xref: /freebsd/sys/dev/ath/if_ath.c (revision 3e65b9c6e6b7b2081d54e1dc40983c3c00eaf738)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  */
46 #include "opt_ah.h"
47 #include "opt_wlan.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysctl.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/kernel.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/errno.h>
60 #include <sys/callout.h>
61 #include <sys/bus.h>
62 #include <sys/endian.h>
63 #include <sys/kthread.h>
64 #include <sys/taskqueue.h>
65 #include <sys/priv.h>
66 #include <sys/module.h>
67 #include <sys/ktr.h>
68 #include <sys/smp.h>	/* for mp_ncpus */
69 
70 #include <machine/bus.h>
71 
72 #include <net/if.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75 #include <net/if_types.h>
76 #include <net/if_arp.h>
77 #include <net/ethernet.h>
78 #include <net/if_llc.h>
79 
80 #include <net80211/ieee80211_var.h>
81 #include <net80211/ieee80211_regdomain.h>
82 #ifdef IEEE80211_SUPPORT_SUPERG
83 #include <net80211/ieee80211_superg.h>
84 #endif
85 #ifdef IEEE80211_SUPPORT_TDMA
86 #include <net80211/ieee80211_tdma.h>
87 #endif
88 
89 #include <net/bpf.h>
90 
91 #ifdef INET
92 #include <netinet/in.h>
93 #include <netinet/if_ether.h>
94 #endif
95 
96 #include <dev/ath/if_athvar.h>
97 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
98 #include <dev/ath/ath_hal/ah_diagcodes.h>
99 
100 #include <dev/ath/if_ath_debug.h>
101 #include <dev/ath/if_ath_misc.h>
102 #include <dev/ath/if_ath_tx.h>
103 #include <dev/ath/if_ath_sysctl.h>
104 #include <dev/ath/if_ath_keycache.h>
105 #include <dev/ath/if_athdfs.h>
106 
107 #ifdef ATH_TX99_DIAG
108 #include <dev/ath/ath_tx99/ath_tx99.h>
109 #endif
110 
111 #define	ATH_KTR_INTR	KTR_SPARE4
112 #define	ATH_KTR_ERR	KTR_SPARE3
113 
114 /*
115  * ATH_BCBUF determines the number of vap's that can transmit
116  * beacons and also (currently) the number of vap's that can
117  * have unique mac addresses/bssid.  When staggering beacons
118  * 4 is probably a good max as otherwise the beacons become
119  * very closely spaced and there is limited time for cab q traffic
120  * to go out.  You can burst beacons instead but that is not good
121  * for stations in power save and at some point you really want
122  * another radio (and channel).
123  *
124  * The limit on the number of mac addresses is tied to our use of
125  * the U/L bit and tracking addresses in a byte; it would be
126  * worthwhile to allow more for applications like proxy sta.
127  */
128 CTASSERT(ATH_BCBUF <= 8);
129 
130 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
131 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
132 		    const uint8_t [IEEE80211_ADDR_LEN],
133 		    const uint8_t [IEEE80211_ADDR_LEN]);
134 static void	ath_vap_delete(struct ieee80211vap *);
135 static void	ath_init(void *);
136 static void	ath_stop_locked(struct ifnet *);
137 static void	ath_stop(struct ifnet *);
138 static void	ath_start(struct ifnet *);
139 static int	ath_reset_vap(struct ieee80211vap *, u_long);
140 static int	ath_media_change(struct ifnet *);
141 static void	ath_watchdog(void *);
142 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
143 static void	ath_fatal_proc(void *, int);
144 static void	ath_bmiss_vap(struct ieee80211vap *);
145 static void	ath_bmiss_proc(void *, int);
146 static void	ath_key_update_begin(struct ieee80211vap *);
147 static void	ath_key_update_end(struct ieee80211vap *);
148 static void	ath_update_mcast(struct ifnet *);
149 static void	ath_update_promisc(struct ifnet *);
150 static void	ath_mode_init(struct ath_softc *);
151 static void	ath_setslottime(struct ath_softc *);
152 static void	ath_updateslot(struct ifnet *);
153 static int	ath_beaconq_setup(struct ath_hal *);
154 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
155 static void	ath_beacon_update(struct ieee80211vap *, int item);
156 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
157 static void	ath_beacon_proc(void *, int);
158 static struct ath_buf *ath_beacon_generate(struct ath_softc *,
159 			struct ieee80211vap *);
160 static void	ath_bstuck_proc(void *, int);
161 static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
162 static void	ath_beacon_free(struct ath_softc *);
163 static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
164 static void	ath_descdma_cleanup(struct ath_softc *sc,
165 			struct ath_descdma *, ath_bufhead *);
166 static int	ath_desc_alloc(struct ath_softc *);
167 static void	ath_desc_free(struct ath_softc *);
168 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
169 			const uint8_t [IEEE80211_ADDR_LEN]);
170 static void	ath_node_cleanup(struct ieee80211_node *);
171 static void	ath_node_free(struct ieee80211_node *);
172 static void	ath_node_getsignal(const struct ieee80211_node *,
173 			int8_t *, int8_t *);
174 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
175 static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
176 			int subtype, int rssi, int nf);
177 static void	ath_setdefantenna(struct ath_softc *, u_int);
178 static void	ath_rx_proc(struct ath_softc *sc, int);
179 static void	ath_rx_tasklet(void *, int);
180 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
181 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
182 static int	ath_tx_setup(struct ath_softc *, int, int);
183 static int	ath_wme_update(struct ieee80211com *);
184 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
185 static void	ath_tx_cleanup(struct ath_softc *);
186 static void	ath_tx_proc_q0(void *, int);
187 static void	ath_tx_proc_q0123(void *, int);
188 static void	ath_tx_proc(void *, int);
189 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
190 static void	ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type);
191 static void	ath_stoprecv(struct ath_softc *, int);
192 static int	ath_startrecv(struct ath_softc *);
193 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
194 static void	ath_scan_start(struct ieee80211com *);
195 static void	ath_scan_end(struct ieee80211com *);
196 static void	ath_set_channel(struct ieee80211com *);
197 static void	ath_calibrate(void *);
198 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
199 static void	ath_setup_stationkey(struct ieee80211_node *);
200 static void	ath_newassoc(struct ieee80211_node *, int);
201 static int	ath_setregdomain(struct ieee80211com *,
202 		    struct ieee80211_regdomain *, int,
203 		    struct ieee80211_channel []);
204 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
205 		    struct ieee80211_channel []);
206 static int	ath_getchannels(struct ath_softc *);
207 static void	ath_led_event(struct ath_softc *, int);
208 
209 static int	ath_rate_setup(struct ath_softc *, u_int mode);
210 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
211 
212 static void	ath_announce(struct ath_softc *);
213 
214 static void	ath_dfs_tasklet(void *, int);
215 
216 #ifdef IEEE80211_SUPPORT_TDMA
217 static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
218 		    u_int32_t bintval);
219 static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
220 		    const struct ieee80211_tdma_state *tdma);
221 static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
222 static void	ath_tdma_update(struct ieee80211_node *ni,
223 		    const struct ieee80211_tdma_param *tdma, int);
224 static void	ath_tdma_beacon_send(struct ath_softc *sc,
225 		    struct ieee80211vap *vap);
226 
227 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
228 #define	TDMA_LPF_LEN		6
229 #define	TDMA_DUMMY_MARKER	0x127
230 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
231 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
232 #define	TDMA_LPF(x, y, len) \
233     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
234 #define	TDMA_SAMPLE(x, y) do {					\
235 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
236 } while (0)
237 #define	TDMA_EP_RND(x,mul) \
238 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
239 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
240 #endif /* IEEE80211_SUPPORT_TDMA */
241 
242 SYSCTL_DECL(_hw_ath);
243 
244 /* XXX validate sysctl values */
245 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
246 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
247 	    0, "long chip calibration interval (secs)");
248 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
249 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
250 	    0, "short chip calibration interval (msecs)");
251 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
252 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
253 	    0, "reset chip calibration results (secs)");
254 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
255 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
256 	    0, "ANI calibration (msecs)");
257 
258 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
259 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
260 	    0, "rx buffers allocated");
261 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
262 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
263 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
264 	    0, "tx buffers allocated");
265 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
266 
267 static	int ath_bstuck_threshold = 4;		/* max missed beacons */
268 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
269 	    0, "max missed beacon xmits before chip reset");
270 
271 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
272 
273 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
274 #define	HAL_MODE_HT40 \
275 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
276 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
277 int
278 ath_attach(u_int16_t devid, struct ath_softc *sc)
279 {
280 	struct ifnet *ifp;
281 	struct ieee80211com *ic;
282 	struct ath_hal *ah = NULL;
283 	HAL_STATUS status;
284 	int error = 0, i;
285 	u_int wmodes;
286 	uint8_t macaddr[IEEE80211_ADDR_LEN];
287 
288 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
289 
290 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
291 	if (ifp == NULL) {
292 		device_printf(sc->sc_dev, "can not if_alloc()\n");
293 		error = ENOSPC;
294 		goto bad;
295 	}
296 	ic = ifp->if_l2com;
297 
298 	/* set these up early for if_printf use */
299 	if_initname(ifp, device_get_name(sc->sc_dev),
300 		device_get_unit(sc->sc_dev));
301 
302 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, sc->sc_eepromdata, &status);
303 	if (ah == NULL) {
304 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
305 			status);
306 		error = ENXIO;
307 		goto bad;
308 	}
309 	sc->sc_ah = ah;
310 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
311 #ifdef	ATH_DEBUG
312 	sc->sc_debug = ath_debug;
313 #endif
314 
315 	/*
316 	 * Check if the MAC has multi-rate retry support.
317 	 * We do this by trying to setup a fake extended
318 	 * descriptor.  MAC's that don't have support will
319 	 * return false w/o doing anything.  MAC's that do
320 	 * support it will return true w/o doing anything.
321 	 */
322 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
323 
324 	/*
325 	 * Check if the device has hardware counters for PHY
326 	 * errors.  If so we need to enable the MIB interrupt
327 	 * so we can act on stat triggers.
328 	 */
329 	if (ath_hal_hwphycounters(ah))
330 		sc->sc_needmib = 1;
331 
332 	/*
333 	 * Get the hardware key cache size.
334 	 */
335 	sc->sc_keymax = ath_hal_keycachesize(ah);
336 	if (sc->sc_keymax > ATH_KEYMAX) {
337 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
338 			ATH_KEYMAX, sc->sc_keymax);
339 		sc->sc_keymax = ATH_KEYMAX;
340 	}
341 	/*
342 	 * Reset the key cache since some parts do not
343 	 * reset the contents on initial power up.
344 	 */
345 	for (i = 0; i < sc->sc_keymax; i++)
346 		ath_hal_keyreset(ah, i);
347 
348 	/*
349 	 * Collect the default channel list.
350 	 */
351 	error = ath_getchannels(sc);
352 	if (error != 0)
353 		goto bad;
354 
355 	/*
356 	 * Setup rate tables for all potential media types.
357 	 */
358 	ath_rate_setup(sc, IEEE80211_MODE_11A);
359 	ath_rate_setup(sc, IEEE80211_MODE_11B);
360 	ath_rate_setup(sc, IEEE80211_MODE_11G);
361 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
362 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
363 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
364 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
365 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
366 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
367 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
368 
369 	/* NB: setup here so ath_rate_update is happy */
370 	ath_setcurmode(sc, IEEE80211_MODE_11A);
371 
372 	/*
373 	 * Allocate tx+rx descriptors and populate the lists.
374 	 */
375 	error = ath_desc_alloc(sc);
376 	if (error != 0) {
377 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
378 		goto bad;
379 	}
380 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
381 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
382 
383 	ATH_TXBUF_LOCK_INIT(sc);
384 
385 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
386 		taskqueue_thread_enqueue, &sc->sc_tq);
387 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
388 		"%s taskq", ifp->if_xname);
389 
390 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc);
391 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
392 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
393 
394 	/*
395 	 * Allocate hardware transmit queues: one queue for
396 	 * beacon frames and one data queue for each QoS
397 	 * priority.  Note that the hal handles resetting
398 	 * these queues at the needed time.
399 	 *
400 	 * XXX PS-Poll
401 	 */
402 	sc->sc_bhalq = ath_beaconq_setup(ah);
403 	if (sc->sc_bhalq == (u_int) -1) {
404 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
405 		error = EIO;
406 		goto bad2;
407 	}
408 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
409 	if (sc->sc_cabq == NULL) {
410 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
411 		error = EIO;
412 		goto bad2;
413 	}
414 	/* NB: insure BK queue is the lowest priority h/w queue */
415 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
416 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
417 			ieee80211_wme_acnames[WME_AC_BK]);
418 		error = EIO;
419 		goto bad2;
420 	}
421 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
422 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
423 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
424 		/*
425 		 * Not enough hardware tx queues to properly do WME;
426 		 * just punt and assign them all to the same h/w queue.
427 		 * We could do a better job of this if, for example,
428 		 * we allocate queues when we switch from station to
429 		 * AP mode.
430 		 */
431 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
432 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
433 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
434 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
435 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
436 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
437 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
438 	}
439 
440 	/*
441 	 * Special case certain configurations.  Note the
442 	 * CAB queue is handled by these specially so don't
443 	 * include them when checking the txq setup mask.
444 	 */
445 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
446 	case 0x01:
447 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
448 		break;
449 	case 0x0f:
450 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
451 		break;
452 	default:
453 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
454 		break;
455 	}
456 
457 	/*
458 	 * Setup rate control.  Some rate control modules
459 	 * call back to change the anntena state so expose
460 	 * the necessary entry points.
461 	 * XXX maybe belongs in struct ath_ratectrl?
462 	 */
463 	sc->sc_setdefantenna = ath_setdefantenna;
464 	sc->sc_rc = ath_rate_attach(sc);
465 	if (sc->sc_rc == NULL) {
466 		error = EIO;
467 		goto bad2;
468 	}
469 
470 	/* Attach DFS module */
471 	if (! ath_dfs_attach(sc)) {
472 		device_printf(sc->sc_dev, "%s: unable to attach DFS\n", __func__);
473 		error = EIO;
474 		goto bad2;
475 	}
476 
477 	/* Start DFS processing tasklet */
478 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
479 
480 	sc->sc_blinking = 0;
481 	sc->sc_ledstate = 1;
482 	sc->sc_ledon = 0;			/* low true */
483 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
484 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
485 	/*
486 	 * Auto-enable soft led processing for IBM cards and for
487 	 * 5211 minipci cards.  Users can also manually enable/disable
488 	 * support with a sysctl.
489 	 */
490 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
491 	if (sc->sc_softled) {
492 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
493 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
494 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
495 	}
496 
497 	ifp->if_softc = sc;
498 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
499 	ifp->if_start = ath_start;
500 	ifp->if_ioctl = ath_ioctl;
501 	ifp->if_init = ath_init;
502 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
503 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
504 	IFQ_SET_READY(&ifp->if_snd);
505 
506 	ic->ic_ifp = ifp;
507 	/* XXX not right but it's not used anywhere important */
508 	ic->ic_phytype = IEEE80211_T_OFDM;
509 	ic->ic_opmode = IEEE80211_M_STA;
510 	ic->ic_caps =
511 		  IEEE80211_C_STA		/* station mode */
512 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
513 		| IEEE80211_C_HOSTAP		/* hostap mode */
514 		| IEEE80211_C_MONITOR		/* monitor mode */
515 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
516 		| IEEE80211_C_WDS		/* 4-address traffic works */
517 		| IEEE80211_C_MBSS		/* mesh point link mode */
518 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
519 		| IEEE80211_C_SHSLOT		/* short slot time supported */
520 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
521 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
522 		| IEEE80211_C_TXFRAG		/* handle tx frags */
523 #ifdef	ATH_ENABLE_DFS
524 		| IEEE80211_C_DFS		/* Enable DFS radar detection */
525 #endif
526 		;
527 	/*
528 	 * Query the hal to figure out h/w crypto support.
529 	 */
530 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
531 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
532 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
533 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
534 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
535 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
536 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
537 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
538 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
539 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
540 		/*
541 		 * Check if h/w does the MIC and/or whether the
542 		 * separate key cache entries are required to
543 		 * handle both tx+rx MIC keys.
544 		 */
545 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
546 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
547 		/*
548 		 * If the h/w supports storing tx+rx MIC keys
549 		 * in one cache slot automatically enable use.
550 		 */
551 		if (ath_hal_hastkipsplit(ah) ||
552 		    !ath_hal_settkipsplit(ah, AH_FALSE))
553 			sc->sc_splitmic = 1;
554 		/*
555 		 * If the h/w can do TKIP MIC together with WME then
556 		 * we use it; otherwise we force the MIC to be done
557 		 * in software by the net80211 layer.
558 		 */
559 		if (ath_hal_haswmetkipmic(ah))
560 			sc->sc_wmetkipmic = 1;
561 	}
562 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
563 	/*
564 	 * Check for multicast key search support.
565 	 */
566 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
567 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
568 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
569 	}
570 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
571 	/*
572 	 * Mark key cache slots associated with global keys
573 	 * as in use.  If we knew TKIP was not to be used we
574 	 * could leave the +32, +64, and +32+64 slots free.
575 	 */
576 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
577 		setbit(sc->sc_keymap, i);
578 		setbit(sc->sc_keymap, i+64);
579 		if (sc->sc_splitmic) {
580 			setbit(sc->sc_keymap, i+32);
581 			setbit(sc->sc_keymap, i+32+64);
582 		}
583 	}
584 	/*
585 	 * TPC support can be done either with a global cap or
586 	 * per-packet support.  The latter is not available on
587 	 * all parts.  We're a bit pedantic here as all parts
588 	 * support a global cap.
589 	 */
590 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
591 		ic->ic_caps |= IEEE80211_C_TXPMGT;
592 
593 	/*
594 	 * Mark WME capability only if we have sufficient
595 	 * hardware queues to do proper priority scheduling.
596 	 */
597 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
598 		ic->ic_caps |= IEEE80211_C_WME;
599 	/*
600 	 * Check for misc other capabilities.
601 	 */
602 	if (ath_hal_hasbursting(ah))
603 		ic->ic_caps |= IEEE80211_C_BURST;
604 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
605 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
606 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
607 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
608 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
609 	if (ath_hal_hasfastframes(ah))
610 		ic->ic_caps |= IEEE80211_C_FF;
611 	wmodes = ath_hal_getwirelessmodes(ah);
612 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
613 		ic->ic_caps |= IEEE80211_C_TURBOP;
614 #ifdef IEEE80211_SUPPORT_TDMA
615 	if (ath_hal_macversion(ah) > 0x78) {
616 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
617 		ic->ic_tdma_update = ath_tdma_update;
618 	}
619 #endif
620 
621 	/*
622 	 * The if_ath 11n support is completely not ready for normal use.
623 	 * Enabling this option will likely break everything and everything.
624 	 * Don't think of doing that unless you know what you're doing.
625 	 */
626 
627 #ifdef	ATH_ENABLE_11N
628 	/*
629 	 * Query HT capabilities
630 	 */
631 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
632 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
633 		int rxs, txs;
634 
635 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
636 		ic->ic_htcaps = IEEE80211_HTC_HT		/* HT operation */
637 			    | IEEE80211_HTC_AMPDU		/* A-MPDU tx/rx */
638 			    | IEEE80211_HTC_AMSDU		/* A-MSDU tx/rx */
639 			    | IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
640 			    | IEEE80211_HTCAP_SMPS_OFF;		/* SM power save off */
641 			;
642 
643 		/*
644 		 * Enable short-GI for HT20 only if the hardware
645 		 * advertises support.
646 		 * Notably, anything earlier than the AR9287 doesn't.
647 		 */
648 		if ((ath_hal_getcapability(ah,
649 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
650 		    (wmodes & HAL_MODE_HT20)) {
651 			device_printf(sc->sc_dev,
652 			    "[HT] enabling short-GI in 20MHz mode\n");
653 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
654 		}
655 
656 		if (wmodes & HAL_MODE_HT40)
657 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
658 			    |  IEEE80211_HTCAP_SHORTGI40;
659 
660 		/*
661 		 * rx/tx stream is not currently used anywhere; it needs to be taken
662 		 * into account when negotiating which MCS rates it'll receive and
663 		 * what MCS rates are available for TX.
664 		 */
665 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &rxs);
666 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &txs);
667 
668 		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
669 		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
670 
671 		ic->ic_txstream = txs;
672 		ic->ic_rxstream = rxs;
673 
674 		device_printf(sc->sc_dev, "[HT] %d RX streams; %d TX streams\n", rxs, txs);
675 	}
676 #endif
677 
678 	/*
679 	 * Check if the hardware requires PCI register serialisation.
680 	 * Some of the Owl based MACs require this.
681 	 */
682 	if (mp_ncpus > 1 &&
683 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
684 	     0, NULL) == HAL_OK) {
685 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
686 		device_printf(sc->sc_dev, "Enabling register serialisation\n");
687 	}
688 
689 	/*
690 	 * Indicate we need the 802.11 header padded to a
691 	 * 32-bit boundary for 4-address and QoS frames.
692 	 */
693 	ic->ic_flags |= IEEE80211_F_DATAPAD;
694 
695 	/*
696 	 * Query the hal about antenna support.
697 	 */
698 	sc->sc_defant = ath_hal_getdefantenna(ah);
699 
700 	/*
701 	 * Not all chips have the VEOL support we want to
702 	 * use with IBSS beacons; check here for it.
703 	 */
704 	sc->sc_hasveol = ath_hal_hasveol(ah);
705 
706 	/* get mac address from hardware */
707 	ath_hal_getmac(ah, macaddr);
708 	if (sc->sc_hasbmask)
709 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
710 
711 	/* NB: used to size node table key mapping array */
712 	ic->ic_max_keyix = sc->sc_keymax;
713 	/* call MI attach routine. */
714 	ieee80211_ifattach(ic, macaddr);
715 	ic->ic_setregdomain = ath_setregdomain;
716 	ic->ic_getradiocaps = ath_getradiocaps;
717 	sc->sc_opmode = HAL_M_STA;
718 
719 	/* override default methods */
720 	ic->ic_newassoc = ath_newassoc;
721 	ic->ic_updateslot = ath_updateslot;
722 	ic->ic_wme.wme_update = ath_wme_update;
723 	ic->ic_vap_create = ath_vap_create;
724 	ic->ic_vap_delete = ath_vap_delete;
725 	ic->ic_raw_xmit = ath_raw_xmit;
726 	ic->ic_update_mcast = ath_update_mcast;
727 	ic->ic_update_promisc = ath_update_promisc;
728 	ic->ic_node_alloc = ath_node_alloc;
729 	sc->sc_node_free = ic->ic_node_free;
730 	ic->ic_node_free = ath_node_free;
731 	sc->sc_node_cleanup = ic->ic_node_cleanup;
732 	ic->ic_node_cleanup = ath_node_cleanup;
733 	ic->ic_node_getsignal = ath_node_getsignal;
734 	ic->ic_scan_start = ath_scan_start;
735 	ic->ic_scan_end = ath_scan_end;
736 	ic->ic_set_channel = ath_set_channel;
737 
738 	/* 802.11n specific - but just override anyway */
739 	sc->sc_addba_request = ic->ic_addba_request;
740 	sc->sc_addba_response = ic->ic_addba_response;
741 	sc->sc_addba_stop = ic->ic_addba_stop;
742 	sc->sc_bar_response = ic->ic_bar_response;
743 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
744 
745 	ic->ic_addba_request = ath_addba_request;
746 	ic->ic_addba_response = ath_addba_response;
747 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
748 	ic->ic_addba_stop = ath_addba_stop;
749 	ic->ic_bar_response = ath_bar_response;
750 
751 	ieee80211_radiotap_attach(ic,
752 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
753 		ATH_TX_RADIOTAP_PRESENT,
754 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
755 		ATH_RX_RADIOTAP_PRESENT);
756 
757 	/*
758 	 * Setup dynamic sysctl's now that country code and
759 	 * regdomain are available from the hal.
760 	 */
761 	ath_sysctlattach(sc);
762 	ath_sysctl_stats_attach(sc);
763 	ath_sysctl_hal_attach(sc);
764 
765 	if (bootverbose)
766 		ieee80211_announce(ic);
767 	ath_announce(sc);
768 	return 0;
769 bad2:
770 	ath_tx_cleanup(sc);
771 	ath_desc_free(sc);
772 bad:
773 	if (ah)
774 		ath_hal_detach(ah);
775 	if (ifp != NULL)
776 		if_free(ifp);
777 	sc->sc_invalid = 1;
778 	return error;
779 }
780 
781 int
782 ath_detach(struct ath_softc *sc)
783 {
784 	struct ifnet *ifp = sc->sc_ifp;
785 
786 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
787 		__func__, ifp->if_flags);
788 
789 	/*
790 	 * NB: the order of these is important:
791 	 * o stop the chip so no more interrupts will fire
792 	 * o call the 802.11 layer before detaching the hal to
793 	 *   insure callbacks into the driver to delete global
794 	 *   key cache entries can be handled
795 	 * o free the taskqueue which drains any pending tasks
796 	 * o reclaim the tx queue data structures after calling
797 	 *   the 802.11 layer as we'll get called back to reclaim
798 	 *   node state and potentially want to use them
799 	 * o to cleanup the tx queues the hal is called, so detach
800 	 *   it last
801 	 * Other than that, it's straightforward...
802 	 */
803 	ath_stop(ifp);
804 	ieee80211_ifdetach(ifp->if_l2com);
805 	taskqueue_free(sc->sc_tq);
806 #ifdef ATH_TX99_DIAG
807 	if (sc->sc_tx99 != NULL)
808 		sc->sc_tx99->detach(sc->sc_tx99);
809 #endif
810 	ath_rate_detach(sc->sc_rc);
811 
812 	ath_dfs_detach(sc);
813 	ath_desc_free(sc);
814 	ath_tx_cleanup(sc);
815 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
816 	if_free(ifp);
817 
818 	return 0;
819 }
820 
821 /*
822  * MAC address handling for multiple BSS on the same radio.
823  * The first vap uses the MAC address from the EEPROM.  For
824  * subsequent vap's we set the U/L bit (bit 1) in the MAC
825  * address and use the next six bits as an index.
826  */
827 static void
828 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
829 {
830 	int i;
831 
832 	if (clone && sc->sc_hasbmask) {
833 		/* NB: we only do this if h/w supports multiple bssid */
834 		for (i = 0; i < 8; i++)
835 			if ((sc->sc_bssidmask & (1<<i)) == 0)
836 				break;
837 		if (i != 0)
838 			mac[0] |= (i << 2)|0x2;
839 	} else
840 		i = 0;
841 	sc->sc_bssidmask |= 1<<i;
842 	sc->sc_hwbssidmask[0] &= ~mac[0];
843 	if (i == 0)
844 		sc->sc_nbssid0++;
845 }
846 
847 static void
848 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
849 {
850 	int i = mac[0] >> 2;
851 	uint8_t mask;
852 
853 	if (i != 0 || --sc->sc_nbssid0 == 0) {
854 		sc->sc_bssidmask &= ~(1<<i);
855 		/* recalculate bssid mask from remaining addresses */
856 		mask = 0xff;
857 		for (i = 1; i < 8; i++)
858 			if (sc->sc_bssidmask & (1<<i))
859 				mask &= ~((i<<2)|0x2);
860 		sc->sc_hwbssidmask[0] |= mask;
861 	}
862 }
863 
864 /*
865  * Assign a beacon xmit slot.  We try to space out
866  * assignments so when beacons are staggered the
867  * traffic coming out of the cab q has maximal time
868  * to go out before the next beacon is scheduled.
