1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_beacon.h> 112 #include <dev/ath/if_athdfs.h> 113 114 #ifdef ATH_TX99_DIAG 115 #include <dev/ath/ath_tx99/ath_tx99.h> 116 #endif 117 118 #define ATH_KTR_INTR KTR_SPARE4 119 #define ATH_KTR_ERR KTR_SPARE3 120 121 /* 122 * ATH_BCBUF determines the number of vap's that can transmit 123 * beacons and also (currently) the number of vap's that can 124 * have unique mac addresses/bssid. When staggering beacons 125 * 4 is probably a good max as otherwise the beacons become 126 * very closely spaced and there is limited time for cab q traffic 127 * to go out. You can burst beacons instead but that is not good 128 * for stations in power save and at some point you really want 129 * another radio (and channel). 130 * 131 * The limit on the number of mac addresses is tied to our use of 132 * the U/L bit and tracking addresses in a byte; it would be 133 * worthwhile to allow more for applications like proxy sta. 134 */ 135 CTASSERT(ATH_BCBUF <= 8); 136 137 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 138 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 139 const uint8_t [IEEE80211_ADDR_LEN], 140 const uint8_t [IEEE80211_ADDR_LEN]); 141 static void ath_vap_delete(struct ieee80211vap *); 142 static void ath_init(void *); 143 static void ath_stop_locked(struct ifnet *); 144 static void ath_stop(struct ifnet *); 145 static int ath_reset_vap(struct ieee80211vap *, u_long); 146 static int ath_media_change(struct ifnet *); 147 static void ath_watchdog(void *); 148 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 149 static void ath_fatal_proc(void *, int); 150 static void ath_bmiss_vap(struct ieee80211vap *); 151 static void ath_bmiss_proc(void *, int); 152 static void ath_key_update_begin(struct ieee80211vap *); 153 static void ath_key_update_end(struct ieee80211vap *); 154 static void ath_update_mcast(struct ifnet *); 155 static void ath_update_promisc(struct ifnet *); 156 static void ath_updateslot(struct ifnet *); 157 static void ath_bstuck_proc(void *, int); 158 static void ath_reset_proc(void *, int); 159 static void ath_descdma_cleanup(struct ath_softc *sc, 160 struct ath_descdma *, ath_bufhead *); 161 static int ath_desc_alloc(struct ath_softc *); 162 static void ath_desc_free(struct ath_softc *); 163 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 164 const uint8_t [IEEE80211_ADDR_LEN]); 165 static void ath_node_cleanup(struct ieee80211_node *); 166 static void ath_node_free(struct ieee80211_node *); 167 static void ath_node_getsignal(const struct ieee80211_node *, 168 int8_t *, int8_t *); 169 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 170 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 171 static int ath_tx_setup(struct ath_softc *, int, int); 172 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 173 static void ath_tx_cleanup(struct ath_softc *); 174 static void ath_tx_proc_q0(void *, int); 175 static void ath_tx_proc_q0123(void *, int); 176 static void ath_tx_proc(void *, int); 177 static void ath_txq_sched_tasklet(void *, int); 178 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 179 static void ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type); 180 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 181 static void ath_scan_start(struct ieee80211com *); 182 static void ath_scan_end(struct ieee80211com *); 183 static void ath_set_channel(struct ieee80211com *); 184 #ifdef ATH_ENABLE_11N 185 static void ath_update_chw(struct ieee80211com *); 186 #endif /* ATH_ENABLE_11N */ 187 static void ath_calibrate(void *); 188 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 189 static void ath_setup_stationkey(struct ieee80211_node *); 190 static void ath_newassoc(struct ieee80211_node *, int); 191 static int ath_setregdomain(struct ieee80211com *, 192 struct ieee80211_regdomain *, int, 193 struct ieee80211_channel []); 194 static void ath_getradiocaps(struct ieee80211com *, int, int *, 195 struct ieee80211_channel []); 196 static int ath_getchannels(struct ath_softc *); 197 198 static int ath_rate_setup(struct ath_softc *, u_int mode); 199 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 200 201 static void ath_announce(struct ath_softc *); 202 203 static void ath_dfs_tasklet(void *, int); 204 205 #ifdef IEEE80211_SUPPORT_TDMA 206 #include <dev/ath/if_ath_tdma.h> 207 #endif 208 209 #if 0 210 #define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */ 211 #define TDMA_LPF_LEN 6 212 #define TDMA_DUMMY_MARKER 0x127 213 #define TDMA_EP_MUL(x, mul) ((x) * (mul)) 214 #define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER)) 215 #define TDMA_LPF(x, y, len) \ 216 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y)) 217 #define TDMA_SAMPLE(x, y) do { \ 218 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \ 219 } while (0) 220 #define TDMA_EP_RND(x,mul) \ 221 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 222 #define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER) 223 #endif /* IEEE80211_SUPPORT_TDMA */ 224 225 SYSCTL_DECL(_hw_ath); 226 227 /* XXX validate sysctl values */ 228 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 229 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 230 0, "long chip calibration interval (secs)"); 231 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 232 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 233 0, "short chip calibration interval (msecs)"); 234 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 235 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 236 0, "reset chip calibration results (secs)"); 237 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 238 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 239 0, "ANI calibration (msecs)"); 240 241 static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 242 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 243 0, "rx buffers allocated"); 244 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 245 static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 246 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 247 0, "tx buffers allocated"); 248 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 249 250 int ath_bstuck_threshold = 4; /* max missed beacons */ 251 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 252 0, "max missed beacon xmits before chip reset"); 253 254 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 255 256 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 257 #define HAL_MODE_HT40 \ 258 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 259 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 260 int 261 ath_attach(u_int16_t devid, struct ath_softc *sc) 262 { 263 struct ifnet *ifp; 264 struct ieee80211com *ic; 265 struct ath_hal *ah = NULL; 266 HAL_STATUS status; 267 int error = 0, i; 268 u_int wmodes; 269 uint8_t macaddr[IEEE80211_ADDR_LEN]; 270 int rx_chainmask, tx_chainmask; 271 272 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 273 274 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 275 if (ifp == NULL) { 276 device_printf(sc->sc_dev, "can not if_alloc()\n"); 277 error = ENOSPC; 278 goto bad; 279 } 280 ic = ifp->if_l2com; 281 282 /* set these up early for if_printf use */ 283 if_initname(ifp, device_get_name(sc->sc_dev), 284 device_get_unit(sc->sc_dev)); 285 286 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 287 sc->sc_eepromdata, &status); 288 if (ah == NULL) { 289 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 290 status); 291 error = ENXIO; 292 goto bad; 293 } 294 sc->sc_ah = ah; 295 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 296 #ifdef ATH_DEBUG 297 sc->sc_debug = ath_debug; 298 #endif 299 300 /* 301 * Check if the MAC has multi-rate retry support. 302 * We do this by trying to setup a fake extended 303 * descriptor. MAC's that don't have support will 304 * return false w/o doing anything. MAC's that do 305 * support it will return true w/o doing anything. 306 */ 307 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 308 309 /* 310 * Check if the device has hardware counters for PHY 311 * errors. If so we need to enable the MIB interrupt 312 * so we can act on stat triggers. 313 */ 314 if (ath_hal_hwphycounters(ah)) 315 sc->sc_needmib = 1; 316 317 /* 318 * Get the hardware key cache size. 319 */ 320 sc->sc_keymax = ath_hal_keycachesize(ah); 321 if (sc->sc_keymax > ATH_KEYMAX) { 322 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 323 ATH_KEYMAX, sc->sc_keymax); 324 sc->sc_keymax = ATH_KEYMAX; 325 } 326 /* 327 * Reset the key cache since some parts do not 328 * reset the contents on initial power up. 329 */ 330 for (i = 0; i < sc->sc_keymax; i++) 331 ath_hal_keyreset(ah, i); 332 333 /* 334 * Collect the default channel list. 335 */ 336 error = ath_getchannels(sc); 337 if (error != 0) 338 goto bad; 339 340 /* 341 * Setup rate tables for all potential media types. 342 */ 343 ath_rate_setup(sc, IEEE80211_MODE_11A); 344 ath_rate_setup(sc, IEEE80211_MODE_11B); 345 ath_rate_setup(sc, IEEE80211_MODE_11G); 346 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 347 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 348 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 349 ath_rate_setup(sc, IEEE80211_MODE_11NA); 350 ath_rate_setup(sc, IEEE80211_MODE_11NG); 351 ath_rate_setup(sc, IEEE80211_MODE_HALF); 352 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 353 354 /* NB: setup here so ath_rate_update is happy */ 355 ath_setcurmode(sc, IEEE80211_MODE_11A); 356 357 /* 358 * Allocate tx+rx descriptors and populate the lists. 359 */ 360 error = ath_desc_alloc(sc); 361 if (error != 0) { 362 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 363 goto bad; 364 } 365 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 366 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 367 368 ATH_TXBUF_LOCK_INIT(sc); 369 370 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 371 taskqueue_thread_enqueue, &sc->sc_tq); 372 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 373 "%s taskq", ifp->if_xname); 374 375 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc); 376 TASK_INIT(&sc->sc_txstarttask, 0, ath_tx_tasklet, sc); 377 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 378 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 379 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 380 TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc); 381 TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc); 382 383 /* 384 * Allocate hardware transmit queues: one queue for 385 * beacon frames and one data queue for each QoS 386 * priority. Note that the hal handles resetting 387 * these queues at the needed time. 388 * 389 * XXX PS-Poll 390 */ 391 sc->sc_bhalq = ath_beaconq_setup(ah); 392 if (sc->sc_bhalq == (u_int) -1) { 393 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 394 error = EIO; 395 goto bad2; 396 } 397 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 398 if (sc->sc_cabq == NULL) { 399 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 400 error = EIO; 401 goto bad2; 402 } 403 /* NB: insure BK queue is the lowest priority h/w queue */ 404 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 405 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 406 ieee80211_wme_acnames[WME_AC_BK]); 407 error = EIO; 408 goto bad2; 409 } 410 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 411 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 412 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 413 /* 414 * Not enough hardware tx queues to properly do WME; 415 * just punt and assign them all to the same h/w queue. 416 * We could do a better job of this if, for example, 417 * we allocate queues when we switch from station to 418 * AP mode. 419 */ 420 if (sc->sc_ac2q[WME_AC_VI] != NULL) 421 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 422 if (sc->sc_ac2q[WME_AC_BE] != NULL) 423 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 424 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 425 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 426 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 427 } 428 429 /* 430 * Special case certain configurations. Note the 431 * CAB queue is handled by these specially so don't 432 * include them when checking the txq setup mask. 433 */ 434 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 435 case 0x01: 436 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 437 break; 438 case 0x0f: 439 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 440 break; 441 default: 442 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 443 break; 444 } 445 446 /* 447 * Setup rate control. Some rate control modules 448 * call back to change the anntena state so expose 449 * the necessary entry points. 450 * XXX maybe belongs in struct ath_ratectrl? 451 */ 452 sc->sc_setdefantenna = ath_setdefantenna; 453 sc->sc_rc = ath_rate_attach(sc); 454 if (sc->sc_rc == NULL) { 455 error = EIO; 456 goto bad2; 457 } 458 459 /* Attach DFS module */ 460 if (! ath_dfs_attach(sc)) { 461 device_printf(sc->sc_dev, 462 "%s: unable to attach DFS\n", __func__); 463 error = EIO; 464 goto bad2; 465 } 466 467 /* Start DFS processing tasklet */ 468 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 469 470 /* Configure LED state */ 471 sc->sc_blinking = 0; 472 sc->sc_ledstate = 1; 473 sc->sc_ledon = 0; /* low true */ 474 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 475 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 476 477 /* 478 * Don't setup hardware-based blinking. 479 * 480 * Although some NICs may have this configured in the 481 * default reset register values, the user may wish 482 * to alter which pins have which function. 483 * 484 * The reference driver attaches the MAC network LED to GPIO1 and 485 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 486 * NIC has these reversed. 487 */ 488 sc->sc_hardled = (1 == 0); 489 sc->sc_led_net_pin = -1; 490 sc->sc_led_pwr_pin = -1; 491 /* 492 * Auto-enable soft led processing for IBM cards and for 493 * 5211 minipci cards. Users can also manually enable/disable 494 * support with a sysctl. 495 */ 496 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 497 ath_led_config(sc); 498 ath_hal_setledstate(ah, HAL_LED_INIT); 499 500 ifp->if_softc = sc; 501 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 502 ifp->if_start = ath_start; 503 ifp->if_ioctl = ath_ioctl; 504 ifp->if_init = ath_init; 505 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 506 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 507 IFQ_SET_READY(&ifp->if_snd); 508 509 ic->ic_ifp = ifp; 510 /* XXX not right but it's not used anywhere important */ 511 ic->ic_phytype = IEEE80211_T_OFDM; 512 ic->ic_opmode = IEEE80211_M_STA; 513 ic->ic_caps = 514 IEEE80211_C_STA /* station mode */ 515 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 516 | IEEE80211_C_HOSTAP /* hostap mode */ 517 | IEEE80211_C_MONITOR /* monitor mode */ 518 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 519 | IEEE80211_C_WDS /* 4-address traffic works */ 520 | IEEE80211_C_MBSS /* mesh point link mode */ 521 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 522 | IEEE80211_C_SHSLOT /* short slot time supported */ 523 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 524 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 525 | IEEE80211_C_TXFRAG /* handle tx frags */ 526 #ifdef ATH_ENABLE_DFS 527 | IEEE80211_C_DFS /* Enable radar detection */ 528 #endif 529 ; 530 /* 531 * Query the hal to figure out h/w crypto support. 532 */ 533 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 534 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 535 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 536 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 537 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 538 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 539 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 540 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 541 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 542 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 543 /* 544 * Check if h/w does the MIC and/or whether the 545 * separate key cache entries are required to 546 * handle both tx+rx MIC keys. 547 */ 548 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 549 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 550 /* 551 * If the h/w supports storing tx+rx MIC keys 552 * in one cache slot automatically enable use. 553 */ 554 if (ath_hal_hastkipsplit(ah) || 555 !ath_hal_settkipsplit(ah, AH_FALSE)) 556 sc->sc_splitmic = 1; 557 /* 558 * If the h/w can do TKIP MIC together with WME then 559 * we use it; otherwise we force the MIC to be done 560 * in software by the net80211 layer. 561 */ 562 if (ath_hal_haswmetkipmic(ah)) 563 sc->sc_wmetkipmic = 1; 564 } 565 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 566 /* 567 * Check for multicast key search support. 568 */ 569 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 570 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 571 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 572 } 573 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 574 /* 575 * Mark key cache slots associated with global keys 576 * as in use. If we knew TKIP was not to be used we 577 * could leave the +32, +64, and +32+64 slots free. 578 */ 579 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 580 setbit(sc->sc_keymap, i); 581 setbit(sc->sc_keymap, i+64); 582 if (sc->sc_splitmic) { 583 setbit(sc->sc_keymap, i+32); 584 setbit(sc->sc_keymap, i+32+64); 585 } 586 } 587 /* 588 * TPC support can be done either with a global cap or 589 * per-packet support. The latter is not available on 590 * all parts. We're a bit pedantic here as all parts 591 * support a global cap. 592 */ 593 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 594 ic->ic_caps |= IEEE80211_C_TXPMGT; 595 596 /* 597 * Mark WME capability only if we have sufficient 598 * hardware queues to do proper priority scheduling. 599 */ 600 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 601 ic->ic_caps |= IEEE80211_C_WME; 602 /* 603 * Check for misc other capabilities. 604 */ 605 if (ath_hal_hasbursting(ah)) 606 ic->ic_caps |= IEEE80211_C_BURST; 607 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 608 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 609 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 610 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 611 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 612 if (ath_hal_hasfastframes(ah)) 613 ic->ic_caps |= IEEE80211_C_FF; 614 wmodes = ath_hal_getwirelessmodes(ah); 615 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 616 ic->ic_caps |= IEEE80211_C_TURBOP; 617 #ifdef IEEE80211_SUPPORT_TDMA 618 if (ath_hal_macversion(ah) > 0x78) { 619 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 620 ic->ic_tdma_update = ath_tdma_update; 621 } 622 #endif 623 624 /* 625 * TODO: enforce that at least this many frames are available 626 * in the txbuf list before allowing data frames (raw or 627 * otherwise) to be transmitted. 