1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_beacon.h> 113 #include <dev/ath/if_athdfs.h> 114 115 #ifdef ATH_TX99_DIAG 116 #include <dev/ath/ath_tx99/ath_tx99.h> 117 #endif 118 119 #define ATH_KTR_INTR KTR_SPARE4 120 #define ATH_KTR_ERR KTR_SPARE3 121 122 /* 123 * ATH_BCBUF determines the number of vap's that can transmit 124 * beacons and also (currently) the number of vap's that can 125 * have unique mac addresses/bssid. When staggering beacons 126 * 4 is probably a good max as otherwise the beacons become 127 * very closely spaced and there is limited time for cab q traffic 128 * to go out. You can burst beacons instead but that is not good 129 * for stations in power save and at some point you really want 130 * another radio (and channel). 131 * 132 * The limit on the number of mac addresses is tied to our use of 133 * the U/L bit and tracking addresses in a byte; it would be 134 * worthwhile to allow more for applications like proxy sta. 135 */ 136 CTASSERT(ATH_BCBUF <= 8); 137 138 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 139 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 140 const uint8_t [IEEE80211_ADDR_LEN], 141 const uint8_t [IEEE80211_ADDR_LEN]); 142 static void ath_vap_delete(struct ieee80211vap *); 143 static void ath_init(void *); 144 static void ath_stop_locked(struct ifnet *); 145 static void ath_stop(struct ifnet *); 146 static int ath_reset_vap(struct ieee80211vap *, u_long); 147 static int ath_media_change(struct ifnet *); 148 static void ath_watchdog(void *); 149 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 150 static void ath_fatal_proc(void *, int); 151 static void ath_bmiss_vap(struct ieee80211vap *); 152 static void ath_bmiss_proc(void *, int); 153 static void ath_key_update_begin(struct ieee80211vap *); 154 static void ath_key_update_end(struct ieee80211vap *); 155 static void ath_update_mcast(struct ifnet *); 156 static void ath_update_promisc(struct ifnet *); 157 static void ath_updateslot(struct ifnet *); 158 static void ath_bstuck_proc(void *, int); 159 static void ath_reset_proc(void *, int); 160 static int ath_desc_alloc(struct ath_softc *); 161 static void ath_desc_free(struct ath_softc *); 162 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 163 const uint8_t [IEEE80211_ADDR_LEN]); 164 static void ath_node_cleanup(struct ieee80211_node *); 165 static void ath_node_free(struct ieee80211_node *); 166 static void ath_node_getsignal(const struct ieee80211_node *, 167 int8_t *, int8_t *); 168 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 169 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 170 static int ath_tx_setup(struct ath_softc *, int, int); 171 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 172 static void ath_tx_cleanup(struct ath_softc *); 173 static void ath_tx_proc_q0(void *, int); 174 static void ath_tx_proc_q0123(void *, int); 175 static void ath_tx_proc(void *, int); 176 static void ath_txq_sched_tasklet(void *, int); 177 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 178 static void ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type); 179 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 180 static void ath_scan_start(struct ieee80211com *); 181 static void ath_scan_end(struct ieee80211com *); 182 static void ath_set_channel(struct ieee80211com *); 183 #ifdef ATH_ENABLE_11N 184 static void ath_update_chw(struct ieee80211com *); 185 #endif /* ATH_ENABLE_11N */ 186 static void ath_calibrate(void *); 187 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 188 static void ath_setup_stationkey(struct ieee80211_node *); 189 static void ath_newassoc(struct ieee80211_node *, int); 190 static int ath_setregdomain(struct ieee80211com *, 191 struct ieee80211_regdomain *, int, 192 struct ieee80211_channel []); 193 static void ath_getradiocaps(struct ieee80211com *, int, int *, 194 struct ieee80211_channel []); 195 static int ath_getchannels(struct ath_softc *); 196 197 static int ath_rate_setup(struct ath_softc *, u_int mode); 198 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 199 200 static void ath_announce(struct ath_softc *); 201 202 static void ath_dfs_tasklet(void *, int); 203 204 #ifdef IEEE80211_SUPPORT_TDMA 205 #include <dev/ath/if_ath_tdma.h> 206 #endif 207 208 #if 0 209 #define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */ 210 #define TDMA_LPF_LEN 6 211 #define TDMA_DUMMY_MARKER 0x127 212 #define TDMA_EP_MUL(x, mul) ((x) * (mul)) 213 #define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER)) 214 #define TDMA_LPF(x, y, len) \ 215 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y)) 216 #define TDMA_SAMPLE(x, y) do { \ 217 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \ 218 } while (0) 219 #define TDMA_EP_RND(x,mul) \ 220 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 221 #define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER) 222 #endif /* IEEE80211_SUPPORT_TDMA */ 223 224 SYSCTL_DECL(_hw_ath); 225 226 /* XXX validate sysctl values */ 227 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 228 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 229 0, "long chip calibration interval (secs)"); 230 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 231 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 232 0, "short chip calibration interval (msecs)"); 233 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 234 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 235 0, "reset chip calibration results (secs)"); 236 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 237 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 238 0, "ANI calibration (msecs)"); 239 240 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 241 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 242 0, "rx buffers allocated"); 243 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 244 