xref: /freebsd/sys/dev/ath/if_ath.c (revision 3ef51c5fb9163f2aafb1c14729e06a8bf0c4d113)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_llc.h>
82 
83 #include <net80211/ieee80211_var.h>
84 #include <net80211/ieee80211_regdomain.h>
85 #ifdef IEEE80211_SUPPORT_SUPERG
86 #include <net80211/ieee80211_superg.h>
87 #endif
88 #ifdef IEEE80211_SUPPORT_TDMA
89 #include <net80211/ieee80211_tdma.h>
90 #endif
91 
92 #include <net/bpf.h>
93 
94 #ifdef INET
95 #include <netinet/in.h>
96 #include <netinet/if_ether.h>
97 #endif
98 
99 #include <dev/ath/if_athvar.h>
100 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101 #include <dev/ath/ath_hal/ah_diagcodes.h>
102 
103 #include <dev/ath/if_ath_debug.h>
104 #include <dev/ath/if_ath_misc.h>
105 #include <dev/ath/if_ath_tx.h>
106 #include <dev/ath/if_ath_sysctl.h>
107 #include <dev/ath/if_ath_led.h>
108 #include <dev/ath/if_ath_keycache.h>
109 #include <dev/ath/if_athdfs.h>
110 
111 #ifdef ATH_TX99_DIAG
112 #include <dev/ath/ath_tx99/ath_tx99.h>
113 #endif
114 
115 #define	ATH_KTR_INTR	KTR_SPARE4
116 #define	ATH_KTR_ERR	KTR_SPARE3
117 
118 /*
119  * ATH_BCBUF determines the number of vap's that can transmit
120  * beacons and also (currently) the number of vap's that can
121  * have unique mac addresses/bssid.  When staggering beacons
122  * 4 is probably a good max as otherwise the beacons become
123  * very closely spaced and there is limited time for cab q traffic
124  * to go out.  You can burst beacons instead but that is not good
125  * for stations in power save and at some point you really want
126  * another radio (and channel).
127  *
128  * The limit on the number of mac addresses is tied to our use of
129  * the U/L bit and tracking addresses in a byte; it would be
130  * worthwhile to allow more for applications like proxy sta.
131  */
132 CTASSERT(ATH_BCBUF <= 8);
133 
134 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
135 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
136 		    const uint8_t [IEEE80211_ADDR_LEN],
137 		    const uint8_t [IEEE80211_ADDR_LEN]);
138 static void	ath_vap_delete(struct ieee80211vap *);
139 static void	ath_init(void *);
140 static void	ath_stop_locked(struct ifnet *);
141 static void	ath_stop(struct ifnet *);
142 static void	ath_start(struct ifnet *);
143 static int	ath_reset_vap(struct ieee80211vap *, u_long);
144 static int	ath_media_change(struct ifnet *);
145 static void	ath_watchdog(void *);
146 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
147 static void	ath_fatal_proc(void *, int);
148 static void	ath_bmiss_vap(struct ieee80211vap *);
149 static void	ath_bmiss_proc(void *, int);
150 static void	ath_key_update_begin(struct ieee80211vap *);
151 static void	ath_key_update_end(struct ieee80211vap *);
152 static void	ath_update_mcast(struct ifnet *);
153 static void	ath_update_promisc(struct ifnet *);
154 static void	ath_mode_init(struct ath_softc *);
155 static void	ath_setslottime(struct ath_softc *);
156 static void	ath_updateslot(struct ifnet *);
157 static int	ath_beaconq_setup(struct ath_hal *);
158 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
159 static void	ath_beacon_update(struct ieee80211vap *, int item);
160 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
161 static void	ath_beacon_proc(void *, int);
162 static struct ath_buf *ath_beacon_generate(struct ath_softc *,
163 			struct ieee80211vap *);
164 static void	ath_bstuck_proc(void *, int);
165 static void	ath_reset_proc(void *, int);
166 static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
167 static void	ath_beacon_free(struct ath_softc *);
168 static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
169 static void	ath_descdma_cleanup(struct ath_softc *sc,
170 			struct ath_descdma *, ath_bufhead *);
171 static int	ath_desc_alloc(struct ath_softc *);
172 static void	ath_desc_free(struct ath_softc *);
173 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
174 			const uint8_t [IEEE80211_ADDR_LEN]);
175 static void	ath_node_cleanup(struct ieee80211_node *);
176 static void	ath_node_free(struct ieee80211_node *);
177 static void	ath_node_getsignal(const struct ieee80211_node *,
178 			int8_t *, int8_t *);
179 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
180 static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
181 			int subtype, int rssi, int nf);
182 static void	ath_setdefantenna(struct ath_softc *, u_int);
183 static void	ath_rx_proc(struct ath_softc *sc, int);
184 static void	ath_rx_tasklet(void *, int);
185 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
186 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
187 static int	ath_tx_setup(struct ath_softc *, int, int);
188 static int	ath_wme_update(struct ieee80211com *);
189 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
190 static void	ath_tx_cleanup(struct ath_softc *);
191 static void	ath_tx_proc_q0(void *, int);
192 static void	ath_tx_proc_q0123(void *, int);
193 static void	ath_tx_proc(void *, int);
194 static void	ath_txq_sched_tasklet(void *, int);
195 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
196 static void	ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type);
197 static void	ath_stoprecv(struct ath_softc *, int);
198 static int	ath_startrecv(struct ath_softc *);
199 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
200 static void	ath_scan_start(struct ieee80211com *);
201 static void	ath_scan_end(struct ieee80211com *);
202 static void	ath_set_channel(struct ieee80211com *);
203 static void	ath_update_chw(struct ieee80211com *);
204 static void	ath_calibrate(void *);
205 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
206 static void	ath_setup_stationkey(struct ieee80211_node *);
207 static void	ath_newassoc(struct ieee80211_node *, int);
208 static int	ath_setregdomain(struct ieee80211com *,
209 		    struct ieee80211_regdomain *, int,
210 		    struct ieee80211_channel []);
211 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
212 		    struct ieee80211_channel []);
213 static int	ath_getchannels(struct ath_softc *);
214 
215 static int	ath_rate_setup(struct ath_softc *, u_int mode);
216 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
217 
218 static void	ath_announce(struct ath_softc *);
219 
220 static void	ath_dfs_tasklet(void *, int);
221 
222 #ifdef IEEE80211_SUPPORT_TDMA
223 static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
224 		    u_int32_t bintval);
225 static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
226 		    const struct ieee80211_tdma_state *tdma);
227 static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
228 static void	ath_tdma_update(struct ieee80211_node *ni,
229 		    const struct ieee80211_tdma_param *tdma, int);
230 static void	ath_tdma_beacon_send(struct ath_softc *sc,
231 		    struct ieee80211vap *vap);
232 
233 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
234 #define	TDMA_LPF_LEN		6
235 #define	TDMA_DUMMY_MARKER	0x127
236 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
237 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
238 #define	TDMA_LPF(x, y, len) \
239     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
240 #define	TDMA_SAMPLE(x, y) do {					\
241 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
242 } while (0)
243 #define	TDMA_EP_RND(x,mul) \
244 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
245 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
246 #endif /* IEEE80211_SUPPORT_TDMA */
247 
248 SYSCTL_DECL(_hw_ath);
249 
250 /* XXX validate sysctl values */
251 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
252 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
253 	    0, "long chip calibration interval (secs)");
254 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
255 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
256 	    0, "short chip calibration interval (msecs)");
257 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
258 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
259 	    0, "reset chip calibration results (secs)");
260 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
261 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
262 	    0, "ANI calibration (msecs)");
263 
264 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
265 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
266 	    0, "rx buffers allocated");
267 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
268 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
269 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
270 	    0, "tx buffers allocated");
271 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
272 
273 static	int ath_bstuck_threshold = 4;		/* max missed beacons */
274 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
275 	    0, "max missed beacon xmits before chip reset");
276 
277 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
278 
279 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
280 #define	HAL_MODE_HT40 \
281 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
282 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
283 int
284 ath_attach(u_int16_t devid, struct ath_softc *sc)
285 {
286 	struct ifnet *ifp;
287 	struct ieee80211com *ic;
288 	struct ath_hal *ah = NULL;
289 	HAL_STATUS status;
290 	int error = 0, i;
291 	u_int wmodes;
292 	uint8_t macaddr[IEEE80211_ADDR_LEN];
293 	int rx_chainmask, tx_chainmask;
294 
295 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
296 
297 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
298 	if (ifp == NULL) {
299 		device_printf(sc->sc_dev, "can not if_alloc()\n");
300 		error = ENOSPC;
301 		goto bad;
302 	}
303 	ic = ifp->if_l2com;
304 
305 	/* set these up early for if_printf use */
306 	if_initname(ifp, device_get_name(sc->sc_dev),
307 		device_get_unit(sc->sc_dev));
308 
309 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
310 	    sc->sc_eepromdata, &status);
311 	if (ah == NULL) {
312 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
313 			status);
314 		error = ENXIO;
315 		goto bad;
316 	}
317 	sc->sc_ah = ah;
318 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
319 #ifdef	ATH_DEBUG
320 	sc->sc_debug = ath_debug;
321 #endif
322 
323 	/*
324 	 * Check if the MAC has multi-rate retry support.
325 	 * We do this by trying to setup a fake extended
326 	 * descriptor.  MAC's that don't have support will
327 	 * return false w/o doing anything.  MAC's that do
328 	 * support it will return true w/o doing anything.
329 	 */
330 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
331 
332 	/*
333 	 * Check if the device has hardware counters for PHY
334 	 * errors.  If so we need to enable the MIB interrupt
335 	 * so we can act on stat triggers.
336 	 */
337 	if (ath_hal_hwphycounters(ah))
338 		sc->sc_needmib = 1;
339 
340 	/*
341 	 * Get the hardware key cache size.
342 	 */
343 	sc->sc_keymax = ath_hal_keycachesize(ah);
344 	if (sc->sc_keymax > ATH_KEYMAX) {
345 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
346 			ATH_KEYMAX, sc->sc_keymax);
347 		sc->sc_keymax = ATH_KEYMAX;
348 	}
349 	/*
350 	 * Reset the key cache since some parts do not
351 	 * reset the contents on initial power up.
352 	 */
353 	for (i = 0; i < sc->sc_keymax; i++)
354 		ath_hal_keyreset(ah, i);
355 
356 	/*
357 	 * Collect the default channel list.
358 	 */
359 	error = ath_getchannels(sc);
360 	if (error != 0)
361 		goto bad;
362 
363 	/*
364 	 * Setup rate tables for all potential media types.
365 	 */
366 	ath_rate_setup(sc, IEEE80211_MODE_11A);
367 	ath_rate_setup(sc, IEEE80211_MODE_11B);
368 	ath_rate_setup(sc, IEEE80211_MODE_11G);
369 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
370 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
371 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
372 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
373 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
374 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
375 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
376 
377 	/* NB: setup here so ath_rate_update is happy */
378 	ath_setcurmode(sc, IEEE80211_MODE_11A);
379 
380 	/*
381 	 * Allocate tx+rx descriptors and populate the lists.
382 	 */
383 	error = ath_desc_alloc(sc);
384 	if (error != 0) {
385 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
386 		goto bad;
387 	}
388 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
389 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
390 
391 	ATH_TXBUF_LOCK_INIT(sc);
392 
393 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
394 		taskqueue_thread_enqueue, &sc->sc_tq);
395 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
396 		"%s taskq", ifp->if_xname);
397 
398 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc);
399 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
400 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
401 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
402 	TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc);
403 
404 	/*
405 	 * Allocate hardware transmit queues: one queue for
406 	 * beacon frames and one data queue for each QoS
407 	 * priority.  Note that the hal handles resetting
408 	 * these queues at the needed time.
409 	 *
410 	 * XXX PS-Poll
411 	 */
412 	sc->sc_bhalq = ath_beaconq_setup(ah);
413 	if (sc->sc_bhalq == (u_int) -1) {
414 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
415 		error = EIO;
416 		goto bad2;
417 	}
418 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
419 	if (sc->sc_cabq == NULL) {
420 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
421 		error = EIO;
422 		goto bad2;
423 	}
424 	/* NB: insure BK queue is the lowest priority h/w queue */
425 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
426 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
427 			ieee80211_wme_acnames[WME_AC_BK]);
428 		error = EIO;
429 		goto bad2;
430 	}
431 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
432 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
433 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
434 		/*
435 		 * Not enough hardware tx queues to properly do WME;
436 		 * just punt and assign them all to the same h/w queue.
437 		 * We could do a better job of this if, for example,
438 		 * we allocate queues when we switch from station to
439 		 * AP mode.
440 		 */
441 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
442 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
443 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
444 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
445 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
446 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
447 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
448 	}
449 
450 	/*
451 	 * Special case certain configurations.  Note the
452 	 * CAB queue is handled by these specially so don't
453 	 * include them when checking the txq setup mask.
454 	 */
455 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
456 	case 0x01:
457 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
458 		break;
459 	case 0x0f:
460 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
461 		break;
462 	default:
463 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
464 		break;
465 	}
466 
467 	/*
468 	 * Setup rate control.  Some rate control modules
469 	 * call back to change the anntena state so expose
470 	 * the necessary entry points.
471 	 * XXX maybe belongs in struct ath_ratectrl?
472 	 */
473 	sc->sc_setdefantenna = ath_setdefantenna;
474 	sc->sc_rc = ath_rate_attach(sc);
475 	if (sc->sc_rc == NULL) {
476 		error = EIO;
477 		goto bad2;
478 	}
479 
480 	/* Attach DFS module */
481 	if (! ath_dfs_attach(sc)) {
482 		device_printf(sc->sc_dev,
483 		    "%s: unable to attach DFS\n", __func__);
484 		error = EIO;
485 		goto bad2;
486 	}
487 
488 	/* Start DFS processing tasklet */
489 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
490 
491 	/* Configure LED state */
492 	sc->sc_blinking = 0;
493 	sc->sc_ledstate = 1;
494 	sc->sc_ledon = 0;			/* low true */
495 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
496 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
497 
498 	/*
499 	 * Don't setup hardware-based blinking.
500 	 *
501 	 * Although some NICs may have this configured in the
502 	 * default reset register values, the user may wish
503 	 * to alter which pins have which function.
504 	 *
505 	 * The reference driver attaches the MAC network LED to GPIO1 and
506 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
507 	 * NIC has these reversed.
508 	 */
509 	sc->sc_hardled = (1 == 0);
510 	sc->sc_led_net_pin = -1;
511 	sc->sc_led_pwr_pin = -1;
512 	/*
513 	 * Auto-enable soft led processing for IBM cards and for
514 	 * 5211 minipci cards.  Users can also manually enable/disable
515 	 * support with a sysctl.
516 	 */
517 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
518 	ath_led_config(sc);
519 	ath_hal_setledstate(ah, HAL_LED_INIT);
520 
521 	ifp->if_softc = sc;
522 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
523 	ifp->if_start = ath_start;
524 	ifp->if_ioctl = ath_ioctl;
525 	ifp->if_init = ath_init;
526 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
527 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
528 	IFQ_SET_READY(&ifp->if_snd);
529 
530 	ic->ic_ifp = ifp;
531 	/* XXX not right but it's not used anywhere important */
532 	ic->ic_phytype = IEEE80211_T_OFDM;
533 	ic->ic_opmode = IEEE80211_M_STA;
534 	ic->ic_caps =
535 		  IEEE80211_C_STA		/* station mode */
536 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
537 		| IEEE80211_C_HOSTAP		/* hostap mode */
538 		| IEEE80211_C_MONITOR		/* monitor mode */
539 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
540 		| IEEE80211_C_WDS		/* 4-address traffic works */
541 		| IEEE80211_C_MBSS		/* mesh point link mode */
542 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
543 		| IEEE80211_C_SHSLOT		/* short slot time supported */
544 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
545 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
546 		| IEEE80211_C_TXFRAG		/* handle tx frags */
547 #ifdef	ATH_ENABLE_DFS
548 		| IEEE80211_C_DFS		/* Enable radar detection */
549 #endif
550 		;
551 	/*
552 	 * Query the hal to figure out h/w crypto support.
553 	 */
554 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
555 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
556 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
557 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
558 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
559 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
560 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
561 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
562 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
563 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
564 		/*
565 		 * Check if h/w does the MIC and/or whether the
566 		 * separate key cache entries are required to
567 		 * handle both tx+rx MIC keys.
568 		 */
569 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
570 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
571 		/*
572 		 * If the h/w supports storing tx+rx MIC keys
573 		 * in one cache slot automatically enable use.
574 		 */
575 		if (ath_hal_hastkipsplit(ah) ||
576 		    !ath_hal_settkipsplit(ah, AH_FALSE))
577 			sc->sc_splitmic = 1;
578 		/*
579 		 * If the h/w can do TKIP MIC together with WME then
580 		 * we use it; otherwise we force the MIC to be done
581 		 * in software by the net80211 layer.
582 		 */
583 		if (ath_hal_haswmetkipmic(ah))
584 			sc->sc_wmetkipmic = 1;
585 	}
586 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
587 	/*
588 	 * Check for multicast key search support.
589 	 */
590 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
591 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
592 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
593 	}
594 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
595 	/*
596 	 * Mark key cache slots associated with global keys
597 	 * as in use.  If we knew TKIP was not to be used we
598 	 * could leave the +32, +64, and +32+64 slots free.
599 	 */
600 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
601 		setbit(sc->sc_keymap, i);
602 		setbit(sc->sc_keymap, i+64);
603 		if (sc->sc_splitmic) {
604 			setbit(sc->sc_keymap, i+32);
605 			setbit(sc->sc_keymap, i+32+64);
606 		}
607 	}
608 	/*
609 	 * TPC support can be done either with a global cap or
610 	 * per-packet support.  The latter is not available on
611 	 * all parts.  We're a bit pedantic here as all parts
612 	 * support a global cap.
613 	 */
614 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
615 		ic->ic_caps |= IEEE80211_C_TXPMGT;
616 
617 	/*
618 	 * Mark WME capability only if we have sufficient
619 	 * hardware queues to do proper priority scheduling.
620 	 */
621 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
622 		ic->ic_caps |= IEEE80211_C_WME;
623 	/*
624 	 * Check for misc other capabilities.
625 	 */
626 	if (ath_hal_hasbursting(ah))
627 		ic->ic_caps |= IEEE80211_C_BURST;
628 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
629 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
630 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
631 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
632 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
633 	if (ath_hal_hasfastframes(ah))
634 		ic->ic_caps |= IEEE80211_C_FF;
635 	wmodes = ath_hal_getwirelessmodes(ah);
636 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
637 		ic->ic_caps |= IEEE80211_C_TURBOP;
638 #ifdef IEEE80211_SUPPORT_TDMA
639 	if (ath_hal_macversion(ah) > 0x78) {
640 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
641 		ic->ic_tdma_update = ath_tdma_update;
642 	}
643 #endif
644 
645 	/*
646 	 * TODO: enforce that at least this many frames are available
647 	 * in the txbuf list before allowing data frames (raw or
648 	 * otherwise) to be transmitted.
649 	 */
650 	sc->sc_txq_data_minfree = 10;
651 	/*
652 	 * Leave this as default to maintain legacy behaviour.
653 	 * Shortening the cabq/mcastq may end up causing some
654 	 * undesirable behaviour.
655 	 */
656 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
657 
658 	/*
659 	 * Allow the TX and RX chainmasks to be overridden by
660 	 * environment variables and/or device.hints.
661 	 *
662 	 * This must be done early - before the hardware is
663 	 * calibrated or before the 802.11n stream calculation
664 	 * is done.
665 	 */
666 	if (resource_int_value(device_get_name(sc->sc_dev),
667 	    device_get_unit(sc->sc_dev), "rx_chainmask",
668 	    &rx_chainmask) == 0) {
669 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
670 		    rx_chainmask);
671 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
672 	}
673 	if (resource_int_value(device_get_name(sc->sc_dev),
674 	    device_get_unit(sc->sc_dev), "tx_chainmask",
675 	    &tx_chainmask) == 0) {
676 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
677 		    tx_chainmask);
678 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
679 	}
680 
681 	/*
682 	 * The if_ath 11n support is completely not ready for normal use.
683 	 * Enabling this option will likely break everything and everything.
684 	 * Don't think of doing that unless you know what you're doing.
685 	 */
686 
687 #ifdef	ATH_ENABLE_11N
688 	/*
689 	 * Query HT capabilities
690 	 */
691 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
692 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
693 		int rxs, txs;
694 
695 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
696 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
697 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
698 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
699 			    | IEEE80211_HTCAP_MAXAMSDU_3839
700 			    				/* max A-MSDU length */
701 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
702 			;
703 
704 		/*
705 		 * Enable short-GI for HT20 only if the hardware
706 		 * advertises support.
707 		 * Notably, anything earlier than the AR9287 doesn't.
708 		 */
709 		if ((ath_hal_getcapability(ah,
710 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
711 		    (wmodes & HAL_MODE_HT20)) {
712 			device_printf(sc->sc_dev,
713 			    "[HT] enabling short-GI in 20MHz mode\n");
714 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
715 		}
716 
717 		if (wmodes & HAL_MODE_HT40)
718 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
719 			    |  IEEE80211_HTCAP_SHORTGI40;
720 
721 		/*
722 		 * TX/RX streams need to be taken into account when
723 		 * negotiating which MCS rates it'll receive and
724 		 * what MCS rates are available for TX.
725 		 */
726 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
727 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
728 
729 		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
730 		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
731 
732 		ic->ic_txstream = txs;
733 		ic->ic_rxstream = rxs;
734 
735 		device_printf(sc->sc_dev,
736 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
737 	}
738 #endif
739 
740 	/*
741 	 * Check if the hardware requires PCI register serialisation.
742 	 * Some of the Owl based MACs require this.
743 	 */
744 	if (mp_ncpus > 1 &&
745 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
746 	     0, NULL) == HAL_OK) {
747 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
748 		device_printf(sc->sc_dev,
749 		    "Enabling register serialisation\n");
750 	}
751 
752 	/*
753 	 * Indicate we need the 802.11 header padded to a
754 	 * 32-bit boundary for 4-address and QoS frames.
755 	 */
756 	ic->ic_flags |= IEEE80211_F_DATAPAD;
757 
758 	/*
759 	 * Query the hal about antenna support.
760 	 */
761 	sc->sc_defant = ath_hal_getdefantenna(ah);
762 
763 	/*
764 	 * Not all chips have the VEOL support we want to
765 	 * use with IBSS beacons; check here for it.
766 	 */
767 	sc->sc_hasveol = ath_hal_hasveol(ah);
768 
769 	/* get mac address from hardware */
770 	ath_hal_getmac(ah, macaddr);
771 	if (sc->sc_hasbmask)
772 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
773 
774 	/* NB: used to size node table key mapping array */
775 	ic->ic_max_keyix = sc->sc_keymax;
776 	/* call MI attach routine. */
777 	ieee80211_ifattach(ic, macaddr);
778 	ic->ic_setregdomain = ath_setregdomain;
779 	ic->ic_getradiocaps = ath_getradiocaps;
780 	sc->sc_opmode = HAL_M_STA;
781 
782 	/* override default methods */
783 	ic->ic_newassoc = ath_newassoc;
784 	ic->ic_updateslot = ath_updateslot;
785 	ic->ic_wme.wme_update = ath_wme_update;
786 	ic->ic_vap_create = ath_vap_create;
787 	ic->ic_vap_delete = ath_vap_delete;
788 	ic->ic_raw_xmit = ath_raw_xmit;
789 	ic->ic_update_mcast = ath_update_mcast;
790 	ic->ic_update_promisc = ath_update_promisc;
791 	ic->ic_node_alloc = ath_node_alloc;
792 	sc->sc_node_free = ic->ic_node_free;
793 	ic->ic_node_free = ath_node_free;
794 	sc->sc_node_cleanup = ic->ic_node_cleanup;
795 	ic->ic_node_cleanup = ath_node_cleanup;
796 	ic->ic_node_getsignal = ath_node_getsignal;
797 	ic->ic_scan_start = ath_scan_start;
798 	ic->ic_scan_end = ath_scan_end;
799 	ic->ic_set_channel = ath_set_channel;
800 	ic->ic_update_chw = ath_update_chw;
801 
802 	/* 802.11n specific - but just override anyway */
803 	sc->sc_addba_request = ic->ic_addba_request;
804 	sc->sc_addba_response = ic->ic_addba_response;
805 	sc->sc_addba_stop = ic->ic_addba_stop;
806 	sc->sc_bar_response = ic->ic_bar_response;
807 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
808 
809 	ic->ic_addba_request = ath_addba_request;
810 	ic->ic_addba_response = ath_addba_response;
811 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
812 	ic->ic_addba_stop = ath_addba_stop;
813 	ic->ic_bar_response = ath_bar_response;
814 
815 	ieee80211_radiotap_attach(ic,
816 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
817 		ATH_TX_RADIOTAP_PRESENT,
818 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
819 		ATH_RX_RADIOTAP_PRESENT);
820 
821 	/*
822 	 * Setup dynamic sysctl's now that country code and
823 	 * regdomain are available from the hal.
824 	 */
825 	ath_sysctlattach(sc);
826 	ath_sysctl_stats_attach(sc);
827 	ath_sysctl_hal_attach(sc);
828 
829 	if (bootverbose)
830 		ieee80211_announce(ic);
831 	ath_announce(sc);
832 	return 0;
833 bad2:
834 	ath_tx_cleanup(sc);
835 	ath_desc_free(sc);
836 bad:
837 	if (ah)
838 		ath_hal_detach(ah);
839 	if (ifp != NULL)
840 		if_free(ifp);
841 	sc->sc_invalid = 1;
842 	return error;
843 }
844 
845 int
846 ath_detach(struct ath_softc *sc)
847 {
848 	struct ifnet *ifp = sc->sc_ifp;
849 
850 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
851 		__func__, ifp->if_flags);
852 
853 	/*
854 	 * NB: the order of these is important:
855 	 * o stop the chip so no more interrupts will fire
856 	 * o call the 802.11 layer before detaching the hal to
857 	 *   insure callbacks into the driver to delete global
858 	 *   key cache entries can be handled
859 	 * o free the taskqueue which drains any pending tasks
860 	 * o reclaim the tx queue data structures after calling
861 	 *   the 802.11 layer as we'll get called back to reclaim
862 	 *   node state and potentially want to use them
863 	 * o to cleanup the tx queues the hal is called, so detach
864 	 *   it last
865 	 * Other than that, it's straightforward...
866 	 */
867 	ath_stop(ifp);
868 	ieee80211_ifdetach(ifp->if_l2com);
869 	taskqueue_free(sc->sc_tq);
870 #ifdef ATH_TX99_DIAG
871 	if (sc->sc_tx99 != NULL)
872 		sc->sc_tx99->detach(sc->sc_tx99);
873 #endif
874 	ath_rate_detach(sc->sc_rc);
875 
876 	ath_dfs_detach(sc);
877 	ath_desc_free(sc);
878 	ath_tx_cleanup(sc);
879 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
880 	if_free(ifp);
881 
882 	return 0;
883 }
884 
885 /*
886  * MAC address handling for multiple BSS on the same radio.
887  * The first vap uses the MAC address from the EEPROM.  For
888  * subsequent vap's we set the U/L bit (bit 1) in the MAC
889  * address and use the next six bits as an index.
890  */
891 static void
892 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
893 {
894 	int i;
895 
896 	if (clone && sc->sc_hasbmask) {
897 		/* NB: we only do this if h/w supports multiple bssid */
898 		for (i = 0; i < 8; i++)
899 			if ((sc->sc_bssidmask & (1<<i)) == 0)
900 				break;
901 		if (i != 0)
902 			mac[0] |= (i << 2)|0x2;
903 	} else
904 		i = 0;
905 	sc->sc_bssidmask |= 1<<i;
906 	sc->sc_hwbssidmask[0] &= ~mac[0];
907 	if (i == 0)
908 		sc->sc_nbssid0++;
909 }
910 
911 static void
912 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
913 {
914 	int i = mac[0] >> 2;
915 	uint8_t mask;
916 
917 	if (i != 0 || --sc->sc_nbssid0 == 0) {
918 		sc->sc_bssidmask &= ~(1<<i);
919 		/* recalculate bssid mask from remaining addresses */
920 		mask = 0xff;
921 		for (i = 1; i < 8; i++)
922 			if (sc->sc_bssidmask & (1<<i))
923 				mask &= ~((i<<2)|0x2);
924 		sc->sc_hwbssidmask[0] |= mask;
925 	}
926 }
927 
928 /*
929  * Assign a beacon xmit slot.  We try to space out
930  * assignments so when beacons are staggered the
931  * traffic coming out of the cab q has maximal time
932  * to go out before the next beacon is scheduled.
