1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tx.h> 106 #include <dev/ath/if_ath_sysctl.h> 107 #include <dev/ath/if_ath_led.h> 108 #include <dev/ath/if_ath_keycache.h> 109 #include <dev/ath/if_athdfs.h> 110 111 #ifdef ATH_TX99_DIAG 112 #include <dev/ath/ath_tx99/ath_tx99.h> 113 #endif 114 115 #define ATH_KTR_INTR KTR_SPARE4 116 #define ATH_KTR_ERR KTR_SPARE3 117 118 /* 119 * ATH_BCBUF determines the number of vap's that can transmit 120 * beacons and also (currently) the number of vap's that can 121 * have unique mac addresses/bssid. When staggering beacons 122 * 4 is probably a good max as otherwise the beacons become 123 * very closely spaced and there is limited time for cab q traffic 124 * to go out. You can burst beacons instead but that is not good 125 * for stations in power save and at some point you really want 126 * another radio (and channel). 127 * 128 * The limit on the number of mac addresses is tied to our use of 129 * the U/L bit and tracking addresses in a byte; it would be 130 * worthwhile to allow more for applications like proxy sta. 131 */ 132 CTASSERT(ATH_BCBUF <= 8); 133 134 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 135 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 136 const uint8_t [IEEE80211_ADDR_LEN], 137 const uint8_t [IEEE80211_ADDR_LEN]); 138 static void ath_vap_delete(struct ieee80211vap *); 139 static void ath_init(void *); 140 static void ath_stop_locked(struct ifnet *); 141 static void ath_stop(struct ifnet *); 142 static void ath_start(struct ifnet *); 143 static int ath_reset_vap(struct ieee80211vap *, u_long); 144 static int ath_media_change(struct ifnet *); 145 static void ath_watchdog(void *); 146 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 147 static void ath_fatal_proc(void *, int); 148 static void ath_bmiss_vap(struct ieee80211vap *); 149 static void ath_bmiss_proc(void *, int); 150 static void ath_key_update_begin(struct ieee80211vap *); 151 static void ath_key_update_end(struct ieee80211vap *); 152 static void ath_update_mcast(struct ifnet *); 153 static void ath_update_promisc(struct ifnet *); 154 static void ath_mode_init(struct ath_softc *); 155 static void ath_setslottime(struct ath_softc *); 156 static void ath_updateslot(struct ifnet *); 157 static int ath_beaconq_setup(struct ath_hal *); 158 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 159 static void ath_beacon_update(struct ieee80211vap *, int item); 160 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 161 static void ath_beacon_proc(void *, int); 162 static struct ath_buf *ath_beacon_generate(struct ath_softc *, 163 struct ieee80211vap *); 164 static void ath_bstuck_proc(void *, int); 165 static void ath_reset_proc(void *, int); 166 static void ath_beacon_return(struct ath_softc *, struct ath_buf *); 167 static void ath_beacon_free(struct ath_softc *); 168 static void ath_beacon_config(struct ath_softc *, struct ieee80211vap *); 169 static void ath_descdma_cleanup(struct ath_softc *sc, 170 struct ath_descdma *, ath_bufhead *); 171 static int ath_desc_alloc(struct ath_softc *); 172 static void ath_desc_free(struct ath_softc *); 173 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 174 const uint8_t [IEEE80211_ADDR_LEN]); 175 static void ath_node_cleanup(struct ieee80211_node *); 176 static void ath_node_free(struct ieee80211_node *); 177 static void ath_node_getsignal(const struct ieee80211_node *, 178 int8_t *, int8_t *); 179 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 180 static void ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 181 int subtype, int rssi, int nf); 182 static void ath_setdefantenna(struct ath_softc *, u_int); 183 static void ath_rx_proc(struct ath_softc *sc, int); 184 static void ath_rx_tasklet(void *, int); 185 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 186 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 187 static int ath_tx_setup(struct ath_softc *, int, int); 188 static int ath_wme_update(struct ieee80211com *); 189 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 190 static void ath_tx_cleanup(struct ath_softc *); 191 static void ath_tx_proc_q0(void *, int); 192 static void ath_tx_proc_q0123(void *, int); 193 static void ath_tx_proc(void *, int); 194 static void ath_txq_sched_tasklet(void *, int); 195 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 196 static void ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type); 197 static void ath_stoprecv(struct ath_softc *, int); 198 static int ath_startrecv(struct ath_softc *); 199 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 200 static void ath_scan_start(struct ieee80211com *); 201 static void ath_scan_end(struct ieee80211com *); 202 static void ath_set_channel(struct ieee80211com *); 203 static void ath_update_chw(struct ieee80211com *); 204 static void ath_calibrate(void *); 205 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 206 static void ath_setup_stationkey(struct ieee80211_node *); 207 static void ath_newassoc(struct ieee80211_node *, int); 208 static int ath_setregdomain(struct ieee80211com *, 209 struct ieee80211_regdomain *, int, 210 struct ieee80211_channel []); 211 static void ath_getradiocaps(struct ieee80211com *, int, int *, 212 struct ieee80211_channel []); 213 static int ath_getchannels(struct ath_softc *); 214 215 static int ath_rate_setup(struct ath_softc *, u_int mode); 216 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 217 218 static void ath_announce(struct ath_softc *); 219 220 static void ath_dfs_tasklet(void *, int); 221 222 #ifdef IEEE80211_SUPPORT_TDMA 223 static void ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, 224 u_int32_t bintval); 225 static void ath_tdma_bintvalsetup(struct ath_softc *sc, 226 const struct ieee80211_tdma_state *tdma); 227 static void ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap); 228 static void ath_tdma_update(struct ieee80211_node *ni, 229 const struct ieee80211_tdma_param *tdma, int); 230 static void ath_tdma_beacon_send(struct ath_softc *sc, 231 struct ieee80211vap *vap); 232 233 #define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */ 234 #define TDMA_LPF_LEN 6 235 #define TDMA_DUMMY_MARKER 0x127 236 #define TDMA_EP_MUL(x, mul) ((x) * (mul)) 237 #define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER)) 238 #define TDMA_LPF(x, y, len) \ 239 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y)) 240 #define TDMA_SAMPLE(x, y) do { \ 241 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \ 242 } while (0) 243 #define TDMA_EP_RND(x,mul) \ 244 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 245 #define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER) 246 #endif /* IEEE80211_SUPPORT_TDMA */ 247 248 SYSCTL_DECL(_hw_ath); 249 250 /* XXX validate sysctl values */ 251 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 252 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 253 0, "long chip calibration interval (secs)"); 254 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 255 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 256 0, "short chip calibration interval (msecs)"); 257 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 258 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 259 0, "reset chip calibration results (secs)"); 260 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 261 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 262 0, "ANI calibration (msecs)"); 263 264 static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 265 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 266 0, "rx buffers allocated"); 267 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 268 static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 269 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 270 0, "tx buffers allocated"); 271 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 272 273 static int ath_bstuck_threshold = 4; /* max missed beacons */ 274 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 275 0, "max missed beacon xmits before chip reset"); 276 277 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 278 279 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 280 #define HAL_MODE_HT40 \ 281 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 282 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 283 int 284 ath_attach(u_int16_t devid, struct ath_softc *sc) 285 { 286 struct ifnet *ifp; 287 struct ieee80211com *ic; 288 struct ath_hal *ah = NULL; 289 HAL_STATUS status; 290 int error = 0, i; 291 u_int wmodes; 292 uint8_t macaddr[IEEE80211_ADDR_LEN]; 293 int rx_chainmask, tx_chainmask; 294 295 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 296 297 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 298 if (ifp == NULL) { 299 device_printf(sc->sc_dev, "can not if_alloc()\n"); 300 error = ENOSPC; 301 goto bad; 302 } 303 ic = ifp->if_l2com; 304 305 /* set these up early for if_printf use */ 306 if_initname(ifp, device_get_name(sc->sc_dev), 307 device_get_unit(sc->sc_dev)); 308 309 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 310 sc->sc_eepromdata, &status); 311 if (ah == NULL) { 312 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 313 status); 314 error = ENXIO; 315 goto bad; 316 } 317 sc->sc_ah = ah; 318 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 319 #ifdef ATH_DEBUG 320 sc->sc_debug = ath_debug; 321 #endif 322 323 /* 324 * Check if the MAC has multi-rate retry support. 325 * We do this by trying to setup a fake extended 326 * descriptor. MAC's that don't have support will 327 * return false w/o doing anything. MAC's that do 328 * support it will return true w/o doing anything. 329 */ 330 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 331 332 /* 333 * Check if the device has hardware counters for PHY 334 * errors. If so we need to enable the MIB interrupt 335 * so we can act on stat triggers. 336 */ 337 if (ath_hal_hwphycounters(ah)) 338 sc->sc_needmib = 1; 339 340 /* 341 * Get the hardware key cache size. 342 */ 343 sc->sc_keymax = ath_hal_keycachesize(ah); 344 if (sc->sc_keymax > ATH_KEYMAX) { 345 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 346 ATH_KEYMAX, sc->sc_keymax); 347 sc->sc_keymax = ATH_KEYMAX; 348 } 349 /* 350 * Reset the key cache since some parts do not 351 * reset the contents on initial power up. 352 */ 353 for (i = 0; i < sc->sc_keymax; i++) 354 ath_hal_keyreset(ah, i); 355 356 /* 357 * Collect the default channel list. 358 */ 359 error = ath_getchannels(sc); 360 if (error != 0) 361 goto bad; 362 363 /* 364 * Setup rate tables for all potential media types. 365 */ 366 ath_rate_setup(sc, IEEE80211_MODE_11A); 367 ath_rate_setup(sc, IEEE80211_MODE_11B); 368 ath_rate_setup(sc, IEEE80211_MODE_11G); 369 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 370 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 371 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 372 ath_rate_setup(sc, IEEE80211_MODE_11NA); 373 ath_rate_setup(sc, IEEE80211_MODE_11NG); 374 ath_rate_setup(sc, IEEE80211_MODE_HALF); 375 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 376 377 /* NB: setup here so ath_rate_update is happy */ 378 ath_setcurmode(sc, IEEE80211_MODE_11A); 379 380 /* 381 * Allocate tx+rx descriptors and populate the lists. 382 */ 383 error = ath_desc_alloc(sc); 384 if (error != 0) { 385 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 386 goto bad; 387 } 388 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 389 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 390 391 ATH_TXBUF_LOCK_INIT(sc); 392 393 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 394 taskqueue_thread_enqueue, &sc->sc_tq); 395 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 396 "%s taskq", ifp->if_xname); 397 398 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc); 399 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 400 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 401 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 402 TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc); 403 404 /* 405 * Allocate hardware transmit queues: one queue for 406 * beacon frames and one data queue for each QoS 407 * priority. Note that the hal handles resetting 408 * these queues at the needed time. 409 * 410 * XXX PS-Poll 411 */ 412 sc->sc_bhalq = ath_beaconq_setup(ah); 413 if (sc->sc_bhalq == (u_int) -1) { 414 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 415 error = EIO; 416 goto bad2; 417 } 418 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 419 if (sc->sc_cabq == NULL) { 420 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 421 error = EIO; 422 goto bad2; 423 } 424 /* NB: insure BK queue is the lowest priority h/w queue */ 425 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 426 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 427 ieee80211_wme_acnames[WME_AC_BK]); 428 error = EIO; 429 goto bad2; 430 } 431 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 432 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 433 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 434 /* 435 * Not enough hardware tx queues to properly do WME; 436 * just punt and assign them all to the same h/w queue. 437 * We could do a better job of this if, for example, 438 * we allocate queues when we switch from station to 439 * AP mode. 440 */ 441 if (sc->sc_ac2q[WME_AC_VI] != NULL) 442 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 443 if (sc->sc_ac2q[WME_AC_BE] != NULL) 444 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 445 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 446 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 447 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 448 } 449 450 /* 451 * Special case certain configurations. Note the 452 * CAB queue is handled by these specially so don't 453 * include them when checking the txq setup mask. 454 */ 455 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 456 case 0x01: 457 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 458 break; 459 case 0x0f: 460 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 461 break; 462 default: 463 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 464 break; 465 } 466 467 /* 468 * Setup rate control. Some rate control modules 469 * call back to change the anntena state so expose 470 * the necessary entry points. 471 * XXX maybe belongs in struct ath_ratectrl? 472 */ 473 sc->sc_setdefantenna = ath_setdefantenna; 474 sc->sc_rc = ath_rate_attach(sc); 475 if (sc->sc_rc == NULL) { 476 error = EIO; 477 goto bad2; 478 } 479 480 /* Attach DFS module */ 481 if (! ath_dfs_attach(sc)) { 482 device_printf(sc->sc_dev, 483 "%s: unable to attach DFS\n", __func__); 484 error = EIO; 485 goto bad2; 486 } 487 488 /* Start DFS processing tasklet */ 489 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 490 491 /* Configure LED state */ 492 sc->sc_blinking = 0; 493 sc->sc_ledstate = 1; 494 sc->sc_ledon = 0; /* low true */ 495 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 496 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 497 498 /* 499 * Don't setup hardware-based blinking. 500 * 501 * Although some NICs may have this configured in the 502 * default reset register values, the user may wish 503 * to alter which pins have which function. 504 * 505 * The reference driver attaches the MAC network LED to GPIO1 and 506 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 507 * NIC has these reversed. 508 */ 509 sc->sc_hardled = (1 == 0); 510 sc->sc_led_net_pin = -1; 511 sc->sc_led_pwr_pin = -1; 512 /* 513 * Auto-enable soft led processing for IBM cards and for 514 * 5211 minipci cards. Users can also manually enable/disable 515 * support with a sysctl. 516 */ 517 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 518 ath_led_config(sc); 519 ath_hal_setledstate(ah, HAL_LED_INIT); 520 521 ifp->if_softc = sc; 522 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 523 ifp->if_start = ath_start; 524 ifp->if_ioctl = ath_ioctl; 525 ifp->if_init = ath_init; 526 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 527 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 528 IFQ_SET_READY(&ifp->if_snd); 529 530 ic->ic_ifp = ifp; 531 /* XXX not right but it's not used anywhere important */ 532 ic->ic_phytype = IEEE80211_T_OFDM; 533 ic->ic_opmode = IEEE80211_M_STA; 534 ic->ic_caps = 535 IEEE80211_C_STA /* station mode */ 536 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 537 | IEEE80211_C_HOSTAP /* hostap mode */ 538 | IEEE80211_C_MONITOR /* monitor mode */ 539 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 540 | IEEE80211_C_WDS /* 4-address traffic works */ 541 | IEEE80211_C_MBSS /* mesh point link mode */ 542 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 543 | IEEE80211_C_SHSLOT /* short slot time supported */ 544 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 545 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 546 | IEEE80211_C_TXFRAG /* handle tx frags */ 547 #ifdef ATH_ENABLE_DFS 548 | IEEE80211_C_DFS /* Enable radar detection */ 549 #endif 550 ; 551 /* 552 * Query the hal to figure out h/w crypto support. 553 */ 554 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 555 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 556 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 557 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 558 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 559 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 560 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 561 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 562 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 563 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 564 /* 565 * Check if h/w does the MIC and/or whether the 566 * separate key cache entries are required to 567 * handle both tx+rx MIC keys. 568 */ 569 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 570 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 571 /* 572 * If the h/w supports storing tx+rx MIC keys 573 * in one cache slot automatically enable use. 574 */ 575 if (ath_hal_hastkipsplit(ah) || 576 !ath_hal_settkipsplit(ah, AH_FALSE)) 577 sc->sc_splitmic = 1; 578 /* 579 * If the h/w can do TKIP MIC together with WME then 580 * we use it; otherwise we force the MIC to be done 581 * in software by the net80211 layer. 582 */ 583 if (ath_hal_haswmetkipmic(ah)) 584 sc->sc_wmetkipmic = 1; 585 } 586 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 587 /* 588 * Check for multicast key search support. 589 */ 590 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 591 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 592 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 593 } 594 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 595 /* 596 * Mark key cache slots associated with global keys 597 * as in use. If we knew TKIP was not to be used we 598 * could leave the +32, +64, and +32+64 slots free. 599 */ 600 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 601 setbit(sc->sc_keymap, i); 602 setbit(sc->sc_keymap, i+64); 603 if (sc->sc_splitmic) { 604 setbit(sc->sc_keymap, i+32); 605 setbit(sc->sc_keymap, i+32+64); 606 } 607 } 608 /* 609 * TPC support can be done either with a global cap or 610 * per-packet support. The latter is not available on 611 * all parts. We're a bit pedantic here as all parts 612 * support a global cap. 613 */ 614 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 615 ic->ic_caps |= IEEE80211_C_TXPMGT; 616 617 /* 618 * Mark WME capability only if we have sufficient 619 * hardware queues to do proper priority scheduling. 620 */ 621 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 622 ic->ic_caps |= IEEE80211_C_WME; 623 /* 624 * Check for misc other capabilities. 625 */ 626 if (ath_hal_hasbursting(ah)) 627 ic->ic_caps |= IEEE80211_C_BURST; 628 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 629 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 630 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 631 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 632 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 633 if (ath_hal_hasfastframes(ah)) 634 ic->ic_caps |= IEEE80211_C_FF; 635 wmodes = ath_hal_getwirelessmodes(ah); 636 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 637 ic->ic_caps |= IEEE80211_C_TURBOP; 638 #ifdef IEEE80211_SUPPORT_TDMA 639 if (ath_hal_macversion(ah) > 0x78) { 640 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 641 ic->ic_tdma_update = ath_tdma_update; 642 } 643 #endif 644 645 /* 646 * TODO: enforce that at least this many frames are available 647 * in the txbuf list before allowing data frames (raw or 648 * otherwise) to be transmitted. 649 */ 650 sc->sc_txq_data_minfree = 10; 651 /* 652 * Leave this as default to maintain legacy behaviour. 653 * Shortening the cabq/mcastq may end up causing some 654 * undesirable behaviour. 655 */ 656 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 657 658 /* 659 * Allow the TX and RX chainmasks to be overridden by 660 * environment variables and/or device.hints. 661 * 662 * This must be done early - before the hardware is 663 * calibrated or before the 802.11n stream calculation 664 * is done. 665 */ 666 if (resource_int_value(device_get_name(sc->sc_dev), 667 device_get_unit(sc->sc_dev), "rx_chainmask", 668 &rx_chainmask) == 0) { 669 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 670 rx_chainmask); 671 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 672 } 673 if (resource_int_value(device_get_name(sc->sc_dev), 674 device_get_unit(sc->sc_dev), "tx_chainmask", 675 &tx_chainmask) == 0) { 676 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 677 tx_chainmask); 678 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 679 } 680 681 /* 682 * The if_ath 11n support is completely not ready for normal use. 683 * Enabling this option will likely break everything and everything. 684 * Don't think of doing that unless you know what you're doing. 685 */ 686 687 #ifdef ATH_ENABLE_11N 688 /* 689 * Query HT capabilities 690 */ 691 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 692 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 693 int rxs, txs; 694 695 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 696 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 697 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 698 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 699 | IEEE80211_HTCAP_MAXAMSDU_3839 700 /* max A-MSDU length */ 701 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 702 ; 703 704 /* 705 * Enable short-GI for HT20 only if the hardware 706 * advertises support. 707 * Notably, anything earlier than the AR9287 doesn't. 708 */ 709 if ((ath_hal_getcapability(ah, 710 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 711 (wmodes & HAL_MODE_HT20)) { 712 device_printf(sc->sc_dev, 713 "[HT] enabling short-GI in 20MHz mode\n"); 714 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 715 } 716 717 if (wmodes & HAL_MODE_HT40) 718 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 719 | IEEE80211_HTCAP_SHORTGI40; 720 721 /* 722 * TX/RX streams need to be taken into account when 723 * negotiating which MCS rates it'll receive and 724 * what MCS rates are available for TX. 725 */ 726 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 727 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 728 729 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 730 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 731 732 ic->ic_txstream = txs; 733 ic->ic_rxstream = rxs; 734 735 device_printf(sc->sc_dev, 736 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 737 } 738 #endif 739 740 /* 741 * Check if the hardware requires PCI register serialisation. 742 * Some of the Owl based MACs require this. 743 */ 744 if (mp_ncpus > 1 && 745 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 746 0, NULL) == HAL_OK) { 747 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 748 device_printf(sc->sc_dev, 749 "Enabling register serialisation\n"); 750 } 751 752 /* 753 * Indicate we need the 802.11 header padded to a 754 * 32-bit boundary for 4-address and QoS frames. 755 */ 756 ic->ic_flags |= IEEE80211_F_DATAPAD; 757 758 /* 759 * Query the hal about antenna support. 760 */ 761 sc->sc_defant = ath_hal_getdefantenna(ah); 762 763 /* 764 * Not all chips have the VEOL support we want to 765 * use with IBSS beacons; check here for it. 766 */ 767 sc->sc_hasveol = ath_hal_hasveol(ah); 768 769 /* get mac address from hardware */ 770 ath_hal_getmac(ah, macaddr); 771 if (sc->sc_hasbmask) 772 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 773 774 /* NB: used to size node table key mapping array */ 775 ic->ic_max_keyix = sc->sc_keymax; 776 /* call MI attach routine. */ 777 ieee80211_ifattach(ic, macaddr); 778 ic->ic_setregdomain = ath_setregdomain; 779 ic->ic_getradiocaps = ath_getradiocaps; 780 sc->sc_opmode = HAL_M_STA; 781 782 /* override default methods */ 783 ic->ic_newassoc = ath_newassoc; 784 ic->ic_updateslot = ath_updateslot; 785 ic->ic_wme.wme_update = ath_wme_update; 786 ic->ic_vap_create = ath_vap_create; 787 ic->ic_vap_delete = ath_vap_delete; 788 ic->ic_raw_xmit = ath_raw_xmit; 789 ic->ic_update_mcast = ath_update_mcast; 790 ic->ic_update_promisc = ath_update_promisc; 791 ic->ic_node_alloc = ath_node_alloc; 792 sc->sc_node_free = ic->ic_node_free; 793 ic->ic_node_free = ath_node_free; 794 sc->sc_node_cleanup = ic->ic_node_cleanup; 795 ic->ic_node_cleanup = ath_node_cleanup; 796 ic->ic_node_getsignal = ath_node_getsignal; 797 ic->ic_scan_start = ath_scan_start; 798 ic->ic_scan_end = ath_scan_end; 799 ic->ic_set_channel = ath_set_channel; 800 ic->ic_update_chw = ath_update_chw; 801 802 /* 802.11n specific - but just override anyway */ 803 sc->sc_addba_request = ic->ic_addba_request; 804 sc->sc_addba_response = ic->ic_addba_response; 805 sc->sc_addba_stop = ic->ic_addba_stop; 806 sc->sc_bar_response = ic->ic_bar_response; 807 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 808 809 ic->ic_addba_request = ath_addba_request; 810 ic->ic_addba_response = ath_addba_response; 811 ic->ic_addba_response_timeout = ath_addba_response_timeout; 812 ic->ic_addba_stop = ath_addba_stop; 813 ic->ic_bar_response = ath_bar_response; 814 815 ieee80211_radiotap_attach(ic, 816 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 817 ATH_TX_RADIOTAP_PRESENT, 818 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 819 ATH_RX_RADIOTAP_PRESENT); 820 821 /* 822 * Setup dynamic sysctl's now that country code and 823 * regdomain are available from the hal. 824 */ 825 ath_sysctlattach(sc); 826 ath_sysctl_stats_attach(sc); 827 ath_sysctl_hal_attach(sc); 828 829 if (bootverbose) 830 ieee80211_announce(ic); 831 ath_announce(sc); 832 return 0; 833 bad2: 834 ath_tx_cleanup(sc); 835 ath_desc_free(sc); 836 bad: 837 if (ah) 838 ath_hal_detach(ah); 839 if (ifp != NULL) 840 if_free(ifp); 841 sc->sc_invalid = 1; 842 return error; 843 } 844 845 int 846 ath_detach(struct ath_softc *sc) 847 { 848 struct ifnet *ifp = sc->sc_ifp; 849 850 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 851 __func__, ifp->if_flags); 852 853 /* 854 * NB: the order of these is important: 855 * o stop the chip so no more interrupts will fire 856 * o call the 802.11 layer before detaching the hal to 857 * insure callbacks into the driver to delete global 858 * key cache entries can be handled 859 * o free the taskqueue which drains any pending tasks 860 * o reclaim the tx queue data structures after calling 861 * the 802.11 layer as we'll get called back to reclaim 862 * node state and potentially want to use them 863 * o to cleanup the tx queues the hal is called, so detach 864 * it last 865 * Other than that, it's straightforward... 