update(sc, WME_AC_BK) || 4268 !ath_txq_update(sc, WME_AC_VI) || 4269 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4270 } 4271 4272 /* 4273 * Reclaim resources for a setup queue. 4274 */ 4275 static void 4276 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4277 { 4278 4279 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4280 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4281 ATH_TXQ_LOCK_DESTROY(txq); 4282 } 4283 4284 /* 4285 * Reclaim all tx queue resources. 4286 */ 4287 static void 4288 ath_tx_cleanup(struct ath_softc *sc) 4289 { 4290 int i; 4291 4292 ATH_TXBUF_LOCK_DESTROY(sc); 4293 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4294 if (ATH_TXQ_SETUP(sc, i)) 4295 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4296 } 4297 4298 /* 4299 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4300 * using the current rates in sc_rixmap. 4301 */ 4302 int 4303 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4304 { 4305 int rix = sc->sc_rixmap[rate]; 4306 /* NB: return lowest rix for invalid rate */ 4307 return (rix == 0xff ? 0 : rix); 4308 } 4309 4310 static void 4311 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4312 struct ath_buf *bf) 4313 { 4314 struct ieee80211_node *ni = bf->bf_node; 4315 struct ifnet *ifp = sc->sc_ifp; 4316 struct ieee80211com *ic = ifp->if_l2com; 4317 int sr, lr, pri; 4318 4319 if (ts->ts_status == 0) { 4320 u_int8_t txant = ts->ts_antenna; 4321 sc->sc_stats.ast_ant_tx[txant]++; 4322 sc->sc_ant_tx[txant]++; 4323 if (ts->ts_finaltsi != 0) 4324 sc->sc_stats.ast_tx_altrate++; 4325 pri = M_WME_GETAC(bf->bf_m); 4326 if (pri >= WME_AC_VO) 4327 ic->ic_wme.wme_hipri_traffic++; 4328 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4329 ni->ni_inact = ni->ni_inact_reload; 4330 } else { 4331 if (ts->ts_status & HAL_TXERR_XRETRY) 4332 sc->sc_stats.ast_tx_xretries++; 4333 if (ts->ts_status & HAL_TXERR_FIFO) 4334 sc->sc_stats.ast_tx_fifoerr++; 4335 if (ts->ts_status & HAL_TXERR_FILT) 4336 sc->sc_stats.ast_tx_filtered++; 4337 if (ts->ts_status & HAL_TXERR_XTXOP) 4338 sc->sc_stats.ast_tx_xtxop++; 4339 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4340 sc->sc_stats.ast_tx_timerexpired++; 4341 4342 if (bf->bf_m->m_flags & M_FF) 4343 sc->sc_stats.ast_ff_txerr++; 4344 } 4345 /* XXX when is this valid? */ 4346 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4347 sc->sc_stats.ast_tx_desccfgerr++; 4348 /* 4349 * This can be valid for successful frame transmission! 4350 * If there's a TX FIFO underrun during aggregate transmission, 4351 * the MAC will pad the rest of the aggregate with delimiters. 4352 * If a BA is returned, the frame is marked as "OK" and it's up 4353 * to the TX completion code to notice which frames weren't 4354 * successfully transmitted. 4355 */ 4356 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4357 sc->sc_stats.ast_tx_data_underrun++; 4358 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4359 sc->sc_stats.ast_tx_delim_underrun++; 4360 4361 sr = ts->ts_shortretry; 4362 lr = ts->ts_longretry; 4363 sc->sc_stats.ast_tx_shortretry += sr; 4364 sc->sc_stats.ast_tx_longretry += lr; 4365 4366 } 4367 4368 /* 4369 * The default completion. If fail is 1, this means 4370 * "please don't retry the frame, and just return -1 status 4371 * to the net80211 stack. 4372 */ 4373 void 4374 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4375 { 4376 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4377 int st; 4378 4379 if (fail == 1) 4380 st = -1; 4381 else 4382 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4383 ts->ts_status : HAL_TXERR_XRETRY; 4384 4385 #if 0 4386 if (bf->bf_state.bfs_dobaw) 4387 device_printf(sc->sc_dev, 4388 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4389 __func__, 4390 bf, 4391 SEQNO(bf->bf_state.bfs_seqno)); 4392 #endif 4393 if (bf->bf_next != NULL) 4394 device_printf(sc->sc_dev, 4395 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4396 __func__, 4397 bf, 4398 SEQNO(bf->bf_state.bfs_seqno)); 4399 4400 /* 4401 * Check if the node software queue is empty; if so 4402 * then clear the TIM. 4403 * 4404 * This needs to be done before the buffer is freed as 4405 * otherwise the node reference will have been released 4406 * and the node may not actually exist any longer. 4407 * 4408 * XXX I don't like this belonging here, but it's cleaner 4409 * to do it here right now then all the other places 4410 * where ath_tx_default_comp() is called. 4411 * 4412 * XXX TODO: during drain, ensure that the callback is 4413 * being called so we get a chance to update the TIM. 4414 */ 4415 if (bf->bf_node) { 4416 ATH_TX_LOCK(sc); 4417 ath_tx_update_tim(sc, bf->bf_node, 0); 4418 ATH_TX_UNLOCK(sc); 4419 } 4420 4421 /* 4422 * Do any tx complete callback. Note this must 4423 * be done before releasing the node reference. 4424 * This will free the mbuf, release the net80211 4425 * node and recycle the ath_buf. 4426 */ 4427 ath_tx_freebuf(sc, bf, st); 4428 } 4429 4430 /* 4431 * Update rate control with the given completion status. 4432 */ 4433 void 4434 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4435 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4436 int nframes, int nbad) 4437 { 4438 struct ath_node *an; 4439 4440 /* Only for unicast frames */ 4441 if (ni == NULL) 4442 return; 4443 4444 an = ATH_NODE(ni); 4445 ATH_NODE_UNLOCK_ASSERT(an); 4446 4447 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4448 ATH_NODE_LOCK(an); 4449 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4450 ATH_NODE_UNLOCK(an); 4451 } 4452 } 4453 4454 /* 4455 * Process the completion of the given buffer. 4456 * 4457 * This calls the rate control update and then the buffer completion. 4458 * This will either free the buffer or requeue it. In any case, the 4459 * bf pointer should be treated as invalid after this function is called. 4460 */ 4461 void 4462 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4463 struct ath_tx_status *ts, struct ath_buf *bf) 4464 { 4465 struct ieee80211_node *ni = bf->bf_node; 4466 4467 ATH_TX_UNLOCK_ASSERT(sc); 4468 ATH_TXQ_UNLOCK_ASSERT(txq); 4469 4470 /* If unicast frame, update general statistics */ 4471 if (ni != NULL) { 4472 /* update statistics */ 4473 ath_tx_update_stats(sc, ts, bf); 4474 } 4475 4476 /* 4477 * Call the completion handler. 4478 * The completion handler is responsible for 4479 * calling the rate control code. 4480 * 4481 * Frames with no completion handler get the 4482 * rate control code called here. 4483 */ 4484 if (bf->bf_comp == NULL) { 4485 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4486 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4487 /* 4488 * XXX assume this isn't an aggregate 4489 * frame. 4490 */ 4491 ath_tx_update_ratectrl(sc, ni, 4492 bf->bf_state.bfs_rc, ts, 4493 bf->bf_state.bfs_pktlen, 1, 4494 (ts->ts_status == 0 ? 0 : 1)); 4495 } 4496 ath_tx_default_comp(sc, bf, 0); 4497 } else 4498 bf->bf_comp(sc, bf, 0); 4499 } 4500 4501 4502 4503 /* 4504 * Process completed xmit descriptors from the specified queue. 4505 * Kick the packet scheduler if needed. This can occur from this 4506 * particular task. 4507 */ 4508 static int 4509 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4510 { 4511 struct ath_hal *ah = sc->sc_ah; 4512 struct ath_buf *bf; 4513 struct ath_desc *ds; 4514 struct ath_tx_status *ts; 4515 struct ieee80211_node *ni; 4516 #ifdef IEEE80211_SUPPORT_SUPERG 4517 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4518 #endif /* IEEE80211_SUPPORT_SUPERG */ 4519 int nacked; 4520 HAL_STATUS status; 4521 4522 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4523 __func__, txq->axq_qnum, 4524 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4525 txq->axq_link); 4526 4527 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4528 "ath_tx_processq: txq=%u head %p link %p depth %p", 4529 txq->axq_qnum, 4530 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4531 txq->axq_link, 4532 txq->axq_depth); 4533 4534 nacked = 0; 4535 for (;;) { 4536 ATH_TXQ_LOCK(txq); 4537 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4538 bf = TAILQ_FIRST(&txq->axq_q); 4539 if (bf == NULL) { 4540 ATH_TXQ_UNLOCK(txq); 4541 break; 4542 } 4543 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4544 ts = &bf->bf_status.ds_txstat; 4545 4546 status = ath_hal_txprocdesc(ah, ds, ts); 4547 #ifdef ATH_DEBUG 4548 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4549 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4550 status == HAL_OK); 4551 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4552 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4553 status == HAL_OK); 4554 #endif 4555 #ifdef ATH_DEBUG_ALQ 4556 if (if_ath_alq_checkdebug(&sc->sc_alq, 4557 ATH_ALQ_EDMA_TXSTATUS)) { 4558 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4559 sc->sc_tx_statuslen, 4560 (char *) ds); 4561 } 4562 #endif 4563 4564 if (status == HAL_EINPROGRESS) { 4565 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4566 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4567 txq->axq_qnum, bf, ds); 4568 ATH_TXQ_UNLOCK(txq); 4569 break; 4570 } 4571 ATH_TXQ_REMOVE(txq, bf, bf_list); 4572 4573 /* 4574 * Sanity check. 4575 */ 4576 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4577 device_printf(sc->sc_dev, 4578 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4579 __func__, 4580 txq->axq_qnum, 4581 bf, 4582 bf->bf_state.bfs_tx_queue); 4583 } 4584 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4585 device_printf(sc->sc_dev, 4586 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4587 __func__, 4588 txq->axq_qnum, 4589 bf->bf_last, 4590 bf->bf_last->bf_state.bfs_tx_queue); 4591 } 4592 4593 #if 0 4594 if (txq->axq_depth > 0) { 4595 /* 4596 * More frames follow. Mark the buffer busy 4597 * so it's not re-used while the hardware may 4598 * still re-read the link field in the descriptor. 4599 * 4600 * Use the last buffer in an aggregate as that 4601 * is where the hardware may be - intermediate 4602 * descriptors won't be "busy". 4603 */ 4604 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4605 } else 4606 txq->axq_link = NULL; 4607 #else 4608 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4609 #endif 4610 if (bf->bf_state.bfs_aggr) 4611 txq->axq_aggr_depth--; 4612 4613 ni = bf->bf_node; 4614 4615 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4616 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4617 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4618 /* 4619 * If unicast frame was ack'd update RSSI, 4620 * including the last rx time used to 4621 * workaround phantom bmiss interrupts. 