933  */
934 static int
935 assign_bslot(struct ath_softc *sc)
936 {
937 	u_int slot, free;
938 
939 	free = 0;
940 	for (slot = 0; slot < ATH_BCBUF; slot++)
941 		if (sc->sc_bslot[slot] == NULL) {
942 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
943 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
944 				return slot;
945 			free = slot;
946 			/* NB: keep looking for a double slot */
947 		}
948 	return free;
949 }
950 
951 static struct ieee80211vap *
952 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
953     enum ieee80211_opmode opmode, int flags,
954     const uint8_t bssid[IEEE80211_ADDR_LEN],
955     const uint8_t mac0[IEEE80211_ADDR_LEN])
956 {
957 	struct ath_softc *sc = ic->ic_ifp->if_softc;
958 	struct ath_vap *avp;
959 	struct ieee80211vap *vap;
960 	uint8_t mac[IEEE80211_ADDR_LEN];
961 	int needbeacon, error;
962 	enum ieee80211_opmode ic_opmode;
963 
964 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
965 	    M_80211_VAP, M_WAITOK | M_ZERO);
966 	needbeacon = 0;
967 	IEEE80211_ADDR_COPY(mac, mac0);
968 
969 	ATH_LOCK(sc);
970 	ic_opmode = opmode;		/* default to opmode of new vap */
971 	switch (opmode) {
972 	case IEEE80211_M_STA:
973 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
974 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
975 			goto bad;
976 		}
977 		if (sc->sc_nvaps) {
978 			/*
979 			 * With multiple vaps we must fall back
980 			 * to s/w beacon miss handling.
981 			 */
982 			flags |= IEEE80211_CLONE_NOBEACONS;
983 		}
984 		if (flags & IEEE80211_CLONE_NOBEACONS) {
985 			/*
986 			 * Station mode w/o beacons are implemented w/ AP mode.
987 			 */
988 			ic_opmode = IEEE80211_M_HOSTAP;
989 		}
990 		break;
991 	case IEEE80211_M_IBSS:
992 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
993 			device_printf(sc->sc_dev,
994 			    "only 1 ibss vap supported\n");
995 			goto bad;
996 		}
997 		needbeacon = 1;
998 		break;
999 	case IEEE80211_M_AHDEMO:
1000 #ifdef IEEE80211_SUPPORT_TDMA
1001 		if (flags & IEEE80211_CLONE_TDMA) {
1002 			if (sc->sc_nvaps != 0) {
1003 				device_printf(sc->sc_dev,
1004 				    "only 1 tdma vap supported\n");
1005 				goto bad;
1006 			}
1007 			needbeacon = 1;
1008 			flags |= IEEE80211_CLONE_NOBEACONS;
1009 		}
1010 		/* fall thru... */
1011 #endif
1012 	case IEEE80211_M_MONITOR:
1013 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1014 			/*
1015 			 * Adopt existing mode.  Adding a monitor or ahdemo
1016 			 * vap to an existing configuration is of dubious
1017 			 * value but should be ok.
1018 			 */
1019 			/* XXX not right for monitor mode */
1020 			ic_opmode = ic->ic_opmode;
1021 		}
1022 		break;
1023 	case IEEE80211_M_HOSTAP:
1024 	case IEEE80211_M_MBSS:
1025 		needbeacon = 1;
1026 		break;
1027 	case IEEE80211_M_WDS:
1028 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1029 			device_printf(sc->sc_dev,
1030 			    "wds not supported in sta mode\n");
1031 			goto bad;
1032 		}
1033 		/*
1034 		 * Silently remove any request for a unique
1035 		 * bssid; WDS vap's always share the local
1036 		 * mac address.
1037 		 */
1038 		flags &= ~IEEE80211_CLONE_BSSID;
1039 		if (sc->sc_nvaps == 0)
1040 			ic_opmode = IEEE80211_M_HOSTAP;
1041 		else
1042 			ic_opmode = ic->ic_opmode;
1043 		break;
1044 	default:
1045 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1046 		goto bad;
1047 	}
1048 	/*
1049 	 * Check that a beacon buffer is available; the code below assumes it.
1050 	 */
1051 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1052 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1053 		goto bad;
1054 	}
1055 
1056 	/* STA, AHDEMO? */
1057 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1058 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1059 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1060 	}
1061 
1062 	vap = &avp->av_vap;
1063 	/* XXX can't hold mutex across if_alloc */
1064 	ATH_UNLOCK(sc);
1065 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1066 	    bssid, mac);
1067 	ATH_LOCK(sc);
1068 	if (error != 0) {
1069 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1070 		    __func__, error);
1071 		goto bad2;
1072 	}
1073 
1074 	/* h/w crypto support */
1075 	vap->iv_key_alloc = ath_key_alloc;
1076 	vap->iv_key_delete = ath_key_delete;
1077 	vap->iv_key_set = ath_key_set;
1078 	vap->iv_key_update_begin = ath_key_update_begin;
1079 	vap->iv_key_update_end = ath_key_update_end;
1080 
1081 	/* override various methods */
1082 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1083 	vap->iv_recv_mgmt = ath_recv_mgmt;
1084 	vap->iv_reset = ath_reset_vap;
1085 	vap->iv_update_beacon = ath_beacon_update;
1086 	avp->av_newstate = vap->iv_newstate;
1087 	vap->iv_newstate = ath_newstate;
1088 	avp->av_bmiss = vap->iv_bmiss;
1089 	vap->iv_bmiss = ath_bmiss_vap;
1090 
1091 	/* Set default parameters */
1092 
1093 	/*
1094 	 * Anything earlier than some AR9300 series MACs don't
1095 	 * support a smaller MPDU density.
1096 	 */
1097 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1098 	/*
1099 	 * All NICs can handle the maximum size, however
1100 	 * AR5416 based MACs can only TX aggregates w/ RTS
1101 	 * protection when the total aggregate size is <= 8k.
1102 	 * However, for now that's enforced by the TX path.
1103 	 */
1104 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1105 
1106 	avp->av_bslot = -1;
1107 	if (needbeacon) {
1108 		/*
1109 		 * Allocate beacon state and setup the q for buffered
1110 		 * multicast frames.  We know a beacon buffer is
1111 		 * available because we checked above.
1112 		 */
1113 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1114 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1115 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1116 			/*
1117 			 * Assign the vap to a beacon xmit slot.  As above
1118 			 * this cannot fail to find a free one.
1119 			 */
1120 			avp->av_bslot = assign_bslot(sc);
1121 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1122 			    ("beacon slot %u not empty", avp->av_bslot));
1123 			sc->sc_bslot[avp->av_bslot] = vap;
1124 			sc->sc_nbcnvaps++;
1125 		}
1126 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1127 			/*
1128 			 * Multple vaps are to transmit beacons and we
1129 			 * have h/w support for TSF adjusting; enable
1130 			 * use of staggered beacons.
1131 			 */
1132 			sc->sc_stagbeacons = 1;
1133 		}
1134 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1135 	}
1136 
1137 	ic->ic_opmode = ic_opmode;
1138 	if (opmode != IEEE80211_M_WDS) {
1139 		sc->sc_nvaps++;
1140 		if (opmode == IEEE80211_M_STA)
1141 			sc->sc_nstavaps++;
1142 		if (opmode == IEEE80211_M_MBSS)
1143 			sc->sc_nmeshvaps++;
1144 	}
1145 	switch (ic_opmode) {
1146 	case IEEE80211_M_IBSS:
1147 		sc->sc_opmode = HAL_M_IBSS;
1148 		break;
1149 	case IEEE80211_M_STA:
1150 		sc->sc_opmode = HAL_M_STA;
1151 		break;
1152 	case IEEE80211_M_AHDEMO:
1153 #ifdef IEEE80211_SUPPORT_TDMA
1154 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1155 			sc->sc_tdma = 1;
1156 			/* NB: disable tsf adjust */
1157 			sc->sc_stagbeacons = 0;
1158 		}
1159 		/*
1160 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1161 		 * just ap mode.
1162 		 */
1163 		/* fall thru... */
1164 #endif
1165 	case IEEE80211_M_HOSTAP:
1166 	case IEEE80211_M_MBSS:
1167 		sc->sc_opmode = HAL_M_HOSTAP;
1168 		break;
1169 	case IEEE80211_M_MONITOR:
1170 		sc->sc_opmode = HAL_M_MONITOR;
1171 		break;
1172 	default:
1173 		/* XXX should not happen */
1174 		break;
1175 	}
1176 	if (sc->sc_hastsfadd) {
1177 		/*
1178 		 * Configure whether or not TSF adjust should be done.
1179 		 */
1180 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1181 	}
1182 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1183 		/*
1184 		 * Enable s/w beacon miss handling.
1185 		 */
1186 		sc->sc_swbmiss = 1;
1187 	}
1188 	ATH_UNLOCK(sc);
1189 
1190 	/* complete setup */
1191 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1192 	return vap;
1193 bad2:
1194 	reclaim_address(sc, mac);
1195 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1196 bad:
1197 	free(avp, M_80211_VAP);
1198 	ATH_UNLOCK(sc);
1199 	return NULL;
1200 }
1201 
1202 static void
1203 ath_vap_delete(struct ieee80211vap *vap)
1204 {
1205 	struct ieee80211com *ic = vap->iv_ic;
1206 	struct ifnet *ifp = ic->ic_ifp;
1207 	struct ath_softc *sc = ifp->if_softc;
1208 	struct ath_hal *ah = sc->sc_ah;
1209 	struct ath_vap *avp = ATH_VAP(vap);
1210 
1211 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1212 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1213 		/*
1214 		 * Quiesce the hardware while we remove the vap.  In
1215 		 * particular we need to reclaim all references to
1216 		 * the vap state by any frames pending on the tx queues.
1217 		 */
1218 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1219 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1220 		/* XXX Do all frames from all vaps/nodes need draining here? */
1221 		ath_stoprecv(sc, 1);		/* stop recv side */
1222 	}
1223 
1224 	ieee80211_vap_detach(vap);
1225 
1226 	/*
1227 	 * XXX Danger Will Robinson! Danger!
1228 	 *
1229 	 * Because ieee80211_vap_detach() can queue a frame (the station
1230 	 * diassociate message?) after we've drained the TXQ and
1231 	 * flushed the software TXQ, we will end up with a frame queued
1232 	 * to a node whose vap is about to be freed.
1233 	 *
1234 	 * To work around this, flush the hardware/software again.
1235 	 * This may be racy - the ath task may be running and the packet
1236 	 * may be being scheduled between sw->hw txq. Tsk.
1237 	 *
1238 	 * TODO: figure out why a new node gets allocated somewhere around
1239 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1240 	 * call!)
1241 	 */
1242 
1243 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1244 
1245 	ATH_LOCK(sc);
1246 	/*
1247 	 * Reclaim beacon state.  Note this must be done before
1248 	 * the vap instance is reclaimed as we may have a reference
1249 	 * to it in the buffer for the beacon frame.
1250 	 */
1251 	if (avp->av_bcbuf != NULL) {
1252 		if (avp->av_bslot != -1) {
1253 			sc->sc_bslot[avp->av_bslot] = NULL;
1254 			sc->sc_nbcnvaps--;
1255 		}
1256 		ath_beacon_return(sc, avp->av_bcbuf);
1257 		avp->av_bcbuf = NULL;
1258 		if (sc->sc_nbcnvaps == 0) {
1259 			sc->sc_stagbeacons = 0;
1260 			if (sc->sc_hastsfadd)
1261 				ath_hal_settsfadjust(sc->sc_ah, 0);
1262 		}
1263 		/*
1264 		 * Reclaim any pending mcast frames for the vap.
1265 		 */
1266 		ath_tx_draintxq(sc, &avp->av_mcastq);
1267 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1268 	}
1269 	/*
1270 	 * Update bookkeeping.
1271 	 */
1272 	if (vap->iv_opmode == IEEE80211_M_STA) {
1273 		sc->sc_nstavaps--;
1274 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1275 			sc->sc_swbmiss = 0;
1276 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1277 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1278 		reclaim_address(sc, vap->iv_myaddr);
1279 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1280 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1281 			sc->sc_nmeshvaps--;
1282 	}
1283 	if (vap->iv_opmode != IEEE80211_M_WDS)
1284 		sc->sc_nvaps--;
1285 #ifdef IEEE80211_SUPPORT_TDMA
1286 	/* TDMA operation ceases when the last vap is destroyed */
1287 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1288 		sc->sc_tdma = 0;
1289 		sc->sc_swbmiss = 0;
1290 	}
1291 #endif
1292 	free(avp, M_80211_VAP);
1293 
1294 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1295 		/*
1296 		 * Restart rx+tx machines if still running (RUNNING will
1297 		 * be reset if we just destroyed the last vap).
1298 		 */
1299 		if (ath_startrecv(sc) != 0)
1300 			if_printf(ifp, "%s: unable to restart recv logic\n",
1301 			    __func__);
1302 		if (sc->sc_beacons) {		/* restart beacons */
1303 #ifdef IEEE80211_SUPPORT_TDMA
1304 			if (sc->sc_tdma)
1305 				ath_tdma_config(sc, NULL);
1306 			else
1307 #endif
1308 				ath_beacon_config(sc, NULL);
1309 		}
1310 		ath_hal_intrset(ah, sc->sc_imask);
1311 	}
1312 	ATH_UNLOCK(sc);
1313 }
1314 
1315 void
1316 ath_suspend(struct ath_softc *sc)
1317 {
1318 	struct ifnet *ifp = sc->sc_ifp;
1319 	struct ieee80211com *ic = ifp->if_l2com;
1320 
1321 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1322 		__func__, ifp->if_flags);
1323 
1324 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1325 	if (ic->ic_opmode == IEEE80211_M_STA)
1326 		ath_stop(ifp);
1327 	else
1328 		ieee80211_suspend_all(ic);
1329 	/*
1330 	 * NB: don't worry about putting the chip in low power
1331 	 * mode; pci will power off our socket on suspend and
1332 	 * CardBus detaches the device.
1333 	 */
1334 }
1335 
1336 /*
1337  * Reset the key cache since some parts do not reset the
1338  * contents on resume.  First we clear all entries, then
1339  * re-load keys that the 802.11 layer assumes are setup
1340  * in h/w.
1341  */
1342 static void
1343 ath_reset_keycache(struct ath_softc *sc)
1344 {
1345 	struct ifnet *ifp = sc->sc_ifp;
1346 	struct ieee80211com *ic = ifp->if_l2com;
1347 	struct ath_hal *ah = sc->sc_ah;
1348 	int i;
1349 
1350 	for (i = 0; i < sc->sc_keymax; i++)
1351 		ath_hal_keyreset(ah, i);
1352 	ieee80211_crypto_reload_keys(ic);
1353 }
1354 
1355 void
1356 ath_resume(struct ath_softc *sc)
1357 {
1358 	struct ifnet *ifp = sc->sc_ifp;
1359 	struct ieee80211com *ic = ifp->if_l2com;
1360 	struct ath_hal *ah = sc->sc_ah;
1361 	HAL_STATUS status;
1362 
1363 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1364 		__func__, ifp->if_flags);
1365 
1366 	/*
1367 	 * Must reset the chip before we reload the
1368 	 * keycache as we were powered down on suspend.
1369 	 */
1370 	ath_hal_reset(ah, sc->sc_opmode,
1371 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1372 	    AH_FALSE, &status);
1373 	ath_reset_keycache(sc);
1374 
1375 	/* Let DFS at it in case it's a DFS channel */
1376 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1377 
1378 	/* Restore the LED configuration */
1379 	ath_led_config(sc);
1380 	ath_hal_setledstate(ah, HAL_LED_INIT);
1381 
1382 	if (sc->sc_resume_up) {
1383 		if (ic->ic_opmode == IEEE80211_M_STA) {
1384 			ath_init(sc);
1385 			ath_hal_setledstate(ah, HAL_LED_RUN);
1386 			/*
1387 			 * Program the beacon registers using the last rx'd
1388 			 * beacon frame and enable sync on the next beacon
1389 			 * we see.  This should handle the case where we
1390 			 * wakeup and find the same AP and also the case where
1391 			 * we wakeup and need to roam.  For the latter we
1392 			 * should get bmiss events that trigger a roam.
1393 			 */
1394 			ath_beacon_config(sc, NULL);
1395 			sc->sc_syncbeacon = 1;
1396 		} else
1397 			ieee80211_resume_all(ic);
1398 	}
1399 
1400 	/* XXX beacons ? */
1401 }
1402 
1403 void
1404 ath_shutdown(struct ath_softc *sc)
1405 {
1406 	struct ifnet *ifp = sc->sc_ifp;
1407 
1408 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1409 		__func__, ifp->if_flags);
1410 
1411 	ath_stop(ifp);
1412 	/* NB: no point powering down chip as we're about to reboot */
1413 }
1414 
1415 /*
1416  * Interrupt handler.  Most of the actual processing is deferred.
1417  */
1418 void
1419 ath_intr(void *arg)
1420 {
1421 	struct ath_softc *sc = arg;
1422 	struct ifnet *ifp = sc->sc_ifp;
1423 	struct ath_hal *ah = sc->sc_ah;
1424 	HAL_INT status = 0;
1425 	uint32_t txqs;
1426 
1427 	/*
1428 	 * If we're inside a reset path, just print a warning and
1429 	 * clear the ISR. The reset routine will finish it for us.
1430 	 */
1431 	ATH_PCU_LOCK(sc);
1432 	if (sc->sc_inreset_cnt) {
1433 		HAL_INT status;
1434 		ath_hal_getisr(ah, &status);	/* clear ISR */
1435 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1436 		DPRINTF(sc, ATH_DEBUG_ANY,
1437 		    "%s: in reset, ignoring: status=0x%x\n",
1438 		    __func__, status);
1439 		ATH_PCU_UNLOCK(sc);
1440 		return;
1441 	}
1442 
1443 	if (sc->sc_invalid) {
1444 		/*
1445 		 * The hardware is not ready/present, don't touch anything.
1446 		 * Note this can happen early on if the IRQ is shared.
1447 		 */
1448 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1449 		ATH_PCU_UNLOCK(sc);
1450 		return;
1451 	}
1452 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1453 		ATH_PCU_UNLOCK(sc);
1454 		return;
1455 	}
1456 
1457 	if ((ifp->if_flags & IFF_UP) == 0 ||
1458 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1459 		HAL_INT status;
1460 
1461 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1462 			__func__, ifp->if_flags);
1463 		ath_hal_getisr(ah, &status);	/* clear ISR */
1464 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1465 		ATH_PCU_UNLOCK(sc);
1466 		return;
1467 	}
1468 
1469 	/*
1470 	 * Figure out the reason(s) for the interrupt.  Note
1471 	 * that the hal returns a pseudo-ISR that may include
1472 	 * bits we haven't explicitly enabled so we mask the
1473 	 * value to insure we only process bits we requested.
1474 	 */
1475 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1476 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1477 	CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status);
1478 #ifdef	ATH_KTR_INTR_DEBUG
1479 	CTR5(ATH_KTR_INTR,
1480 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1481 	    ah->ah_intrstate[0],
1482 	    ah->ah_intrstate[1],
1483 	    ah->ah_intrstate[2],
1484 	    ah->ah_intrstate[3],
1485 	    ah->ah_intrstate[6]);
1486 #endif
1487 	status &= sc->sc_imask;			/* discard unasked for bits */
1488 
1489 	/* Short-circuit un-handled interrupts */
1490 	if (status == 0x0) {
1491 		ATH_PCU_UNLOCK(sc);
1492 		return;
1493 	}
1494 
1495 	/*
1496 	 * Take a note that we're inside the interrupt handler, so
1497 	 * the reset routines know to wait.
1498 	 */
1499 	sc->sc_intr_cnt++;
1500 	ATH_PCU_UNLOCK(sc);
1501 
1502 	/*
1503 	 * Handle the interrupt. We won't run concurrent with the reset
1504 	 * or channel change routines as they'll wait for sc_intr_cnt
1505 	 * to be 0 before continuing.
1506 	 */
1507 	if (status & HAL_INT_FATAL) {
1508 		sc->sc_stats.ast_hardware++;
1509 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1510 		ath_fatal_proc(sc, 0);
1511 	} else {
1512 		if (status & HAL_INT_SWBA) {
1513 			/*
1514 			 * Software beacon alert--time to send a beacon.
1515 			 * Handle beacon transmission directly; deferring
1516 			 * this is too slow to meet timing constraints
1517 			 * under load.
1518 			 */
1519 #ifdef IEEE80211_SUPPORT_TDMA
1520 			if (sc->sc_tdma) {
1521 				if (sc->sc_tdmaswba == 0) {
1522 					struct ieee80211com *ic = ifp->if_l2com;
1523 					struct ieee80211vap *vap =
1524 					    TAILQ_FIRST(&ic->ic_vaps);
1525 					ath_tdma_beacon_send(sc, vap);
1526 					sc->sc_tdmaswba =
1527 					    vap->iv_tdma->tdma_bintval;
1528 				} else
1529 					sc->sc_tdmaswba--;
1530 			} else
1531 #endif
1532 			{
1533 				ath_beacon_proc(sc, 0);
1534 #ifdef IEEE80211_SUPPORT_SUPERG
1535 				/*
1536 				 * Schedule the rx taskq in case there's no
1537 				 * traffic so any frames held on the staging
1538 				 * queue are aged and potentially flushed.
1539 				 */
1540 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1541 #endif
1542 			}
1543 		}
1544 		if (status & HAL_INT_RXEOL) {
1545 			int imask;
1546 			CTR0(ATH_KTR_ERR, "ath_intr: RXEOL");
1547 			ATH_PCU_LOCK(sc);
1548 			/*
1549 			 * NB: the hardware should re-read the link when
1550 			 *     RXE bit is written, but it doesn't work at
1551 			 *     least on older hardware revs.
1552 			 */
1553 			sc->sc_stats.ast_rxeol++;
1554 			/*
1555 			 * Disable RXEOL/RXORN - prevent an interrupt
1556 			 * storm until the PCU logic can be reset.
1557 			 * In case the interface is reset some other
1558 			 * way before "sc_kickpcu" is called, don't
1559 			 * modify sc_imask - that way if it is reset
1560 			 * by a call to ath_reset() somehow, the
1561 			 * interrupt mask will be correctly reprogrammed.
1562 			 */
1563 			imask = sc->sc_imask;
1564 			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1565 			ath_hal_intrset(ah, imask);
1566 			/*
1567 			 * Only blank sc_rxlink if we've not yet kicked
1568 			 * the PCU.
1569 			 *
1570 			 * This isn't entirely correct - the correct solution
1571 			 * would be to have a PCU lock and engage that for
1572 			 * the duration of the PCU fiddling; which would include
1573 			 * running the RX process. Otherwise we could end up
1574 			 * messing up the RX descriptor chain and making the
1575 			 * RX desc list much shorter.
1576 			 */
1577 			if (! sc->sc_kickpcu)
1578 				sc->sc_rxlink = NULL;
1579 			sc->sc_kickpcu = 1;
1580 			/*
1581 			 * Enqueue an RX proc, to handled whatever
1582 			 * is in the RX queue.
1583 			 * This will then kick the PCU.
1584 			 */
1585 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1586 			ATH_PCU_UNLOCK(sc);
1587 		}
1588 		if (status & HAL_INT_TXURN) {
1589 			sc->sc_stats.ast_txurn++;
1590 			/* bump tx trigger level */
1591 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1592 		}
1593 		if (status & HAL_INT_RX) {
1594 			sc->sc_stats.ast_rx_intr++;
1595 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1596 		}
1597 		if (status & HAL_INT_TX) {
1598 			sc->sc_stats.ast_tx_intr++;
1599 			/*
1600 			 * Grab all the currently set bits in the HAL txq bitmap
1601 			 * and blank them. This is the only place we should be
1602 			 * doing this.
1603 			 */
1604 			ATH_PCU_LOCK(sc);
1605 			txqs = 0xffffffff;
1606 			ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1607 			sc->sc_txq_active |= txqs;
1608 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1609 			ATH_PCU_UNLOCK(sc);
1610 		}
1611 		if (status & HAL_INT_BMISS) {
1612 			sc->sc_stats.ast_bmiss++;
1613 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1614 		}
1615 		if (status & HAL_INT_GTT)
1616 			sc->sc_stats.ast_tx_timeout++;
1617 		if (status & HAL_INT_CST)
1618 			sc->sc_stats.ast_tx_cst++;
1619 		if (status & HAL_INT_MIB) {
1620 			sc->sc_stats.ast_mib++;
1621 			ATH_PCU_LOCK(sc);
1622 			/*
1623 			 * Disable interrupts until we service the MIB
1624 			 * interrupt; otherwise it will continue to fire.
1625 			 */
1626 			ath_hal_intrset(ah, 0);
1627 			/*
1628 			 * Let the hal handle the event.  We assume it will
1629 			 * clear whatever condition caused the interrupt.
1630 			 */
1631 			ath_hal_mibevent(ah, &sc->sc_halstats);
1632 			/*
1633 			 * Don't reset the interrupt if we've just
1634 			 * kicked the PCU, or we may get a nested
1635 			 * RXEOL before the rxproc has had a chance
1636 			 * to run.
1637 			 */
1638 			if (sc->sc_kickpcu == 0)
1639 				ath_hal_intrset(ah, sc->sc_imask);
1640 			ATH_PCU_UNLOCK(sc);
1641 		}
1642 		if (status & HAL_INT_RXORN) {
1643 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1644 			CTR0(ATH_KTR_ERR, "ath_intr: RXORN");
1645 			sc->sc_stats.ast_rxorn++;
1646 		}
1647 	}
1648 	ATH_PCU_LOCK(sc);
1649 	sc->sc_intr_cnt--;
1650 	ATH_PCU_UNLOCK(sc);
1651 }
1652 
1653 static void
1654 ath_fatal_proc(void *arg, int pending)
1655 {
1656 	struct ath_softc *sc = arg;
1657 	struct ifnet *ifp = sc->sc_ifp;
1658 	u_int32_t *state;
1659 	u_int32_t len;
1660 	void *sp;
1661 
1662 	if_printf(ifp, "hardware error; resetting\n");
1663 	/*
1664 	 * Fatal errors are unrecoverable.  Typically these
1665 	 * are caused by DMA errors.  Collect h/w state from
1666 	 * the hal so we can diagnose what's going on.
1667 	 */
1668 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1669 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1670 		state = sp;
1671 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1672 		    state[0], state[1] , state[2], state[3],
1673 		    state[4], state[5]);
1674 	}
1675 	ath_reset(ifp, ATH_RESET_NOLOSS);
1676 }
1677 
1678 static void
1679 ath_bmiss_vap(struct ieee80211vap *vap)
1680 {
1681 	/*
1682 	 * Workaround phantom bmiss interrupts by sanity-checking
1683 	 * the time of our last rx'd frame.  If it is within the
1684 	 * beacon miss interval then ignore the interrupt.  If it's
1685 	 * truly a bmiss we'll get another interrupt soon and that'll
1686 	 * be dispatched up for processing.  Note this applies only
1687 	 * for h/w beacon miss events.
1688 	 */
1689 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1690 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1691 		struct ath_softc *sc = ifp->if_softc;
1692 		u_int64_t lastrx = sc->sc_lastrx;
1693 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1694 		/* XXX should take a locked ref to iv_bss */
1695 		u_int bmisstimeout =
1696 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1697 
1698 		DPRINTF(sc, ATH_DEBUG_BEACON,
1699 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1700 		    __func__, (unsigned long long) tsf,
1701 		    (unsigned long long)(tsf - lastrx),
1702 		    (unsigned long long) lastrx, bmisstimeout);
1703 
1704 		if (tsf - lastrx <= bmisstimeout) {
1705 			sc->sc_stats.ast_bmiss_phantom++;
1706 			return;
1707 		}
1708 	}
1709 	ATH_VAP(vap)->av_bmiss(vap);
1710 }
1711 
1712 static int
1713 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1714 {
1715 	uint32_t rsize;
1716 	void *sp;
1717 
1718 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1719 		return 0;
1720 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1721 	*hangs = *(uint32_t *)sp;
1722 	return 1;
1723 }
1724 
1725 static void
1726 ath_bmiss_proc(void *arg, int pending)
1727 {
1728 	struct ath_softc *sc = arg;
1729 	struct ifnet *ifp = sc->sc_ifp;
1730 	uint32_t hangs;
1731 
1732 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1733 
1734 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1735 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1736 		ath_reset(ifp, ATH_RESET_NOLOSS);
1737 	} else
1738 		ieee80211_beacon_miss(ifp->if_l2com);
1739 }
1740 
1741 /*
1742  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1743  * calcs together with WME.  If necessary disable the crypto
1744  * hardware and mark the 802.11 state so keys will be setup
1745  * with the MIC work done in software.
1746  */
1747 static void
1748 ath_settkipmic(struct ath_softc *sc)
1749 {
1750 	struct ifnet *ifp = sc->sc_ifp;
1751 	struct ieee80211com *ic = ifp->if_l2com;
1752 
1753 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1754 		if (ic->ic_flags & IEEE80211_F_WME) {
1755 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1756 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1757 		} else {
1758 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1759 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1760 		}
1761 	}
1762 }
1763 
1764 static void
1765 ath_init(void *arg)
1766 {
1767 	struct ath_softc *sc = (struct ath_softc *) arg;
1768 	struct ifnet *ifp = sc->sc_ifp;
1769 	struct ieee80211com *ic = ifp->if_l2com;
1770 	struct ath_hal *ah = sc->sc_ah;
1771 	HAL_STATUS status;
1772 
1773 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1774 		__func__, ifp->if_flags);
1775 
1776 	ATH_LOCK(sc);
1777 	/*
1778 	 * Stop anything previously setup.  This is safe
1779 	 * whether this is the first time through or not.
