1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_tx_edma.h> 113 #include <dev/ath/if_ath_beacon.h> 114 #include <dev/ath/if_ath_btcoex.h> 115 #include <dev/ath/if_ath_spectral.h> 116 #include <dev/ath/if_ath_lna_div.h> 117 #include <dev/ath/if_athdfs.h> 118 119 #ifdef ATH_TX99_DIAG 120 #include <dev/ath/ath_tx99/ath_tx99.h> 121 #endif 122 123 #ifdef ATH_DEBUG_ALQ 124 #include <dev/ath/if_ath_alq.h> 125 #endif 126 127 /* 128 * Only enable this if you're working on PS-POLL support. 129 */ 130 #define ATH_SW_PSQ 131 132 /* 133 * ATH_BCBUF determines the number of vap's that can transmit 134 * beacons and also (currently) the number of vap's that can 135 * have unique mac addresses/bssid. When staggering beacons 136 * 4 is probably a good max as otherwise the beacons become 137 * very closely spaced and there is limited time for cab q traffic 138 * to go out. You can burst beacons instead but that is not good 139 * for stations in power save and at some point you really want 140 * another radio (and channel). 141 * 142 * The limit on the number of mac addresses is tied to our use of 143 * the U/L bit and tracking addresses in a byte; it would be 144 * worthwhile to allow more for applications like proxy sta. 145 */ 146 CTASSERT(ATH_BCBUF <= 8); 147 148 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 149 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 150 const uint8_t [IEEE80211_ADDR_LEN], 151 const uint8_t [IEEE80211_ADDR_LEN]); 152 static void ath_vap_delete(struct ieee80211vap *); 153 static void ath_init(void *); 154 static void ath_stop_locked(struct ifnet *); 155 static void ath_stop(struct ifnet *); 156 static int ath_reset_vap(struct ieee80211vap *, u_long); 157 static int ath_transmit(struct ifnet *ifp, struct mbuf *m); 158 static void ath_qflush(struct ifnet *ifp); 159 static int ath_media_change(struct ifnet *); 160 static void ath_watchdog(void *); 161 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 162 static void ath_fatal_proc(void *, int); 163 static void ath_bmiss_vap(struct ieee80211vap *); 164 static void ath_bmiss_proc(void *, int); 165 static void ath_key_update_begin(struct ieee80211vap *); 166 static void ath_key_update_end(struct ieee80211vap *); 167 static void ath_update_mcast(struct ifnet *); 168 static void ath_update_promisc(struct ifnet *); 169 static void ath_updateslot(struct ifnet *); 170 static void ath_bstuck_proc(void *, int); 171 static void ath_reset_proc(void *, int); 172 static int ath_desc_alloc(struct ath_softc *); 173 static void ath_desc_free(struct ath_softc *); 174 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 175 const uint8_t [IEEE80211_ADDR_LEN]); 176 static void ath_node_cleanup(struct ieee80211_node *); 177 static void ath_node_free(struct ieee80211_node *); 178 static void ath_node_getsignal(const struct ieee80211_node *, 179 int8_t *, int8_t *); 180 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 181 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 182 static int ath_tx_setup(struct ath_softc *, int, int); 183 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 184 static void ath_tx_cleanup(struct ath_softc *); 185 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 186 int dosched); 187 static void ath_tx_proc_q0(void *, int); 188 static void ath_tx_proc_q0123(void *, int); 189 static void ath_tx_proc(void *, int); 190 static void ath_txq_sched_tasklet(void *, int); 191 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 192 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 193 static void ath_scan_start(struct ieee80211com *); 194 static void ath_scan_end(struct ieee80211com *); 195 static void ath_set_channel(struct ieee80211com *); 196 #ifdef ATH_ENABLE_11N 197 static void ath_update_chw(struct ieee80211com *); 198 #endif /* ATH_ENABLE_11N */ 199 static void ath_calibrate(void *); 200 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 201 static void ath_setup_stationkey(struct ieee80211_node *); 202 static void ath_newassoc(struct ieee80211_node *, int); 203 static int ath_setregdomain(struct ieee80211com *, 204 struct ieee80211_regdomain *, int, 205 struct ieee80211_channel []); 206 static void ath_getradiocaps(struct ieee80211com *, int, int *, 207 struct ieee80211_channel []); 208 static int ath_getchannels(struct ath_softc *); 209 210 static int ath_rate_setup(struct ath_softc *, u_int mode); 211 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 212 213 static void ath_announce(struct ath_softc *); 214 215 static void ath_dfs_tasklet(void *, int); 216 static void ath_node_powersave(struct ieee80211_node *, int); 217 static int ath_node_set_tim(struct ieee80211_node *, int); 218 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 219 220 #ifdef IEEE80211_SUPPORT_TDMA 221 #include <dev/ath/if_ath_tdma.h> 222 #endif 223 224 SYSCTL_DECL(_hw_ath); 225 226 /* XXX validate sysctl values */ 227 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 228 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 229 0, "long chip calibration interval (secs)"); 230 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 231 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 232 0, "short chip calibration interval (msecs)"); 233 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 234 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 235 0, "reset chip calibration results (secs)"); 236 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 237 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 238 0, "ANI calibration (msecs)"); 239 240 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 241 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 242 0, "rx buffers allocated"); 243 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 244 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 245 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 246 0, "tx buffers allocated"); 247 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 248 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 249 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 250 0, "tx (mgmt) buffers allocated"); 251 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 252 253 int ath_bstuck_threshold = 4; /* max missed beacons */ 254 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 255 0, "max missed beacon xmits before chip reset"); 256 257 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 258 259 void 260 ath_legacy_attach_comp_func(struct ath_softc *sc) 261 { 262 263 /* 264 * Special case certain configurations. Note the 265 * CAB queue is handled by these specially so don't 266 * include them when checking the txq setup mask. 267 */ 268 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 269 case 0x01: 270 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 271 break; 272 case 0x0f: 273 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 274 break; 275 default: 276 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 277 break; 278 } 279 } 280 281 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 282 #define HAL_MODE_HT40 \ 283 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 284 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 285 int 286 ath_attach(u_int16_t devid, struct ath_softc *sc) 287 { 288 struct ifnet *ifp; 289 struct ieee80211com *ic; 290 struct ath_hal *ah = NULL; 291 HAL_STATUS status; 292 int error = 0, i; 293 u_int wmodes; 294 uint8_t macaddr[IEEE80211_ADDR_LEN]; 295 int rx_chainmask, tx_chainmask; 296 297 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 298 299 CURVNET_SET(vnet0); 300 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 301 if (ifp == NULL) { 302 device_printf(sc->sc_dev, "can not if_alloc()\n"); 303 error = ENOSPC; 304 CURVNET_RESTORE(); 305 goto bad; 306 } 307 ic = ifp->if_l2com; 308 309 /* set these up early for if_printf use */ 310 if_initname(ifp, device_get_name(sc->sc_dev), 311 device_get_unit(sc->sc_dev)); 312 CURVNET_RESTORE(); 313 314 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 315 sc->sc_eepromdata, &status); 316 if (ah == NULL) { 317 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 318 status); 319 error = ENXIO; 320 goto bad; 321 } 322 sc->sc_ah = ah; 323 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 324 #ifdef ATH_DEBUG 325 sc->sc_debug = ath_debug; 326 #endif 327 328 /* 329 * Setup the DMA/EDMA functions based on the current 330 * hardware support. 331 * 332 * This is required before the descriptors are allocated. 333 */ 334 if (ath_hal_hasedma(sc->sc_ah)) { 335 sc->sc_isedma = 1; 336 ath_recv_setup_edma(sc); 337 ath_xmit_setup_edma(sc); 338 } else { 339 ath_recv_setup_legacy(sc); 340 ath_xmit_setup_legacy(sc); 341 } 342 343 /* 344 * Check if the MAC has multi-rate retry support. 345 * We do this by trying to setup a fake extended 346 * descriptor. MAC's that don't have support will 347 * return false w/o doing anything. MAC's that do 348 * support it will return true w/o doing anything. 349 */ 350 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 351 352 /* 353 * Check if the device has hardware counters for PHY 354 * errors. If so we need to enable the MIB interrupt 355 * so we can act on stat triggers. 356 */ 357 if (ath_hal_hwphycounters(ah)) 358 sc->sc_needmib = 1; 359 360 /* 361 * Get the hardware key cache size. 362 */ 363 sc->sc_keymax = ath_hal_keycachesize(ah); 364 if (sc->sc_keymax > ATH_KEYMAX) { 365 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 366 ATH_KEYMAX, sc->sc_keymax); 367 sc->sc_keymax = ATH_KEYMAX; 368 } 369 /* 370 * Reset the key cache since some parts do not 371 * reset the contents on initial power up. 372 */ 373 for (i = 0; i < sc->sc_keymax; i++) 374 ath_hal_keyreset(ah, i); 375 376 /* 377 * Collect the default channel list. 378 */ 379 error = ath_getchannels(sc); 380 if (error != 0) 381 goto bad; 382 383 /* 384 * Setup rate tables for all potential media types. 385 */ 386 ath_rate_setup(sc, IEEE80211_MODE_11A); 387 ath_rate_setup(sc, IEEE80211_MODE_11B); 388 ath_rate_setup(sc, IEEE80211_MODE_11G); 389 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 390 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 391 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 392 ath_rate_setup(sc, IEEE80211_MODE_11NA); 393 ath_rate_setup(sc, IEEE80211_MODE_11NG); 394 ath_rate_setup(sc, IEEE80211_MODE_HALF); 395 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 396 397 /* NB: setup here so ath_rate_update is happy */ 398 ath_setcurmode(sc, IEEE80211_MODE_11A); 399 400 /* 401 * Allocate TX descriptors and populate the lists. 402 */ 403 error = ath_desc_alloc(sc); 404 if (error != 0) { 405 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 406 error); 407 goto bad; 408 } 409 error = ath_txdma_setup(sc); 410 if (error != 0) { 411 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 412 error); 413 goto bad; 414 } 415 416 /* 417 * Allocate RX descriptors and populate the lists. 418 */ 419 error = ath_rxdma_setup(sc); 420 if (error != 0) { 421 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 422 error); 423 goto bad; 424 } 425 426 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 427 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 428 429 ATH_TXBUF_LOCK_INIT(sc); 430 431 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 432 taskqueue_thread_enqueue, &sc->sc_tq); 433 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 434 "%s taskq", ifp->if_xname); 435 436 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 437 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 438 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 439 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 440 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 441 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 442 443 /* 444 * Allocate hardware transmit queues: one queue for 445 * beacon frames and one data queue for each QoS 446 * priority. Note that the hal handles resetting 447 * these queues at the needed time. 448 * 449 * XXX PS-Poll 450 */ 451 sc->sc_bhalq = ath_beaconq_setup(sc); 452 if (sc->sc_bhalq == (u_int) -1) { 453 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 454 error = EIO; 455 goto bad2; 456 } 457 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 458 if (sc->sc_cabq == NULL) { 459 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 460 error = EIO; 461 goto bad2; 462 } 463 /* NB: insure BK queue is the lowest priority h/w queue */ 464 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 465 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 466 ieee80211_wme_acnames[WME_AC_BK]); 467 error = EIO; 468 goto bad2; 469 } 470 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 471 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 472 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 473 /* 474 * Not enough hardware tx queues to properly do WME; 475 * just punt and assign them all to the same h/w queue. 476 * We could do a better job of this if, for example, 477 * we allocate queues when we switch from station to 478 * AP mode. 479 */ 480 if (sc->sc_ac2q[WME_AC_VI] != NULL) 481 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 482 if (sc->sc_ac2q[WME_AC_BE] != NULL) 483 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 484 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 485 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 486 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 487 } 488 489 /* 490 * Attach the TX completion function. 491 * 492 * The non-EDMA chips may have some special case optimisations; 493 * this method gives everyone a chance to attach cleanly. 494 */ 495 sc->sc_tx.xmit_attach_comp_func(sc); 496 497 /* 498 * Setup rate control. Some rate control modules 499 * call back to change the anntena state so expose 500 * the necessary entry points. 501 * XXX maybe belongs in struct ath_ratectrl? 502 */ 503 sc->sc_setdefantenna = ath_setdefantenna; 504 sc->sc_rc = ath_rate_attach(sc); 505 if (sc->sc_rc == NULL) { 506 error = EIO; 507 goto bad2; 508 } 509 510 /* Attach DFS module */ 511 if (! ath_dfs_attach(sc)) { 512 device_printf(sc->sc_dev, 513 "%s: unable to attach DFS\n", __func__); 514 error = EIO; 515 goto bad2; 516 } 517 518 /* Attach spectral module */ 519 if (ath_spectral_attach(sc) < 0) { 520 device_printf(sc->sc_dev, 521 "%s: unable to attach spectral\n", __func__); 522 error = EIO; 523 goto bad2; 524 } 525 526 /* Attach bluetooth coexistence module */ 527 if (ath_btcoex_attach(sc) < 0) { 528 device_printf(sc->sc_dev, 529 "%s: unable to attach bluetooth coexistence\n", __func__); 530 error = EIO; 531 goto bad2; 532 } 533 534 /* Attach LNA diversity module */ 535 if (ath_lna_div_attach(sc) < 0) { 536 device_printf(sc->sc_dev, 537 "%s: unable to attach LNA diversity\n", __func__); 538 error = EIO; 539 goto bad2; 540 } 541 542 /* Start DFS processing tasklet */ 543 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 544 545 /* Configure LED state */ 546 sc->sc_blinking = 0; 547 sc->sc_ledstate = 1; 548 sc->sc_ledon = 0; /* low true */ 549 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 550 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 551 552 /* 553 * Don't setup hardware-based blinking. 554 * 555 * Although some NICs may have this configured in the 556 * default reset register values, the user may wish 557 * to alter which pins have which function. 558 * 559 * The reference driver attaches the MAC network LED to GPIO1 and 560 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 561 * NIC has these reversed. 562 */ 563 sc->sc_hardled = (1 == 0); 564 sc->sc_led_net_pin = -1; 565 sc->sc_led_pwr_pin = -1; 566 /* 567 * Auto-enable soft led processing for IBM cards and for 568 * 5211 minipci cards. Users can also manually enable/disable 569 * support with a sysctl. 570 */ 571 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 572 ath_led_config(sc); 573 ath_hal_setledstate(ah, HAL_LED_INIT); 574 575 ifp->if_softc = sc; 576 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 577 ifp->if_transmit = ath_transmit; 578 ifp->if_qflush = ath_qflush; 579 ifp->if_ioctl = ath_ioctl; 580 ifp->if_init = ath_init; 581 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 582 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 583 IFQ_SET_READY(&ifp->if_snd); 584 585 ic->ic_ifp = ifp; 586 /* XXX not right but it's not used anywhere important */ 587 ic->ic_phytype = IEEE80211_T_OFDM; 588 ic->ic_opmode = IEEE80211_M_STA; 589 ic->ic_caps = 590 IEEE80211_C_STA /* station mode */ 591 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 592 | IEEE80211_C_HOSTAP /* hostap mode */ 593 | IEEE80211_C_MONITOR /* monitor mode */ 594 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 595 | IEEE80211_C_WDS /* 4-address traffic works */ 596 | IEEE80211_C_MBSS /* mesh point link mode */ 597 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 598 | IEEE80211_C_SHSLOT /* short slot time supported */ 599 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 600 #ifndef ATH_ENABLE_11N 601 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 602 #endif 603 | IEEE80211_C_TXFRAG /* handle tx frags */ 604 #ifdef ATH_ENABLE_DFS 605 | IEEE80211_C_DFS /* Enable radar detection */ 606 #endif 607 ; 608 /* 609 * Query the hal to figure out h/w crypto support. 610 */ 611 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 612 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 613 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 614 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 615 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 616 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 617 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 618 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 619 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 620 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 621 /* 622 * Check if h/w does the MIC and/or whether the 623 * separate key cache entries are required to 624 * handle both tx+rx MIC keys. 625 */ 626 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 627 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 628 /* 629 * If the h/w supports storing tx+rx MIC keys 630 * in one cache slot automatically enable use. 631 */ 632 if (ath_hal_hastkipsplit(ah) || 633 !ath_hal_settkipsplit(ah, AH_FALSE)) 634 sc->sc_splitmic = 1; 635 /* 636 * If the h/w can do TKIP MIC together with WME then 637 * we use it; otherwise we force the MIC to be done 638 * in software by the net80211 layer. 639 */ 640 if (ath_hal_haswmetkipmic(ah)) 641 sc->sc_wmetkipmic = 1; 642 } 643 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 644 /* 645 * Check for multicast key search support. 646 */ 647 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 648 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 649 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 650 } 651 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 652 /* 653 * Mark key cache slots associated with global keys 654 * as in use. If we knew TKIP was not to be used we 655 * could leave the +32, +64, and +32+64 slots free. 656 */ 657 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 658 setbit(sc->sc_keymap, i); 659 setbit(sc->sc_keymap, i+64); 660 if (sc->sc_splitmic) { 661 setbit(sc->sc_keymap, i+32); 662 setbit(sc->sc_keymap, i+32+64); 663 } 664 } 665 /* 666 * TPC support can be done either with a global cap or 667 * per-packet support. The latter is not available on 668 * all parts. We're a bit pedantic here as all parts 669 * support a global cap. 670 */ 671 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 672 ic->ic_caps |= IEEE80211_C_TXPMGT; 673 674 /* 675 * Mark WME capability only if we have sufficient 676 * hardware queues to do proper priority scheduling. 677 */ 678 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 679 ic->ic_caps |= IEEE80211_C_WME; 680 /* 681 * Check for misc other capabilities. 682 */ 683 if (ath_hal_hasbursting(ah)) 684 ic->ic_caps |= IEEE80211_C_BURST; 685 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 686 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 687 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 688 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 689 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 690 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 691 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 692 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 693 694 if (ath_hal_hasfastframes(ah)) 695 ic->ic_caps |= IEEE80211_C_FF; 696 wmodes = ath_hal_getwirelessmodes(ah); 697 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 698 ic->ic_caps |= IEEE80211_C_TURBOP; 699 #ifdef IEEE80211_SUPPORT_TDMA 700 if (ath_hal_macversion(ah) > 0x78) { 701 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 702 ic->ic_tdma_update = ath_tdma_update; 703 } 704 #endif 705 706 /* 707 * TODO: enforce that at least this many frames are available 708 * in the txbuf list before allowing data frames (raw or 709 * otherwise) to be transmitted. 710 */ 711 sc->sc_txq_data_minfree = 10; 712 /* 713 * Leave this as default to maintain legacy behaviour. 714 * Shortening the cabq/mcastq may end up causing some 715 * undesirable behaviour. 716 */ 717 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 718 719 /* 720 * How deep can the node software TX queue get whilst it's asleep. 721 */ 722 sc->sc_txq_node_psq_maxdepth = 16; 723 724 /* 725 * Default the maximum queue depth for a given node 726 * to 1/4'th the TX buffers, or 64, whichever 727 * is larger. 728 */ 729 sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4); 730 731 /* Enable CABQ by default */ 732 sc->sc_cabq_enable = 1; 733 734 /* 735 * Allow the TX and RX chainmasks to be overridden by 736 * environment variables and/or device.hints. 737 * 738 * This must be done early - before the hardware is 739 * calibrated or before the 802.11n stream calculation 740 * is done. 741 */ 742 if (resource_int_value(device_get_name(sc->sc_dev), 743 device_get_unit(sc->sc_dev), "rx_chainmask", 744 &rx_chainmask) == 0) { 745 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 746 rx_chainmask); 747 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 748 } 749 if (resource_int_value(device_get_name(sc->sc_dev), 750 device_get_unit(sc->sc_dev), "tx_chainmask", 751 &tx_chainmask) == 0) { 752 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 753 tx_chainmask); 754 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 755 } 756 757 /* 758 * Query the TX/RX chainmask configuration. 759 * 760 * This is only relevant for 11n devices. 761 */ 762 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 763 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 764 765 /* 766 * Disable MRR with protected frames by default. 767 * Only 802.11n series NICs can handle this. 768 */ 769 sc->sc_mrrprot = 0; /* XXX should be a capability */ 770 771 /* 772 * Query the enterprise mode information the HAL. 773 */ 774 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 775 &sc->sc_ent_cfg) == HAL_OK) 776 sc->sc_use_ent = 1; 777 778 #ifdef ATH_ENABLE_11N 779 /* 780 * Query HT capabilities 781 */ 782 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 783 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 784 uint32_t rxs, txs; 785 786 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 787 788 sc->sc_mrrprot = 1; /* XXX should be a capability */ 789 790 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 791 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 792 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 793 | IEEE80211_HTCAP_MAXAMSDU_3839 794 /* max A-MSDU length */ 795 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 796 ; 797 798 /* 799 * Enable short-GI for HT20 only if the hardware 800 * advertises support. 