1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 */ 46 #include "opt_ah.h" 47 #include "opt_wlan.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/sysctl.h> 52 #include <sys/mbuf.h> 53 #include <sys/malloc.h> 54 #include <sys/lock.h> 55 #include <sys/mutex.h> 56 #include <sys/kernel.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/errno.h> 60 #include <sys/callout.h> 61 #include <sys/bus.h> 62 #include <sys/endian.h> 63 #include <sys/kthread.h> 64 #include <sys/taskqueue.h> 65 #include <sys/priv.h> 66 #include <sys/module.h> 67 #include <sys/ktr.h> 68 #include <sys/smp.h> /* for mp_ncpus */ 69 70 #include <machine/bus.h> 71 72 #include <net/if.h> 73 #include <net/if_dl.h> 74 #include <net/if_media.h> 75 #include <net/if_types.h> 76 #include <net/if_arp.h> 77 #include <net/ethernet.h> 78 #include <net/if_llc.h> 79 80 #include <net80211/ieee80211_var.h> 81 #include <net80211/ieee80211_regdomain.h> 82 #ifdef IEEE80211_SUPPORT_SUPERG 83 #include <net80211/ieee80211_superg.h> 84 #endif 85 #ifdef IEEE80211_SUPPORT_TDMA 86 #include <net80211/ieee80211_tdma.h> 87 #endif 88 89 #include <net/bpf.h> 90 91 #ifdef INET 92 #include <netinet/in.h> 93 #include <netinet/if_ether.h> 94 #endif 95 96 #include <dev/ath/if_athvar.h> 97 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 98 #include <dev/ath/ath_hal/ah_diagcodes.h> 99 100 #include <dev/ath/if_ath_debug.h> 101 #include <dev/ath/if_ath_misc.h> 102 #include <dev/ath/if_ath_tx.h> 103 #include <dev/ath/if_ath_sysctl.h> 104 #include <dev/ath/if_ath_keycache.h> 105 #include <dev/ath/if_athdfs.h> 106 107 #ifdef ATH_TX99_DIAG 108 #include <dev/ath/ath_tx99/ath_tx99.h> 109 #endif 110 111 #define ATH_KTR_INTR KTR_SPARE4 112 #define ATH_KTR_ERR KTR_SPARE3 113 114 /* 115 * ATH_BCBUF determines the number of vap's that can transmit 116 * beacons and also (currently) the number of vap's that can 117 * have unique mac addresses/bssid. When staggering beacons 118 * 4 is probably a good max as otherwise the beacons become 119 * very closely spaced and there is limited time for cab q traffic 120 * to go out. You can burst beacons instead but that is not good 121 * for stations in power save and at some point you really want 122 * another radio (and channel). 123 * 124 * The limit on the number of mac addresses is tied to our use of 125 * the U/L bit and tracking addresses in a byte; it would be 126 * worthwhile to allow more for applications like proxy sta. 127 */ 128 CTASSERT(ATH_BCBUF <= 8); 129 130 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 131 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 132 const uint8_t [IEEE80211_ADDR_LEN], 133 const uint8_t [IEEE80211_ADDR_LEN]); 134 static void ath_vap_delete(struct ieee80211vap *); 135 static void ath_init(void *); 136 static void ath_stop_locked(struct ifnet *); 137 static void ath_stop(struct ifnet *); 138 static void ath_start(struct ifnet *); 139 static int ath_reset_vap(struct ieee80211vap *, u_long); 140 static int ath_media_change(struct ifnet *); 141 static void ath_watchdog(void *); 142 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 143 static void ath_fatal_proc(void *, int); 144 static void ath_bmiss_vap(struct ieee80211vap *); 145 static void ath_bmiss_proc(void *, int); 146 static void ath_key_update_begin(struct ieee80211vap *); 147 static void ath_key_update_end(struct ieee80211vap *); 148 static void ath_update_mcast(struct ifnet *); 149 static void ath_update_promisc(struct ifnet *); 150 static void ath_mode_init(struct ath_softc *); 151 static void ath_setslottime(struct ath_softc *); 152 static void ath_updateslot(struct ifnet *); 153 static int ath_beaconq_setup(struct ath_hal *); 154 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 155 static void ath_beacon_update(struct ieee80211vap *, int item); 156 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 157 static void ath_beacon_proc(void *, int); 158 static struct ath_buf *ath_beacon_generate(struct ath_softc *, 159 struct ieee80211vap *); 160 static void ath_bstuck_proc(void *, int); 161 static void ath_beacon_return(struct ath_softc *, struct ath_buf *); 162 static void ath_beacon_free(struct ath_softc *); 163 static void ath_beacon_config(struct ath_softc *, struct ieee80211vap *); 164 static void ath_descdma_cleanup(struct ath_softc *sc, 165 struct ath_descdma *, ath_bufhead *); 166 static int ath_desc_alloc(struct ath_softc *); 167 static void ath_desc_free(struct ath_softc *); 168 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 169 const uint8_t [IEEE80211_ADDR_LEN]); 170 static void ath_node_cleanup(struct ieee80211_node *); 171 static void ath_node_free(struct ieee80211_node *); 172 static void ath_node_getsignal(const struct ieee80211_node *, 173 int8_t *, int8_t *); 174 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 175 static void ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 176 int subtype, int rssi, int nf); 177 static void ath_setdefantenna(struct ath_softc *, u_int); 178 static void ath_rx_proc(struct ath_softc *sc, int); 179 static void ath_rx_tasklet(void *, int); 180 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 181 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 182 static int ath_tx_setup(struct ath_softc *, int, int); 183 static int ath_wme_update(struct ieee80211com *); 184 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 185 static void ath_tx_cleanup(struct ath_softc *); 186 static void ath_tx_proc_q0(void *, int); 187 static void ath_tx_proc_q0123(void *, int); 188 static void ath_tx_proc(void *, int); 189 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 190 static void ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type); 191 static void ath_stoprecv(struct ath_softc *, int); 192 static int ath_startrecv(struct ath_softc *); 193 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 194 static void ath_scan_start(struct ieee80211com *); 195 static void ath_scan_end(struct ieee80211com *); 196 static void ath_set_channel(struct ieee80211com *); 197 static void ath_calibrate(void *); 198 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 199 static void ath_setup_stationkey(struct ieee80211_node *); 200 static void ath_newassoc(struct ieee80211_node *, int); 201 static int ath_setregdomain(struct ieee80211com *, 202 struct ieee80211_regdomain *, int, 203 struct ieee80211_channel []); 204 static void ath_getradiocaps(struct ieee80211com *, int, int *, 205 struct ieee80211_channel []); 206 static int ath_getchannels(struct ath_softc *); 207 static void ath_led_event(struct ath_softc *, int); 208 209 static int ath_rate_setup(struct ath_softc *, u_int mode); 210 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 211 212 static void ath_announce(struct ath_softc *); 213 214 static void ath_dfs_tasklet(void *, int); 215 216 #ifdef IEEE80211_SUPPORT_TDMA 217 static void ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, 218 u_int32_t bintval); 219 static void ath_tdma_bintvalsetup(struct ath_softc *sc, 220 const struct ieee80211_tdma_state *tdma); 221 static void ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap); 222 static void ath_tdma_update(struct ieee80211_node *ni, 223 const struct ieee80211_tdma_param *tdma, int); 224 static void ath_tdma_beacon_send(struct ath_softc *sc, 225 struct ieee80211vap *vap); 226 227 #define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */ 228 #define TDMA_LPF_LEN 6 229 #define TDMA_DUMMY_MARKER 0x127 230 #define TDMA_EP_MUL(x, mul) ((x) * (mul)) 231 #define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER)) 232 #define TDMA_LPF(x, y, len) \ 233 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y)) 234 #define TDMA_SAMPLE(x, y) do { \ 235 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \ 236 } while (0) 237 #define TDMA_EP_RND(x,mul) \ 238 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 239 #define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER) 240 #endif /* IEEE80211_SUPPORT_TDMA */ 241 242 SYSCTL_DECL(_hw_ath); 243 244 /* XXX validate sysctl values */ 245 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 246 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 247 0, "long chip calibration interval (secs)"); 248 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 249 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 250 0, "short chip calibration interval (msecs)"); 251 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 252 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 253 0, "reset chip calibration results (secs)"); 254 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 255 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 256 0, "ANI calibration (msecs)"); 257 258 static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 259 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 260 0, "rx buffers allocated"); 261 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 262 static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 263 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 264 0, "tx buffers allocated"); 265 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 266 267 static int ath_bstuck_threshold = 4; /* max missed beacons */ 268 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 269 0, "max missed beacon xmits before chip reset"); 270 271 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 272 273 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 274 #define HAL_MODE_HT40 \ 275 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 276 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 277 int 278 ath_attach(u_int16_t devid, struct ath_softc *sc) 279 { 280 struct ifnet *ifp; 281 struct ieee80211com *ic; 282 struct ath_hal *ah = NULL; 283 HAL_STATUS status; 284 int error = 0, i; 285 u_int wmodes; 286 uint8_t macaddr[IEEE80211_ADDR_LEN]; 287 288 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 289 290 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 291 if (ifp == NULL) { 292 device_printf(sc->sc_dev, "can not if_alloc()\n"); 293 error = ENOSPC; 294 goto bad; 295 } 296 ic = ifp->if_l2com; 297 298 /* set these up early for if_printf use */ 299 if_initname(ifp, device_get_name(sc->sc_dev), 300 device_get_unit(sc->sc_dev)); 301 302 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, sc->sc_eepromdata, &status); 303 if (ah == NULL) { 304 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 305 status); 306 error = ENXIO; 307 goto bad; 308 } 309 sc->sc_ah = ah; 310 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 311 #ifdef ATH_DEBUG 312 sc->sc_debug = ath_debug; 313 #endif 314 315 /* 316 * Check if the MAC has multi-rate retry support. 317 * We do this by trying to setup a fake extended 318 * descriptor. MAC's that don't have support will 319 * return false w/o doing anything. MAC's that do 320 * support it will return true w/o doing anything. 321 */ 322 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 323 324 /* 325 * Check if the device has hardware counters for PHY 326 * errors. If so we need to enable the MIB interrupt 327 * so we can act on stat triggers. 328 */ 329 if (ath_hal_hwphycounters(ah)) 330 sc->sc_needmib = 1; 331 332 /* 333 * Get the hardware key cache size. 334 */ 335 sc->sc_keymax = ath_hal_keycachesize(ah); 336 if (sc->sc_keymax > ATH_KEYMAX) { 337 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 338 ATH_KEYMAX, sc->sc_keymax); 339 sc->sc_keymax = ATH_KEYMAX; 340 } 341 /* 342 * Reset the key cache since some parts do not 343 * reset the contents on initial power up. 344 */ 345 for (i = 0; i < sc->sc_keymax; i++) 346 ath_hal_keyreset(ah, i); 347 348 /* 349 * Collect the default channel list. 350 */ 351 error = ath_getchannels(sc); 352 if (error != 0) 353 goto bad; 354 355 /* 356 * Setup rate tables for all potential media types. 357 */ 358 ath_rate_setup(sc, IEEE80211_MODE_11A); 359 ath_rate_setup(sc, IEEE80211_MODE_11B); 360 ath_rate_setup(sc, IEEE80211_MODE_11G); 361 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 362 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 363 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 364 ath_rate_setup(sc, IEEE80211_MODE_11NA); 365 ath_rate_setup(sc, IEEE80211_MODE_11NG); 366 ath_rate_setup(sc, IEEE80211_MODE_HALF); 367 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 368 369 /* NB: setup here so ath_rate_update is happy */ 370 ath_setcurmode(sc, IEEE80211_MODE_11A); 371 372 /* 373 * Allocate tx+rx descriptors and populate the lists. 374 */ 375 error = ath_desc_alloc(sc); 376 if (error != 0) { 377 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 378 goto bad; 379 } 380 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 381 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 382 383 ATH_TXBUF_LOCK_INIT(sc); 384 385 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 386 taskqueue_thread_enqueue, &sc->sc_tq); 387 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 388 "%s taskq", ifp->if_xname); 389 390 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc); 391 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 392 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 393 394 /* 395 * Allocate hardware transmit queues: one queue for 396 * beacon frames and one data queue for each QoS 397 * priority. Note that the hal handles resetting 398 * these queues at the needed time. 399 * 400 * XXX PS-Poll 401 */ 402 sc->sc_bhalq = ath_beaconq_setup(ah); 403 if (sc->sc_bhalq == (u_int) -1) { 404 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 405 error = EIO; 406 goto bad2; 407 } 408 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 409 if (sc->sc_cabq == NULL) { 410 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 411 error = EIO; 412 goto bad2; 413 } 414 /* NB: insure BK queue is the lowest priority h/w queue */ 415 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 416 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 417 ieee80211_wme_acnames[WME_AC_BK]); 418 error = EIO; 419 goto bad2; 420 } 421 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 422 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 423 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 424 /* 425 * Not enough hardware tx queues to properly do WME; 426 * just punt and assign them all to the same h/w queue. 427 * We could do a better job of this if, for example, 428 * we allocate queues when we switch from station to 429 * AP mode. 430 */ 431 if (sc->sc_ac2q[WME_AC_VI] != NULL) 432 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 433 if (sc->sc_ac2q[WME_AC_BE] != NULL) 434 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 435 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 436 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 437 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 438 } 439 440 /* 441 * Special case certain configurations. Note the 442 * CAB queue is handled by these specially so don't 443 * include them when checking the txq setup mask. 444 */ 445 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 446 case 0x01: 447 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 448 break; 449 case 0x0f: 450 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 451 break; 452 default: 453 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 454 break; 455 } 456 457 /* 458 * Setup rate control. Some rate control modules 459 * call back to change the anntena state so expose 460 * the necessary entry points. 461 * XXX maybe belongs in struct ath_ratectrl? 462 */ 463 sc->sc_setdefantenna = ath_setdefantenna; 464 sc->sc_rc = ath_rate_attach(sc); 465 if (sc->sc_rc == NULL) { 466 error = EIO; 467 goto bad2; 468 } 469 470 /* Attach DFS module */ 471 if (! ath_dfs_attach(sc)) { 472 device_printf(sc->sc_dev, "%s: unable to attach DFS\n", __func__); 473 error = EIO; 474 goto bad2; 475 } 476 477 /* Start DFS processing tasklet */ 478 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 479 480 sc->sc_blinking = 0; 481 sc->sc_ledstate = 1; 482 sc->sc_ledon = 0; /* low true */ 483 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 484 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 485 /* 486 * Auto-enable soft led processing for IBM cards and for 487 * 5211 minipci cards. Users can also manually enable/disable 488 * support with a sysctl. 489 */ 490 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 491 if (sc->sc_softled) { 492 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin, 493 HAL_GPIO_MUX_MAC_NETWORK_LED); 494 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 495 } 496 497 ifp->if_softc = sc; 498 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 499 ifp->if_start = ath_start; 500 ifp->if_ioctl = ath_ioctl; 501 ifp->if_init = ath_init; 502 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 503 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 504 IFQ_SET_READY(&ifp->if_snd); 505 506 ic->ic_ifp = ifp; 507 /* XXX not right but it's not used anywhere important */ 508 ic->ic_phytype = IEEE80211_T_OFDM; 509 ic->ic_opmode = IEEE80211_M_STA; 510 ic->ic_caps = 511 IEEE80211_C_STA /* station mode */ 512 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 513 | IEEE80211_C_HOSTAP /* hostap mode */ 514 | IEEE80211_C_MONITOR /* monitor mode */ 515 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 516 | IEEE80211_C_WDS /* 4-address traffic works */ 517 | IEEE80211_C_MBSS /* mesh point link mode */ 518 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 519 | IEEE80211_C_SHSLOT /* short slot time supported */ 520 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 521 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 522 | IEEE80211_C_TXFRAG /* handle tx frags */ 523 #ifdef ATH_ENABLE_DFS 524 | IEEE80211_C_DFS /* Enable DFS radar detection */ 525 #endif 526 ; 527 /* 528 * Query the hal to figure out h/w crypto support. 529 */ 530 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 531 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 532 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 533 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 534 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 535 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 536 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 537 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 538 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 539 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 540 /* 541 * Check if h/w does the MIC and/or whether the 542 * separate key cache entries are required to 543 * handle both tx+rx MIC keys. 544 */ 545 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 546 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 547 /* 548 * If the h/w supports storing tx+rx MIC keys 549 * in one cache slot automatically enable use. 550 */ 551 if (ath_hal_hastkipsplit(ah) || 552 !ath_hal_settkipsplit(ah, AH_FALSE)) 553 sc->sc_splitmic = 1; 554 /* 555 * If the h/w can do TKIP MIC together with WME then 556 * we use it; otherwise we force the MIC to be done 557 * in software by the net80211 layer. 558 */ 559 if (ath_hal_haswmetkipmic(ah)) 560 sc->sc_wmetkipmic = 1; 561 } 562 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 563 /* 564 * Check for multicast key search support. 565 */ 566 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 567 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 568 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 569 } 570 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 571 /* 572 * Mark key cache slots associated with global keys 573 * as in use. If we knew TKIP was not to be used we 574 * could leave the +32, +64, and +32+64 slots free. 575 */ 576 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 577 setbit(sc->sc_keymap, i); 578 setbit(sc->sc_keymap, i+64); 579 if (sc->sc_splitmic) { 580 setbit(sc->sc_keymap, i+32); 581 setbit(sc->sc_keymap, i+32+64); 582 } 583 } 584 /* 585 * TPC support can be done either with a global cap or 586 * per-packet support. The latter is not available on 587 * all parts. We're a bit pedantic here as all parts 588 * support a global cap. 589 */ 590 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 591 ic->ic_caps |= IEEE80211_C_TXPMGT; 592 593 /* 594 * Mark WME capability only if we have sufficient 595 * hardware queues to do proper priority scheduling. 596 */ 597 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 598 ic->ic_caps |= IEEE80211_C_WME; 599 /* 600 * Check for misc other capabilities. 601 */ 602 if (ath_hal_hasbursting(ah)) 603 ic->ic_caps |= IEEE80211_C_BURST; 604 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 605 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 606 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 607 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 608 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 609 if (ath_hal_hasfastframes(ah)) 610 ic->ic_caps |= IEEE80211_C_FF; 611 wmodes = ath_hal_getwirelessmodes(ah); 612 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 613 ic->ic_caps |= IEEE80211_C_TURBOP; 614 #ifdef IEEE80211_SUPPORT_TDMA 615 if (ath_hal_macversion(ah) > 0x78) { 616 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 617 ic->ic_tdma_update = ath_tdma_update; 618 } 619 #endif 620 621 /* 622 * The if_ath 11n support is completely not ready for normal use. 623 * Enabling this option will likely break everything and everything. 624 * Don't think of doing that unless you know what you're doing. 625 */ 626 627 #ifdef ATH_ENABLE_11N 628 /* 629 * Query HT capabilities 630 */ 631 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 632 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 633 int rxs, txs; 634 635 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 636 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 637 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 638 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 639 | IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */ 640 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 641 ; 642 643 /* 644 * Enable short-GI for HT20 only if the hardware 645 * advertises support. 646 * Notably, anything earlier than the AR9287 doesn't. 647 */ 648 if ((ath_hal_getcapability(ah, 649 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 650 (wmodes & HAL_MODE_HT20)) { 651 device_printf(sc->sc_dev, 652 "[HT] enabling short-GI in 20MHz mode\n"); 653 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 654 } 655 656 if (wmodes & HAL_MODE_HT40) 657 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 658 | IEEE80211_HTCAP_SHORTGI40; 659 660 /* 661 * rx/tx stream is not currently used anywhere; it needs to be taken 662 * into account when negotiating which MCS rates it'll receive and 663 * what MCS rates are available for TX. 664 */ 665 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &rxs); 666 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &txs); 667 668 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 669 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 670 671 ic->ic_txstream = txs; 672 ic->ic_rxstream = rxs; 673 674 device_printf(sc->sc_dev, "[HT] %d RX streams; %d TX streams\n", rxs, txs); 675 } 676 #endif 677 678 /* 679 * Check if the hardware requires PCI register serialisation. 680 * Some of the Owl based MACs require this. 681 */ 682 if (mp_ncpus > 1 && 683 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 684 0, NULL) == HAL_OK) { 685 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 686 device_printf(sc->sc_dev, "Enabling register serialisation\n"); 687 } 688 689 /* 690 * Indicate we need the 802.11 header padded to a 691 * 32-bit boundary for 4-address and QoS frames. 692 */ 693 ic->ic_flags |= IEEE80211_F_DATAPAD; 694 695 /* 696 * Query the hal about antenna support. 697 */ 698 sc->sc_defant = ath_hal_getdefantenna(ah); 699 700 /* 701 * Not all chips have the VEOL support we want to 702 * use with IBSS beacons; check here for it. 703 */ 704 sc->sc_hasveol = ath_hal_hasveol(ah); 705 706 /* get mac address from hardware */ 707 ath_hal_getmac(ah, macaddr); 708 if (sc->sc_hasbmask) 709 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 710 711 /* NB: used to size node table key mapping array */ 712 ic->ic_max_keyix = sc->sc_keymax; 713 /* call MI attach routine. */ 714 ieee80211_ifattach(ic, macaddr); 715 ic->ic_setregdomain = ath_setregdomain; 716 ic->ic_getradiocaps = ath_getradiocaps; 717 sc->sc_opmode = HAL_M_STA; 718 719 /* override default methods */ 720 ic->ic_newassoc = ath_newassoc; 721 ic->ic_updateslot = ath_updateslot; 722 ic->ic_wme.wme_update = ath_wme_update; 723 ic->ic_vap_create = ath_vap_create; 724 ic->ic_vap_delete = ath_vap_delete; 725 ic->ic_raw_xmit = ath_raw_xmit; 726 ic->ic_update_mcast = ath_update_mcast; 727 ic->ic_update_promisc = ath_update_promisc; 728 ic->ic_node_alloc = ath_node_alloc; 729 sc->sc_node_free = ic->ic_node_free; 730 ic->ic_node_free = ath_node_free; 731 sc->sc_node_cleanup = ic->ic_node_cleanup; 732 ic->ic_node_cleanup = ath_node_cleanup; 733 ic->ic_node_getsignal = ath_node_getsignal; 734 ic->ic_scan_start = ath_scan_start; 735 ic->ic_scan_end = ath_scan_end; 736 ic->ic_set_channel = ath_set_channel; 737 738 /* 802.11n specific - but just override anyway */ 739 sc->sc_addba_request = ic->ic_addba_request; 740 sc->sc_addba_response = ic->ic_addba_response; 741 sc->sc_addba_stop = ic->ic_addba_stop; 742 sc->sc_bar_response = ic->ic_bar_response; 743 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 744 745 ic->ic_addba_request = ath_addba_request; 746 ic->ic_addba_response = ath_addba_response; 747 ic->ic_addba_response_timeout = ath_addba_response_timeout; 748 ic->ic_addba_stop = ath_addba_stop; 749 ic->ic_bar_response = ath_bar_response; 750 751 ieee80211_radiotap_attach(ic, 752 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 753 ATH_TX_RADIOTAP_PRESENT, 754 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 755 ATH_RX_RADIOTAP_PRESENT); 756 757 /* 758 * Setup dynamic sysctl's now that country code and 759 * regdomain are available from the hal. 760 */ 761 ath_sysctlattach(sc); 762 ath_sysctl_stats_attach(sc); 763 ath_sysctl_hal_attach(sc); 764 765 if (bootverbose) 766 ieee80211_announce(ic); 767 ath_announce(sc); 768 return 0; 769 bad2: 770 ath_tx_cleanup(sc); 771 ath_desc_free(sc); 772 bad: 773 if (ah) 774 ath_hal_detach(ah); 775 if (ifp != NULL) 776 if_free(ifp); 777 sc->sc_invalid = 1; 778 return error; 779 } 780 781 int 782 ath_detach(struct ath_softc *sc) 783 { 784 struct ifnet *ifp = sc->sc_ifp; 785 786 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 787 __func__, ifp->if_flags); 788 789 /* 790 * NB: the order of these is important: 791 * o stop the chip so no more interrupts will fire 792 * o call the 802.11 layer before detaching the hal to 793 * insure callbacks into the driver to delete global 794 * key cache entries can be handled 795 * o free the taskqueue which drains any pending tasks 796 * o reclaim the tx queue data structures after calling 797 * the 802.11 layer as we'll get called back to reclaim 798 * node state and potentially want to use them 799 * o to cleanup the tx queues the hal is called, so detach 800 * it last 801 * Other than that, it's straightforward... 