628 */ 629 sc->sc_txq_data_minfree = 10; 630 /* 631 * Leave this as default to maintain legacy behaviour. 632 * Shortening the cabq/mcastq may end up causing some 633 * undesirable behaviour. 634 */ 635 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 636 637 /* 638 * Allow the TX and RX chainmasks to be overridden by 639 * environment variables and/or device.hints. 640 * 641 * This must be done early - before the hardware is 642 * calibrated or before the 802.11n stream calculation 643 * is done. 644 */ 645 if (resource_int_value(device_get_name(sc->sc_dev), 646 device_get_unit(sc->sc_dev), "rx_chainmask", 647 &rx_chainmask) == 0) { 648 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 649 rx_chainmask); 650 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 651 } 652 if (resource_int_value(device_get_name(sc->sc_dev), 653 device_get_unit(sc->sc_dev), "tx_chainmask", 654 &tx_chainmask) == 0) { 655 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 656 tx_chainmask); 657 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 658 } 659 660 /* 661 * The if_ath 11n support is completely not ready for normal use. 662 * Enabling this option will likely break everything and everything. 663 * Don't think of doing that unless you know what you're doing. 664 */ 665 666 #ifdef ATH_ENABLE_11N 667 /* 668 * Query HT capabilities 669 */ 670 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 671 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 672 int rxs, txs; 673 674 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 675 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 676 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 677 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 678 | IEEE80211_HTCAP_MAXAMSDU_3839 679 /* max A-MSDU length */ 680 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 681 ; 682 683 /* 684 * Enable short-GI for HT20 only if the hardware 685 * advertises support. 686 * Notably, anything earlier than the AR9287 doesn't. 687 */ 688 if ((ath_hal_getcapability(ah, 689 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 690 (wmodes & HAL_MODE_HT20)) { 691 device_printf(sc->sc_dev, 692 "[HT] enabling short-GI in 20MHz mode\n"); 693 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 694 } 695 696 if (wmodes & HAL_MODE_HT40) 697 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 698 | IEEE80211_HTCAP_SHORTGI40; 699 700 /* 701 * TX/RX streams need to be taken into account when 702 * negotiating which MCS rates it'll receive and 703 * what MCS rates are available for TX. 704 */ 705 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 706 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 707 708 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 709 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 710 711 ic->ic_txstream = txs; 712 ic->ic_rxstream = rxs; 713 714 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 715 &sc->sc_rts_aggr_limit); 716 if (sc->sc_rts_aggr_limit != (64 * 1024)) 717 device_printf(sc->sc_dev, 718 "[HT] RTS aggregates limited to %d KiB\n", 719 sc->sc_rts_aggr_limit / 1024); 720 721 device_printf(sc->sc_dev, 722 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 723 } 724 #endif 725 726 /* 727 * Check if the hardware requires PCI register serialisation. 728 * Some of the Owl based MACs require this. 729 */ 730 if (mp_ncpus > 1 && 731 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 732 0, NULL) == HAL_OK) { 733 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 734 device_printf(sc->sc_dev, 735 "Enabling register serialisation\n"); 736 } 737 738 /* 739 * Indicate we need the 802.11 header padded to a 740 * 32-bit boundary for 4-address and QoS frames. 741 */ 742 ic->ic_flags |= IEEE80211_F_DATAPAD; 743 744 /* 745 * Query the hal about antenna support. 746 */ 747 sc->sc_defant = ath_hal_getdefantenna(ah); 748 749 /* 750 * Not all chips have the VEOL support we want to 751 * use with IBSS beacons; check here for it. 752 */ 753 sc->sc_hasveol = ath_hal_hasveol(ah); 754 755 /* get mac address from hardware */ 756 ath_hal_getmac(ah, macaddr); 757 if (sc->sc_hasbmask) 758 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 759 760 /* NB: used to size node table key mapping array */ 761 ic->ic_max_keyix = sc->sc_keymax; 762 /* call MI attach routine. */ 763 ieee80211_ifattach(ic, macaddr); 764 ic->ic_setregdomain = ath_setregdomain; 765 ic->ic_getradiocaps = ath_getradiocaps; 766 sc->sc_opmode = HAL_M_STA; 767 768 /* override default methods */ 769 ic->ic_newassoc = ath_newassoc; 770 ic->ic_updateslot = ath_updateslot; 771 ic->ic_wme.wme_update = ath_wme_update; 772 ic->ic_vap_create = ath_vap_create; 773 ic->ic_vap_delete = ath_vap_delete; 774 ic->ic_raw_xmit = ath_raw_xmit; 775 ic->ic_update_mcast = ath_update_mcast; 776 ic->ic_update_promisc = ath_update_promisc; 777 ic->ic_node_alloc = ath_node_alloc; 778 sc->sc_node_free = ic->ic_node_free; 779 ic->ic_node_free = ath_node_free; 780 sc->sc_node_cleanup = ic->ic_node_cleanup; 781 ic->ic_node_cleanup = ath_node_cleanup; 782 ic->ic_node_getsignal = ath_node_getsignal; 783 ic->ic_scan_start = ath_scan_start; 784 ic->ic_scan_end = ath_scan_end; 785 ic->ic_set_channel = ath_set_channel; 786 #ifdef ATH_ENABLE_11N 787 /* 802.11n specific - but just override anyway */ 788 sc->sc_addba_request = ic->ic_addba_request; 789 sc->sc_addba_response = ic->ic_addba_response; 790 sc->sc_addba_stop = ic->ic_addba_stop; 791 sc->sc_bar_response = ic->ic_bar_response; 792 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 793 794 ic->ic_addba_request = ath_addba_request; 795 ic->ic_addba_response = ath_addba_response; 796 ic->ic_addba_response_timeout = ath_addba_response_timeout; 797 ic->ic_addba_stop = ath_addba_stop; 798 ic->ic_bar_response = ath_bar_response; 799 800 ic->ic_update_chw = ath_update_chw; 801 #endif /* ATH_ENABLE_11N */ 802 803 ieee80211_radiotap_attach(ic, 804 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 805 ATH_TX_RADIOTAP_PRESENT, 806 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 807 ATH_RX_RADIOTAP_PRESENT); 808 809 /* 810 * Setup dynamic sysctl's now that country code and 811 * regdomain are available from the hal. 812 */ 813 ath_sysctlattach(sc); 814 ath_sysctl_stats_attach(sc); 815 ath_sysctl_hal_attach(sc); 816 817 if (bootverbose) 818 ieee80211_announce(ic); 819 ath_announce(sc); 820 return 0; 821 bad2: 822 ath_tx_cleanup(sc); 823 ath_desc_free(sc); 824 bad: 825 if (ah) 826 ath_hal_detach(ah); 827 if (ifp != NULL) 828 if_free(ifp); 829 sc->sc_invalid = 1; 830 return error; 831 } 832 833 int 834 ath_detach(struct ath_softc *sc) 835 { 836 struct ifnet *ifp = sc->sc_ifp; 837 838 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 839 __func__, ifp->if_flags); 840 841 /* 842 * NB: the order of these is important: 843 * o stop the chip so no more interrupts will fire 844 * o call the 802.11 layer before detaching the hal to 845 * insure callbacks into the driver to delete global 846 * key cache entries can be handled 847 * o free the taskqueue which drains any pending tasks 848 * o reclaim the tx queue data structures after calling 849 * the 802.11 layer as we'll get called back to reclaim 850 * node state and potentially want to use them 851 * o to cleanup the tx queues the hal is called, so detach 852 * it last 853 * Other than that, it's straightforward... 854 */ 855 ath_stop(ifp); 856 ieee80211_ifdetach(ifp->if_l2com); 857 taskqueue_free(sc->sc_tq); 858 #ifdef ATH_TX99_DIAG 859 if (sc->sc_tx99 != NULL) 860 sc->sc_tx99->detach(sc->sc_tx99); 861 #endif 862 ath_rate_detach(sc->sc_rc); 863 864 ath_dfs_detach(sc); 865 ath_desc_free(sc); 866 ath_tx_cleanup(sc); 867 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 868 if_free(ifp); 869 870 return 0; 871 } 872 873 /* 874 * MAC address handling for multiple BSS on the same radio. 875 * The first vap uses the MAC address from the EEPROM. For 876 * subsequent vap's we set the U/L bit (bit 1) in the MAC 877 * address and use the next six bits as an index. 878 */ 879 static void 880 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 881 { 882 int i; 883 884 if (clone && sc->sc_hasbmask) { 885 /* NB: we only do this if h/w supports multiple bssid */ 886 for (i = 0; i < 8; i++) 887 if ((sc->sc_bssidmask & (1<<i)) == 0) 888 break; 889 if (i != 0) 890 mac[0] |= (i << 2)|0x2; 891 } else 892 i = 0; 893 sc->sc_bssidmask |= 1<<i; 894 sc->sc_hwbssidmask[0] &= ~mac[0]; 895 if (i == 0) 896 sc->sc_nbssid0++; 897 } 898 899 static void 900 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 901 { 902 int i = mac[0] >> 2; 903 uint8_t mask; 904 905 if (i != 0 || --sc->sc_nbssid0 == 0) { 906 sc->sc_bssidmask &= ~(1<<i); 907 /* recalculate bssid mask from remaining addresses */ 908 mask = 0xff; 909 for (i = 1; i < 8; i++) 910 if (sc->sc_bssidmask & (1<<i)) 911 mask &= ~((i<<2)|0x2); 912 sc->sc_hwbssidmask[0] |= mask; 913 } 914 } 915 916 /* 917 * Assign a beacon xmit slot. We try to space out 918 * assignments so when beacons are staggered the 919 * traffic coming out of the cab q has maximal time 920 * to go out before the next beacon is scheduled. 921 */ 922 static int 923 assign_bslot(struct ath_softc *sc) 924 { 925 u_int slot, free; 926 927 free = 0; 928 for (slot = 0; slot < ATH_BCBUF; slot++) 929 if (sc->sc_bslot[slot] == NULL) { 930 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 931 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 932 return slot; 933 free = slot; 934 /* NB: keep looking for a double slot */ 935 } 936 return free; 937 } 938 939 static struct ieee80211vap * 940 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 941 enum ieee80211_opmode opmode, int flags, 942 const uint8_t bssid[IEEE80211_ADDR_LEN], 943 const uint8_t mac0[IEEE80211_ADDR_LEN]) 944 { 945 struct ath_softc *sc = ic->ic_ifp->if_softc; 946 struct ath_vap *avp; 947 struct ieee80211vap *vap; 948 uint8_t mac[IEEE80211_ADDR_LEN]; 949 int needbeacon, error; 950 enum ieee80211_opmode ic_opmode; 951 952 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 953 M_80211_VAP, M_WAITOK | M_ZERO); 954 needbeacon = 0; 955 IEEE80211_ADDR_COPY(mac, mac0); 956 957 ATH_LOCK(sc); 958 ic_opmode = opmode; /* default to opmode of new vap */ 959 switch (opmode) { 960 case IEEE80211_M_STA: 961 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 962 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 963 goto bad; 964 } 965 if (sc->sc_nvaps) { 966 /* 967 * With multiple vaps we must fall back 968 * to s/w beacon miss handling. 969 */ 970 flags |= IEEE80211_CLONE_NOBEACONS; 971 } 972 if (flags & IEEE80211_CLONE_NOBEACONS) { 973 /* 974 * Station mode w/o beacons are implemented w/ AP mode. 975 */ 976 ic_opmode = IEEE80211_M_HOSTAP; 977 } 978 break; 979 case IEEE80211_M_IBSS: 980 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 981 device_printf(sc->sc_dev, 982 "only 1 ibss vap supported\n"); 983 goto bad; 984 } 985 needbeacon = 1; 986 break; 987 case IEEE80211_M_AHDEMO: 988 #ifdef IEEE80211_SUPPORT_TDMA 989 if (flags & IEEE80211_CLONE_TDMA) { 990 if (sc->sc_nvaps != 0) { 991 device_printf(sc->sc_dev, 992 "only 1 tdma vap supported\n"); 993 goto bad; 994 } 995 needbeacon = 1; 996 flags |= IEEE80211_CLONE_NOBEACONS; 997 } 998 /* fall thru... */ 999 #endif 1000 case IEEE80211_M_MONITOR: 1001 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1002 /* 1003 * Adopt existing mode. Adding a monitor or ahdemo 1004 * vap to an existing configuration is of dubious 1005 * value but should be ok. 1006 */ 1007 /* XXX not right for monitor mode */ 1008 ic_opmode = ic->ic_opmode; 1009 } 1010 break; 1011 case IEEE80211_M_HOSTAP: 1012 case IEEE80211_M_MBSS: 1013 needbeacon = 1; 1014 break; 1015 case IEEE80211_M_WDS: 1016 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1017 device_printf(sc->sc_dev, 1018 "wds not supported in sta mode\n"); 1019 goto bad; 1020 } 1021 /* 1022 * Silently remove any request for a unique 1023 * bssid; WDS vap's always share the local 1024 * mac address. 1025 */ 1026 flags &= ~IEEE80211_CLONE_BSSID; 1027 if (sc->sc_nvaps == 0) 1028 ic_opmode = IEEE80211_M_HOSTAP; 1029 else 1030 ic_opmode = ic->ic_opmode; 1031 break; 1032 default: 1033 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1034 goto bad; 1035 } 1036 /* 1037 * Check that a beacon buffer is available; the code below assumes it. 1038 */ 1039 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1040 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1041 goto bad; 1042 } 1043 1044 /* STA, AHDEMO? */ 1045 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1046 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1047 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1048 } 1049 1050 vap = &avp->av_vap; 1051 /* XXX can't hold mutex across if_alloc */ 1052 ATH_UNLOCK(sc); 1053 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1054 bssid, mac); 1055 ATH_LOCK(sc); 1056 if (error != 0) { 1057 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1058 __func__, error); 1059 goto bad2; 1060 } 1061 1062 /* h/w crypto support */ 1063 vap->iv_key_alloc = ath_key_alloc; 1064 vap->iv_key_delete = ath_key_delete; 1065 vap->iv_key_set = ath_key_set; 1066 vap->iv_key_update_begin = ath_key_update_begin; 1067 vap->iv_key_update_end = ath_key_update_end; 1068 1069 /* override various methods */ 1070 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1071 vap->iv_recv_mgmt = ath_recv_mgmt; 1072 vap->iv_reset = ath_reset_vap; 1073 vap->iv_update_beacon = ath_beacon_update; 1074 avp->av_newstate = vap->iv_newstate; 1075 vap->iv_newstate = ath_newstate; 1076 avp->av_bmiss = vap->iv_bmiss; 1077 vap->iv_bmiss = ath_bmiss_vap; 1078 1079 /* Set default parameters */ 1080 1081 /* 1082 * Anything earlier than some AR9300 series MACs don't 1083 * support a smaller MPDU density. 1084 */ 1085 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1086 /* 1087 * All NICs can handle the maximum size, however 1088 * AR5416 based MACs can only TX aggregates w/ RTS 1089 * protection when the total aggregate size is <= 8k. 1090 * However, for now that's enforced by the TX path. 1091 */ 1092 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1093 1094 avp->av_bslot = -1; 1095 if (needbeacon) { 1096 /* 1097 * Allocate beacon state and setup the q for buffered 1098 * multicast frames. We know a beacon buffer is 1099 * available because we checked above. 1100 */ 1101 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1102 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1103 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1104 /* 1105 * Assign the vap to a beacon xmit slot. As above 1106 * this cannot fail to find a free one. 1107 */ 1108 avp->av_bslot = assign_bslot(sc); 1109 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1110 ("beacon slot %u not empty", avp->av_bslot)); 1111 sc->sc_bslot[avp->av_bslot] = vap; 1112 sc->sc_nbcnvaps++; 1113 } 1114 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1115 /* 1116 * Multple vaps are to transmit beacons and we 1117 * have h/w support for TSF adjusting; enable 1118 * use of staggered beacons. 1119 */ 1120 sc->sc_stagbeacons = 1; 1121 } 1122 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1123 } 1124 1125 ic->ic_opmode = ic_opmode; 1126 if (opmode != IEEE80211_M_WDS) { 1127 sc->sc_nvaps++; 1128 if (opmode == IEEE80211_M_STA) 1129 sc->sc_nstavaps++; 1130 if (opmode == IEEE80211_M_MBSS) 1131 sc->sc_nmeshvaps++; 1132 } 1133 switch (ic_opmode) { 1134 case IEEE80211_M_IBSS: 1135 sc->sc_opmode = HAL_M_IBSS; 1136 break; 1137 case IEEE80211_M_STA: 1138 sc->sc_opmode = HAL_M_STA; 1139 break; 1140 case IEEE80211_M_AHDEMO: 1141 #ifdef IEEE80211_SUPPORT_TDMA 1142 if (vap->iv_caps & IEEE80211_C_TDMA) { 1143 sc->sc_tdma = 1; 1144 /* NB: disable tsf adjust */ 1145 sc->sc_stagbeacons = 0; 1146 } 1147 /* 1148 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1149 * just ap mode. 1150 */ 1151 /* fall thru... */ 1152 #endif 1153 case IEEE80211_M_HOSTAP: 1154 case IEEE80211_M_MBSS: 1155 sc->sc_opmode = HAL_M_HOSTAP; 1156 break; 1157 case IEEE80211_M_MONITOR: 1158 sc->sc_opmode = HAL_M_MONITOR; 1159 break; 1160 default: 1161 /* XXX should not happen */ 1162 break; 1163 } 1164 if (sc->sc_hastsfadd) { 1165 /* 1166 * Configure whether or not TSF adjust should be done. 1167 */ 1168 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1169 } 1170 if (flags & IEEE80211_CLONE_NOBEACONS) { 1171 /* 1172 * Enable s/w beacon miss handling. 1173 */ 1174 sc->sc_swbmiss = 1; 1175 } 1176 ATH_UNLOCK(sc); 1177 1178 /* complete setup */ 1179 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1180 return vap; 1181 bad2: 1182 reclaim_address(sc, mac); 1183 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1184 bad: 1185 free(avp, M_80211_VAP); 1186 ATH_UNLOCK(sc); 1187 return NULL; 1188 } 1189 1190 static void 1191 ath_vap_delete(struct ieee80211vap *vap) 1192 { 1193 struct ieee80211com *ic = vap->iv_ic; 1194 struct ifnet *ifp = ic->ic_ifp; 1195 struct ath_softc *sc = ifp->if_softc; 1196 struct ath_hal *ah = sc->sc_ah; 1197 struct ath_vap *avp = ATH_VAP(vap); 1198 1199 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1200 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1201 /* 1202 * Quiesce the hardware while we remove the vap. In 1203 * particular we need to reclaim all references to 1204 * the vap state by any frames pending on the tx queues. 1205 */ 1206 ath_hal_intrset(ah, 0); /* disable interrupts */ 1207 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1208 /* XXX Do all frames from all vaps/nodes need draining here? */ 1209 ath_stoprecv(sc, 1); /* stop recv side */ 1210 } 1211 1212 ieee80211_vap_detach(vap); 1213 1214 /* 1215 * XXX Danger Will Robinson! Danger! 1216 * 1217 * Because ieee80211_vap_detach() can queue a frame (the station 1218 * diassociate message?) after we've drained the TXQ and 1219 * flushed the software TXQ, we will end up with a frame queued 1220 * to a node whose vap is about to be freed. 1221 * 1222 * To work around this, flush the hardware/software again. 