1780 	 */
1781 	ath_stop_locked(ifp);
1782 
1783 	/*
1784 	 * The basic interface to setting the hardware in a good
1785 	 * state is ``reset''.  On return the hardware is known to
1786 	 * be powered up and with interrupts disabled.  This must
1787 	 * be followed by initialization of the appropriate bits
1788 	 * and then setup of the interrupt mask.
1789 	 */
1790 	ath_settkipmic(sc);
1791 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1792 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1793 			status);
1794 		ATH_UNLOCK(sc);
1795 		return;
1796 	}
1797 	ath_chan_change(sc, ic->ic_curchan);
1798 
1799 	/* Let DFS at it in case it's a DFS channel */
1800 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1801 
1802 	/*
1803 	 * Likewise this is set during reset so update
1804 	 * state cached in the driver.
1805 	 */
1806 	sc->sc_diversity = ath_hal_getdiversity(ah);
1807 	sc->sc_lastlongcal = 0;
1808 	sc->sc_resetcal = 1;
1809 	sc->sc_lastcalreset = 0;
1810 	sc->sc_lastani = 0;
1811 	sc->sc_lastshortcal = 0;
1812 	sc->sc_doresetcal = AH_FALSE;
1813 	/*
1814 	 * Beacon timers were cleared here; give ath_newstate()
1815 	 * a hint that the beacon timers should be poked when
1816 	 * things transition to the RUN state.
1817 	 */
1818 	sc->sc_beacons = 0;
1819 
1820 	/*
1821 	 * Initial aggregation settings.
1822 	 */
1823 	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
1824 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1825 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1826 
1827 	/*
1828 	 * Setup the hardware after reset: the key cache
1829 	 * is filled as needed and the receive engine is
1830 	 * set going.  Frame transmit is handled entirely
1831 	 * in the frame output path; there's nothing to do
1832 	 * here except setup the interrupt mask.
1833 	 */
1834 	if (ath_startrecv(sc) != 0) {
1835 		if_printf(ifp, "unable to start recv logic\n");
1836 		ATH_UNLOCK(sc);
1837 		return;
1838 	}
1839 
1840 	/*
1841 	 * Enable interrupts.
1842 	 */
1843 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1844 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1845 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1846 	/*
1847 	 * Enable MIB interrupts when there are hardware phy counters.
1848 	 * Note we only do this (at the moment) for station mode.
1849 	 */
1850 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1851 		sc->sc_imask |= HAL_INT_MIB;
1852 
1853 	/* Enable global TX timeout and carrier sense timeout if available */
1854 	if (ath_hal_gtxto_supported(ah))
1855 		sc->sc_imask |= HAL_INT_GTT;
1856 
1857 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1858 		__func__, sc->sc_imask);
1859 
1860 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1861 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1862 	ath_hal_intrset(ah, sc->sc_imask);
1863 
1864 	ATH_UNLOCK(sc);
1865 
1866 #ifdef ATH_TX99_DIAG
1867 	if (sc->sc_tx99 != NULL)
1868 		sc->sc_tx99->start(sc->sc_tx99);
1869 	else
1870 #endif
1871 	ieee80211_start_all(ic);		/* start all vap's */
1872 }
1873 
1874 static void
1875 ath_stop_locked(struct ifnet *ifp)
1876 {
1877 	struct ath_softc *sc = ifp->if_softc;
1878 	struct ath_hal *ah = sc->sc_ah;
1879 
1880 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1881 		__func__, sc->sc_invalid, ifp->if_flags);
1882 
1883 	ATH_LOCK_ASSERT(sc);
1884 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1885 		/*
1886 		 * Shutdown the hardware and driver:
1887 		 *    reset 802.11 state machine
1888 		 *    turn off timers
1889 		 *    disable interrupts
1890 		 *    turn off the radio
1891 		 *    clear transmit machinery
1892 		 *    clear receive machinery
1893 		 *    drain and release tx queues
1894 		 *    reclaim beacon resources
1895 		 *    power down hardware
1896 		 *
1897 		 * Note that some of this work is not possible if the
1898 		 * hardware is gone (invalid).
1899 		 */
1900 #ifdef ATH_TX99_DIAG
1901 		if (sc->sc_tx99 != NULL)
1902 			sc->sc_tx99->stop(sc->sc_tx99);
1903 #endif
1904 		callout_stop(&sc->sc_wd_ch);
1905 		sc->sc_wd_timer = 0;
1906 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1907 		if (!sc->sc_invalid) {
1908 			if (sc->sc_softled) {
1909 				callout_stop(&sc->sc_ledtimer);
1910 				ath_hal_gpioset(ah, sc->sc_ledpin,
1911 					!sc->sc_ledon);
1912 				sc->sc_blinking = 0;
1913 			}
1914 			ath_hal_intrset(ah, 0);
1915 		}
1916 		ath_draintxq(sc, ATH_RESET_DEFAULT);
1917 		if (!sc->sc_invalid) {
1918 			ath_stoprecv(sc, 1);
1919 			ath_hal_phydisable(ah);
1920 		} else
1921 			sc->sc_rxlink = NULL;
1922 		ath_beacon_free(sc);	/* XXX not needed */
1923 	}
1924 }
1925 
1926 #define	MAX_TXRX_ITERATIONS	1000
1927 static void
1928 ath_txrx_stop_locked(struct ath_softc *sc)
1929 {
1930 	int i = MAX_TXRX_ITERATIONS;
1931 
1932 	ATH_UNLOCK_ASSERT(sc);
1933 	ATH_PCU_LOCK_ASSERT(sc);
1934 
1935 	/*
1936 	 * Sleep until all the pending operations have completed.
1937 	 *
1938 	 * The caller must ensure that reset has been incremented
1939 	 * or the pending operations may continue being queued.
1940 	 */
1941 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
1942 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
1943 		if (i <= 0)
1944 			break;
1945 		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
1946 		i--;
1947 	}
1948 
1949 	if (i <= 0)
1950 		device_printf(sc->sc_dev,
1951 		    "%s: didn't finish after %d iterations\n",
1952 		    __func__, MAX_TXRX_ITERATIONS);
1953 }
1954 #undef	MAX_TXRX_ITERATIONS
1955 
1956 #if 0
1957 static void
1958 ath_txrx_stop(struct ath_softc *sc)
1959 {
1960 	ATH_UNLOCK_ASSERT(sc);
1961 	ATH_PCU_UNLOCK_ASSERT(sc);
1962 
1963 	ATH_PCU_LOCK(sc);
1964 	ath_txrx_stop_locked(sc);
1965 	ATH_PCU_UNLOCK(sc);
1966 }
1967 #endif
1968 
1969 static void
1970 ath_txrx_start(struct ath_softc *sc)
1971 {
1972 
1973 	taskqueue_unblock(sc->sc_tq);
1974 }
1975 
1976 /*
1977  * Grab the reset lock, and wait around until noone else
1978  * is trying to do anything with it.
1979  *
1980  * This is totally horrible but we can't hold this lock for
1981  * long enough to do TX/RX or we end up with net80211/ip stack
1982  * LORs and eventual deadlock.
1983  *
1984  * "dowait" signals whether to spin, waiting for the reset
1985  * lock count to reach 0. This should (for now) only be used
1986  * during the reset path, as the rest of the code may not
1987  * be locking-reentrant enough to behave correctly.
1988  *
1989  * Another, cleaner way should be found to serialise all of
1990  * these operations.
1991  */
1992 #define	MAX_RESET_ITERATIONS	10
1993 static int
1994 ath_reset_grablock(struct ath_softc *sc, int dowait)
1995 {
1996 	int w = 0;
1997 	int i = MAX_RESET_ITERATIONS;
1998 
1999 	ATH_PCU_LOCK_ASSERT(sc);
2000 	do {
2001 		if (sc->sc_inreset_cnt == 0) {
2002 			w = 1;
2003 			break;
2004 		}
2005 		if (dowait == 0) {
2006 			w = 0;
2007 			break;
2008 		}
2009 		ATH_PCU_UNLOCK(sc);
2010 		pause("ath_reset_grablock", 1);
2011 		i--;
2012 		ATH_PCU_LOCK(sc);
2013 	} while (i > 0);
2014 
2015 	/*
2016 	 * We always increment the refcounter, regardless
2017 	 * of whether we succeeded to get it in an exclusive
2018 	 * way.
2019 	 */
2020 	sc->sc_inreset_cnt++;
2021 
2022 	if (i <= 0)
2023 		device_printf(sc->sc_dev,
2024 		    "%s: didn't finish after %d iterations\n",
2025 		    __func__, MAX_RESET_ITERATIONS);
2026 
2027 	if (w == 0)
2028 		device_printf(sc->sc_dev,
2029 		    "%s: warning, recursive reset path!\n",
2030 		    __func__);
2031 
2032 	return w;
2033 }
2034 #undef MAX_RESET_ITERATIONS
2035 
2036 /*
2037  * XXX TODO: write ath_reset_releaselock
2038  */
2039 
2040 static void
2041 ath_stop(struct ifnet *ifp)
2042 {
2043 	struct ath_softc *sc = ifp->if_softc;
2044 
2045 	ATH_LOCK(sc);
2046 	ath_stop_locked(ifp);
2047 	ATH_UNLOCK(sc);
2048 }
2049 
2050 /*
2051  * Reset the hardware w/o losing operational state.  This is
2052  * basically a more efficient way of doing ath_stop, ath_init,
2053  * followed by state transitions to the current 802.11
2054  * operational state.  Used to recover from various errors and
2055  * to reset or reload hardware state.
2056  */
2057 int
2058 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2059 {
2060 	struct ath_softc *sc = ifp->if_softc;
2061 	struct ieee80211com *ic = ifp->if_l2com;
2062 	struct ath_hal *ah = sc->sc_ah;
2063 	HAL_STATUS status;
2064 	int i;
2065 
2066 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2067 
2068 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2069 	ATH_PCU_UNLOCK_ASSERT(sc);
2070 	ATH_UNLOCK_ASSERT(sc);
2071 
2072 	/* Try to (stop any further TX/RX from occuring */
2073 	taskqueue_block(sc->sc_tq);
2074 
2075 	ATH_PCU_LOCK(sc);
2076 	ath_hal_intrset(ah, 0);		/* disable interrupts */
2077 	ath_txrx_stop_locked(sc);	/* Ensure TX/RX is stopped */
2078 	if (ath_reset_grablock(sc, 1) == 0) {
2079 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2080 		    __func__);
2081 	}
2082 	ATH_PCU_UNLOCK(sc);
2083 
2084 	/*
2085 	 * Should now wait for pending TX/RX to complete
2086 	 * and block future ones from occuring. This needs to be
2087 	 * done before the TX queue is drained.
2088 	 */
2089 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2090 
2091 	/*
2092 	 * Regardless of whether we're doing a no-loss flush or
2093 	 * not, stop the PCU and handle what's in the RX queue.
2094 	 * That way frames aren't dropped which shouldn't be.
2095 	 */
2096 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2097 	ath_rx_proc(sc, 0);
2098 
2099 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2100 	/* NB: indicate channel change so we do a full reset */
2101 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2102 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2103 			__func__, status);
2104 	sc->sc_diversity = ath_hal_getdiversity(ah);
2105 
2106 	/* Let DFS at it in case it's a DFS channel */
2107 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2108 
2109 	if (ath_startrecv(sc) != 0)	/* restart recv */
2110 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2111 	/*
2112 	 * We may be doing a reset in response to an ioctl
2113 	 * that changes the channel so update any state that
2114 	 * might change as a result.
2115 	 */
2116 	ath_chan_change(sc, ic->ic_curchan);
2117 	if (sc->sc_beacons) {		/* restart beacons */
2118 #ifdef IEEE80211_SUPPORT_TDMA
2119 		if (sc->sc_tdma)
2120 			ath_tdma_config(sc, NULL);
2121 		else
2122 #endif
2123 			ath_beacon_config(sc, NULL);
2124 	}
2125 
2126 	/*
2127 	 * Release the reset lock and re-enable interrupts here.
2128 	 * If an interrupt was being processed in ath_intr(),
2129 	 * it would disable interrupts at this point. So we have
2130 	 * to atomically enable interrupts and decrement the
2131 	 * reset counter - this way ath_intr() doesn't end up
2132 	 * disabling interrupts without a corresponding enable
2133 	 * in the rest or channel change path.
2134 	 */
2135 	ATH_PCU_LOCK(sc);
2136 	sc->sc_inreset_cnt--;
2137 	/* XXX only do this if sc_inreset_cnt == 0? */
2138 	ath_hal_intrset(ah, sc->sc_imask);
2139 	ATH_PCU_UNLOCK(sc);
2140 
2141 	/*
2142 	 * TX and RX can be started here. If it were started with
2143 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2144 	 * Thus if this is a nested call through the reset or
2145 	 * channel change code, TX completion will occur but
2146 	 * RX completion and ath_start / ath_tx_start will not
2147 	 * run.
2148 	 */
2149 
2150 	/* Restart TX/RX as needed */
2151 	ath_txrx_start(sc);
2152 
2153 	/* XXX Restart TX completion and pending TX */
2154 	if (reset_type == ATH_RESET_NOLOSS) {
2155 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2156 			if (ATH_TXQ_SETUP(sc, i)) {
2157 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2158 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2159 				ath_txq_sched(sc, &sc->sc_txq[i]);
2160 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2161 			}
2162 		}
2163 	}
2164 
2165 	/*
2166 	 * This may have been set during an ath_start() call which
2167 	 * set this once it detected a concurrent TX was going on.
2168 	 * So, clear it.
2169 	 */
2170 	IF_LOCK(&ifp->if_snd);
2171 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2172 	IF_UNLOCK(&ifp->if_snd);
2173 
2174 	/* Handle any frames in the TX queue */
2175 	/*
2176 	 * XXX should this be done by the caller, rather than
2177 	 * ath_reset() ?
2178 	 */
2179 	ath_start(ifp);			/* restart xmit */
2180 	return 0;
2181 }
2182 
2183 static int
2184 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2185 {
2186 	struct ieee80211com *ic = vap->iv_ic;
2187 	struct ifnet *ifp = ic->ic_ifp;
2188 	struct ath_softc *sc = ifp->if_softc;
2189 	struct ath_hal *ah = sc->sc_ah;
2190 
2191 	switch (cmd) {
2192 	case IEEE80211_IOC_TXPOWER:
2193 		/*
2194 		 * If per-packet TPC is enabled, then we have nothing
2195 		 * to do; otherwise we need to force the global limit.
2196 		 * All this can happen directly; no need to reset.
2197 		 */
2198 		if (!ath_hal_gettpc(ah))
2199 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2200 		return 0;
2201 	}
2202 	/* XXX? Full or NOLOSS? */
2203 	return ath_reset(ifp, ATH_RESET_FULL);
2204 }
2205 
2206 struct ath_buf *
2207 _ath_getbuf_locked(struct ath_softc *sc)
2208 {
2209 	struct ath_buf *bf;
2210 
2211 	ATH_TXBUF_LOCK_ASSERT(sc);
2212 
2213 	bf = TAILQ_FIRST(&sc->sc_txbuf);
2214 	if (bf == NULL) {
2215 		sc->sc_stats.ast_tx_getnobuf++;
2216 	} else {
2217 		if (bf->bf_flags & ATH_BUF_BUSY) {
2218 			sc->sc_stats.ast_tx_getbusybuf++;
2219 			bf = NULL;
2220 		}
2221 	}
2222 
2223 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
2224 		TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2225 	else
2226 		bf = NULL;
2227 
2228 	if (bf == NULL) {
2229 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2230 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2231 			"out of xmit buffers" : "xmit buffer busy");
2232 		return NULL;
2233 	}
2234 
2235 	/* Valid bf here; clear some basic fields */
2236 	bf->bf_next = NULL;	/* XXX just to be sure */
2237 	bf->bf_last = NULL;	/* XXX again, just to be sure */
2238 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2239 	bzero(&bf->bf_state, sizeof(bf->bf_state));
2240 
2241 	return bf;
2242 }
2243 
2244 /*
2245  * When retrying a software frame, buffers marked ATH_BUF_BUSY
2246  * can't be thrown back on the queue as they could still be
2247  * in use by the hardware.
2248  *
2249  * This duplicates the buffer, or returns NULL.
2250  *
2251  * The descriptor is also copied but the link pointers and
2252  * the DMA segments aren't copied; this frame should thus
2253  * be again passed through the descriptor setup/chain routines
2254  * so the link is correct.
2255  *
2256  * The caller must free the buffer using ath_freebuf().
2257  *
2258  * XXX TODO: this call shouldn't fail as it'll cause packet loss
2259  * XXX in the TX pathway when retries are needed.
2260  * XXX Figure out how to keep some buffers free, or factor the
2261  * XXX number of busy buffers into the xmit path (ath_start())
2262  * XXX so we don't over-commit.
2263  */
2264 struct ath_buf *
2265 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
2266 {
2267 	struct ath_buf *tbf;
2268 
2269 	tbf = ath_getbuf(sc);
2270 	if (tbf == NULL)
2271 		return NULL;	/* XXX failure? Why? */
2272 
2273 	/* Copy basics */
2274 	tbf->bf_next = NULL;
2275 	tbf->bf_nseg = bf->bf_nseg;
2276 	tbf->bf_txflags = bf->bf_txflags;
2277 	tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
2278 	tbf->bf_status = bf->bf_status;
2279 	tbf->bf_m = bf->bf_m;
2280 	tbf->bf_node = bf->bf_node;
2281 	/* will be setup by the chain/setup function */
2282 	tbf->bf_lastds = NULL;
2283 	/* for now, last == self */
2284 	tbf->bf_last = tbf;
2285 	tbf->bf_comp = bf->bf_comp;
2286 
2287 	/* NOTE: DMA segments will be setup by the setup/chain functions */
2288 
2289 	/* The caller has to re-init the descriptor + links */
2290 
2291 	/* Copy state */
2292 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2293 
2294 	return tbf;
2295 }
2296 
2297 struct ath_buf *
2298 ath_getbuf(struct ath_softc *sc)
2299 {
2300 	struct ath_buf *bf;
2301 
2302 	ATH_TXBUF_LOCK(sc);
2303 	bf = _ath_getbuf_locked(sc);
2304 	ATH_TXBUF_UNLOCK(sc);
2305 	if (bf == NULL) {
2306 		struct ifnet *ifp = sc->sc_ifp;
2307 
2308 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2309 		sc->sc_stats.ast_tx_qstop++;
2310 		IF_LOCK(&ifp->if_snd);
2311 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2312 		IF_UNLOCK(&ifp->if_snd);
2313 	}
2314 	return bf;
2315 }
2316 
2317 static void
2318 ath_start(struct ifnet *ifp)
2319 {
2320 	struct ath_softc *sc = ifp->if_softc;
2321 	struct ieee80211_node *ni;
2322 	struct ath_buf *bf;
2323 	struct mbuf *m, *next;
2324 	ath_bufhead frags;
2325 
2326 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2327 		return;
2328 
2329 	/* XXX is it ok to hold the ATH_LOCK here? */
2330 	ATH_PCU_LOCK(sc);
2331 	if (sc->sc_inreset_cnt > 0) {
2332 		device_printf(sc->sc_dev,
2333 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2334 		ATH_PCU_UNLOCK(sc);
2335 		IF_LOCK(&ifp->if_snd);
2336 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2337 		IF_UNLOCK(&ifp->if_snd);
2338 		return;
2339 	}
2340 	sc->sc_txstart_cnt++;
2341 	ATH_PCU_UNLOCK(sc);
2342 
2343 	for (;;) {
2344 		/*
2345 		 * Grab a TX buffer and associated resources.
2346 		 */
2347 		bf = ath_getbuf(sc);
2348 		if (bf == NULL)
2349 			break;
2350 
2351 		IFQ_DEQUEUE(&ifp->if_snd, m);
2352 		if (m == NULL) {
2353 			ATH_TXBUF_LOCK(sc);
2354 			TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2355 			ATH_TXBUF_UNLOCK(sc);
2356 			break;
2357 		}
2358 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2359 		/*
2360 		 * Check for fragmentation.  If this frame
2361 		 * has been broken up verify we have enough
2362 		 * buffers to send all the fragments so all
2363 		 * go out or none...
2364 		 */
2365 		TAILQ_INIT(&frags);
2366 		if ((m->m_flags & M_FRAG) &&
2367 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2368 			DPRINTF(sc, ATH_DEBUG_XMIT,
2369 			    "%s: out of txfrag buffers\n", __func__);
2370 			sc->sc_stats.ast_tx_nofrag++;
2371 			ifp->if_oerrors++;
2372 			ath_freetx(m);
2373 			goto bad;
2374 		}
2375 		ifp->if_opackets++;
2376 	nextfrag:
2377 		/*
2378 		 * Pass the frame to the h/w for transmission.
2379 		 * Fragmented frames have each frag chained together
2380 		 * with m_nextpkt.  We know there are sufficient ath_buf's
2381 		 * to send all the frags because of work done by
2382 		 * ath_txfrag_setup.  We leave m_nextpkt set while
2383 		 * calling ath_tx_start so it can use it to extend the
2384 		 * the tx duration to cover the subsequent frag and
2385 		 * so it can reclaim all the mbufs in case of an error;
2386 		 * ath_tx_start clears m_nextpkt once it commits to
2387 		 * handing the frame to the hardware.
2388 		 */
2389 		next = m->m_nextpkt;
2390 		if (ath_tx_start(sc, ni, bf, m)) {
2391 	bad:
2392 			ifp->if_oerrors++;
2393 	reclaim:
2394 			bf->bf_m = NULL;
2395 			bf->bf_node = NULL;
2396 			ATH_TXBUF_LOCK(sc);
2397 			TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2398 			ath_txfrag_cleanup(sc, &frags, ni);
2399 			ATH_TXBUF_UNLOCK(sc);
2400 			if (ni != NULL)
2401 				ieee80211_free_node(ni);
2402 			continue;
2403 		}
2404 		if (next != NULL) {
2405 			/*
2406 			 * Beware of state changing between frags.
2407 			 * XXX check sta power-save state?
2408 			 */
2409 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2410 				DPRINTF(sc, ATH_DEBUG_XMIT,
2411 				    "%s: flush fragmented packet, state %s\n",
2412 				    __func__,
2413 				    ieee80211_state_name[ni->ni_vap->iv_state]);
2414 				ath_freetx(next);
2415 				goto reclaim;
2416 			}
2417 			m = next;
2418 			bf = TAILQ_FIRST(&frags);
2419 			KASSERT(bf != NULL, ("no buf for txfrag"));
2420 			TAILQ_REMOVE(&frags, bf, bf_list);
2421 			goto nextfrag;
2422 		}
2423 
2424 		sc->sc_wd_timer = 5;
2425 	}
2426 
2427 	ATH_PCU_LOCK(sc);
2428 	sc->sc_txstart_cnt--;
2429 	ATH_PCU_UNLOCK(sc);
2430 }
2431 
2432 static int
2433 ath_media_change(struct ifnet *ifp)
2434 {
2435 	int error = ieee80211_media_change(ifp);
2436 	/* NB: only the fixed rate can change and that doesn't need a reset */
2437 	return (error == ENETRESET ? 0 : error);
2438 }
2439 
2440 /*
2441  * Block/unblock tx+rx processing while a key change is done.
2442  * We assume the caller serializes key management operations
2443  * so we only need to worry about synchronization with other
2444  * uses that originate in the driver.
2445  */
2446 static void
2447 ath_key_update_begin(struct ieee80211vap *vap)
2448 {
2449 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2450 	struct ath_softc *sc = ifp->if_softc;
2451 
2452 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2453 	taskqueue_block(sc->sc_tq);
2454 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2455 }
2456 
2457 static void
2458 ath_key_update_end(struct ieee80211vap *vap)
2459 {
2460 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2461 	struct ath_softc *sc = ifp->if_softc;
2462 
2463 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2464 	IF_UNLOCK(&ifp->if_snd);
2465 	taskqueue_unblock(sc->sc_tq);
2466 }
2467 
2468 /*
2469  * Calculate the receive filter according to the
2470  * operating mode and state:
2471  *
2472  * o always accept unicast, broadcast, and multicast traffic
2473  * o accept PHY error frames when hardware doesn't have MIB support
2474  *   to count and we need them for ANI (sta mode only until recently)
2475  *   and we are not scanning (ANI is disabled)
2476  *   NB: older hal's add rx filter bits out of sight and we need to
2477  *	 blindly preserve them
2478  * o probe request frames are accepted only when operating in
2479  *   hostap, adhoc, mesh, or monitor modes
2480  * o enable promiscuous mode
2481  *   - when in monitor mode
2482  *   - if interface marked PROMISC (assumes bridge setting is filtered)
2483  * o accept beacons:
2484  *   - when operating in station mode for collecting rssi data when
2485  *     the station is otherwise quiet, or
2486  *   - when operating in adhoc mode so the 802.11 layer creates
2487  *     node table entries for peers,
2488  *   - when scanning
2489  *   - when doing s/w beacon miss (e.g. for ap+sta)
2490  *   - when operating in ap mode in 11g to detect overlapping bss that
2491  *     require protection
2492  *   - when operating in mesh mode to detect neighbors
2493  * o accept control frames:
2494  *   - when in monitor mode
2495  * XXX HT protection for 11n
2496  */
2497 static u_int32_t
2498 ath_calcrxfilter(struct ath_softc *sc)
2499 {
2500 	struct ifnet *ifp = sc->sc_ifp;
2501 	struct ieee80211com *ic = ifp->if_l2com;
2502 	u_int32_t rfilt;
2503 
2504 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2505 	if (!sc->sc_needmib && !sc->sc_scanning)
2506 		rfilt |= HAL_RX_FILTER_PHYERR;
2507 	if (ic->ic_opmode != IEEE80211_M_STA)
2508 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2509 	/* XXX ic->ic_monvaps != 0? */
2510 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2511 		rfilt |= HAL_RX_FILTER_PROM;
2512 	if (ic->ic_opmode == IEEE80211_M_STA ||
2513 	    ic->ic_opmode == IEEE80211_M_IBSS ||
2514 	    sc->sc_swbmiss || sc->sc_scanning)
2515 		rfilt |= HAL_RX_FILTER_BEACON;
2516 	/*
2517 	 * NB: We don't recalculate the rx filter when
2518 	 * ic_protmode changes; otherwise we could do
2519 	 * this only when ic_protmode != NONE.
2520 	 */
2521 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2522 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2523 		rfilt |= HAL_RX_FILTER_BEACON;
2524 
2525 	/*
2526 	 * Enable hardware PS-POLL RX only for hostap mode;
2527 	 * STA mode sends PS-POLL frames but never
2528 	 * receives them.
2529 	 */
2530 	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
2531 	    0, NULL) == HAL_OK &&
2532 	    ic->ic_opmode == IEEE80211_M_HOSTAP)
2533 		rfilt |= HAL_RX_FILTER_PSPOLL;
2534 
2535 	if (sc->sc_nmeshvaps) {
2536 		rfilt |= HAL_RX_FILTER_BEACON;
2537 		if (sc->sc_hasbmatch)
2538 			rfilt |= HAL_RX_FILTER_BSSID;
2539 		else
2540 			rfilt |= HAL_RX_FILTER_PROM;
2541 	}
2542 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2543 		rfilt |= HAL_RX_FILTER_CONTROL;
2544 
2545 	/*
2546 	 * Enable RX of compressed BAR frames only when doing
2547 	 * 802.11n. Required for A-MPDU.
2548 	 */
2549 	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
2550 		rfilt |= HAL_RX_FILTER_COMPBAR;
2551 
2552 	/*
2553 	 * Enable radar PHY errors if requested by the
2554 	 * DFS module.
2555 	 */
2556 	if (sc->sc_dodfs)
2557 		rfilt |= HAL_RX_FILTER_PHYRADAR;
2558 
2559 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2560 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2561 	return rfilt;
2562 }
2563 
2564 static void
2565 ath_update_promisc(struct ifnet *ifp)
2566 {
2567 	struct ath_softc *sc = ifp->if_softc;
2568 	u_int32_t rfilt;
2569 
2570 	/* configure rx filter */
2571 	rfilt = ath_calcrxfilter(sc);
2572 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2573 
2574 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2575 }
2576 
2577 static void
2578 ath_update_mcast(struct ifnet *ifp)
2579 {
2580 	struct ath_softc *sc = ifp->if_softc;
2581 	u_int32_t mfilt[2];
2582 
2583 	/* calculate and install multicast filter */
2584 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2585 		struct ifmultiaddr *ifma;
2586 		/*
2587 		 * Merge multicast addresses to form the hardware filter.