801 * Notably, anything earlier than the AR9287 doesn't. 802 */ 803 if ((ath_hal_getcapability(ah, 804 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 805 (wmodes & HAL_MODE_HT20)) { 806 device_printf(sc->sc_dev, 807 "[HT] enabling short-GI in 20MHz mode\n"); 808 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 809 } 810 811 if (wmodes & HAL_MODE_HT40) 812 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 813 | IEEE80211_HTCAP_SHORTGI40; 814 815 /* 816 * TX/RX streams need to be taken into account when 817 * negotiating which MCS rates it'll receive and 818 * what MCS rates are available for TX. 819 */ 820 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 821 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 822 ic->ic_txstream = txs; 823 ic->ic_rxstream = rxs; 824 825 /* 826 * Setup TX and RX STBC based on what the HAL allows and 827 * the currently configured chainmask set. 828 * Ie - don't enable STBC TX if only one chain is enabled. 829 * STBC RX is fine on a single RX chain; it just won't 830 * provide any real benefit. 831 */ 832 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 833 NULL) == HAL_OK) { 834 sc->sc_rx_stbc = 1; 835 device_printf(sc->sc_dev, 836 "[HT] 1 stream STBC receive enabled\n"); 837 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 838 } 839 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 840 NULL) == HAL_OK) { 841 sc->sc_tx_stbc = 1; 842 device_printf(sc->sc_dev, 843 "[HT] 1 stream STBC transmit enabled\n"); 844 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 845 } 846 847 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 848 &sc->sc_rts_aggr_limit); 849 if (sc->sc_rts_aggr_limit != (64 * 1024)) 850 device_printf(sc->sc_dev, 851 "[HT] RTS aggregates limited to %d KiB\n", 852 sc->sc_rts_aggr_limit / 1024); 853 854 device_printf(sc->sc_dev, 855 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 856 } 857 #endif 858 859 /* 860 * Initial aggregation settings. 861 */ 862 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 863 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 864 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 865 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 866 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 867 sc->sc_delim_min_pad = 0; 868 869 /* 870 * Check if the hardware requires PCI register serialisation. 871 * Some of the Owl based MACs require this. 872 */ 873 if (mp_ncpus > 1 && 874 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 875 0, NULL) == HAL_OK) { 876 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 877 device_printf(sc->sc_dev, 878 "Enabling register serialisation\n"); 879 } 880 881 /* 882 * Initialise the deferred completed RX buffer list. 883 */ 884 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 885 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 886 887 /* 888 * Indicate we need the 802.11 header padded to a 889 * 32-bit boundary for 4-address and QoS frames. 890 */ 891 ic->ic_flags |= IEEE80211_F_DATAPAD; 892 893 /* 894 * Query the hal about antenna support. 895 */ 896 sc->sc_defant = ath_hal_getdefantenna(ah); 897 898 /* 899 * Not all chips have the VEOL support we want to 900 * use with IBSS beacons; check here for it. 901 */ 902 sc->sc_hasveol = ath_hal_hasveol(ah); 903 904 /* get mac address from hardware */ 905 ath_hal_getmac(ah, macaddr); 906 if (sc->sc_hasbmask) 907 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 908 909 /* NB: used to size node table key mapping array */ 910 ic->ic_max_keyix = sc->sc_keymax; 911 /* call MI attach routine. */ 912 ieee80211_ifattach(ic, macaddr); 913 ic->ic_setregdomain = ath_setregdomain; 914 ic->ic_getradiocaps = ath_getradiocaps; 915 sc->sc_opmode = HAL_M_STA; 916 917 /* override default methods */ 918 ic->ic_newassoc = ath_newassoc; 919 ic->ic_updateslot = ath_updateslot; 920 ic->ic_wme.wme_update = ath_wme_update; 921 ic->ic_vap_create = ath_vap_create; 922 ic->ic_vap_delete = ath_vap_delete; 923 ic->ic_raw_xmit = ath_raw_xmit; 924 ic->ic_update_mcast = ath_update_mcast; 925 ic->ic_update_promisc = ath_update_promisc; 926 ic->ic_node_alloc = ath_node_alloc; 927 sc->sc_node_free = ic->ic_node_free; 928 ic->ic_node_free = ath_node_free; 929 sc->sc_node_cleanup = ic->ic_node_cleanup; 930 ic->ic_node_cleanup = ath_node_cleanup; 931 ic->ic_node_getsignal = ath_node_getsignal; 932 ic->ic_scan_start = ath_scan_start; 933 ic->ic_scan_end = ath_scan_end; 934 ic->ic_set_channel = ath_set_channel; 935 #ifdef ATH_ENABLE_11N 936 /* 802.11n specific - but just override anyway */ 937 sc->sc_addba_request = ic->ic_addba_request; 938 sc->sc_addba_response = ic->ic_addba_response; 939 sc->sc_addba_stop = ic->ic_addba_stop; 940 sc->sc_bar_response = ic->ic_bar_response; 941 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 942 943 ic->ic_addba_request = ath_addba_request; 944 ic->ic_addba_response = ath_addba_response; 945 ic->ic_addba_response_timeout = ath_addba_response_timeout; 946 ic->ic_addba_stop = ath_addba_stop; 947 ic->ic_bar_response = ath_bar_response; 948 949 ic->ic_update_chw = ath_update_chw; 950 #endif /* ATH_ENABLE_11N */ 951 952 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 953 /* 954 * There's one vendor bitmap entry in the RX radiotap 955 * header; make sure that's taken into account. 956 */ 957 ieee80211_radiotap_attachv(ic, 958 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 959 ATH_TX_RADIOTAP_PRESENT, 960 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 961 ATH_RX_RADIOTAP_PRESENT); 962 #else 963 /* 964 * No vendor bitmap/extensions are present. 965 */ 966 ieee80211_radiotap_attach(ic, 967 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 968 ATH_TX_RADIOTAP_PRESENT, 969 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 970 ATH_RX_RADIOTAP_PRESENT); 971 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 972 973 /* 974 * Setup the ALQ logging if required 975 */ 976 #ifdef ATH_DEBUG_ALQ 977 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 978 if_ath_alq_setcfg(&sc->sc_alq, 979 sc->sc_ah->ah_macVersion, 980 sc->sc_ah->ah_macRev, 981 sc->sc_ah->ah_phyRev, 982 sc->sc_ah->ah_magic); 983 #endif 984 985 /* 986 * Setup dynamic sysctl's now that country code and 987 * regdomain are available from the hal. 988 */ 989 ath_sysctlattach(sc); 990 ath_sysctl_stats_attach(sc); 991 ath_sysctl_hal_attach(sc); 992 993 if (bootverbose) 994 ieee80211_announce(ic); 995 ath_announce(sc); 996 return 0; 997 bad2: 998 ath_tx_cleanup(sc); 999 ath_desc_free(sc); 1000 ath_txdma_teardown(sc); 1001 ath_rxdma_teardown(sc); 1002 bad: 1003 if (ah) 1004 ath_hal_detach(ah); 1005 1006 /* 1007 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE.. 1008 */ 1009 if (ifp != NULL && ifp->if_vnet) { 1010 CURVNET_SET(ifp->if_vnet); 1011 if_free(ifp); 1012 CURVNET_RESTORE(); 1013 } else if (ifp != NULL) 1014 if_free(ifp); 1015 sc->sc_invalid = 1; 1016 return error; 1017 } 1018 1019 int 1020 ath_detach(struct ath_softc *sc) 1021 { 1022 struct ifnet *ifp = sc->sc_ifp; 1023 1024 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1025 __func__, ifp->if_flags); 1026 1027 /* 1028 * NB: the order of these is important: 1029 * o stop the chip so no more interrupts will fire 1030 * o call the 802.11 layer before detaching the hal to 1031 * insure callbacks into the driver to delete global 1032 * key cache entries can be handled 1033 * o free the taskqueue which drains any pending tasks 1034 * o reclaim the tx queue data structures after calling 1035 * the 802.11 layer as we'll get called back to reclaim 1036 * node state and potentially want to use them 1037 * o to cleanup the tx queues the hal is called, so detach 1038 * it last 1039 * Other than that, it's straightforward... 1040 */ 1041 ath_stop(ifp); 1042 ieee80211_ifdetach(ifp->if_l2com); 1043 taskqueue_free(sc->sc_tq); 1044 #ifdef ATH_TX99_DIAG 1045 if (sc->sc_tx99 != NULL) 1046 sc->sc_tx99->detach(sc->sc_tx99); 1047 #endif 1048 ath_rate_detach(sc->sc_rc); 1049 #ifdef ATH_DEBUG_ALQ 1050 if_ath_alq_tidyup(&sc->sc_alq); 1051 #endif 1052 ath_lna_div_detach(sc); 1053 ath_btcoex_detach(sc); 1054 ath_spectral_detach(sc); 1055 ath_dfs_detach(sc); 1056 ath_desc_free(sc); 1057 ath_txdma_teardown(sc); 1058 ath_rxdma_teardown(sc); 1059 ath_tx_cleanup(sc); 1060 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1061 1062 CURVNET_SET(ifp->if_vnet); 1063 if_free(ifp); 1064 CURVNET_RESTORE(); 1065 1066 return 0; 1067 } 1068 1069 /* 1070 * MAC address handling for multiple BSS on the same radio. 1071 * The first vap uses the MAC address from the EEPROM. For 1072 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1073 * address and use the next six bits as an index. 1074 */ 1075 static void 1076 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1077 { 1078 int i; 1079 1080 if (clone && sc->sc_hasbmask) { 1081 /* NB: we only do this if h/w supports multiple bssid */ 1082 for (i = 0; i < 8; i++) 1083 if ((sc->sc_bssidmask & (1<<i)) == 0) 1084 break; 1085 if (i != 0) 1086 mac[0] |= (i << 2)|0x2; 1087 } else 1088 i = 0; 1089 sc->sc_bssidmask |= 1<<i; 1090 sc->sc_hwbssidmask[0] &= ~mac[0]; 1091 if (i == 0) 1092 sc->sc_nbssid0++; 1093 } 1094 1095 static void 1096 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1097 { 1098 int i = mac[0] >> 2; 1099 uint8_t mask; 1100 1101 if (i != 0 || --sc->sc_nbssid0 == 0) { 1102 sc->sc_bssidmask &= ~(1<<i); 1103 /* recalculate bssid mask from remaining addresses */ 1104 mask = 0xff; 1105 for (i = 1; i < 8; i++) 1106 if (sc->sc_bssidmask & (1<<i)) 1107 mask &= ~((i<<2)|0x2); 1108 sc->sc_hwbssidmask[0] |= mask; 1109 } 1110 } 1111 1112 /* 1113 * Assign a beacon xmit slot. We try to space out 1114 * assignments so when beacons are staggered the 1115 * traffic coming out of the cab q has maximal time 1116 * to go out before the next beacon is scheduled. 1117 */ 1118 static int 1119 assign_bslot(struct ath_softc *sc) 1120 { 1121 u_int slot, free; 1122 1123 free = 0; 1124 for (slot = 0; slot < ATH_BCBUF; slot++) 1125 if (sc->sc_bslot[slot] == NULL) { 1126 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1127 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1128 return slot; 1129 free = slot; 1130 /* NB: keep looking for a double slot */ 1131 } 1132 return free; 1133 } 1134 1135 static struct ieee80211vap * 1136 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1137 enum ieee80211_opmode opmode, int flags, 1138 const uint8_t bssid[IEEE80211_ADDR_LEN], 1139 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1140 { 1141 struct ath_softc *sc = ic->ic_ifp->if_softc; 1142 struct ath_vap *avp; 1143 struct ieee80211vap *vap; 1144 uint8_t mac[IEEE80211_ADDR_LEN]; 1145 int needbeacon, error; 1146 enum ieee80211_opmode ic_opmode; 1147 1148 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1149 M_80211_VAP, M_WAITOK | M_ZERO); 1150 needbeacon = 0; 1151 IEEE80211_ADDR_COPY(mac, mac0); 1152 1153 ATH_LOCK(sc); 1154 ic_opmode = opmode; /* default to opmode of new vap */ 1155 switch (opmode) { 1156 case IEEE80211_M_STA: 1157 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1158 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1159 goto bad; 1160 } 1161 if (sc->sc_nvaps) { 1162 /* 1163 * With multiple vaps we must fall back 1164 * to s/w beacon miss handling. 1165 */ 1166 flags |= IEEE80211_CLONE_NOBEACONS; 1167 } 1168 if (flags & IEEE80211_CLONE_NOBEACONS) { 1169 /* 1170 * Station mode w/o beacons are implemented w/ AP mode. 1171 */ 1172 ic_opmode = IEEE80211_M_HOSTAP; 1173 } 1174 break; 1175 case IEEE80211_M_IBSS: 1176 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1177 device_printf(sc->sc_dev, 1178 "only 1 ibss vap supported\n"); 1179 goto bad; 1180 } 1181 needbeacon = 1; 1182 break; 1183 case IEEE80211_M_AHDEMO: 1184 #ifdef IEEE80211_SUPPORT_TDMA 1185 if (flags & IEEE80211_CLONE_TDMA) { 1186 if (sc->sc_nvaps != 0) { 1187 device_printf(sc->sc_dev, 1188 "only 1 tdma vap supported\n"); 1189 goto bad; 1190 } 1191 needbeacon = 1; 1192 flags |= IEEE80211_CLONE_NOBEACONS; 1193 } 1194 /* fall thru... */ 1195 #endif 1196 case IEEE80211_M_MONITOR: 1197 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1198 /* 1199 * Adopt existing mode. Adding a monitor or ahdemo 1200 * vap to an existing configuration is of dubious 1201 * value but should be ok. 1202 */ 1203 /* XXX not right for monitor mode */ 1204 ic_opmode = ic->ic_opmode; 1205 } 1206 break; 1207 case IEEE80211_M_HOSTAP: 1208 case IEEE80211_M_MBSS: 1209 needbeacon = 1; 1210 break; 1211 case IEEE80211_M_WDS: 1212 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1213 device_printf(sc->sc_dev, 1214 "wds not supported in sta mode\n"); 1215 goto bad; 1216 } 1217 /* 1218 * Silently remove any request for a unique 1219 * bssid; WDS vap's always share the local 1220 * mac address. 1221 */ 1222 flags &= ~IEEE80211_CLONE_BSSID; 1223 if (sc->sc_nvaps == 0) 1224 ic_opmode = IEEE80211_M_HOSTAP; 1225 else 1226 ic_opmode = ic->ic_opmode; 1227 break; 1228 default: 1229 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1230 goto bad; 1231 } 1232 /* 1233 * Check that a beacon buffer is available; the code below assumes it. 1234 */ 1235 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1236 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1237 goto bad; 1238 } 1239 1240 /* STA, AHDEMO? */ 1241 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1242 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1243 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1244 } 1245 1246 vap = &avp->av_vap; 1247 /* XXX can't hold mutex across if_alloc */ 1248 ATH_UNLOCK(sc); 1249 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1250 bssid, mac); 1251 ATH_LOCK(sc); 1252 if (error != 0) { 1253 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1254 __func__, error); 1255 goto bad2; 1256 } 1257 1258 /* h/w crypto support */ 1259 vap->iv_key_alloc = ath_key_alloc; 1260 vap->iv_key_delete = ath_key_delete; 1261 vap->iv_key_set = ath_key_set; 1262 vap->iv_key_update_begin = ath_key_update_begin; 1263 vap->iv_key_update_end = ath_key_update_end; 1264 1265 /* override various methods */ 1266 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1267 vap->iv_recv_mgmt = ath_recv_mgmt; 1268 vap->iv_reset = ath_reset_vap; 1269 vap->iv_update_beacon = ath_beacon_update; 1270 avp->av_newstate = vap->iv_newstate; 1271 vap->iv_newstate = ath_newstate; 1272 avp->av_bmiss = vap->iv_bmiss; 1273 vap->iv_bmiss = ath_bmiss_vap; 1274 1275 avp->av_node_ps = vap->iv_node_ps; 1276 vap->iv_node_ps = ath_node_powersave; 1277 1278 avp->av_set_tim = vap->iv_set_tim; 1279 vap->iv_set_tim = ath_node_set_tim; 1280 1281 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1282 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1283 1284 /* Set default parameters */ 1285 1286 /* 1287 * Anything earlier than some AR9300 series MACs don't 1288 * support a smaller MPDU density. 1289 */ 1290 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1291 /* 1292 * All NICs can handle the maximum size, however 1293 * AR5416 based MACs can only TX aggregates w/ RTS 1294 * protection when the total aggregate size is <= 8k. 1295 * However, for now that's enforced by the TX path. 1296 */ 1297 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1298 1299 avp->av_bslot = -1; 1300 if (needbeacon) { 1301 /* 1302 * Allocate beacon state and setup the q for buffered 1303 * multicast frames. We know a beacon buffer is 1304 * available because we checked above. 1305 */ 1306 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1307 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1308 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1309 /* 1310 * Assign the vap to a beacon xmit slot. As above 1311 * this cannot fail to find a free one. 1312 */ 1313 avp->av_bslot = assign_bslot(sc); 1314 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1315 ("beacon slot %u not empty", avp->av_bslot)); 1316 sc->sc_bslot[avp->av_bslot] = vap; 1317 sc->sc_nbcnvaps++; 1318 } 1319 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1320 /* 1321 * Multple vaps are to transmit beacons and we 1322 * have h/w support for TSF adjusting; enable 1323 * use of staggered beacons. 1324 */ 1325 sc->sc_stagbeacons = 1; 1326 } 1327 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1328 } 1329 1330 ic->ic_opmode = ic_opmode; 1331 if (opmode != IEEE80211_M_WDS) { 1332 sc->sc_nvaps++; 1333 if (opmode == IEEE80211_M_STA) 1334 sc->sc_nstavaps++; 1335 if (opmode == IEEE80211_M_MBSS) 1336 sc->sc_nmeshvaps++; 1337 } 1338 switch (ic_opmode) { 1339 case IEEE80211_M_IBSS: 1340 sc->sc_opmode = HAL_M_IBSS; 1341 break; 1342 case IEEE80211_M_STA: 1343 sc->sc_opmode = HAL_M_STA; 1344 break; 1345 case IEEE80211_M_AHDEMO: 1346 #ifdef IEEE80211_SUPPORT_TDMA 1347 if (vap->iv_caps & IEEE80211_C_TDMA) { 1348 sc->sc_tdma = 1; 1349 /* NB: disable tsf adjust */ 1350 sc->sc_stagbeacons = 0; 1351 } 1352 /* 1353 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1354 * just ap mode. 1355 */ 1356 /* fall thru... */ 1357 #endif 1358 case IEEE80211_M_HOSTAP: 1359 case IEEE80211_M_MBSS: 1360 sc->sc_opmode = HAL_M_HOSTAP; 1361 break; 1362 case IEEE80211_M_MONITOR: 1363 sc->sc_opmode = HAL_M_MONITOR; 1364 break; 1365 default: 1366 /* XXX should not happen */ 1367 break; 1368 } 1369 if (sc->sc_hastsfadd) { 1370 /* 1371 * Configure whether or not TSF adjust should be done. 1372 */ 1373 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1374 } 1375 if (flags & IEEE80211_CLONE_NOBEACONS) { 1376 /* 1377 * Enable s/w beacon miss handling. 1378 */ 1379 sc->sc_swbmiss = 1; 1380 } 1381 ATH_UNLOCK(sc); 1382 1383 /* complete setup */ 1384 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1385 return vap; 1386 bad2: 1387 reclaim_address(sc, mac); 1388 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1389 bad: 1390 free(avp, M_80211_VAP); 1391 ATH_UNLOCK(sc); 1392 return NULL; 1393 } 1394 1395 static void 1396 ath_vap_delete(struct ieee80211vap *vap) 1397 { 1398 struct ieee80211com *ic = vap->iv_ic; 1399 struct ifnet *ifp = ic->ic_ifp; 1400 struct ath_softc *sc = ifp->if_softc; 1401 struct ath_hal *ah = sc->sc_ah; 1402 struct ath_vap *avp = ATH_VAP(vap); 1403 1404 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1405 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1406 /* 1407 * Quiesce the hardware while we remove the vap. In 1408 * particular we need to reclaim all references to 1409 * the vap state by any frames pending on the tx queues. 1410 */ 1411 ath_hal_intrset(ah, 0); /* disable interrupts */ 1412 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1413 /* XXX Do all frames from all vaps/nodes need draining here? */ 1414 ath_stoprecv(sc, 1); /* stop recv side */ 1415 } 1416 1417 ieee80211_vap_detach(vap); 1418 1419 /* 1420 * XXX Danger Will Robinson! Danger! 1421 * 1422 * Because ieee80211_vap_detach() can queue a frame (the station 1423 * diassociate message?) after we've drained the TXQ and 1424 * flushed the software TXQ, we will end up with a frame queued 1425 * to a node whose vap is about to be freed. 1426 * 1427 * To work around this, flush the hardware/software again. 1428 * This may be racy - the ath task may be running and the packet 1429 * may be being scheduled between sw->hw txq. Tsk. 1430 * 1431 * TODO: figure out why a new node gets allocated somewhere around 1432 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1433 * call!) 1434 */ 1435 1436 ath_draintxq(sc, ATH_RESET_DEFAULT); 1437 1438 ATH_LOCK(sc); 1439 /* 1440 * Reclaim beacon state. Note this must be done before 1441 * the vap instance is reclaimed as we may have a reference 1442 * to it in the buffer for the beacon frame. 1443 */ 1444 if (avp->av_bcbuf != NULL) { 1445 if (avp->av_bslot != -1) { 1446 sc->sc_bslot[avp->av_bslot] = NULL; 1447 sc->sc_nbcnvaps--; 1448 } 1449 ath_beacon_return(sc, avp->av_bcbuf); 1450 avp->av_bcbuf = NULL; 1451 if (sc->sc_nbcnvaps == 0) { 1452 sc->sc_stagbeacons = 0; 1453 if (sc->sc_hastsfadd) 1454 ath_hal_settsfadjust(sc->sc_ah, 0); 1455 } 1456 /* 1457 * Reclaim any pending mcast frames for the vap. 1458 */ 1459 ath_tx_draintxq(sc, &avp->av_mcastq); 1460 } 1461 /* 1462 * Update bookkeeping. 1463 */ 1464 if (vap->iv_opmode == IEEE80211_M_STA) { 1465 sc->sc_nstavaps--; 1466 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1467 sc->sc_swbmiss = 0; 1468 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1469 vap->iv_opmode == IEEE80211_M_MBSS) { 1470 reclaim_address(sc, vap->iv_myaddr); 1471 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1472 if (vap->iv_opmode == IEEE80211_M_MBSS) 1473 sc->sc_nmeshvaps--; 1474 } 1475 if (vap->iv_opmode != IEEE80211_M_WDS) 1476 sc->sc_nvaps--; 1477 #ifdef IEEE80211_SUPPORT_TDMA 1478 /* TDMA operation ceases when the last vap is destroyed */ 1479 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1480 sc->sc_tdma = 0; 1481 sc->sc_swbmiss = 0; 1482 } 1483 #endif 1484 free(avp, M_80211_VAP); 1485 1486 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1487 /* 1488 * Restart rx+tx machines if still running (RUNNING will 1489 * be reset if we just destroyed the last vap). 1490 */ 1491 if (ath_startrecv(sc) != 0) 1492 if_printf(ifp, "%s: unable to restart recv logic\n", 1493 __func__); 1494 if (sc->sc_beacons) { /* restart beacons */ 1495 #ifdef IEEE80211_SUPPORT_TDMA 1496 if (sc->sc_tdma) 1497 ath_tdma_config(sc, NULL); 1498 else 1499 #endif 1500 ath_beacon_config(sc, NULL); 1501 } 1502 ath_hal_intrset(ah, sc->sc_imask); 1503 } 1504 ATH_UNLOCK(sc); 1505 } 1506 1507 void 1508 ath_suspend(struct ath_softc *sc) 1509 { 1510 struct ifnet *ifp = sc->sc_ifp; 1511 struct ieee80211com *ic = ifp->if_l2com; 1512 1513 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1514 __func__, ifp->if_flags); 1515 1516 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1517 1518 ieee80211_suspend_all(ic); 1519 /* 1520 * NB: don't worry about putting the chip in low power 1521 * mode; pci will power off our socket on suspend and 1522 * CardBus detaches the device. 1523 */ 1524 1525 /* 1526 * XXX ensure none of the taskqueues are running 1527 * XXX ensure sc_invalid is 1 1528 * XXX ensure the calibration callout is disabled 1529 */ 1530 1531 /* Disable the PCIe PHY, complete with workarounds */ 1532 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1533 } 1534 1535 /* 1536 * Reset the key cache since some parts do not reset the 1537 * contents on resume. First we clear all entries, then 1538 * re-load keys that the 802.11 layer assumes are setup 1539 * in h/w. 1540 */ 1541 static void 1542 ath_reset_keycache(struct ath_softc *sc) 1543 { 1544 struct ifnet *ifp = sc->sc_ifp; 1545 struct ieee80211com *ic = ifp->if_l2com; 1546 struct ath_hal *ah = sc->sc_ah; 1547 int i; 1548 1549 for (i = 0; i < sc->sc_keymax; i++) 1550 ath_hal_keyreset(ah, i); 1551 ieee80211_crypto_reload_keys(ic); 1552 } 1553 1554 /* 1555 * Fetch the current chainmask configuration based on the current 1556 * operating channel and options. 1557 */ 1558 static void 1559 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1560 { 1561 1562 /* 1563 * Set TX chainmask to the currently configured chainmask; 1564 * the TX chainmask depends upon the current operating mode. 1565 */ 1566 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1567 if (IEEE80211_IS_CHAN_HT(chan)) { 1568 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1569 } else { 1570 sc->sc_cur_txchainmask = 1; 1571 } 1572 1573 DPRINTF(sc, ATH_DEBUG_RESET, 1574 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1575 __func__, 1576 sc->sc_cur_txchainmask, 1577 sc->sc_cur_rxchainmask); 1578 } 1579 1580 void 1581 ath_resume(struct ath_softc *sc) 1582 { 1583 struct ifnet *ifp = sc->sc_ifp; 1584 struct ieee80211com *ic = ifp->if_l2com; 1585 struct ath_hal *ah = sc->sc_ah; 1586 HAL_STATUS status; 1587 1588 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1589 __func__, ifp->if_flags); 1590 1591 /* Re-enable PCIe, re-enable the PCIe bus */ 1592 ath_hal_enablepcie(ah, 0, 0); 1593 1594 /* 1595 * Must reset the chip before we reload the 1596 * keycache as we were powered down on suspend. 