866 */ 867 ath_stop(ifp); 868 ieee80211_ifdetach(ifp->if_l2com); 869 taskqueue_free(sc->sc_tq); 870 #ifdef ATH_TX99_DIAG 871 if (sc->sc_tx99 != NULL) 872 sc->sc_tx99->detach(sc->sc_tx99); 873 #endif 874 ath_rate_detach(sc->sc_rc); 875 876 ath_dfs_detach(sc); 877 ath_desc_free(sc); 878 ath_tx_cleanup(sc); 879 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 880 if_free(ifp); 881 882 return 0; 883 } 884 885 /* 886 * MAC address handling for multiple BSS on the same radio. 887 * The first vap uses the MAC address from the EEPROM. For 888 * subsequent vap's we set the U/L bit (bit 1) in the MAC 889 * address and use the next six bits as an index. 890 */ 891 static void 892 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 893 { 894 int i; 895 896 if (clone && sc->sc_hasbmask) { 897 /* NB: we only do this if h/w supports multiple bssid */ 898 for (i = 0; i < 8; i++) 899 if ((sc->sc_bssidmask & (1<<i)) == 0) 900 break; 901 if (i != 0) 902 mac[0] |= (i << 2)|0x2; 903 } else 904 i = 0; 905 sc->sc_bssidmask |= 1<<i; 906 sc->sc_hwbssidmask[0] &= ~mac[0]; 907 if (i == 0) 908 sc->sc_nbssid0++; 909 } 910 911 static void 912 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 913 { 914 int i = mac[0] >> 2; 915 uint8_t mask; 916 917 if (i != 0 || --sc->sc_nbssid0 == 0) { 918 sc->sc_bssidmask &= ~(1<<i); 919 /* recalculate bssid mask from remaining addresses */ 920 mask = 0xff; 921 for (i = 1; i < 8; i++) 922 if (sc->sc_bssidmask & (1<<i)) 923 mask &= ~((i<<2)|0x2); 924 sc->sc_hwbssidmask[0] |= mask; 925 } 926 } 927 928 /* 929 * Assign a beacon xmit slot. We try to space out 930 * assignments so when beacons are staggered the 931 * traffic coming out of the cab q has maximal time 932 * to go out before the next beacon is scheduled. 933 */ 934 static int 935 assign_bslot(struct ath_softc *sc) 936 { 937 u_int slot, free; 938 939 free = 0; 940 for (slot = 0; slot < ATH_BCBUF; slot++) 941 if (sc->sc_bslot[slot] == NULL) { 942 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 943 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 944 return slot; 945 free = slot; 946 /* NB: keep looking for a double slot */ 947 } 948 return free; 949 } 950 951 static struct ieee80211vap * 952 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 953 enum ieee80211_opmode opmode, int flags, 954 const uint8_t bssid[IEEE80211_ADDR_LEN], 955 const uint8_t mac0[IEEE80211_ADDR_LEN]) 956 { 957 struct ath_softc *sc = ic->ic_ifp->if_softc; 958 struct ath_vap *avp; 959 struct ieee80211vap *vap; 960 uint8_t mac[IEEE80211_ADDR_LEN]; 961 int needbeacon, error; 962 enum ieee80211_opmode ic_opmode; 963 964 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 965 M_80211_VAP, M_WAITOK | M_ZERO); 966 needbeacon = 0; 967 IEEE80211_ADDR_COPY(mac, mac0); 968 969 ATH_LOCK(sc); 970 ic_opmode = opmode; /* default to opmode of new vap */ 971 switch (opmode) { 972 case IEEE80211_M_STA: 973 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 974 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 975 goto bad; 976 } 977 if (sc->sc_nvaps) { 978 /* 979 * With multiple vaps we must fall back 980 * to s/w beacon miss handling. 981 */ 982 flags |= IEEE80211_CLONE_NOBEACONS; 983 } 984 if (flags & IEEE80211_CLONE_NOBEACONS) { 985 /* 986 * Station mode w/o beacons are implemented w/ AP mode. 987 */ 988 ic_opmode = IEEE80211_M_HOSTAP; 989 } 990 break; 991 case IEEE80211_M_IBSS: 992 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 993 device_printf(sc->sc_dev, 994 "only 1 ibss vap supported\n"); 995 goto bad; 996 } 997 needbeacon = 1; 998 break; 999 case IEEE80211_M_AHDEMO: 1000 #ifdef IEEE80211_SUPPORT_TDMA 1001 if (flags & IEEE80211_CLONE_TDMA) { 1002 if (sc->sc_nvaps != 0) { 1003 device_printf(sc->sc_dev, 1004 "only 1 tdma vap supported\n"); 1005 goto bad; 1006 } 1007 needbeacon = 1; 1008 flags |= IEEE80211_CLONE_NOBEACONS; 1009 } 1010 /* fall thru... */ 1011 #endif 1012 case IEEE80211_M_MONITOR: 1013 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1014 /* 1015 * Adopt existing mode. Adding a monitor or ahdemo 1016 * vap to an existing configuration is of dubious 1017 * value but should be ok. 1018 */ 1019 /* XXX not right for monitor mode */ 1020 ic_opmode = ic->ic_opmode; 1021 } 1022 break; 1023 case IEEE80211_M_HOSTAP: 1024 case IEEE80211_M_MBSS: 1025 needbeacon = 1; 1026 break; 1027 case IEEE80211_M_WDS: 1028 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1029 device_printf(sc->sc_dev, 1030 "wds not supported in sta mode\n"); 1031 goto bad; 1032 } 1033 /* 1034 * Silently remove any request for a unique 1035 * bssid; WDS vap's always share the local 1036 * mac address. 1037 */ 1038 flags &= ~IEEE80211_CLONE_BSSID; 1039 if (sc->sc_nvaps == 0) 1040 ic_opmode = IEEE80211_M_HOSTAP; 1041 else 1042 ic_opmode = ic->ic_opmode; 1043 break; 1044 default: 1045 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1046 goto bad; 1047 } 1048 /* 1049 * Check that a beacon buffer is available; the code below assumes it. 1050 */ 1051 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1052 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1053 goto bad; 1054 } 1055 1056 /* STA, AHDEMO? */ 1057 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1058 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1059 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1060 } 1061 1062 vap = &avp->av_vap; 1063 /* XXX can't hold mutex across if_alloc */ 1064 ATH_UNLOCK(sc); 1065 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1066 bssid, mac); 1067 ATH_LOCK(sc); 1068 if (error != 0) { 1069 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1070 __func__, error); 1071 goto bad2; 1072 } 1073 1074 /* h/w crypto support */ 1075 vap->iv_key_alloc = ath_key_alloc; 1076 vap->iv_key_delete = ath_key_delete; 1077 vap->iv_key_set = ath_key_set; 1078 vap->iv_key_update_begin = ath_key_update_begin; 1079 vap->iv_key_update_end = ath_key_update_end; 1080 1081 /* override various methods */ 1082 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1083 vap->iv_recv_mgmt = ath_recv_mgmt; 1084 vap->iv_reset = ath_reset_vap; 1085 vap->iv_update_beacon = ath_beacon_update; 1086 avp->av_newstate = vap->iv_newstate; 1087 vap->iv_newstate = ath_newstate; 1088 avp->av_bmiss = vap->iv_bmiss; 1089 vap->iv_bmiss = ath_bmiss_vap; 1090 1091 /* Set default parameters */ 1092 1093 /* 1094 * Anything earlier than some AR9300 series MACs don't 1095 * support a smaller MPDU density. 1096 */ 1097 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1098 /* 1099 * All NICs can handle the maximum size, however 1100 * AR5416 based MACs can only TX aggregates w/ RTS 1101 * protection when the total aggregate size is <= 8k. 1102 * However, for now that's enforced by the TX path. 1103 */ 1104 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1105 1106 avp->av_bslot = -1; 1107 if (needbeacon) { 1108 /* 1109 * Allocate beacon state and setup the q for buffered 1110 * multicast frames. We know a beacon buffer is 1111 * available because we checked above. 1112 */ 1113 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1114 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1115 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1116 /* 1117 * Assign the vap to a beacon xmit slot. As above 1118 * this cannot fail to find a free one. 1119 */ 1120 avp->av_bslot = assign_bslot(sc); 1121 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1122 ("beacon slot %u not empty", avp->av_bslot)); 1123 sc->sc_bslot[avp->av_bslot] = vap; 1124 sc->sc_nbcnvaps++; 1125 } 1126 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1127 /* 1128 * Multple vaps are to transmit beacons and we 1129 * have h/w support for TSF adjusting; enable 1130 * use of staggered beacons. 1131 */ 1132 sc->sc_stagbeacons = 1; 1133 } 1134 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1135 } 1136 1137 ic->ic_opmode = ic_opmode; 1138 if (opmode != IEEE80211_M_WDS) { 1139 sc->sc_nvaps++; 1140 if (opmode == IEEE80211_M_STA) 1141 sc->sc_nstavaps++; 1142 if (opmode == IEEE80211_M_MBSS) 1143 sc->sc_nmeshvaps++; 1144 } 1145 switch (ic_opmode) { 1146 case IEEE80211_M_IBSS: 1147 sc->sc_opmode = HAL_M_IBSS; 1148 break; 1149 case IEEE80211_M_STA: 1150 sc->sc_opmode = HAL_M_STA; 1151 break; 1152 case IEEE80211_M_AHDEMO: 1153 #ifdef IEEE80211_SUPPORT_TDMA 1154 if (vap->iv_caps & IEEE80211_C_TDMA) { 1155 sc->sc_tdma = 1; 1156 /* NB: disable tsf adjust */ 1157 sc->sc_stagbeacons = 0; 1158 } 1159 /* 1160 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1161 * just ap mode. 1162 */ 1163 /* fall thru... */ 1164 #endif 1165 case IEEE80211_M_HOSTAP: 1166 case IEEE80211_M_MBSS: 1167 sc->sc_opmode = HAL_M_HOSTAP; 1168 break; 1169 case IEEE80211_M_MONITOR: 1170 sc->sc_opmode = HAL_M_MONITOR; 1171 break; 1172 default: 1173 /* XXX should not happen */ 1174 break; 1175 } 1176 if (sc->sc_hastsfadd) { 1177 /* 1178 * Configure whether or not TSF adjust should be done. 1179 */ 1180 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1181 } 1182 if (flags & IEEE80211_CLONE_NOBEACONS) { 1183 /* 1184 * Enable s/w beacon miss handling. 1185 */ 1186 sc->sc_swbmiss = 1; 1187 } 1188 ATH_UNLOCK(sc); 1189 1190 /* complete setup */ 1191 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1192 return vap; 1193 bad2: 1194 reclaim_address(sc, mac); 1195 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1196 bad: 1197 free(avp, M_80211_VAP); 1198 ATH_UNLOCK(sc); 1199 return NULL; 1200 } 1201 1202 static void 1203 ath_vap_delete(struct ieee80211vap *vap) 1204 { 1205 struct ieee80211com *ic = vap->iv_ic; 1206 struct ifnet *ifp = ic->ic_ifp; 1207 struct ath_softc *sc = ifp->if_softc; 1208 struct ath_hal *ah = sc->sc_ah; 1209 struct ath_vap *avp = ATH_VAP(vap); 1210 1211 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1212 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1213 /* 1214 * Quiesce the hardware while we remove the vap. In 1215 * particular we need to reclaim all references to 1216 * the vap state by any frames pending on the tx queues. 1217 */ 1218 ath_hal_intrset(ah, 0); /* disable interrupts */ 1219 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1220 /* XXX Do all frames from all vaps/nodes need draining here? */ 1221 ath_stoprecv(sc, 1); /* stop recv side */ 1222 } 1223 1224 ieee80211_vap_detach(vap); 1225 1226 /* 1227 * XXX Danger Will Robinson! Danger! 1228 * 1229 * Because ieee80211_vap_detach() can queue a frame (the station 1230 * diassociate message?) after we've drained the TXQ and 1231 * flushed the software TXQ, we will end up with a frame queued 1232 * to a node whose vap is about to be freed. 1233 * 1234 * To work around this, flush the hardware/software again. 1235 * This may be racy - the ath task may be running and the packet 1236 * may be being scheduled between sw->hw txq. Tsk. 1237 * 1238 * TODO: figure out why a new node gets allocated somewhere around 1239 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1240 * call!) 1241 */ 1242 1243 ath_draintxq(sc, ATH_RESET_DEFAULT); 1244 1245 ATH_LOCK(sc); 1246 /* 1247 * Reclaim beacon state. Note this must be done before 1248 * the vap instance is reclaimed as we may have a reference 1249 * to it in the buffer for the beacon frame. 1250 */ 1251 if (avp->av_bcbuf != NULL) { 1252 if (avp->av_bslot != -1) { 1253 sc->sc_bslot[avp->av_bslot] = NULL; 1254 sc->sc_nbcnvaps--; 1255 } 1256 ath_beacon_return(sc, avp->av_bcbuf); 1257 avp->av_bcbuf = NULL; 1258 if (sc->sc_nbcnvaps == 0) { 1259 sc->sc_stagbeacons = 0; 1260 if (sc->sc_hastsfadd) 1261 ath_hal_settsfadjust(sc->sc_ah, 0); 1262 } 1263 /* 1264 * Reclaim any pending mcast frames for the vap. 1265 */ 1266 ath_tx_draintxq(sc, &avp->av_mcastq); 1267 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1268 } 1269 /* 1270 * Update bookkeeping. 1271 */ 1272 if (vap->iv_opmode == IEEE80211_M_STA) { 1273 sc->sc_nstavaps--; 1274 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1275 sc->sc_swbmiss = 0; 1276 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1277 vap->iv_opmode == IEEE80211_M_MBSS) { 1278 reclaim_address(sc, vap->iv_myaddr); 1279 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1280 if (vap->iv_opmode == IEEE80211_M_MBSS) 1281 sc->sc_nmeshvaps--; 1282 } 1283 if (vap->iv_opmode != IEEE80211_M_WDS) 1284 sc->sc_nvaps--; 1285 #ifdef IEEE80211_SUPPORT_TDMA 1286 /* TDMA operation ceases when the last vap is destroyed */ 1287 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1288 sc->sc_tdma = 0; 1289 sc->sc_swbmiss = 0; 1290 } 1291 #endif 1292 free(avp, M_80211_VAP); 1293 1294 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1295 /* 1296 * Restart rx+tx machines if still running (RUNNING will 1297 * be reset if we just destroyed the last vap). 1298 */ 1299 if (ath_startrecv(sc) != 0) 1300 if_printf(ifp, "%s: unable to restart recv logic\n", 1301 __func__); 1302 if (sc->sc_beacons) { /* restart beacons */ 1303 #ifdef IEEE80211_SUPPORT_TDMA 1304 if (sc->sc_tdma) 1305 ath_tdma_config(sc, NULL); 1306 else 1307 #endif 1308 ath_beacon_config(sc, NULL); 1309 } 1310 ath_hal_intrset(ah, sc->sc_imask); 1311 } 1312 ATH_UNLOCK(sc); 1313 } 1314 1315 void 1316 ath_suspend(struct ath_softc *sc) 1317 { 1318 struct ifnet *ifp = sc->sc_ifp; 1319 struct ieee80211com *ic = ifp->if_l2com; 1320 1321 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1322 __func__, ifp->if_flags); 1323 1324 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1325 if (ic->ic_opmode == IEEE80211_M_STA) 1326 ath_stop(ifp); 1327 else 1328 ieee80211_suspend_all(ic); 1329 /* 1330 * NB: don't worry about putting the chip in low power 1331 * mode; pci will power off our socket on suspend and 1332 * CardBus detaches the device. 1333 */ 1334 } 1335 1336 /* 1337 * Reset the key cache since some parts do not reset the 1338 * contents on resume. First we clear all entries, then 1339 * re-load keys that the 802.11 layer assumes are setup 1340 * in h/w. 1341 */ 1342 static void 1343 ath_reset_keycache(struct ath_softc *sc) 1344 { 1345 struct ifnet *ifp = sc->sc_ifp; 1346 struct ieee80211com *ic = ifp->if_l2com; 1347 struct ath_hal *ah = sc->sc_ah; 1348 int i; 1349 1350 for (i = 0; i < sc->sc_keymax; i++) 1351 ath_hal_keyreset(ah, i); 1352 ieee80211_crypto_reload_keys(ic); 1353 } 1354 1355 void 1356 ath_resume(struct ath_softc *sc) 1357 { 1358 struct ifnet *ifp = sc->sc_ifp; 1359 struct ieee80211com *ic = ifp->if_l2com; 1360 struct ath_hal *ah = sc->sc_ah; 1361 HAL_STATUS status; 1362 1363 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1364 __func__, ifp->if_flags); 1365 1366 /* 1367 * Must reset the chip before we reload the 1368 * keycache as we were powered down on suspend. 1369 */ 1370 ath_hal_reset(ah, sc->sc_opmode, 1371 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1372 AH_FALSE, &status); 1373 ath_reset_keycache(sc); 1374 1375 /* Let DFS at it in case it's a DFS channel */ 1376 ath_dfs_radar_enable(sc, ic->ic_curchan); 1377 1378 /* Restore the LED configuration */ 1379 ath_led_config(sc); 1380 ath_hal_setledstate(ah, HAL_LED_INIT); 1381 1382 if (sc->sc_resume_up) { 1383 if (ic->ic_opmode == IEEE80211_M_STA) { 1384 ath_init(sc); 1385 ath_hal_setledstate(ah, HAL_LED_RUN); 1386 /* 1387 * Program the beacon registers using the last rx'd 1388 * beacon frame and enable sync on the next beacon 1389 * we see. This should handle the case where we 1390 * wakeup and find the same AP and also the case where 1391 * we wakeup and need to roam. For the latter we 1392 * should get bmiss events that trigger a roam. 1393 */ 1394 ath_beacon_config(sc, NULL); 1395 sc->sc_syncbeacon = 1; 1396 } else 1397 ieee80211_resume_all(ic); 1398 } 1399 1400 /* XXX beacons ? */ 1401 } 1402 1403 void 1404 ath_shutdown(struct ath_softc *sc) 1405 { 1406 struct ifnet *ifp = sc->sc_ifp; 1407 1408 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1409 __func__, ifp->if_flags); 1410 1411 ath_stop(ifp); 1412 /* NB: no point powering down chip as we're about to reboot */ 1413 } 1414 1415 /* 1416 * Interrupt handler. Most of the actual processing is deferred. 1417 */ 1418 void 1419 ath_intr(void *arg) 1420 { 1421 struct ath_softc *sc = arg; 1422 struct ifnet *ifp = sc->sc_ifp; 1423 struct ath_hal *ah = sc->sc_ah; 1424 HAL_INT status = 0; 1425 uint32_t txqs; 1426 1427 /* 1428 * If we're inside a reset path, just print a warning and 1429 * clear the ISR. The reset routine will finish it for us. 1430 */ 1431 ATH_PCU_LOCK(sc); 1432 if (sc->sc_inreset_cnt) { 1433 HAL_INT status; 1434 ath_hal_getisr(ah, &status); /* clear ISR */ 1435 ath_hal_intrset(ah, 0); /* disable further intr's */ 1436 DPRINTF(sc, ATH_DEBUG_ANY, 1437 "%s: in reset, ignoring: status=0x%x\n", 1438 __func__, status); 1439 ATH_PCU_UNLOCK(sc); 1440 return; 1441 } 1442 1443 if (sc->sc_invalid) { 1444 /* 1445 * The hardware is not ready/present, don't touch anything. 1446 * Note this can happen early on if the IRQ is shared. 1447 */ 1448 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1449 ATH_PCU_UNLOCK(sc); 1450 return; 1451 } 1452 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1453 ATH_PCU_UNLOCK(sc); 1454 return; 1455 } 1456 1457 if ((ifp->if_flags & IFF_UP) == 0 || 1458 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1459 HAL_INT status; 1460 1461 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1462 __func__, ifp->if_flags); 1463 ath_hal_getisr(ah, &status); /* clear ISR */ 1464 ath_hal_intrset(ah, 0); /* disable further intr's */ 1465 ATH_PCU_UNLOCK(sc); 1466 return; 1467 } 1468 1469 /* 1470 * Figure out the reason(s) for the interrupt. Note 1471 * that the hal returns a pseudo-ISR that may include 1472 * bits we haven't explicitly enabled so we mask the 1473 * value to insure we only process bits we requested. 1474 */ 1475 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1476 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1477 CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status); 1478 #ifdef ATH_KTR_INTR_DEBUG 1479 CTR5(ATH_KTR_INTR, 1480 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1481 ah->ah_intrstate[0], 1482 ah->ah_intrstate[1], 1483 ah->ah_intrstate[2], 1484 ah->ah_intrstate[3], 1485 ah->ah_intrstate[6]); 1486 #endif 1487 status &= sc->sc_imask; /* discard unasked for bits */ 1488 1489 /* Short-circuit un-handled interrupts */ 1490 if (status == 0x0) { 1491 ATH_PCU_UNLOCK(sc); 1492 return; 1493 } 1494 1495 /* 1496 * Take a note that we're inside the interrupt handler, so 1497 * the reset routines know to wait. 1498 */ 1499 sc->sc_intr_cnt++; 1500 ATH_PCU_UNLOCK(sc); 1501 1502 /* 1503 * Handle the interrupt. We won't run concurrent with the reset 1504 * or channel change routines as they'll wait for sc_intr_cnt 1505 * to be 0 before continuing. 1506 */ 1507 if (status & HAL_INT_FATAL) { 1508 sc->sc_stats.ast_hardware++; 1509 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1510 ath_fatal_proc(sc, 0); 1511 } else { 1512 if (status & HAL_INT_SWBA) { 1513 /* 1514 * Software beacon alert--time to send a beacon. 1515 * Handle beacon transmission directly; deferring 1516 * this is too slow to meet timing constraints 1517 * under load. 1518 */ 1519 #ifdef IEEE80211_SUPPORT_TDMA 1520 if (sc->sc_tdma) { 1521 if (sc->sc_tdmaswba == 0) { 1522 struct ieee80211com *ic = ifp->if_l2com; 1523 struct ieee80211vap *vap = 1524 TAILQ_FIRST(&ic->ic_vaps); 1525 ath_tdma_beacon_send(sc, vap); 1526 sc->sc_tdmaswba = 1527 vap->iv_tdma->tdma_bintval; 1528 } else 1529 sc->sc_tdmaswba--; 1530 } else 1531 #endif 1532 { 1533 ath_beacon_proc(sc, 0); 1534 #ifdef IEEE80211_SUPPORT_SUPERG 1535 /* 1536 * Schedule the rx taskq in case there's no 1537 * traffic so any frames held on the staging 1538 * queue are aged and potentially flushed. 1539 */ 1540 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1541 #endif 1542 } 1543 } 1544 if (status & HAL_INT_RXEOL) { 1545 int imask; 1546 CTR0(ATH_KTR_ERR, "ath_intr: RXEOL"); 1547 ATH_PCU_LOCK(sc); 1548 /* 1549 * NB: the hardware should re-read the link when 1550 * RXE bit is written, but it doesn't work at 1551 * least on older hardware revs. 1552 */ 1553 sc->sc_stats.ast_rxeol++; 1554 /* 1555 * Disable RXEOL/RXORN - prevent an interrupt 1556 * storm until the PCU logic can be reset. 1557 * In case the interface is reset some other 1558 * way before "sc_kickpcu" is called, don't 1559 * modify sc_imask - that way if it is reset 1560 * by a call to ath_reset() somehow, the 1561 * interrupt mask will be correctly reprogrammed. 1562 */ 1563 imask = sc->sc_imask; 1564 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1565 ath_hal_intrset(ah, imask); 1566 /* 1567 * Only blank sc_rxlink if we've not yet kicked 1568 * the PCU. 1569 * 1570 * This isn't entirely correct - the correct solution 1571 * would be to have a PCU lock and engage that for 1572 * the duration of the PCU fiddling; which would include 1573 * running the RX process. Otherwise we could end up 1574 * messing up the RX descriptor chain and making the 1575 * RX desc list much shorter. 1576 */ 1577 if (! sc->sc_kickpcu) 1578 sc->sc_rxlink = NULL; 1579 sc->sc_kickpcu = 1; 1580 /* 1581 * Enqueue an RX proc, to handled whatever 1582 * is in the RX queue. 1583 * This will then kick the PCU. 1584 */ 1585 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1586 ATH_PCU_UNLOCK(sc); 1587 } 1588 if (status & HAL_INT_TXURN) { 1589 sc->sc_stats.ast_txurn++; 1590 /* bump tx trigger level */ 1591 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1592 } 1593 if (status & HAL_INT_RX) { 1594 sc->sc_stats.ast_rx_intr++; 1595 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1596 } 1597 if (status & HAL_INT_TX) { 1598 sc->sc_stats.ast_tx_intr++; 1599 /* 1600 * Grab all the currently set bits in the HAL txq bitmap 1601 * and blank them. This is the only place we should be 1602 * doing this. 1603 */ 1604 ATH_PCU_LOCK(sc); 1605 txqs = 0xffffffff; 1606 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1607 sc->sc_txq_active |= txqs; 1608 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1609 ATH_PCU_UNLOCK(sc); 1610 } 1611 if (status & HAL_INT_BMISS) { 1612 sc->sc_stats.ast_bmiss++; 1613 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1614 } 1615 if (status & HAL_INT_GTT) 1616 sc->sc_stats.ast_tx_timeout++; 1617 if (status & HAL_INT_CST) 1618 sc->sc_stats.ast_tx_cst++; 1619 if (status & HAL_INT_MIB) { 1620 sc->sc_stats.ast_mib++; 1621 ATH_PCU_LOCK(sc); 1622 /* 1623 * Disable interrupts until we service the MIB 1624 * interrupt; otherwise it will continue to fire. 1625 */ 1626 ath_hal_intrset(ah, 0); 1627 /* 1628 * Let the hal handle the event. We assume it will 1629 * clear whatever condition caused the interrupt. 1630 */ 1631 ath_hal_mibevent(ah, &sc->sc_halstats); 1632 /* 1633 * Don't reset the interrupt if we've just 1634 * kicked the PCU, or we may get a nested 1635 * RXEOL before the rxproc has had a chance 1636 * to run. 1637 */ 1638 if (sc->sc_kickpcu == 0) 1639 ath_hal_intrset(ah, sc->sc_imask); 1640 ATH_PCU_UNLOCK(sc); 1641 } 1642 if (status & HAL_INT_RXORN) { 1643 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1644 CTR0(ATH_KTR_ERR, "ath_intr: RXORN"); 1645 sc->sc_stats.ast_rxorn++; 1646 } 1647 } 1648 ATH_PCU_LOCK(sc); 1649 sc->sc_intr_cnt--; 1650 ATH_PCU_UNLOCK(sc); 1651 } 1652 1653 static void 1654 ath_fatal_proc(void *arg, int pending) 1655 { 1656 struct ath_softc *sc = arg; 1657 struct ifnet *ifp = sc->sc_ifp; 1658 u_int32_t *state; 1659 u_int32_t len; 1660 void *sp; 1661 1662 if_printf(ifp, "hardware error; resetting\n"); 1663 /* 1664 * Fatal errors are unrecoverable. Typically these 1665 * are caused by DMA errors. Collect h/w state from 1666 * the hal so we can diagnose what's going on. 1667 */ 1668 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1669 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1670 state = sp; 1671 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1672 state[0], state[1] , state[2], state[3], 1673 state[4], state[5]); 1674 } 1675 ath_reset(ifp, ATH_RESET_NOLOSS); 1676 } 1677 1678 static void 1679 ath_bmiss_vap(struct ieee80211vap *vap) 1680 { 1681 /* 1682 * Workaround phantom bmiss interrupts by sanity-checking 1683 * the time of our last rx'd frame. If it is within the 1684 * beacon miss interval then ignore the interrupt. If it's 1685 * truly a bmiss we'll get another interrupt soon and that'll 1686 * be dispatched up for processing. Note this applies only 1687 * for h/w beacon miss events. 1688 */ 1689 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1690 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1691 struct ath_softc *sc = ifp->if_softc; 1692 u_int64_t lastrx = sc->sc_lastrx; 1693 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1694 /* XXX should take a locked ref to iv_bss */ 1695 u_int bmisstimeout = 1696 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1697 1698 DPRINTF(sc, ATH_DEBUG_BEACON, 1699 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1700 __func__, (unsigned long long) tsf, 1701 (unsigned long long)(tsf - lastrx), 1702 (unsigned long long) lastrx, bmisstimeout); 1703 1704 if (tsf - lastrx <= bmisstimeout) { 1705 sc->sc_stats.ast_bmiss_phantom++; 1706 return; 1707 } 1708 } 1709 ATH_VAP(vap)->av_bmiss(vap); 1710 } 1711 1712 static int 1713 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1714 { 1715 uint32_t rsize; 1716 void *sp; 1717 1718 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1719 return 0; 1720 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1721 *hangs = *(uint32_t *)sp; 1722 return 1; 1723 } 1724 1725 static void 1726 ath_bmiss_proc(void *arg, int pending) 1727 { 1728 struct ath_softc *sc = arg; 1729 struct ifnet *ifp = sc->sc_ifp; 1730 uint32_t hangs; 1731 1732 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1733 1734 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1735 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1736 ath_reset(ifp, ATH_RESET_NOLOSS); 1737 } else 1738 ieee80211_beacon_miss(ifp->if_l2com); 1739 } 1740 1741 /* 1742 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1743 * calcs together with WME. If necessary disable the crypto 1744 * hardware and mark the 802.11 state so keys will be setup 1745 * with the MIC work done in software. 