869  */
870 static int
871 assign_bslot(struct ath_softc *sc)
872 {
873 	u_int slot, free;
874 
875 	free = 0;
876 	for (slot = 0; slot < ATH_BCBUF; slot++)
877 		if (sc->sc_bslot[slot] == NULL) {
878 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
879 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
880 				return slot;
881 			free = slot;
882 			/* NB: keep looking for a double slot */
883 		}
884 	return free;
885 }
886 
887 static struct ieee80211vap *
888 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
889     enum ieee80211_opmode opmode, int flags,
890     const uint8_t bssid[IEEE80211_ADDR_LEN],
891     const uint8_t mac0[IEEE80211_ADDR_LEN])
892 {
893 	struct ath_softc *sc = ic->ic_ifp->if_softc;
894 	struct ath_vap *avp;
895 	struct ieee80211vap *vap;
896 	uint8_t mac[IEEE80211_ADDR_LEN];
897 	int needbeacon, error;
898 	enum ieee80211_opmode ic_opmode;
899 
900 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
901 	    M_80211_VAP, M_WAITOK | M_ZERO);
902 	needbeacon = 0;
903 	IEEE80211_ADDR_COPY(mac, mac0);
904 
905 	ATH_LOCK(sc);
906 	ic_opmode = opmode;		/* default to opmode of new vap */
907 	switch (opmode) {
908 	case IEEE80211_M_STA:
909 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
910 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
911 			goto bad;
912 		}
913 		if (sc->sc_nvaps) {
914 			/*
915 			 * With multiple vaps we must fall back
916 			 * to s/w beacon miss handling.
917 			 */
918 			flags |= IEEE80211_CLONE_NOBEACONS;
919 		}
920 		if (flags & IEEE80211_CLONE_NOBEACONS) {
921 			/*
922 			 * Station mode w/o beacons are implemented w/ AP mode.
923 			 */
924 			ic_opmode = IEEE80211_M_HOSTAP;
925 		}
926 		break;
927 	case IEEE80211_M_IBSS:
928 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
929 			device_printf(sc->sc_dev,
930 			    "only 1 ibss vap supported\n");
931 			goto bad;
932 		}
933 		needbeacon = 1;
934 		break;
935 	case IEEE80211_M_AHDEMO:
936 #ifdef IEEE80211_SUPPORT_TDMA
937 		if (flags & IEEE80211_CLONE_TDMA) {
938 			if (sc->sc_nvaps != 0) {
939 				device_printf(sc->sc_dev,
940 				    "only 1 tdma vap supported\n");
941 				goto bad;
942 			}
943 			needbeacon = 1;
944 			flags |= IEEE80211_CLONE_NOBEACONS;
945 		}
946 		/* fall thru... */
947 #endif
948 	case IEEE80211_M_MONITOR:
949 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
950 			/*
951 			 * Adopt existing mode.  Adding a monitor or ahdemo
952 			 * vap to an existing configuration is of dubious
953 			 * value but should be ok.
954 			 */
955 			/* XXX not right for monitor mode */
956 			ic_opmode = ic->ic_opmode;
957 		}
958 		break;
959 	case IEEE80211_M_HOSTAP:
960 	case IEEE80211_M_MBSS:
961 		needbeacon = 1;
962 		break;
963 	case IEEE80211_M_WDS:
964 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
965 			device_printf(sc->sc_dev,
966 			    "wds not supported in sta mode\n");
967 			goto bad;
968 		}
969 		/*
970 		 * Silently remove any request for a unique
971 		 * bssid; WDS vap's always share the local
972 		 * mac address.
973 		 */
974 		flags &= ~IEEE80211_CLONE_BSSID;
975 		if (sc->sc_nvaps == 0)
976 			ic_opmode = IEEE80211_M_HOSTAP;
977 		else
978 			ic_opmode = ic->ic_opmode;
979 		break;
980 	default:
981 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
982 		goto bad;
983 	}
984 	/*
985 	 * Check that a beacon buffer is available; the code below assumes it.
986 	 */
987 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
988 		device_printf(sc->sc_dev, "no beacon buffer available\n");
989 		goto bad;
990 	}
991 
992 	/* STA, AHDEMO? */
993 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
994 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
995 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
996 	}
997 
998 	vap = &avp->av_vap;
999 	/* XXX can't hold mutex across if_alloc */
1000 	ATH_UNLOCK(sc);
1001 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1002 	    bssid, mac);
1003 	ATH_LOCK(sc);
1004 	if (error != 0) {
1005 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1006 		    __func__, error);
1007 		goto bad2;
1008 	}
1009 
1010 	/* h/w crypto support */
1011 	vap->iv_key_alloc = ath_key_alloc;
1012 	vap->iv_key_delete = ath_key_delete;
1013 	vap->iv_key_set = ath_key_set;
1014 	vap->iv_key_update_begin = ath_key_update_begin;
1015 	vap->iv_key_update_end = ath_key_update_end;
1016 
1017 	/* override various methods */
1018 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1019 	vap->iv_recv_mgmt = ath_recv_mgmt;
1020 	vap->iv_reset = ath_reset_vap;
1021 	vap->iv_update_beacon = ath_beacon_update;
1022 	avp->av_newstate = vap->iv_newstate;
1023 	vap->iv_newstate = ath_newstate;
1024 	avp->av_bmiss = vap->iv_bmiss;
1025 	vap->iv_bmiss = ath_bmiss_vap;
1026 
1027 	/* Set default parameters */
1028 
1029 	/*
1030 	 * Anything earlier than some AR9300 series MACs don't
1031 	 * support a smaller MPDU density.
1032 	 */
1033 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1034 	/*
1035 	 * All NICs can handle the maximum size, however
1036 	 * AR5416 based MACs can only TX aggregates w/ RTS
1037 	 * protection when the total aggregate size is <= 8k.
1038 	 * However, for now that's enforced by the TX path.
1039 	 */
1040 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1041 
1042 	avp->av_bslot = -1;
1043 	if (needbeacon) {
1044 		/*
1045 		 * Allocate beacon state and setup the q for buffered
1046 		 * multicast frames.  We know a beacon buffer is
1047 		 * available because we checked above.
1048 		 */
1049 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1050 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1051 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1052 			/*
1053 			 * Assign the vap to a beacon xmit slot.  As above
1054 			 * this cannot fail to find a free one.
1055 			 */
1056 			avp->av_bslot = assign_bslot(sc);
1057 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1058 			    ("beacon slot %u not empty", avp->av_bslot));
1059 			sc->sc_bslot[avp->av_bslot] = vap;
1060 			sc->sc_nbcnvaps++;
1061 		}
1062 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1063 			/*
1064 			 * Multple vaps are to transmit beacons and we
1065 			 * have h/w support for TSF adjusting; enable
1066 			 * use of staggered beacons.
1067 			 */
1068 			sc->sc_stagbeacons = 1;
1069 		}
1070 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1071 	}
1072 
1073 	ic->ic_opmode = ic_opmode;
1074 	if (opmode != IEEE80211_M_WDS) {
1075 		sc->sc_nvaps++;
1076 		if (opmode == IEEE80211_M_STA)
1077 			sc->sc_nstavaps++;
1078 		if (opmode == IEEE80211_M_MBSS)
1079 			sc->sc_nmeshvaps++;
1080 	}
1081 	switch (ic_opmode) {
1082 	case IEEE80211_M_IBSS:
1083 		sc->sc_opmode = HAL_M_IBSS;
1084 		break;
1085 	case IEEE80211_M_STA:
1086 		sc->sc_opmode = HAL_M_STA;
1087 		break;
1088 	case IEEE80211_M_AHDEMO:
1089 #ifdef IEEE80211_SUPPORT_TDMA
1090 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1091 			sc->sc_tdma = 1;
1092 			/* NB: disable tsf adjust */
1093 			sc->sc_stagbeacons = 0;
1094 		}
1095 		/*
1096 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1097 		 * just ap mode.
1098 		 */
1099 		/* fall thru... */
1100 #endif
1101 	case IEEE80211_M_HOSTAP:
1102 	case IEEE80211_M_MBSS:
1103 		sc->sc_opmode = HAL_M_HOSTAP;
1104 		break;
1105 	case IEEE80211_M_MONITOR:
1106 		sc->sc_opmode = HAL_M_MONITOR;
1107 		break;
1108 	default:
1109 		/* XXX should not happen */
1110 		break;
1111 	}
1112 	if (sc->sc_hastsfadd) {
1113 		/*
1114 		 * Configure whether or not TSF adjust should be done.
1115 		 */
1116 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1117 	}
1118 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1119 		/*
1120 		 * Enable s/w beacon miss handling.
1121 		 */
1122 		sc->sc_swbmiss = 1;
1123 	}
1124 	ATH_UNLOCK(sc);
1125 
1126 	/* complete setup */
1127 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1128 	return vap;
1129 bad2:
1130 	reclaim_address(sc, mac);
1131 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1132 bad:
1133 	free(avp, M_80211_VAP);
1134 	ATH_UNLOCK(sc);
1135 	return NULL;
1136 }
1137 
1138 static void
1139 ath_vap_delete(struct ieee80211vap *vap)
1140 {
1141 	struct ieee80211com *ic = vap->iv_ic;
1142 	struct ifnet *ifp = ic->ic_ifp;
1143 	struct ath_softc *sc = ifp->if_softc;
1144 	struct ath_hal *ah = sc->sc_ah;
1145 	struct ath_vap *avp = ATH_VAP(vap);
1146 
1147 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1148 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1149 		/*
1150 		 * Quiesce the hardware while we remove the vap.  In
1151 		 * particular we need to reclaim all references to
1152 		 * the vap state by any frames pending on the tx queues.
1153 		 */
1154 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1155 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1156 		/* XXX Do all frames from all vaps/nodes need draining here? */
1157 		ath_stoprecv(sc, 1);		/* stop recv side */
1158 	}
1159 
1160 	ieee80211_vap_detach(vap);
1161 
1162 	/*
1163 	 * XXX Danger Will Robinson! Danger!
1164 	 *
1165 	 * Because ieee80211_vap_detach() can queue a frame (the station
1166 	 * diassociate message?) after we've drained the TXQ and
1167 	 * flushed the software TXQ, we will end up with a frame queued
1168 	 * to a node whose vap is about to be freed.
1169 	 *
1170 	 * To work around this, flush the hardware/software again.
1171 	 * This may be racy - the ath task may be running and the packet
1172 	 * may be being scheduled between sw->hw txq. Tsk.
1173 	 *
1174 	 * TODO: figure out why a new node gets allocated somewhere around
1175 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1176 	 * call!)
1177 	 */
1178 
1179 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1180 
1181 	ATH_LOCK(sc);
1182 	/*
1183 	 * Reclaim beacon state.  Note this must be done before
1184 	 * the vap instance is reclaimed as we may have a reference
1185 	 * to it in the buffer for the beacon frame.
1186 	 */
1187 	if (avp->av_bcbuf != NULL) {
1188 		if (avp->av_bslot != -1) {
1189 			sc->sc_bslot[avp->av_bslot] = NULL;
1190 			sc->sc_nbcnvaps--;
1191 		}
1192 		ath_beacon_return(sc, avp->av_bcbuf);
1193 		avp->av_bcbuf = NULL;
1194 		if (sc->sc_nbcnvaps == 0) {
1195 			sc->sc_stagbeacons = 0;
1196 			if (sc->sc_hastsfadd)
1197 				ath_hal_settsfadjust(sc->sc_ah, 0);
1198 		}
1199 		/*
1200 		 * Reclaim any pending mcast frames for the vap.
1201 		 */
1202 		ath_tx_draintxq(sc, &avp->av_mcastq);
1203 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1204 	}
1205 	/*
1206 	 * Update bookkeeping.
1207 	 */
1208 	if (vap->iv_opmode == IEEE80211_M_STA) {
1209 		sc->sc_nstavaps--;
1210 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1211 			sc->sc_swbmiss = 0;
1212 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1213 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1214 		reclaim_address(sc, vap->iv_myaddr);
1215 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1216 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1217 			sc->sc_nmeshvaps--;
1218 	}
1219 	if (vap->iv_opmode != IEEE80211_M_WDS)
1220 		sc->sc_nvaps--;
1221 #ifdef IEEE80211_SUPPORT_TDMA
1222 	/* TDMA operation ceases when the last vap is destroyed */
1223 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1224 		sc->sc_tdma = 0;
1225 		sc->sc_swbmiss = 0;
1226 	}
1227 #endif
1228 	free(avp, M_80211_VAP);
1229 
1230 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1231 		/*
1232 		 * Restart rx+tx machines if still running (RUNNING will
1233 		 * be reset if we just destroyed the last vap).
1234 		 */
1235 		if (ath_startrecv(sc) != 0)
1236 			if_printf(ifp, "%s: unable to restart recv logic\n",
1237 			    __func__);
1238 		if (sc->sc_beacons) {		/* restart beacons */
1239 #ifdef IEEE80211_SUPPORT_TDMA
1240 			if (sc->sc_tdma)
1241 				ath_tdma_config(sc, NULL);
1242 			else
1243 #endif
1244 				ath_beacon_config(sc, NULL);
1245 		}
1246 		ath_hal_intrset(ah, sc->sc_imask);
1247 	}
1248 	ATH_UNLOCK(sc);
1249 }
1250 
1251 void
1252 ath_suspend(struct ath_softc *sc)
1253 {
1254 	struct ifnet *ifp = sc->sc_ifp;
1255 	struct ieee80211com *ic = ifp->if_l2com;
1256 
1257 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1258 		__func__, ifp->if_flags);
1259 
1260 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1261 	if (ic->ic_opmode == IEEE80211_M_STA)
1262 		ath_stop(ifp);
1263 	else
1264 		ieee80211_suspend_all(ic);
1265 	/*
1266 	 * NB: don't worry about putting the chip in low power
1267 	 * mode; pci will power off our socket on suspend and
1268 	 * CardBus detaches the device.
1269 	 */
1270 }
1271 
1272 /*
1273  * Reset the key cache since some parts do not reset the
1274  * contents on resume.  First we clear all entries, then
1275  * re-load keys that the 802.11 layer assumes are setup
1276  * in h/w.
1277  */
1278 static void
1279 ath_reset_keycache(struct ath_softc *sc)
1280 {
1281 	struct ifnet *ifp = sc->sc_ifp;
1282 	struct ieee80211com *ic = ifp->if_l2com;
1283 	struct ath_hal *ah = sc->sc_ah;
1284 	int i;
1285 
1286 	for (i = 0; i < sc->sc_keymax; i++)
1287 		ath_hal_keyreset(ah, i);
1288 	ieee80211_crypto_reload_keys(ic);
1289 }
1290 
1291 void
1292 ath_resume(struct ath_softc *sc)
1293 {
1294 	struct ifnet *ifp = sc->sc_ifp;
1295 	struct ieee80211com *ic = ifp->if_l2com;
1296 	struct ath_hal *ah = sc->sc_ah;
1297 	HAL_STATUS status;
1298 
1299 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1300 		__func__, ifp->if_flags);
1301 
1302 	/*
1303 	 * Must reset the chip before we reload the
1304 	 * keycache as we were powered down on suspend.
1305 	 */
1306 	ath_hal_reset(ah, sc->sc_opmode,
1307 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1308 	    AH_FALSE, &status);
1309 	ath_reset_keycache(sc);
1310 
1311 	/* Let DFS at it in case it's a DFS channel */
1312 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1313 
1314 	if (sc->sc_resume_up) {
1315 		if (ic->ic_opmode == IEEE80211_M_STA) {
1316 			ath_init(sc);
1317 			/*
1318 			 * Program the beacon registers using the last rx'd
1319 			 * beacon frame and enable sync on the next beacon
1320 			 * we see.  This should handle the case where we
1321 			 * wakeup and find the same AP and also the case where
1322 			 * we wakeup and need to roam.  For the latter we
1323 			 * should get bmiss events that trigger a roam.
1324 			 */
1325 			ath_beacon_config(sc, NULL);
1326 			sc->sc_syncbeacon = 1;
1327 		} else
1328 			ieee80211_resume_all(ic);
1329 	}
1330 	if (sc->sc_softled) {
1331 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1332 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1333 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1334 	}
1335 
1336 	/* XXX beacons ? */
1337 }
1338 
1339 void
1340 ath_shutdown(struct ath_softc *sc)
1341 {
1342 	struct ifnet *ifp = sc->sc_ifp;
1343 
1344 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1345 		__func__, ifp->if_flags);
1346 
1347 	ath_stop(ifp);
1348 	/* NB: no point powering down chip as we're about to reboot */
1349 }
1350 
1351 /*
1352  * Interrupt handler.  Most of the actual processing is deferred.
1353  */
1354 void
1355 ath_intr(void *arg)
1356 {
1357 	struct ath_softc *sc = arg;
1358 	struct ifnet *ifp = sc->sc_ifp;
1359 	struct ath_hal *ah = sc->sc_ah;
1360 	HAL_INT status = 0;
1361 	uint32_t txqs;
1362 
1363 	/*
1364 	 * If we're inside a reset path, just print a warning and
1365 	 * clear the ISR. The reset routine will finish it for us.
1366 	 */
1367 	ATH_PCU_LOCK(sc);
1368 	if (sc->sc_inreset_cnt) {
1369 		HAL_INT status;
1370 		ath_hal_getisr(ah, &status);	/* clear ISR */
1371 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1372 		DPRINTF(sc, ATH_DEBUG_ANY,
1373 		    "%s: in reset, ignoring: status=0x%x\n",
1374 		    __func__, status);
1375 		ATH_PCU_UNLOCK(sc);
1376 		return;
1377 	}
1378 
1379 	if (sc->sc_invalid) {
1380 		/*
1381 		 * The hardware is not ready/present, don't touch anything.
1382 		 * Note this can happen early on if the IRQ is shared.
1383 		 */
1384 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1385 		ATH_PCU_UNLOCK(sc);
1386 		return;
1387 	}
1388 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1389 		ATH_PCU_UNLOCK(sc);
1390 		return;
1391 	}
1392 
1393 	if ((ifp->if_flags & IFF_UP) == 0 ||
1394 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1395 		HAL_INT status;
1396 
1397 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1398 			__func__, ifp->if_flags);
1399 		ath_hal_getisr(ah, &status);	/* clear ISR */
1400 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1401 		ATH_PCU_UNLOCK(sc);
1402 		return;
1403 	}
1404 
1405 	/*
1406 	 * Figure out the reason(s) for the interrupt.  Note
1407 	 * that the hal returns a pseudo-ISR that may include
1408 	 * bits we haven't explicitly enabled so we mask the
1409 	 * value to insure we only process bits we requested.
1410 	 */
1411 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1412 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1413 	CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status);
1414 #ifdef	ATH_KTR_INTR_DEBUG
1415 	CTR5(ATH_KTR_INTR,
1416 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1417 	    ah->ah_intrstate[0],
1418 	    ah->ah_intrstate[1],
1419 	    ah->ah_intrstate[2],
1420 	    ah->ah_intrstate[3],
1421 	    ah->ah_intrstate[6]);
1422 #endif
1423 	status &= sc->sc_imask;			/* discard unasked for bits */
1424 
1425 	/* Short-circuit un-handled interrupts */
1426 	if (status == 0x0) {
1427 		ATH_PCU_UNLOCK(sc);
1428 		return;
1429 	}
1430 
1431 	/*
1432 	 * Take a note that we're inside the interrupt handler, so
1433 	 * the reset routines know to wait.
1434 	 */
1435 	sc->sc_intr_cnt++;
1436 	ATH_PCU_UNLOCK(sc);
1437 
1438 	/*
1439 	 * Handle the interrupt. We won't run concurrent with the reset
1440 	 * or channel change routines as they'll wait for sc_intr_cnt
1441 	 * to be 0 before continuing.
1442 	 */
1443 	if (status & HAL_INT_FATAL) {
1444 		sc->sc_stats.ast_hardware++;
1445 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1446 		ath_fatal_proc(sc, 0);
1447 	} else {
1448 		if (status & HAL_INT_SWBA) {
1449 			/*
1450 			 * Software beacon alert--time to send a beacon.
1451 			 * Handle beacon transmission directly; deferring
1452 			 * this is too slow to meet timing constraints
1453 			 * under load.
1454 			 */
1455 #ifdef IEEE80211_SUPPORT_TDMA
1456 			if (sc->sc_tdma) {
1457 				if (sc->sc_tdmaswba == 0) {
1458 					struct ieee80211com *ic = ifp->if_l2com;
1459 					struct ieee80211vap *vap =
1460 					    TAILQ_FIRST(&ic->ic_vaps);
1461 					ath_tdma_beacon_send(sc, vap);
1462 					sc->sc_tdmaswba =
1463 					    vap->iv_tdma->tdma_bintval;
1464 				} else
1465 					sc->sc_tdmaswba--;
1466 			} else
1467 #endif
1468 			{
1469 				ath_beacon_proc(sc, 0);
1470 #ifdef IEEE80211_SUPPORT_SUPERG
1471 				/*
1472 				 * Schedule the rx taskq in case there's no
1473 				 * traffic so any frames held on the staging
1474 				 * queue are aged and potentially flushed.
1475 				 */
1476 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1477 #endif
1478 			}
1479 		}
1480 		if (status & HAL_INT_RXEOL) {
1481 			int imask;
1482 			CTR0(ATH_KTR_ERR, "ath_intr: RXEOL");
1483 			ATH_PCU_LOCK(sc);
1484 			/*
1485 			 * NB: the hardware should re-read the link when
1486 			 *     RXE bit is written, but it doesn't work at
1487 			 *     least on older hardware revs.
1488 			 */
1489 			sc->sc_stats.ast_rxeol++;
1490 			/*
1491 			 * Disable RXEOL/RXORN - prevent an interrupt
1492 			 * storm until the PCU logic can be reset.
1493 			 * In case the interface is reset some other
1494 			 * way before "sc_kickpcu" is called, don't
1495 			 * modify sc_imask - that way if it is reset
1496 			 * by a call to ath_reset() somehow, the
1497 			 * interrupt mask will be correctly reprogrammed.
1498 			 */
1499 			imask = sc->sc_imask;
1500 			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1501 			ath_hal_intrset(ah, imask);
1502 			/*
1503 			 * Only blank sc_rxlink if we've not yet kicked
1504 			 * the PCU.
1505 			 *
1506 			 * This isn't entirely correct - the correct solution
1507 			 * would be to have a PCU lock and engage that for
1508 			 * the duration of the PCU fiddling; which would include
1509 			 * running the RX process. Otherwise we could end up
1510 			 * messing up the RX descriptor chain and making the
1511 			 * RX desc list much shorter.
1512 			 */
1513 			if (! sc->sc_kickpcu)
1514 				sc->sc_rxlink = NULL;
1515 			sc->sc_kickpcu = 1;
1516 			/*
1517 			 * Enqueue an RX proc, to handled whatever
1518 			 * is in the RX queue.
1519 			 * This will then kick the PCU.
1520 			 */
1521 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1522 			ATH_PCU_UNLOCK(sc);
1523 		}
1524 		if (status & HAL_INT_TXURN) {
1525 			sc->sc_stats.ast_txurn++;
1526 			/* bump tx trigger level */
1527 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1528 		}
1529 		if (status & HAL_INT_RX) {
1530 			sc->sc_stats.ast_rx_intr++;
1531 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1532 		}
1533 		if (status & HAL_INT_TX) {
1534 			sc->sc_stats.ast_tx_intr++;
1535 			/*
1536 			 * Grab all the currently set bits in the HAL txq bitmap
1537 			 * and blank them. This is the only place we should be
1538 			 * doing this.
1539 			 */
1540 			ATH_PCU_LOCK(sc);
1541 			txqs = 0xffffffff;
1542 			ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1543 			sc->sc_txq_active |= txqs;
1544 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1545 			ATH_PCU_UNLOCK(sc);
1546 		}
1547 		if (status & HAL_INT_BMISS) {
1548 			sc->sc_stats.ast_bmiss++;
1549 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1550 		}
1551 		if (status & HAL_INT_GTT)
1552 			sc->sc_stats.ast_tx_timeout++;
1553 		if (status & HAL_INT_CST)
1554 			sc->sc_stats.ast_tx_cst++;
1555 		if (status & HAL_INT_MIB) {
1556 			sc->sc_stats.ast_mib++;
1557 			ATH_PCU_LOCK(sc);
1558 			/*
1559 			 * Disable interrupts until we service the MIB
1560 			 * interrupt; otherwise it will continue to fire.
1561 			 */
1562 			ath_hal_intrset(ah, 0);
1563 			/*
1564 			 * Let the hal handle the event.  We assume it will
1565 			 * clear whatever condition caused the interrupt.
1566 			 */
1567 			ath_hal_mibevent(ah, &sc->sc_halstats);
1568 			/*
1569 			 * Don't reset the interrupt if we've just
1570 			 * kicked the PCU, or we may get a nested
1571 			 * RXEOL before the rxproc has had a chance
1572 			 * to run.
1573 			 */
1574 			if (sc->sc_kickpcu == 0)
1575 				ath_hal_intrset(ah, sc->sc_imask);
1576 			ATH_PCU_UNLOCK(sc);
1577 		}
1578 		if (status & HAL_INT_RXORN) {
1579 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1580 			CTR0(ATH_KTR_ERR, "ath_intr: RXORN");
1581 			sc->sc_stats.ast_rxorn++;
1582 		}
1583 	}
1584 	ATH_PCU_LOCK(sc);
1585 	sc->sc_intr_cnt--;
1586 	ATH_PCU_UNLOCK(sc);
1587 }
1588 
1589 static void
1590 ath_fatal_proc(void *arg, int pending)
1591 {
1592 	struct ath_softc *sc = arg;
1593 	struct ifnet *ifp = sc->sc_ifp;
1594 	u_int32_t *state;
1595 	u_int32_t len;
1596 	void *sp;
1597 
1598 	if_printf(ifp, "hardware error; resetting\n");
1599 	/*
1600 	 * Fatal errors are unrecoverable.  Typically these
1601 	 * are caused by DMA errors.  Collect h/w state from
1602 	 * the hal so we can diagnose what's going on.
1603 	 */
1604 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1605 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1606 		state = sp;
1607 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1608 		    state[0], state[1] , state[2], state[3],
1609 		    state[4], state[5]);
1610 	}
1611 	ath_reset(ifp, ATH_RESET_NOLOSS);
1612 }
1613 
1614 static void
1615 ath_bmiss_vap(struct ieee80211vap *vap)
1616 {
1617 	/*
1618 	 * Workaround phantom bmiss interrupts by sanity-checking
1619 	 * the time of our last rx'd frame.  If it is within the
1620 	 * beacon miss interval then ignore the interrupt.  If it's
1621 	 * truly a bmiss we'll get another interrupt soon and that'll
1622 	 * be dispatched up for processing.  Note this applies only
1623 	 * for h/w beacon miss events.
1624 	 */
1625 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1626 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1627 		struct ath_softc *sc = ifp->if_softc;
1628 		u_int64_t lastrx = sc->sc_lastrx;
1629 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1630 		u_int bmisstimeout =
1631 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1632 
1633 		DPRINTF(sc, ATH_DEBUG_BEACON,
1634 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1635 		    __func__, (unsigned long long) tsf,
1636 		    (unsigned long long)(tsf - lastrx),
1637 		    (unsigned long long) lastrx, bmisstimeout);
1638 
1639 		if (tsf - lastrx <= bmisstimeout) {
1640 			sc->sc_stats.ast_bmiss_phantom++;
1641 			return;
1642 		}
1643 	}
1644 	ATH_VAP(vap)->av_bmiss(vap);
1645 }
1646 
1647 static int
1648 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1649 {
1650 	uint32_t rsize;
1651 	void *sp;
1652 
1653 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1654 		return 0;
1655 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1656 	*hangs = *(uint32_t *)sp;
1657 	return 1;
1658 }
1659 
1660 static void
1661 ath_bmiss_proc(void *arg, int pending)
1662 {
1663 	struct ath_softc *sc = arg;
1664 	struct ifnet *ifp = sc->sc_ifp;
1665 	uint32_t hangs;
1666 
1667 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1668 
1669 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1670 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1671 		ath_reset(ifp, ATH_RESET_NOLOSS);
1672 	} else
1673 		ieee80211_beacon_miss(ifp->if_l2com);
1674 }
1675 
1676 /*
1677  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1678  * calcs together with WME.  If necessary disable the crypto
1679  * hardware and mark the 802.11 state so keys will be setup
1680  * with the MIC work done in software.
1681  */
1682 static void
1683 ath_settkipmic(struct ath_softc *sc)
1684 {
1685 	struct ifnet *ifp = sc->sc_ifp;
1686 	struct ieee80211com *ic = ifp->if_l2com;
1687 
1688 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1689 		if (ic->ic_flags & IEEE80211_F_WME) {
1690 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1691 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1692 		} else {
1693 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1694 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1695 		}
1696 	}
1697 }
1698 
1699 static void
1700 ath_init(void *arg)
1701 {
1702 	struct ath_softc *sc = (struct ath_softc *) arg;
1703 	struct ifnet *ifp = sc->sc_ifp;
1704 	struct ieee80211com *ic = ifp->if_l2com;
1705 	struct ath_hal *ah = sc->sc_ah;
1706 	HAL_STATUS status;
1707 
1708 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1709 		__func__, ifp->if_flags);
1710 
1711 	ATH_LOCK(sc);
1712 	/*
1713 	 * Stop anything previously setup.  This is safe
1714 	 * whether this is the first time through or not.