1597 */ 1598 ath_update_chainmasks(sc, 1599 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1600 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1601 sc->sc_cur_rxchainmask); 1602 ath_hal_reset(ah, sc->sc_opmode, 1603 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1604 AH_FALSE, &status); 1605 ath_reset_keycache(sc); 1606 1607 /* Let DFS at it in case it's a DFS channel */ 1608 ath_dfs_radar_enable(sc, ic->ic_curchan); 1609 1610 /* Let spectral at in case spectral is enabled */ 1611 ath_spectral_enable(sc, ic->ic_curchan); 1612 1613 /* 1614 * Let bluetooth coexistence at in case it's needed for this channel 1615 */ 1616 ath_btcoex_enable(sc, ic->ic_curchan); 1617 1618 /* 1619 * If we're doing TDMA, enforce the TXOP limitation for chips that 1620 * support it. 1621 */ 1622 if (sc->sc_hasenforcetxop && sc->sc_tdma) 1623 ath_hal_setenforcetxop(sc->sc_ah, 1); 1624 else 1625 ath_hal_setenforcetxop(sc->sc_ah, 0); 1626 1627 /* Restore the LED configuration */ 1628 ath_led_config(sc); 1629 ath_hal_setledstate(ah, HAL_LED_INIT); 1630 1631 if (sc->sc_resume_up) 1632 ieee80211_resume_all(ic); 1633 1634 /* XXX beacons ? */ 1635 } 1636 1637 void 1638 ath_shutdown(struct ath_softc *sc) 1639 { 1640 struct ifnet *ifp = sc->sc_ifp; 1641 1642 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1643 __func__, ifp->if_flags); 1644 1645 ath_stop(ifp); 1646 /* NB: no point powering down chip as we're about to reboot */ 1647 } 1648 1649 /* 1650 * Interrupt handler. Most of the actual processing is deferred. 1651 */ 1652 void 1653 ath_intr(void *arg) 1654 { 1655 struct ath_softc *sc = arg; 1656 struct ifnet *ifp = sc->sc_ifp; 1657 struct ath_hal *ah = sc->sc_ah; 1658 HAL_INT status = 0; 1659 uint32_t txqs; 1660 1661 /* 1662 * If we're inside a reset path, just print a warning and 1663 * clear the ISR. The reset routine will finish it for us. 1664 */ 1665 ATH_PCU_LOCK(sc); 1666 if (sc->sc_inreset_cnt) { 1667 HAL_INT status; 1668 ath_hal_getisr(ah, &status); /* clear ISR */ 1669 ath_hal_intrset(ah, 0); /* disable further intr's */ 1670 DPRINTF(sc, ATH_DEBUG_ANY, 1671 "%s: in reset, ignoring: status=0x%x\n", 1672 __func__, status); 1673 ATH_PCU_UNLOCK(sc); 1674 return; 1675 } 1676 1677 if (sc->sc_invalid) { 1678 /* 1679 * The hardware is not ready/present, don't touch anything. 1680 * Note this can happen early on if the IRQ is shared. 1681 */ 1682 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1683 ATH_PCU_UNLOCK(sc); 1684 return; 1685 } 1686 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1687 ATH_PCU_UNLOCK(sc); 1688 return; 1689 } 1690 1691 if ((ifp->if_flags & IFF_UP) == 0 || 1692 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1693 HAL_INT status; 1694 1695 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1696 __func__, ifp->if_flags); 1697 ath_hal_getisr(ah, &status); /* clear ISR */ 1698 ath_hal_intrset(ah, 0); /* disable further intr's */ 1699 ATH_PCU_UNLOCK(sc); 1700 return; 1701 } 1702 1703 /* 1704 * Figure out the reason(s) for the interrupt. Note 1705 * that the hal returns a pseudo-ISR that may include 1706 * bits we haven't explicitly enabled so we mask the 1707 * value to insure we only process bits we requested. 1708 */ 1709 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1710 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1711 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 1712 #ifdef ATH_DEBUG_ALQ 1713 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 1714 ah->ah_syncstate); 1715 #endif /* ATH_DEBUG_ALQ */ 1716 #ifdef ATH_KTR_INTR_DEBUG 1717 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 1718 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1719 ah->ah_intrstate[0], 1720 ah->ah_intrstate[1], 1721 ah->ah_intrstate[2], 1722 ah->ah_intrstate[3], 1723 ah->ah_intrstate[6]); 1724 #endif 1725 1726 /* Squirrel away SYNC interrupt debugging */ 1727 if (ah->ah_syncstate != 0) { 1728 int i; 1729 for (i = 0; i < 32; i++) 1730 if (ah->ah_syncstate & (i << i)) 1731 sc->sc_intr_stats.sync_intr[i]++; 1732 } 1733 1734 status &= sc->sc_imask; /* discard unasked for bits */ 1735 1736 /* Short-circuit un-handled interrupts */ 1737 if (status == 0x0) { 1738 ATH_PCU_UNLOCK(sc); 1739 return; 1740 } 1741 1742 /* 1743 * Take a note that we're inside the interrupt handler, so 1744 * the reset routines know to wait. 1745 */ 1746 sc->sc_intr_cnt++; 1747 ATH_PCU_UNLOCK(sc); 1748 1749 /* 1750 * Handle the interrupt. We won't run concurrent with the reset 1751 * or channel change routines as they'll wait for sc_intr_cnt 1752 * to be 0 before continuing. 1753 */ 1754 if (status & HAL_INT_FATAL) { 1755 sc->sc_stats.ast_hardware++; 1756 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1757 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1758 } else { 1759 if (status & HAL_INT_SWBA) { 1760 /* 1761 * Software beacon alert--time to send a beacon. 1762 * Handle beacon transmission directly; deferring 1763 * this is too slow to meet timing constraints 1764 * under load. 1765 */ 1766 #ifdef IEEE80211_SUPPORT_TDMA 1767 if (sc->sc_tdma) { 1768 if (sc->sc_tdmaswba == 0) { 1769 struct ieee80211com *ic = ifp->if_l2com; 1770 struct ieee80211vap *vap = 1771 TAILQ_FIRST(&ic->ic_vaps); 1772 ath_tdma_beacon_send(sc, vap); 1773 sc->sc_tdmaswba = 1774 vap->iv_tdma->tdma_bintval; 1775 } else 1776 sc->sc_tdmaswba--; 1777 } else 1778 #endif 1779 { 1780 ath_beacon_proc(sc, 0); 1781 #ifdef IEEE80211_SUPPORT_SUPERG 1782 /* 1783 * Schedule the rx taskq in case there's no 1784 * traffic so any frames held on the staging 1785 * queue are aged and potentially flushed. 1786 */ 1787 sc->sc_rx.recv_sched(sc, 1); 1788 #endif 1789 } 1790 } 1791 if (status & HAL_INT_RXEOL) { 1792 int imask; 1793 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 1794 ATH_PCU_LOCK(sc); 1795 /* 1796 * NB: the hardware should re-read the link when 1797 * RXE bit is written, but it doesn't work at 1798 * least on older hardware revs. 1799 */ 1800 sc->sc_stats.ast_rxeol++; 1801 /* 1802 * Disable RXEOL/RXORN - prevent an interrupt 1803 * storm until the PCU logic can be reset. 1804 * In case the interface is reset some other 1805 * way before "sc_kickpcu" is called, don't 1806 * modify sc_imask - that way if it is reset 1807 * by a call to ath_reset() somehow, the 1808 * interrupt mask will be correctly reprogrammed. 1809 */ 1810 imask = sc->sc_imask; 1811 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1812 ath_hal_intrset(ah, imask); 1813 /* 1814 * Only blank sc_rxlink if we've not yet kicked 1815 * the PCU. 1816 * 1817 * This isn't entirely correct - the correct solution 1818 * would be to have a PCU lock and engage that for 1819 * the duration of the PCU fiddling; which would include 1820 * running the RX process. Otherwise we could end up 1821 * messing up the RX descriptor chain and making the 1822 * RX desc list much shorter. 1823 */ 1824 if (! sc->sc_kickpcu) 1825 sc->sc_rxlink = NULL; 1826 sc->sc_kickpcu = 1; 1827 ATH_PCU_UNLOCK(sc); 1828 /* 1829 * Enqueue an RX proc, to handled whatever 1830 * is in the RX queue. 1831 * This will then kick the PCU. 1832 */ 1833 sc->sc_rx.recv_sched(sc, 1); 1834 } 1835 if (status & HAL_INT_TXURN) { 1836 sc->sc_stats.ast_txurn++; 1837 /* bump tx trigger level */ 1838 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1839 } 1840 /* 1841 * Handle both the legacy and RX EDMA interrupt bits. 1842 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1843 */ 1844 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1845 sc->sc_stats.ast_rx_intr++; 1846 sc->sc_rx.recv_sched(sc, 1); 1847 } 1848 if (status & HAL_INT_TX) { 1849 sc->sc_stats.ast_tx_intr++; 1850 /* 1851 * Grab all the currently set bits in the HAL txq bitmap 1852 * and blank them. This is the only place we should be 1853 * doing this. 1854 */ 1855 if (! sc->sc_isedma) { 1856 ATH_PCU_LOCK(sc); 1857 txqs = 0xffffffff; 1858 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1859 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 1860 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 1861 txqs, 1862 sc->sc_txq_active, 1863 sc->sc_txq_active | txqs); 1864 sc->sc_txq_active |= txqs; 1865 ATH_PCU_UNLOCK(sc); 1866 } 1867 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1868 } 1869 if (status & HAL_INT_BMISS) { 1870 sc->sc_stats.ast_bmiss++; 1871 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1872 } 1873 if (status & HAL_INT_GTT) 1874 sc->sc_stats.ast_tx_timeout++; 1875 if (status & HAL_INT_CST) 1876 sc->sc_stats.ast_tx_cst++; 1877 if (status & HAL_INT_MIB) { 1878 sc->sc_stats.ast_mib++; 1879 ATH_PCU_LOCK(sc); 1880 /* 1881 * Disable interrupts until we service the MIB 1882 * interrupt; otherwise it will continue to fire. 1883 */ 1884 ath_hal_intrset(ah, 0); 1885 /* 1886 * Let the hal handle the event. We assume it will 1887 * clear whatever condition caused the interrupt. 1888 */ 1889 ath_hal_mibevent(ah, &sc->sc_halstats); 1890 /* 1891 * Don't reset the interrupt if we've just 1892 * kicked the PCU, or we may get a nested 1893 * RXEOL before the rxproc has had a chance 1894 * to run. 1895 */ 1896 if (sc->sc_kickpcu == 0) 1897 ath_hal_intrset(ah, sc->sc_imask); 1898 ATH_PCU_UNLOCK(sc); 1899 } 1900 if (status & HAL_INT_RXORN) { 1901 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1902 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 1903 sc->sc_stats.ast_rxorn++; 1904 } 1905 } 1906 ATH_PCU_LOCK(sc); 1907 sc->sc_intr_cnt--; 1908 ATH_PCU_UNLOCK(sc); 1909 } 1910 1911 static void 1912 ath_fatal_proc(void *arg, int pending) 1913 { 1914 struct ath_softc *sc = arg; 1915 struct ifnet *ifp = sc->sc_ifp; 1916 u_int32_t *state; 1917 u_int32_t len; 1918 void *sp; 1919 1920 if_printf(ifp, "hardware error; resetting\n"); 1921 /* 1922 * Fatal errors are unrecoverable. Typically these 1923 * are caused by DMA errors. Collect h/w state from 1924 * the hal so we can diagnose what's going on. 1925 */ 1926 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1927 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1928 state = sp; 1929 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1930 state[0], state[1] , state[2], state[3], 1931 state[4], state[5]); 1932 } 1933 ath_reset(ifp, ATH_RESET_NOLOSS); 1934 } 1935 1936 static void 1937 ath_bmiss_vap(struct ieee80211vap *vap) 1938 { 1939 /* 1940 * Workaround phantom bmiss interrupts by sanity-checking 1941 * the time of our last rx'd frame. If it is within the 1942 * beacon miss interval then ignore the interrupt. If it's 1943 * truly a bmiss we'll get another interrupt soon and that'll 1944 * be dispatched up for processing. Note this applies only 1945 * for h/w beacon miss events. 1946 */ 1947 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1948 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1949 struct ath_softc *sc = ifp->if_softc; 1950 u_int64_t lastrx = sc->sc_lastrx; 1951 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1952 /* XXX should take a locked ref to iv_bss */ 1953 u_int bmisstimeout = 1954 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1955 1956 DPRINTF(sc, ATH_DEBUG_BEACON, 1957 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1958 __func__, (unsigned long long) tsf, 1959 (unsigned long long)(tsf - lastrx), 1960 (unsigned long long) lastrx, bmisstimeout); 1961 1962 if (tsf - lastrx <= bmisstimeout) { 1963 sc->sc_stats.ast_bmiss_phantom++; 1964 return; 1965 } 1966 } 1967 ATH_VAP(vap)->av_bmiss(vap); 1968 } 1969 1970 int 1971 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1972 { 1973 uint32_t rsize; 1974 void *sp; 1975 1976 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1977 return 0; 1978 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1979 *hangs = *(uint32_t *)sp; 1980 return 1; 1981 } 1982 1983 static void 1984 ath_bmiss_proc(void *arg, int pending) 1985 { 1986 struct ath_softc *sc = arg; 1987 struct ifnet *ifp = sc->sc_ifp; 1988 uint32_t hangs; 1989 1990 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1991 1992 /* 1993 * Do a reset upon any becaon miss event. 1994 * 1995 * It may be a non-recognised RX clear hang which needs a reset 1996 * to clear. 1997 */ 1998 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1999 ath_reset(ifp, ATH_RESET_NOLOSS); 2000 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 2001 } else { 2002 ath_reset(ifp, ATH_RESET_NOLOSS); 2003 ieee80211_beacon_miss(ifp->if_l2com); 2004 } 2005 } 2006 2007 /* 2008 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2009 * calcs together with WME. If necessary disable the crypto 2010 * hardware and mark the 802.11 state so keys will be setup 2011 * with the MIC work done in software. 2012 */ 2013 static void 2014 ath_settkipmic(struct ath_softc *sc) 2015 { 2016 struct ifnet *ifp = sc->sc_ifp; 2017 struct ieee80211com *ic = ifp->if_l2com; 2018 2019 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2020 if (ic->ic_flags & IEEE80211_F_WME) { 2021 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2022 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2023 } else { 2024 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2025 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2026 } 2027 } 2028 } 2029 2030 static void 2031 ath_init(void *arg) 2032 { 2033 struct ath_softc *sc = (struct ath_softc *) arg; 2034 struct ifnet *ifp = sc->sc_ifp; 2035 struct ieee80211com *ic = ifp->if_l2com; 2036 struct ath_hal *ah = sc->sc_ah; 2037 HAL_STATUS status; 2038 2039 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 2040 __func__, ifp->if_flags); 2041 2042 ATH_LOCK(sc); 2043 /* 2044 * Stop anything previously setup. This is safe 2045 * whether this is the first time through or not. 2046 */ 2047 ath_stop_locked(ifp); 2048 2049 /* 2050 * The basic interface to setting the hardware in a good 2051 * state is ``reset''. On return the hardware is known to 2052 * be powered up and with interrupts disabled. This must 2053 * be followed by initialization of the appropriate bits 2054 * and then setup of the interrupt mask. 2055 */ 2056 ath_settkipmic(sc); 2057 ath_update_chainmasks(sc, ic->ic_curchan); 2058 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2059 sc->sc_cur_rxchainmask); 2060 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 2061 if_printf(ifp, "unable to reset hardware; hal status %u\n", 2062 status); 2063 ATH_UNLOCK(sc); 2064 return; 2065 } 2066 ath_chan_change(sc, ic->ic_curchan); 2067 2068 /* Let DFS at it in case it's a DFS channel */ 2069 ath_dfs_radar_enable(sc, ic->ic_curchan); 2070 2071 /* Let spectral at in case spectral is enabled */ 2072 ath_spectral_enable(sc, ic->ic_curchan); 2073 2074 /* 2075 * Let bluetooth coexistence at in case it's needed for this channel 2076 */ 2077 ath_btcoex_enable(sc, ic->ic_curchan); 2078 2079 /* 2080 * If we're doing TDMA, enforce the TXOP limitation for chips that 2081 * support it. 2082 */ 2083 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2084 ath_hal_setenforcetxop(sc->sc_ah, 1); 2085 else 2086 ath_hal_setenforcetxop(sc->sc_ah, 0); 2087 2088 /* 2089 * Likewise this is set during reset so update 2090 * state cached in the driver. 2091 */ 2092 sc->sc_diversity = ath_hal_getdiversity(ah); 2093 sc->sc_lastlongcal = 0; 2094 sc->sc_resetcal = 1; 2095 sc->sc_lastcalreset = 0; 2096 sc->sc_lastani = 0; 2097 sc->sc_lastshortcal = 0; 2098 sc->sc_doresetcal = AH_FALSE; 2099 /* 2100 * Beacon timers were cleared here; give ath_newstate() 2101 * a hint that the beacon timers should be poked when 2102 * things transition to the RUN state. 2103 */ 2104 sc->sc_beacons = 0; 2105 2106 /* 2107 * Setup the hardware after reset: the key cache 2108 * is filled as needed and the receive engine is 2109 * set going. Frame transmit is handled entirely 2110 * in the frame output path; there's nothing to do 2111 * here except setup the interrupt mask. 2112 */ 2113 if (ath_startrecv(sc) != 0) { 2114 if_printf(ifp, "unable to start recv logic\n"); 2115 ATH_UNLOCK(sc); 2116 return; 2117 } 2118 2119 /* 2120 * Enable interrupts. 2121 */ 2122 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2123 | HAL_INT_RXEOL | HAL_INT_RXORN 2124 | HAL_INT_TXURN 2125 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2126 2127 /* 2128 * Enable RX EDMA bits. Note these overlap with 2129 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2130 */ 2131 if (sc->sc_isedma) 2132 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2133 2134 /* 2135 * Enable MIB interrupts when there are hardware phy counters. 2136 * Note we only do this (at the moment) for station mode. 2137 */ 2138 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2139 sc->sc_imask |= HAL_INT_MIB; 2140 2141 /* Enable global TX timeout and carrier sense timeout if available */ 2142 if (ath_hal_gtxto_supported(ah)) 2143 sc->sc_imask |= HAL_INT_GTT; 2144 2145 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2146 __func__, sc->sc_imask); 2147 2148 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2149 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2150 ath_hal_intrset(ah, sc->sc_imask); 2151 2152 ATH_UNLOCK(sc); 2153 2154 #ifdef ATH_TX99_DIAG 2155 if (sc->sc_tx99 != NULL) 2156 sc->sc_tx99->start(sc->sc_tx99); 2157 else 2158 #endif 2159 ieee80211_start_all(ic); /* start all vap's */ 2160 } 2161 2162 static void 2163 ath_stop_locked(struct ifnet *ifp) 2164 { 2165 struct ath_softc *sc = ifp->if_softc; 2166 struct ath_hal *ah = sc->sc_ah; 2167 2168 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 2169 __func__, sc->sc_invalid, ifp->if_flags); 2170 2171 ATH_LOCK_ASSERT(sc); 2172 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2173 /* 2174 * Shutdown the hardware and driver: 2175 * reset 802.11 state machine 2176 * turn off timers 2177 * disable interrupts 2178 * turn off the radio 2179 * clear transmit machinery 2180 * clear receive machinery 2181 * drain and release tx queues 2182 * reclaim beacon resources 2183 * power down hardware 2184 * 2185 * Note that some of this work is not possible if the 2186 * hardware is gone (invalid). 2187 */ 2188 #ifdef ATH_TX99_DIAG 2189 if (sc->sc_tx99 != NULL) 2190 sc->sc_tx99->stop(sc->sc_tx99); 2191 #endif 2192 callout_stop(&sc->sc_wd_ch); 2193 sc->sc_wd_timer = 0; 2194 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2195 if (!sc->sc_invalid) { 2196 if (sc->sc_softled) { 2197 callout_stop(&sc->sc_ledtimer); 2198 ath_hal_gpioset(ah, sc->sc_ledpin, 2199 !sc->sc_ledon); 2200 sc->sc_blinking = 0; 2201 } 2202 ath_hal_intrset(ah, 0); 2203 } 2204 ath_draintxq(sc, ATH_RESET_DEFAULT); 2205 if (!sc->sc_invalid) { 2206 ath_stoprecv(sc, 1); 2207 ath_hal_phydisable(ah); 2208 } else 2209 sc->sc_rxlink = NULL; 2210 ath_beacon_free(sc); /* XXX not needed */ 2211 } 2212 } 2213 2214 #define MAX_TXRX_ITERATIONS 1000 2215 static void 2216 ath_txrx_stop_locked(struct ath_softc *sc) 2217 { 2218 int i = MAX_TXRX_ITERATIONS; 2219 2220 ATH_UNLOCK_ASSERT(sc); 2221 ATH_PCU_LOCK_ASSERT(sc); 2222 2223 /* 2224 * Sleep until all the pending operations have completed. 2225 * 2226 * The caller must ensure that reset has been incremented 2227 * or the pending operations may continue being queued. 2228 */ 2229 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2230 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2231 if (i <= 0) 2232 break; 2233 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 2234 i--; 2235 } 2236 2237 if (i <= 0) 2238 device_printf(sc->sc_dev, 2239 "%s: didn't finish after %d iterations\n", 2240 __func__, MAX_TXRX_ITERATIONS); 2241 } 2242 #undef MAX_TXRX_ITERATIONS 2243 2244 #if 0 2245 static void 2246 ath_txrx_stop(struct ath_softc *sc) 2247 { 2248 ATH_UNLOCK_ASSERT(sc); 2249 ATH_PCU_UNLOCK_ASSERT(sc); 2250 2251 ATH_PCU_LOCK(sc); 2252 ath_txrx_stop_locked(sc); 2253 ATH_PCU_UNLOCK(sc); 2254 } 2255 #endif 2256 2257 static void 2258 ath_txrx_start(struct ath_softc *sc) 2259 { 2260 2261 taskqueue_unblock(sc->sc_tq); 2262 } 2263 2264 /* 2265 * Grab the reset lock, and wait around until noone else 2266 * is trying to do anything with it. 2267 * 2268 * This is totally horrible but we can't hold this lock for 2269 * long enough to do TX/RX or we end up with net80211/ip stack 2270 * LORs and eventual deadlock. 2271 * 2272 * "dowait" signals whether to spin, waiting for the reset 2273 * lock count to reach 0. This should (for now) only be used 2274 * during the reset path, as the rest of the code may not 2275 * be locking-reentrant enough to behave correctly. 2276 * 2277 * Another, cleaner way should be found to serialise all of 2278 * these operations. 2279 */ 2280 #define MAX_RESET_ITERATIONS 10 2281 static int 2282 ath_reset_grablock(struct ath_softc *sc, int dowait) 2283 { 2284 int w = 0; 2285 int i = MAX_RESET_ITERATIONS; 2286 2287 ATH_PCU_LOCK_ASSERT(sc); 2288 do { 2289 if (sc->sc_inreset_cnt == 0) { 2290 w = 1; 2291 break; 2292 } 2293 if (dowait == 0) { 2294 w = 0; 2295 break; 2296 } 2297 ATH_PCU_UNLOCK(sc); 2298 pause("ath_reset_grablock", 1); 2299 i--; 2300 ATH_PCU_LOCK(sc); 2301 } while (i > 0); 2302 2303 /* 2304 * We always increment the refcounter, regardless 2305 * of whether we succeeded to get it in an exclusive 2306 * way. 2307 */ 2308 sc->sc_inreset_cnt++; 2309 2310 if (i <= 0) 2311 device_printf(sc->sc_dev, 2312 "%s: didn't finish after %d iterations\n", 2313 __func__, MAX_RESET_ITERATIONS); 2314 2315 if (w == 0) 2316 device_printf(sc->sc_dev, 2317 "%s: warning, recursive reset path!\n", 2318 __func__); 2319 2320 return w; 2321 } 2322 #undef MAX_RESET_ITERATIONS 2323 2324 /* 2325 * XXX TODO: write ath_reset_releaselock 2326 */ 2327 2328 static void 2329 ath_stop(struct ifnet *ifp) 2330 { 2331 struct ath_softc *sc = ifp->if_softc; 2332 2333 ATH_LOCK(sc); 2334 ath_stop_locked(ifp); 2335 ATH_UNLOCK(sc); 2336 } 2337 2338 /* 2339 * Reset the hardware w/o losing operational state. This is 2340 * basically a more efficient way of doing ath_stop, ath_init, 2341 * followed by state transitions to the current 802.11 2342 * operational state. Used to recover from various errors and 2343 * to reset or reload hardware state. 2344 */ 2345 int 2346 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2347 { 2348 struct ath_softc *sc = ifp->if_softc; 2349 struct ieee80211com *ic = ifp->if_l2com; 2350 struct ath_hal *ah = sc->sc_ah; 2351 HAL_STATUS status; 2352 int i; 2353 2354 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2355 2356 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2357 ATH_PCU_UNLOCK_ASSERT(sc); 2358 ATH_UNLOCK_ASSERT(sc); 2359 2360 /* Try to (stop any further TX/RX from occuring */ 2361 taskqueue_block(sc->sc_tq); 2362 2363 ATH_PCU_LOCK(sc); 2364 2365 /* 2366 * Grab the reset lock before TX/RX is stopped. 2367 * 2368 * This is needed to ensure that when the TX/RX actually does finish, 2369 * no further TX/RX/reset runs in parallel with this. 2370 */ 2371 if (ath_reset_grablock(sc, 1) == 0) { 2372 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2373 __func__); 2374 } 2375 2376 /* disable interrupts */ 2377 ath_hal_intrset(ah, 0); 2378 2379 /* 2380 * Now, ensure that any in progress TX/RX completes before we 2381 * continue. 2382 */ 2383 ath_txrx_stop_locked(sc); 2384 2385 ATH_PCU_UNLOCK(sc); 2386 2387 /* 2388 * Should now wait for pending TX/RX to complete 2389 * and block future ones from occuring. This needs to be 2390 * done before the TX queue is drained. 2391 */ 2392 ath_draintxq(sc, reset_type); /* stop xmit side */ 2393 2394 /* 2395 * Regardless of whether we're doing a no-loss flush or 2396 * not, stop the PCU and handle what's in the RX queue. 2397 * That way frames aren't dropped which shouldn't be. 2398 */ 2399 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2400 ath_rx_flush(sc); 2401 2402 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2403 /* NB: indicate channel change so we do a full reset */ 2404 ath_update_chainmasks(sc, ic->ic_curchan); 2405 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2406 sc->sc_cur_rxchainmask); 2407 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2408 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2409 __func__, status); 2410 sc->sc_diversity = ath_hal_getdiversity(ah); 2411 2412 /* Let DFS at it in case it's a DFS channel */ 2413 ath_dfs_radar_enable(sc, ic->ic_curchan); 2414 2415 /* Let spectral at in case spectral is enabled */ 2416 ath_spectral_enable(sc, ic->ic_curchan); 2417 2418 /* 2419 * Let bluetooth coexistence at in case it's needed for this channel 2420 */ 2421 ath_btcoex_enable(sc, ic->ic_curchan); 2422 2423 /* 2424 * If we're doing TDMA, enforce the TXOP limitation for chips that 2425 * support it. 2426 */ 2427 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2428 ath_hal_setenforcetxop(sc->sc_ah, 1); 2429 else 2430 ath_hal_setenforcetxop(sc->sc_ah, 0); 2431 2432 if (ath_startrecv(sc) != 0) /* restart recv */ 2433 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2434 /* 2435 * We may be doing a reset in response to an ioctl 2436 * that changes the channel so update any state that 2437 * might change as a result. 