802 */ 803 ath_stop(ifp); 804 ieee80211_ifdetach(ifp->if_l2com); 805 taskqueue_free(sc->sc_tq); 806 #ifdef ATH_TX99_DIAG 807 if (sc->sc_tx99 != NULL) 808 sc->sc_tx99->detach(sc->sc_tx99); 809 #endif 810 ath_rate_detach(sc->sc_rc); 811 812 ath_dfs_detach(sc); 813 ath_desc_free(sc); 814 ath_tx_cleanup(sc); 815 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 816 if_free(ifp); 817 818 return 0; 819 } 820 821 /* 822 * MAC address handling for multiple BSS on the same radio. 823 * The first vap uses the MAC address from the EEPROM. For 824 * subsequent vap's we set the U/L bit (bit 1) in the MAC 825 * address and use the next six bits as an index. 826 */ 827 static void 828 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 829 { 830 int i; 831 832 if (clone && sc->sc_hasbmask) { 833 /* NB: we only do this if h/w supports multiple bssid */ 834 for (i = 0; i < 8; i++) 835 if ((sc->sc_bssidmask & (1<<i)) == 0) 836 break; 837 if (i != 0) 838 mac[0] |= (i << 2)|0x2; 839 } else 840 i = 0; 841 sc->sc_bssidmask |= 1<<i; 842 sc->sc_hwbssidmask[0] &= ~mac[0]; 843 if (i == 0) 844 sc->sc_nbssid0++; 845 } 846 847 static void 848 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 849 { 850 int i = mac[0] >> 2; 851 uint8_t mask; 852 853 if (i != 0 || --sc->sc_nbssid0 == 0) { 854 sc->sc_bssidmask &= ~(1<<i); 855 /* recalculate bssid mask from remaining addresses */ 856 mask = 0xff; 857 for (i = 1; i < 8; i++) 858 if (sc->sc_bssidmask & (1<<i)) 859 mask &= ~((i<<2)|0x2); 860 sc->sc_hwbssidmask[0] |= mask; 861 } 862 } 863 864 /* 865 * Assign a beacon xmit slot. We try to space out 866 * assignments so when beacons are staggered the 867 * traffic coming out of the cab q has maximal time 868 * to go out before the next beacon is scheduled. 869 */ 870 static int 871 assign_bslot(struct ath_softc *sc) 872 { 873 u_int slot, free; 874 875 free = 0; 876 for (slot = 0; slot < ATH_BCBUF; slot++) 877 if (sc->sc_bslot[slot] == NULL) { 878 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 879 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 880 return slot; 881 free = slot; 882 /* NB: keep looking for a double slot */ 883 } 884 return free; 885 } 886 887 static struct ieee80211vap * 888 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 889 enum ieee80211_opmode opmode, int flags, 890 const uint8_t bssid[IEEE80211_ADDR_LEN], 891 const uint8_t mac0[IEEE80211_ADDR_LEN]) 892 { 893 struct ath_softc *sc = ic->ic_ifp->if_softc; 894 struct ath_vap *avp; 895 struct ieee80211vap *vap; 896 uint8_t mac[IEEE80211_ADDR_LEN]; 897 int needbeacon, error; 898 enum ieee80211_opmode ic_opmode; 899 900 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 901 M_80211_VAP, M_WAITOK | M_ZERO); 902 needbeacon = 0; 903 IEEE80211_ADDR_COPY(mac, mac0); 904 905 ATH_LOCK(sc); 906 ic_opmode = opmode; /* default to opmode of new vap */ 907 switch (opmode) { 908 case IEEE80211_M_STA: 909 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 910 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 911 goto bad; 912 } 913 if (sc->sc_nvaps) { 914 /* 915 * With multiple vaps we must fall back 916 * to s/w beacon miss handling. 917 */ 918 flags |= IEEE80211_CLONE_NOBEACONS; 919 } 920 if (flags & IEEE80211_CLONE_NOBEACONS) { 921 /* 922 * Station mode w/o beacons are implemented w/ AP mode. 923 */ 924 ic_opmode = IEEE80211_M_HOSTAP; 925 } 926 break; 927 case IEEE80211_M_IBSS: 928 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 929 device_printf(sc->sc_dev, 930 "only 1 ibss vap supported\n"); 931 goto bad; 932 } 933 needbeacon = 1; 934 break; 935 case IEEE80211_M_AHDEMO: 936 #ifdef IEEE80211_SUPPORT_TDMA 937 if (flags & IEEE80211_CLONE_TDMA) { 938 if (sc->sc_nvaps != 0) { 939 device_printf(sc->sc_dev, 940 "only 1 tdma vap supported\n"); 941 goto bad; 942 } 943 needbeacon = 1; 944 flags |= IEEE80211_CLONE_NOBEACONS; 945 } 946 /* fall thru... */ 947 #endif 948 case IEEE80211_M_MONITOR: 949 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 950 /* 951 * Adopt existing mode. Adding a monitor or ahdemo 952 * vap to an existing configuration is of dubious 953 * value but should be ok. 954 */ 955 /* XXX not right for monitor mode */ 956 ic_opmode = ic->ic_opmode; 957 } 958 break; 959 case IEEE80211_M_HOSTAP: 960 case IEEE80211_M_MBSS: 961 needbeacon = 1; 962 break; 963 case IEEE80211_M_WDS: 964 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 965 device_printf(sc->sc_dev, 966 "wds not supported in sta mode\n"); 967 goto bad; 968 } 969 /* 970 * Silently remove any request for a unique 971 * bssid; WDS vap's always share the local 972 * mac address. 973 */ 974 flags &= ~IEEE80211_CLONE_BSSID; 975 if (sc->sc_nvaps == 0) 976 ic_opmode = IEEE80211_M_HOSTAP; 977 else 978 ic_opmode = ic->ic_opmode; 979 break; 980 default: 981 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 982 goto bad; 983 } 984 /* 985 * Check that a beacon buffer is available; the code below assumes it. 986 */ 987 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 988 device_printf(sc->sc_dev, "no beacon buffer available\n"); 989 goto bad; 990 } 991 992 /* STA, AHDEMO? */ 993 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 994 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 995 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 996 } 997 998 vap = &avp->av_vap; 999 /* XXX can't hold mutex across if_alloc */ 1000 ATH_UNLOCK(sc); 1001 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1002 bssid, mac); 1003 ATH_LOCK(sc); 1004 if (error != 0) { 1005 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1006 __func__, error); 1007 goto bad2; 1008 } 1009 1010 /* h/w crypto support */ 1011 vap->iv_key_alloc = ath_key_alloc; 1012 vap->iv_key_delete = ath_key_delete; 1013 vap->iv_key_set = ath_key_set; 1014 vap->iv_key_update_begin = ath_key_update_begin; 1015 vap->iv_key_update_end = ath_key_update_end; 1016 1017 /* override various methods */ 1018 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1019 vap->iv_recv_mgmt = ath_recv_mgmt; 1020 vap->iv_reset = ath_reset_vap; 1021 vap->iv_update_beacon = ath_beacon_update; 1022 avp->av_newstate = vap->iv_newstate; 1023 vap->iv_newstate = ath_newstate; 1024 avp->av_bmiss = vap->iv_bmiss; 1025 vap->iv_bmiss = ath_bmiss_vap; 1026 1027 /* Set default parameters */ 1028 1029 /* 1030 * Anything earlier than some AR9300 series MACs don't 1031 * support a smaller MPDU density. 1032 */ 1033 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1034 /* 1035 * All NICs can handle the maximum size, however 1036 * AR5416 based MACs can only TX aggregates w/ RTS 1037 * protection when the total aggregate size is <= 8k. 1038 * However, for now that's enforced by the TX path. 1039 */ 1040 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1041 1042 avp->av_bslot = -1; 1043 if (needbeacon) { 1044 /* 1045 * Allocate beacon state and setup the q for buffered 1046 * multicast frames. We know a beacon buffer is 1047 * available because we checked above. 1048 */ 1049 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1050 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1051 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1052 /* 1053 * Assign the vap to a beacon xmit slot. As above 1054 * this cannot fail to find a free one. 1055 */ 1056 avp->av_bslot = assign_bslot(sc); 1057 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1058 ("beacon slot %u not empty", avp->av_bslot)); 1059 sc->sc_bslot[avp->av_bslot] = vap; 1060 sc->sc_nbcnvaps++; 1061 } 1062 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1063 /* 1064 * Multple vaps are to transmit beacons and we 1065 * have h/w support for TSF adjusting; enable 1066 * use of staggered beacons. 1067 */ 1068 sc->sc_stagbeacons = 1; 1069 } 1070 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1071 } 1072 1073 ic->ic_opmode = ic_opmode; 1074 if (opmode != IEEE80211_M_WDS) { 1075 sc->sc_nvaps++; 1076 if (opmode == IEEE80211_M_STA) 1077 sc->sc_nstavaps++; 1078 if (opmode == IEEE80211_M_MBSS) 1079 sc->sc_nmeshvaps++; 1080 } 1081 switch (ic_opmode) { 1082 case IEEE80211_M_IBSS: 1083 sc->sc_opmode = HAL_M_IBSS; 1084 break; 1085 case IEEE80211_M_STA: 1086 sc->sc_opmode = HAL_M_STA; 1087 break; 1088 case IEEE80211_M_AHDEMO: 1089 #ifdef IEEE80211_SUPPORT_TDMA 1090 if (vap->iv_caps & IEEE80211_C_TDMA) { 1091 sc->sc_tdma = 1; 1092 /* NB: disable tsf adjust */ 1093 sc->sc_stagbeacons = 0; 1094 } 1095 /* 1096 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1097 * just ap mode. 1098 */ 1099 /* fall thru... */ 1100 #endif 1101 case IEEE80211_M_HOSTAP: 1102 case IEEE80211_M_MBSS: 1103 sc->sc_opmode = HAL_M_HOSTAP; 1104 break; 1105 case IEEE80211_M_MONITOR: 1106 sc->sc_opmode = HAL_M_MONITOR; 1107 break; 1108 default: 1109 /* XXX should not happen */ 1110 break; 1111 } 1112 if (sc->sc_hastsfadd) { 1113 /* 1114 * Configure whether or not TSF adjust should be done. 1115 */ 1116 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1117 } 1118 if (flags & IEEE80211_CLONE_NOBEACONS) { 1119 /* 1120 * Enable s/w beacon miss handling. 1121 */ 1122 sc->sc_swbmiss = 1; 1123 } 1124 ATH_UNLOCK(sc); 1125 1126 /* complete setup */ 1127 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1128 return vap; 1129 bad2: 1130 reclaim_address(sc, mac); 1131 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1132 bad: 1133 free(avp, M_80211_VAP); 1134 ATH_UNLOCK(sc); 1135 return NULL; 1136 } 1137 1138 static void 1139 ath_vap_delete(struct ieee80211vap *vap) 1140 { 1141 struct ieee80211com *ic = vap->iv_ic; 1142 struct ifnet *ifp = ic->ic_ifp; 1143 struct ath_softc *sc = ifp->if_softc; 1144 struct ath_hal *ah = sc->sc_ah; 1145 struct ath_vap *avp = ATH_VAP(vap); 1146 1147 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1148 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1149 /* 1150 * Quiesce the hardware while we remove the vap. In 1151 * particular we need to reclaim all references to 1152 * the vap state by any frames pending on the tx queues. 1153 */ 1154 ath_hal_intrset(ah, 0); /* disable interrupts */ 1155 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1156 /* XXX Do all frames from all vaps/nodes need draining here? */ 1157 ath_stoprecv(sc, 1); /* stop recv side */ 1158 } 1159 1160 ieee80211_vap_detach(vap); 1161 1162 /* 1163 * XXX Danger Will Robinson! Danger! 1164 * 1165 * Because ieee80211_vap_detach() can queue a frame (the station 1166 * diassociate message?) after we've drained the TXQ and 1167 * flushed the software TXQ, we will end up with a frame queued 1168 * to a node whose vap is about to be freed. 1169 * 1170 * To work around this, flush the hardware/software again. 1171 * This may be racy - the ath task may be running and the packet 1172 * may be being scheduled between sw->hw txq. Tsk. 1173 * 1174 * TODO: figure out why a new node gets allocated somewhere around 1175 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1176 * call!) 1177 */ 1178 1179 ath_draintxq(sc, ATH_RESET_DEFAULT); 1180 1181 ATH_LOCK(sc); 1182 /* 1183 * Reclaim beacon state. Note this must be done before 1184 * the vap instance is reclaimed as we may have a reference 1185 * to it in the buffer for the beacon frame. 1186 */ 1187 if (avp->av_bcbuf != NULL) { 1188 if (avp->av_bslot != -1) { 1189 sc->sc_bslot[avp->av_bslot] = NULL; 1190 sc->sc_nbcnvaps--; 1191 } 1192 ath_beacon_return(sc, avp->av_bcbuf); 1193 avp->av_bcbuf = NULL; 1194 if (sc->sc_nbcnvaps == 0) { 1195 sc->sc_stagbeacons = 0; 1196 if (sc->sc_hastsfadd) 1197 ath_hal_settsfadjust(sc->sc_ah, 0); 1198 } 1199 /* 1200 * Reclaim any pending mcast frames for the vap. 1201 */ 1202 ath_tx_draintxq(sc, &avp->av_mcastq); 1203 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1204 } 1205 /* 1206 * Update bookkeeping. 1207 */ 1208 if (vap->iv_opmode == IEEE80211_M_STA) { 1209 sc->sc_nstavaps--; 1210 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1211 sc->sc_swbmiss = 0; 1212 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1213 vap->iv_opmode == IEEE80211_M_MBSS) { 1214 reclaim_address(sc, vap->iv_myaddr); 1215 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1216 if (vap->iv_opmode == IEEE80211_M_MBSS) 1217 sc->sc_nmeshvaps--; 1218 } 1219 if (vap->iv_opmode != IEEE80211_M_WDS) 1220 sc->sc_nvaps--; 1221 #ifdef IEEE80211_SUPPORT_TDMA 1222 /* TDMA operation ceases when the last vap is destroyed */ 1223 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1224 sc->sc_tdma = 0; 1225 sc->sc_swbmiss = 0; 1226 } 1227 #endif 1228 free(avp, M_80211_VAP); 1229 1230 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1231 /* 1232 * Restart rx+tx machines if still running (RUNNING will 1233 * be reset if we just destroyed the last vap). 1234 */ 1235 if (ath_startrecv(sc) != 0) 1236 if_printf(ifp, "%s: unable to restart recv logic\n", 1237 __func__); 1238 if (sc->sc_beacons) { /* restart beacons */ 1239 #ifdef IEEE80211_SUPPORT_TDMA 1240 if (sc->sc_tdma) 1241 ath_tdma_config(sc, NULL); 1242 else 1243 #endif 1244 ath_beacon_config(sc, NULL); 1245 } 1246 ath_hal_intrset(ah, sc->sc_imask); 1247 } 1248 ATH_UNLOCK(sc); 1249 } 1250 1251 void 1252 ath_suspend(struct ath_softc *sc) 1253 { 1254 struct ifnet *ifp = sc->sc_ifp; 1255 struct ieee80211com *ic = ifp->if_l2com; 1256 1257 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1258 __func__, ifp->if_flags); 1259 1260 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1261 if (ic->ic_opmode == IEEE80211_M_STA) 1262 ath_stop(ifp); 1263 else 1264 ieee80211_suspend_all(ic); 1265 /* 1266 * NB: don't worry about putting the chip in low power 1267 * mode; pci will power off our socket on suspend and 1268 * CardBus detaches the device. 1269 */ 1270 } 1271 1272 /* 1273 * Reset the key cache since some parts do not reset the 1274 * contents on resume. First we clear all entries, then 1275 * re-load keys that the 802.11 layer assumes are setup 1276 * in h/w. 1277 */ 1278 static void 1279 ath_reset_keycache(struct ath_softc *sc) 1280 { 1281 struct ifnet *ifp = sc->sc_ifp; 1282 struct ieee80211com *ic = ifp->if_l2com; 1283 struct ath_hal *ah = sc->sc_ah; 1284 int i; 1285 1286 for (i = 0; i < sc->sc_keymax; i++) 1287 ath_hal_keyreset(ah, i); 1288 ieee80211_crypto_reload_keys(ic); 1289 } 1290 1291 void 1292 ath_resume(struct ath_softc *sc) 1293 { 1294 struct ifnet *ifp = sc->sc_ifp; 1295 struct ieee80211com *ic = ifp->if_l2com; 1296 struct ath_hal *ah = sc->sc_ah; 1297 HAL_STATUS status; 1298 1299 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1300 __func__, ifp->if_flags); 1301 1302 /* 1303 * Must reset the chip before we reload the 1304 * keycache as we were powered down on suspend. 1305 */ 1306 ath_hal_reset(ah, sc->sc_opmode, 1307 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1308 AH_FALSE, &status); 1309 ath_reset_keycache(sc); 1310 1311 /* Let DFS at it in case it's a DFS channel */ 1312 ath_dfs_radar_enable(sc, ic->ic_curchan); 1313 1314 if (sc->sc_resume_up) { 1315 if (ic->ic_opmode == IEEE80211_M_STA) { 1316 ath_init(sc); 1317 /* 1318 * Program the beacon registers using the last rx'd 1319 * beacon frame and enable sync on the next beacon 1320 * we see. This should handle the case where we 1321 * wakeup and find the same AP and also the case where 1322 * we wakeup and need to roam. For the latter we 1323 * should get bmiss events that trigger a roam. 1324 */ 1325 ath_beacon_config(sc, NULL); 1326 sc->sc_syncbeacon = 1; 1327 } else 1328 ieee80211_resume_all(ic); 1329 } 1330 if (sc->sc_softled) { 1331 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin, 1332 HAL_GPIO_MUX_MAC_NETWORK_LED); 1333 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 1334 } 1335 1336 /* XXX beacons ? */ 1337 } 1338 1339 void 1340 ath_shutdown(struct ath_softc *sc) 1341 { 1342 struct ifnet *ifp = sc->sc_ifp; 1343 1344 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1345 __func__, ifp->if_flags); 1346 1347 ath_stop(ifp); 1348 /* NB: no point powering down chip as we're about to reboot */ 1349 } 1350 1351 /* 1352 * Interrupt handler. Most of the actual processing is deferred. 1353 */ 1354 void 1355 ath_intr(void *arg) 1356 { 1357 struct ath_softc *sc = arg; 1358 struct ifnet *ifp = sc->sc_ifp; 1359 struct ath_hal *ah = sc->sc_ah; 1360 HAL_INT status = 0; 1361 uint32_t txqs; 1362 1363 /* 1364 * If we're inside a reset path, just print a warning and 1365 * clear the ISR. The reset routine will finish it for us. 1366 */ 1367 ATH_PCU_LOCK(sc); 1368 if (sc->sc_inreset_cnt) { 1369 HAL_INT status; 1370 ath_hal_getisr(ah, &status); /* clear ISR */ 1371 ath_hal_intrset(ah, 0); /* disable further intr's */ 1372 DPRINTF(sc, ATH_DEBUG_ANY, 1373 "%s: in reset, ignoring: status=0x%x\n", 1374 __func__, status); 1375 ATH_PCU_UNLOCK(sc); 1376 return; 1377 } 1378 1379 if (sc->sc_invalid) { 1380 /* 1381 * The hardware is not ready/present, don't touch anything. 1382 * Note this can happen early on if the IRQ is shared. 1383 */ 1384 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1385 ATH_PCU_UNLOCK(sc); 1386 return; 1387 } 1388 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1389 ATH_PCU_UNLOCK(sc); 1390 return; 1391 } 1392 1393 if ((ifp->if_flags & IFF_UP) == 0 || 1394 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1395 HAL_INT status; 1396 1397 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1398 __func__, ifp->if_flags); 1399 ath_hal_getisr(ah, &status); /* clear ISR */ 1400 ath_hal_intrset(ah, 0); /* disable further intr's */ 1401 ATH_PCU_UNLOCK(sc); 1402 return; 1403 } 1404 1405 /* 1406 * Figure out the reason(s) for the interrupt. Note 1407 * that the hal returns a pseudo-ISR that may include 1408 * bits we haven't explicitly enabled so we mask the 1409 * value to insure we only process bits we requested. 1410 */ 1411 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1412 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1413 CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status); 1414 #ifdef ATH_KTR_INTR_DEBUG 1415 CTR5(ATH_KTR_INTR, 1416 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1417 ah->ah_intrstate[0], 1418 ah->ah_intrstate[1], 1419 ah->ah_intrstate[2], 1420 ah->ah_intrstate[3], 1421 ah->ah_intrstate[6]); 1422 #endif 1423 status &= sc->sc_imask; /* discard unasked for bits */ 1424 1425 /* Short-circuit un-handled interrupts */ 1426 if (status == 0x0) { 1427 ATH_PCU_UNLOCK(sc); 1428 return; 1429 } 1430 1431 /* 1432 * Take a note that we're inside the interrupt handler, so 1433 * the reset routines know to wait. 1434 */ 1435 sc->sc_intr_cnt++; 1436 ATH_PCU_UNLOCK(sc); 1437 1438 /* 1439 * Handle the interrupt. We won't run concurrent with the reset 1440 * or channel change routines as they'll wait for sc_intr_cnt 1441 * to be 0 before continuing. 1442 */ 1443 if (status & HAL_INT_FATAL) { 1444 sc->sc_stats.ast_hardware++; 1445 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1446 ath_fatal_proc(sc, 0); 1447 } else { 1448 if (status & HAL_INT_SWBA) { 1449 /* 1450 * Software beacon alert--time to send a beacon. 1451 * Handle beacon transmission directly; deferring 1452 * this is too slow to meet timing constraints 1453 * under load. 1454 */ 1455 #ifdef IEEE80211_SUPPORT_TDMA 1456 if (sc->sc_tdma) { 1457 if (sc->sc_tdmaswba == 0) { 1458 struct ieee80211com *ic = ifp->if_l2com; 1459 struct ieee80211vap *vap = 1460 TAILQ_FIRST(&ic->ic_vaps); 1461 ath_tdma_beacon_send(sc, vap); 1462 sc->sc_tdmaswba = 1463 vap->iv_tdma->tdma_bintval; 1464 } else 1465 sc->sc_tdmaswba--; 1466 } else 1467 #endif 1468 { 1469 ath_beacon_proc(sc, 0); 1470 #ifdef IEEE80211_SUPPORT_SUPERG 1471 /* 1472 * Schedule the rx taskq in case there's no 1473 * traffic so any frames held on the staging 1474 * queue are aged and potentially flushed. 1475 */ 1476 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1477 #endif 1478 } 1479 } 1480 if (status & HAL_INT_RXEOL) { 1481 int imask; 1482 CTR0(ATH_KTR_ERR, "ath_intr: RXEOL"); 1483 ATH_PCU_LOCK(sc); 1484 /* 1485 * NB: the hardware should re-read the link when 1486 * RXE bit is written, but it doesn't work at 1487 * least on older hardware revs. 1488 */ 1489 sc->sc_stats.ast_rxeol++; 1490 /* 1491 * Disable RXEOL/RXORN - prevent an interrupt 1492 * storm until the PCU logic can be reset. 1493 * In case the interface is reset some other 1494 * way before "sc_kickpcu" is called, don't 1495 * modify sc_imask - that way if it is reset 1496 * by a call to ath_reset() somehow, the 1497 * interrupt mask will be correctly reprogrammed. 1498 */ 1499 imask = sc->sc_imask; 1500 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1501 ath_hal_intrset(ah, imask); 1502 /* 1503 * Only blank sc_rxlink if we've not yet kicked 1504 * the PCU. 1505 * 1506 * This isn't entirely correct - the correct solution 1507 * would be to have a PCU lock and engage that for 1508 * the duration of the PCU fiddling; which would include 1509 * running the RX process. Otherwise we could end up 1510 * messing up the RX descriptor chain and making the 1511 * RX desc list much shorter. 1512 */ 1513 if (! sc->sc_kickpcu) 1514 sc->sc_rxlink = NULL; 1515 sc->sc_kickpcu = 1; 1516 /* 1517 * Enqueue an RX proc, to handled whatever 1518 * is in the RX queue. 1519 * This will then kick the PCU. 1520 */ 1521 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1522 ATH_PCU_UNLOCK(sc); 1523 } 1524 if (status & HAL_INT_TXURN) { 1525 sc->sc_stats.ast_txurn++; 1526 /* bump tx trigger level */ 1527 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1528 } 1529 if (status & HAL_INT_RX) { 1530 sc->sc_stats.ast_rx_intr++; 1531 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1532 } 1533 if (status & HAL_INT_TX) { 1534 sc->sc_stats.ast_tx_intr++; 1535 /* 1536 * Grab all the currently set bits in the HAL txq bitmap 1537 * and blank them. This is the only place we should be 1538 * doing this. 1539 */ 1540 ATH_PCU_LOCK(sc); 1541 txqs = 0xffffffff; 1542 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1543 sc->sc_txq_active |= txqs; 1544 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1545 ATH_PCU_UNLOCK(sc); 1546 } 1547 if (status & HAL_INT_BMISS) { 1548 sc->sc_stats.ast_bmiss++; 1549 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1550 } 1551 if (status & HAL_INT_GTT) 1552 sc->sc_stats.ast_tx_timeout++; 1553 if (status & HAL_INT_CST) 1554 sc->sc_stats.ast_tx_cst++; 1555 if (status & HAL_INT_MIB) { 1556 sc->sc_stats.ast_mib++; 1557 ATH_PCU_LOCK(sc); 1558 /* 1559 * Disable interrupts until we service the MIB 1560 * interrupt; otherwise it will continue to fire. 1561 */ 1562 ath_hal_intrset(ah, 0); 1563 /* 1564 * Let the hal handle the event. We assume it will 1565 * clear whatever condition caused the interrupt. 1566 */ 1567 ath_hal_mibevent(ah, &sc->sc_halstats); 1568 /* 1569 * Don't reset the interrupt if we've just 1570 * kicked the PCU, or we may get a nested 1571 * RXEOL before the rxproc has had a chance 1572 * to run. 1573 */ 1574 if (sc->sc_kickpcu == 0) 1575 ath_hal_intrset(ah, sc->sc_imask); 1576 ATH_PCU_UNLOCK(sc); 1577 } 1578 if (status & HAL_INT_RXORN) { 1579 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1580 CTR0(ATH_KTR_ERR, "ath_intr: RXORN"); 1581 sc->sc_stats.ast_rxorn++; 1582 } 1583 } 1584 ATH_PCU_LOCK(sc); 1585 sc->sc_intr_cnt--; 1586 ATH_PCU_UNLOCK(sc); 1587 } 1588 1589 static void 1590 ath_fatal_proc(void *arg, int pending) 1591 { 1592 struct ath_softc *sc = arg; 1593 struct ifnet *ifp = sc->sc_ifp; 1594 u_int32_t *state; 1595 u_int32_t len; 1596 void *sp; 1597 1598 if_printf(ifp, "hardware error; resetting\n"); 1599 /* 1600 * Fatal errors are unrecoverable. Typically these 1601 * are caused by DMA errors. Collect h/w state from 1602 * the hal so we can diagnose what's going on. 1603 */ 1604 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1605 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1606 state = sp; 1607 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1608 state[0], state[1] , state[2], state[3], 1609 state[4], state[5]); 1610 } 1611 ath_reset(ifp, ATH_RESET_NOLOSS); 1612 } 1613 1614 static void 1615 ath_bmiss_vap(struct ieee80211vap *vap) 1616 { 1617 /* 1618 * Workaround phantom bmiss interrupts by sanity-checking 1619 * the time of our last rx'd frame. If it is within the 1620 * beacon miss interval then ignore the interrupt. If it's 1621 * truly a bmiss we'll get another interrupt soon and that'll 1622 * be dispatched up for processing. Note this applies only 1623 * for h/w beacon miss events. 1624 */ 1625 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1626 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1627 struct ath_softc *sc = ifp->if_softc; 1628 u_int64_t lastrx = sc->sc_lastrx; 1629 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1630 u_int bmisstimeout = 1631 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1632 1633 DPRINTF(sc, ATH_DEBUG_BEACON, 1634 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1635 __func__, (unsigned long long) tsf, 1636 (unsigned long long)(tsf - lastrx), 1637 (unsigned long long) lastrx, bmisstimeout); 1638 1639 if (tsf - lastrx <= bmisstimeout) { 1640 sc->sc_stats.ast_bmiss_phantom++; 1641 return; 1642 } 1643 } 1644 ATH_VAP(vap)->av_bmiss(vap); 1645 } 1646 1647 static int 1648 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1649 { 1650 uint32_t rsize; 1651 void *sp; 1652 1653 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1654 return 0; 1655 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1656 *hangs = *(uint32_t *)sp; 1657 return 1; 1658 } 1659 1660 static void 1661 ath_bmiss_proc(void *arg, int pending) 1662 { 1663 struct ath_softc *sc = arg; 1664 struct ifnet *ifp = sc->sc_ifp; 1665 uint32_t hangs; 1666 1667 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1668 1669 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1670 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1671 ath_reset(ifp, ATH_RESET_NOLOSS); 1672 } else 1673 ieee80211_beacon_miss(ifp->if_l2com); 1674 } 1675 1676 /* 1677 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1678 * calcs together with WME. If necessary disable the crypto 1679 * hardware and mark the 802.11 state so keys will be setup 1680 * with the MIC work done in software. 