1715 	 */
1716 	ath_stop_locked(ifp);
1717 
1718 	/*
1719 	 * The basic interface to setting the hardware in a good
1720 	 * state is ``reset''.  On return the hardware is known to
1721 	 * be powered up and with interrupts disabled.  This must
1722 	 * be followed by initialization of the appropriate bits
1723 	 * and then setup of the interrupt mask.
1724 	 */
1725 	ath_settkipmic(sc);
1726 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1727 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1728 			status);
1729 		ATH_UNLOCK(sc);
1730 		return;
1731 	}
1732 	ath_chan_change(sc, ic->ic_curchan);
1733 
1734 	/* Let DFS at it in case it's a DFS channel */
1735 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1736 
1737 	/*
1738 	 * Likewise this is set during reset so update
1739 	 * state cached in the driver.
1740 	 */
1741 	sc->sc_diversity = ath_hal_getdiversity(ah);
1742 	sc->sc_lastlongcal = 0;
1743 	sc->sc_resetcal = 1;
1744 	sc->sc_lastcalreset = 0;
1745 	sc->sc_lastani = 0;
1746 	sc->sc_lastshortcal = 0;
1747 	sc->sc_doresetcal = AH_FALSE;
1748 	/*
1749 	 * Beacon timers were cleared here; give ath_newstate()
1750 	 * a hint that the beacon timers should be poked when
1751 	 * things transition to the RUN state.
1752 	 */
1753 	sc->sc_beacons = 0;
1754 
1755 	/*
1756 	 * Initial aggregation settings.
1757 	 */
1758 	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
1759 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1760 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1761 
1762 	/*
1763 	 * Setup the hardware after reset: the key cache
1764 	 * is filled as needed and the receive engine is
1765 	 * set going.  Frame transmit is handled entirely
1766 	 * in the frame output path; there's nothing to do
1767 	 * here except setup the interrupt mask.
1768 	 */
1769 	if (ath_startrecv(sc) != 0) {
1770 		if_printf(ifp, "unable to start recv logic\n");
1771 		ATH_UNLOCK(sc);
1772 		return;
1773 	}
1774 
1775 	/*
1776 	 * Enable interrupts.
1777 	 */
1778 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1779 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1780 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1781 	/*
1782 	 * Enable MIB interrupts when there are hardware phy counters.
1783 	 * Note we only do this (at the moment) for station mode.
1784 	 */
1785 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1786 		sc->sc_imask |= HAL_INT_MIB;
1787 
1788 	/* Enable global TX timeout and carrier sense timeout if available */
1789 	if (ath_hal_gtxto_supported(ah))
1790 		sc->sc_imask |= HAL_INT_GTT;
1791 
1792 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1793 		__func__, sc->sc_imask);
1794 
1795 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1796 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1797 	ath_hal_intrset(ah, sc->sc_imask);
1798 
1799 	ATH_UNLOCK(sc);
1800 
1801 #ifdef ATH_TX99_DIAG
1802 	if (sc->sc_tx99 != NULL)
1803 		sc->sc_tx99->start(sc->sc_tx99);
1804 	else
1805 #endif
1806 	ieee80211_start_all(ic);		/* start all vap's */
1807 }
1808 
1809 static void
1810 ath_stop_locked(struct ifnet *ifp)
1811 {
1812 	struct ath_softc *sc = ifp->if_softc;
1813 	struct ath_hal *ah = sc->sc_ah;
1814 
1815 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1816 		__func__, sc->sc_invalid, ifp->if_flags);
1817 
1818 	ATH_LOCK_ASSERT(sc);
1819 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1820 		/*
1821 		 * Shutdown the hardware and driver:
1822 		 *    reset 802.11 state machine
1823 		 *    turn off timers
1824 		 *    disable interrupts
1825 		 *    turn off the radio
1826 		 *    clear transmit machinery
1827 		 *    clear receive machinery
1828 		 *    drain and release tx queues
1829 		 *    reclaim beacon resources
1830 		 *    power down hardware
1831 		 *
1832 		 * Note that some of this work is not possible if the
1833 		 * hardware is gone (invalid).
1834 		 */
1835 #ifdef ATH_TX99_DIAG
1836 		if (sc->sc_tx99 != NULL)
1837 			sc->sc_tx99->stop(sc->sc_tx99);
1838 #endif
1839 		callout_stop(&sc->sc_wd_ch);
1840 		sc->sc_wd_timer = 0;
1841 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1842 		if (!sc->sc_invalid) {
1843 			if (sc->sc_softled) {
1844 				callout_stop(&sc->sc_ledtimer);
1845 				ath_hal_gpioset(ah, sc->sc_ledpin,
1846 					!sc->sc_ledon);
1847 				sc->sc_blinking = 0;
1848 			}
1849 			ath_hal_intrset(ah, 0);
1850 		}
1851 		ath_draintxq(sc, ATH_RESET_DEFAULT);
1852 		if (!sc->sc_invalid) {
1853 			ath_stoprecv(sc, 1);
1854 			ath_hal_phydisable(ah);
1855 		} else
1856 			sc->sc_rxlink = NULL;
1857 		ath_beacon_free(sc);	/* XXX not needed */
1858 	}
1859 }
1860 
1861 #define	MAX_TXRX_ITERATIONS	1000
1862 static void
1863 ath_txrx_stop(struct ath_softc *sc)
1864 {
1865 	int i = MAX_TXRX_ITERATIONS;
1866 
1867 	ATH_UNLOCK_ASSERT(sc);
1868 	/* Stop any new TX/RX from occuring */
1869 	taskqueue_block(sc->sc_tq);
1870 
1871 	ATH_PCU_LOCK(sc);
1872 	/*
1873 	 * Sleep until all the pending operations have completed.
1874 	 *
1875 	 * The caller must ensure that reset has been incremented
1876 	 * or the pending operations may continue being queued.
1877 	 */
1878 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
1879 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
1880 		if (i <= 0)
1881 			break;
1882 		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
1883 		i--;
1884 	}
1885 	ATH_PCU_UNLOCK(sc);
1886 
1887 	if (i <= 0)
1888 		device_printf(sc->sc_dev,
1889 		    "%s: didn't finish after %d iterations\n",
1890 		    __func__, MAX_TXRX_ITERATIONS);
1891 }
1892 #undef	MAX_TXRX_ITERATIONS
1893 
1894 static void
1895 ath_txrx_start(struct ath_softc *sc)
1896 {
1897 
1898 	taskqueue_unblock(sc->sc_tq);
1899 }
1900 
1901 /*
1902  * Grab the reset lock, and wait around until noone else
1903  * is trying to do anything with it.
1904  *
1905  * This is totally horrible but we can't hold this lock for
1906  * long enough to do TX/RX or we end up with net80211/ip stack
1907  * LORs and eventual deadlock.
1908  *
1909  * "dowait" signals whether to spin, waiting for the reset
1910  * lock count to reach 0. This should (for now) only be used
1911  * during the reset path, as the rest of the code may not
1912  * be locking-reentrant enough to behave correctly.
1913  *
1914  * Another, cleaner way should be found to serialise all of
1915  * these operations.
1916  */
1917 #define	MAX_RESET_ITERATIONS	10
1918 static int
1919 ath_reset_grablock(struct ath_softc *sc, int dowait)
1920 {
1921 	int w = 0;
1922 	int i = MAX_RESET_ITERATIONS;
1923 
1924 	ATH_PCU_LOCK_ASSERT(sc);
1925 	do {
1926 		if (sc->sc_inreset_cnt == 0) {
1927 			w = 1;
1928 			break;
1929 		}
1930 		if (dowait == 0) {
1931 			w = 0;
1932 			break;
1933 		}
1934 		ATH_PCU_UNLOCK(sc);
1935 		pause("ath_reset_grablock", 1);
1936 		i--;
1937 		ATH_PCU_LOCK(sc);
1938 	} while (i > 0);
1939 
1940 	/*
1941 	 * We always increment the refcounter, regardless
1942 	 * of whether we succeeded to get it in an exclusive
1943 	 * way.
1944 	 */
1945 	sc->sc_inreset_cnt++;
1946 
1947 	if (i <= 0)
1948 		device_printf(sc->sc_dev,
1949 		    "%s: didn't finish after %d iterations\n",
1950 		    __func__, MAX_RESET_ITERATIONS);
1951 
1952 	if (w == 0)
1953 		device_printf(sc->sc_dev,
1954 		    "%s: warning, recursive reset path!\n",
1955 		    __func__);
1956 
1957 	return w;
1958 }
1959 #undef MAX_RESET_ITERATIONS
1960 
1961 /*
1962  * XXX TODO: write ath_reset_releaselock
1963  */
1964 
1965 static void
1966 ath_stop(struct ifnet *ifp)
1967 {
1968 	struct ath_softc *sc = ifp->if_softc;
1969 
1970 	ATH_LOCK(sc);
1971 	ath_stop_locked(ifp);
1972 	ATH_UNLOCK(sc);
1973 }
1974 
1975 /*
1976  * Reset the hardware w/o losing operational state.  This is
1977  * basically a more efficient way of doing ath_stop, ath_init,
1978  * followed by state transitions to the current 802.11
1979  * operational state.  Used to recover from various errors and
1980  * to reset or reload hardware state.
1981  */
1982 int
1983 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
1984 {
1985 	struct ath_softc *sc = ifp->if_softc;
1986 	struct ieee80211com *ic = ifp->if_l2com;
1987 	struct ath_hal *ah = sc->sc_ah;
1988 	HAL_STATUS status;
1989 	int i;
1990 
1991 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1992 
1993 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
1994 	ATH_PCU_UNLOCK_ASSERT(sc);
1995 	ATH_UNLOCK_ASSERT(sc);
1996 
1997 	ATH_PCU_LOCK(sc);
1998 	if (ath_reset_grablock(sc, 1) == 0) {
1999 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2000 		    __func__);
2001 	}
2002 	ath_hal_intrset(ah, 0);		/* disable interrupts */
2003 	ATH_PCU_UNLOCK(sc);
2004 
2005 	/*
2006 	 * Should now wait for pending TX/RX to complete
2007 	 * and block future ones from occuring. This needs to be
2008 	 * done before the TX queue is drained.
2009 	 */
2010 	ath_txrx_stop(sc);
2011 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2012 
2013 	/*
2014 	 * Regardless of whether we're doing a no-loss flush or
2015 	 * not, stop the PCU and handle what's in the RX queue.
2016 	 * That way frames aren't dropped which shouldn't be.
2017 	 */
2018 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2019 	ath_rx_proc(sc, 0);
2020 
2021 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2022 	/* NB: indicate channel change so we do a full reset */
2023 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2024 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2025 			__func__, status);
2026 	sc->sc_diversity = ath_hal_getdiversity(ah);
2027 
2028 	/* Let DFS at it in case it's a DFS channel */
2029 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2030 
2031 	if (ath_startrecv(sc) != 0)	/* restart recv */
2032 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2033 	/*
2034 	 * We may be doing a reset in response to an ioctl
2035 	 * that changes the channel so update any state that
2036 	 * might change as a result.
2037 	 */
2038 	ath_chan_change(sc, ic->ic_curchan);
2039 	if (sc->sc_beacons) {		/* restart beacons */
2040 #ifdef IEEE80211_SUPPORT_TDMA
2041 		if (sc->sc_tdma)
2042 			ath_tdma_config(sc, NULL);
2043 		else
2044 #endif
2045 			ath_beacon_config(sc, NULL);
2046 	}
2047 
2048 	/*
2049 	 * Release the reset lock and re-enable interrupts here.
2050 	 * If an interrupt was being processed in ath_intr(),
2051 	 * it would disable interrupts at this point. So we have
2052 	 * to atomically enable interrupts and decrement the
2053 	 * reset counter - this way ath_intr() doesn't end up
2054 	 * disabling interrupts without a corresponding enable
2055 	 * in the rest or channel change path.
2056 	 */
2057 	ATH_PCU_LOCK(sc);
2058 	sc->sc_inreset_cnt--;
2059 	/* XXX only do this if sc_inreset_cnt == 0? */
2060 	ath_hal_intrset(ah, sc->sc_imask);
2061 	ATH_PCU_UNLOCK(sc);
2062 
2063 	/*
2064 	 * TX and RX can be started here. If it were started with
2065 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2066 	 * Thus if this is a nested call through the reset or
2067 	 * channel change code, TX completion will occur but
2068 	 * RX completion and ath_start / ath_tx_start will not
2069 	 * run.
2070 	 */
2071 
2072 	/* Restart TX/RX as needed */
2073 	ath_txrx_start(sc);
2074 
2075 	/* XXX Restart TX completion and pending TX */
2076 	if (reset_type == ATH_RESET_NOLOSS) {
2077 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2078 			if (ATH_TXQ_SETUP(sc, i)) {
2079 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2080 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2081 				ath_txq_sched(sc, &sc->sc_txq[i]);
2082 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2083 			}
2084 		}
2085 	}
2086 
2087 	/*
2088 	 * This may have been set during an ath_start() call which
2089 	 * set this once it detected a concurrent TX was going on.
2090 	 * So, clear it.
2091 	 */
2092 	/* XXX do this inside of IF_LOCK? */
2093 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2094 
2095 	/* Handle any frames in the TX queue */
2096 	/*
2097 	 * XXX should this be done by the caller, rather than
2098 	 * ath_reset() ?
2099 	 */
2100 	ath_start(ifp);			/* restart xmit */
2101 	return 0;
2102 }
2103 
2104 static int
2105 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2106 {
2107 	struct ieee80211com *ic = vap->iv_ic;
2108 	struct ifnet *ifp = ic->ic_ifp;
2109 	struct ath_softc *sc = ifp->if_softc;
2110 	struct ath_hal *ah = sc->sc_ah;
2111 
2112 	switch (cmd) {
2113 	case IEEE80211_IOC_TXPOWER:
2114 		/*
2115 		 * If per-packet TPC is enabled, then we have nothing
2116 		 * to do; otherwise we need to force the global limit.
2117 		 * All this can happen directly; no need to reset.
2118 		 */
2119 		if (!ath_hal_gettpc(ah))
2120 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2121 		return 0;
2122 	}
2123 	/* XXX? Full or NOLOSS? */
2124 	return ath_reset(ifp, ATH_RESET_FULL);
2125 }
2126 
2127 struct ath_buf *
2128 _ath_getbuf_locked(struct ath_softc *sc)
2129 {
2130 	struct ath_buf *bf;
2131 
2132 	ATH_TXBUF_LOCK_ASSERT(sc);
2133 
2134 	bf = TAILQ_FIRST(&sc->sc_txbuf);
2135 	if (bf == NULL) {
2136 		sc->sc_stats.ast_tx_getnobuf++;
2137 	} else {
2138 		if (bf->bf_flags & ATH_BUF_BUSY) {
2139 			sc->sc_stats.ast_tx_getbusybuf++;
2140 			bf = NULL;
2141 		}
2142 	}
2143 
2144 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
2145 		TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2146 	else
2147 		bf = NULL;
2148 
2149 	if (bf == NULL) {
2150 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2151 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2152 			"out of xmit buffers" : "xmit buffer busy");
2153 		return NULL;
2154 	}
2155 
2156 	/* Valid bf here; clear some basic fields */
2157 	bf->bf_next = NULL;	/* XXX just to be sure */
2158 	bf->bf_last = NULL;	/* XXX again, just to be sure */
2159 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2160 	bzero(&bf->bf_state, sizeof(bf->bf_state));
2161 
2162 	return bf;
2163 }
2164 
2165 /*
2166  * When retrying a software frame, buffers marked ATH_BUF_BUSY
2167  * can't be thrown back on the queue as they could still be
2168  * in use by the hardware.
2169  *
2170  * This duplicates the buffer, or returns NULL.
2171  *
2172  * The descriptor is also copied but the link pointers and
2173  * the DMA segments aren't copied; this frame should thus
2174  * be again passed through the descriptor setup/chain routines
2175  * so the link is correct.
2176  *
2177  * The caller must free the buffer using ath_freebuf().
2178  *
2179  * XXX TODO: this call shouldn't fail as it'll cause packet loss
2180  * XXX in the TX pathway when retries are needed.
2181  * XXX Figure out how to keep some buffers free, or factor the
2182  * XXX number of busy buffers into the xmit path (ath_start())
2183  * XXX so we don't over-commit.
2184  */
2185 struct ath_buf *
2186 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
2187 {
2188 	struct ath_buf *tbf;
2189 
2190 	tbf = ath_getbuf(sc);
2191 	if (tbf == NULL)
2192 		return NULL;	/* XXX failure? Why? */
2193 
2194 	/* Copy basics */
2195 	tbf->bf_next = NULL;
2196 	tbf->bf_nseg = bf->bf_nseg;
2197 	tbf->bf_txflags = bf->bf_txflags;
2198 	tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
2199 	tbf->bf_status = bf->bf_status;
2200 	tbf->bf_m = bf->bf_m;
2201 	tbf->bf_node = bf->bf_node;
2202 	/* will be setup by the chain/setup function */
2203 	tbf->bf_lastds = NULL;
2204 	/* for now, last == self */
2205 	tbf->bf_last = tbf;
2206 	tbf->bf_comp = bf->bf_comp;
2207 
2208 	/* NOTE: DMA segments will be setup by the setup/chain functions */
2209 
2210 	/* The caller has to re-init the descriptor + links */
2211 
2212 	/* Copy state */
2213 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2214 
2215 	return tbf;
2216 }
2217 
2218 struct ath_buf *
2219 ath_getbuf(struct ath_softc *sc)
2220 {
2221 	struct ath_buf *bf;
2222 
2223 	ATH_TXBUF_LOCK(sc);
2224 	bf = _ath_getbuf_locked(sc);
2225 	if (bf == NULL) {
2226 		struct ifnet *ifp = sc->sc_ifp;
2227 
2228 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2229 		sc->sc_stats.ast_tx_qstop++;
2230 		/* XXX do this inside of IF_LOCK? */
2231 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2232 	}
2233 	ATH_TXBUF_UNLOCK(sc);
2234 	return bf;
2235 }
2236 
2237 static void
2238 ath_start(struct ifnet *ifp)
2239 {
2240 	struct ath_softc *sc = ifp->if_softc;
2241 	struct ieee80211_node *ni;
2242 	struct ath_buf *bf;
2243 	struct mbuf *m, *next;
2244 	ath_bufhead frags;
2245 
2246 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2247 		return;
2248 
2249 	/* XXX is it ok to hold the ATH_LOCK here? */
2250 	ATH_PCU_LOCK(sc);
2251 	if (sc->sc_inreset_cnt > 0) {
2252 		device_printf(sc->sc_dev,
2253 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2254 		/* XXX do this inside of IF_LOCK? */
2255 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2256 		ATH_PCU_UNLOCK(sc);
2257 		return;
2258 	}
2259 	sc->sc_txstart_cnt++;
2260 	ATH_PCU_UNLOCK(sc);
2261 
2262 	for (;;) {
2263 		/*
2264 		 * Grab a TX buffer and associated resources.
2265 		 */
2266 		bf = ath_getbuf(sc);
2267 		if (bf == NULL)
2268 			break;
2269 
2270 		IFQ_DEQUEUE(&ifp->if_snd, m);
2271 		if (m == NULL) {
2272 			ATH_TXBUF_LOCK(sc);
2273 			TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2274 			ATH_TXBUF_UNLOCK(sc);
2275 			break;
2276 		}
2277 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2278 		/*
2279 		 * Check for fragmentation.  If this frame
2280 		 * has been broken up verify we have enough
2281 		 * buffers to send all the fragments so all
2282 		 * go out or none...
2283 		 */
2284 		TAILQ_INIT(&frags);
2285 		if ((m->m_flags & M_FRAG) &&
2286 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2287 			DPRINTF(sc, ATH_DEBUG_XMIT,
2288 			    "%s: out of txfrag buffers\n", __func__);
2289 			sc->sc_stats.ast_tx_nofrag++;
2290 			ifp->if_oerrors++;
2291 			ath_freetx(m);
2292 			goto bad;
2293 		}
2294 		ifp->if_opackets++;
2295 	nextfrag:
2296 		/*
2297 		 * Pass the frame to the h/w for transmission.
2298 		 * Fragmented frames have each frag chained together
2299 		 * with m_nextpkt.  We know there are sufficient ath_buf's
2300 		 * to send all the frags because of work done by
2301 		 * ath_txfrag_setup.  We leave m_nextpkt set while
2302 		 * calling ath_tx_start so it can use it to extend the
2303 		 * the tx duration to cover the subsequent frag and
2304 		 * so it can reclaim all the mbufs in case of an error;
2305 		 * ath_tx_start clears m_nextpkt once it commits to
2306 		 * handing the frame to the hardware.
2307 		 */
2308 		next = m->m_nextpkt;
2309 		if (ath_tx_start(sc, ni, bf, m)) {
2310 	bad:
2311 			ifp->if_oerrors++;
2312 	reclaim:
2313 			bf->bf_m = NULL;
2314 			bf->bf_node = NULL;
2315 			ATH_TXBUF_LOCK(sc);
2316 			TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2317 			ath_txfrag_cleanup(sc, &frags, ni);
2318 			ATH_TXBUF_UNLOCK(sc);
2319 			if (ni != NULL)
2320 				ieee80211_free_node(ni);
2321 			continue;
2322 		}
2323 		if (next != NULL) {
2324 			/*
2325 			 * Beware of state changing between frags.
2326 			 * XXX check sta power-save state?
2327 			 */
2328 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2329 				DPRINTF(sc, ATH_DEBUG_XMIT,
2330 				    "%s: flush fragmented packet, state %s\n",
2331 				    __func__,
2332 				    ieee80211_state_name[ni->ni_vap->iv_state]);
2333 				ath_freetx(next);
2334 				goto reclaim;
2335 			}
2336 			m = next;
2337 			bf = TAILQ_FIRST(&frags);
2338 			KASSERT(bf != NULL, ("no buf for txfrag"));
2339 			TAILQ_REMOVE(&frags, bf, bf_list);
2340 			goto nextfrag;
2341 		}
2342 
2343 		sc->sc_wd_timer = 5;
2344 	}
2345 
2346 	ATH_PCU_LOCK(sc);
2347 	sc->sc_txstart_cnt--;
2348 	ATH_PCU_UNLOCK(sc);
2349 }
2350 
2351 static int
2352 ath_media_change(struct ifnet *ifp)
2353 {
2354 	int error = ieee80211_media_change(ifp);
2355 	/* NB: only the fixed rate can change and that doesn't need a reset */
2356 	return (error == ENETRESET ? 0 : error);
2357 }
2358 
2359 /*
2360  * Block/unblock tx+rx processing while a key change is done.
2361  * We assume the caller serializes key management operations
2362  * so we only need to worry about synchronization with other
2363  * uses that originate in the driver.
2364  */
2365 static void
2366 ath_key_update_begin(struct ieee80211vap *vap)
2367 {
2368 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2369 	struct ath_softc *sc = ifp->if_softc;
2370 
2371 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2372 	taskqueue_block(sc->sc_tq);
2373 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2374 }
2375 
2376 static void
2377 ath_key_update_end(struct ieee80211vap *vap)
2378 {
2379 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2380 	struct ath_softc *sc = ifp->if_softc;
2381 
2382 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2383 	IF_UNLOCK(&ifp->if_snd);
2384 	taskqueue_unblock(sc->sc_tq);
2385 }
2386 
2387 /*
2388  * Calculate the receive filter according to the
2389  * operating mode and state:
2390  *
2391  * o always accept unicast, broadcast, and multicast traffic
2392  * o accept PHY error frames when hardware doesn't have MIB support
2393  *   to count and we need them for ANI (sta mode only until recently)
2394  *   and we are not scanning (ANI is disabled)
2395  *   NB: older hal's add rx filter bits out of sight and we need to
2396  *	 blindly preserve them
2397  * o probe request frames are accepted only when operating in
2398  *   hostap, adhoc, mesh, or monitor modes
2399  * o enable promiscuous mode
2400  *   - when in monitor mode
2401  *   - if interface marked PROMISC (assumes bridge setting is filtered)
2402  * o accept beacons:
2403  *   - when operating in station mode for collecting rssi data when
2404  *     the station is otherwise quiet, or
2405  *   - when operating in adhoc mode so the 802.11 layer creates
2406  *     node table entries for peers,
2407  *   - when scanning
2408  *   - when doing s/w beacon miss (e.g. for ap+sta)
2409  *   - when operating in ap mode in 11g to detect overlapping bss that
2410  *     require protection
2411  *   - when operating in mesh mode to detect neighbors
2412  * o accept control frames:
2413  *   - when in monitor mode
2414  * XXX HT protection for 11n
2415  */
2416 static u_int32_t
2417 ath_calcrxfilter(struct ath_softc *sc)
2418 {
2419 	struct ifnet *ifp = sc->sc_ifp;
2420 	struct ieee80211com *ic = ifp->if_l2com;
2421 	u_int32_t rfilt;
2422 
2423 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2424 	if (!sc->sc_needmib && !sc->sc_scanning)
2425 		rfilt |= HAL_RX_FILTER_PHYERR;
2426 	if (ic->ic_opmode != IEEE80211_M_STA)
2427 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2428 	/* XXX ic->ic_monvaps != 0? */
2429 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2430 		rfilt |= HAL_RX_FILTER_PROM;
2431 	if (ic->ic_opmode == IEEE80211_M_STA ||
2432 	    ic->ic_opmode == IEEE80211_M_IBSS ||
2433 	    sc->sc_swbmiss || sc->sc_scanning)
2434 		rfilt |= HAL_RX_FILTER_BEACON;
2435 	/*
2436 	 * NB: We don't recalculate the rx filter when
2437 	 * ic_protmode changes; otherwise we could do
2438 	 * this only when ic_protmode != NONE.
2439 	 */
2440 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2441 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2442 		rfilt |= HAL_RX_FILTER_BEACON;
2443 
2444 	/*
2445 	 * Enable hardware PS-POLL RX only for hostap mode;
2446 	 * STA mode sends PS-POLL frames but never
2447 	 * receives them.
2448 	 */
2449 	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
2450 	    0, NULL) == HAL_OK &&
2451 	    ic->ic_opmode == IEEE80211_M_HOSTAP)
2452 		rfilt |= HAL_RX_FILTER_PSPOLL;
2453 
2454 	if (sc->sc_nmeshvaps) {
2455 		rfilt |= HAL_RX_FILTER_BEACON;
2456 		if (sc->sc_hasbmatch)
2457 			rfilt |= HAL_RX_FILTER_BSSID;
2458 		else
2459 			rfilt |= HAL_RX_FILTER_PROM;
2460 	}
2461 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2462 		rfilt |= HAL_RX_FILTER_CONTROL;
2463 
2464 	/*
2465 	 * Enable RX of compressed BAR frames only when doing
2466 	 * 802.11n. Required for A-MPDU.
2467 	 */
2468 	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
2469 		rfilt |= HAL_RX_FILTER_COMPBAR;
2470 
2471 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2472 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2473 	return rfilt;
2474 }
2475 
2476 static void
2477 ath_update_promisc(struct ifnet *ifp)
2478 {
2479 	struct ath_softc *sc = ifp->if_softc;
2480 	u_int32_t rfilt;
2481 
2482 	/* configure rx filter */
2483 	rfilt = ath_calcrxfilter(sc);
2484 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2485 
2486 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2487 }
2488 
2489 static void
2490 ath_update_mcast(struct ifnet *ifp)
2491 {
2492 	struct ath_softc *sc = ifp->if_softc;
2493 	u_int32_t mfilt[2];
2494 
2495 	/* calculate and install multicast filter */
2496 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2497 		struct ifmultiaddr *ifma;
2498 		/*
2499 		 * Merge multicast addresses to form the hardware filter.