1746 */ 1747 static void 1748 ath_settkipmic(struct ath_softc *sc) 1749 { 1750 struct ifnet *ifp = sc->sc_ifp; 1751 struct ieee80211com *ic = ifp->if_l2com; 1752 1753 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1754 if (ic->ic_flags & IEEE80211_F_WME) { 1755 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1756 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1757 } else { 1758 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1759 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1760 } 1761 } 1762 } 1763 1764 static void 1765 ath_init(void *arg) 1766 { 1767 struct ath_softc *sc = (struct ath_softc *) arg; 1768 struct ifnet *ifp = sc->sc_ifp; 1769 struct ieee80211com *ic = ifp->if_l2com; 1770 struct ath_hal *ah = sc->sc_ah; 1771 HAL_STATUS status; 1772 1773 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1774 __func__, ifp->if_flags); 1775 1776 ATH_LOCK(sc); 1777 /* 1778 * Stop anything previously setup. This is safe 1779 * whether this is the first time through or not. 1780 */ 1781 ath_stop_locked(ifp); 1782 1783 /* 1784 * The basic interface to setting the hardware in a good 1785 * state is ``reset''. On return the hardware is known to 1786 * be powered up and with interrupts disabled. This must 1787 * be followed by initialization of the appropriate bits 1788 * and then setup of the interrupt mask. 1789 */ 1790 ath_settkipmic(sc); 1791 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1792 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1793 status); 1794 ATH_UNLOCK(sc); 1795 return; 1796 } 1797 ath_chan_change(sc, ic->ic_curchan); 1798 1799 /* Let DFS at it in case it's a DFS channel */ 1800 ath_dfs_radar_enable(sc, ic->ic_curchan); 1801 1802 /* 1803 * Likewise this is set during reset so update 1804 * state cached in the driver. 1805 */ 1806 sc->sc_diversity = ath_hal_getdiversity(ah); 1807 sc->sc_lastlongcal = 0; 1808 sc->sc_resetcal = 1; 1809 sc->sc_lastcalreset = 0; 1810 sc->sc_lastani = 0; 1811 sc->sc_lastshortcal = 0; 1812 sc->sc_doresetcal = AH_FALSE; 1813 /* 1814 * Beacon timers were cleared here; give ath_newstate() 1815 * a hint that the beacon timers should be poked when 1816 * things transition to the RUN state. 1817 */ 1818 sc->sc_beacons = 0; 1819 1820 /* 1821 * Initial aggregation settings. 1822 */ 1823 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 1824 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1825 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1826 1827 /* 1828 * Setup the hardware after reset: the key cache 1829 * is filled as needed and the receive engine is 1830 * set going. Frame transmit is handled entirely 1831 * in the frame output path; there's nothing to do 1832 * here except setup the interrupt mask. 1833 */ 1834 if (ath_startrecv(sc) != 0) { 1835 if_printf(ifp, "unable to start recv logic\n"); 1836 ATH_UNLOCK(sc); 1837 return; 1838 } 1839 1840 /* 1841 * Enable interrupts. 1842 */ 1843 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1844 | HAL_INT_RXEOL | HAL_INT_RXORN 1845 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1846 /* 1847 * Enable MIB interrupts when there are hardware phy counters. 1848 * Note we only do this (at the moment) for station mode. 1849 */ 1850 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1851 sc->sc_imask |= HAL_INT_MIB; 1852 1853 /* Enable global TX timeout and carrier sense timeout if available */ 1854 if (ath_hal_gtxto_supported(ah)) 1855 sc->sc_imask |= HAL_INT_GTT; 1856 1857 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1858 __func__, sc->sc_imask); 1859 1860 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1861 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1862 ath_hal_intrset(ah, sc->sc_imask); 1863 1864 ATH_UNLOCK(sc); 1865 1866 #ifdef ATH_TX99_DIAG 1867 if (sc->sc_tx99 != NULL) 1868 sc->sc_tx99->start(sc->sc_tx99); 1869 else 1870 #endif 1871 ieee80211_start_all(ic); /* start all vap's */ 1872 } 1873 1874 static void 1875 ath_stop_locked(struct ifnet *ifp) 1876 { 1877 struct ath_softc *sc = ifp->if_softc; 1878 struct ath_hal *ah = sc->sc_ah; 1879 1880 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1881 __func__, sc->sc_invalid, ifp->if_flags); 1882 1883 ATH_LOCK_ASSERT(sc); 1884 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1885 /* 1886 * Shutdown the hardware and driver: 1887 * reset 802.11 state machine 1888 * turn off timers 1889 * disable interrupts 1890 * turn off the radio 1891 * clear transmit machinery 1892 * clear receive machinery 1893 * drain and release tx queues 1894 * reclaim beacon resources 1895 * power down hardware 1896 * 1897 * Note that some of this work is not possible if the 1898 * hardware is gone (invalid). 1899 */ 1900 #ifdef ATH_TX99_DIAG 1901 if (sc->sc_tx99 != NULL) 1902 sc->sc_tx99->stop(sc->sc_tx99); 1903 #endif 1904 callout_stop(&sc->sc_wd_ch); 1905 sc->sc_wd_timer = 0; 1906 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1907 if (!sc->sc_invalid) { 1908 if (sc->sc_softled) { 1909 callout_stop(&sc->sc_ledtimer); 1910 ath_hal_gpioset(ah, sc->sc_ledpin, 1911 !sc->sc_ledon); 1912 sc->sc_blinking = 0; 1913 } 1914 ath_hal_intrset(ah, 0); 1915 } 1916 ath_draintxq(sc, ATH_RESET_DEFAULT); 1917 if (!sc->sc_invalid) { 1918 ath_stoprecv(sc, 1); 1919 ath_hal_phydisable(ah); 1920 } else 1921 sc->sc_rxlink = NULL; 1922 ath_beacon_free(sc); /* XXX not needed */ 1923 } 1924 } 1925 1926 #define MAX_TXRX_ITERATIONS 1000 1927 static void 1928 ath_txrx_stop_locked(struct ath_softc *sc) 1929 { 1930 int i = MAX_TXRX_ITERATIONS; 1931 1932 ATH_UNLOCK_ASSERT(sc); 1933 ATH_PCU_LOCK_ASSERT(sc); 1934 1935 /* 1936 * Sleep until all the pending operations have completed. 1937 * 1938 * The caller must ensure that reset has been incremented 1939 * or the pending operations may continue being queued. 1940 */ 1941 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 1942 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 1943 if (i <= 0) 1944 break; 1945 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 1946 i--; 1947 } 1948 1949 if (i <= 0) 1950 device_printf(sc->sc_dev, 1951 "%s: didn't finish after %d iterations\n", 1952 __func__, MAX_TXRX_ITERATIONS); 1953 } 1954 #undef MAX_TXRX_ITERATIONS 1955 1956 #if 0 1957 static void 1958 ath_txrx_stop(struct ath_softc *sc) 1959 { 1960 ATH_UNLOCK_ASSERT(sc); 1961 ATH_PCU_UNLOCK_ASSERT(sc); 1962 1963 ATH_PCU_LOCK(sc); 1964 ath_txrx_stop_locked(sc); 1965 ATH_PCU_UNLOCK(sc); 1966 } 1967 #endif 1968 1969 static void 1970 ath_txrx_start(struct ath_softc *sc) 1971 { 1972 1973 taskqueue_unblock(sc->sc_tq); 1974 } 1975 1976 /* 1977 * Grab the reset lock, and wait around until noone else 1978 * is trying to do anything with it. 1979 * 1980 * This is totally horrible but we can't hold this lock for 1981 * long enough to do TX/RX or we end up with net80211/ip stack 1982 * LORs and eventual deadlock. 1983 * 1984 * "dowait" signals whether to spin, waiting for the reset 1985 * lock count to reach 0. This should (for now) only be used 1986 * during the reset path, as the rest of the code may not 1987 * be locking-reentrant enough to behave correctly. 1988 * 1989 * Another, cleaner way should be found to serialise all of 1990 * these operations. 1991 */ 1992 #define MAX_RESET_ITERATIONS 10 1993 static int 1994 ath_reset_grablock(struct ath_softc *sc, int dowait) 1995 { 1996 int w = 0; 1997 int i = MAX_RESET_ITERATIONS; 1998 1999 ATH_PCU_LOCK_ASSERT(sc); 2000 do { 2001 if (sc->sc_inreset_cnt == 0) { 2002 w = 1; 2003 break; 2004 } 2005 if (dowait == 0) { 2006 w = 0; 2007 break; 2008 } 2009 ATH_PCU_UNLOCK(sc); 2010 pause("ath_reset_grablock", 1); 2011 i--; 2012 ATH_PCU_LOCK(sc); 2013 } while (i > 0); 2014 2015 /* 2016 * We always increment the refcounter, regardless 2017 * of whether we succeeded to get it in an exclusive 2018 * way. 2019 */ 2020 sc->sc_inreset_cnt++; 2021 2022 if (i <= 0) 2023 device_printf(sc->sc_dev, 2024 "%s: didn't finish after %d iterations\n", 2025 __func__, MAX_RESET_ITERATIONS); 2026 2027 if (w == 0) 2028 device_printf(sc->sc_dev, 2029 "%s: warning, recursive reset path!\n", 2030 __func__); 2031 2032 return w; 2033 } 2034 #undef MAX_RESET_ITERATIONS 2035 2036 /* 2037 * XXX TODO: write ath_reset_releaselock 2038 */ 2039 2040 static void 2041 ath_stop(struct ifnet *ifp) 2042 { 2043 struct ath_softc *sc = ifp->if_softc; 2044 2045 ATH_LOCK(sc); 2046 ath_stop_locked(ifp); 2047 ATH_UNLOCK(sc); 2048 } 2049 2050 /* 2051 * Reset the hardware w/o losing operational state. This is 2052 * basically a more efficient way of doing ath_stop, ath_init, 2053 * followed by state transitions to the current 802.11 2054 * operational state. Used to recover from various errors and 2055 * to reset or reload hardware state. 2056 */ 2057 int 2058 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2059 { 2060 struct ath_softc *sc = ifp->if_softc; 2061 struct ieee80211com *ic = ifp->if_l2com; 2062 struct ath_hal *ah = sc->sc_ah; 2063 HAL_STATUS status; 2064 int i; 2065 2066 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2067 2068 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2069 ATH_PCU_UNLOCK_ASSERT(sc); 2070 ATH_UNLOCK_ASSERT(sc); 2071 2072 /* Try to (stop any further TX/RX from occuring */ 2073 taskqueue_block(sc->sc_tq); 2074 2075 ATH_PCU_LOCK(sc); 2076 ath_hal_intrset(ah, 0); /* disable interrupts */ 2077 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2078 if (ath_reset_grablock(sc, 1) == 0) { 2079 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2080 __func__); 2081 } 2082 ATH_PCU_UNLOCK(sc); 2083 2084 /* 2085 * Should now wait for pending TX/RX to complete 2086 * and block future ones from occuring. This needs to be 2087 * done before the TX queue is drained. 2088 */ 2089 ath_draintxq(sc, reset_type); /* stop xmit side */ 2090 2091 /* 2092 * Regardless of whether we're doing a no-loss flush or 2093 * not, stop the PCU and handle what's in the RX queue. 2094 * That way frames aren't dropped which shouldn't be. 2095 */ 2096 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2097 ath_rx_proc(sc, 0); 2098 2099 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2100 /* NB: indicate channel change so we do a full reset */ 2101 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2102 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2103 __func__, status); 2104 sc->sc_diversity = ath_hal_getdiversity(ah); 2105 2106 /* Let DFS at it in case it's a DFS channel */ 2107 ath_dfs_radar_enable(sc, ic->ic_curchan); 2108 2109 if (ath_startrecv(sc) != 0) /* restart recv */ 2110 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2111 /* 2112 * We may be doing a reset in response to an ioctl 2113 * that changes the channel so update any state that 2114 * might change as a result. 2115 */ 2116 ath_chan_change(sc, ic->ic_curchan); 2117 if (sc->sc_beacons) { /* restart beacons */ 2118 #ifdef IEEE80211_SUPPORT_TDMA 2119 if (sc->sc_tdma) 2120 ath_tdma_config(sc, NULL); 2121 else 2122 #endif 2123 ath_beacon_config(sc, NULL); 2124 } 2125 2126 /* 2127 * Release the reset lock and re-enable interrupts here. 2128 * If an interrupt was being processed in ath_intr(), 2129 * it would disable interrupts at this point. So we have 2130 * to atomically enable interrupts and decrement the 2131 * reset counter - this way ath_intr() doesn't end up 2132 * disabling interrupts without a corresponding enable 2133 * in the rest or channel change path. 2134 */ 2135 ATH_PCU_LOCK(sc); 2136 sc->sc_inreset_cnt--; 2137 /* XXX only do this if sc_inreset_cnt == 0? */ 2138 ath_hal_intrset(ah, sc->sc_imask); 2139 ATH_PCU_UNLOCK(sc); 2140 2141 /* 2142 * TX and RX can be started here. If it were started with 2143 * sc_inreset_cnt > 0, the TX and RX path would abort. 2144 * Thus if this is a nested call through the reset or 2145 * channel change code, TX completion will occur but 2146 * RX completion and ath_start / ath_tx_start will not 2147 * run. 2148 */ 2149 2150 /* Restart TX/RX as needed */ 2151 ath_txrx_start(sc); 2152 2153 /* XXX Restart TX completion and pending TX */ 2154 if (reset_type == ATH_RESET_NOLOSS) { 2155 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2156 if (ATH_TXQ_SETUP(sc, i)) { 2157 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2158 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2159 ath_txq_sched(sc, &sc->sc_txq[i]); 2160 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2161 } 2162 } 2163 } 2164 2165 /* 2166 * This may have been set during an ath_start() call which 2167 * set this once it detected a concurrent TX was going on. 2168 * So, clear it. 2169 */ 2170 IF_LOCK(&ifp->if_snd); 2171 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2172 IF_UNLOCK(&ifp->if_snd); 2173 2174 /* Handle any frames in the TX queue */ 2175 /* 2176 * XXX should this be done by the caller, rather than 2177 * ath_reset() ? 2178 */ 2179 ath_start(ifp); /* restart xmit */ 2180 return 0; 2181 } 2182 2183 static int 2184 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2185 { 2186 struct ieee80211com *ic = vap->iv_ic; 2187 struct ifnet *ifp = ic->ic_ifp; 2188 struct ath_softc *sc = ifp->if_softc; 2189 struct ath_hal *ah = sc->sc_ah; 2190 2191 switch (cmd) { 2192 case IEEE80211_IOC_TXPOWER: 2193 /* 2194 * If per-packet TPC is enabled, then we have nothing 2195 * to do; otherwise we need to force the global limit. 2196 * All this can happen directly; no need to reset. 2197 */ 2198 if (!ath_hal_gettpc(ah)) 2199 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2200 return 0; 2201 } 2202 /* XXX? Full or NOLOSS? */ 2203 return ath_reset(ifp, ATH_RESET_FULL); 2204 } 2205 2206 struct ath_buf * 2207 _ath_getbuf_locked(struct ath_softc *sc) 2208 { 2209 struct ath_buf *bf; 2210 2211 ATH_TXBUF_LOCK_ASSERT(sc); 2212 2213 bf = TAILQ_FIRST(&sc->sc_txbuf); 2214 if (bf == NULL) { 2215 sc->sc_stats.ast_tx_getnobuf++; 2216 } else { 2217 if (bf->bf_flags & ATH_BUF_BUSY) { 2218 sc->sc_stats.ast_tx_getbusybuf++; 2219 bf = NULL; 2220 } 2221 } 2222 2223 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) 2224 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2225 else 2226 bf = NULL; 2227 2228 if (bf == NULL) { 2229 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2230 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2231 "out of xmit buffers" : "xmit buffer busy"); 2232 return NULL; 2233 } 2234 2235 /* Valid bf here; clear some basic fields */ 2236 bf->bf_next = NULL; /* XXX just to be sure */ 2237 bf->bf_last = NULL; /* XXX again, just to be sure */ 2238 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2239 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2240 2241 return bf; 2242 } 2243 2244 /* 2245 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2246 * can't be thrown back on the queue as they could still be 2247 * in use by the hardware. 2248 * 2249 * This duplicates the buffer, or returns NULL. 2250 * 2251 * The descriptor is also copied but the link pointers and 2252 * the DMA segments aren't copied; this frame should thus 2253 * be again passed through the descriptor setup/chain routines 2254 * so the link is correct. 2255 * 2256 * The caller must free the buffer using ath_freebuf(). 2257 * 2258 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2259 * XXX in the TX pathway when retries are needed. 2260 * XXX Figure out how to keep some buffers free, or factor the 2261 * XXX number of busy buffers into the xmit path (ath_start()) 2262 * XXX so we don't over-commit. 2263 */ 2264 struct ath_buf * 2265 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2266 { 2267 struct ath_buf *tbf; 2268 2269 tbf = ath_getbuf(sc); 2270 if (tbf == NULL) 2271 return NULL; /* XXX failure? Why? */ 2272 2273 /* Copy basics */ 2274 tbf->bf_next = NULL; 2275 tbf->bf_nseg = bf->bf_nseg; 2276 tbf->bf_txflags = bf->bf_txflags; 2277 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2278 tbf->bf_status = bf->bf_status; 2279 tbf->bf_m = bf->bf_m; 2280 tbf->bf_node = bf->bf_node; 2281 /* will be setup by the chain/setup function */ 2282 tbf->bf_lastds = NULL; 2283 /* for now, last == self */ 2284 tbf->bf_last = tbf; 2285 tbf->bf_comp = bf->bf_comp; 2286 2287 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2288 2289 /* The caller has to re-init the descriptor + links */ 2290 2291 /* Copy state */ 2292 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2293 2294 return tbf; 2295 } 2296 2297 struct ath_buf * 2298 ath_getbuf(struct ath_softc *sc) 2299 { 2300 struct ath_buf *bf; 2301 2302 ATH_TXBUF_LOCK(sc); 2303 bf = _ath_getbuf_locked(sc); 2304 ATH_TXBUF_UNLOCK(sc); 2305 if (bf == NULL) { 2306 struct ifnet *ifp = sc->sc_ifp; 2307 2308 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2309 sc->sc_stats.ast_tx_qstop++; 2310 IF_LOCK(&ifp->if_snd); 2311 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2312 IF_UNLOCK(&ifp->if_snd); 2313 } 2314 return bf; 2315 } 2316 2317 static void 2318 ath_start(struct ifnet *ifp) 2319 { 2320 struct ath_softc *sc = ifp->if_softc; 2321 struct ieee80211_node *ni; 2322 struct ath_buf *bf; 2323 struct mbuf *m, *next; 2324 ath_bufhead frags; 2325 2326 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2327 return; 2328 2329 /* XXX is it ok to hold the ATH_LOCK here? */ 2330 ATH_PCU_LOCK(sc); 2331 if (sc->sc_inreset_cnt > 0) { 2332 device_printf(sc->sc_dev, 2333 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2334 ATH_PCU_UNLOCK(sc); 2335 IF_LOCK(&ifp->if_snd); 2336 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2337 IF_UNLOCK(&ifp->if_snd); 2338 return; 2339 } 2340 sc->sc_txstart_cnt++; 2341 ATH_PCU_UNLOCK(sc); 2342 2343 for (;;) { 2344 /* 2345 * Grab a TX buffer and associated resources. 2346 */ 2347 bf = ath_getbuf(sc); 2348 if (bf == NULL) 2349 break; 2350 2351 IFQ_DEQUEUE(&ifp->if_snd, m); 2352 if (m == NULL) { 2353 ATH_TXBUF_LOCK(sc); 2354 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2355 ATH_TXBUF_UNLOCK(sc); 2356 break; 2357 } 2358 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2359 /* 2360 * Check for fragmentation. If this frame 2361 * has been broken up verify we have enough 2362 * buffers to send all the fragments so all 2363 * go out or none... 2364 */ 2365 TAILQ_INIT(&frags); 2366 if ((m->m_flags & M_FRAG) && 2367 !ath_txfrag_setup(sc, &frags, m, ni)) { 2368 DPRINTF(sc, ATH_DEBUG_XMIT, 2369 "%s: out of txfrag buffers\n", __func__); 2370 sc->sc_stats.ast_tx_nofrag++; 2371 ifp->if_oerrors++; 2372 ath_freetx(m); 2373 goto bad; 2374 } 2375 ifp->if_opackets++; 2376 nextfrag: 2377 /* 2378 * Pass the frame to the h/w for transmission. 2379 * Fragmented frames have each frag chained together 2380 * with m_nextpkt. We know there are sufficient ath_buf's 2381 * to send all the frags because of work done by 2382 * ath_txfrag_setup. We leave m_nextpkt set while 2383 * calling ath_tx_start so it can use it to extend the 2384 * the tx duration to cover the subsequent frag and 2385 * so it can reclaim all the mbufs in case of an error; 2386 * ath_tx_start clears m_nextpkt once it commits to 2387 * handing the frame to the hardware. 2388 */ 2389 next = m->m_nextpkt; 2390 if (ath_tx_start(sc, ni, bf, m)) { 2391 bad: 2392 ifp->if_oerrors++; 2393 reclaim: 2394 bf->bf_m = NULL; 2395 bf->bf_node = NULL; 2396 ATH_TXBUF_LOCK(sc); 2397 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2398 ath_txfrag_cleanup(sc, &frags, ni); 2399 ATH_TXBUF_UNLOCK(sc); 2400 if (ni != NULL) 2401 ieee80211_free_node(ni); 2402 continue; 2403 } 2404 if (next != NULL) { 2405 /* 2406 * Beware of state changing between frags. 2407 * XXX check sta power-save state? 2408 */ 2409 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2410 DPRINTF(sc, ATH_DEBUG_XMIT, 2411 "%s: flush fragmented packet, state %s\n", 2412 __func__, 2413 ieee80211_state_name[ni->ni_vap->iv_state]); 2414 ath_freetx(next); 2415 goto reclaim; 2416 } 2417 m = next; 2418 bf = TAILQ_FIRST(&frags); 2419 KASSERT(bf != NULL, ("no buf for txfrag")); 2420 TAILQ_REMOVE(&frags, bf, bf_list); 2421 goto nextfrag; 2422 } 2423 2424 sc->sc_wd_timer = 5; 2425 } 2426 2427 ATH_PCU_LOCK(sc); 2428 sc->sc_txstart_cnt--; 2429 ATH_PCU_UNLOCK(sc); 2430 } 2431 2432 static int 2433 ath_media_change(struct ifnet *ifp) 2434 { 2435 int error = ieee80211_media_change(ifp); 2436 /* NB: only the fixed rate can change and that doesn't need a reset */ 2437 return (error == ENETRESET ? 0 : error); 2438 } 2439 2440 /* 2441 * Block/unblock tx+rx processing while a key change is done. 2442 * We assume the caller serializes key management operations 2443 * so we only need to worry about synchronization with other 2444 * uses that originate in the driver. 2445 */ 2446 static void 2447 ath_key_update_begin(struct ieee80211vap *vap) 2448 { 2449 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2450 struct ath_softc *sc = ifp->if_softc; 2451 2452 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2453 taskqueue_block(sc->sc_tq); 2454 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2455 } 2456 2457 static void 2458 ath_key_update_end(struct ieee80211vap *vap) 2459 { 2460 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2461 struct ath_softc *sc = ifp->if_softc; 2462 2463 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2464 IF_UNLOCK(&ifp->if_snd); 2465 taskqueue_unblock(sc->sc_tq); 2466 } 2467 2468 /* 2469 * Calculate the receive filter according to the 2470 * operating mode and state: 2471 * 2472 * o always accept unicast, broadcast, and multicast traffic 2473 * o accept PHY error frames when hardware doesn't have MIB support 2474 * to count and we need them for ANI (sta mode only until recently) 2475 * and we are not scanning (ANI is disabled) 2476 * NB: older hal's add rx filter bits out of sight and we need to 2477 * blindly preserve them 2478 * o probe request frames are accepted only when operating in 2479 * hostap, adhoc, mesh, or monitor modes 2480 * o enable promiscuous mode 2481 * - when in monitor mode 2482 * - if interface marked PROMISC (assumes bridge setting is filtered) 2483 * o accept beacons: 2484 * - when operating in station mode for collecting rssi data when 2485 * the station is otherwise quiet, or 2486 * - when operating in adhoc mode so the 802.11 layer creates 2487 * node table entries for peers, 2488 * - when scanning 2489 * - when doing s/w beacon miss (e.g. for ap+sta) 2490 * - when operating in ap mode in 11g to detect overlapping bss that 2491 * require protection 2492 * - when operating in mesh mode to detect neighbors 2493 * o accept control frames: 2494 * - when in monitor mode 2495 * XXX HT protection for 11n 2496 */ 2497 static u_int32_t 2498 ath_calcrxfilter(struct ath_softc *sc) 2499 { 2500 struct ifnet *ifp = sc->sc_ifp; 2501 struct ieee80211com *ic = ifp->if_l2com; 2502 u_int32_t rfilt; 2503 2504 rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 2505 if (!sc->sc_needmib && !sc->sc_scanning) 2506 rfilt |= HAL_RX_FILTER_PHYERR; 2507 if (ic->ic_opmode != IEEE80211_M_STA) 2508 rfilt |= HAL_RX_FILTER_PROBEREQ; 2509 /* XXX ic->ic_monvaps != 0? */ 2510 if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC)) 2511 rfilt |= HAL_RX_FILTER_PROM; 2512 if (ic->ic_opmode == IEEE80211_M_STA || 2513 ic->ic_opmode == IEEE80211_M_IBSS || 2514 sc->sc_swbmiss || sc->sc_scanning) 2515 rfilt |= HAL_RX_FILTER_BEACON; 2516 /* 2517 * NB: We don't recalculate the rx filter when 2518 * ic_protmode changes; otherwise we could do 2519 * this only when ic_protmode != NONE. 2520 */ 2521 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 2522 IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) 2523 rfilt |= HAL_RX_FILTER_BEACON; 2524 2525 /* 2526 * Enable hardware PS-POLL RX only for hostap mode; 2527 * STA mode sends PS-POLL frames but never 2528 * receives them. 2529 */ 2530 if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL, 2531 0, NULL) == HAL_OK && 2532 ic->ic_opmode == IEEE80211_M_HOSTAP) 2533 rfilt |= HAL_RX_FILTER_PSPOLL; 2534 2535 if (sc->sc_nmeshvaps) { 2536 rfilt |= HAL_RX_FILTER_BEACON; 2537 if (sc->sc_hasbmatch) 2538 rfilt |= HAL_RX_FILTER_BSSID; 2539 else 2540 rfilt |= HAL_RX_FILTER_PROM; 2541 } 2542 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2543 rfilt |= HAL_RX_FILTER_CONTROL; 2544 2545 /* 2546 * Enable RX of compressed BAR frames only when doing 2547 * 802.11n. Required for A-MPDU. 2548 */ 2549 if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) 2550 rfilt |= HAL_RX_FILTER_COMPBAR; 2551 2552 /* 2553 * Enable radar PHY errors if requested by the 2554 * DFS module. 2555 */ 2556 if (sc->sc_dodfs) 2557 rfilt |= HAL_RX_FILTER_PHYRADAR; 2558 2559 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n", 2560 __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags); 2561 return rfilt; 2562 } 2563 2564 static void 2565 ath_update_promisc(struct ifnet *ifp) 2566 { 2567 struct ath_softc *sc = ifp->if_softc; 2568 u_int32_t rfilt; 2569 2570 /* configure rx filter */ 2571 rfilt = ath_calcrxfilter(sc); 2572 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2573 2574 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2575 } 2576 2577 static void 2578 ath_update_mcast(struct ifnet *ifp) 2579 { 2580 struct ath_softc *sc = ifp->if_softc; 2581 u_int32_t mfilt[2]; 2582 2583 /* calculate and install multicast filter */ 2584 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2585 struct ifmultiaddr *ifma; 2586 /* 2587 * Merge multicast addresses to form the hardware filter. 2588 */ 2589 mfilt[0] = mfilt[1] = 0; 2590 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2591 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2592 caddr_t dl; 2593 u_int32_t val; 2594 u_int8_t pos; 2595 2596 /* calculate XOR of eight 6bit values */ 2597 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2598 val = LE_READ_4(dl + 0); 2599 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2600 val = LE_READ_4(dl + 3); 2601 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2602 pos &= 0x3f; 2603 mfilt[pos / 32] |= (1 << (pos % 32)); 2604 } 2605 if_maddr_runlock(ifp); 2606 } else 2607 mfilt[0] = mfilt[1] = ~0; 2608 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2609 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2610 __func__, mfilt[0], mfilt[1]); 2611 } 2612 2613 static void 2614 ath_mode_init(struct ath_softc *sc) 2615 { 2616 struct ifnet *ifp = sc->sc_ifp; 2617 struct ath_hal *ah = sc->sc_ah; 2618 u_int32_t rfilt; 2619 2620 /* configure rx filter */ 2621 rfilt = ath_calcrxfilter(sc); 2622 ath_hal_setrxfilter(ah, rfilt); 2623 2624 /* configure operational mode */ 2625 ath_hal_setopmode(ah); 2626 2627 /* handle any link-level address change */ 2628 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2629 2630 /* calculate and install multicast filter */ 2631 ath_update_mcast(ifp); 2632 } 2633 2634 /* 2635 * Set the slot time based on the current setting. 