1681 */ 1682 static void 1683 ath_settkipmic(struct ath_softc *sc) 1684 { 1685 struct ifnet *ifp = sc->sc_ifp; 1686 struct ieee80211com *ic = ifp->if_l2com; 1687 1688 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1689 if (ic->ic_flags & IEEE80211_F_WME) { 1690 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1691 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1692 } else { 1693 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1694 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1695 } 1696 } 1697 } 1698 1699 static void 1700 ath_init(void *arg) 1701 { 1702 struct ath_softc *sc = (struct ath_softc *) arg; 1703 struct ifnet *ifp = sc->sc_ifp; 1704 struct ieee80211com *ic = ifp->if_l2com; 1705 struct ath_hal *ah = sc->sc_ah; 1706 HAL_STATUS status; 1707 1708 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1709 __func__, ifp->if_flags); 1710 1711 ATH_LOCK(sc); 1712 /* 1713 * Stop anything previously setup. This is safe 1714 * whether this is the first time through or not. 1715 */ 1716 ath_stop_locked(ifp); 1717 1718 /* 1719 * The basic interface to setting the hardware in a good 1720 * state is ``reset''. On return the hardware is known to 1721 * be powered up and with interrupts disabled. This must 1722 * be followed by initialization of the appropriate bits 1723 * and then setup of the interrupt mask. 1724 */ 1725 ath_settkipmic(sc); 1726 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1727 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1728 status); 1729 ATH_UNLOCK(sc); 1730 return; 1731 } 1732 ath_chan_change(sc, ic->ic_curchan); 1733 1734 /* Let DFS at it in case it's a DFS channel */ 1735 ath_dfs_radar_enable(sc, ic->ic_curchan); 1736 1737 /* 1738 * Likewise this is set during reset so update 1739 * state cached in the driver. 1740 */ 1741 sc->sc_diversity = ath_hal_getdiversity(ah); 1742 sc->sc_lastlongcal = 0; 1743 sc->sc_resetcal = 1; 1744 sc->sc_lastcalreset = 0; 1745 sc->sc_lastani = 0; 1746 sc->sc_lastshortcal = 0; 1747 sc->sc_doresetcal = AH_FALSE; 1748 /* 1749 * Beacon timers were cleared here; give ath_newstate() 1750 * a hint that the beacon timers should be poked when 1751 * things transition to the RUN state. 1752 */ 1753 sc->sc_beacons = 0; 1754 1755 /* 1756 * Initial aggregation settings. 1757 */ 1758 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 1759 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1760 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1761 1762 /* 1763 * Setup the hardware after reset: the key cache 1764 * is filled as needed and the receive engine is 1765 * set going. Frame transmit is handled entirely 1766 * in the frame output path; there's nothing to do 1767 * here except setup the interrupt mask. 1768 */ 1769 if (ath_startrecv(sc) != 0) { 1770 if_printf(ifp, "unable to start recv logic\n"); 1771 ATH_UNLOCK(sc); 1772 return; 1773 } 1774 1775 /* 1776 * Enable interrupts. 1777 */ 1778 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1779 | HAL_INT_RXEOL | HAL_INT_RXORN 1780 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1781 /* 1782 * Enable MIB interrupts when there are hardware phy counters. 1783 * Note we only do this (at the moment) for station mode. 1784 */ 1785 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1786 sc->sc_imask |= HAL_INT_MIB; 1787 1788 /* Enable global TX timeout and carrier sense timeout if available */ 1789 if (ath_hal_gtxto_supported(ah)) 1790 sc->sc_imask |= HAL_INT_GTT; 1791 1792 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1793 __func__, sc->sc_imask); 1794 1795 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1796 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1797 ath_hal_intrset(ah, sc->sc_imask); 1798 1799 ATH_UNLOCK(sc); 1800 1801 #ifdef ATH_TX99_DIAG 1802 if (sc->sc_tx99 != NULL) 1803 sc->sc_tx99->start(sc->sc_tx99); 1804 else 1805 #endif 1806 ieee80211_start_all(ic); /* start all vap's */ 1807 } 1808 1809 static void 1810 ath_stop_locked(struct ifnet *ifp) 1811 { 1812 struct ath_softc *sc = ifp->if_softc; 1813 struct ath_hal *ah = sc->sc_ah; 1814 1815 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1816 __func__, sc->sc_invalid, ifp->if_flags); 1817 1818 ATH_LOCK_ASSERT(sc); 1819 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1820 /* 1821 * Shutdown the hardware and driver: 1822 * reset 802.11 state machine 1823 * turn off timers 1824 * disable interrupts 1825 * turn off the radio 1826 * clear transmit machinery 1827 * clear receive machinery 1828 * drain and release tx queues 1829 * reclaim beacon resources 1830 * power down hardware 1831 * 1832 * Note that some of this work is not possible if the 1833 * hardware is gone (invalid). 1834 */ 1835 #ifdef ATH_TX99_DIAG 1836 if (sc->sc_tx99 != NULL) 1837 sc->sc_tx99->stop(sc->sc_tx99); 1838 #endif 1839 callout_stop(&sc->sc_wd_ch); 1840 sc->sc_wd_timer = 0; 1841 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1842 if (!sc->sc_invalid) { 1843 if (sc->sc_softled) { 1844 callout_stop(&sc->sc_ledtimer); 1845 ath_hal_gpioset(ah, sc->sc_ledpin, 1846 !sc->sc_ledon); 1847 sc->sc_blinking = 0; 1848 } 1849 ath_hal_intrset(ah, 0); 1850 } 1851 ath_draintxq(sc, ATH_RESET_DEFAULT); 1852 if (!sc->sc_invalid) { 1853 ath_stoprecv(sc, 1); 1854 ath_hal_phydisable(ah); 1855 } else 1856 sc->sc_rxlink = NULL; 1857 ath_beacon_free(sc); /* XXX not needed */ 1858 } 1859 } 1860 1861 #define MAX_TXRX_ITERATIONS 1000 1862 static void 1863 ath_txrx_stop(struct ath_softc *sc) 1864 { 1865 int i = MAX_TXRX_ITERATIONS; 1866 1867 ATH_UNLOCK_ASSERT(sc); 1868 /* Stop any new TX/RX from occuring */ 1869 taskqueue_block(sc->sc_tq); 1870 1871 ATH_PCU_LOCK(sc); 1872 /* 1873 * Sleep until all the pending operations have completed. 1874 * 1875 * The caller must ensure that reset has been incremented 1876 * or the pending operations may continue being queued. 1877 */ 1878 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 1879 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 1880 if (i <= 0) 1881 break; 1882 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 1883 i--; 1884 } 1885 ATH_PCU_UNLOCK(sc); 1886 1887 if (i <= 0) 1888 device_printf(sc->sc_dev, 1889 "%s: didn't finish after %d iterations\n", 1890 __func__, MAX_TXRX_ITERATIONS); 1891 } 1892 #undef MAX_TXRX_ITERATIONS 1893 1894 static void 1895 ath_txrx_start(struct ath_softc *sc) 1896 { 1897 1898 taskqueue_unblock(sc->sc_tq); 1899 } 1900 1901 /* 1902 * Grab the reset lock, and wait around until noone else 1903 * is trying to do anything with it. 1904 * 1905 * This is totally horrible but we can't hold this lock for 1906 * long enough to do TX/RX or we end up with net80211/ip stack 1907 * LORs and eventual deadlock. 1908 * 1909 * "dowait" signals whether to spin, waiting for the reset 1910 * lock count to reach 0. This should (for now) only be used 1911 * during the reset path, as the rest of the code may not 1912 * be locking-reentrant enough to behave correctly. 1913 * 1914 * Another, cleaner way should be found to serialise all of 1915 * these operations. 1916 */ 1917 #define MAX_RESET_ITERATIONS 10 1918 static int 1919 ath_reset_grablock(struct ath_softc *sc, int dowait) 1920 { 1921 int w = 0; 1922 int i = MAX_RESET_ITERATIONS; 1923 1924 ATH_PCU_LOCK_ASSERT(sc); 1925 do { 1926 if (sc->sc_inreset_cnt == 0) { 1927 w = 1; 1928 break; 1929 } 1930 if (dowait == 0) { 1931 w = 0; 1932 break; 1933 } 1934 ATH_PCU_UNLOCK(sc); 1935 pause("ath_reset_grablock", 1); 1936 i--; 1937 ATH_PCU_LOCK(sc); 1938 } while (i > 0); 1939 1940 /* 1941 * We always increment the refcounter, regardless 1942 * of whether we succeeded to get it in an exclusive 1943 * way. 1944 */ 1945 sc->sc_inreset_cnt++; 1946 1947 if (i <= 0) 1948 device_printf(sc->sc_dev, 1949 "%s: didn't finish after %d iterations\n", 1950 __func__, MAX_RESET_ITERATIONS); 1951 1952 if (w == 0) 1953 device_printf(sc->sc_dev, 1954 "%s: warning, recursive reset path!\n", 1955 __func__); 1956 1957 return w; 1958 } 1959 #undef MAX_RESET_ITERATIONS 1960 1961 /* 1962 * XXX TODO: write ath_reset_releaselock 1963 */ 1964 1965 static void 1966 ath_stop(struct ifnet *ifp) 1967 { 1968 struct ath_softc *sc = ifp->if_softc; 1969 1970 ATH_LOCK(sc); 1971 ath_stop_locked(ifp); 1972 ATH_UNLOCK(sc); 1973 } 1974 1975 /* 1976 * Reset the hardware w/o losing operational state. This is 1977 * basically a more efficient way of doing ath_stop, ath_init, 1978 * followed by state transitions to the current 802.11 1979 * operational state. Used to recover from various errors and 1980 * to reset or reload hardware state. 1981 */ 1982 int 1983 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 1984 { 1985 struct ath_softc *sc = ifp->if_softc; 1986 struct ieee80211com *ic = ifp->if_l2com; 1987 struct ath_hal *ah = sc->sc_ah; 1988 HAL_STATUS status; 1989 int i; 1990 1991 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1992 1993 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 1994 ATH_PCU_UNLOCK_ASSERT(sc); 1995 ATH_UNLOCK_ASSERT(sc); 1996 1997 ATH_PCU_LOCK(sc); 1998 if (ath_reset_grablock(sc, 1) == 0) { 1999 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2000 __func__); 2001 } 2002 ath_hal_intrset(ah, 0); /* disable interrupts */ 2003 ATH_PCU_UNLOCK(sc); 2004 2005 /* 2006 * Should now wait for pending TX/RX to complete 2007 * and block future ones from occuring. This needs to be 2008 * done before the TX queue is drained. 2009 */ 2010 ath_txrx_stop(sc); 2011 ath_draintxq(sc, reset_type); /* stop xmit side */ 2012 2013 /* 2014 * Regardless of whether we're doing a no-loss flush or 2015 * not, stop the PCU and handle what's in the RX queue. 2016 * That way frames aren't dropped which shouldn't be. 2017 */ 2018 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2019 ath_rx_proc(sc, 0); 2020 2021 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2022 /* NB: indicate channel change so we do a full reset */ 2023 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2024 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2025 __func__, status); 2026 sc->sc_diversity = ath_hal_getdiversity(ah); 2027 2028 /* Let DFS at it in case it's a DFS channel */ 2029 ath_dfs_radar_enable(sc, ic->ic_curchan); 2030 2031 if (ath_startrecv(sc) != 0) /* restart recv */ 2032 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2033 /* 2034 * We may be doing a reset in response to an ioctl 2035 * that changes the channel so update any state that 2036 * might change as a result. 2037 */ 2038 ath_chan_change(sc, ic->ic_curchan); 2039 if (sc->sc_beacons) { /* restart beacons */ 2040 #ifdef IEEE80211_SUPPORT_TDMA 2041 if (sc->sc_tdma) 2042 ath_tdma_config(sc, NULL); 2043 else 2044 #endif 2045 ath_beacon_config(sc, NULL); 2046 } 2047 2048 /* 2049 * Release the reset lock and re-enable interrupts here. 2050 * If an interrupt was being processed in ath_intr(), 2051 * it would disable interrupts at this point. So we have 2052 * to atomically enable interrupts and decrement the 2053 * reset counter - this way ath_intr() doesn't end up 2054 * disabling interrupts without a corresponding enable 2055 * in the rest or channel change path. 2056 */ 2057 ATH_PCU_LOCK(sc); 2058 sc->sc_inreset_cnt--; 2059 /* XXX only do this if sc_inreset_cnt == 0? */ 2060 ath_hal_intrset(ah, sc->sc_imask); 2061 ATH_PCU_UNLOCK(sc); 2062 2063 /* 2064 * TX and RX can be started here. If it were started with 2065 * sc_inreset_cnt > 0, the TX and RX path would abort. 2066 * Thus if this is a nested call through the reset or 2067 * channel change code, TX completion will occur but 2068 * RX completion and ath_start / ath_tx_start will not 2069 * run. 2070 */ 2071 2072 /* Restart TX/RX as needed */ 2073 ath_txrx_start(sc); 2074 2075 /* XXX Restart TX completion and pending TX */ 2076 if (reset_type == ATH_RESET_NOLOSS) { 2077 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2078 if (ATH_TXQ_SETUP(sc, i)) { 2079 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2080 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2081 ath_txq_sched(sc, &sc->sc_txq[i]); 2082 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2083 } 2084 } 2085 } 2086 2087 /* 2088 * This may have been set during an ath_start() call which 2089 * set this once it detected a concurrent TX was going on. 2090 * So, clear it. 2091 */ 2092 /* XXX do this inside of IF_LOCK? */ 2093 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2094 2095 /* Handle any frames in the TX queue */ 2096 /* 2097 * XXX should this be done by the caller, rather than 2098 * ath_reset() ? 2099 */ 2100 ath_start(ifp); /* restart xmit */ 2101 return 0; 2102 } 2103 2104 static int 2105 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2106 { 2107 struct ieee80211com *ic = vap->iv_ic; 2108 struct ifnet *ifp = ic->ic_ifp; 2109 struct ath_softc *sc = ifp->if_softc; 2110 struct ath_hal *ah = sc->sc_ah; 2111 2112 switch (cmd) { 2113 case IEEE80211_IOC_TXPOWER: 2114 /* 2115 * If per-packet TPC is enabled, then we have nothing 2116 * to do; otherwise we need to force the global limit. 2117 * All this can happen directly; no need to reset. 2118 */ 2119 if (!ath_hal_gettpc(ah)) 2120 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2121 return 0; 2122 } 2123 /* XXX? Full or NOLOSS? */ 2124 return ath_reset(ifp, ATH_RESET_FULL); 2125 } 2126 2127 struct ath_buf * 2128 _ath_getbuf_locked(struct ath_softc *sc) 2129 { 2130 struct ath_buf *bf; 2131 2132 ATH_TXBUF_LOCK_ASSERT(sc); 2133 2134 bf = TAILQ_FIRST(&sc->sc_txbuf); 2135 if (bf == NULL) { 2136 sc->sc_stats.ast_tx_getnobuf++; 2137 } else { 2138 if (bf->bf_flags & ATH_BUF_BUSY) { 2139 sc->sc_stats.ast_tx_getbusybuf++; 2140 bf = NULL; 2141 } 2142 } 2143 2144 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) 2145 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2146 else 2147 bf = NULL; 2148 2149 if (bf == NULL) { 2150 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2151 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2152 "out of xmit buffers" : "xmit buffer busy"); 2153 return NULL; 2154 } 2155 2156 /* Valid bf here; clear some basic fields */ 2157 bf->bf_next = NULL; /* XXX just to be sure */ 2158 bf->bf_last = NULL; /* XXX again, just to be sure */ 2159 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2160 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2161 2162 return bf; 2163 } 2164 2165 /* 2166 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2167 * can't be thrown back on the queue as they could still be 2168 * in use by the hardware. 2169 * 2170 * This duplicates the buffer, or returns NULL. 2171 * 2172 * The descriptor is also copied but the link pointers and 2173 * the DMA segments aren't copied; this frame should thus 2174 * be again passed through the descriptor setup/chain routines 2175 * so the link is correct. 2176 * 2177 * The caller must free the buffer using ath_freebuf(). 2178 * 2179 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2180 * XXX in the TX pathway when retries are needed. 2181 * XXX Figure out how to keep some buffers free, or factor the 2182 * XXX number of busy buffers into the xmit path (ath_start()) 2183 * XXX so we don't over-commit. 2184 */ 2185 struct ath_buf * 2186 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2187 { 2188 struct ath_buf *tbf; 2189 2190 tbf = ath_getbuf(sc); 2191 if (tbf == NULL) 2192 return NULL; /* XXX failure? Why? */ 2193 2194 /* Copy basics */ 2195 tbf->bf_next = NULL; 2196 tbf->bf_nseg = bf->bf_nseg; 2197 tbf->bf_txflags = bf->bf_txflags; 2198 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2199 tbf->bf_status = bf->bf_status; 2200 tbf->bf_m = bf->bf_m; 2201 tbf->bf_node = bf->bf_node; 2202 /* will be setup by the chain/setup function */ 2203 tbf->bf_lastds = NULL; 2204 /* for now, last == self */ 2205 tbf->bf_last = tbf; 2206 tbf->bf_comp = bf->bf_comp; 2207 2208 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2209 2210 /* The caller has to re-init the descriptor + links */ 2211 2212 /* Copy state */ 2213 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2214 2215 return tbf; 2216 } 2217 2218 struct ath_buf * 2219 ath_getbuf(struct ath_softc *sc) 2220 { 2221 struct ath_buf *bf; 2222 2223 ATH_TXBUF_LOCK(sc); 2224 bf = _ath_getbuf_locked(sc); 2225 if (bf == NULL) { 2226 struct ifnet *ifp = sc->sc_ifp; 2227 2228 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2229 sc->sc_stats.ast_tx_qstop++; 2230 /* XXX do this inside of IF_LOCK? */ 2231 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2232 } 2233 ATH_TXBUF_UNLOCK(sc); 2234 return bf; 2235 } 2236 2237 static void 2238 ath_start(struct ifnet *ifp) 2239 { 2240 struct ath_softc *sc = ifp->if_softc; 2241 struct ieee80211_node *ni; 2242 struct ath_buf *bf; 2243 struct mbuf *m, *next; 2244 ath_bufhead frags; 2245 2246 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2247 return; 2248 2249 /* XXX is it ok to hold the ATH_LOCK here? */ 2250 ATH_PCU_LOCK(sc); 2251 if (sc->sc_inreset_cnt > 0) { 2252 device_printf(sc->sc_dev, 2253 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2254 /* XXX do this inside of IF_LOCK? */ 2255 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2256 ATH_PCU_UNLOCK(sc); 2257 return; 2258 } 2259 sc->sc_txstart_cnt++; 2260 ATH_PCU_UNLOCK(sc); 2261 2262 for (;;) { 2263 /* 2264 * Grab a TX buffer and associated resources. 2265 */ 2266 bf = ath_getbuf(sc); 2267 if (bf == NULL) 2268 break; 2269 2270 IFQ_DEQUEUE(&ifp->if_snd, m); 2271 if (m == NULL) { 2272 ATH_TXBUF_LOCK(sc); 2273 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2274 ATH_TXBUF_UNLOCK(sc); 2275 break; 2276 } 2277 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2278 /* 2279 * Check for fragmentation. If this frame 2280 * has been broken up verify we have enough 2281 * buffers to send all the fragments so all 2282 * go out or none... 2283 */ 2284 TAILQ_INIT(&frags); 2285 if ((m->m_flags & M_FRAG) && 2286 !ath_txfrag_setup(sc, &frags, m, ni)) { 2287 DPRINTF(sc, ATH_DEBUG_XMIT, 2288 "%s: out of txfrag buffers\n", __func__); 2289 sc->sc_stats.ast_tx_nofrag++; 2290 ifp->if_oerrors++; 2291 ath_freetx(m); 2292 goto bad; 2293 } 2294 ifp->if_opackets++; 2295 nextfrag: 2296 /* 2297 * Pass the frame to the h/w for transmission. 2298 * Fragmented frames have each frag chained together 2299 * with m_nextpkt. We know there are sufficient ath_buf's 2300 * to send all the frags because of work done by 2301 * ath_txfrag_setup. We leave m_nextpkt set while 2302 * calling ath_tx_start so it can use it to extend the 2303 * the tx duration to cover the subsequent frag and 2304 * so it can reclaim all the mbufs in case of an error; 2305 * ath_tx_start clears m_nextpkt once it commits to 2306 * handing the frame to the hardware. 2307 */ 2308 next = m->m_nextpkt; 2309 if (ath_tx_start(sc, ni, bf, m)) { 2310 bad: 2311 ifp->if_oerrors++; 2312 reclaim: 2313 bf->bf_m = NULL; 2314 bf->bf_node = NULL; 2315 ATH_TXBUF_LOCK(sc); 2316 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2317 ath_txfrag_cleanup(sc, &frags, ni); 2318 ATH_TXBUF_UNLOCK(sc); 2319 if (ni != NULL) 2320 ieee80211_free_node(ni); 2321 continue; 2322 } 2323 if (next != NULL) { 2324 /* 2325 * Beware of state changing between frags. 2326 * XXX check sta power-save state? 2327 */ 2328 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2329 DPRINTF(sc, ATH_DEBUG_XMIT, 2330 "%s: flush fragmented packet, state %s\n", 2331 __func__, 2332 ieee80211_state_name[ni->ni_vap->iv_state]); 2333 ath_freetx(next); 2334 goto reclaim; 2335 } 2336 m = next; 2337 bf = TAILQ_FIRST(&frags); 2338 KASSERT(bf != NULL, ("no buf for txfrag")); 2339 TAILQ_REMOVE(&frags, bf, bf_list); 2340 goto nextfrag; 2341 } 2342 2343 sc->sc_wd_timer = 5; 2344 } 2345 2346 ATH_PCU_LOCK(sc); 2347 sc->sc_txstart_cnt--; 2348 ATH_PCU_UNLOCK(sc); 2349 } 2350 2351 static int 2352 ath_media_change(struct ifnet *ifp) 2353 { 2354 int error = ieee80211_media_change(ifp); 2355 /* NB: only the fixed rate can change and that doesn't need a reset */ 2356 return (error == ENETRESET ? 0 : error); 2357 } 2358 2359 /* 2360 * Block/unblock tx+rx processing while a key change is done. 2361 * We assume the caller serializes key management operations 2362 * so we only need to worry about synchronization with other 2363 * uses that originate in the driver. 2364 */ 2365 static void 2366 ath_key_update_begin(struct ieee80211vap *vap) 2367 { 2368 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2369 struct ath_softc *sc = ifp->if_softc; 2370 2371 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2372 taskqueue_block(sc->sc_tq); 2373 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2374 } 2375 2376 static void 2377 ath_key_update_end(struct ieee80211vap *vap) 2378 { 2379 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2380 struct ath_softc *sc = ifp->if_softc; 2381 2382 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2383 IF_UNLOCK(&ifp->if_snd); 2384 taskqueue_unblock(sc->sc_tq); 2385 } 2386 2387 /* 2388 * Calculate the receive filter according to the 2389 * operating mode and state: 2390 * 2391 * o always accept unicast, broadcast, and multicast traffic 2392 * o accept PHY error frames when hardware doesn't have MIB support 2393 * to count and we need them for ANI (sta mode only until recently) 2394 * and we are not scanning (ANI is disabled) 2395 * NB: older hal's add rx filter bits out of sight and we need to 2396 * blindly preserve them 2397 * o probe request frames are accepted only when operating in 2398 * hostap, adhoc, mesh, or monitor modes 2399 * o enable promiscuous mode 2400 * - when in monitor mode 2401 * - if interface marked PROMISC (assumes bridge setting is filtered) 2402 * o accept beacons: 2403 * - when operating in station mode for collecting rssi data when 2404 * the station is otherwise quiet, or 2405 * - when operating in adhoc mode so the 802.11 layer creates 2406 * node table entries for peers, 2407 * - when scanning 2408 * - when doing s/w beacon miss (e.g. for ap+sta) 2409 * - when operating in ap mode in 11g to detect overlapping bss that 2410 * require protection 2411 * - when operating in mesh mode to detect neighbors 2412 * o accept control frames: 2413 * - when in monitor mode 2414 * XXX HT protection for 11n 2415 */ 2416 static u_int32_t 2417 ath_calcrxfilter(struct ath_softc *sc) 2418 { 2419 struct ifnet *ifp = sc->sc_ifp; 2420 struct ieee80211com *ic = ifp->if_l2com; 2421 u_int32_t rfilt; 2422 2423 rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 2424 if (!sc->sc_needmib && !sc->sc_scanning) 2425 rfilt |= HAL_RX_FILTER_PHYERR; 2426 if (ic->ic_opmode != IEEE80211_M_STA) 2427 rfilt |= HAL_RX_FILTER_PROBEREQ; 2428 /* XXX ic->ic_monvaps != 0? */ 2429 if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC)) 2430 rfilt |= HAL_RX_FILTER_PROM; 2431 if (ic->ic_opmode == IEEE80211_M_STA || 2432 ic->ic_opmode == IEEE80211_M_IBSS || 2433 sc->sc_swbmiss || sc->sc_scanning) 2434 rfilt |= HAL_RX_FILTER_BEACON; 2435 /* 2436 * NB: We don't recalculate the rx filter when 2437 * ic_protmode changes; otherwise we could do 2438 * this only when ic_protmode != NONE. 2439 */ 2440 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 2441 IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) 2442 rfilt |= HAL_RX_FILTER_BEACON; 2443 2444 /* 2445 * Enable hardware PS-POLL RX only for hostap mode; 2446 * STA mode sends PS-POLL frames but never 2447 * receives them. 2448 */ 2449 if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL, 2450 0, NULL) == HAL_OK && 2451 ic->ic_opmode == IEEE80211_M_HOSTAP) 2452 rfilt |= HAL_RX_FILTER_PSPOLL; 2453 2454 if (sc->sc_nmeshvaps) { 2455 rfilt |= HAL_RX_FILTER_BEACON; 2456 if (sc->sc_hasbmatch) 2457 rfilt |= HAL_RX_FILTER_BSSID; 2458 else 2459 rfilt |= HAL_RX_FILTER_PROM; 2460 } 2461 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2462 rfilt |= HAL_RX_FILTER_CONTROL; 2463 2464 /* 2465 * Enable RX of compressed BAR frames only when doing 2466 * 802.11n. Required for A-MPDU. 2467 */ 2468 if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) 2469 rfilt |= HAL_RX_FILTER_COMPBAR; 2470 2471 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n", 2472 __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags); 2473 return rfilt; 2474 } 2475 2476 static void 2477 ath_update_promisc(struct ifnet *ifp) 2478 { 2479 struct ath_softc *sc = ifp->if_softc; 2480 u_int32_t rfilt; 2481 2482 /* configure rx filter */ 2483 rfilt = ath_calcrxfilter(sc); 2484 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2485 2486 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2487 } 2488 2489 static void 2490 ath_update_mcast(struct ifnet *ifp) 2491 { 2492 struct ath_softc *sc = ifp->if_softc; 2493 u_int32_t mfilt[2]; 2494 2495 /* calculate and install multicast filter */ 2496 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2497 struct ifmultiaddr *ifma; 2498 /* 2499 * Merge multicast addresses to form the hardware filter. 2500 */ 2501 mfilt[0] = mfilt[1] = 0; 2502 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2503 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2504 caddr_t dl; 2505 u_int32_t val; 2506 u_int8_t pos; 2507 2508 /* calculate XOR of eight 6bit values */ 2509 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2510 val = LE_READ_4(dl + 0); 2511 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2512 val = LE_READ_4(dl + 3); 2513 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2514 pos &= 0x3f; 2515 mfilt[pos / 32] |= (1 << (pos % 32)); 2516 } 2517 if_maddr_runlock(ifp); 2518 } else 2519 mfilt[0] = mfilt[1] = ~0; 2520 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2521 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2522 __func__, mfilt[0], mfilt[1]); 2523 } 2524 2525 static void 2526 ath_mode_init(struct ath_softc *sc) 2527 { 2528 struct ifnet *ifp = sc->sc_ifp; 2529 struct ath_hal *ah = sc->sc_ah; 2530 u_int32_t rfilt; 2531 2532 /* configure rx filter */ 2533 rfilt = ath_calcrxfilter(sc); 2534 ath_hal_setrxfilter(ah, rfilt); 2535 2536 /* configure operational mode */ 2537 ath_hal_setopmode(ah); 2538 2539 /* handle any link-level address change */ 2540 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2541 2542 /* calculate and install multicast filter */ 2543 ath_update_mcast(ifp); 2544 } 2545 2546 /* 2547 * Set the slot time based on the current setting. 