4622 */ 4623 if (ni != NULL && ts->ts_status == 0 && 4624 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4625 nacked++; 4626 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4627 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4628 ts->ts_rssi); 4629 } 4630 ATH_TXQ_UNLOCK(txq); 4631 4632 /* 4633 * Update statistics and call completion 4634 */ 4635 ath_tx_process_buf_completion(sc, txq, ts, bf); 4636 4637 /* XXX at this point, bf and ni may be totally invalid */ 4638 } 4639 #ifdef IEEE80211_SUPPORT_SUPERG 4640 /* 4641 * Flush fast-frame staging queue when traffic slows. 4642 */ 4643 if (txq->axq_depth <= 1) 4644 ieee80211_ff_flush(ic, txq->axq_ac); 4645 #endif 4646 4647 /* Kick the software TXQ scheduler */ 4648 if (dosched) { 4649 ATH_TX_LOCK(sc); 4650 ath_txq_sched(sc, txq); 4651 ATH_TX_UNLOCK(sc); 4652 } 4653 4654 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4655 "ath_tx_processq: txq=%u: done", 4656 txq->axq_qnum); 4657 4658 return nacked; 4659 } 4660 4661 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4662 4663 /* 4664 * Deferred processing of transmit interrupt; special-cased 4665 * for a single hardware transmit queue (e.g. 5210 and 5211). 4666 */ 4667 static void 4668 ath_tx_proc_q0(void *arg, int npending) 4669 { 4670 struct ath_softc *sc = arg; 4671 struct ifnet *ifp = sc->sc_ifp; 4672 uint32_t txqs; 4673 4674 ATH_PCU_LOCK(sc); 4675 sc->sc_txproc_cnt++; 4676 txqs = sc->sc_txq_active; 4677 sc->sc_txq_active &= ~txqs; 4678 ATH_PCU_UNLOCK(sc); 4679 4680 ATH_LOCK(sc); 4681 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4682 ATH_UNLOCK(sc); 4683 4684 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4685 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4686 4687 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4688 /* XXX why is lastrx updated in tx code? */ 4689 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4690 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4691 ath_tx_processq(sc, sc->sc_cabq, 1); 4692 IF_LOCK(&ifp->if_snd); 4693 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4694 IF_UNLOCK(&ifp->if_snd); 4695 sc->sc_wd_timer = 0; 4696 4697 if (sc->sc_softled) 4698 ath_led_event(sc, sc->sc_txrix); 4699 4700 ATH_PCU_LOCK(sc); 4701 sc->sc_txproc_cnt--; 4702 ATH_PCU_UNLOCK(sc); 4703 4704 ATH_LOCK(sc); 4705 ath_power_restore_power_state(sc); 4706 ATH_UNLOCK(sc); 4707 4708 ath_tx_kick(sc); 4709 } 4710 4711 /* 4712 * Deferred processing of transmit interrupt; special-cased 4713 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4714 */ 4715 static void 4716 ath_tx_proc_q0123(void *arg, int npending) 4717 { 4718 struct ath_softc *sc = arg; 4719 struct ifnet *ifp = sc->sc_ifp; 4720 int nacked; 4721 uint32_t txqs; 4722 4723 ATH_PCU_LOCK(sc); 4724 sc->sc_txproc_cnt++; 4725 txqs = sc->sc_txq_active; 4726 sc->sc_txq_active &= ~txqs; 4727 ATH_PCU_UNLOCK(sc); 4728 4729 ATH_LOCK(sc); 4730 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4731 ATH_UNLOCK(sc); 4732 4733 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4734 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4735 4736 /* 4737 * Process each active queue. 4738 */ 4739 nacked = 0; 4740 if (TXQACTIVE(txqs, 0)) 4741 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4742 if (TXQACTIVE(txqs, 1)) 4743 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4744 if (TXQACTIVE(txqs, 2)) 4745 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4746 if (TXQACTIVE(txqs, 3)) 4747 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4748 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4749 ath_tx_processq(sc, sc->sc_cabq, 1); 4750 if (nacked) 4751 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4752 4753 IF_LOCK(&ifp->if_snd); 4754 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4755 IF_UNLOCK(&ifp->if_snd); 4756 sc->sc_wd_timer = 0; 4757 4758 if (sc->sc_softled) 4759 ath_led_event(sc, sc->sc_txrix); 4760 4761 ATH_PCU_LOCK(sc); 4762 sc->sc_txproc_cnt--; 4763 ATH_PCU_UNLOCK(sc); 4764 4765 ATH_LOCK(sc); 4766 ath_power_restore_power_state(sc); 4767 ATH_UNLOCK(sc); 4768 4769 ath_tx_kick(sc); 4770 } 4771 4772 /* 4773 * Deferred processing of transmit interrupt. 4774 */ 4775 static void 4776 ath_tx_proc(void *arg, int npending) 4777 { 4778 struct ath_softc *sc = arg; 4779 struct ifnet *ifp = sc->sc_ifp; 4780 int i, nacked; 4781 uint32_t txqs; 4782 4783 ATH_PCU_LOCK(sc); 4784 sc->sc_txproc_cnt++; 4785 txqs = sc->sc_txq_active; 4786 sc->sc_txq_active &= ~txqs; 4787 ATH_PCU_UNLOCK(sc); 4788 4789 ATH_LOCK(sc); 4790 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4791 ATH_UNLOCK(sc); 4792 4793 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4794 4795 /* 4796 * Process each active queue. 4797 */ 4798 nacked = 0; 4799 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4800 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4801 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4802 if (nacked) 4803 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4804 4805 /* XXX check this inside of IF_LOCK? */ 4806 IF_LOCK(&ifp->if_snd); 4807 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4808 IF_UNLOCK(&ifp->if_snd); 4809 sc->sc_wd_timer = 0; 4810 4811 if (sc->sc_softled) 4812 ath_led_event(sc, sc->sc_txrix); 4813 4814 ATH_PCU_LOCK(sc); 4815 sc->sc_txproc_cnt--; 4816 ATH_PCU_UNLOCK(sc); 4817 4818 ATH_LOCK(sc); 4819 ath_power_restore_power_state(sc); 4820 ATH_UNLOCK(sc); 4821 4822 ath_tx_kick(sc); 4823 } 4824 #undef TXQACTIVE 4825 4826 /* 4827 * Deferred processing of TXQ rescheduling. 4828 */ 4829 static void 4830 ath_txq_sched_tasklet(void *arg, int npending) 4831 { 4832 struct ath_softc *sc = arg; 4833 int i; 4834 4835 /* XXX is skipping ok? */ 4836 ATH_PCU_LOCK(sc); 4837 #if 0 4838 if (sc->sc_inreset_cnt > 0) { 4839 device_printf(sc->sc_dev, 4840 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4841 ATH_PCU_UNLOCK(sc); 4842 return; 4843 } 4844 #endif 4845 sc->sc_txproc_cnt++; 4846 ATH_PCU_UNLOCK(sc); 4847 4848 ATH_LOCK(sc); 4849 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4850 ATH_UNLOCK(sc); 4851 4852 ATH_TX_LOCK(sc); 4853 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4854 if (ATH_TXQ_SETUP(sc, i)) { 4855 ath_txq_sched(sc, &sc->sc_txq[i]); 4856 } 4857 } 4858 ATH_TX_UNLOCK(sc); 4859 4860 ATH_LOCK(sc); 4861 ath_power_restore_power_state(sc); 4862 ATH_UNLOCK(sc); 4863 4864 ATH_PCU_LOCK(sc); 4865 sc->sc_txproc_cnt--; 4866 ATH_PCU_UNLOCK(sc); 4867 } 4868 4869 void 4870 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4871 { 4872 4873 ATH_TXBUF_LOCK_ASSERT(sc); 4874 4875 if (bf->bf_flags & ATH_BUF_MGMT) 4876 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4877 else { 4878 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4879 sc->sc_txbuf_cnt++; 4880 if (sc->sc_txbuf_cnt > ath_txbuf) { 4881 device_printf(sc->sc_dev, 4882 "%s: sc_txbuf_cnt > %d?\n", 4883 __func__, 4884 ath_txbuf); 4885 sc->sc_txbuf_cnt = ath_txbuf; 4886 } 4887 } 4888 } 4889 4890 void 4891 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4892 { 4893 4894 ATH_TXBUF_LOCK_ASSERT(sc); 4895 4896 if (bf->bf_flags & ATH_BUF_MGMT) 4897 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4898 else { 4899 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4900 sc->sc_txbuf_cnt++; 4901 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4902 device_printf(sc->sc_dev, 4903 "%s: sc_txbuf_cnt > %d?\n", 4904 __func__, 4905 ATH_TXBUF); 4906 sc->sc_txbuf_cnt = ATH_TXBUF; 4907 } 4908 } 4909 } 4910 4911 /* 4912 * Free the holding buffer if it exists 4913 */ 4914 void 4915 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4916 { 4917 ATH_TXBUF_UNLOCK_ASSERT(sc); 4918 ATH_TXQ_LOCK_ASSERT(txq); 4919 4920 if (txq->axq_holdingbf == NULL) 4921 return; 4922 4923 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4924 4925 ATH_TXBUF_LOCK(sc); 4926 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4927 ATH_TXBUF_UNLOCK(sc); 4928 4929 txq->axq_holdingbf = NULL; 4930 } 4931 4932 /* 4933 * Add this buffer to the holding queue, freeing the previous 4934 * one if it exists. 4935 */ 4936 static void 4937 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4938 { 4939 struct ath_txq *txq; 4940 4941 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4942 4943 ATH_TXBUF_UNLOCK_ASSERT(sc); 4944 ATH_TXQ_LOCK_ASSERT(txq); 4945 4946 /* XXX assert ATH_BUF_BUSY is set */ 4947 4948 /* XXX assert the tx queue is under the max number */ 4949 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4950 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4951 __func__, 4952 bf, 4953 bf->bf_state.bfs_tx_queue); 4954 bf->bf_flags &= ~ATH_BUF_BUSY; 4955 ath_returnbuf_tail(sc, bf); 4956 return; 4957 } 4958 ath_txq_freeholdingbuf(sc, txq); 4959 txq->axq_holdingbf = bf; 4960 } 4961 4962 /* 4963 * Return a buffer to the pool and update the 'busy' flag on the 4964 * previous 'tail' entry. 4965 * 4966 * This _must_ only be called when the buffer is involved in a completed 4967 * TX. The logic is that if it was part of an active TX, the previous 4968 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4969 * for restart (eg for TDMA.) 4970 * 4971 * The caller must free the mbuf and recycle the node reference. 4972 * 4973 * XXX This method of handling busy / holding buffers is insanely stupid. 4974 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4975 * be much nicer if buffers in the processq() methods would instead be 4976 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4977 * exactly what hardware queue they came from in the first place. 4978 */ 4979 void 4980 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4981 { 4982 struct ath_txq *txq; 4983 4984 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4985 4986 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4987 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4988 4989 /* 4990 * If this buffer is busy, push it onto the holding queue. 4991 */ 4992 if (bf->bf_flags & ATH_BUF_BUSY) { 4993 ATH_TXQ_LOCK(txq); 4994 ath_txq_addholdingbuf(sc, bf); 4995 ATH_TXQ_UNLOCK(txq); 4996 return; 4997 } 4998 4999 /* 5000 * Not a busy buffer, so free normally 5001 */ 5002 ATH_TXBUF_LOCK(sc); 5003 ath_returnbuf_tail(sc, bf); 5004 ATH_TXBUF_UNLOCK(sc); 5005 } 5006 5007 /* 5008 * This is currently used by ath_tx_draintxq() and 5009 * ath_tx_tid_free_pkts(). 