2636 */ 2637 static void 2638 ath_setslottime(struct ath_softc *sc) 2639 { 2640 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2641 struct ath_hal *ah = sc->sc_ah; 2642 u_int usec; 2643 2644 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2645 usec = 13; 2646 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2647 usec = 21; 2648 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2649 /* honor short/long slot time only in 11g */ 2650 /* XXX shouldn't honor on pure g or turbo g channel */ 2651 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2652 usec = HAL_SLOT_TIME_9; 2653 else 2654 usec = HAL_SLOT_TIME_20; 2655 } else 2656 usec = HAL_SLOT_TIME_9; 2657 2658 DPRINTF(sc, ATH_DEBUG_RESET, 2659 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2660 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2661 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2662 2663 ath_hal_setslottime(ah, usec); 2664 sc->sc_updateslot = OK; 2665 } 2666 2667 /* 2668 * Callback from the 802.11 layer to update the 2669 * slot time based on the current setting. 2670 */ 2671 static void 2672 ath_updateslot(struct ifnet *ifp) 2673 { 2674 struct ath_softc *sc = ifp->if_softc; 2675 struct ieee80211com *ic = ifp->if_l2com; 2676 2677 /* 2678 * When not coordinating the BSS, change the hardware 2679 * immediately. For other operation we defer the change 2680 * until beacon updates have propagated to the stations. 2681 */ 2682 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2683 ic->ic_opmode == IEEE80211_M_MBSS) 2684 sc->sc_updateslot = UPDATE; 2685 else 2686 ath_setslottime(sc); 2687 } 2688 2689 /* 2690 * Setup a h/w transmit queue for beacons. 2691 */ 2692 static int 2693 ath_beaconq_setup(struct ath_hal *ah) 2694 { 2695 HAL_TXQ_INFO qi; 2696 2697 memset(&qi, 0, sizeof(qi)); 2698 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2699 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2700 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2701 /* NB: for dynamic turbo, don't enable any other interrupts */ 2702 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2703 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2704 } 2705 2706 /* 2707 * Setup the transmit queue parameters for the beacon queue. 2708 */ 2709 static int 2710 ath_beaconq_config(struct ath_softc *sc) 2711 { 2712 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2713 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2714 struct ath_hal *ah = sc->sc_ah; 2715 HAL_TXQ_INFO qi; 2716 2717 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2718 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2719 ic->ic_opmode == IEEE80211_M_MBSS) { 2720 /* 2721 * Always burst out beacon and CAB traffic. 2722 */ 2723 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2724 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2725 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2726 } else { 2727 struct wmeParams *wmep = 2728 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2729 /* 2730 * Adhoc mode; important thing is to use 2x cwmin. 2731 */ 2732 qi.tqi_aifs = wmep->wmep_aifsn; 2733 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2734 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2735 } 2736 2737 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2738 device_printf(sc->sc_dev, "unable to update parameters for " 2739 "beacon hardware queue!\n"); 2740 return 0; 2741 } else { 2742 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2743 return 1; 2744 } 2745 #undef ATH_EXPONENT_TO_VALUE 2746 } 2747 2748 /* 2749 * Allocate and setup an initial beacon frame. 2750 */ 2751 static int 2752 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2753 { 2754 struct ieee80211vap *vap = ni->ni_vap; 2755 struct ath_vap *avp = ATH_VAP(vap); 2756 struct ath_buf *bf; 2757 struct mbuf *m; 2758 int error; 2759 2760 bf = avp->av_bcbuf; 2761 DPRINTF(sc, ATH_DEBUG_NODE, "%s: bf_m=%p, bf_node=%p\n", 2762 __func__, bf->bf_m, bf->bf_node); 2763 if (bf->bf_m != NULL) { 2764 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2765 m_freem(bf->bf_m); 2766 bf->bf_m = NULL; 2767 } 2768 if (bf->bf_node != NULL) { 2769 ieee80211_free_node(bf->bf_node); 2770 bf->bf_node = NULL; 2771 } 2772 2773 /* 2774 * NB: the beacon data buffer must be 32-bit aligned; 2775 * we assume the mbuf routines will return us something 2776 * with this alignment (perhaps should assert). 2777 */ 2778 m = ieee80211_beacon_alloc(ni, &avp->av_boff); 2779 if (m == NULL) { 2780 device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__); 2781 sc->sc_stats.ast_be_nombuf++; 2782 return ENOMEM; 2783 } 2784 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 2785 bf->bf_segs, &bf->bf_nseg, 2786 BUS_DMA_NOWAIT); 2787 if (error != 0) { 2788 device_printf(sc->sc_dev, 2789 "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n", 2790 __func__, error); 2791 m_freem(m); 2792 return error; 2793 } 2794 2795 /* 2796 * Calculate a TSF adjustment factor required for staggered 2797 * beacons. Note that we assume the format of the beacon 2798 * frame leaves the tstamp field immediately following the 2799 * header. 2800 */ 2801 if (sc->sc_stagbeacons && avp->av_bslot > 0) { 2802 uint64_t tsfadjust; 2803 struct ieee80211_frame *wh; 2804 2805 /* 2806 * The beacon interval is in TU's; the TSF is in usecs. 2807 * We figure out how many TU's to add to align the timestamp 2808 * then convert to TSF units and handle byte swapping before 2809 * inserting it in the frame. The hardware will then add this 2810 * each time a beacon frame is sent. Note that we align vap's 2811 * 1..N and leave vap 0 untouched. This means vap 0 has a 2812 * timestamp in one beacon interval while the others get a 2813 * timstamp aligned to the next interval. 2814 */ 2815 tsfadjust = ni->ni_intval * 2816 (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF; 2817 tsfadjust = htole64(tsfadjust << 10); /* TU -> TSF */ 2818 2819 DPRINTF(sc, ATH_DEBUG_BEACON, 2820 "%s: %s beacons bslot %d intval %u tsfadjust %llu\n", 2821 __func__, sc->sc_stagbeacons ? "stagger" : "burst", 2822 avp->av_bslot, ni->ni_intval, 2823 (long long unsigned) le64toh(tsfadjust)); 2824 2825 wh = mtod(m, struct ieee80211_frame *); 2826 memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust)); 2827 } 2828 bf->bf_m = m; 2829 bf->bf_node = ieee80211_ref_node(ni); 2830 2831 return 0; 2832 } 2833 2834 /* 2835 * Setup the beacon frame for transmit. 2836 */ 2837 static void 2838 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2839 { 2840 #define USE_SHPREAMBLE(_ic) \ 2841 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2842 == IEEE80211_F_SHPREAMBLE) 2843 struct ieee80211_node *ni = bf->bf_node; 2844 struct ieee80211com *ic = ni->ni_ic; 2845 struct mbuf *m = bf->bf_m; 2846 struct ath_hal *ah = sc->sc_ah; 2847 struct ath_desc *ds; 2848 int flags, antenna; 2849 const HAL_RATE_TABLE *rt; 2850 u_int8_t rix, rate; 2851 2852 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n", 2853 __func__, m, m->m_len); 2854 2855 /* setup descriptors */ 2856 ds = bf->bf_desc; 2857 bf->bf_last = bf; 2858 bf->bf_lastds = ds; 2859 2860 flags = HAL_TXDESC_NOACK; 2861 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2862 ds->ds_link = bf->bf_daddr; /* self-linked */ 2863 flags |= HAL_TXDESC_VEOL; 2864 /* 2865 * Let hardware handle antenna switching. 2866 */ 2867 antenna = sc->sc_txantenna; 2868 } else { 2869 ds->ds_link = 0; 2870 /* 2871 * Switch antenna every 4 beacons. 2872 * XXX assumes two antenna 2873 */ 2874 if (sc->sc_txantenna != 0) 2875 antenna = sc->sc_txantenna; 2876 else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0) 2877 antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1); 2878 else 2879 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2880 } 2881 2882 KASSERT(bf->bf_nseg == 1, 2883 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 2884 ds->ds_data = bf->bf_segs[0].ds_addr; 2885 /* 2886 * Calculate rate code. 2887 * XXX everything at min xmit rate 2888 */ 2889 rix = 0; 2890 rt = sc->sc_currates; 2891 rate = rt->info[rix].rateCode; 2892 if (USE_SHPREAMBLE(ic)) 2893 rate |= rt->info[rix].shortPreamble; 2894 ath_hal_setuptxdesc(ah, ds 2895 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2896 , sizeof(struct ieee80211_frame)/* header length */ 2897 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2898 , ni->ni_txpower /* txpower XXX */ 2899 , rate, 1 /* series 0 rate/tries */ 2900 , HAL_TXKEYIX_INVALID /* no encryption */ 2901 , antenna /* antenna mode */ 2902 , flags /* no ack, veol for beacons */ 2903 , 0 /* rts/cts rate */ 2904 , 0 /* rts/cts duration */ 2905 ); 2906 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2907 ath_hal_filltxdesc(ah, ds 2908 , roundup(m->m_len, 4) /* buffer length */ 2909 , AH_TRUE /* first segment */ 2910 , AH_TRUE /* last segment */ 2911 , ds /* first descriptor */ 2912 ); 2913 #if 0 2914 ath_desc_swap(ds); 2915 #endif 2916 #undef USE_SHPREAMBLE 2917 } 2918 2919 static void 2920 ath_beacon_update(struct ieee80211vap *vap, int item) 2921 { 2922 struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff; 2923 2924 setbit(bo->bo_flags, item); 2925 } 2926 2927 /* 2928 * Append the contents of src to dst; both queues 2929 * are assumed to be locked. 2930 */ 2931 static void 2932 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2933 { 2934 2935 ATH_TXQ_LOCK_ASSERT(dst); 2936 ATH_TXQ_LOCK_ASSERT(src); 2937 2938 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2939 dst->axq_link = src->axq_link; 2940 src->axq_link = NULL; 2941 dst->axq_depth += src->axq_depth; 2942 dst->axq_aggr_depth += src->axq_aggr_depth; 2943 src->axq_depth = 0; 2944 src->axq_aggr_depth = 0; 2945 } 2946 2947 /* 2948 * Transmit a beacon frame at SWBA. Dynamic updates to the 2949 * frame contents are done as needed and the slot time is 2950 * also adjusted based on current state. 2951 */ 2952 static void 2953 ath_beacon_proc(void *arg, int pending) 2954 { 2955 struct ath_softc *sc = arg; 2956 struct ath_hal *ah = sc->sc_ah; 2957 struct ieee80211vap *vap; 2958 struct ath_buf *bf; 2959 int slot, otherant; 2960 uint32_t bfaddr; 2961 2962 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2963 __func__, pending); 2964 /* 2965 * Check if the previous beacon has gone out. If 2966 * not don't try to post another, skip this period 2967 * and wait for the next. Missed beacons indicate 2968 * a problem and should not occur. If we miss too 2969 * many consecutive beacons reset the device. 2970 */ 2971 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2972 sc->sc_bmisscount++; 2973 sc->sc_stats.ast_be_missed++; 2974 DPRINTF(sc, ATH_DEBUG_BEACON, 2975 "%s: missed %u consecutive beacons\n", 2976 __func__, sc->sc_bmisscount); 2977 if (sc->sc_bmisscount >= ath_bstuck_threshold) 2978 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 2979 return; 2980 } 2981 if (sc->sc_bmisscount != 0) { 2982 DPRINTF(sc, ATH_DEBUG_BEACON, 2983 "%s: resume beacon xmit after %u misses\n", 2984 __func__, sc->sc_bmisscount); 2985 sc->sc_bmisscount = 0; 2986 } 2987 2988 if (sc->sc_stagbeacons) { /* staggered beacons */ 2989 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2990 uint32_t tsftu; 2991 2992 tsftu = ath_hal_gettsf32(ah) >> 10; 2993 /* XXX lintval */ 2994 slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval; 2995 vap = sc->sc_bslot[(slot+1) % ATH_BCBUF]; 2996 bfaddr = 0; 2997 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 2998 bf = ath_beacon_generate(sc, vap); 2999 if (bf != NULL) 3000 bfaddr = bf->bf_daddr; 3001 } 3002 } else { /* burst'd beacons */ 3003 uint32_t *bflink = &bfaddr; 3004 3005 for (slot = 0; slot < ATH_BCBUF; slot++) { 3006 vap = sc->sc_bslot[slot]; 3007 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 3008 bf = ath_beacon_generate(sc, vap); 3009 if (bf != NULL) { 3010 *bflink = bf->bf_daddr; 3011 bflink = &bf->bf_desc->ds_link; 3012 } 3013 } 3014 } 3015 *bflink = 0; /* terminate list */ 3016 } 3017 3018 /* 3019 * Handle slot time change when a non-ERP station joins/leaves 3020 * an 11g network. The 802.11 layer notifies us via callback, 3021 * we mark updateslot, then wait one beacon before effecting 3022 * the change. This gives associated stations at least one 3023 * beacon interval to note the state change. 3024 */ 3025 /* XXX locking */ 3026 if (sc->sc_updateslot == UPDATE) { 3027 sc->sc_updateslot = COMMIT; /* commit next beacon */ 3028 sc->sc_slotupdate = slot; 3029 } else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot) 3030 ath_setslottime(sc); /* commit change to h/w */ 3031 3032 /* 3033 * Check recent per-antenna transmit statistics and flip 3034 * the default antenna if noticeably more frames went out 3035 * on the non-default antenna. 3036 * XXX assumes 2 anntenae 3037 */ 3038 if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) { 3039 otherant = sc->sc_defant & 1 ? 2 : 1; 3040 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 3041 ath_setdefantenna(sc, otherant); 3042 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 3043 } 3044 3045 if (bfaddr != 0) { 3046 /* 3047 * Stop any current dma and put the new frame on the queue. 3048 * This should never fail since we check above that no frames 3049 * are still pending on the queue. 3050 */ 3051 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 3052 DPRINTF(sc, ATH_DEBUG_ANY, 3053 "%s: beacon queue %u did not stop?\n", 3054 __func__, sc->sc_bhalq); 3055 } 3056 /* NB: cabq traffic should already be queued and primed */ 3057 ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr); 3058 ath_hal_txstart(ah, sc->sc_bhalq); 3059 3060 sc->sc_stats.ast_be_xmit++; 3061 } 3062 } 3063 3064 static struct ath_buf * 3065 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap) 3066 { 3067 struct ath_vap *avp = ATH_VAP(vap); 3068 struct ath_txq *cabq = sc->sc_cabq; 3069 struct ath_buf *bf; 3070 struct mbuf *m; 3071 int nmcastq, error; 3072 3073 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 3074 ("not running, state %d", vap->iv_state)); 3075 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3076 3077 /* 3078 * Update dynamic beacon contents. If this returns 3079 * non-zero then we need to remap the memory because 3080 * the beacon frame changed size (probably because 3081 * of the TIM bitmap). 3082 */ 3083 bf = avp->av_bcbuf; 3084 m = bf->bf_m; 3085 /* XXX lock mcastq? */ 3086 nmcastq = avp->av_mcastq.axq_depth; 3087 3088 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) { 3089 /* XXX too conservative? */ 3090 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3091 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3092 bf->bf_segs, &bf->bf_nseg, 3093 BUS_DMA_NOWAIT); 3094 if (error != 0) { 3095 if_printf(vap->iv_ifp, 3096 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3097 __func__, error); 3098 return NULL; 3099 } 3100 } 3101 if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) { 3102 DPRINTF(sc, ATH_DEBUG_BEACON, 3103 "%s: cabq did not drain, mcastq %u cabq %u\n", 3104 __func__, nmcastq, cabq->axq_depth); 3105 sc->sc_stats.ast_cabq_busy++; 3106 if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) { 3107 /* 3108 * CABQ traffic from a previous vap is still pending. 3109 * We must drain the q before this beacon frame goes 3110 * out as otherwise this vap's stations will get cab 3111 * frames from a different vap. 3112 * XXX could be slow causing us to miss DBA 3113 */ 3114 ath_tx_draintxq(sc, cabq); 3115 } 3116 } 3117 ath_beacon_setup(sc, bf); 3118 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3119 3120 /* 3121 * Enable the CAB queue before the beacon queue to 3122 * insure cab frames are triggered by this beacon. 3123 */ 3124 if (avp->av_boff.bo_tim[4] & 1) { 3125 struct ath_hal *ah = sc->sc_ah; 3126 3127 /* NB: only at DTIM */ 3128 ATH_TXQ_LOCK(cabq); 3129 ATH_TXQ_LOCK(&avp->av_mcastq); 3130 if (nmcastq) { 3131 struct ath_buf *bfm; 3132 3133 /* 3134 * Move frames from the s/w mcast q to the h/w cab q. 3135 * XXX MORE_DATA bit 3136 */ 3137 bfm = TAILQ_FIRST(&avp->av_mcastq.axq_q); 3138 if (cabq->axq_link != NULL) { 3139 *cabq->axq_link = bfm->bf_daddr; 3140 } else 3141 ath_hal_puttxbuf(ah, cabq->axq_qnum, 3142 bfm->bf_daddr); 3143 ath_txqmove(cabq, &avp->av_mcastq); 3144 3145 sc->sc_stats.ast_cabq_xmit += nmcastq; 3146 } 3147 /* NB: gated by beacon so safe to start here */ 3148 if (! TAILQ_EMPTY(&(cabq->axq_q))) 3149 ath_hal_txstart(ah, cabq->axq_qnum); 3150 ATH_TXQ_UNLOCK(&avp->av_mcastq); 3151 ATH_TXQ_UNLOCK(cabq); 3152 } 3153 return bf; 3154 } 3155 3156 static void 3157 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap) 3158 { 3159 struct ath_vap *avp = ATH_VAP(vap); 3160 struct ath_hal *ah = sc->sc_ah; 3161 struct ath_buf *bf; 3162 struct mbuf *m; 3163 int error; 3164 3165 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3166 3167 /* 3168 * Update dynamic beacon contents. If this returns 3169 * non-zero then we need to remap the memory because 3170 * the beacon frame changed size (probably because 3171 * of the TIM bitmap). 3172 */ 3173 bf = avp->av_bcbuf; 3174 m = bf->bf_m; 3175 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) { 3176 /* XXX too conservative? */ 3177 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3178 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3179 bf->bf_segs, &bf->bf_nseg, 3180 BUS_DMA_NOWAIT); 3181 if (error != 0) { 3182 if_printf(vap->iv_ifp, 3183 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3184 __func__, error); 3185 return; 3186 } 3187 } 3188 ath_beacon_setup(sc, bf); 3189 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3190 3191 /* NB: caller is known to have already stopped tx dma */ 3192 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 3193 ath_hal_txstart(ah, sc->sc_bhalq); 3194 } 3195 3196 /* 3197 * Reset the hardware, with no loss. 3198 * 3199 * This can't be used for a general case reset. 3200 */ 3201 static void 3202 ath_reset_proc(void *arg, int pending) 3203 { 3204 struct ath_softc *sc = arg; 3205 struct ifnet *ifp = sc->sc_ifp; 3206 3207 #if 0 3208 if_printf(ifp, "%s: resetting\n", __func__); 3209 #endif 3210 ath_reset(ifp, ATH_RESET_NOLOSS); 3211 } 3212 3213 /* 3214 * Reset the hardware after detecting beacons have stopped. 3215 */ 3216 static void 3217 ath_bstuck_proc(void *arg, int pending) 3218 { 3219 struct ath_softc *sc = arg; 3220 struct ifnet *ifp = sc->sc_ifp; 3221 uint32_t hangs = 0; 3222 3223 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3224 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 3225 3226 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3227 sc->sc_bmisscount); 3228 sc->sc_stats.ast_bstuck++; 3229 /* 3230 * This assumes that there's no simultaneous channel mode change 3231 * occuring. 3232 */ 3233 ath_reset(ifp, ATH_RESET_NOLOSS); 3234 } 3235 3236 /* 3237 * Reclaim beacon resources and return buffer to the pool. 3238 */ 3239 static void 3240 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf) 3241 { 3242 3243 DPRINTF(sc, ATH_DEBUG_NODE, "%s: free bf=%p, bf_m=%p, bf_node=%p\n", 3244 __func__, bf, bf->bf_m, bf->bf_node); 3245 if (bf->bf_m != NULL) { 3246 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3247 m_freem(bf->bf_m); 3248 bf->bf_m = NULL; 3249 } 3250 if (bf->bf_node != NULL) { 3251 ieee80211_free_node(bf->bf_node); 3252 bf->bf_node = NULL; 3253 } 3254 TAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list); 3255 } 3256 3257 /* 3258 * Reclaim beacon resources. 3259 */ 3260 static void 3261 ath_beacon_free(struct ath_softc *sc) 3262 { 3263 struct ath_buf *bf; 3264 3265 TAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 3266 DPRINTF(sc, ATH_DEBUG_NODE, 3267 "%s: free bf=%p, bf_m=%p, bf_node=%p\n", 3268 __func__, bf, bf->bf_m, bf->bf_node); 3269 if (bf->bf_m != NULL) { 3270 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3271 m_freem(bf->bf_m); 3272 bf->bf_m = NULL; 3273 } 3274 if (bf->bf_node != NULL) { 3275 ieee80211_free_node(bf->bf_node); 3276 bf->bf_node = NULL; 3277 } 3278 } 3279 } 3280 3281 /* 3282 * Configure the beacon and sleep timers. 3283 * 3284 * When operating as an AP this resets the TSF and sets 3285 * up the hardware to notify us when we need to issue beacons. 3286 * 3287 * When operating in station mode this sets up the beacon 3288 * timers according to the timestamp of the last received 3289 * beacon and the current TSF, configures PCF and DTIM 3290 * handling, programs the sleep registers so the hardware 3291 * will wakeup in time to receive beacons, and configures 3292 * the beacon miss handling so we'll receive a BMISS 3293 * interrupt when we stop seeing beacons from the AP 3294 * we've associated with. 3295 */ 3296 static void 3297 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap) 3298 { 3299 #define TSF_TO_TU(_h,_l) \ 3300 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 3301 #define FUDGE 2 3302 struct ath_hal *ah = sc->sc_ah; 3303 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3304 struct ieee80211_node *ni; 3305 u_int32_t nexttbtt, intval, tsftu; 3306 u_int64_t tsf; 3307 3308 if (vap == NULL) 3309 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 3310 ni = ieee80211_ref_node(vap->iv_bss); 3311 3312 /* extract tstamp from last beacon and convert to TU */ 3313 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 3314 LE_READ_4(ni->ni_tstamp.data)); 3315 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3316 ic->ic_opmode == IEEE80211_M_MBSS) { 3317 /* 3318 * For multi-bss ap/mesh support beacons are either staggered 3319 * evenly over N slots or burst together. For the former 3320 * arrange for the SWBA to be delivered for each slot. 3321 * Slots that are not occupied will generate nothing. 3322 */ 3323 /* NB: the beacon interval is kept internally in TU's */ 3324 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3325 if (sc->sc_stagbeacons) 3326 intval /= ATH_BCBUF; 3327 } else { 3328 /* NB: the beacon interval is kept internally in TU's */ 3329 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3330 } 3331 if (nexttbtt == 0) /* e.g. for ap mode */ 3332 nexttbtt = intval; 3333 else if (intval) /* NB: can be 0 for monitor mode */ 3334 nexttbtt = roundup(nexttbtt, intval); 3335 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 3336 __func__, nexttbtt, intval, ni->ni_intval); 3337 if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) { 3338 HAL_BEACON_STATE bs; 3339 int dtimperiod, dtimcount; 3340 int cfpperiod, cfpcount; 3341 3342 /* 3343 * Setup dtim and cfp parameters according to 3344 * last beacon we received (which may be none). 3345 */ 3346 dtimperiod = ni->ni_dtim_period; 3347 if (dtimperiod <= 0) /* NB: 0 if not known */ 3348 dtimperiod = 1; 3349 dtimcount = ni->ni_dtim_count; 3350 if (dtimcount >= dtimperiod) /* NB: sanity check */ 3351 dtimcount = 0; /* XXX? */ 3352 cfpperiod = 1; /* NB: no PCF support yet */ 3353 cfpcount = 0; 3354 /* 3355 * Pull nexttbtt forward to reflect the current 3356 * TSF and calculate dtim+cfp state for the result. 3357 */ 3358 tsf = ath_hal_gettsf64(ah); 3359 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3360 do { 3361 nexttbtt += intval; 3362 if (--dtimcount < 0) { 3363 dtimcount = dtimperiod - 1; 3364 if (--cfpcount < 0) 3365 cfpcount = cfpperiod - 1; 3366 } 3367 } while (nexttbtt < tsftu); 3368 memset(&bs, 0, sizeof(bs)); 3369 bs.bs_intval = intval; 3370 bs.bs_nexttbtt = nexttbtt; 3371 bs.bs_dtimperiod = dtimperiod*intval; 3372 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 3373 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 3374 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 3375 bs.bs_cfpmaxduration = 0; 3376 #if 0 3377 /* 3378 * The 802.11 layer records the offset to the DTIM 3379 * bitmap while receiving beacons; use it here to 3380 * enable h/w detection of our AID being marked in 3381 * the bitmap vector (to indicate frames for us are 3382 * pending at the AP). 3383 * XXX do DTIM handling in s/w to WAR old h/w bugs 3384 * XXX enable based on h/w rev for newer chips 3385 */ 3386 bs.bs_timoffset = ni->ni_timoff; 3387 #endif 3388 /* 3389 * Calculate the number of consecutive beacons to miss 3390 * before taking a BMISS interrupt. 3391 * Note that we clamp the result to at most 10 beacons. 3392 */ 3393 bs.bs_bmissthreshold = vap->iv_bmissthreshold; 3394 if (bs.bs_bmissthreshold > 10) 3395 bs.bs_bmissthreshold = 10; 3396 else if (bs.bs_bmissthreshold <= 0) 3397 bs.bs_bmissthreshold = 1; 3398 3399 /* 3400 * Calculate sleep duration. The configuration is 3401 * given in ms. We insure a multiple of the beacon 3402 * period is used. Also, if the sleep duration is 3403 * greater than the DTIM period then it makes senses 3404 * to make it a multiple of that. 3405 * 3406 * XXX fixed at 100ms 3407 */ 3408 bs.bs_sleepduration = 3409 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 3410 if (bs.bs_sleepduration > bs.bs_dtimperiod) 3411 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 3412 3413 DPRINTF(sc, ATH_DEBUG_BEACON, 3414 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 3415 , __func__ 3416 , tsf, tsftu 3417 , bs.bs_intval 3418 , bs.bs_nexttbtt 3419 , bs.bs_dtimperiod 3420 , bs.bs_nextdtim 3421 , bs.bs_bmissthreshold 3422 , bs.bs_sleepduration 3423 , bs.bs_cfpperiod 3424 , bs.bs_cfpmaxduration 3425 , bs.bs_cfpnext 3426 , bs.bs_timoffset 3427 ); 3428 ath_hal_intrset(ah, 0); 3429 ath_hal_beacontimers(ah, &bs); 3430 sc->sc_imask |= HAL_INT_BMISS; 3431 ath_hal_intrset(ah, sc->sc_imask); 3432 } else { 3433 ath_hal_intrset(ah, 0); 3434 if (nexttbtt == intval) 3435 intval |= HAL_BEACON_RESET_TSF; 3436 if (ic->ic_opmode == IEEE80211_M_IBSS) { 3437 /* 3438 * In IBSS mode enable the beacon timers but only 3439 * enable SWBA interrupts if we need to manually 3440 * prepare beacon frames. Otherwise we use a 3441 * self-linked tx descriptor and let the hardware 3442 * deal with things. 3443 */ 3444 intval |= HAL_BEACON_ENA; 3445 if (!sc->sc_hasveol) 3446 sc->sc_imask |= HAL_INT_SWBA; 3447 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 3448 /* 3449 * Pull nexttbtt forward to reflect 3450 * the current TSF. 3451 */ 3452 tsf = ath_hal_gettsf64(ah); 3453 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3454 do { 3455 nexttbtt += intval; 3456 } while (nexttbtt < tsftu); 3457 } 3458 ath_beaconq_config(sc); 3459 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3460 ic->ic_opmode == IEEE80211_M_MBSS) { 3461 /* 3462 * In AP/mesh mode we enable the beacon timers 3463 * and SWBA interrupts to prepare beacon frames. 