2548 */ 2549 static void 2550 ath_setslottime(struct ath_softc *sc) 2551 { 2552 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2553 struct ath_hal *ah = sc->sc_ah; 2554 u_int usec; 2555 2556 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2557 usec = 13; 2558 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2559 usec = 21; 2560 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2561 /* honor short/long slot time only in 11g */ 2562 /* XXX shouldn't honor on pure g or turbo g channel */ 2563 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2564 usec = HAL_SLOT_TIME_9; 2565 else 2566 usec = HAL_SLOT_TIME_20; 2567 } else 2568 usec = HAL_SLOT_TIME_9; 2569 2570 DPRINTF(sc, ATH_DEBUG_RESET, 2571 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2572 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2573 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2574 2575 ath_hal_setslottime(ah, usec); 2576 sc->sc_updateslot = OK; 2577 } 2578 2579 /* 2580 * Callback from the 802.11 layer to update the 2581 * slot time based on the current setting. 2582 */ 2583 static void 2584 ath_updateslot(struct ifnet *ifp) 2585 { 2586 struct ath_softc *sc = ifp->if_softc; 2587 struct ieee80211com *ic = ifp->if_l2com; 2588 2589 /* 2590 * When not coordinating the BSS, change the hardware 2591 * immediately. For other operation we defer the change 2592 * until beacon updates have propagated to the stations. 2593 */ 2594 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2595 ic->ic_opmode == IEEE80211_M_MBSS) 2596 sc->sc_updateslot = UPDATE; 2597 else 2598 ath_setslottime(sc); 2599 } 2600 2601 /* 2602 * Setup a h/w transmit queue for beacons. 2603 */ 2604 static int 2605 ath_beaconq_setup(struct ath_hal *ah) 2606 { 2607 HAL_TXQ_INFO qi; 2608 2609 memset(&qi, 0, sizeof(qi)); 2610 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2611 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2612 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2613 /* NB: for dynamic turbo, don't enable any other interrupts */ 2614 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2615 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2616 } 2617 2618 /* 2619 * Setup the transmit queue parameters for the beacon queue. 2620 */ 2621 static int 2622 ath_beaconq_config(struct ath_softc *sc) 2623 { 2624 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2625 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2626 struct ath_hal *ah = sc->sc_ah; 2627 HAL_TXQ_INFO qi; 2628 2629 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2630 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2631 ic->ic_opmode == IEEE80211_M_MBSS) { 2632 /* 2633 * Always burst out beacon and CAB traffic. 2634 */ 2635 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2636 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2637 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2638 } else { 2639 struct wmeParams *wmep = 2640 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2641 /* 2642 * Adhoc mode; important thing is to use 2x cwmin. 2643 */ 2644 qi.tqi_aifs = wmep->wmep_aifsn; 2645 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2646 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2647 } 2648 2649 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2650 device_printf(sc->sc_dev, "unable to update parameters for " 2651 "beacon hardware queue!\n"); 2652 return 0; 2653 } else { 2654 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2655 return 1; 2656 } 2657 #undef ATH_EXPONENT_TO_VALUE 2658 } 2659 2660 /* 2661 * Allocate and setup an initial beacon frame. 2662 */ 2663 static int 2664 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2665 { 2666 struct ieee80211vap *vap = ni->ni_vap; 2667 struct ath_vap *avp = ATH_VAP(vap); 2668 struct ath_buf *bf; 2669 struct mbuf *m; 2670 int error; 2671 2672 bf = avp->av_bcbuf; 2673 if (bf->bf_m != NULL) { 2674 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2675 m_freem(bf->bf_m); 2676 bf->bf_m = NULL; 2677 } 2678 if (bf->bf_node != NULL) { 2679 ieee80211_free_node(bf->bf_node); 2680 bf->bf_node = NULL; 2681 } 2682 2683 /* 2684 * NB: the beacon data buffer must be 32-bit aligned; 2685 * we assume the mbuf routines will return us something 2686 * with this alignment (perhaps should assert). 2687 */ 2688 m = ieee80211_beacon_alloc(ni, &avp->av_boff); 2689 if (m == NULL) { 2690 device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__); 2691 sc->sc_stats.ast_be_nombuf++; 2692 return ENOMEM; 2693 } 2694 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 2695 bf->bf_segs, &bf->bf_nseg, 2696 BUS_DMA_NOWAIT); 2697 if (error != 0) { 2698 device_printf(sc->sc_dev, 2699 "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n", 2700 __func__, error); 2701 m_freem(m); 2702 return error; 2703 } 2704 2705 /* 2706 * Calculate a TSF adjustment factor required for staggered 2707 * beacons. Note that we assume the format of the beacon 2708 * frame leaves the tstamp field immediately following the 2709 * header. 2710 */ 2711 if (sc->sc_stagbeacons && avp->av_bslot > 0) { 2712 uint64_t tsfadjust; 2713 struct ieee80211_frame *wh; 2714 2715 /* 2716 * The beacon interval is in TU's; the TSF is in usecs. 2717 * We figure out how many TU's to add to align the timestamp 2718 * then convert to TSF units and handle byte swapping before 2719 * inserting it in the frame. The hardware will then add this 2720 * each time a beacon frame is sent. Note that we align vap's 2721 * 1..N and leave vap 0 untouched. This means vap 0 has a 2722 * timestamp in one beacon interval while the others get a 2723 * timstamp aligned to the next interval. 2724 */ 2725 tsfadjust = ni->ni_intval * 2726 (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF; 2727 tsfadjust = htole64(tsfadjust << 10); /* TU -> TSF */ 2728 2729 DPRINTF(sc, ATH_DEBUG_BEACON, 2730 "%s: %s beacons bslot %d intval %u tsfadjust %llu\n", 2731 __func__, sc->sc_stagbeacons ? "stagger" : "burst", 2732 avp->av_bslot, ni->ni_intval, 2733 (long long unsigned) le64toh(tsfadjust)); 2734 2735 wh = mtod(m, struct ieee80211_frame *); 2736 memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust)); 2737 } 2738 bf->bf_m = m; 2739 bf->bf_node = ieee80211_ref_node(ni); 2740 2741 return 0; 2742 } 2743 2744 /* 2745 * Setup the beacon frame for transmit. 2746 */ 2747 static void 2748 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2749 { 2750 #define USE_SHPREAMBLE(_ic) \ 2751 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2752 == IEEE80211_F_SHPREAMBLE) 2753 struct ieee80211_node *ni = bf->bf_node; 2754 struct ieee80211com *ic = ni->ni_ic; 2755 struct mbuf *m = bf->bf_m; 2756 struct ath_hal *ah = sc->sc_ah; 2757 struct ath_desc *ds; 2758 int flags, antenna; 2759 const HAL_RATE_TABLE *rt; 2760 u_int8_t rix, rate; 2761 2762 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n", 2763 __func__, m, m->m_len); 2764 2765 /* setup descriptors */ 2766 ds = bf->bf_desc; 2767 bf->bf_last = bf; 2768 bf->bf_lastds = ds; 2769 2770 flags = HAL_TXDESC_NOACK; 2771 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2772 ds->ds_link = bf->bf_daddr; /* self-linked */ 2773 flags |= HAL_TXDESC_VEOL; 2774 /* 2775 * Let hardware handle antenna switching. 2776 */ 2777 antenna = sc->sc_txantenna; 2778 } else { 2779 ds->ds_link = 0; 2780 /* 2781 * Switch antenna every 4 beacons. 2782 * XXX assumes two antenna 2783 */ 2784 if (sc->sc_txantenna != 0) 2785 antenna = sc->sc_txantenna; 2786 else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0) 2787 antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1); 2788 else 2789 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2790 } 2791 2792 KASSERT(bf->bf_nseg == 1, 2793 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 2794 ds->ds_data = bf->bf_segs[0].ds_addr; 2795 /* 2796 * Calculate rate code. 2797 * XXX everything at min xmit rate 2798 */ 2799 rix = 0; 2800 rt = sc->sc_currates; 2801 rate = rt->info[rix].rateCode; 2802 if (USE_SHPREAMBLE(ic)) 2803 rate |= rt->info[rix].shortPreamble; 2804 ath_hal_setuptxdesc(ah, ds 2805 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2806 , sizeof(struct ieee80211_frame)/* header length */ 2807 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2808 , ni->ni_txpower /* txpower XXX */ 2809 , rate, 1 /* series 0 rate/tries */ 2810 , HAL_TXKEYIX_INVALID /* no encryption */ 2811 , antenna /* antenna mode */ 2812 , flags /* no ack, veol for beacons */ 2813 , 0 /* rts/cts rate */ 2814 , 0 /* rts/cts duration */ 2815 ); 2816 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2817 ath_hal_filltxdesc(ah, ds 2818 , roundup(m->m_len, 4) /* buffer length */ 2819 , AH_TRUE /* first segment */ 2820 , AH_TRUE /* last segment */ 2821 , ds /* first descriptor */ 2822 ); 2823 #if 0 2824 ath_desc_swap(ds); 2825 #endif 2826 #undef USE_SHPREAMBLE 2827 } 2828 2829 static void 2830 ath_beacon_update(struct ieee80211vap *vap, int item) 2831 { 2832 struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff; 2833 2834 setbit(bo->bo_flags, item); 2835 } 2836 2837 /* 2838 * Append the contents of src to dst; both queues 2839 * are assumed to be locked. 2840 */ 2841 static void 2842 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2843 { 2844 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2845 dst->axq_link = src->axq_link; 2846 src->axq_link = NULL; 2847 dst->axq_depth += src->axq_depth; 2848 dst->axq_aggr_depth += src->axq_aggr_depth; 2849 src->axq_depth = 0; 2850 src->axq_aggr_depth = 0; 2851 } 2852 2853 /* 2854 * Transmit a beacon frame at SWBA. Dynamic updates to the 2855 * frame contents are done as needed and the slot time is 2856 * also adjusted based on current state. 2857 */ 2858 static void 2859 ath_beacon_proc(void *arg, int pending) 2860 { 2861 struct ath_softc *sc = arg; 2862 struct ath_hal *ah = sc->sc_ah; 2863 struct ieee80211vap *vap; 2864 struct ath_buf *bf; 2865 int slot, otherant; 2866 uint32_t bfaddr; 2867 2868 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2869 __func__, pending); 2870 /* 2871 * Check if the previous beacon has gone out. If 2872 * not don't try to post another, skip this period 2873 * and wait for the next. Missed beacons indicate 2874 * a problem and should not occur. If we miss too 2875 * many consecutive beacons reset the device. 2876 */ 2877 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2878 sc->sc_bmisscount++; 2879 sc->sc_stats.ast_be_missed++; 2880 DPRINTF(sc, ATH_DEBUG_BEACON, 2881 "%s: missed %u consecutive beacons\n", 2882 __func__, sc->sc_bmisscount); 2883 if (sc->sc_bmisscount >= ath_bstuck_threshold) 2884 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 2885 return; 2886 } 2887 if (sc->sc_bmisscount != 0) { 2888 DPRINTF(sc, ATH_DEBUG_BEACON, 2889 "%s: resume beacon xmit after %u misses\n", 2890 __func__, sc->sc_bmisscount); 2891 sc->sc_bmisscount = 0; 2892 } 2893 2894 if (sc->sc_stagbeacons) { /* staggered beacons */ 2895 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2896 uint32_t tsftu; 2897 2898 tsftu = ath_hal_gettsf32(ah) >> 10; 2899 /* XXX lintval */ 2900 slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval; 2901 vap = sc->sc_bslot[(slot+1) % ATH_BCBUF]; 2902 bfaddr = 0; 2903 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 2904 bf = ath_beacon_generate(sc, vap); 2905 if (bf != NULL) 2906 bfaddr = bf->bf_daddr; 2907 } 2908 } else { /* burst'd beacons */ 2909 uint32_t *bflink = &bfaddr; 2910 2911 for (slot = 0; slot < ATH_BCBUF; slot++) { 2912 vap = sc->sc_bslot[slot]; 2913 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 2914 bf = ath_beacon_generate(sc, vap); 2915 if (bf != NULL) { 2916 *bflink = bf->bf_daddr; 2917 bflink = &bf->bf_desc->ds_link; 2918 } 2919 } 2920 } 2921 *bflink = 0; /* terminate list */ 2922 } 2923 2924 /* 2925 * Handle slot time change when a non-ERP station joins/leaves 2926 * an 11g network. The 802.11 layer notifies us via callback, 2927 * we mark updateslot, then wait one beacon before effecting 2928 * the change. This gives associated stations at least one 2929 * beacon interval to note the state change. 2930 */ 2931 /* XXX locking */ 2932 if (sc->sc_updateslot == UPDATE) { 2933 sc->sc_updateslot = COMMIT; /* commit next beacon */ 2934 sc->sc_slotupdate = slot; 2935 } else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot) 2936 ath_setslottime(sc); /* commit change to h/w */ 2937 2938 /* 2939 * Check recent per-antenna transmit statistics and flip 2940 * the default antenna if noticeably more frames went out 2941 * on the non-default antenna. 2942 * XXX assumes 2 anntenae 2943 */ 2944 if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) { 2945 otherant = sc->sc_defant & 1 ? 2 : 1; 2946 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 2947 ath_setdefantenna(sc, otherant); 2948 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 2949 } 2950 2951 if (bfaddr != 0) { 2952 /* 2953 * Stop any current dma and put the new frame on the queue. 2954 * This should never fail since we check above that no frames 2955 * are still pending on the queue. 2956 */ 2957 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 2958 DPRINTF(sc, ATH_DEBUG_ANY, 2959 "%s: beacon queue %u did not stop?\n", 2960 __func__, sc->sc_bhalq); 2961 } 2962 /* NB: cabq traffic should already be queued and primed */ 2963 ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr); 2964 ath_hal_txstart(ah, sc->sc_bhalq); 2965 2966 sc->sc_stats.ast_be_xmit++; 2967 } 2968 } 2969 2970 static struct ath_buf * 2971 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap) 2972 { 2973 struct ath_vap *avp = ATH_VAP(vap); 2974 struct ath_txq *cabq = sc->sc_cabq; 2975 struct ath_buf *bf; 2976 struct mbuf *m; 2977 int nmcastq, error; 2978 2979 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 2980 ("not running, state %d", vap->iv_state)); 2981 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 2982 2983 /* 2984 * Update dynamic beacon contents. If this returns 2985 * non-zero then we need to remap the memory because 2986 * the beacon frame changed size (probably because 2987 * of the TIM bitmap). 2988 */ 2989 bf = avp->av_bcbuf; 2990 m = bf->bf_m; 2991 nmcastq = avp->av_mcastq.axq_depth; 2992 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) { 2993 /* XXX too conservative? */ 2994 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2995 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 2996 bf->bf_segs, &bf->bf_nseg, 2997 BUS_DMA_NOWAIT); 2998 if (error != 0) { 2999 if_printf(vap->iv_ifp, 3000 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3001 __func__, error); 3002 return NULL; 3003 } 3004 } 3005 if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) { 3006 DPRINTF(sc, ATH_DEBUG_BEACON, 3007 "%s: cabq did not drain, mcastq %u cabq %u\n", 3008 __func__, nmcastq, cabq->axq_depth); 3009 sc->sc_stats.ast_cabq_busy++; 3010 if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) { 3011 /* 3012 * CABQ traffic from a previous vap is still pending. 3013 * We must drain the q before this beacon frame goes 3014 * out as otherwise this vap's stations will get cab 3015 * frames from a different vap. 3016 * XXX could be slow causing us to miss DBA 3017 */ 3018 ath_tx_draintxq(sc, cabq); 3019 } 3020 } 3021 ath_beacon_setup(sc, bf); 3022 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3023 3024 /* 3025 * Enable the CAB queue before the beacon queue to 3026 * insure cab frames are triggered by this beacon. 3027 */ 3028 if (avp->av_boff.bo_tim[4] & 1) { 3029 struct ath_hal *ah = sc->sc_ah; 3030 3031 /* NB: only at DTIM */ 3032 ATH_TXQ_LOCK(cabq); 3033 ATH_TXQ_LOCK(&avp->av_mcastq); 3034 if (nmcastq) { 3035 struct ath_buf *bfm; 3036 3037 /* 3038 * Move frames from the s/w mcast q to the h/w cab q. 3039 * XXX MORE_DATA bit 3040 */ 3041 bfm = TAILQ_FIRST(&avp->av_mcastq.axq_q); 3042 if (cabq->axq_link != NULL) { 3043 *cabq->axq_link = bfm->bf_daddr; 3044 } else 3045 ath_hal_puttxbuf(ah, cabq->axq_qnum, 3046 bfm->bf_daddr); 3047 ath_txqmove(cabq, &avp->av_mcastq); 3048 3049 sc->sc_stats.ast_cabq_xmit += nmcastq; 3050 } 3051 /* NB: gated by beacon so safe to start here */ 3052 if (! TAILQ_EMPTY(&(cabq->axq_q))) 3053 ath_hal_txstart(ah, cabq->axq_qnum); 3054 ATH_TXQ_UNLOCK(&avp->av_mcastq); 3055 ATH_TXQ_UNLOCK(cabq); 3056 } 3057 return bf; 3058 } 3059 3060 static void 3061 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap) 3062 { 3063 struct ath_vap *avp = ATH_VAP(vap); 3064 struct ath_hal *ah = sc->sc_ah; 3065 struct ath_buf *bf; 3066 struct mbuf *m; 3067 int error; 3068 3069 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3070 3071 /* 3072 * Update dynamic beacon contents. If this returns 3073 * non-zero then we need to remap the memory because 3074 * the beacon frame changed size (probably because 3075 * of the TIM bitmap). 3076 */ 3077 bf = avp->av_bcbuf; 3078 m = bf->bf_m; 3079 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) { 3080 /* XXX too conservative? */ 3081 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3082 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3083 bf->bf_segs, &bf->bf_nseg, 3084 BUS_DMA_NOWAIT); 3085 if (error != 0) { 3086 if_printf(vap->iv_ifp, 3087 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3088 __func__, error); 3089 return; 3090 } 3091 } 3092 ath_beacon_setup(sc, bf); 3093 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3094 3095 /* NB: caller is known to have already stopped tx dma */ 3096 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 3097 ath_hal_txstart(ah, sc->sc_bhalq); 3098 } 3099 3100 /* 3101 * Reset the hardware after detecting beacons have stopped. 3102 */ 3103 static void 3104 ath_bstuck_proc(void *arg, int pending) 3105 { 3106 struct ath_softc *sc = arg; 3107 struct ifnet *ifp = sc->sc_ifp; 3108 uint32_t hangs = 0; 3109 3110 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3111 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 3112 3113 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3114 sc->sc_bmisscount); 3115 sc->sc_stats.ast_bstuck++; 3116 /* 3117 * This assumes that there's no simultaneous channel mode change 3118 * occuring. 3119 */ 3120 ath_reset(ifp, ATH_RESET_NOLOSS); 3121 } 3122 3123 /* 3124 * Reclaim beacon resources and return buffer to the pool. 3125 */ 3126 static void 3127 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf) 3128 { 3129 3130 if (bf->bf_m != NULL) { 3131 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3132 m_freem(bf->bf_m); 3133 bf->bf_m = NULL; 3134 } 3135 if (bf->bf_node != NULL) { 3136 ieee80211_free_node(bf->bf_node); 3137 bf->bf_node = NULL; 3138 } 3139 TAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list); 3140 } 3141 3142 /* 3143 * Reclaim beacon resources. 3144 */ 3145 static void 3146 ath_beacon_free(struct ath_softc *sc) 3147 { 3148 struct ath_buf *bf; 3149 3150 TAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 3151 if (bf->bf_m != NULL) { 3152 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3153 m_freem(bf->bf_m); 3154 bf->bf_m = NULL; 3155 } 3156 if (bf->bf_node != NULL) { 3157 ieee80211_free_node(bf->bf_node); 3158 bf->bf_node = NULL; 3159 } 3160 } 3161 } 3162 3163 /* 3164 * Configure the beacon and sleep timers. 3165 * 3166 * When operating as an AP this resets the TSF and sets 3167 * up the hardware to notify us when we need to issue beacons. 3168 * 3169 * When operating in station mode this sets up the beacon 3170 * timers according to the timestamp of the last received 3171 * beacon and the current TSF, configures PCF and DTIM 3172 * handling, programs the sleep registers so the hardware 3173 * will wakeup in time to receive beacons, and configures 3174 * the beacon miss handling so we'll receive a BMISS 3175 * interrupt when we stop seeing beacons from the AP 3176 * we've associated with. 3177 */ 3178 static void 3179 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap) 3180 { 3181 #define TSF_TO_TU(_h,_l) \ 3182 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 3183 #define FUDGE 2 3184 struct ath_hal *ah = sc->sc_ah; 3185 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3186 struct ieee80211_node *ni; 3187 u_int32_t nexttbtt, intval, tsftu; 3188 u_int64_t tsf; 3189 3190 if (vap == NULL) 3191 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 3192 ni = vap->iv_bss; 3193 3194 /* extract tstamp from last beacon and convert to TU */ 3195 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 3196 LE_READ_4(ni->ni_tstamp.data)); 3197 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3198 ic->ic_opmode == IEEE80211_M_MBSS) { 3199 /* 3200 * For multi-bss ap/mesh support beacons are either staggered 3201 * evenly over N slots or burst together. For the former 3202 * arrange for the SWBA to be delivered for each slot. 3203 * Slots that are not occupied will generate nothing. 3204 */ 3205 /* NB: the beacon interval is kept internally in TU's */ 3206 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3207 if (sc->sc_stagbeacons) 3208 intval /= ATH_BCBUF; 3209 } else { 3210 /* NB: the beacon interval is kept internally in TU's */ 3211 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3212 } 3213 if (nexttbtt == 0) /* e.g. for ap mode */ 3214 nexttbtt = intval; 3215 else if (intval) /* NB: can be 0 for monitor mode */ 3216 nexttbtt = roundup(nexttbtt, intval); 3217 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 3218 __func__, nexttbtt, intval, ni->ni_intval); 3219 if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) { 3220 HAL_BEACON_STATE bs; 3221 int dtimperiod, dtimcount; 3222 int cfpperiod, cfpcount; 3223 3224 /* 3225 * Setup dtim and cfp parameters according to 3226 * last beacon we received (which may be none). 3227 */ 3228 dtimperiod = ni->ni_dtim_period; 3229 if (dtimperiod <= 0) /* NB: 0 if not known */ 3230 dtimperiod = 1; 3231 dtimcount = ni->ni_dtim_count; 3232 if (dtimcount >= dtimperiod) /* NB: sanity check */ 3233 dtimcount = 0; /* XXX? */ 3234 cfpperiod = 1; /* NB: no PCF support yet */ 3235 cfpcount = 0; 3236 /* 3237 * Pull nexttbtt forward to reflect the current 3238 * TSF and calculate dtim+cfp state for the result. 3239 */ 3240 tsf = ath_hal_gettsf64(ah); 3241 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3242 do { 3243 nexttbtt += intval; 3244 if (--dtimcount < 0) { 3245 dtimcount = dtimperiod - 1; 3246 if (--cfpcount < 0) 3247 cfpcount = cfpperiod - 1; 3248 } 3249 } while (nexttbtt < tsftu); 3250 memset(&bs, 0, sizeof(bs)); 3251 bs.bs_intval = intval; 3252 bs.bs_nexttbtt = nexttbtt; 3253 bs.bs_dtimperiod = dtimperiod*intval; 3254 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 3255 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 3256 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 3257 bs.bs_cfpmaxduration = 0; 3258 #if 0 3259 /* 3260 * The 802.11 layer records the offset to the DTIM 3261 * bitmap while receiving beacons; use it here to 3262 * enable h/w detection of our AID being marked in 3263 * the bitmap vector (to indicate frames for us are 3264 * pending at the AP). 3265 * XXX do DTIM handling in s/w to WAR old h/w bugs 3266 * XXX enable based on h/w rev for newer chips 3267 */ 3268 bs.bs_timoffset = ni->ni_timoff; 3269 #endif 3270 /* 3271 * Calculate the number of consecutive beacons to miss 3272 * before taking a BMISS interrupt. 3273 * Note that we clamp the result to at most 10 beacons. 3274 */ 3275 bs.bs_bmissthreshold = vap->iv_bmissthreshold; 3276 if (bs.bs_bmissthreshold > 10) 3277 bs.bs_bmissthreshold = 10; 3278 else if (bs.bs_bmissthreshold <= 0) 3279 bs.bs_bmissthreshold = 1; 3280 3281 /* 3282 * Calculate sleep duration. The configuration is 3283 * given in ms. We insure a multiple of the beacon 3284 * period is used. Also, if the sleep duration is 3285 * greater than the DTIM period then it makes senses 3286 * to make it a multiple of that. 3287 * 3288 * XXX fixed at 100ms 3289 */ 3290 bs.bs_sleepduration = 3291 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 3292 if (bs.bs_sleepduration > bs.bs_dtimperiod) 3293 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 3294 3295 DPRINTF(sc, ATH_DEBUG_BEACON, 3296 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 3297 , __func__ 3298 , tsf, tsftu 3299 , bs.bs_intval 3300 , bs.bs_nexttbtt 3301 , bs.bs_dtimperiod 3302 , bs.bs_nextdtim 3303 , bs.bs_bmissthreshold 3304 , bs.bs_sleepduration 3305 , bs.bs_cfpperiod 3306 , bs.bs_cfpmaxduration 3307 , bs.bs_cfpnext 3308 , bs.bs_timoffset 3309 ); 3310 ath_hal_intrset(ah, 0); 3311 ath_hal_beacontimers(ah, &bs); 3312 sc->sc_imask |= HAL_INT_BMISS; 3313 ath_hal_intrset(ah, sc->sc_imask); 3314 } else { 3315 ath_hal_intrset(ah, 0); 3316 if (nexttbtt == intval) 3317 intval |= HAL_BEACON_RESET_TSF; 3318 if (ic->ic_opmode == IEEE80211_M_IBSS) { 3319 /* 3320 * In IBSS mode enable the beacon timers but only 3321 * enable SWBA interrupts if we need to manually 3322 * prepare beacon frames. Otherwise we use a 3323 * self-linked tx descriptor and let the hardware 3324 * deal with things. 3325 */ 3326 intval |= HAL_BEACON_ENA; 3327 if (!sc->sc_hasveol) 3328 sc->sc_imask |= HAL_INT_SWBA; 3329 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 3330 /* 3331 * Pull nexttbtt forward to reflect 3332 * the current TSF. 3333 */ 3334 tsf = ath_hal_gettsf64(ah); 3335 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3336 do { 3337 nexttbtt += intval; 3338 } while (nexttbtt < tsftu); 3339 } 3340 ath_beaconq_config(sc); 3341 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3342 ic->ic_opmode == IEEE80211_M_MBSS) { 3343 /* 3344 * In AP/mesh mode we enable the beacon timers 3345 * and SWBA interrupts to prepare beacon frames. 