5010 * 5011 * It recycles a single ath_buf. 5012 */ 5013 void 5014 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 5015 { 5016 struct ieee80211_node *ni = bf->bf_node; 5017 struct mbuf *m0 = bf->bf_m; 5018 5019 /* 5020 * Make sure that we only sync/unload if there's an mbuf. 5021 * If not (eg we cloned a buffer), the unload will have already 5022 * occured. 5023 */ 5024 if (bf->bf_m != NULL) { 5025 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 5026 BUS_DMASYNC_POSTWRITE); 5027 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 5028 } 5029 5030 bf->bf_node = NULL; 5031 bf->bf_m = NULL; 5032 5033 /* Free the buffer, it's not needed any longer */ 5034 ath_freebuf(sc, bf); 5035 5036 /* Pass the buffer back to net80211 - completing it */ 5037 ieee80211_tx_complete(ni, m0, status); 5038 } 5039 5040 static struct ath_buf * 5041 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 5042 { 5043 struct ath_buf *bf; 5044 5045 ATH_TXQ_LOCK_ASSERT(txq); 5046 5047 /* 5048 * Drain the FIFO queue first, then if it's 5049 * empty, move to the normal frame queue. 5050 */ 5051 bf = TAILQ_FIRST(&txq->fifo.axq_q); 5052 if (bf != NULL) { 5053 /* 5054 * Is it the last buffer in this set? 5055 * Decrement the FIFO counter. 5056 */ 5057 if (bf->bf_flags & ATH_BUF_FIFOEND) { 5058 if (txq->axq_fifo_depth == 0) { 5059 device_printf(sc->sc_dev, 5060 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 5061 __func__, 5062 txq->axq_qnum, 5063 txq->fifo.axq_depth); 5064 } else 5065 txq->axq_fifo_depth--; 5066 } 5067 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 5068 return (bf); 5069 } 5070 5071 /* 5072 * Debugging! 5073 */ 5074 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 5075 device_printf(sc->sc_dev, 5076 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 5077 __func__, 5078 txq->axq_qnum, 5079 txq->axq_fifo_depth, 5080 txq->fifo.axq_depth); 5081 } 5082 5083 /* 5084 * Now drain the pending queue. 5085 */ 5086 bf = TAILQ_FIRST(&txq->axq_q); 5087 if (bf == NULL) { 5088 txq->axq_link = NULL; 5089 return (NULL); 5090 } 5091 ATH_TXQ_REMOVE(txq, bf, bf_list); 5092 return (bf); 5093 } 5094 5095 void 5096 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5097 { 5098 #ifdef ATH_DEBUG 5099 struct ath_hal *ah = sc->sc_ah; 5100 #endif 5101 struct ath_buf *bf; 5102 u_int ix; 5103 5104 /* 5105 * NB: this assumes output has been stopped and 5106 * we do not need to block ath_tx_proc 5107 */ 5108 for (ix = 0;; ix++) { 5109 ATH_TXQ_LOCK(txq); 5110 bf = ath_tx_draintxq_get_one(sc, txq); 5111 if (bf == NULL) { 5112 ATH_TXQ_UNLOCK(txq); 5113 break; 5114 } 5115 if (bf->bf_state.bfs_aggr) 5116 txq->axq_aggr_depth--; 5117 #ifdef ATH_DEBUG 5118 if (sc->sc_debug & ATH_DEBUG_RESET) { 5119 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5120 int status = 0; 5121 5122 /* 5123 * EDMA operation has a TX completion FIFO 5124 * separate from the TX descriptor, so this 5125 * method of checking the "completion" status 5126 * is wrong. 5127 */ 5128 if (! sc->sc_isedma) { 5129 status = (ath_hal_txprocdesc(ah, 5130 bf->bf_lastds, 5131 &bf->bf_status.ds_txstat) == HAL_OK); 5132 } 5133 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 5134 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5135 bf->bf_m->m_len, 0, -1); 5136 } 5137 #endif /* ATH_DEBUG */ 5138 /* 5139 * Since we're now doing magic in the completion 5140 * functions, we -must- call it for aggregation 5141 * destinations or BAW tracking will get upset. 5142 */ 5143 /* 5144 * Clear ATH_BUF_BUSY; the completion handler 5145 * will free the buffer. 5146 */ 5147 ATH_TXQ_UNLOCK(txq); 5148 bf->bf_flags &= ~ATH_BUF_BUSY; 5149 if (bf->bf_comp) 5150 bf->bf_comp(sc, bf, 1); 5151 else 5152 ath_tx_default_comp(sc, bf, 1); 5153 } 5154 5155 /* 5156 * Free the holding buffer if it exists 5157 */ 5158 ATH_TXQ_LOCK(txq); 5159 ath_txq_freeholdingbuf(sc, txq); 5160 ATH_TXQ_UNLOCK(txq); 5161 5162 /* 5163 * Drain software queued frames which are on 5164 * active TIDs. 5165 */ 5166 ath_tx_txq_drain(sc, txq); 5167 } 5168 5169 static void 5170 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5171 { 5172 struct ath_hal *ah = sc->sc_ah; 5173 5174 ATH_TXQ_LOCK_ASSERT(txq); 5175 5176 DPRINTF(sc, ATH_DEBUG_RESET, 5177 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 5178 "link %p, holdingbf=%p\n", 5179 __func__, 5180 txq->axq_qnum, 5181 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5182 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 5183 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 5184 txq->axq_flags, 5185 txq->axq_link, 5186 txq->axq_holdingbf); 5187 5188 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5189 /* We've stopped TX DMA, so mark this as stopped. */ 5190 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 5191 5192 #ifdef ATH_DEBUG 5193 if ((sc->sc_debug & ATH_DEBUG_RESET) 5194 && (txq->axq_holdingbf != NULL)) { 5195 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 5196 } 5197 #endif 5198 } 5199 5200 int 5201 ath_stoptxdma(struct ath_softc *sc) 5202 { 5203 struct ath_hal *ah = sc->sc_ah; 5204 int i; 5205 5206 /* XXX return value */ 5207 if (sc->sc_invalid) 5208 return 0; 5209 5210 if (!sc->sc_invalid) { 5211 /* don't touch the hardware if marked invalid */ 5212 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5213 __func__, sc->sc_bhalq, 5214 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5215 NULL); 5216 5217 /* stop the beacon queue */ 5218 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5219 5220 /* Stop the data queues */ 5221 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5222 if (ATH_TXQ_SETUP(sc, i)) { 5223 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5224 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5225 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5226 } 5227 } 5228 } 5229 5230 return 1; 5231 } 5232 5233 #ifdef ATH_DEBUG 5234 void 5235 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 5236 { 5237 struct ath_hal *ah = sc->sc_ah; 5238 struct ath_buf *bf; 5239 int i = 0; 5240 5241 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 5242 return; 5243 5244 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 5245 __func__, txq->axq_qnum); 5246 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 5247 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 5248 ath_hal_txprocdesc(ah, bf->bf_lastds, 5249 &bf->bf_status.ds_txstat) == HAL_OK); 5250 i++; 5251 } 5252 device_printf(sc->sc_dev, "%s: Q%d: end\n", 5253 __func__, txq->axq_qnum); 5254 } 5255 #endif /* ATH_DEBUG */ 5256 5257 /* 5258 * Drain the transmit queues and reclaim resources. 5259 */ 5260 void 5261 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5262 { 5263 struct ath_hal *ah = sc->sc_ah; 5264 struct ifnet *ifp = sc->sc_ifp; 5265 int i; 5266 struct ath_buf *bf_last; 5267 5268 (void) ath_stoptxdma(sc); 5269 5270 /* 5271 * Dump the queue contents 5272 */ 5273 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5274 /* 5275 * XXX TODO: should we just handle the completed TX frames 5276 * here, whether or not the reset is a full one or not? 5277 */ 5278 if (ATH_TXQ_SETUP(sc, i)) { 5279 #ifdef ATH_DEBUG 5280 if (sc->sc_debug & ATH_DEBUG_RESET) 5281 ath_tx_dump(sc, &sc->sc_txq[i]); 5282 #endif /* ATH_DEBUG */ 5283 if (reset_type == ATH_RESET_NOLOSS) { 5284 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5285 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5286 /* 5287 * Free the holding buffer; DMA is now 5288 * stopped. 5289 */ 5290 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 5291 /* 5292 * Setup the link pointer to be the 5293 * _last_ buffer/descriptor in the list. 5294 * If there's nothing in the list, set it 5295 * to NULL. 5296 */ 5297 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5298 axq_q_s); 5299 if (bf_last != NULL) { 5300 ath_hal_gettxdesclinkptr(ah, 5301 bf_last->bf_lastds, 5302 &sc->sc_txq[i].axq_link); 5303 } else { 5304 sc->sc_txq[i].axq_link = NULL; 5305 } 5306 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5307 } else 5308 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5309 } 5310 } 5311 #ifdef ATH_DEBUG 5312 if (sc->sc_debug & ATH_DEBUG_RESET) { 5313 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5314 if (bf != NULL && bf->bf_m != NULL) { 5315 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5316 ath_hal_txprocdesc(ah, bf->bf_lastds, 5317 &bf->bf_status.ds_txstat) == HAL_OK); 5318 ieee80211_dump_pkt(ifp->if_l2com, 5319 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5320 0, -1); 5321 } 5322 } 5323 #endif /* ATH_DEBUG */ 5324 IF_LOCK(&ifp->if_snd); 5325 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5326 IF_UNLOCK(&ifp->if_snd); 5327 sc->sc_wd_timer = 0; 5328 } 5329 5330 /* 5331 * Update internal state after a channel change. 5332 */ 5333 static void 5334 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5335 { 5336 enum ieee80211_phymode mode; 5337 5338 /* 5339 * Change channels and update the h/w rate map 5340 * if we're switching; e.g. 11a to 11b/g. 5341 */ 5342 mode = ieee80211_chan2mode(chan); 5343 if (mode != sc->sc_curmode) 5344 ath_setcurmode(sc, mode); 5345 sc->sc_curchan = chan; 5346 } 5347 5348 /* 5349 * Set/change channels. If the channel is really being changed, 5350 * it's done by resetting the chip. To accomplish this we must 5351 * first cleanup any pending DMA, then restart stuff after a la 5352 * ath_init. 5353 */ 5354 static int 5355 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5356 { 5357 struct ifnet *ifp = sc->sc_ifp; 5358 struct ieee80211com *ic = ifp->if_l2com; 5359 struct ath_hal *ah = sc->sc_ah; 5360 int ret = 0; 5361 5362 /* Treat this as an interface reset */ 5363 ATH_PCU_UNLOCK_ASSERT(sc); 5364 ATH_UNLOCK_ASSERT(sc); 5365 5366 /* (Try to) stop TX/RX from occuring */ 5367 taskqueue_block(sc->sc_tq); 5368 5369 ATH_PCU_LOCK(sc); 5370 5371 /* Disable interrupts */ 5372 ath_hal_intrset(ah, 0); 5373 5374 /* Stop new RX/TX/interrupt completion */ 5375 if (ath_reset_grablock(sc, 1) == 0) { 5376 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5377 __func__); 5378 } 5379 5380 /* Stop pending RX/TX completion */ 5381 ath_txrx_stop_locked(sc); 5382 5383 ATH_PCU_UNLOCK(sc); 5384 5385 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5386 __func__, ieee80211_chan2ieee(ic, chan), 5387 chan->ic_freq, chan->ic_flags); 5388 if (chan != sc->sc_curchan) { 5389 HAL_STATUS status; 5390 /* 5391 * To switch channels clear any pending DMA operations; 5392 * wait long enough for the RX fifo to drain, reset the 5393 * hardware at the new frequency, and then re-enable 5394 * the relevant bits of the h/w. 5395 */ 5396 #if 0 5397 ath_hal_intrset(ah, 0); /* disable interrupts */ 5398 #endif 5399 ath_stoprecv(sc, 1); /* turn off frame recv */ 5400 /* 5401 * First, handle completed TX/RX frames. 