1223 * This may be racy - the ath task may be running and the packet 1224 * may be being scheduled between sw->hw txq. Tsk. 1225 * 1226 * TODO: figure out why a new node gets allocated somewhere around 1227 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1228 * call!) 1229 */ 1230 1231 ath_draintxq(sc, ATH_RESET_DEFAULT); 1232 1233 ATH_LOCK(sc); 1234 /* 1235 * Reclaim beacon state. Note this must be done before 1236 * the vap instance is reclaimed as we may have a reference 1237 * to it in the buffer for the beacon frame. 1238 */ 1239 if (avp->av_bcbuf != NULL) { 1240 if (avp->av_bslot != -1) { 1241 sc->sc_bslot[avp->av_bslot] = NULL; 1242 sc->sc_nbcnvaps--; 1243 } 1244 ath_beacon_return(sc, avp->av_bcbuf); 1245 avp->av_bcbuf = NULL; 1246 if (sc->sc_nbcnvaps == 0) { 1247 sc->sc_stagbeacons = 0; 1248 if (sc->sc_hastsfadd) 1249 ath_hal_settsfadjust(sc->sc_ah, 0); 1250 } 1251 /* 1252 * Reclaim any pending mcast frames for the vap. 1253 */ 1254 ath_tx_draintxq(sc, &avp->av_mcastq); 1255 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1256 } 1257 /* 1258 * Update bookkeeping. 1259 */ 1260 if (vap->iv_opmode == IEEE80211_M_STA) { 1261 sc->sc_nstavaps--; 1262 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1263 sc->sc_swbmiss = 0; 1264 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1265 vap->iv_opmode == IEEE80211_M_MBSS) { 1266 reclaim_address(sc, vap->iv_myaddr); 1267 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1268 if (vap->iv_opmode == IEEE80211_M_MBSS) 1269 sc->sc_nmeshvaps--; 1270 } 1271 if (vap->iv_opmode != IEEE80211_M_WDS) 1272 sc->sc_nvaps--; 1273 #ifdef IEEE80211_SUPPORT_TDMA 1274 /* TDMA operation ceases when the last vap is destroyed */ 1275 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1276 sc->sc_tdma = 0; 1277 sc->sc_swbmiss = 0; 1278 } 1279 #endif 1280 free(avp, M_80211_VAP); 1281 1282 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1283 /* 1284 * Restart rx+tx machines if still running (RUNNING will 1285 * be reset if we just destroyed the last vap). 1286 */ 1287 if (ath_startrecv(sc) != 0) 1288 if_printf(ifp, "%s: unable to restart recv logic\n", 1289 __func__); 1290 if (sc->sc_beacons) { /* restart beacons */ 1291 #ifdef IEEE80211_SUPPORT_TDMA 1292 if (sc->sc_tdma) 1293 ath_tdma_config(sc, NULL); 1294 else 1295 #endif 1296 ath_beacon_config(sc, NULL); 1297 } 1298 ath_hal_intrset(ah, sc->sc_imask); 1299 } 1300 ATH_UNLOCK(sc); 1301 } 1302 1303 void 1304 ath_suspend(struct ath_softc *sc) 1305 { 1306 struct ifnet *ifp = sc->sc_ifp; 1307 struct ieee80211com *ic = ifp->if_l2com; 1308 1309 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1310 __func__, ifp->if_flags); 1311 1312 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1313 if (ic->ic_opmode == IEEE80211_M_STA) 1314 ath_stop(ifp); 1315 else 1316 ieee80211_suspend_all(ic); 1317 /* 1318 * NB: don't worry about putting the chip in low power 1319 * mode; pci will power off our socket on suspend and 1320 * CardBus detaches the device. 1321 */ 1322 1323 /* 1324 * XXX ensure none of the taskqueues are running 1325 * XXX ensure sc_invalid is 1 1326 * XXX ensure the calibration callout is disabled 1327 */ 1328 1329 /* Disable the PCIe PHY, complete with workarounds */ 1330 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1331 } 1332 1333 /* 1334 * Reset the key cache since some parts do not reset the 1335 * contents on resume. First we clear all entries, then 1336 * re-load keys that the 802.11 layer assumes are setup 1337 * in h/w. 1338 */ 1339 static void 1340 ath_reset_keycache(struct ath_softc *sc) 1341 { 1342 struct ifnet *ifp = sc->sc_ifp; 1343 struct ieee80211com *ic = ifp->if_l2com; 1344 struct ath_hal *ah = sc->sc_ah; 1345 int i; 1346 1347 for (i = 0; i < sc->sc_keymax; i++) 1348 ath_hal_keyreset(ah, i); 1349 ieee80211_crypto_reload_keys(ic); 1350 } 1351 1352 void 1353 ath_resume(struct ath_softc *sc) 1354 { 1355 struct ifnet *ifp = sc->sc_ifp; 1356 struct ieee80211com *ic = ifp->if_l2com; 1357 struct ath_hal *ah = sc->sc_ah; 1358 HAL_STATUS status; 1359 1360 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1361 __func__, ifp->if_flags); 1362 1363 /* Re-enable PCIe, re-enable the PCIe bus */ 1364 ath_hal_enablepcie(ah, 0, 0); 1365 1366 /* 1367 * Must reset the chip before we reload the 1368 * keycache as we were powered down on suspend. 1369 */ 1370 ath_hal_reset(ah, sc->sc_opmode, 1371 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1372 AH_FALSE, &status); 1373 ath_reset_keycache(sc); 1374 1375 /* Let DFS at it in case it's a DFS channel */ 1376 ath_dfs_radar_enable(sc, ic->ic_curchan); 1377 1378 /* Restore the LED configuration */ 1379 ath_led_config(sc); 1380 ath_hal_setledstate(ah, HAL_LED_INIT); 1381 1382 if (sc->sc_resume_up) { 1383 if (ic->ic_opmode == IEEE80211_M_STA) { 1384 ath_init(sc); 1385 ath_hal_setledstate(ah, HAL_LED_RUN); 1386 /* 1387 * Program the beacon registers using the last rx'd 1388 * beacon frame and enable sync on the next beacon 1389 * we see. This should handle the case where we 1390 * wakeup and find the same AP and also the case where 1391 * we wakeup and need to roam. For the latter we 1392 * should get bmiss events that trigger a roam. 1393 */ 1394 ath_beacon_config(sc, NULL); 1395 sc->sc_syncbeacon = 1; 1396 } else 1397 ieee80211_resume_all(ic); 1398 } 1399 1400 /* XXX beacons ? */ 1401 } 1402 1403 void 1404 ath_shutdown(struct ath_softc *sc) 1405 { 1406 struct ifnet *ifp = sc->sc_ifp; 1407 1408 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1409 __func__, ifp->if_flags); 1410 1411 ath_stop(ifp); 1412 /* NB: no point powering down chip as we're about to reboot */ 1413 } 1414 1415 /* 1416 * Interrupt handler. Most of the actual processing is deferred. 1417 */ 1418 void 1419 ath_intr(void *arg) 1420 { 1421 struct ath_softc *sc = arg; 1422 struct ifnet *ifp = sc->sc_ifp; 1423 struct ath_hal *ah = sc->sc_ah; 1424 HAL_INT status = 0; 1425 uint32_t txqs; 1426 1427 /* 1428 * If we're inside a reset path, just print a warning and 1429 * clear the ISR. The reset routine will finish it for us. 1430 */ 1431 ATH_PCU_LOCK(sc); 1432 if (sc->sc_inreset_cnt) { 1433 HAL_INT status; 1434 ath_hal_getisr(ah, &status); /* clear ISR */ 1435 ath_hal_intrset(ah, 0); /* disable further intr's */ 1436 DPRINTF(sc, ATH_DEBUG_ANY, 1437 "%s: in reset, ignoring: status=0x%x\n", 1438 __func__, status); 1439 ATH_PCU_UNLOCK(sc); 1440 return; 1441 } 1442 1443 if (sc->sc_invalid) { 1444 /* 1445 * The hardware is not ready/present, don't touch anything. 1446 * Note this can happen early on if the IRQ is shared. 1447 */ 1448 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1449 ATH_PCU_UNLOCK(sc); 1450 return; 1451 } 1452 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1453 ATH_PCU_UNLOCK(sc); 1454 return; 1455 } 1456 1457 if ((ifp->if_flags & IFF_UP) == 0 || 1458 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1459 HAL_INT status; 1460 1461 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1462 __func__, ifp->if_flags); 1463 ath_hal_getisr(ah, &status); /* clear ISR */ 1464 ath_hal_intrset(ah, 0); /* disable further intr's */ 1465 ATH_PCU_UNLOCK(sc); 1466 return; 1467 } 1468 1469 /* 1470 * Figure out the reason(s) for the interrupt. Note 1471 * that the hal returns a pseudo-ISR that may include 1472 * bits we haven't explicitly enabled so we mask the 1473 * value to insure we only process bits we requested. 1474 */ 1475 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1476 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1477 CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status); 1478 #ifdef ATH_KTR_INTR_DEBUG 1479 CTR5(ATH_KTR_INTR, 1480 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1481 ah->ah_intrstate[0], 1482 ah->ah_intrstate[1], 1483 ah->ah_intrstate[2], 1484 ah->ah_intrstate[3], 1485 ah->ah_intrstate[6]); 1486 #endif 1487 1488 /* Squirrel away SYNC interrupt debugging */ 1489 if (ah->ah_syncstate != 0) { 1490 int i; 1491 for (i = 0; i < 32; i++) 1492 if (ah->ah_syncstate & (i << i)) 1493 sc->sc_intr_stats.sync_intr[i]++; 1494 } 1495 1496 status &= sc->sc_imask; /* discard unasked for bits */ 1497 1498 /* Short-circuit un-handled interrupts */ 1499 if (status == 0x0) { 1500 ATH_PCU_UNLOCK(sc); 1501 return; 1502 } 1503 1504 /* 1505 * Take a note that we're inside the interrupt handler, so 1506 * the reset routines know to wait. 1507 */ 1508 sc->sc_intr_cnt++; 1509 ATH_PCU_UNLOCK(sc); 1510 1511 /* 1512 * Handle the interrupt. We won't run concurrent with the reset 1513 * or channel change routines as they'll wait for sc_intr_cnt 1514 * to be 0 before continuing. 1515 */ 1516 if (status & HAL_INT_FATAL) { 1517 sc->sc_stats.ast_hardware++; 1518 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1519 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1520 } else { 1521 if (status & HAL_INT_SWBA) { 1522 /* 1523 * Software beacon alert--time to send a beacon. 1524 * Handle beacon transmission directly; deferring 1525 * this is too slow to meet timing constraints 1526 * under load. 1527 */ 1528 #ifdef IEEE80211_SUPPORT_TDMA 1529 if (sc->sc_tdma) { 1530 if (sc->sc_tdmaswba == 0) { 1531 struct ieee80211com *ic = ifp->if_l2com; 1532 struct ieee80211vap *vap = 1533 TAILQ_FIRST(&ic->ic_vaps); 1534 ath_tdma_beacon_send(sc, vap); 1535 sc->sc_tdmaswba = 1536 vap->iv_tdma->tdma_bintval; 1537 } else 1538 sc->sc_tdmaswba--; 1539 } else 1540 #endif 1541 { 1542 ath_beacon_proc(sc, 0); 1543 #ifdef IEEE80211_SUPPORT_SUPERG 1544 /* 1545 * Schedule the rx taskq in case there's no 1546 * traffic so any frames held on the staging 1547 * queue are aged and potentially flushed. 1548 */ 1549 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1550 #endif 1551 } 1552 } 1553 if (status & HAL_INT_RXEOL) { 1554 int imask; 1555 CTR0(ATH_KTR_ERR, "ath_intr: RXEOL"); 1556 ATH_PCU_LOCK(sc); 1557 /* 1558 * NB: the hardware should re-read the link when 1559 * RXE bit is written, but it doesn't work at 1560 * least on older hardware revs. 1561 */ 1562 sc->sc_stats.ast_rxeol++; 1563 /* 1564 * Disable RXEOL/RXORN - prevent an interrupt 1565 * storm until the PCU logic can be reset. 1566 * In case the interface is reset some other 1567 * way before "sc_kickpcu" is called, don't 1568 * modify sc_imask - that way if it is reset 1569 * by a call to ath_reset() somehow, the 1570 * interrupt mask will be correctly reprogrammed. 1571 */ 1572 imask = sc->sc_imask; 1573 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1574 ath_hal_intrset(ah, imask); 1575 /* 1576 * Only blank sc_rxlink if we've not yet kicked 1577 * the PCU. 1578 * 1579 * This isn't entirely correct - the correct solution 1580 * would be to have a PCU lock and engage that for 1581 * the duration of the PCU fiddling; which would include 1582 * running the RX process. Otherwise we could end up 1583 * messing up the RX descriptor chain and making the 1584 * RX desc list much shorter. 1585 */ 1586 if (! sc->sc_kickpcu) 1587 sc->sc_rxlink = NULL; 1588 sc->sc_kickpcu = 1; 1589 /* 1590 * Enqueue an RX proc, to handled whatever 1591 * is in the RX queue. 1592 * This will then kick the PCU. 1593 */ 1594 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1595 ATH_PCU_UNLOCK(sc); 1596 } 1597 if (status & HAL_INT_TXURN) { 1598 sc->sc_stats.ast_txurn++; 1599 /* bump tx trigger level */ 1600 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1601 } 1602 if (status & HAL_INT_RX) { 1603 sc->sc_stats.ast_rx_intr++; 1604 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1605 } 1606 if (status & HAL_INT_TX) { 1607 sc->sc_stats.ast_tx_intr++; 1608 /* 1609 * Grab all the currently set bits in the HAL txq bitmap 1610 * and blank them. This is the only place we should be 1611 * doing this. 1612 */ 1613 ATH_PCU_LOCK(sc); 1614 txqs = 0xffffffff; 1615 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1616 sc->sc_txq_active |= txqs; 1617 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1618 ATH_PCU_UNLOCK(sc); 1619 } 1620 if (status & HAL_INT_BMISS) { 1621 sc->sc_stats.ast_bmiss++; 1622 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1623 } 1624 if (status & HAL_INT_GTT) 1625 sc->sc_stats.ast_tx_timeout++; 1626 if (status & HAL_INT_CST) 1627 sc->sc_stats.ast_tx_cst++; 1628 if (status & HAL_INT_MIB) { 1629 sc->sc_stats.ast_mib++; 1630 ATH_PCU_LOCK(sc); 1631 /* 1632 * Disable interrupts until we service the MIB 1633 * interrupt; otherwise it will continue to fire. 1634 */ 1635 ath_hal_intrset(ah, 0); 1636 /* 1637 * Let the hal handle the event. We assume it will 1638 * clear whatever condition caused the interrupt. 1639 */ 1640 ath_hal_mibevent(ah, &sc->sc_halstats); 1641 /* 1642 * Don't reset the interrupt if we've just 1643 * kicked the PCU, or we may get a nested 1644 * RXEOL before the rxproc has had a chance 1645 * to run. 1646 */ 1647 if (sc->sc_kickpcu == 0) 1648 ath_hal_intrset(ah, sc->sc_imask); 1649 ATH_PCU_UNLOCK(sc); 1650 } 1651 if (status & HAL_INT_RXORN) { 1652 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1653 CTR0(ATH_KTR_ERR, "ath_intr: RXORN"); 1654 sc->sc_stats.ast_rxorn++; 1655 } 1656 } 1657 ATH_PCU_LOCK(sc); 1658 sc->sc_intr_cnt--; 1659 ATH_PCU_UNLOCK(sc); 1660 } 1661 1662 static void 1663 ath_fatal_proc(void *arg, int pending) 1664 { 1665 struct ath_softc *sc = arg; 1666 struct ifnet *ifp = sc->sc_ifp; 1667 u_int32_t *state; 1668 u_int32_t len; 1669 void *sp; 1670 1671 if_printf(ifp, "hardware error; resetting\n"); 1672 /* 1673 * Fatal errors are unrecoverable. Typically these 1674 * are caused by DMA errors. Collect h/w state from 1675 * the hal so we can diagnose what's going on. 1676 */ 1677 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1678 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1679 state = sp; 1680 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1681 state[0], state[1] , state[2], state[3], 1682 state[4], state[5]); 1683 } 1684 ath_reset(ifp, ATH_RESET_NOLOSS); 1685 } 1686 1687 static void 1688 ath_bmiss_vap(struct ieee80211vap *vap) 1689 { 1690 /* 1691 * Workaround phantom bmiss interrupts by sanity-checking 1692 * the time of our last rx'd frame. If it is within the 1693 * beacon miss interval then ignore the interrupt. If it's 1694 * truly a bmiss we'll get another interrupt soon and that'll 1695 * be dispatched up for processing. Note this applies only 1696 * for h/w beacon miss events. 1697 */ 1698 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1699 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1700 struct ath_softc *sc = ifp->if_softc; 1701 u_int64_t lastrx = sc->sc_lastrx; 1702 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1703 /* XXX should take a locked ref to iv_bss */ 1704 u_int bmisstimeout = 1705 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1706 1707 DPRINTF(sc, ATH_DEBUG_BEACON, 1708 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1709 __func__, (unsigned long long) tsf, 1710 (unsigned long long)(tsf - lastrx), 1711 (unsigned long long) lastrx, bmisstimeout); 1712 1713 if (tsf - lastrx <= bmisstimeout) { 1714 sc->sc_stats.ast_bmiss_phantom++; 1715 return; 1716 } 1717 } 1718 ATH_VAP(vap)->av_bmiss(vap); 1719 } 1720 1721 static int 1722 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1723 { 1724 uint32_t rsize; 1725 void *sp; 1726 1727 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1728 return 0; 1729 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1730 *hangs = *(uint32_t *)sp; 1731 return 1; 1732 } 1733 1734 static void 1735 ath_bmiss_proc(void *arg, int pending) 1736 { 1737 struct ath_softc *sc = arg; 1738 struct ifnet *ifp = sc->sc_ifp; 1739 uint32_t hangs; 1740 1741 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1742 1743 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1744 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1745 ath_reset(ifp, ATH_RESET_NOLOSS); 1746 } else 1747 ieee80211_beacon_miss(ifp->if_l2com); 1748 } 1749 1750 /* 1751 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1752 * calcs together with WME. If necessary disable the crypto 1753 * hardware and mark the 802.11 state so keys will be setup 1754 * with the MIC work done in software. 1755 */ 1756 static void 1757 ath_settkipmic(struct ath_softc *sc) 1758 { 1759 struct ifnet *ifp = sc->sc_ifp; 1760 struct ieee80211com *ic = ifp->if_l2com; 1761 1762 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1763 if (ic->ic_flags & IEEE80211_F_WME) { 1764 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1765 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1766 } else { 1767 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1768 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1769 } 1770 } 1771 } 1772 1773 static void 1774 ath_init(void *arg) 1775 { 1776 struct ath_softc *sc = (struct ath_softc *) arg; 1777 struct ifnet *ifp = sc->sc_ifp; 1778 struct ieee80211com *ic = ifp->if_l2com; 1779 struct ath_hal *ah = sc->sc_ah; 1780 HAL_STATUS status; 1781 1782 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1783 __func__, ifp->if_flags); 1784 1785 ATH_LOCK(sc); 1786 /* 1787 * Stop anything previously setup. This is safe 1788 * whether this is the first time through or not. 1789 */ 1790 ath_stop_locked(ifp); 1791 1792 /* 1793 * The basic interface to setting the hardware in a good 1794 * state is ``reset''. On return the hardware is known to 1795 * be powered up and with interrupts disabled. This must 1796 * be followed by initialization of the appropriate bits 1797 * and then setup of the interrupt mask. 1798 */ 1799 ath_settkipmic(sc); 1800 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1801 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1802 status); 1803 ATH_UNLOCK(sc); 1804 return; 1805 } 1806 ath_chan_change(sc, ic->ic_curchan); 1807 1808 /* Let DFS at it in case it's a DFS channel */ 1809 ath_dfs_radar_enable(sc, ic->ic_curchan); 1810 1811 /* 1812 * Likewise this is set during reset so update 1813 * state cached in the driver. 1814 */ 1815 sc->sc_diversity = ath_hal_getdiversity(ah); 1816 sc->sc_lastlongcal = 0; 1817 sc->sc_resetcal = 1; 1818 sc->sc_lastcalreset = 0; 1819 sc->sc_lastani = 0; 1820 sc->sc_lastshortcal = 0; 1821 sc->sc_doresetcal = AH_FALSE; 1822 /* 1823 * Beacon timers were cleared here; give ath_newstate() 1824 * a hint that the beacon timers should be poked when 1825 * things transition to the RUN state. 1826 */ 1827 sc->sc_beacons = 0; 1828 1829 /* 1830 * Initial aggregation settings. 1831 */ 1832 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 1833 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1834 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1835 1836 /* 1837 * Setup the hardware after reset: the key cache 1838 * is filled as needed and the receive engine is 1839 * set going. Frame transmit is handled entirely 1840 * in the frame output path; there's nothing to do 1841 * here except setup the interrupt mask. 1842 */ 1843 if (ath_startrecv(sc) != 0) { 1844 if_printf(ifp, "unable to start recv logic\n"); 1845 ATH_UNLOCK(sc); 1846 return; 1847 } 1848 1849 /* 1850 * Enable interrupts. 