2500 		 */
2501 		mfilt[0] = mfilt[1] = 0;
2502 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2503 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2504 			caddr_t dl;
2505 			u_int32_t val;
2506 			u_int8_t pos;
2507 
2508 			/* calculate XOR of eight 6bit values */
2509 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2510 			val = LE_READ_4(dl + 0);
2511 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2512 			val = LE_READ_4(dl + 3);
2513 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2514 			pos &= 0x3f;
2515 			mfilt[pos / 32] |= (1 << (pos % 32));
2516 		}
2517 		if_maddr_runlock(ifp);
2518 	} else
2519 		mfilt[0] = mfilt[1] = ~0;
2520 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2521 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2522 		__func__, mfilt[0], mfilt[1]);
2523 }
2524 
2525 static void
2526 ath_mode_init(struct ath_softc *sc)
2527 {
2528 	struct ifnet *ifp = sc->sc_ifp;
2529 	struct ath_hal *ah = sc->sc_ah;
2530 	u_int32_t rfilt;
2531 
2532 	/* configure rx filter */
2533 	rfilt = ath_calcrxfilter(sc);
2534 	ath_hal_setrxfilter(ah, rfilt);
2535 
2536 	/* configure operational mode */
2537 	ath_hal_setopmode(ah);
2538 
2539 	/* handle any link-level address change */
2540 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2541 
2542 	/* calculate and install multicast filter */
2543 	ath_update_mcast(ifp);
2544 }
2545 
2546 /*
2547  * Set the slot time based on the current setting.
2548  */
2549 static void
2550 ath_setslottime(struct ath_softc *sc)
2551 {
2552 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2553 	struct ath_hal *ah = sc->sc_ah;
2554 	u_int usec;
2555 
2556 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2557 		usec = 13;
2558 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2559 		usec = 21;
2560 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2561 		/* honor short/long slot time only in 11g */
2562 		/* XXX shouldn't honor on pure g or turbo g channel */
2563 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2564 			usec = HAL_SLOT_TIME_9;
2565 		else
2566 			usec = HAL_SLOT_TIME_20;
2567 	} else
2568 		usec = HAL_SLOT_TIME_9;
2569 
2570 	DPRINTF(sc, ATH_DEBUG_RESET,
2571 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2572 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2573 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2574 
2575 	ath_hal_setslottime(ah, usec);
2576 	sc->sc_updateslot = OK;
2577 }
2578 
2579 /*
2580  * Callback from the 802.11 layer to update the
2581  * slot time based on the current setting.
2582  */
2583 static void
2584 ath_updateslot(struct ifnet *ifp)
2585 {
2586 	struct ath_softc *sc = ifp->if_softc;
2587 	struct ieee80211com *ic = ifp->if_l2com;
2588 
2589 	/*
2590 	 * When not coordinating the BSS, change the hardware
2591 	 * immediately.  For other operation we defer the change
2592 	 * until beacon updates have propagated to the stations.
2593 	 */
2594 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2595 	    ic->ic_opmode == IEEE80211_M_MBSS)
2596 		sc->sc_updateslot = UPDATE;
2597 	else
2598 		ath_setslottime(sc);
2599 }
2600 
2601 /*
2602  * Setup a h/w transmit queue for beacons.
2603  */
2604 static int
2605 ath_beaconq_setup(struct ath_hal *ah)
2606 {
2607 	HAL_TXQ_INFO qi;
2608 
2609 	memset(&qi, 0, sizeof(qi));
2610 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2611 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2612 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2613 	/* NB: for dynamic turbo, don't enable any other interrupts */
2614 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2615 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2616 }
2617 
2618 /*
2619  * Setup the transmit queue parameters for the beacon queue.
2620  */
2621 static int
2622 ath_beaconq_config(struct ath_softc *sc)
2623 {
2624 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2625 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2626 	struct ath_hal *ah = sc->sc_ah;
2627 	HAL_TXQ_INFO qi;
2628 
2629 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2630 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2631 	    ic->ic_opmode == IEEE80211_M_MBSS) {
2632 		/*
2633 		 * Always burst out beacon and CAB traffic.
2634 		 */
2635 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2636 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2637 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2638 	} else {
2639 		struct wmeParams *wmep =
2640 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2641 		/*
2642 		 * Adhoc mode; important thing is to use 2x cwmin.
2643 		 */
2644 		qi.tqi_aifs = wmep->wmep_aifsn;
2645 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2646 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2647 	}
2648 
2649 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2650 		device_printf(sc->sc_dev, "unable to update parameters for "
2651 			"beacon hardware queue!\n");
2652 		return 0;
2653 	} else {
2654 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2655 		return 1;
2656 	}
2657 #undef ATH_EXPONENT_TO_VALUE
2658 }
2659 
2660 /*
2661  * Allocate and setup an initial beacon frame.
2662  */
2663 static int
2664 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2665 {
2666 	struct ieee80211vap *vap = ni->ni_vap;
2667 	struct ath_vap *avp = ATH_VAP(vap);
2668 	struct ath_buf *bf;
2669 	struct mbuf *m;
2670 	int error;
2671 
2672 	bf = avp->av_bcbuf;
2673 	if (bf->bf_m != NULL) {
2674 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2675 		m_freem(bf->bf_m);
2676 		bf->bf_m = NULL;
2677 	}
2678 	if (bf->bf_node != NULL) {
2679 		ieee80211_free_node(bf->bf_node);
2680 		bf->bf_node = NULL;
2681 	}
2682 
2683 	/*
2684 	 * NB: the beacon data buffer must be 32-bit aligned;
2685 	 * we assume the mbuf routines will return us something
2686 	 * with this alignment (perhaps should assert).
2687 	 */
2688 	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2689 	if (m == NULL) {
2690 		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2691 		sc->sc_stats.ast_be_nombuf++;
2692 		return ENOMEM;
2693 	}
2694 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2695 				     bf->bf_segs, &bf->bf_nseg,
2696 				     BUS_DMA_NOWAIT);
2697 	if (error != 0) {
2698 		device_printf(sc->sc_dev,
2699 		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2700 		    __func__, error);
2701 		m_freem(m);
2702 		return error;
2703 	}
2704 
2705 	/*
2706 	 * Calculate a TSF adjustment factor required for staggered
2707 	 * beacons.  Note that we assume the format of the beacon
2708 	 * frame leaves the tstamp field immediately following the
2709 	 * header.
2710 	 */
2711 	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2712 		uint64_t tsfadjust;
2713 		struct ieee80211_frame *wh;
2714 
2715 		/*
2716 		 * The beacon interval is in TU's; the TSF is in usecs.
2717 		 * We figure out how many TU's to add to align the timestamp
2718 		 * then convert to TSF units and handle byte swapping before
2719 		 * inserting it in the frame.  The hardware will then add this
2720 		 * each time a beacon frame is sent.  Note that we align vap's
2721 		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2722 		 * timestamp in one beacon interval while the others get a
2723 		 * timstamp aligned to the next interval.
2724 		 */
2725 		tsfadjust = ni->ni_intval *
2726 		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2727 		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2728 
2729 		DPRINTF(sc, ATH_DEBUG_BEACON,
2730 		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2731 		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2732 		    avp->av_bslot, ni->ni_intval,
2733 		    (long long unsigned) le64toh(tsfadjust));
2734 
2735 		wh = mtod(m, struct ieee80211_frame *);
2736 		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2737 	}
2738 	bf->bf_m = m;
2739 	bf->bf_node = ieee80211_ref_node(ni);
2740 
2741 	return 0;
2742 }
2743 
2744 /*
2745  * Setup the beacon frame for transmit.
2746  */
2747 static void
2748 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2749 {
2750 #define	USE_SHPREAMBLE(_ic) \
2751 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2752 		== IEEE80211_F_SHPREAMBLE)
2753 	struct ieee80211_node *ni = bf->bf_node;
2754 	struct ieee80211com *ic = ni->ni_ic;
2755 	struct mbuf *m = bf->bf_m;
2756 	struct ath_hal *ah = sc->sc_ah;
2757 	struct ath_desc *ds;
2758 	int flags, antenna;
2759 	const HAL_RATE_TABLE *rt;
2760 	u_int8_t rix, rate;
2761 
2762 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2763 		__func__, m, m->m_len);
2764 
2765 	/* setup descriptors */
2766 	ds = bf->bf_desc;
2767 	bf->bf_last = bf;
2768 	bf->bf_lastds = ds;
2769 
2770 	flags = HAL_TXDESC_NOACK;
2771 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2772 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2773 		flags |= HAL_TXDESC_VEOL;
2774 		/*
2775 		 * Let hardware handle antenna switching.
2776 		 */
2777 		antenna = sc->sc_txantenna;
2778 	} else {
2779 		ds->ds_link = 0;
2780 		/*
2781 		 * Switch antenna every 4 beacons.
2782 		 * XXX assumes two antenna
2783 		 */
2784 		if (sc->sc_txantenna != 0)
2785 			antenna = sc->sc_txantenna;
2786 		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2787 			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2788 		else
2789 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2790 	}
2791 
2792 	KASSERT(bf->bf_nseg == 1,
2793 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2794 	ds->ds_data = bf->bf_segs[0].ds_addr;
2795 	/*
2796 	 * Calculate rate code.
2797 	 * XXX everything at min xmit rate
2798 	 */
2799 	rix = 0;
2800 	rt = sc->sc_currates;
2801 	rate = rt->info[rix].rateCode;
2802 	if (USE_SHPREAMBLE(ic))
2803 		rate |= rt->info[rix].shortPreamble;
2804 	ath_hal_setuptxdesc(ah, ds
2805 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2806 		, sizeof(struct ieee80211_frame)/* header length */
2807 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2808 		, ni->ni_txpower		/* txpower XXX */
2809 		, rate, 1			/* series 0 rate/tries */
2810 		, HAL_TXKEYIX_INVALID		/* no encryption */
2811 		, antenna			/* antenna mode */
2812 		, flags				/* no ack, veol for beacons */
2813 		, 0				/* rts/cts rate */
2814 		, 0				/* rts/cts duration */
2815 	);
2816 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2817 	ath_hal_filltxdesc(ah, ds
2818 		, roundup(m->m_len, 4)		/* buffer length */
2819 		, AH_TRUE			/* first segment */
2820 		, AH_TRUE			/* last segment */
2821 		, ds				/* first descriptor */
2822 	);
2823 #if 0
2824 	ath_desc_swap(ds);
2825 #endif
2826 #undef USE_SHPREAMBLE
2827 }
2828 
2829 static void
2830 ath_beacon_update(struct ieee80211vap *vap, int item)
2831 {
2832 	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2833 
2834 	setbit(bo->bo_flags, item);
2835 }
2836 
2837 /*
2838  * Append the contents of src to dst; both queues
2839  * are assumed to be locked.
2840  */
2841 static void
2842 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2843 {
2844 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2845 	dst->axq_link = src->axq_link;
2846 	src->axq_link = NULL;
2847 	dst->axq_depth += src->axq_depth;
2848 	dst->axq_aggr_depth += src->axq_aggr_depth;
2849 	src->axq_depth = 0;
2850 	src->axq_aggr_depth = 0;
2851 }
2852 
2853 /*
2854  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2855  * frame contents are done as needed and the slot time is
2856  * also adjusted based on current state.
2857  */
2858 static void
2859 ath_beacon_proc(void *arg, int pending)
2860 {
2861 	struct ath_softc *sc = arg;
2862 	struct ath_hal *ah = sc->sc_ah;
2863 	struct ieee80211vap *vap;
2864 	struct ath_buf *bf;
2865 	int slot, otherant;
2866 	uint32_t bfaddr;
2867 
2868 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2869 		__func__, pending);
2870 	/*
2871 	 * Check if the previous beacon has gone out.  If
2872 	 * not don't try to post another, skip this period
2873 	 * and wait for the next.  Missed beacons indicate
2874 	 * a problem and should not occur.  If we miss too
2875 	 * many consecutive beacons reset the device.
2876 	 */
2877 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2878 		sc->sc_bmisscount++;
2879 		sc->sc_stats.ast_be_missed++;
2880 		DPRINTF(sc, ATH_DEBUG_BEACON,
2881 			"%s: missed %u consecutive beacons\n",
2882 			__func__, sc->sc_bmisscount);
2883 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2884 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2885 		return;
2886 	}
2887 	if (sc->sc_bmisscount != 0) {
2888 		DPRINTF(sc, ATH_DEBUG_BEACON,
2889 			"%s: resume beacon xmit after %u misses\n",
2890 			__func__, sc->sc_bmisscount);
2891 		sc->sc_bmisscount = 0;
2892 	}
2893 
2894 	if (sc->sc_stagbeacons) {			/* staggered beacons */
2895 		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2896 		uint32_t tsftu;
2897 
2898 		tsftu = ath_hal_gettsf32(ah) >> 10;
2899 		/* XXX lintval */
2900 		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2901 		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2902 		bfaddr = 0;
2903 		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2904 			bf = ath_beacon_generate(sc, vap);
2905 			if (bf != NULL)
2906 				bfaddr = bf->bf_daddr;
2907 		}
2908 	} else {					/* burst'd beacons */
2909 		uint32_t *bflink = &bfaddr;
2910 
2911 		for (slot = 0; slot < ATH_BCBUF; slot++) {
2912 			vap = sc->sc_bslot[slot];
2913 			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2914 				bf = ath_beacon_generate(sc, vap);
2915 				if (bf != NULL) {
2916 					*bflink = bf->bf_daddr;
2917 					bflink = &bf->bf_desc->ds_link;
2918 				}
2919 			}
2920 		}
2921 		*bflink = 0;				/* terminate list */
2922 	}
2923 
2924 	/*
2925 	 * Handle slot time change when a non-ERP station joins/leaves
2926 	 * an 11g network.  The 802.11 layer notifies us via callback,
2927 	 * we mark updateslot, then wait one beacon before effecting
2928 	 * the change.  This gives associated stations at least one
2929 	 * beacon interval to note the state change.
2930 	 */
2931 	/* XXX locking */
2932 	if (sc->sc_updateslot == UPDATE) {
2933 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2934 		sc->sc_slotupdate = slot;
2935 	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
2936 		ath_setslottime(sc);		/* commit change to h/w */
2937 
2938 	/*
2939 	 * Check recent per-antenna transmit statistics and flip
2940 	 * the default antenna if noticeably more frames went out
2941 	 * on the non-default antenna.
2942 	 * XXX assumes 2 anntenae
2943 	 */
2944 	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
2945 		otherant = sc->sc_defant & 1 ? 2 : 1;
2946 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2947 			ath_setdefantenna(sc, otherant);
2948 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2949 	}
2950 
2951 	if (bfaddr != 0) {
2952 		/*
2953 		 * Stop any current dma and put the new frame on the queue.
2954 		 * This should never fail since we check above that no frames
2955 		 * are still pending on the queue.
2956 		 */
2957 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2958 			DPRINTF(sc, ATH_DEBUG_ANY,
2959 				"%s: beacon queue %u did not stop?\n",
2960 				__func__, sc->sc_bhalq);
2961 		}
2962 		/* NB: cabq traffic should already be queued and primed */
2963 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
2964 		ath_hal_txstart(ah, sc->sc_bhalq);
2965 
2966 		sc->sc_stats.ast_be_xmit++;
2967 	}
2968 }
2969 
2970 static struct ath_buf *
2971 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
2972 {
2973 	struct ath_vap *avp = ATH_VAP(vap);
2974 	struct ath_txq *cabq = sc->sc_cabq;
2975 	struct ath_buf *bf;
2976 	struct mbuf *m;
2977 	int nmcastq, error;
2978 
2979 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2980 	    ("not running, state %d", vap->iv_state));
2981 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2982 
2983 	/*
2984 	 * Update dynamic beacon contents.  If this returns
2985 	 * non-zero then we need to remap the memory because
2986 	 * the beacon frame changed size (probably because
2987 	 * of the TIM bitmap).
2988 	 */
2989 	bf = avp->av_bcbuf;
2990 	m = bf->bf_m;
2991 	nmcastq = avp->av_mcastq.axq_depth;
2992 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
2993 		/* XXX too conservative? */
2994 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2995 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2996 					     bf->bf_segs, &bf->bf_nseg,
2997 					     BUS_DMA_NOWAIT);
2998 		if (error != 0) {
2999 			if_printf(vap->iv_ifp,
3000 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3001 			    __func__, error);
3002 			return NULL;
3003 		}
3004 	}
3005 	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
3006 		DPRINTF(sc, ATH_DEBUG_BEACON,
3007 		    "%s: cabq did not drain, mcastq %u cabq %u\n",
3008 		    __func__, nmcastq, cabq->axq_depth);
3009 		sc->sc_stats.ast_cabq_busy++;
3010 		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
3011 			/*
3012 			 * CABQ traffic from a previous vap is still pending.
3013 			 * We must drain the q before this beacon frame goes
3014 			 * out as otherwise this vap's stations will get cab
3015 			 * frames from a different vap.
3016 			 * XXX could be slow causing us to miss DBA
3017 			 */
3018 			ath_tx_draintxq(sc, cabq);
3019 		}
3020 	}
3021 	ath_beacon_setup(sc, bf);
3022 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3023 
3024 	/*
3025 	 * Enable the CAB queue before the beacon queue to
3026 	 * insure cab frames are triggered by this beacon.
3027 	 */
3028 	if (avp->av_boff.bo_tim[4] & 1) {
3029 		struct ath_hal *ah = sc->sc_ah;
3030 
3031 		/* NB: only at DTIM */
3032 		ATH_TXQ_LOCK(cabq);
3033 		ATH_TXQ_LOCK(&avp->av_mcastq);
3034 		if (nmcastq) {
3035 			struct ath_buf *bfm;
3036 
3037 			/*
3038 			 * Move frames from the s/w mcast q to the h/w cab q.
3039 			 * XXX MORE_DATA bit
3040 			 */
3041 			bfm = TAILQ_FIRST(&avp->av_mcastq.axq_q);
3042 			if (cabq->axq_link != NULL) {
3043 				*cabq->axq_link = bfm->bf_daddr;
3044 			} else
3045 				ath_hal_puttxbuf(ah, cabq->axq_qnum,
3046 					bfm->bf_daddr);
3047 			ath_txqmove(cabq, &avp->av_mcastq);
3048 
3049 			sc->sc_stats.ast_cabq_xmit += nmcastq;
3050 		}
3051 		/* NB: gated by beacon so safe to start here */
3052 		if (! TAILQ_EMPTY(&(cabq->axq_q)))
3053 			ath_hal_txstart(ah, cabq->axq_qnum);
3054 		ATH_TXQ_UNLOCK(&avp->av_mcastq);
3055 		ATH_TXQ_UNLOCK(cabq);
3056 	}
3057 	return bf;
3058 }
3059 
3060 static void
3061 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3062 {
3063 	struct ath_vap *avp = ATH_VAP(vap);
3064 	struct ath_hal *ah = sc->sc_ah;
3065 	struct ath_buf *bf;
3066 	struct mbuf *m;
3067 	int error;
3068 
3069 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3070 
3071 	/*
3072 	 * Update dynamic beacon contents.  If this returns
3073 	 * non-zero then we need to remap the memory because
3074 	 * the beacon frame changed size (probably because
3075 	 * of the TIM bitmap).
3076 	 */
3077 	bf = avp->av_bcbuf;
3078 	m = bf->bf_m;
3079 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3080 		/* XXX too conservative? */
3081 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3082 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3083 					     bf->bf_segs, &bf->bf_nseg,
3084 					     BUS_DMA_NOWAIT);
3085 		if (error != 0) {
3086 			if_printf(vap->iv_ifp,
3087 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3088 			    __func__, error);
3089 			return;
3090 		}
3091 	}
3092 	ath_beacon_setup(sc, bf);
3093 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3094 
3095 	/* NB: caller is known to have already stopped tx dma */
3096 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3097 	ath_hal_txstart(ah, sc->sc_bhalq);
3098 }
3099 
3100 /*
3101  * Reset the hardware after detecting beacons have stopped.
3102  */
3103 static void
3104 ath_bstuck_proc(void *arg, int pending)
3105 {
3106 	struct ath_softc *sc = arg;
3107 	struct ifnet *ifp = sc->sc_ifp;
3108 	uint32_t hangs = 0;
3109 
3110 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3111 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3112 
3113 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3114 		sc->sc_bmisscount);
3115 	sc->sc_stats.ast_bstuck++;
3116 	/*
3117 	 * This assumes that there's no simultaneous channel mode change
3118 	 * occuring.
3119 	 */
3120 	ath_reset(ifp, ATH_RESET_NOLOSS);
3121 }
3122 
3123 /*
3124  * Reclaim beacon resources and return buffer to the pool.
3125  */
3126 static void
3127 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3128 {
3129 
3130 	if (bf->bf_m != NULL) {
3131 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3132 		m_freem(bf->bf_m);
3133 		bf->bf_m = NULL;
3134 	}
3135 	if (bf->bf_node != NULL) {
3136 		ieee80211_free_node(bf->bf_node);
3137 		bf->bf_node = NULL;
3138 	}
3139 	TAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3140 }
3141 
3142 /*
3143  * Reclaim beacon resources.
3144  */
3145 static void
3146 ath_beacon_free(struct ath_softc *sc)
3147 {
3148 	struct ath_buf *bf;
3149 
3150 	TAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3151 		if (bf->bf_m != NULL) {
3152 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3153 			m_freem(bf->bf_m);
3154 			bf->bf_m = NULL;
3155 		}
3156 		if (bf->bf_node != NULL) {
3157 			ieee80211_free_node(bf->bf_node);
3158 			bf->bf_node = NULL;
3159 		}
3160 	}
3161 }
3162 
3163 /*
3164  * Configure the beacon and sleep timers.
3165  *
3166  * When operating as an AP this resets the TSF and sets
3167  * up the hardware to notify us when we need to issue beacons.
3168  *
3169  * When operating in station mode this sets up the beacon
3170  * timers according to the timestamp of the last received
3171  * beacon and the current TSF, configures PCF and DTIM
3172  * handling, programs the sleep registers so the hardware
3173  * will wakeup in time to receive beacons, and configures
3174  * the beacon miss handling so we'll receive a BMISS
3175  * interrupt when we stop seeing beacons from the AP
3176  * we've associated with.
3177  */
3178 static void
3179 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3180 {
3181 #define	TSF_TO_TU(_h,_l) \
3182 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3183 #define	FUDGE	2
3184 	struct ath_hal *ah = sc->sc_ah;
3185 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3186 	struct ieee80211_node *ni;
3187 	u_int32_t nexttbtt, intval, tsftu;
3188 	u_int64_t tsf;
3189 
3190 	if (vap == NULL)
3191 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3192 	ni = vap->iv_bss;
3193 
3194 	/* extract tstamp from last beacon and convert to TU */
3195 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3196 			     LE_READ_4(ni->ni_tstamp.data));
3197 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3198 	    ic->ic_opmode == IEEE80211_M_MBSS) {
3199 		/*
3200 		 * For multi-bss ap/mesh support beacons are either staggered
3201 		 * evenly over N slots or burst together.  For the former
3202 		 * arrange for the SWBA to be delivered for each slot.
3203 		 * Slots that are not occupied will generate nothing.
3204 		 */
3205 		/* NB: the beacon interval is kept internally in TU's */
3206 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3207 		if (sc->sc_stagbeacons)
3208 			intval /= ATH_BCBUF;
3209 	} else {
3210 		/* NB: the beacon interval is kept internally in TU's */
3211 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3212 	}
3213 	if (nexttbtt == 0)		/* e.g. for ap mode */
3214 		nexttbtt = intval;
3215 	else if (intval)		/* NB: can be 0 for monitor mode */
3216 		nexttbtt = roundup(nexttbtt, intval);
3217 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3218 		__func__, nexttbtt, intval, ni->ni_intval);
3219 	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3220 		HAL_BEACON_STATE bs;
3221 		int dtimperiod, dtimcount;
3222 		int cfpperiod, cfpcount;
3223 
3224 		/*
3225 		 * Setup dtim and cfp parameters according to
3226 		 * last beacon we received (which may be none).
3227 		 */
3228 		dtimperiod = ni->ni_dtim_period;
3229 		if (dtimperiod <= 0)		/* NB: 0 if not known */
3230 			dtimperiod = 1;
3231 		dtimcount = ni->ni_dtim_count;
3232 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3233 			dtimcount = 0;		/* XXX? */
3234 		cfpperiod = 1;			/* NB: no PCF support yet */
3235 		cfpcount = 0;
3236 		/*
3237 		 * Pull nexttbtt forward to reflect the current
3238 		 * TSF and calculate dtim+cfp state for the result.
3239 		 */
3240 		tsf = ath_hal_gettsf64(ah);
3241 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3242 		do {
3243 			nexttbtt += intval;
3244 			if (--dtimcount < 0) {
3245 				dtimcount = dtimperiod - 1;
3246 				if (--cfpcount < 0)
3247 					cfpcount = cfpperiod - 1;
3248 			}
3249 		} while (nexttbtt < tsftu);
3250 		memset(&bs, 0, sizeof(bs));
3251 		bs.bs_intval = intval;
3252 		bs.bs_nexttbtt = nexttbtt;
3253 		bs.bs_dtimperiod = dtimperiod*intval;
3254 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3255 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3256 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3257 		bs.bs_cfpmaxduration = 0;
3258 #if 0
3259 		/*
3260 		 * The 802.11 layer records the offset to the DTIM
3261 		 * bitmap while receiving beacons; use it here to
3262 		 * enable h/w detection of our AID being marked in
3263 		 * the bitmap vector (to indicate frames for us are
3264 		 * pending at the AP).
3265 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3266 		 * XXX enable based on h/w rev for newer chips
3267 		 */
3268 		bs.bs_timoffset = ni->ni_timoff;
3269 #endif
3270 		/*
3271 		 * Calculate the number of consecutive beacons to miss
3272 		 * before taking a BMISS interrupt.
3273 		 * Note that we clamp the result to at most 10 beacons.
3274 		 */
3275 		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3276 		if (bs.bs_bmissthreshold > 10)
3277 			bs.bs_bmissthreshold = 10;
3278 		else if (bs.bs_bmissthreshold <= 0)
3279 			bs.bs_bmissthreshold = 1;
3280 
3281 		/*
3282 		 * Calculate sleep duration.  The configuration is
3283 		 * given in ms.  We insure a multiple of the beacon
3284 		 * period is used.  Also, if the sleep duration is
3285 		 * greater than the DTIM period then it makes senses
3286 		 * to make it a multiple of that.
3287 		 *
3288 		 * XXX fixed at 100ms
3289 		 */
3290 		bs.bs_sleepduration =
3291 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3292 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3293 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3294 
3295 		DPRINTF(sc, ATH_DEBUG_BEACON,
3296 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3297 			, __func__
3298 			, tsf, tsftu
3299 			, bs.bs_intval
3300 			, bs.bs_nexttbtt
3301 			, bs.bs_dtimperiod
3302 			, bs.bs_nextdtim
3303 			, bs.bs_bmissthreshold
3304 			, bs.bs_sleepduration
3305 			, bs.bs_cfpperiod
3306 			, bs.bs_cfpmaxduration
3307 			, bs.bs_cfpnext
3308 			, bs.bs_timoffset
3309 		);
3310 		ath_hal_intrset(ah, 0);
3311 		ath_hal_beacontimers(ah, &bs);
3312 		sc->sc_imask |= HAL_INT_BMISS;
3313 		ath_hal_intrset(ah, sc->sc_imask);
3314 	} else {
3315 		ath_hal_intrset(ah, 0);
3316 		if (nexttbtt == intval)
3317 			intval |= HAL_BEACON_RESET_TSF;
3318 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3319 			/*
3320 			 * In IBSS mode enable the beacon timers but only
3321 			 * enable SWBA interrupts if we need to manually
3322 			 * prepare beacon frames.  Otherwise we use a
3323 			 * self-linked tx descriptor and let the hardware
3324 			 * deal with things.
3325 			 */
3326 			intval |= HAL_BEACON_ENA;
3327 			if (!sc->sc_hasveol)
3328 				sc->sc_imask |= HAL_INT_SWBA;
3329 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3330 				/*
3331 				 * Pull nexttbtt forward to reflect
3332 				 * the current TSF.
3333 				 */
3334 				tsf = ath_hal_gettsf64(ah);
3335 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3336 				do {
3337 					nexttbtt += intval;
3338 				} while (nexttbtt < tsftu);
3339 			}
3340 			ath_beaconq_config(sc);
3341 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3342 		    ic->ic_opmode == IEEE80211_M_MBSS) {
3343 			/*
3344 			 * In AP/mesh mode we enable the beacon timers
3345 			 * and SWBA interrupts to prepare beacon frames.