2588 		 */
2589 		mfilt[0] = mfilt[1] = 0;
2590 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2591 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2592 			caddr_t dl;
2593 			u_int32_t val;
2594 			u_int8_t pos;
2595 
2596 			/* calculate XOR of eight 6bit values */
2597 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2598 			val = LE_READ_4(dl + 0);
2599 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2600 			val = LE_READ_4(dl + 3);
2601 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2602 			pos &= 0x3f;
2603 			mfilt[pos / 32] |= (1 << (pos % 32));
2604 		}
2605 		if_maddr_runlock(ifp);
2606 	} else
2607 		mfilt[0] = mfilt[1] = ~0;
2608 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2609 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2610 		__func__, mfilt[0], mfilt[1]);
2611 }
2612 
2613 static void
2614 ath_mode_init(struct ath_softc *sc)
2615 {
2616 	struct ifnet *ifp = sc->sc_ifp;
2617 	struct ath_hal *ah = sc->sc_ah;
2618 	u_int32_t rfilt;
2619 
2620 	/* configure rx filter */
2621 	rfilt = ath_calcrxfilter(sc);
2622 	ath_hal_setrxfilter(ah, rfilt);
2623 
2624 	/* configure operational mode */
2625 	ath_hal_setopmode(ah);
2626 
2627 	/* handle any link-level address change */
2628 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2629 
2630 	/* calculate and install multicast filter */
2631 	ath_update_mcast(ifp);
2632 }
2633 
2634 /*
2635  * Set the slot time based on the current setting.
2636  */
2637 static void
2638 ath_setslottime(struct ath_softc *sc)
2639 {
2640 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2641 	struct ath_hal *ah = sc->sc_ah;
2642 	u_int usec;
2643 
2644 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2645 		usec = 13;
2646 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2647 		usec = 21;
2648 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2649 		/* honor short/long slot time only in 11g */
2650 		/* XXX shouldn't honor on pure g or turbo g channel */
2651 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2652 			usec = HAL_SLOT_TIME_9;
2653 		else
2654 			usec = HAL_SLOT_TIME_20;
2655 	} else
2656 		usec = HAL_SLOT_TIME_9;
2657 
2658 	DPRINTF(sc, ATH_DEBUG_RESET,
2659 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2660 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2661 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2662 
2663 	ath_hal_setslottime(ah, usec);
2664 	sc->sc_updateslot = OK;
2665 }
2666 
2667 /*
2668  * Callback from the 802.11 layer to update the
2669  * slot time based on the current setting.
2670  */
2671 static void
2672 ath_updateslot(struct ifnet *ifp)
2673 {
2674 	struct ath_softc *sc = ifp->if_softc;
2675 	struct ieee80211com *ic = ifp->if_l2com;
2676 
2677 	/*
2678 	 * When not coordinating the BSS, change the hardware
2679 	 * immediately.  For other operation we defer the change
2680 	 * until beacon updates have propagated to the stations.
2681 	 */
2682 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2683 	    ic->ic_opmode == IEEE80211_M_MBSS)
2684 		sc->sc_updateslot = UPDATE;
2685 	else
2686 		ath_setslottime(sc);
2687 }
2688 
2689 /*
2690  * Setup a h/w transmit queue for beacons.
2691  */
2692 static int
2693 ath_beaconq_setup(struct ath_hal *ah)
2694 {
2695 	HAL_TXQ_INFO qi;
2696 
2697 	memset(&qi, 0, sizeof(qi));
2698 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2699 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2700 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2701 	/* NB: for dynamic turbo, don't enable any other interrupts */
2702 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2703 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2704 }
2705 
2706 /*
2707  * Setup the transmit queue parameters for the beacon queue.
2708  */
2709 static int
2710 ath_beaconq_config(struct ath_softc *sc)
2711 {
2712 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2713 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2714 	struct ath_hal *ah = sc->sc_ah;
2715 	HAL_TXQ_INFO qi;
2716 
2717 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2718 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2719 	    ic->ic_opmode == IEEE80211_M_MBSS) {
2720 		/*
2721 		 * Always burst out beacon and CAB traffic.
2722 		 */
2723 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2724 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2725 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2726 	} else {
2727 		struct wmeParams *wmep =
2728 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2729 		/*
2730 		 * Adhoc mode; important thing is to use 2x cwmin.
2731 		 */
2732 		qi.tqi_aifs = wmep->wmep_aifsn;
2733 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2734 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2735 	}
2736 
2737 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2738 		device_printf(sc->sc_dev, "unable to update parameters for "
2739 			"beacon hardware queue!\n");
2740 		return 0;
2741 	} else {
2742 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2743 		return 1;
2744 	}
2745 #undef ATH_EXPONENT_TO_VALUE
2746 }
2747 
2748 /*
2749  * Allocate and setup an initial beacon frame.
2750  */
2751 static int
2752 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2753 {
2754 	struct ieee80211vap *vap = ni->ni_vap;
2755 	struct ath_vap *avp = ATH_VAP(vap);
2756 	struct ath_buf *bf;
2757 	struct mbuf *m;
2758 	int error;
2759 
2760 	bf = avp->av_bcbuf;
2761 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: bf_m=%p, bf_node=%p\n",
2762 	    __func__, bf->bf_m, bf->bf_node);
2763 	if (bf->bf_m != NULL) {
2764 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2765 		m_freem(bf->bf_m);
2766 		bf->bf_m = NULL;
2767 	}
2768 	if (bf->bf_node != NULL) {
2769 		ieee80211_free_node(bf->bf_node);
2770 		bf->bf_node = NULL;
2771 	}
2772 
2773 	/*
2774 	 * NB: the beacon data buffer must be 32-bit aligned;
2775 	 * we assume the mbuf routines will return us something
2776 	 * with this alignment (perhaps should assert).
2777 	 */
2778 	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2779 	if (m == NULL) {
2780 		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2781 		sc->sc_stats.ast_be_nombuf++;
2782 		return ENOMEM;
2783 	}
2784 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2785 				     bf->bf_segs, &bf->bf_nseg,
2786 				     BUS_DMA_NOWAIT);
2787 	if (error != 0) {
2788 		device_printf(sc->sc_dev,
2789 		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2790 		    __func__, error);
2791 		m_freem(m);
2792 		return error;
2793 	}
2794 
2795 	/*
2796 	 * Calculate a TSF adjustment factor required for staggered
2797 	 * beacons.  Note that we assume the format of the beacon
2798 	 * frame leaves the tstamp field immediately following the
2799 	 * header.
2800 	 */
2801 	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2802 		uint64_t tsfadjust;
2803 		struct ieee80211_frame *wh;
2804 
2805 		/*
2806 		 * The beacon interval is in TU's; the TSF is in usecs.
2807 		 * We figure out how many TU's to add to align the timestamp
2808 		 * then convert to TSF units and handle byte swapping before
2809 		 * inserting it in the frame.  The hardware will then add this
2810 		 * each time a beacon frame is sent.  Note that we align vap's
2811 		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2812 		 * timestamp in one beacon interval while the others get a
2813 		 * timstamp aligned to the next interval.
2814 		 */
2815 		tsfadjust = ni->ni_intval *
2816 		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2817 		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2818 
2819 		DPRINTF(sc, ATH_DEBUG_BEACON,
2820 		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2821 		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2822 		    avp->av_bslot, ni->ni_intval,
2823 		    (long long unsigned) le64toh(tsfadjust));
2824 
2825 		wh = mtod(m, struct ieee80211_frame *);
2826 		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2827 	}
2828 	bf->bf_m = m;
2829 	bf->bf_node = ieee80211_ref_node(ni);
2830 
2831 	return 0;
2832 }
2833 
2834 /*
2835  * Setup the beacon frame for transmit.
2836  */
2837 static void
2838 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2839 {
2840 #define	USE_SHPREAMBLE(_ic) \
2841 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2842 		== IEEE80211_F_SHPREAMBLE)
2843 	struct ieee80211_node *ni = bf->bf_node;
2844 	struct ieee80211com *ic = ni->ni_ic;
2845 	struct mbuf *m = bf->bf_m;
2846 	struct ath_hal *ah = sc->sc_ah;
2847 	struct ath_desc *ds;
2848 	int flags, antenna;
2849 	const HAL_RATE_TABLE *rt;
2850 	u_int8_t rix, rate;
2851 
2852 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2853 		__func__, m, m->m_len);
2854 
2855 	/* setup descriptors */
2856 	ds = bf->bf_desc;
2857 	bf->bf_last = bf;
2858 	bf->bf_lastds = ds;
2859 
2860 	flags = HAL_TXDESC_NOACK;
2861 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2862 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2863 		flags |= HAL_TXDESC_VEOL;
2864 		/*
2865 		 * Let hardware handle antenna switching.
2866 		 */
2867 		antenna = sc->sc_txantenna;
2868 	} else {
2869 		ds->ds_link = 0;
2870 		/*
2871 		 * Switch antenna every 4 beacons.
2872 		 * XXX assumes two antenna
2873 		 */
2874 		if (sc->sc_txantenna != 0)
2875 			antenna = sc->sc_txantenna;
2876 		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2877 			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2878 		else
2879 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2880 	}
2881 
2882 	KASSERT(bf->bf_nseg == 1,
2883 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2884 	ds->ds_data = bf->bf_segs[0].ds_addr;
2885 	/*
2886 	 * Calculate rate code.
2887 	 * XXX everything at min xmit rate
2888 	 */
2889 	rix = 0;
2890 	rt = sc->sc_currates;
2891 	rate = rt->info[rix].rateCode;
2892 	if (USE_SHPREAMBLE(ic))
2893 		rate |= rt->info[rix].shortPreamble;
2894 	ath_hal_setuptxdesc(ah, ds
2895 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2896 		, sizeof(struct ieee80211_frame)/* header length */
2897 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2898 		, ni->ni_txpower		/* txpower XXX */
2899 		, rate, 1			/* series 0 rate/tries */
2900 		, HAL_TXKEYIX_INVALID		/* no encryption */
2901 		, antenna			/* antenna mode */
2902 		, flags				/* no ack, veol for beacons */
2903 		, 0				/* rts/cts rate */
2904 		, 0				/* rts/cts duration */
2905 	);
2906 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2907 	ath_hal_filltxdesc(ah, ds
2908 		, roundup(m->m_len, 4)		/* buffer length */
2909 		, AH_TRUE			/* first segment */
2910 		, AH_TRUE			/* last segment */
2911 		, ds				/* first descriptor */
2912 	);
2913 #if 0
2914 	ath_desc_swap(ds);
2915 #endif
2916 #undef USE_SHPREAMBLE
2917 }
2918 
2919 static void
2920 ath_beacon_update(struct ieee80211vap *vap, int item)
2921 {
2922 	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2923 
2924 	setbit(bo->bo_flags, item);
2925 }
2926 
2927 /*
2928  * Append the contents of src to dst; both queues
2929  * are assumed to be locked.
2930  */
2931 static void
2932 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2933 {
2934 
2935 	ATH_TXQ_LOCK_ASSERT(dst);
2936 	ATH_TXQ_LOCK_ASSERT(src);
2937 
2938 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2939 	dst->axq_link = src->axq_link;
2940 	src->axq_link = NULL;
2941 	dst->axq_depth += src->axq_depth;
2942 	dst->axq_aggr_depth += src->axq_aggr_depth;
2943 	src->axq_depth = 0;
2944 	src->axq_aggr_depth = 0;
2945 }
2946 
2947 /*
2948  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2949  * frame contents are done as needed and the slot time is
2950  * also adjusted based on current state.
2951  */
2952 static void
2953 ath_beacon_proc(void *arg, int pending)
2954 {
2955 	struct ath_softc *sc = arg;
2956 	struct ath_hal *ah = sc->sc_ah;
2957 	struct ieee80211vap *vap;
2958 	struct ath_buf *bf;
2959 	int slot, otherant;
2960 	uint32_t bfaddr;
2961 
2962 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2963 		__func__, pending);
2964 	/*
2965 	 * Check if the previous beacon has gone out.  If
2966 	 * not don't try to post another, skip this period
2967 	 * and wait for the next.  Missed beacons indicate
2968 	 * a problem and should not occur.  If we miss too
2969 	 * many consecutive beacons reset the device.
2970 	 */
2971 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2972 		sc->sc_bmisscount++;
2973 		sc->sc_stats.ast_be_missed++;
2974 		DPRINTF(sc, ATH_DEBUG_BEACON,
2975 			"%s: missed %u consecutive beacons\n",
2976 			__func__, sc->sc_bmisscount);
2977 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2978 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2979 		return;
2980 	}
2981 	if (sc->sc_bmisscount != 0) {
2982 		DPRINTF(sc, ATH_DEBUG_BEACON,
2983 			"%s: resume beacon xmit after %u misses\n",
2984 			__func__, sc->sc_bmisscount);
2985 		sc->sc_bmisscount = 0;
2986 	}
2987 
2988 	if (sc->sc_stagbeacons) {			/* staggered beacons */
2989 		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2990 		uint32_t tsftu;
2991 
2992 		tsftu = ath_hal_gettsf32(ah) >> 10;
2993 		/* XXX lintval */
2994 		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2995 		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2996 		bfaddr = 0;
2997 		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2998 			bf = ath_beacon_generate(sc, vap);
2999 			if (bf != NULL)
3000 				bfaddr = bf->bf_daddr;
3001 		}
3002 	} else {					/* burst'd beacons */
3003 		uint32_t *bflink = &bfaddr;
3004 
3005 		for (slot = 0; slot < ATH_BCBUF; slot++) {
3006 			vap = sc->sc_bslot[slot];
3007 			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
3008 				bf = ath_beacon_generate(sc, vap);
3009 				if (bf != NULL) {
3010 					*bflink = bf->bf_daddr;
3011 					bflink = &bf->bf_desc->ds_link;
3012 				}
3013 			}
3014 		}
3015 		*bflink = 0;				/* terminate list */
3016 	}
3017 
3018 	/*
3019 	 * Handle slot time change when a non-ERP station joins/leaves
3020 	 * an 11g network.  The 802.11 layer notifies us via callback,
3021 	 * we mark updateslot, then wait one beacon before effecting
3022 	 * the change.  This gives associated stations at least one
3023 	 * beacon interval to note the state change.
3024 	 */
3025 	/* XXX locking */
3026 	if (sc->sc_updateslot == UPDATE) {
3027 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
3028 		sc->sc_slotupdate = slot;
3029 	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
3030 		ath_setslottime(sc);		/* commit change to h/w */
3031 
3032 	/*
3033 	 * Check recent per-antenna transmit statistics and flip
3034 	 * the default antenna if noticeably more frames went out
3035 	 * on the non-default antenna.
3036 	 * XXX assumes 2 anntenae
3037 	 */
3038 	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
3039 		otherant = sc->sc_defant & 1 ? 2 : 1;
3040 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
3041 			ath_setdefantenna(sc, otherant);
3042 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
3043 	}
3044 
3045 	if (bfaddr != 0) {
3046 		/*
3047 		 * Stop any current dma and put the new frame on the queue.
3048 		 * This should never fail since we check above that no frames
3049 		 * are still pending on the queue.
3050 		 */
3051 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
3052 			DPRINTF(sc, ATH_DEBUG_ANY,
3053 				"%s: beacon queue %u did not stop?\n",
3054 				__func__, sc->sc_bhalq);
3055 		}
3056 		/* NB: cabq traffic should already be queued and primed */
3057 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
3058 		ath_hal_txstart(ah, sc->sc_bhalq);
3059 
3060 		sc->sc_stats.ast_be_xmit++;
3061 	}
3062 }
3063 
3064 static struct ath_buf *
3065 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
3066 {
3067 	struct ath_vap *avp = ATH_VAP(vap);
3068 	struct ath_txq *cabq = sc->sc_cabq;
3069 	struct ath_buf *bf;
3070 	struct mbuf *m;
3071 	int nmcastq, error;
3072 
3073 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
3074 	    ("not running, state %d", vap->iv_state));
3075 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3076 
3077 	/*
3078 	 * Update dynamic beacon contents.  If this returns
3079 	 * non-zero then we need to remap the memory because
3080 	 * the beacon frame changed size (probably because
3081 	 * of the TIM bitmap).
3082 	 */
3083 	bf = avp->av_bcbuf;
3084 	m = bf->bf_m;
3085 	/* XXX lock mcastq? */
3086 	nmcastq = avp->av_mcastq.axq_depth;
3087 
3088 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
3089 		/* XXX too conservative? */
3090 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3091 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3092 					     bf->bf_segs, &bf->bf_nseg,
3093 					     BUS_DMA_NOWAIT);
3094 		if (error != 0) {
3095 			if_printf(vap->iv_ifp,
3096 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3097 			    __func__, error);
3098 			return NULL;
3099 		}
3100 	}
3101 	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
3102 		DPRINTF(sc, ATH_DEBUG_BEACON,
3103 		    "%s: cabq did not drain, mcastq %u cabq %u\n",
3104 		    __func__, nmcastq, cabq->axq_depth);
3105 		sc->sc_stats.ast_cabq_busy++;
3106 		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
3107 			/*
3108 			 * CABQ traffic from a previous vap is still pending.
3109 			 * We must drain the q before this beacon frame goes
3110 			 * out as otherwise this vap's stations will get cab
3111 			 * frames from a different vap.
3112 			 * XXX could be slow causing us to miss DBA
3113 			 */
3114 			ath_tx_draintxq(sc, cabq);
3115 		}
3116 	}
3117 	ath_beacon_setup(sc, bf);
3118 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3119 
3120 	/*
3121 	 * Enable the CAB queue before the beacon queue to
3122 	 * insure cab frames are triggered by this beacon.
3123 	 */
3124 	if (avp->av_boff.bo_tim[4] & 1) {
3125 		struct ath_hal *ah = sc->sc_ah;
3126 
3127 		/* NB: only at DTIM */
3128 		ATH_TXQ_LOCK(cabq);
3129 		ATH_TXQ_LOCK(&avp->av_mcastq);
3130 		if (nmcastq) {
3131 			struct ath_buf *bfm;
3132 
3133 			/*
3134 			 * Move frames from the s/w mcast q to the h/w cab q.
3135 			 * XXX MORE_DATA bit
3136 			 */
3137 			bfm = TAILQ_FIRST(&avp->av_mcastq.axq_q);
3138 			if (cabq->axq_link != NULL) {
3139 				*cabq->axq_link = bfm->bf_daddr;
3140 			} else
3141 				ath_hal_puttxbuf(ah, cabq->axq_qnum,
3142 					bfm->bf_daddr);
3143 			ath_txqmove(cabq, &avp->av_mcastq);
3144 
3145 			sc->sc_stats.ast_cabq_xmit += nmcastq;
3146 		}
3147 		/* NB: gated by beacon so safe to start here */
3148 		if (! TAILQ_EMPTY(&(cabq->axq_q)))
3149 			ath_hal_txstart(ah, cabq->axq_qnum);
3150 		ATH_TXQ_UNLOCK(&avp->av_mcastq);
3151 		ATH_TXQ_UNLOCK(cabq);
3152 	}
3153 	return bf;
3154 }
3155 
3156 static void
3157 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3158 {
3159 	struct ath_vap *avp = ATH_VAP(vap);
3160 	struct ath_hal *ah = sc->sc_ah;
3161 	struct ath_buf *bf;
3162 	struct mbuf *m;
3163 	int error;
3164 
3165 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3166 
3167 	/*
3168 	 * Update dynamic beacon contents.  If this returns
3169 	 * non-zero then we need to remap the memory because
3170 	 * the beacon frame changed size (probably because
3171 	 * of the TIM bitmap).
3172 	 */
3173 	bf = avp->av_bcbuf;
3174 	m = bf->bf_m;
3175 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3176 		/* XXX too conservative? */
3177 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3178 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3179 					     bf->bf_segs, &bf->bf_nseg,
3180 					     BUS_DMA_NOWAIT);
3181 		if (error != 0) {
3182 			if_printf(vap->iv_ifp,
3183 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3184 			    __func__, error);
3185 			return;
3186 		}
3187 	}
3188 	ath_beacon_setup(sc, bf);
3189 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3190 
3191 	/* NB: caller is known to have already stopped tx dma */
3192 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3193 	ath_hal_txstart(ah, sc->sc_bhalq);
3194 }
3195 
3196 /*
3197  * Reset the hardware, with no loss.
3198  *
3199  * This can't be used for a general case reset.
3200  */
3201 static void
3202 ath_reset_proc(void *arg, int pending)
3203 {
3204 	struct ath_softc *sc = arg;
3205 	struct ifnet *ifp = sc->sc_ifp;
3206 
3207 #if 0
3208 	if_printf(ifp, "%s: resetting\n", __func__);
3209 #endif
3210 	ath_reset(ifp, ATH_RESET_NOLOSS);
3211 }
3212 
3213 /*
3214  * Reset the hardware after detecting beacons have stopped.
3215  */
3216 static void
3217 ath_bstuck_proc(void *arg, int pending)
3218 {
3219 	struct ath_softc *sc = arg;
3220 	struct ifnet *ifp = sc->sc_ifp;
3221 	uint32_t hangs = 0;
3222 
3223 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3224 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3225 
3226 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3227 		sc->sc_bmisscount);
3228 	sc->sc_stats.ast_bstuck++;
3229 	/*
3230 	 * This assumes that there's no simultaneous channel mode change
3231 	 * occuring.
3232 	 */
3233 	ath_reset(ifp, ATH_RESET_NOLOSS);
3234 }
3235 
3236 /*
3237  * Reclaim beacon resources and return buffer to the pool.
3238  */
3239 static void
3240 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3241 {
3242 
3243 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: free bf=%p, bf_m=%p, bf_node=%p\n",
3244 	    __func__, bf, bf->bf_m, bf->bf_node);
3245 	if (bf->bf_m != NULL) {
3246 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3247 		m_freem(bf->bf_m);
3248 		bf->bf_m = NULL;
3249 	}
3250 	if (bf->bf_node != NULL) {
3251 		ieee80211_free_node(bf->bf_node);
3252 		bf->bf_node = NULL;
3253 	}
3254 	TAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3255 }
3256 
3257 /*
3258  * Reclaim beacon resources.
3259  */
3260 static void
3261 ath_beacon_free(struct ath_softc *sc)
3262 {
3263 	struct ath_buf *bf;
3264 
3265 	TAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3266 		DPRINTF(sc, ATH_DEBUG_NODE,
3267 		    "%s: free bf=%p, bf_m=%p, bf_node=%p\n",
3268 		        __func__, bf, bf->bf_m, bf->bf_node);
3269 		if (bf->bf_m != NULL) {
3270 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3271 			m_freem(bf->bf_m);
3272 			bf->bf_m = NULL;
3273 		}
3274 		if (bf->bf_node != NULL) {
3275 			ieee80211_free_node(bf->bf_node);
3276 			bf->bf_node = NULL;
3277 		}
3278 	}
3279 }
3280 
3281 /*
3282  * Configure the beacon and sleep timers.
3283  *
3284  * When operating as an AP this resets the TSF and sets
3285  * up the hardware to notify us when we need to issue beacons.
3286  *
3287  * When operating in station mode this sets up the beacon
3288  * timers according to the timestamp of the last received
3289  * beacon and the current TSF, configures PCF and DTIM
3290  * handling, programs the sleep registers so the hardware
3291  * will wakeup in time to receive beacons, and configures
3292  * the beacon miss handling so we'll receive a BMISS
3293  * interrupt when we stop seeing beacons from the AP
3294  * we've associated with.
3295  */
3296 static void
3297 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3298 {
3299 #define	TSF_TO_TU(_h,_l) \
3300 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3301 #define	FUDGE	2
3302 	struct ath_hal *ah = sc->sc_ah;
3303 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3304 	struct ieee80211_node *ni;
3305 	u_int32_t nexttbtt, intval, tsftu;
3306 	u_int64_t tsf;
3307 
3308 	if (vap == NULL)
3309 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3310 	ni = ieee80211_ref_node(vap->iv_bss);
3311 
3312 	/* extract tstamp from last beacon and convert to TU */
3313 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3314 			     LE_READ_4(ni->ni_tstamp.data));
3315 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3316 	    ic->ic_opmode == IEEE80211_M_MBSS) {
3317 		/*
3318 		 * For multi-bss ap/mesh support beacons are either staggered
3319 		 * evenly over N slots or burst together.  For the former
3320 		 * arrange for the SWBA to be delivered for each slot.
3321 		 * Slots that are not occupied will generate nothing.
3322 		 */
3323 		/* NB: the beacon interval is kept internally in TU's */
3324 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3325 		if (sc->sc_stagbeacons)
3326 			intval /= ATH_BCBUF;
3327 	} else {
3328 		/* NB: the beacon interval is kept internally in TU's */
3329 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3330 	}
3331 	if (nexttbtt == 0)		/* e.g. for ap mode */
3332 		nexttbtt = intval;
3333 	else if (intval)		/* NB: can be 0 for monitor mode */
3334 		nexttbtt = roundup(nexttbtt, intval);
3335 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3336 		__func__, nexttbtt, intval, ni->ni_intval);
3337 	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3338 		HAL_BEACON_STATE bs;
3339 		int dtimperiod, dtimcount;
3340 		int cfpperiod, cfpcount;
3341 
3342 		/*
3343 		 * Setup dtim and cfp parameters according to
3344 		 * last beacon we received (which may be none).
3345 		 */
3346 		dtimperiod = ni->ni_dtim_period;
3347 		if (dtimperiod <= 0)		/* NB: 0 if not known */
3348 			dtimperiod = 1;
3349 		dtimcount = ni->ni_dtim_count;
3350 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3351 			dtimcount = 0;		/* XXX? */
3352 		cfpperiod = 1;			/* NB: no PCF support yet */
3353 		cfpcount = 0;
3354 		/*
3355 		 * Pull nexttbtt forward to reflect the current
3356 		 * TSF and calculate dtim+cfp state for the result.
3357 		 */
3358 		tsf = ath_hal_gettsf64(ah);
3359 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3360 		do {
3361 			nexttbtt += intval;
3362 			if (--dtimcount < 0) {
3363 				dtimcount = dtimperiod - 1;
3364 				if (--cfpcount < 0)
3365 					cfpcount = cfpperiod - 1;
3366 			}
3367 		} while (nexttbtt < tsftu);
3368 		memset(&bs, 0, sizeof(bs));
3369 		bs.bs_intval = intval;
3370 		bs.bs_nexttbtt = nexttbtt;
3371 		bs.bs_dtimperiod = dtimperiod*intval;
3372 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3373 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3374 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3375 		bs.bs_cfpmaxduration = 0;
3376 #if 0
3377 		/*
3378 		 * The 802.11 layer records the offset to the DTIM
3379 		 * bitmap while receiving beacons; use it here to
3380 		 * enable h/w detection of our AID being marked in
3381 		 * the bitmap vector (to indicate frames for us are
3382 		 * pending at the AP).
3383 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3384 		 * XXX enable based on h/w rev for newer chips
3385 		 */
3386 		bs.bs_timoffset = ni->ni_timoff;
3387 #endif
3388 		/*
3389 		 * Calculate the number of consecutive beacons to miss
3390 		 * before taking a BMISS interrupt.
3391 		 * Note that we clamp the result to at most 10 beacons.
3392 		 */
3393 		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3394 		if (bs.bs_bmissthreshold > 10)
3395 			bs.bs_bmissthreshold = 10;
3396 		else if (bs.bs_bmissthreshold <= 0)
3397 			bs.bs_bmissthreshold = 1;
3398 
3399 		/*
3400 		 * Calculate sleep duration.  The configuration is
3401 		 * given in ms.  We insure a multiple of the beacon
3402 		 * period is used.  Also, if the sleep duration is
3403 		 * greater than the DTIM period then it makes senses
3404 		 * to make it a multiple of that.
3405 		 *
3406 		 * XXX fixed at 100ms
3407 		 */
3408 		bs.bs_sleepduration =
3409 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3410 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3411 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3412 
3413 		DPRINTF(sc, ATH_DEBUG_BEACON,
3414 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3415 			, __func__
3416 			, tsf, tsftu
3417 			, bs.bs_intval
3418 			, bs.bs_nexttbtt
3419 			, bs.bs_dtimperiod
3420 			, bs.bs_nextdtim
3421 			, bs.bs_bmissthreshold
3422 			, bs.bs_sleepduration
3423 			, bs.bs_cfpperiod
3424 			, bs.bs_cfpmaxduration
3425 			, bs.bs_cfpnext
3426 			, bs.bs_timoffset
3427 		);
3428 		ath_hal_intrset(ah, 0);
3429 		ath_hal_beacontimers(ah, &bs);
3430 		sc->sc_imask |= HAL_INT_BMISS;
3431 		ath_hal_intrset(ah, sc->sc_imask);
3432 	} else {
3433 		ath_hal_intrset(ah, 0);
3434 		if (nexttbtt == intval)
3435 			intval |= HAL_BEACON_RESET_TSF;
3436 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3437 			/*
3438 			 * In IBSS mode enable the beacon timers but only
3439 			 * enable SWBA interrupts if we need to manually
3440 			 * prepare beacon frames.  Otherwise we use a
3441 			 * self-linked tx descriptor and let the hardware
3442 			 * deal with things.
3443 			 */
3444 			intval |= HAL_BEACON_ENA;
3445 			if (!sc->sc_hasveol)
3446 				sc->sc_imask |= HAL_INT_SWBA;
3447 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3448 				/*
3449 				 * Pull nexttbtt forward to reflect
3450 				 * the current TSF.
3451 				 */
3452 				tsf = ath_hal_gettsf64(ah);
3453 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3454 				do {
3455 					nexttbtt += intval;
3456 				} while (nexttbtt < tsftu);
3457 			}
3458 			ath_beaconq_config(sc);
3459 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3460 		    ic->ic_opmode == IEEE80211_M_MBSS) {
3461 			/*
3462 			 * In AP/mesh mode we enable the beacon timers
3463 			 * and SWBA interrupts to prepare beacon frames.