2438 */ 2439 ath_chan_change(sc, ic->ic_curchan); 2440 if (sc->sc_beacons) { /* restart beacons */ 2441 #ifdef IEEE80211_SUPPORT_TDMA 2442 if (sc->sc_tdma) 2443 ath_tdma_config(sc, NULL); 2444 else 2445 #endif 2446 ath_beacon_config(sc, NULL); 2447 } 2448 2449 /* 2450 * Release the reset lock and re-enable interrupts here. 2451 * If an interrupt was being processed in ath_intr(), 2452 * it would disable interrupts at this point. So we have 2453 * to atomically enable interrupts and decrement the 2454 * reset counter - this way ath_intr() doesn't end up 2455 * disabling interrupts without a corresponding enable 2456 * in the rest or channel change path. 2457 */ 2458 ATH_PCU_LOCK(sc); 2459 sc->sc_inreset_cnt--; 2460 /* XXX only do this if sc_inreset_cnt == 0? */ 2461 ath_hal_intrset(ah, sc->sc_imask); 2462 ATH_PCU_UNLOCK(sc); 2463 2464 /* 2465 * TX and RX can be started here. If it were started with 2466 * sc_inreset_cnt > 0, the TX and RX path would abort. 2467 * Thus if this is a nested call through the reset or 2468 * channel change code, TX completion will occur but 2469 * RX completion and ath_start / ath_tx_start will not 2470 * run. 2471 */ 2472 2473 /* Restart TX/RX as needed */ 2474 ath_txrx_start(sc); 2475 2476 /* Restart TX completion and pending TX */ 2477 if (reset_type == ATH_RESET_NOLOSS) { 2478 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2479 if (ATH_TXQ_SETUP(sc, i)) { 2480 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2481 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2482 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2483 2484 ATH_TX_LOCK(sc); 2485 ath_txq_sched(sc, &sc->sc_txq[i]); 2486 ATH_TX_UNLOCK(sc); 2487 } 2488 } 2489 } 2490 2491 /* 2492 * This may have been set during an ath_start() call which 2493 * set this once it detected a concurrent TX was going on. 2494 * So, clear it. 2495 */ 2496 IF_LOCK(&ifp->if_snd); 2497 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2498 IF_UNLOCK(&ifp->if_snd); 2499 2500 /* Handle any frames in the TX queue */ 2501 /* 2502 * XXX should this be done by the caller, rather than 2503 * ath_reset() ? 2504 */ 2505 ath_tx_kick(sc); /* restart xmit */ 2506 return 0; 2507 } 2508 2509 static int 2510 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2511 { 2512 struct ieee80211com *ic = vap->iv_ic; 2513 struct ifnet *ifp = ic->ic_ifp; 2514 struct ath_softc *sc = ifp->if_softc; 2515 struct ath_hal *ah = sc->sc_ah; 2516 2517 switch (cmd) { 2518 case IEEE80211_IOC_TXPOWER: 2519 /* 2520 * If per-packet TPC is enabled, then we have nothing 2521 * to do; otherwise we need to force the global limit. 2522 * All this can happen directly; no need to reset. 2523 */ 2524 if (!ath_hal_gettpc(ah)) 2525 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2526 return 0; 2527 } 2528 /* XXX? Full or NOLOSS? */ 2529 return ath_reset(ifp, ATH_RESET_FULL); 2530 } 2531 2532 struct ath_buf * 2533 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2534 { 2535 struct ath_buf *bf; 2536 2537 ATH_TXBUF_LOCK_ASSERT(sc); 2538 2539 if (btype == ATH_BUFTYPE_MGMT) 2540 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2541 else 2542 bf = TAILQ_FIRST(&sc->sc_txbuf); 2543 2544 if (bf == NULL) { 2545 sc->sc_stats.ast_tx_getnobuf++; 2546 } else { 2547 if (bf->bf_flags & ATH_BUF_BUSY) { 2548 sc->sc_stats.ast_tx_getbusybuf++; 2549 bf = NULL; 2550 } 2551 } 2552 2553 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2554 if (btype == ATH_BUFTYPE_MGMT) 2555 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2556 else { 2557 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2558 sc->sc_txbuf_cnt--; 2559 2560 /* 2561 * This shuldn't happen; however just to be 2562 * safe print a warning and fudge the txbuf 2563 * count. 2564 */ 2565 if (sc->sc_txbuf_cnt < 0) { 2566 device_printf(sc->sc_dev, 2567 "%s: sc_txbuf_cnt < 0?\n", 2568 __func__); 2569 sc->sc_txbuf_cnt = 0; 2570 } 2571 } 2572 } else 2573 bf = NULL; 2574 2575 if (bf == NULL) { 2576 /* XXX should check which list, mgmt or otherwise */ 2577 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2578 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2579 "out of xmit buffers" : "xmit buffer busy"); 2580 return NULL; 2581 } 2582 2583 /* XXX TODO: should do this at buffer list initialisation */ 2584 /* XXX (then, ensure the buffer has the right flag set) */ 2585 bf->bf_flags = 0; 2586 if (btype == ATH_BUFTYPE_MGMT) 2587 bf->bf_flags |= ATH_BUF_MGMT; 2588 else 2589 bf->bf_flags &= (~ATH_BUF_MGMT); 2590 2591 /* Valid bf here; clear some basic fields */ 2592 bf->bf_next = NULL; /* XXX just to be sure */ 2593 bf->bf_last = NULL; /* XXX again, just to be sure */ 2594 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2595 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2596 2597 /* 2598 * Track the descriptor ID only if doing EDMA 2599 */ 2600 if (sc->sc_isedma) { 2601 bf->bf_descid = sc->sc_txbuf_descid; 2602 sc->sc_txbuf_descid++; 2603 } 2604 2605 return bf; 2606 } 2607 2608 /* 2609 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2610 * can't be thrown back on the queue as they could still be 2611 * in use by the hardware. 2612 * 2613 * This duplicates the buffer, or returns NULL. 2614 * 2615 * The descriptor is also copied but the link pointers and 2616 * the DMA segments aren't copied; this frame should thus 2617 * be again passed through the descriptor setup/chain routines 2618 * so the link is correct. 2619 * 2620 * The caller must free the buffer using ath_freebuf(). 2621 */ 2622 struct ath_buf * 2623 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 2624 { 2625 struct ath_buf *tbf; 2626 2627 tbf = ath_getbuf(sc, 2628 (bf->bf_flags & ATH_BUF_MGMT) ? 2629 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2630 if (tbf == NULL) 2631 return NULL; /* XXX failure? Why? */ 2632 2633 /* Copy basics */ 2634 tbf->bf_next = NULL; 2635 tbf->bf_nseg = bf->bf_nseg; 2636 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 2637 tbf->bf_status = bf->bf_status; 2638 tbf->bf_m = bf->bf_m; 2639 tbf->bf_node = bf->bf_node; 2640 /* will be setup by the chain/setup function */ 2641 tbf->bf_lastds = NULL; 2642 /* for now, last == self */ 2643 tbf->bf_last = tbf; 2644 tbf->bf_comp = bf->bf_comp; 2645 2646 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2647 2648 /* The caller has to re-init the descriptor + links */ 2649 2650 /* 2651 * Free the DMA mapping here, before we NULL the mbuf. 2652 * We must only call bus_dmamap_unload() once per mbuf chain 2653 * or behaviour is undefined. 2654 */ 2655 if (bf->bf_m != NULL) { 2656 /* 2657 * XXX is this POSTWRITE call required? 2658 */ 2659 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 2660 BUS_DMASYNC_POSTWRITE); 2661 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2662 } 2663 2664 bf->bf_m = NULL; 2665 bf->bf_node = NULL; 2666 2667 /* Copy state */ 2668 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2669 2670 return tbf; 2671 } 2672 2673 struct ath_buf * 2674 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2675 { 2676 struct ath_buf *bf; 2677 2678 ATH_TXBUF_LOCK(sc); 2679 bf = _ath_getbuf_locked(sc, btype); 2680 /* 2681 * If a mgmt buffer was requested but we're out of those, 2682 * try requesting a normal one. 2683 */ 2684 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2685 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2686 ATH_TXBUF_UNLOCK(sc); 2687 if (bf == NULL) { 2688 struct ifnet *ifp = sc->sc_ifp; 2689 2690 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2691 sc->sc_stats.ast_tx_qstop++; 2692 IF_LOCK(&ifp->if_snd); 2693 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2694 IF_UNLOCK(&ifp->if_snd); 2695 } 2696 return bf; 2697 } 2698 2699 static void 2700 ath_qflush(struct ifnet *ifp) 2701 { 2702 2703 /* XXX TODO */ 2704 } 2705 2706 /* 2707 * Transmit a single frame. 2708 * 2709 * net80211 will free the node reference if the transmit 2710 * fails, so don't free the node reference here. 2711 */ 2712 static int 2713 ath_transmit(struct ifnet *ifp, struct mbuf *m) 2714 { 2715 struct ieee80211com *ic = ifp->if_l2com; 2716 struct ath_softc *sc = ic->ic_ifp->if_softc; 2717 struct ieee80211_node *ni; 2718 struct mbuf *next; 2719 struct ath_buf *bf; 2720 ath_bufhead frags; 2721 int retval = 0; 2722 2723 /* 2724 * Tell the reset path that we're currently transmitting. 2725 */ 2726 ATH_PCU_LOCK(sc); 2727 if (sc->sc_inreset_cnt > 0) { 2728 device_printf(sc->sc_dev, 2729 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2730 ATH_PCU_UNLOCK(sc); 2731 IF_LOCK(&ifp->if_snd); 2732 sc->sc_stats.ast_tx_qstop++; 2733 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2734 IF_UNLOCK(&ifp->if_snd); 2735 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 2736 return (ENOBUFS); /* XXX should be EINVAL or? */ 2737 } 2738 sc->sc_txstart_cnt++; 2739 ATH_PCU_UNLOCK(sc); 2740 2741 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 2742 /* 2743 * Grab the TX lock - it's ok to do this here; we haven't 2744 * yet started transmitting. 2745 */ 2746 ATH_TX_LOCK(sc); 2747 2748 /* 2749 * Node reference, if there's one. 2750 */ 2751 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2752 2753 /* 2754 * Enforce how deep a node queue can get. 2755 * 2756 * XXX it would be nicer if we kept an mbuf queue per 2757 * node and only whacked them into ath_bufs when we 2758 * are ready to schedule some traffic from them. 2759 * .. that may come later. 2760 * 2761 * XXX we should also track the per-node hardware queue 2762 * depth so it is easy to limit the _SUM_ of the swq and 2763 * hwq frames. Since we only schedule two HWQ frames 2764 * at a time, this should be OK for now. 2765 */ 2766 if ((!(m->m_flags & M_EAPOL)) && 2767 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 2768 sc->sc_stats.ast_tx_nodeq_overflow++; 2769 m_freem(m); 2770 m = NULL; 2771 retval = ENOBUFS; 2772 goto finish; 2773 } 2774 2775 /* 2776 * Check how many TX buffers are available. 2777 * 2778 * If this is for non-EAPOL traffic, just leave some 2779 * space free in order for buffer cloning and raw 2780 * frame transmission to occur. 2781 * 2782 * If it's for EAPOL traffic, ignore this for now. 2783 * Management traffic will be sent via the raw transmit 2784 * method which bypasses this check. 2785 * 2786 * This is needed to ensure that EAPOL frames during 2787 * (re) keying have a chance to go out. 2788 * 2789 * See kern/138379 for more information. 2790 */ 2791 if ((!(m->m_flags & M_EAPOL)) && 2792 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 2793 sc->sc_stats.ast_tx_nobuf++; 2794 m_freem(m); 2795 m = NULL; 2796 retval = ENOBUFS; 2797 goto finish; 2798 } 2799 2800 /* 2801 * Grab a TX buffer and associated resources. 2802 * 2803 * If it's an EAPOL frame, allocate a MGMT ath_buf. 2804 * That way even with temporary buffer exhaustion due to 2805 * the data path doesn't leave us without the ability 2806 * to transmit management frames. 2807 * 2808 * Otherwise allocate a normal buffer. 2809 */ 2810 if (m->m_flags & M_EAPOL) 2811 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 2812 else 2813 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2814 2815 if (bf == NULL) { 2816 /* 2817 * If we failed to allocate a buffer, fail. 2818 * 2819 * We shouldn't fail normally, due to the check 2820 * above. 2821 */ 2822 sc->sc_stats.ast_tx_nobuf++; 2823 IF_LOCK(&ifp->if_snd); 2824 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2825 IF_UNLOCK(&ifp->if_snd); 2826 m_freem(m); 2827 m = NULL; 2828 retval = ENOBUFS; 2829 goto finish; 2830 } 2831 2832 /* 2833 * At this point we have a buffer; so we need to free it 2834 * if we hit any error conditions. 2835 */ 2836 2837 /* 2838 * Check for fragmentation. If this frame 2839 * has been broken up verify we have enough 2840 * buffers to send all the fragments so all 2841 * go out or none... 2842 */ 2843 TAILQ_INIT(&frags); 2844 if ((m->m_flags & M_FRAG) && 2845 !ath_txfrag_setup(sc, &frags, m, ni)) { 2846 DPRINTF(sc, ATH_DEBUG_XMIT, 2847 "%s: out of txfrag buffers\n", __func__); 2848 sc->sc_stats.ast_tx_nofrag++; 2849 ifp->if_oerrors++; 2850 ath_freetx(m); 2851 goto bad; 2852 } 2853 2854 /* 2855 * At this point if we have any TX fragments, then we will 2856 * have bumped the node reference once for each of those. 2857 */ 2858 2859 /* 2860 * XXX Is there anything actually _enforcing_ that the 2861 * fragments are being transmitted in one hit, rather than 2862 * being interleaved with other transmissions on that 2863 * hardware queue? 2864 * 2865 * The ATH TX output lock is the only thing serialising this 2866 * right now. 2867 */ 2868 2869 /* 2870 * Calculate the "next fragment" length field in ath_buf 2871 * in order to let the transmit path know enough about 2872 * what to next write to the hardware. 2873 */ 2874 if (m->m_flags & M_FRAG) { 2875 struct ath_buf *fbf = bf; 2876 struct ath_buf *n_fbf = NULL; 2877 struct mbuf *fm = m->m_nextpkt; 2878 2879 /* 2880 * We need to walk the list of fragments and set 2881 * the next size to the following buffer. 2882 * However, the first buffer isn't in the frag 2883 * list, so we have to do some gymnastics here. 2884 */ 2885 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 2886 fbf->bf_nextfraglen = fm->m_pkthdr.len; 2887 fbf = n_fbf; 2888 fm = fm->m_nextpkt; 2889 } 2890 } 2891 2892 /* 2893 * Bump the ifp output counter. 2894 * 2895 * XXX should use atomics? 2896 */ 2897 ifp->if_opackets++; 2898 nextfrag: 2899 /* 2900 * Pass the frame to the h/w for transmission. 2901 * Fragmented frames have each frag chained together 2902 * with m_nextpkt. We know there are sufficient ath_buf's 2903 * to send all the frags because of work done by 2904 * ath_txfrag_setup. We leave m_nextpkt set while 2905 * calling ath_tx_start so it can use it to extend the 2906 * the tx duration to cover the subsequent frag and 2907 * so it can reclaim all the mbufs in case of an error; 2908 * ath_tx_start clears m_nextpkt once it commits to 2909 * handing the frame to the hardware. 2910 * 2911 * Note: if this fails, then the mbufs are freed but 2912 * not the node reference. 2913 */ 2914 next = m->m_nextpkt; 2915 if (ath_tx_start(sc, ni, bf, m)) { 2916 bad: 2917 ifp->if_oerrors++; 2918 reclaim: 2919 bf->bf_m = NULL; 2920 bf->bf_node = NULL; 2921 ATH_TXBUF_LOCK(sc); 2922 ath_returnbuf_head(sc, bf); 2923 /* 2924 * Free the rest of the node references and 2925 * buffers for the fragment list. 2926 */ 2927 ath_txfrag_cleanup(sc, &frags, ni); 2928 ATH_TXBUF_UNLOCK(sc); 2929 retval = ENOBUFS; 2930 goto finish; 2931 } 2932 2933 /* 2934 * Check here if the node is in power save state. 2935 */ 2936 ath_tx_update_tim(sc, ni, 1); 2937 2938 if (next != NULL) { 2939 /* 2940 * Beware of state changing between frags. 2941 * XXX check sta power-save state? 2942 */ 2943 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2944 DPRINTF(sc, ATH_DEBUG_XMIT, 2945 "%s: flush fragmented packet, state %s\n", 2946 __func__, 2947 ieee80211_state_name[ni->ni_vap->iv_state]); 2948 /* XXX dmamap */ 2949 ath_freetx(next); 2950 goto reclaim; 2951 } 2952 m = next; 2953 bf = TAILQ_FIRST(&frags); 2954 KASSERT(bf != NULL, ("no buf for txfrag")); 2955 TAILQ_REMOVE(&frags, bf, bf_list); 2956 goto nextfrag; 2957 } 2958 2959 /* 2960 * Bump watchdog timer. 2961 */ 2962 sc->sc_wd_timer = 5; 2963 2964 finish: 2965 ATH_TX_UNLOCK(sc); 2966 2967 /* 2968 * Finished transmitting! 2969 */ 2970 ATH_PCU_LOCK(sc); 2971 sc->sc_txstart_cnt--; 2972 ATH_PCU_UNLOCK(sc); 2973 2974 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 2975 2976 return (retval); 2977 } 2978 2979 static int 2980 ath_media_change(struct ifnet *ifp) 2981 { 2982 int error = ieee80211_media_change(ifp); 2983 /* NB: only the fixed rate can change and that doesn't need a reset */ 2984 return (error == ENETRESET ? 0 : error); 2985 } 2986 2987 /* 2988 * Block/unblock tx+rx processing while a key change is done. 2989 * We assume the caller serializes key management operations 2990 * so we only need to worry about synchronization with other 2991 * uses that originate in the driver. 2992 */ 2993 static void 2994 ath_key_update_begin(struct ieee80211vap *vap) 2995 { 2996 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2997 struct ath_softc *sc = ifp->if_softc; 2998 2999 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3000 taskqueue_block(sc->sc_tq); 3001 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 3002 } 3003 3004 static void 3005 ath_key_update_end(struct ieee80211vap *vap) 3006 { 3007 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3008 struct ath_softc *sc = ifp->if_softc; 3009 3010 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3011 IF_UNLOCK(&ifp->if_snd); 3012 taskqueue_unblock(sc->sc_tq); 3013 } 3014 3015 static void 3016 ath_update_promisc(struct ifnet *ifp) 3017 { 3018 struct ath_softc *sc = ifp->if_softc; 3019 u_int32_t rfilt; 3020 3021 /* configure rx filter */ 3022 rfilt = ath_calcrxfilter(sc); 3023 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3024 3025 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3026 } 3027 3028 static void 3029 ath_update_mcast(struct ifnet *ifp) 3030 { 3031 struct ath_softc *sc = ifp->if_softc; 3032 u_int32_t mfilt[2]; 3033 3034 /* calculate and install multicast filter */ 3035 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 3036 struct ifmultiaddr *ifma; 3037 /* 3038 * Merge multicast addresses to form the hardware filter. 3039 */ 3040 mfilt[0] = mfilt[1] = 0; 3041 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 3042 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3043 caddr_t dl; 3044 u_int32_t val; 3045 u_int8_t pos; 3046 3047 /* calculate XOR of eight 6bit values */ 3048 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 3049 val = LE_READ_4(dl + 0); 3050 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3051 val = LE_READ_4(dl + 3); 3052 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3053 pos &= 0x3f; 3054 mfilt[pos / 32] |= (1 << (pos % 32)); 3055 } 3056 if_maddr_runlock(ifp); 3057 } else 3058 mfilt[0] = mfilt[1] = ~0; 3059 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3060 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3061 __func__, mfilt[0], mfilt[1]); 3062 } 3063 3064 void 3065 ath_mode_init(struct ath_softc *sc) 3066 { 3067 struct ifnet *ifp = sc->sc_ifp; 3068 struct ath_hal *ah = sc->sc_ah; 3069 u_int32_t rfilt; 3070 3071 /* configure rx filter */ 3072 rfilt = ath_calcrxfilter(sc); 3073 ath_hal_setrxfilter(ah, rfilt); 3074 3075 /* configure operational mode */ 3076 ath_hal_setopmode(ah); 3077 3078 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 3079 "%s: ah=%p, ifp=%p, if_addr=%p\n", 3080 __func__, 3081 ah, 3082 ifp, 3083 (ifp == NULL) ? NULL : ifp->if_addr); 3084 3085 /* handle any link-level address change */ 3086 ath_hal_setmac(ah, IF_LLADDR(ifp)); 3087 3088 /* calculate and install multicast filter */ 3089 ath_update_mcast(ifp); 3090 } 3091 3092 /* 3093 * Set the slot time based on the current setting. 3094 */ 3095 void 3096 ath_setslottime(struct ath_softc *sc) 3097 { 3098 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3099 struct ath_hal *ah = sc->sc_ah; 3100 u_int usec; 3101 3102 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3103 usec = 13; 3104 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3105 usec = 21; 3106 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3107 /* honor short/long slot time only in 11g */ 3108 /* XXX shouldn't honor on pure g or turbo g channel */ 3109 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3110 usec = HAL_SLOT_TIME_9; 3111 else 3112 usec = HAL_SLOT_TIME_20; 3113 } else 3114 usec = HAL_SLOT_TIME_9; 3115 3116 DPRINTF(sc, ATH_DEBUG_RESET, 3117 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3118 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3119 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3120 3121 ath_hal_setslottime(ah, usec); 3122 sc->sc_updateslot = OK; 3123 } 3124 3125 /* 3126 * Callback from the 802.11 layer to update the 3127 * slot time based on the current setting. 3128 */ 3129 static void 3130 ath_updateslot(struct ifnet *ifp) 3131 { 3132 struct ath_softc *sc = ifp->if_softc; 3133 struct ieee80211com *ic = ifp->if_l2com; 3134 3135 /* 3136 * When not coordinating the BSS, change the hardware 3137 * immediately. For other operation we defer the change 3138 * until beacon updates have propagated to the stations. 3139 */ 3140 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3141 ic->ic_opmode == IEEE80211_M_MBSS) 3142 sc->sc_updateslot = UPDATE; 3143 else 3144 ath_setslottime(sc); 3145 } 3146 3147 /* 3148 * Append the contents of src to dst; both queues 3149 * are assumed to be locked. 3150 */ 3151 void 3152 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3153 { 3154 3155 ATH_TXQ_LOCK_ASSERT(src); 3156 ATH_TXQ_LOCK_ASSERT(dst); 3157 3158 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3159 dst->axq_link = src->axq_link; 3160 src->axq_link = NULL; 3161 dst->axq_depth += src->axq_depth; 3162 dst->axq_aggr_depth += src->axq_aggr_depth; 3163 src->axq_depth = 0; 3164 src->axq_aggr_depth = 0; 3165 } 3166 3167 /* 3168 * Reset the hardware, with no loss. 3169 * 3170 * This can't be used for a general case reset. 3171 */ 3172 static void 3173 ath_reset_proc(void *arg, int pending) 3174 { 3175 struct ath_softc *sc = arg; 3176 struct ifnet *ifp = sc->sc_ifp; 3177 3178 #if 0 3179 if_printf(ifp, "%s: resetting\n", __func__); 3180 #endif 3181 ath_reset(ifp, ATH_RESET_NOLOSS); 3182 } 3183 3184 /* 3185 * Reset the hardware after detecting beacons have stopped. 3186 */ 3187 static void 3188 ath_bstuck_proc(void *arg, int pending) 3189 { 3190 struct ath_softc *sc = arg; 3191 struct ifnet *ifp = sc->sc_ifp; 3192 uint32_t hangs = 0; 3193 3194 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3195 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 3196 3197 #ifdef ATH_DEBUG_ALQ 3198 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3199 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3200 #endif 3201 3202 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3203 sc->sc_bmisscount); 3204 sc->sc_stats.ast_bstuck++; 3205 /* 3206 * This assumes that there's no simultaneous channel mode change 3207 * occuring. 3208 */ 3209 ath_reset(ifp, ATH_RESET_NOLOSS); 3210 } 3211 3212 static void 3213 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3214 { 3215 bus_addr_t *paddr = (bus_addr_t*) arg; 3216 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3217 *paddr = segs->ds_addr; 3218 } 3219 3220 /* 3221 * Allocate the descriptors and appropriate DMA tag/setup. 3222 * 3223 * For some situations (eg EDMA TX completion), there isn't a requirement 3224 * for the ath_buf entries to be allocated. 3225 */ 3226 int 3227 ath_descdma_alloc_desc(struct ath_softc *sc, 3228 struct ath_descdma *dd, ath_bufhead *head, 3229 const char *name, int ds_size, int ndesc) 3230 { 3231 #define DS2PHYS(_dd, _ds) \ 3232 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3233 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3234 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3235 struct ifnet *ifp = sc->sc_ifp; 3236 int error; 3237 3238 dd->dd_descsize = ds_size; 3239 3240 DPRINTF(sc, ATH_DEBUG_RESET, 3241 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 3242 __func__, name, ndesc, dd->dd_descsize); 3243 3244 dd->dd_name = name; 3245 dd->dd_desc_len = dd->dd_descsize * ndesc; 3246 3247 /* 3248 * Merlin work-around: 3249 * Descriptors that cross the 4KB boundary can't be used. 3250 * Assume one skipped descriptor per 4KB page. 3251 */ 3252 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3253 int numpages = dd->dd_desc_len / 4096; 3254 dd->dd_desc_len += ds_size * numpages; 3255 } 3256 3257 /* 3258 * Setup DMA descriptor area. 3259 * 3260 * BUS_DMA_ALLOCNOW is not used; we never use bounce 3261 * buffers for the descriptors themselves. 