3346 			 */
3347 			intval |= HAL_BEACON_ENA;
3348 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3349 			ath_beaconq_config(sc);
3350 		}
3351 		ath_hal_beaconinit(ah, nexttbtt, intval);
3352 		sc->sc_bmisscount = 0;
3353 		ath_hal_intrset(ah, sc->sc_imask);
3354 		/*
3355 		 * When using a self-linked beacon descriptor in
3356 		 * ibss mode load it once here.
3357 		 */
3358 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3359 			ath_beacon_start_adhoc(sc, vap);
3360 	}
3361 	sc->sc_syncbeacon = 0;
3362 #undef FUDGE
3363 #undef TSF_TO_TU
3364 }
3365 
3366 static void
3367 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3368 {
3369 	bus_addr_t *paddr = (bus_addr_t*) arg;
3370 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3371 	*paddr = segs->ds_addr;
3372 }
3373 
3374 static int
3375 ath_descdma_setup(struct ath_softc *sc,
3376 	struct ath_descdma *dd, ath_bufhead *head,
3377 	const char *name, int nbuf, int ndesc)
3378 {
3379 #define	DS2PHYS(_dd, _ds) \
3380 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3381 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3382 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3383 	struct ifnet *ifp = sc->sc_ifp;
3384 	uint8_t *ds;
3385 	struct ath_buf *bf;
3386 	int i, bsize, error;
3387 	int desc_len;
3388 
3389 	desc_len = sizeof(struct ath_desc);
3390 
3391 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3392 	    __func__, name, nbuf, ndesc);
3393 
3394 	dd->dd_name = name;
3395 	dd->dd_desc_len = desc_len * nbuf * ndesc;
3396 
3397 	/*
3398 	 * Merlin work-around:
3399 	 * Descriptors that cross the 4KB boundary can't be used.
3400 	 * Assume one skipped descriptor per 4KB page.
3401 	 */
3402 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3403 		int numdescpage = 4096 / (desc_len * ndesc);
3404 		dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096;
3405 	}
3406 
3407 	/*
3408 	 * Setup DMA descriptor area.
3409 	 */
3410 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3411 		       PAGE_SIZE, 0,		/* alignment, bounds */
3412 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3413 		       BUS_SPACE_MAXADDR,	/* highaddr */
3414 		       NULL, NULL,		/* filter, filterarg */
3415 		       dd->dd_desc_len,		/* maxsize */
3416 		       1,			/* nsegments */
3417 		       dd->dd_desc_len,		/* maxsegsize */
3418 		       BUS_DMA_ALLOCNOW,	/* flags */
3419 		       NULL,			/* lockfunc */
3420 		       NULL,			/* lockarg */
3421 		       &dd->dd_dmat);
3422 	if (error != 0) {
3423 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3424 		return error;
3425 	}
3426 
3427 	/* allocate descriptors */
3428 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3429 	if (error != 0) {
3430 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3431 			"error %u\n", dd->dd_name, error);
3432 		goto fail0;
3433 	}
3434 
3435 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3436 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3437 				 &dd->dd_dmamap);
3438 	if (error != 0) {
3439 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3440 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3441 		goto fail1;
3442 	}
3443 
3444 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3445 				dd->dd_desc, dd->dd_desc_len,
3446 				ath_load_cb, &dd->dd_desc_paddr,
3447 				BUS_DMA_NOWAIT);
3448 	if (error != 0) {
3449 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3450 			dd->dd_name, error);
3451 		goto fail2;
3452 	}
3453 
3454 	ds = (uint8_t *) dd->dd_desc;
3455 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3456 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3457 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3458 
3459 	/* allocate rx buffers */
3460 	bsize = sizeof(struct ath_buf) * nbuf;
3461 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3462 	if (bf == NULL) {
3463 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3464 			dd->dd_name, bsize);
3465 		goto fail3;
3466 	}
3467 	dd->dd_bufptr = bf;
3468 
3469 	TAILQ_INIT(head);
3470 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) {
3471 		bf->bf_desc = (struct ath_desc *) ds;
3472 		bf->bf_daddr = DS2PHYS(dd, ds);
3473 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3474 			/*
3475 			 * Merlin WAR: Skip descriptor addresses which
3476 			 * cause 4KB boundary crossing along any point
3477 			 * in the descriptor.
3478 			 */
3479 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3480 			     desc_len * ndesc)) {
3481 				/* Start at the next page */
3482 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3483 				bf->bf_desc = (struct ath_desc *) ds;
3484 				bf->bf_daddr = DS2PHYS(dd, ds);
3485 			}
3486 		}
3487 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3488 				&bf->bf_dmamap);
3489 		if (error != 0) {
3490 			if_printf(ifp, "unable to create dmamap for %s "
3491 				"buffer %u, error %u\n", dd->dd_name, i, error);
3492 			ath_descdma_cleanup(sc, dd, head);
3493 			return error;
3494 		}
3495 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3496 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3497 	}
3498 	return 0;
3499 fail3:
3500 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3501 fail2:
3502 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3503 fail1:
3504 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3505 fail0:
3506 	bus_dma_tag_destroy(dd->dd_dmat);
3507 	memset(dd, 0, sizeof(*dd));
3508 	return error;
3509 #undef DS2PHYS
3510 #undef ATH_DESC_4KB_BOUND_CHECK
3511 }
3512 
3513 static void
3514 ath_descdma_cleanup(struct ath_softc *sc,
3515 	struct ath_descdma *dd, ath_bufhead *head)
3516 {
3517 	struct ath_buf *bf;
3518 	struct ieee80211_node *ni;
3519 
3520 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3521 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3522 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3523 	bus_dma_tag_destroy(dd->dd_dmat);
3524 
3525 	TAILQ_FOREACH(bf, head, bf_list) {
3526 		if (bf->bf_m) {
3527 			m_freem(bf->bf_m);
3528 			bf->bf_m = NULL;
3529 		}
3530 		if (bf->bf_dmamap != NULL) {
3531 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3532 			bf->bf_dmamap = NULL;
3533 		}
3534 		ni = bf->bf_node;
3535 		bf->bf_node = NULL;
3536 		if (ni != NULL) {
3537 			/*
3538 			 * Reclaim node reference.
3539 			 */
3540 			ieee80211_free_node(ni);
3541 		}
3542 	}
3543 
3544 	TAILQ_INIT(head);
3545 	free(dd->dd_bufptr, M_ATHDEV);
3546 	memset(dd, 0, sizeof(*dd));
3547 }
3548 
3549 static int
3550 ath_desc_alloc(struct ath_softc *sc)
3551 {
3552 	int error;
3553 
3554 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3555 			"rx", ath_rxbuf, 1);
3556 	if (error != 0)
3557 		return error;
3558 
3559 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3560 			"tx", ath_txbuf, ATH_TXDESC);
3561 	if (error != 0) {
3562 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3563 		return error;
3564 	}
3565 
3566 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3567 			"beacon", ATH_BCBUF, 1);
3568 	if (error != 0) {
3569 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3570 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3571 		return error;
3572 	}
3573 	return 0;
3574 }
3575 
3576 static void
3577 ath_desc_free(struct ath_softc *sc)
3578 {
3579 
3580 	if (sc->sc_bdma.dd_desc_len != 0)
3581 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3582 	if (sc->sc_txdma.dd_desc_len != 0)
3583 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3584 	if (sc->sc_rxdma.dd_desc_len != 0)
3585 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3586 }
3587 
3588 static struct ieee80211_node *
3589 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3590 {
3591 	struct ieee80211com *ic = vap->iv_ic;
3592 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3593 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3594 	struct ath_node *an;
3595 
3596 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3597 	if (an == NULL) {
3598 		/* XXX stat+msg */
3599 		return NULL;
3600 	}
3601 	ath_rate_node_init(sc, an);
3602 
3603 	/* Setup the mutex - there's no associd yet so set the name to NULL */
3604 	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3605 	    device_get_nameunit(sc->sc_dev), an);
3606 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3607 
3608 	/* XXX setup ath_tid */
3609 	ath_tx_tid_init(sc, an);
3610 
3611 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3612 	return &an->an_node;
3613 }
3614 
3615 static void
3616 ath_node_cleanup(struct ieee80211_node *ni)
3617 {
3618 	struct ieee80211com *ic = ni->ni_ic;
3619 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3620 
3621 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3622 	ath_tx_node_flush(sc, ATH_NODE(ni));
3623 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3624 	sc->sc_node_cleanup(ni);
3625 }
3626 
3627 static void
3628 ath_node_free(struct ieee80211_node *ni)
3629 {
3630 	struct ieee80211com *ic = ni->ni_ic;
3631 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3632 
3633 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3634 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3635 	sc->sc_node_free(ni);
3636 }
3637 
3638 static void
3639 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3640 {
3641 	struct ieee80211com *ic = ni->ni_ic;
3642 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3643 	struct ath_hal *ah = sc->sc_ah;
3644 
3645 	*rssi = ic->ic_node_getrssi(ni);
3646 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3647 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3648 	else
3649 		*noise = -95;		/* nominally correct */
3650 }
3651 
3652 static int
3653 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3654 {
3655 	struct ath_hal *ah = sc->sc_ah;
3656 	int error;
3657 	struct mbuf *m;
3658 	struct ath_desc *ds;
3659 
3660 	m = bf->bf_m;
3661 	if (m == NULL) {
3662 		/*
3663 		 * NB: by assigning a page to the rx dma buffer we
3664 		 * implicitly satisfy the Atheros requirement that
3665 		 * this buffer be cache-line-aligned and sized to be
3666 		 * multiple of the cache line size.  Not doing this
3667 		 * causes weird stuff to happen (for the 5210 at least).
3668 		 */
3669 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3670 		if (m == NULL) {
3671 			DPRINTF(sc, ATH_DEBUG_ANY,
3672 				"%s: no mbuf/cluster\n", __func__);
3673 			sc->sc_stats.ast_rx_nombuf++;
3674 			return ENOMEM;
3675 		}
3676 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3677 
3678 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3679 					     bf->bf_dmamap, m,
3680 					     bf->bf_segs, &bf->bf_nseg,
3681 					     BUS_DMA_NOWAIT);
3682 		if (error != 0) {
3683 			DPRINTF(sc, ATH_DEBUG_ANY,
3684 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3685 			    __func__, error);
3686 			sc->sc_stats.ast_rx_busdma++;
3687 			m_freem(m);
3688 			return error;
3689 		}
3690 		KASSERT(bf->bf_nseg == 1,
3691 			("multi-segment packet; nseg %u", bf->bf_nseg));
3692 		bf->bf_m = m;
3693 	}
3694 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3695 
3696 	/*
3697 	 * Setup descriptors.  For receive we always terminate
3698 	 * the descriptor list with a self-linked entry so we'll
3699 	 * not get overrun under high load (as can happen with a
3700 	 * 5212 when ANI processing enables PHY error frames).
3701 	 *
3702 	 * To insure the last descriptor is self-linked we create
3703 	 * each descriptor as self-linked and add it to the end.  As
3704 	 * each additional descriptor is added the previous self-linked
3705 	 * entry is ``fixed'' naturally.  This should be safe even
3706 	 * if DMA is happening.  When processing RX interrupts we
3707 	 * never remove/process the last, self-linked, entry on the
3708 	 * descriptor list.  This insures the hardware always has
3709 	 * someplace to write a new frame.
3710 	 */
3711 	/*
3712 	 * 11N: we can no longer afford to self link the last descriptor.
3713 	 * MAC acknowledges BA status as long as it copies frames to host
3714 	 * buffer (or rx fifo). This can incorrectly acknowledge packets
3715 	 * to a sender if last desc is self-linked.
3716 	 */
3717 	ds = bf->bf_desc;
3718 	if (sc->sc_rxslink)
3719 		ds->ds_link = bf->bf_daddr;	/* link to self */
3720 	else
3721 		ds->ds_link = 0;		/* terminate the list */
3722 	ds->ds_data = bf->bf_segs[0].ds_addr;
3723 	ath_hal_setuprxdesc(ah, ds
3724 		, m->m_len		/* buffer size */
3725 		, 0
3726 	);
3727 
3728 	if (sc->sc_rxlink != NULL)
3729 		*sc->sc_rxlink = bf->bf_daddr;
3730 	sc->sc_rxlink = &ds->ds_link;
3731 	return 0;
3732 }
3733 
3734 /*
3735  * Extend 15-bit time stamp from rx descriptor to
3736  * a full 64-bit TSF using the specified TSF.
3737  */
3738 static __inline u_int64_t
3739 ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf)
3740 {
3741 	if ((tsf & 0x7fff) < rstamp)
3742 		tsf -= 0x8000;
3743 
3744 	return ((tsf &~ 0x7fff) | rstamp);
3745 }
3746 
3747 /*
3748  * Extend 32-bit time stamp from rx descriptor to
3749  * a full 64-bit TSF using the specified TSF.
3750  */
3751 static __inline u_int64_t
3752 ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf)
3753 {
3754 	u_int32_t tsf_low = tsf & 0xffffffff;
3755 	u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp;
3756 
3757 	if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000))
3758 		tsf64 -= 0x100000000ULL;
3759 
3760 	if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000))
3761 		tsf64 += 0x100000000ULL;
3762 
3763 	return tsf64;
3764 }
3765 
3766 /*
3767  * Extend the TSF from the RX descriptor to a full 64 bit TSF.
3768  * Earlier hardware versions only wrote the low 15 bits of the
3769  * TSF into the RX descriptor; later versions (AR5416 and up)
3770  * include the 32 bit TSF value.
3771  */
3772 static __inline u_int64_t
3773 ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf)
3774 {
3775 	if (sc->sc_rxtsf32)
3776 		return ath_extend_tsf32(rstamp, tsf);
3777 	else
3778 		return ath_extend_tsf15(rstamp, tsf);
3779 }
3780 
3781 /*
3782  * Intercept management frames to collect beacon rssi data
3783  * and to do ibss merges.
3784  */
3785 static void
3786 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3787 	int subtype, int rssi, int nf)
3788 {
3789 	struct ieee80211vap *vap = ni->ni_vap;
3790 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3791 
3792 	/*
3793 	 * Call up first so subsequent work can use information
3794 	 * potentially stored in the node (e.g. for ibss merge).
3795 	 */
3796 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3797 	switch (subtype) {
3798 	case IEEE80211_FC0_SUBTYPE_BEACON:
3799 		/* update rssi statistics for use by the hal */
3800 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3801 		if (sc->sc_syncbeacon &&
3802 		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3803 			/*
3804 			 * Resync beacon timers using the tsf of the beacon
3805 			 * frame we just received.
3806 			 */
3807 			ath_beacon_config(sc, vap);
3808 		}
3809 		/* fall thru... */
3810 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3811 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3812 		    vap->iv_state == IEEE80211_S_RUN) {
3813 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3814 			uint64_t tsf = ath_extend_tsf(sc, rstamp,
3815 				ath_hal_gettsf64(sc->sc_ah));
3816 			/*
3817 			 * Handle ibss merge as needed; check the tsf on the
3818 			 * frame before attempting the merge.  The 802.11 spec
3819 			 * says the station should change it's bssid to match
3820 			 * the oldest station with the same ssid, where oldest
3821 			 * is determined by the tsf.  Note that hardware
3822 			 * reconfiguration happens through callback to
3823 			 * ath_newstate as the state machine will go from
3824 			 * RUN -> RUN when this happens.
3825 			 */
3826 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3827 				DPRINTF(sc, ATH_DEBUG_STATE,
3828 				    "ibss merge, rstamp %u tsf %ju "
3829 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3830 				    (uintmax_t)ni->ni_tstamp.tsf);
3831 				(void) ieee80211_ibss_merge(ni);
3832 			}
3833 		}
3834 		break;
3835 	}
3836 }
3837 
3838 /*
3839  * Set the default antenna.
3840  */
3841 static void
3842 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3843 {
3844 	struct ath_hal *ah = sc->sc_ah;
3845 
3846 	/* XXX block beacon interrupts */
3847 	ath_hal_setdefantenna(ah, antenna);
3848 	if (sc->sc_defant != antenna)
3849 		sc->sc_stats.ast_ant_defswitch++;
3850 	sc->sc_defant = antenna;
3851 	sc->sc_rxotherant = 0;
3852 }
3853 
3854 static void
3855 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3856 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3857 {
3858 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3859 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3860 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3861 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3862 	struct ath_softc *sc = ifp->if_softc;
3863 	const HAL_RATE_TABLE *rt;
3864 	uint8_t rix;
3865 
3866 	rt = sc->sc_currates;
3867 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3868 	rix = rt->rateCodeToIndex[rs->rs_rate];
3869 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3870 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3871 #ifdef AH_SUPPORT_AR5416
3872 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3873 	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3874 		struct ieee80211com *ic = ifp->if_l2com;
3875 
3876 		if ((rs->rs_flags & HAL_RX_2040) == 0)
3877 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3878 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3879 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3880 		else
3881 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3882 		if ((rs->rs_flags & HAL_RX_GI) == 0)
3883 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3884 	}
3885 #endif
3886 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
3887 	if (rs->rs_status & HAL_RXERR_CRC)
3888 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3889 	/* XXX propagate other error flags from descriptor */
3890 	sc->sc_rx_th.wr_antnoise = nf;
3891 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
3892 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3893 #undef CHAN_HT
3894 #undef CHAN_HT20
3895 #undef CHAN_HT40U
3896 #undef CHAN_HT40D
3897 }
3898 
3899 static void
3900 ath_handle_micerror(struct ieee80211com *ic,
3901 	struct ieee80211_frame *wh, int keyix)
3902 {
3903 	struct ieee80211_node *ni;
3904 
3905 	/* XXX recheck MIC to deal w/ chips that lie */
3906 	/* XXX discard MIC errors on !data frames */
3907 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3908 	if (ni != NULL) {
3909 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3910 		ieee80211_free_node(ni);
3911 	}
3912 }
3913 
3914 /*
3915  * Only run the RX proc if it's not already running.
3916  * Since this may get run as part of the reset/flush path,
3917  * the task can't clash with an existing, running tasklet.
3918  */
3919 static void
3920 ath_rx_tasklet(void *arg, int npending)
3921 {
3922 	struct ath_softc *sc = arg;
3923 
3924 	CTR1(ATH_KTR_INTR, "ath_rx_proc: pending=%d", npending);
3925 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3926 	ATH_PCU_LOCK(sc);
3927 	if (sc->sc_inreset_cnt > 0) {
3928 		device_printf(sc->sc_dev,
3929 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
3930 		ATH_PCU_UNLOCK(sc);
3931 		return;
3932 	}
3933 	ATH_PCU_UNLOCK(sc);
3934 	ath_rx_proc(sc, 1);
3935 }
3936 
3937 static void
3938 ath_rx_proc(struct ath_softc *sc, int resched)
3939 {
3940 #define	PA2DESC(_sc, _pa) \
3941 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3942 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3943 	struct ath_buf *bf;
3944 	struct ifnet *ifp = sc->sc_ifp;
3945 	struct ieee80211com *ic = ifp->if_l2com;
3946 	struct ath_hal *ah = sc->sc_ah;
3947 	struct ath_desc *ds;
3948 	struct ath_rx_status *rs;
3949 	struct mbuf *m;
3950 	struct ieee80211_node *ni;
3951 	int len, type, ngood;
3952 	HAL_STATUS status;
3953 	int16_t nf;
3954 	u_int64_t tsf;
3955 	int npkts = 0;
3956 
3957 	/* XXX we must not hold the ATH_LOCK here */
3958 	ATH_UNLOCK_ASSERT(sc);
3959 	ATH_PCU_UNLOCK_ASSERT(sc);
3960 
3961 	ATH_PCU_LOCK(sc);
3962 	sc->sc_rxproc_cnt++;
3963 	ATH_PCU_UNLOCK(sc);
3964 
3965 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__);
3966 	ngood = 0;
3967 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
3968 	sc->sc_stats.ast_rx_noise = nf;
3969 	tsf = ath_hal_gettsf64(ah);
3970 	do {
3971 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
3972 		if (sc->sc_rxslink && bf == NULL) {	/* NB: shouldn't happen */
3973 			if_printf(ifp, "%s: no buffer!\n", __func__);
3974 			break;
3975 		} else if (bf == NULL) {
3976 			/*
3977 			 * End of List:
3978 			 * this can happen for non-self-linked RX chains
3979 			 */
3980 			sc->sc_stats.ast_rx_hitqueueend++;
3981 			break;
3982 		}
3983 		m = bf->bf_m;
3984 		if (m == NULL) {		/* NB: shouldn't happen */
3985 			/*
3986 			 * If mbuf allocation failed previously there
3987 			 * will be no mbuf; try again to re-populate it.
3988 			 */
3989 			/* XXX make debug msg */
3990 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3991 			TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
3992 			goto rx_next;
3993 		}
3994 		ds = bf->bf_desc;
3995 		if (ds->ds_link == bf->bf_daddr) {
3996 			/* NB: never process the self-linked entry at the end */
3997 			sc->sc_stats.ast_rx_hitqueueend++;
3998 			break;
3999 		}
4000 		/* XXX sync descriptor memory */
4001 		/*
4002 		 * Must provide the virtual address of the current
4003 		 * descriptor, the physical address, and the virtual
4004 		 * address of the next descriptor in the h/w chain.
4005 		 * This allows the HAL to look ahead to see if the
4006 		 * hardware is done with a descriptor by checking the
4007 		 * done bit in the following descriptor and the address
4008 		 * of the current descriptor the DMA engine is working
4009 		 * on.  All this is necessary because of our use of
4010 		 * a self-linked list to avoid rx overruns.
4011 		 */
4012 		rs = &bf->bf_status.ds_rxstat;
4013 		status = ath_hal_rxprocdesc(ah, ds,
4014 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4015 #ifdef ATH_DEBUG
4016 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
4017 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
4018 #endif
4019 		if (status == HAL_EINPROGRESS)
4020 			break;
4021 
4022 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
4023 		npkts++;
4024 
4025 		/* These aren't specifically errors */
4026 #ifdef	AH_SUPPORT_AR5416
4027 		if (rs->rs_flags & HAL_RX_GI)
4028 			sc->sc_stats.ast_rx_halfgi++;
4029 		if (rs->rs_flags & HAL_RX_2040)
4030 			sc->sc_stats.ast_rx_2040++;
4031 		if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
4032 			sc->sc_stats.ast_rx_pre_crc_err++;
4033 		if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
4034 			sc->sc_stats.ast_rx_post_crc_err++;
4035 		if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
4036 			sc->sc_stats.ast_rx_decrypt_busy_err++;
4037 		if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
4038 			sc->sc_stats.ast_rx_hi_rx_chain++;
4039 #endif /* AH_SUPPORT_AR5416 */
4040 
4041 		if (rs->rs_status != 0) {
4042 			if (rs->rs_status & HAL_RXERR_CRC)
4043 				sc->sc_stats.ast_rx_crcerr++;
4044 			if (rs->rs_status & HAL_RXERR_FIFO)
4045 				sc->sc_stats.ast_rx_fifoerr++;
4046 			if (rs->rs_status & HAL_RXERR_PHY) {
4047 				sc->sc_stats.ast_rx_phyerr++;
4048 				/* Process DFS radar events */
4049 				if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
4050 				    (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
4051 					/* Since we're touching the frame data, sync it */
4052 					bus_dmamap_sync(sc->sc_dmat,
4053 					    bf->bf_dmamap,
4054 					    BUS_DMASYNC_POSTREAD);
4055 					/* Now pass it to the radar processing code */
4056 					ath_dfs_process_phy_err(sc, mtod(m, char *), tsf, rs);
4057 				}
4058 
4059 				/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
4060 				if (rs->rs_phyerr < 64)
4061 					sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
4062 				goto rx_error;	/* NB: don't count in ierrors */
4063 			}
4064 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
4065 				/*
4066 				 * Decrypt error.  If the error occurred
4067 				 * because there was no hardware key, then
4068 				 * let the frame through so the upper layers
4069 				 * can process it.  This is necessary for 5210
4070 				 * parts which have no way to setup a ``clear''
4071 				 * key cache entry.
4072 				 *
4073 				 * XXX do key cache faulting
4074 				 */
4075 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
4076 					goto rx_accept;
4077 				sc->sc_stats.ast_rx_badcrypt++;
4078 			}
4079 			if (rs->rs_status & HAL_RXERR_MIC) {
4080 				sc->sc_stats.ast_rx_badmic++;
4081 				/*
4082 				 * Do minimal work required to hand off
4083 				 * the 802.11 header for notification.
4084 				 */
4085 				/* XXX frag's and qos frames */
4086 				len = rs->rs_datalen;
4087 				if (len >= sizeof (struct ieee80211_frame)) {
4088 					bus_dmamap_sync(sc->sc_dmat,
4089 					    bf->bf_dmamap,
4090 					    BUS_DMASYNC_POSTREAD);
4091 					ath_handle_micerror(ic,
4092 					    mtod(m, struct ieee80211_frame *),
4093 					    sc->sc_splitmic ?
4094 						rs->rs_keyix-32 : rs->rs_keyix);
4095 				}
4096 			}
4097 			ifp->if_ierrors++;
4098 rx_error:
4099 			/*
4100 			 * Cleanup any pending partial frame.
4101 			 */
4102 			if (sc->sc_rxpending != NULL) {
4103 				m_freem(sc->sc_rxpending);
4104 				sc->sc_rxpending = NULL;
4105 			}
4106 			/*
4107 			 * When a tap is present pass error frames
4108 			 * that have been requested.  By default we
4109 			 * pass decrypt+mic errors but others may be
4110 			 * interesting (e.g. crc).
4111 			 */
4112 			if (ieee80211_radiotap_active(ic) &&
4113 			    (rs->rs_status & sc->sc_monpass)) {
4114 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4115 				    BUS_DMASYNC_POSTREAD);
4116 				/* NB: bpf needs the mbuf length setup */
4117 				len = rs->rs_datalen;
4118 				m->m_pkthdr.len = m->m_len = len;
4119 				bf->bf_m = NULL;
4120 				ath_rx_tap(ifp, m, rs, tsf, nf);
4121 				ieee80211_radiotap_rx_all(ic, m);
4122 				m_freem(m);
4123 			}
4124 			/* XXX pass MIC errors up for s/w reclaculation */
4125 			goto rx_next;
4126 		}
4127 rx_accept:
4128 		/*
4129 		 * Sync and unmap the frame.  At this point we're
4130 		 * committed to passing the mbuf somewhere so clear
4131 		 * bf_m; this means a new mbuf must be allocated
4132 		 * when the rx descriptor is setup again to receive
4133 		 * another frame.
4134 		 */
4135 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4136 		    BUS_DMASYNC_POSTREAD);
4137 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4138 		bf->bf_m = NULL;
4139 
4140 		len = rs->rs_datalen;
4141 		m->m_len = len;
4142 
4143 		if (rs->rs_more) {
4144 			/*
4145 			 * Frame spans multiple descriptors; save
4146 			 * it for the next completed descriptor, it
4147 			 * will be used to construct a jumbogram.
4148 			 */
4149 			if (sc->sc_rxpending != NULL) {
4150 				/* NB: max frame size is currently 2 clusters */
4151 				sc->sc_stats.ast_rx_toobig++;
4152 				m_freem(sc->sc_rxpending);
4153 			}
4154 			m->m_pkthdr.rcvif = ifp;
4155 			m->m_pkthdr.len = len;
4156 			sc->sc_rxpending = m;
4157 			goto rx_next;
4158 		} else if (sc->sc_rxpending != NULL) {
4159 			/*
4160 			 * This is the second part of a jumbogram,
4161 			 * chain it to the first mbuf, adjust the
4162 			 * frame length, and clear the rxpending state.
4163 			 */
4164 			sc->sc_rxpending->m_next = m;
4165 			sc->sc_rxpending->m_pkthdr.len += len;
4166 			m = sc->sc_rxpending;
4167 			sc->sc_rxpending = NULL;
4168 		} else {
4169 			/*
4170 			 * Normal single-descriptor receive; setup
4171 			 * the rcvif and packet length.
4172 			 */
4173 			m->m_pkthdr.rcvif = ifp;
4174 			m->m_pkthdr.len = len;
4175 		}
4176 
4177 		/*
4178 		 * Validate rs->rs_antenna.