3464 			 */
3465 			intval |= HAL_BEACON_ENA;
3466 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3467 			ath_beaconq_config(sc);
3468 		}
3469 		ath_hal_beaconinit(ah, nexttbtt, intval);
3470 		sc->sc_bmisscount = 0;
3471 		ath_hal_intrset(ah, sc->sc_imask);
3472 		/*
3473 		 * When using a self-linked beacon descriptor in
3474 		 * ibss mode load it once here.
3475 		 */
3476 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3477 			ath_beacon_start_adhoc(sc, vap);
3478 	}
3479 	sc->sc_syncbeacon = 0;
3480 	ieee80211_free_node(ni);
3481 #undef FUDGE
3482 #undef TSF_TO_TU
3483 }
3484 
3485 static void
3486 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3487 {
3488 	bus_addr_t *paddr = (bus_addr_t*) arg;
3489 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3490 	*paddr = segs->ds_addr;
3491 }
3492 
3493 static int
3494 ath_descdma_setup(struct ath_softc *sc,
3495 	struct ath_descdma *dd, ath_bufhead *head,
3496 	const char *name, int nbuf, int ndesc)
3497 {
3498 #define	DS2PHYS(_dd, _ds) \
3499 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3500 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3501 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3502 	struct ifnet *ifp = sc->sc_ifp;
3503 	uint8_t *ds;
3504 	struct ath_buf *bf;
3505 	int i, bsize, error;
3506 	int desc_len;
3507 
3508 	desc_len = sizeof(struct ath_desc);
3509 
3510 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3511 	    __func__, name, nbuf, ndesc);
3512 
3513 	dd->dd_name = name;
3514 	dd->dd_desc_len = desc_len * nbuf * ndesc;
3515 
3516 	/*
3517 	 * Merlin work-around:
3518 	 * Descriptors that cross the 4KB boundary can't be used.
3519 	 * Assume one skipped descriptor per 4KB page.
3520 	 */
3521 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3522 		int numdescpage = 4096 / (desc_len * ndesc);
3523 		dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096;
3524 	}
3525 
3526 	/*
3527 	 * Setup DMA descriptor area.
3528 	 */
3529 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3530 		       PAGE_SIZE, 0,		/* alignment, bounds */
3531 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3532 		       BUS_SPACE_MAXADDR,	/* highaddr */
3533 		       NULL, NULL,		/* filter, filterarg */
3534 		       dd->dd_desc_len,		/* maxsize */
3535 		       1,			/* nsegments */
3536 		       dd->dd_desc_len,		/* maxsegsize */
3537 		       BUS_DMA_ALLOCNOW,	/* flags */
3538 		       NULL,			/* lockfunc */
3539 		       NULL,			/* lockarg */
3540 		       &dd->dd_dmat);
3541 	if (error != 0) {
3542 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3543 		return error;
3544 	}
3545 
3546 	/* allocate descriptors */
3547 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3548 	if (error != 0) {
3549 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3550 			"error %u\n", dd->dd_name, error);
3551 		goto fail0;
3552 	}
3553 
3554 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3555 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3556 				 &dd->dd_dmamap);
3557 	if (error != 0) {
3558 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3559 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3560 		goto fail1;
3561 	}
3562 
3563 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3564 				dd->dd_desc, dd->dd_desc_len,
3565 				ath_load_cb, &dd->dd_desc_paddr,
3566 				BUS_DMA_NOWAIT);
3567 	if (error != 0) {
3568 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3569 			dd->dd_name, error);
3570 		goto fail2;
3571 	}
3572 
3573 	ds = (uint8_t *) dd->dd_desc;
3574 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3575 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3576 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3577 
3578 	/* allocate rx buffers */
3579 	bsize = sizeof(struct ath_buf) * nbuf;
3580 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3581 	if (bf == NULL) {
3582 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3583 			dd->dd_name, bsize);
3584 		goto fail3;
3585 	}
3586 	dd->dd_bufptr = bf;
3587 
3588 	TAILQ_INIT(head);
3589 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) {
3590 		bf->bf_desc = (struct ath_desc *) ds;
3591 		bf->bf_daddr = DS2PHYS(dd, ds);
3592 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3593 			/*
3594 			 * Merlin WAR: Skip descriptor addresses which
3595 			 * cause 4KB boundary crossing along any point
3596 			 * in the descriptor.
3597 			 */
3598 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3599 			     desc_len * ndesc)) {
3600 				/* Start at the next page */
3601 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3602 				bf->bf_desc = (struct ath_desc *) ds;
3603 				bf->bf_daddr = DS2PHYS(dd, ds);
3604 			}
3605 		}
3606 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3607 				&bf->bf_dmamap);
3608 		if (error != 0) {
3609 			if_printf(ifp, "unable to create dmamap for %s "
3610 				"buffer %u, error %u\n", dd->dd_name, i, error);
3611 			ath_descdma_cleanup(sc, dd, head);
3612 			return error;
3613 		}
3614 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3615 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3616 	}
3617 	return 0;
3618 fail3:
3619 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3620 fail2:
3621 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3622 fail1:
3623 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3624 fail0:
3625 	bus_dma_tag_destroy(dd->dd_dmat);
3626 	memset(dd, 0, sizeof(*dd));
3627 	return error;
3628 #undef DS2PHYS
3629 #undef ATH_DESC_4KB_BOUND_CHECK
3630 }
3631 
3632 static void
3633 ath_descdma_cleanup(struct ath_softc *sc,
3634 	struct ath_descdma *dd, ath_bufhead *head)
3635 {
3636 	struct ath_buf *bf;
3637 	struct ieee80211_node *ni;
3638 
3639 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3640 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3641 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3642 	bus_dma_tag_destroy(dd->dd_dmat);
3643 
3644 	TAILQ_FOREACH(bf, head, bf_list) {
3645 		if (bf->bf_m) {
3646 			m_freem(bf->bf_m);
3647 			bf->bf_m = NULL;
3648 		}
3649 		if (bf->bf_dmamap != NULL) {
3650 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3651 			bf->bf_dmamap = NULL;
3652 		}
3653 		ni = bf->bf_node;
3654 		bf->bf_node = NULL;
3655 		if (ni != NULL) {
3656 			/*
3657 			 * Reclaim node reference.
3658 			 */
3659 			ieee80211_free_node(ni);
3660 		}
3661 	}
3662 
3663 	TAILQ_INIT(head);
3664 	free(dd->dd_bufptr, M_ATHDEV);
3665 	memset(dd, 0, sizeof(*dd));
3666 }
3667 
3668 static int
3669 ath_desc_alloc(struct ath_softc *sc)
3670 {
3671 	int error;
3672 
3673 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3674 			"rx", ath_rxbuf, 1);
3675 	if (error != 0)
3676 		return error;
3677 
3678 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3679 			"tx", ath_txbuf, ATH_TXDESC);
3680 	if (error != 0) {
3681 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3682 		return error;
3683 	}
3684 
3685 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3686 			"beacon", ATH_BCBUF, 1);
3687 	if (error != 0) {
3688 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3689 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3690 		return error;
3691 	}
3692 	return 0;
3693 }
3694 
3695 static void
3696 ath_desc_free(struct ath_softc *sc)
3697 {
3698 
3699 	if (sc->sc_bdma.dd_desc_len != 0)
3700 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3701 	if (sc->sc_txdma.dd_desc_len != 0)
3702 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3703 	if (sc->sc_rxdma.dd_desc_len != 0)
3704 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3705 }
3706 
3707 static struct ieee80211_node *
3708 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3709 {
3710 	struct ieee80211com *ic = vap->iv_ic;
3711 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3712 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3713 	struct ath_node *an;
3714 
3715 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3716 	if (an == NULL) {
3717 		/* XXX stat+msg */
3718 		return NULL;
3719 	}
3720 	ath_rate_node_init(sc, an);
3721 
3722 	/* Setup the mutex - there's no associd yet so set the name to NULL */
3723 	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3724 	    device_get_nameunit(sc->sc_dev), an);
3725 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3726 
3727 	/* XXX setup ath_tid */
3728 	ath_tx_tid_init(sc, an);
3729 
3730 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3731 	return &an->an_node;
3732 }
3733 
3734 static void
3735 ath_node_cleanup(struct ieee80211_node *ni)
3736 {
3737 	struct ieee80211com *ic = ni->ni_ic;
3738 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3739 
3740 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3741 	ath_tx_node_flush(sc, ATH_NODE(ni));
3742 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3743 	sc->sc_node_cleanup(ni);
3744 }
3745 
3746 static void
3747 ath_node_free(struct ieee80211_node *ni)
3748 {
3749 	struct ieee80211com *ic = ni->ni_ic;
3750 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3751 
3752 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3753 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3754 	sc->sc_node_free(ni);
3755 }
3756 
3757 static void
3758 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3759 {
3760 	struct ieee80211com *ic = ni->ni_ic;
3761 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3762 	struct ath_hal *ah = sc->sc_ah;
3763 
3764 	*rssi = ic->ic_node_getrssi(ni);
3765 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3766 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3767 	else
3768 		*noise = -95;		/* nominally correct */
3769 }
3770 
3771 static int
3772 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3773 {
3774 	struct ath_hal *ah = sc->sc_ah;
3775 	int error;
3776 	struct mbuf *m;
3777 	struct ath_desc *ds;
3778 
3779 	m = bf->bf_m;
3780 	if (m == NULL) {
3781 		/*
3782 		 * NB: by assigning a page to the rx dma buffer we
3783 		 * implicitly satisfy the Atheros requirement that
3784 		 * this buffer be cache-line-aligned and sized to be
3785 		 * multiple of the cache line size.  Not doing this
3786 		 * causes weird stuff to happen (for the 5210 at least).
3787 		 */
3788 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3789 		if (m == NULL) {
3790 			DPRINTF(sc, ATH_DEBUG_ANY,
3791 				"%s: no mbuf/cluster\n", __func__);
3792 			sc->sc_stats.ast_rx_nombuf++;
3793 			return ENOMEM;
3794 		}
3795 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3796 
3797 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3798 					     bf->bf_dmamap, m,
3799 					     bf->bf_segs, &bf->bf_nseg,
3800 					     BUS_DMA_NOWAIT);
3801 		if (error != 0) {
3802 			DPRINTF(sc, ATH_DEBUG_ANY,
3803 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3804 			    __func__, error);
3805 			sc->sc_stats.ast_rx_busdma++;
3806 			m_freem(m);
3807 			return error;
3808 		}
3809 		KASSERT(bf->bf_nseg == 1,
3810 			("multi-segment packet; nseg %u", bf->bf_nseg));
3811 		bf->bf_m = m;
3812 	}
3813 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3814 
3815 	/*
3816 	 * Setup descriptors.  For receive we always terminate
3817 	 * the descriptor list with a self-linked entry so we'll
3818 	 * not get overrun under high load (as can happen with a
3819 	 * 5212 when ANI processing enables PHY error frames).
3820 	 *
3821 	 * To insure the last descriptor is self-linked we create
3822 	 * each descriptor as self-linked and add it to the end.  As
3823 	 * each additional descriptor is added the previous self-linked
3824 	 * entry is ``fixed'' naturally.  This should be safe even
3825 	 * if DMA is happening.  When processing RX interrupts we
3826 	 * never remove/process the last, self-linked, entry on the
3827 	 * descriptor list.  This insures the hardware always has
3828 	 * someplace to write a new frame.
3829 	 */
3830 	/*
3831 	 * 11N: we can no longer afford to self link the last descriptor.
3832 	 * MAC acknowledges BA status as long as it copies frames to host
3833 	 * buffer (or rx fifo). This can incorrectly acknowledge packets
3834 	 * to a sender if last desc is self-linked.
3835 	 */
3836 	ds = bf->bf_desc;
3837 	if (sc->sc_rxslink)
3838 		ds->ds_link = bf->bf_daddr;	/* link to self */
3839 	else
3840 		ds->ds_link = 0;		/* terminate the list */
3841 	ds->ds_data = bf->bf_segs[0].ds_addr;
3842 	ath_hal_setuprxdesc(ah, ds
3843 		, m->m_len		/* buffer size */
3844 		, 0
3845 	);
3846 
3847 	if (sc->sc_rxlink != NULL)
3848 		*sc->sc_rxlink = bf->bf_daddr;
3849 	sc->sc_rxlink = &ds->ds_link;
3850 	return 0;
3851 }
3852 
3853 /*
3854  * Extend 15-bit time stamp from rx descriptor to
3855  * a full 64-bit TSF using the specified TSF.
3856  */
3857 static __inline u_int64_t
3858 ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf)
3859 {
3860 	if ((tsf & 0x7fff) < rstamp)
3861 		tsf -= 0x8000;
3862 
3863 	return ((tsf &~ 0x7fff) | rstamp);
3864 }
3865 
3866 /*
3867  * Extend 32-bit time stamp from rx descriptor to
3868  * a full 64-bit TSF using the specified TSF.
3869  */
3870 static __inline u_int64_t
3871 ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf)
3872 {
3873 	u_int32_t tsf_low = tsf & 0xffffffff;
3874 	u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp;
3875 
3876 	if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000))
3877 		tsf64 -= 0x100000000ULL;
3878 
3879 	if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000))
3880 		tsf64 += 0x100000000ULL;
3881 
3882 	return tsf64;
3883 }
3884 
3885 /*
3886  * Extend the TSF from the RX descriptor to a full 64 bit TSF.
3887  * Earlier hardware versions only wrote the low 15 bits of the
3888  * TSF into the RX descriptor; later versions (AR5416 and up)
3889  * include the 32 bit TSF value.
3890  */
3891 static __inline u_int64_t
3892 ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf)
3893 {
3894 	if (sc->sc_rxtsf32)
3895 		return ath_extend_tsf32(rstamp, tsf);
3896 	else
3897 		return ath_extend_tsf15(rstamp, tsf);
3898 }
3899 
3900 /*
3901  * Intercept management frames to collect beacon rssi data
3902  * and to do ibss merges.
3903  */
3904 static void
3905 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3906 	int subtype, int rssi, int nf)
3907 {
3908 	struct ieee80211vap *vap = ni->ni_vap;
3909 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3910 
3911 	/*
3912 	 * Call up first so subsequent work can use information
3913 	 * potentially stored in the node (e.g. for ibss merge).
3914 	 */
3915 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3916 	switch (subtype) {
3917 	case IEEE80211_FC0_SUBTYPE_BEACON:
3918 		/* update rssi statistics for use by the hal */
3919 		/* XXX unlocked check against vap->iv_bss? */
3920 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3921 		if (sc->sc_syncbeacon &&
3922 		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3923 			/*
3924 			 * Resync beacon timers using the tsf of the beacon
3925 			 * frame we just received.
3926 			 */
3927 			ath_beacon_config(sc, vap);
3928 		}
3929 		/* fall thru... */
3930 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3931 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3932 		    vap->iv_state == IEEE80211_S_RUN) {
3933 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3934 			uint64_t tsf = ath_extend_tsf(sc, rstamp,
3935 				ath_hal_gettsf64(sc->sc_ah));
3936 			/*
3937 			 * Handle ibss merge as needed; check the tsf on the
3938 			 * frame before attempting the merge.  The 802.11 spec
3939 			 * says the station should change it's bssid to match
3940 			 * the oldest station with the same ssid, where oldest
3941 			 * is determined by the tsf.  Note that hardware
3942 			 * reconfiguration happens through callback to
3943 			 * ath_newstate as the state machine will go from
3944 			 * RUN -> RUN when this happens.
3945 			 */
3946 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3947 				DPRINTF(sc, ATH_DEBUG_STATE,
3948 				    "ibss merge, rstamp %u tsf %ju "
3949 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3950 				    (uintmax_t)ni->ni_tstamp.tsf);
3951 				(void) ieee80211_ibss_merge(ni);
3952 			}
3953 		}
3954 		break;
3955 	}
3956 }
3957 
3958 /*
3959  * Set the default antenna.
3960  */
3961 static void
3962 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3963 {
3964 	struct ath_hal *ah = sc->sc_ah;
3965 
3966 	/* XXX block beacon interrupts */
3967 	ath_hal_setdefantenna(ah, antenna);
3968 	if (sc->sc_defant != antenna)
3969 		sc->sc_stats.ast_ant_defswitch++;
3970 	sc->sc_defant = antenna;
3971 	sc->sc_rxotherant = 0;
3972 }
3973 
3974 static void
3975 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3976 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3977 {
3978 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3979 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3980 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3981 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3982 	struct ath_softc *sc = ifp->if_softc;
3983 	const HAL_RATE_TABLE *rt;
3984 	uint8_t rix;
3985 
3986 	rt = sc->sc_currates;
3987 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3988 	rix = rt->rateCodeToIndex[rs->rs_rate];
3989 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3990 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3991 #ifdef AH_SUPPORT_AR5416
3992 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3993 	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3994 		struct ieee80211com *ic = ifp->if_l2com;
3995 
3996 		if ((rs->rs_flags & HAL_RX_2040) == 0)
3997 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3998 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3999 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
4000 		else
4001 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
4002 		if ((rs->rs_flags & HAL_RX_GI) == 0)
4003 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
4004 	}
4005 #endif
4006 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
4007 	if (rs->rs_status & HAL_RXERR_CRC)
4008 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
4009 	/* XXX propagate other error flags from descriptor */
4010 	sc->sc_rx_th.wr_antnoise = nf;
4011 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
4012 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
4013 #undef CHAN_HT
4014 #undef CHAN_HT20
4015 #undef CHAN_HT40U
4016 #undef CHAN_HT40D
4017 }
4018 
4019 static void
4020 ath_handle_micerror(struct ieee80211com *ic,
4021 	struct ieee80211_frame *wh, int keyix)
4022 {
4023 	struct ieee80211_node *ni;
4024 
4025 	/* XXX recheck MIC to deal w/ chips that lie */
4026 	/* XXX discard MIC errors on !data frames */
4027 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
4028 	if (ni != NULL) {
4029 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
4030 		ieee80211_free_node(ni);
4031 	}
4032 }
4033 
4034 /*
4035  * Only run the RX proc if it's not already running.
4036  * Since this may get run as part of the reset/flush path,
4037  * the task can't clash with an existing, running tasklet.
4038  */
4039 static void
4040 ath_rx_tasklet(void *arg, int npending)
4041 {
4042 	struct ath_softc *sc = arg;
4043 
4044 	CTR1(ATH_KTR_INTR, "ath_rx_proc: pending=%d", npending);
4045 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
4046 	ATH_PCU_LOCK(sc);
4047 	if (sc->sc_inreset_cnt > 0) {
4048 		device_printf(sc->sc_dev,
4049 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4050 		ATH_PCU_UNLOCK(sc);
4051 		return;
4052 	}
4053 	ATH_PCU_UNLOCK(sc);
4054 	ath_rx_proc(sc, 1);
4055 }
4056 
4057 static void
4058 ath_rx_proc(struct ath_softc *sc, int resched)
4059 {
4060 #define	PA2DESC(_sc, _pa) \
4061 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4062 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4063 	struct ath_buf *bf;
4064 	struct ifnet *ifp = sc->sc_ifp;
4065 	struct ieee80211com *ic = ifp->if_l2com;
4066 	struct ath_hal *ah = sc->sc_ah;
4067 	struct ath_desc *ds;
4068 	struct ath_rx_status *rs;
4069 	struct mbuf *m;
4070 	struct ieee80211_node *ni;
4071 	int len, type, ngood;
4072 	HAL_STATUS status;
4073 	int16_t nf;
4074 	u_int64_t tsf, rstamp;
4075 	int npkts = 0;
4076 
4077 	/* XXX we must not hold the ATH_LOCK here */
4078 	ATH_UNLOCK_ASSERT(sc);
4079 	ATH_PCU_UNLOCK_ASSERT(sc);
4080 
4081 	ATH_PCU_LOCK(sc);
4082 	sc->sc_rxproc_cnt++;
4083 	ATH_PCU_UNLOCK(sc);
4084 
4085 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__);
4086 	ngood = 0;
4087 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
4088 	sc->sc_stats.ast_rx_noise = nf;
4089 	tsf = ath_hal_gettsf64(ah);
4090 	do {
4091 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
4092 		if (sc->sc_rxslink && bf == NULL) {	/* NB: shouldn't happen */
4093 			if_printf(ifp, "%s: no buffer!\n", __func__);
4094 			break;
4095 		} else if (bf == NULL) {
4096 			/*
4097 			 * End of List:
4098 			 * this can happen for non-self-linked RX chains
4099 			 */
4100 			sc->sc_stats.ast_rx_hitqueueend++;
4101 			break;
4102 		}
4103 		m = bf->bf_m;
4104 		if (m == NULL) {		/* NB: shouldn't happen */
4105 			/*
4106 			 * If mbuf allocation failed previously there
4107 			 * will be no mbuf; try again to re-populate it.
4108 			 */
4109 			/* XXX make debug msg */
4110 			if_printf(ifp, "%s: no mbuf!\n", __func__);
4111 			TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
4112 			goto rx_next;
4113 		}
4114 		ds = bf->bf_desc;
4115 		if (ds->ds_link == bf->bf_daddr) {
4116 			/* NB: never process the self-linked entry at the end */
4117 			sc->sc_stats.ast_rx_hitqueueend++;
4118 			break;
4119 		}
4120 		/* XXX sync descriptor memory */
4121 		/*
4122 		 * Must provide the virtual address of the current
4123 		 * descriptor, the physical address, and the virtual
4124 		 * address of the next descriptor in the h/w chain.
4125 		 * This allows the HAL to look ahead to see if the
4126 		 * hardware is done with a descriptor by checking the
4127 		 * done bit in the following descriptor and the address
4128 		 * of the current descriptor the DMA engine is working
4129 		 * on.  All this is necessary because of our use of
4130 		 * a self-linked list to avoid rx overruns.
4131 		 */
4132 		rs = &bf->bf_status.ds_rxstat;
4133 		status = ath_hal_rxprocdesc(ah, ds,
4134 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4135 #ifdef ATH_DEBUG
4136 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
4137 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
4138 #endif
4139 		if (status == HAL_EINPROGRESS)
4140 			break;
4141 
4142 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
4143 		npkts++;
4144 
4145 		/*
4146 		 * Calculate the correct 64 bit TSF given
4147 		 * the TSF64 register value and rs_tstamp.
4148 		 */
4149 		rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
4150 
4151 		/* These aren't specifically errors */
4152 #ifdef	AH_SUPPORT_AR5416
4153 		if (rs->rs_flags & HAL_RX_GI)
4154 			sc->sc_stats.ast_rx_halfgi++;
4155 		if (rs->rs_flags & HAL_RX_2040)
4156 			sc->sc_stats.ast_rx_2040++;
4157 		if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
4158 			sc->sc_stats.ast_rx_pre_crc_err++;
4159 		if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
4160 			sc->sc_stats.ast_rx_post_crc_err++;
4161 		if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
4162 			sc->sc_stats.ast_rx_decrypt_busy_err++;
4163 		if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
4164 			sc->sc_stats.ast_rx_hi_rx_chain++;
4165 #endif /* AH_SUPPORT_AR5416 */
4166 
4167 		if (rs->rs_status != 0) {
4168 			if (rs->rs_status & HAL_RXERR_CRC)
4169 				sc->sc_stats.ast_rx_crcerr++;
4170 			if (rs->rs_status & HAL_RXERR_FIFO)
4171 				sc->sc_stats.ast_rx_fifoerr++;
4172 			if (rs->rs_status & HAL_RXERR_PHY) {
4173 				sc->sc_stats.ast_rx_phyerr++;
4174 				/* Process DFS radar events */
4175 				if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
4176 				    (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
4177 					/* Since we're touching the frame data, sync it */
4178 					bus_dmamap_sync(sc->sc_dmat,
4179 					    bf->bf_dmamap,
4180 					    BUS_DMASYNC_POSTREAD);
4181 					/* Now pass it to the radar processing code */
4182 					ath_dfs_process_phy_err(sc, mtod(m, char *), rstamp, rs);
4183 				}
4184 
4185 				/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
4186 				if (rs->rs_phyerr < 64)
4187 					sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
4188 				goto rx_error;	/* NB: don't count in ierrors */
4189 			}
4190 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
4191 				/*
4192 				 * Decrypt error.  If the error occurred
4193 				 * because there was no hardware key, then
4194 				 * let the frame through so the upper layers
4195 				 * can process it.  This is necessary for 5210
4196 				 * parts which have no way to setup a ``clear''
4197 				 * key cache entry.
4198 				 *
4199 				 * XXX do key cache faulting
4200 				 */
4201 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
4202 					goto rx_accept;
4203 				sc->sc_stats.ast_rx_badcrypt++;
4204 			}
4205 			if (rs->rs_status & HAL_RXERR_MIC) {
4206 				sc->sc_stats.ast_rx_badmic++;
4207 				/*
4208 				 * Do minimal work required to hand off
4209 				 * the 802.11 header for notification.
4210 				 */
4211 				/* XXX frag's and qos frames */
4212 				len = rs->rs_datalen;
4213 				if (len >= sizeof (struct ieee80211_frame)) {
4214 					bus_dmamap_sync(sc->sc_dmat,
4215 					    bf->bf_dmamap,
4216 					    BUS_DMASYNC_POSTREAD);
4217 					ath_handle_micerror(ic,
4218 					    mtod(m, struct ieee80211_frame *),
4219 					    sc->sc_splitmic ?
4220 						rs->rs_keyix-32 : rs->rs_keyix);
4221 				}
4222 			}
4223 			ifp->if_ierrors++;
4224 rx_error:
4225 			/*
4226 			 * Cleanup any pending partial frame.
4227 			 */
4228 			if (sc->sc_rxpending != NULL) {
4229 				m_freem(sc->sc_rxpending);
4230 				sc->sc_rxpending = NULL;
4231 			}
4232 			/*
4233 			 * When a tap is present pass error frames
4234 			 * that have been requested.  By default we
4235 			 * pass decrypt+mic errors but others may be
4236 			 * interesting (e.g. crc).
4237 			 */
4238 			if (ieee80211_radiotap_active(ic) &&
4239 			    (rs->rs_status & sc->sc_monpass)) {
4240 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4241 				    BUS_DMASYNC_POSTREAD);
4242 				/* NB: bpf needs the mbuf length setup */
4243 				len = rs->rs_datalen;
4244 				m->m_pkthdr.len = m->m_len = len;
4245 				bf->bf_m = NULL;
4246 				ath_rx_tap(ifp, m, rs, rstamp, nf);
4247 				ieee80211_radiotap_rx_all(ic, m);
4248 				m_freem(m);
4249 			}
4250 			/* XXX pass MIC errors up for s/w reclaculation */
4251 			goto rx_next;
4252 		}
4253 rx_accept:
4254 		/*
4255 		 * Sync and unmap the frame.  At this point we're
4256 		 * committed to passing the mbuf somewhere so clear
4257 		 * bf_m; this means a new mbuf must be allocated
4258 		 * when the rx descriptor is setup again to receive
4259 		 * another frame.
4260 		 */
4261 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4262 		    BUS_DMASYNC_POSTREAD);
4263 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4264 		bf->bf_m = NULL;
4265 
4266 		len = rs->rs_datalen;
4267 		m->m_len = len;
4268 
4269 		if (rs->rs_more) {
4270 			/*
4271 			 * Frame spans multiple descriptors; save
4272 			 * it for the next completed descriptor, it
4273 			 * will be used to construct a jumbogram.
4274 			 */
4275 			if (sc->sc_rxpending != NULL) {
4276 				/* NB: max frame size is currently 2 clusters */
4277 				sc->sc_stats.ast_rx_toobig++;
4278 				m_freem(sc->sc_rxpending);
4279 			}
4280 			m->m_pkthdr.rcvif = ifp;
4281 			m->m_pkthdr.len = len;
4282 			sc->sc_rxpending = m;
4283 			goto rx_next;
4284 		} else if (sc->sc_rxpending != NULL) {
4285 			/*
4286 			 * This is the second part of a jumbogram,
4287 			 * chain it to the first mbuf, adjust the
4288 			 * frame length, and clear the rxpending state.
4289 			 */
4290 			sc->sc_rxpending->m_next = m;
4291 			sc->sc_rxpending->m_pkthdr.len += len;
4292 			m = sc->sc_rxpending;
4293 			sc->sc_rxpending = NULL;
4294 		} else {
4295 			/*
4296 			 * Normal single-descriptor receive; setup
4297 			 * the rcvif and packet length.
4298 			 */
4299 			m->m_pkthdr.rcvif = ifp;
4300 			m->m_pkthdr.len = len;
4301 		}
4302 
4303 		/*
4304 		 * Validate rs->rs_antenna.
4305 		 *
4306 		 * Some users w/ AR9285 NICs have reported crashes
4307 		 * here because rs_antenna field is bogusly large.
4308 		 * Let's enforce the maximum antenna limit of 8
4309 		 * (and it shouldn't be hard coded, but that's a
4310 		 * separate problem) and if there's an issue, print
4311 		 * out an error and adjust rs_antenna to something
4312 		 * sensible.