3262 */ 3263 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3264 PAGE_SIZE, 0, /* alignment, bounds */ 3265 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3266 BUS_SPACE_MAXADDR, /* highaddr */ 3267 NULL, NULL, /* filter, filterarg */ 3268 dd->dd_desc_len, /* maxsize */ 3269 1, /* nsegments */ 3270 dd->dd_desc_len, /* maxsegsize */ 3271 0, /* flags */ 3272 NULL, /* lockfunc */ 3273 NULL, /* lockarg */ 3274 &dd->dd_dmat); 3275 if (error != 0) { 3276 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3277 return error; 3278 } 3279 3280 /* allocate descriptors */ 3281 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3282 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3283 &dd->dd_dmamap); 3284 if (error != 0) { 3285 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3286 "error %u\n", ndesc, dd->dd_name, error); 3287 goto fail1; 3288 } 3289 3290 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3291 dd->dd_desc, dd->dd_desc_len, 3292 ath_load_cb, &dd->dd_desc_paddr, 3293 BUS_DMA_NOWAIT); 3294 if (error != 0) { 3295 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3296 dd->dd_name, error); 3297 goto fail2; 3298 } 3299 3300 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3301 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 3302 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 3303 /*XXX*/ (u_long) dd->dd_desc_len); 3304 3305 return (0); 3306 3307 fail2: 3308 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3309 fail1: 3310 bus_dma_tag_destroy(dd->dd_dmat); 3311 memset(dd, 0, sizeof(*dd)); 3312 return error; 3313 #undef DS2PHYS 3314 #undef ATH_DESC_4KB_BOUND_CHECK 3315 } 3316 3317 int 3318 ath_descdma_setup(struct ath_softc *sc, 3319 struct ath_descdma *dd, ath_bufhead *head, 3320 const char *name, int ds_size, int nbuf, int ndesc) 3321 { 3322 #define DS2PHYS(_dd, _ds) \ 3323 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3324 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3325 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3326 struct ifnet *ifp = sc->sc_ifp; 3327 uint8_t *ds; 3328 struct ath_buf *bf; 3329 int i, bsize, error; 3330 3331 /* Allocate descriptors */ 3332 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 3333 nbuf * ndesc); 3334 3335 /* Assume any errors during allocation were dealt with */ 3336 if (error != 0) { 3337 return (error); 3338 } 3339 3340 ds = (uint8_t *) dd->dd_desc; 3341 3342 /* allocate rx buffers */ 3343 bsize = sizeof(struct ath_buf) * nbuf; 3344 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3345 if (bf == NULL) { 3346 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3347 dd->dd_name, bsize); 3348 goto fail3; 3349 } 3350 dd->dd_bufptr = bf; 3351 3352 TAILQ_INIT(head); 3353 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 3354 bf->bf_desc = (struct ath_desc *) ds; 3355 bf->bf_daddr = DS2PHYS(dd, ds); 3356 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3357 /* 3358 * Merlin WAR: Skip descriptor addresses which 3359 * cause 4KB boundary crossing along any point 3360 * in the descriptor. 3361 */ 3362 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3363 dd->dd_descsize)) { 3364 /* Start at the next page */ 3365 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3366 bf->bf_desc = (struct ath_desc *) ds; 3367 bf->bf_daddr = DS2PHYS(dd, ds); 3368 } 3369 } 3370 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3371 &bf->bf_dmamap); 3372 if (error != 0) { 3373 if_printf(ifp, "unable to create dmamap for %s " 3374 "buffer %u, error %u\n", dd->dd_name, i, error); 3375 ath_descdma_cleanup(sc, dd, head); 3376 return error; 3377 } 3378 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3379 TAILQ_INSERT_TAIL(head, bf, bf_list); 3380 } 3381 3382 /* 3383 * XXX TODO: ensure that ds doesn't overflow the descriptor 3384 * allocation otherwise weird stuff will occur and crash your 3385 * machine. 3386 */ 3387 return 0; 3388 /* XXX this should likely just call ath_descdma_cleanup() */ 3389 fail3: 3390 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3391 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3392 bus_dma_tag_destroy(dd->dd_dmat); 3393 memset(dd, 0, sizeof(*dd)); 3394 return error; 3395 #undef DS2PHYS 3396 #undef ATH_DESC_4KB_BOUND_CHECK 3397 } 3398 3399 /* 3400 * Allocate ath_buf entries but no descriptor contents. 3401 * 3402 * This is for RX EDMA where the descriptors are the header part of 3403 * the RX buffer. 3404 */ 3405 int 3406 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3407 struct ath_descdma *dd, ath_bufhead *head, 3408 const char *name, int nbuf, int rx_status_len) 3409 { 3410 struct ifnet *ifp = sc->sc_ifp; 3411 struct ath_buf *bf; 3412 int i, bsize, error; 3413 3414 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3415 __func__, name, nbuf); 3416 3417 dd->dd_name = name; 3418 /* 3419 * This is (mostly) purely for show. We're not allocating any actual 3420 * descriptors here as EDMA RX has the descriptor be part 3421 * of the RX buffer. 3422 * 3423 * However, dd_desc_len is used by ath_descdma_free() to determine 3424 * whether we have already freed this DMA mapping. 3425 */ 3426 dd->dd_desc_len = rx_status_len * nbuf; 3427 dd->dd_descsize = rx_status_len; 3428 3429 /* allocate rx buffers */ 3430 bsize = sizeof(struct ath_buf) * nbuf; 3431 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3432 if (bf == NULL) { 3433 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3434 dd->dd_name, bsize); 3435 error = ENOMEM; 3436 goto fail3; 3437 } 3438 dd->dd_bufptr = bf; 3439 3440 TAILQ_INIT(head); 3441 for (i = 0; i < nbuf; i++, bf++) { 3442 bf->bf_desc = NULL; 3443 bf->bf_daddr = 0; 3444 bf->bf_lastds = NULL; /* Just an initial value */ 3445 3446 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3447 &bf->bf_dmamap); 3448 if (error != 0) { 3449 if_printf(ifp, "unable to create dmamap for %s " 3450 "buffer %u, error %u\n", dd->dd_name, i, error); 3451 ath_descdma_cleanup(sc, dd, head); 3452 return error; 3453 } 3454 TAILQ_INSERT_TAIL(head, bf, bf_list); 3455 } 3456 return 0; 3457 fail3: 3458 memset(dd, 0, sizeof(*dd)); 3459 return error; 3460 } 3461 3462 void 3463 ath_descdma_cleanup(struct ath_softc *sc, 3464 struct ath_descdma *dd, ath_bufhead *head) 3465 { 3466 struct ath_buf *bf; 3467 struct ieee80211_node *ni; 3468 int do_warning = 0; 3469 3470 if (dd->dd_dmamap != 0) { 3471 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3472 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3473 bus_dma_tag_destroy(dd->dd_dmat); 3474 } 3475 3476 if (head != NULL) { 3477 TAILQ_FOREACH(bf, head, bf_list) { 3478 if (bf->bf_m) { 3479 /* 3480 * XXX warn if there's buffers here. 3481 * XXX it should have been freed by the 3482 * owner! 3483 */ 3484 3485 if (do_warning == 0) { 3486 do_warning = 1; 3487 device_printf(sc->sc_dev, 3488 "%s: %s: mbuf should've been" 3489 " unmapped/freed!\n", 3490 __func__, 3491 dd->dd_name); 3492 } 3493 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3494 BUS_DMASYNC_POSTREAD); 3495 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3496 m_freem(bf->bf_m); 3497 bf->bf_m = NULL; 3498 } 3499 if (bf->bf_dmamap != NULL) { 3500 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3501 bf->bf_dmamap = NULL; 3502 } 3503 ni = bf->bf_node; 3504 bf->bf_node = NULL; 3505 if (ni != NULL) { 3506 /* 3507 * Reclaim node reference. 3508 */ 3509 ieee80211_free_node(ni); 3510 } 3511 } 3512 } 3513 3514 if (head != NULL) 3515 TAILQ_INIT(head); 3516 3517 if (dd->dd_bufptr != NULL) 3518 free(dd->dd_bufptr, M_ATHDEV); 3519 memset(dd, 0, sizeof(*dd)); 3520 } 3521 3522 static int 3523 ath_desc_alloc(struct ath_softc *sc) 3524 { 3525 int error; 3526 3527 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3528 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3529 if (error != 0) { 3530 return error; 3531 } 3532 sc->sc_txbuf_cnt = ath_txbuf; 3533 3534 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3535 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3536 ATH_TXDESC); 3537 if (error != 0) { 3538 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3539 return error; 3540 } 3541 3542 /* 3543 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3544 * flag doesn't have to be set in ath_getbuf_locked(). 3545 */ 3546 3547 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3548 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3549 if (error != 0) { 3550 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3551 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3552 &sc->sc_txbuf_mgmt); 3553 return error; 3554 } 3555 return 0; 3556 } 3557 3558 static void 3559 ath_desc_free(struct ath_softc *sc) 3560 { 3561 3562 if (sc->sc_bdma.dd_desc_len != 0) 3563 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3564 if (sc->sc_txdma.dd_desc_len != 0) 3565 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3566 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3567 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3568 &sc->sc_txbuf_mgmt); 3569 } 3570 3571 static struct ieee80211_node * 3572 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3573 { 3574 struct ieee80211com *ic = vap->iv_ic; 3575 struct ath_softc *sc = ic->ic_ifp->if_softc; 3576 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3577 struct ath_node *an; 3578 3579 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3580 if (an == NULL) { 3581 /* XXX stat+msg */ 3582 return NULL; 3583 } 3584 ath_rate_node_init(sc, an); 3585 3586 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3587 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3588 device_get_nameunit(sc->sc_dev), an); 3589 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3590 3591 /* XXX setup ath_tid */ 3592 ath_tx_tid_init(sc, an); 3593 3594 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 3595 return &an->an_node; 3596 } 3597 3598 static void 3599 ath_node_cleanup(struct ieee80211_node *ni) 3600 { 3601 struct ieee80211com *ic = ni->ni_ic; 3602 struct ath_softc *sc = ic->ic_ifp->if_softc; 3603 3604 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3605 ni->ni_macaddr, ":", ATH_NODE(ni)); 3606 3607 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3608 ath_tx_node_flush(sc, ATH_NODE(ni)); 3609 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3610 sc->sc_node_cleanup(ni); 3611 } 3612 3613 static void 3614 ath_node_free(struct ieee80211_node *ni) 3615 { 3616 struct ieee80211com *ic = ni->ni_ic; 3617 struct ath_softc *sc = ic->ic_ifp->if_softc; 3618 3619 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3620 ni->ni_macaddr, ":", ATH_NODE(ni)); 3621 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3622 sc->sc_node_free(ni); 3623 } 3624 3625 static void 3626 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3627 { 3628 struct ieee80211com *ic = ni->ni_ic; 3629 struct ath_softc *sc = ic->ic_ifp->if_softc; 3630 struct ath_hal *ah = sc->sc_ah; 3631 3632 *rssi = ic->ic_node_getrssi(ni); 3633 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3634 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3635 else 3636 *noise = -95; /* nominally correct */ 3637 } 3638 3639 /* 3640 * Set the default antenna. 3641 */ 3642 void 3643 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3644 { 3645 struct ath_hal *ah = sc->sc_ah; 3646 3647 /* XXX block beacon interrupts */ 3648 ath_hal_setdefantenna(ah, antenna); 3649 if (sc->sc_defant != antenna) 3650 sc->sc_stats.ast_ant_defswitch++; 3651 sc->sc_defant = antenna; 3652 sc->sc_rxotherant = 0; 3653 } 3654 3655 static void 3656 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3657 { 3658 txq->axq_qnum = qnum; 3659 txq->axq_ac = 0; 3660 txq->axq_depth = 0; 3661 txq->axq_aggr_depth = 0; 3662 txq->axq_intrcnt = 0; 3663 txq->axq_link = NULL; 3664 txq->axq_softc = sc; 3665 TAILQ_INIT(&txq->axq_q); 3666 TAILQ_INIT(&txq->axq_tidq); 3667 TAILQ_INIT(&txq->fifo.axq_q); 3668 ATH_TXQ_LOCK_INIT(sc, txq); 3669 } 3670 3671 /* 3672 * Setup a h/w transmit queue. 3673 */ 3674 static struct ath_txq * 3675 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3676 { 3677 #define N(a) (sizeof(a)/sizeof(a[0])) 3678 struct ath_hal *ah = sc->sc_ah; 3679 HAL_TXQ_INFO qi; 3680 int qnum; 3681 3682 memset(&qi, 0, sizeof(qi)); 3683 qi.tqi_subtype = subtype; 3684 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3685 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3686 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3687 /* 3688 * Enable interrupts only for EOL and DESC conditions. 3689 * We mark tx descriptors to receive a DESC interrupt 3690 * when a tx queue gets deep; otherwise waiting for the 3691 * EOL to reap descriptors. Note that this is done to 3692 * reduce interrupt load and this only defers reaping 3693 * descriptors, never transmitting frames. Aside from 3694 * reducing interrupts this also permits more concurrency. 3695 * The only potential downside is if the tx queue backs 3696 * up in which case the top half of the kernel may backup 3697 * due to a lack of tx descriptors. 3698 */ 3699 if (sc->sc_isedma) 3700 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3701 HAL_TXQ_TXOKINT_ENABLE; 3702 else 3703 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3704 HAL_TXQ_TXDESCINT_ENABLE; 3705 3706 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3707 if (qnum == -1) { 3708 /* 3709 * NB: don't print a message, this happens 3710 * normally on parts with too few tx queues 3711 */ 3712 return NULL; 3713 } 3714 if (qnum >= N(sc->sc_txq)) { 3715 device_printf(sc->sc_dev, 3716 "hal qnum %u out of range, max %zu!\n", 3717 qnum, N(sc->sc_txq)); 3718 ath_hal_releasetxqueue(ah, qnum); 3719 return NULL; 3720 } 3721 if (!ATH_TXQ_SETUP(sc, qnum)) { 3722 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3723 sc->sc_txqsetup |= 1<<qnum; 3724 } 3725 return &sc->sc_txq[qnum]; 3726 #undef N 3727 } 3728 3729 /* 3730 * Setup a hardware data transmit queue for the specified 3731 * access control. The hal may not support all requested 3732 * queues in which case it will return a reference to a 3733 * previously setup queue. We record the mapping from ac's 3734 * to h/w queues for use by ath_tx_start and also track 3735 * the set of h/w queues being used to optimize work in the 3736 * transmit interrupt handler and related routines. 3737 */ 3738 static int 3739 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3740 { 3741 #define N(a) (sizeof(a)/sizeof(a[0])) 3742 struct ath_txq *txq; 3743 3744 if (ac >= N(sc->sc_ac2q)) { 3745 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3746 ac, N(sc->sc_ac2q)); 3747 return 0; 3748 } 3749 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3750 if (txq != NULL) { 3751 txq->axq_ac = ac; 3752 sc->sc_ac2q[ac] = txq; 3753 return 1; 3754 } else 3755 return 0; 3756 #undef N 3757 } 3758 3759 /* 3760 * Update WME parameters for a transmit queue. 3761 */ 3762 static int 3763 ath_txq_update(struct ath_softc *sc, int ac) 3764 { 3765 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3766 #define ATH_TXOP_TO_US(v) (v<<5) 3767 struct ifnet *ifp = sc->sc_ifp; 3768 struct ieee80211com *ic = ifp->if_l2com; 3769 struct ath_txq *txq = sc->sc_ac2q[ac]; 3770 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3771 struct ath_hal *ah = sc->sc_ah; 3772 HAL_TXQ_INFO qi; 3773 3774 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3775 #ifdef IEEE80211_SUPPORT_TDMA 3776 if (sc->sc_tdma) { 3777 /* 3778 * AIFS is zero so there's no pre-transmit wait. The 3779 * burst time defines the slot duration and is configured 3780 * through net80211. The QCU is setup to not do post-xmit 3781 * back off, lockout all lower-priority QCU's, and fire 3782 * off the DMA beacon alert timer which is setup based 3783 * on the slot configuration. 3784 */ 3785 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3786 | HAL_TXQ_TXERRINT_ENABLE 3787 | HAL_TXQ_TXURNINT_ENABLE 3788 | HAL_TXQ_TXEOLINT_ENABLE 3789 | HAL_TXQ_DBA_GATED 3790 | HAL_TXQ_BACKOFF_DISABLE 3791 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3792 ; 3793 qi.tqi_aifs = 0; 3794 /* XXX +dbaprep? */ 3795 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3796 qi.tqi_burstTime = qi.tqi_readyTime; 3797 } else { 3798 #endif 3799 /* 3800 * XXX shouldn't this just use the default flags 3801 * used in the previous queue setup? 3802 */ 3803 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3804 | HAL_TXQ_TXERRINT_ENABLE 3805 | HAL_TXQ_TXDESCINT_ENABLE 3806 | HAL_TXQ_TXURNINT_ENABLE 3807 | HAL_TXQ_TXEOLINT_ENABLE 3808 ; 3809 qi.tqi_aifs = wmep->wmep_aifsn; 3810 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3811 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3812 qi.tqi_readyTime = 0; 3813 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3814 #ifdef IEEE80211_SUPPORT_TDMA 3815 } 3816 #endif 3817 3818 DPRINTF(sc, ATH_DEBUG_RESET, 3819 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3820 __func__, txq->axq_qnum, qi.tqi_qflags, 3821 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3822 3823 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3824 if_printf(ifp, "unable to update hardware queue " 3825 "parameters for %s traffic!\n", 3826 ieee80211_wme_acnames[ac]); 3827 return 0; 3828 } else { 3829 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3830 return 1; 3831 } 3832 #undef ATH_TXOP_TO_US 3833 #undef ATH_EXPONENT_TO_VALUE 3834 } 3835 3836 /* 3837 * Callback from the 802.11 layer to update WME parameters. 3838 */ 3839 int 3840 ath_wme_update(struct ieee80211com *ic) 3841 { 3842 struct ath_softc *sc = ic->ic_ifp->if_softc; 3843 3844 return !ath_txq_update(sc, WME_AC_BE) || 3845 !ath_txq_update(sc, WME_AC_BK) || 3846 !ath_txq_update(sc, WME_AC_VI) || 3847 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3848 } 3849 3850 /* 3851 * Reclaim resources for a setup queue. 3852 */ 3853 static void 3854 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3855 { 3856 3857 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3858 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3859 ATH_TXQ_LOCK_DESTROY(txq); 3860 } 3861 3862 /* 3863 * Reclaim all tx queue resources. 3864 */ 3865 static void 3866 ath_tx_cleanup(struct ath_softc *sc) 3867 { 3868 int i; 3869 3870 ATH_TXBUF_LOCK_DESTROY(sc); 3871 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3872 if (ATH_TXQ_SETUP(sc, i)) 3873 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3874 } 3875 3876 /* 3877 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3878 * using the current rates in sc_rixmap. 3879 */ 3880 int 3881 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3882 { 3883 int rix = sc->sc_rixmap[rate]; 3884 /* NB: return lowest rix for invalid rate */ 3885 return (rix == 0xff ? 0 : rix); 3886 } 3887 3888 static void 3889 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3890 struct ath_buf *bf) 3891 { 3892 struct ieee80211_node *ni = bf->bf_node; 3893 struct ifnet *ifp = sc->sc_ifp; 3894 struct ieee80211com *ic = ifp->if_l2com; 3895 int sr, lr, pri; 3896 3897 if (ts->ts_status == 0) { 3898 u_int8_t txant = ts->ts_antenna; 3899 sc->sc_stats.ast_ant_tx[txant]++; 3900 sc->sc_ant_tx[txant]++; 3901 if (ts->ts_finaltsi != 0) 3902 sc->sc_stats.ast_tx_altrate++; 3903 pri = M_WME_GETAC(bf->bf_m); 3904 if (pri >= WME_AC_VO) 3905 ic->ic_wme.wme_hipri_traffic++; 3906 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3907 ni->ni_inact = ni->ni_inact_reload; 3908 } else { 3909 if (ts->ts_status & HAL_TXERR_XRETRY) 3910 sc->sc_stats.ast_tx_xretries++; 3911 if (ts->ts_status & HAL_TXERR_FIFO) 3912 sc->sc_stats.ast_tx_fifoerr++; 3913 if (ts->ts_status & HAL_TXERR_FILT) 3914 sc->sc_stats.ast_tx_filtered++; 3915 if (ts->ts_status & HAL_TXERR_XTXOP) 3916 sc->sc_stats.ast_tx_xtxop++; 3917 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3918 sc->sc_stats.ast_tx_timerexpired++; 3919 3920 if (bf->bf_m->m_flags & M_FF) 3921 sc->sc_stats.ast_ff_txerr++; 3922 } 3923 /* XXX when is this valid? */ 3924 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 3925 sc->sc_stats.ast_tx_desccfgerr++; 3926 /* 3927 * This can be valid for successful frame transmission! 3928 * If there's a TX FIFO underrun during aggregate transmission, 3929 * the MAC will pad the rest of the aggregate with delimiters. 3930 * If a BA is returned, the frame is marked as "OK" and it's up 3931 * to the TX completion code to notice which frames weren't 3932 * successfully transmitted. 3933 */ 3934 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 3935 sc->sc_stats.ast_tx_data_underrun++; 3936 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 3937 sc->sc_stats.ast_tx_delim_underrun++; 3938 3939 sr = ts->ts_shortretry; 3940 lr = ts->ts_longretry; 3941 sc->sc_stats.ast_tx_shortretry += sr; 3942 sc->sc_stats.ast_tx_longretry += lr; 3943 3944 } 3945 3946 /* 3947 * The default completion. If fail is 1, this means 3948 * "please don't retry the frame, and just return -1 status 3949 * to the net80211 stack. 3950 */ 3951 void 3952 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3953 { 3954 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3955 int st; 3956 3957 if (fail == 1) 3958 st = -1; 3959 else 3960 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3961 ts->ts_status : HAL_TXERR_XRETRY; 3962 3963 #if 0 3964 if (bf->bf_state.bfs_dobaw) 3965 device_printf(sc->sc_dev, 3966 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3967 __func__, 3968 bf, 3969 SEQNO(bf->bf_state.bfs_seqno)); 3970 #endif 3971 if (bf->bf_next != NULL) 3972 device_printf(sc->sc_dev, 3973 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3974 __func__, 3975 bf, 3976 SEQNO(bf->bf_state.bfs_seqno)); 3977 3978 /* 3979 * Check if the node software queue is empty; if so 3980 * then clear the TIM. 3981 * 3982 * This needs to be done before the buffer is freed as 3983 * otherwise the node reference will have been released 3984 * and the node may not actually exist any longer. 3985 * 3986 * XXX I don't like this belonging here, but it's cleaner 3987 * to do it here right now then all the other places 3988 * where ath_tx_default_comp() is called. 3989 * 3990 * XXX TODO: during drain, ensure that the callback is 3991 * being called so we get a chance to update the TIM. 3992 */ 3993 if (bf->bf_node) { 3994 ATH_TX_LOCK(sc); 3995 ath_tx_update_tim(sc, bf->bf_node, 0); 3996 ATH_TX_UNLOCK(sc); 3997 } 3998 3999 /* 4000 * Do any tx complete callback. Note this must 4001 * be done before releasing the node reference. 4002 * This will free the mbuf, release the net80211 4003 * node and recycle the ath_buf. 4004 */ 4005 ath_tx_freebuf(sc, bf, st); 4006 } 4007 4008 /* 4009 * Update rate control with the given completion status. 4010 */ 4011 void 4012 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4013 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4014 int nframes, int nbad) 4015 { 4016 struct ath_node *an; 4017 4018 /* Only for unicast frames */ 4019 if (ni == NULL) 4020 return; 4021 4022 an = ATH_NODE(ni); 4023 ATH_NODE_UNLOCK_ASSERT(an); 4024 4025 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4026 ATH_NODE_LOCK(an); 4027 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4028 ATH_NODE_UNLOCK(an); 4029 } 4030 } 4031 4032 /* 4033 * Process the completion of the given buffer. 4034 * 4035 * This calls the rate control update and then the buffer completion. 4036 * This will either free the buffer or requeue it. In any case, the 4037 * bf pointer should be treated as invalid after this function is called. 4038 */ 4039 void 4040 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4041 struct ath_tx_status *ts, struct ath_buf *bf) 4042 { 4043 struct ieee80211_node *ni = bf->bf_node; 4044 struct ath_node *an = NULL; 4045 4046 ATH_TX_UNLOCK_ASSERT(sc); 4047 ATH_TXQ_UNLOCK_ASSERT(txq); 4048 4049 /* If unicast frame, update general statistics */ 4050 if (ni != NULL) { 4051 an = ATH_NODE(ni); 4052 /* update statistics */ 4053 ath_tx_update_stats(sc, ts, bf); 4054 } 4055 4056 /* 4057 * Call the completion handler. 4058 * The completion handler is responsible for 4059 * calling the rate control code. 4060 * 4061 * Frames with no completion handler get the 4062 * rate control code called here. 4063 */ 4064 if (bf->bf_comp == NULL) { 4065 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4066 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4067 /* 4068 * XXX assume this isn't an aggregate 4069 * frame. 4070 */ 4071 ath_tx_update_ratectrl(sc, ni, 4072 bf->bf_state.bfs_rc, ts, 4073 bf->bf_state.bfs_pktlen, 1, 4074 (ts->ts_status == 0 ? 0 : 1)); 4075 } 4076 ath_tx_default_comp(sc, bf, 0); 4077 } else 4078 bf->bf_comp(sc, bf, 0); 4079 } 4080 4081 4082 4083 /* 4084 * Process completed xmit descriptors from the specified queue. 