3346 */ 3347 intval |= HAL_BEACON_ENA; 3348 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 3349 ath_beaconq_config(sc); 3350 } 3351 ath_hal_beaconinit(ah, nexttbtt, intval); 3352 sc->sc_bmisscount = 0; 3353 ath_hal_intrset(ah, sc->sc_imask); 3354 /* 3355 * When using a self-linked beacon descriptor in 3356 * ibss mode load it once here. 3357 */ 3358 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 3359 ath_beacon_start_adhoc(sc, vap); 3360 } 3361 sc->sc_syncbeacon = 0; 3362 #undef FUDGE 3363 #undef TSF_TO_TU 3364 } 3365 3366 static void 3367 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3368 { 3369 bus_addr_t *paddr = (bus_addr_t*) arg; 3370 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3371 *paddr = segs->ds_addr; 3372 } 3373 3374 static int 3375 ath_descdma_setup(struct ath_softc *sc, 3376 struct ath_descdma *dd, ath_bufhead *head, 3377 const char *name, int nbuf, int ndesc) 3378 { 3379 #define DS2PHYS(_dd, _ds) \ 3380 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3381 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3382 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3383 struct ifnet *ifp = sc->sc_ifp; 3384 uint8_t *ds; 3385 struct ath_buf *bf; 3386 int i, bsize, error; 3387 int desc_len; 3388 3389 desc_len = sizeof(struct ath_desc); 3390 3391 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 3392 __func__, name, nbuf, ndesc); 3393 3394 dd->dd_name = name; 3395 dd->dd_desc_len = desc_len * nbuf * ndesc; 3396 3397 /* 3398 * Merlin work-around: 3399 * Descriptors that cross the 4KB boundary can't be used. 3400 * Assume one skipped descriptor per 4KB page. 3401 */ 3402 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3403 int numdescpage = 4096 / (desc_len * ndesc); 3404 dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096; 3405 } 3406 3407 /* 3408 * Setup DMA descriptor area. 3409 */ 3410 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3411 PAGE_SIZE, 0, /* alignment, bounds */ 3412 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3413 BUS_SPACE_MAXADDR, /* highaddr */ 3414 NULL, NULL, /* filter, filterarg */ 3415 dd->dd_desc_len, /* maxsize */ 3416 1, /* nsegments */ 3417 dd->dd_desc_len, /* maxsegsize */ 3418 BUS_DMA_ALLOCNOW, /* flags */ 3419 NULL, /* lockfunc */ 3420 NULL, /* lockarg */ 3421 &dd->dd_dmat); 3422 if (error != 0) { 3423 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3424 return error; 3425 } 3426 3427 /* allocate descriptors */ 3428 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 3429 if (error != 0) { 3430 if_printf(ifp, "unable to create dmamap for %s descriptors, " 3431 "error %u\n", dd->dd_name, error); 3432 goto fail0; 3433 } 3434 3435 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3436 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3437 &dd->dd_dmamap); 3438 if (error != 0) { 3439 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3440 "error %u\n", nbuf * ndesc, dd->dd_name, error); 3441 goto fail1; 3442 } 3443 3444 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3445 dd->dd_desc, dd->dd_desc_len, 3446 ath_load_cb, &dd->dd_desc_paddr, 3447 BUS_DMA_NOWAIT); 3448 if (error != 0) { 3449 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3450 dd->dd_name, error); 3451 goto fail2; 3452 } 3453 3454 ds = (uint8_t *) dd->dd_desc; 3455 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3456 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 3457 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 3458 3459 /* allocate rx buffers */ 3460 bsize = sizeof(struct ath_buf) * nbuf; 3461 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3462 if (bf == NULL) { 3463 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3464 dd->dd_name, bsize); 3465 goto fail3; 3466 } 3467 dd->dd_bufptr = bf; 3468 3469 TAILQ_INIT(head); 3470 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) { 3471 bf->bf_desc = (struct ath_desc *) ds; 3472 bf->bf_daddr = DS2PHYS(dd, ds); 3473 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3474 /* 3475 * Merlin WAR: Skip descriptor addresses which 3476 * cause 4KB boundary crossing along any point 3477 * in the descriptor. 3478 */ 3479 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3480 desc_len * ndesc)) { 3481 /* Start at the next page */ 3482 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3483 bf->bf_desc = (struct ath_desc *) ds; 3484 bf->bf_daddr = DS2PHYS(dd, ds); 3485 } 3486 } 3487 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3488 &bf->bf_dmamap); 3489 if (error != 0) { 3490 if_printf(ifp, "unable to create dmamap for %s " 3491 "buffer %u, error %u\n", dd->dd_name, i, error); 3492 ath_descdma_cleanup(sc, dd, head); 3493 return error; 3494 } 3495 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3496 TAILQ_INSERT_TAIL(head, bf, bf_list); 3497 } 3498 return 0; 3499 fail3: 3500 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3501 fail2: 3502 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3503 fail1: 3504 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3505 fail0: 3506 bus_dma_tag_destroy(dd->dd_dmat); 3507 memset(dd, 0, sizeof(*dd)); 3508 return error; 3509 #undef DS2PHYS 3510 #undef ATH_DESC_4KB_BOUND_CHECK 3511 } 3512 3513 static void 3514 ath_descdma_cleanup(struct ath_softc *sc, 3515 struct ath_descdma *dd, ath_bufhead *head) 3516 { 3517 struct ath_buf *bf; 3518 struct ieee80211_node *ni; 3519 3520 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3521 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3522 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3523 bus_dma_tag_destroy(dd->dd_dmat); 3524 3525 TAILQ_FOREACH(bf, head, bf_list) { 3526 if (bf->bf_m) { 3527 m_freem(bf->bf_m); 3528 bf->bf_m = NULL; 3529 } 3530 if (bf->bf_dmamap != NULL) { 3531 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3532 bf->bf_dmamap = NULL; 3533 } 3534 ni = bf->bf_node; 3535 bf->bf_node = NULL; 3536 if (ni != NULL) { 3537 /* 3538 * Reclaim node reference. 3539 */ 3540 ieee80211_free_node(ni); 3541 } 3542 } 3543 3544 TAILQ_INIT(head); 3545 free(dd->dd_bufptr, M_ATHDEV); 3546 memset(dd, 0, sizeof(*dd)); 3547 } 3548 3549 static int 3550 ath_desc_alloc(struct ath_softc *sc) 3551 { 3552 int error; 3553 3554 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 3555 "rx", ath_rxbuf, 1); 3556 if (error != 0) 3557 return error; 3558 3559 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3560 "tx", ath_txbuf, ATH_TXDESC); 3561 if (error != 0) { 3562 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3563 return error; 3564 } 3565 3566 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3567 "beacon", ATH_BCBUF, 1); 3568 if (error != 0) { 3569 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3570 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3571 return error; 3572 } 3573 return 0; 3574 } 3575 3576 static void 3577 ath_desc_free(struct ath_softc *sc) 3578 { 3579 3580 if (sc->sc_bdma.dd_desc_len != 0) 3581 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3582 if (sc->sc_txdma.dd_desc_len != 0) 3583 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3584 if (sc->sc_rxdma.dd_desc_len != 0) 3585 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3586 } 3587 3588 static struct ieee80211_node * 3589 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3590 { 3591 struct ieee80211com *ic = vap->iv_ic; 3592 struct ath_softc *sc = ic->ic_ifp->if_softc; 3593 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3594 struct ath_node *an; 3595 3596 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3597 if (an == NULL) { 3598 /* XXX stat+msg */ 3599 return NULL; 3600 } 3601 ath_rate_node_init(sc, an); 3602 3603 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3604 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3605 device_get_nameunit(sc->sc_dev), an); 3606 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3607 3608 /* XXX setup ath_tid */ 3609 ath_tx_tid_init(sc, an); 3610 3611 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3612 return &an->an_node; 3613 } 3614 3615 static void 3616 ath_node_cleanup(struct ieee80211_node *ni) 3617 { 3618 struct ieee80211com *ic = ni->ni_ic; 3619 struct ath_softc *sc = ic->ic_ifp->if_softc; 3620 3621 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3622 ath_tx_node_flush(sc, ATH_NODE(ni)); 3623 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3624 sc->sc_node_cleanup(ni); 3625 } 3626 3627 static void 3628 ath_node_free(struct ieee80211_node *ni) 3629 { 3630 struct ieee80211com *ic = ni->ni_ic; 3631 struct ath_softc *sc = ic->ic_ifp->if_softc; 3632 3633 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3634 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3635 sc->sc_node_free(ni); 3636 } 3637 3638 static void 3639 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3640 { 3641 struct ieee80211com *ic = ni->ni_ic; 3642 struct ath_softc *sc = ic->ic_ifp->if_softc; 3643 struct ath_hal *ah = sc->sc_ah; 3644 3645 *rssi = ic->ic_node_getrssi(ni); 3646 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3647 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3648 else 3649 *noise = -95; /* nominally correct */ 3650 } 3651 3652 static int 3653 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 3654 { 3655 struct ath_hal *ah = sc->sc_ah; 3656 int error; 3657 struct mbuf *m; 3658 struct ath_desc *ds; 3659 3660 m = bf->bf_m; 3661 if (m == NULL) { 3662 /* 3663 * NB: by assigning a page to the rx dma buffer we 3664 * implicitly satisfy the Atheros requirement that 3665 * this buffer be cache-line-aligned and sized to be 3666 * multiple of the cache line size. Not doing this 3667 * causes weird stuff to happen (for the 5210 at least). 3668 */ 3669 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 3670 if (m == NULL) { 3671 DPRINTF(sc, ATH_DEBUG_ANY, 3672 "%s: no mbuf/cluster\n", __func__); 3673 sc->sc_stats.ast_rx_nombuf++; 3674 return ENOMEM; 3675 } 3676 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 3677 3678 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, 3679 bf->bf_dmamap, m, 3680 bf->bf_segs, &bf->bf_nseg, 3681 BUS_DMA_NOWAIT); 3682 if (error != 0) { 3683 DPRINTF(sc, ATH_DEBUG_ANY, 3684 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n", 3685 __func__, error); 3686 sc->sc_stats.ast_rx_busdma++; 3687 m_freem(m); 3688 return error; 3689 } 3690 KASSERT(bf->bf_nseg == 1, 3691 ("multi-segment packet; nseg %u", bf->bf_nseg)); 3692 bf->bf_m = m; 3693 } 3694 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 3695 3696 /* 3697 * Setup descriptors. For receive we always terminate 3698 * the descriptor list with a self-linked entry so we'll 3699 * not get overrun under high load (as can happen with a 3700 * 5212 when ANI processing enables PHY error frames). 3701 * 3702 * To insure the last descriptor is self-linked we create 3703 * each descriptor as self-linked and add it to the end. As 3704 * each additional descriptor is added the previous self-linked 3705 * entry is ``fixed'' naturally. This should be safe even 3706 * if DMA is happening. When processing RX interrupts we 3707 * never remove/process the last, self-linked, entry on the 3708 * descriptor list. This insures the hardware always has 3709 * someplace to write a new frame. 3710 */ 3711 /* 3712 * 11N: we can no longer afford to self link the last descriptor. 3713 * MAC acknowledges BA status as long as it copies frames to host 3714 * buffer (or rx fifo). This can incorrectly acknowledge packets 3715 * to a sender if last desc is self-linked. 3716 */ 3717 ds = bf->bf_desc; 3718 if (sc->sc_rxslink) 3719 ds->ds_link = bf->bf_daddr; /* link to self */ 3720 else 3721 ds->ds_link = 0; /* terminate the list */ 3722 ds->ds_data = bf->bf_segs[0].ds_addr; 3723 ath_hal_setuprxdesc(ah, ds 3724 , m->m_len /* buffer size */ 3725 , 0 3726 ); 3727 3728 if (sc->sc_rxlink != NULL) 3729 *sc->sc_rxlink = bf->bf_daddr; 3730 sc->sc_rxlink = &ds->ds_link; 3731 return 0; 3732 } 3733 3734 /* 3735 * Extend 15-bit time stamp from rx descriptor to 3736 * a full 64-bit TSF using the specified TSF. 3737 */ 3738 static __inline u_int64_t 3739 ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf) 3740 { 3741 if ((tsf & 0x7fff) < rstamp) 3742 tsf -= 0x8000; 3743 3744 return ((tsf &~ 0x7fff) | rstamp); 3745 } 3746 3747 /* 3748 * Extend 32-bit time stamp from rx descriptor to 3749 * a full 64-bit TSF using the specified TSF. 3750 */ 3751 static __inline u_int64_t 3752 ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf) 3753 { 3754 u_int32_t tsf_low = tsf & 0xffffffff; 3755 u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp; 3756 3757 if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000)) 3758 tsf64 -= 0x100000000ULL; 3759 3760 if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000)) 3761 tsf64 += 0x100000000ULL; 3762 3763 return tsf64; 3764 } 3765 3766 /* 3767 * Extend the TSF from the RX descriptor to a full 64 bit TSF. 3768 * Earlier hardware versions only wrote the low 15 bits of the 3769 * TSF into the RX descriptor; later versions (AR5416 and up) 3770 * include the 32 bit TSF value. 3771 */ 3772 static __inline u_int64_t 3773 ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf) 3774 { 3775 if (sc->sc_rxtsf32) 3776 return ath_extend_tsf32(rstamp, tsf); 3777 else 3778 return ath_extend_tsf15(rstamp, tsf); 3779 } 3780 3781 /* 3782 * Intercept management frames to collect beacon rssi data 3783 * and to do ibss merges. 3784 */ 3785 static void 3786 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 3787 int subtype, int rssi, int nf) 3788 { 3789 struct ieee80211vap *vap = ni->ni_vap; 3790 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 3791 3792 /* 3793 * Call up first so subsequent work can use information 3794 * potentially stored in the node (e.g. for ibss merge). 3795 */ 3796 ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf); 3797 switch (subtype) { 3798 case IEEE80211_FC0_SUBTYPE_BEACON: 3799 /* update rssi statistics for use by the hal */ 3800 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 3801 if (sc->sc_syncbeacon && 3802 ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) { 3803 /* 3804 * Resync beacon timers using the tsf of the beacon 3805 * frame we just received. 3806 */ 3807 ath_beacon_config(sc, vap); 3808 } 3809 /* fall thru... */ 3810 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 3811 if (vap->iv_opmode == IEEE80211_M_IBSS && 3812 vap->iv_state == IEEE80211_S_RUN) { 3813 uint32_t rstamp = sc->sc_lastrs->rs_tstamp; 3814 uint64_t tsf = ath_extend_tsf(sc, rstamp, 3815 ath_hal_gettsf64(sc->sc_ah)); 3816 /* 3817 * Handle ibss merge as needed; check the tsf on the 3818 * frame before attempting the merge. The 802.11 spec 3819 * says the station should change it's bssid to match 3820 * the oldest station with the same ssid, where oldest 3821 * is determined by the tsf. Note that hardware 3822 * reconfiguration happens through callback to 3823 * ath_newstate as the state machine will go from 3824 * RUN -> RUN when this happens. 3825 */ 3826 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 3827 DPRINTF(sc, ATH_DEBUG_STATE, 3828 "ibss merge, rstamp %u tsf %ju " 3829 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 3830 (uintmax_t)ni->ni_tstamp.tsf); 3831 (void) ieee80211_ibss_merge(ni); 3832 } 3833 } 3834 break; 3835 } 3836 } 3837 3838 /* 3839 * Set the default antenna. 3840 */ 3841 static void 3842 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3843 { 3844 struct ath_hal *ah = sc->sc_ah; 3845 3846 /* XXX block beacon interrupts */ 3847 ath_hal_setdefantenna(ah, antenna); 3848 if (sc->sc_defant != antenna) 3849 sc->sc_stats.ast_ant_defswitch++; 3850 sc->sc_defant = antenna; 3851 sc->sc_rxotherant = 0; 3852 } 3853 3854 static void 3855 ath_rx_tap(struct ifnet *ifp, struct mbuf *m, 3856 const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf) 3857 { 3858 #define CHAN_HT20 htole32(IEEE80211_CHAN_HT20) 3859 #define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U) 3860 #define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D) 3861 #define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D) 3862 struct ath_softc *sc = ifp->if_softc; 3863 const HAL_RATE_TABLE *rt; 3864 uint8_t rix; 3865 3866 rt = sc->sc_currates; 3867 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3868 rix = rt->rateCodeToIndex[rs->rs_rate]; 3869 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 3870 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 3871 #ifdef AH_SUPPORT_AR5416 3872 sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT; 3873 if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */ 3874 struct ieee80211com *ic = ifp->if_l2com; 3875 3876 if ((rs->rs_flags & HAL_RX_2040) == 0) 3877 sc->sc_rx_th.wr_chan_flags |= CHAN_HT20; 3878 else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan)) 3879 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U; 3880 else 3881 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D; 3882 if ((rs->rs_flags & HAL_RX_GI) == 0) 3883 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; 3884 } 3885 #endif 3886 sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf)); 3887 if (rs->rs_status & HAL_RXERR_CRC) 3888 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 3889 /* XXX propagate other error flags from descriptor */ 3890 sc->sc_rx_th.wr_antnoise = nf; 3891 sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi; 3892 sc->sc_rx_th.wr_antenna = rs->rs_antenna; 3893 #undef CHAN_HT 3894 #undef CHAN_HT20 3895 #undef CHAN_HT40U 3896 #undef CHAN_HT40D 3897 } 3898 3899 static void 3900 ath_handle_micerror(struct ieee80211com *ic, 3901 struct ieee80211_frame *wh, int keyix) 3902 { 3903 struct ieee80211_node *ni; 3904 3905 /* XXX recheck MIC to deal w/ chips that lie */ 3906 /* XXX discard MIC errors on !data frames */ 3907 ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh); 3908 if (ni != NULL) { 3909 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix); 3910 ieee80211_free_node(ni); 3911 } 3912 } 3913 3914 /* 3915 * Only run the RX proc if it's not already running. 3916 * Since this may get run as part of the reset/flush path, 3917 * the task can't clash with an existing, running tasklet. 3918 */ 3919 static void 3920 ath_rx_tasklet(void *arg, int npending) 3921 { 3922 struct ath_softc *sc = arg; 3923 3924 CTR1(ATH_KTR_INTR, "ath_rx_proc: pending=%d", npending); 3925 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 3926 ATH_PCU_LOCK(sc); 3927 if (sc->sc_inreset_cnt > 0) { 3928 device_printf(sc->sc_dev, 3929 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 3930 ATH_PCU_UNLOCK(sc); 3931 return; 3932 } 3933 ATH_PCU_UNLOCK(sc); 3934 ath_rx_proc(sc, 1); 3935 } 3936 3937 static void 3938 ath_rx_proc(struct ath_softc *sc, int resched) 3939 { 3940 #define PA2DESC(_sc, _pa) \ 3941 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 3942 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 3943 struct ath_buf *bf; 3944 struct ifnet *ifp = sc->sc_ifp; 3945 struct ieee80211com *ic = ifp->if_l2com; 3946 struct ath_hal *ah = sc->sc_ah; 3947 struct ath_desc *ds; 3948 struct ath_rx_status *rs; 3949 struct mbuf *m; 3950 struct ieee80211_node *ni; 3951 int len, type, ngood; 3952 HAL_STATUS status; 3953 int16_t nf; 3954 u_int64_t tsf; 3955 int npkts = 0; 3956 3957 /* XXX we must not hold the ATH_LOCK here */ 3958 ATH_UNLOCK_ASSERT(sc); 3959 ATH_PCU_UNLOCK_ASSERT(sc); 3960 3961 ATH_PCU_LOCK(sc); 3962 sc->sc_rxproc_cnt++; 3963 ATH_PCU_UNLOCK(sc); 3964 3965 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__); 3966 ngood = 0; 3967 nf = ath_hal_getchannoise(ah, sc->sc_curchan); 3968 sc->sc_stats.ast_rx_noise = nf; 3969 tsf = ath_hal_gettsf64(ah); 3970 do { 3971 bf = TAILQ_FIRST(&sc->sc_rxbuf); 3972 if (sc->sc_rxslink && bf == NULL) { /* NB: shouldn't happen */ 3973 if_printf(ifp, "%s: no buffer!\n", __func__); 3974 break; 3975 } else if (bf == NULL) { 3976 /* 3977 * End of List: 3978 * this can happen for non-self-linked RX chains 3979 */ 3980 sc->sc_stats.ast_rx_hitqueueend++; 3981 break; 3982 } 3983 m = bf->bf_m; 3984 if (m == NULL) { /* NB: shouldn't happen */ 3985 /* 3986 * If mbuf allocation failed previously there 3987 * will be no mbuf; try again to re-populate it. 3988 */ 3989 /* XXX make debug msg */ 3990 if_printf(ifp, "%s: no mbuf!\n", __func__); 3991 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 3992 goto rx_next; 3993 } 3994 ds = bf->bf_desc; 3995 if (ds->ds_link == bf->bf_daddr) { 3996 /* NB: never process the self-linked entry at the end */ 3997 sc->sc_stats.ast_rx_hitqueueend++; 3998 break; 3999 } 4000 /* XXX sync descriptor memory */ 4001 /* 4002 * Must provide the virtual address of the current 4003 * descriptor, the physical address, and the virtual 4004 * address of the next descriptor in the h/w chain. 4005 * This allows the HAL to look ahead to see if the 4006 * hardware is done with a descriptor by checking the 4007 * done bit in the following descriptor and the address 4008 * of the current descriptor the DMA engine is working 4009 * on. All this is necessary because of our use of 4010 * a self-linked list to avoid rx overruns. 4011 */ 4012 rs = &bf->bf_status.ds_rxstat; 4013 status = ath_hal_rxprocdesc(ah, ds, 4014 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 4015 #ifdef ATH_DEBUG 4016 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 4017 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 4018 #endif 4019 if (status == HAL_EINPROGRESS) 4020 break; 4021 4022 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 4023 npkts++; 4024 4025 /* These aren't specifically errors */ 4026 #ifdef AH_SUPPORT_AR5416 4027 if (rs->rs_flags & HAL_RX_GI) 4028 sc->sc_stats.ast_rx_halfgi++; 4029 if (rs->rs_flags & HAL_RX_2040) 4030 sc->sc_stats.ast_rx_2040++; 4031 if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE) 4032 sc->sc_stats.ast_rx_pre_crc_err++; 4033 if (rs->rs_flags & HAL_RX_DELIM_CRC_POST) 4034 sc->sc_stats.ast_rx_post_crc_err++; 4035 if (rs->rs_flags & HAL_RX_DECRYPT_BUSY) 4036 sc->sc_stats.ast_rx_decrypt_busy_err++; 4037 if (rs->rs_flags & HAL_RX_HI_RX_CHAIN) 4038 sc->sc_stats.ast_rx_hi_rx_chain++; 4039 #endif /* AH_SUPPORT_AR5416 */ 4040 4041 if (rs->rs_status != 0) { 4042 if (rs->rs_status & HAL_RXERR_CRC) 4043 sc->sc_stats.ast_rx_crcerr++; 4044 if (rs->rs_status & HAL_RXERR_FIFO) 4045 sc->sc_stats.ast_rx_fifoerr++; 4046 if (rs->rs_status & HAL_RXERR_PHY) { 4047 sc->sc_stats.ast_rx_phyerr++; 4048 /* Process DFS radar events */ 4049 if ((rs->rs_phyerr == HAL_PHYERR_RADAR) || 4050 (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) { 4051 /* Since we're touching the frame data, sync it */ 4052 bus_dmamap_sync(sc->sc_dmat, 4053 bf->bf_dmamap, 4054 BUS_DMASYNC_POSTREAD); 4055 /* Now pass it to the radar processing code */ 4056 ath_dfs_process_phy_err(sc, mtod(m, char *), tsf, rs); 4057 } 4058 4059 /* Be suitably paranoid about receiving phy errors out of the stats array bounds */ 4060 if (rs->rs_phyerr < 64) 4061 sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++; 4062 goto rx_error; /* NB: don't count in ierrors */ 4063 } 4064 if (rs->rs_status & HAL_RXERR_DECRYPT) { 4065 /* 4066 * Decrypt error. If the error occurred 4067 * because there was no hardware key, then 4068 * let the frame through so the upper layers 4069 * can process it. This is necessary for 5210 4070 * parts which have no way to setup a ``clear'' 4071 * key cache entry. 4072 * 4073 * XXX do key cache faulting 4074 */ 4075 if (rs->rs_keyix == HAL_RXKEYIX_INVALID) 4076 goto rx_accept; 4077 sc->sc_stats.ast_rx_badcrypt++; 4078 } 4079 if (rs->rs_status & HAL_RXERR_MIC) { 4080 sc->sc_stats.ast_rx_badmic++; 4081 /* 4082 * Do minimal work required to hand off 4083 * the 802.11 header for notification. 4084 */ 4085 /* XXX frag's and qos frames */ 4086 len = rs->rs_datalen; 4087 if (len >= sizeof (struct ieee80211_frame)) { 4088 bus_dmamap_sync(sc->sc_dmat, 4089 bf->bf_dmamap, 4090 BUS_DMASYNC_POSTREAD); 4091 ath_handle_micerror(ic, 4092 mtod(m, struct ieee80211_frame *), 4093 sc->sc_splitmic ? 4094 rs->rs_keyix-32 : rs->rs_keyix); 4095 } 4096 } 4097 ifp->if_ierrors++; 4098 rx_error: 4099 /* 4100 * Cleanup any pending partial frame. 4101 */ 4102 if (sc->sc_rxpending != NULL) { 4103 m_freem(sc->sc_rxpending); 4104 sc->sc_rxpending = NULL; 4105 } 4106 /* 4107 * When a tap is present pass error frames 4108 * that have been requested. By default we 4109 * pass decrypt+mic errors but others may be 4110 * interesting (e.g. crc). 4111 */ 4112 if (ieee80211_radiotap_active(ic) && 4113 (rs->rs_status & sc->sc_monpass)) { 4114 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4115 BUS_DMASYNC_POSTREAD); 4116 /* NB: bpf needs the mbuf length setup */ 4117 len = rs->rs_datalen; 4118 m->m_pkthdr.len = m->m_len = len; 4119 bf->bf_m = NULL; 4120 ath_rx_tap(ifp, m, rs, tsf, nf); 4121 ieee80211_radiotap_rx_all(ic, m); 4122 m_freem(m); 4123 } 4124 /* XXX pass MIC errors up for s/w reclaculation */ 4125 goto rx_next; 4126 } 4127 rx_accept: 4128 /* 4129 * Sync and unmap the frame. At this point we're 4130 * committed to passing the mbuf somewhere so clear 4131 * bf_m; this means a new mbuf must be allocated 4132 * when the rx descriptor is setup again to receive 4133 * another frame. 4134 */ 4135 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4136 BUS_DMASYNC_POSTREAD); 4137 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4138 bf->bf_m = NULL; 4139 4140 len = rs->rs_datalen; 4141 m->m_len = len; 4142 4143 if (rs->rs_more) { 4144 /* 4145 * Frame spans multiple descriptors; save 4146 * it for the next completed descriptor, it 4147 * will be used to construct a jumbogram. 4148 */ 4149 if (sc->sc_rxpending != NULL) { 4150 /* NB: max frame size is currently 2 clusters */ 4151 sc->sc_stats.ast_rx_toobig++; 4152 m_freem(sc->sc_rxpending); 4153 } 4154 m->m_pkthdr.rcvif = ifp; 4155 m->m_pkthdr.len = len; 4156 sc->sc_rxpending = m; 4157 goto rx_next; 4158 } else if (sc->sc_rxpending != NULL) { 4159 /* 4160 * This is the second part of a jumbogram, 4161 * chain it to the first mbuf, adjust the 4162 * frame length, and clear the rxpending state. 4163 */ 4164 sc->sc_rxpending->m_next = m; 4165 sc->sc_rxpending->m_pkthdr.len += len; 4166 m = sc->sc_rxpending; 4167 sc->sc_rxpending = NULL; 4168 } else { 4169 /* 4170 * Normal single-descriptor receive; setup 4171 * the rcvif and packet length. 4172 */ 4173 m->m_pkthdr.rcvif = ifp; 4174 m->m_pkthdr.len = len; 4175 } 4176 4177 /* 4178 * Validate rs->rs_antenna. 4179 * 4180 * Some users w/ AR9285 NICs have reported crashes 4181 * here because rs_antenna field is bogusly large. 4182 * Let's enforce the maximum antenna limit of 8 4183 * (and it shouldn't be hard coded, but that's a 4184 * separate problem) and if there's an issue, print 4185 * out an error and adjust rs_antenna to something 4186 * sensible. 