1851 */ 1852 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1853 | HAL_INT_RXEOL | HAL_INT_RXORN 1854 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1855 /* 1856 * Enable MIB interrupts when there are hardware phy counters. 1857 * Note we only do this (at the moment) for station mode. 1858 */ 1859 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1860 sc->sc_imask |= HAL_INT_MIB; 1861 1862 /* Enable global TX timeout and carrier sense timeout if available */ 1863 if (ath_hal_gtxto_supported(ah)) 1864 sc->sc_imask |= HAL_INT_GTT; 1865 1866 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1867 __func__, sc->sc_imask); 1868 1869 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1870 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1871 ath_hal_intrset(ah, sc->sc_imask); 1872 1873 ATH_UNLOCK(sc); 1874 1875 #ifdef ATH_TX99_DIAG 1876 if (sc->sc_tx99 != NULL) 1877 sc->sc_tx99->start(sc->sc_tx99); 1878 else 1879 #endif 1880 ieee80211_start_all(ic); /* start all vap's */ 1881 } 1882 1883 static void 1884 ath_stop_locked(struct ifnet *ifp) 1885 { 1886 struct ath_softc *sc = ifp->if_softc; 1887 struct ath_hal *ah = sc->sc_ah; 1888 1889 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1890 __func__, sc->sc_invalid, ifp->if_flags); 1891 1892 ATH_LOCK_ASSERT(sc); 1893 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1894 /* 1895 * Shutdown the hardware and driver: 1896 * reset 802.11 state machine 1897 * turn off timers 1898 * disable interrupts 1899 * turn off the radio 1900 * clear transmit machinery 1901 * clear receive machinery 1902 * drain and release tx queues 1903 * reclaim beacon resources 1904 * power down hardware 1905 * 1906 * Note that some of this work is not possible if the 1907 * hardware is gone (invalid). 1908 */ 1909 #ifdef ATH_TX99_DIAG 1910 if (sc->sc_tx99 != NULL) 1911 sc->sc_tx99->stop(sc->sc_tx99); 1912 #endif 1913 callout_stop(&sc->sc_wd_ch); 1914 sc->sc_wd_timer = 0; 1915 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1916 if (!sc->sc_invalid) { 1917 if (sc->sc_softled) { 1918 callout_stop(&sc->sc_ledtimer); 1919 ath_hal_gpioset(ah, sc->sc_ledpin, 1920 !sc->sc_ledon); 1921 sc->sc_blinking = 0; 1922 } 1923 ath_hal_intrset(ah, 0); 1924 } 1925 ath_draintxq(sc, ATH_RESET_DEFAULT); 1926 if (!sc->sc_invalid) { 1927 ath_stoprecv(sc, 1); 1928 ath_hal_phydisable(ah); 1929 } else 1930 sc->sc_rxlink = NULL; 1931 ath_beacon_free(sc); /* XXX not needed */ 1932 } 1933 } 1934 1935 #define MAX_TXRX_ITERATIONS 1000 1936 static void 1937 ath_txrx_stop_locked(struct ath_softc *sc) 1938 { 1939 int i = MAX_TXRX_ITERATIONS; 1940 1941 ATH_UNLOCK_ASSERT(sc); 1942 ATH_PCU_LOCK_ASSERT(sc); 1943 1944 /* 1945 * Sleep until all the pending operations have completed. 1946 * 1947 * The caller must ensure that reset has been incremented 1948 * or the pending operations may continue being queued. 1949 */ 1950 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 1951 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 1952 if (i <= 0) 1953 break; 1954 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 1955 i--; 1956 } 1957 1958 if (i <= 0) 1959 device_printf(sc->sc_dev, 1960 "%s: didn't finish after %d iterations\n", 1961 __func__, MAX_TXRX_ITERATIONS); 1962 } 1963 #undef MAX_TXRX_ITERATIONS 1964 1965 #if 0 1966 static void 1967 ath_txrx_stop(struct ath_softc *sc) 1968 { 1969 ATH_UNLOCK_ASSERT(sc); 1970 ATH_PCU_UNLOCK_ASSERT(sc); 1971 1972 ATH_PCU_LOCK(sc); 1973 ath_txrx_stop_locked(sc); 1974 ATH_PCU_UNLOCK(sc); 1975 } 1976 #endif 1977 1978 static void 1979 ath_txrx_start(struct ath_softc *sc) 1980 { 1981 1982 taskqueue_unblock(sc->sc_tq); 1983 } 1984 1985 /* 1986 * Grab the reset lock, and wait around until noone else 1987 * is trying to do anything with it. 1988 * 1989 * This is totally horrible but we can't hold this lock for 1990 * long enough to do TX/RX or we end up with net80211/ip stack 1991 * LORs and eventual deadlock. 1992 * 1993 * "dowait" signals whether to spin, waiting for the reset 1994 * lock count to reach 0. This should (for now) only be used 1995 * during the reset path, as the rest of the code may not 1996 * be locking-reentrant enough to behave correctly. 1997 * 1998 * Another, cleaner way should be found to serialise all of 1999 * these operations. 2000 */ 2001 #define MAX_RESET_ITERATIONS 10 2002 static int 2003 ath_reset_grablock(struct ath_softc *sc, int dowait) 2004 { 2005 int w = 0; 2006 int i = MAX_RESET_ITERATIONS; 2007 2008 ATH_PCU_LOCK_ASSERT(sc); 2009 do { 2010 if (sc->sc_inreset_cnt == 0) { 2011 w = 1; 2012 break; 2013 } 2014 if (dowait == 0) { 2015 w = 0; 2016 break; 2017 } 2018 ATH_PCU_UNLOCK(sc); 2019 pause("ath_reset_grablock", 1); 2020 i--; 2021 ATH_PCU_LOCK(sc); 2022 } while (i > 0); 2023 2024 /* 2025 * We always increment the refcounter, regardless 2026 * of whether we succeeded to get it in an exclusive 2027 * way. 2028 */ 2029 sc->sc_inreset_cnt++; 2030 2031 if (i <= 0) 2032 device_printf(sc->sc_dev, 2033 "%s: didn't finish after %d iterations\n", 2034 __func__, MAX_RESET_ITERATIONS); 2035 2036 if (w == 0) 2037 device_printf(sc->sc_dev, 2038 "%s: warning, recursive reset path!\n", 2039 __func__); 2040 2041 return w; 2042 } 2043 #undef MAX_RESET_ITERATIONS 2044 2045 /* 2046 * XXX TODO: write ath_reset_releaselock 2047 */ 2048 2049 static void 2050 ath_stop(struct ifnet *ifp) 2051 { 2052 struct ath_softc *sc = ifp->if_softc; 2053 2054 ATH_LOCK(sc); 2055 ath_stop_locked(ifp); 2056 ATH_UNLOCK(sc); 2057 } 2058 2059 /* 2060 * Reset the hardware w/o losing operational state. This is 2061 * basically a more efficient way of doing ath_stop, ath_init, 2062 * followed by state transitions to the current 802.11 2063 * operational state. Used to recover from various errors and 2064 * to reset or reload hardware state. 2065 */ 2066 int 2067 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2068 { 2069 struct ath_softc *sc = ifp->if_softc; 2070 struct ieee80211com *ic = ifp->if_l2com; 2071 struct ath_hal *ah = sc->sc_ah; 2072 HAL_STATUS status; 2073 int i; 2074 2075 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2076 2077 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2078 ATH_PCU_UNLOCK_ASSERT(sc); 2079 ATH_UNLOCK_ASSERT(sc); 2080 2081 /* Try to (stop any further TX/RX from occuring */ 2082 taskqueue_block(sc->sc_tq); 2083 2084 ATH_PCU_LOCK(sc); 2085 ath_hal_intrset(ah, 0); /* disable interrupts */ 2086 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2087 if (ath_reset_grablock(sc, 1) == 0) { 2088 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2089 __func__); 2090 } 2091 ATH_PCU_UNLOCK(sc); 2092 2093 /* 2094 * Should now wait for pending TX/RX to complete 2095 * and block future ones from occuring. This needs to be 2096 * done before the TX queue is drained. 2097 */ 2098 ath_draintxq(sc, reset_type); /* stop xmit side */ 2099 2100 /* 2101 * Regardless of whether we're doing a no-loss flush or 2102 * not, stop the PCU and handle what's in the RX queue. 2103 * That way frames aren't dropped which shouldn't be. 2104 */ 2105 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2106 ath_rx_proc(sc, 0); 2107 2108 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2109 /* NB: indicate channel change so we do a full reset */ 2110 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2111 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2112 __func__, status); 2113 sc->sc_diversity = ath_hal_getdiversity(ah); 2114 2115 /* Let DFS at it in case it's a DFS channel */ 2116 ath_dfs_radar_enable(sc, ic->ic_curchan); 2117 2118 if (ath_startrecv(sc) != 0) /* restart recv */ 2119 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2120 /* 2121 * We may be doing a reset in response to an ioctl 2122 * that changes the channel so update any state that 2123 * might change as a result. 2124 */ 2125 ath_chan_change(sc, ic->ic_curchan); 2126 if (sc->sc_beacons) { /* restart beacons */ 2127 #ifdef IEEE80211_SUPPORT_TDMA 2128 if (sc->sc_tdma) 2129 ath_tdma_config(sc, NULL); 2130 else 2131 #endif 2132 ath_beacon_config(sc, NULL); 2133 } 2134 2135 /* 2136 * Release the reset lock and re-enable interrupts here. 2137 * If an interrupt was being processed in ath_intr(), 2138 * it would disable interrupts at this point. So we have 2139 * to atomically enable interrupts and decrement the 2140 * reset counter - this way ath_intr() doesn't end up 2141 * disabling interrupts without a corresponding enable 2142 * in the rest or channel change path. 2143 */ 2144 ATH_PCU_LOCK(sc); 2145 sc->sc_inreset_cnt--; 2146 /* XXX only do this if sc_inreset_cnt == 0? */ 2147 ath_hal_intrset(ah, sc->sc_imask); 2148 ATH_PCU_UNLOCK(sc); 2149 2150 /* 2151 * TX and RX can be started here. If it were started with 2152 * sc_inreset_cnt > 0, the TX and RX path would abort. 2153 * Thus if this is a nested call through the reset or 2154 * channel change code, TX completion will occur but 2155 * RX completion and ath_start / ath_tx_start will not 2156 * run. 2157 */ 2158 2159 /* Restart TX/RX as needed */ 2160 ath_txrx_start(sc); 2161 2162 /* XXX Restart TX completion and pending TX */ 2163 if (reset_type == ATH_RESET_NOLOSS) { 2164 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2165 if (ATH_TXQ_SETUP(sc, i)) { 2166 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2167 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2168 ath_txq_sched(sc, &sc->sc_txq[i]); 2169 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2170 } 2171 } 2172 } 2173 2174 /* 2175 * This may have been set during an ath_start() call which 2176 * set this once it detected a concurrent TX was going on. 2177 * So, clear it. 2178 */ 2179 IF_LOCK(&ifp->if_snd); 2180 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2181 IF_UNLOCK(&ifp->if_snd); 2182 2183 /* Handle any frames in the TX queue */ 2184 /* 2185 * XXX should this be done by the caller, rather than 2186 * ath_reset() ? 2187 */ 2188 ath_start(ifp); /* restart xmit */ 2189 return 0; 2190 } 2191 2192 static int 2193 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2194 { 2195 struct ieee80211com *ic = vap->iv_ic; 2196 struct ifnet *ifp = ic->ic_ifp; 2197 struct ath_softc *sc = ifp->if_softc; 2198 struct ath_hal *ah = sc->sc_ah; 2199 2200 switch (cmd) { 2201 case IEEE80211_IOC_TXPOWER: 2202 /* 2203 * If per-packet TPC is enabled, then we have nothing 2204 * to do; otherwise we need to force the global limit. 2205 * All this can happen directly; no need to reset. 2206 */ 2207 if (!ath_hal_gettpc(ah)) 2208 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2209 return 0; 2210 } 2211 /* XXX? Full or NOLOSS? */ 2212 return ath_reset(ifp, ATH_RESET_FULL); 2213 } 2214 2215 struct ath_buf * 2216 _ath_getbuf_locked(struct ath_softc *sc) 2217 { 2218 struct ath_buf *bf; 2219 2220 ATH_TXBUF_LOCK_ASSERT(sc); 2221 2222 bf = TAILQ_FIRST(&sc->sc_txbuf); 2223 if (bf == NULL) { 2224 sc->sc_stats.ast_tx_getnobuf++; 2225 } else { 2226 if (bf->bf_flags & ATH_BUF_BUSY) { 2227 sc->sc_stats.ast_tx_getbusybuf++; 2228 bf = NULL; 2229 } 2230 } 2231 2232 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) 2233 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2234 else 2235 bf = NULL; 2236 2237 if (bf == NULL) { 2238 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2239 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2240 "out of xmit buffers" : "xmit buffer busy"); 2241 return NULL; 2242 } 2243 2244 /* Valid bf here; clear some basic fields */ 2245 bf->bf_next = NULL; /* XXX just to be sure */ 2246 bf->bf_last = NULL; /* XXX again, just to be sure */ 2247 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2248 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2249 2250 return bf; 2251 } 2252 2253 /* 2254 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2255 * can't be thrown back on the queue as they could still be 2256 * in use by the hardware. 2257 * 2258 * This duplicates the buffer, or returns NULL. 2259 * 2260 * The descriptor is also copied but the link pointers and 2261 * the DMA segments aren't copied; this frame should thus 2262 * be again passed through the descriptor setup/chain routines 2263 * so the link is correct. 2264 * 2265 * The caller must free the buffer using ath_freebuf(). 2266 * 2267 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2268 * XXX in the TX pathway when retries are needed. 2269 * XXX Figure out how to keep some buffers free, or factor the 2270 * XXX number of busy buffers into the xmit path (ath_start()) 2271 * XXX so we don't over-commit. 2272 */ 2273 struct ath_buf * 2274 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2275 { 2276 struct ath_buf *tbf; 2277 2278 tbf = ath_getbuf(sc); 2279 if (tbf == NULL) 2280 return NULL; /* XXX failure? Why? */ 2281 2282 /* Copy basics */ 2283 tbf->bf_next = NULL; 2284 tbf->bf_nseg = bf->bf_nseg; 2285 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2286 tbf->bf_status = bf->bf_status; 2287 tbf->bf_m = bf->bf_m; 2288 tbf->bf_node = bf->bf_node; 2289 /* will be setup by the chain/setup function */ 2290 tbf->bf_lastds = NULL; 2291 /* for now, last == self */ 2292 tbf->bf_last = tbf; 2293 tbf->bf_comp = bf->bf_comp; 2294 2295 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2296 2297 /* The caller has to re-init the descriptor + links */ 2298 2299 /* Copy state */ 2300 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2301 2302 return tbf; 2303 } 2304 2305 struct ath_buf * 2306 ath_getbuf(struct ath_softc *sc) 2307 { 2308 struct ath_buf *bf; 2309 2310 ATH_TXBUF_LOCK(sc); 2311 bf = _ath_getbuf_locked(sc); 2312 ATH_TXBUF_UNLOCK(sc); 2313 if (bf == NULL) { 2314 struct ifnet *ifp = sc->sc_ifp; 2315 2316 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2317 sc->sc_stats.ast_tx_qstop++; 2318 IF_LOCK(&ifp->if_snd); 2319 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2320 IF_UNLOCK(&ifp->if_snd); 2321 } 2322 return bf; 2323 } 2324 2325 void 2326 ath_start(struct ifnet *ifp) 2327 { 2328 struct ath_softc *sc = ifp->if_softc; 2329 2330 taskqueue_enqueue(sc->sc_tq, &sc->sc_txstarttask); 2331 } 2332 2333 void 2334 ath_tx_tasklet(void *arg, int npending) 2335 { 2336 struct ath_softc *sc = (struct ath_softc *) arg; 2337 struct ifnet *ifp = sc->sc_ifp; 2338 struct ieee80211_node *ni; 2339 struct ath_buf *bf; 2340 struct mbuf *m, *next; 2341 ath_bufhead frags; 2342 2343 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2344 return; 2345 2346 /* XXX is it ok to hold the ATH_LOCK here? */ 2347 ATH_PCU_LOCK(sc); 2348 if (sc->sc_inreset_cnt > 0) { 2349 device_printf(sc->sc_dev, 2350 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2351 ATH_PCU_UNLOCK(sc); 2352 IF_LOCK(&ifp->if_snd); 2353 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2354 IF_UNLOCK(&ifp->if_snd); 2355 return; 2356 } 2357 sc->sc_txstart_cnt++; 2358 ATH_PCU_UNLOCK(sc); 2359 2360 for (;;) { 2361 /* 2362 * Grab a TX buffer and associated resources. 2363 */ 2364 bf = ath_getbuf(sc); 2365 if (bf == NULL) 2366 break; 2367 2368 IFQ_DEQUEUE(&ifp->if_snd, m); 2369 if (m == NULL) { 2370 ATH_TXBUF_LOCK(sc); 2371 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2372 ATH_TXBUF_UNLOCK(sc); 2373 break; 2374 } 2375 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2376 /* 2377 * Check for fragmentation. If this frame 2378 * has been broken up verify we have enough 2379 * buffers to send all the fragments so all 2380 * go out or none... 2381 */ 2382 TAILQ_INIT(&frags); 2383 if ((m->m_flags & M_FRAG) && 2384 !ath_txfrag_setup(sc, &frags, m, ni)) { 2385 DPRINTF(sc, ATH_DEBUG_XMIT, 2386 "%s: out of txfrag buffers\n", __func__); 2387 sc->sc_stats.ast_tx_nofrag++; 2388 ifp->if_oerrors++; 2389 ath_freetx(m); 2390 goto bad; 2391 } 2392 ifp->if_opackets++; 2393 nextfrag: 2394 /* 2395 * Pass the frame to the h/w for transmission. 2396 * Fragmented frames have each frag chained together 2397 * with m_nextpkt. We know there are sufficient ath_buf's 2398 * to send all the frags because of work done by 2399 * ath_txfrag_setup. We leave m_nextpkt set while 2400 * calling ath_tx_start so it can use it to extend the 2401 * the tx duration to cover the subsequent frag and 2402 * so it can reclaim all the mbufs in case of an error; 2403 * ath_tx_start clears m_nextpkt once it commits to 2404 * handing the frame to the hardware. 2405 */ 2406 next = m->m_nextpkt; 2407 if (ath_tx_start(sc, ni, bf, m)) { 2408 bad: 2409 ifp->if_oerrors++; 2410 reclaim: 2411 bf->bf_m = NULL; 2412 bf->bf_node = NULL; 2413 ATH_TXBUF_LOCK(sc); 2414 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2415 ath_txfrag_cleanup(sc, &frags, ni); 2416 ATH_TXBUF_UNLOCK(sc); 2417 if (ni != NULL) 2418 ieee80211_free_node(ni); 2419 continue; 2420 } 2421 if (next != NULL) { 2422 /* 2423 * Beware of state changing between frags. 2424 * XXX check sta power-save state? 2425 */ 2426 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2427 DPRINTF(sc, ATH_DEBUG_XMIT, 2428 "%s: flush fragmented packet, state %s\n", 2429 __func__, 2430 ieee80211_state_name[ni->ni_vap->iv_state]); 2431 ath_freetx(next); 2432 goto reclaim; 2433 } 2434 m = next; 2435 bf = TAILQ_FIRST(&frags); 2436 KASSERT(bf != NULL, ("no buf for txfrag")); 2437 TAILQ_REMOVE(&frags, bf, bf_list); 2438 goto nextfrag; 2439 } 2440 2441 sc->sc_wd_timer = 5; 2442 } 2443 2444 ATH_PCU_LOCK(sc); 2445 sc->sc_txstart_cnt--; 2446 ATH_PCU_UNLOCK(sc); 2447 } 2448 2449 static int 2450 ath_media_change(struct ifnet *ifp) 2451 { 2452 int error = ieee80211_media_change(ifp); 2453 /* NB: only the fixed rate can change and that doesn't need a reset */ 2454 return (error == ENETRESET ? 0 : error); 2455 } 2456 2457 /* 2458 * Block/unblock tx+rx processing while a key change is done. 2459 * We assume the caller serializes key management operations 2460 * so we only need to worry about synchronization with other 2461 * uses that originate in the driver. 2462 */ 2463 static void 2464 ath_key_update_begin(struct ieee80211vap *vap) 2465 { 2466 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2467 struct ath_softc *sc = ifp->if_softc; 2468 2469 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2470 taskqueue_block(sc->sc_tq); 2471 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2472 } 2473 2474 static void 2475 ath_key_update_end(struct ieee80211vap *vap) 2476 { 2477 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2478 struct ath_softc *sc = ifp->if_softc; 2479 2480 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2481 IF_UNLOCK(&ifp->if_snd); 2482 taskqueue_unblock(sc->sc_tq); 2483 } 2484 2485 static void 2486 ath_update_promisc(struct ifnet *ifp) 2487 { 2488 struct ath_softc *sc = ifp->if_softc; 2489 u_int32_t rfilt; 2490 2491 /* configure rx filter */ 2492 rfilt = ath_calcrxfilter(sc); 2493 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2494 2495 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2496 } 2497 2498 static void 2499 ath_update_mcast(struct ifnet *ifp) 2500 { 2501 struct ath_softc *sc = ifp->if_softc; 2502 u_int32_t mfilt[2]; 2503 2504 /* calculate and install multicast filter */ 2505 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2506 struct ifmultiaddr *ifma; 2507 /* 2508 * Merge multicast addresses to form the hardware filter. 