5402 */ 5403 ath_rx_flush(sc); 5404 ath_draintxq(sc, ATH_RESET_NOLOSS); 5405 /* 5406 * Next, flush the non-scheduled frames. 5407 */ 5408 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5409 5410 ath_update_chainmasks(sc, chan); 5411 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5412 sc->sc_cur_rxchainmask); 5413 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 5414 if_printf(ifp, "%s: unable to reset " 5415 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5416 __func__, ieee80211_chan2ieee(ic, chan), 5417 chan->ic_freq, chan->ic_flags, status); 5418 ret = EIO; 5419 goto finish; 5420 } 5421 sc->sc_diversity = ath_hal_getdiversity(ah); 5422 5423 ATH_RX_LOCK(sc); 5424 sc->sc_rx_stopped = 1; 5425 sc->sc_rx_resetted = 1; 5426 ATH_RX_UNLOCK(sc); 5427 5428 /* Let DFS at it in case it's a DFS channel */ 5429 ath_dfs_radar_enable(sc, chan); 5430 5431 /* Let spectral at in case spectral is enabled */ 5432 ath_spectral_enable(sc, chan); 5433 5434 /* 5435 * Let bluetooth coexistence at in case it's needed for this 5436 * channel 5437 */ 5438 ath_btcoex_enable(sc, ic->ic_curchan); 5439 5440 /* 5441 * If we're doing TDMA, enforce the TXOP limitation for chips 5442 * that support it. 5443 */ 5444 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5445 ath_hal_setenforcetxop(sc->sc_ah, 1); 5446 else 5447 ath_hal_setenforcetxop(sc->sc_ah, 0); 5448 5449 /* 5450 * Re-enable rx framework. 5451 */ 5452 if (ath_startrecv(sc) != 0) { 5453 if_printf(ifp, "%s: unable to restart recv logic\n", 5454 __func__); 5455 ret = EIO; 5456 goto finish; 5457 } 5458 5459 /* 5460 * Change channels and update the h/w rate map 5461 * if we're switching; e.g. 11a to 11b/g. 5462 */ 5463 ath_chan_change(sc, chan); 5464 5465 /* 5466 * Reset clears the beacon timers; reset them 5467 * here if needed. 5468 */ 5469 if (sc->sc_beacons) { /* restart beacons */ 5470 #ifdef IEEE80211_SUPPORT_TDMA 5471 if (sc->sc_tdma) 5472 ath_tdma_config(sc, NULL); 5473 else 5474 #endif 5475 ath_beacon_config(sc, NULL); 5476 } 5477 5478 /* 5479 * Re-enable interrupts. 5480 */ 5481 #if 0 5482 ath_hal_intrset(ah, sc->sc_imask); 5483 #endif 5484 } 5485 5486 finish: 5487 ATH_PCU_LOCK(sc); 5488 sc->sc_inreset_cnt--; 5489 /* XXX only do this if sc_inreset_cnt == 0? */ 5490 ath_hal_intrset(ah, sc->sc_imask); 5491 ATH_PCU_UNLOCK(sc); 5492 5493 IF_LOCK(&ifp->if_snd); 5494 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5495 IF_UNLOCK(&ifp->if_snd); 5496 ath_txrx_start(sc); 5497 /* XXX ath_start? */ 5498 5499 return ret; 5500 } 5501 5502 /* 5503 * Periodically recalibrate the PHY to account 5504 * for temperature/environment changes. 5505 */ 5506 static void 5507 ath_calibrate(void *arg) 5508 { 5509 struct ath_softc *sc = arg; 5510 struct ath_hal *ah = sc->sc_ah; 5511 struct ifnet *ifp = sc->sc_ifp; 5512 struct ieee80211com *ic = ifp->if_l2com; 5513 HAL_BOOL longCal, isCalDone = AH_TRUE; 5514 HAL_BOOL aniCal, shortCal = AH_FALSE; 5515 int nextcal; 5516 5517 /* 5518 * Force the hardware awake for ANI work. 5519 */ 5520 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5521 5522 /* Skip trying to do this if we're in reset */ 5523 if (sc->sc_inreset_cnt) 5524 goto restart; 5525 5526 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5527 goto restart; 5528 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5529 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5530 if (sc->sc_doresetcal) 5531 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5532 5533 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5534 if (aniCal) { 5535 sc->sc_stats.ast_ani_cal++; 5536 sc->sc_lastani = ticks; 5537 ath_hal_ani_poll(ah, sc->sc_curchan); 5538 } 5539 5540 if (longCal) { 5541 sc->sc_stats.ast_per_cal++; 5542 sc->sc_lastlongcal = ticks; 5543 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5544 /* 5545 * Rfgain is out of bounds, reset the chip 5546 * to load new gain values. 5547 */ 5548 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5549 "%s: rfgain change\n", __func__); 5550 sc->sc_stats.ast_per_rfgain++; 5551 sc->sc_resetcal = 0; 5552 sc->sc_doresetcal = AH_TRUE; 5553 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5554 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5555 ath_power_restore_power_state(sc); 5556 return; 5557 } 5558 /* 5559 * If this long cal is after an idle period, then 5560 * reset the data collection state so we start fresh. 5561 */ 5562 if (sc->sc_resetcal) { 5563 (void) ath_hal_calreset(ah, sc->sc_curchan); 5564 sc->sc_lastcalreset = ticks; 5565 sc->sc_lastshortcal = ticks; 5566 sc->sc_resetcal = 0; 5567 sc->sc_doresetcal = AH_TRUE; 5568 } 5569 } 5570 5571 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5572 if (shortCal || longCal) { 5573 isCalDone = AH_FALSE; 5574 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5575 if (longCal) { 5576 /* 5577 * Calibrate noise floor data again in case of change. 5578 */ 5579 ath_hal_process_noisefloor(ah); 5580 } 5581 } else { 5582 DPRINTF(sc, ATH_DEBUG_ANY, 5583 "%s: calibration of channel %u failed\n", 5584 __func__, sc->sc_curchan->ic_freq); 5585 sc->sc_stats.ast_per_calfail++; 5586 } 5587 if (shortCal) 5588 sc->sc_lastshortcal = ticks; 5589 } 5590 if (!isCalDone) { 5591 restart: 5592 /* 5593 * Use a shorter interval to potentially collect multiple 5594 * data samples required to complete calibration. Once 5595 * we're told the work is done we drop back to a longer 5596 * interval between requests. We're more aggressive doing 5597 * work when operating as an AP to improve operation right 5598 * after startup. 5599 */ 5600 sc->sc_lastshortcal = ticks; 5601 nextcal = ath_shortcalinterval*hz/1000; 5602 if (sc->sc_opmode != HAL_M_HOSTAP) 5603 nextcal *= 10; 5604 sc->sc_doresetcal = AH_TRUE; 5605 } else { 5606 /* nextcal should be the shortest time for next event */ 5607 nextcal = ath_longcalinterval*hz; 5608 if (sc->sc_lastcalreset == 0) 5609 sc->sc_lastcalreset = sc->sc_lastlongcal; 5610 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5611 sc->sc_resetcal = 1; /* setup reset next trip */ 5612 sc->sc_doresetcal = AH_FALSE; 5613 } 5614 /* ANI calibration may occur more often than short/long/resetcal */ 5615 if (ath_anicalinterval > 0) 5616 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5617 5618 if (nextcal != 0) { 5619 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5620 __func__, nextcal, isCalDone ? "" : "!"); 5621 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5622 } else { 5623 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5624 __func__); 5625 /* NB: don't rearm timer */ 5626 } 5627 /* 5628 * Restore power state now that we're done. 5629 */ 5630 ath_power_restore_power_state(sc); 5631 } 5632 5633 static void 5634 ath_scan_start(struct ieee80211com *ic) 5635 { 5636 struct ifnet *ifp = ic->ic_ifp; 5637 struct ath_softc *sc = ifp->if_softc; 5638 struct ath_hal *ah = sc->sc_ah; 5639 u_int32_t rfilt; 5640 5641 /* XXX calibration timer? */ 5642 5643 ATH_LOCK(sc); 5644 sc->sc_scanning = 1; 5645 sc->sc_syncbeacon = 0; 5646 rfilt = ath_calcrxfilter(sc); 5647 ATH_UNLOCK(sc); 5648 5649 ATH_PCU_LOCK(sc); 5650 ath_hal_setrxfilter(ah, rfilt); 5651 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5652 ATH_PCU_UNLOCK(sc); 5653 5654 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5655 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5656 } 5657 5658 static void 5659 ath_scan_end(struct ieee80211com *ic) 5660 { 5661 struct ifnet *ifp = ic->ic_ifp; 5662 struct ath_softc *sc = ifp->if_softc; 5663 struct ath_hal *ah = sc->sc_ah; 5664 u_int32_t rfilt; 5665 5666 ATH_LOCK(sc); 5667 sc->sc_scanning = 0; 5668 rfilt = ath_calcrxfilter(sc); 5669 ATH_UNLOCK(sc); 5670 5671 ATH_PCU_LOCK(sc); 5672 ath_hal_setrxfilter(ah, rfilt); 5673 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5674 5675 ath_hal_process_noisefloor(ah); 5676 ATH_PCU_UNLOCK(sc); 5677 5678 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5679 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5680 sc->sc_curaid); 5681 } 5682 5683 #ifdef ATH_ENABLE_11N 5684 /* 5685 * For now, just do a channel change. 5686 * 5687 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5688 * control state and resetting the hardware without dropping frames out 5689 * of the queue. 5690 * 5691 * The unfortunate trouble here is making absolutely sure that the 5692 * channel width change has propagated enough so the hardware 5693 * absolutely isn't handed bogus frames for it's current operating 5694 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5695 * does occur in parallel, we need to make certain we've blocked 5696 * any further ongoing TX (and RX, that can cause raw TX) 5697 * before we do this. 5698 */ 5699 static void 5700 ath_update_chw(struct ieee80211com *ic) 5701 { 5702 struct ifnet *ifp = ic->ic_ifp; 5703 struct ath_softc *sc = ifp->if_softc; 5704 5705 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5706 ath_set_channel(ic); 5707 } 5708 #endif /* ATH_ENABLE_11N */ 5709 5710 static void 5711 ath_set_channel(struct ieee80211com *ic) 5712 { 5713 struct ifnet *ifp = ic->ic_ifp; 5714 struct ath_softc *sc = ifp->if_softc; 5715 5716 ATH_LOCK(sc); 5717 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5718 ATH_UNLOCK(sc); 5719 5720 (void) ath_chan_set(sc, ic->ic_curchan); 5721 /* 5722 * If we are returning to our bss channel then mark state 5723 * so the next recv'd beacon's tsf will be used to sync the 5724 * beacon timers. Note that since we only hear beacons in 5725 * sta/ibss mode this has no effect in other operating modes. 5726 */ 5727 ATH_LOCK(sc); 5728 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5729 sc->sc_syncbeacon = 1; 5730 ath_power_restore_power_state(sc); 5731 ATH_UNLOCK(sc); 5732 } 5733 5734 /* 5735 * Walk the vap list and check if there any vap's in RUN state. 