4187 * 4188 * This code should be removed once the actual 4189 * root cause of the issue has been identified. 4190 * For example, it may be that the rs_antenna 4191 * field is only valid for the lsat frame of 4192 * an aggregate and it just happens that it is 4193 * "mostly" right. (This is a general statement - 4194 * the majority of the statistics are only valid 4195 * for the last frame in an aggregate. 4196 */ 4197 if (rs->rs_antenna > 7) { 4198 device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n", 4199 __func__, rs->rs_antenna); 4200 #ifdef ATH_DEBUG 4201 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 4202 #endif /* ATH_DEBUG */ 4203 rs->rs_antenna = 0; /* XXX better than nothing */ 4204 } 4205 4206 ifp->if_ipackets++; 4207 sc->sc_stats.ast_ant_rx[rs->rs_antenna]++; 4208 4209 /* 4210 * Populate the rx status block. When there are bpf 4211 * listeners we do the additional work to provide 4212 * complete status. Otherwise we fill in only the 4213 * material required by ieee80211_input. Note that 4214 * noise setting is filled in above. 4215 */ 4216 if (ieee80211_radiotap_active(ic)) 4217 ath_rx_tap(ifp, m, rs, tsf, nf); 4218 4219 /* 4220 * From this point on we assume the frame is at least 4221 * as large as ieee80211_frame_min; verify that. 4222 */ 4223 if (len < IEEE80211_MIN_LEN) { 4224 if (!ieee80211_radiotap_active(ic)) { 4225 DPRINTF(sc, ATH_DEBUG_RECV, 4226 "%s: short packet %d\n", __func__, len); 4227 sc->sc_stats.ast_rx_tooshort++; 4228 } else { 4229 /* NB: in particular this captures ack's */ 4230 ieee80211_radiotap_rx_all(ic, m); 4231 } 4232 m_freem(m); 4233 goto rx_next; 4234 } 4235 4236 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 4237 const HAL_RATE_TABLE *rt = sc->sc_currates; 4238 uint8_t rix = rt->rateCodeToIndex[rs->rs_rate]; 4239 4240 ieee80211_dump_pkt(ic, mtod(m, caddr_t), len, 4241 sc->sc_hwmap[rix].ieeerate, rs->rs_rssi); 4242 } 4243 4244 m_adj(m, -IEEE80211_CRC_LEN); 4245 4246 /* 4247 * Locate the node for sender, track state, and then 4248 * pass the (referenced) node up to the 802.11 layer 4249 * for its use. 4250 */ 4251 ni = ieee80211_find_rxnode_withkey(ic, 4252 mtod(m, const struct ieee80211_frame_min *), 4253 rs->rs_keyix == HAL_RXKEYIX_INVALID ? 4254 IEEE80211_KEYIX_NONE : rs->rs_keyix); 4255 sc->sc_lastrs = rs; 4256 4257 #ifdef AH_SUPPORT_AR5416 4258 if (rs->rs_isaggr) 4259 sc->sc_stats.ast_rx_agg++; 4260 #endif /* AH_SUPPORT_AR5416 */ 4261 4262 if (ni != NULL) { 4263 /* 4264 * Only punt packets for ampdu reorder processing for 4265 * 11n nodes; net80211 enforces that M_AMPDU is only 4266 * set for 11n nodes. 4267 */ 4268 if (ni->ni_flags & IEEE80211_NODE_HT) 4269 m->m_flags |= M_AMPDU; 4270 4271 /* 4272 * Sending station is known, dispatch directly. 4273 */ 4274 type = ieee80211_input(ni, m, rs->rs_rssi, nf); 4275 ieee80211_free_node(ni); 4276 /* 4277 * Arrange to update the last rx timestamp only for 4278 * frames from our ap when operating in station mode. 4279 * This assumes the rx key is always setup when 4280 * associated. 4281 */ 4282 if (ic->ic_opmode == IEEE80211_M_STA && 4283 rs->rs_keyix != HAL_RXKEYIX_INVALID) 4284 ngood++; 4285 } else { 4286 type = ieee80211_input_all(ic, m, rs->rs_rssi, nf); 4287 } 4288 /* 4289 * Track rx rssi and do any rx antenna management. 4290 */ 4291 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi); 4292 if (sc->sc_diversity) { 4293 /* 4294 * When using fast diversity, change the default rx 4295 * antenna if diversity chooses the other antenna 3 4296 * times in a row. 4297 */ 4298 if (sc->sc_defant != rs->rs_antenna) { 4299 if (++sc->sc_rxotherant >= 3) 4300 ath_setdefantenna(sc, rs->rs_antenna); 4301 } else 4302 sc->sc_rxotherant = 0; 4303 } 4304 4305 /* Newer school diversity - kite specific for now */ 4306 /* XXX perhaps migrate the normal diversity code to this? */ 4307 if ((ah)->ah_rxAntCombDiversity) 4308 (*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz); 4309 4310 if (sc->sc_softled) { 4311 /* 4312 * Blink for any data frame. Otherwise do a 4313 * heartbeat-style blink when idle. The latter 4314 * is mainly for station mode where we depend on 4315 * periodic beacon frames to trigger the poll event. 4316 */ 4317 if (type == IEEE80211_FC0_TYPE_DATA) { 4318 const HAL_RATE_TABLE *rt = sc->sc_currates; 4319 ath_led_event(sc, 4320 rt->rateCodeToIndex[rs->rs_rate]); 4321 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 4322 ath_led_event(sc, 0); 4323 } 4324 rx_next: 4325 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 4326 } while (ath_rxbuf_init(sc, bf) == 0); 4327 4328 /* rx signal state monitoring */ 4329 ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan); 4330 if (ngood) 4331 sc->sc_lastrx = tsf; 4332 4333 CTR2(ATH_KTR_INTR, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood); 4334 /* Queue DFS tasklet if needed */ 4335 if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan)) 4336 taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask); 4337 4338 /* 4339 * Now that all the RX frames were handled that 4340 * need to be handled, kick the PCU if there's 4341 * been an RXEOL condition. 4342 */ 4343 ATH_PCU_LOCK(sc); 4344 if (resched && sc->sc_kickpcu) { 4345 CTR0(ATH_KTR_ERR, "ath_rx_proc: kickpcu"); 4346 device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n", 4347 __func__, npkts); 4348 4349 /* XXX rxslink? */ 4350 /* 4351 * XXX can we hold the PCU lock here? 4352 * Are there any net80211 buffer calls involved? 4353 */ 4354 bf = TAILQ_FIRST(&sc->sc_rxbuf); 4355 ath_hal_putrxbuf(ah, bf->bf_daddr); 4356 ath_hal_rxena(ah); /* enable recv descriptors */ 4357 ath_mode_init(sc); /* set filters, etc. */ 4358 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4359 4360 ath_hal_intrset(ah, sc->sc_imask); 4361 sc->sc_kickpcu = 0; 4362 } 4363 ATH_PCU_UNLOCK(sc); 4364 4365 /* XXX check this inside of IF_LOCK? */ 4366 if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) { 4367 #ifdef IEEE80211_SUPPORT_SUPERG 4368 ieee80211_ff_age_all(ic, 100); 4369 #endif 4370 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 4371 ath_start(ifp); 4372 } 4373 #undef PA2DESC 4374 4375 ATH_PCU_LOCK(sc); 4376 sc->sc_rxproc_cnt--; 4377 ATH_PCU_UNLOCK(sc); 4378 } 4379 4380 static void 4381 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4382 { 4383 txq->axq_qnum = qnum; 4384 txq->axq_ac = 0; 4385 txq->axq_depth = 0; 4386 txq->axq_aggr_depth = 0; 4387 txq->axq_intrcnt = 0; 4388 txq->axq_link = NULL; 4389 txq->axq_softc = sc; 4390 TAILQ_INIT(&txq->axq_q); 4391 TAILQ_INIT(&txq->axq_tidq); 4392 ATH_TXQ_LOCK_INIT(sc, txq); 4393 } 4394 4395 /* 4396 * Setup a h/w transmit queue. 4397 */ 4398 static struct ath_txq * 4399 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4400 { 4401 #define N(a) (sizeof(a)/sizeof(a[0])) 4402 struct ath_hal *ah = sc->sc_ah; 4403 HAL_TXQ_INFO qi; 4404 int qnum; 4405 4406 memset(&qi, 0, sizeof(qi)); 4407 qi.tqi_subtype = subtype; 4408 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4409 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4410 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4411 /* 4412 * Enable interrupts only for EOL and DESC conditions. 4413 * We mark tx descriptors to receive a DESC interrupt 4414 * when a tx queue gets deep; otherwise waiting for the 4415 * EOL to reap descriptors. Note that this is done to 4416 * reduce interrupt load and this only defers reaping 4417 * descriptors, never transmitting frames. Aside from 4418 * reducing interrupts this also permits more concurrency. 4419 * The only potential downside is if the tx queue backs 4420 * up in which case the top half of the kernel may backup 4421 * due to a lack of tx descriptors. 4422 */ 4423 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 4424 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4425 if (qnum == -1) { 4426 /* 4427 * NB: don't print a message, this happens 4428 * normally on parts with too few tx queues 4429 */ 4430 return NULL; 4431 } 4432 if (qnum >= N(sc->sc_txq)) { 4433 device_printf(sc->sc_dev, 4434 "hal qnum %u out of range, max %zu!\n", 4435 qnum, N(sc->sc_txq)); 4436 ath_hal_releasetxqueue(ah, qnum); 4437 return NULL; 4438 } 4439 if (!ATH_TXQ_SETUP(sc, qnum)) { 4440 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4441 sc->sc_txqsetup |= 1<<qnum; 4442 } 4443 return &sc->sc_txq[qnum]; 4444 #undef N 4445 } 4446 4447 /* 4448 * Setup a hardware data transmit queue for the specified 4449 * access control. The hal may not support all requested 4450 * queues in which case it will return a reference to a 4451 * previously setup queue. We record the mapping from ac's 4452 * to h/w queues for use by ath_tx_start and also track 4453 * the set of h/w queues being used to optimize work in the 4454 * transmit interrupt handler and related routines. 4455 */ 4456 static int 4457 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4458 { 4459 #define N(a) (sizeof(a)/sizeof(a[0])) 4460 struct ath_txq *txq; 4461 4462 if (ac >= N(sc->sc_ac2q)) { 4463 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4464 ac, N(sc->sc_ac2q)); 4465 return 0; 4466 } 4467 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4468 if (txq != NULL) { 4469 txq->axq_ac = ac; 4470 sc->sc_ac2q[ac] = txq; 4471 return 1; 4472 } else 4473 return 0; 4474 #undef N 4475 } 4476 4477 /* 4478 * Update WME parameters for a transmit queue. 4479 */ 4480 static int 4481 ath_txq_update(struct ath_softc *sc, int ac) 4482 { 4483 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4484 #define ATH_TXOP_TO_US(v) (v<<5) 4485 struct ifnet *ifp = sc->sc_ifp; 4486 struct ieee80211com *ic = ifp->if_l2com; 4487 struct ath_txq *txq = sc->sc_ac2q[ac]; 4488 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4489 struct ath_hal *ah = sc->sc_ah; 4490 HAL_TXQ_INFO qi; 4491 4492 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4493 #ifdef IEEE80211_SUPPORT_TDMA 4494 if (sc->sc_tdma) { 4495 /* 4496 * AIFS is zero so there's no pre-transmit wait. The 4497 * burst time defines the slot duration and is configured 4498 * through net80211. The QCU is setup to not do post-xmit 4499 * back off, lockout all lower-priority QCU's, and fire 4500 * off the DMA beacon alert timer which is setup based 4501 * on the slot configuration. 4502 */ 4503 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4504 | HAL_TXQ_TXERRINT_ENABLE 4505 | HAL_TXQ_TXURNINT_ENABLE 4506 | HAL_TXQ_TXEOLINT_ENABLE 4507 | HAL_TXQ_DBA_GATED 4508 | HAL_TXQ_BACKOFF_DISABLE 4509 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4510 ; 4511 qi.tqi_aifs = 0; 4512 /* XXX +dbaprep? */ 4513 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4514 qi.tqi_burstTime = qi.tqi_readyTime; 4515 } else { 4516 #endif 4517 /* 4518 * XXX shouldn't this just use the default flags 4519 * used in the previous queue setup? 4520 */ 4521 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4522 | HAL_TXQ_TXERRINT_ENABLE 4523 | HAL_TXQ_TXDESCINT_ENABLE 4524 | HAL_TXQ_TXURNINT_ENABLE 4525 | HAL_TXQ_TXEOLINT_ENABLE 4526 ; 4527 qi.tqi_aifs = wmep->wmep_aifsn; 4528 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4529 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4530 qi.tqi_readyTime = 0; 4531 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 4532 #ifdef IEEE80211_SUPPORT_TDMA 4533 } 4534 #endif 4535 4536 DPRINTF(sc, ATH_DEBUG_RESET, 4537 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4538 __func__, txq->axq_qnum, qi.tqi_qflags, 4539 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4540 4541 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4542 if_printf(ifp, "unable to update hardware queue " 4543 "parameters for %s traffic!\n", 4544 ieee80211_wme_acnames[ac]); 4545 return 0; 4546 } else { 4547 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4548 return 1; 4549 } 4550 #undef ATH_TXOP_TO_US 4551 #undef ATH_EXPONENT_TO_VALUE 4552 } 4553 4554 /* 4555 * Callback from the 802.11 layer to update WME parameters. 4556 */ 4557 static int 4558 ath_wme_update(struct ieee80211com *ic) 4559 { 4560 struct ath_softc *sc = ic->ic_ifp->if_softc; 4561 4562 return !ath_txq_update(sc, WME_AC_BE) || 4563 !ath_txq_update(sc, WME_AC_BK) || 4564 !ath_txq_update(sc, WME_AC_VI) || 4565 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4566 } 4567 4568 /* 4569 * Reclaim resources for a setup queue. 4570 */ 4571 static void 4572 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4573 { 4574 4575 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4576 ATH_TXQ_LOCK_DESTROY(txq); 4577 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4578 } 4579 4580 /* 4581 * Reclaim all tx queue resources. 4582 */ 4583 static void 4584 ath_tx_cleanup(struct ath_softc *sc) 4585 { 4586 int i; 4587 4588 ATH_TXBUF_LOCK_DESTROY(sc); 4589 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4590 if (ATH_TXQ_SETUP(sc, i)) 4591 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4592 } 4593 4594 /* 4595 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4596 * using the current rates in sc_rixmap. 4597 */ 4598 int 4599 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4600 { 4601 int rix = sc->sc_rixmap[rate]; 4602 /* NB: return lowest rix for invalid rate */ 4603 return (rix == 0xff ? 0 : rix); 4604 } 4605 4606 static void 4607 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4608 struct ath_buf *bf) 4609 { 4610 struct ieee80211_node *ni = bf->bf_node; 4611 struct ifnet *ifp = sc->sc_ifp; 4612 struct ieee80211com *ic = ifp->if_l2com; 4613 int sr, lr, pri; 4614 4615 if (ts->ts_status == 0) { 4616 u_int8_t txant = ts->ts_antenna; 4617 sc->sc_stats.ast_ant_tx[txant]++; 4618 sc->sc_ant_tx[txant]++; 4619 if (ts->ts_finaltsi != 0) 4620 sc->sc_stats.ast_tx_altrate++; 4621 pri = M_WME_GETAC(bf->bf_m); 4622 if (pri >= WME_AC_VO) 4623 ic->ic_wme.wme_hipri_traffic++; 4624 if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) 4625 ni->ni_inact = ni->ni_inact_reload; 4626 } else { 4627 if (ts->ts_status & HAL_TXERR_XRETRY) 4628 sc->sc_stats.ast_tx_xretries++; 4629 if (ts->ts_status & HAL_TXERR_FIFO) 4630 sc->sc_stats.ast_tx_fifoerr++; 4631 if (ts->ts_status & HAL_TXERR_FILT) 4632 sc->sc_stats.ast_tx_filtered++; 4633 if (ts->ts_status & HAL_TXERR_XTXOP) 4634 sc->sc_stats.ast_tx_xtxop++; 4635 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4636 sc->sc_stats.ast_tx_timerexpired++; 4637 4638 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 4639 sc->sc_stats.ast_tx_data_underrun++; 4640 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 4641 sc->sc_stats.ast_tx_delim_underrun++; 4642 4643 if (bf->bf_m->m_flags & M_FF) 4644 sc->sc_stats.ast_ff_txerr++; 4645 } 4646 /* XXX when is this valid? */ 4647 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 4648 sc->sc_stats.ast_tx_desccfgerr++; 4649 4650 sr = ts->ts_shortretry; 4651 lr = ts->ts_longretry; 4652 sc->sc_stats.ast_tx_shortretry += sr; 4653 sc->sc_stats.ast_tx_longretry += lr; 4654 4655 } 4656 4657 /* 4658 * The default completion. If fail is 1, this means 4659 * "please don't retry the frame, and just return -1 status 4660 * to the net80211 stack. 4661 */ 4662 void 4663 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4664 { 4665 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4666 int st; 4667 4668 if (fail == 1) 4669 st = -1; 4670 else 4671 st = ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) ? 4672 ts->ts_status : HAL_TXERR_XRETRY; 4673 4674 if (bf->bf_state.bfs_dobaw) 4675 device_printf(sc->sc_dev, 4676 "%s: dobaw should've been cleared!\n", __func__); 4677 if (bf->bf_next != NULL) 4678 device_printf(sc->sc_dev, 4679 "%s: bf_next not NULL!\n", __func__); 4680 4681 /* 4682 * Do any tx complete callback. Note this must 4683 * be done before releasing the node reference. 4684 * This will free the mbuf, release the net80211 4685 * node and recycle the ath_buf. 4686 */ 4687 ath_tx_freebuf(sc, bf, st); 4688 } 4689 4690 /* 4691 * Update rate control with the given completion status. 4692 */ 4693 void 4694 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4695 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4696 int nframes, int nbad) 4697 { 4698 struct ath_node *an; 4699 4700 /* Only for unicast frames */ 4701 if (ni == NULL) 4702 return; 4703 4704 an = ATH_NODE(ni); 4705 4706 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4707 ATH_NODE_LOCK(an); 4708 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4709 ATH_NODE_UNLOCK(an); 4710 } 4711 } 4712 4713 /* 4714 * Update the busy status of the last frame on the free list. 4715 * When doing TDMA, the busy flag tracks whether the hardware 4716 * currently points to this buffer or not, and thus gated DMA 4717 * may restart by re-reading the last descriptor in this 4718 * buffer. 4719 * 4720 * This should be called in the completion function once one 4721 * of the buffers has been used. 4722 */ 4723 static void 4724 ath_tx_update_busy(struct ath_softc *sc) 4725 { 4726 struct ath_buf *last; 4727 4728 /* 4729 * Since the last frame may still be marked 4730 * as ATH_BUF_BUSY, unmark it here before 4731 * finishing the frame processing. 4732 * Since we've completed a frame (aggregate 4733 * or otherwise), the hardware has moved on 4734 * and is no longer referencing the previous 4735 * descriptor. 4736 */ 4737 ATH_TXBUF_LOCK_ASSERT(sc); 4738 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4739 if (last != NULL) 4740 last->bf_flags &= ~ATH_BUF_BUSY; 4741 } 4742 4743 4744 /* 4745 * Process completed xmit descriptors from the specified queue. 4746 * Kick the packet scheduler if needed. This can occur from this 4747 * particular task. 4748 */ 4749 static int 4750 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4751 { 4752 struct ath_hal *ah = sc->sc_ah; 4753 struct ath_buf *bf; 4754 struct ath_desc *ds; 4755 struct ath_tx_status *ts; 4756 struct ieee80211_node *ni; 4757 struct ath_node *an; 4758 int nacked; 4759 HAL_STATUS status; 4760 4761 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4762 __func__, txq->axq_qnum, 4763 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4764 txq->axq_link); 4765 nacked = 0; 4766 for (;;) { 4767 ATH_TXQ_LOCK(txq); 4768 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4769 bf = TAILQ_FIRST(&txq->axq_q); 4770 if (bf == NULL) { 4771 ATH_TXQ_UNLOCK(txq); 4772 break; 4773 } 4774 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4775 ts = &bf->bf_status.ds_txstat; 4776 status = ath_hal_txprocdesc(ah, ds, ts); 4777 #ifdef ATH_DEBUG 4778 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4779 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4780 status == HAL_OK); 4781 #endif 4782 if (status == HAL_EINPROGRESS) { 4783 ATH_TXQ_UNLOCK(txq); 4784 break; 4785 } 4786 ATH_TXQ_REMOVE(txq, bf, bf_list); 4787 #ifdef IEEE80211_SUPPORT_TDMA 4788 if (txq->axq_depth > 0) { 4789 /* 4790 * More frames follow. Mark the buffer busy 4791 * so it's not re-used while the hardware may 4792 * still re-read the link field in the descriptor. 4793 * 4794 * Use the last buffer in an aggregate as that 4795 * is where the hardware may be - intermediate 4796 * descriptors won't be "busy". 4797 */ 4798 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4799 } else 4800 #else 4801 if (txq->axq_depth == 0) 4802 #endif 4803 txq->axq_link = NULL; 4804 if (bf->bf_state.bfs_aggr) 4805 txq->axq_aggr_depth--; 4806 4807 ni = bf->bf_node; 4808 /* 4809 * If unicast frame was ack'd update RSSI, 4810 * including the last rx time used to 4811 * workaround phantom bmiss interrupts. 4812 */ 4813 if (ni != NULL && ts->ts_status == 0 && 4814 ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)) { 4815 nacked++; 4816 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4817 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4818 ts->ts_rssi); 4819 } 4820 ATH_TXQ_UNLOCK(txq); 4821 4822 /* If unicast frame, update general statistics */ 4823 if (ni != NULL) { 4824 an = ATH_NODE(ni); 4825 /* update statistics */ 4826 ath_tx_update_stats(sc, ts, bf); 4827 } 4828 4829 /* 4830 * Call the completion handler. 4831 * The completion handler is responsible for 4832 * calling the rate control code. 4833 * 4834 * Frames with no completion handler get the 4835 * rate control code called here. 4836 */ 4837 if (bf->bf_comp == NULL) { 4838 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4839 (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) { 4840 /* 4841 * XXX assume this isn't an aggregate 4842 * frame. 4843 */ 4844 ath_tx_update_ratectrl(sc, ni, 4845 bf->bf_state.bfs_rc, ts, 4846 bf->bf_state.bfs_pktlen, 1, 4847 (ts->ts_status == 0 ? 0 : 1)); 4848 } 4849 ath_tx_default_comp(sc, bf, 0); 4850 } else 4851 bf->bf_comp(sc, bf, 0); 4852 } 4853 #ifdef IEEE80211_SUPPORT_SUPERG 4854 /* 4855 * Flush fast-frame staging queue when traffic slows. 4856 */ 4857 if (txq->axq_depth <= 1) 4858 ieee80211_ff_flush(ic, txq->axq_ac); 4859 #endif 4860 4861 /* Kick the TXQ scheduler */ 4862 if (dosched) { 4863 ATH_TXQ_LOCK(txq); 4864 ath_txq_sched(sc, txq); 4865 ATH_TXQ_UNLOCK(txq); 4866 } 4867 4868 return nacked; 4869 } 4870 4871 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4872 4873 /* 4874 * Deferred processing of transmit interrupt; special-cased 4875 * for a single hardware transmit queue (e.g. 5210 and 5211). 4876 */ 4877 static void 4878 ath_tx_proc_q0(void *arg, int npending) 4879 { 4880 struct ath_softc *sc = arg; 4881 struct ifnet *ifp = sc->sc_ifp; 4882 uint32_t txqs; 4883 4884 ATH_PCU_LOCK(sc); 4885 sc->sc_txproc_cnt++; 4886 txqs = sc->sc_txq_active; 4887 sc->sc_txq_active &= ~txqs; 4888 ATH_PCU_UNLOCK(sc); 4889 4890 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4891 /* XXX why is lastrx updated in tx code? */ 4892 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4893 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4894 ath_tx_processq(sc, sc->sc_cabq, 1); 4895 /* XXX check this inside of IF_LOCK? */ 4896 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4897 sc->sc_wd_timer = 0; 4898 4899 if (sc->sc_softled) 4900 ath_led_event(sc, sc->sc_txrix); 4901 4902 ATH_PCU_LOCK(sc); 4903 sc->sc_txproc_cnt--; 4904 ATH_PCU_UNLOCK(sc); 4905 4906 ath_start(ifp); 4907 } 4908 4909 /* 4910 * Deferred processing of transmit interrupt; special-cased 4911 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4912 */ 4913 static void 4914 ath_tx_proc_q0123(void *arg, int npending) 4915 { 4916 struct ath_softc *sc = arg; 4917 struct ifnet *ifp = sc->sc_ifp; 4918 int nacked; 4919 uint32_t txqs; 4920 4921 ATH_PCU_LOCK(sc); 4922 sc->sc_txproc_cnt++; 4923 txqs = sc->sc_txq_active; 4924 sc->sc_txq_active &= ~txqs; 4925 ATH_PCU_UNLOCK(sc); 4926 4927 /* 4928 * Process each active queue. 4929 */ 4930 nacked = 0; 4931 if (TXQACTIVE(txqs, 0)) 4932 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4933 if (TXQACTIVE(txqs, 1)) 4934 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4935 if (TXQACTIVE(txqs, 2)) 4936 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4937 if (TXQACTIVE(txqs, 3)) 4938 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4939 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4940 ath_tx_processq(sc, sc->sc_cabq, 1); 4941 if (nacked) 4942 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4943 4944 /* XXX check this inside of IF_LOCK? */ 4945 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4946 sc->sc_wd_timer = 0; 4947 4948 if (sc->sc_softled) 4949 ath_led_event(sc, sc->sc_txrix); 4950 4951 ATH_PCU_LOCK(sc); 4952 sc->sc_txproc_cnt--; 4953 ATH_PCU_UNLOCK(sc); 4954 4955 ath_start(ifp); 4956 } 4957 4958 /* 4959 * Deferred processing of transmit interrupt. 4960 */ 4961 static void 4962 ath_tx_proc(void *arg, int npending) 4963 { 4964 struct ath_softc *sc = arg; 4965 struct ifnet *ifp = sc->sc_ifp; 4966 int i, nacked; 4967 uint32_t txqs; 4968 4969 ATH_PCU_LOCK(sc); 4970 sc->sc_txproc_cnt++; 4971 txqs = sc->sc_txq_active; 4972 sc->sc_txq_active &= ~txqs; 4973 ATH_PCU_UNLOCK(sc); 4974 4975 /* 4976 * Process each active queue. 4977 */ 4978 nacked = 0; 4979 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4980 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4981 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4982 if (nacked) 4983 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4984 4985 /* XXX check this inside of IF_LOCK? */ 4986 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4987 sc->sc_wd_timer = 0; 4988 4989 if (sc->sc_softled) 4990 ath_led_event(sc, sc->sc_txrix); 4991 4992 ATH_PCU_LOCK(sc); 4993 sc->sc_txproc_cnt--; 4994 ATH_PCU_UNLOCK(sc); 4995 4996 ath_start(ifp); 4997 } 4998 #undef TXQACTIVE 4999 5000 /* 5001 * Return a buffer to the pool and update the 'busy' flag on the 5002 * previous 'tail' entry. 5003 * 5004 * This _must_ only be called when the buffer is involved in a completed 5005 * TX. The logic is that if it was part of an active TX, the previous 5006 * buffer on the list is now not involved in a halted TX DMA queue, waiting 5007 * for restart (eg for TDMA.) 5008 * 5009 * The caller must free the mbuf and recycle the node reference. 5010 */ 5011 void 5012 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 5013 { 5014 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 5015 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 5016 5017 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 5018 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 5019 5020 ATH_TXBUF_LOCK(sc); 5021 ath_tx_update_busy(sc); 5022 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 5023 ATH_TXBUF_UNLOCK(sc); 5024 } 5025 5026 /* 5027 * This is currently used by ath_tx_draintxq() and 5028 * ath_tx_tid_free_pkts(). 5029 * 5030 * It recycles a single ath_buf. 5031 */ 5032 void 5033 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 5034 { 5035 struct ieee80211_node *ni = bf->bf_node; 5036 struct mbuf *m0 = bf->bf_m; 5037 5038 bf->bf_node = NULL; 5039 bf->bf_m = NULL; 5040 5041 /* Free the buffer, it's not needed any longer */ 5042 ath_freebuf(sc, bf); 5043 5044 if (ni != NULL) { 5045 /* 5046 * Do any callback and reclaim the node reference. 