4179 		 *
4180 		 * Some users w/ AR9285 NICs have reported crashes
4181 		 * here because rs_antenna field is bogusly large.
4182 		 * Let's enforce the maximum antenna limit of 8
4183 		 * (and it shouldn't be hard coded, but that's a
4184 		 * separate problem) and if there's an issue, print
4185 		 * out an error and adjust rs_antenna to something
4186 		 * sensible.
4187 		 *
4188 		 * This code should be removed once the actual
4189 		 * root cause of the issue has been identified.
4190 		 * For example, it may be that the rs_antenna
4191 		 * field is only valid for the lsat frame of
4192 		 * an aggregate and it just happens that it is
4193 		 * "mostly" right. (This is a general statement -
4194 		 * the majority of the statistics are only valid
4195 		 * for the last frame in an aggregate.
4196 		 */
4197 		if (rs->rs_antenna > 7) {
4198 			device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n",
4199 			    __func__, rs->rs_antenna);
4200 #ifdef	ATH_DEBUG
4201 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
4202 #endif /* ATH_DEBUG */
4203 			rs->rs_antenna = 0;	/* XXX better than nothing */
4204 		}
4205 
4206 		ifp->if_ipackets++;
4207 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
4208 
4209 		/*
4210 		 * Populate the rx status block.  When there are bpf
4211 		 * listeners we do the additional work to provide
4212 		 * complete status.  Otherwise we fill in only the
4213 		 * material required by ieee80211_input.  Note that
4214 		 * noise setting is filled in above.
4215 		 */
4216 		if (ieee80211_radiotap_active(ic))
4217 			ath_rx_tap(ifp, m, rs, tsf, nf);
4218 
4219 		/*
4220 		 * From this point on we assume the frame is at least
4221 		 * as large as ieee80211_frame_min; verify that.
4222 		 */
4223 		if (len < IEEE80211_MIN_LEN) {
4224 			if (!ieee80211_radiotap_active(ic)) {
4225 				DPRINTF(sc, ATH_DEBUG_RECV,
4226 				    "%s: short packet %d\n", __func__, len);
4227 				sc->sc_stats.ast_rx_tooshort++;
4228 			} else {
4229 				/* NB: in particular this captures ack's */
4230 				ieee80211_radiotap_rx_all(ic, m);
4231 			}
4232 			m_freem(m);
4233 			goto rx_next;
4234 		}
4235 
4236 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
4237 			const HAL_RATE_TABLE *rt = sc->sc_currates;
4238 			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
4239 
4240 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
4241 			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
4242 		}
4243 
4244 		m_adj(m, -IEEE80211_CRC_LEN);
4245 
4246 		/*
4247 		 * Locate the node for sender, track state, and then
4248 		 * pass the (referenced) node up to the 802.11 layer
4249 		 * for its use.
4250 		 */
4251 		ni = ieee80211_find_rxnode_withkey(ic,
4252 			mtod(m, const struct ieee80211_frame_min *),
4253 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
4254 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4255 		sc->sc_lastrs = rs;
4256 
4257 #ifdef	AH_SUPPORT_AR5416
4258 		if (rs->rs_isaggr)
4259 			sc->sc_stats.ast_rx_agg++;
4260 #endif /* AH_SUPPORT_AR5416 */
4261 
4262 		if (ni != NULL) {
4263 			/*
4264  			 * Only punt packets for ampdu reorder processing for
4265 			 * 11n nodes; net80211 enforces that M_AMPDU is only
4266 			 * set for 11n nodes.
4267  			 */
4268 			if (ni->ni_flags & IEEE80211_NODE_HT)
4269 				m->m_flags |= M_AMPDU;
4270 
4271 			/*
4272 			 * Sending station is known, dispatch directly.
4273 			 */
4274 			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
4275 			ieee80211_free_node(ni);
4276 			/*
4277 			 * Arrange to update the last rx timestamp only for
4278 			 * frames from our ap when operating in station mode.
4279 			 * This assumes the rx key is always setup when
4280 			 * associated.
4281 			 */
4282 			if (ic->ic_opmode == IEEE80211_M_STA &&
4283 			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4284 				ngood++;
4285 		} else {
4286 			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
4287 		}
4288 		/*
4289 		 * Track rx rssi and do any rx antenna management.
4290 		 */
4291 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4292 		if (sc->sc_diversity) {
4293 			/*
4294 			 * When using fast diversity, change the default rx
4295 			 * antenna if diversity chooses the other antenna 3
4296 			 * times in a row.
4297 			 */
4298 			if (sc->sc_defant != rs->rs_antenna) {
4299 				if (++sc->sc_rxotherant >= 3)
4300 					ath_setdefantenna(sc, rs->rs_antenna);
4301 			} else
4302 				sc->sc_rxotherant = 0;
4303 		}
4304 
4305 		/* Newer school diversity - kite specific for now */
4306 		/* XXX perhaps migrate the normal diversity code to this? */
4307 		if ((ah)->ah_rxAntCombDiversity)
4308 			(*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz);
4309 
4310 		if (sc->sc_softled) {
4311 			/*
4312 			 * Blink for any data frame.  Otherwise do a
4313 			 * heartbeat-style blink when idle.  The latter
4314 			 * is mainly for station mode where we depend on
4315 			 * periodic beacon frames to trigger the poll event.
4316 			 */
4317 			if (type == IEEE80211_FC0_TYPE_DATA) {
4318 				const HAL_RATE_TABLE *rt = sc->sc_currates;
4319 				ath_led_event(sc,
4320 				    rt->rateCodeToIndex[rs->rs_rate]);
4321 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4322 				ath_led_event(sc, 0);
4323 		}
4324 rx_next:
4325 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4326 	} while (ath_rxbuf_init(sc, bf) == 0);
4327 
4328 	/* rx signal state monitoring */
4329 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4330 	if (ngood)
4331 		sc->sc_lastrx = tsf;
4332 
4333 	CTR2(ATH_KTR_INTR, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood);
4334 	/* Queue DFS tasklet if needed */
4335 	if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan))
4336 		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
4337 
4338 	/*
4339 	 * Now that all the RX frames were handled that
4340 	 * need to be handled, kick the PCU if there's
4341 	 * been an RXEOL condition.
4342 	 */
4343 	ATH_PCU_LOCK(sc);
4344 	if (resched && sc->sc_kickpcu) {
4345 		CTR0(ATH_KTR_ERR, "ath_rx_proc: kickpcu");
4346 		device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n",
4347 		    __func__, npkts);
4348 
4349 		/* XXX rxslink? */
4350 		/*
4351 		 * XXX can we hold the PCU lock here?
4352 		 * Are there any net80211 buffer calls involved?
4353 		 */
4354 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
4355 		ath_hal_putrxbuf(ah, bf->bf_daddr);
4356 		ath_hal_rxena(ah);		/* enable recv descriptors */
4357 		ath_mode_init(sc);		/* set filters, etc. */
4358 		ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4359 
4360 		ath_hal_intrset(ah, sc->sc_imask);
4361 		sc->sc_kickpcu = 0;
4362 	}
4363 	ATH_PCU_UNLOCK(sc);
4364 
4365 	/* XXX check this inside of IF_LOCK? */
4366 	if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
4367 #ifdef IEEE80211_SUPPORT_SUPERG
4368 		ieee80211_ff_age_all(ic, 100);
4369 #endif
4370 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
4371 			ath_start(ifp);
4372 	}
4373 #undef PA2DESC
4374 
4375 	ATH_PCU_LOCK(sc);
4376 	sc->sc_rxproc_cnt--;
4377 	ATH_PCU_UNLOCK(sc);
4378 }
4379 
4380 static void
4381 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4382 {
4383 	txq->axq_qnum = qnum;
4384 	txq->axq_ac = 0;
4385 	txq->axq_depth = 0;
4386 	txq->axq_aggr_depth = 0;
4387 	txq->axq_intrcnt = 0;
4388 	txq->axq_link = NULL;
4389 	txq->axq_softc = sc;
4390 	TAILQ_INIT(&txq->axq_q);
4391 	TAILQ_INIT(&txq->axq_tidq);
4392 	ATH_TXQ_LOCK_INIT(sc, txq);
4393 }
4394 
4395 /*
4396  * Setup a h/w transmit queue.
4397  */
4398 static struct ath_txq *
4399 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4400 {
4401 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4402 	struct ath_hal *ah = sc->sc_ah;
4403 	HAL_TXQ_INFO qi;
4404 	int qnum;
4405 
4406 	memset(&qi, 0, sizeof(qi));
4407 	qi.tqi_subtype = subtype;
4408 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4409 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4410 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4411 	/*
4412 	 * Enable interrupts only for EOL and DESC conditions.
4413 	 * We mark tx descriptors to receive a DESC interrupt
4414 	 * when a tx queue gets deep; otherwise waiting for the
4415 	 * EOL to reap descriptors.  Note that this is done to
4416 	 * reduce interrupt load and this only defers reaping
4417 	 * descriptors, never transmitting frames.  Aside from
4418 	 * reducing interrupts this also permits more concurrency.
4419 	 * The only potential downside is if the tx queue backs
4420 	 * up in which case the top half of the kernel may backup
4421 	 * due to a lack of tx descriptors.
4422 	 */
4423 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4424 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4425 	if (qnum == -1) {
4426 		/*
4427 		 * NB: don't print a message, this happens
4428 		 * normally on parts with too few tx queues
4429 		 */
4430 		return NULL;
4431 	}
4432 	if (qnum >= N(sc->sc_txq)) {
4433 		device_printf(sc->sc_dev,
4434 			"hal qnum %u out of range, max %zu!\n",
4435 			qnum, N(sc->sc_txq));
4436 		ath_hal_releasetxqueue(ah, qnum);
4437 		return NULL;
4438 	}
4439 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4440 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4441 		sc->sc_txqsetup |= 1<<qnum;
4442 	}
4443 	return &sc->sc_txq[qnum];
4444 #undef N
4445 }
4446 
4447 /*
4448  * Setup a hardware data transmit queue for the specified
4449  * access control.  The hal may not support all requested
4450  * queues in which case it will return a reference to a
4451  * previously setup queue.  We record the mapping from ac's
4452  * to h/w queues for use by ath_tx_start and also track
4453  * the set of h/w queues being used to optimize work in the
4454  * transmit interrupt handler and related routines.
4455  */
4456 static int
4457 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4458 {
4459 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4460 	struct ath_txq *txq;
4461 
4462 	if (ac >= N(sc->sc_ac2q)) {
4463 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4464 			ac, N(sc->sc_ac2q));
4465 		return 0;
4466 	}
4467 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4468 	if (txq != NULL) {
4469 		txq->axq_ac = ac;
4470 		sc->sc_ac2q[ac] = txq;
4471 		return 1;
4472 	} else
4473 		return 0;
4474 #undef N
4475 }
4476 
4477 /*
4478  * Update WME parameters for a transmit queue.
4479  */
4480 static int
4481 ath_txq_update(struct ath_softc *sc, int ac)
4482 {
4483 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4484 #define	ATH_TXOP_TO_US(v)		(v<<5)
4485 	struct ifnet *ifp = sc->sc_ifp;
4486 	struct ieee80211com *ic = ifp->if_l2com;
4487 	struct ath_txq *txq = sc->sc_ac2q[ac];
4488 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4489 	struct ath_hal *ah = sc->sc_ah;
4490 	HAL_TXQ_INFO qi;
4491 
4492 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4493 #ifdef IEEE80211_SUPPORT_TDMA
4494 	if (sc->sc_tdma) {
4495 		/*
4496 		 * AIFS is zero so there's no pre-transmit wait.  The
4497 		 * burst time defines the slot duration and is configured
4498 		 * through net80211.  The QCU is setup to not do post-xmit
4499 		 * back off, lockout all lower-priority QCU's, and fire
4500 		 * off the DMA beacon alert timer which is setup based
4501 		 * on the slot configuration.
4502 		 */
4503 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4504 			      | HAL_TXQ_TXERRINT_ENABLE
4505 			      | HAL_TXQ_TXURNINT_ENABLE
4506 			      | HAL_TXQ_TXEOLINT_ENABLE
4507 			      | HAL_TXQ_DBA_GATED
4508 			      | HAL_TXQ_BACKOFF_DISABLE
4509 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4510 			      ;
4511 		qi.tqi_aifs = 0;
4512 		/* XXX +dbaprep? */
4513 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4514 		qi.tqi_burstTime = qi.tqi_readyTime;
4515 	} else {
4516 #endif
4517 		/*
4518 		 * XXX shouldn't this just use the default flags
4519 		 * used in the previous queue setup?
4520 		 */
4521 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4522 			      | HAL_TXQ_TXERRINT_ENABLE
4523 			      | HAL_TXQ_TXDESCINT_ENABLE
4524 			      | HAL_TXQ_TXURNINT_ENABLE
4525 			      | HAL_TXQ_TXEOLINT_ENABLE
4526 			      ;
4527 		qi.tqi_aifs = wmep->wmep_aifsn;
4528 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4529 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4530 		qi.tqi_readyTime = 0;
4531 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4532 #ifdef IEEE80211_SUPPORT_TDMA
4533 	}
4534 #endif
4535 
4536 	DPRINTF(sc, ATH_DEBUG_RESET,
4537 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4538 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4539 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4540 
4541 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4542 		if_printf(ifp, "unable to update hardware queue "
4543 			"parameters for %s traffic!\n",
4544 			ieee80211_wme_acnames[ac]);
4545 		return 0;
4546 	} else {
4547 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4548 		return 1;
4549 	}
4550 #undef ATH_TXOP_TO_US
4551 #undef ATH_EXPONENT_TO_VALUE
4552 }
4553 
4554 /*
4555  * Callback from the 802.11 layer to update WME parameters.
4556  */
4557 static int
4558 ath_wme_update(struct ieee80211com *ic)
4559 {
4560 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4561 
4562 	return !ath_txq_update(sc, WME_AC_BE) ||
4563 	    !ath_txq_update(sc, WME_AC_BK) ||
4564 	    !ath_txq_update(sc, WME_AC_VI) ||
4565 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4566 }
4567 
4568 /*
4569  * Reclaim resources for a setup queue.
4570  */
4571 static void
4572 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4573 {
4574 
4575 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4576 	ATH_TXQ_LOCK_DESTROY(txq);
4577 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4578 }
4579 
4580 /*
4581  * Reclaim all tx queue resources.
4582  */
4583 static void
4584 ath_tx_cleanup(struct ath_softc *sc)
4585 {
4586 	int i;
4587 
4588 	ATH_TXBUF_LOCK_DESTROY(sc);
4589 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4590 		if (ATH_TXQ_SETUP(sc, i))
4591 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4592 }
4593 
4594 /*
4595  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4596  * using the current rates in sc_rixmap.
4597  */
4598 int
4599 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4600 {
4601 	int rix = sc->sc_rixmap[rate];
4602 	/* NB: return lowest rix for invalid rate */
4603 	return (rix == 0xff ? 0 : rix);
4604 }
4605 
4606 static void
4607 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4608     struct ath_buf *bf)
4609 {
4610 	struct ieee80211_node *ni = bf->bf_node;
4611 	struct ifnet *ifp = sc->sc_ifp;
4612 	struct ieee80211com *ic = ifp->if_l2com;
4613 	int sr, lr, pri;
4614 
4615 	if (ts->ts_status == 0) {
4616 		u_int8_t txant = ts->ts_antenna;
4617 		sc->sc_stats.ast_ant_tx[txant]++;
4618 		sc->sc_ant_tx[txant]++;
4619 		if (ts->ts_finaltsi != 0)
4620 			sc->sc_stats.ast_tx_altrate++;
4621 		pri = M_WME_GETAC(bf->bf_m);
4622 		if (pri >= WME_AC_VO)
4623 			ic->ic_wme.wme_hipri_traffic++;
4624 		if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
4625 			ni->ni_inact = ni->ni_inact_reload;
4626 	} else {
4627 		if (ts->ts_status & HAL_TXERR_XRETRY)
4628 			sc->sc_stats.ast_tx_xretries++;
4629 		if (ts->ts_status & HAL_TXERR_FIFO)
4630 			sc->sc_stats.ast_tx_fifoerr++;
4631 		if (ts->ts_status & HAL_TXERR_FILT)
4632 			sc->sc_stats.ast_tx_filtered++;
4633 		if (ts->ts_status & HAL_TXERR_XTXOP)
4634 			sc->sc_stats.ast_tx_xtxop++;
4635 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4636 			sc->sc_stats.ast_tx_timerexpired++;
4637 
4638 		if (ts->ts_status & HAL_TX_DATA_UNDERRUN)
4639 			sc->sc_stats.ast_tx_data_underrun++;
4640 		if (ts->ts_status & HAL_TX_DELIM_UNDERRUN)
4641 			sc->sc_stats.ast_tx_delim_underrun++;
4642 
4643 		if (bf->bf_m->m_flags & M_FF)
4644 			sc->sc_stats.ast_ff_txerr++;
4645 	}
4646 	/* XXX when is this valid? */
4647 	if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
4648 		sc->sc_stats.ast_tx_desccfgerr++;
4649 
4650 	sr = ts->ts_shortretry;
4651 	lr = ts->ts_longretry;
4652 	sc->sc_stats.ast_tx_shortretry += sr;
4653 	sc->sc_stats.ast_tx_longretry += lr;
4654 
4655 }
4656 
4657 /*
4658  * The default completion. If fail is 1, this means
4659  * "please don't retry the frame, and just return -1 status
4660  * to the net80211 stack.
4661  */
4662 void
4663 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4664 {
4665 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4666 	int st;
4667 
4668 	if (fail == 1)
4669 		st = -1;
4670 	else
4671 		st = ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) ?
4672 		    ts->ts_status : HAL_TXERR_XRETRY;
4673 
4674 	if (bf->bf_state.bfs_dobaw)
4675 		device_printf(sc->sc_dev,
4676 		    "%s: dobaw should've been cleared!\n", __func__);
4677 	if (bf->bf_next != NULL)
4678 		device_printf(sc->sc_dev,
4679 		    "%s: bf_next not NULL!\n", __func__);
4680 
4681 	/*
4682 	 * Do any tx complete callback.  Note this must
4683 	 * be done before releasing the node reference.
4684 	 * This will free the mbuf, release the net80211
4685 	 * node and recycle the ath_buf.
4686 	 */
4687 	ath_tx_freebuf(sc, bf, st);
4688 }
4689 
4690 /*
4691  * Update rate control with the given completion status.
4692  */
4693 void
4694 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4695     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4696     int nframes, int nbad)
4697 {
4698 	struct ath_node *an;
4699 
4700 	/* Only for unicast frames */
4701 	if (ni == NULL)
4702 		return;
4703 
4704 	an = ATH_NODE(ni);
4705 
4706 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4707 		ATH_NODE_LOCK(an);
4708 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4709 		ATH_NODE_UNLOCK(an);
4710 	}
4711 }
4712 
4713 /*
4714  * Update the busy status of the last frame on the free list.
4715  * When doing TDMA, the busy flag tracks whether the hardware
4716  * currently points to this buffer or not, and thus gated DMA
4717  * may restart by re-reading the last descriptor in this
4718  * buffer.
4719  *
4720  * This should be called in the completion function once one
4721  * of the buffers has been used.
4722  */
4723 static void
4724 ath_tx_update_busy(struct ath_softc *sc)
4725 {
4726 	struct ath_buf *last;
4727 
4728 	/*
4729 	 * Since the last frame may still be marked
4730 	 * as ATH_BUF_BUSY, unmark it here before
4731 	 * finishing the frame processing.
4732 	 * Since we've completed a frame (aggregate
4733 	 * or otherwise), the hardware has moved on
4734 	 * and is no longer referencing the previous
4735 	 * descriptor.
4736 	 */
4737 	ATH_TXBUF_LOCK_ASSERT(sc);
4738 	last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
4739 	if (last != NULL)
4740 		last->bf_flags &= ~ATH_BUF_BUSY;
4741 }
4742 
4743 
4744 /*
4745  * Process completed xmit descriptors from the specified queue.
4746  * Kick the packet scheduler if needed. This can occur from this
4747  * particular task.
4748  */
4749 static int
4750 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4751 {
4752 	struct ath_hal *ah = sc->sc_ah;
4753 	struct ath_buf *bf;
4754 	struct ath_desc *ds;
4755 	struct ath_tx_status *ts;
4756 	struct ieee80211_node *ni;
4757 	struct ath_node *an;
4758 	int nacked;
4759 	HAL_STATUS status;
4760 
4761 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4762 		__func__, txq->axq_qnum,
4763 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4764 		txq->axq_link);
4765 	nacked = 0;
4766 	for (;;) {
4767 		ATH_TXQ_LOCK(txq);
4768 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4769 		bf = TAILQ_FIRST(&txq->axq_q);
4770 		if (bf == NULL) {
4771 			ATH_TXQ_UNLOCK(txq);
4772 			break;
4773 		}
4774 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4775 		ts = &bf->bf_status.ds_txstat;
4776 		status = ath_hal_txprocdesc(ah, ds, ts);
4777 #ifdef ATH_DEBUG
4778 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4779 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4780 			    status == HAL_OK);
4781 #endif
4782 		if (status == HAL_EINPROGRESS) {
4783 			ATH_TXQ_UNLOCK(txq);
4784 			break;
4785 		}
4786 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4787 #ifdef IEEE80211_SUPPORT_TDMA
4788 		if (txq->axq_depth > 0) {
4789 			/*
4790 			 * More frames follow.  Mark the buffer busy
4791 			 * so it's not re-used while the hardware may
4792 			 * still re-read the link field in the descriptor.
4793 			 *
4794 			 * Use the last buffer in an aggregate as that
4795 			 * is where the hardware may be - intermediate
4796 			 * descriptors won't be "busy".
4797 			 */
4798 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4799 		} else
4800 #else
4801 		if (txq->axq_depth == 0)
4802 #endif
4803 			txq->axq_link = NULL;
4804 		if (bf->bf_state.bfs_aggr)
4805 			txq->axq_aggr_depth--;
4806 
4807 		ni = bf->bf_node;
4808 		/*
4809 		 * If unicast frame was ack'd update RSSI,
4810 		 * including the last rx time used to
4811 		 * workaround phantom bmiss interrupts.
4812 		 */
4813 		if (ni != NULL && ts->ts_status == 0 &&
4814 		    ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)) {
4815 			nacked++;
4816 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4817 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4818 				ts->ts_rssi);
4819 		}
4820 		ATH_TXQ_UNLOCK(txq);
4821 
4822 		/* If unicast frame, update general statistics */
4823 		if (ni != NULL) {
4824 			an = ATH_NODE(ni);
4825 			/* update statistics */
4826 			ath_tx_update_stats(sc, ts, bf);
4827 		}
4828 
4829 		/*
4830 		 * Call the completion handler.
4831 		 * The completion handler is responsible for
4832 		 * calling the rate control code.
4833 		 *
4834 		 * Frames with no completion handler get the
4835 		 * rate control code called here.
4836 		 */
4837 		if (bf->bf_comp == NULL) {
4838 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4839 			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
4840 				/*
4841 				 * XXX assume this isn't an aggregate
4842 				 * frame.
4843 				 */
4844 				ath_tx_update_ratectrl(sc, ni,
4845 				     bf->bf_state.bfs_rc, ts,
4846 				    bf->bf_state.bfs_pktlen, 1,
4847 				    (ts->ts_status == 0 ? 0 : 1));
4848 			}
4849 			ath_tx_default_comp(sc, bf, 0);
4850 		} else
4851 			bf->bf_comp(sc, bf, 0);
4852 	}
4853 #ifdef IEEE80211_SUPPORT_SUPERG
4854 	/*
4855 	 * Flush fast-frame staging queue when traffic slows.
4856 	 */
4857 	if (txq->axq_depth <= 1)
4858 		ieee80211_ff_flush(ic, txq->axq_ac);
4859 #endif
4860 
4861 	/* Kick the TXQ scheduler */
4862 	if (dosched) {
4863 		ATH_TXQ_LOCK(txq);
4864 		ath_txq_sched(sc, txq);
4865 		ATH_TXQ_UNLOCK(txq);
4866 	}
4867 
4868 	return nacked;
4869 }
4870 
4871 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4872 
4873 /*
4874  * Deferred processing of transmit interrupt; special-cased
4875  * for a single hardware transmit queue (e.g. 5210 and 5211).
4876  */
4877 static void
4878 ath_tx_proc_q0(void *arg, int npending)
4879 {
4880 	struct ath_softc *sc = arg;
4881 	struct ifnet *ifp = sc->sc_ifp;
4882 	uint32_t txqs;
4883 
4884 	ATH_PCU_LOCK(sc);
4885 	sc->sc_txproc_cnt++;
4886 	txqs = sc->sc_txq_active;
4887 	sc->sc_txq_active &= ~txqs;
4888 	ATH_PCU_UNLOCK(sc);
4889 
4890 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4891 		/* XXX why is lastrx updated in tx code? */
4892 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4893 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4894 		ath_tx_processq(sc, sc->sc_cabq, 1);
4895 	/* XXX check this inside of IF_LOCK? */
4896 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4897 	sc->sc_wd_timer = 0;
4898 
4899 	if (sc->sc_softled)
4900 		ath_led_event(sc, sc->sc_txrix);
4901 
4902 	ATH_PCU_LOCK(sc);
4903 	sc->sc_txproc_cnt--;
4904 	ATH_PCU_UNLOCK(sc);
4905 
4906 	ath_start(ifp);
4907 }
4908 
4909 /*
4910  * Deferred processing of transmit interrupt; special-cased
4911  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4912  */
4913 static void
4914 ath_tx_proc_q0123(void *arg, int npending)
4915 {
4916 	struct ath_softc *sc = arg;
4917 	struct ifnet *ifp = sc->sc_ifp;
4918 	int nacked;
4919 	uint32_t txqs;
4920 
4921 	ATH_PCU_LOCK(sc);
4922 	sc->sc_txproc_cnt++;
4923 	txqs = sc->sc_txq_active;
4924 	sc->sc_txq_active &= ~txqs;
4925 	ATH_PCU_UNLOCK(sc);
4926 
4927 	/*
4928 	 * Process each active queue.
4929 	 */
4930 	nacked = 0;
4931 	if (TXQACTIVE(txqs, 0))
4932 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4933 	if (TXQACTIVE(txqs, 1))
4934 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4935 	if (TXQACTIVE(txqs, 2))
4936 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4937 	if (TXQACTIVE(txqs, 3))
4938 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4939 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4940 		ath_tx_processq(sc, sc->sc_cabq, 1);
4941 	if (nacked)
4942 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4943 
4944 	/* XXX check this inside of IF_LOCK? */
4945 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4946 	sc->sc_wd_timer = 0;
4947 
4948 	if (sc->sc_softled)
4949 		ath_led_event(sc, sc->sc_txrix);
4950 
4951 	ATH_PCU_LOCK(sc);
4952 	sc->sc_txproc_cnt--;
4953 	ATH_PCU_UNLOCK(sc);
4954 
4955 	ath_start(ifp);
4956 }
4957 
4958 /*
4959  * Deferred processing of transmit interrupt.
4960  */
4961 static void
4962 ath_tx_proc(void *arg, int npending)
4963 {
4964 	struct ath_softc *sc = arg;
4965 	struct ifnet *ifp = sc->sc_ifp;
4966 	int i, nacked;
4967 	uint32_t txqs;
4968 
4969 	ATH_PCU_LOCK(sc);
4970 	sc->sc_txproc_cnt++;
4971 	txqs = sc->sc_txq_active;
4972 	sc->sc_txq_active &= ~txqs;
4973 	ATH_PCU_UNLOCK(sc);
4974 
4975 	/*
4976 	 * Process each active queue.
4977 	 */
4978 	nacked = 0;
4979 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4980 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4981 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4982 	if (nacked)
4983 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4984 
4985 	/* XXX check this inside of IF_LOCK? */
4986 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4987 	sc->sc_wd_timer = 0;
4988 
4989 	if (sc->sc_softled)
4990 		ath_led_event(sc, sc->sc_txrix);
4991 
4992 	ATH_PCU_LOCK(sc);
4993 	sc->sc_txproc_cnt--;
4994 	ATH_PCU_UNLOCK(sc);
4995 
4996 	ath_start(ifp);
4997 }
4998 #undef	TXQACTIVE
4999 
5000 /*
5001  * Return a buffer to the pool and update the 'busy' flag on the
5002  * previous 'tail' entry.