4313 		 *
4314 		 * This code should be removed once the actual
4315 		 * root cause of the issue has been identified.
4316 		 * For example, it may be that the rs_antenna
4317 		 * field is only valid for the lsat frame of
4318 		 * an aggregate and it just happens that it is
4319 		 * "mostly" right. (This is a general statement -
4320 		 * the majority of the statistics are only valid
4321 		 * for the last frame in an aggregate.
4322 		 */
4323 		if (rs->rs_antenna > 7) {
4324 			device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n",
4325 			    __func__, rs->rs_antenna);
4326 #ifdef	ATH_DEBUG
4327 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
4328 #endif /* ATH_DEBUG */
4329 			rs->rs_antenna = 0;	/* XXX better than nothing */
4330 		}
4331 
4332 		ifp->if_ipackets++;
4333 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
4334 
4335 		/*
4336 		 * Populate the rx status block.  When there are bpf
4337 		 * listeners we do the additional work to provide
4338 		 * complete status.  Otherwise we fill in only the
4339 		 * material required by ieee80211_input.  Note that
4340 		 * noise setting is filled in above.
4341 		 */
4342 		if (ieee80211_radiotap_active(ic))
4343 			ath_rx_tap(ifp, m, rs, rstamp, nf);
4344 
4345 		/*
4346 		 * From this point on we assume the frame is at least
4347 		 * as large as ieee80211_frame_min; verify that.
4348 		 */
4349 		if (len < IEEE80211_MIN_LEN) {
4350 			if (!ieee80211_radiotap_active(ic)) {
4351 				DPRINTF(sc, ATH_DEBUG_RECV,
4352 				    "%s: short packet %d\n", __func__, len);
4353 				sc->sc_stats.ast_rx_tooshort++;
4354 			} else {
4355 				/* NB: in particular this captures ack's */
4356 				ieee80211_radiotap_rx_all(ic, m);
4357 			}
4358 			m_freem(m);
4359 			goto rx_next;
4360 		}
4361 
4362 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
4363 			const HAL_RATE_TABLE *rt = sc->sc_currates;
4364 			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
4365 
4366 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
4367 			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
4368 		}
4369 
4370 		m_adj(m, -IEEE80211_CRC_LEN);
4371 
4372 		/*
4373 		 * Locate the node for sender, track state, and then
4374 		 * pass the (referenced) node up to the 802.11 layer
4375 		 * for its use.
4376 		 */
4377 		ni = ieee80211_find_rxnode_withkey(ic,
4378 			mtod(m, const struct ieee80211_frame_min *),
4379 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
4380 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4381 		sc->sc_lastrs = rs;
4382 
4383 #ifdef	AH_SUPPORT_AR5416
4384 		if (rs->rs_isaggr)
4385 			sc->sc_stats.ast_rx_agg++;
4386 #endif /* AH_SUPPORT_AR5416 */
4387 
4388 		if (ni != NULL) {
4389 			/*
4390  			 * Only punt packets for ampdu reorder processing for
4391 			 * 11n nodes; net80211 enforces that M_AMPDU is only
4392 			 * set for 11n nodes.
4393  			 */
4394 			if (ni->ni_flags & IEEE80211_NODE_HT)
4395 				m->m_flags |= M_AMPDU;
4396 
4397 			/*
4398 			 * Sending station is known, dispatch directly.
4399 			 */
4400 			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
4401 			ieee80211_free_node(ni);
4402 			/*
4403 			 * Arrange to update the last rx timestamp only for
4404 			 * frames from our ap when operating in station mode.
4405 			 * This assumes the rx key is always setup when
4406 			 * associated.
4407 			 */
4408 			if (ic->ic_opmode == IEEE80211_M_STA &&
4409 			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4410 				ngood++;
4411 		} else {
4412 			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
4413 		}
4414 		/*
4415 		 * Track rx rssi and do any rx antenna management.
4416 		 */
4417 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4418 		if (sc->sc_diversity) {
4419 			/*
4420 			 * When using fast diversity, change the default rx
4421 			 * antenna if diversity chooses the other antenna 3
4422 			 * times in a row.
4423 			 */
4424 			if (sc->sc_defant != rs->rs_antenna) {
4425 				if (++sc->sc_rxotherant >= 3)
4426 					ath_setdefantenna(sc, rs->rs_antenna);
4427 			} else
4428 				sc->sc_rxotherant = 0;
4429 		}
4430 
4431 		/* Newer school diversity - kite specific for now */
4432 		/* XXX perhaps migrate the normal diversity code to this? */
4433 		if ((ah)->ah_rxAntCombDiversity)
4434 			(*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz);
4435 
4436 		if (sc->sc_softled) {
4437 			/*
4438 			 * Blink for any data frame.  Otherwise do a
4439 			 * heartbeat-style blink when idle.  The latter
4440 			 * is mainly for station mode where we depend on
4441 			 * periodic beacon frames to trigger the poll event.
4442 			 */
4443 			if (type == IEEE80211_FC0_TYPE_DATA) {
4444 				const HAL_RATE_TABLE *rt = sc->sc_currates;
4445 				ath_led_event(sc,
4446 				    rt->rateCodeToIndex[rs->rs_rate]);
4447 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4448 				ath_led_event(sc, 0);
4449 		}
4450 rx_next:
4451 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4452 	} while (ath_rxbuf_init(sc, bf) == 0);
4453 
4454 	/* rx signal state monitoring */
4455 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4456 	if (ngood)
4457 		sc->sc_lastrx = tsf;
4458 
4459 	CTR2(ATH_KTR_INTR, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood);
4460 	/* Queue DFS tasklet if needed */
4461 	if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan))
4462 		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
4463 
4464 	/*
4465 	 * Now that all the RX frames were handled that
4466 	 * need to be handled, kick the PCU if there's
4467 	 * been an RXEOL condition.
4468 	 */
4469 	ATH_PCU_LOCK(sc);
4470 	if (resched && sc->sc_kickpcu) {
4471 		CTR0(ATH_KTR_ERR, "ath_rx_proc: kickpcu");
4472 		device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n",
4473 		    __func__, npkts);
4474 
4475 		/* XXX rxslink? */
4476 		/*
4477 		 * XXX can we hold the PCU lock here?
4478 		 * Are there any net80211 buffer calls involved?
4479 		 */
4480 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
4481 		ath_hal_putrxbuf(ah, bf->bf_daddr);
4482 		ath_hal_rxena(ah);		/* enable recv descriptors */
4483 		ath_mode_init(sc);		/* set filters, etc. */
4484 		ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4485 
4486 		ath_hal_intrset(ah, sc->sc_imask);
4487 		sc->sc_kickpcu = 0;
4488 	}
4489 	ATH_PCU_UNLOCK(sc);
4490 
4491 	/* XXX check this inside of IF_LOCK? */
4492 	if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
4493 #ifdef IEEE80211_SUPPORT_SUPERG
4494 		ieee80211_ff_age_all(ic, 100);
4495 #endif
4496 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
4497 			ath_start(ifp);
4498 	}
4499 #undef PA2DESC
4500 
4501 	ATH_PCU_LOCK(sc);
4502 	sc->sc_rxproc_cnt--;
4503 	ATH_PCU_UNLOCK(sc);
4504 }
4505 
4506 static void
4507 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4508 {
4509 	txq->axq_qnum = qnum;
4510 	txq->axq_ac = 0;
4511 	txq->axq_depth = 0;
4512 	txq->axq_aggr_depth = 0;
4513 	txq->axq_intrcnt = 0;
4514 	txq->axq_link = NULL;
4515 	txq->axq_softc = sc;
4516 	TAILQ_INIT(&txq->axq_q);
4517 	TAILQ_INIT(&txq->axq_tidq);
4518 	ATH_TXQ_LOCK_INIT(sc, txq);
4519 }
4520 
4521 /*
4522  * Setup a h/w transmit queue.
4523  */
4524 static struct ath_txq *
4525 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4526 {
4527 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4528 	struct ath_hal *ah = sc->sc_ah;
4529 	HAL_TXQ_INFO qi;
4530 	int qnum;
4531 
4532 	memset(&qi, 0, sizeof(qi));
4533 	qi.tqi_subtype = subtype;
4534 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4535 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4536 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4537 	/*
4538 	 * Enable interrupts only for EOL and DESC conditions.
4539 	 * We mark tx descriptors to receive a DESC interrupt
4540 	 * when a tx queue gets deep; otherwise waiting for the
4541 	 * EOL to reap descriptors.  Note that this is done to
4542 	 * reduce interrupt load and this only defers reaping
4543 	 * descriptors, never transmitting frames.  Aside from
4544 	 * reducing interrupts this also permits more concurrency.
4545 	 * The only potential downside is if the tx queue backs
4546 	 * up in which case the top half of the kernel may backup
4547 	 * due to a lack of tx descriptors.
4548 	 */
4549 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4550 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4551 	if (qnum == -1) {
4552 		/*
4553 		 * NB: don't print a message, this happens
4554 		 * normally on parts with too few tx queues
4555 		 */
4556 		return NULL;
4557 	}
4558 	if (qnum >= N(sc->sc_txq)) {
4559 		device_printf(sc->sc_dev,
4560 			"hal qnum %u out of range, max %zu!\n",
4561 			qnum, N(sc->sc_txq));
4562 		ath_hal_releasetxqueue(ah, qnum);
4563 		return NULL;
4564 	}
4565 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4566 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4567 		sc->sc_txqsetup |= 1<<qnum;
4568 	}
4569 	return &sc->sc_txq[qnum];
4570 #undef N
4571 }
4572 
4573 /*
4574  * Setup a hardware data transmit queue for the specified
4575  * access control.  The hal may not support all requested
4576  * queues in which case it will return a reference to a
4577  * previously setup queue.  We record the mapping from ac's
4578  * to h/w queues for use by ath_tx_start and also track
4579  * the set of h/w queues being used to optimize work in the
4580  * transmit interrupt handler and related routines.
4581  */
4582 static int
4583 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4584 {
4585 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4586 	struct ath_txq *txq;
4587 
4588 	if (ac >= N(sc->sc_ac2q)) {
4589 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4590 			ac, N(sc->sc_ac2q));
4591 		return 0;
4592 	}
4593 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4594 	if (txq != NULL) {
4595 		txq->axq_ac = ac;
4596 		sc->sc_ac2q[ac] = txq;
4597 		return 1;
4598 	} else
4599 		return 0;
4600 #undef N
4601 }
4602 
4603 /*
4604  * Update WME parameters for a transmit queue.
4605  */
4606 static int
4607 ath_txq_update(struct ath_softc *sc, int ac)
4608 {
4609 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4610 #define	ATH_TXOP_TO_US(v)		(v<<5)
4611 	struct ifnet *ifp = sc->sc_ifp;
4612 	struct ieee80211com *ic = ifp->if_l2com;
4613 	struct ath_txq *txq = sc->sc_ac2q[ac];
4614 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4615 	struct ath_hal *ah = sc->sc_ah;
4616 	HAL_TXQ_INFO qi;
4617 
4618 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4619 #ifdef IEEE80211_SUPPORT_TDMA
4620 	if (sc->sc_tdma) {
4621 		/*
4622 		 * AIFS is zero so there's no pre-transmit wait.  The
4623 		 * burst time defines the slot duration and is configured
4624 		 * through net80211.  The QCU is setup to not do post-xmit
4625 		 * back off, lockout all lower-priority QCU's, and fire
4626 		 * off the DMA beacon alert timer which is setup based
4627 		 * on the slot configuration.
4628 		 */
4629 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4630 			      | HAL_TXQ_TXERRINT_ENABLE
4631 			      | HAL_TXQ_TXURNINT_ENABLE
4632 			      | HAL_TXQ_TXEOLINT_ENABLE
4633 			      | HAL_TXQ_DBA_GATED
4634 			      | HAL_TXQ_BACKOFF_DISABLE
4635 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4636 			      ;
4637 		qi.tqi_aifs = 0;
4638 		/* XXX +dbaprep? */
4639 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4640 		qi.tqi_burstTime = qi.tqi_readyTime;
4641 	} else {
4642 #endif
4643 		/*
4644 		 * XXX shouldn't this just use the default flags
4645 		 * used in the previous queue setup?
4646 		 */
4647 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4648 			      | HAL_TXQ_TXERRINT_ENABLE
4649 			      | HAL_TXQ_TXDESCINT_ENABLE
4650 			      | HAL_TXQ_TXURNINT_ENABLE
4651 			      | HAL_TXQ_TXEOLINT_ENABLE
4652 			      ;
4653 		qi.tqi_aifs = wmep->wmep_aifsn;
4654 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4655 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4656 		qi.tqi_readyTime = 0;
4657 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4658 #ifdef IEEE80211_SUPPORT_TDMA
4659 	}
4660 #endif
4661 
4662 	DPRINTF(sc, ATH_DEBUG_RESET,
4663 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4664 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4665 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4666 
4667 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4668 		if_printf(ifp, "unable to update hardware queue "
4669 			"parameters for %s traffic!\n",
4670 			ieee80211_wme_acnames[ac]);
4671 		return 0;
4672 	} else {
4673 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4674 		return 1;
4675 	}
4676 #undef ATH_TXOP_TO_US
4677 #undef ATH_EXPONENT_TO_VALUE
4678 }
4679 
4680 /*
4681  * Callback from the 802.11 layer to update WME parameters.
4682  */
4683 static int
4684 ath_wme_update(struct ieee80211com *ic)
4685 {
4686 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4687 
4688 	return !ath_txq_update(sc, WME_AC_BE) ||
4689 	    !ath_txq_update(sc, WME_AC_BK) ||
4690 	    !ath_txq_update(sc, WME_AC_VI) ||
4691 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4692 }
4693 
4694 /*
4695  * Reclaim resources for a setup queue.
4696  */
4697 static void
4698 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4699 {
4700 
4701 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4702 	ATH_TXQ_LOCK_DESTROY(txq);
4703 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4704 }
4705 
4706 /*
4707  * Reclaim all tx queue resources.
4708  */
4709 static void
4710 ath_tx_cleanup(struct ath_softc *sc)
4711 {
4712 	int i;
4713 
4714 	ATH_TXBUF_LOCK_DESTROY(sc);
4715 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4716 		if (ATH_TXQ_SETUP(sc, i))
4717 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4718 }
4719 
4720 /*
4721  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4722  * using the current rates in sc_rixmap.
4723  */
4724 int
4725 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4726 {
4727 	int rix = sc->sc_rixmap[rate];
4728 	/* NB: return lowest rix for invalid rate */
4729 	return (rix == 0xff ? 0 : rix);
4730 }
4731 
4732 static void
4733 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4734     struct ath_buf *bf)
4735 {
4736 	struct ieee80211_node *ni = bf->bf_node;
4737 	struct ifnet *ifp = sc->sc_ifp;
4738 	struct ieee80211com *ic = ifp->if_l2com;
4739 	int sr, lr, pri;
4740 
4741 	if (ts->ts_status == 0) {
4742 		u_int8_t txant = ts->ts_antenna;
4743 		sc->sc_stats.ast_ant_tx[txant]++;
4744 		sc->sc_ant_tx[txant]++;
4745 		if (ts->ts_finaltsi != 0)
4746 			sc->sc_stats.ast_tx_altrate++;
4747 		pri = M_WME_GETAC(bf->bf_m);
4748 		if (pri >= WME_AC_VO)
4749 			ic->ic_wme.wme_hipri_traffic++;
4750 		if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
4751 			ni->ni_inact = ni->ni_inact_reload;
4752 	} else {
4753 		if (ts->ts_status & HAL_TXERR_XRETRY)
4754 			sc->sc_stats.ast_tx_xretries++;
4755 		if (ts->ts_status & HAL_TXERR_FIFO)
4756 			sc->sc_stats.ast_tx_fifoerr++;
4757 		if (ts->ts_status & HAL_TXERR_FILT)
4758 			sc->sc_stats.ast_tx_filtered++;
4759 		if (ts->ts_status & HAL_TXERR_XTXOP)
4760 			sc->sc_stats.ast_tx_xtxop++;
4761 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4762 			sc->sc_stats.ast_tx_timerexpired++;
4763 
4764 		if (ts->ts_status & HAL_TX_DATA_UNDERRUN)
4765 			sc->sc_stats.ast_tx_data_underrun++;
4766 		if (ts->ts_status & HAL_TX_DELIM_UNDERRUN)
4767 			sc->sc_stats.ast_tx_delim_underrun++;
4768 
4769 		if (bf->bf_m->m_flags & M_FF)
4770 			sc->sc_stats.ast_ff_txerr++;
4771 	}
4772 	/* XXX when is this valid? */
4773 	if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
4774 		sc->sc_stats.ast_tx_desccfgerr++;
4775 
4776 	sr = ts->ts_shortretry;
4777 	lr = ts->ts_longretry;
4778 	sc->sc_stats.ast_tx_shortretry += sr;
4779 	sc->sc_stats.ast_tx_longretry += lr;
4780 
4781 }
4782 
4783 /*
4784  * The default completion. If fail is 1, this means
4785  * "please don't retry the frame, and just return -1 status
4786  * to the net80211 stack.
4787  */
4788 void
4789 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4790 {
4791 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4792 	int st;
4793 
4794 	if (fail == 1)
4795 		st = -1;
4796 	else
4797 		st = ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) ?
4798 		    ts->ts_status : HAL_TXERR_XRETRY;
4799 
4800 	if (bf->bf_state.bfs_dobaw)
4801 		device_printf(sc->sc_dev,
4802 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4803 		    __func__,
4804 		    bf,
4805 		    SEQNO(bf->bf_state.bfs_seqno));
4806 	if (bf->bf_next != NULL)
4807 		device_printf(sc->sc_dev,
4808 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
4809 		    __func__,
4810 		    bf,
4811 		    SEQNO(bf->bf_state.bfs_seqno));
4812 
4813 	/*
4814 	 * Do any tx complete callback.  Note this must
4815 	 * be done before releasing the node reference.
4816 	 * This will free the mbuf, release the net80211
4817 	 * node and recycle the ath_buf.
4818 	 */
4819 	ath_tx_freebuf(sc, bf, st);
4820 }
4821 
4822 /*
4823  * Update rate control with the given completion status.
4824  */
4825 void
4826 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4827     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4828     int nframes, int nbad)
4829 {
4830 	struct ath_node *an;
4831 
4832 	/* Only for unicast frames */
4833 	if (ni == NULL)
4834 		return;
4835 
4836 	an = ATH_NODE(ni);
4837 
4838 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4839 		ATH_NODE_LOCK(an);
4840 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4841 		ATH_NODE_UNLOCK(an);
4842 	}
4843 }
4844 
4845 /*
4846  * Update the busy status of the last frame on the free list.
4847  * When doing TDMA, the busy flag tracks whether the hardware
4848  * currently points to this buffer or not, and thus gated DMA
4849  * may restart by re-reading the last descriptor in this
4850  * buffer.
4851  *
4852  * This should be called in the completion function once one
4853  * of the buffers has been used.
4854  */
4855 static void
4856 ath_tx_update_busy(struct ath_softc *sc)
4857 {
4858 	struct ath_buf *last;
4859 
4860 	/*
4861 	 * Since the last frame may still be marked
4862 	 * as ATH_BUF_BUSY, unmark it here before
4863 	 * finishing the frame processing.
4864 	 * Since we've completed a frame (aggregate
4865 	 * or otherwise), the hardware has moved on
4866 	 * and is no longer referencing the previous
4867 	 * descriptor.
4868 	 */
4869 	ATH_TXBUF_LOCK_ASSERT(sc);
4870 	last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
4871 	if (last != NULL)
4872 		last->bf_flags &= ~ATH_BUF_BUSY;
4873 }
4874 
4875 
4876 /*
4877  * Process completed xmit descriptors from the specified queue.
4878  * Kick the packet scheduler if needed. This can occur from this
4879  * particular task.
4880  */
4881 static int
4882 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4883 {
4884 	struct ath_hal *ah = sc->sc_ah;
4885 	struct ath_buf *bf;
4886 	struct ath_desc *ds;
4887 	struct ath_tx_status *ts;
4888 	struct ieee80211_node *ni;
4889 	struct ath_node *an;
4890 	int nacked;
4891 	HAL_STATUS status;
4892 
4893 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4894 		__func__, txq->axq_qnum,
4895 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4896 		txq->axq_link);
4897 	nacked = 0;
4898 	for (;;) {
4899 		ATH_TXQ_LOCK(txq);
4900 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4901 		bf = TAILQ_FIRST(&txq->axq_q);
4902 		if (bf == NULL) {
4903 			ATH_TXQ_UNLOCK(txq);
4904 			break;
4905 		}
4906 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4907 		ts = &bf->bf_status.ds_txstat;
4908 		status = ath_hal_txprocdesc(ah, ds, ts);
4909 #ifdef ATH_DEBUG
4910 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4911 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4912 			    status == HAL_OK);
4913 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) {
4914 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4915 			    status == HAL_OK);
4916 		}
4917 #endif
4918 		if (status == HAL_EINPROGRESS) {
4919 			ATH_TXQ_UNLOCK(txq);
4920 			break;
4921 		}
4922 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4923 #ifdef IEEE80211_SUPPORT_TDMA
4924 		if (txq->axq_depth > 0) {
4925 			/*
4926 			 * More frames follow.  Mark the buffer busy
4927 			 * so it's not re-used while the hardware may
4928 			 * still re-read the link field in the descriptor.
4929 			 *
4930 			 * Use the last buffer in an aggregate as that
4931 			 * is where the hardware may be - intermediate
4932 			 * descriptors won't be "busy".
4933 			 */
4934 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4935 		} else
4936 #else
4937 		if (txq->axq_depth == 0)
4938 #endif
4939 			txq->axq_link = NULL;
4940 		if (bf->bf_state.bfs_aggr)
4941 			txq->axq_aggr_depth--;
4942 
4943 		ni = bf->bf_node;
4944 		/*
4945 		 * If unicast frame was ack'd update RSSI,
4946 		 * including the last rx time used to
4947 		 * workaround phantom bmiss interrupts.
4948 		 */
4949 		if (ni != NULL && ts->ts_status == 0 &&
4950 		    ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)) {
4951 			nacked++;
4952 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4953 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4954 				ts->ts_rssi);
4955 		}
4956 		ATH_TXQ_UNLOCK(txq);
4957 
4958 		/* If unicast frame, update general statistics */
4959 		if (ni != NULL) {
4960 			an = ATH_NODE(ni);
4961 			/* update statistics */
4962 			ath_tx_update_stats(sc, ts, bf);
4963 		}
4964 
4965 		/*
4966 		 * Call the completion handler.
4967 		 * The completion handler is responsible for
4968 		 * calling the rate control code.
4969 		 *
4970 		 * Frames with no completion handler get the
4971 		 * rate control code called here.
4972 		 */
4973 		if (bf->bf_comp == NULL) {
4974 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4975 			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
4976 				/*
4977 				 * XXX assume this isn't an aggregate
4978 				 * frame.
4979 				 */
4980 				ath_tx_update_ratectrl(sc, ni,
4981 				     bf->bf_state.bfs_rc, ts,
4982 				    bf->bf_state.bfs_pktlen, 1,
4983 				    (ts->ts_status == 0 ? 0 : 1));
4984 			}
4985 			ath_tx_default_comp(sc, bf, 0);
4986 		} else
4987 			bf->bf_comp(sc, bf, 0);
4988 	}
4989 #ifdef IEEE80211_SUPPORT_SUPERG
4990 	/*
4991 	 * Flush fast-frame staging queue when traffic slows.
4992 	 */
4993 	if (txq->axq_depth <= 1)
4994 		ieee80211_ff_flush(ic, txq->axq_ac);
4995 #endif
4996 
4997 	/* Kick the TXQ scheduler */
4998 	if (dosched) {
4999 		ATH_TXQ_LOCK(txq);
5000 		ath_txq_sched(sc, txq);
5001 		ATH_TXQ_UNLOCK(txq);
5002 	}
5003 
5004 	return nacked;
5005 }
5006 
5007 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
5008 
5009 /*
5010  * Deferred processing of transmit interrupt; special-cased
5011  * for a single hardware transmit queue (e.g. 5210 and 5211).
5012  */
5013 static void
5014 ath_tx_proc_q0(void *arg, int npending)
5015 {
5016 	struct ath_softc *sc = arg;
5017 	struct ifnet *ifp = sc->sc_ifp;
5018 	uint32_t txqs;
5019 
5020 	ATH_PCU_LOCK(sc);
5021 	sc->sc_txproc_cnt++;
5022 	txqs = sc->sc_txq_active;
5023 	sc->sc_txq_active &= ~txqs;
5024 	ATH_PCU_UNLOCK(sc);
5025 
5026 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
5027 		/* XXX why is lastrx updated in tx code? */
5028 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5029 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
5030 		ath_tx_processq(sc, sc->sc_cabq, 1);
5031 	IF_LOCK(&ifp->if_snd);
5032 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5033 	IF_UNLOCK(&ifp->if_snd);
5034 	sc->sc_wd_timer = 0;
5035 
5036 	if (sc->sc_softled)
5037 		ath_led_event(sc, sc->sc_txrix);
5038 
5039 	ATH_PCU_LOCK(sc);
5040 	sc->sc_txproc_cnt--;
5041 	ATH_PCU_UNLOCK(sc);
5042 
5043 	ath_start(ifp);
5044 }
5045 
5046 /*
5047  * Deferred processing of transmit interrupt; special-cased
5048  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5049  */
5050 static void
5051 ath_tx_proc_q0123(void *arg, int npending)
5052 {
5053 	struct ath_softc *sc = arg;
5054 	struct ifnet *ifp = sc->sc_ifp;
5055 	int nacked;
5056 	uint32_t txqs;
5057 
5058 	ATH_PCU_LOCK(sc);
5059 	sc->sc_txproc_cnt++;
5060 	txqs = sc->sc_txq_active;
5061 	sc->sc_txq_active &= ~txqs;
5062 	ATH_PCU_UNLOCK(sc);
5063 
5064 	/*
5065 	 * Process each active queue.
5066 	 */
5067 	nacked = 0;
5068 	if (TXQACTIVE(txqs, 0))
5069 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
5070 	if (TXQACTIVE(txqs, 1))
5071 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
5072 	if (TXQACTIVE(txqs, 2))
5073 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
5074 	if (TXQACTIVE(txqs, 3))
5075 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
5076 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
5077 		ath_tx_processq(sc, sc->sc_cabq, 1);
5078 	if (nacked)
5079 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5080 
5081 	IF_LOCK(&ifp->if_snd);
5082 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5083 	IF_UNLOCK(&ifp->if_snd);
5084 	sc->sc_wd_timer = 0;
5085 
5086 	if (sc->sc_softled)
5087 		ath_led_event(sc, sc->sc_txrix);
5088 
5089 	ATH_PCU_LOCK(sc);
5090 	sc->sc_txproc_cnt--;
5091 	ATH_PCU_UNLOCK(sc);
5092 
5093 	ath_start(ifp);
5094 }
5095 
5096 /*
5097  * Deferred processing of transmit interrupt.
5098  */
5099 static void
5100 ath_tx_proc(void *arg, int npending)
5101 {
5102 	struct ath_softc *sc = arg;
5103 	struct ifnet *ifp = sc->sc_ifp;
5104 	int i, nacked;
5105 	uint32_t txqs;
5106 
5107 	ATH_PCU_LOCK(sc);
5108 	sc->sc_txproc_cnt++;
5109 	txqs = sc->sc_txq_active;
5110 	sc->sc_txq_active &= ~txqs;
5111 	ATH_PCU_UNLOCK(sc);
5112 
5113 	/*
5114 	 * Process each active queue.
5115 	 */
5116 	nacked = 0;
5117 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5118 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
5119 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
5120 	if (nacked)
5121 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5122 
5123 	/* XXX check this inside of IF_LOCK? */
5124 	IF_LOCK(&ifp->if_snd);
5125 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5126 	IF_UNLOCK(&ifp->if_snd);
5127 	sc->sc_wd_timer = 0;
5128 
5129 	if (sc->sc_softled)
5130 		ath_led_event(sc, sc->sc_txrix);
5131 
5132 	ATH_PCU_LOCK(sc);
5133 	sc->sc_txproc_cnt--;
5134 	ATH_PCU_UNLOCK(sc);
5135 
5136 	ath_start(ifp);
5137 }
5138 #undef	TXQACTIVE
5139 
5140 /*
5141  * Deferred processing of TXQ rescheduling.
5142  */
5143 static void
5144 ath_txq_sched_tasklet(void *arg, int npending)
5145 {
5146 	struct ath_softc *sc = arg;
5147 	int i;
5148 
5149 	/* XXX is skipping ok? */
5150 	ATH_PCU_LOCK(sc);
5151 #if 0
5152 	if (sc->sc_inreset_cnt > 0) {
5153 		device_printf(sc->sc_dev,
5154 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
5155 		ATH_PCU_UNLOCK(sc);
5156 		return;
5157 	}
5158 #endif
5159 	sc->sc_txproc_cnt++;
5160 	ATH_PCU_UNLOCK(sc);
5161 
5162 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5163 		if (ATH_TXQ_SETUP(sc, i)) {
5164 			ATH_TXQ_LOCK(&sc->sc_txq[i]);
5165 			ath_txq_sched(sc, &sc->sc_txq[i]);
5166 			ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5167 		}
5168 	}
5169 
5170 	ATH_PCU_LOCK(sc);
5171 	sc->sc_txproc_cnt--;
5172 	ATH_PCU_UNLOCK(sc);
5173 }
5174 
5175 /*
5176  * Return a buffer to the pool and update the 'busy' flag on the
5177  * previous 'tail' entry.