5047 */ 5048 if (m0->m_flags & M_TXCB) 5049 ieee80211_process_callback(ni, m0, status); 5050 ieee80211_free_node(ni); 5051 } 5052 m_freem(m0); 5053 5054 /* 5055 * XXX the buffer used to be freed -after-, but the DMA map was 5056 * freed where ath_freebuf() now is. I've no idea what this 5057 * will do. 5058 */ 5059 } 5060 5061 void 5062 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5063 { 5064 #ifdef ATH_DEBUG 5065 struct ath_hal *ah = sc->sc_ah; 5066 #endif 5067 struct ath_buf *bf; 5068 u_int ix; 5069 5070 /* 5071 * NB: this assumes output has been stopped and 5072 * we do not need to block ath_tx_proc 5073 */ 5074 ATH_TXBUF_LOCK(sc); 5075 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 5076 if (bf != NULL) 5077 bf->bf_flags &= ~ATH_BUF_BUSY; 5078 ATH_TXBUF_UNLOCK(sc); 5079 5080 for (ix = 0;; ix++) { 5081 ATH_TXQ_LOCK(txq); 5082 bf = TAILQ_FIRST(&txq->axq_q); 5083 if (bf == NULL) { 5084 txq->axq_link = NULL; 5085 ATH_TXQ_UNLOCK(txq); 5086 break; 5087 } 5088 ATH_TXQ_REMOVE(txq, bf, bf_list); 5089 if (bf->bf_state.bfs_aggr) 5090 txq->axq_aggr_depth--; 5091 #ifdef ATH_DEBUG 5092 if (sc->sc_debug & ATH_DEBUG_RESET) { 5093 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5094 5095 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, 5096 ath_hal_txprocdesc(ah, bf->bf_lastds, 5097 &bf->bf_status.ds_txstat) == HAL_OK); 5098 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5099 bf->bf_m->m_len, 0, -1); 5100 } 5101 #endif /* ATH_DEBUG */ 5102 /* 5103 * Since we're now doing magic in the completion 5104 * functions, we -must- call it for aggregation 5105 * destinations or BAW tracking will get upset. 5106 */ 5107 /* 5108 * Clear ATH_BUF_BUSY; the completion handler 5109 * will free the buffer. 5110 */ 5111 ATH_TXQ_UNLOCK(txq); 5112 bf->bf_flags &= ~ATH_BUF_BUSY; 5113 if (bf->bf_comp) 5114 bf->bf_comp(sc, bf, 1); 5115 else 5116 ath_tx_default_comp(sc, bf, 1); 5117 } 5118 5119 /* 5120 * Drain software queued frames which are on 5121 * active TIDs. 5122 */ 5123 ath_tx_txq_drain(sc, txq); 5124 } 5125 5126 static void 5127 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5128 { 5129 struct ath_hal *ah = sc->sc_ah; 5130 5131 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5132 __func__, txq->axq_qnum, 5133 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5134 txq->axq_link); 5135 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5136 } 5137 5138 static int 5139 ath_stoptxdma(struct ath_softc *sc) 5140 { 5141 struct ath_hal *ah = sc->sc_ah; 5142 int i; 5143 5144 /* XXX return value */ 5145 if (sc->sc_invalid) 5146 return 0; 5147 5148 if (!sc->sc_invalid) { 5149 /* don't touch the hardware if marked invalid */ 5150 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5151 __func__, sc->sc_bhalq, 5152 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5153 NULL); 5154 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5155 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5156 if (ATH_TXQ_SETUP(sc, i)) 5157 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5158 } 5159 5160 return 1; 5161 } 5162 5163 /* 5164 * Drain the transmit queues and reclaim resources. 5165 */ 5166 static void 5167 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5168 { 5169 #ifdef ATH_DEBUG 5170 struct ath_hal *ah = sc->sc_ah; 5171 #endif 5172 struct ifnet *ifp = sc->sc_ifp; 5173 int i; 5174 5175 (void) ath_stoptxdma(sc); 5176 5177 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5178 /* 5179 * XXX TODO: should we just handle the completed TX frames 5180 * here, whether or not the reset is a full one or not? 5181 */ 5182 if (ATH_TXQ_SETUP(sc, i)) { 5183 if (reset_type == ATH_RESET_NOLOSS) 5184 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5185 else 5186 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5187 } 5188 } 5189 #ifdef ATH_DEBUG 5190 if (sc->sc_debug & ATH_DEBUG_RESET) { 5191 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5192 if (bf != NULL && bf->bf_m != NULL) { 5193 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5194 ath_hal_txprocdesc(ah, bf->bf_lastds, 5195 &bf->bf_status.ds_txstat) == HAL_OK); 5196 ieee80211_dump_pkt(ifp->if_l2com, 5197 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5198 0, -1); 5199 } 5200 } 5201 #endif /* ATH_DEBUG */ 5202 /* XXX check this inside of IF_LOCK? */ 5203 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5204 sc->sc_wd_timer = 0; 5205 } 5206 5207 /* 5208 * Disable the receive h/w in preparation for a reset. 5209 */ 5210 static void 5211 ath_stoprecv(struct ath_softc *sc, int dodelay) 5212 { 5213 #define PA2DESC(_sc, _pa) \ 5214 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 5215 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 5216 struct ath_hal *ah = sc->sc_ah; 5217 5218 ath_hal_stoppcurecv(ah); /* disable PCU */ 5219 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 5220 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 5221 if (dodelay) 5222 DELAY(3000); /* 3ms is long enough for 1 frame */ 5223 #ifdef ATH_DEBUG 5224 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 5225 struct ath_buf *bf; 5226 u_int ix; 5227 5228 printf("%s: rx queue %p, link %p\n", __func__, 5229 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 5230 ix = 0; 5231 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5232 struct ath_desc *ds = bf->bf_desc; 5233 struct ath_rx_status *rs = &bf->bf_status.ds_rxstat; 5234 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 5235 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 5236 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 5237 ath_printrxbuf(sc, bf, ix, status == HAL_OK); 5238 ix++; 5239 } 5240 } 5241 #endif 5242 if (sc->sc_rxpending != NULL) { 5243 m_freem(sc->sc_rxpending); 5244 sc->sc_rxpending = NULL; 5245 } 5246 sc->sc_rxlink = NULL; /* just in case */ 5247 #undef PA2DESC 5248 } 5249 5250 /* 5251 * Enable the receive h/w following a reset. 5252 */ 5253 static int 5254 ath_startrecv(struct ath_softc *sc) 5255 { 5256 struct ath_hal *ah = sc->sc_ah; 5257 struct ath_buf *bf; 5258 5259 sc->sc_rxlink = NULL; 5260 sc->sc_rxpending = NULL; 5261 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5262 int error = ath_rxbuf_init(sc, bf); 5263 if (error != 0) { 5264 DPRINTF(sc, ATH_DEBUG_RECV, 5265 "%s: ath_rxbuf_init failed %d\n", 5266 __func__, error); 5267 return error; 5268 } 5269 } 5270 5271 bf = TAILQ_FIRST(&sc->sc_rxbuf); 5272 ath_hal_putrxbuf(ah, bf->bf_daddr); 5273 ath_hal_rxena(ah); /* enable recv descriptors */ 5274 ath_mode_init(sc); /* set filters, etc. */ 5275 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 5276 return 0; 5277 } 5278 5279 /* 5280 * Update internal state after a channel change. 5281 */ 5282 static void 5283 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5284 { 5285 enum ieee80211_phymode mode; 5286 5287 /* 5288 * Change channels and update the h/w rate map 5289 * if we're switching; e.g. 11a to 11b/g. 5290 */ 5291 mode = ieee80211_chan2mode(chan); 5292 if (mode != sc->sc_curmode) 5293 ath_setcurmode(sc, mode); 5294 sc->sc_curchan = chan; 5295 } 5296 5297 /* 5298 * Set/change channels. If the channel is really being changed, 5299 * it's done by resetting the chip. To accomplish this we must 5300 * first cleanup any pending DMA, then restart stuff after a la 5301 * ath_init. 5302 */ 5303 static int 5304 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5305 { 5306 struct ifnet *ifp = sc->sc_ifp; 5307 struct ieee80211com *ic = ifp->if_l2com; 5308 struct ath_hal *ah = sc->sc_ah; 5309 int ret = 0; 5310 int dointr = 0; 5311 5312 /* Treat this as an interface reset */ 5313 ATH_PCU_LOCK(sc); 5314 if (ath_reset_grablock(sc, 1) == 0) { 5315 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5316 __func__); 5317 } 5318 if (chan != sc->sc_curchan) { 5319 dointr = 1; 5320 /* XXX only do this if inreset_cnt is 1? */ 5321 ath_hal_intrset(ah, 0); 5322 } 5323 ATH_PCU_UNLOCK(sc); 5324 ath_txrx_stop(sc); 5325 5326 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5327 __func__, ieee80211_chan2ieee(ic, chan), 5328 chan->ic_freq, chan->ic_flags); 5329 if (chan != sc->sc_curchan) { 5330 HAL_STATUS status; 5331 /* 5332 * To switch channels clear any pending DMA operations; 5333 * wait long enough for the RX fifo to drain, reset the 5334 * hardware at the new frequency, and then re-enable 5335 * the relevant bits of the h/w. 5336 */ 5337 #if 0 5338 ath_hal_intrset(ah, 0); /* disable interrupts */ 5339 #endif 5340 ath_stoprecv(sc, 1); /* turn off frame recv */ 5341 /* 5342 * First, handle completed TX/RX frames. 5343 */ 5344 ath_rx_proc(sc, 0); 5345 ath_draintxq(sc, ATH_RESET_NOLOSS); 5346 /* 5347 * Next, flush the non-scheduled frames. 5348 */ 5349 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5350 5351 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 5352 if_printf(ifp, "%s: unable to reset " 5353 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5354 __func__, ieee80211_chan2ieee(ic, chan), 5355 chan->ic_freq, chan->ic_flags, status); 5356 ret = EIO; 5357 goto finish; 5358 } 5359 sc->sc_diversity = ath_hal_getdiversity(ah); 5360 5361 /* Let DFS at it in case it's a DFS channel */ 5362 ath_dfs_radar_enable(sc, ic->ic_curchan); 5363 5364 /* 5365 * Re-enable rx framework. 5366 */ 5367 if (ath_startrecv(sc) != 0) { 5368 if_printf(ifp, "%s: unable to restart recv logic\n", 5369 __func__); 5370 ret = EIO; 5371 goto finish; 5372 } 5373 5374 /* 5375 * Change channels and update the h/w rate map 5376 * if we're switching; e.g. 11a to 11b/g. 5377 */ 5378 ath_chan_change(sc, chan); 5379 5380 /* 5381 * Reset clears the beacon timers; reset them 5382 * here if needed. 5383 */ 5384 if (sc->sc_beacons) { /* restart beacons */ 5385 #ifdef IEEE80211_SUPPORT_TDMA 5386 if (sc->sc_tdma) 5387 ath_tdma_config(sc, NULL); 5388 else 5389 #endif 5390 ath_beacon_config(sc, NULL); 5391 } 5392 5393 #if 0 5394 /* 5395 * Re-enable interrupts. 5396 */ 5397 ath_hal_intrset(ah, sc->sc_imask); 5398 #endif 5399 } 5400 5401 finish: 5402 ATH_PCU_LOCK(sc); 5403 sc->sc_inreset_cnt--; 5404 /* XXX only do this if sc_inreset_cnt == 0? */ 5405 if (dointr) 5406 ath_hal_intrset(ah, sc->sc_imask); 5407 ATH_PCU_UNLOCK(sc); 5408 5409 /* XXX do this inside of IF_LOCK? */ 5410 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5411 ath_txrx_start(sc); 5412 /* XXX ath_start? */ 5413 5414 return ret; 5415 } 5416 5417 /* 5418 * Periodically recalibrate the PHY to account 5419 * for temperature/environment changes. 5420 */ 5421 static void 5422 ath_calibrate(void *arg) 5423 { 5424 struct ath_softc *sc = arg; 5425 struct ath_hal *ah = sc->sc_ah; 5426 struct ifnet *ifp = sc->sc_ifp; 5427 struct ieee80211com *ic = ifp->if_l2com; 5428 HAL_BOOL longCal, isCalDone; 5429 HAL_BOOL aniCal, shortCal = AH_FALSE; 5430 int nextcal; 5431 5432 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5433 goto restart; 5434 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5435 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5436 if (sc->sc_doresetcal) 5437 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5438 5439 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5440 if (aniCal) { 5441 sc->sc_stats.ast_ani_cal++; 5442 sc->sc_lastani = ticks; 5443 ath_hal_ani_poll(ah, sc->sc_curchan); 5444 } 5445 5446 if (longCal) { 5447 sc->sc_stats.ast_per_cal++; 5448 sc->sc_lastlongcal = ticks; 5449 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5450 /* 5451 * Rfgain is out of bounds, reset the chip 5452 * to load new gain values. 5453 */ 5454 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5455 "%s: rfgain change\n", __func__); 5456 sc->sc_stats.ast_per_rfgain++; 5457 /* 5458 * Drop lock - we can't hold it across the 5459 * ath_reset() call. Instead, we'll drop 5460 * out here, do a reset, then reschedule 5461 * the callout. 5462 */ 5463 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5464 sc->sc_resetcal = 0; 5465 sc->sc_doresetcal = AH_TRUE; 5466 ATH_UNLOCK(sc); 5467 ath_reset(ifp, ATH_RESET_NOLOSS); 5468 ATH_LOCK(sc); 5469 return; 5470 } 5471 /* 5472 * If this long cal is after an idle period, then 5473 * reset the data collection state so we start fresh. 5474 */ 5475 if (sc->sc_resetcal) { 5476 (void) ath_hal_calreset(ah, sc->sc_curchan); 5477 sc->sc_lastcalreset = ticks; 5478 sc->sc_lastshortcal = ticks; 5479 sc->sc_resetcal = 0; 5480 sc->sc_doresetcal = AH_TRUE; 5481 } 5482 } 5483 5484 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5485 if (shortCal || longCal) { 5486 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5487 if (longCal) { 5488 /* 5489 * Calibrate noise floor data again in case of change. 5490 */ 5491 ath_hal_process_noisefloor(ah); 5492 } 5493 } else { 5494 DPRINTF(sc, ATH_DEBUG_ANY, 5495 "%s: calibration of channel %u failed\n", 5496 __func__, sc->sc_curchan->ic_freq); 5497 sc->sc_stats.ast_per_calfail++; 5498 } 5499 if (shortCal) 5500 sc->sc_lastshortcal = ticks; 5501 } 5502 if (!isCalDone) { 5503 restart: 5504 /* 5505 * Use a shorter interval to potentially collect multiple 5506 * data samples required to complete calibration. Once 5507 * we're told the work is done we drop back to a longer 5508 * interval between requests. We're more aggressive doing 5509 * work when operating as an AP to improve operation right 5510 * after startup. 5511 */ 5512 sc->sc_lastshortcal = ticks; 5513 nextcal = ath_shortcalinterval*hz/1000; 5514 if (sc->sc_opmode != HAL_M_HOSTAP) 5515 nextcal *= 10; 5516 sc->sc_doresetcal = AH_TRUE; 5517 } else { 5518 /* nextcal should be the shortest time for next event */ 5519 nextcal = ath_longcalinterval*hz; 5520 if (sc->sc_lastcalreset == 0) 5521 sc->sc_lastcalreset = sc->sc_lastlongcal; 5522 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5523 sc->sc_resetcal = 1; /* setup reset next trip */ 5524 sc->sc_doresetcal = AH_FALSE; 5525 } 5526 /* ANI calibration may occur more often than short/long/resetcal */ 5527 if (ath_anicalinterval > 0) 5528 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5529 5530 if (nextcal != 0) { 5531 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5532 __func__, nextcal, isCalDone ? "" : "!"); 5533 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5534 } else { 5535 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5536 __func__); 5537 /* NB: don't rearm timer */ 5538 } 5539 } 5540 5541 static void 5542 ath_scan_start(struct ieee80211com *ic) 5543 { 5544 struct ifnet *ifp = ic->ic_ifp; 5545 struct ath_softc *sc = ifp->if_softc; 5546 struct ath_hal *ah = sc->sc_ah; 5547 u_int32_t rfilt; 5548 5549 /* XXX calibration timer? */ 5550 5551 sc->sc_scanning = 1; 5552 sc->sc_syncbeacon = 0; 5553 rfilt = ath_calcrxfilter(sc); 5554 ath_hal_setrxfilter(ah, rfilt); 5555 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5556 5557 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5558 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5559 } 5560 5561 static void 5562 ath_scan_end(struct ieee80211com *ic) 5563 { 5564 struct ifnet *ifp = ic->ic_ifp; 5565 struct ath_softc *sc = ifp->if_softc; 5566 struct ath_hal *ah = sc->sc_ah; 5567 u_int32_t rfilt; 5568 5569 sc->sc_scanning = 0; 5570 rfilt = ath_calcrxfilter(sc); 5571 ath_hal_setrxfilter(ah, rfilt); 5572 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5573 5574 ath_hal_process_noisefloor(ah); 5575 5576 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5577 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5578 sc->sc_curaid); 5579 } 5580 5581 static void 5582 ath_set_channel(struct ieee80211com *ic) 5583 { 5584 struct ifnet *ifp = ic->ic_ifp; 5585 struct ath_softc *sc = ifp->if_softc; 5586 5587 (void) ath_chan_set(sc, ic->ic_curchan); 5588 /* 5589 * If we are returning to our bss channel then mark state 5590 * so the next recv'd beacon's tsf will be used to sync the 5591 * beacon timers. Note that since we only hear beacons in 5592 * sta/ibss mode this has no effect in other operating modes. 5593 */ 5594 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5595 sc->sc_syncbeacon = 1; 5596 } 5597 5598 /* 5599 * Walk the vap list and check if there any vap's in RUN state. 5600 */ 5601 static int 5602 ath_isanyrunningvaps(struct ieee80211vap *this) 5603 { 5604 struct ieee80211com *ic = this->iv_ic; 5605 struct ieee80211vap *vap; 5606 5607 IEEE80211_LOCK_ASSERT(ic); 5608 5609 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5610 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5611 return 1; 5612 } 5613 return 0; 5614 } 5615 5616 static int 5617 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5618 { 5619 struct ieee80211com *ic = vap->iv_ic; 5620 struct ath_softc *sc = ic->ic_ifp->if_softc; 5621 struct ath_vap *avp = ATH_VAP(vap); 5622 struct ath_hal *ah = sc->sc_ah; 5623 struct ieee80211_node *ni = NULL; 5624 int i, error, stamode; 5625 u_int32_t rfilt; 5626 int csa_run_transition = 0; 5627 static const HAL_LED_STATE leds[] = { 5628 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5629 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5630 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5631 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5632 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5633 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5634 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5635 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5636 }; 5637 5638 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5639 ieee80211_state_name[vap->iv_state], 5640 ieee80211_state_name[nstate]); 5641 5642 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5643 csa_run_transition = 1; 5644 5645 callout_drain(&sc->sc_cal_ch); 5646 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5647 5648 if (nstate == IEEE80211_S_SCAN) { 5649 /* 5650 * Scanning: turn off beacon miss and don't beacon. 5651 * Mark beacon state so when we reach RUN state we'll 5652 * [re]setup beacons. Unblock the task q thread so 5653 * deferred interrupt processing is done. 5654 */ 5655 ath_hal_intrset(ah, 5656 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5657 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5658 sc->sc_beacons = 0; 5659 taskqueue_unblock(sc->sc_tq); 5660 } 5661 5662 ni = vap->iv_bss; 5663 rfilt = ath_calcrxfilter(sc); 5664 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5665 vap->iv_opmode == IEEE80211_M_AHDEMO || 5666 vap->iv_opmode == IEEE80211_M_IBSS); 5667 if (stamode && nstate == IEEE80211_S_RUN) { 5668 sc->sc_curaid = ni->ni_associd; 5669 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5670 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5671 } 5672 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5673 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5674 ath_hal_setrxfilter(ah, rfilt); 5675 5676 /* XXX is this to restore keycache on resume? */ 5677 if (vap->iv_opmode != IEEE80211_M_STA && 5678 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5679 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5680 if (ath_hal_keyisvalid(ah, i)) 5681 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5682 } 5683 5684 /* 5685 * Invoke the parent method to do net80211 work. 5686 */ 5687 error = avp->av_newstate(vap, nstate, arg); 5688 if (error != 0) 5689 goto bad; 5690 5691 if (nstate == IEEE80211_S_RUN) { 5692 /* NB: collect bss node again, it may have changed */ 5693 ni = vap->iv_bss; 5694 5695 DPRINTF(sc, ATH_DEBUG_STATE, 5696 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5697 "capinfo 0x%04x chan %d\n", __func__, 5698 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5699 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5700 5701 switch (vap->iv_opmode) { 5702 #ifdef IEEE80211_SUPPORT_TDMA 5703 case IEEE80211_M_AHDEMO: 5704 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5705 break; 5706 /* fall thru... */ 5707 #endif 5708 case IEEE80211_M_HOSTAP: 5709 case IEEE80211_M_IBSS: 5710 case IEEE80211_M_MBSS: 5711 /* 5712 * Allocate and setup the beacon frame. 5713 * 5714 * Stop any previous beacon DMA. This may be 5715 * necessary, for example, when an ibss merge 5716 * causes reconfiguration; there will be a state 5717 * transition from RUN->RUN that means we may 5718 * be called with beacon transmission active. 5719 */ 5720 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5721 5722 error = ath_beacon_alloc(sc, ni); 5723 if (error != 0) 5724 goto bad; 5725 /* 5726 * If joining an adhoc network defer beacon timer 5727 * configuration to the next beacon frame so we 5728 * have a current TSF to use. Otherwise we're 5729 * starting an ibss/bss so there's no need to delay; 5730 * if this is the first vap moving to RUN state, then 5731 * beacon state needs to be [re]configured. 5732 */ 5733 if (vap->iv_opmode == IEEE80211_M_IBSS && 5734 ni->ni_tstamp.tsf != 0) { 5735 sc->sc_syncbeacon = 1; 5736 } else if (!sc->sc_beacons) { 5737 #ifdef IEEE80211_SUPPORT_TDMA 5738 if (vap->iv_caps & IEEE80211_C_TDMA) 5739 ath_tdma_config(sc, vap); 5740 else 5741 #endif 5742 ath_beacon_config(sc, vap); 5743 sc->sc_beacons = 1; 5744 } 5745 break; 5746 case IEEE80211_M_STA: 5747 /* 5748 * Defer beacon timer configuration to the next 5749 * beacon frame so we have a current TSF to use 5750 * (any TSF collected when scanning is likely old). 5751 * However if it's due to a CSA -> RUN transition, 5752 * force a beacon update so we pick up a lack of 5753 * beacons from an AP in CAC and thus force a 5754 * scan. 5755 */ 5756 sc->sc_syncbeacon = 1; 5757 if (csa_run_transition) 5758 ath_beacon_config(sc, vap); 5759 break; 5760 case IEEE80211_M_MONITOR: 5761 /* 5762 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5763 * transitions so we must re-enable interrupts here to 5764 * handle the case of a single monitor mode vap. 5765 */ 5766 ath_hal_intrset(ah, sc->sc_imask); 5767 break; 5768 case IEEE80211_M_WDS: 5769 break; 5770 default: 5771 break; 5772 } 5773 /* 5774 * Let the hal process statistics collected during a 5775 * scan so it can provide calibrated noise floor data. 5776 */ 5777 ath_hal_process_noisefloor(ah); 5778 /* 5779 * Reset rssi stats; maybe not the best place... 5780 */ 5781 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5782 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5783 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5784 /* 5785 * Finally, start any timers and the task q thread 5786 * (in case we didn't go through SCAN state). 5787 */ 5788 if (ath_longcalinterval != 0) { 5789 /* start periodic recalibration timer */ 5790 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5791 } else { 5792 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5793 "%s: calibration disabled\n", __func__); 5794 } 5795 taskqueue_unblock(sc->sc_tq); 5796 } else if (nstate == IEEE80211_S_INIT) { 5797 /* 5798 * If there are no vaps left in RUN state then 5799 * shutdown host/driver operation: 5800 * o disable interrupts 5801 * o disable the task queue thread 5802 * o mark beacon processing as stopped 5803 */ 5804 if (!ath_isanyrunningvaps(vap)) { 5805 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5806 /* disable interrupts */ 5807 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5808 taskqueue_block(sc->sc_tq); 5809 sc->sc_beacons = 0; 5810 } 5811 #ifdef IEEE80211_SUPPORT_TDMA 5812 ath_hal_setcca(ah, AH_TRUE); 5813 #endif 5814 } 5815 bad: 5816 return error; 5817 } 5818 5819 /* 5820 * Allocate a key cache slot to the station so we can 5821 * setup a mapping from key index to node. The key cache 5822 * slot is needed for managing antenna state and for 5823 * compression when stations do not use crypto. We do 5824 * it uniliaterally here; if crypto is employed this slot 5825 * will be reassigned. 5826 */ 5827 static void 5828 ath_setup_stationkey(struct ieee80211_node *ni) 5829 { 5830 struct ieee80211vap *vap = ni->ni_vap; 5831 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5832 ieee80211_keyix keyix, rxkeyix; 5833 5834 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5835 /* 5836 * Key cache is full; we'll fall back to doing 5837 * the more expensive lookup in software. Note 5838 * this also means no h/w compression. 5839 */ 5840 /* XXX msg+statistic */ 5841 } else { 5842 /* XXX locking? */ 5843 ni->ni_ucastkey.wk_keyix = keyix; 5844 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5845 /* NB: must mark device key to get called back on delete */ 5846 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5847 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5848 /* NB: this will create a pass-thru key entry */ 5849 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5850 } 5851 } 5852 5853 /* 5854 * Setup driver-specific state for a newly associated node. 5855 * Note that we're called also on a re-associate, the isnew 5856 * param tells us if this is the first time or not. 5857 */ 5858 static void 5859 ath_newassoc(struct ieee80211_node *ni, int isnew) 5860 { 5861 struct ath_node *an = ATH_NODE(ni); 5862 struct ieee80211vap *vap = ni->ni_vap; 5863 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5864 const struct ieee80211_txparam *tp = ni->ni_txparms; 5865 5866 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5867 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5868 5869 ath_rate_newassoc(sc, an, isnew); 5870 if (isnew && 5871 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5872 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5873 ath_setup_stationkey(ni); 5874 } 5875 5876 static int 5877 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5878 int nchans, struct ieee80211_channel chans[]) 5879 { 5880 struct ath_softc *sc = ic->ic_ifp->if_softc; 5881 struct ath_hal *ah = sc->sc_ah; 5882 HAL_STATUS status; 5883 5884 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5885 "%s: rd %u cc %u location %c%s\n", 5886 __func__, reg->regdomain, reg->country, reg->location, 5887 reg->ecm ? " ecm" : ""); 5888 5889 status = ath_hal_set_channels(ah, chans, nchans, 5890 reg->country, reg->regdomain); 5891 if (status != HAL_OK) { 5892 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5893 __func__, status); 5894 return EINVAL; /* XXX */ 5895 } 5896 5897 return 0; 5898 } 5899 5900 static void 5901 ath_getradiocaps(struct ieee80211com *ic, 5902 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5903 { 5904 struct ath_softc *sc = ic->ic_ifp->if_softc; 5905 struct ath_hal *ah = sc->sc_ah; 5906 5907 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5908 __func__, SKU_DEBUG, CTRY_DEFAULT); 5909 5910 /* XXX check return */ 5911 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5912 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5913 5914 } 5915 5916 static int 5917 ath_getchannels(struct ath_softc *sc) 5918 { 5919 struct ifnet *ifp = sc->sc_ifp; 5920 struct ieee80211com *ic = ifp->if_l2com; 5921 struct ath_hal *ah = sc->sc_ah; 5922 HAL_STATUS status; 5923 5924 /* 5925 * Collect channel set based on EEPROM contents. 