5736 */ 5737 static int 5738 ath_isanyrunningvaps(struct ieee80211vap *this) 5739 { 5740 struct ieee80211com *ic = this->iv_ic; 5741 struct ieee80211vap *vap; 5742 5743 IEEE80211_LOCK_ASSERT(ic); 5744 5745 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5746 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5747 return 1; 5748 } 5749 return 0; 5750 } 5751 5752 static int 5753 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5754 { 5755 struct ieee80211com *ic = vap->iv_ic; 5756 struct ath_softc *sc = ic->ic_ifp->if_softc; 5757 struct ath_vap *avp = ATH_VAP(vap); 5758 struct ath_hal *ah = sc->sc_ah; 5759 struct ieee80211_node *ni = NULL; 5760 int i, error, stamode; 5761 u_int32_t rfilt; 5762 int csa_run_transition = 0; 5763 enum ieee80211_state ostate = vap->iv_state; 5764 5765 static const HAL_LED_STATE leds[] = { 5766 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5767 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5768 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5769 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5770 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5771 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5772 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5773 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5774 }; 5775 5776 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5777 ieee80211_state_name[ostate], 5778 ieee80211_state_name[nstate]); 5779 5780 /* 5781 * net80211 _should_ have the comlock asserted at this point. 5782 * There are some comments around the calls to vap->iv_newstate 5783 * which indicate that it (newstate) may end up dropping the 5784 * lock. This and the subsequent lock assert check after newstate 5785 * are an attempt to catch these and figure out how/why. 5786 */ 5787 IEEE80211_LOCK_ASSERT(ic); 5788 5789 /* Before we touch the hardware - wake it up */ 5790 ATH_LOCK(sc); 5791 /* 5792 * If the NIC is in anything other than SLEEP state, 5793 * we need to ensure that self-generated frames are 5794 * set for PWRMGT=0. Otherwise we may end up with 5795 * strange situations. 5796 * 5797 * XXX TODO: is this actually the case? :-) 5798 */ 5799 if (nstate != IEEE80211_S_SLEEP) 5800 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5801 5802 /* 5803 * Now, wake the thing up. 5804 */ 5805 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5806 ATH_UNLOCK(sc); 5807 5808 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5809 csa_run_transition = 1; 5810 5811 callout_drain(&sc->sc_cal_ch); 5812 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5813 5814 if (nstate == IEEE80211_S_SCAN) { 5815 /* 5816 * Scanning: turn off beacon miss and don't beacon. 5817 * Mark beacon state so when we reach RUN state we'll 5818 * [re]setup beacons. Unblock the task q thread so 5819 * deferred interrupt processing is done. 5820 */ 5821 5822 /* Ensure we stay awake during scan */ 5823 ATH_LOCK(sc); 5824 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5825 ath_power_setpower(sc, HAL_PM_AWAKE); 5826 ATH_UNLOCK(sc); 5827 5828 ath_hal_intrset(ah, 5829 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5830 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5831 sc->sc_beacons = 0; 5832 taskqueue_unblock(sc->sc_tq); 5833 } 5834 5835 ni = ieee80211_ref_node(vap->iv_bss); 5836 rfilt = ath_calcrxfilter(sc); 5837 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5838 vap->iv_opmode == IEEE80211_M_AHDEMO || 5839 vap->iv_opmode == IEEE80211_M_IBSS); 5840 5841 /* 5842 * XXX Dont need to do this (and others) if we've transitioned 5843 * from SLEEP->RUN. 5844 */ 5845 if (stamode && nstate == IEEE80211_S_RUN) { 5846 sc->sc_curaid = ni->ni_associd; 5847 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5848 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5849 } 5850 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5851 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5852 ath_hal_setrxfilter(ah, rfilt); 5853 5854 /* XXX is this to restore keycache on resume? */ 5855 if (vap->iv_opmode != IEEE80211_M_STA && 5856 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5857 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5858 if (ath_hal_keyisvalid(ah, i)) 5859 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5860 } 5861 5862 /* 5863 * Invoke the parent method to do net80211 work. 5864 */ 5865 error = avp->av_newstate(vap, nstate, arg); 5866 if (error != 0) 5867 goto bad; 5868 5869 /* 5870 * See above: ensure av_newstate() doesn't drop the lock 5871 * on us. 5872 */ 5873 IEEE80211_LOCK_ASSERT(ic); 5874 5875 if (nstate == IEEE80211_S_RUN) { 5876 /* NB: collect bss node again, it may have changed */ 5877 ieee80211_free_node(ni); 5878 ni = ieee80211_ref_node(vap->iv_bss); 5879 5880 DPRINTF(sc, ATH_DEBUG_STATE, 5881 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5882 "capinfo 0x%04x chan %d\n", __func__, 5883 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5884 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5885 5886 switch (vap->iv_opmode) { 5887 #ifdef IEEE80211_SUPPORT_TDMA 5888 case IEEE80211_M_AHDEMO: 5889 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5890 break; 5891 /* fall thru... */ 5892 #endif 5893 case IEEE80211_M_HOSTAP: 5894 case IEEE80211_M_IBSS: 5895 case IEEE80211_M_MBSS: 5896 /* 5897 * Allocate and setup the beacon frame. 5898 * 5899 * Stop any previous beacon DMA. This may be 5900 * necessary, for example, when an ibss merge 5901 * causes reconfiguration; there will be a state 5902 * transition from RUN->RUN that means we may 5903 * be called with beacon transmission active. 5904 */ 5905 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5906 5907 error = ath_beacon_alloc(sc, ni); 5908 if (error != 0) 5909 goto bad; 5910 /* 5911 * If joining an adhoc network defer beacon timer 5912 * configuration to the next beacon frame so we 5913 * have a current TSF to use. Otherwise we're 5914 * starting an ibss/bss so there's no need to delay; 5915 * if this is the first vap moving to RUN state, then 5916 * beacon state needs to be [re]configured. 5917 */ 5918 if (vap->iv_opmode == IEEE80211_M_IBSS && 5919 ni->ni_tstamp.tsf != 0) { 5920 sc->sc_syncbeacon = 1; 5921 } else if (!sc->sc_beacons) { 5922 #ifdef IEEE80211_SUPPORT_TDMA 5923 if (vap->iv_caps & IEEE80211_C_TDMA) 5924 ath_tdma_config(sc, vap); 5925 else 5926 #endif 5927 ath_beacon_config(sc, vap); 5928 sc->sc_beacons = 1; 5929 } 5930 break; 5931 case IEEE80211_M_STA: 5932 /* 5933 * Defer beacon timer configuration to the next 5934 * beacon frame so we have a current TSF to use 5935 * (any TSF collected when scanning is likely old). 5936 * However if it's due to a CSA -> RUN transition, 5937 * force a beacon update so we pick up a lack of 5938 * beacons from an AP in CAC and thus force a 5939 * scan. 5940 * 5941 * And, there's also corner cases here where 5942 * after a scan, the AP may have disappeared. 5943 * In that case, we may not receive an actual 5944 * beacon to update the beacon timer and thus we 5945 * won't get notified of the missing beacons. 5946 */ 5947 if (ostate != IEEE80211_S_RUN && 5948 ostate != IEEE80211_S_SLEEP) { 5949 DPRINTF(sc, ATH_DEBUG_BEACON, 5950 "%s: STA; syncbeacon=1\n", __func__); 5951 sc->sc_syncbeacon = 1; 5952 5953 if (csa_run_transition) 5954 ath_beacon_config(sc, vap); 5955 5956 /* 5957 * PR: kern/175227 5958 * 5959 * Reconfigure beacons during reset; as otherwise 5960 * we won't get the beacon timers reprogrammed 5961 * after a reset and thus we won't pick up a 5962 * beacon miss interrupt. 5963 * 5964 * Hopefully we'll see a beacon before the BMISS 5965 * timer fires (too often), leading to a STA 5966 * disassociation. 5967 */ 5968 sc->sc_beacons = 1; 5969 } 5970 break; 5971 case IEEE80211_M_MONITOR: 5972 /* 5973 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5974 * transitions so we must re-enable interrupts here to 5975 * handle the case of a single monitor mode vap. 5976 */ 5977 ath_hal_intrset(ah, sc->sc_imask); 5978 break; 5979 case IEEE80211_M_WDS: 5980 break; 5981 default: 5982 break; 5983 } 5984 /* 5985 * Let the hal process statistics collected during a 5986 * scan so it can provide calibrated noise floor data. 5987 */ 5988 ath_hal_process_noisefloor(ah); 5989 /* 5990 * Reset rssi stats; maybe not the best place... 5991 */ 5992 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5993 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5994 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5995 5996 /* 5997 * Force awake for RUN mode. 5998 */ 5999 ATH_LOCK(sc); 6000 ath_power_setselfgen(sc, HAL_PM_AWAKE); 6001 ath_power_setpower(sc, HAL_PM_AWAKE); 6002 ATH_UNLOCK(sc); 6003 6004 /* 6005 * Finally, start any timers and the task q thread 6006 * (in case we didn't go through SCAN state). 6007 */ 6008 if (ath_longcalinterval != 0) { 6009 /* start periodic recalibration timer */ 6010 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6011 } else { 6012 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6013 "%s: calibration disabled\n", __func__); 6014 } 6015 6016 taskqueue_unblock(sc->sc_tq); 6017 } else if (nstate == IEEE80211_S_INIT) { 6018 /* 6019 * If there are no vaps left in RUN state then 6020 * shutdown host/driver operation: 6021 * o disable interrupts 6022 * o disable the task queue thread 6023 * o mark beacon processing as stopped 6024 */ 6025 if (!ath_isanyrunningvaps(vap)) { 6026 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 6027 /* disable interrupts */ 6028 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 6029 taskqueue_block(sc->sc_tq); 6030 sc->sc_beacons = 0; 6031 } 6032 #ifdef IEEE80211_SUPPORT_TDMA 6033 ath_hal_setcca(ah, AH_TRUE); 6034 #endif 6035 } else if (nstate == IEEE80211_S_SLEEP) { 6036 /* We're going to sleep, so transition appropriately */ 6037 /* For now, only do this if we're a single STA vap */ 6038 if (sc->sc_nvaps == 1 && 6039 vap->iv_opmode == IEEE80211_M_STA) { 6040 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 6041 ATH_LOCK(sc); 6042 /* 6043 * Always at least set the self-generated 6044 * frame config to set PWRMGT=1. 6045 */ 6046 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 6047 6048 /* 6049 * If we're not syncing beacons, transition 6050 * to NETWORK_SLEEP. 6051 * 6052 * We stay awake if syncbeacon > 0 in case 6053 * we need to listen for some beacons otherwise 6054 * our beacon timer config may be wrong. 6055 */ 6056 if (sc->sc_syncbeacon == 0) { 6057 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP); 6058 } 6059 ATH_UNLOCK(sc); 6060 } 6061 } 6062 bad: 6063 ieee80211_free_node(ni); 6064 6065 /* 6066 * Restore the power state - either to what it was, or 6067 * to network_sleep if it's alright. 6068 */ 6069 ATH_LOCK(sc); 6070 ath_power_restore_power_state(sc); 6071 ATH_UNLOCK(sc); 6072 return error; 6073 } 6074 6075 /* 6076 * Allocate a key cache slot to the station so we can 6077 * setup a mapping from key index to node. The key cache 6078 * slot is needed for managing antenna state and for 6079 * compression when stations do not use crypto. We do 6080 * it uniliaterally here; if crypto is employed this slot 6081 * will be reassigned. 