5003  *
5004  * This _must_ only be called when the buffer is involved in a completed
5005  * TX. The logic is that if it was part of an active TX, the previous
5006  * buffer on the list is now not involved in a halted TX DMA queue, waiting
5007  * for restart (eg for TDMA.)
5008  *
5009  * The caller must free the mbuf and recycle the node reference.
5010  */
5011 void
5012 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
5013 {
5014 	bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5015 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
5016 
5017 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
5018 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
5019 
5020 	ATH_TXBUF_LOCK(sc);
5021 	ath_tx_update_busy(sc);
5022 	TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5023 	ATH_TXBUF_UNLOCK(sc);
5024 }
5025 
5026 /*
5027  * This is currently used by ath_tx_draintxq() and
5028  * ath_tx_tid_free_pkts().
5029  *
5030  * It recycles a single ath_buf.
5031  */
5032 void
5033 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
5034 {
5035 	struct ieee80211_node *ni = bf->bf_node;
5036 	struct mbuf *m0 = bf->bf_m;
5037 
5038 	bf->bf_node = NULL;
5039 	bf->bf_m = NULL;
5040 
5041 	/* Free the buffer, it's not needed any longer */
5042 	ath_freebuf(sc, bf);
5043 
5044 	if (ni != NULL) {
5045 		/*
5046 		 * Do any callback and reclaim the node reference.
5047 		 */
5048 		if (m0->m_flags & M_TXCB)
5049 			ieee80211_process_callback(ni, m0, status);
5050 		ieee80211_free_node(ni);
5051 	}
5052 	m_freem(m0);
5053 
5054 	/*
5055 	 * XXX the buffer used to be freed -after-, but the DMA map was
5056 	 * freed where ath_freebuf() now is. I've no idea what this
5057 	 * will do.
5058 	 */
5059 }
5060 
5061 void
5062 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5063 {
5064 #ifdef ATH_DEBUG
5065 	struct ath_hal *ah = sc->sc_ah;
5066 #endif
5067 	struct ath_buf *bf;
5068 	u_int ix;
5069 
5070 	/*
5071 	 * NB: this assumes output has been stopped and
5072 	 *     we do not need to block ath_tx_proc
5073 	 */
5074 	ATH_TXBUF_LOCK(sc);
5075 	bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
5076 	if (bf != NULL)
5077 		bf->bf_flags &= ~ATH_BUF_BUSY;
5078 	ATH_TXBUF_UNLOCK(sc);
5079 
5080 	for (ix = 0;; ix++) {
5081 		ATH_TXQ_LOCK(txq);
5082 		bf = TAILQ_FIRST(&txq->axq_q);
5083 		if (bf == NULL) {
5084 			txq->axq_link = NULL;
5085 			ATH_TXQ_UNLOCK(txq);
5086 			break;
5087 		}
5088 		ATH_TXQ_REMOVE(txq, bf, bf_list);
5089 		if (bf->bf_state.bfs_aggr)
5090 			txq->axq_aggr_depth--;
5091 #ifdef ATH_DEBUG
5092 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5093 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5094 
5095 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5096 				ath_hal_txprocdesc(ah, bf->bf_lastds,
5097 				    &bf->bf_status.ds_txstat) == HAL_OK);
5098 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5099 			    bf->bf_m->m_len, 0, -1);
5100 		}
5101 #endif /* ATH_DEBUG */
5102 		/*
5103 		 * Since we're now doing magic in the completion
5104 		 * functions, we -must- call it for aggregation
5105 		 * destinations or BAW tracking will get upset.
5106 		 */
5107 		/*
5108 		 * Clear ATH_BUF_BUSY; the completion handler
5109 		 * will free the buffer.
5110 		 */
5111 		ATH_TXQ_UNLOCK(txq);
5112 		bf->bf_flags &= ~ATH_BUF_BUSY;
5113 		if (bf->bf_comp)
5114 			bf->bf_comp(sc, bf, 1);
5115 		else
5116 			ath_tx_default_comp(sc, bf, 1);
5117 	}
5118 
5119 	/*
5120 	 * Drain software queued frames which are on
5121 	 * active TIDs.
5122 	 */
5123 	ath_tx_txq_drain(sc, txq);
5124 }
5125 
5126 static void
5127 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5128 {
5129 	struct ath_hal *ah = sc->sc_ah;
5130 
5131 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5132 	    __func__, txq->axq_qnum,
5133 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5134 	    txq->axq_link);
5135 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5136 }
5137 
5138 static int
5139 ath_stoptxdma(struct ath_softc *sc)
5140 {
5141 	struct ath_hal *ah = sc->sc_ah;
5142 	int i;
5143 
5144 	/* XXX return value */
5145 	if (sc->sc_invalid)
5146 		return 0;
5147 
5148 	if (!sc->sc_invalid) {
5149 		/* don't touch the hardware if marked invalid */
5150 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5151 		    __func__, sc->sc_bhalq,
5152 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5153 		    NULL);
5154 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5155 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5156 			if (ATH_TXQ_SETUP(sc, i))
5157 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5158 	}
5159 
5160 	return 1;
5161 }
5162 
5163 /*
5164  * Drain the transmit queues and reclaim resources.
5165  */
5166 static void
5167 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5168 {
5169 #ifdef	ATH_DEBUG
5170 	struct ath_hal *ah = sc->sc_ah;
5171 #endif
5172 	struct ifnet *ifp = sc->sc_ifp;
5173 	int i;
5174 
5175 	(void) ath_stoptxdma(sc);
5176 
5177 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5178 		/*
5179 		 * XXX TODO: should we just handle the completed TX frames
5180 		 * here, whether or not the reset is a full one or not?
5181 		 */
5182 		if (ATH_TXQ_SETUP(sc, i)) {
5183 			if (reset_type == ATH_RESET_NOLOSS)
5184 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
5185 			else
5186 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
5187 		}
5188 	}
5189 #ifdef ATH_DEBUG
5190 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5191 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5192 		if (bf != NULL && bf->bf_m != NULL) {
5193 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5194 				ath_hal_txprocdesc(ah, bf->bf_lastds,
5195 				    &bf->bf_status.ds_txstat) == HAL_OK);
5196 			ieee80211_dump_pkt(ifp->if_l2com,
5197 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5198 			    0, -1);
5199 		}
5200 	}
5201 #endif /* ATH_DEBUG */
5202 	/* XXX check this inside of IF_LOCK? */
5203 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5204 	sc->sc_wd_timer = 0;
5205 }
5206 
5207 /*
5208  * Disable the receive h/w in preparation for a reset.
5209  */
5210 static void
5211 ath_stoprecv(struct ath_softc *sc, int dodelay)
5212 {
5213 #define	PA2DESC(_sc, _pa) \
5214 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5215 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5216 	struct ath_hal *ah = sc->sc_ah;
5217 
5218 	ath_hal_stoppcurecv(ah);	/* disable PCU */
5219 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5220 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5221 	if (dodelay)
5222 		DELAY(3000);		/* 3ms is long enough for 1 frame */
5223 #ifdef ATH_DEBUG
5224 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5225 		struct ath_buf *bf;
5226 		u_int ix;
5227 
5228 		printf("%s: rx queue %p, link %p\n", __func__,
5229 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5230 		ix = 0;
5231 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5232 			struct ath_desc *ds = bf->bf_desc;
5233 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5234 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5235 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5236 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5237 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5238 			ix++;
5239 		}
5240 	}
5241 #endif
5242 	if (sc->sc_rxpending != NULL) {
5243 		m_freem(sc->sc_rxpending);
5244 		sc->sc_rxpending = NULL;
5245 	}
5246 	sc->sc_rxlink = NULL;		/* just in case */
5247 #undef PA2DESC
5248 }
5249 
5250 /*
5251  * Enable the receive h/w following a reset.
5252  */
5253 static int
5254 ath_startrecv(struct ath_softc *sc)
5255 {
5256 	struct ath_hal *ah = sc->sc_ah;
5257 	struct ath_buf *bf;
5258 
5259 	sc->sc_rxlink = NULL;
5260 	sc->sc_rxpending = NULL;
5261 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5262 		int error = ath_rxbuf_init(sc, bf);
5263 		if (error != 0) {
5264 			DPRINTF(sc, ATH_DEBUG_RECV,
5265 				"%s: ath_rxbuf_init failed %d\n",
5266 				__func__, error);
5267 			return error;
5268 		}
5269 	}
5270 
5271 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
5272 	ath_hal_putrxbuf(ah, bf->bf_daddr);
5273 	ath_hal_rxena(ah);		/* enable recv descriptors */
5274 	ath_mode_init(sc);		/* set filters, etc. */
5275 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5276 	return 0;
5277 }
5278 
5279 /*
5280  * Update internal state after a channel change.
5281  */
5282 static void
5283 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5284 {
5285 	enum ieee80211_phymode mode;
5286 
5287 	/*
5288 	 * Change channels and update the h/w rate map
5289 	 * if we're switching; e.g. 11a to 11b/g.
5290 	 */
5291 	mode = ieee80211_chan2mode(chan);
5292 	if (mode != sc->sc_curmode)
5293 		ath_setcurmode(sc, mode);
5294 	sc->sc_curchan = chan;
5295 }
5296 
5297 /*
5298  * Set/change channels.  If the channel is really being changed,
5299  * it's done by resetting the chip.  To accomplish this we must
5300  * first cleanup any pending DMA, then restart stuff after a la
5301  * ath_init.
5302  */
5303 static int
5304 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5305 {
5306 	struct ifnet *ifp = sc->sc_ifp;
5307 	struct ieee80211com *ic = ifp->if_l2com;
5308 	struct ath_hal *ah = sc->sc_ah;
5309 	int ret = 0;
5310 	int dointr = 0;
5311 
5312 	/* Treat this as an interface reset */
5313 	ATH_PCU_LOCK(sc);
5314 	if (ath_reset_grablock(sc, 1) == 0) {
5315 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5316 		    __func__);
5317 	}
5318 	if (chan != sc->sc_curchan) {
5319 		dointr = 1;
5320 		/* XXX only do this if inreset_cnt is 1? */
5321 		ath_hal_intrset(ah, 0);
5322 	}
5323 	ATH_PCU_UNLOCK(sc);
5324 	ath_txrx_stop(sc);
5325 
5326 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5327 	    __func__, ieee80211_chan2ieee(ic, chan),
5328 	    chan->ic_freq, chan->ic_flags);
5329 	if (chan != sc->sc_curchan) {
5330 		HAL_STATUS status;
5331 		/*
5332 		 * To switch channels clear any pending DMA operations;
5333 		 * wait long enough for the RX fifo to drain, reset the
5334 		 * hardware at the new frequency, and then re-enable
5335 		 * the relevant bits of the h/w.
5336 		 */
5337 #if 0
5338 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5339 #endif
5340 		ath_stoprecv(sc, 1);		/* turn off frame recv */
5341 		/*
5342 		 * First, handle completed TX/RX frames.
5343 		 */
5344 		ath_rx_proc(sc, 0);
5345 		ath_draintxq(sc, ATH_RESET_NOLOSS);
5346 		/*
5347 		 * Next, flush the non-scheduled frames.
5348 		 */
5349 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5350 
5351 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5352 			if_printf(ifp, "%s: unable to reset "
5353 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5354 			    __func__, ieee80211_chan2ieee(ic, chan),
5355 			    chan->ic_freq, chan->ic_flags, status);
5356 			ret = EIO;
5357 			goto finish;
5358 		}
5359 		sc->sc_diversity = ath_hal_getdiversity(ah);
5360 
5361 		/* Let DFS at it in case it's a DFS channel */
5362 		ath_dfs_radar_enable(sc, ic->ic_curchan);
5363 
5364 		/*
5365 		 * Re-enable rx framework.
5366 		 */
5367 		if (ath_startrecv(sc) != 0) {
5368 			if_printf(ifp, "%s: unable to restart recv logic\n",
5369 			    __func__);
5370 			ret = EIO;
5371 			goto finish;
5372 		}
5373 
5374 		/*
5375 		 * Change channels and update the h/w rate map
5376 		 * if we're switching; e.g. 11a to 11b/g.
5377 		 */
5378 		ath_chan_change(sc, chan);
5379 
5380 		/*
5381 		 * Reset clears the beacon timers; reset them
5382 		 * here if needed.
5383 		 */
5384 		if (sc->sc_beacons) {		/* restart beacons */
5385 #ifdef IEEE80211_SUPPORT_TDMA
5386 			if (sc->sc_tdma)
5387 				ath_tdma_config(sc, NULL);
5388 			else
5389 #endif
5390 			ath_beacon_config(sc, NULL);
5391 		}
5392 
5393 #if 0
5394 		/*
5395 		 * Re-enable interrupts.
5396 		 */
5397 		ath_hal_intrset(ah, sc->sc_imask);
5398 #endif
5399 	}
5400 
5401 finish:
5402 	ATH_PCU_LOCK(sc);
5403 	sc->sc_inreset_cnt--;
5404 	/* XXX only do this if sc_inreset_cnt == 0? */
5405 	if (dointr)
5406 		ath_hal_intrset(ah, sc->sc_imask);
5407 	ATH_PCU_UNLOCK(sc);
5408 
5409 	/* XXX do this inside of IF_LOCK? */
5410 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5411 	ath_txrx_start(sc);
5412 	/* XXX ath_start? */
5413 
5414 	return ret;
5415 }
5416 
5417 /*
5418  * Periodically recalibrate the PHY to account
5419  * for temperature/environment changes.
5420  */
5421 static void
5422 ath_calibrate(void *arg)
5423 {
5424 	struct ath_softc *sc = arg;
5425 	struct ath_hal *ah = sc->sc_ah;
5426 	struct ifnet *ifp = sc->sc_ifp;
5427 	struct ieee80211com *ic = ifp->if_l2com;
5428 	HAL_BOOL longCal, isCalDone;
5429 	HAL_BOOL aniCal, shortCal = AH_FALSE;
5430 	int nextcal;
5431 
5432 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5433 		goto restart;
5434 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5435 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5436 	if (sc->sc_doresetcal)
5437 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5438 
5439 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5440 	if (aniCal) {
5441 		sc->sc_stats.ast_ani_cal++;
5442 		sc->sc_lastani = ticks;
5443 		ath_hal_ani_poll(ah, sc->sc_curchan);
5444 	}
5445 
5446 	if (longCal) {
5447 		sc->sc_stats.ast_per_cal++;
5448 		sc->sc_lastlongcal = ticks;
5449 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5450 			/*
5451 			 * Rfgain is out of bounds, reset the chip
5452 			 * to load new gain values.
5453 			 */
5454 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5455 				"%s: rfgain change\n", __func__);
5456 			sc->sc_stats.ast_per_rfgain++;
5457 			/*
5458 			 * Drop lock - we can't hold it across the
5459 			 * ath_reset() call. Instead, we'll drop
5460 			 * out here, do a reset, then reschedule
5461 			 * the callout.
5462 			 */
5463 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5464 			sc->sc_resetcal = 0;
5465 			sc->sc_doresetcal = AH_TRUE;
5466 			ATH_UNLOCK(sc);
5467 			ath_reset(ifp, ATH_RESET_NOLOSS);
5468 			ATH_LOCK(sc);
5469 			return;
5470 		}
5471 		/*
5472 		 * If this long cal is after an idle period, then
5473 		 * reset the data collection state so we start fresh.
5474 		 */
5475 		if (sc->sc_resetcal) {
5476 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5477 			sc->sc_lastcalreset = ticks;
5478 			sc->sc_lastshortcal = ticks;
5479 			sc->sc_resetcal = 0;
5480 			sc->sc_doresetcal = AH_TRUE;
5481 		}
5482 	}
5483 
5484 	/* Only call if we're doing a short/long cal, not for ANI calibration */
5485 	if (shortCal || longCal) {
5486 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5487 			if (longCal) {
5488 				/*
5489 				 * Calibrate noise floor data again in case of change.
5490 				 */
5491 				ath_hal_process_noisefloor(ah);
5492 			}
5493 		} else {
5494 			DPRINTF(sc, ATH_DEBUG_ANY,
5495 				"%s: calibration of channel %u failed\n",
5496 				__func__, sc->sc_curchan->ic_freq);
5497 			sc->sc_stats.ast_per_calfail++;
5498 		}
5499 		if (shortCal)
5500 			sc->sc_lastshortcal = ticks;
5501 	}
5502 	if (!isCalDone) {
5503 restart:
5504 		/*
5505 		 * Use a shorter interval to potentially collect multiple
5506 		 * data samples required to complete calibration.  Once
5507 		 * we're told the work is done we drop back to a longer
5508 		 * interval between requests.  We're more aggressive doing
5509 		 * work when operating as an AP to improve operation right
5510 		 * after startup.
5511 		 */
5512 		sc->sc_lastshortcal = ticks;
5513 		nextcal = ath_shortcalinterval*hz/1000;
5514 		if (sc->sc_opmode != HAL_M_HOSTAP)
5515 			nextcal *= 10;
5516 		sc->sc_doresetcal = AH_TRUE;
5517 	} else {
5518 		/* nextcal should be the shortest time for next event */
5519 		nextcal = ath_longcalinterval*hz;
5520 		if (sc->sc_lastcalreset == 0)
5521 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5522 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5523 			sc->sc_resetcal = 1;	/* setup reset next trip */
5524 		sc->sc_doresetcal = AH_FALSE;
5525 	}
5526 	/* ANI calibration may occur more often than short/long/resetcal */
5527 	if (ath_anicalinterval > 0)
5528 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5529 
5530 	if (nextcal != 0) {
5531 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5532 		    __func__, nextcal, isCalDone ? "" : "!");
5533 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5534 	} else {
5535 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5536 		    __func__);
5537 		/* NB: don't rearm timer */
5538 	}
5539 }
5540 
5541 static void
5542 ath_scan_start(struct ieee80211com *ic)
5543 {
5544 	struct ifnet *ifp = ic->ic_ifp;
5545 	struct ath_softc *sc = ifp->if_softc;
5546 	struct ath_hal *ah = sc->sc_ah;
5547 	u_int32_t rfilt;
5548 
5549 	/* XXX calibration timer? */
5550 
5551 	sc->sc_scanning = 1;
5552 	sc->sc_syncbeacon = 0;
5553 	rfilt = ath_calcrxfilter(sc);
5554 	ath_hal_setrxfilter(ah, rfilt);
5555 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5556 
5557 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5558 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5559 }
5560 
5561 static void
5562 ath_scan_end(struct ieee80211com *ic)
5563 {
5564 	struct ifnet *ifp = ic->ic_ifp;
5565 	struct ath_softc *sc = ifp->if_softc;
5566 	struct ath_hal *ah = sc->sc_ah;
5567 	u_int32_t rfilt;
5568 
5569 	sc->sc_scanning = 0;
5570 	rfilt = ath_calcrxfilter(sc);
5571 	ath_hal_setrxfilter(ah, rfilt);
5572 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5573 
5574 	ath_hal_process_noisefloor(ah);
5575 
5576 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5577 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5578 		 sc->sc_curaid);
5579 }
5580 
5581 static void
5582 ath_set_channel(struct ieee80211com *ic)
5583 {
5584 	struct ifnet *ifp = ic->ic_ifp;
5585 	struct ath_softc *sc = ifp->if_softc;
5586 
5587 	(void) ath_chan_set(sc, ic->ic_curchan);
5588 	/*
5589 	 * If we are returning to our bss channel then mark state
5590 	 * so the next recv'd beacon's tsf will be used to sync the
5591 	 * beacon timers.  Note that since we only hear beacons in
5592 	 * sta/ibss mode this has no effect in other operating modes.
5593 	 */
5594 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5595 		sc->sc_syncbeacon = 1;
5596 }
5597 
5598 /*
5599  * Walk the vap list and check if there any vap's in RUN state.
5600  */
5601 static int
5602 ath_isanyrunningvaps(struct ieee80211vap *this)
5603 {
5604 	struct ieee80211com *ic = this->iv_ic;
5605 	struct ieee80211vap *vap;
5606 
5607 	IEEE80211_LOCK_ASSERT(ic);
5608 
5609 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5610 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5611 			return 1;
5612 	}
5613 	return 0;
5614 }
5615 
5616 static int
5617 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5618 {
5619 	struct ieee80211com *ic = vap->iv_ic;
5620 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5621 	struct ath_vap *avp = ATH_VAP(vap);
5622 	struct ath_hal *ah = sc->sc_ah;
5623 	struct ieee80211_node *ni = NULL;
5624 	int i, error, stamode;
5625 	u_int32_t rfilt;
5626 	int csa_run_transition = 0;
5627 	static const HAL_LED_STATE leds[] = {
5628 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5629 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5630 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5631 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5632 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5633 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5634 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5635 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5636 	};
5637 
5638 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5639 		ieee80211_state_name[vap->iv_state],
5640 		ieee80211_state_name[nstate]);
5641 
5642 	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5643 		csa_run_transition = 1;
5644 
5645 	callout_drain(&sc->sc_cal_ch);
5646 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5647 
5648 	if (nstate == IEEE80211_S_SCAN) {
5649 		/*
5650 		 * Scanning: turn off beacon miss and don't beacon.
5651 		 * Mark beacon state so when we reach RUN state we'll
5652 		 * [re]setup beacons.  Unblock the task q thread so
5653 		 * deferred interrupt processing is done.
5654 		 */
5655 		ath_hal_intrset(ah,
5656 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5657 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5658 		sc->sc_beacons = 0;
5659 		taskqueue_unblock(sc->sc_tq);
5660 	}
5661 
5662 	ni = vap->iv_bss;
5663 	rfilt = ath_calcrxfilter(sc);
5664 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5665 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5666 		   vap->iv_opmode == IEEE80211_M_IBSS);
5667 	if (stamode && nstate == IEEE80211_S_RUN) {
5668 		sc->sc_curaid = ni->ni_associd;
5669 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5670 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5671 	}
5672 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5673 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5674 	ath_hal_setrxfilter(ah, rfilt);
5675 
5676 	/* XXX is this to restore keycache on resume? */
5677 	if (vap->iv_opmode != IEEE80211_M_STA &&
5678 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5679 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5680 			if (ath_hal_keyisvalid(ah, i))
5681 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5682 	}
5683 
5684 	/*
5685 	 * Invoke the parent method to do net80211 work.
5686 	 */
5687 	error = avp->av_newstate(vap, nstate, arg);
5688 	if (error != 0)
5689 		goto bad;
5690 
5691 	if (nstate == IEEE80211_S_RUN) {
5692 		/* NB: collect bss node again, it may have changed */
5693 		ni = vap->iv_bss;
5694 
5695 		DPRINTF(sc, ATH_DEBUG_STATE,
5696 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5697 		    "capinfo 0x%04x chan %d\n", __func__,
5698 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5699 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5700 
5701 		switch (vap->iv_opmode) {
5702 #ifdef IEEE80211_SUPPORT_TDMA
5703 		case IEEE80211_M_AHDEMO:
5704 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5705 				break;
5706 			/* fall thru... */
5707 #endif
5708 		case IEEE80211_M_HOSTAP:
5709 		case IEEE80211_M_IBSS:
5710 		case IEEE80211_M_MBSS:
5711 			/*
5712 			 * Allocate and setup the beacon frame.
5713 			 *
5714 			 * Stop any previous beacon DMA.  This may be
5715 			 * necessary, for example, when an ibss merge
5716 			 * causes reconfiguration; there will be a state
5717 			 * transition from RUN->RUN that means we may
5718 			 * be called with beacon transmission active.
5719 			 */
5720 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5721 
5722 			error = ath_beacon_alloc(sc, ni);
5723 			if (error != 0)
5724 				goto bad;
5725 			/*
5726 			 * If joining an adhoc network defer beacon timer
5727 			 * configuration to the next beacon frame so we
5728 			 * have a current TSF to use.  Otherwise we're
5729 			 * starting an ibss/bss so there's no need to delay;
5730 			 * if this is the first vap moving to RUN state, then
5731 			 * beacon state needs to be [re]configured.
5732 			 */
5733 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5734 			    ni->ni_tstamp.tsf != 0) {
5735 				sc->sc_syncbeacon = 1;
5736 			} else if (!sc->sc_beacons) {
5737 #ifdef IEEE80211_SUPPORT_TDMA
5738 				if (vap->iv_caps & IEEE80211_C_TDMA)
5739 					ath_tdma_config(sc, vap);
5740 				else
5741 #endif
5742 					ath_beacon_config(sc, vap);
5743 				sc->sc_beacons = 1;
5744 			}
5745 			break;
5746 		case IEEE80211_M_STA:
5747 			/*
5748 			 * Defer beacon timer configuration to the next
5749 			 * beacon frame so we have a current TSF to use
5750 			 * (any TSF collected when scanning is likely old).
5751 			 * However if it's due to a CSA -> RUN transition,
5752 			 * force a beacon update so we pick up a lack of
5753 			 * beacons from an AP in CAC and thus force a
5754 			 * scan.
5755 			 */
5756 			sc->sc_syncbeacon = 1;
5757 			if (csa_run_transition)
5758 				ath_beacon_config(sc, vap);
5759 			break;
5760 		case IEEE80211_M_MONITOR:
5761 			/*
5762 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5763 			 * transitions so we must re-enable interrupts here to
5764 			 * handle the case of a single monitor mode vap.
5765 			 */
5766 			ath_hal_intrset(ah, sc->sc_imask);
5767 			break;
5768 		case IEEE80211_M_WDS:
5769 			break;
5770 		default:
5771 			break;
5772 		}
5773 		/*
5774 		 * Let the hal process statistics collected during a
5775 		 * scan so it can provide calibrated noise floor data.
5776 		 */
5777 		ath_hal_process_noisefloor(ah);
5778 		/*
5779 		 * Reset rssi stats; maybe not the best place...
5780 		 */
5781 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5782 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5783 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5784 		/*
5785 		 * Finally, start any timers and the task q thread
5786 		 * (in case we didn't go through SCAN state).
5787 		 */
5788 		if (ath_longcalinterval != 0) {
5789 			/* start periodic recalibration timer */
5790 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5791 		} else {
5792 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5793 			    "%s: calibration disabled\n", __func__);
5794 		}
5795 		taskqueue_unblock(sc->sc_tq);
5796 	} else if (nstate == IEEE80211_S_INIT) {
5797 		/*
5798 		 * If there are no vaps left in RUN state then
5799 		 * shutdown host/driver operation:
5800 		 * o disable interrupts
5801 		 * o disable the task queue thread
5802 		 * o mark beacon processing as stopped
5803 		 */
5804 		if (!ath_isanyrunningvaps(vap)) {
5805 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5806 			/* disable interrupts  */
5807 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5808 			taskqueue_block(sc->sc_tq);
5809 			sc->sc_beacons = 0;
5810 		}
5811 #ifdef IEEE80211_SUPPORT_TDMA
5812 		ath_hal_setcca(ah, AH_TRUE);
5813 #endif
5814 	}
5815 bad:
5816 	return error;
5817 }
5818 
5819 /*
5820  * Allocate a key cache slot to the station so we can
5821  * setup a mapping from key index to node. The key cache
5822  * slot is needed for managing antenna state and for
5823  * compression when stations do not use crypto.  We do
5824  * it uniliaterally here; if crypto is employed this slot
5825  * will be reassigned.
5826  */
5827 static void
5828 ath_setup_stationkey(struct ieee80211_node *ni)
5829 {
5830 	struct ieee80211vap *vap = ni->ni_vap;
5831 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5832 	ieee80211_keyix keyix, rxkeyix;
5833 
5834 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5835 		/*
5836 		 * Key cache is full; we'll fall back to doing
5837 		 * the more expensive lookup in software.  Note
5838 		 * this also means no h/w compression.
5839 		 */
5840 		/* XXX msg+statistic */
5841 	} else {
5842 		/* XXX locking? */
5843 		ni->ni_ucastkey.wk_keyix = keyix;
5844 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5845 		/* NB: must mark device key to get called back on delete */
5846 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5847 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5848 		/* NB: this will create a pass-thru key entry */
5849 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
5850 	}
5851 }
5852 
5853 /*
5854  * Setup driver-specific state for a newly associated node.
5855  * Note that we're called also on a re-associate, the isnew
5856  * param tells us if this is the first time or not.