5926 */ 5927 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5928 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5929 if (status != HAL_OK) { 5930 if_printf(ifp, "%s: unable to collect channel list from hal, " 5931 "status %d\n", __func__, status); 5932 return EINVAL; 5933 } 5934 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5935 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5936 /* XXX map Atheros sku's to net80211 SKU's */ 5937 /* XXX net80211 types too small */ 5938 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5939 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5940 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5941 ic->ic_regdomain.isocc[1] = ' '; 5942 5943 ic->ic_regdomain.ecm = 1; 5944 ic->ic_regdomain.location = 'I'; 5945 5946 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5947 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5948 __func__, sc->sc_eerd, sc->sc_eecc, 5949 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5950 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5951 return 0; 5952 } 5953 5954 static void 5955 ath_led_done(void *arg) 5956 { 5957 struct ath_softc *sc = arg; 5958 5959 sc->sc_blinking = 0; 5960 } 5961 5962 /* 5963 * Turn the LED off: flip the pin and then set a timer so no 5964 * update will happen for the specified duration. 5965 */ 5966 static void 5967 ath_led_off(void *arg) 5968 { 5969 struct ath_softc *sc = arg; 5970 5971 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 5972 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 5973 } 5974 5975 /* 5976 * Blink the LED according to the specified on/off times. 5977 */ 5978 static void 5979 ath_led_blink(struct ath_softc *sc, int on, int off) 5980 { 5981 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 5982 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 5983 sc->sc_blinking = 1; 5984 sc->sc_ledoff = off; 5985 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 5986 } 5987 5988 static void 5989 ath_led_event(struct ath_softc *sc, int rix) 5990 { 5991 sc->sc_ledevent = ticks; /* time of last event */ 5992 if (sc->sc_blinking) /* don't interrupt active blink */ 5993 return; 5994 ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff); 5995 } 5996 5997 static int 5998 ath_rate_setup(struct ath_softc *sc, u_int mode) 5999 { 6000 struct ath_hal *ah = sc->sc_ah; 6001 const HAL_RATE_TABLE *rt; 6002 6003 switch (mode) { 6004 case IEEE80211_MODE_11A: 6005 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6006 break; 6007 case IEEE80211_MODE_HALF: 6008 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6009 break; 6010 case IEEE80211_MODE_QUARTER: 6011 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6012 break; 6013 case IEEE80211_MODE_11B: 6014 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6015 break; 6016 case IEEE80211_MODE_11G: 6017 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6018 break; 6019 case IEEE80211_MODE_TURBO_A: 6020 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6021 break; 6022 case IEEE80211_MODE_TURBO_G: 6023 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6024 break; 6025 case IEEE80211_MODE_STURBO_A: 6026 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6027 break; 6028 case IEEE80211_MODE_11NA: 6029 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6030 break; 6031 case IEEE80211_MODE_11NG: 6032 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6033 break; 6034 default: 6035 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6036 __func__, mode); 6037 return 0; 6038 } 6039 sc->sc_rates[mode] = rt; 6040 return (rt != NULL); 6041 } 6042 6043 static void 6044 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6045 { 6046 #define N(a) (sizeof(a)/sizeof(a[0])) 6047 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6048 static const struct { 6049 u_int rate; /* tx/rx 802.11 rate */ 6050 u_int16_t timeOn; /* LED on time (ms) */ 6051 u_int16_t timeOff; /* LED off time (ms) */ 6052 } blinkrates[] = { 6053 { 108, 40, 10 }, 6054 { 96, 44, 11 }, 6055 { 72, 50, 13 }, 6056 { 48, 57, 14 }, 6057 { 36, 67, 16 }, 6058 { 24, 80, 20 }, 6059 { 22, 100, 25 }, 6060 { 18, 133, 34 }, 6061 { 12, 160, 40 }, 6062 { 10, 200, 50 }, 6063 { 6, 240, 58 }, 6064 { 4, 267, 66 }, 6065 { 2, 400, 100 }, 6066 { 0, 500, 130 }, 6067 /* XXX half/quarter rates */ 6068 }; 6069 const HAL_RATE_TABLE *rt; 6070 int i, j; 6071 6072 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6073 rt = sc->sc_rates[mode]; 6074 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6075 for (i = 0; i < rt->rateCount; i++) { 6076 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6077 if (rt->info[i].phy != IEEE80211_T_HT) 6078 sc->sc_rixmap[ieeerate] = i; 6079 else 6080 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6081 } 6082 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6083 for (i = 0; i < N(sc->sc_hwmap); i++) { 6084 if (i >= rt->rateCount) { 6085 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6086 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6087 continue; 6088 } 6089 sc->sc_hwmap[i].ieeerate = 6090 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6091 if (rt->info[i].phy == IEEE80211_T_HT) 6092 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6093 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6094 if (rt->info[i].shortPreamble || 6095 rt->info[i].phy == IEEE80211_T_OFDM) 6096 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6097 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6098 for (j = 0; j < N(blinkrates)-1; j++) 6099 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6100 break; 6101 /* NB: this uses the last entry if the rate isn't found */ 6102 /* XXX beware of overlow */ 6103 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6104 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6105 } 6106 sc->sc_currates = rt; 6107 sc->sc_curmode = mode; 6108 /* 6109 * All protection frames are transmited at 2Mb/s for 6110 * 11g, otherwise at 1Mb/s. 6111 */ 6112 if (mode == IEEE80211_MODE_11G) 6113 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6114 else 6115 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6116 /* NB: caller is responsible for resetting rate control state */ 6117 #undef N 6118 } 6119 6120 static void 6121 ath_watchdog(void *arg) 6122 { 6123 struct ath_softc *sc = arg; 6124 int do_reset = 0; 6125 6126 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6127 struct ifnet *ifp = sc->sc_ifp; 6128 uint32_t hangs; 6129 6130 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6131 hangs != 0) { 6132 if_printf(ifp, "%s hang detected (0x%x)\n", 6133 hangs & 0xff ? "bb" : "mac", hangs); 6134 } else 6135 if_printf(ifp, "device timeout\n"); 6136 do_reset = 1; 6137 ifp->if_oerrors++; 6138 sc->sc_stats.ast_watchdog++; 6139 } 6140 6141 /* 6142 * We can't hold the lock across the ath_reset() call. 6143 */ 6144 if (do_reset) { 6145 ATH_UNLOCK(sc); 6146 ath_reset(sc->sc_ifp, ATH_RESET_NOLOSS); 6147 ATH_LOCK(sc); 6148 } 6149 6150 callout_schedule(&sc->sc_wd_ch, hz); 6151 } 6152 6153 #ifdef ATH_DIAGAPI 6154 /* 6155 * Diagnostic interface to the HAL. This is used by various 6156 * tools to do things like retrieve register contents for 6157 * debugging. The mechanism is intentionally opaque so that 6158 * it can change frequently w/o concern for compatiblity. 6159 */ 6160 static int 6161 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6162 { 6163 struct ath_hal *ah = sc->sc_ah; 6164 u_int id = ad->ad_id & ATH_DIAG_ID; 6165 void *indata = NULL; 6166 void *outdata = NULL; 6167 u_int32_t insize = ad->ad_in_size; 6168 u_int32_t outsize = ad->ad_out_size; 6169 int error = 0; 6170 6171 if (ad->ad_id & ATH_DIAG_IN) { 6172 /* 6173 * Copy in data. 6174 */ 6175 indata = malloc(insize, M_TEMP, M_NOWAIT); 6176 if (indata == NULL) { 6177 error = ENOMEM; 6178 goto bad; 6179 } 6180 error = copyin(ad->ad_in_data, indata, insize); 6181 if (error) 6182 goto bad; 6183 } 6184 if (ad->ad_id & ATH_DIAG_DYN) { 6185 /* 6186 * Allocate a buffer for the results (otherwise the HAL 6187 * returns a pointer to a buffer where we can read the 6188 * results). Note that we depend on the HAL leaving this 6189 * pointer for us to use below in reclaiming the buffer; 6190 * may want to be more defensive. 6191 */ 6192 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6193 if (outdata == NULL) { 6194 error = ENOMEM; 6195 goto bad; 6196 } 6197 } 6198 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6199 if (outsize < ad->ad_out_size) 6200 ad->ad_out_size = outsize; 6201 if (outdata != NULL) 6202 error = copyout(outdata, ad->ad_out_data, 6203 ad->ad_out_size); 6204 } else { 6205 error = EINVAL; 6206 } 6207 bad: 6208 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6209 free(indata, M_TEMP); 6210 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6211 free(outdata, M_TEMP); 6212 return error; 6213 } 6214 #endif /* ATH_DIAGAPI */ 6215 6216 static int 6217 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 6218 { 6219 #define IS_RUNNING(ifp) \ 6220 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 6221 struct ath_softc *sc = ifp->if_softc; 6222 struct ieee80211com *ic = ifp->if_l2com; 6223 struct ifreq *ifr = (struct ifreq *)data; 6224 const HAL_RATE_TABLE *rt; 6225 int error = 0; 6226 6227 switch (cmd) { 6228 case SIOCSIFFLAGS: 6229 ATH_LOCK(sc); 6230 if (IS_RUNNING(ifp)) { 6231 /* 6232 * To avoid rescanning another access point, 6233 * do not call ath_init() here. Instead, 6234 * only reflect promisc mode settings. 6235 */ 6236 ath_mode_init(sc); 6237 } else if (ifp->if_flags & IFF_UP) { 6238 /* 6239 * Beware of being called during attach/detach 6240 * to reset promiscuous mode. In that case we 6241 * will still be marked UP but not RUNNING. 6242 * However trying to re-init the interface 6243 * is the wrong thing to do as we've already 6244 * torn down much of our state. There's 6245 * probably a better way to deal with this. 6246 */ 6247 if (!sc->sc_invalid) 6248 ath_init(sc); /* XXX lose error */ 6249 } else { 6250 ath_stop_locked(ifp); 6251 #ifdef notyet 6252 /* XXX must wakeup in places like ath_vap_delete */ 6253 if (!sc->sc_invalid) 6254 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 6255 #endif 6256 } 6257 ATH_UNLOCK(sc); 6258 break; 6259 case SIOCGIFMEDIA: 6260 case SIOCSIFMEDIA: 6261 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 6262 break; 6263 case SIOCGATHSTATS: 6264 /* NB: embed these numbers to get a consistent view */ 6265 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 6266 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 6267 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 6268 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 6269 #ifdef IEEE80211_SUPPORT_TDMA 6270 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 6271 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 6272 #endif 6273 rt = sc->sc_currates; 6274 sc->sc_stats.ast_tx_rate = 6275 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 6276 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 6277 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 6278 return copyout(&sc->sc_stats, 6279 ifr->ifr_data, sizeof (sc->sc_stats)); 6280 case SIOCZATHSTATS: 6281 error = priv_check(curthread, PRIV_DRIVER); 6282 if (error == 0) 6283 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6284 break; 6285 #ifdef ATH_DIAGAPI 6286 case SIOCGATHDIAG: 6287 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 6288 break; 6289 case SIOCGATHPHYERR: 6290 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 6291 break; 6292 #endif 6293 case SIOCGIFADDR: 6294 error = ether_ioctl(ifp, cmd, data); 6295 break; 6296 default: 6297 error = EINVAL; 6298 break; 6299 } 6300 return error; 6301 #undef IS_RUNNING 6302 } 6303 6304 /* 6305 * Announce various information on device/driver attach. 6306 */ 6307 static void 6308 ath_announce(struct ath_softc *sc) 6309 { 6310 struct ifnet *ifp = sc->sc_ifp; 6311 struct ath_hal *ah = sc->sc_ah; 6312 6313 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 6314 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6315 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6316 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6317 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6318 if (bootverbose) { 6319 int i; 6320 for (i = 0; i <= WME_AC_VO; i++) { 6321 struct ath_txq *txq = sc->sc_ac2q[i]; 6322 if_printf(ifp, "Use hw queue %u for %s traffic\n", 6323 txq->axq_qnum, ieee80211_wme_acnames[i]); 6324 } 6325 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 6326 sc->sc_cabq->axq_qnum); 6327 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 6328 } 6329 if (ath_rxbuf != ATH_RXBUF) 6330 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 6331 if (ath_txbuf != ATH_TXBUF) 6332 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 6333 if (sc->sc_mcastkey && bootverbose) 6334 if_printf(ifp, "using multicast key search\n"); 6335 } 6336 6337 #ifdef IEEE80211_SUPPORT_TDMA 6338 static void 6339 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval) 6340 { 6341 struct ath_hal *ah = sc->sc_ah; 6342 HAL_BEACON_TIMERS bt; 6343 6344 bt.bt_intval = bintval | HAL_BEACON_ENA; 6345 bt.bt_nexttbtt = nexttbtt; 6346 bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep; 6347 bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep; 6348 bt.bt_nextatim = nexttbtt+1; 6349 /* Enables TBTT, DBA, SWBA timers by default */ 6350 bt.bt_flags = 0; 6351 ath_hal_beaconsettimers(ah, &bt); 6352 } 6353 6354 /* 6355 * Calculate the beacon interval. This is periodic in the 6356 * superframe for the bss. We assume each station is configured 6357 * identically wrt transmit rate so the guard time we calculate 6358 * above will be the same on all stations. Note we need to 6359 * factor in the xmit time because the hardware will schedule 6360 * a frame for transmit if the start of the frame is within 6361 * the burst time. When we get hardware that properly kills 6362 * frames in the PCU we can reduce/eliminate the guard time. 6363 * 6364 * Roundup to 1024 is so we have 1 TU buffer in the guard time 6365 * to deal with the granularity of the nexttbtt timer. 11n MAC's 6366 * with 1us timer granularity should allow us to reduce/eliminate 6367 * this. 6368 */ 6369 static void 6370 ath_tdma_bintvalsetup(struct ath_softc *sc, 6371 const struct ieee80211_tdma_state *tdma) 6372 { 6373 /* copy from vap state (XXX check all vaps have same value?) */ 6374 sc->sc_tdmaslotlen = tdma->tdma_slotlen; 6375 6376 sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) * 6377 tdma->tdma_slotcnt, 1024); 6378 sc->sc_tdmabintval >>= 10; /* TSF -> TU */ 6379 if (sc->sc_tdmabintval & 1) 6380 sc->sc_tdmabintval++; 6381 6382 if (tdma->tdma_slot == 0) { 6383 /* 6384 * Only slot 0 beacons; other slots respond. 6385 */ 6386 sc->sc_imask |= HAL_INT_SWBA; 6387 sc->sc_tdmaswba = 0; /* beacon immediately */ 6388 } else { 6389 /* XXX all vaps must be slot 0 or slot !0 */ 6390 sc->sc_imask &= ~HAL_INT_SWBA; 6391 } 6392 } 6393 6394 /* 6395 * Max 802.11 overhead. This assumes no 4-address frames and 6396 * the encapsulation done by ieee80211_encap (llc). We also 6397 * include potential crypto overhead. 6398 */ 6399 #define IEEE80211_MAXOVERHEAD \ 6400 (sizeof(struct ieee80211_qosframe) \ 6401 + sizeof(struct llc) \ 6402 + IEEE80211_ADDR_LEN \ 6403 + IEEE80211_WEP_IVLEN \ 6404 + IEEE80211_WEP_KIDLEN \ 6405 + IEEE80211_WEP_CRCLEN \ 6406 + IEEE80211_WEP_MICLEN \ 6407 + IEEE80211_CRC_LEN) 6408 6409 /* 6410 * Setup initially for tdma operation. Start the beacon 6411 * timers and enable SWBA if we are slot 0. Otherwise 6412 * we wait for slot 0 to arrive so we can sync up before 6413 * starting to transmit. 6414 */ 6415 static void 6416 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap) 6417 { 6418 struct ath_hal *ah = sc->sc_ah; 6419 struct ifnet *ifp = sc->sc_ifp; 6420 struct ieee80211com *ic = ifp->if_l2com; 6421 const struct ieee80211_txparam *tp; 6422 const struct ieee80211_tdma_state *tdma = NULL; 6423 int rix; 6424 6425 if (vap == NULL) { 6426 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 6427 if (vap == NULL) { 6428 if_printf(ifp, "%s: no vaps?\n", __func__); 6429 return; 6430 } 6431 } 6432 tp = vap->iv_bss->ni_txparms; 6433 /* 6434 * Calculate the guard time for each slot. This is the 6435 * time to send a maximal-size frame according to the 6436 * fixed/lowest transmit rate. Note that the interface 6437 * mtu does not include the 802.11 overhead so we must 6438 * tack that on (ath_hal_computetxtime includes the 6439 * preamble and plcp in it's calculation). 6440 */ 6441 tdma = vap->iv_tdma; 6442 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 6443 rix = ath_tx_findrix(sc, tp->ucastrate); 6444 else 6445 rix = ath_tx_findrix(sc, tp->mcastrate); 6446 /* XXX short preamble assumed */ 6447 sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates, 6448 ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE); 6449 6450 ath_hal_intrset(ah, 0); 6451 6452 ath_beaconq_config(sc); /* setup h/w beacon q */ 6453 if (sc->sc_setcca) 6454 ath_hal_setcca(ah, AH_FALSE); /* disable CCA */ 6455 ath_tdma_bintvalsetup(sc, tdma); /* calculate beacon interval */ 6456 ath_tdma_settimers(sc, sc->sc_tdmabintval, 6457 sc->sc_tdmabintval | HAL_BEACON_RESET_TSF); 6458 sc->sc_syncbeacon = 0; 6459 6460 sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER; 6461 sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER; 6462 6463 ath_hal_intrset(ah, sc->sc_imask); 6464 6465 DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u " 6466 "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__, 6467 tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt, 6468 tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval, 6469 sc->sc_tdmadbaprep); 6470 } 6471 6472 /* 6473 * Update tdma operation. Called from the 802.11 layer 6474 * when a beacon is received from the TDMA station operating 6475 * in the slot immediately preceding us in the bss. Use 6476 * the rx timestamp for the beacon frame to update our 6477 * beacon timers so we follow their schedule. Note that 6478 * by using the rx timestamp we implicitly include the 6479 * propagation delay in our schedule. 6480 */ 6481 static void 6482 ath_tdma_update(struct ieee80211_node *ni, 6483 const struct ieee80211_tdma_param *tdma, int changed) 6484 { 6485 #define TSF_TO_TU(_h,_l) \ 6486 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 6487 #define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10) 6488 struct ieee80211vap *vap = ni->ni_vap; 6489 struct ieee80211com *ic = ni->ni_ic; 6490 struct ath_softc *sc = ic->ic_ifp->if_softc; 6491 struct ath_hal *ah = sc->sc_ah; 6492 const HAL_RATE_TABLE *rt = sc->sc_currates; 6493 u_int64_t tsf, rstamp, nextslot, nexttbtt; 6494 u_int32_t txtime, nextslottu; 6495 int32_t tudelta, tsfdelta; 6496 const struct ath_rx_status *rs; 6497 int rix; 6498 6499 sc->sc_stats.ast_tdma_update++; 6500 6501 /* 6502 * Check for and adopt configuration changes. 6503 */ 6504 if (changed != 0) { 6505 const struct ieee80211_tdma_state *ts = vap->iv_tdma; 6506 6507 ath_tdma_bintvalsetup(sc, ts); 6508 if (changed & TDMA_UPDATE_SLOTLEN) 6509 ath_wme_update(ic); 6510 6511 DPRINTF(sc, ATH_DEBUG_TDMA, 6512 "%s: adopt slot %u slotcnt %u slotlen %u us " 6513 "bintval %u TU\n", __func__, 6514 ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen, 6515 sc->sc_tdmabintval); 6516 6517 /* XXX right? */ 6518 ath_hal_intrset(ah, sc->sc_imask); 6519 /* NB: beacon timers programmed below */ 6520 } 6521 6522 /* extend rx timestamp to 64 bits */ 6523 rs = sc->sc_lastrs; 6524 tsf = ath_hal_gettsf64(ah); 6525 rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf); 6526 /* 6527 * The rx timestamp is set by the hardware on completing 6528 * reception (at the point where the rx descriptor is DMA'd 6529 * to the host). To find the start of our next slot we 6530 * must adjust this time by the time required to send 6531 * the packet just received. 6532 */ 6533 rix = rt->rateCodeToIndex[rs->rs_rate]; 6534 txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix, 6535 rt->info[rix].shortPreamble); 6536 /* NB: << 9 is to cvt to TU and /2 */ 6537 nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9); 6538 nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD; 6539 6540 /* 6541 * Retrieve the hardware NextTBTT in usecs 6542 * and calculate the difference between what the 6543 * other station thinks and what we have programmed. This 6544 * lets us figure how to adjust our timers to match. The 6545 * adjustments are done by pulling the TSF forward and possibly 6546 * rewriting the beacon timers. 6547 */ 6548 nexttbtt = ath_hal_getnexttbtt(ah); 6549 tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt); 6550 6551 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6552 "tsfdelta %d avg +%d/-%d\n", tsfdelta, 6553 TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam)); 6554 6555 if (tsfdelta < 0) { 6556 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6557 TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta); 6558 tsfdelta = -tsfdelta % 1024; 6559 nextslottu++; 6560 } else if (tsfdelta > 0) { 6561 TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta); 6562 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6563 tsfdelta = 1024 - (tsfdelta % 1024); 6564 nextslottu++; 6565 } else { 6566 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6567 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6568 } 6569 tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt); 6570 6571 /* 6572 * Copy sender's timetstamp into tdma ie so they can 6573 * calculate roundtrip time. We submit a beacon frame 6574 * below after any timer adjustment. The frame goes out 6575 * at the next TBTT so the sender can calculate the 6576 * roundtrip by inspecting the tdma ie in our beacon frame. 6577 * 6578 * NB: This tstamp is subtlely preserved when 6579 * IEEE80211_BEACON_TDMA is marked (e.g. when the 6580 * slot position changes) because ieee80211_add_tdma 6581 * skips over the data. 6582 */ 6583 memcpy(ATH_VAP(vap)->av_boff.bo_tdma + 6584 __offsetof(struct ieee80211_tdma_param, tdma_tstamp), 6585 &ni->ni_tstamp.data, 8); 6586 #if 0 6587 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6588 "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n", 6589 (unsigned long long) tsf, (unsigned long long) nextslot, 6590 (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta); 6591 #endif 6592 /* 6593 * Adjust the beacon timers only when pulling them forward 6594 * or when going back by less than the beacon interval. 6595 * Negative jumps larger than the beacon interval seem to 6596 * cause the timers to stop and generally cause instability. 6597 * This basically filters out jumps due to missed beacons. 6598 */ 6599 if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) { 6600 ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval); 6601 sc->sc_stats.ast_tdma_timers++; 6602 } 6603 if (tsfdelta > 0) { 6604 ath_hal_adjusttsf(ah, tsfdelta); 6605 sc->sc_stats.ast_tdma_tsf++; 6606 } 6607 ath_tdma_beacon_send(sc, vap); /* prepare response */ 6608 #undef TU_TO_TSF 6609 #undef TSF_TO_TU 6610 } 6611 6612 /* 6613 * Transmit a beacon frame at SWBA. Dynamic updates 6614 * to the frame contents are done as needed. 6615 */ 6616 static void 6617 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap) 6618 { 6619 struct ath_hal *ah = sc->sc_ah; 6620 struct ath_buf *bf; 6621 int otherant; 6622 6623 /* 6624 * Check if the previous beacon has gone out. If 6625 * not don't try to post another, skip this period 6626 * and wait for the next. Missed beacons indicate 6627 * a problem and should not occur. If we miss too 6628 * many consecutive beacons reset the device. 6629 */ 6630 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 6631 sc->sc_bmisscount++; 6632 DPRINTF(sc, ATH_DEBUG_BEACON, 6633 "%s: missed %u consecutive beacons\n", 6634 __func__, sc->sc_bmisscount); 6635 if (sc->sc_bmisscount >= ath_bstuck_threshold) 6636 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 6637 return; 6638 } 6639 if (sc->sc_bmisscount != 0) { 6640 DPRINTF(sc, ATH_DEBUG_BEACON, 6641 "%s: resume beacon xmit after %u misses\n", 6642 __func__, sc->sc_bmisscount); 6643 sc->sc_bmisscount = 0; 6644 } 6645 6646 /* 6647 * Check recent per-antenna transmit statistics and flip 6648 * the default antenna if noticeably more frames went out 6649 * on the non-default antenna. 6650 * XXX assumes 2 anntenae 6651 */ 6652 if (!sc->sc_diversity) { 6653 otherant = sc->sc_defant & 1 ? 2 : 1; 6654 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 6655 ath_setdefantenna(sc, otherant); 6656 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 6657 } 6658 6659 bf = ath_beacon_generate(sc, vap); 6660 if (bf != NULL) { 6661 /* 6662 * Stop any current dma and put the new frame on the queue. 6663 * This should never fail since we check above that no frames 6664 * are still pending on the queue. 6665 */ 6666 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 6667 DPRINTF(sc, ATH_DEBUG_ANY, 6668 "%s: beacon queue %u did not stop?\n", 6669 __func__, sc->sc_bhalq); 6670 /* NB: the HAL still stops DMA, so proceed */ 6671 } 6672 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 6673 ath_hal_txstart(ah, sc->sc_bhalq); 6674 6675 sc->sc_stats.ast_be_xmit++; /* XXX per-vap? */ 6676 6677 /* 6678 * Record local TSF for our last send for use 6679 * in arbitrating slot collisions. 6680 */ 6681 vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah); 6682 } 6683 } 6684 #endif /* IEEE80211_SUPPORT_TDMA */ 6685 6686 static void 6687 ath_dfs_tasklet(void *p, int npending) 6688 { 6689 struct ath_softc *sc = (struct ath_softc *) p; 6690 struct ifnet *ifp = sc->sc_ifp; 6691 struct ieee80211com *ic = ifp->if_l2com; 6692 6693 /* 6694 * If previous processing has found a radar event, 6695 * signal this to the net80211 layer to begin DFS 6696 * processing. 6697 */ 6698 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6699 /* DFS event found, initiate channel change */ 6700 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6701 } 6702 } 6703 6704 MODULE_VERSION(if_ath, 1); 6705 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6706