5178  *
5179  * This _must_ only be called when the buffer is involved in a completed
5180  * TX. The logic is that if it was part of an active TX, the previous
5181  * buffer on the list is now not involved in a halted TX DMA queue, waiting
5182  * for restart (eg for TDMA.)
5183  *
5184  * The caller must free the mbuf and recycle the node reference.
5185  */
5186 void
5187 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
5188 {
5189 	bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5190 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
5191 
5192 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
5193 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
5194 
5195 	ATH_TXBUF_LOCK(sc);
5196 	ath_tx_update_busy(sc);
5197 	TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5198 	ATH_TXBUF_UNLOCK(sc);
5199 }
5200 
5201 /*
5202  * This is currently used by ath_tx_draintxq() and
5203  * ath_tx_tid_free_pkts().
5204  *
5205  * It recycles a single ath_buf.
5206  */
5207 void
5208 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
5209 {
5210 	struct ieee80211_node *ni = bf->bf_node;
5211 	struct mbuf *m0 = bf->bf_m;
5212 
5213 	bf->bf_node = NULL;
5214 	bf->bf_m = NULL;
5215 
5216 	/* Free the buffer, it's not needed any longer */
5217 	ath_freebuf(sc, bf);
5218 
5219 	if (ni != NULL) {
5220 		/*
5221 		 * Do any callback and reclaim the node reference.
5222 		 */
5223 		if (m0->m_flags & M_TXCB)
5224 			ieee80211_process_callback(ni, m0, status);
5225 		ieee80211_free_node(ni);
5226 	}
5227 	m_freem(m0);
5228 
5229 	/*
5230 	 * XXX the buffer used to be freed -after-, but the DMA map was
5231 	 * freed where ath_freebuf() now is. I've no idea what this
5232 	 * will do.
5233 	 */
5234 }
5235 
5236 void
5237 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5238 {
5239 #ifdef ATH_DEBUG
5240 	struct ath_hal *ah = sc->sc_ah;
5241 #endif
5242 	struct ath_buf *bf;
5243 	u_int ix;
5244 
5245 	/*
5246 	 * NB: this assumes output has been stopped and
5247 	 *     we do not need to block ath_tx_proc
5248 	 */
5249 	ATH_TXBUF_LOCK(sc);
5250 	bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
5251 	if (bf != NULL)
5252 		bf->bf_flags &= ~ATH_BUF_BUSY;
5253 	ATH_TXBUF_UNLOCK(sc);
5254 
5255 	for (ix = 0;; ix++) {
5256 		ATH_TXQ_LOCK(txq);
5257 		bf = TAILQ_FIRST(&txq->axq_q);
5258 		if (bf == NULL) {
5259 			txq->axq_link = NULL;
5260 			ATH_TXQ_UNLOCK(txq);
5261 			break;
5262 		}
5263 		ATH_TXQ_REMOVE(txq, bf, bf_list);
5264 		if (bf->bf_state.bfs_aggr)
5265 			txq->axq_aggr_depth--;
5266 #ifdef ATH_DEBUG
5267 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5268 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5269 
5270 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5271 				ath_hal_txprocdesc(ah, bf->bf_lastds,
5272 				    &bf->bf_status.ds_txstat) == HAL_OK);
5273 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5274 			    bf->bf_m->m_len, 0, -1);
5275 		}
5276 #endif /* ATH_DEBUG */
5277 		/*
5278 		 * Since we're now doing magic in the completion
5279 		 * functions, we -must- call it for aggregation
5280 		 * destinations or BAW tracking will get upset.
5281 		 */
5282 		/*
5283 		 * Clear ATH_BUF_BUSY; the completion handler
5284 		 * will free the buffer.
5285 		 */
5286 		ATH_TXQ_UNLOCK(txq);
5287 		bf->bf_flags &= ~ATH_BUF_BUSY;
5288 		if (bf->bf_comp)
5289 			bf->bf_comp(sc, bf, 1);
5290 		else
5291 			ath_tx_default_comp(sc, bf, 1);
5292 	}
5293 
5294 	/*
5295 	 * Drain software queued frames which are on
5296 	 * active TIDs.
5297 	 */
5298 	ath_tx_txq_drain(sc, txq);
5299 }
5300 
5301 static void
5302 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5303 {
5304 	struct ath_hal *ah = sc->sc_ah;
5305 
5306 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5307 	    __func__, txq->axq_qnum,
5308 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5309 	    txq->axq_link);
5310 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5311 }
5312 
5313 static int
5314 ath_stoptxdma(struct ath_softc *sc)
5315 {
5316 	struct ath_hal *ah = sc->sc_ah;
5317 	int i;
5318 
5319 	/* XXX return value */
5320 	if (sc->sc_invalid)
5321 		return 0;
5322 
5323 	if (!sc->sc_invalid) {
5324 		/* don't touch the hardware if marked invalid */
5325 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5326 		    __func__, sc->sc_bhalq,
5327 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5328 		    NULL);
5329 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5330 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5331 			if (ATH_TXQ_SETUP(sc, i))
5332 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5333 	}
5334 
5335 	return 1;
5336 }
5337 
5338 /*
5339  * Drain the transmit queues and reclaim resources.
5340  */
5341 static void
5342 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5343 {
5344 #ifdef	ATH_DEBUG
5345 	struct ath_hal *ah = sc->sc_ah;
5346 #endif
5347 	struct ifnet *ifp = sc->sc_ifp;
5348 	int i;
5349 
5350 	(void) ath_stoptxdma(sc);
5351 
5352 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5353 		/*
5354 		 * XXX TODO: should we just handle the completed TX frames
5355 		 * here, whether or not the reset is a full one or not?
5356 		 */
5357 		if (ATH_TXQ_SETUP(sc, i)) {
5358 			if (reset_type == ATH_RESET_NOLOSS)
5359 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
5360 			else
5361 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
5362 		}
5363 	}
5364 #ifdef ATH_DEBUG
5365 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5366 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5367 		if (bf != NULL && bf->bf_m != NULL) {
5368 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5369 				ath_hal_txprocdesc(ah, bf->bf_lastds,
5370 				    &bf->bf_status.ds_txstat) == HAL_OK);
5371 			ieee80211_dump_pkt(ifp->if_l2com,
5372 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5373 			    0, -1);
5374 		}
5375 	}
5376 #endif /* ATH_DEBUG */
5377 	IF_LOCK(&ifp->if_snd);
5378 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5379 	IF_UNLOCK(&ifp->if_snd);
5380 	sc->sc_wd_timer = 0;
5381 }
5382 
5383 /*
5384  * Disable the receive h/w in preparation for a reset.
5385  */
5386 static void
5387 ath_stoprecv(struct ath_softc *sc, int dodelay)
5388 {
5389 #define	PA2DESC(_sc, _pa) \
5390 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5391 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5392 	struct ath_hal *ah = sc->sc_ah;
5393 
5394 	ath_hal_stoppcurecv(ah);	/* disable PCU */
5395 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5396 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5397 	if (dodelay)
5398 		DELAY(3000);		/* 3ms is long enough for 1 frame */
5399 #ifdef ATH_DEBUG
5400 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5401 		struct ath_buf *bf;
5402 		u_int ix;
5403 
5404 		device_printf(sc->sc_dev,
5405 		    "%s: rx queue %p, link %p\n",
5406 		    __func__,
5407 		    (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah),
5408 		    sc->sc_rxlink);
5409 		ix = 0;
5410 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5411 			struct ath_desc *ds = bf->bf_desc;
5412 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5413 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5414 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5415 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5416 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5417 			ix++;
5418 		}
5419 	}
5420 #endif
5421 	if (sc->sc_rxpending != NULL) {
5422 		m_freem(sc->sc_rxpending);
5423 		sc->sc_rxpending = NULL;
5424 	}
5425 	sc->sc_rxlink = NULL;		/* just in case */
5426 #undef PA2DESC
5427 }
5428 
5429 /*
5430  * Enable the receive h/w following a reset.
5431  */
5432 static int
5433 ath_startrecv(struct ath_softc *sc)
5434 {
5435 	struct ath_hal *ah = sc->sc_ah;
5436 	struct ath_buf *bf;
5437 
5438 	sc->sc_rxlink = NULL;
5439 	sc->sc_rxpending = NULL;
5440 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5441 		int error = ath_rxbuf_init(sc, bf);
5442 		if (error != 0) {
5443 			DPRINTF(sc, ATH_DEBUG_RECV,
5444 				"%s: ath_rxbuf_init failed %d\n",
5445 				__func__, error);
5446 			return error;
5447 		}
5448 	}
5449 
5450 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
5451 	ath_hal_putrxbuf(ah, bf->bf_daddr);
5452 	ath_hal_rxena(ah);		/* enable recv descriptors */
5453 	ath_mode_init(sc);		/* set filters, etc. */
5454 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5455 	return 0;
5456 }
5457 
5458 /*
5459  * Update internal state after a channel change.
5460  */
5461 static void
5462 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5463 {
5464 	enum ieee80211_phymode mode;
5465 
5466 	/*
5467 	 * Change channels and update the h/w rate map
5468 	 * if we're switching; e.g. 11a to 11b/g.
5469 	 */
5470 	mode = ieee80211_chan2mode(chan);
5471 	if (mode != sc->sc_curmode)
5472 		ath_setcurmode(sc, mode);
5473 	sc->sc_curchan = chan;
5474 }
5475 
5476 /*
5477  * Set/change channels.  If the channel is really being changed,
5478  * it's done by resetting the chip.  To accomplish this we must
5479  * first cleanup any pending DMA, then restart stuff after a la
5480  * ath_init.
5481  */
5482 static int
5483 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5484 {
5485 	struct ifnet *ifp = sc->sc_ifp;
5486 	struct ieee80211com *ic = ifp->if_l2com;
5487 	struct ath_hal *ah = sc->sc_ah;
5488 	int ret = 0;
5489 
5490 	/* Treat this as an interface reset */
5491 	ATH_PCU_UNLOCK_ASSERT(sc);
5492 	ATH_UNLOCK_ASSERT(sc);
5493 
5494 	/* (Try to) stop TX/RX from occuring */
5495 	taskqueue_block(sc->sc_tq);
5496 
5497 	ATH_PCU_LOCK(sc);
5498 	ath_hal_intrset(ah, 0);		/* Stop new RX/TX completion */
5499 	ath_txrx_stop_locked(sc);	/* Stop pending RX/TX completion */
5500 	if (ath_reset_grablock(sc, 1) == 0) {
5501 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5502 		    __func__);
5503 	}
5504 	ATH_PCU_UNLOCK(sc);
5505 
5506 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5507 	    __func__, ieee80211_chan2ieee(ic, chan),
5508 	    chan->ic_freq, chan->ic_flags);
5509 	if (chan != sc->sc_curchan) {
5510 		HAL_STATUS status;
5511 		/*
5512 		 * To switch channels clear any pending DMA operations;
5513 		 * wait long enough for the RX fifo to drain, reset the
5514 		 * hardware at the new frequency, and then re-enable
5515 		 * the relevant bits of the h/w.
5516 		 */
5517 #if 0
5518 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5519 #endif
5520 		ath_stoprecv(sc, 1);		/* turn off frame recv */
5521 		/*
5522 		 * First, handle completed TX/RX frames.
5523 		 */
5524 		ath_rx_proc(sc, 0);
5525 		ath_draintxq(sc, ATH_RESET_NOLOSS);
5526 		/*
5527 		 * Next, flush the non-scheduled frames.
5528 		 */
5529 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5530 
5531 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5532 			if_printf(ifp, "%s: unable to reset "
5533 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5534 			    __func__, ieee80211_chan2ieee(ic, chan),
5535 			    chan->ic_freq, chan->ic_flags, status);
5536 			ret = EIO;
5537 			goto finish;
5538 		}
5539 		sc->sc_diversity = ath_hal_getdiversity(ah);
5540 
5541 		/* Let DFS at it in case it's a DFS channel */
5542 		ath_dfs_radar_enable(sc, chan);
5543 
5544 		/*
5545 		 * Re-enable rx framework.
5546 		 */
5547 		if (ath_startrecv(sc) != 0) {
5548 			if_printf(ifp, "%s: unable to restart recv logic\n",
5549 			    __func__);
5550 			ret = EIO;
5551 			goto finish;
5552 		}
5553 
5554 		/*
5555 		 * Change channels and update the h/w rate map
5556 		 * if we're switching; e.g. 11a to 11b/g.
5557 		 */
5558 		ath_chan_change(sc, chan);
5559 
5560 		/*
5561 		 * Reset clears the beacon timers; reset them
5562 		 * here if needed.
5563 		 */
5564 		if (sc->sc_beacons) {		/* restart beacons */
5565 #ifdef IEEE80211_SUPPORT_TDMA
5566 			if (sc->sc_tdma)
5567 				ath_tdma_config(sc, NULL);
5568 			else
5569 #endif
5570 			ath_beacon_config(sc, NULL);
5571 		}
5572 
5573 		/*
5574 		 * Re-enable interrupts.
5575 		 */
5576 #if 0
5577 		ath_hal_intrset(ah, sc->sc_imask);
5578 #endif
5579 	}
5580 
5581 finish:
5582 	ATH_PCU_LOCK(sc);
5583 	sc->sc_inreset_cnt--;
5584 	/* XXX only do this if sc_inreset_cnt == 0? */
5585 	ath_hal_intrset(ah, sc->sc_imask);
5586 	ATH_PCU_UNLOCK(sc);
5587 
5588 	IF_LOCK(&ifp->if_snd);
5589 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5590 	IF_UNLOCK(&ifp->if_snd);
5591 	ath_txrx_start(sc);
5592 	/* XXX ath_start? */
5593 
5594 	return ret;
5595 }
5596 
5597 /*
5598  * Periodically recalibrate the PHY to account
5599  * for temperature/environment changes.
5600  */
5601 static void
5602 ath_calibrate(void *arg)
5603 {
5604 	struct ath_softc *sc = arg;
5605 	struct ath_hal *ah = sc->sc_ah;
5606 	struct ifnet *ifp = sc->sc_ifp;
5607 	struct ieee80211com *ic = ifp->if_l2com;
5608 	HAL_BOOL longCal, isCalDone;
5609 	HAL_BOOL aniCal, shortCal = AH_FALSE;
5610 	int nextcal;
5611 
5612 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5613 		goto restart;
5614 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5615 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5616 	if (sc->sc_doresetcal)
5617 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5618 
5619 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5620 	if (aniCal) {
5621 		sc->sc_stats.ast_ani_cal++;
5622 		sc->sc_lastani = ticks;
5623 		ath_hal_ani_poll(ah, sc->sc_curchan);
5624 	}
5625 
5626 	if (longCal) {
5627 		sc->sc_stats.ast_per_cal++;
5628 		sc->sc_lastlongcal = ticks;
5629 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5630 			/*
5631 			 * Rfgain is out of bounds, reset the chip
5632 			 * to load new gain values.
5633 			 */
5634 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5635 				"%s: rfgain change\n", __func__);
5636 			sc->sc_stats.ast_per_rfgain++;
5637 			sc->sc_resetcal = 0;
5638 			sc->sc_doresetcal = AH_TRUE;
5639 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5640 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5641 			return;
5642 		}
5643 		/*
5644 		 * If this long cal is after an idle period, then
5645 		 * reset the data collection state so we start fresh.
5646 		 */
5647 		if (sc->sc_resetcal) {
5648 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5649 			sc->sc_lastcalreset = ticks;
5650 			sc->sc_lastshortcal = ticks;
5651 			sc->sc_resetcal = 0;
5652 			sc->sc_doresetcal = AH_TRUE;
5653 		}
5654 	}
5655 
5656 	/* Only call if we're doing a short/long cal, not for ANI calibration */
5657 	if (shortCal || longCal) {
5658 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5659 			if (longCal) {
5660 				/*
5661 				 * Calibrate noise floor data again in case of change.
5662 				 */
5663 				ath_hal_process_noisefloor(ah);
5664 			}
5665 		} else {
5666 			DPRINTF(sc, ATH_DEBUG_ANY,
5667 				"%s: calibration of channel %u failed\n",
5668 				__func__, sc->sc_curchan->ic_freq);
5669 			sc->sc_stats.ast_per_calfail++;
5670 		}
5671 		if (shortCal)
5672 			sc->sc_lastshortcal = ticks;
5673 	}
5674 	if (!isCalDone) {
5675 restart:
5676 		/*
5677 		 * Use a shorter interval to potentially collect multiple
5678 		 * data samples required to complete calibration.  Once
5679 		 * we're told the work is done we drop back to a longer
5680 		 * interval between requests.  We're more aggressive doing
5681 		 * work when operating as an AP to improve operation right
5682 		 * after startup.
5683 		 */
5684 		sc->sc_lastshortcal = ticks;
5685 		nextcal = ath_shortcalinterval*hz/1000;
5686 		if (sc->sc_opmode != HAL_M_HOSTAP)
5687 			nextcal *= 10;
5688 		sc->sc_doresetcal = AH_TRUE;
5689 	} else {
5690 		/* nextcal should be the shortest time for next event */
5691 		nextcal = ath_longcalinterval*hz;
5692 		if (sc->sc_lastcalreset == 0)
5693 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5694 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5695 			sc->sc_resetcal = 1;	/* setup reset next trip */
5696 		sc->sc_doresetcal = AH_FALSE;
5697 	}
5698 	/* ANI calibration may occur more often than short/long/resetcal */
5699 	if (ath_anicalinterval > 0)
5700 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5701 
5702 	if (nextcal != 0) {
5703 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5704 		    __func__, nextcal, isCalDone ? "" : "!");
5705 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5706 	} else {
5707 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5708 		    __func__);
5709 		/* NB: don't rearm timer */
5710 	}
5711 }
5712 
5713 static void
5714 ath_scan_start(struct ieee80211com *ic)
5715 {
5716 	struct ifnet *ifp = ic->ic_ifp;
5717 	struct ath_softc *sc = ifp->if_softc;
5718 	struct ath_hal *ah = sc->sc_ah;
5719 	u_int32_t rfilt;
5720 
5721 	/* XXX calibration timer? */
5722 
5723 	ATH_LOCK(sc);
5724 	sc->sc_scanning = 1;
5725 	sc->sc_syncbeacon = 0;
5726 	rfilt = ath_calcrxfilter(sc);
5727 	ATH_UNLOCK(sc);
5728 
5729 	ATH_PCU_LOCK(sc);
5730 	ath_hal_setrxfilter(ah, rfilt);
5731 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5732 	ATH_PCU_UNLOCK(sc);
5733 
5734 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5735 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5736 }
5737 
5738 static void
5739 ath_scan_end(struct ieee80211com *ic)
5740 {
5741 	struct ifnet *ifp = ic->ic_ifp;
5742 	struct ath_softc *sc = ifp->if_softc;
5743 	struct ath_hal *ah = sc->sc_ah;
5744 	u_int32_t rfilt;
5745 
5746 	ATH_LOCK(sc);
5747 	sc->sc_scanning = 0;
5748 	rfilt = ath_calcrxfilter(sc);
5749 	ATH_UNLOCK(sc);
5750 
5751 	ATH_PCU_LOCK(sc);
5752 	ath_hal_setrxfilter(ah, rfilt);
5753 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5754 
5755 	ath_hal_process_noisefloor(ah);
5756 	ATH_PCU_UNLOCK(sc);
5757 
5758 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5759 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5760 		 sc->sc_curaid);
5761 }
5762 
5763 /*
5764  * For now, just do a channel change.
5765  *
5766  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5767  * control state and resetting the hardware without dropping frames out
5768  * of the queue.
5769  *
5770  * The unfortunate trouble here is making absolutely sure that the
5771  * channel width change has propagated enough so the hardware
5772  * absolutely isn't handed bogus frames for it's current operating
5773  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5774  * does occur in parallel, we need to make certain we've blocked
5775  * any further ongoing TX (and RX, that can cause raw TX)
5776  * before we do this.
5777  */
5778 static void
5779 ath_update_chw(struct ieee80211com *ic)
5780 {
5781 	struct ifnet *ifp = ic->ic_ifp;
5782 	struct ath_softc *sc = ifp->if_softc;
5783 
5784 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5785 	ath_set_channel(ic);
5786 }
5787 
5788 static void
5789 ath_set_channel(struct ieee80211com *ic)
5790 {
5791 	struct ifnet *ifp = ic->ic_ifp;
5792 	struct ath_softc *sc = ifp->if_softc;
5793 
5794 	(void) ath_chan_set(sc, ic->ic_curchan);
5795 	/*
5796 	 * If we are returning to our bss channel then mark state
5797 	 * so the next recv'd beacon's tsf will be used to sync the
5798 	 * beacon timers.  Note that since we only hear beacons in
5799 	 * sta/ibss mode this has no effect in other operating modes.
5800 	 */
5801 	ATH_LOCK(sc);
5802 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5803 		sc->sc_syncbeacon = 1;
5804 	ATH_UNLOCK(sc);
5805 }
5806 
5807 /*
5808  * Walk the vap list and check if there any vap's in RUN state.
5809  */
5810 static int
5811 ath_isanyrunningvaps(struct ieee80211vap *this)
5812 {
5813 	struct ieee80211com *ic = this->iv_ic;
5814 	struct ieee80211vap *vap;
5815 
5816 	IEEE80211_LOCK_ASSERT(ic);
5817 
5818 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5819 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5820 			return 1;
5821 	}
5822 	return 0;
5823 }
5824 
5825 static int
5826 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5827 {
5828 	struct ieee80211com *ic = vap->iv_ic;
5829 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5830 	struct ath_vap *avp = ATH_VAP(vap);
5831 	struct ath_hal *ah = sc->sc_ah;
5832 	struct ieee80211_node *ni = NULL;
5833 	int i, error, stamode;
5834 	u_int32_t rfilt;
5835 	int csa_run_transition = 0;
5836 	static const HAL_LED_STATE leds[] = {
5837 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5838 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5839 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5840 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5841 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5842 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5843 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5844 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5845 	};
5846 
5847 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5848 		ieee80211_state_name[vap->iv_state],
5849 		ieee80211_state_name[nstate]);
5850 
5851 	/*
5852 	 * net80211 _should_ have the comlock asserted at this point.
5853 	 * There are some comments around the calls to vap->iv_newstate
5854 	 * which indicate that it (newstate) may end up dropping the
5855 	 * lock.  This and the subsequent lock assert check after newstate
5856 	 * are an attempt to catch these and figure out how/why.
5857 	 */
5858 	IEEE80211_LOCK_ASSERT(ic);
5859 
5860 	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5861 		csa_run_transition = 1;
5862 
5863 	callout_drain(&sc->sc_cal_ch);
5864 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5865 
5866 	if (nstate == IEEE80211_S_SCAN) {
5867 		/*
5868 		 * Scanning: turn off beacon miss and don't beacon.
5869 		 * Mark beacon state so when we reach RUN state we'll
5870 		 * [re]setup beacons.  Unblock the task q thread so
5871 		 * deferred interrupt processing is done.
5872 		 */
5873 		ath_hal_intrset(ah,
5874 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5875 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5876 		sc->sc_beacons = 0;
5877 		taskqueue_unblock(sc->sc_tq);
5878 	}
5879 
5880 	ni = ieee80211_ref_node(vap->iv_bss);
5881 	rfilt = ath_calcrxfilter(sc);
5882 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5883 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5884 		   vap->iv_opmode == IEEE80211_M_IBSS);
5885 	if (stamode && nstate == IEEE80211_S_RUN) {
5886 		sc->sc_curaid = ni->ni_associd;
5887 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5888 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5889 	}
5890 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5891 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5892 	ath_hal_setrxfilter(ah, rfilt);
5893 
5894 	/* XXX is this to restore keycache on resume? */
5895 	if (vap->iv_opmode != IEEE80211_M_STA &&
5896 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5897 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5898 			if (ath_hal_keyisvalid(ah, i))
5899 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5900 	}
5901 
5902 	/*
5903 	 * Invoke the parent method to do net80211 work.
5904 	 */
5905 	error = avp->av_newstate(vap, nstate, arg);
5906 	if (error != 0)
5907 		goto bad;
5908 
5909 	/*
5910 	 * See above: ensure av_newstate() doesn't drop the lock
5911 	 * on us.
5912 	 */
5913 	IEEE80211_LOCK_ASSERT(ic);
5914 
5915 	if (nstate == IEEE80211_S_RUN) {
5916 		/* NB: collect bss node again, it may have changed */
5917 		ieee80211_free_node(ni);
5918 		ni = ieee80211_ref_node(vap->iv_bss);
5919 
5920 		DPRINTF(sc, ATH_DEBUG_STATE,
5921 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5922 		    "capinfo 0x%04x chan %d\n", __func__,
5923 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5924 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5925 
5926 		switch (vap->iv_opmode) {
5927 #ifdef IEEE80211_SUPPORT_TDMA
5928 		case IEEE80211_M_AHDEMO:
5929 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5930 				break;
5931 			/* fall thru... */
5932 #endif
5933 		case IEEE80211_M_HOSTAP:
5934 		case IEEE80211_M_IBSS:
5935 		case IEEE80211_M_MBSS:
5936 			/*
5937 			 * Allocate and setup the beacon frame.
5938 			 *
5939 			 * Stop any previous beacon DMA.  This may be
5940 			 * necessary, for example, when an ibss merge
5941 			 * causes reconfiguration; there will be a state
5942 			 * transition from RUN->RUN that means we may
5943 			 * be called with beacon transmission active.
5944 			 */
5945 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5946 
5947 			error = ath_beacon_alloc(sc, ni);
5948 			if (error != 0)
5949 				goto bad;
5950 			/*
5951 			 * If joining an adhoc network defer beacon timer
5952 			 * configuration to the next beacon frame so we
5953 			 * have a current TSF to use.  Otherwise we're
5954 			 * starting an ibss/bss so there's no need to delay;
5955 			 * if this is the first vap moving to RUN state, then
5956 			 * beacon state needs to be [re]configured.
5957 			 */
5958 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5959 			    ni->ni_tstamp.tsf != 0) {
5960 				sc->sc_syncbeacon = 1;
5961 			} else if (!sc->sc_beacons) {
5962 #ifdef IEEE80211_SUPPORT_TDMA
5963 				if (vap->iv_caps & IEEE80211_C_TDMA)
5964 					ath_tdma_config(sc, vap);
5965 				else
5966 #endif
5967 					ath_beacon_config(sc, vap);
5968 				sc->sc_beacons = 1;
5969 			}
5970 			break;
5971 		case IEEE80211_M_STA:
5972 			/*
5973 			 * Defer beacon timer configuration to the next
5974 			 * beacon frame so we have a current TSF to use
5975 			 * (any TSF collected when scanning is likely old).
5976 			 * However if it's due to a CSA -> RUN transition,
5977 			 * force a beacon update so we pick up a lack of
5978 			 * beacons from an AP in CAC and thus force a
5979 			 * scan.
5980 			 */
5981 			sc->sc_syncbeacon = 1;
5982 			if (csa_run_transition)
5983 				ath_beacon_config(sc, vap);
5984 			break;
5985 		case IEEE80211_M_MONITOR:
5986 			/*
5987 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5988 			 * transitions so we must re-enable interrupts here to
5989 			 * handle the case of a single monitor mode vap.
5990 			 */
5991 			ath_hal_intrset(ah, sc->sc_imask);
5992 			break;
5993 		case IEEE80211_M_WDS:
5994 			break;
5995 		default:
5996 			break;
5997 		}
5998 		/*
5999 		 * Let the hal process statistics collected during a
6000 		 * scan so it can provide calibrated noise floor data.
6001 		 */
6002 		ath_hal_process_noisefloor(ah);
6003 		/*
6004 		 * Reset rssi stats; maybe not the best place...
6005 		 */
6006 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
6007 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
6008 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
6009 		/*
6010 		 * Finally, start any timers and the task q thread
6011 		 * (in case we didn't go through SCAN state).
6012 		 */
6013 		if (ath_longcalinterval != 0) {
6014 			/* start periodic recalibration timer */
6015 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6016 		} else {
6017 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6018 			    "%s: calibration disabled\n", __func__);
6019 		}
6020 		taskqueue_unblock(sc->sc_tq);
6021 	} else if (nstate == IEEE80211_S_INIT) {
6022 		/*
6023 		 * If there are no vaps left in RUN state then
6024 		 * shutdown host/driver operation:
6025 		 * o disable interrupts
6026 		 * o disable the task queue thread
6027 		 * o mark beacon processing as stopped
6028 		 */
6029 		if (!ath_isanyrunningvaps(vap)) {
6030 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6031 			/* disable interrupts  */
6032 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
6033 			taskqueue_block(sc->sc_tq);
6034 			sc->sc_beacons = 0;
6035 		}
6036 #ifdef IEEE80211_SUPPORT_TDMA
6037 		ath_hal_setcca(ah, AH_TRUE);
6038 #endif
6039 	}
6040 bad:
6041 	ieee80211_free_node(ni);
6042 	return error;
6043 }
6044 
6045 /*
6046  * Allocate a key cache slot to the station so we can
6047  * setup a mapping from key index to node. The key cache
6048  * slot is needed for managing antenna state and for
6049  * compression when stations do not use crypto.  We do
6050  * it uniliaterally here; if crypto is employed this slot
6051  * will be reassigned.