4085 * Kick the packet scheduler if needed. This can occur from this 4086 * particular task. 4087 */ 4088 static int 4089 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4090 { 4091 struct ath_hal *ah = sc->sc_ah; 4092 struct ath_buf *bf; 4093 struct ath_desc *ds; 4094 struct ath_tx_status *ts; 4095 struct ieee80211_node *ni; 4096 #ifdef IEEE80211_SUPPORT_SUPERG 4097 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4098 #endif /* IEEE80211_SUPPORT_SUPERG */ 4099 int nacked; 4100 HAL_STATUS status; 4101 4102 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4103 __func__, txq->axq_qnum, 4104 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4105 txq->axq_link); 4106 4107 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4108 "ath_tx_processq: txq=%u head %p link %p depth %p", 4109 txq->axq_qnum, 4110 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4111 txq->axq_link, 4112 txq->axq_depth); 4113 4114 nacked = 0; 4115 for (;;) { 4116 ATH_TXQ_LOCK(txq); 4117 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4118 bf = TAILQ_FIRST(&txq->axq_q); 4119 if (bf == NULL) { 4120 ATH_TXQ_UNLOCK(txq); 4121 break; 4122 } 4123 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4124 ts = &bf->bf_status.ds_txstat; 4125 4126 status = ath_hal_txprocdesc(ah, ds, ts); 4127 #ifdef ATH_DEBUG 4128 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4129 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4130 status == HAL_OK); 4131 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4132 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4133 status == HAL_OK); 4134 #endif 4135 #ifdef ATH_DEBUG_ALQ 4136 if (if_ath_alq_checkdebug(&sc->sc_alq, 4137 ATH_ALQ_EDMA_TXSTATUS)) { 4138 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4139 sc->sc_tx_statuslen, 4140 (char *) ds); 4141 } 4142 #endif 4143 4144 if (status == HAL_EINPROGRESS) { 4145 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4146 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4147 txq->axq_qnum, bf, ds); 4148 ATH_TXQ_UNLOCK(txq); 4149 break; 4150 } 4151 ATH_TXQ_REMOVE(txq, bf, bf_list); 4152 4153 /* 4154 * Sanity check. 4155 */ 4156 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4157 device_printf(sc->sc_dev, 4158 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4159 __func__, 4160 txq->axq_qnum, 4161 bf, 4162 bf->bf_state.bfs_tx_queue); 4163 } 4164 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4165 device_printf(sc->sc_dev, 4166 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4167 __func__, 4168 txq->axq_qnum, 4169 bf->bf_last, 4170 bf->bf_last->bf_state.bfs_tx_queue); 4171 } 4172 4173 #if 0 4174 if (txq->axq_depth > 0) { 4175 /* 4176 * More frames follow. Mark the buffer busy 4177 * so it's not re-used while the hardware may 4178 * still re-read the link field in the descriptor. 4179 * 4180 * Use the last buffer in an aggregate as that 4181 * is where the hardware may be - intermediate 4182 * descriptors won't be "busy". 4183 */ 4184 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4185 } else 4186 txq->axq_link = NULL; 4187 #else 4188 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4189 #endif 4190 if (bf->bf_state.bfs_aggr) 4191 txq->axq_aggr_depth--; 4192 4193 ni = bf->bf_node; 4194 4195 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4196 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4197 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4198 /* 4199 * If unicast frame was ack'd update RSSI, 4200 * including the last rx time used to 4201 * workaround phantom bmiss interrupts. 4202 */ 4203 if (ni != NULL && ts->ts_status == 0 && 4204 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4205 nacked++; 4206 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4207 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4208 ts->ts_rssi); 4209 } 4210 ATH_TXQ_UNLOCK(txq); 4211 4212 /* 4213 * Update statistics and call completion 4214 */ 4215 ath_tx_process_buf_completion(sc, txq, ts, bf); 4216 4217 /* XXX at this point, bf and ni may be totally invalid */ 4218 } 4219 #ifdef IEEE80211_SUPPORT_SUPERG 4220 /* 4221 * Flush fast-frame staging queue when traffic slows. 4222 */ 4223 if (txq->axq_depth <= 1) 4224 ieee80211_ff_flush(ic, txq->axq_ac); 4225 #endif 4226 4227 /* Kick the software TXQ scheduler */ 4228 if (dosched) { 4229 ATH_TX_LOCK(sc); 4230 ath_txq_sched(sc, txq); 4231 ATH_TX_UNLOCK(sc); 4232 } 4233 4234 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4235 "ath_tx_processq: txq=%u: done", 4236 txq->axq_qnum); 4237 4238 return nacked; 4239 } 4240 4241 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4242 4243 /* 4244 * Deferred processing of transmit interrupt; special-cased 4245 * for a single hardware transmit queue (e.g. 5210 and 5211). 4246 */ 4247 static void 4248 ath_tx_proc_q0(void *arg, int npending) 4249 { 4250 struct ath_softc *sc = arg; 4251 struct ifnet *ifp = sc->sc_ifp; 4252 uint32_t txqs; 4253 4254 ATH_PCU_LOCK(sc); 4255 sc->sc_txproc_cnt++; 4256 txqs = sc->sc_txq_active; 4257 sc->sc_txq_active &= ~txqs; 4258 ATH_PCU_UNLOCK(sc); 4259 4260 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4261 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4262 4263 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4264 /* XXX why is lastrx updated in tx code? */ 4265 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4266 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4267 ath_tx_processq(sc, sc->sc_cabq, 1); 4268 IF_LOCK(&ifp->if_snd); 4269 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4270 IF_UNLOCK(&ifp->if_snd); 4271 sc->sc_wd_timer = 0; 4272 4273 if (sc->sc_softled) 4274 ath_led_event(sc, sc->sc_txrix); 4275 4276 ATH_PCU_LOCK(sc); 4277 sc->sc_txproc_cnt--; 4278 ATH_PCU_UNLOCK(sc); 4279 4280 ath_tx_kick(sc); 4281 } 4282 4283 /* 4284 * Deferred processing of transmit interrupt; special-cased 4285 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4286 */ 4287 static void 4288 ath_tx_proc_q0123(void *arg, int npending) 4289 { 4290 struct ath_softc *sc = arg; 4291 struct ifnet *ifp = sc->sc_ifp; 4292 int nacked; 4293 uint32_t txqs; 4294 4295 ATH_PCU_LOCK(sc); 4296 sc->sc_txproc_cnt++; 4297 txqs = sc->sc_txq_active; 4298 sc->sc_txq_active &= ~txqs; 4299 ATH_PCU_UNLOCK(sc); 4300 4301 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4302 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4303 4304 /* 4305 * Process each active queue. 4306 */ 4307 nacked = 0; 4308 if (TXQACTIVE(txqs, 0)) 4309 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4310 if (TXQACTIVE(txqs, 1)) 4311 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4312 if (TXQACTIVE(txqs, 2)) 4313 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4314 if (TXQACTIVE(txqs, 3)) 4315 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4316 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4317 ath_tx_processq(sc, sc->sc_cabq, 1); 4318 if (nacked) 4319 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4320 4321 IF_LOCK(&ifp->if_snd); 4322 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4323 IF_UNLOCK(&ifp->if_snd); 4324 sc->sc_wd_timer = 0; 4325 4326 if (sc->sc_softled) 4327 ath_led_event(sc, sc->sc_txrix); 4328 4329 ATH_PCU_LOCK(sc); 4330 sc->sc_txproc_cnt--; 4331 ATH_PCU_UNLOCK(sc); 4332 4333 ath_tx_kick(sc); 4334 } 4335 4336 /* 4337 * Deferred processing of transmit interrupt. 4338 */ 4339 static void 4340 ath_tx_proc(void *arg, int npending) 4341 { 4342 struct ath_softc *sc = arg; 4343 struct ifnet *ifp = sc->sc_ifp; 4344 int i, nacked; 4345 uint32_t txqs; 4346 4347 ATH_PCU_LOCK(sc); 4348 sc->sc_txproc_cnt++; 4349 txqs = sc->sc_txq_active; 4350 sc->sc_txq_active &= ~txqs; 4351 ATH_PCU_UNLOCK(sc); 4352 4353 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4354 4355 /* 4356 * Process each active queue. 4357 */ 4358 nacked = 0; 4359 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4360 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4361 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4362 if (nacked) 4363 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4364 4365 /* XXX check this inside of IF_LOCK? */ 4366 IF_LOCK(&ifp->if_snd); 4367 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4368 IF_UNLOCK(&ifp->if_snd); 4369 sc->sc_wd_timer = 0; 4370 4371 if (sc->sc_softled) 4372 ath_led_event(sc, sc->sc_txrix); 4373 4374 ATH_PCU_LOCK(sc); 4375 sc->sc_txproc_cnt--; 4376 ATH_PCU_UNLOCK(sc); 4377 4378 ath_tx_kick(sc); 4379 } 4380 #undef TXQACTIVE 4381 4382 /* 4383 * Deferred processing of TXQ rescheduling. 4384 */ 4385 static void 4386 ath_txq_sched_tasklet(void *arg, int npending) 4387 { 4388 struct ath_softc *sc = arg; 4389 int i; 4390 4391 /* XXX is skipping ok? */ 4392 ATH_PCU_LOCK(sc); 4393 #if 0 4394 if (sc->sc_inreset_cnt > 0) { 4395 device_printf(sc->sc_dev, 4396 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4397 ATH_PCU_UNLOCK(sc); 4398 return; 4399 } 4400 #endif 4401 sc->sc_txproc_cnt++; 4402 ATH_PCU_UNLOCK(sc); 4403 4404 ATH_TX_LOCK(sc); 4405 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4406 if (ATH_TXQ_SETUP(sc, i)) { 4407 ath_txq_sched(sc, &sc->sc_txq[i]); 4408 } 4409 } 4410 ATH_TX_UNLOCK(sc); 4411 4412 ATH_PCU_LOCK(sc); 4413 sc->sc_txproc_cnt--; 4414 ATH_PCU_UNLOCK(sc); 4415 } 4416 4417 void 4418 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4419 { 4420 4421 ATH_TXBUF_LOCK_ASSERT(sc); 4422 4423 if (bf->bf_flags & ATH_BUF_MGMT) 4424 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4425 else { 4426 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4427 sc->sc_txbuf_cnt++; 4428 if (sc->sc_txbuf_cnt > ath_txbuf) { 4429 device_printf(sc->sc_dev, 4430 "%s: sc_txbuf_cnt > %d?\n", 4431 __func__, 4432 ath_txbuf); 4433 sc->sc_txbuf_cnt = ath_txbuf; 4434 } 4435 } 4436 } 4437 4438 void 4439 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4440 { 4441 4442 ATH_TXBUF_LOCK_ASSERT(sc); 4443 4444 if (bf->bf_flags & ATH_BUF_MGMT) 4445 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4446 else { 4447 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4448 sc->sc_txbuf_cnt++; 4449 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4450 device_printf(sc->sc_dev, 4451 "%s: sc_txbuf_cnt > %d?\n", 4452 __func__, 4453 ATH_TXBUF); 4454 sc->sc_txbuf_cnt = ATH_TXBUF; 4455 } 4456 } 4457 } 4458 4459 /* 4460 * Free the holding buffer if it exists 4461 */ 4462 void 4463 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4464 { 4465 ATH_TXBUF_UNLOCK_ASSERT(sc); 4466 ATH_TXQ_LOCK_ASSERT(txq); 4467 4468 if (txq->axq_holdingbf == NULL) 4469 return; 4470 4471 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4472 4473 ATH_TXBUF_LOCK(sc); 4474 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4475 ATH_TXBUF_UNLOCK(sc); 4476 4477 txq->axq_holdingbf = NULL; 4478 } 4479 4480 /* 4481 * Add this buffer to the holding queue, freeing the previous 4482 * one if it exists. 4483 */ 4484 static void 4485 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4486 { 4487 struct ath_txq *txq; 4488 4489 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4490 4491 ATH_TXBUF_UNLOCK_ASSERT(sc); 4492 ATH_TXQ_LOCK_ASSERT(txq); 4493 4494 /* XXX assert ATH_BUF_BUSY is set */ 4495 4496 /* XXX assert the tx queue is under the max number */ 4497 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4498 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4499 __func__, 4500 bf, 4501 bf->bf_state.bfs_tx_queue); 4502 bf->bf_flags &= ~ATH_BUF_BUSY; 4503 ath_returnbuf_tail(sc, bf); 4504 return; 4505 } 4506 ath_txq_freeholdingbuf(sc, txq); 4507 txq->axq_holdingbf = bf; 4508 } 4509 4510 /* 4511 * Return a buffer to the pool and update the 'busy' flag on the 4512 * previous 'tail' entry. 4513 * 4514 * This _must_ only be called when the buffer is involved in a completed 4515 * TX. The logic is that if it was part of an active TX, the previous 4516 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4517 * for restart (eg for TDMA.) 4518 * 4519 * The caller must free the mbuf and recycle the node reference. 4520 * 4521 * XXX This method of handling busy / holding buffers is insanely stupid. 4522 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4523 * be much nicer if buffers in the processq() methods would instead be 4524 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4525 * exactly what hardware queue they came from in the first place. 4526 */ 4527 void 4528 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4529 { 4530 struct ath_txq *txq; 4531 4532 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4533 4534 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4535 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4536 4537 /* 4538 * If this buffer is busy, push it onto the holding queue. 4539 */ 4540 if (bf->bf_flags & ATH_BUF_BUSY) { 4541 ATH_TXQ_LOCK(txq); 4542 ath_txq_addholdingbuf(sc, bf); 4543 ATH_TXQ_UNLOCK(txq); 4544 return; 4545 } 4546 4547 /* 4548 * Not a busy buffer, so free normally 4549 */ 4550 ATH_TXBUF_LOCK(sc); 4551 ath_returnbuf_tail(sc, bf); 4552 ATH_TXBUF_UNLOCK(sc); 4553 } 4554 4555 /* 4556 * This is currently used by ath_tx_draintxq() and 4557 * ath_tx_tid_free_pkts(). 4558 * 4559 * It recycles a single ath_buf. 4560 */ 4561 void 4562 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4563 { 4564 struct ieee80211_node *ni = bf->bf_node; 4565 struct mbuf *m0 = bf->bf_m; 4566 4567 /* 4568 * Make sure that we only sync/unload if there's an mbuf. 4569 * If not (eg we cloned a buffer), the unload will have already 4570 * occured. 4571 */ 4572 if (bf->bf_m != NULL) { 4573 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4574 BUS_DMASYNC_POSTWRITE); 4575 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4576 } 4577 4578 bf->bf_node = NULL; 4579 bf->bf_m = NULL; 4580 4581 /* Free the buffer, it's not needed any longer */ 4582 ath_freebuf(sc, bf); 4583 4584 /* Pass the buffer back to net80211 - completing it */ 4585 ieee80211_tx_complete(ni, m0, status); 4586 } 4587 4588 static struct ath_buf * 4589 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4590 { 4591 struct ath_buf *bf; 4592 4593 ATH_TXQ_LOCK_ASSERT(txq); 4594 4595 /* 4596 * Drain the FIFO queue first, then if it's 4597 * empty, move to the normal frame queue. 4598 */ 4599 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4600 if (bf != NULL) { 4601 /* 4602 * Is it the last buffer in this set? 4603 * Decrement the FIFO counter. 4604 */ 4605 if (bf->bf_flags & ATH_BUF_FIFOEND) { 4606 if (txq->axq_fifo_depth == 0) { 4607 device_printf(sc->sc_dev, 4608 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 4609 __func__, 4610 txq->axq_qnum, 4611 txq->fifo.axq_depth); 4612 } else 4613 txq->axq_fifo_depth--; 4614 } 4615 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 4616 return (bf); 4617 } 4618 4619 /* 4620 * Debugging! 4621 */ 4622 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 4623 device_printf(sc->sc_dev, 4624 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 4625 __func__, 4626 txq->axq_qnum, 4627 txq->axq_fifo_depth, 4628 txq->fifo.axq_depth); 4629 } 4630 4631 /* 4632 * Now drain the pending queue. 4633 */ 4634 bf = TAILQ_FIRST(&txq->axq_q); 4635 if (bf == NULL) { 4636 txq->axq_link = NULL; 4637 return (NULL); 4638 } 4639 ATH_TXQ_REMOVE(txq, bf, bf_list); 4640 return (bf); 4641 } 4642 4643 void 4644 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4645 { 4646 #ifdef ATH_DEBUG 4647 struct ath_hal *ah = sc->sc_ah; 4648 #endif 4649 struct ath_buf *bf; 4650 u_int ix; 4651 4652 /* 4653 * NB: this assumes output has been stopped and 4654 * we do not need to block ath_tx_proc 4655 */ 4656 for (ix = 0;; ix++) { 4657 ATH_TXQ_LOCK(txq); 4658 bf = ath_tx_draintxq_get_one(sc, txq); 4659 if (bf == NULL) { 4660 ATH_TXQ_UNLOCK(txq); 4661 break; 4662 } 4663 if (bf->bf_state.bfs_aggr) 4664 txq->axq_aggr_depth--; 4665 #ifdef ATH_DEBUG 4666 if (sc->sc_debug & ATH_DEBUG_RESET) { 4667 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4668 int status = 0; 4669 4670 /* 4671 * EDMA operation has a TX completion FIFO 4672 * separate from the TX descriptor, so this 4673 * method of checking the "completion" status 4674 * is wrong. 4675 */ 4676 if (! sc->sc_isedma) { 4677 status = (ath_hal_txprocdesc(ah, 4678 bf->bf_lastds, 4679 &bf->bf_status.ds_txstat) == HAL_OK); 4680 } 4681 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4682 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4683 bf->bf_m->m_len, 0, -1); 4684 } 4685 #endif /* ATH_DEBUG */ 4686 /* 4687 * Since we're now doing magic in the completion 4688 * functions, we -must- call it for aggregation 4689 * destinations or BAW tracking will get upset. 4690 */ 4691 /* 4692 * Clear ATH_BUF_BUSY; the completion handler 4693 * will free the buffer. 4694 */ 4695 ATH_TXQ_UNLOCK(txq); 4696 bf->bf_flags &= ~ATH_BUF_BUSY; 4697 if (bf->bf_comp) 4698 bf->bf_comp(sc, bf, 1); 4699 else 4700 ath_tx_default_comp(sc, bf, 1); 4701 } 4702 4703 /* 4704 * Free the holding buffer if it exists 4705 */ 4706 ATH_TXQ_LOCK(txq); 4707 ath_txq_freeholdingbuf(sc, txq); 4708 ATH_TXQ_UNLOCK(txq); 4709 4710 /* 4711 * Drain software queued frames which are on 4712 * active TIDs. 4713 */ 4714 ath_tx_txq_drain(sc, txq); 4715 } 4716 4717 static void 4718 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4719 { 4720 struct ath_hal *ah = sc->sc_ah; 4721 4722 ATH_TXQ_LOCK_ASSERT(txq); 4723 4724 DPRINTF(sc, ATH_DEBUG_RESET, 4725 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 4726 "link %p, holdingbf=%p\n", 4727 __func__, 4728 txq->axq_qnum, 4729 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4730 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 4731 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 4732 txq->axq_flags, 4733 txq->axq_link, 4734 txq->axq_holdingbf); 4735 4736 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4737 /* We've stopped TX DMA, so mark this as stopped. */ 4738 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 4739 4740 #ifdef ATH_DEBUG 4741 if ((sc->sc_debug & ATH_DEBUG_RESET) 4742 && (txq->axq_holdingbf != NULL)) { 4743 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 4744 } 4745 #endif 4746 } 4747 4748 int 4749 ath_stoptxdma(struct ath_softc *sc) 4750 { 4751 struct ath_hal *ah = sc->sc_ah; 4752 int i; 4753 4754 /* XXX return value */ 4755 if (sc->sc_invalid) 4756 return 0; 4757 4758 if (!sc->sc_invalid) { 4759 /* don't touch the hardware if marked invalid */ 4760 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4761 __func__, sc->sc_bhalq, 4762 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4763 NULL); 4764 4765 /* stop the beacon queue */ 4766 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4767 4768 /* Stop the data queues */ 4769 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4770 if (ATH_TXQ_SETUP(sc, i)) { 4771 ATH_TXQ_LOCK(&sc->sc_txq[i]); 4772 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4773 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 4774 } 4775 } 4776 } 4777 4778 return 1; 4779 } 4780 4781 #ifdef ATH_DEBUG 4782 void 4783 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 4784 { 4785 struct ath_hal *ah = sc->sc_ah; 4786 struct ath_buf *bf; 4787 int i = 0; 4788 4789 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 4790 return; 4791 4792 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 4793 __func__, txq->axq_qnum); 4794 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 4795 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 4796 ath_hal_txprocdesc(ah, bf->bf_lastds, 4797 &bf->bf_status.ds_txstat) == HAL_OK); 4798 i++; 4799 } 4800 device_printf(sc->sc_dev, "%s: Q%d: end\n", 4801 __func__, txq->axq_qnum); 4802 } 4803 #endif /* ATH_DEBUG */ 4804 4805 /* 4806 * Drain the transmit queues and reclaim resources. 4807 */ 4808 void 4809 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4810 { 4811 struct ath_hal *ah = sc->sc_ah; 4812 struct ifnet *ifp = sc->sc_ifp; 4813 int i; 4814 struct ath_buf *bf_last; 4815 4816 (void) ath_stoptxdma(sc); 4817 4818 /* 4819 * Dump the queue contents 4820 */ 4821 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4822 /* 4823 * XXX TODO: should we just handle the completed TX frames 4824 * here, whether or not the reset is a full one or not? 4825 */ 4826 if (ATH_TXQ_SETUP(sc, i)) { 4827 #ifdef ATH_DEBUG 4828 if (sc->sc_debug & ATH_DEBUG_RESET) 4829 ath_tx_dump(sc, &sc->sc_txq[i]); 4830 #endif /* ATH_DEBUG */ 4831 if (reset_type == ATH_RESET_NOLOSS) { 4832 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4833 ATH_TXQ_LOCK(&sc->sc_txq[i]); 4834 /* 4835 * Free the holding buffer; DMA is now 4836 * stopped. 4837 */ 4838 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 4839 /* 4840 * Setup the link pointer to be the 4841 * _last_ buffer/descriptor in the list. 4842 * If there's nothing in the list, set it 4843 * to NULL. 4844 */ 4845 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 4846 axq_q_s); 4847 if (bf_last != NULL) { 4848 ath_hal_gettxdesclinkptr(ah, 4849 bf_last->bf_lastds, 4850 &sc->sc_txq[i].axq_link); 4851 } else { 4852 sc->sc_txq[i].axq_link = NULL; 4853 } 4854 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 4855 } else 4856 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4857 } 4858 } 4859 #ifdef ATH_DEBUG 4860 if (sc->sc_debug & ATH_DEBUG_RESET) { 4861 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 4862 if (bf != NULL && bf->bf_m != NULL) { 4863 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4864 ath_hal_txprocdesc(ah, bf->bf_lastds, 4865 &bf->bf_status.ds_txstat) == HAL_OK); 4866 ieee80211_dump_pkt(ifp->if_l2com, 4867 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4868 0, -1); 4869 } 4870 } 4871 #endif /* ATH_DEBUG */ 4872 IF_LOCK(&ifp->if_snd); 4873 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4874 IF_UNLOCK(&ifp->if_snd); 4875 sc->sc_wd_timer = 0; 4876 } 4877 4878 /* 4879 * Update internal state after a channel change. 4880 */ 4881 static void 4882 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4883 { 4884 enum ieee80211_phymode mode; 4885 4886 /* 4887 * Change channels and update the h/w rate map 4888 * if we're switching; e.g. 11a to 11b/g. 4889 */ 4890 mode = ieee80211_chan2mode(chan); 4891 if (mode != sc->sc_curmode) 4892 ath_setcurmode(sc, mode); 4893 sc->sc_curchan = chan; 4894 } 4895 4896 /* 4897 * Set/change channels. If the channel is really being changed, 4898 * it's done by resetting the chip. To accomplish this we must 4899 * first cleanup any pending DMA, then restart stuff after a la 4900 * ath_init. 4901 */ 4902 static int 4903 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4904 { 4905 struct ifnet *ifp = sc->sc_ifp; 4906 struct ieee80211com *ic = ifp->if_l2com; 4907 struct ath_hal *ah = sc->sc_ah; 4908 int ret = 0; 4909 4910 /* Treat this as an interface reset */ 4911 ATH_PCU_UNLOCK_ASSERT(sc); 4912 ATH_UNLOCK_ASSERT(sc); 4913 4914 /* (Try to) stop TX/RX from occuring */ 4915 taskqueue_block(sc->sc_tq); 4916 4917 ATH_PCU_LOCK(sc); 4918 4919 /* Stop new RX/TX/interrupt completion */ 4920 if (ath_reset_grablock(sc, 1) == 0) { 4921 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4922 __func__); 4923 } 4924 4925 ath_hal_intrset(ah, 0); 4926 4927 /* Stop pending RX/TX completion */ 4928 ath_txrx_stop_locked(sc); 4929 4930 ATH_PCU_UNLOCK(sc); 4931 4932 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4933 __func__, ieee80211_chan2ieee(ic, chan), 4934 chan->ic_freq, chan->ic_flags); 4935 if (chan != sc->sc_curchan) { 4936 HAL_STATUS status; 4937 /* 4938 * To switch channels clear any pending DMA operations; 4939 * wait long enough for the RX fifo to drain, reset the 4940 * hardware at the new frequency, and then re-enable 4941 * the relevant bits of the h/w. 4942 */ 4943 #if 0 4944 ath_hal_intrset(ah, 0); /* disable interrupts */ 4945 #endif 4946 ath_stoprecv(sc, 1); /* turn off frame recv */ 4947 /* 4948 * First, handle completed TX/RX frames. 4949 */ 4950 ath_rx_flush(sc); 4951 ath_draintxq(sc, ATH_RESET_NOLOSS); 4952 /* 4953 * Next, flush the non-scheduled frames. 