3464 */ 3465 intval |= HAL_BEACON_ENA; 3466 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 3467 ath_beaconq_config(sc); 3468 } 3469 ath_hal_beaconinit(ah, nexttbtt, intval); 3470 sc->sc_bmisscount = 0; 3471 ath_hal_intrset(ah, sc->sc_imask); 3472 /* 3473 * When using a self-linked beacon descriptor in 3474 * ibss mode load it once here. 3475 */ 3476 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 3477 ath_beacon_start_adhoc(sc, vap); 3478 } 3479 sc->sc_syncbeacon = 0; 3480 ieee80211_free_node(ni); 3481 #undef FUDGE 3482 #undef TSF_TO_TU 3483 } 3484 3485 static void 3486 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3487 { 3488 bus_addr_t *paddr = (bus_addr_t*) arg; 3489 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3490 *paddr = segs->ds_addr; 3491 } 3492 3493 static int 3494 ath_descdma_setup(struct ath_softc *sc, 3495 struct ath_descdma *dd, ath_bufhead *head, 3496 const char *name, int nbuf, int ndesc) 3497 { 3498 #define DS2PHYS(_dd, _ds) \ 3499 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3500 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3501 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3502 struct ifnet *ifp = sc->sc_ifp; 3503 uint8_t *ds; 3504 struct ath_buf *bf; 3505 int i, bsize, error; 3506 int desc_len; 3507 3508 desc_len = sizeof(struct ath_desc); 3509 3510 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 3511 __func__, name, nbuf, ndesc); 3512 3513 dd->dd_name = name; 3514 dd->dd_desc_len = desc_len * nbuf * ndesc; 3515 3516 /* 3517 * Merlin work-around: 3518 * Descriptors that cross the 4KB boundary can't be used. 3519 * Assume one skipped descriptor per 4KB page. 3520 */ 3521 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3522 int numdescpage = 4096 / (desc_len * ndesc); 3523 dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096; 3524 } 3525 3526 /* 3527 * Setup DMA descriptor area. 3528 */ 3529 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3530 PAGE_SIZE, 0, /* alignment, bounds */ 3531 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3532 BUS_SPACE_MAXADDR, /* highaddr */ 3533 NULL, NULL, /* filter, filterarg */ 3534 dd->dd_desc_len, /* maxsize */ 3535 1, /* nsegments */ 3536 dd->dd_desc_len, /* maxsegsize */ 3537 BUS_DMA_ALLOCNOW, /* flags */ 3538 NULL, /* lockfunc */ 3539 NULL, /* lockarg */ 3540 &dd->dd_dmat); 3541 if (error != 0) { 3542 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3543 return error; 3544 } 3545 3546 /* allocate descriptors */ 3547 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 3548 if (error != 0) { 3549 if_printf(ifp, "unable to create dmamap for %s descriptors, " 3550 "error %u\n", dd->dd_name, error); 3551 goto fail0; 3552 } 3553 3554 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3555 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3556 &dd->dd_dmamap); 3557 if (error != 0) { 3558 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3559 "error %u\n", nbuf * ndesc, dd->dd_name, error); 3560 goto fail1; 3561 } 3562 3563 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3564 dd->dd_desc, dd->dd_desc_len, 3565 ath_load_cb, &dd->dd_desc_paddr, 3566 BUS_DMA_NOWAIT); 3567 if (error != 0) { 3568 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3569 dd->dd_name, error); 3570 goto fail2; 3571 } 3572 3573 ds = (uint8_t *) dd->dd_desc; 3574 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3575 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 3576 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 3577 3578 /* allocate rx buffers */ 3579 bsize = sizeof(struct ath_buf) * nbuf; 3580 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3581 if (bf == NULL) { 3582 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3583 dd->dd_name, bsize); 3584 goto fail3; 3585 } 3586 dd->dd_bufptr = bf; 3587 3588 TAILQ_INIT(head); 3589 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) { 3590 bf->bf_desc = (struct ath_desc *) ds; 3591 bf->bf_daddr = DS2PHYS(dd, ds); 3592 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3593 /* 3594 * Merlin WAR: Skip descriptor addresses which 3595 * cause 4KB boundary crossing along any point 3596 * in the descriptor. 3597 */ 3598 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3599 desc_len * ndesc)) { 3600 /* Start at the next page */ 3601 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3602 bf->bf_desc = (struct ath_desc *) ds; 3603 bf->bf_daddr = DS2PHYS(dd, ds); 3604 } 3605 } 3606 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3607 &bf->bf_dmamap); 3608 if (error != 0) { 3609 if_printf(ifp, "unable to create dmamap for %s " 3610 "buffer %u, error %u\n", dd->dd_name, i, error); 3611 ath_descdma_cleanup(sc, dd, head); 3612 return error; 3613 } 3614 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3615 TAILQ_INSERT_TAIL(head, bf, bf_list); 3616 } 3617 return 0; 3618 fail3: 3619 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3620 fail2: 3621 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3622 fail1: 3623 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3624 fail0: 3625 bus_dma_tag_destroy(dd->dd_dmat); 3626 memset(dd, 0, sizeof(*dd)); 3627 return error; 3628 #undef DS2PHYS 3629 #undef ATH_DESC_4KB_BOUND_CHECK 3630 } 3631 3632 static void 3633 ath_descdma_cleanup(struct ath_softc *sc, 3634 struct ath_descdma *dd, ath_bufhead *head) 3635 { 3636 struct ath_buf *bf; 3637 struct ieee80211_node *ni; 3638 3639 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3640 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3641 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3642 bus_dma_tag_destroy(dd->dd_dmat); 3643 3644 TAILQ_FOREACH(bf, head, bf_list) { 3645 if (bf->bf_m) { 3646 m_freem(bf->bf_m); 3647 bf->bf_m = NULL; 3648 } 3649 if (bf->bf_dmamap != NULL) { 3650 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3651 bf->bf_dmamap = NULL; 3652 } 3653 ni = bf->bf_node; 3654 bf->bf_node = NULL; 3655 if (ni != NULL) { 3656 /* 3657 * Reclaim node reference. 3658 */ 3659 ieee80211_free_node(ni); 3660 } 3661 } 3662 3663 TAILQ_INIT(head); 3664 free(dd->dd_bufptr, M_ATHDEV); 3665 memset(dd, 0, sizeof(*dd)); 3666 } 3667 3668 static int 3669 ath_desc_alloc(struct ath_softc *sc) 3670 { 3671 int error; 3672 3673 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 3674 "rx", ath_rxbuf, 1); 3675 if (error != 0) 3676 return error; 3677 3678 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3679 "tx", ath_txbuf, ATH_TXDESC); 3680 if (error != 0) { 3681 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3682 return error; 3683 } 3684 3685 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3686 "beacon", ATH_BCBUF, 1); 3687 if (error != 0) { 3688 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3689 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3690 return error; 3691 } 3692 return 0; 3693 } 3694 3695 static void 3696 ath_desc_free(struct ath_softc *sc) 3697 { 3698 3699 if (sc->sc_bdma.dd_desc_len != 0) 3700 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3701 if (sc->sc_txdma.dd_desc_len != 0) 3702 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3703 if (sc->sc_rxdma.dd_desc_len != 0) 3704 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3705 } 3706 3707 static struct ieee80211_node * 3708 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3709 { 3710 struct ieee80211com *ic = vap->iv_ic; 3711 struct ath_softc *sc = ic->ic_ifp->if_softc; 3712 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3713 struct ath_node *an; 3714 3715 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3716 if (an == NULL) { 3717 /* XXX stat+msg */ 3718 return NULL; 3719 } 3720 ath_rate_node_init(sc, an); 3721 3722 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3723 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3724 device_get_nameunit(sc->sc_dev), an); 3725 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3726 3727 /* XXX setup ath_tid */ 3728 ath_tx_tid_init(sc, an); 3729 3730 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3731 return &an->an_node; 3732 } 3733 3734 static void 3735 ath_node_cleanup(struct ieee80211_node *ni) 3736 { 3737 struct ieee80211com *ic = ni->ni_ic; 3738 struct ath_softc *sc = ic->ic_ifp->if_softc; 3739 3740 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3741 ath_tx_node_flush(sc, ATH_NODE(ni)); 3742 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3743 sc->sc_node_cleanup(ni); 3744 } 3745 3746 static void 3747 ath_node_free(struct ieee80211_node *ni) 3748 { 3749 struct ieee80211com *ic = ni->ni_ic; 3750 struct ath_softc *sc = ic->ic_ifp->if_softc; 3751 3752 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3753 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3754 sc->sc_node_free(ni); 3755 } 3756 3757 static void 3758 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3759 { 3760 struct ieee80211com *ic = ni->ni_ic; 3761 struct ath_softc *sc = ic->ic_ifp->if_softc; 3762 struct ath_hal *ah = sc->sc_ah; 3763 3764 *rssi = ic->ic_node_getrssi(ni); 3765 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3766 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3767 else 3768 *noise = -95; /* nominally correct */ 3769 } 3770 3771 static int 3772 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 3773 { 3774 struct ath_hal *ah = sc->sc_ah; 3775 int error; 3776 struct mbuf *m; 3777 struct ath_desc *ds; 3778 3779 m = bf->bf_m; 3780 if (m == NULL) { 3781 /* 3782 * NB: by assigning a page to the rx dma buffer we 3783 * implicitly satisfy the Atheros requirement that 3784 * this buffer be cache-line-aligned and sized to be 3785 * multiple of the cache line size. Not doing this 3786 * causes weird stuff to happen (for the 5210 at least). 3787 */ 3788 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 3789 if (m == NULL) { 3790 DPRINTF(sc, ATH_DEBUG_ANY, 3791 "%s: no mbuf/cluster\n", __func__); 3792 sc->sc_stats.ast_rx_nombuf++; 3793 return ENOMEM; 3794 } 3795 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 3796 3797 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, 3798 bf->bf_dmamap, m, 3799 bf->bf_segs, &bf->bf_nseg, 3800 BUS_DMA_NOWAIT); 3801 if (error != 0) { 3802 DPRINTF(sc, ATH_DEBUG_ANY, 3803 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n", 3804 __func__, error); 3805 sc->sc_stats.ast_rx_busdma++; 3806 m_freem(m); 3807 return error; 3808 } 3809 KASSERT(bf->bf_nseg == 1, 3810 ("multi-segment packet; nseg %u", bf->bf_nseg)); 3811 bf->bf_m = m; 3812 } 3813 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 3814 3815 /* 3816 * Setup descriptors. For receive we always terminate 3817 * the descriptor list with a self-linked entry so we'll 3818 * not get overrun under high load (as can happen with a 3819 * 5212 when ANI processing enables PHY error frames). 3820 * 3821 * To insure the last descriptor is self-linked we create 3822 * each descriptor as self-linked and add it to the end. As 3823 * each additional descriptor is added the previous self-linked 3824 * entry is ``fixed'' naturally. This should be safe even 3825 * if DMA is happening. When processing RX interrupts we 3826 * never remove/process the last, self-linked, entry on the 3827 * descriptor list. This insures the hardware always has 3828 * someplace to write a new frame. 3829 */ 3830 /* 3831 * 11N: we can no longer afford to self link the last descriptor. 3832 * MAC acknowledges BA status as long as it copies frames to host 3833 * buffer (or rx fifo). This can incorrectly acknowledge packets 3834 * to a sender if last desc is self-linked. 3835 */ 3836 ds = bf->bf_desc; 3837 if (sc->sc_rxslink) 3838 ds->ds_link = bf->bf_daddr; /* link to self */ 3839 else 3840 ds->ds_link = 0; /* terminate the list */ 3841 ds->ds_data = bf->bf_segs[0].ds_addr; 3842 ath_hal_setuprxdesc(ah, ds 3843 , m->m_len /* buffer size */ 3844 , 0 3845 ); 3846 3847 if (sc->sc_rxlink != NULL) 3848 *sc->sc_rxlink = bf->bf_daddr; 3849 sc->sc_rxlink = &ds->ds_link; 3850 return 0; 3851 } 3852 3853 /* 3854 * Extend 15-bit time stamp from rx descriptor to 3855 * a full 64-bit TSF using the specified TSF. 3856 */ 3857 static __inline u_int64_t 3858 ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf) 3859 { 3860 if ((tsf & 0x7fff) < rstamp) 3861 tsf -= 0x8000; 3862 3863 return ((tsf &~ 0x7fff) | rstamp); 3864 } 3865 3866 /* 3867 * Extend 32-bit time stamp from rx descriptor to 3868 * a full 64-bit TSF using the specified TSF. 3869 */ 3870 static __inline u_int64_t 3871 ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf) 3872 { 3873 u_int32_t tsf_low = tsf & 0xffffffff; 3874 u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp; 3875 3876 if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000)) 3877 tsf64 -= 0x100000000ULL; 3878 3879 if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000)) 3880 tsf64 += 0x100000000ULL; 3881 3882 return tsf64; 3883 } 3884 3885 /* 3886 * Extend the TSF from the RX descriptor to a full 64 bit TSF. 3887 * Earlier hardware versions only wrote the low 15 bits of the 3888 * TSF into the RX descriptor; later versions (AR5416 and up) 3889 * include the 32 bit TSF value. 3890 */ 3891 static __inline u_int64_t 3892 ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf) 3893 { 3894 if (sc->sc_rxtsf32) 3895 return ath_extend_tsf32(rstamp, tsf); 3896 else 3897 return ath_extend_tsf15(rstamp, tsf); 3898 } 3899 3900 /* 3901 * Intercept management frames to collect beacon rssi data 3902 * and to do ibss merges. 3903 */ 3904 static void 3905 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 3906 int subtype, int rssi, int nf) 3907 { 3908 struct ieee80211vap *vap = ni->ni_vap; 3909 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 3910 3911 /* 3912 * Call up first so subsequent work can use information 3913 * potentially stored in the node (e.g. for ibss merge). 3914 */ 3915 ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf); 3916 switch (subtype) { 3917 case IEEE80211_FC0_SUBTYPE_BEACON: 3918 /* update rssi statistics for use by the hal */ 3919 /* XXX unlocked check against vap->iv_bss? */ 3920 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 3921 if (sc->sc_syncbeacon && 3922 ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) { 3923 /* 3924 * Resync beacon timers using the tsf of the beacon 3925 * frame we just received. 3926 */ 3927 ath_beacon_config(sc, vap); 3928 } 3929 /* fall thru... */ 3930 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 3931 if (vap->iv_opmode == IEEE80211_M_IBSS && 3932 vap->iv_state == IEEE80211_S_RUN) { 3933 uint32_t rstamp = sc->sc_lastrs->rs_tstamp; 3934 uint64_t tsf = ath_extend_tsf(sc, rstamp, 3935 ath_hal_gettsf64(sc->sc_ah)); 3936 /* 3937 * Handle ibss merge as needed; check the tsf on the 3938 * frame before attempting the merge. The 802.11 spec 3939 * says the station should change it's bssid to match 3940 * the oldest station with the same ssid, where oldest 3941 * is determined by the tsf. Note that hardware 3942 * reconfiguration happens through callback to 3943 * ath_newstate as the state machine will go from 3944 * RUN -> RUN when this happens. 3945 */ 3946 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 3947 DPRINTF(sc, ATH_DEBUG_STATE, 3948 "ibss merge, rstamp %u tsf %ju " 3949 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 3950 (uintmax_t)ni->ni_tstamp.tsf); 3951 (void) ieee80211_ibss_merge(ni); 3952 } 3953 } 3954 break; 3955 } 3956 } 3957 3958 /* 3959 * Set the default antenna. 3960 */ 3961 static void 3962 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3963 { 3964 struct ath_hal *ah = sc->sc_ah; 3965 3966 /* XXX block beacon interrupts */ 3967 ath_hal_setdefantenna(ah, antenna); 3968 if (sc->sc_defant != antenna) 3969 sc->sc_stats.ast_ant_defswitch++; 3970 sc->sc_defant = antenna; 3971 sc->sc_rxotherant = 0; 3972 } 3973 3974 static void 3975 ath_rx_tap(struct ifnet *ifp, struct mbuf *m, 3976 const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf) 3977 { 3978 #define CHAN_HT20 htole32(IEEE80211_CHAN_HT20) 3979 #define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U) 3980 #define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D) 3981 #define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D) 3982 struct ath_softc *sc = ifp->if_softc; 3983 const HAL_RATE_TABLE *rt; 3984 uint8_t rix; 3985 3986 rt = sc->sc_currates; 3987 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3988 rix = rt->rateCodeToIndex[rs->rs_rate]; 3989 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 3990 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 3991 #ifdef AH_SUPPORT_AR5416 3992 sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT; 3993 if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */ 3994 struct ieee80211com *ic = ifp->if_l2com; 3995 3996 if ((rs->rs_flags & HAL_RX_2040) == 0) 3997 sc->sc_rx_th.wr_chan_flags |= CHAN_HT20; 3998 else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan)) 3999 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U; 4000 else 4001 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D; 4002 if ((rs->rs_flags & HAL_RX_GI) == 0) 4003 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; 4004 } 4005 #endif 4006 sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf)); 4007 if (rs->rs_status & HAL_RXERR_CRC) 4008 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 4009 /* XXX propagate other error flags from descriptor */ 4010 sc->sc_rx_th.wr_antnoise = nf; 4011 sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi; 4012 sc->sc_rx_th.wr_antenna = rs->rs_antenna; 4013 #undef CHAN_HT 4014 #undef CHAN_HT20 4015 #undef CHAN_HT40U 4016 #undef CHAN_HT40D 4017 } 4018 4019 static void 4020 ath_handle_micerror(struct ieee80211com *ic, 4021 struct ieee80211_frame *wh, int keyix) 4022 { 4023 struct ieee80211_node *ni; 4024 4025 /* XXX recheck MIC to deal w/ chips that lie */ 4026 /* XXX discard MIC errors on !data frames */ 4027 ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh); 4028 if (ni != NULL) { 4029 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix); 4030 ieee80211_free_node(ni); 4031 } 4032 } 4033 4034 /* 4035 * Only run the RX proc if it's not already running. 4036 * Since this may get run as part of the reset/flush path, 4037 * the task can't clash with an existing, running tasklet. 4038 */ 4039 static void 4040 ath_rx_tasklet(void *arg, int npending) 4041 { 4042 struct ath_softc *sc = arg; 4043 4044 CTR1(ATH_KTR_INTR, "ath_rx_proc: pending=%d", npending); 4045 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 4046 ATH_PCU_LOCK(sc); 4047 if (sc->sc_inreset_cnt > 0) { 4048 device_printf(sc->sc_dev, 4049 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4050 ATH_PCU_UNLOCK(sc); 4051 return; 4052 } 4053 ATH_PCU_UNLOCK(sc); 4054 ath_rx_proc(sc, 1); 4055 } 4056 4057 static void 4058 ath_rx_proc(struct ath_softc *sc, int resched) 4059 { 4060 #define PA2DESC(_sc, _pa) \ 4061 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 4062 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 4063 struct ath_buf *bf; 4064 struct ifnet *ifp = sc->sc_ifp; 4065 struct ieee80211com *ic = ifp->if_l2com; 4066 struct ath_hal *ah = sc->sc_ah; 4067 struct ath_desc *ds; 4068 struct ath_rx_status *rs; 4069 struct mbuf *m; 4070 struct ieee80211_node *ni; 4071 int len, type, ngood; 4072 HAL_STATUS status; 4073 int16_t nf; 4074 u_int64_t tsf, rstamp; 4075 int npkts = 0; 4076 4077 /* XXX we must not hold the ATH_LOCK here */ 4078 ATH_UNLOCK_ASSERT(sc); 4079 ATH_PCU_UNLOCK_ASSERT(sc); 4080 4081 ATH_PCU_LOCK(sc); 4082 sc->sc_rxproc_cnt++; 4083 ATH_PCU_UNLOCK(sc); 4084 4085 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__); 4086 ngood = 0; 4087 nf = ath_hal_getchannoise(ah, sc->sc_curchan); 4088 sc->sc_stats.ast_rx_noise = nf; 4089 tsf = ath_hal_gettsf64(ah); 4090 do { 4091 bf = TAILQ_FIRST(&sc->sc_rxbuf); 4092 if (sc->sc_rxslink && bf == NULL) { /* NB: shouldn't happen */ 4093 if_printf(ifp, "%s: no buffer!\n", __func__); 4094 break; 4095 } else if (bf == NULL) { 4096 /* 4097 * End of List: 4098 * this can happen for non-self-linked RX chains 4099 */ 4100 sc->sc_stats.ast_rx_hitqueueend++; 4101 break; 4102 } 4103 m = bf->bf_m; 4104 if (m == NULL) { /* NB: shouldn't happen */ 4105 /* 4106 * If mbuf allocation failed previously there 4107 * will be no mbuf; try again to re-populate it. 4108 */ 4109 /* XXX make debug msg */ 4110 if_printf(ifp, "%s: no mbuf!\n", __func__); 4111 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 4112 goto rx_next; 4113 } 4114 ds = bf->bf_desc; 4115 if (ds->ds_link == bf->bf_daddr) { 4116 /* NB: never process the self-linked entry at the end */ 4117 sc->sc_stats.ast_rx_hitqueueend++; 4118 break; 4119 } 4120 /* XXX sync descriptor memory */ 4121 /* 4122 * Must provide the virtual address of the current 4123 * descriptor, the physical address, and the virtual 4124 * address of the next descriptor in the h/w chain. 4125 * This allows the HAL to look ahead to see if the 4126 * hardware is done with a descriptor by checking the 4127 * done bit in the following descriptor and the address 4128 * of the current descriptor the DMA engine is working 4129 * on. All this is necessary because of our use of 4130 * a self-linked list to avoid rx overruns. 4131 */ 4132 rs = &bf->bf_status.ds_rxstat; 4133 status = ath_hal_rxprocdesc(ah, ds, 4134 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 4135 #ifdef ATH_DEBUG 4136 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 4137 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 4138 #endif 4139 if (status == HAL_EINPROGRESS) 4140 break; 4141 4142 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 4143 npkts++; 4144 4145 /* 4146 * Calculate the correct 64 bit TSF given 4147 * the TSF64 register value and rs_tstamp. 4148 */ 4149 rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf); 4150 4151 /* These aren't specifically errors */ 4152 #ifdef AH_SUPPORT_AR5416 4153 if (rs->rs_flags & HAL_RX_GI) 4154 sc->sc_stats.ast_rx_halfgi++; 4155 if (rs->rs_flags & HAL_RX_2040) 4156 sc->sc_stats.ast_rx_2040++; 4157 if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE) 4158 sc->sc_stats.ast_rx_pre_crc_err++; 4159 if (rs->rs_flags & HAL_RX_DELIM_CRC_POST) 4160 sc->sc_stats.ast_rx_post_crc_err++; 4161 if (rs->rs_flags & HAL_RX_DECRYPT_BUSY) 4162 sc->sc_stats.ast_rx_decrypt_busy_err++; 4163 if (rs->rs_flags & HAL_RX_HI_RX_CHAIN) 4164 sc->sc_stats.ast_rx_hi_rx_chain++; 4165 #endif /* AH_SUPPORT_AR5416 */ 4166 4167 if (rs->rs_status != 0) { 4168 if (rs->rs_status & HAL_RXERR_CRC) 4169 sc->sc_stats.ast_rx_crcerr++; 4170 if (rs->rs_status & HAL_RXERR_FIFO) 4171 sc->sc_stats.ast_rx_fifoerr++; 4172 if (rs->rs_status & HAL_RXERR_PHY) { 4173 sc->sc_stats.ast_rx_phyerr++; 4174 /* Process DFS radar events */ 4175 if ((rs->rs_phyerr == HAL_PHYERR_RADAR) || 4176 (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) { 4177 /* Since we're touching the frame data, sync it */ 4178 bus_dmamap_sync(sc->sc_dmat, 4179 bf->bf_dmamap, 4180 BUS_DMASYNC_POSTREAD); 4181 /* Now pass it to the radar processing code */ 4182 ath_dfs_process_phy_err(sc, mtod(m, char *), rstamp, rs); 4183 } 4184 4185 /* Be suitably paranoid about receiving phy errors out of the stats array bounds */ 4186 if (rs->rs_phyerr < 64) 4187 sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++; 4188 goto rx_error; /* NB: don't count in ierrors */ 4189 } 4190 if (rs->rs_status & HAL_RXERR_DECRYPT) { 4191 /* 4192 * Decrypt error. If the error occurred 4193 * because there was no hardware key, then 4194 * let the frame through so the upper layers 4195 * can process it. This is necessary for 5210 4196 * parts which have no way to setup a ``clear'' 4197 * key cache entry. 4198 * 4199 * XXX do key cache faulting 4200 */ 4201 if (rs->rs_keyix == HAL_RXKEYIX_INVALID) 4202 goto rx_accept; 4203 sc->sc_stats.ast_rx_badcrypt++; 4204 } 4205 if (rs->rs_status & HAL_RXERR_MIC) { 4206 sc->sc_stats.ast_rx_badmic++; 4207 /* 4208 * Do minimal work required to hand off 4209 * the 802.11 header for notification. 4210 */ 4211 /* XXX frag's and qos frames */ 4212 len = rs->rs_datalen; 4213 if (len >= sizeof (struct ieee80211_frame)) { 4214 bus_dmamap_sync(sc->sc_dmat, 4215 bf->bf_dmamap, 4216 BUS_DMASYNC_POSTREAD); 4217 ath_handle_micerror(ic, 4218 mtod(m, struct ieee80211_frame *), 4219 sc->sc_splitmic ? 4220 rs->rs_keyix-32 : rs->rs_keyix); 4221 } 4222 } 4223 ifp->if_ierrors++; 4224 rx_error: 4225 /* 4226 * Cleanup any pending partial frame. 4227 */ 4228 if (sc->sc_rxpending != NULL) { 4229 m_freem(sc->sc_rxpending); 4230 sc->sc_rxpending = NULL; 4231 } 4232 /* 4233 * When a tap is present pass error frames 4234 * that have been requested. By default we 4235 * pass decrypt+mic errors but others may be 4236 * interesting (e.g. crc). 4237 */ 4238 if (ieee80211_radiotap_active(ic) && 4239 (rs->rs_status & sc->sc_monpass)) { 4240 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4241 BUS_DMASYNC_POSTREAD); 4242 /* NB: bpf needs the mbuf length setup */ 4243 len = rs->rs_datalen; 4244 m->m_pkthdr.len = m->m_len = len; 4245 bf->bf_m = NULL; 4246 ath_rx_tap(ifp, m, rs, rstamp, nf); 4247 ieee80211_radiotap_rx_all(ic, m); 4248 m_freem(m); 4249 } 4250 /* XXX pass MIC errors up for s/w reclaculation */ 4251 goto rx_next; 4252 } 4253 rx_accept: 4254 /* 4255 * Sync and unmap the frame. At this point we're 4256 * committed to passing the mbuf somewhere so clear 4257 * bf_m; this means a new mbuf must be allocated 4258 * when the rx descriptor is setup again to receive 4259 * another frame. 4260 */ 4261 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4262 BUS_DMASYNC_POSTREAD); 4263 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4264 bf->bf_m = NULL; 4265 4266 len = rs->rs_datalen; 4267 m->m_len = len; 4268 4269 if (rs->rs_more) { 4270 /* 4271 * Frame spans multiple descriptors; save 4272 * it for the next completed descriptor, it 4273 * will be used to construct a jumbogram. 4274 */ 4275 if (sc->sc_rxpending != NULL) { 4276 /* NB: max frame size is currently 2 clusters */ 4277 sc->sc_stats.ast_rx_toobig++; 4278 m_freem(sc->sc_rxpending); 4279 } 4280 m->m_pkthdr.rcvif = ifp; 4281 m->m_pkthdr.len = len; 4282 sc->sc_rxpending = m; 4283 goto rx_next; 4284 } else if (sc->sc_rxpending != NULL) { 4285 /* 4286 * This is the second part of a jumbogram, 4287 * chain it to the first mbuf, adjust the 4288 * frame length, and clear the rxpending state. 4289 */ 4290 sc->sc_rxpending->m_next = m; 4291 sc->sc_rxpending->m_pkthdr.len += len; 4292 m = sc->sc_rxpending; 4293 sc->sc_rxpending = NULL; 4294 } else { 4295 /* 4296 * Normal single-descriptor receive; setup 4297 * the rcvif and packet length. 4298 */ 4299 m->m_pkthdr.rcvif = ifp; 4300 m->m_pkthdr.len = len; 4301 } 4302 4303 /* 4304 * Validate rs->rs_antenna. 4305 * 4306 * Some users w/ AR9285 NICs have reported crashes 4307 * here because rs_antenna field is bogusly large. 4308 * Let's enforce the maximum antenna limit of 8 4309 * (and it shouldn't be hard coded, but that's a 4310 * separate problem) and if there's an issue, print 4311 * out an error and adjust rs_antenna to something 4312 * sensible. 4313 * 4314 * This code should be removed once the actual 4315 * root cause of the issue has been identified. 4316 * For example, it may be that the rs_antenna 4317 * field is only valid for the lsat frame of 4318 * an aggregate and it just happens that it is 4319 * "mostly" right. (This is a general statement - 4320 * the majority of the statistics are only valid 4321 * for the last frame in an aggregate. 