2509 */ 2510 mfilt[0] = mfilt[1] = 0; 2511 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2512 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2513 caddr_t dl; 2514 u_int32_t val; 2515 u_int8_t pos; 2516 2517 /* calculate XOR of eight 6bit values */ 2518 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2519 val = LE_READ_4(dl + 0); 2520 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2521 val = LE_READ_4(dl + 3); 2522 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2523 pos &= 0x3f; 2524 mfilt[pos / 32] |= (1 << (pos % 32)); 2525 } 2526 if_maddr_runlock(ifp); 2527 } else 2528 mfilt[0] = mfilt[1] = ~0; 2529 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2530 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2531 __func__, mfilt[0], mfilt[1]); 2532 } 2533 2534 void 2535 ath_mode_init(struct ath_softc *sc) 2536 { 2537 struct ifnet *ifp = sc->sc_ifp; 2538 struct ath_hal *ah = sc->sc_ah; 2539 u_int32_t rfilt; 2540 2541 /* configure rx filter */ 2542 rfilt = ath_calcrxfilter(sc); 2543 ath_hal_setrxfilter(ah, rfilt); 2544 2545 /* configure operational mode */ 2546 ath_hal_setopmode(ah); 2547 2548 /* handle any link-level address change */ 2549 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2550 2551 /* calculate and install multicast filter */ 2552 ath_update_mcast(ifp); 2553 } 2554 2555 /* 2556 * Set the slot time based on the current setting. 2557 */ 2558 void 2559 ath_setslottime(struct ath_softc *sc) 2560 { 2561 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2562 struct ath_hal *ah = sc->sc_ah; 2563 u_int usec; 2564 2565 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2566 usec = 13; 2567 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2568 usec = 21; 2569 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2570 /* honor short/long slot time only in 11g */ 2571 /* XXX shouldn't honor on pure g or turbo g channel */ 2572 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2573 usec = HAL_SLOT_TIME_9; 2574 else 2575 usec = HAL_SLOT_TIME_20; 2576 } else 2577 usec = HAL_SLOT_TIME_9; 2578 2579 DPRINTF(sc, ATH_DEBUG_RESET, 2580 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2581 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2582 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2583 2584 ath_hal_setslottime(ah, usec); 2585 sc->sc_updateslot = OK; 2586 } 2587 2588 /* 2589 * Callback from the 802.11 layer to update the 2590 * slot time based on the current setting. 2591 */ 2592 static void 2593 ath_updateslot(struct ifnet *ifp) 2594 { 2595 struct ath_softc *sc = ifp->if_softc; 2596 struct ieee80211com *ic = ifp->if_l2com; 2597 2598 /* 2599 * When not coordinating the BSS, change the hardware 2600 * immediately. For other operation we defer the change 2601 * until beacon updates have propagated to the stations. 2602 */ 2603 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2604 ic->ic_opmode == IEEE80211_M_MBSS) 2605 sc->sc_updateslot = UPDATE; 2606 else 2607 ath_setslottime(sc); 2608 } 2609 2610 /* 2611 * Append the contents of src to dst; both queues 2612 * are assumed to be locked. 2613 */ 2614 void 2615 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2616 { 2617 2618 ATH_TXQ_LOCK_ASSERT(dst); 2619 ATH_TXQ_LOCK_ASSERT(src); 2620 2621 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2622 dst->axq_link = src->axq_link; 2623 src->axq_link = NULL; 2624 dst->axq_depth += src->axq_depth; 2625 dst->axq_aggr_depth += src->axq_aggr_depth; 2626 src->axq_depth = 0; 2627 src->axq_aggr_depth = 0; 2628 } 2629 2630 /* 2631 * Reset the hardware, with no loss. 2632 * 2633 * This can't be used for a general case reset. 2634 */ 2635 static void 2636 ath_reset_proc(void *arg, int pending) 2637 { 2638 struct ath_softc *sc = arg; 2639 struct ifnet *ifp = sc->sc_ifp; 2640 2641 #if 0 2642 if_printf(ifp, "%s: resetting\n", __func__); 2643 #endif 2644 ath_reset(ifp, ATH_RESET_NOLOSS); 2645 } 2646 2647 /* 2648 * Reset the hardware after detecting beacons have stopped. 2649 */ 2650 static void 2651 ath_bstuck_proc(void *arg, int pending) 2652 { 2653 struct ath_softc *sc = arg; 2654 struct ifnet *ifp = sc->sc_ifp; 2655 uint32_t hangs = 0; 2656 2657 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2658 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2659 2660 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2661 sc->sc_bmisscount); 2662 sc->sc_stats.ast_bstuck++; 2663 /* 2664 * This assumes that there's no simultaneous channel mode change 2665 * occuring. 2666 */ 2667 ath_reset(ifp, ATH_RESET_NOLOSS); 2668 } 2669 2670 static void 2671 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2672 { 2673 bus_addr_t *paddr = (bus_addr_t*) arg; 2674 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2675 *paddr = segs->ds_addr; 2676 } 2677 2678 static int 2679 ath_descdma_setup(struct ath_softc *sc, 2680 struct ath_descdma *dd, ath_bufhead *head, 2681 const char *name, int nbuf, int ndesc) 2682 { 2683 #define DS2PHYS(_dd, _ds) \ 2684 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2685 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2686 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2687 struct ifnet *ifp = sc->sc_ifp; 2688 uint8_t *ds; 2689 struct ath_buf *bf; 2690 int i, bsize, error; 2691 int desc_len; 2692 2693 desc_len = sizeof(struct ath_desc); 2694 2695 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 2696 __func__, name, nbuf, ndesc); 2697 2698 dd->dd_name = name; 2699 dd->dd_desc_len = desc_len * nbuf * ndesc; 2700 2701 /* 2702 * Merlin work-around: 2703 * Descriptors that cross the 4KB boundary can't be used. 2704 * Assume one skipped descriptor per 4KB page. 2705 */ 2706 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2707 int numdescpage = 4096 / (desc_len * ndesc); 2708 dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096; 2709 } 2710 2711 /* 2712 * Setup DMA descriptor area. 2713 */ 2714 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 2715 PAGE_SIZE, 0, /* alignment, bounds */ 2716 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2717 BUS_SPACE_MAXADDR, /* highaddr */ 2718 NULL, NULL, /* filter, filterarg */ 2719 dd->dd_desc_len, /* maxsize */ 2720 1, /* nsegments */ 2721 dd->dd_desc_len, /* maxsegsize */ 2722 BUS_DMA_ALLOCNOW, /* flags */ 2723 NULL, /* lockfunc */ 2724 NULL, /* lockarg */ 2725 &dd->dd_dmat); 2726 if (error != 0) { 2727 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 2728 return error; 2729 } 2730 2731 /* allocate descriptors */ 2732 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2733 if (error != 0) { 2734 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2735 "error %u\n", dd->dd_name, error); 2736 goto fail0; 2737 } 2738 2739 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 2740 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 2741 &dd->dd_dmamap); 2742 if (error != 0) { 2743 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2744 "error %u\n", nbuf * ndesc, dd->dd_name, error); 2745 goto fail1; 2746 } 2747 2748 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 2749 dd->dd_desc, dd->dd_desc_len, 2750 ath_load_cb, &dd->dd_desc_paddr, 2751 BUS_DMA_NOWAIT); 2752 if (error != 0) { 2753 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2754 dd->dd_name, error); 2755 goto fail2; 2756 } 2757 2758 ds = (uint8_t *) dd->dd_desc; 2759 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2760 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 2761 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 2762 2763 /* allocate rx buffers */ 2764 bsize = sizeof(struct ath_buf) * nbuf; 2765 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2766 if (bf == NULL) { 2767 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2768 dd->dd_name, bsize); 2769 goto fail3; 2770 } 2771 dd->dd_bufptr = bf; 2772 2773 TAILQ_INIT(head); 2774 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) { 2775 bf->bf_desc = (struct ath_desc *) ds; 2776 bf->bf_daddr = DS2PHYS(dd, ds); 2777 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2778 /* 2779 * Merlin WAR: Skip descriptor addresses which 2780 * cause 4KB boundary crossing along any point 2781 * in the descriptor. 2782 */ 2783 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 2784 desc_len * ndesc)) { 2785 /* Start at the next page */ 2786 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 2787 bf->bf_desc = (struct ath_desc *) ds; 2788 bf->bf_daddr = DS2PHYS(dd, ds); 2789 } 2790 } 2791 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 2792 &bf->bf_dmamap); 2793 if (error != 0) { 2794 if_printf(ifp, "unable to create dmamap for %s " 2795 "buffer %u, error %u\n", dd->dd_name, i, error); 2796 ath_descdma_cleanup(sc, dd, head); 2797 return error; 2798 } 2799 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 2800 TAILQ_INSERT_TAIL(head, bf, bf_list); 2801 } 2802 return 0; 2803 fail3: 2804 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2805 fail2: 2806 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2807 fail1: 2808 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2809 fail0: 2810 bus_dma_tag_destroy(dd->dd_dmat); 2811 memset(dd, 0, sizeof(*dd)); 2812 return error; 2813 #undef DS2PHYS 2814 #undef ATH_DESC_4KB_BOUND_CHECK 2815 } 2816 2817 static void 2818 ath_descdma_cleanup(struct ath_softc *sc, 2819 struct ath_descdma *dd, ath_bufhead *head) 2820 { 2821 struct ath_buf *bf; 2822 struct ieee80211_node *ni; 2823 2824 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2825 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2826 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2827 bus_dma_tag_destroy(dd->dd_dmat); 2828 2829 TAILQ_FOREACH(bf, head, bf_list) { 2830 if (bf->bf_m) { 2831 m_freem(bf->bf_m); 2832 bf->bf_m = NULL; 2833 } 2834 if (bf->bf_dmamap != NULL) { 2835 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2836 bf->bf_dmamap = NULL; 2837 } 2838 ni = bf->bf_node; 2839 bf->bf_node = NULL; 2840 if (ni != NULL) { 2841 /* 2842 * Reclaim node reference. 2843 */ 2844 ieee80211_free_node(ni); 2845 } 2846 } 2847 2848 TAILQ_INIT(head); 2849 free(dd->dd_bufptr, M_ATHDEV); 2850 memset(dd, 0, sizeof(*dd)); 2851 } 2852 2853 static int 2854 ath_desc_alloc(struct ath_softc *sc) 2855 { 2856 int error; 2857 2858 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 2859 "rx", ath_rxbuf, 1); 2860 if (error != 0) 2861 return error; 2862 2863 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 2864 "tx", ath_txbuf, ATH_TXDESC); 2865 if (error != 0) { 2866 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2867 return error; 2868 } 2869 2870 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 2871 "beacon", ATH_BCBUF, 1); 2872 if (error != 0) { 2873 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2874 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2875 return error; 2876 } 2877 return 0; 2878 } 2879 2880 static void 2881 ath_desc_free(struct ath_softc *sc) 2882 { 2883 2884 if (sc->sc_bdma.dd_desc_len != 0) 2885 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 2886 if (sc->sc_txdma.dd_desc_len != 0) 2887 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2888 if (sc->sc_rxdma.dd_desc_len != 0) 2889 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2890 } 2891 2892 static struct ieee80211_node * 2893 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 2894 { 2895 struct ieee80211com *ic = vap->iv_ic; 2896 struct ath_softc *sc = ic->ic_ifp->if_softc; 2897 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 2898 struct ath_node *an; 2899 2900 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 2901 if (an == NULL) { 2902 /* XXX stat+msg */ 2903 return NULL; 2904 } 2905 ath_rate_node_init(sc, an); 2906 2907 /* Setup the mutex - there's no associd yet so set the name to NULL */ 2908 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 2909 device_get_nameunit(sc->sc_dev), an); 2910 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 2911 2912 /* XXX setup ath_tid */ 2913 ath_tx_tid_init(sc, an); 2914 2915 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 2916 return &an->an_node; 2917 } 2918 2919 static void 2920 ath_node_cleanup(struct ieee80211_node *ni) 2921 { 2922 struct ieee80211com *ic = ni->ni_ic; 2923 struct ath_softc *sc = ic->ic_ifp->if_softc; 2924 2925 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 2926 ath_tx_node_flush(sc, ATH_NODE(ni)); 2927 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 2928 sc->sc_node_cleanup(ni); 2929 } 2930 2931 static void 2932 ath_node_free(struct ieee80211_node *ni) 2933 { 2934 struct ieee80211com *ic = ni->ni_ic; 2935 struct ath_softc *sc = ic->ic_ifp->if_softc; 2936 2937 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 2938 mtx_destroy(&ATH_NODE(ni)->an_mtx); 2939 sc->sc_node_free(ni); 2940 } 2941 2942 static void 2943 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 2944 { 2945 struct ieee80211com *ic = ni->ni_ic; 2946 struct ath_softc *sc = ic->ic_ifp->if_softc; 2947 struct ath_hal *ah = sc->sc_ah; 2948 2949 *rssi = ic->ic_node_getrssi(ni); 2950 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 2951 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 2952 else 2953 *noise = -95; /* nominally correct */ 2954 } 2955 2956 /* 2957 * Set the default antenna. 2958 */ 2959 void 2960 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 2961 { 2962 struct ath_hal *ah = sc->sc_ah; 2963 2964 /* XXX block beacon interrupts */ 2965 ath_hal_setdefantenna(ah, antenna); 2966 if (sc->sc_defant != antenna) 2967 sc->sc_stats.ast_ant_defswitch++; 2968 sc->sc_defant = antenna; 2969 sc->sc_rxotherant = 0; 2970 } 2971 2972 static void 2973 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 2974 { 2975 txq->axq_qnum = qnum; 2976 txq->axq_ac = 0; 2977 txq->axq_depth = 0; 2978 txq->axq_aggr_depth = 0; 2979 txq->axq_intrcnt = 0; 2980 txq->axq_link = NULL; 2981 txq->axq_softc = sc; 2982 TAILQ_INIT(&txq->axq_q); 2983 TAILQ_INIT(&txq->axq_tidq); 2984 ATH_TXQ_LOCK_INIT(sc, txq); 2985 } 2986 2987 /* 2988 * Setup a h/w transmit queue. 2989 */ 2990 static struct ath_txq * 2991 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 2992 { 2993 #define N(a) (sizeof(a)/sizeof(a[0])) 2994 struct ath_hal *ah = sc->sc_ah; 2995 HAL_TXQ_INFO qi; 2996 int qnum; 2997 2998 memset(&qi, 0, sizeof(qi)); 2999 qi.tqi_subtype = subtype; 3000 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3001 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3002 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3003 /* 3004 * Enable interrupts only for EOL and DESC conditions. 3005 * We mark tx descriptors to receive a DESC interrupt 3006 * when a tx queue gets deep; otherwise waiting for the 3007 * EOL to reap descriptors. Note that this is done to 3008 * reduce interrupt load and this only defers reaping 3009 * descriptors, never transmitting frames. Aside from 3010 * reducing interrupts this also permits more concurrency. 3011 * The only potential downside is if the tx queue backs 3012 * up in which case the top half of the kernel may backup 3013 * due to a lack of tx descriptors. 3014 */ 3015 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3016 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3017 if (qnum == -1) { 3018 /* 3019 * NB: don't print a message, this happens 3020 * normally on parts with too few tx queues 3021 */ 3022 return NULL; 3023 } 3024 if (qnum >= N(sc->sc_txq)) { 3025 device_printf(sc->sc_dev, 3026 "hal qnum %u out of range, max %zu!\n", 3027 qnum, N(sc->sc_txq)); 3028 ath_hal_releasetxqueue(ah, qnum); 3029 return NULL; 3030 } 3031 if (!ATH_TXQ_SETUP(sc, qnum)) { 3032 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3033 sc->sc_txqsetup |= 1<<qnum; 3034 } 3035 return &sc->sc_txq[qnum]; 3036 #undef N 3037 } 3038 3039 /* 3040 * Setup a hardware data transmit queue for the specified 3041 * access control. The hal may not support all requested 3042 * queues in which case it will return a reference to a 3043 * previously setup queue. We record the mapping from ac's 3044 * to h/w queues for use by ath_tx_start and also track 3045 * the set of h/w queues being used to optimize work in the 3046 * transmit interrupt handler and related routines. 3047 */ 3048 static int 3049 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3050 { 3051 #define N(a) (sizeof(a)/sizeof(a[0])) 3052 struct ath_txq *txq; 3053 3054 if (ac >= N(sc->sc_ac2q)) { 3055 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3056 ac, N(sc->sc_ac2q)); 3057 return 0; 3058 } 3059 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3060 if (txq != NULL) { 3061 txq->axq_ac = ac; 3062 sc->sc_ac2q[ac] = txq; 3063 return 1; 3064 } else 3065 return 0; 3066 #undef N 3067 } 3068 3069 /* 3070 * Update WME parameters for a transmit queue. 3071 */ 3072 static int 3073 ath_txq_update(struct ath_softc *sc, int ac) 3074 { 3075 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3076 #define ATH_TXOP_TO_US(v) (v<<5) 3077 struct ifnet *ifp = sc->sc_ifp; 3078 struct ieee80211com *ic = ifp->if_l2com; 3079 struct ath_txq *txq = sc->sc_ac2q[ac]; 3080 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3081 struct ath_hal *ah = sc->sc_ah; 3082 HAL_TXQ_INFO qi; 3083 3084 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3085 #ifdef IEEE80211_SUPPORT_TDMA 3086 if (sc->sc_tdma) { 3087 /* 3088 * AIFS is zero so there's no pre-transmit wait. The 3089 * burst time defines the slot duration and is configured 3090 * through net80211. The QCU is setup to not do post-xmit 3091 * back off, lockout all lower-priority QCU's, and fire 3092 * off the DMA beacon alert timer which is setup based 3093 * on the slot configuration. 3094 */ 3095 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3096 | HAL_TXQ_TXERRINT_ENABLE 3097 | HAL_TXQ_TXURNINT_ENABLE 3098 | HAL_TXQ_TXEOLINT_ENABLE 3099 | HAL_TXQ_DBA_GATED 3100 | HAL_TXQ_BACKOFF_DISABLE 3101 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3102 ; 3103 qi.tqi_aifs = 0; 3104 /* XXX +dbaprep? */ 3105 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3106 qi.tqi_burstTime = qi.tqi_readyTime; 3107 } else { 3108 #endif 3109 /* 3110 * XXX shouldn't this just use the default flags 3111 * used in the previous queue setup? 