4954 */ 4955 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4956 4957 ath_update_chainmasks(sc, chan); 4958 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 4959 sc->sc_cur_rxchainmask); 4960 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4961 if_printf(ifp, "%s: unable to reset " 4962 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4963 __func__, ieee80211_chan2ieee(ic, chan), 4964 chan->ic_freq, chan->ic_flags, status); 4965 ret = EIO; 4966 goto finish; 4967 } 4968 sc->sc_diversity = ath_hal_getdiversity(ah); 4969 4970 /* Let DFS at it in case it's a DFS channel */ 4971 ath_dfs_radar_enable(sc, chan); 4972 4973 /* Let spectral at in case spectral is enabled */ 4974 ath_spectral_enable(sc, chan); 4975 4976 /* 4977 * Let bluetooth coexistence at in case it's needed for this 4978 * channel 4979 */ 4980 ath_btcoex_enable(sc, ic->ic_curchan); 4981 4982 /* 4983 * If we're doing TDMA, enforce the TXOP limitation for chips 4984 * that support it. 4985 */ 4986 if (sc->sc_hasenforcetxop && sc->sc_tdma) 4987 ath_hal_setenforcetxop(sc->sc_ah, 1); 4988 else 4989 ath_hal_setenforcetxop(sc->sc_ah, 0); 4990 4991 /* 4992 * Re-enable rx framework. 4993 */ 4994 if (ath_startrecv(sc) != 0) { 4995 if_printf(ifp, "%s: unable to restart recv logic\n", 4996 __func__); 4997 ret = EIO; 4998 goto finish; 4999 } 5000 5001 /* 5002 * Change channels and update the h/w rate map 5003 * if we're switching; e.g. 11a to 11b/g. 5004 */ 5005 ath_chan_change(sc, chan); 5006 5007 /* 5008 * Reset clears the beacon timers; reset them 5009 * here if needed. 5010 */ 5011 if (sc->sc_beacons) { /* restart beacons */ 5012 #ifdef IEEE80211_SUPPORT_TDMA 5013 if (sc->sc_tdma) 5014 ath_tdma_config(sc, NULL); 5015 else 5016 #endif 5017 ath_beacon_config(sc, NULL); 5018 } 5019 5020 /* 5021 * Re-enable interrupts. 5022 */ 5023 #if 0 5024 ath_hal_intrset(ah, sc->sc_imask); 5025 #endif 5026 } 5027 5028 finish: 5029 ATH_PCU_LOCK(sc); 5030 sc->sc_inreset_cnt--; 5031 /* XXX only do this if sc_inreset_cnt == 0? */ 5032 ath_hal_intrset(ah, sc->sc_imask); 5033 ATH_PCU_UNLOCK(sc); 5034 5035 IF_LOCK(&ifp->if_snd); 5036 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5037 IF_UNLOCK(&ifp->if_snd); 5038 ath_txrx_start(sc); 5039 /* XXX ath_start? */ 5040 5041 return ret; 5042 } 5043 5044 /* 5045 * Periodically recalibrate the PHY to account 5046 * for temperature/environment changes. 5047 */ 5048 static void 5049 ath_calibrate(void *arg) 5050 { 5051 struct ath_softc *sc = arg; 5052 struct ath_hal *ah = sc->sc_ah; 5053 struct ifnet *ifp = sc->sc_ifp; 5054 struct ieee80211com *ic = ifp->if_l2com; 5055 HAL_BOOL longCal, isCalDone = AH_TRUE; 5056 HAL_BOOL aniCal, shortCal = AH_FALSE; 5057 int nextcal; 5058 5059 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5060 goto restart; 5061 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5062 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5063 if (sc->sc_doresetcal) 5064 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5065 5066 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5067 if (aniCal) { 5068 sc->sc_stats.ast_ani_cal++; 5069 sc->sc_lastani = ticks; 5070 ath_hal_ani_poll(ah, sc->sc_curchan); 5071 } 5072 5073 if (longCal) { 5074 sc->sc_stats.ast_per_cal++; 5075 sc->sc_lastlongcal = ticks; 5076 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5077 /* 5078 * Rfgain is out of bounds, reset the chip 5079 * to load new gain values. 5080 */ 5081 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5082 "%s: rfgain change\n", __func__); 5083 sc->sc_stats.ast_per_rfgain++; 5084 sc->sc_resetcal = 0; 5085 sc->sc_doresetcal = AH_TRUE; 5086 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5087 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5088 return; 5089 } 5090 /* 5091 * If this long cal is after an idle period, then 5092 * reset the data collection state so we start fresh. 5093 */ 5094 if (sc->sc_resetcal) { 5095 (void) ath_hal_calreset(ah, sc->sc_curchan); 5096 sc->sc_lastcalreset = ticks; 5097 sc->sc_lastshortcal = ticks; 5098 sc->sc_resetcal = 0; 5099 sc->sc_doresetcal = AH_TRUE; 5100 } 5101 } 5102 5103 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5104 if (shortCal || longCal) { 5105 isCalDone = AH_FALSE; 5106 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5107 if (longCal) { 5108 /* 5109 * Calibrate noise floor data again in case of change. 5110 */ 5111 ath_hal_process_noisefloor(ah); 5112 } 5113 } else { 5114 DPRINTF(sc, ATH_DEBUG_ANY, 5115 "%s: calibration of channel %u failed\n", 5116 __func__, sc->sc_curchan->ic_freq); 5117 sc->sc_stats.ast_per_calfail++; 5118 } 5119 if (shortCal) 5120 sc->sc_lastshortcal = ticks; 5121 } 5122 if (!isCalDone) { 5123 restart: 5124 /* 5125 * Use a shorter interval to potentially collect multiple 5126 * data samples required to complete calibration. Once 5127 * we're told the work is done we drop back to a longer 5128 * interval between requests. We're more aggressive doing 5129 * work when operating as an AP to improve operation right 5130 * after startup. 5131 */ 5132 sc->sc_lastshortcal = ticks; 5133 nextcal = ath_shortcalinterval*hz/1000; 5134 if (sc->sc_opmode != HAL_M_HOSTAP) 5135 nextcal *= 10; 5136 sc->sc_doresetcal = AH_TRUE; 5137 } else { 5138 /* nextcal should be the shortest time for next event */ 5139 nextcal = ath_longcalinterval*hz; 5140 if (sc->sc_lastcalreset == 0) 5141 sc->sc_lastcalreset = sc->sc_lastlongcal; 5142 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5143 sc->sc_resetcal = 1; /* setup reset next trip */ 5144 sc->sc_doresetcal = AH_FALSE; 5145 } 5146 /* ANI calibration may occur more often than short/long/resetcal */ 5147 if (ath_anicalinterval > 0) 5148 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5149 5150 if (nextcal != 0) { 5151 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5152 __func__, nextcal, isCalDone ? "" : "!"); 5153 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5154 } else { 5155 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5156 __func__); 5157 /* NB: don't rearm timer */ 5158 } 5159 } 5160 5161 static void 5162 ath_scan_start(struct ieee80211com *ic) 5163 { 5164 struct ifnet *ifp = ic->ic_ifp; 5165 struct ath_softc *sc = ifp->if_softc; 5166 struct ath_hal *ah = sc->sc_ah; 5167 u_int32_t rfilt; 5168 5169 /* XXX calibration timer? */ 5170 5171 ATH_LOCK(sc); 5172 sc->sc_scanning = 1; 5173 sc->sc_syncbeacon = 0; 5174 rfilt = ath_calcrxfilter(sc); 5175 ATH_UNLOCK(sc); 5176 5177 ATH_PCU_LOCK(sc); 5178 ath_hal_setrxfilter(ah, rfilt); 5179 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5180 ATH_PCU_UNLOCK(sc); 5181 5182 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5183 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5184 } 5185 5186 static void 5187 ath_scan_end(struct ieee80211com *ic) 5188 { 5189 struct ifnet *ifp = ic->ic_ifp; 5190 struct ath_softc *sc = ifp->if_softc; 5191 struct ath_hal *ah = sc->sc_ah; 5192 u_int32_t rfilt; 5193 5194 ATH_LOCK(sc); 5195 sc->sc_scanning = 0; 5196 rfilt = ath_calcrxfilter(sc); 5197 ATH_UNLOCK(sc); 5198 5199 ATH_PCU_LOCK(sc); 5200 ath_hal_setrxfilter(ah, rfilt); 5201 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5202 5203 ath_hal_process_noisefloor(ah); 5204 ATH_PCU_UNLOCK(sc); 5205 5206 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5207 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5208 sc->sc_curaid); 5209 } 5210 5211 #ifdef ATH_ENABLE_11N 5212 /* 5213 * For now, just do a channel change. 5214 * 5215 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5216 * control state and resetting the hardware without dropping frames out 5217 * of the queue. 5218 * 5219 * The unfortunate trouble here is making absolutely sure that the 5220 * channel width change has propagated enough so the hardware 5221 * absolutely isn't handed bogus frames for it's current operating 5222 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5223 * does occur in parallel, we need to make certain we've blocked 5224 * any further ongoing TX (and RX, that can cause raw TX) 5225 * before we do this. 5226 */ 5227 static void 5228 ath_update_chw(struct ieee80211com *ic) 5229 { 5230 struct ifnet *ifp = ic->ic_ifp; 5231 struct ath_softc *sc = ifp->if_softc; 5232 5233 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5234 ath_set_channel(ic); 5235 } 5236 #endif /* ATH_ENABLE_11N */ 5237 5238 static void 5239 ath_set_channel(struct ieee80211com *ic) 5240 { 5241 struct ifnet *ifp = ic->ic_ifp; 5242 struct ath_softc *sc = ifp->if_softc; 5243 5244 (void) ath_chan_set(sc, ic->ic_curchan); 5245 /* 5246 * If we are returning to our bss channel then mark state 5247 * so the next recv'd beacon's tsf will be used to sync the 5248 * beacon timers. Note that since we only hear beacons in 5249 * sta/ibss mode this has no effect in other operating modes. 5250 */ 5251 ATH_LOCK(sc); 5252 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5253 sc->sc_syncbeacon = 1; 5254 ATH_UNLOCK(sc); 5255 } 5256 5257 /* 5258 * Walk the vap list and check if there any vap's in RUN state. 5259 */ 5260 static int 5261 ath_isanyrunningvaps(struct ieee80211vap *this) 5262 { 5263 struct ieee80211com *ic = this->iv_ic; 5264 struct ieee80211vap *vap; 5265 5266 IEEE80211_LOCK_ASSERT(ic); 5267 5268 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5269 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5270 return 1; 5271 } 5272 return 0; 5273 } 5274 5275 static int 5276 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5277 { 5278 struct ieee80211com *ic = vap->iv_ic; 5279 struct ath_softc *sc = ic->ic_ifp->if_softc; 5280 struct ath_vap *avp = ATH_VAP(vap); 5281 struct ath_hal *ah = sc->sc_ah; 5282 struct ieee80211_node *ni = NULL; 5283 int i, error, stamode; 5284 u_int32_t rfilt; 5285 int csa_run_transition = 0; 5286 5287 static const HAL_LED_STATE leds[] = { 5288 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5289 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5290 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5291 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5292 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5293 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5294 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5295 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5296 }; 5297 5298 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5299 ieee80211_state_name[vap->iv_state], 5300 ieee80211_state_name[nstate]); 5301 5302 /* 5303 * net80211 _should_ have the comlock asserted at this point. 5304 * There are some comments around the calls to vap->iv_newstate 5305 * which indicate that it (newstate) may end up dropping the 5306 * lock. This and the subsequent lock assert check after newstate 5307 * are an attempt to catch these and figure out how/why. 5308 */ 5309 IEEE80211_LOCK_ASSERT(ic); 5310 5311 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5312 csa_run_transition = 1; 5313 5314 callout_drain(&sc->sc_cal_ch); 5315 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5316 5317 if (nstate == IEEE80211_S_SCAN) { 5318 /* 5319 * Scanning: turn off beacon miss and don't beacon. 5320 * Mark beacon state so when we reach RUN state we'll 5321 * [re]setup beacons. Unblock the task q thread so 5322 * deferred interrupt processing is done. 5323 */ 5324 ath_hal_intrset(ah, 5325 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5326 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5327 sc->sc_beacons = 0; 5328 taskqueue_unblock(sc->sc_tq); 5329 } 5330 5331 ni = ieee80211_ref_node(vap->iv_bss); 5332 rfilt = ath_calcrxfilter(sc); 5333 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5334 vap->iv_opmode == IEEE80211_M_AHDEMO || 5335 vap->iv_opmode == IEEE80211_M_IBSS); 5336 if (stamode && nstate == IEEE80211_S_RUN) { 5337 sc->sc_curaid = ni->ni_associd; 5338 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5339 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5340 } 5341 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5342 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5343 ath_hal_setrxfilter(ah, rfilt); 5344 5345 /* XXX is this to restore keycache on resume? */ 5346 if (vap->iv_opmode != IEEE80211_M_STA && 5347 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5348 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5349 if (ath_hal_keyisvalid(ah, i)) 5350 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5351 } 5352 5353 /* 5354 * Invoke the parent method to do net80211 work. 5355 */ 5356 error = avp->av_newstate(vap, nstate, arg); 5357 if (error != 0) 5358 goto bad; 5359 5360 /* 5361 * See above: ensure av_newstate() doesn't drop the lock 5362 * on us. 5363 */ 5364 IEEE80211_LOCK_ASSERT(ic); 5365 5366 if (nstate == IEEE80211_S_RUN) { 5367 /* NB: collect bss node again, it may have changed */ 5368 ieee80211_free_node(ni); 5369 ni = ieee80211_ref_node(vap->iv_bss); 5370 5371 DPRINTF(sc, ATH_DEBUG_STATE, 5372 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5373 "capinfo 0x%04x chan %d\n", __func__, 5374 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5375 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5376 5377 switch (vap->iv_opmode) { 5378 #ifdef IEEE80211_SUPPORT_TDMA 5379 case IEEE80211_M_AHDEMO: 5380 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5381 break; 5382 /* fall thru... */ 5383 #endif 5384 case IEEE80211_M_HOSTAP: 5385 case IEEE80211_M_IBSS: 5386 case IEEE80211_M_MBSS: 5387 /* 5388 * Allocate and setup the beacon frame. 5389 * 5390 * Stop any previous beacon DMA. This may be 5391 * necessary, for example, when an ibss merge 5392 * causes reconfiguration; there will be a state 5393 * transition from RUN->RUN that means we may 5394 * be called with beacon transmission active. 5395 */ 5396 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5397 5398 error = ath_beacon_alloc(sc, ni); 5399 if (error != 0) 5400 goto bad; 5401 /* 5402 * If joining an adhoc network defer beacon timer 5403 * configuration to the next beacon frame so we 5404 * have a current TSF to use. Otherwise we're 5405 * starting an ibss/bss so there's no need to delay; 5406 * if this is the first vap moving to RUN state, then 5407 * beacon state needs to be [re]configured. 5408 */ 5409 if (vap->iv_opmode == IEEE80211_M_IBSS && 5410 ni->ni_tstamp.tsf != 0) { 5411 sc->sc_syncbeacon = 1; 5412 } else if (!sc->sc_beacons) { 5413 #ifdef IEEE80211_SUPPORT_TDMA 5414 if (vap->iv_caps & IEEE80211_C_TDMA) 5415 ath_tdma_config(sc, vap); 5416 else 5417 #endif 5418 ath_beacon_config(sc, vap); 5419 sc->sc_beacons = 1; 5420 } 5421 break; 5422 case IEEE80211_M_STA: 5423 /* 5424 * Defer beacon timer configuration to the next 5425 * beacon frame so we have a current TSF to use 5426 * (any TSF collected when scanning is likely old). 5427 * However if it's due to a CSA -> RUN transition, 5428 * force a beacon update so we pick up a lack of 5429 * beacons from an AP in CAC and thus force a 5430 * scan. 5431 * 5432 * And, there's also corner cases here where 5433 * after a scan, the AP may have disappeared. 5434 * In that case, we may not receive an actual 5435 * beacon to update the beacon timer and thus we 5436 * won't get notified of the missing beacons. 5437 */ 5438 sc->sc_syncbeacon = 1; 5439 #if 0 5440 if (csa_run_transition) 5441 #endif 5442 ath_beacon_config(sc, vap); 5443 5444 /* 5445 * PR: kern/175227 5446 * 5447 * Reconfigure beacons during reset; as otherwise 5448 * we won't get the beacon timers reprogrammed 5449 * after a reset and thus we won't pick up a 5450 * beacon miss interrupt. 5451 * 5452 * Hopefully we'll see a beacon before the BMISS 5453 * timer fires (too often), leading to a STA 5454 * disassociation. 5455 */ 5456 sc->sc_beacons = 1; 5457 break; 5458 case IEEE80211_M_MONITOR: 5459 /* 5460 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5461 * transitions so we must re-enable interrupts here to 5462 * handle the case of a single monitor mode vap. 5463 */ 5464 ath_hal_intrset(ah, sc->sc_imask); 5465 break; 5466 case IEEE80211_M_WDS: 5467 break; 5468 default: 5469 break; 5470 } 5471 /* 5472 * Let the hal process statistics collected during a 5473 * scan so it can provide calibrated noise floor data. 5474 */ 5475 ath_hal_process_noisefloor(ah); 5476 /* 5477 * Reset rssi stats; maybe not the best place... 5478 */ 5479 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5480 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5481 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5482 /* 5483 * Finally, start any timers and the task q thread 5484 * (in case we didn't go through SCAN state). 5485 */ 5486 if (ath_longcalinterval != 0) { 5487 /* start periodic recalibration timer */ 5488 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5489 } else { 5490 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5491 "%s: calibration disabled\n", __func__); 5492 } 5493 taskqueue_unblock(sc->sc_tq); 5494 } else if (nstate == IEEE80211_S_INIT) { 5495 /* 5496 * If there are no vaps left in RUN state then 5497 * shutdown host/driver operation: 5498 * o disable interrupts 5499 * o disable the task queue thread 5500 * o mark beacon processing as stopped 5501 */ 5502 if (!ath_isanyrunningvaps(vap)) { 5503 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5504 /* disable interrupts */ 5505 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5506 taskqueue_block(sc->sc_tq); 5507 sc->sc_beacons = 0; 5508 } 5509 #ifdef IEEE80211_SUPPORT_TDMA 5510 ath_hal_setcca(ah, AH_TRUE); 5511 #endif 5512 } 5513 bad: 5514 ieee80211_free_node(ni); 5515 return error; 5516 } 5517 5518 /* 5519 * Allocate a key cache slot to the station so we can 5520 * setup a mapping from key index to node. The key cache 5521 * slot is needed for managing antenna state and for 5522 * compression when stations do not use crypto. We do 5523 * it uniliaterally here; if crypto is employed this slot 5524 * will be reassigned. 5525 */ 5526 static void 5527 ath_setup_stationkey(struct ieee80211_node *ni) 5528 { 5529 struct ieee80211vap *vap = ni->ni_vap; 5530 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5531 ieee80211_keyix keyix, rxkeyix; 5532 5533 /* XXX should take a locked ref to vap->iv_bss */ 5534 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5535 /* 5536 * Key cache is full; we'll fall back to doing 5537 * the more expensive lookup in software. Note 5538 * this also means no h/w compression. 5539 */ 5540 /* XXX msg+statistic */ 5541 } else { 5542 /* XXX locking? */ 5543 ni->ni_ucastkey.wk_keyix = keyix; 5544 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5545 /* NB: must mark device key to get called back on delete */ 5546 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5547 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5548 /* NB: this will create a pass-thru key entry */ 5549 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5550 } 5551 } 5552 5553 /* 5554 * Setup driver-specific state for a newly associated node. 5555 * Note that we're called also on a re-associate, the isnew 5556 * param tells us if this is the first time or not. 5557 */ 5558 static void 5559 ath_newassoc(struct ieee80211_node *ni, int isnew) 5560 { 5561 struct ath_node *an = ATH_NODE(ni); 5562 struct ieee80211vap *vap = ni->ni_vap; 5563 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5564 const struct ieee80211_txparam *tp = ni->ni_txparms; 5565 5566 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5567 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5568 5569 ath_rate_newassoc(sc, an, isnew); 5570 5571 if (isnew && 5572 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5573 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5574 ath_setup_stationkey(ni); 5575 5576 /* 5577 * If we're reassociating, make sure that any paused queues 5578 * get unpaused. 5579 * 5580 * Now, we may hvae frames in the hardware queue for this node. 5581 * So if we are reassociating and there are frames in the queue, 5582 * we need to go through the cleanup path to ensure that they're 5583 * marked as non-aggregate. 5584 */ 5585 if (! isnew) { 5586 DPRINTF(sc, ATH_DEBUG_NODE, 5587 "%s: %6D: reassoc; is_powersave=%d\n", 5588 __func__, 5589 ni->ni_macaddr, 5590 ":", 5591 an->an_is_powersave); 5592 5593 /* XXX for now, we can't hold the lock across assoc */ 5594 ath_tx_node_reassoc(sc, an); 5595 5596 /* XXX for now, we can't hold the lock across wakeup */ 5597 if (an->an_is_powersave) 5598 ath_tx_node_wakeup(sc, an); 5599 } 5600 } 5601 5602 static int 5603 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5604 int nchans, struct ieee80211_channel chans[]) 5605 { 5606 struct ath_softc *sc = ic->ic_ifp->if_softc; 5607 struct ath_hal *ah = sc->sc_ah; 5608 HAL_STATUS status; 5609 5610 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5611 "%s: rd %u cc %u location %c%s\n", 5612 __func__, reg->regdomain, reg->country, reg->location, 5613 reg->ecm ? " ecm" : ""); 5614 5615 status = ath_hal_set_channels(ah, chans, nchans, 5616 reg->country, reg->regdomain); 5617 if (status != HAL_OK) { 5618 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5619 __func__, status); 5620 return EINVAL; /* XXX */ 5621 } 5622 5623 return 0; 5624 } 5625 5626 static void 5627 ath_getradiocaps(struct ieee80211com *ic, 5628 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5629 { 5630 struct ath_softc *sc = ic->ic_ifp->if_softc; 5631 struct ath_hal *ah = sc->sc_ah; 5632 5633 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5634 __func__, SKU_DEBUG, CTRY_DEFAULT); 5635 5636 /* XXX check return */ 5637 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5638 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5639 5640 } 5641 5642 static int 5643 ath_getchannels(struct ath_softc *sc) 5644 { 5645 struct ifnet *ifp = sc->sc_ifp; 5646 struct ieee80211com *ic = ifp->if_l2com; 5647 struct ath_hal *ah = sc->sc_ah; 5648 HAL_STATUS status; 5649 5650 /* 5651 * Collect channel set based on EEPROM contents. 