5857  */
5858 static void
5859 ath_newassoc(struct ieee80211_node *ni, int isnew)
5860 {
5861 	struct ath_node *an = ATH_NODE(ni);
5862 	struct ieee80211vap *vap = ni->ni_vap;
5863 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5864 	const struct ieee80211_txparam *tp = ni->ni_txparms;
5865 
5866 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5867 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5868 
5869 	ath_rate_newassoc(sc, an, isnew);
5870 	if (isnew &&
5871 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5872 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5873 		ath_setup_stationkey(ni);
5874 }
5875 
5876 static int
5877 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5878 	int nchans, struct ieee80211_channel chans[])
5879 {
5880 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5881 	struct ath_hal *ah = sc->sc_ah;
5882 	HAL_STATUS status;
5883 
5884 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5885 	    "%s: rd %u cc %u location %c%s\n",
5886 	    __func__, reg->regdomain, reg->country, reg->location,
5887 	    reg->ecm ? " ecm" : "");
5888 
5889 	status = ath_hal_set_channels(ah, chans, nchans,
5890 	    reg->country, reg->regdomain);
5891 	if (status != HAL_OK) {
5892 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5893 		    __func__, status);
5894 		return EINVAL;		/* XXX */
5895 	}
5896 
5897 	return 0;
5898 }
5899 
5900 static void
5901 ath_getradiocaps(struct ieee80211com *ic,
5902 	int maxchans, int *nchans, struct ieee80211_channel chans[])
5903 {
5904 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5905 	struct ath_hal *ah = sc->sc_ah;
5906 
5907 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5908 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5909 
5910 	/* XXX check return */
5911 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5912 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5913 
5914 }
5915 
5916 static int
5917 ath_getchannels(struct ath_softc *sc)
5918 {
5919 	struct ifnet *ifp = sc->sc_ifp;
5920 	struct ieee80211com *ic = ifp->if_l2com;
5921 	struct ath_hal *ah = sc->sc_ah;
5922 	HAL_STATUS status;
5923 
5924 	/*
5925 	 * Collect channel set based on EEPROM contents.
5926 	 */
5927 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5928 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5929 	if (status != HAL_OK) {
5930 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5931 		    "status %d\n", __func__, status);
5932 		return EINVAL;
5933 	}
5934 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5935 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5936 	/* XXX map Atheros sku's to net80211 SKU's */
5937 	/* XXX net80211 types too small */
5938 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5939 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5940 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5941 	ic->ic_regdomain.isocc[1] = ' ';
5942 
5943 	ic->ic_regdomain.ecm = 1;
5944 	ic->ic_regdomain.location = 'I';
5945 
5946 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5947 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5948 	    __func__, sc->sc_eerd, sc->sc_eecc,
5949 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5950 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5951 	return 0;
5952 }
5953 
5954 static void
5955 ath_led_done(void *arg)
5956 {
5957 	struct ath_softc *sc = arg;
5958 
5959 	sc->sc_blinking = 0;
5960 }
5961 
5962 /*
5963  * Turn the LED off: flip the pin and then set a timer so no
5964  * update will happen for the specified duration.
5965  */
5966 static void
5967 ath_led_off(void *arg)
5968 {
5969 	struct ath_softc *sc = arg;
5970 
5971 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5972 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
5973 }
5974 
5975 /*
5976  * Blink the LED according to the specified on/off times.
5977  */
5978 static void
5979 ath_led_blink(struct ath_softc *sc, int on, int off)
5980 {
5981 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5982 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5983 	sc->sc_blinking = 1;
5984 	sc->sc_ledoff = off;
5985 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5986 }
5987 
5988 static void
5989 ath_led_event(struct ath_softc *sc, int rix)
5990 {
5991 	sc->sc_ledevent = ticks;	/* time of last event */
5992 	if (sc->sc_blinking)		/* don't interrupt active blink */
5993 		return;
5994 	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
5995 }
5996 
5997 static int
5998 ath_rate_setup(struct ath_softc *sc, u_int mode)
5999 {
6000 	struct ath_hal *ah = sc->sc_ah;
6001 	const HAL_RATE_TABLE *rt;
6002 
6003 	switch (mode) {
6004 	case IEEE80211_MODE_11A:
6005 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6006 		break;
6007 	case IEEE80211_MODE_HALF:
6008 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6009 		break;
6010 	case IEEE80211_MODE_QUARTER:
6011 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6012 		break;
6013 	case IEEE80211_MODE_11B:
6014 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6015 		break;
6016 	case IEEE80211_MODE_11G:
6017 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6018 		break;
6019 	case IEEE80211_MODE_TURBO_A:
6020 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6021 		break;
6022 	case IEEE80211_MODE_TURBO_G:
6023 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6024 		break;
6025 	case IEEE80211_MODE_STURBO_A:
6026 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6027 		break;
6028 	case IEEE80211_MODE_11NA:
6029 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6030 		break;
6031 	case IEEE80211_MODE_11NG:
6032 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6033 		break;
6034 	default:
6035 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6036 			__func__, mode);
6037 		return 0;
6038 	}
6039 	sc->sc_rates[mode] = rt;
6040 	return (rt != NULL);
6041 }
6042 
6043 static void
6044 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6045 {
6046 #define	N(a)	(sizeof(a)/sizeof(a[0]))
6047 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6048 	static const struct {
6049 		u_int		rate;		/* tx/rx 802.11 rate */
6050 		u_int16_t	timeOn;		/* LED on time (ms) */
6051 		u_int16_t	timeOff;	/* LED off time (ms) */
6052 	} blinkrates[] = {
6053 		{ 108,  40,  10 },
6054 		{  96,  44,  11 },
6055 		{  72,  50,  13 },
6056 		{  48,  57,  14 },
6057 		{  36,  67,  16 },
6058 		{  24,  80,  20 },
6059 		{  22, 100,  25 },
6060 		{  18, 133,  34 },
6061 		{  12, 160,  40 },
6062 		{  10, 200,  50 },
6063 		{   6, 240,  58 },
6064 		{   4, 267,  66 },
6065 		{   2, 400, 100 },
6066 		{   0, 500, 130 },
6067 		/* XXX half/quarter rates */
6068 	};
6069 	const HAL_RATE_TABLE *rt;
6070 	int i, j;
6071 
6072 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6073 	rt = sc->sc_rates[mode];
6074 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6075 	for (i = 0; i < rt->rateCount; i++) {
6076 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6077 		if (rt->info[i].phy != IEEE80211_T_HT)
6078 			sc->sc_rixmap[ieeerate] = i;
6079 		else
6080 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6081 	}
6082 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6083 	for (i = 0; i < N(sc->sc_hwmap); i++) {
6084 		if (i >= rt->rateCount) {
6085 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6086 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6087 			continue;
6088 		}
6089 		sc->sc_hwmap[i].ieeerate =
6090 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6091 		if (rt->info[i].phy == IEEE80211_T_HT)
6092 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6093 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6094 		if (rt->info[i].shortPreamble ||
6095 		    rt->info[i].phy == IEEE80211_T_OFDM)
6096 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6097 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6098 		for (j = 0; j < N(blinkrates)-1; j++)
6099 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6100 				break;
6101 		/* NB: this uses the last entry if the rate isn't found */
6102 		/* XXX beware of overlow */
6103 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6104 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6105 	}
6106 	sc->sc_currates = rt;
6107 	sc->sc_curmode = mode;
6108 	/*
6109 	 * All protection frames are transmited at 2Mb/s for
6110 	 * 11g, otherwise at 1Mb/s.
6111 	 */
6112 	if (mode == IEEE80211_MODE_11G)
6113 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6114 	else
6115 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6116 	/* NB: caller is responsible for resetting rate control state */
6117 #undef N
6118 }
6119 
6120 static void
6121 ath_watchdog(void *arg)
6122 {
6123 	struct ath_softc *sc = arg;
6124 	int do_reset = 0;
6125 
6126 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6127 		struct ifnet *ifp = sc->sc_ifp;
6128 		uint32_t hangs;
6129 
6130 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6131 		    hangs != 0) {
6132 			if_printf(ifp, "%s hang detected (0x%x)\n",
6133 			    hangs & 0xff ? "bb" : "mac", hangs);
6134 		} else
6135 			if_printf(ifp, "device timeout\n");
6136 		do_reset = 1;
6137 		ifp->if_oerrors++;
6138 		sc->sc_stats.ast_watchdog++;
6139 	}
6140 
6141 	/*
6142 	 * We can't hold the lock across the ath_reset() call.
6143 	 */
6144 	if (do_reset) {
6145 		ATH_UNLOCK(sc);
6146 		ath_reset(sc->sc_ifp, ATH_RESET_NOLOSS);
6147 		ATH_LOCK(sc);
6148 	}
6149 
6150 	callout_schedule(&sc->sc_wd_ch, hz);
6151 }
6152 
6153 #ifdef ATH_DIAGAPI
6154 /*
6155  * Diagnostic interface to the HAL.  This is used by various
6156  * tools to do things like retrieve register contents for
6157  * debugging.  The mechanism is intentionally opaque so that
6158  * it can change frequently w/o concern for compatiblity.
6159  */
6160 static int
6161 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6162 {
6163 	struct ath_hal *ah = sc->sc_ah;
6164 	u_int id = ad->ad_id & ATH_DIAG_ID;
6165 	void *indata = NULL;
6166 	void *outdata = NULL;
6167 	u_int32_t insize = ad->ad_in_size;
6168 	u_int32_t outsize = ad->ad_out_size;
6169 	int error = 0;
6170 
6171 	if (ad->ad_id & ATH_DIAG_IN) {
6172 		/*
6173 		 * Copy in data.
6174 		 */
6175 		indata = malloc(insize, M_TEMP, M_NOWAIT);
6176 		if (indata == NULL) {
6177 			error = ENOMEM;
6178 			goto bad;
6179 		}
6180 		error = copyin(ad->ad_in_data, indata, insize);
6181 		if (error)
6182 			goto bad;
6183 	}
6184 	if (ad->ad_id & ATH_DIAG_DYN) {
6185 		/*
6186 		 * Allocate a buffer for the results (otherwise the HAL
6187 		 * returns a pointer to a buffer where we can read the
6188 		 * results).  Note that we depend on the HAL leaving this
6189 		 * pointer for us to use below in reclaiming the buffer;
6190 		 * may want to be more defensive.
6191 		 */
6192 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6193 		if (outdata == NULL) {
6194 			error = ENOMEM;
6195 			goto bad;
6196 		}
6197 	}
6198 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6199 		if (outsize < ad->ad_out_size)
6200 			ad->ad_out_size = outsize;
6201 		if (outdata != NULL)
6202 			error = copyout(outdata, ad->ad_out_data,
6203 					ad->ad_out_size);
6204 	} else {
6205 		error = EINVAL;
6206 	}
6207 bad:
6208 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6209 		free(indata, M_TEMP);
6210 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6211 		free(outdata, M_TEMP);
6212 	return error;
6213 }
6214 #endif /* ATH_DIAGAPI */
6215 
6216 static int
6217 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6218 {
6219 #define	IS_RUNNING(ifp) \
6220 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6221 	struct ath_softc *sc = ifp->if_softc;
6222 	struct ieee80211com *ic = ifp->if_l2com;
6223 	struct ifreq *ifr = (struct ifreq *)data;
6224 	const HAL_RATE_TABLE *rt;
6225 	int error = 0;
6226 
6227 	switch (cmd) {
6228 	case SIOCSIFFLAGS:
6229 		ATH_LOCK(sc);
6230 		if (IS_RUNNING(ifp)) {
6231 			/*
6232 			 * To avoid rescanning another access point,
6233 			 * do not call ath_init() here.  Instead,
6234 			 * only reflect promisc mode settings.
6235 			 */
6236 			ath_mode_init(sc);
6237 		} else if (ifp->if_flags & IFF_UP) {
6238 			/*
6239 			 * Beware of being called during attach/detach
6240 			 * to reset promiscuous mode.  In that case we
6241 			 * will still be marked UP but not RUNNING.
6242 			 * However trying to re-init the interface
6243 			 * is the wrong thing to do as we've already
6244 			 * torn down much of our state.  There's
6245 			 * probably a better way to deal with this.
6246 			 */
6247 			if (!sc->sc_invalid)
6248 				ath_init(sc);	/* XXX lose error */
6249 		} else {
6250 			ath_stop_locked(ifp);
6251 #ifdef notyet
6252 			/* XXX must wakeup in places like ath_vap_delete */
6253 			if (!sc->sc_invalid)
6254 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6255 #endif
6256 		}
6257 		ATH_UNLOCK(sc);
6258 		break;
6259 	case SIOCGIFMEDIA:
6260 	case SIOCSIFMEDIA:
6261 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6262 		break;
6263 	case SIOCGATHSTATS:
6264 		/* NB: embed these numbers to get a consistent view */
6265 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6266 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6267 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6268 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6269 #ifdef IEEE80211_SUPPORT_TDMA
6270 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6271 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6272 #endif
6273 		rt = sc->sc_currates;
6274 		sc->sc_stats.ast_tx_rate =
6275 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6276 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
6277 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
6278 		return copyout(&sc->sc_stats,
6279 		    ifr->ifr_data, sizeof (sc->sc_stats));
6280 	case SIOCZATHSTATS:
6281 		error = priv_check(curthread, PRIV_DRIVER);
6282 		if (error == 0)
6283 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6284 		break;
6285 #ifdef ATH_DIAGAPI
6286 	case SIOCGATHDIAG:
6287 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6288 		break;
6289 	case SIOCGATHPHYERR:
6290 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
6291 		break;
6292 #endif
6293 	case SIOCGIFADDR:
6294 		error = ether_ioctl(ifp, cmd, data);
6295 		break;
6296 	default:
6297 		error = EINVAL;
6298 		break;
6299 	}
6300 	return error;
6301 #undef IS_RUNNING
6302 }
6303 
6304 /*
6305  * Announce various information on device/driver attach.
6306  */
6307 static void
6308 ath_announce(struct ath_softc *sc)
6309 {
6310 	struct ifnet *ifp = sc->sc_ifp;
6311 	struct ath_hal *ah = sc->sc_ah;
6312 
6313 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6314 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6315 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6316 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6317 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6318 	if (bootverbose) {
6319 		int i;
6320 		for (i = 0; i <= WME_AC_VO; i++) {
6321 			struct ath_txq *txq = sc->sc_ac2q[i];
6322 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6323 				txq->axq_qnum, ieee80211_wme_acnames[i]);
6324 		}
6325 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6326 			sc->sc_cabq->axq_qnum);
6327 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6328 	}
6329 	if (ath_rxbuf != ATH_RXBUF)
6330 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6331 	if (ath_txbuf != ATH_TXBUF)
6332 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6333 	if (sc->sc_mcastkey && bootverbose)
6334 		if_printf(ifp, "using multicast key search\n");
6335 }
6336 
6337 #ifdef IEEE80211_SUPPORT_TDMA
6338 static void
6339 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
6340 {
6341 	struct ath_hal *ah = sc->sc_ah;
6342 	HAL_BEACON_TIMERS bt;
6343 
6344 	bt.bt_intval = bintval | HAL_BEACON_ENA;
6345 	bt.bt_nexttbtt = nexttbtt;
6346 	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
6347 	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
6348 	bt.bt_nextatim = nexttbtt+1;
6349 	/* Enables TBTT, DBA, SWBA timers by default */
6350 	bt.bt_flags = 0;
6351 	ath_hal_beaconsettimers(ah, &bt);
6352 }
6353 
6354 /*
6355  * Calculate the beacon interval.  This is periodic in the
6356  * superframe for the bss.  We assume each station is configured
6357  * identically wrt transmit rate so the guard time we calculate
6358  * above will be the same on all stations.  Note we need to
6359  * factor in the xmit time because the hardware will schedule
6360  * a frame for transmit if the start of the frame is within
6361  * the burst time.  When we get hardware that properly kills
6362  * frames in the PCU we can reduce/eliminate the guard time.
6363  *
6364  * Roundup to 1024 is so we have 1 TU buffer in the guard time
6365  * to deal with the granularity of the nexttbtt timer.  11n MAC's
6366  * with 1us timer granularity should allow us to reduce/eliminate
6367  * this.
6368  */
6369 static void
6370 ath_tdma_bintvalsetup(struct ath_softc *sc,
6371 	const struct ieee80211_tdma_state *tdma)
6372 {
6373 	/* copy from vap state (XXX check all vaps have same value?) */
6374 	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
6375 
6376 	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
6377 		tdma->tdma_slotcnt, 1024);
6378 	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
6379 	if (sc->sc_tdmabintval & 1)
6380 		sc->sc_tdmabintval++;
6381 
6382 	if (tdma->tdma_slot == 0) {
6383 		/*
6384 		 * Only slot 0 beacons; other slots respond.
6385 		 */
6386 		sc->sc_imask |= HAL_INT_SWBA;
6387 		sc->sc_tdmaswba = 0;		/* beacon immediately */
6388 	} else {
6389 		/* XXX all vaps must be slot 0 or slot !0 */
6390 		sc->sc_imask &= ~HAL_INT_SWBA;
6391 	}
6392 }
6393 
6394 /*
6395  * Max 802.11 overhead.  This assumes no 4-address frames and
6396  * the encapsulation done by ieee80211_encap (llc).  We also
6397  * include potential crypto overhead.
6398  */
6399 #define	IEEE80211_MAXOVERHEAD \
6400 	(sizeof(struct ieee80211_qosframe) \
6401 	 + sizeof(struct llc) \
6402 	 + IEEE80211_ADDR_LEN \
6403 	 + IEEE80211_WEP_IVLEN \
6404 	 + IEEE80211_WEP_KIDLEN \
6405 	 + IEEE80211_WEP_CRCLEN \
6406 	 + IEEE80211_WEP_MICLEN \
6407 	 + IEEE80211_CRC_LEN)
6408 
6409 /*
6410  * Setup initially for tdma operation.  Start the beacon
6411  * timers and enable SWBA if we are slot 0.  Otherwise
6412  * we wait for slot 0 to arrive so we can sync up before
6413  * starting to transmit.
6414  */
6415 static void
6416 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
6417 {
6418 	struct ath_hal *ah = sc->sc_ah;
6419 	struct ifnet *ifp = sc->sc_ifp;
6420 	struct ieee80211com *ic = ifp->if_l2com;
6421 	const struct ieee80211_txparam *tp;
6422 	const struct ieee80211_tdma_state *tdma = NULL;
6423 	int rix;
6424 
6425 	if (vap == NULL) {
6426 		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
6427 		if (vap == NULL) {
6428 			if_printf(ifp, "%s: no vaps?\n", __func__);
6429 			return;
6430 		}
6431 	}
6432 	tp = vap->iv_bss->ni_txparms;
6433 	/*
6434 	 * Calculate the guard time for each slot.  This is the
6435 	 * time to send a maximal-size frame according to the
6436 	 * fixed/lowest transmit rate.  Note that the interface
6437 	 * mtu does not include the 802.11 overhead so we must
6438 	 * tack that on (ath_hal_computetxtime includes the
6439 	 * preamble and plcp in it's calculation).
6440 	 */
6441 	tdma = vap->iv_tdma;
6442 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
6443 		rix = ath_tx_findrix(sc, tp->ucastrate);
6444 	else
6445 		rix = ath_tx_findrix(sc, tp->mcastrate);
6446 	/* XXX short preamble assumed */
6447 	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
6448 		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
6449 
6450 	ath_hal_intrset(ah, 0);
6451 
6452 	ath_beaconq_config(sc);			/* setup h/w beacon q */
6453 	if (sc->sc_setcca)
6454 		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
6455 	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
6456 	ath_tdma_settimers(sc, sc->sc_tdmabintval,
6457 		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
6458 	sc->sc_syncbeacon = 0;
6459 
6460 	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
6461 	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
6462 
6463 	ath_hal_intrset(ah, sc->sc_imask);
6464 
6465 	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
6466 	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
6467 	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
6468 	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
6469 	    sc->sc_tdmadbaprep);
6470 }
6471 
6472 /*
6473  * Update tdma operation.  Called from the 802.11 layer
6474  * when a beacon is received from the TDMA station operating
6475  * in the slot immediately preceding us in the bss.  Use
6476  * the rx timestamp for the beacon frame to update our
6477  * beacon timers so we follow their schedule.  Note that
6478  * by using the rx timestamp we implicitly include the
6479  * propagation delay in our schedule.
6480  */
6481 static void
6482 ath_tdma_update(struct ieee80211_node *ni,
6483 	const struct ieee80211_tdma_param *tdma, int changed)
6484 {
6485 #define	TSF_TO_TU(_h,_l) \
6486 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
6487 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
6488 	struct ieee80211vap *vap = ni->ni_vap;
6489 	struct ieee80211com *ic = ni->ni_ic;
6490 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6491 	struct ath_hal *ah = sc->sc_ah;
6492 	const HAL_RATE_TABLE *rt = sc->sc_currates;
6493 	u_int64_t tsf, rstamp, nextslot, nexttbtt;
6494 	u_int32_t txtime, nextslottu;
6495 	int32_t tudelta, tsfdelta;
6496 	const struct ath_rx_status *rs;
6497 	int rix;
6498 
6499 	sc->sc_stats.ast_tdma_update++;
6500 
6501 	/*
6502 	 * Check for and adopt configuration changes.
6503 	 */
6504 	if (changed != 0) {
6505 		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
6506 
6507 		ath_tdma_bintvalsetup(sc, ts);
6508 		if (changed & TDMA_UPDATE_SLOTLEN)
6509 			ath_wme_update(ic);
6510 
6511 		DPRINTF(sc, ATH_DEBUG_TDMA,
6512 		    "%s: adopt slot %u slotcnt %u slotlen %u us "
6513 		    "bintval %u TU\n", __func__,
6514 		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
6515 		    sc->sc_tdmabintval);
6516 
6517 		/* XXX right? */
6518 		ath_hal_intrset(ah, sc->sc_imask);
6519 		/* NB: beacon timers programmed below */
6520 	}
6521 
6522 	/* extend rx timestamp to 64 bits */
6523 	rs = sc->sc_lastrs;
6524 	tsf = ath_hal_gettsf64(ah);
6525 	rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
6526 	/*
6527 	 * The rx timestamp is set by the hardware on completing
6528 	 * reception (at the point where the rx descriptor is DMA'd
6529 	 * to the host).  To find the start of our next slot we
6530 	 * must adjust this time by the time required to send
6531 	 * the packet just received.
6532 	 */
6533 	rix = rt->rateCodeToIndex[rs->rs_rate];
6534 	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
6535 	    rt->info[rix].shortPreamble);
6536 	/* NB: << 9 is to cvt to TU and /2 */
6537 	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
6538 	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
6539 
6540 	/*
6541 	 * Retrieve the hardware NextTBTT in usecs
6542 	 * and calculate the difference between what the
6543 	 * other station thinks and what we have programmed.  This
6544 	 * lets us figure how to adjust our timers to match.  The
6545 	 * adjustments are done by pulling the TSF forward and possibly
6546 	 * rewriting the beacon timers.
6547 	 */
6548 	nexttbtt = ath_hal_getnexttbtt(ah);
6549 	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt);
6550 
6551 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
6552 	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
6553 	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
6554 
6555 	if (tsfdelta < 0) {
6556 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
6557 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
6558 		tsfdelta = -tsfdelta % 1024;
6559 		nextslottu++;
6560 	} else if (tsfdelta > 0) {
6561 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
6562 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
6563 		tsfdelta = 1024 - (tsfdelta % 1024);
6564 		nextslottu++;
6565 	} else {
6566 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
6567 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
6568 	}
6569 	tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt);
6570 
6571 	/*
6572 	 * Copy sender's timetstamp into tdma ie so they can
6573 	 * calculate roundtrip time.  We submit a beacon frame
6574 	 * below after any timer adjustment.  The frame goes out
6575 	 * at the next TBTT so the sender can calculate the
6576 	 * roundtrip by inspecting the tdma ie in our beacon frame.
6577 	 *
6578 	 * NB: This tstamp is subtlely preserved when
6579 	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
6580 	 *     slot position changes) because ieee80211_add_tdma
6581 	 *     skips over the data.
6582 	 */
6583 	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
6584 		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
6585 		&ni->ni_tstamp.data, 8);
6586 #if 0
6587 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
6588 	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n",
6589 	    (unsigned long long) tsf, (unsigned long long) nextslot,
6590 	    (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta);
6591 #endif
6592 	/*
6593 	 * Adjust the beacon timers only when pulling them forward
6594 	 * or when going back by less than the beacon interval.
6595 	 * Negative jumps larger than the beacon interval seem to
6596 	 * cause the timers to stop and generally cause instability.
6597 	 * This basically filters out jumps due to missed beacons.
6598 	 */
6599 	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
6600 		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
6601 		sc->sc_stats.ast_tdma_timers++;
6602 	}
6603 	if (tsfdelta > 0) {
6604 		ath_hal_adjusttsf(ah, tsfdelta);
6605 		sc->sc_stats.ast_tdma_tsf++;
6606 	}
6607 	ath_tdma_beacon_send(sc, vap);		/* prepare response */
6608 #undef TU_TO_TSF
6609 #undef TSF_TO_TU
6610 }
6611 
6612 /*
6613  * Transmit a beacon frame at SWBA.  Dynamic updates
6614  * to the frame contents are done as needed.
6615  */
6616 static void
6617 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
6618 {
6619 	struct ath_hal *ah = sc->sc_ah;
6620 	struct ath_buf *bf;
6621 	int otherant;
6622 
6623 	/*
6624 	 * Check if the previous beacon has gone out.  If
6625 	 * not don't try to post another, skip this period
6626 	 * and wait for the next.  Missed beacons indicate
6627 	 * a problem and should not occur.  If we miss too
6628 	 * many consecutive beacons reset the device.
6629 	 */
6630 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
6631 		sc->sc_bmisscount++;
6632 		DPRINTF(sc, ATH_DEBUG_BEACON,
6633 			"%s: missed %u consecutive beacons\n",
6634 			__func__, sc->sc_bmisscount);
6635 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
6636 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
6637 		return;
6638 	}
6639 	if (sc->sc_bmisscount != 0) {
6640 		DPRINTF(sc, ATH_DEBUG_BEACON,
6641 			"%s: resume beacon xmit after %u misses\n",
6642 			__func__, sc->sc_bmisscount);
6643 		sc->sc_bmisscount = 0;
6644 	}
6645 
6646 	/*
6647 	 * Check recent per-antenna transmit statistics and flip
6648 	 * the default antenna if noticeably more frames went out
6649 	 * on the non-default antenna.
6650 	 * XXX assumes 2 anntenae
6651 	 */
6652 	if (!sc->sc_diversity) {
6653 		otherant = sc->sc_defant & 1 ? 2 : 1;
6654 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
6655 			ath_setdefantenna(sc, otherant);
6656 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
6657 	}
6658 
6659 	bf = ath_beacon_generate(sc, vap);
6660 	if (bf != NULL) {
6661 		/*
6662 		 * Stop any current dma and put the new frame on the queue.
6663 		 * This should never fail since we check above that no frames
6664 		 * are still pending on the queue.
6665 		 */
6666 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
6667 			DPRINTF(sc, ATH_DEBUG_ANY,
6668 				"%s: beacon queue %u did not stop?\n",
6669 				__func__, sc->sc_bhalq);
6670 			/* NB: the HAL still stops DMA, so proceed */
6671 		}
6672 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
6673 		ath_hal_txstart(ah, sc->sc_bhalq);
6674 
6675 		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
6676 
6677 		/*
6678 		 * Record local TSF for our last send for use
6679 		 * in arbitrating slot collisions.
6680 		 */
6681 		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
6682 	}
6683 }
6684 #endif /* IEEE80211_SUPPORT_TDMA */
6685 
6686 static void
6687 ath_dfs_tasklet(void *p, int npending)
6688 {
6689 	struct ath_softc *sc = (struct ath_softc *) p;
6690 	struct ifnet *ifp = sc->sc_ifp;
6691 	struct ieee80211com *ic = ifp->if_l2com;
6692 
6693 	/*
6694 	 * If previous processing has found a radar event,
6695 	 * signal this to the net80211 layer to begin DFS
6696 	 * processing.
6697 	 */
6698 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6699 		/* DFS event found, initiate channel change */
6700 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6701 	}
6702 }
6703 
6704 MODULE_VERSION(if_ath, 1);
6705 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
6706