3112 */ 3113 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3114 | HAL_TXQ_TXERRINT_ENABLE 3115 | HAL_TXQ_TXDESCINT_ENABLE 3116 | HAL_TXQ_TXURNINT_ENABLE 3117 | HAL_TXQ_TXEOLINT_ENABLE 3118 ; 3119 qi.tqi_aifs = wmep->wmep_aifsn; 3120 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3121 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3122 qi.tqi_readyTime = 0; 3123 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3124 #ifdef IEEE80211_SUPPORT_TDMA 3125 } 3126 #endif 3127 3128 DPRINTF(sc, ATH_DEBUG_RESET, 3129 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3130 __func__, txq->axq_qnum, qi.tqi_qflags, 3131 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3132 3133 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3134 if_printf(ifp, "unable to update hardware queue " 3135 "parameters for %s traffic!\n", 3136 ieee80211_wme_acnames[ac]); 3137 return 0; 3138 } else { 3139 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3140 return 1; 3141 } 3142 #undef ATH_TXOP_TO_US 3143 #undef ATH_EXPONENT_TO_VALUE 3144 } 3145 3146 /* 3147 * Callback from the 802.11 layer to update WME parameters. 3148 */ 3149 int 3150 ath_wme_update(struct ieee80211com *ic) 3151 { 3152 struct ath_softc *sc = ic->ic_ifp->if_softc; 3153 3154 return !ath_txq_update(sc, WME_AC_BE) || 3155 !ath_txq_update(sc, WME_AC_BK) || 3156 !ath_txq_update(sc, WME_AC_VI) || 3157 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3158 } 3159 3160 /* 3161 * Reclaim resources for a setup queue. 3162 */ 3163 static void 3164 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3165 { 3166 3167 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3168 ATH_TXQ_LOCK_DESTROY(txq); 3169 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3170 } 3171 3172 /* 3173 * Reclaim all tx queue resources. 3174 */ 3175 static void 3176 ath_tx_cleanup(struct ath_softc *sc) 3177 { 3178 int i; 3179 3180 ATH_TXBUF_LOCK_DESTROY(sc); 3181 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3182 if (ATH_TXQ_SETUP(sc, i)) 3183 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3184 } 3185 3186 /* 3187 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3188 * using the current rates in sc_rixmap. 3189 */ 3190 int 3191 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3192 { 3193 int rix = sc->sc_rixmap[rate]; 3194 /* NB: return lowest rix for invalid rate */ 3195 return (rix == 0xff ? 0 : rix); 3196 } 3197 3198 static void 3199 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3200 struct ath_buf *bf) 3201 { 3202 struct ieee80211_node *ni = bf->bf_node; 3203 struct ifnet *ifp = sc->sc_ifp; 3204 struct ieee80211com *ic = ifp->if_l2com; 3205 int sr, lr, pri; 3206 3207 if (ts->ts_status == 0) { 3208 u_int8_t txant = ts->ts_antenna; 3209 sc->sc_stats.ast_ant_tx[txant]++; 3210 sc->sc_ant_tx[txant]++; 3211 if (ts->ts_finaltsi != 0) 3212 sc->sc_stats.ast_tx_altrate++; 3213 pri = M_WME_GETAC(bf->bf_m); 3214 if (pri >= WME_AC_VO) 3215 ic->ic_wme.wme_hipri_traffic++; 3216 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3217 ni->ni_inact = ni->ni_inact_reload; 3218 } else { 3219 if (ts->ts_status & HAL_TXERR_XRETRY) 3220 sc->sc_stats.ast_tx_xretries++; 3221 if (ts->ts_status & HAL_TXERR_FIFO) 3222 sc->sc_stats.ast_tx_fifoerr++; 3223 if (ts->ts_status & HAL_TXERR_FILT) 3224 sc->sc_stats.ast_tx_filtered++; 3225 if (ts->ts_status & HAL_TXERR_XTXOP) 3226 sc->sc_stats.ast_tx_xtxop++; 3227 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3228 sc->sc_stats.ast_tx_timerexpired++; 3229 3230 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 3231 sc->sc_stats.ast_tx_data_underrun++; 3232 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 3233 sc->sc_stats.ast_tx_delim_underrun++; 3234 3235 if (bf->bf_m->m_flags & M_FF) 3236 sc->sc_stats.ast_ff_txerr++; 3237 } 3238 /* XXX when is this valid? */ 3239 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 3240 sc->sc_stats.ast_tx_desccfgerr++; 3241 3242 sr = ts->ts_shortretry; 3243 lr = ts->ts_longretry; 3244 sc->sc_stats.ast_tx_shortretry += sr; 3245 sc->sc_stats.ast_tx_longretry += lr; 3246 3247 } 3248 3249 /* 3250 * The default completion. If fail is 1, this means 3251 * "please don't retry the frame, and just return -1 status 3252 * to the net80211 stack. 3253 */ 3254 void 3255 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3256 { 3257 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3258 int st; 3259 3260 if (fail == 1) 3261 st = -1; 3262 else 3263 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3264 ts->ts_status : HAL_TXERR_XRETRY; 3265 3266 if (bf->bf_state.bfs_dobaw) 3267 device_printf(sc->sc_dev, 3268 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3269 __func__, 3270 bf, 3271 SEQNO(bf->bf_state.bfs_seqno)); 3272 if (bf->bf_next != NULL) 3273 device_printf(sc->sc_dev, 3274 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3275 __func__, 3276 bf, 3277 SEQNO(bf->bf_state.bfs_seqno)); 3278 3279 /* 3280 * Do any tx complete callback. Note this must 3281 * be done before releasing the node reference. 3282 * This will free the mbuf, release the net80211 3283 * node and recycle the ath_buf. 3284 */ 3285 ath_tx_freebuf(sc, bf, st); 3286 } 3287 3288 /* 3289 * Update rate control with the given completion status. 3290 */ 3291 void 3292 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3293 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3294 int nframes, int nbad) 3295 { 3296 struct ath_node *an; 3297 3298 /* Only for unicast frames */ 3299 if (ni == NULL) 3300 return; 3301 3302 an = ATH_NODE(ni); 3303 3304 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3305 ATH_NODE_LOCK(an); 3306 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3307 ATH_NODE_UNLOCK(an); 3308 } 3309 } 3310 3311 /* 3312 * Update the busy status of the last frame on the free list. 3313 * When doing TDMA, the busy flag tracks whether the hardware 3314 * currently points to this buffer or not, and thus gated DMA 3315 * may restart by re-reading the last descriptor in this 3316 * buffer. 3317 * 3318 * This should be called in the completion function once one 3319 * of the buffers has been used. 3320 */ 3321 static void 3322 ath_tx_update_busy(struct ath_softc *sc) 3323 { 3324 struct ath_buf *last; 3325 3326 /* 3327 * Since the last frame may still be marked 3328 * as ATH_BUF_BUSY, unmark it here before 3329 * finishing the frame processing. 3330 * Since we've completed a frame (aggregate 3331 * or otherwise), the hardware has moved on 3332 * and is no longer referencing the previous 3333 * descriptor. 3334 */ 3335 ATH_TXBUF_LOCK_ASSERT(sc); 3336 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3337 if (last != NULL) 3338 last->bf_flags &= ~ATH_BUF_BUSY; 3339 } 3340 3341 3342 /* 3343 * Process completed xmit descriptors from the specified queue. 3344 * Kick the packet scheduler if needed. This can occur from this 3345 * particular task. 3346 */ 3347 static int 3348 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3349 { 3350 struct ath_hal *ah = sc->sc_ah; 3351 struct ath_buf *bf; 3352 struct ath_desc *ds; 3353 struct ath_tx_status *ts; 3354 struct ieee80211_node *ni; 3355 struct ath_node *an; 3356 #ifdef IEEE80211_SUPPORT_SUPERG 3357 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3358 #endif /* IEEE80211_SUPPORT_SUPERG */ 3359 int nacked; 3360 HAL_STATUS status; 3361 3362 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3363 __func__, txq->axq_qnum, 3364 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3365 txq->axq_link); 3366 nacked = 0; 3367 for (;;) { 3368 ATH_TXQ_LOCK(txq); 3369 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3370 bf = TAILQ_FIRST(&txq->axq_q); 3371 if (bf == NULL) { 3372 ATH_TXQ_UNLOCK(txq); 3373 break; 3374 } 3375 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3376 ts = &bf->bf_status.ds_txstat; 3377 status = ath_hal_txprocdesc(ah, ds, ts); 3378 #ifdef ATH_DEBUG 3379 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3380 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3381 status == HAL_OK); 3382 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) { 3383 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3384 status == HAL_OK); 3385 } 3386 #endif 3387 if (status == HAL_EINPROGRESS) { 3388 ATH_TXQ_UNLOCK(txq); 3389 break; 3390 } 3391 ATH_TXQ_REMOVE(txq, bf, bf_list); 3392 #ifdef IEEE80211_SUPPORT_TDMA 3393 if (txq->axq_depth > 0) { 3394 /* 3395 * More frames follow. Mark the buffer busy 3396 * so it's not re-used while the hardware may 3397 * still re-read the link field in the descriptor. 3398 * 3399 * Use the last buffer in an aggregate as that 3400 * is where the hardware may be - intermediate 3401 * descriptors won't be "busy". 3402 */ 3403 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3404 } else 3405 #else 3406 if (txq->axq_depth == 0) 3407 #endif 3408 txq->axq_link = NULL; 3409 if (bf->bf_state.bfs_aggr) 3410 txq->axq_aggr_depth--; 3411 3412 ni = bf->bf_node; 3413 /* 3414 * If unicast frame was ack'd update RSSI, 3415 * including the last rx time used to 3416 * workaround phantom bmiss interrupts. 3417 */ 3418 if (ni != NULL && ts->ts_status == 0 && 3419 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3420 nacked++; 3421 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3422 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3423 ts->ts_rssi); 3424 } 3425 ATH_TXQ_UNLOCK(txq); 3426 3427 /* If unicast frame, update general statistics */ 3428 if (ni != NULL) { 3429 an = ATH_NODE(ni); 3430 /* update statistics */ 3431 ath_tx_update_stats(sc, ts, bf); 3432 } 3433 3434 /* 3435 * Call the completion handler. 3436 * The completion handler is responsible for 3437 * calling the rate control code. 3438 * 3439 * Frames with no completion handler get the 3440 * rate control code called here. 3441 */ 3442 if (bf->bf_comp == NULL) { 3443 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3444 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3445 /* 3446 * XXX assume this isn't an aggregate 3447 * frame. 3448 */ 3449 ath_tx_update_ratectrl(sc, ni, 3450 bf->bf_state.bfs_rc, ts, 3451 bf->bf_state.bfs_pktlen, 1, 3452 (ts->ts_status == 0 ? 0 : 1)); 3453 } 3454 ath_tx_default_comp(sc, bf, 0); 3455 } else 3456 bf->bf_comp(sc, bf, 0); 3457 } 3458 #ifdef IEEE80211_SUPPORT_SUPERG 3459 /* 3460 * Flush fast-frame staging queue when traffic slows. 3461 */ 3462 if (txq->axq_depth <= 1) 3463 ieee80211_ff_flush(ic, txq->axq_ac); 3464 #endif 3465 3466 /* Kick the TXQ scheduler */ 3467 if (dosched) { 3468 ATH_TXQ_LOCK(txq); 3469 ath_txq_sched(sc, txq); 3470 ATH_TXQ_UNLOCK(txq); 3471 } 3472 3473 return nacked; 3474 } 3475 3476 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3477 3478 /* 3479 * Deferred processing of transmit interrupt; special-cased 3480 * for a single hardware transmit queue (e.g. 5210 and 5211). 3481 */ 3482 static void 3483 ath_tx_proc_q0(void *arg, int npending) 3484 { 3485 struct ath_softc *sc = arg; 3486 struct ifnet *ifp = sc->sc_ifp; 3487 uint32_t txqs; 3488 3489 ATH_PCU_LOCK(sc); 3490 sc->sc_txproc_cnt++; 3491 txqs = sc->sc_txq_active; 3492 sc->sc_txq_active &= ~txqs; 3493 ATH_PCU_UNLOCK(sc); 3494 3495 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 3496 /* XXX why is lastrx updated in tx code? */ 3497 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3498 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3499 ath_tx_processq(sc, sc->sc_cabq, 1); 3500 IF_LOCK(&ifp->if_snd); 3501 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3502 IF_UNLOCK(&ifp->if_snd); 3503 sc->sc_wd_timer = 0; 3504 3505 if (sc->sc_softled) 3506 ath_led_event(sc, sc->sc_txrix); 3507 3508 ATH_PCU_LOCK(sc); 3509 sc->sc_txproc_cnt--; 3510 ATH_PCU_UNLOCK(sc); 3511 3512 // ath_start(ifp); 3513 ath_tx_tasklet(sc, 1); 3514 } 3515 3516 /* 3517 * Deferred processing of transmit interrupt; special-cased 3518 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3519 */ 3520 static void 3521 ath_tx_proc_q0123(void *arg, int npending) 3522 { 3523 struct ath_softc *sc = arg; 3524 struct ifnet *ifp = sc->sc_ifp; 3525 int nacked; 3526 uint32_t txqs; 3527 3528 ATH_PCU_LOCK(sc); 3529 sc->sc_txproc_cnt++; 3530 txqs = sc->sc_txq_active; 3531 sc->sc_txq_active &= ~txqs; 3532 ATH_PCU_UNLOCK(sc); 3533 3534 /* 3535 * Process each active queue. 3536 */ 3537 nacked = 0; 3538 if (TXQACTIVE(txqs, 0)) 3539 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 3540 if (TXQACTIVE(txqs, 1)) 3541 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 3542 if (TXQACTIVE(txqs, 2)) 3543 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 3544 if (TXQACTIVE(txqs, 3)) 3545 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 3546 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3547 ath_tx_processq(sc, sc->sc_cabq, 1); 3548 if (nacked) 3549 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3550 3551 IF_LOCK(&ifp->if_snd); 3552 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3553 IF_UNLOCK(&ifp->if_snd); 3554 sc->sc_wd_timer = 0; 3555 3556 if (sc->sc_softled) 3557 ath_led_event(sc, sc->sc_txrix); 3558 3559 ATH_PCU_LOCK(sc); 3560 sc->sc_txproc_cnt--; 3561 ATH_PCU_UNLOCK(sc); 3562 3563 //ath_start(ifp); 3564 ath_tx_tasklet(sc, 1); 3565 } 3566 3567 /* 3568 * Deferred processing of transmit interrupt. 3569 */ 3570 static void 3571 ath_tx_proc(void *arg, int npending) 3572 { 3573 struct ath_softc *sc = arg; 3574 struct ifnet *ifp = sc->sc_ifp; 3575 int i, nacked; 3576 uint32_t txqs; 3577 3578 ATH_PCU_LOCK(sc); 3579 sc->sc_txproc_cnt++; 3580 txqs = sc->sc_txq_active; 3581 sc->sc_txq_active &= ~txqs; 3582 ATH_PCU_UNLOCK(sc); 3583 3584 /* 3585 * Process each active queue. 3586 */ 3587 nacked = 0; 3588 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3589 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 3590 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 3591 if (nacked) 3592 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3593 3594 /* XXX check this inside of IF_LOCK? */ 3595 IF_LOCK(&ifp->if_snd); 3596 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3597 IF_UNLOCK(&ifp->if_snd); 3598 sc->sc_wd_timer = 0; 3599 3600 if (sc->sc_softled) 3601 ath_led_event(sc, sc->sc_txrix); 3602 3603 ATH_PCU_LOCK(sc); 3604 sc->sc_txproc_cnt--; 3605 ATH_PCU_UNLOCK(sc); 3606 3607 //ath_start(ifp); 3608 ath_tx_tasklet(sc, 1); 3609 } 3610 #undef TXQACTIVE 3611 3612 /* 3613 * Deferred processing of TXQ rescheduling. 3614 */ 3615 static void 3616 ath_txq_sched_tasklet(void *arg, int npending) 3617 { 3618 struct ath_softc *sc = arg; 3619 int i; 3620 3621 /* XXX is skipping ok? */ 3622 ATH_PCU_LOCK(sc); 3623 #if 0 3624 if (sc->sc_inreset_cnt > 0) { 3625 device_printf(sc->sc_dev, 3626 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 3627 ATH_PCU_UNLOCK(sc); 3628 return; 3629 } 3630 #endif 3631 sc->sc_txproc_cnt++; 3632 ATH_PCU_UNLOCK(sc); 3633 3634 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3635 if (ATH_TXQ_SETUP(sc, i)) { 3636 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3637 ath_txq_sched(sc, &sc->sc_txq[i]); 3638 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3639 } 3640 } 3641 3642 ATH_PCU_LOCK(sc); 3643 sc->sc_txproc_cnt--; 3644 ATH_PCU_UNLOCK(sc); 3645 } 3646 3647 /* 3648 * Return a buffer to the pool and update the 'busy' flag on the 3649 * previous 'tail' entry. 3650 * 3651 * This _must_ only be called when the buffer is involved in a completed 3652 * TX. The logic is that if it was part of an active TX, the previous 3653 * buffer on the list is now not involved in a halted TX DMA queue, waiting 3654 * for restart (eg for TDMA.) 3655 * 3656 * The caller must free the mbuf and recycle the node reference. 3657 */ 3658 void 3659 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 3660 { 3661 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3662 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 3663 3664 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 3665 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 3666 3667 ATH_TXBUF_LOCK(sc); 3668 ath_tx_update_busy(sc); 3669 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3670 ATH_TXBUF_UNLOCK(sc); 3671 } 3672 3673 /* 3674 * This is currently used by ath_tx_draintxq() and 3675 * ath_tx_tid_free_pkts(). 3676 * 3677 * It recycles a single ath_buf. 3678 */ 3679 void 3680 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 3681 { 3682 struct ieee80211_node *ni = bf->bf_node; 3683 struct mbuf *m0 = bf->bf_m; 3684 3685 bf->bf_node = NULL; 3686 bf->bf_m = NULL; 3687 3688 /* Free the buffer, it's not needed any longer */ 3689 ath_freebuf(sc, bf); 3690 3691 if (ni != NULL) { 3692 /* 3693 * Do any callback and reclaim the node reference. 3694 */ 3695 if (m0->m_flags & M_TXCB) 3696 ieee80211_process_callback(ni, m0, status); 3697 ieee80211_free_node(ni); 3698 } 3699 m_freem(m0); 3700 3701 /* 3702 * XXX the buffer used to be freed -after-, but the DMA map was 3703 * freed where ath_freebuf() now is. I've no idea what this 3704 * will do. 3705 */ 3706 } 3707 3708 void 3709 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 3710 { 3711 #ifdef ATH_DEBUG 3712 struct ath_hal *ah = sc->sc_ah; 3713 #endif 3714 struct ath_buf *bf; 3715 u_int ix; 3716 3717 /* 3718 * NB: this assumes output has been stopped and 3719 * we do not need to block ath_tx_proc 3720 */ 3721 ATH_TXBUF_LOCK(sc); 3722 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3723 if (bf != NULL) 3724 bf->bf_flags &= ~ATH_BUF_BUSY; 3725 ATH_TXBUF_UNLOCK(sc); 3726 3727 for (ix = 0;; ix++) { 3728 ATH_TXQ_LOCK(txq); 3729 bf = TAILQ_FIRST(&txq->axq_q); 3730 if (bf == NULL) { 3731 txq->axq_link = NULL; 3732 ATH_TXQ_UNLOCK(txq); 3733 break; 3734 } 3735 ATH_TXQ_REMOVE(txq, bf, bf_list); 3736 if (bf->bf_state.bfs_aggr) 3737 txq->axq_aggr_depth--; 3738 #ifdef ATH_DEBUG 3739 if (sc->sc_debug & ATH_DEBUG_RESET) { 3740 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3741 3742 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, 3743 ath_hal_txprocdesc(ah, bf->bf_lastds, 3744 &bf->bf_status.ds_txstat) == HAL_OK); 3745 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 3746 bf->bf_m->m_len, 0, -1); 3747 } 3748 #endif /* ATH_DEBUG */ 3749 /* 3750 * Since we're now doing magic in the completion 3751 * functions, we -must- call it for aggregation 3752 * destinations or BAW tracking will get upset. 3753 */ 3754 /* 3755 * Clear ATH_BUF_BUSY; the completion handler 3756 * will free the buffer. 