4322 */ 4323 if (rs->rs_antenna > 7) { 4324 device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n", 4325 __func__, rs->rs_antenna); 4326 #ifdef ATH_DEBUG 4327 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 4328 #endif /* ATH_DEBUG */ 4329 rs->rs_antenna = 0; /* XXX better than nothing */ 4330 } 4331 4332 ifp->if_ipackets++; 4333 sc->sc_stats.ast_ant_rx[rs->rs_antenna]++; 4334 4335 /* 4336 * Populate the rx status block. When there are bpf 4337 * listeners we do the additional work to provide 4338 * complete status. Otherwise we fill in only the 4339 * material required by ieee80211_input. Note that 4340 * noise setting is filled in above. 4341 */ 4342 if (ieee80211_radiotap_active(ic)) 4343 ath_rx_tap(ifp, m, rs, rstamp, nf); 4344 4345 /* 4346 * From this point on we assume the frame is at least 4347 * as large as ieee80211_frame_min; verify that. 4348 */ 4349 if (len < IEEE80211_MIN_LEN) { 4350 if (!ieee80211_radiotap_active(ic)) { 4351 DPRINTF(sc, ATH_DEBUG_RECV, 4352 "%s: short packet %d\n", __func__, len); 4353 sc->sc_stats.ast_rx_tooshort++; 4354 } else { 4355 /* NB: in particular this captures ack's */ 4356 ieee80211_radiotap_rx_all(ic, m); 4357 } 4358 m_freem(m); 4359 goto rx_next; 4360 } 4361 4362 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 4363 const HAL_RATE_TABLE *rt = sc->sc_currates; 4364 uint8_t rix = rt->rateCodeToIndex[rs->rs_rate]; 4365 4366 ieee80211_dump_pkt(ic, mtod(m, caddr_t), len, 4367 sc->sc_hwmap[rix].ieeerate, rs->rs_rssi); 4368 } 4369 4370 m_adj(m, -IEEE80211_CRC_LEN); 4371 4372 /* 4373 * Locate the node for sender, track state, and then 4374 * pass the (referenced) node up to the 802.11 layer 4375 * for its use. 4376 */ 4377 ni = ieee80211_find_rxnode_withkey(ic, 4378 mtod(m, const struct ieee80211_frame_min *), 4379 rs->rs_keyix == HAL_RXKEYIX_INVALID ? 4380 IEEE80211_KEYIX_NONE : rs->rs_keyix); 4381 sc->sc_lastrs = rs; 4382 4383 #ifdef AH_SUPPORT_AR5416 4384 if (rs->rs_isaggr) 4385 sc->sc_stats.ast_rx_agg++; 4386 #endif /* AH_SUPPORT_AR5416 */ 4387 4388 if (ni != NULL) { 4389 /* 4390 * Only punt packets for ampdu reorder processing for 4391 * 11n nodes; net80211 enforces that M_AMPDU is only 4392 * set for 11n nodes. 4393 */ 4394 if (ni->ni_flags & IEEE80211_NODE_HT) 4395 m->m_flags |= M_AMPDU; 4396 4397 /* 4398 * Sending station is known, dispatch directly. 4399 */ 4400 type = ieee80211_input(ni, m, rs->rs_rssi, nf); 4401 ieee80211_free_node(ni); 4402 /* 4403 * Arrange to update the last rx timestamp only for 4404 * frames from our ap when operating in station mode. 4405 * This assumes the rx key is always setup when 4406 * associated. 4407 */ 4408 if (ic->ic_opmode == IEEE80211_M_STA && 4409 rs->rs_keyix != HAL_RXKEYIX_INVALID) 4410 ngood++; 4411 } else { 4412 type = ieee80211_input_all(ic, m, rs->rs_rssi, nf); 4413 } 4414 /* 4415 * Track rx rssi and do any rx antenna management. 4416 */ 4417 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi); 4418 if (sc->sc_diversity) { 4419 /* 4420 * When using fast diversity, change the default rx 4421 * antenna if diversity chooses the other antenna 3 4422 * times in a row. 4423 */ 4424 if (sc->sc_defant != rs->rs_antenna) { 4425 if (++sc->sc_rxotherant >= 3) 4426 ath_setdefantenna(sc, rs->rs_antenna); 4427 } else 4428 sc->sc_rxotherant = 0; 4429 } 4430 4431 /* Newer school diversity - kite specific for now */ 4432 /* XXX perhaps migrate the normal diversity code to this? */ 4433 if ((ah)->ah_rxAntCombDiversity) 4434 (*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz); 4435 4436 if (sc->sc_softled) { 4437 /* 4438 * Blink for any data frame. Otherwise do a 4439 * heartbeat-style blink when idle. The latter 4440 * is mainly for station mode where we depend on 4441 * periodic beacon frames to trigger the poll event. 4442 */ 4443 if (type == IEEE80211_FC0_TYPE_DATA) { 4444 const HAL_RATE_TABLE *rt = sc->sc_currates; 4445 ath_led_event(sc, 4446 rt->rateCodeToIndex[rs->rs_rate]); 4447 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 4448 ath_led_event(sc, 0); 4449 } 4450 rx_next: 4451 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 4452 } while (ath_rxbuf_init(sc, bf) == 0); 4453 4454 /* rx signal state monitoring */ 4455 ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan); 4456 if (ngood) 4457 sc->sc_lastrx = tsf; 4458 4459 CTR2(ATH_KTR_INTR, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood); 4460 /* Queue DFS tasklet if needed */ 4461 if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan)) 4462 taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask); 4463 4464 /* 4465 * Now that all the RX frames were handled that 4466 * need to be handled, kick the PCU if there's 4467 * been an RXEOL condition. 4468 */ 4469 ATH_PCU_LOCK(sc); 4470 if (resched && sc->sc_kickpcu) { 4471 CTR0(ATH_KTR_ERR, "ath_rx_proc: kickpcu"); 4472 device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n", 4473 __func__, npkts); 4474 4475 /* XXX rxslink? */ 4476 /* 4477 * XXX can we hold the PCU lock here? 4478 * Are there any net80211 buffer calls involved? 4479 */ 4480 bf = TAILQ_FIRST(&sc->sc_rxbuf); 4481 ath_hal_putrxbuf(ah, bf->bf_daddr); 4482 ath_hal_rxena(ah); /* enable recv descriptors */ 4483 ath_mode_init(sc); /* set filters, etc. */ 4484 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4485 4486 ath_hal_intrset(ah, sc->sc_imask); 4487 sc->sc_kickpcu = 0; 4488 } 4489 ATH_PCU_UNLOCK(sc); 4490 4491 /* XXX check this inside of IF_LOCK? */ 4492 if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) { 4493 #ifdef IEEE80211_SUPPORT_SUPERG 4494 ieee80211_ff_age_all(ic, 100); 4495 #endif 4496 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 4497 ath_start(ifp); 4498 } 4499 #undef PA2DESC 4500 4501 ATH_PCU_LOCK(sc); 4502 sc->sc_rxproc_cnt--; 4503 ATH_PCU_UNLOCK(sc); 4504 } 4505 4506 static void 4507 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4508 { 4509 txq->axq_qnum = qnum; 4510 txq->axq_ac = 0; 4511 txq->axq_depth = 0; 4512 txq->axq_aggr_depth = 0; 4513 txq->axq_intrcnt = 0; 4514 txq->axq_link = NULL; 4515 txq->axq_softc = sc; 4516 TAILQ_INIT(&txq->axq_q); 4517 TAILQ_INIT(&txq->axq_tidq); 4518 ATH_TXQ_LOCK_INIT(sc, txq); 4519 } 4520 4521 /* 4522 * Setup a h/w transmit queue. 4523 */ 4524 static struct ath_txq * 4525 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4526 { 4527 #define N(a) (sizeof(a)/sizeof(a[0])) 4528 struct ath_hal *ah = sc->sc_ah; 4529 HAL_TXQ_INFO qi; 4530 int qnum; 4531 4532 memset(&qi, 0, sizeof(qi)); 4533 qi.tqi_subtype = subtype; 4534 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4535 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4536 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4537 /* 4538 * Enable interrupts only for EOL and DESC conditions. 4539 * We mark tx descriptors to receive a DESC interrupt 4540 * when a tx queue gets deep; otherwise waiting for the 4541 * EOL to reap descriptors. Note that this is done to 4542 * reduce interrupt load and this only defers reaping 4543 * descriptors, never transmitting frames. Aside from 4544 * reducing interrupts this also permits more concurrency. 4545 * The only potential downside is if the tx queue backs 4546 * up in which case the top half of the kernel may backup 4547 * due to a lack of tx descriptors. 4548 */ 4549 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 4550 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4551 if (qnum == -1) { 4552 /* 4553 * NB: don't print a message, this happens 4554 * normally on parts with too few tx queues 4555 */ 4556 return NULL; 4557 } 4558 if (qnum >= N(sc->sc_txq)) { 4559 device_printf(sc->sc_dev, 4560 "hal qnum %u out of range, max %zu!\n", 4561 qnum, N(sc->sc_txq)); 4562 ath_hal_releasetxqueue(ah, qnum); 4563 return NULL; 4564 } 4565 if (!ATH_TXQ_SETUP(sc, qnum)) { 4566 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4567 sc->sc_txqsetup |= 1<<qnum; 4568 } 4569 return &sc->sc_txq[qnum]; 4570 #undef N 4571 } 4572 4573 /* 4574 * Setup a hardware data transmit queue for the specified 4575 * access control. The hal may not support all requested 4576 * queues in which case it will return a reference to a 4577 * previously setup queue. We record the mapping from ac's 4578 * to h/w queues for use by ath_tx_start and also track 4579 * the set of h/w queues being used to optimize work in the 4580 * transmit interrupt handler and related routines. 4581 */ 4582 static int 4583 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4584 { 4585 #define N(a) (sizeof(a)/sizeof(a[0])) 4586 struct ath_txq *txq; 4587 4588 if (ac >= N(sc->sc_ac2q)) { 4589 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4590 ac, N(sc->sc_ac2q)); 4591 return 0; 4592 } 4593 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4594 if (txq != NULL) { 4595 txq->axq_ac = ac; 4596 sc->sc_ac2q[ac] = txq; 4597 return 1; 4598 } else 4599 return 0; 4600 #undef N 4601 } 4602 4603 /* 4604 * Update WME parameters for a transmit queue. 4605 */ 4606 static int 4607 ath_txq_update(struct ath_softc *sc, int ac) 4608 { 4609 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4610 #define ATH_TXOP_TO_US(v) (v<<5) 4611 struct ifnet *ifp = sc->sc_ifp; 4612 struct ieee80211com *ic = ifp->if_l2com; 4613 struct ath_txq *txq = sc->sc_ac2q[ac]; 4614 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4615 struct ath_hal *ah = sc->sc_ah; 4616 HAL_TXQ_INFO qi; 4617 4618 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4619 #ifdef IEEE80211_SUPPORT_TDMA 4620 if (sc->sc_tdma) { 4621 /* 4622 * AIFS is zero so there's no pre-transmit wait. The 4623 * burst time defines the slot duration and is configured 4624 * through net80211. The QCU is setup to not do post-xmit 4625 * back off, lockout all lower-priority QCU's, and fire 4626 * off the DMA beacon alert timer which is setup based 4627 * on the slot configuration. 4628 */ 4629 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4630 | HAL_TXQ_TXERRINT_ENABLE 4631 | HAL_TXQ_TXURNINT_ENABLE 4632 | HAL_TXQ_TXEOLINT_ENABLE 4633 | HAL_TXQ_DBA_GATED 4634 | HAL_TXQ_BACKOFF_DISABLE 4635 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4636 ; 4637 qi.tqi_aifs = 0; 4638 /* XXX +dbaprep? */ 4639 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4640 qi.tqi_burstTime = qi.tqi_readyTime; 4641 } else { 4642 #endif 4643 /* 4644 * XXX shouldn't this just use the default flags 4645 * used in the previous queue setup? 4646 */ 4647 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4648 | HAL_TXQ_TXERRINT_ENABLE 4649 | HAL_TXQ_TXDESCINT_ENABLE 4650 | HAL_TXQ_TXURNINT_ENABLE 4651 | HAL_TXQ_TXEOLINT_ENABLE 4652 ; 4653 qi.tqi_aifs = wmep->wmep_aifsn; 4654 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4655 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4656 qi.tqi_readyTime = 0; 4657 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 4658 #ifdef IEEE80211_SUPPORT_TDMA 4659 } 4660 #endif 4661 4662 DPRINTF(sc, ATH_DEBUG_RESET, 4663 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4664 __func__, txq->axq_qnum, qi.tqi_qflags, 4665 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4666 4667 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4668 if_printf(ifp, "unable to update hardware queue " 4669 "parameters for %s traffic!\n", 4670 ieee80211_wme_acnames[ac]); 4671 return 0; 4672 } else { 4673 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4674 return 1; 4675 } 4676 #undef ATH_TXOP_TO_US 4677 #undef ATH_EXPONENT_TO_VALUE 4678 } 4679 4680 /* 4681 * Callback from the 802.11 layer to update WME parameters. 4682 */ 4683 static int 4684 ath_wme_update(struct ieee80211com *ic) 4685 { 4686 struct ath_softc *sc = ic->ic_ifp->if_softc; 4687 4688 return !ath_txq_update(sc, WME_AC_BE) || 4689 !ath_txq_update(sc, WME_AC_BK) || 4690 !ath_txq_update(sc, WME_AC_VI) || 4691 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4692 } 4693 4694 /* 4695 * Reclaim resources for a setup queue. 4696 */ 4697 static void 4698 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4699 { 4700 4701 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4702 ATH_TXQ_LOCK_DESTROY(txq); 4703 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4704 } 4705 4706 /* 4707 * Reclaim all tx queue resources. 4708 */ 4709 static void 4710 ath_tx_cleanup(struct ath_softc *sc) 4711 { 4712 int i; 4713 4714 ATH_TXBUF_LOCK_DESTROY(sc); 4715 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4716 if (ATH_TXQ_SETUP(sc, i)) 4717 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4718 } 4719 4720 /* 4721 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4722 * using the current rates in sc_rixmap. 4723 */ 4724 int 4725 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4726 { 4727 int rix = sc->sc_rixmap[rate]; 4728 /* NB: return lowest rix for invalid rate */ 4729 return (rix == 0xff ? 0 : rix); 4730 } 4731 4732 static void 4733 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4734 struct ath_buf *bf) 4735 { 4736 struct ieee80211_node *ni = bf->bf_node; 4737 struct ifnet *ifp = sc->sc_ifp; 4738 struct ieee80211com *ic = ifp->if_l2com; 4739 int sr, lr, pri; 4740 4741 if (ts->ts_status == 0) { 4742 u_int8_t txant = ts->ts_antenna; 4743 sc->sc_stats.ast_ant_tx[txant]++; 4744 sc->sc_ant_tx[txant]++; 4745 if (ts->ts_finaltsi != 0) 4746 sc->sc_stats.ast_tx_altrate++; 4747 pri = M_WME_GETAC(bf->bf_m); 4748 if (pri >= WME_AC_VO) 4749 ic->ic_wme.wme_hipri_traffic++; 4750 if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) 4751 ni->ni_inact = ni->ni_inact_reload; 4752 } else { 4753 if (ts->ts_status & HAL_TXERR_XRETRY) 4754 sc->sc_stats.ast_tx_xretries++; 4755 if (ts->ts_status & HAL_TXERR_FIFO) 4756 sc->sc_stats.ast_tx_fifoerr++; 4757 if (ts->ts_status & HAL_TXERR_FILT) 4758 sc->sc_stats.ast_tx_filtered++; 4759 if (ts->ts_status & HAL_TXERR_XTXOP) 4760 sc->sc_stats.ast_tx_xtxop++; 4761 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4762 sc->sc_stats.ast_tx_timerexpired++; 4763 4764 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 4765 sc->sc_stats.ast_tx_data_underrun++; 4766 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 4767 sc->sc_stats.ast_tx_delim_underrun++; 4768 4769 if (bf->bf_m->m_flags & M_FF) 4770 sc->sc_stats.ast_ff_txerr++; 4771 } 4772 /* XXX when is this valid? */ 4773 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 4774 sc->sc_stats.ast_tx_desccfgerr++; 4775 4776 sr = ts->ts_shortretry; 4777 lr = ts->ts_longretry; 4778 sc->sc_stats.ast_tx_shortretry += sr; 4779 sc->sc_stats.ast_tx_longretry += lr; 4780 4781 } 4782 4783 /* 4784 * The default completion. If fail is 1, this means 4785 * "please don't retry the frame, and just return -1 status 4786 * to the net80211 stack. 4787 */ 4788 void 4789 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4790 { 4791 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4792 int st; 4793 4794 if (fail == 1) 4795 st = -1; 4796 else 4797 st = ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) ? 4798 ts->ts_status : HAL_TXERR_XRETRY; 4799 4800 if (bf->bf_state.bfs_dobaw) 4801 device_printf(sc->sc_dev, 4802 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4803 __func__, 4804 bf, 4805 SEQNO(bf->bf_state.bfs_seqno)); 4806 if (bf->bf_next != NULL) 4807 device_printf(sc->sc_dev, 4808 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4809 __func__, 4810 bf, 4811 SEQNO(bf->bf_state.bfs_seqno)); 4812 4813 /* 4814 * Do any tx complete callback. Note this must 4815 * be done before releasing the node reference. 4816 * This will free the mbuf, release the net80211 4817 * node and recycle the ath_buf. 4818 */ 4819 ath_tx_freebuf(sc, bf, st); 4820 } 4821 4822 /* 4823 * Update rate control with the given completion status. 4824 */ 4825 void 4826 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4827 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4828 int nframes, int nbad) 4829 { 4830 struct ath_node *an; 4831 4832 /* Only for unicast frames */ 4833 if (ni == NULL) 4834 return; 4835 4836 an = ATH_NODE(ni); 4837 4838 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4839 ATH_NODE_LOCK(an); 4840 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4841 ATH_NODE_UNLOCK(an); 4842 } 4843 } 4844 4845 /* 4846 * Update the busy status of the last frame on the free list. 4847 * When doing TDMA, the busy flag tracks whether the hardware 4848 * currently points to this buffer or not, and thus gated DMA 4849 * may restart by re-reading the last descriptor in this 4850 * buffer. 4851 * 4852 * This should be called in the completion function once one 4853 * of the buffers has been used. 4854 */ 4855 static void 4856 ath_tx_update_busy(struct ath_softc *sc) 4857 { 4858 struct ath_buf *last; 4859 4860 /* 4861 * Since the last frame may still be marked 4862 * as ATH_BUF_BUSY, unmark it here before 4863 * finishing the frame processing. 4864 * Since we've completed a frame (aggregate 4865 * or otherwise), the hardware has moved on 4866 * and is no longer referencing the previous 4867 * descriptor. 4868 */ 4869 ATH_TXBUF_LOCK_ASSERT(sc); 4870 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4871 if (last != NULL) 4872 last->bf_flags &= ~ATH_BUF_BUSY; 4873 } 4874 4875 4876 /* 4877 * Process completed xmit descriptors from the specified queue. 4878 * Kick the packet scheduler if needed. This can occur from this 4879 * particular task. 4880 */ 4881 static int 4882 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4883 { 4884 struct ath_hal *ah = sc->sc_ah; 4885 struct ath_buf *bf; 4886 struct ath_desc *ds; 4887 struct ath_tx_status *ts; 4888 struct ieee80211_node *ni; 4889 struct ath_node *an; 4890 int nacked; 4891 HAL_STATUS status; 4892 4893 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4894 __func__, txq->axq_qnum, 4895 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4896 txq->axq_link); 4897 nacked = 0; 4898 for (;;) { 4899 ATH_TXQ_LOCK(txq); 4900 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4901 bf = TAILQ_FIRST(&txq->axq_q); 4902 if (bf == NULL) { 4903 ATH_TXQ_UNLOCK(txq); 4904 break; 4905 } 4906 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4907 ts = &bf->bf_status.ds_txstat; 4908 status = ath_hal_txprocdesc(ah, ds, ts); 4909 #ifdef ATH_DEBUG 4910 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4911 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4912 status == HAL_OK); 4913 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) { 4914 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4915 status == HAL_OK); 4916 } 4917 #endif 4918 if (status == HAL_EINPROGRESS) { 4919 ATH_TXQ_UNLOCK(txq); 4920 break; 4921 } 4922 ATH_TXQ_REMOVE(txq, bf, bf_list); 4923 #ifdef IEEE80211_SUPPORT_TDMA 4924 if (txq->axq_depth > 0) { 4925 /* 4926 * More frames follow. Mark the buffer busy 4927 * so it's not re-used while the hardware may 4928 * still re-read the link field in the descriptor. 4929 * 4930 * Use the last buffer in an aggregate as that 4931 * is where the hardware may be - intermediate 4932 * descriptors won't be "busy". 4933 */ 4934 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4935 } else 4936 #else 4937 if (txq->axq_depth == 0) 4938 #endif 4939 txq->axq_link = NULL; 4940 if (bf->bf_state.bfs_aggr) 4941 txq->axq_aggr_depth--; 4942 4943 ni = bf->bf_node; 4944 /* 4945 * If unicast frame was ack'd update RSSI, 4946 * including the last rx time used to 4947 * workaround phantom bmiss interrupts. 4948 */ 4949 if (ni != NULL && ts->ts_status == 0 && 4950 ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)) { 4951 nacked++; 4952 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4953 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4954 ts->ts_rssi); 4955 } 4956 ATH_TXQ_UNLOCK(txq); 4957 4958 /* If unicast frame, update general statistics */ 4959 if (ni != NULL) { 4960 an = ATH_NODE(ni); 4961 /* update statistics */ 4962 ath_tx_update_stats(sc, ts, bf); 4963 } 4964 4965 /* 4966 * Call the completion handler. 4967 * The completion handler is responsible for 4968 * calling the rate control code. 4969 * 4970 * Frames with no completion handler get the 4971 * rate control code called here. 4972 */ 4973 if (bf->bf_comp == NULL) { 4974 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4975 (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) { 4976 /* 4977 * XXX assume this isn't an aggregate 4978 * frame. 4979 */ 4980 ath_tx_update_ratectrl(sc, ni, 4981 bf->bf_state.bfs_rc, ts, 4982 bf->bf_state.bfs_pktlen, 1, 4983 (ts->ts_status == 0 ? 0 : 1)); 4984 } 4985 ath_tx_default_comp(sc, bf, 0); 4986 } else 4987 bf->bf_comp(sc, bf, 0); 4988 } 4989 #ifdef IEEE80211_SUPPORT_SUPERG 4990 /* 4991 * Flush fast-frame staging queue when traffic slows. 4992 */ 4993 if (txq->axq_depth <= 1) 4994 ieee80211_ff_flush(ic, txq->axq_ac); 4995 #endif 4996 4997 /* Kick the TXQ scheduler */ 4998 if (dosched) { 4999 ATH_TXQ_LOCK(txq); 5000 ath_txq_sched(sc, txq); 5001 ATH_TXQ_UNLOCK(txq); 5002 } 5003 5004 return nacked; 5005 } 5006 5007 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 5008 5009 /* 5010 * Deferred processing of transmit interrupt; special-cased 5011 * for a single hardware transmit queue (e.g. 5210 and 5211). 5012 */ 5013 static void 5014 ath_tx_proc_q0(void *arg, int npending) 5015 { 5016 struct ath_softc *sc = arg; 5017 struct ifnet *ifp = sc->sc_ifp; 5018 uint32_t txqs; 5019 5020 ATH_PCU_LOCK(sc); 5021 sc->sc_txproc_cnt++; 5022 txqs = sc->sc_txq_active; 5023 sc->sc_txq_active &= ~txqs; 5024 ATH_PCU_UNLOCK(sc); 5025 5026 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 5027 /* XXX why is lastrx updated in tx code? */ 5028 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 5029 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 5030 ath_tx_processq(sc, sc->sc_cabq, 1); 5031 IF_LOCK(&ifp->if_snd); 5032 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5033 IF_UNLOCK(&ifp->if_snd); 5034 sc->sc_wd_timer = 0; 5035 5036 if (sc->sc_softled) 5037 ath_led_event(sc, sc->sc_txrix); 5038 5039 ATH_PCU_LOCK(sc); 5040 sc->sc_txproc_cnt--; 5041 ATH_PCU_UNLOCK(sc); 5042 5043 ath_start(ifp); 5044 } 5045 5046 /* 5047 * Deferred processing of transmit interrupt; special-cased 5048 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 5049 */ 5050 static void 5051 ath_tx_proc_q0123(void *arg, int npending) 5052 { 5053 struct ath_softc *sc = arg; 5054 struct ifnet *ifp = sc->sc_ifp; 5055 int nacked; 5056 uint32_t txqs; 5057 5058 ATH_PCU_LOCK(sc); 5059 sc->sc_txproc_cnt++; 5060 txqs = sc->sc_txq_active; 5061 sc->sc_txq_active &= ~txqs; 5062 ATH_PCU_UNLOCK(sc); 5063 5064 /* 5065 * Process each active queue. 5066 */ 5067 nacked = 0; 5068 if (TXQACTIVE(txqs, 0)) 5069 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 5070 if (TXQACTIVE(txqs, 1)) 5071 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 5072 if (TXQACTIVE(txqs, 2)) 5073 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 5074 if (TXQACTIVE(txqs, 3)) 5075 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 5076 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 5077 ath_tx_processq(sc, sc->sc_cabq, 1); 5078 if (nacked) 5079 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 5080 5081 IF_LOCK(&ifp->if_snd); 5082 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5083 IF_UNLOCK(&ifp->if_snd); 5084 sc->sc_wd_timer = 0; 5085 5086 if (sc->sc_softled) 5087 ath_led_event(sc, sc->sc_txrix); 5088 5089 ATH_PCU_LOCK(sc); 5090 sc->sc_txproc_cnt--; 5091 ATH_PCU_UNLOCK(sc); 5092 5093 ath_start(ifp); 5094 } 5095 5096 /* 5097 * Deferred processing of transmit interrupt. 5098 */ 5099 static void 5100 ath_tx_proc(void *arg, int npending) 5101 { 5102 struct ath_softc *sc = arg; 5103 struct ifnet *ifp = sc->sc_ifp; 5104 int i, nacked; 5105 uint32_t txqs; 5106 5107 ATH_PCU_LOCK(sc); 5108 sc->sc_txproc_cnt++; 5109 txqs = sc->sc_txq_active; 5110 sc->sc_txq_active &= ~txqs; 5111 ATH_PCU_UNLOCK(sc); 5112 5113 /* 5114 * Process each active queue. 5115 */ 5116 nacked = 0; 5117 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5118 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 5119 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 5120 if (nacked) 5121 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 5122 5123 /* XXX check this inside of IF_LOCK? */ 5124 IF_LOCK(&ifp->if_snd); 5125 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5126 IF_UNLOCK(&ifp->if_snd); 5127 sc->sc_wd_timer = 0; 5128 5129 if (sc->sc_softled) 5130 ath_led_event(sc, sc->sc_txrix); 5131 5132 ATH_PCU_LOCK(sc); 5133 sc->sc_txproc_cnt--; 5134 ATH_PCU_UNLOCK(sc); 5135 5136 ath_start(ifp); 5137 } 5138 #undef TXQACTIVE 5139 5140 /* 5141 * Deferred processing of TXQ rescheduling. 5142 */ 5143 static void 5144 ath_txq_sched_tasklet(void *arg, int npending) 5145 { 5146 struct ath_softc *sc = arg; 5147 int i; 5148 5149 /* XXX is skipping ok? */ 5150 ATH_PCU_LOCK(sc); 5151 #if 0 5152 if (sc->sc_inreset_cnt > 0) { 5153 device_printf(sc->sc_dev, 5154 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 5155 ATH_PCU_UNLOCK(sc); 5156 return; 5157 } 5158 #endif 5159 sc->sc_txproc_cnt++; 5160 ATH_PCU_UNLOCK(sc); 5161 5162 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5163 if (ATH_TXQ_SETUP(sc, i)) { 5164 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5165 ath_txq_sched(sc, &sc->sc_txq[i]); 5166 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5167 } 5168 } 5169 5170 ATH_PCU_LOCK(sc); 5171 sc->sc_txproc_cnt--; 5172 ATH_PCU_UNLOCK(sc); 5173 } 5174 5175 /* 5176 * Return a buffer to the pool and update the 'busy' flag on the 5177 * previous 'tail' entry. 5178 * 5179 * This _must_ only be called when the buffer is involved in a completed 5180 * TX. The logic is that if it was part of an active TX, the previous 5181 * buffer on the list is now not involved in a halted TX DMA queue, waiting 5182 * for restart (eg for TDMA.) 5183 * 5184 * The caller must free the mbuf and recycle the node reference. 5185 */ 5186 void 5187 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 5188 { 5189 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 5190 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 5191 5192 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 5193 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 5194 5195 ATH_TXBUF_LOCK(sc); 5196 ath_tx_update_busy(sc); 5197 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 5198 ATH_TXBUF_UNLOCK(sc); 5199 } 5200 5201 /* 5202 * This is currently used by ath_tx_draintxq() and 5203 * ath_tx_tid_free_pkts(). 5204 * 5205 * It recycles a single ath_buf. 5206 */ 5207 void 5208 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 5209 { 5210 struct ieee80211_node *ni = bf->bf_node; 5211 struct mbuf *m0 = bf->bf_m; 5212 5213 bf->bf_node = NULL; 5214 bf->bf_m = NULL; 5215 5216 /* Free the buffer, it's not needed any longer */ 5217 ath_freebuf(sc, bf); 5218 5219 if (ni != NULL) { 5220 /* 5221 * Do any callback and reclaim the node reference. 