5652 */ 5653 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5654 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5655 if (status != HAL_OK) { 5656 if_printf(ifp, "%s: unable to collect channel list from hal, " 5657 "status %d\n", __func__, status); 5658 return EINVAL; 5659 } 5660 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5661 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5662 /* XXX map Atheros sku's to net80211 SKU's */ 5663 /* XXX net80211 types too small */ 5664 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5665 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5666 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5667 ic->ic_regdomain.isocc[1] = ' '; 5668 5669 ic->ic_regdomain.ecm = 1; 5670 ic->ic_regdomain.location = 'I'; 5671 5672 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5673 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5674 __func__, sc->sc_eerd, sc->sc_eecc, 5675 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5676 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5677 return 0; 5678 } 5679 5680 static int 5681 ath_rate_setup(struct ath_softc *sc, u_int mode) 5682 { 5683 struct ath_hal *ah = sc->sc_ah; 5684 const HAL_RATE_TABLE *rt; 5685 5686 switch (mode) { 5687 case IEEE80211_MODE_11A: 5688 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5689 break; 5690 case IEEE80211_MODE_HALF: 5691 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5692 break; 5693 case IEEE80211_MODE_QUARTER: 5694 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5695 break; 5696 case IEEE80211_MODE_11B: 5697 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5698 break; 5699 case IEEE80211_MODE_11G: 5700 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5701 break; 5702 case IEEE80211_MODE_TURBO_A: 5703 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5704 break; 5705 case IEEE80211_MODE_TURBO_G: 5706 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5707 break; 5708 case IEEE80211_MODE_STURBO_A: 5709 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5710 break; 5711 case IEEE80211_MODE_11NA: 5712 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 5713 break; 5714 case IEEE80211_MODE_11NG: 5715 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 5716 break; 5717 default: 5718 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5719 __func__, mode); 5720 return 0; 5721 } 5722 sc->sc_rates[mode] = rt; 5723 return (rt != NULL); 5724 } 5725 5726 static void 5727 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5728 { 5729 #define N(a) (sizeof(a)/sizeof(a[0])) 5730 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5731 static const struct { 5732 u_int rate; /* tx/rx 802.11 rate */ 5733 u_int16_t timeOn; /* LED on time (ms) */ 5734 u_int16_t timeOff; /* LED off time (ms) */ 5735 } blinkrates[] = { 5736 { 108, 40, 10 }, 5737 { 96, 44, 11 }, 5738 { 72, 50, 13 }, 5739 { 48, 57, 14 }, 5740 { 36, 67, 16 }, 5741 { 24, 80, 20 }, 5742 { 22, 100, 25 }, 5743 { 18, 133, 34 }, 5744 { 12, 160, 40 }, 5745 { 10, 200, 50 }, 5746 { 6, 240, 58 }, 5747 { 4, 267, 66 }, 5748 { 2, 400, 100 }, 5749 { 0, 500, 130 }, 5750 /* XXX half/quarter rates */ 5751 }; 5752 const HAL_RATE_TABLE *rt; 5753 int i, j; 5754 5755 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5756 rt = sc->sc_rates[mode]; 5757 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5758 for (i = 0; i < rt->rateCount; i++) { 5759 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5760 if (rt->info[i].phy != IEEE80211_T_HT) 5761 sc->sc_rixmap[ieeerate] = i; 5762 else 5763 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 5764 } 5765 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5766 for (i = 0; i < N(sc->sc_hwmap); i++) { 5767 if (i >= rt->rateCount) { 5768 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5769 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5770 continue; 5771 } 5772 sc->sc_hwmap[i].ieeerate = 5773 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5774 if (rt->info[i].phy == IEEE80211_T_HT) 5775 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 5776 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5777 if (rt->info[i].shortPreamble || 5778 rt->info[i].phy == IEEE80211_T_OFDM) 5779 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5780 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 5781 for (j = 0; j < N(blinkrates)-1; j++) 5782 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5783 break; 5784 /* NB: this uses the last entry if the rate isn't found */ 5785 /* XXX beware of overlow */ 5786 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5787 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5788 } 5789 sc->sc_currates = rt; 5790 sc->sc_curmode = mode; 5791 /* 5792 * All protection frames are transmited at 2Mb/s for 5793 * 11g, otherwise at 1Mb/s. 5794 */ 5795 if (mode == IEEE80211_MODE_11G) 5796 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 5797 else 5798 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 5799 /* NB: caller is responsible for resetting rate control state */ 5800 #undef N 5801 } 5802 5803 static void 5804 ath_watchdog(void *arg) 5805 { 5806 struct ath_softc *sc = arg; 5807 int do_reset = 0; 5808 5809 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 5810 struct ifnet *ifp = sc->sc_ifp; 5811 uint32_t hangs; 5812 5813 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 5814 hangs != 0) { 5815 if_printf(ifp, "%s hang detected (0x%x)\n", 5816 hangs & 0xff ? "bb" : "mac", hangs); 5817 } else 5818 if_printf(ifp, "device timeout\n"); 5819 do_reset = 1; 5820 ifp->if_oerrors++; 5821 sc->sc_stats.ast_watchdog++; 5822 } 5823 5824 /* 5825 * We can't hold the lock across the ath_reset() call. 5826 * 5827 * And since this routine can't hold a lock and sleep, 5828 * do the reset deferred. 5829 */ 5830 if (do_reset) { 5831 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5832 } 5833 5834 callout_schedule(&sc->sc_wd_ch, hz); 5835 } 5836 5837 /* 5838 * Fetch the rate control statistics for the given node. 5839 */ 5840 static int 5841 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 5842 { 5843 struct ath_node *an; 5844 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5845 struct ieee80211_node *ni; 5846 int error = 0; 5847 5848 /* Perform a lookup on the given node */ 5849 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 5850 if (ni == NULL) { 5851 error = EINVAL; 5852 goto bad; 5853 } 5854 5855 /* Lock the ath_node */ 5856 an = ATH_NODE(ni); 5857 ATH_NODE_LOCK(an); 5858 5859 /* Fetch the rate control stats for this node */ 5860 error = ath_rate_fetch_node_stats(sc, an, rs); 5861 5862 /* No matter what happens here, just drop through */ 5863 5864 /* Unlock the ath_node */ 5865 ATH_NODE_UNLOCK(an); 5866 5867 /* Unref the node */ 5868 ieee80211_node_decref(ni); 5869 5870 bad: 5871 return (error); 5872 } 5873 5874 #ifdef ATH_DIAGAPI 5875 /* 5876 * Diagnostic interface to the HAL. This is used by various 5877 * tools to do things like retrieve register contents for 5878 * debugging. The mechanism is intentionally opaque so that 5879 * it can change frequently w/o concern for compatiblity. 5880 */ 5881 static int 5882 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5883 { 5884 struct ath_hal *ah = sc->sc_ah; 5885 u_int id = ad->ad_id & ATH_DIAG_ID; 5886 void *indata = NULL; 5887 void *outdata = NULL; 5888 u_int32_t insize = ad->ad_in_size; 5889 u_int32_t outsize = ad->ad_out_size; 5890 int error = 0; 5891 5892 if (ad->ad_id & ATH_DIAG_IN) { 5893 /* 5894 * Copy in data. 5895 */ 5896 indata = malloc(insize, M_TEMP, M_NOWAIT); 5897 if (indata == NULL) { 5898 error = ENOMEM; 5899 goto bad; 5900 } 5901 error = copyin(ad->ad_in_data, indata, insize); 5902 if (error) 5903 goto bad; 5904 } 5905 if (ad->ad_id & ATH_DIAG_DYN) { 5906 /* 5907 * Allocate a buffer for the results (otherwise the HAL 5908 * returns a pointer to a buffer where we can read the 5909 * results). Note that we depend on the HAL leaving this 5910 * pointer for us to use below in reclaiming the buffer; 5911 * may want to be more defensive. 5912 */ 5913 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5914 if (outdata == NULL) { 5915 error = ENOMEM; 5916 goto bad; 5917 } 5918 } 5919 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5920 if (outsize < ad->ad_out_size) 5921 ad->ad_out_size = outsize; 5922 if (outdata != NULL) 5923 error = copyout(outdata, ad->ad_out_data, 5924 ad->ad_out_size); 5925 } else { 5926 error = EINVAL; 5927 } 5928 bad: 5929 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5930 free(indata, M_TEMP); 5931 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5932 free(outdata, M_TEMP); 5933 return error; 5934 } 5935 #endif /* ATH_DIAGAPI */ 5936 5937 static int 5938 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5939 { 5940 #define IS_RUNNING(ifp) \ 5941 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5942 struct ath_softc *sc = ifp->if_softc; 5943 struct ieee80211com *ic = ifp->if_l2com; 5944 struct ifreq *ifr = (struct ifreq *)data; 5945 const HAL_RATE_TABLE *rt; 5946 int error = 0; 5947 5948 switch (cmd) { 5949 case SIOCSIFFLAGS: 5950 ATH_LOCK(sc); 5951 if (IS_RUNNING(ifp)) { 5952 /* 5953 * To avoid rescanning another access point, 5954 * do not call ath_init() here. Instead, 5955 * only reflect promisc mode settings. 5956 */ 5957 ath_mode_init(sc); 5958 } else if (ifp->if_flags & IFF_UP) { 5959 /* 5960 * Beware of being called during attach/detach 5961 * to reset promiscuous mode. In that case we 5962 * will still be marked UP but not RUNNING. 5963 * However trying to re-init the interface 5964 * is the wrong thing to do as we've already 5965 * torn down much of our state. There's 5966 * probably a better way to deal with this. 5967 */ 5968 if (!sc->sc_invalid) 5969 ath_init(sc); /* XXX lose error */ 5970 } else { 5971 ath_stop_locked(ifp); 5972 #ifdef notyet 5973 /* XXX must wakeup in places like ath_vap_delete */ 5974 if (!sc->sc_invalid) 5975 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5976 #endif 5977 } 5978 ATH_UNLOCK(sc); 5979 break; 5980 case SIOCGIFMEDIA: 5981 case SIOCSIFMEDIA: 5982 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5983 break; 5984 case SIOCGATHSTATS: 5985 /* NB: embed these numbers to get a consistent view */ 5986 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5987 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5988 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5989 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5990 #ifdef IEEE80211_SUPPORT_TDMA 5991 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5992 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5993 #endif 5994 rt = sc->sc_currates; 5995 sc->sc_stats.ast_tx_rate = 5996 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5997 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 5998 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 5999 return copyout(&sc->sc_stats, 6000 ifr->ifr_data, sizeof (sc->sc_stats)); 6001 case SIOCGATHAGSTATS: 6002 return copyout(&sc->sc_aggr_stats, 6003 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 6004 case SIOCZATHSTATS: 6005 error = priv_check(curthread, PRIV_DRIVER); 6006 if (error == 0) { 6007 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6008 memset(&sc->sc_aggr_stats, 0, 6009 sizeof(sc->sc_aggr_stats)); 6010 memset(&sc->sc_intr_stats, 0, 6011 sizeof(sc->sc_intr_stats)); 6012 } 6013 break; 6014 #ifdef ATH_DIAGAPI 6015 case SIOCGATHDIAG: 6016 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 6017 break; 6018 case SIOCGATHPHYERR: 6019 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 6020 break; 6021 #endif 6022 case SIOCGATHSPECTRAL: 6023 error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr); 6024 break; 6025 case SIOCGATHNODERATESTATS: 6026 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 6027 break; 6028 case SIOCGIFADDR: 6029 error = ether_ioctl(ifp, cmd, data); 6030 break; 6031 default: 6032 error = EINVAL; 6033 break; 6034 } 6035 return error; 6036 #undef IS_RUNNING 6037 } 6038 6039 /* 6040 * Announce various information on device/driver attach. 6041 */ 6042 static void 6043 ath_announce(struct ath_softc *sc) 6044 { 6045 struct ifnet *ifp = sc->sc_ifp; 6046 struct ath_hal *ah = sc->sc_ah; 6047 6048 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 6049 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6050 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6051 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6052 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6053 if (bootverbose) { 6054 int i; 6055 for (i = 0; i <= WME_AC_VO; i++) { 6056 struct ath_txq *txq = sc->sc_ac2q[i]; 6057 if_printf(ifp, "Use hw queue %u for %s traffic\n", 6058 txq->axq_qnum, ieee80211_wme_acnames[i]); 6059 } 6060 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 6061 sc->sc_cabq->axq_qnum); 6062 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 6063 } 6064 if (ath_rxbuf != ATH_RXBUF) 6065 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 6066 if (ath_txbuf != ATH_TXBUF) 6067 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 6068 if (sc->sc_mcastkey && bootverbose) 6069 if_printf(ifp, "using multicast key search\n"); 6070 } 6071 6072 static void 6073 ath_dfs_tasklet(void *p, int npending) 6074 { 6075 struct ath_softc *sc = (struct ath_softc *) p; 6076 struct ifnet *ifp = sc->sc_ifp; 6077 struct ieee80211com *ic = ifp->if_l2com; 6078 6079 /* 6080 * If previous processing has found a radar event, 6081 * signal this to the net80211 layer to begin DFS 6082 * processing. 6083 */ 6084 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6085 /* DFS event found, initiate channel change */ 6086 /* 6087 * XXX doesn't currently tell us whether the event 6088 * XXX was found in the primary or extension 6089 * XXX channel! 6090 */ 6091 IEEE80211_LOCK(ic); 6092 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6093 IEEE80211_UNLOCK(ic); 6094 } 6095 } 6096 6097 /* 6098 * Enable/disable power save. This must be called with 6099 * no TX driver locks currently held, so it should only 6100 * be called from the RX path (which doesn't hold any 6101 * TX driver locks.) 6102 */ 6103 static void 6104 ath_node_powersave(struct ieee80211_node *ni, int enable) 6105 { 6106 #ifdef ATH_SW_PSQ 6107 struct ath_node *an = ATH_NODE(ni); 6108 struct ieee80211com *ic = ni->ni_ic; 6109 struct ath_softc *sc = ic->ic_ifp->if_softc; 6110 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6111 6112 /* XXX and no TXQ locks should be held here */ 6113 6114 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6115 __func__, 6116 ni->ni_macaddr, 6117 ":", 6118 !! enable); 6119 6120 /* Suspend or resume software queue handling */ 6121 if (enable) 6122 ath_tx_node_sleep(sc, an); 6123 else 6124 ath_tx_node_wakeup(sc, an); 6125 6126 /* Update net80211 state */ 6127 avp->av_node_ps(ni, enable); 6128 #else 6129 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6130 6131 /* Update net80211 state */ 6132 avp->av_node_ps(ni, enable); 6133 #endif/* ATH_SW_PSQ */ 6134 } 6135 6136 /* 6137 * Notification from net80211 that the powersave queue state has 6138 * changed. 6139 * 6140 * Since the software queue also may have some frames: 6141 * 6142 * + if the node software queue has frames and the TID state 6143 * is 0, we set the TIM; 6144 * + if the node and the stack are both empty, we clear the TIM bit. 6145 * + If the stack tries to set the bit, always set it. 6146 * + If the stack tries to clear the bit, only clear it if the 6147 * software queue in question is also cleared. 6148 * 6149 * TODO: this is called during node teardown; so let's ensure this 6150 * is all correctly handled and that the TIM bit is cleared. 6151 * It may be that the node flush is called _AFTER_ the net80211 6152 * stack clears the TIM. 6153 * 6154 * Here is the racy part. Since it's possible >1 concurrent, 6155 * overlapping TXes will appear complete with a TX completion in 6156 * another thread, it's possible that the concurrent TIM calls will 6157 * clash. We can't hold the node lock here because setting the 6158 * TIM grabs the net80211 comlock and this may cause a LOR. 6159 * The solution is either to totally serialise _everything_ at 6160 * this point (ie, all TX, completion and any reset/flush go into 6161 * one taskqueue) or a new "ath TIM lock" needs to be created that 6162 * just wraps the driver state change and this call to avp->av_set_tim(). 6163 * 6164 * The same race exists in the net80211 power save queue handling 6165 * as well. Since multiple transmitting threads may queue frames 6166 * into the driver, as well as ps-poll and the driver transmitting 6167 * frames (and thus clearing the psq), it's quite possible that 6168 * a packet entering the PSQ and a ps-poll being handled will 6169 * race, causing the TIM to be cleared and not re-set. 6170 */ 6171 static int 6172 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6173 { 6174 #ifdef ATH_SW_PSQ 6175 struct ieee80211com *ic = ni->ni_ic; 6176 struct ath_softc *sc = ic->ic_ifp->if_softc; 6177 struct ath_node *an = ATH_NODE(ni); 6178 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6179 int changed = 0; 6180 6181 ATH_TX_LOCK(sc); 6182 an->an_stack_psq = enable; 6183 6184 /* 6185 * This will get called for all operating modes, 6186 * even if avp->av_set_tim is unset. 6187 * It's currently set for hostap/ibss modes; but 6188 * the same infrastructure is used for both STA 6189 * and AP/IBSS node power save. 6190 */ 6191 if (avp->av_set_tim == NULL) { 6192 ATH_TX_UNLOCK(sc); 6193 return (0); 6194 } 6195 6196 /* 6197 * If setting the bit, always set it here. 6198 * If clearing the bit, only clear it if the 6199 * software queue is also empty. 6200 * 6201 * If the node has left power save, just clear the TIM 6202 * bit regardless of the state of the power save queue. 6203 * 6204 * XXX TODO: although atomics are used, it's quite possible 6205 * that a race will occur between this and setting/clearing 6206 * in another thread. TX completion will occur always in 6207 * one thread, however setting/clearing the TIM bit can come 6208 * from a variety of different process contexts! 6209 */ 6210 if (enable && an->an_tim_set == 1) { 6211 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6212 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6213 __func__, 6214 ni->ni_macaddr, 6215 ":", 6216 enable); 6217 ATH_TX_UNLOCK(sc); 6218 } else if (enable) { 6219 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6220 "%s: %6D: enable=%d, enabling TIM\n", 6221 __func__, 6222 ni->ni_macaddr, 6223 ":", 6224 enable); 6225 an->an_tim_set = 1; 6226 ATH_TX_UNLOCK(sc); 6227 changed = avp->av_set_tim(ni, enable); 6228 } else if (an->an_swq_depth == 0) { 6229 /* disable */ 6230 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6231 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6232 __func__, 6233 ni->ni_macaddr, 6234 ":", 6235 enable); 6236 an->an_tim_set = 0; 6237 ATH_TX_UNLOCK(sc); 6238 changed = avp->av_set_tim(ni, enable); 6239 } else if (! an->an_is_powersave) { 6240 /* 6241 * disable regardless; the node isn't in powersave now 6242 */ 6243 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6244 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6245 __func__, 6246 ni->ni_macaddr, 6247 ":", 6248 enable); 6249 an->an_tim_set = 0; 6250 ATH_TX_UNLOCK(sc); 6251 changed = avp->av_set_tim(ni, enable); 6252 } else { 6253 /* 6254 * psq disable, node is currently in powersave, node 6255 * software queue isn't empty, so don't clear the TIM bit 6256 * for now. 6257 */ 6258 ATH_TX_UNLOCK(sc); 6259 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6260 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6261 __func__, 6262 ni->ni_macaddr, 6263 ":", 6264 enable); 6265 changed = 0; 6266 } 6267 6268 return (changed); 6269 #else 6270 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6271 6272 /* 6273 * Some operating modes don't set av_set_tim(), so don't 6274 * update it here. 6275 */ 6276 if (avp->av_set_tim == NULL) 6277 return (0); 6278 6279 return (avp->av_set_tim(ni, enable)); 6280 #endif /* ATH_SW_PSQ */ 6281 } 6282 6283 /* 6284 * Set or update the TIM from the software queue. 6285 * 6286 * Check the software queue depth before attempting to do lock 6287 * anything; that avoids trying to obtain the lock. Then, 6288 * re-check afterwards to ensure nothing has changed in the 6289 * meantime. 6290 * 6291 * set: This is designed to be called from the TX path, after 6292 * a frame has been queued; to see if the swq > 0. 6293 * 6294 * clear: This is designed to be called from the buffer completion point 6295 * (right now it's ath_tx_default_comp()) where the state of 6296 * a software queue has changed. 6297 * 6298 * It makes sense to place it at buffer free / completion rather 6299 * than after each software queue operation, as there's no real 6300 * point in churning the TIM bit as the last frames in the software 6301 * queue are transmitted. If they fail and we retry them, we'd 6302 * just be setting the TIM bit again anyway. 6303 */ 6304 void 6305 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6306 int enable) 6307 { 6308 #ifdef ATH_SW_PSQ 6309 struct ath_node *an; 6310 struct ath_vap *avp; 6311 6312 /* Don't do this for broadcast/etc frames */ 6313 if (ni == NULL) 6314 return; 6315 6316 an = ATH_NODE(ni); 6317 avp = ATH_VAP(ni->ni_vap); 6318 6319 /* 6320 * And for operating modes without the TIM handler set, let's 6321 * just skip those. 6322 */ 6323 if (avp->av_set_tim == NULL) 6324 return; 6325 6326 ATH_TX_LOCK_ASSERT(sc); 6327 6328 if (enable) { 6329 if (an->an_is_powersave && 6330 an->an_tim_set == 0 && 6331 an->an_swq_depth != 0) { 6332 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6333 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6334 __func__, 6335 ni->ni_macaddr, 6336 ":"); 6337 an->an_tim_set = 1; 6338 (void) avp->av_set_tim(ni, 1); 6339 } 6340 } else { 6341 /* 6342 * Don't bother grabbing the lock unless the queue is empty. 6343 */ 6344 if (&an->an_swq_depth != 0) 6345 return; 6346 6347 if (an->an_is_powersave && 6348 an->an_stack_psq == 0 && 6349 an->an_tim_set == 1 && 6350 an->an_swq_depth == 0) { 6351 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6352 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6353 " clear!\n", 6354 __func__, 6355 ni->ni_macaddr, 6356 ":"); 6357 an->an_tim_set = 0; 6358 (void) avp->av_set_tim(ni, 0); 6359 } 6360 } 6361 #else 6362 return; 6363 #endif /* ATH_SW_PSQ */ 6364 } 6365 6366 /* 6367 * Received a ps-poll frame from net80211. 6368 * 6369 * Here we get a chance to serve out a software-queued frame ourselves 6370 * before we punt it to net80211 to transmit us one itself - either 6371 * because there's traffic in the net80211 psq, or a NULL frame to 6372 * indicate there's nothing else. 6373 */ 6374 static void 6375 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6376 { 6377 #ifdef ATH_SW_PSQ 6378 struct ath_node *an; 6379 struct ath_vap *avp; 6380 struct ieee80211com *ic = ni->ni_ic; 6381 struct ath_softc *sc = ic->ic_ifp->if_softc; 6382 int tid; 6383 6384 /* Just paranoia */ 6385 if (ni == NULL) 6386 return; 6387 6388 /* 6389 * Unassociated (temporary node) station. 6390 */ 6391 if (ni->ni_associd == 0) 6392 return; 6393 6394 /* 6395 * We do have an active node, so let's begin looking into it. 6396 */ 6397 an = ATH_NODE(ni); 6398 avp = ATH_VAP(ni->ni_vap); 6399 6400 /* 6401 * For now, we just call the original ps-poll method. 6402 * Once we're ready to flip this on: 6403 * 6404 * + Set leak to 1, as no matter what we're going to have 6405 * to send a frame; 6406 * + Check the software queue and if there's something in it, 6407 * schedule the highest TID thas has traffic from this node. 6408 * Then make sure we schedule the software scheduler to 6409 * run so it picks up said frame. 6410 * 6411 * That way whatever happens, we'll at least send _a_ frame 6412 * to the given node. 6413 * 6414 * Again, yes, it's crappy QoS if the node has multiple 6415 * TIDs worth of traffic - but let's get it working first 6416 * before we optimise it. 6417 * 6418 * Also yes, there's definitely latency here - we're not 6419 * direct dispatching to the hardware in this path (and 6420 * we're likely being called from the packet receive path, 6421 * so going back into TX may be a little hairy!) but again 6422 * I'd like to get this working first before optimising 6423 * turn-around time. 6424 */ 6425 6426 ATH_TX_LOCK(sc); 6427 6428 /* 6429 * Legacy - we're called and the node isn't asleep. 6430 * Immediately punt. 6431 */ 6432 if (! an->an_is_powersave) { 6433 device_printf(sc->sc_dev, 6434 "%s: %6D: not in powersave?\n", 6435 __func__, 6436 ni->ni_macaddr, 6437 ":"); 6438 ATH_TX_UNLOCK(sc); 6439 avp->av_recv_pspoll(ni, m); 6440 return; 6441 } 6442 6443 /* 6444 * We're in powersave. 6445 * 6446 * Leak a frame. 6447 */ 6448 an->an_leak_count = 1; 6449 6450 /* 6451 * Now, if there's no frames in the node, just punt to 6452 * recv_pspoll. 6453 * 6454 * Don't bother checking if the TIM bit is set, we really 6455 * only care if there are any frames here! 6456 */ 6457 if (an->an_swq_depth == 0) { 6458 ATH_TX_UNLOCK(sc); 6459 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6460 "%s: %6D: SWQ empty; punting to net80211\n", 6461 __func__, 6462 ni->ni_macaddr, 6463 ":"); 6464 avp->av_recv_pspoll(ni, m); 6465 return; 6466 } 6467 6468 /* 6469 * Ok, let's schedule the highest TID that has traffic 6470 * and then schedule something. 6471 */ 6472 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 6473 struct ath_tid *atid = &an->an_tid[tid]; 6474 /* 6475 * No frames? Skip. 6476 */ 6477 if (atid->axq_depth == 0) 6478 continue; 6479 ath_tx_tid_sched(sc, atid); 6480 /* 6481 * XXX we could do a direct call to the TXQ 6482 * scheduler code here to optimise latency 6483 * at the expense of a REALLY deep callstack. 6484 */ 6485 ATH_TX_UNLOCK(sc); 6486 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 6487 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6488 "%s: %6D: leaking frame to TID %d\n", 6489 __func__, 6490 ni->ni_macaddr, 6491 ":", 6492 tid); 6493 return; 6494 } 6495 6496 ATH_TX_UNLOCK(sc); 6497 6498 /* 6499 * XXX nothing in the TIDs at this point? Eek. 6500 */ 6501 device_printf(sc->sc_dev, "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 6502 __func__, 6503 ni->ni_macaddr, 6504 ":"); 6505 avp->av_recv_pspoll(ni, m); 6506 #else 6507 avp->av_recv_pspoll(ni, m); 6508 #endif /* ATH_SW_PSQ */ 6509 } 6510 6511 MODULE_VERSION(if_ath, 1); 6512 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6513 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 6514 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 6515 #endif 6516