3757 */ 3758 ATH_TXQ_UNLOCK(txq); 3759 bf->bf_flags &= ~ATH_BUF_BUSY; 3760 if (bf->bf_comp) 3761 bf->bf_comp(sc, bf, 1); 3762 else 3763 ath_tx_default_comp(sc, bf, 1); 3764 } 3765 3766 /* 3767 * Drain software queued frames which are on 3768 * active TIDs. 3769 */ 3770 ath_tx_txq_drain(sc, txq); 3771 } 3772 3773 static void 3774 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 3775 { 3776 struct ath_hal *ah = sc->sc_ah; 3777 3778 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 3779 __func__, txq->axq_qnum, 3780 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 3781 txq->axq_link); 3782 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 3783 } 3784 3785 static int 3786 ath_stoptxdma(struct ath_softc *sc) 3787 { 3788 struct ath_hal *ah = sc->sc_ah; 3789 int i; 3790 3791 /* XXX return value */ 3792 if (sc->sc_invalid) 3793 return 0; 3794 3795 if (!sc->sc_invalid) { 3796 /* don't touch the hardware if marked invalid */ 3797 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 3798 __func__, sc->sc_bhalq, 3799 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 3800 NULL); 3801 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 3802 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3803 if (ATH_TXQ_SETUP(sc, i)) 3804 ath_tx_stopdma(sc, &sc->sc_txq[i]); 3805 } 3806 3807 return 1; 3808 } 3809 3810 /* 3811 * Drain the transmit queues and reclaim resources. 3812 */ 3813 static void 3814 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 3815 { 3816 #ifdef ATH_DEBUG 3817 struct ath_hal *ah = sc->sc_ah; 3818 #endif 3819 struct ifnet *ifp = sc->sc_ifp; 3820 int i; 3821 3822 (void) ath_stoptxdma(sc); 3823 3824 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3825 /* 3826 * XXX TODO: should we just handle the completed TX frames 3827 * here, whether or not the reset is a full one or not? 3828 */ 3829 if (ATH_TXQ_SETUP(sc, i)) { 3830 if (reset_type == ATH_RESET_NOLOSS) 3831 ath_tx_processq(sc, &sc->sc_txq[i], 0); 3832 else 3833 ath_tx_draintxq(sc, &sc->sc_txq[i]); 3834 } 3835 } 3836 #ifdef ATH_DEBUG 3837 if (sc->sc_debug & ATH_DEBUG_RESET) { 3838 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 3839 if (bf != NULL && bf->bf_m != NULL) { 3840 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 3841 ath_hal_txprocdesc(ah, bf->bf_lastds, 3842 &bf->bf_status.ds_txstat) == HAL_OK); 3843 ieee80211_dump_pkt(ifp->if_l2com, 3844 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 3845 0, -1); 3846 } 3847 } 3848 #endif /* ATH_DEBUG */ 3849 IF_LOCK(&ifp->if_snd); 3850 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3851 IF_UNLOCK(&ifp->if_snd); 3852 sc->sc_wd_timer = 0; 3853 } 3854 3855 /* 3856 * Update internal state after a channel change. 3857 */ 3858 static void 3859 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 3860 { 3861 enum ieee80211_phymode mode; 3862 3863 /* 3864 * Change channels and update the h/w rate map 3865 * if we're switching; e.g. 11a to 11b/g. 3866 */ 3867 mode = ieee80211_chan2mode(chan); 3868 if (mode != sc->sc_curmode) 3869 ath_setcurmode(sc, mode); 3870 sc->sc_curchan = chan; 3871 } 3872 3873 /* 3874 * Set/change channels. If the channel is really being changed, 3875 * it's done by resetting the chip. To accomplish this we must 3876 * first cleanup any pending DMA, then restart stuff after a la 3877 * ath_init. 3878 */ 3879 static int 3880 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 3881 { 3882 struct ifnet *ifp = sc->sc_ifp; 3883 struct ieee80211com *ic = ifp->if_l2com; 3884 struct ath_hal *ah = sc->sc_ah; 3885 int ret = 0; 3886 3887 /* Treat this as an interface reset */ 3888 ATH_PCU_UNLOCK_ASSERT(sc); 3889 ATH_UNLOCK_ASSERT(sc); 3890 3891 /* (Try to) stop TX/RX from occuring */ 3892 taskqueue_block(sc->sc_tq); 3893 3894 ATH_PCU_LOCK(sc); 3895 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 3896 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 3897 if (ath_reset_grablock(sc, 1) == 0) { 3898 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 3899 __func__); 3900 } 3901 ATH_PCU_UNLOCK(sc); 3902 3903 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 3904 __func__, ieee80211_chan2ieee(ic, chan), 3905 chan->ic_freq, chan->ic_flags); 3906 if (chan != sc->sc_curchan) { 3907 HAL_STATUS status; 3908 /* 3909 * To switch channels clear any pending DMA operations; 3910 * wait long enough for the RX fifo to drain, reset the 3911 * hardware at the new frequency, and then re-enable 3912 * the relevant bits of the h/w. 3913 */ 3914 #if 0 3915 ath_hal_intrset(ah, 0); /* disable interrupts */ 3916 #endif 3917 ath_stoprecv(sc, 1); /* turn off frame recv */ 3918 /* 3919 * First, handle completed TX/RX frames. 3920 */ 3921 ath_rx_proc(sc, 0); 3922 ath_draintxq(sc, ATH_RESET_NOLOSS); 3923 /* 3924 * Next, flush the non-scheduled frames. 3925 */ 3926 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 3927 3928 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 3929 if_printf(ifp, "%s: unable to reset " 3930 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 3931 __func__, ieee80211_chan2ieee(ic, chan), 3932 chan->ic_freq, chan->ic_flags, status); 3933 ret = EIO; 3934 goto finish; 3935 } 3936 sc->sc_diversity = ath_hal_getdiversity(ah); 3937 3938 /* Let DFS at it in case it's a DFS channel */ 3939 ath_dfs_radar_enable(sc, chan); 3940 3941 /* 3942 * Re-enable rx framework. 3943 */ 3944 if (ath_startrecv(sc) != 0) { 3945 if_printf(ifp, "%s: unable to restart recv logic\n", 3946 __func__); 3947 ret = EIO; 3948 goto finish; 3949 } 3950 3951 /* 3952 * Change channels and update the h/w rate map 3953 * if we're switching; e.g. 11a to 11b/g. 3954 */ 3955 ath_chan_change(sc, chan); 3956 3957 /* 3958 * Reset clears the beacon timers; reset them 3959 * here if needed. 3960 */ 3961 if (sc->sc_beacons) { /* restart beacons */ 3962 #ifdef IEEE80211_SUPPORT_TDMA 3963 if (sc->sc_tdma) 3964 ath_tdma_config(sc, NULL); 3965 else 3966 #endif 3967 ath_beacon_config(sc, NULL); 3968 } 3969 3970 /* 3971 * Re-enable interrupts. 3972 */ 3973 #if 0 3974 ath_hal_intrset(ah, sc->sc_imask); 3975 #endif 3976 } 3977 3978 finish: 3979 ATH_PCU_LOCK(sc); 3980 sc->sc_inreset_cnt--; 3981 /* XXX only do this if sc_inreset_cnt == 0? */ 3982 ath_hal_intrset(ah, sc->sc_imask); 3983 ATH_PCU_UNLOCK(sc); 3984 3985 IF_LOCK(&ifp->if_snd); 3986 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3987 IF_UNLOCK(&ifp->if_snd); 3988 ath_txrx_start(sc); 3989 /* XXX ath_start? */ 3990 3991 return ret; 3992 } 3993 3994 /* 3995 * Periodically recalibrate the PHY to account 3996 * for temperature/environment changes. 3997 */ 3998 static void 3999 ath_calibrate(void *arg) 4000 { 4001 struct ath_softc *sc = arg; 4002 struct ath_hal *ah = sc->sc_ah; 4003 struct ifnet *ifp = sc->sc_ifp; 4004 struct ieee80211com *ic = ifp->if_l2com; 4005 HAL_BOOL longCal, isCalDone; 4006 HAL_BOOL aniCal, shortCal = AH_FALSE; 4007 int nextcal; 4008 4009 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4010 goto restart; 4011 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4012 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4013 if (sc->sc_doresetcal) 4014 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4015 4016 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4017 if (aniCal) { 4018 sc->sc_stats.ast_ani_cal++; 4019 sc->sc_lastani = ticks; 4020 ath_hal_ani_poll(ah, sc->sc_curchan); 4021 } 4022 4023 if (longCal) { 4024 sc->sc_stats.ast_per_cal++; 4025 sc->sc_lastlongcal = ticks; 4026 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4027 /* 4028 * Rfgain is out of bounds, reset the chip 4029 * to load new gain values. 4030 */ 4031 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4032 "%s: rfgain change\n", __func__); 4033 sc->sc_stats.ast_per_rfgain++; 4034 sc->sc_resetcal = 0; 4035 sc->sc_doresetcal = AH_TRUE; 4036 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4037 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4038 return; 4039 } 4040 /* 4041 * If this long cal is after an idle period, then 4042 * reset the data collection state so we start fresh. 4043 */ 4044 if (sc->sc_resetcal) { 4045 (void) ath_hal_calreset(ah, sc->sc_curchan); 4046 sc->sc_lastcalreset = ticks; 4047 sc->sc_lastshortcal = ticks; 4048 sc->sc_resetcal = 0; 4049 sc->sc_doresetcal = AH_TRUE; 4050 } 4051 } 4052 4053 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4054 if (shortCal || longCal) { 4055 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4056 if (longCal) { 4057 /* 4058 * Calibrate noise floor data again in case of change. 4059 */ 4060 ath_hal_process_noisefloor(ah); 4061 } 4062 } else { 4063 DPRINTF(sc, ATH_DEBUG_ANY, 4064 "%s: calibration of channel %u failed\n", 4065 __func__, sc->sc_curchan->ic_freq); 4066 sc->sc_stats.ast_per_calfail++; 4067 } 4068 if (shortCal) 4069 sc->sc_lastshortcal = ticks; 4070 } 4071 if (!isCalDone) { 4072 restart: 4073 /* 4074 * Use a shorter interval to potentially collect multiple 4075 * data samples required to complete calibration. Once 4076 * we're told the work is done we drop back to a longer 4077 * interval between requests. We're more aggressive doing 4078 * work when operating as an AP to improve operation right 4079 * after startup. 4080 */ 4081 sc->sc_lastshortcal = ticks; 4082 nextcal = ath_shortcalinterval*hz/1000; 4083 if (sc->sc_opmode != HAL_M_HOSTAP) 4084 nextcal *= 10; 4085 sc->sc_doresetcal = AH_TRUE; 4086 } else { 4087 /* nextcal should be the shortest time for next event */ 4088 nextcal = ath_longcalinterval*hz; 4089 if (sc->sc_lastcalreset == 0) 4090 sc->sc_lastcalreset = sc->sc_lastlongcal; 4091 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4092 sc->sc_resetcal = 1; /* setup reset next trip */ 4093 sc->sc_doresetcal = AH_FALSE; 4094 } 4095 /* ANI calibration may occur more often than short/long/resetcal */ 4096 if (ath_anicalinterval > 0) 4097 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4098 4099 if (nextcal != 0) { 4100 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4101 __func__, nextcal, isCalDone ? "" : "!"); 4102 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4103 } else { 4104 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4105 __func__); 4106 /* NB: don't rearm timer */ 4107 } 4108 } 4109 4110 static void 4111 ath_scan_start(struct ieee80211com *ic) 4112 { 4113 struct ifnet *ifp = ic->ic_ifp; 4114 struct ath_softc *sc = ifp->if_softc; 4115 struct ath_hal *ah = sc->sc_ah; 4116 u_int32_t rfilt; 4117 4118 /* XXX calibration timer? */ 4119 4120 ATH_LOCK(sc); 4121 sc->sc_scanning = 1; 4122 sc->sc_syncbeacon = 0; 4123 rfilt = ath_calcrxfilter(sc); 4124 ATH_UNLOCK(sc); 4125 4126 ATH_PCU_LOCK(sc); 4127 ath_hal_setrxfilter(ah, rfilt); 4128 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4129 ATH_PCU_UNLOCK(sc); 4130 4131 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4132 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4133 } 4134 4135 static void 4136 ath_scan_end(struct ieee80211com *ic) 4137 { 4138 struct ifnet *ifp = ic->ic_ifp; 4139 struct ath_softc *sc = ifp->if_softc; 4140 struct ath_hal *ah = sc->sc_ah; 4141 u_int32_t rfilt; 4142 4143 ATH_LOCK(sc); 4144 sc->sc_scanning = 0; 4145 rfilt = ath_calcrxfilter(sc); 4146 ATH_UNLOCK(sc); 4147 4148 ATH_PCU_LOCK(sc); 4149 ath_hal_setrxfilter(ah, rfilt); 4150 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4151 4152 ath_hal_process_noisefloor(ah); 4153 ATH_PCU_UNLOCK(sc); 4154 4155 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4156 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4157 sc->sc_curaid); 4158 } 4159 4160 #ifdef ATH_ENABLE_11N 4161 /* 4162 * For now, just do a channel change. 4163 * 4164 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4165 * control state and resetting the hardware without dropping frames out 4166 * of the queue. 4167 * 4168 * The unfortunate trouble here is making absolutely sure that the 4169 * channel width change has propagated enough so the hardware 4170 * absolutely isn't handed bogus frames for it's current operating 4171 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4172 * does occur in parallel, we need to make certain we've blocked 4173 * any further ongoing TX (and RX, that can cause raw TX) 4174 * before we do this. 4175 */ 4176 static void 4177 ath_update_chw(struct ieee80211com *ic) 4178 { 4179 struct ifnet *ifp = ic->ic_ifp; 4180 struct ath_softc *sc = ifp->if_softc; 4181 4182 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4183 ath_set_channel(ic); 4184 } 4185 #endif /* ATH_ENABLE_11N */ 4186 4187 static void 4188 ath_set_channel(struct ieee80211com *ic) 4189 { 4190 struct ifnet *ifp = ic->ic_ifp; 4191 struct ath_softc *sc = ifp->if_softc; 4192 4193 (void) ath_chan_set(sc, ic->ic_curchan); 4194 /* 4195 * If we are returning to our bss channel then mark state 4196 * so the next recv'd beacon's tsf will be used to sync the 4197 * beacon timers. Note that since we only hear beacons in 4198 * sta/ibss mode this has no effect in other operating modes. 4199 */ 4200 ATH_LOCK(sc); 4201 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4202 sc->sc_syncbeacon = 1; 4203 ATH_UNLOCK(sc); 4204 } 4205 4206 /* 4207 * Walk the vap list and check if there any vap's in RUN state. 4208 */ 4209 static int 4210 ath_isanyrunningvaps(struct ieee80211vap *this) 4211 { 4212 struct ieee80211com *ic = this->iv_ic; 4213 struct ieee80211vap *vap; 4214 4215 IEEE80211_LOCK_ASSERT(ic); 4216 4217 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4218 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4219 return 1; 4220 } 4221 return 0; 4222 } 4223 4224 static int 4225 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4226 { 4227 struct ieee80211com *ic = vap->iv_ic; 4228 struct ath_softc *sc = ic->ic_ifp->if_softc; 4229 struct ath_vap *avp = ATH_VAP(vap); 4230 struct ath_hal *ah = sc->sc_ah; 4231 struct ieee80211_node *ni = NULL; 4232 int i, error, stamode; 4233 u_int32_t rfilt; 4234 int csa_run_transition = 0; 4235 static const HAL_LED_STATE leds[] = { 4236 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4237 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4238 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4239 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4240 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4241 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4242 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4243 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4244 }; 4245 4246 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4247 ieee80211_state_name[vap->iv_state], 4248 ieee80211_state_name[nstate]); 4249 4250 /* 4251 * net80211 _should_ have the comlock asserted at this point. 4252 * There are some comments around the calls to vap->iv_newstate 4253 * which indicate that it (newstate) may end up dropping the 4254 * lock. This and the subsequent lock assert check after newstate 4255 * are an attempt to catch these and figure out how/why. 4256 */ 4257 IEEE80211_LOCK_ASSERT(ic); 4258 4259 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4260 csa_run_transition = 1; 4261 4262 callout_drain(&sc->sc_cal_ch); 4263 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4264 4265 if (nstate == IEEE80211_S_SCAN) { 4266 /* 4267 * Scanning: turn off beacon miss and don't beacon. 4268 * Mark beacon state so when we reach RUN state we'll 4269 * [re]setup beacons. Unblock the task q thread so 4270 * deferred interrupt processing is done. 4271 */ 4272 ath_hal_intrset(ah, 4273 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4274 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4275 sc->sc_beacons = 0; 4276 taskqueue_unblock(sc->sc_tq); 4277 } 4278 4279 ni = ieee80211_ref_node(vap->iv_bss); 4280 rfilt = ath_calcrxfilter(sc); 4281 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4282 vap->iv_opmode == IEEE80211_M_AHDEMO || 4283 vap->iv_opmode == IEEE80211_M_IBSS); 4284 if (stamode && nstate == IEEE80211_S_RUN) { 4285 sc->sc_curaid = ni->ni_associd; 4286 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4287 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4288 } 4289 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4290 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4291 ath_hal_setrxfilter(ah, rfilt); 4292 4293 /* XXX is this to restore keycache on resume? */ 4294 if (vap->iv_opmode != IEEE80211_M_STA && 4295 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4296 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4297 if (ath_hal_keyisvalid(ah, i)) 4298 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4299 } 4300 4301 /* 4302 * Invoke the parent method to do net80211 work. 4303 */ 4304 error = avp->av_newstate(vap, nstate, arg); 4305 if (error != 0) 4306 goto bad; 4307 4308 /* 4309 * See above: ensure av_newstate() doesn't drop the lock 4310 * on us. 4311 */ 4312 IEEE80211_LOCK_ASSERT(ic); 4313 4314 if (nstate == IEEE80211_S_RUN) { 4315 /* NB: collect bss node again, it may have changed */ 4316 ieee80211_free_node(ni); 4317 ni = ieee80211_ref_node(vap->iv_bss); 4318 4319 DPRINTF(sc, ATH_DEBUG_STATE, 4320 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 4321 "capinfo 0x%04x chan %d\n", __func__, 4322 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 4323 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 4324 4325 switch (vap->iv_opmode) { 4326 #ifdef IEEE80211_SUPPORT_TDMA 4327 case IEEE80211_M_AHDEMO: 4328 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 4329 break; 4330 /* fall thru... */ 4331 #endif 4332 case IEEE80211_M_HOSTAP: 4333 case IEEE80211_M_IBSS: 4334 case IEEE80211_M_MBSS: 4335 /* 4336 * Allocate and setup the beacon frame. 4337 * 4338 * Stop any previous beacon DMA. This may be 4339 * necessary, for example, when an ibss merge 4340 * causes reconfiguration; there will be a state 4341 * transition from RUN->RUN that means we may 4342 * be called with beacon transmission active. 4343 */ 4344 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4345 4346 error = ath_beacon_alloc(sc, ni); 4347 if (error != 0) 4348 goto bad; 4349 /* 4350 * If joining an adhoc network defer beacon timer 4351 * configuration to the next beacon frame so we 4352 * have a current TSF to use. Otherwise we're 4353 * starting an ibss/bss so there's no need to delay; 4354 * if this is the first vap moving to RUN state, then 4355 * beacon state needs to be [re]configured. 4356 */ 4357 if (vap->iv_opmode == IEEE80211_M_IBSS && 4358 ni->ni_tstamp.tsf != 0) { 4359 sc->sc_syncbeacon = 1; 4360 } else if (!sc->sc_beacons) { 4361 #ifdef IEEE80211_SUPPORT_TDMA 4362 if (vap->iv_caps & IEEE80211_C_TDMA) 4363 ath_tdma_config(sc, vap); 4364 else 4365 #endif 4366 ath_beacon_config(sc, vap); 4367 sc->sc_beacons = 1; 4368 } 4369 break; 4370 case IEEE80211_M_STA: 4371 /* 4372 * Defer beacon timer configuration to the next 4373 * beacon frame so we have a current TSF to use 4374 * (any TSF collected when scanning is likely old). 