5222 */ 5223 if (m0->m_flags & M_TXCB) 5224 ieee80211_process_callback(ni, m0, status); 5225 ieee80211_free_node(ni); 5226 } 5227 m_freem(m0); 5228 5229 /* 5230 * XXX the buffer used to be freed -after-, but the DMA map was 5231 * freed where ath_freebuf() now is. I've no idea what this 5232 * will do. 5233 */ 5234 } 5235 5236 void 5237 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5238 { 5239 #ifdef ATH_DEBUG 5240 struct ath_hal *ah = sc->sc_ah; 5241 #endif 5242 struct ath_buf *bf; 5243 u_int ix; 5244 5245 /* 5246 * NB: this assumes output has been stopped and 5247 * we do not need to block ath_tx_proc 5248 */ 5249 ATH_TXBUF_LOCK(sc); 5250 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 5251 if (bf != NULL) 5252 bf->bf_flags &= ~ATH_BUF_BUSY; 5253 ATH_TXBUF_UNLOCK(sc); 5254 5255 for (ix = 0;; ix++) { 5256 ATH_TXQ_LOCK(txq); 5257 bf = TAILQ_FIRST(&txq->axq_q); 5258 if (bf == NULL) { 5259 txq->axq_link = NULL; 5260 ATH_TXQ_UNLOCK(txq); 5261 break; 5262 } 5263 ATH_TXQ_REMOVE(txq, bf, bf_list); 5264 if (bf->bf_state.bfs_aggr) 5265 txq->axq_aggr_depth--; 5266 #ifdef ATH_DEBUG 5267 if (sc->sc_debug & ATH_DEBUG_RESET) { 5268 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5269 5270 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, 5271 ath_hal_txprocdesc(ah, bf->bf_lastds, 5272 &bf->bf_status.ds_txstat) == HAL_OK); 5273 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5274 bf->bf_m->m_len, 0, -1); 5275 } 5276 #endif /* ATH_DEBUG */ 5277 /* 5278 * Since we're now doing magic in the completion 5279 * functions, we -must- call it for aggregation 5280 * destinations or BAW tracking will get upset. 5281 */ 5282 /* 5283 * Clear ATH_BUF_BUSY; the completion handler 5284 * will free the buffer. 5285 */ 5286 ATH_TXQ_UNLOCK(txq); 5287 bf->bf_flags &= ~ATH_BUF_BUSY; 5288 if (bf->bf_comp) 5289 bf->bf_comp(sc, bf, 1); 5290 else 5291 ath_tx_default_comp(sc, bf, 1); 5292 } 5293 5294 /* 5295 * Drain software queued frames which are on 5296 * active TIDs. 5297 */ 5298 ath_tx_txq_drain(sc, txq); 5299 } 5300 5301 static void 5302 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5303 { 5304 struct ath_hal *ah = sc->sc_ah; 5305 5306 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5307 __func__, txq->axq_qnum, 5308 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5309 txq->axq_link); 5310 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5311 } 5312 5313 static int 5314 ath_stoptxdma(struct ath_softc *sc) 5315 { 5316 struct ath_hal *ah = sc->sc_ah; 5317 int i; 5318 5319 /* XXX return value */ 5320 if (sc->sc_invalid) 5321 return 0; 5322 5323 if (!sc->sc_invalid) { 5324 /* don't touch the hardware if marked invalid */ 5325 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5326 __func__, sc->sc_bhalq, 5327 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5328 NULL); 5329 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5330 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5331 if (ATH_TXQ_SETUP(sc, i)) 5332 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5333 } 5334 5335 return 1; 5336 } 5337 5338 /* 5339 * Drain the transmit queues and reclaim resources. 5340 */ 5341 static void 5342 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5343 { 5344 #ifdef ATH_DEBUG 5345 struct ath_hal *ah = sc->sc_ah; 5346 #endif 5347 struct ifnet *ifp = sc->sc_ifp; 5348 int i; 5349 5350 (void) ath_stoptxdma(sc); 5351 5352 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5353 /* 5354 * XXX TODO: should we just handle the completed TX frames 5355 * here, whether or not the reset is a full one or not? 5356 */ 5357 if (ATH_TXQ_SETUP(sc, i)) { 5358 if (reset_type == ATH_RESET_NOLOSS) 5359 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5360 else 5361 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5362 } 5363 } 5364 #ifdef ATH_DEBUG 5365 if (sc->sc_debug & ATH_DEBUG_RESET) { 5366 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5367 if (bf != NULL && bf->bf_m != NULL) { 5368 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5369 ath_hal_txprocdesc(ah, bf->bf_lastds, 5370 &bf->bf_status.ds_txstat) == HAL_OK); 5371 ieee80211_dump_pkt(ifp->if_l2com, 5372 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5373 0, -1); 5374 } 5375 } 5376 #endif /* ATH_DEBUG */ 5377 IF_LOCK(&ifp->if_snd); 5378 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5379 IF_UNLOCK(&ifp->if_snd); 5380 sc->sc_wd_timer = 0; 5381 } 5382 5383 /* 5384 * Disable the receive h/w in preparation for a reset. 5385 */ 5386 static void 5387 ath_stoprecv(struct ath_softc *sc, int dodelay) 5388 { 5389 #define PA2DESC(_sc, _pa) \ 5390 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 5391 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 5392 struct ath_hal *ah = sc->sc_ah; 5393 5394 ath_hal_stoppcurecv(ah); /* disable PCU */ 5395 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 5396 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 5397 if (dodelay) 5398 DELAY(3000); /* 3ms is long enough for 1 frame */ 5399 #ifdef ATH_DEBUG 5400 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 5401 struct ath_buf *bf; 5402 u_int ix; 5403 5404 device_printf(sc->sc_dev, 5405 "%s: rx queue %p, link %p\n", 5406 __func__, 5407 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), 5408 sc->sc_rxlink); 5409 ix = 0; 5410 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5411 struct ath_desc *ds = bf->bf_desc; 5412 struct ath_rx_status *rs = &bf->bf_status.ds_rxstat; 5413 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 5414 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 5415 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 5416 ath_printrxbuf(sc, bf, ix, status == HAL_OK); 5417 ix++; 5418 } 5419 } 5420 #endif 5421 if (sc->sc_rxpending != NULL) { 5422 m_freem(sc->sc_rxpending); 5423 sc->sc_rxpending = NULL; 5424 } 5425 sc->sc_rxlink = NULL; /* just in case */ 5426 #undef PA2DESC 5427 } 5428 5429 /* 5430 * Enable the receive h/w following a reset. 5431 */ 5432 static int 5433 ath_startrecv(struct ath_softc *sc) 5434 { 5435 struct ath_hal *ah = sc->sc_ah; 5436 struct ath_buf *bf; 5437 5438 sc->sc_rxlink = NULL; 5439 sc->sc_rxpending = NULL; 5440 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5441 int error = ath_rxbuf_init(sc, bf); 5442 if (error != 0) { 5443 DPRINTF(sc, ATH_DEBUG_RECV, 5444 "%s: ath_rxbuf_init failed %d\n", 5445 __func__, error); 5446 return error; 5447 } 5448 } 5449 5450 bf = TAILQ_FIRST(&sc->sc_rxbuf); 5451 ath_hal_putrxbuf(ah, bf->bf_daddr); 5452 ath_hal_rxena(ah); /* enable recv descriptors */ 5453 ath_mode_init(sc); /* set filters, etc. */ 5454 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 5455 return 0; 5456 } 5457 5458 /* 5459 * Update internal state after a channel change. 5460 */ 5461 static void 5462 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5463 { 5464 enum ieee80211_phymode mode; 5465 5466 /* 5467 * Change channels and update the h/w rate map 5468 * if we're switching; e.g. 11a to 11b/g. 5469 */ 5470 mode = ieee80211_chan2mode(chan); 5471 if (mode != sc->sc_curmode) 5472 ath_setcurmode(sc, mode); 5473 sc->sc_curchan = chan; 5474 } 5475 5476 /* 5477 * Set/change channels. If the channel is really being changed, 5478 * it's done by resetting the chip. To accomplish this we must 5479 * first cleanup any pending DMA, then restart stuff after a la 5480 * ath_init. 5481 */ 5482 static int 5483 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5484 { 5485 struct ifnet *ifp = sc->sc_ifp; 5486 struct ieee80211com *ic = ifp->if_l2com; 5487 struct ath_hal *ah = sc->sc_ah; 5488 int ret = 0; 5489 5490 /* Treat this as an interface reset */ 5491 ATH_PCU_UNLOCK_ASSERT(sc); 5492 ATH_UNLOCK_ASSERT(sc); 5493 5494 /* (Try to) stop TX/RX from occuring */ 5495 taskqueue_block(sc->sc_tq); 5496 5497 ATH_PCU_LOCK(sc); 5498 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 5499 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 5500 if (ath_reset_grablock(sc, 1) == 0) { 5501 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5502 __func__); 5503 } 5504 ATH_PCU_UNLOCK(sc); 5505 5506 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5507 __func__, ieee80211_chan2ieee(ic, chan), 5508 chan->ic_freq, chan->ic_flags); 5509 if (chan != sc->sc_curchan) { 5510 HAL_STATUS status; 5511 /* 5512 * To switch channels clear any pending DMA operations; 5513 * wait long enough for the RX fifo to drain, reset the 5514 * hardware at the new frequency, and then re-enable 5515 * the relevant bits of the h/w. 5516 */ 5517 #if 0 5518 ath_hal_intrset(ah, 0); /* disable interrupts */ 5519 #endif 5520 ath_stoprecv(sc, 1); /* turn off frame recv */ 5521 /* 5522 * First, handle completed TX/RX frames. 5523 */ 5524 ath_rx_proc(sc, 0); 5525 ath_draintxq(sc, ATH_RESET_NOLOSS); 5526 /* 5527 * Next, flush the non-scheduled frames. 5528 */ 5529 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5530 5531 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 5532 if_printf(ifp, "%s: unable to reset " 5533 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5534 __func__, ieee80211_chan2ieee(ic, chan), 5535 chan->ic_freq, chan->ic_flags, status); 5536 ret = EIO; 5537 goto finish; 5538 } 5539 sc->sc_diversity = ath_hal_getdiversity(ah); 5540 5541 /* Let DFS at it in case it's a DFS channel */ 5542 ath_dfs_radar_enable(sc, chan); 5543 5544 /* 5545 * Re-enable rx framework. 5546 */ 5547 if (ath_startrecv(sc) != 0) { 5548 if_printf(ifp, "%s: unable to restart recv logic\n", 5549 __func__); 5550 ret = EIO; 5551 goto finish; 5552 } 5553 5554 /* 5555 * Change channels and update the h/w rate map 5556 * if we're switching; e.g. 11a to 11b/g. 5557 */ 5558 ath_chan_change(sc, chan); 5559 5560 /* 5561 * Reset clears the beacon timers; reset them 5562 * here if needed. 5563 */ 5564 if (sc->sc_beacons) { /* restart beacons */ 5565 #ifdef IEEE80211_SUPPORT_TDMA 5566 if (sc->sc_tdma) 5567 ath_tdma_config(sc, NULL); 5568 else 5569 #endif 5570 ath_beacon_config(sc, NULL); 5571 } 5572 5573 /* 5574 * Re-enable interrupts. 5575 */ 5576 #if 0 5577 ath_hal_intrset(ah, sc->sc_imask); 5578 #endif 5579 } 5580 5581 finish: 5582 ATH_PCU_LOCK(sc); 5583 sc->sc_inreset_cnt--; 5584 /* XXX only do this if sc_inreset_cnt == 0? */ 5585 ath_hal_intrset(ah, sc->sc_imask); 5586 ATH_PCU_UNLOCK(sc); 5587 5588 IF_LOCK(&ifp->if_snd); 5589 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5590 IF_UNLOCK(&ifp->if_snd); 5591 ath_txrx_start(sc); 5592 /* XXX ath_start? */ 5593 5594 return ret; 5595 } 5596 5597 /* 5598 * Periodically recalibrate the PHY to account 5599 * for temperature/environment changes. 5600 */ 5601 static void 5602 ath_calibrate(void *arg) 5603 { 5604 struct ath_softc *sc = arg; 5605 struct ath_hal *ah = sc->sc_ah; 5606 struct ifnet *ifp = sc->sc_ifp; 5607 struct ieee80211com *ic = ifp->if_l2com; 5608 HAL_BOOL longCal, isCalDone; 5609 HAL_BOOL aniCal, shortCal = AH_FALSE; 5610 int nextcal; 5611 5612 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5613 goto restart; 5614 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5615 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5616 if (sc->sc_doresetcal) 5617 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5618 5619 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5620 if (aniCal) { 5621 sc->sc_stats.ast_ani_cal++; 5622 sc->sc_lastani = ticks; 5623 ath_hal_ani_poll(ah, sc->sc_curchan); 5624 } 5625 5626 if (longCal) { 5627 sc->sc_stats.ast_per_cal++; 5628 sc->sc_lastlongcal = ticks; 5629 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5630 /* 5631 * Rfgain is out of bounds, reset the chip 5632 * to load new gain values. 5633 */ 5634 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5635 "%s: rfgain change\n", __func__); 5636 sc->sc_stats.ast_per_rfgain++; 5637 sc->sc_resetcal = 0; 5638 sc->sc_doresetcal = AH_TRUE; 5639 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5640 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5641 return; 5642 } 5643 /* 5644 * If this long cal is after an idle period, then 5645 * reset the data collection state so we start fresh. 5646 */ 5647 if (sc->sc_resetcal) { 5648 (void) ath_hal_calreset(ah, sc->sc_curchan); 5649 sc->sc_lastcalreset = ticks; 5650 sc->sc_lastshortcal = ticks; 5651 sc->sc_resetcal = 0; 5652 sc->sc_doresetcal = AH_TRUE; 5653 } 5654 } 5655 5656 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5657 if (shortCal || longCal) { 5658 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5659 if (longCal) { 5660 /* 5661 * Calibrate noise floor data again in case of change. 5662 */ 5663 ath_hal_process_noisefloor(ah); 5664 } 5665 } else { 5666 DPRINTF(sc, ATH_DEBUG_ANY, 5667 "%s: calibration of channel %u failed\n", 5668 __func__, sc->sc_curchan->ic_freq); 5669 sc->sc_stats.ast_per_calfail++; 5670 } 5671 if (shortCal) 5672 sc->sc_lastshortcal = ticks; 5673 } 5674 if (!isCalDone) { 5675 restart: 5676 /* 5677 * Use a shorter interval to potentially collect multiple 5678 * data samples required to complete calibration. Once 5679 * we're told the work is done we drop back to a longer 5680 * interval between requests. We're more aggressive doing 5681 * work when operating as an AP to improve operation right 5682 * after startup. 5683 */ 5684 sc->sc_lastshortcal = ticks; 5685 nextcal = ath_shortcalinterval*hz/1000; 5686 if (sc->sc_opmode != HAL_M_HOSTAP) 5687 nextcal *= 10; 5688 sc->sc_doresetcal = AH_TRUE; 5689 } else { 5690 /* nextcal should be the shortest time for next event */ 5691 nextcal = ath_longcalinterval*hz; 5692 if (sc->sc_lastcalreset == 0) 5693 sc->sc_lastcalreset = sc->sc_lastlongcal; 5694 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5695 sc->sc_resetcal = 1; /* setup reset next trip */ 5696 sc->sc_doresetcal = AH_FALSE; 5697 } 5698 /* ANI calibration may occur more often than short/long/resetcal */ 5699 if (ath_anicalinterval > 0) 5700 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5701 5702 if (nextcal != 0) { 5703 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5704 __func__, nextcal, isCalDone ? "" : "!"); 5705 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5706 } else { 5707 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5708 __func__); 5709 /* NB: don't rearm timer */ 5710 } 5711 } 5712 5713 static void 5714 ath_scan_start(struct ieee80211com *ic) 5715 { 5716 struct ifnet *ifp = ic->ic_ifp; 5717 struct ath_softc *sc = ifp->if_softc; 5718 struct ath_hal *ah = sc->sc_ah; 5719 u_int32_t rfilt; 5720 5721 /* XXX calibration timer? */ 5722 5723 ATH_LOCK(sc); 5724 sc->sc_scanning = 1; 5725 sc->sc_syncbeacon = 0; 5726 rfilt = ath_calcrxfilter(sc); 5727 ATH_UNLOCK(sc); 5728 5729 ATH_PCU_LOCK(sc); 5730 ath_hal_setrxfilter(ah, rfilt); 5731 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5732 ATH_PCU_UNLOCK(sc); 5733 5734 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5735 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5736 } 5737 5738 static void 5739 ath_scan_end(struct ieee80211com *ic) 5740 { 5741 struct ifnet *ifp = ic->ic_ifp; 5742 struct ath_softc *sc = ifp->if_softc; 5743 struct ath_hal *ah = sc->sc_ah; 5744 u_int32_t rfilt; 5745 5746 ATH_LOCK(sc); 5747 sc->sc_scanning = 0; 5748 rfilt = ath_calcrxfilter(sc); 5749 ATH_UNLOCK(sc); 5750 5751 ATH_PCU_LOCK(sc); 5752 ath_hal_setrxfilter(ah, rfilt); 5753 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5754 5755 ath_hal_process_noisefloor(ah); 5756 ATH_PCU_UNLOCK(sc); 5757 5758 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5759 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5760 sc->sc_curaid); 5761 } 5762 5763 /* 5764 * For now, just do a channel change. 5765 * 5766 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5767 * control state and resetting the hardware without dropping frames out 5768 * of the queue. 5769 * 5770 * The unfortunate trouble here is making absolutely sure that the 5771 * channel width change has propagated enough so the hardware 5772 * absolutely isn't handed bogus frames for it's current operating 5773 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5774 * does occur in parallel, we need to make certain we've blocked 5775 * any further ongoing TX (and RX, that can cause raw TX) 5776 * before we do this. 5777 */ 5778 static void 5779 ath_update_chw(struct ieee80211com *ic) 5780 { 5781 struct ifnet *ifp = ic->ic_ifp; 5782 struct ath_softc *sc = ifp->if_softc; 5783 5784 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5785 ath_set_channel(ic); 5786 } 5787 5788 static void 5789 ath_set_channel(struct ieee80211com *ic) 5790 { 5791 struct ifnet *ifp = ic->ic_ifp; 5792 struct ath_softc *sc = ifp->if_softc; 5793 5794 (void) ath_chan_set(sc, ic->ic_curchan); 5795 /* 5796 * If we are returning to our bss channel then mark state 5797 * so the next recv'd beacon's tsf will be used to sync the 5798 * beacon timers. Note that since we only hear beacons in 5799 * sta/ibss mode this has no effect in other operating modes. 5800 */ 5801 ATH_LOCK(sc); 5802 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5803 sc->sc_syncbeacon = 1; 5804 ATH_UNLOCK(sc); 5805 } 5806 5807 /* 5808 * Walk the vap list and check if there any vap's in RUN state. 5809 */ 5810 static int 5811 ath_isanyrunningvaps(struct ieee80211vap *this) 5812 { 5813 struct ieee80211com *ic = this->iv_ic; 5814 struct ieee80211vap *vap; 5815 5816 IEEE80211_LOCK_ASSERT(ic); 5817 5818 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5819 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5820 return 1; 5821 } 5822 return 0; 5823 } 5824 5825 static int 5826 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5827 { 5828 struct ieee80211com *ic = vap->iv_ic; 5829 struct ath_softc *sc = ic->ic_ifp->if_softc; 5830 struct ath_vap *avp = ATH_VAP(vap); 5831 struct ath_hal *ah = sc->sc_ah; 5832 struct ieee80211_node *ni = NULL; 5833 int i, error, stamode; 5834 u_int32_t rfilt; 5835 int csa_run_transition = 0; 5836 static const HAL_LED_STATE leds[] = { 5837 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5838 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5839 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5840 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5841 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5842 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5843 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5844 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5845 }; 5846 5847 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5848 ieee80211_state_name[vap->iv_state], 5849 ieee80211_state_name[nstate]); 5850 5851 /* 5852 * net80211 _should_ have the comlock asserted at this point. 5853 * There are some comments around the calls to vap->iv_newstate 5854 * which indicate that it (newstate) may end up dropping the 5855 * lock. This and the subsequent lock assert check after newstate 5856 * are an attempt to catch these and figure out how/why. 5857 */ 5858 IEEE80211_LOCK_ASSERT(ic); 5859 5860 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5861 csa_run_transition = 1; 5862 5863 callout_drain(&sc->sc_cal_ch); 5864 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5865 5866 if (nstate == IEEE80211_S_SCAN) { 5867 /* 5868 * Scanning: turn off beacon miss and don't beacon. 5869 * Mark beacon state so when we reach RUN state we'll 5870 * [re]setup beacons. Unblock the task q thread so 5871 * deferred interrupt processing is done. 5872 */ 5873 ath_hal_intrset(ah, 5874 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5875 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5876 sc->sc_beacons = 0; 5877 taskqueue_unblock(sc->sc_tq); 5878 } 5879 5880 ni = ieee80211_ref_node(vap->iv_bss); 5881 rfilt = ath_calcrxfilter(sc); 5882 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5883 vap->iv_opmode == IEEE80211_M_AHDEMO || 5884 vap->iv_opmode == IEEE80211_M_IBSS); 5885 if (stamode && nstate == IEEE80211_S_RUN) { 5886 sc->sc_curaid = ni->ni_associd; 5887 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5888 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5889 } 5890 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5891 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5892 ath_hal_setrxfilter(ah, rfilt); 5893 5894 /* XXX is this to restore keycache on resume? */ 5895 if (vap->iv_opmode != IEEE80211_M_STA && 5896 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5897 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5898 if (ath_hal_keyisvalid(ah, i)) 5899 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5900 } 5901 5902 /* 5903 * Invoke the parent method to do net80211 work. 5904 */ 5905 error = avp->av_newstate(vap, nstate, arg); 5906 if (error != 0) 5907 goto bad; 5908 5909 /* 5910 * See above: ensure av_newstate() doesn't drop the lock 5911 * on us. 5912 */ 5913 IEEE80211_LOCK_ASSERT(ic); 5914 5915 if (nstate == IEEE80211_S_RUN) { 5916 /* NB: collect bss node again, it may have changed */ 5917 ieee80211_free_node(ni); 5918 ni = ieee80211_ref_node(vap->iv_bss); 5919 5920 DPRINTF(sc, ATH_DEBUG_STATE, 5921 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5922 "capinfo 0x%04x chan %d\n", __func__, 5923 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5924 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5925 5926 switch (vap->iv_opmode) { 5927 #ifdef IEEE80211_SUPPORT_TDMA 5928 case IEEE80211_M_AHDEMO: 5929 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5930 break; 5931 /* fall thru... */ 5932 #endif 5933 case IEEE80211_M_HOSTAP: 5934 case IEEE80211_M_IBSS: 5935 case IEEE80211_M_MBSS: 5936 /* 5937 * Allocate and setup the beacon frame. 5938 * 5939 * Stop any previous beacon DMA. This may be 5940 * necessary, for example, when an ibss merge 5941 * causes reconfiguration; there will be a state 5942 * transition from RUN->RUN that means we may 5943 * be called with beacon transmission active. 5944 */ 5945 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5946 5947 error = ath_beacon_alloc(sc, ni); 5948 if (error != 0) 5949 goto bad; 5950 /* 5951 * If joining an adhoc network defer beacon timer 5952 * configuration to the next beacon frame so we 5953 * have a current TSF to use. Otherwise we're 5954 * starting an ibss/bss so there's no need to delay; 5955 * if this is the first vap moving to RUN state, then 5956 * beacon state needs to be [re]configured. 5957 */ 5958 if (vap->iv_opmode == IEEE80211_M_IBSS && 5959 ni->ni_tstamp.tsf != 0) { 5960 sc->sc_syncbeacon = 1; 5961 } else if (!sc->sc_beacons) { 5962 #ifdef IEEE80211_SUPPORT_TDMA 5963 if (vap->iv_caps & IEEE80211_C_TDMA) 5964 ath_tdma_config(sc, vap); 5965 else 5966 #endif 5967 ath_beacon_config(sc, vap); 5968 sc->sc_beacons = 1; 5969 } 5970 break; 5971 case IEEE80211_M_STA: 5972 /* 5973 * Defer beacon timer configuration to the next 5974 * beacon frame so we have a current TSF to use 5975 * (any TSF collected when scanning is likely old). 5976 * However if it's due to a CSA -> RUN transition, 5977 * force a beacon update so we pick up a lack of 5978 * beacons from an AP in CAC and thus force a 5979 * scan. 5980 */ 5981 sc->sc_syncbeacon = 1; 5982 if (csa_run_transition) 5983 ath_beacon_config(sc, vap); 5984 break; 5985 case IEEE80211_M_MONITOR: 5986 /* 5987 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5988 * transitions so we must re-enable interrupts here to 5989 * handle the case of a single monitor mode vap. 5990 */ 5991 ath_hal_intrset(ah, sc->sc_imask); 5992 break; 5993 case IEEE80211_M_WDS: 5994 break; 5995 default: 5996 break; 5997 } 5998 /* 5999 * Let the hal process statistics collected during a 6000 * scan so it can provide calibrated noise floor data. 6001 */ 6002 ath_hal_process_noisefloor(ah); 6003 /* 6004 * Reset rssi stats; maybe not the best place... 6005 */ 6006 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 6007 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 6008 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 6009 /* 6010 * Finally, start any timers and the task q thread 6011 * (in case we didn't go through SCAN state). 6012 */ 6013 if (ath_longcalinterval != 0) { 6014 /* start periodic recalibration timer */ 6015 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6016 } else { 6017 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6018 "%s: calibration disabled\n", __func__); 6019 } 6020 taskqueue_unblock(sc->sc_tq); 6021 } else if (nstate == IEEE80211_S_INIT) { 6022 /* 6023 * If there are no vaps left in RUN state then 6024 * shutdown host/driver operation: 6025 * o disable interrupts 6026 * o disable the task queue thread 6027 * o mark beacon processing as stopped 6028 */ 6029 if (!ath_isanyrunningvaps(vap)) { 6030 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 6031 /* disable interrupts */ 6032 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 6033 taskqueue_block(sc->sc_tq); 6034 sc->sc_beacons = 0; 6035 } 6036 #ifdef IEEE80211_SUPPORT_TDMA 6037 ath_hal_setcca(ah, AH_TRUE); 6038 #endif 6039 } 6040 bad: 6041 ieee80211_free_node(ni); 6042 return error; 6043 } 6044 6045 /* 6046 * Allocate a key cache slot to the station so we can 6047 * setup a mapping from key index to node. The key cache 6048 * slot is needed for managing antenna state and for 6049 * compression when stations do not use crypto. We do 6050 * it uniliaterally here; if crypto is employed this slot 6051 * will be reassigned. 6052 */ 6053 static void 6054 ath_setup_stationkey(struct ieee80211_node *ni) 6055 { 6056 struct ieee80211vap *vap = ni->ni_vap; 6057 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6058 ieee80211_keyix keyix, rxkeyix; 6059 6060 /* XXX should take a locked ref to vap->iv_bss */ 6061 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 6062 /* 6063 * Key cache is full; we'll fall back to doing 6064 * the more expensive lookup in software. Note 6065 * this also means no h/w compression. 6066 */ 6067 /* XXX msg+statistic */ 6068 } else { 6069 /* XXX locking? */ 6070 ni->ni_ucastkey.wk_keyix = keyix; 6071 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 6072 /* NB: must mark device key to get called back on delete */ 6073 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 6074 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 6075 /* NB: this will create a pass-thru key entry */ 6076 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 6077 } 6078 } 6079 6080 /* 6081 * Setup driver-specific state for a newly associated node. 6082 * Note that we're called also on a re-associate, the isnew 6083 * param tells us if this is the first time or not. 6084 */ 6085 static void 6086 ath_newassoc(struct ieee80211_node *ni, int isnew) 6087 { 6088 struct ath_node *an = ATH_NODE(ni); 6089 struct ieee80211vap *vap = ni->ni_vap; 6090 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6091 const struct ieee80211_txparam *tp = ni->ni_txparms; 6092 6093 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 6094 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 6095 6096 ath_rate_newassoc(sc, an, isnew); 6097 if (isnew && 6098 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6099 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6100 ath_setup_stationkey(ni); 6101 } 6102 6103 static int 6104 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6105 int nchans, struct ieee80211_channel chans[]) 6106 { 6107 struct ath_softc *sc = ic->ic_ifp->if_softc; 6108 struct ath_hal *ah = sc->sc_ah; 6109 HAL_STATUS status; 6110 6111 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6112 "%s: rd %u cc %u location %c%s\n", 6113 __func__, reg->regdomain, reg->country, reg->location, 6114 reg->ecm ? " ecm" : ""); 6115 6116 status = ath_hal_set_channels(ah, chans, nchans, 6117 reg->country, reg->regdomain); 6118 if (status != HAL_OK) { 6119 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6120 __func__, status); 6121 return EINVAL; /* XXX */ 6122 } 6123 6124 return 0; 6125 } 6126 6127 static void 6128 ath_getradiocaps(struct ieee80211com *ic, 6129 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6130 { 6131 struct ath_softc *sc = ic->ic_ifp->if_softc; 6132 struct ath_hal *ah = sc->sc_ah; 6133 6134 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6135 __func__, SKU_DEBUG, CTRY_DEFAULT); 6136 6137 /* XXX check return */ 6138 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6139 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6140 6141 } 6142 6143 static int 6144 ath_getchannels(struct ath_softc *sc) 6145 { 6146 struct ifnet *ifp = sc->sc_ifp; 6147 struct ieee80211com *ic = ifp->if_l2com; 6148 struct ath_hal *ah = sc->sc_ah; 6149 HAL_STATUS status; 6150 6151 /* 6152 * Collect channel set based on EEPROM contents. 