6052  */
6053 static void
6054 ath_setup_stationkey(struct ieee80211_node *ni)
6055 {
6056 	struct ieee80211vap *vap = ni->ni_vap;
6057 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6058 	ieee80211_keyix keyix, rxkeyix;
6059 
6060 	/* XXX should take a locked ref to vap->iv_bss */
6061 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6062 		/*
6063 		 * Key cache is full; we'll fall back to doing
6064 		 * the more expensive lookup in software.  Note
6065 		 * this also means no h/w compression.
6066 		 */
6067 		/* XXX msg+statistic */
6068 	} else {
6069 		/* XXX locking? */
6070 		ni->ni_ucastkey.wk_keyix = keyix;
6071 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6072 		/* NB: must mark device key to get called back on delete */
6073 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6074 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6075 		/* NB: this will create a pass-thru key entry */
6076 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
6077 	}
6078 }
6079 
6080 /*
6081  * Setup driver-specific state for a newly associated node.
6082  * Note that we're called also on a re-associate, the isnew
6083  * param tells us if this is the first time or not.
6084  */
6085 static void
6086 ath_newassoc(struct ieee80211_node *ni, int isnew)
6087 {
6088 	struct ath_node *an = ATH_NODE(ni);
6089 	struct ieee80211vap *vap = ni->ni_vap;
6090 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6091 	const struct ieee80211_txparam *tp = ni->ni_txparms;
6092 
6093 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
6094 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
6095 
6096 	ath_rate_newassoc(sc, an, isnew);
6097 	if (isnew &&
6098 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6099 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6100 		ath_setup_stationkey(ni);
6101 }
6102 
6103 static int
6104 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6105 	int nchans, struct ieee80211_channel chans[])
6106 {
6107 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6108 	struct ath_hal *ah = sc->sc_ah;
6109 	HAL_STATUS status;
6110 
6111 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6112 	    "%s: rd %u cc %u location %c%s\n",
6113 	    __func__, reg->regdomain, reg->country, reg->location,
6114 	    reg->ecm ? " ecm" : "");
6115 
6116 	status = ath_hal_set_channels(ah, chans, nchans,
6117 	    reg->country, reg->regdomain);
6118 	if (status != HAL_OK) {
6119 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6120 		    __func__, status);
6121 		return EINVAL;		/* XXX */
6122 	}
6123 
6124 	return 0;
6125 }
6126 
6127 static void
6128 ath_getradiocaps(struct ieee80211com *ic,
6129 	int maxchans, int *nchans, struct ieee80211_channel chans[])
6130 {
6131 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6132 	struct ath_hal *ah = sc->sc_ah;
6133 
6134 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6135 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
6136 
6137 	/* XXX check return */
6138 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6139 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6140 
6141 }
6142 
6143 static int
6144 ath_getchannels(struct ath_softc *sc)
6145 {
6146 	struct ifnet *ifp = sc->sc_ifp;
6147 	struct ieee80211com *ic = ifp->if_l2com;
6148 	struct ath_hal *ah = sc->sc_ah;
6149 	HAL_STATUS status;
6150 
6151 	/*
6152 	 * Collect channel set based on EEPROM contents.
6153 	 */
6154 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6155 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6156 	if (status != HAL_OK) {
6157 		if_printf(ifp, "%s: unable to collect channel list from hal, "
6158 		    "status %d\n", __func__, status);
6159 		return EINVAL;
6160 	}
6161 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6162 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6163 	/* XXX map Atheros sku's to net80211 SKU's */
6164 	/* XXX net80211 types too small */
6165 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6166 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6167 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
6168 	ic->ic_regdomain.isocc[1] = ' ';
6169 
6170 	ic->ic_regdomain.ecm = 1;
6171 	ic->ic_regdomain.location = 'I';
6172 
6173 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6174 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6175 	    __func__, sc->sc_eerd, sc->sc_eecc,
6176 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6177 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6178 	return 0;
6179 }
6180 
6181 static int
6182 ath_rate_setup(struct ath_softc *sc, u_int mode)
6183 {
6184 	struct ath_hal *ah = sc->sc_ah;
6185 	const HAL_RATE_TABLE *rt;
6186 
6187 	switch (mode) {
6188 	case IEEE80211_MODE_11A:
6189 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6190 		break;
6191 	case IEEE80211_MODE_HALF:
6192 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6193 		break;
6194 	case IEEE80211_MODE_QUARTER:
6195 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6196 		break;
6197 	case IEEE80211_MODE_11B:
6198 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6199 		break;
6200 	case IEEE80211_MODE_11G:
6201 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6202 		break;
6203 	case IEEE80211_MODE_TURBO_A:
6204 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6205 		break;
6206 	case IEEE80211_MODE_TURBO_G:
6207 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6208 		break;
6209 	case IEEE80211_MODE_STURBO_A:
6210 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6211 		break;
6212 	case IEEE80211_MODE_11NA:
6213 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6214 		break;
6215 	case IEEE80211_MODE_11NG:
6216 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6217 		break;
6218 	default:
6219 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6220 			__func__, mode);
6221 		return 0;
6222 	}
6223 	sc->sc_rates[mode] = rt;
6224 	return (rt != NULL);
6225 }
6226 
6227 static void
6228 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6229 {
6230 #define	N(a)	(sizeof(a)/sizeof(a[0]))
6231 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6232 	static const struct {
6233 		u_int		rate;		/* tx/rx 802.11 rate */
6234 		u_int16_t	timeOn;		/* LED on time (ms) */
6235 		u_int16_t	timeOff;	/* LED off time (ms) */
6236 	} blinkrates[] = {
6237 		{ 108,  40,  10 },
6238 		{  96,  44,  11 },
6239 		{  72,  50,  13 },
6240 		{  48,  57,  14 },
6241 		{  36,  67,  16 },
6242 		{  24,  80,  20 },
6243 		{  22, 100,  25 },
6244 		{  18, 133,  34 },
6245 		{  12, 160,  40 },
6246 		{  10, 200,  50 },
6247 		{   6, 240,  58 },
6248 		{   4, 267,  66 },
6249 		{   2, 400, 100 },
6250 		{   0, 500, 130 },
6251 		/* XXX half/quarter rates */
6252 	};
6253 	const HAL_RATE_TABLE *rt;
6254 	int i, j;
6255 
6256 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6257 	rt = sc->sc_rates[mode];
6258 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6259 	for (i = 0; i < rt->rateCount; i++) {
6260 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6261 		if (rt->info[i].phy != IEEE80211_T_HT)
6262 			sc->sc_rixmap[ieeerate] = i;
6263 		else
6264 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6265 	}
6266 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6267 	for (i = 0; i < N(sc->sc_hwmap); i++) {
6268 		if (i >= rt->rateCount) {
6269 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6270 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6271 			continue;
6272 		}
6273 		sc->sc_hwmap[i].ieeerate =
6274 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6275 		if (rt->info[i].phy == IEEE80211_T_HT)
6276 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6277 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6278 		if (rt->info[i].shortPreamble ||
6279 		    rt->info[i].phy == IEEE80211_T_OFDM)
6280 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6281 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6282 		for (j = 0; j < N(blinkrates)-1; j++)
6283 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6284 				break;
6285 		/* NB: this uses the last entry if the rate isn't found */
6286 		/* XXX beware of overlow */
6287 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6288 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6289 	}
6290 	sc->sc_currates = rt;
6291 	sc->sc_curmode = mode;
6292 	/*
6293 	 * All protection frames are transmited at 2Mb/s for
6294 	 * 11g, otherwise at 1Mb/s.
6295 	 */
6296 	if (mode == IEEE80211_MODE_11G)
6297 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6298 	else
6299 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6300 	/* NB: caller is responsible for resetting rate control state */
6301 #undef N
6302 }
6303 
6304 static void
6305 ath_watchdog(void *arg)
6306 {
6307 	struct ath_softc *sc = arg;
6308 	int do_reset = 0;
6309 
6310 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6311 		struct ifnet *ifp = sc->sc_ifp;
6312 		uint32_t hangs;
6313 
6314 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6315 		    hangs != 0) {
6316 			if_printf(ifp, "%s hang detected (0x%x)\n",
6317 			    hangs & 0xff ? "bb" : "mac", hangs);
6318 		} else
6319 			if_printf(ifp, "device timeout\n");
6320 		do_reset = 1;
6321 		ifp->if_oerrors++;
6322 		sc->sc_stats.ast_watchdog++;
6323 	}
6324 
6325 	/*
6326 	 * We can't hold the lock across the ath_reset() call.
6327 	 *
6328 	 * And since this routine can't hold a lock and sleep,
6329 	 * do the reset deferred.
6330 	 */
6331 	if (do_reset) {
6332 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
6333 	}
6334 
6335 	callout_schedule(&sc->sc_wd_ch, hz);
6336 }
6337 
6338 #ifdef ATH_DIAGAPI
6339 /*
6340  * Diagnostic interface to the HAL.  This is used by various
6341  * tools to do things like retrieve register contents for
6342  * debugging.  The mechanism is intentionally opaque so that
6343  * it can change frequently w/o concern for compatiblity.
6344  */
6345 static int
6346 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6347 {
6348 	struct ath_hal *ah = sc->sc_ah;
6349 	u_int id = ad->ad_id & ATH_DIAG_ID;
6350 	void *indata = NULL;
6351 	void *outdata = NULL;
6352 	u_int32_t insize = ad->ad_in_size;
6353 	u_int32_t outsize = ad->ad_out_size;
6354 	int error = 0;
6355 
6356 	if (ad->ad_id & ATH_DIAG_IN) {
6357 		/*
6358 		 * Copy in data.
6359 		 */
6360 		indata = malloc(insize, M_TEMP, M_NOWAIT);
6361 		if (indata == NULL) {
6362 			error = ENOMEM;
6363 			goto bad;
6364 		}
6365 		error = copyin(ad->ad_in_data, indata, insize);
6366 		if (error)
6367 			goto bad;
6368 	}
6369 	if (ad->ad_id & ATH_DIAG_DYN) {
6370 		/*
6371 		 * Allocate a buffer for the results (otherwise the HAL
6372 		 * returns a pointer to a buffer where we can read the
6373 		 * results).  Note that we depend on the HAL leaving this
6374 		 * pointer for us to use below in reclaiming the buffer;
6375 		 * may want to be more defensive.
6376 		 */
6377 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6378 		if (outdata == NULL) {
6379 			error = ENOMEM;
6380 			goto bad;
6381 		}
6382 	}
6383 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6384 		if (outsize < ad->ad_out_size)
6385 			ad->ad_out_size = outsize;
6386 		if (outdata != NULL)
6387 			error = copyout(outdata, ad->ad_out_data,
6388 					ad->ad_out_size);
6389 	} else {
6390 		error = EINVAL;
6391 	}
6392 bad:
6393 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6394 		free(indata, M_TEMP);
6395 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6396 		free(outdata, M_TEMP);
6397 	return error;
6398 }
6399 #endif /* ATH_DIAGAPI */
6400 
6401 static int
6402 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6403 {
6404 #define	IS_RUNNING(ifp) \
6405 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6406 	struct ath_softc *sc = ifp->if_softc;
6407 	struct ieee80211com *ic = ifp->if_l2com;
6408 	struct ifreq *ifr = (struct ifreq *)data;
6409 	const HAL_RATE_TABLE *rt;
6410 	int error = 0;
6411 
6412 	switch (cmd) {
6413 	case SIOCSIFFLAGS:
6414 		ATH_LOCK(sc);
6415 		if (IS_RUNNING(ifp)) {
6416 			/*
6417 			 * To avoid rescanning another access point,
6418 			 * do not call ath_init() here.  Instead,
6419 			 * only reflect promisc mode settings.
6420 			 */
6421 			ath_mode_init(sc);
6422 		} else if (ifp->if_flags & IFF_UP) {
6423 			/*
6424 			 * Beware of being called during attach/detach
6425 			 * to reset promiscuous mode.  In that case we
6426 			 * will still be marked UP but not RUNNING.
6427 			 * However trying to re-init the interface
6428 			 * is the wrong thing to do as we've already
6429 			 * torn down much of our state.  There's
6430 			 * probably a better way to deal with this.
6431 			 */
6432 			if (!sc->sc_invalid)
6433 				ath_init(sc);	/* XXX lose error */
6434 		} else {
6435 			ath_stop_locked(ifp);
6436 #ifdef notyet
6437 			/* XXX must wakeup in places like ath_vap_delete */
6438 			if (!sc->sc_invalid)
6439 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6440 #endif
6441 		}
6442 		ATH_UNLOCK(sc);
6443 		break;
6444 	case SIOCGIFMEDIA:
6445 	case SIOCSIFMEDIA:
6446 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6447 		break;
6448 	case SIOCGATHSTATS:
6449 		/* NB: embed these numbers to get a consistent view */
6450 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6451 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6452 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6453 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6454 #ifdef IEEE80211_SUPPORT_TDMA
6455 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6456 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6457 #endif
6458 		rt = sc->sc_currates;
6459 		sc->sc_stats.ast_tx_rate =
6460 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6461 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
6462 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
6463 		return copyout(&sc->sc_stats,
6464 		    ifr->ifr_data, sizeof (sc->sc_stats));
6465 	case SIOCZATHSTATS:
6466 		error = priv_check(curthread, PRIV_DRIVER);
6467 		if (error == 0)
6468 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6469 		break;
6470 #ifdef ATH_DIAGAPI
6471 	case SIOCGATHDIAG:
6472 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6473 		break;
6474 	case SIOCGATHPHYERR:
6475 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
6476 		break;
6477 #endif
6478 	case SIOCGIFADDR:
6479 		error = ether_ioctl(ifp, cmd, data);
6480 		break;
6481 	default:
6482 		error = EINVAL;
6483 		break;
6484 	}
6485 	return error;
6486 #undef IS_RUNNING
6487 }
6488 
6489 /*
6490  * Announce various information on device/driver attach.
6491  */
6492 static void
6493 ath_announce(struct ath_softc *sc)
6494 {
6495 	struct ifnet *ifp = sc->sc_ifp;
6496 	struct ath_hal *ah = sc->sc_ah;
6497 
6498 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6499 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6500 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6501 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6502 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6503 	if (bootverbose) {
6504 		int i;
6505 		for (i = 0; i <= WME_AC_VO; i++) {
6506 			struct ath_txq *txq = sc->sc_ac2q[i];
6507 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6508 				txq->axq_qnum, ieee80211_wme_acnames[i]);
6509 		}
6510 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6511 			sc->sc_cabq->axq_qnum);
6512 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6513 	}
6514 	if (ath_rxbuf != ATH_RXBUF)
6515 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6516 	if (ath_txbuf != ATH_TXBUF)
6517 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6518 	if (sc->sc_mcastkey && bootverbose)
6519 		if_printf(ifp, "using multicast key search\n");
6520 }
6521 
6522 #ifdef IEEE80211_SUPPORT_TDMA
6523 static void
6524 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
6525 {
6526 	struct ath_hal *ah = sc->sc_ah;
6527 	HAL_BEACON_TIMERS bt;
6528 
6529 	bt.bt_intval = bintval | HAL_BEACON_ENA;
6530 	bt.bt_nexttbtt = nexttbtt;
6531 	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
6532 	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
6533 	bt.bt_nextatim = nexttbtt+1;
6534 	/* Enables TBTT, DBA, SWBA timers by default */
6535 	bt.bt_flags = 0;
6536 	ath_hal_beaconsettimers(ah, &bt);
6537 }
6538 
6539 /*
6540  * Calculate the beacon interval.  This is periodic in the
6541  * superframe for the bss.  We assume each station is configured
6542  * identically wrt transmit rate so the guard time we calculate
6543  * above will be the same on all stations.  Note we need to
6544  * factor in the xmit time because the hardware will schedule
6545  * a frame for transmit if the start of the frame is within
6546  * the burst time.  When we get hardware that properly kills
6547  * frames in the PCU we can reduce/eliminate the guard time.
6548  *
6549  * Roundup to 1024 is so we have 1 TU buffer in the guard time
6550  * to deal with the granularity of the nexttbtt timer.  11n MAC's
6551  * with 1us timer granularity should allow us to reduce/eliminate
6552  * this.
6553  */
6554 static void
6555 ath_tdma_bintvalsetup(struct ath_softc *sc,
6556 	const struct ieee80211_tdma_state *tdma)
6557 {
6558 	/* copy from vap state (XXX check all vaps have same value?) */
6559 	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
6560 
6561 	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
6562 		tdma->tdma_slotcnt, 1024);
6563 	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
6564 	if (sc->sc_tdmabintval & 1)
6565 		sc->sc_tdmabintval++;
6566 
6567 	if (tdma->tdma_slot == 0) {
6568 		/*
6569 		 * Only slot 0 beacons; other slots respond.
6570 		 */
6571 		sc->sc_imask |= HAL_INT_SWBA;
6572 		sc->sc_tdmaswba = 0;		/* beacon immediately */
6573 	} else {
6574 		/* XXX all vaps must be slot 0 or slot !0 */
6575 		sc->sc_imask &= ~HAL_INT_SWBA;
6576 	}
6577 }
6578 
6579 /*
6580  * Max 802.11 overhead.  This assumes no 4-address frames and
6581  * the encapsulation done by ieee80211_encap (llc).  We also
6582  * include potential crypto overhead.
6583  */
6584 #define	IEEE80211_MAXOVERHEAD \
6585 	(sizeof(struct ieee80211_qosframe) \
6586 	 + sizeof(struct llc) \
6587 	 + IEEE80211_ADDR_LEN \
6588 	 + IEEE80211_WEP_IVLEN \
6589 	 + IEEE80211_WEP_KIDLEN \
6590 	 + IEEE80211_WEP_CRCLEN \
6591 	 + IEEE80211_WEP_MICLEN \
6592 	 + IEEE80211_CRC_LEN)
6593 
6594 /*
6595  * Setup initially for tdma operation.  Start the beacon
6596  * timers and enable SWBA if we are slot 0.  Otherwise
6597  * we wait for slot 0 to arrive so we can sync up before
6598  * starting to transmit.
6599  */
6600 static void
6601 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
6602 {
6603 	struct ath_hal *ah = sc->sc_ah;
6604 	struct ifnet *ifp = sc->sc_ifp;
6605 	struct ieee80211com *ic = ifp->if_l2com;
6606 	const struct ieee80211_txparam *tp;
6607 	const struct ieee80211_tdma_state *tdma = NULL;
6608 	int rix;
6609 
6610 	if (vap == NULL) {
6611 		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
6612 		if (vap == NULL) {
6613 			if_printf(ifp, "%s: no vaps?\n", __func__);
6614 			return;
6615 		}
6616 	}
6617 	/* XXX should take a locked ref to iv_bss */
6618 	tp = vap->iv_bss->ni_txparms;
6619 	/*
6620 	 * Calculate the guard time for each slot.  This is the
6621 	 * time to send a maximal-size frame according to the
6622 	 * fixed/lowest transmit rate.  Note that the interface
6623 	 * mtu does not include the 802.11 overhead so we must
6624 	 * tack that on (ath_hal_computetxtime includes the
6625 	 * preamble and plcp in it's calculation).
6626 	 */
6627 	tdma = vap->iv_tdma;
6628 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
6629 		rix = ath_tx_findrix(sc, tp->ucastrate);
6630 	else
6631 		rix = ath_tx_findrix(sc, tp->mcastrate);
6632 	/* XXX short preamble assumed */
6633 	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
6634 		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
6635 
6636 	ath_hal_intrset(ah, 0);
6637 
6638 	ath_beaconq_config(sc);			/* setup h/w beacon q */
6639 	if (sc->sc_setcca)
6640 		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
6641 	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
6642 	ath_tdma_settimers(sc, sc->sc_tdmabintval,
6643 		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
6644 	sc->sc_syncbeacon = 0;
6645 
6646 	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
6647 	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
6648 
6649 	ath_hal_intrset(ah, sc->sc_imask);
6650 
6651 	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
6652 	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
6653 	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
6654 	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
6655 	    sc->sc_tdmadbaprep);
6656 }
6657 
6658 /*
6659  * Update tdma operation.  Called from the 802.11 layer
6660  * when a beacon is received from the TDMA station operating
6661  * in the slot immediately preceding us in the bss.  Use
6662  * the rx timestamp for the beacon frame to update our
6663  * beacon timers so we follow their schedule.  Note that
6664  * by using the rx timestamp we implicitly include the
6665  * propagation delay in our schedule.
6666  */
6667 static void
6668 ath_tdma_update(struct ieee80211_node *ni,
6669 	const struct ieee80211_tdma_param *tdma, int changed)
6670 {
6671 #define	TSF_TO_TU(_h,_l) \
6672 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
6673 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
6674 	struct ieee80211vap *vap = ni->ni_vap;
6675 	struct ieee80211com *ic = ni->ni_ic;
6676 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6677 	struct ath_hal *ah = sc->sc_ah;
6678 	const HAL_RATE_TABLE *rt = sc->sc_currates;
6679 	u_int64_t tsf, rstamp, nextslot, nexttbtt;
6680 	u_int32_t txtime, nextslottu;
6681 	int32_t tudelta, tsfdelta;
6682 	const struct ath_rx_status *rs;
6683 	int rix;
6684 
6685 	sc->sc_stats.ast_tdma_update++;
6686 
6687 	/*
6688 	 * Check for and adopt configuration changes.
6689 	 */
6690 	if (changed != 0) {
6691 		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
6692 
6693 		ath_tdma_bintvalsetup(sc, ts);
6694 		if (changed & TDMA_UPDATE_SLOTLEN)
6695 			ath_wme_update(ic);
6696 
6697 		DPRINTF(sc, ATH_DEBUG_TDMA,
6698 		    "%s: adopt slot %u slotcnt %u slotlen %u us "
6699 		    "bintval %u TU\n", __func__,
6700 		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
6701 		    sc->sc_tdmabintval);
6702 
6703 		/* XXX right? */
6704 		ath_hal_intrset(ah, sc->sc_imask);
6705 		/* NB: beacon timers programmed below */
6706 	}
6707 
6708 	/* extend rx timestamp to 64 bits */
6709 	rs = sc->sc_lastrs;
6710 	tsf = ath_hal_gettsf64(ah);
6711 	rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
6712 	/*
6713 	 * The rx timestamp is set by the hardware on completing
6714 	 * reception (at the point where the rx descriptor is DMA'd
6715 	 * to the host).  To find the start of our next slot we
6716 	 * must adjust this time by the time required to send
6717 	 * the packet just received.
6718 	 */
6719 	rix = rt->rateCodeToIndex[rs->rs_rate];
6720 	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
6721 	    rt->info[rix].shortPreamble);
6722 	/* NB: << 9 is to cvt to TU and /2 */
6723 	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
6724 	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
6725 
6726 	/*
6727 	 * Retrieve the hardware NextTBTT in usecs
6728 	 * and calculate the difference between what the
6729 	 * other station thinks and what we have programmed.  This
6730 	 * lets us figure how to adjust our timers to match.  The
6731 	 * adjustments are done by pulling the TSF forward and possibly
6732 	 * rewriting the beacon timers.
6733 	 */
6734 	nexttbtt = ath_hal_getnexttbtt(ah);
6735 	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt);
6736 
6737 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
6738 	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
6739 	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
6740 
6741 	if (tsfdelta < 0) {
6742 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
6743 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
6744 		tsfdelta = -tsfdelta % 1024;
6745 		nextslottu++;
6746 	} else if (tsfdelta > 0) {
6747 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
6748 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
6749 		tsfdelta = 1024 - (tsfdelta % 1024);
6750 		nextslottu++;
6751 	} else {
6752 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
6753 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
6754 	}
6755 	tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt);
6756 
6757 	/*
6758 	 * Copy sender's timetstamp into tdma ie so they can
6759 	 * calculate roundtrip time.  We submit a beacon frame
6760 	 * below after any timer adjustment.  The frame goes out
6761 	 * at the next TBTT so the sender can calculate the
6762 	 * roundtrip by inspecting the tdma ie in our beacon frame.
6763 	 *
6764 	 * NB: This tstamp is subtlely preserved when
6765 	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
6766 	 *     slot position changes) because ieee80211_add_tdma
6767 	 *     skips over the data.
6768 	 */
6769 	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
6770 		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
6771 		&ni->ni_tstamp.data, 8);
6772 #if 0
6773 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
6774 	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n",
6775 	    (unsigned long long) tsf, (unsigned long long) nextslot,
6776 	    (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta);
6777 #endif
6778 	/*
6779 	 * Adjust the beacon timers only when pulling them forward
6780 	 * or when going back by less than the beacon interval.
6781 	 * Negative jumps larger than the beacon interval seem to
6782 	 * cause the timers to stop and generally cause instability.
6783 	 * This basically filters out jumps due to missed beacons.
6784 	 */
6785 	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
6786 		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
6787 		sc->sc_stats.ast_tdma_timers++;
6788 	}
6789 	if (tsfdelta > 0) {
6790 		ath_hal_adjusttsf(ah, tsfdelta);
6791 		sc->sc_stats.ast_tdma_tsf++;
6792 	}
6793 	ath_tdma_beacon_send(sc, vap);		/* prepare response */
6794 #undef TU_TO_TSF
6795 #undef TSF_TO_TU
6796 }
6797 
6798 /*
6799  * Transmit a beacon frame at SWBA.  Dynamic updates
6800  * to the frame contents are done as needed.
6801  */
6802 static void
6803 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
6804 {
6805 	struct ath_hal *ah = sc->sc_ah;
6806 	struct ath_buf *bf;
6807 	int otherant;
6808 
6809 	/*
6810 	 * Check if the previous beacon has gone out.  If
6811 	 * not don't try to post another, skip this period
6812 	 * and wait for the next.  Missed beacons indicate
6813 	 * a problem and should not occur.  If we miss too
6814 	 * many consecutive beacons reset the device.
6815 	 */
6816 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
6817 		sc->sc_bmisscount++;
6818 		DPRINTF(sc, ATH_DEBUG_BEACON,
6819 			"%s: missed %u consecutive beacons\n",
6820 			__func__, sc->sc_bmisscount);
6821 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
6822 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
6823 		return;
6824 	}
6825 	if (sc->sc_bmisscount != 0) {
6826 		DPRINTF(sc, ATH_DEBUG_BEACON,
6827 			"%s: resume beacon xmit after %u misses\n",
6828 			__func__, sc->sc_bmisscount);
6829 		sc->sc_bmisscount = 0;
6830 	}
6831 
6832 	/*
6833 	 * Check recent per-antenna transmit statistics and flip
6834 	 * the default antenna if noticeably more frames went out
6835 	 * on the non-default antenna.
6836 	 * XXX assumes 2 anntenae
6837 	 */
6838 	if (!sc->sc_diversity) {
6839 		otherant = sc->sc_defant & 1 ? 2 : 1;
6840 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
6841 			ath_setdefantenna(sc, otherant);
6842 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
6843 	}
6844 
6845 	bf = ath_beacon_generate(sc, vap);
6846 	if (bf != NULL) {
6847 		/*
6848 		 * Stop any current dma and put the new frame on the queue.
6849 		 * This should never fail since we check above that no frames
6850 		 * are still pending on the queue.
6851 		 */
6852 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
6853 			DPRINTF(sc, ATH_DEBUG_ANY,
6854 				"%s: beacon queue %u did not stop?\n",
6855 				__func__, sc->sc_bhalq);
6856 			/* NB: the HAL still stops DMA, so proceed */
6857 		}
6858 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
6859 		ath_hal_txstart(ah, sc->sc_bhalq);
6860 
6861 		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
6862 
6863 		/*
6864 		 * Record local TSF for our last send for use
6865 		 * in arbitrating slot collisions.
6866 		 */
6867 		/* XXX should take a locked ref to iv_bss */
6868 		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
6869 	}
6870 }
6871 #endif /* IEEE80211_SUPPORT_TDMA */
6872 
6873 static void
6874 ath_dfs_tasklet(void *p, int npending)
6875 {
6876 	struct ath_softc *sc = (struct ath_softc *) p;
6877 	struct ifnet *ifp = sc->sc_ifp;
6878 	struct ieee80211com *ic = ifp->if_l2com;
6879 
6880 	/*
6881 	 * If previous processing has found a radar event,
6882 	 * signal this to the net80211 layer to begin DFS
6883 	 * processing.
6884 	 */
6885 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6886 		/* DFS event found, initiate channel change */
6887 		/*
6888 		 * XXX doesn't currently tell us whether the event
6889 		 * XXX was found in the primary or extension
6890 		 * XXX channel!
6891 		 */
6892 		IEEE80211_LOCK(ic);
6893 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6894 		IEEE80211_UNLOCK(ic);
6895 	}
6896 }
6897 
6898 MODULE_VERSION(if_ath, 1);
6899 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
6900 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
6901 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
6902 #endif
6903