6082 */ 6083 static void 6084 ath_setup_stationkey(struct ieee80211_node *ni) 6085 { 6086 struct ieee80211vap *vap = ni->ni_vap; 6087 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6088 ieee80211_keyix keyix, rxkeyix; 6089 6090 /* XXX should take a locked ref to vap->iv_bss */ 6091 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 6092 /* 6093 * Key cache is full; we'll fall back to doing 6094 * the more expensive lookup in software. Note 6095 * this also means no h/w compression. 6096 */ 6097 /* XXX msg+statistic */ 6098 } else { 6099 /* XXX locking? */ 6100 ni->ni_ucastkey.wk_keyix = keyix; 6101 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 6102 /* NB: must mark device key to get called back on delete */ 6103 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 6104 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 6105 /* NB: this will create a pass-thru key entry */ 6106 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 6107 } 6108 } 6109 6110 /* 6111 * Setup driver-specific state for a newly associated node. 6112 * Note that we're called also on a re-associate, the isnew 6113 * param tells us if this is the first time or not. 6114 */ 6115 static void 6116 ath_newassoc(struct ieee80211_node *ni, int isnew) 6117 { 6118 struct ath_node *an = ATH_NODE(ni); 6119 struct ieee80211vap *vap = ni->ni_vap; 6120 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6121 const struct ieee80211_txparam *tp = ni->ni_txparms; 6122 6123 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 6124 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 6125 6126 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 6127 __func__, 6128 ni->ni_macaddr, 6129 ":", 6130 isnew, 6131 an->an_is_powersave); 6132 6133 ATH_NODE_LOCK(an); 6134 ath_rate_newassoc(sc, an, isnew); 6135 ATH_NODE_UNLOCK(an); 6136 6137 if (isnew && 6138 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6139 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6140 ath_setup_stationkey(ni); 6141 6142 /* 6143 * If we're reassociating, make sure that any paused queues 6144 * get unpaused. 6145 * 6146 * Now, we may hvae frames in the hardware queue for this node. 6147 * So if we are reassociating and there are frames in the queue, 6148 * we need to go through the cleanup path to ensure that they're 6149 * marked as non-aggregate. 6150 */ 6151 if (! isnew) { 6152 DPRINTF(sc, ATH_DEBUG_NODE, 6153 "%s: %6D: reassoc; is_powersave=%d\n", 6154 __func__, 6155 ni->ni_macaddr, 6156 ":", 6157 an->an_is_powersave); 6158 6159 /* XXX for now, we can't hold the lock across assoc */ 6160 ath_tx_node_reassoc(sc, an); 6161 6162 /* XXX for now, we can't hold the lock across wakeup */ 6163 if (an->an_is_powersave) 6164 ath_tx_node_wakeup(sc, an); 6165 } 6166 } 6167 6168 static int 6169 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6170 int nchans, struct ieee80211_channel chans[]) 6171 { 6172 struct ath_softc *sc = ic->ic_ifp->if_softc; 6173 struct ath_hal *ah = sc->sc_ah; 6174 HAL_STATUS status; 6175 6176 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6177 "%s: rd %u cc %u location %c%s\n", 6178 __func__, reg->regdomain, reg->country, reg->location, 6179 reg->ecm ? " ecm" : ""); 6180 6181 status = ath_hal_set_channels(ah, chans, nchans, 6182 reg->country, reg->regdomain); 6183 if (status != HAL_OK) { 6184 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6185 __func__, status); 6186 return EINVAL; /* XXX */ 6187 } 6188 6189 return 0; 6190 } 6191 6192 static void 6193 ath_getradiocaps(struct ieee80211com *ic, 6194 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6195 { 6196 struct ath_softc *sc = ic->ic_ifp->if_softc; 6197 struct ath_hal *ah = sc->sc_ah; 6198 6199 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6200 __func__, SKU_DEBUG, CTRY_DEFAULT); 6201 6202 /* XXX check return */ 6203 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6204 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6205 6206 } 6207 6208 static int 6209 ath_getchannels(struct ath_softc *sc) 6210 { 6211 struct ifnet *ifp = sc->sc_ifp; 6212 struct ieee80211com *ic = ifp->if_l2com; 6213 struct ath_hal *ah = sc->sc_ah; 6214 HAL_STATUS status; 6215 6216 /* 6217 * Collect channel set based on EEPROM contents. 6218 */ 6219 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6220 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6221 if (status != HAL_OK) { 6222 if_printf(ifp, "%s: unable to collect channel list from hal, " 6223 "status %d\n", __func__, status); 6224 return EINVAL; 6225 } 6226 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6227 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6228 /* XXX map Atheros sku's to net80211 SKU's */ 6229 /* XXX net80211 types too small */ 6230 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6231 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6232 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6233 ic->ic_regdomain.isocc[1] = ' '; 6234 6235 ic->ic_regdomain.ecm = 1; 6236 ic->ic_regdomain.location = 'I'; 6237 6238 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6239 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6240 __func__, sc->sc_eerd, sc->sc_eecc, 6241 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6242 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6243 return 0; 6244 } 6245 6246 static int 6247 ath_rate_setup(struct ath_softc *sc, u_int mode) 6248 { 6249 struct ath_hal *ah = sc->sc_ah; 6250 const HAL_RATE_TABLE *rt; 6251 6252 switch (mode) { 6253 case IEEE80211_MODE_11A: 6254 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6255 break; 6256 case IEEE80211_MODE_HALF: 6257 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6258 break; 6259 case IEEE80211_MODE_QUARTER: 6260 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6261 break; 6262 case IEEE80211_MODE_11B: 6263 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6264 break; 6265 case IEEE80211_MODE_11G: 6266 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6267 break; 6268 case IEEE80211_MODE_TURBO_A: 6269 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6270 break; 6271 case IEEE80211_MODE_TURBO_G: 6272 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6273 break; 6274 case IEEE80211_MODE_STURBO_A: 6275 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6276 break; 6277 case IEEE80211_MODE_11NA: 6278 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6279 break; 6280 case IEEE80211_MODE_11NG: 6281 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6282 break; 6283 default: 6284 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6285 __func__, mode); 6286 return 0; 6287 } 6288 sc->sc_rates[mode] = rt; 6289 return (rt != NULL); 6290 } 6291 6292 static void 6293 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6294 { 6295 #define N(a) (sizeof(a)/sizeof(a[0])) 6296 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6297 static const struct { 6298 u_int rate; /* tx/rx 802.11 rate */ 6299 u_int16_t timeOn; /* LED on time (ms) */ 6300 u_int16_t timeOff; /* LED off time (ms) */ 6301 } blinkrates[] = { 6302 { 108, 40, 10 }, 6303 { 96, 44, 11 }, 6304 { 72, 50, 13 }, 6305 { 48, 57, 14 }, 6306 { 36, 67, 16 }, 6307 { 24, 80, 20 }, 6308 { 22, 100, 25 }, 6309 { 18, 133, 34 }, 6310 { 12, 160, 40 }, 6311 { 10, 200, 50 }, 6312 { 6, 240, 58 }, 6313 { 4, 267, 66 }, 6314 { 2, 400, 100 }, 6315 { 0, 500, 130 }, 6316 /* XXX half/quarter rates */ 6317 }; 6318 const HAL_RATE_TABLE *rt; 6319 int i, j; 6320 6321 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6322 rt = sc->sc_rates[mode]; 6323 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6324 for (i = 0; i < rt->rateCount; i++) { 6325 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6326 if (rt->info[i].phy != IEEE80211_T_HT) 6327 sc->sc_rixmap[ieeerate] = i; 6328 else 6329 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6330 } 6331 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6332 for (i = 0; i < N(sc->sc_hwmap); i++) { 6333 if (i >= rt->rateCount) { 6334 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6335 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6336 continue; 6337 } 6338 sc->sc_hwmap[i].ieeerate = 6339 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6340 if (rt->info[i].phy == IEEE80211_T_HT) 6341 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6342 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6343 if (rt->info[i].shortPreamble || 6344 rt->info[i].phy == IEEE80211_T_OFDM) 6345 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6346 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6347 for (j = 0; j < N(blinkrates)-1; j++) 6348 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6349 break; 6350 /* NB: this uses the last entry if the rate isn't found */ 6351 /* XXX beware of overlow */ 6352 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6353 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6354 } 6355 sc->sc_currates = rt; 6356 sc->sc_curmode = mode; 6357 /* 6358 * All protection frames are transmited at 2Mb/s for 6359 * 11g, otherwise at 1Mb/s. 6360 */ 6361 if (mode == IEEE80211_MODE_11G) 6362 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6363 else 6364 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6365 /* NB: caller is responsible for resetting rate control state */ 6366 #undef N 6367 } 6368 6369 static void 6370 ath_watchdog(void *arg) 6371 { 6372 struct ath_softc *sc = arg; 6373 int do_reset = 0; 6374 6375 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6376 struct ifnet *ifp = sc->sc_ifp; 6377 uint32_t hangs; 6378 6379 ATH_LOCK(sc); 6380 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6381 ATH_UNLOCK(sc); 6382 6383 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6384 hangs != 0) { 6385 if_printf(ifp, "%s hang detected (0x%x)\n", 6386 hangs & 0xff ? "bb" : "mac", hangs); 6387 } else 6388 if_printf(ifp, "device timeout\n"); 6389 do_reset = 1; 6390 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 6391 sc->sc_stats.ast_watchdog++; 6392 6393 ATH_LOCK(sc); 6394 ath_power_restore_power_state(sc); 6395 ATH_UNLOCK(sc); 6396 } 6397 6398 /* 6399 * We can't hold the lock across the ath_reset() call. 6400 * 6401 * And since this routine can't hold a lock and sleep, 6402 * do the reset deferred. 