6153 */ 6154 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6155 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6156 if (status != HAL_OK) { 6157 if_printf(ifp, "%s: unable to collect channel list from hal, " 6158 "status %d\n", __func__, status); 6159 return EINVAL; 6160 } 6161 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6162 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6163 /* XXX map Atheros sku's to net80211 SKU's */ 6164 /* XXX net80211 types too small */ 6165 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6166 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6167 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6168 ic->ic_regdomain.isocc[1] = ' '; 6169 6170 ic->ic_regdomain.ecm = 1; 6171 ic->ic_regdomain.location = 'I'; 6172 6173 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6174 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6175 __func__, sc->sc_eerd, sc->sc_eecc, 6176 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6177 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6178 return 0; 6179 } 6180 6181 static int 6182 ath_rate_setup(struct ath_softc *sc, u_int mode) 6183 { 6184 struct ath_hal *ah = sc->sc_ah; 6185 const HAL_RATE_TABLE *rt; 6186 6187 switch (mode) { 6188 case IEEE80211_MODE_11A: 6189 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6190 break; 6191 case IEEE80211_MODE_HALF: 6192 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6193 break; 6194 case IEEE80211_MODE_QUARTER: 6195 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6196 break; 6197 case IEEE80211_MODE_11B: 6198 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6199 break; 6200 case IEEE80211_MODE_11G: 6201 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6202 break; 6203 case IEEE80211_MODE_TURBO_A: 6204 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6205 break; 6206 case IEEE80211_MODE_TURBO_G: 6207 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6208 break; 6209 case IEEE80211_MODE_STURBO_A: 6210 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6211 break; 6212 case IEEE80211_MODE_11NA: 6213 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6214 break; 6215 case IEEE80211_MODE_11NG: 6216 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6217 break; 6218 default: 6219 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6220 __func__, mode); 6221 return 0; 6222 } 6223 sc->sc_rates[mode] = rt; 6224 return (rt != NULL); 6225 } 6226 6227 static void 6228 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6229 { 6230 #define N(a) (sizeof(a)/sizeof(a[0])) 6231 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6232 static const struct { 6233 u_int rate; /* tx/rx 802.11 rate */ 6234 u_int16_t timeOn; /* LED on time (ms) */ 6235 u_int16_t timeOff; /* LED off time (ms) */ 6236 } blinkrates[] = { 6237 { 108, 40, 10 }, 6238 { 96, 44, 11 }, 6239 { 72, 50, 13 }, 6240 { 48, 57, 14 }, 6241 { 36, 67, 16 }, 6242 { 24, 80, 20 }, 6243 { 22, 100, 25 }, 6244 { 18, 133, 34 }, 6245 { 12, 160, 40 }, 6246 { 10, 200, 50 }, 6247 { 6, 240, 58 }, 6248 { 4, 267, 66 }, 6249 { 2, 400, 100 }, 6250 { 0, 500, 130 }, 6251 /* XXX half/quarter rates */ 6252 }; 6253 const HAL_RATE_TABLE *rt; 6254 int i, j; 6255 6256 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6257 rt = sc->sc_rates[mode]; 6258 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6259 for (i = 0; i < rt->rateCount; i++) { 6260 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6261 if (rt->info[i].phy != IEEE80211_T_HT) 6262 sc->sc_rixmap[ieeerate] = i; 6263 else 6264 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6265 } 6266 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6267 for (i = 0; i < N(sc->sc_hwmap); i++) { 6268 if (i >= rt->rateCount) { 6269 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6270 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6271 continue; 6272 } 6273 sc->sc_hwmap[i].ieeerate = 6274 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6275 if (rt->info[i].phy == IEEE80211_T_HT) 6276 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6277 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6278 if (rt->info[i].shortPreamble || 6279 rt->info[i].phy == IEEE80211_T_OFDM) 6280 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6281 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6282 for (j = 0; j < N(blinkrates)-1; j++) 6283 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6284 break; 6285 /* NB: this uses the last entry if the rate isn't found */ 6286 /* XXX beware of overlow */ 6287 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6288 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6289 } 6290 sc->sc_currates = rt; 6291 sc->sc_curmode = mode; 6292 /* 6293 * All protection frames are transmited at 2Mb/s for 6294 * 11g, otherwise at 1Mb/s. 6295 */ 6296 if (mode == IEEE80211_MODE_11G) 6297 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6298 else 6299 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6300 /* NB: caller is responsible for resetting rate control state */ 6301 #undef N 6302 } 6303 6304 static void 6305 ath_watchdog(void *arg) 6306 { 6307 struct ath_softc *sc = arg; 6308 int do_reset = 0; 6309 6310 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6311 struct ifnet *ifp = sc->sc_ifp; 6312 uint32_t hangs; 6313 6314 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6315 hangs != 0) { 6316 if_printf(ifp, "%s hang detected (0x%x)\n", 6317 hangs & 0xff ? "bb" : "mac", hangs); 6318 } else 6319 if_printf(ifp, "device timeout\n"); 6320 do_reset = 1; 6321 ifp->if_oerrors++; 6322 sc->sc_stats.ast_watchdog++; 6323 } 6324 6325 /* 6326 * We can't hold the lock across the ath_reset() call. 6327 * 6328 * And since this routine can't hold a lock and sleep, 6329 * do the reset deferred. 6330 */ 6331 if (do_reset) { 6332 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6333 } 6334 6335 callout_schedule(&sc->sc_wd_ch, hz); 6336 } 6337 6338 #ifdef ATH_DIAGAPI 6339 /* 6340 * Diagnostic interface to the HAL. This is used by various 6341 * tools to do things like retrieve register contents for 6342 * debugging. The mechanism is intentionally opaque so that 6343 * it can change frequently w/o concern for compatiblity. 6344 */ 6345 static int 6346 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6347 { 6348 struct ath_hal *ah = sc->sc_ah; 6349 u_int id = ad->ad_id & ATH_DIAG_ID; 6350 void *indata = NULL; 6351 void *outdata = NULL; 6352 u_int32_t insize = ad->ad_in_size; 6353 u_int32_t outsize = ad->ad_out_size; 6354 int error = 0; 6355 6356 if (ad->ad_id & ATH_DIAG_IN) { 6357 /* 6358 * Copy in data. 6359 */ 6360 indata = malloc(insize, M_TEMP, M_NOWAIT); 6361 if (indata == NULL) { 6362 error = ENOMEM; 6363 goto bad; 6364 } 6365 error = copyin(ad->ad_in_data, indata, insize); 6366 if (error) 6367 goto bad; 6368 } 6369 if (ad->ad_id & ATH_DIAG_DYN) { 6370 /* 6371 * Allocate a buffer for the results (otherwise the HAL 6372 * returns a pointer to a buffer where we can read the 6373 * results). Note that we depend on the HAL leaving this 6374 * pointer for us to use below in reclaiming the buffer; 6375 * may want to be more defensive. 6376 */ 6377 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6378 if (outdata == NULL) { 6379 error = ENOMEM; 6380 goto bad; 6381 } 6382 } 6383 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6384 if (outsize < ad->ad_out_size) 6385 ad->ad_out_size = outsize; 6386 if (outdata != NULL) 6387 error = copyout(outdata, ad->ad_out_data, 6388 ad->ad_out_size); 6389 } else { 6390 error = EINVAL; 6391 } 6392 bad: 6393 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6394 free(indata, M_TEMP); 6395 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6396 free(outdata, M_TEMP); 6397 return error; 6398 } 6399 #endif /* ATH_DIAGAPI */ 6400 6401 static int 6402 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 6403 { 6404 #define IS_RUNNING(ifp) \ 6405 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 6406 struct ath_softc *sc = ifp->if_softc; 6407 struct ieee80211com *ic = ifp->if_l2com; 6408 struct ifreq *ifr = (struct ifreq *)data; 6409 const HAL_RATE_TABLE *rt; 6410 int error = 0; 6411 6412 switch (cmd) { 6413 case SIOCSIFFLAGS: 6414 ATH_LOCK(sc); 6415 if (IS_RUNNING(ifp)) { 6416 /* 6417 * To avoid rescanning another access point, 6418 * do not call ath_init() here. Instead, 6419 * only reflect promisc mode settings. 6420 */ 6421 ath_mode_init(sc); 6422 } else if (ifp->if_flags & IFF_UP) { 6423 /* 6424 * Beware of being called during attach/detach 6425 * to reset promiscuous mode. In that case we 6426 * will still be marked UP but not RUNNING. 6427 * However trying to re-init the interface 6428 * is the wrong thing to do as we've already 6429 * torn down much of our state. There's 6430 * probably a better way to deal with this. 6431 */ 6432 if (!sc->sc_invalid) 6433 ath_init(sc); /* XXX lose error */ 6434 } else { 6435 ath_stop_locked(ifp); 6436 #ifdef notyet 6437 /* XXX must wakeup in places like ath_vap_delete */ 6438 if (!sc->sc_invalid) 6439 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 6440 #endif 6441 } 6442 ATH_UNLOCK(sc); 6443 break; 6444 case SIOCGIFMEDIA: 6445 case SIOCSIFMEDIA: 6446 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 6447 break; 6448 case SIOCGATHSTATS: 6449 /* NB: embed these numbers to get a consistent view */ 6450 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 6451 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 6452 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 6453 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 6454 #ifdef IEEE80211_SUPPORT_TDMA 6455 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 6456 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 6457 #endif 6458 rt = sc->sc_currates; 6459 sc->sc_stats.ast_tx_rate = 6460 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 6461 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 6462 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 6463 return copyout(&sc->sc_stats, 6464 ifr->ifr_data, sizeof (sc->sc_stats)); 6465 case SIOCZATHSTATS: 6466 error = priv_check(curthread, PRIV_DRIVER); 6467 if (error == 0) 6468 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6469 break; 6470 #ifdef ATH_DIAGAPI 6471 case SIOCGATHDIAG: 6472 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 6473 break; 6474 case SIOCGATHPHYERR: 6475 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 6476 break; 6477 #endif 6478 case SIOCGIFADDR: 6479 error = ether_ioctl(ifp, cmd, data); 6480 break; 6481 default: 6482 error = EINVAL; 6483 break; 6484 } 6485 return error; 6486 #undef IS_RUNNING 6487 } 6488 6489 /* 6490 * Announce various information on device/driver attach. 6491 */ 6492 static void 6493 ath_announce(struct ath_softc *sc) 6494 { 6495 struct ifnet *ifp = sc->sc_ifp; 6496 struct ath_hal *ah = sc->sc_ah; 6497 6498 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 6499 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6500 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6501 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6502 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6503 if (bootverbose) { 6504 int i; 6505 for (i = 0; i <= WME_AC_VO; i++) { 6506 struct ath_txq *txq = sc->sc_ac2q[i]; 6507 if_printf(ifp, "Use hw queue %u for %s traffic\n", 6508 txq->axq_qnum, ieee80211_wme_acnames[i]); 6509 } 6510 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 6511 sc->sc_cabq->axq_qnum); 6512 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 6513 } 6514 if (ath_rxbuf != ATH_RXBUF) 6515 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 6516 if (ath_txbuf != ATH_TXBUF) 6517 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 6518 if (sc->sc_mcastkey && bootverbose) 6519 if_printf(ifp, "using multicast key search\n"); 6520 } 6521 6522 #ifdef IEEE80211_SUPPORT_TDMA 6523 static void 6524 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval) 6525 { 6526 struct ath_hal *ah = sc->sc_ah; 6527 HAL_BEACON_TIMERS bt; 6528 6529 bt.bt_intval = bintval | HAL_BEACON_ENA; 6530 bt.bt_nexttbtt = nexttbtt; 6531 bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep; 6532 bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep; 6533 bt.bt_nextatim = nexttbtt+1; 6534 /* Enables TBTT, DBA, SWBA timers by default */ 6535 bt.bt_flags = 0; 6536 ath_hal_beaconsettimers(ah, &bt); 6537 } 6538 6539 /* 6540 * Calculate the beacon interval. This is periodic in the 6541 * superframe for the bss. We assume each station is configured 6542 * identically wrt transmit rate so the guard time we calculate 6543 * above will be the same on all stations. Note we need to 6544 * factor in the xmit time because the hardware will schedule 6545 * a frame for transmit if the start of the frame is within 6546 * the burst time. When we get hardware that properly kills 6547 * frames in the PCU we can reduce/eliminate the guard time. 6548 * 6549 * Roundup to 1024 is so we have 1 TU buffer in the guard time 6550 * to deal with the granularity of the nexttbtt timer. 11n MAC's 6551 * with 1us timer granularity should allow us to reduce/eliminate 6552 * this. 6553 */ 6554 static void 6555 ath_tdma_bintvalsetup(struct ath_softc *sc, 6556 const struct ieee80211_tdma_state *tdma) 6557 { 6558 /* copy from vap state (XXX check all vaps have same value?) */ 6559 sc->sc_tdmaslotlen = tdma->tdma_slotlen; 6560 6561 sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) * 6562 tdma->tdma_slotcnt, 1024); 6563 sc->sc_tdmabintval >>= 10; /* TSF -> TU */ 6564 if (sc->sc_tdmabintval & 1) 6565 sc->sc_tdmabintval++; 6566 6567 if (tdma->tdma_slot == 0) { 6568 /* 6569 * Only slot 0 beacons; other slots respond. 6570 */ 6571 sc->sc_imask |= HAL_INT_SWBA; 6572 sc->sc_tdmaswba = 0; /* beacon immediately */ 6573 } else { 6574 /* XXX all vaps must be slot 0 or slot !0 */ 6575 sc->sc_imask &= ~HAL_INT_SWBA; 6576 } 6577 } 6578 6579 /* 6580 * Max 802.11 overhead. This assumes no 4-address frames and 6581 * the encapsulation done by ieee80211_encap (llc). We also 6582 * include potential crypto overhead. 6583 */ 6584 #define IEEE80211_MAXOVERHEAD \ 6585 (sizeof(struct ieee80211_qosframe) \ 6586 + sizeof(struct llc) \ 6587 + IEEE80211_ADDR_LEN \ 6588 + IEEE80211_WEP_IVLEN \ 6589 + IEEE80211_WEP_KIDLEN \ 6590 + IEEE80211_WEP_CRCLEN \ 6591 + IEEE80211_WEP_MICLEN \ 6592 + IEEE80211_CRC_LEN) 6593 6594 /* 6595 * Setup initially for tdma operation. Start the beacon 6596 * timers and enable SWBA if we are slot 0. Otherwise 6597 * we wait for slot 0 to arrive so we can sync up before 6598 * starting to transmit. 6599 */ 6600 static void 6601 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap) 6602 { 6603 struct ath_hal *ah = sc->sc_ah; 6604 struct ifnet *ifp = sc->sc_ifp; 6605 struct ieee80211com *ic = ifp->if_l2com; 6606 const struct ieee80211_txparam *tp; 6607 const struct ieee80211_tdma_state *tdma = NULL; 6608 int rix; 6609 6610 if (vap == NULL) { 6611 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 6612 if (vap == NULL) { 6613 if_printf(ifp, "%s: no vaps?\n", __func__); 6614 return; 6615 } 6616 } 6617 /* XXX should take a locked ref to iv_bss */ 6618 tp = vap->iv_bss->ni_txparms; 6619 /* 6620 * Calculate the guard time for each slot. This is the 6621 * time to send a maximal-size frame according to the 6622 * fixed/lowest transmit rate. Note that the interface 6623 * mtu does not include the 802.11 overhead so we must 6624 * tack that on (ath_hal_computetxtime includes the 6625 * preamble and plcp in it's calculation). 6626 */ 6627 tdma = vap->iv_tdma; 6628 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 6629 rix = ath_tx_findrix(sc, tp->ucastrate); 6630 else 6631 rix = ath_tx_findrix(sc, tp->mcastrate); 6632 /* XXX short preamble assumed */ 6633 sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates, 6634 ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE); 6635 6636 ath_hal_intrset(ah, 0); 6637 6638 ath_beaconq_config(sc); /* setup h/w beacon q */ 6639 if (sc->sc_setcca) 6640 ath_hal_setcca(ah, AH_FALSE); /* disable CCA */ 6641 ath_tdma_bintvalsetup(sc, tdma); /* calculate beacon interval */ 6642 ath_tdma_settimers(sc, sc->sc_tdmabintval, 6643 sc->sc_tdmabintval | HAL_BEACON_RESET_TSF); 6644 sc->sc_syncbeacon = 0; 6645 6646 sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER; 6647 sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER; 6648 6649 ath_hal_intrset(ah, sc->sc_imask); 6650 6651 DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u " 6652 "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__, 6653 tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt, 6654 tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval, 6655 sc->sc_tdmadbaprep); 6656 } 6657 6658 /* 6659 * Update tdma operation. Called from the 802.11 layer 6660 * when a beacon is received from the TDMA station operating 6661 * in the slot immediately preceding us in the bss. Use 6662 * the rx timestamp for the beacon frame to update our 6663 * beacon timers so we follow their schedule. Note that 6664 * by using the rx timestamp we implicitly include the 6665 * propagation delay in our schedule. 6666 */ 6667 static void 6668 ath_tdma_update(struct ieee80211_node *ni, 6669 const struct ieee80211_tdma_param *tdma, int changed) 6670 { 6671 #define TSF_TO_TU(_h,_l) \ 6672 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 6673 #define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10) 6674 struct ieee80211vap *vap = ni->ni_vap; 6675 struct ieee80211com *ic = ni->ni_ic; 6676 struct ath_softc *sc = ic->ic_ifp->if_softc; 6677 struct ath_hal *ah = sc->sc_ah; 6678 const HAL_RATE_TABLE *rt = sc->sc_currates; 6679 u_int64_t tsf, rstamp, nextslot, nexttbtt; 6680 u_int32_t txtime, nextslottu; 6681 int32_t tudelta, tsfdelta; 6682 const struct ath_rx_status *rs; 6683 int rix; 6684 6685 sc->sc_stats.ast_tdma_update++; 6686 6687 /* 6688 * Check for and adopt configuration changes. 6689 */ 6690 if (changed != 0) { 6691 const struct ieee80211_tdma_state *ts = vap->iv_tdma; 6692 6693 ath_tdma_bintvalsetup(sc, ts); 6694 if (changed & TDMA_UPDATE_SLOTLEN) 6695 ath_wme_update(ic); 6696 6697 DPRINTF(sc, ATH_DEBUG_TDMA, 6698 "%s: adopt slot %u slotcnt %u slotlen %u us " 6699 "bintval %u TU\n", __func__, 6700 ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen, 6701 sc->sc_tdmabintval); 6702 6703 /* XXX right? */ 6704 ath_hal_intrset(ah, sc->sc_imask); 6705 /* NB: beacon timers programmed below */ 6706 } 6707 6708 /* extend rx timestamp to 64 bits */ 6709 rs = sc->sc_lastrs; 6710 tsf = ath_hal_gettsf64(ah); 6711 rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf); 6712 /* 6713 * The rx timestamp is set by the hardware on completing 6714 * reception (at the point where the rx descriptor is DMA'd 6715 * to the host). To find the start of our next slot we 6716 * must adjust this time by the time required to send 6717 * the packet just received. 6718 */ 6719 rix = rt->rateCodeToIndex[rs->rs_rate]; 6720 txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix, 6721 rt->info[rix].shortPreamble); 6722 /* NB: << 9 is to cvt to TU and /2 */ 6723 nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9); 6724 nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD; 6725 6726 /* 6727 * Retrieve the hardware NextTBTT in usecs 6728 * and calculate the difference between what the 6729 * other station thinks and what we have programmed. This 6730 * lets us figure how to adjust our timers to match. The 6731 * adjustments are done by pulling the TSF forward and possibly 6732 * rewriting the beacon timers. 6733 */ 6734 nexttbtt = ath_hal_getnexttbtt(ah); 6735 tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt); 6736 6737 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6738 "tsfdelta %d avg +%d/-%d\n", tsfdelta, 6739 TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam)); 6740 6741 if (tsfdelta < 0) { 6742 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6743 TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta); 6744 tsfdelta = -tsfdelta % 1024; 6745 nextslottu++; 6746 } else if (tsfdelta > 0) { 6747 TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta); 6748 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6749 tsfdelta = 1024 - (tsfdelta % 1024); 6750 nextslottu++; 6751 } else { 6752 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6753 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6754 } 6755 tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt); 6756 6757 /* 6758 * Copy sender's timetstamp into tdma ie so they can 6759 * calculate roundtrip time. We submit a beacon frame 6760 * below after any timer adjustment. The frame goes out 6761 * at the next TBTT so the sender can calculate the 6762 * roundtrip by inspecting the tdma ie in our beacon frame. 6763 * 6764 * NB: This tstamp is subtlely preserved when 6765 * IEEE80211_BEACON_TDMA is marked (e.g. when the 6766 * slot position changes) because ieee80211_add_tdma 6767 * skips over the data. 6768 */ 6769 memcpy(ATH_VAP(vap)->av_boff.bo_tdma + 6770 __offsetof(struct ieee80211_tdma_param, tdma_tstamp), 6771 &ni->ni_tstamp.data, 8); 6772 #if 0 6773 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6774 "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n", 6775 (unsigned long long) tsf, (unsigned long long) nextslot, 6776 (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta); 6777 #endif 6778 /* 6779 * Adjust the beacon timers only when pulling them forward 6780 * or when going back by less than the beacon interval. 6781 * Negative jumps larger than the beacon interval seem to 6782 * cause the timers to stop and generally cause instability. 6783 * This basically filters out jumps due to missed beacons. 6784 */ 6785 if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) { 6786 ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval); 6787 sc->sc_stats.ast_tdma_timers++; 6788 } 6789 if (tsfdelta > 0) { 6790 ath_hal_adjusttsf(ah, tsfdelta); 6791 sc->sc_stats.ast_tdma_tsf++; 6792 } 6793 ath_tdma_beacon_send(sc, vap); /* prepare response */ 6794 #undef TU_TO_TSF 6795 #undef TSF_TO_TU 6796 } 6797 6798 /* 6799 * Transmit a beacon frame at SWBA. Dynamic updates 6800 * to the frame contents are done as needed. 6801 */ 6802 static void 6803 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap) 6804 { 6805 struct ath_hal *ah = sc->sc_ah; 6806 struct ath_buf *bf; 6807 int otherant; 6808 6809 /* 6810 * Check if the previous beacon has gone out. If 6811 * not don't try to post another, skip this period 6812 * and wait for the next. Missed beacons indicate 6813 * a problem and should not occur. If we miss too 6814 * many consecutive beacons reset the device. 6815 */ 6816 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 6817 sc->sc_bmisscount++; 6818 DPRINTF(sc, ATH_DEBUG_BEACON, 6819 "%s: missed %u consecutive beacons\n", 6820 __func__, sc->sc_bmisscount); 6821 if (sc->sc_bmisscount >= ath_bstuck_threshold) 6822 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 6823 return; 6824 } 6825 if (sc->sc_bmisscount != 0) { 6826 DPRINTF(sc, ATH_DEBUG_BEACON, 6827 "%s: resume beacon xmit after %u misses\n", 6828 __func__, sc->sc_bmisscount); 6829 sc->sc_bmisscount = 0; 6830 } 6831 6832 /* 6833 * Check recent per-antenna transmit statistics and flip 6834 * the default antenna if noticeably more frames went out 6835 * on the non-default antenna. 6836 * XXX assumes 2 anntenae 6837 */ 6838 if (!sc->sc_diversity) { 6839 otherant = sc->sc_defant & 1 ? 2 : 1; 6840 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 6841 ath_setdefantenna(sc, otherant); 6842 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 6843 } 6844 6845 bf = ath_beacon_generate(sc, vap); 6846 if (bf != NULL) { 6847 /* 6848 * Stop any current dma and put the new frame on the queue. 6849 * This should never fail since we check above that no frames 6850 * are still pending on the queue. 6851 */ 6852 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 6853 DPRINTF(sc, ATH_DEBUG_ANY, 6854 "%s: beacon queue %u did not stop?\n", 6855 __func__, sc->sc_bhalq); 6856 /* NB: the HAL still stops DMA, so proceed */ 6857 } 6858 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 6859 ath_hal_txstart(ah, sc->sc_bhalq); 6860 6861 sc->sc_stats.ast_be_xmit++; /* XXX per-vap? */ 6862 6863 /* 6864 * Record local TSF for our last send for use 6865 * in arbitrating slot collisions. 6866 */ 6867 /* XXX should take a locked ref to iv_bss */ 6868 vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah); 6869 } 6870 } 6871 #endif /* IEEE80211_SUPPORT_TDMA */ 6872 6873 static void 6874 ath_dfs_tasklet(void *p, int npending) 6875 { 6876 struct ath_softc *sc = (struct ath_softc *) p; 6877 struct ifnet *ifp = sc->sc_ifp; 6878 struct ieee80211com *ic = ifp->if_l2com; 6879 6880 /* 6881 * If previous processing has found a radar event, 6882 * signal this to the net80211 layer to begin DFS 6883 * processing. 6884 */ 6885 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6886 /* DFS event found, initiate channel change */ 6887 /* 6888 * XXX doesn't currently tell us whether the event 6889 * XXX was found in the primary or extension 6890 * XXX channel! 6891 */ 6892 IEEE80211_LOCK(ic); 6893 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6894 IEEE80211_UNLOCK(ic); 6895 } 6896 } 6897 6898 MODULE_VERSION(if_ath, 1); 6899 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6900 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 6901 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 6902 #endif 6903