4375 * However if it's due to a CSA -> RUN transition, 4376 * force a beacon update so we pick up a lack of 4377 * beacons from an AP in CAC and thus force a 4378 * scan. 4379 */ 4380 sc->sc_syncbeacon = 1; 4381 if (csa_run_transition) 4382 ath_beacon_config(sc, vap); 4383 break; 4384 case IEEE80211_M_MONITOR: 4385 /* 4386 * Monitor mode vaps have only INIT->RUN and RUN->RUN 4387 * transitions so we must re-enable interrupts here to 4388 * handle the case of a single monitor mode vap. 4389 */ 4390 ath_hal_intrset(ah, sc->sc_imask); 4391 break; 4392 case IEEE80211_M_WDS: 4393 break; 4394 default: 4395 break; 4396 } 4397 /* 4398 * Let the hal process statistics collected during a 4399 * scan so it can provide calibrated noise floor data. 4400 */ 4401 ath_hal_process_noisefloor(ah); 4402 /* 4403 * Reset rssi stats; maybe not the best place... 4404 */ 4405 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4406 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4407 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4408 /* 4409 * Finally, start any timers and the task q thread 4410 * (in case we didn't go through SCAN state). 4411 */ 4412 if (ath_longcalinterval != 0) { 4413 /* start periodic recalibration timer */ 4414 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4415 } else { 4416 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4417 "%s: calibration disabled\n", __func__); 4418 } 4419 taskqueue_unblock(sc->sc_tq); 4420 } else if (nstate == IEEE80211_S_INIT) { 4421 /* 4422 * If there are no vaps left in RUN state then 4423 * shutdown host/driver operation: 4424 * o disable interrupts 4425 * o disable the task queue thread 4426 * o mark beacon processing as stopped 4427 */ 4428 if (!ath_isanyrunningvaps(vap)) { 4429 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4430 /* disable interrupts */ 4431 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4432 taskqueue_block(sc->sc_tq); 4433 sc->sc_beacons = 0; 4434 } 4435 #ifdef IEEE80211_SUPPORT_TDMA 4436 ath_hal_setcca(ah, AH_TRUE); 4437 #endif 4438 } 4439 bad: 4440 ieee80211_free_node(ni); 4441 return error; 4442 } 4443 4444 /* 4445 * Allocate a key cache slot to the station so we can 4446 * setup a mapping from key index to node. The key cache 4447 * slot is needed for managing antenna state and for 4448 * compression when stations do not use crypto. We do 4449 * it uniliaterally here; if crypto is employed this slot 4450 * will be reassigned. 4451 */ 4452 static void 4453 ath_setup_stationkey(struct ieee80211_node *ni) 4454 { 4455 struct ieee80211vap *vap = ni->ni_vap; 4456 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4457 ieee80211_keyix keyix, rxkeyix; 4458 4459 /* XXX should take a locked ref to vap->iv_bss */ 4460 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4461 /* 4462 * Key cache is full; we'll fall back to doing 4463 * the more expensive lookup in software. Note 4464 * this also means no h/w compression. 4465 */ 4466 /* XXX msg+statistic */ 4467 } else { 4468 /* XXX locking? */ 4469 ni->ni_ucastkey.wk_keyix = keyix; 4470 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4471 /* NB: must mark device key to get called back on delete */ 4472 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 4473 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 4474 /* NB: this will create a pass-thru key entry */ 4475 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 4476 } 4477 } 4478 4479 /* 4480 * Setup driver-specific state for a newly associated node. 4481 * Note that we're called also on a re-associate, the isnew 4482 * param tells us if this is the first time or not. 4483 */ 4484 static void 4485 ath_newassoc(struct ieee80211_node *ni, int isnew) 4486 { 4487 struct ath_node *an = ATH_NODE(ni); 4488 struct ieee80211vap *vap = ni->ni_vap; 4489 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4490 const struct ieee80211_txparam *tp = ni->ni_txparms; 4491 4492 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 4493 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 4494 4495 ath_rate_newassoc(sc, an, isnew); 4496 if (isnew && 4497 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 4498 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4499 ath_setup_stationkey(ni); 4500 } 4501 4502 static int 4503 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 4504 int nchans, struct ieee80211_channel chans[]) 4505 { 4506 struct ath_softc *sc = ic->ic_ifp->if_softc; 4507 struct ath_hal *ah = sc->sc_ah; 4508 HAL_STATUS status; 4509 4510 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4511 "%s: rd %u cc %u location %c%s\n", 4512 __func__, reg->regdomain, reg->country, reg->location, 4513 reg->ecm ? " ecm" : ""); 4514 4515 status = ath_hal_set_channels(ah, chans, nchans, 4516 reg->country, reg->regdomain); 4517 if (status != HAL_OK) { 4518 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 4519 __func__, status); 4520 return EINVAL; /* XXX */ 4521 } 4522 4523 return 0; 4524 } 4525 4526 static void 4527 ath_getradiocaps(struct ieee80211com *ic, 4528 int maxchans, int *nchans, struct ieee80211_channel chans[]) 4529 { 4530 struct ath_softc *sc = ic->ic_ifp->if_softc; 4531 struct ath_hal *ah = sc->sc_ah; 4532 4533 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 4534 __func__, SKU_DEBUG, CTRY_DEFAULT); 4535 4536 /* XXX check return */ 4537 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 4538 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 4539 4540 } 4541 4542 static int 4543 ath_getchannels(struct ath_softc *sc) 4544 { 4545 struct ifnet *ifp = sc->sc_ifp; 4546 struct ieee80211com *ic = ifp->if_l2com; 4547 struct ath_hal *ah = sc->sc_ah; 4548 HAL_STATUS status; 4549 4550 /* 4551 * Collect channel set based on EEPROM contents. 4552 */ 4553 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 4554 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 4555 if (status != HAL_OK) { 4556 if_printf(ifp, "%s: unable to collect channel list from hal, " 4557 "status %d\n", __func__, status); 4558 return EINVAL; 4559 } 4560 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 4561 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 4562 /* XXX map Atheros sku's to net80211 SKU's */ 4563 /* XXX net80211 types too small */ 4564 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 4565 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 4566 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 4567 ic->ic_regdomain.isocc[1] = ' '; 4568 4569 ic->ic_regdomain.ecm = 1; 4570 ic->ic_regdomain.location = 'I'; 4571 4572 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4573 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 4574 __func__, sc->sc_eerd, sc->sc_eecc, 4575 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 4576 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 4577 return 0; 4578 } 4579 4580 static int 4581 ath_rate_setup(struct ath_softc *sc, u_int mode) 4582 { 4583 struct ath_hal *ah = sc->sc_ah; 4584 const HAL_RATE_TABLE *rt; 4585 4586 switch (mode) { 4587 case IEEE80211_MODE_11A: 4588 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 4589 break; 4590 case IEEE80211_MODE_HALF: 4591 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 4592 break; 4593 case IEEE80211_MODE_QUARTER: 4594 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 4595 break; 4596 case IEEE80211_MODE_11B: 4597 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 4598 break; 4599 case IEEE80211_MODE_11G: 4600 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 4601 break; 4602 case IEEE80211_MODE_TURBO_A: 4603 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 4604 break; 4605 case IEEE80211_MODE_TURBO_G: 4606 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 4607 break; 4608 case IEEE80211_MODE_STURBO_A: 4609 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 4610 break; 4611 case IEEE80211_MODE_11NA: 4612 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 4613 break; 4614 case IEEE80211_MODE_11NG: 4615 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 4616 break; 4617 default: 4618 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 4619 __func__, mode); 4620 return 0; 4621 } 4622 sc->sc_rates[mode] = rt; 4623 return (rt != NULL); 4624 } 4625 4626 static void 4627 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 4628 { 4629 #define N(a) (sizeof(a)/sizeof(a[0])) 4630 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 4631 static const struct { 4632 u_int rate; /* tx/rx 802.11 rate */ 4633 u_int16_t timeOn; /* LED on time (ms) */ 4634 u_int16_t timeOff; /* LED off time (ms) */ 4635 } blinkrates[] = { 4636 { 108, 40, 10 }, 4637 { 96, 44, 11 }, 4638 { 72, 50, 13 }, 4639 { 48, 57, 14 }, 4640 { 36, 67, 16 }, 4641 { 24, 80, 20 }, 4642 { 22, 100, 25 }, 4643 { 18, 133, 34 }, 4644 { 12, 160, 40 }, 4645 { 10, 200, 50 }, 4646 { 6, 240, 58 }, 4647 { 4, 267, 66 }, 4648 { 2, 400, 100 }, 4649 { 0, 500, 130 }, 4650 /* XXX half/quarter rates */ 4651 }; 4652 const HAL_RATE_TABLE *rt; 4653 int i, j; 4654 4655 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 4656 rt = sc->sc_rates[mode]; 4657 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 4658 for (i = 0; i < rt->rateCount; i++) { 4659 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 4660 if (rt->info[i].phy != IEEE80211_T_HT) 4661 sc->sc_rixmap[ieeerate] = i; 4662 else 4663 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 4664 } 4665 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 4666 for (i = 0; i < N(sc->sc_hwmap); i++) { 4667 if (i >= rt->rateCount) { 4668 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 4669 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 4670 continue; 4671 } 4672 sc->sc_hwmap[i].ieeerate = 4673 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 4674 if (rt->info[i].phy == IEEE80211_T_HT) 4675 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 4676 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 4677 if (rt->info[i].shortPreamble || 4678 rt->info[i].phy == IEEE80211_T_OFDM) 4679 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 4680 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 4681 for (j = 0; j < N(blinkrates)-1; j++) 4682 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 4683 break; 4684 /* NB: this uses the last entry if the rate isn't found */ 4685 /* XXX beware of overlow */ 4686 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 4687 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 4688 } 4689 sc->sc_currates = rt; 4690 sc->sc_curmode = mode; 4691 /* 4692 * All protection frames are transmited at 2Mb/s for 4693 * 11g, otherwise at 1Mb/s. 4694 */ 4695 if (mode == IEEE80211_MODE_11G) 4696 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 4697 else 4698 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 4699 /* NB: caller is responsible for resetting rate control state */ 4700 #undef N 4701 } 4702 4703 static void 4704 ath_watchdog(void *arg) 4705 { 4706 struct ath_softc *sc = arg; 4707 int do_reset = 0; 4708 4709 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 4710 struct ifnet *ifp = sc->sc_ifp; 4711 uint32_t hangs; 4712 4713 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 4714 hangs != 0) { 4715 if_printf(ifp, "%s hang detected (0x%x)\n", 4716 hangs & 0xff ? "bb" : "mac", hangs); 4717 } else 4718 if_printf(ifp, "device timeout\n"); 4719 do_reset = 1; 4720 ifp->if_oerrors++; 4721 sc->sc_stats.ast_watchdog++; 4722 } 4723 4724 /* 4725 * We can't hold the lock across the ath_reset() call. 4726 * 4727 * And since this routine can't hold a lock and sleep, 4728 * do the reset deferred. 4729 */ 4730 if (do_reset) { 4731 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4732 } 4733 4734 callout_schedule(&sc->sc_wd_ch, hz); 4735 } 4736 4737 #ifdef ATH_DIAGAPI 4738 /* 4739 * Diagnostic interface to the HAL. This is used by various 4740 * tools to do things like retrieve register contents for 4741 * debugging. The mechanism is intentionally opaque so that 4742 * it can change frequently w/o concern for compatiblity. 4743 */ 4744 static int 4745 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 4746 { 4747 struct ath_hal *ah = sc->sc_ah; 4748 u_int id = ad->ad_id & ATH_DIAG_ID; 4749 void *indata = NULL; 4750 void *outdata = NULL; 4751 u_int32_t insize = ad->ad_in_size; 4752 u_int32_t outsize = ad->ad_out_size; 4753 int error = 0; 4754 4755 if (ad->ad_id & ATH_DIAG_IN) { 4756 /* 4757 * Copy in data. 4758 */ 4759 indata = malloc(insize, M_TEMP, M_NOWAIT); 4760 if (indata == NULL) { 4761 error = ENOMEM; 4762 goto bad; 4763 } 4764 error = copyin(ad->ad_in_data, indata, insize); 4765 if (error) 4766 goto bad; 4767 } 4768 if (ad->ad_id & ATH_DIAG_DYN) { 4769 /* 4770 * Allocate a buffer for the results (otherwise the HAL 4771 * returns a pointer to a buffer where we can read the 4772 * results). Note that we depend on the HAL leaving this 4773 * pointer for us to use below in reclaiming the buffer; 4774 * may want to be more defensive. 4775 */ 4776 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 4777 if (outdata == NULL) { 4778 error = ENOMEM; 4779 goto bad; 4780 } 4781 } 4782 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 4783 if (outsize < ad->ad_out_size) 4784 ad->ad_out_size = outsize; 4785 if (outdata != NULL) 4786 error = copyout(outdata, ad->ad_out_data, 4787 ad->ad_out_size); 4788 } else { 4789 error = EINVAL; 4790 } 4791 bad: 4792 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 4793 free(indata, M_TEMP); 4794 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 4795 free(outdata, M_TEMP); 4796 return error; 4797 } 4798 #endif /* ATH_DIAGAPI */ 4799 4800 static int 4801 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 4802 { 4803 #define IS_RUNNING(ifp) \ 4804 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 4805 struct ath_softc *sc = ifp->if_softc; 4806 struct ieee80211com *ic = ifp->if_l2com; 4807 struct ifreq *ifr = (struct ifreq *)data; 4808 const HAL_RATE_TABLE *rt; 4809 int error = 0; 4810 4811 switch (cmd) { 4812 case SIOCSIFFLAGS: 4813 ATH_LOCK(sc); 4814 if (IS_RUNNING(ifp)) { 4815 /* 4816 * To avoid rescanning another access point, 4817 * do not call ath_init() here. Instead, 4818 * only reflect promisc mode settings. 4819 */ 4820 ath_mode_init(sc); 4821 } else if (ifp->if_flags & IFF_UP) { 4822 /* 4823 * Beware of being called during attach/detach 4824 * to reset promiscuous mode. In that case we 4825 * will still be marked UP but not RUNNING. 4826 * However trying to re-init the interface 4827 * is the wrong thing to do as we've already 4828 * torn down much of our state. There's 4829 * probably a better way to deal with this. 4830 */ 4831 if (!sc->sc_invalid) 4832 ath_init(sc); /* XXX lose error */ 4833 } else { 4834 ath_stop_locked(ifp); 4835 #ifdef notyet 4836 /* XXX must wakeup in places like ath_vap_delete */ 4837 if (!sc->sc_invalid) 4838 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 4839 #endif 4840 } 4841 ATH_UNLOCK(sc); 4842 break; 4843 case SIOCGIFMEDIA: 4844 case SIOCSIFMEDIA: 4845 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 4846 break; 4847 case SIOCGATHSTATS: 4848 /* NB: embed these numbers to get a consistent view */ 4849 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 4850 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 4851 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 4852 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 4853 #ifdef IEEE80211_SUPPORT_TDMA 4854 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 4855 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 4856 #endif 4857 rt = sc->sc_currates; 4858 sc->sc_stats.ast_tx_rate = 4859 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 4860 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 4861 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 4862 return copyout(&sc->sc_stats, 4863 ifr->ifr_data, sizeof (sc->sc_stats)); 4864 case SIOCZATHSTATS: 4865 error = priv_check(curthread, PRIV_DRIVER); 4866 if (error == 0) { 4867 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 4868 memset(&sc->sc_aggr_stats, 0, 4869 sizeof(sc->sc_aggr_stats)); 4870 memset(&sc->sc_intr_stats, 0, 4871 sizeof(sc->sc_intr_stats)); 4872 } 4873 break; 4874 #ifdef ATH_DIAGAPI 4875 case SIOCGATHDIAG: 4876 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 4877 break; 4878 case SIOCGATHPHYERR: 4879 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 4880 break; 4881 #endif 4882 case SIOCGIFADDR: 4883 error = ether_ioctl(ifp, cmd, data); 4884 break; 4885 default: 4886 error = EINVAL; 4887 break; 4888 } 4889 return error; 4890 #undef IS_RUNNING 4891 } 4892 4893 /* 4894 * Announce various information on device/driver attach. 4895 */ 4896 static void 4897 ath_announce(struct ath_softc *sc) 4898 { 4899 struct ifnet *ifp = sc->sc_ifp; 4900 struct ath_hal *ah = sc->sc_ah; 4901 4902 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 4903 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 4904 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 4905 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 4906 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 4907 if (bootverbose) { 4908 int i; 4909 for (i = 0; i <= WME_AC_VO; i++) { 4910 struct ath_txq *txq = sc->sc_ac2q[i]; 4911 if_printf(ifp, "Use hw queue %u for %s traffic\n", 4912 txq->axq_qnum, ieee80211_wme_acnames[i]); 4913 } 4914 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 4915 sc->sc_cabq->axq_qnum); 4916 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 4917 } 4918 if (ath_rxbuf != ATH_RXBUF) 4919 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 4920 if (ath_txbuf != ATH_TXBUF) 4921 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 4922 if (sc->sc_mcastkey && bootverbose) 4923 if_printf(ifp, "using multicast key search\n"); 4924 } 4925 4926 static void 4927 ath_dfs_tasklet(void *p, int npending) 4928 { 4929 struct ath_softc *sc = (struct ath_softc *) p; 4930 struct ifnet *ifp = sc->sc_ifp; 4931 struct ieee80211com *ic = ifp->if_l2com; 4932 4933 /* 4934 * If previous processing has found a radar event, 4935 * signal this to the net80211 layer to begin DFS 4936 * processing. 4937 */ 4938 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 4939 /* DFS event found, initiate channel change */ 4940 /* 4941 * XXX doesn't currently tell us whether the event 4942 * XXX was found in the primary or extension 4943 * XXX channel! 4944 */ 4945 IEEE80211_LOCK(ic); 4946 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 4947 IEEE80211_UNLOCK(ic); 4948 } 4949 } 4950 4951 MODULE_VERSION(if_ath, 1); 4952 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 4953 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 4954 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 4955 #endif 4956