6403 */ 6404 if (do_reset) { 6405 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6406 } 6407 6408 callout_schedule(&sc->sc_wd_ch, hz); 6409 } 6410 6411 /* 6412 * Fetch the rate control statistics for the given node. 6413 */ 6414 static int 6415 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 6416 { 6417 struct ath_node *an; 6418 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 6419 struct ieee80211_node *ni; 6420 int error = 0; 6421 6422 /* Perform a lookup on the given node */ 6423 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 6424 if (ni == NULL) { 6425 error = EINVAL; 6426 goto bad; 6427 } 6428 6429 /* Lock the ath_node */ 6430 an = ATH_NODE(ni); 6431 ATH_NODE_LOCK(an); 6432 6433 /* Fetch the rate control stats for this node */ 6434 error = ath_rate_fetch_node_stats(sc, an, rs); 6435 6436 /* No matter what happens here, just drop through */ 6437 6438 /* Unlock the ath_node */ 6439 ATH_NODE_UNLOCK(an); 6440 6441 /* Unref the node */ 6442 ieee80211_node_decref(ni); 6443 6444 bad: 6445 return (error); 6446 } 6447 6448 #ifdef ATH_DIAGAPI 6449 /* 6450 * Diagnostic interface to the HAL. This is used by various 6451 * tools to do things like retrieve register contents for 6452 * debugging. The mechanism is intentionally opaque so that 6453 * it can change frequently w/o concern for compatiblity. 6454 */ 6455 static int 6456 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6457 { 6458 struct ath_hal *ah = sc->sc_ah; 6459 u_int id = ad->ad_id & ATH_DIAG_ID; 6460 void *indata = NULL; 6461 void *outdata = NULL; 6462 u_int32_t insize = ad->ad_in_size; 6463 u_int32_t outsize = ad->ad_out_size; 6464 int error = 0; 6465 6466 if (ad->ad_id & ATH_DIAG_IN) { 6467 /* 6468 * Copy in data. 6469 */ 6470 indata = malloc(insize, M_TEMP, M_NOWAIT); 6471 if (indata == NULL) { 6472 error = ENOMEM; 6473 goto bad; 6474 } 6475 error = copyin(ad->ad_in_data, indata, insize); 6476 if (error) 6477 goto bad; 6478 } 6479 if (ad->ad_id & ATH_DIAG_DYN) { 6480 /* 6481 * Allocate a buffer for the results (otherwise the HAL 6482 * returns a pointer to a buffer where we can read the 6483 * results). Note that we depend on the HAL leaving this 6484 * pointer for us to use below in reclaiming the buffer; 6485 * may want to be more defensive. 6486 */ 6487 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6488 if (outdata == NULL) { 6489 error = ENOMEM; 6490 goto bad; 6491 } 6492 } 6493 6494 6495 ATH_LOCK(sc); 6496 if (id != HAL_DIAG_REGS) 6497 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6498 ATH_UNLOCK(sc); 6499 6500 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6501 if (outsize < ad->ad_out_size) 6502 ad->ad_out_size = outsize; 6503 if (outdata != NULL) 6504 error = copyout(outdata, ad->ad_out_data, 6505 ad->ad_out_size); 6506 } else { 6507 error = EINVAL; 6508 } 6509 6510 ATH_LOCK(sc); 6511 if (id != HAL_DIAG_REGS) 6512 ath_power_restore_power_state(sc); 6513 ATH_UNLOCK(sc); 6514 6515 bad: 6516 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6517 free(indata, M_TEMP); 6518 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6519 free(outdata, M_TEMP); 6520 return error; 6521 } 6522 #endif /* ATH_DIAGAPI */ 6523 6524 static int 6525 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 6526 { 6527 #define IS_RUNNING(ifp) \ 6528 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 6529 struct ath_softc *sc = ifp->if_softc; 6530 struct ieee80211com *ic = ifp->if_l2com; 6531 struct ifreq *ifr = (struct ifreq *)data; 6532 const HAL_RATE_TABLE *rt; 6533 int error = 0; 6534 6535 switch (cmd) { 6536 case SIOCSIFFLAGS: 6537 if (IS_RUNNING(ifp)) { 6538 /* 6539 * To avoid rescanning another access point, 6540 * do not call ath_init() here. Instead, 6541 * only reflect promisc mode settings. 6542 */ 6543 ATH_LOCK(sc); 6544 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6545 ath_mode_init(sc); 6546 ath_power_restore_power_state(sc); 6547 ATH_UNLOCK(sc); 6548 } else if (ifp->if_flags & IFF_UP) { 6549 /* 6550 * Beware of being called during attach/detach 6551 * to reset promiscuous mode. In that case we 6552 * will still be marked UP but not RUNNING. 6553 * However trying to re-init the interface 6554 * is the wrong thing to do as we've already 6555 * torn down much of our state. There's 6556 * probably a better way to deal with this. 6557 */ 6558 if (!sc->sc_invalid) 6559 ath_init(sc); /* XXX lose error */ 6560 } else { 6561 ATH_LOCK(sc); 6562 ath_stop_locked(ifp); 6563 if (!sc->sc_invalid) 6564 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 6565 ATH_UNLOCK(sc); 6566 } 6567 break; 6568 case SIOCGIFMEDIA: 6569 case SIOCSIFMEDIA: 6570 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 6571 break; 6572 case SIOCGATHSTATS: 6573 /* NB: embed these numbers to get a consistent view */ 6574 sc->sc_stats.ast_tx_packets = ifp->if_get_counter(ifp, 6575 IFCOUNTER_OPACKETS); 6576 sc->sc_stats.ast_rx_packets = ifp->if_get_counter(ifp, 6577 IFCOUNTER_IPACKETS); 6578 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 6579 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 6580 #ifdef IEEE80211_SUPPORT_TDMA 6581 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 6582 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 6583 #endif 6584 rt = sc->sc_currates; 6585 sc->sc_stats.ast_tx_rate = 6586 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 6587 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 6588 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 6589 return copyout(&sc->sc_stats, 6590 ifr->ifr_data, sizeof (sc->sc_stats)); 6591 case SIOCGATHAGSTATS: 6592 return copyout(&sc->sc_aggr_stats, 6593 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 6594 case SIOCZATHSTATS: 6595 error = priv_check(curthread, PRIV_DRIVER); 6596 if (error == 0) { 6597 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6598 memset(&sc->sc_aggr_stats, 0, 6599 sizeof(sc->sc_aggr_stats)); 6600 memset(&sc->sc_intr_stats, 0, 6601 sizeof(sc->sc_intr_stats)); 6602 } 6603 break; 6604 #ifdef ATH_DIAGAPI 6605 case SIOCGATHDIAG: 6606 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 6607 break; 6608 case SIOCGATHPHYERR: 6609 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 6610 break; 6611 #endif 6612 case SIOCGATHSPECTRAL: 6613 error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr); 6614 break; 6615 case SIOCGATHNODERATESTATS: 6616 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 6617 break; 6618 case SIOCGIFADDR: 6619 error = ether_ioctl(ifp, cmd, data); 6620 break; 6621 default: 6622 error = EINVAL; 6623 break; 6624 } 6625 return error; 6626 #undef IS_RUNNING 6627 } 6628 6629 /* 6630 * Announce various information on device/driver attach. 6631 */ 6632 static void 6633 ath_announce(struct ath_softc *sc) 6634 { 6635 struct ifnet *ifp = sc->sc_ifp; 6636 struct ath_hal *ah = sc->sc_ah; 6637 6638 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 6639 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6640 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6641 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6642 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6643 if (bootverbose) { 6644 int i; 6645 for (i = 0; i <= WME_AC_VO; i++) { 6646 struct ath_txq *txq = sc->sc_ac2q[i]; 6647 if_printf(ifp, "Use hw queue %u for %s traffic\n", 6648 txq->axq_qnum, ieee80211_wme_acnames[i]); 6649 } 6650 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 6651 sc->sc_cabq->axq_qnum); 6652 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 6653 } 6654 if (ath_rxbuf != ATH_RXBUF) 6655 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 6656 if (ath_txbuf != ATH_TXBUF) 6657 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 6658 if (sc->sc_mcastkey && bootverbose) 6659 if_printf(ifp, "using multicast key search\n"); 6660 } 6661 6662 static void 6663 ath_dfs_tasklet(void *p, int npending) 6664 { 6665 struct ath_softc *sc = (struct ath_softc *) p; 6666 struct ifnet *ifp = sc->sc_ifp; 6667 struct ieee80211com *ic = ifp->if_l2com; 6668 6669 /* 6670 * If previous processing has found a radar event, 6671 * signal this to the net80211 layer to begin DFS 6672 * processing. 6673 */ 6674 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6675 /* DFS event found, initiate channel change */ 6676 /* 6677 * XXX doesn't currently tell us whether the event 6678 * XXX was found in the primary or extension 6679 * XXX channel! 6680 */ 6681 IEEE80211_LOCK(ic); 6682 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6683 IEEE80211_UNLOCK(ic); 6684 } 6685 } 6686 6687 /* 6688 * Enable/disable power save. This must be called with 6689 * no TX driver locks currently held, so it should only 6690 * be called from the RX path (which doesn't hold any 6691 * TX driver locks.) 6692 */ 6693 static void 6694 ath_node_powersave(struct ieee80211_node *ni, int enable) 6695 { 6696 #ifdef ATH_SW_PSQ 6697 struct ath_node *an = ATH_NODE(ni); 6698 struct ieee80211com *ic = ni->ni_ic; 6699 struct ath_softc *sc = ic->ic_ifp->if_softc; 6700 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6701 6702 /* XXX and no TXQ locks should be held here */ 6703 6704 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6705 __func__, 6706 ni->ni_macaddr, 6707 ":", 6708 !! enable); 6709 6710 /* Suspend or resume software queue handling */ 6711 if (enable) 6712 ath_tx_node_sleep(sc, an); 6713 else 6714 ath_tx_node_wakeup(sc, an); 6715 6716 /* Update net80211 state */ 6717 avp->av_node_ps(ni, enable); 6718 #else 6719 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6720 6721 /* Update net80211 state */ 6722 avp->av_node_ps(ni, enable); 6723 #endif/* ATH_SW_PSQ */ 6724 } 6725 6726 /* 6727 * Notification from net80211 that the powersave queue state has 6728 * changed. 6729 * 6730 * Since the software queue also may have some frames: 6731 * 6732 * + if the node software queue has frames and the TID state 6733 * is 0, we set the TIM; 6734 * + if the node and the stack are both empty, we clear the TIM bit. 6735 * + If the stack tries to set the bit, always set it. 6736 * + If the stack tries to clear the bit, only clear it if the 6737 * software queue in question is also cleared. 6738 * 6739 * TODO: this is called during node teardown; so let's ensure this 6740 * is all correctly handled and that the TIM bit is cleared. 6741 * It may be that the node flush is called _AFTER_ the net80211 6742 * stack clears the TIM. 6743 * 6744 * Here is the racy part. Since it's possible >1 concurrent, 6745 * overlapping TXes will appear complete with a TX completion in 6746 * another thread, it's possible that the concurrent TIM calls will 6747 * clash. We can't hold the node lock here because setting the 6748 * TIM grabs the net80211 comlock and this may cause a LOR. 6749 * The solution is either to totally serialise _everything_ at 6750 * this point (ie, all TX, completion and any reset/flush go into 6751 * one taskqueue) or a new "ath TIM lock" needs to be created that 6752 * just wraps the driver state change and this call to avp->av_set_tim(). 6753 * 6754 * The same race exists in the net80211 power save queue handling 6755 * as well. Since multiple transmitting threads may queue frames 6756 * into the driver, as well as ps-poll and the driver transmitting 6757 * frames (and thus clearing the psq), it's quite possible that 6758 * a packet entering the PSQ and a ps-poll being handled will 6759 * race, causing the TIM to be cleared and not re-set. 6760 */ 6761 static int 6762 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6763 { 6764 #ifdef ATH_SW_PSQ 6765 struct ieee80211com *ic = ni->ni_ic; 6766 struct ath_softc *sc = ic->ic_ifp->if_softc; 6767 struct ath_node *an = ATH_NODE(ni); 6768 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6769 int changed = 0; 6770 6771 ATH_TX_LOCK(sc); 6772 an->an_stack_psq = enable; 6773 6774 /* 6775 * This will get called for all operating modes, 6776 * even if avp->av_set_tim is unset. 6777 * It's currently set for hostap/ibss modes; but 6778 * the same infrastructure is used for both STA 6779 * and AP/IBSS node power save. 6780 */ 6781 if (avp->av_set_tim == NULL) { 6782 ATH_TX_UNLOCK(sc); 6783 return (0); 6784 } 6785 6786 /* 6787 * If setting the bit, always set it here. 6788 * If clearing the bit, only clear it if the 6789 * software queue is also empty. 6790 * 6791 * If the node has left power save, just clear the TIM 6792 * bit regardless of the state of the power save queue. 6793 * 6794 * XXX TODO: although atomics are used, it's quite possible 6795 * that a race will occur between this and setting/clearing 6796 * in another thread. TX completion will occur always in 6797 * one thread, however setting/clearing the TIM bit can come 6798 * from a variety of different process contexts! 6799 */ 6800 if (enable && an->an_tim_set == 1) { 6801 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6802 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6803 __func__, 6804 ni->ni_macaddr, 6805 ":", 6806 enable); 6807 ATH_TX_UNLOCK(sc); 6808 } else if (enable) { 6809 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6810 "%s: %6D: enable=%d, enabling TIM\n", 6811 __func__, 6812 ni->ni_macaddr, 6813 ":", 6814 enable); 6815 an->an_tim_set = 1; 6816 ATH_TX_UNLOCK(sc); 6817 changed = avp->av_set_tim(ni, enable); 6818 } else if (an->an_swq_depth == 0) { 6819 /* disable */ 6820 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6821 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6822 __func__, 6823 ni->ni_macaddr, 6824 ":", 6825 enable); 6826 an->an_tim_set = 0; 6827 ATH_TX_UNLOCK(sc); 6828 changed = avp->av_set_tim(ni, enable); 6829 } else if (! an->an_is_powersave) { 6830 /* 6831 * disable regardless; the node isn't in powersave now 6832 */ 6833 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6834 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6835 __func__, 6836 ni->ni_macaddr, 6837 ":", 6838 enable); 6839 an->an_tim_set = 0; 6840 ATH_TX_UNLOCK(sc); 6841 changed = avp->av_set_tim(ni, enable); 6842 } else { 6843 /* 6844 * psq disable, node is currently in powersave, node 6845 * software queue isn't empty, so don't clear the TIM bit 6846 * for now. 6847 */ 6848 ATH_TX_UNLOCK(sc); 6849 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6850 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6851 __func__, 6852 ni->ni_macaddr, 6853 ":", 6854 enable); 6855 changed = 0; 6856 } 6857 6858 return (changed); 6859 #else 6860 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6861 6862 /* 6863 * Some operating modes don't set av_set_tim(), so don't 6864 * update it here. 6865 */ 6866 if (avp->av_set_tim == NULL) 6867 return (0); 6868 6869 return (avp->av_set_tim(ni, enable)); 6870 #endif /* ATH_SW_PSQ */ 6871 } 6872 6873 /* 6874 * Set or update the TIM from the software queue. 6875 * 6876 * Check the software queue depth before attempting to do lock 6877 * anything; that avoids trying to obtain the lock. Then, 6878 * re-check afterwards to ensure nothing has changed in the 6879 * meantime. 6880 * 6881 * set: This is designed to be called from the TX path, after 6882 * a frame has been queued; to see if the swq > 0. 6883 * 6884 * clear: This is designed to be called from the buffer completion point 6885 * (right now it's ath_tx_default_comp()) where the state of 6886 * a software queue has changed. 6887 * 6888 * It makes sense to place it at buffer free / completion rather 6889 * than after each software queue operation, as there's no real 6890 * point in churning the TIM bit as the last frames in the software 6891 * queue are transmitted. If they fail and we retry them, we'd 6892 * just be setting the TIM bit again anyway. 6893 */ 6894 void 6895 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6896 int enable) 6897 { 6898 #ifdef ATH_SW_PSQ 6899 struct ath_node *an; 6900 struct ath_vap *avp; 6901 6902 /* Don't do this for broadcast/etc frames */ 6903 if (ni == NULL) 6904 return; 6905 6906 an = ATH_NODE(ni); 6907 avp = ATH_VAP(ni->ni_vap); 6908 6909 /* 6910 * And for operating modes without the TIM handler set, let's 6911 * just skip those. 6912 */ 6913 if (avp->av_set_tim == NULL) 6914 return; 6915 6916 ATH_TX_LOCK_ASSERT(sc); 6917 6918 if (enable) { 6919 if (an->an_is_powersave && 6920 an->an_tim_set == 0 && 6921 an->an_swq_depth != 0) { 6922 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6923 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6924 __func__, 6925 ni->ni_macaddr, 6926 ":"); 6927 an->an_tim_set = 1; 6928 (void) avp->av_set_tim(ni, 1); 6929 } 6930 } else { 6931 /* 6932 * Don't bother grabbing the lock unless the queue is empty. 6933 */ 6934 if (&an->an_swq_depth != 0) 6935 return; 6936 6937 if (an->an_is_powersave && 6938 an->an_stack_psq == 0 && 6939 an->an_tim_set == 1 && 6940 an->an_swq_depth == 0) { 6941 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6942 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6943 " clear!\n", 6944 __func__, 6945 ni->ni_macaddr, 6946 ":"); 6947 an->an_tim_set = 0; 6948 (void) avp->av_set_tim(ni, 0); 6949 } 6950 } 6951 #else 6952 return; 6953 #endif /* ATH_SW_PSQ */ 6954 } 6955 6956 /* 6957 * Received a ps-poll frame from net80211. 6958 * 6959 * Here we get a chance to serve out a software-queued frame ourselves 6960 * before we punt it to net80211 to transmit us one itself - either 6961 * because there's traffic in the net80211 psq, or a NULL frame to 6962 * indicate there's nothing else. 6963 */ 6964 static void 6965 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6966 { 6967 #ifdef ATH_SW_PSQ 6968 struct ath_node *an; 6969 struct ath_vap *avp; 6970 struct ieee80211com *ic = ni->ni_ic; 6971 struct ath_softc *sc = ic->ic_ifp->if_softc; 6972 int tid; 6973 6974 /* Just paranoia */ 6975 if (ni == NULL) 6976 return; 6977 6978 /* 6979 * Unassociated (temporary node) station. 6980 */ 6981 if (ni->ni_associd == 0) 6982 return; 6983 6984 /* 6985 * We do have an active node, so let's begin looking into it. 6986 */ 6987 an = ATH_NODE(ni); 6988 avp = ATH_VAP(ni->ni_vap); 6989 6990 /* 6991 * For now, we just call the original ps-poll method. 6992 * Once we're ready to flip this on: 6993 * 6994 * + Set leak to 1, as no matter what we're going to have 6995 * to send a frame; 6996 * + Check the software queue and if there's something in it, 6997 * schedule the highest TID thas has traffic from this node. 6998 * Then make sure we schedule the software scheduler to 6999 * run so it picks up said frame. 7000 * 7001 * That way whatever happens, we'll at least send _a_ frame 7002 * to the given node. 7003 * 7004 * Again, yes, it's crappy QoS if the node has multiple 7005 * TIDs worth of traffic - but let's get it working first 7006 * before we optimise it. 7007 * 7008 * Also yes, there's definitely latency here - we're not 7009 * direct dispatching to the hardware in this path (and 7010 * we're likely being called from the packet receive path, 7011 * so going back into TX may be a little hairy!) but again 7012 * I'd like to get this working first before optimising 7013 * turn-around time. 7014 */ 7015 7016 ATH_TX_LOCK(sc); 7017 7018 /* 7019 * Legacy - we're called and the node isn't asleep. 7020 * Immediately punt. 7021 */ 7022 if (! an->an_is_powersave) { 7023 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7024 "%s: %6D: not in powersave?\n", 7025 __func__, 7026 ni->ni_macaddr, 7027 ":"); 7028 ATH_TX_UNLOCK(sc); 7029 avp->av_recv_pspoll(ni, m); 7030 return; 7031 } 7032 7033 /* 7034 * We're in powersave. 7035 * 7036 * Leak a frame. 7037 */ 7038 an->an_leak_count = 1; 7039 7040 /* 7041 * Now, if there's no frames in the node, just punt to 7042 * recv_pspoll. 7043 * 7044 * Don't bother checking if the TIM bit is set, we really 7045 * only care if there are any frames here! 7046 */ 7047 if (an->an_swq_depth == 0) { 7048 ATH_TX_UNLOCK(sc); 7049 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7050 "%s: %6D: SWQ empty; punting to net80211\n", 7051 __func__, 7052 ni->ni_macaddr, 7053 ":"); 7054 avp->av_recv_pspoll(ni, m); 7055 return; 7056 } 7057 7058 /* 7059 * Ok, let's schedule the highest TID that has traffic 7060 * and then schedule something. 7061 */ 7062 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 7063 struct ath_tid *atid = &an->an_tid[tid]; 7064 /* 7065 * No frames? Skip. 7066 */ 7067 if (atid->axq_depth == 0) 7068 continue; 7069 ath_tx_tid_sched(sc, atid); 7070 /* 7071 * XXX we could do a direct call to the TXQ 7072 * scheduler code here to optimise latency 7073 * at the expense of a REALLY deep callstack. 7074 */ 7075 ATH_TX_UNLOCK(sc); 7076 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 7077 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7078 "%s: %6D: leaking frame to TID %d\n", 7079 __func__, 7080 ni->ni_macaddr, 7081 ":", 7082 tid); 7083 return; 7084 } 7085 7086 ATH_TX_UNLOCK(sc); 7087 7088 /* 7089 * XXX nothing in the TIDs at this point? Eek. 7090 */ 7091 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7092 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 7093 __func__, 7094 ni->ni_macaddr, 7095 ":"); 7096 avp->av_recv_pspoll(ni, m); 7097 #else 7098 avp->av_recv_pspoll(ni, m); 7099 #endif /* ATH_SW_PSQ */ 7100 } 7101 7102 MODULE_VERSION(if_ath, 1); 7103 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 7104 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 7105 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 7106 #endif 7107