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 245 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 246 0, "tx buffers allocated"); 247 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 248 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 249 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 250 0, "tx (mgmt) buffers allocated"); 251 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 252 253 int ath_bstuck_threshold = 4; /* max missed beacons */ 254 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 255 0, "max missed beacon xmits before chip reset"); 256 257 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 258 259 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 260 #define HAL_MODE_HT40 \ 261 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 262 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 263 int 264 ath_attach(u_int16_t devid, struct ath_softc *sc) 265 { 266 struct ifnet *ifp; 267 struct ieee80211com *ic; 268 struct ath_hal *ah = NULL; 269 HAL_STATUS status; 270 int error = 0, i; 271 u_int wmodes; 272 uint8_t macaddr[IEEE80211_ADDR_LEN]; 273 int rx_chainmask, tx_chainmask; 274 275 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 276 277 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 278 if (ifp == NULL) { 279 device_printf(sc->sc_dev, "can not if_alloc()\n"); 280 error = ENOSPC; 281 goto bad; 282 } 283 ic = ifp->if_l2com; 284 285 /* set these up early for if_printf use */ 286 if_initname(ifp, device_get_name(sc->sc_dev), 287 device_get_unit(sc->sc_dev)); 288 289 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 290 sc->sc_eepromdata, &status); 291 if (ah == NULL) { 292 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 293 status); 294 error = ENXIO; 295 goto bad; 296 } 297 sc->sc_ah = ah; 298 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 299 #ifdef ATH_DEBUG 300 sc->sc_debug = ath_debug; 301 #endif 302 303 /* 304 * Setup the DMA/EDMA functions based on the current 305 * hardware support. 306 * 307 * This is required before the descriptors are allocated. 308 */ 309 if (ath_hal_hasedma(sc->sc_ah)) { 310 sc->sc_isedma = 1; 311 ath_recv_setup_edma(sc); 312 } else 313 ath_recv_setup_legacy(sc); 314 315 /* 316 * Check if the MAC has multi-rate retry support. 317 * We do this by trying to setup a fake extended 318 * descriptor. MAC's that don't have support will 319 * return false w/o doing anything. MAC's that do 320 * support it will return true w/o doing anything. 321 */ 322 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 323 324 /* 325 * Check if the device has hardware counters for PHY 326 * errors. If so we need to enable the MIB interrupt 327 * so we can act on stat triggers. 328 */ 329 if (ath_hal_hwphycounters(ah)) 330 sc->sc_needmib = 1; 331 332 /* 333 * Get the hardware key cache size. 334 */ 335 sc->sc_keymax = ath_hal_keycachesize(ah); 336 if (sc->sc_keymax > ATH_KEYMAX) { 337 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 338 ATH_KEYMAX, sc->sc_keymax); 339 sc->sc_keymax = ATH_KEYMAX; 340 } 341 /* 342 * Reset the key cache since some parts do not 343 * reset the contents on initial power up. 344 */ 345 for (i = 0; i < sc->sc_keymax; i++) 346 ath_hal_keyreset(ah, i); 347 348 /* 349 * Collect the default channel list. 350 */ 351 error = ath_getchannels(sc); 352 if (error != 0) 353 goto bad; 354 355 /* 356 * Setup rate tables for all potential media types. 357 */ 358 ath_rate_setup(sc, IEEE80211_MODE_11A); 359 ath_rate_setup(sc, IEEE80211_MODE_11B); 360 ath_rate_setup(sc, IEEE80211_MODE_11G); 361 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 362 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 363 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 364 ath_rate_setup(sc, IEEE80211_MODE_11NA); 365 ath_rate_setup(sc, IEEE80211_MODE_11NG); 366 ath_rate_setup(sc, IEEE80211_MODE_HALF); 367 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 368 369 /* NB: setup here so ath_rate_update is happy */ 370 ath_setcurmode(sc, IEEE80211_MODE_11A); 371 372 /* 373 * Allocate tx+rx descriptors and populate the lists. 374 */ 375 error = ath_desc_alloc(sc); 376 if (error != 0) { 377 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 378 goto bad; 379 } 380 381 error = ath_rxdma_setup(sc); 382 if (error != 0) { 383 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 384 error); 385 goto bad; 386 } 387 388 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 389 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 390 391 ATH_TXBUF_LOCK_INIT(sc); 392 393 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 394 taskqueue_thread_enqueue, &sc->sc_tq); 395 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 396 "%s taskq", ifp->if_xname); 397 398 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 399 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 400 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 401 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 402 TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc); 403 TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc); 404 405 /* 406 * Allocate hardware transmit queues: one queue for 407 * beacon frames and one data queue for each QoS 408 * priority. Note that the hal handles resetting 409 * these queues at the needed time. 410 * 411 * XXX PS-Poll 412 */ 413 sc->sc_bhalq = ath_beaconq_setup(ah); 414 if (sc->sc_bhalq == (u_int) -1) { 415 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 416 error = EIO; 417 goto bad2; 418 } 419 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 420 if (sc->sc_cabq == NULL) { 421 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 422 error = EIO; 423 goto bad2; 424 } 425 /* NB: insure BK queue is the lowest priority h/w queue */ 426 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 427 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 428 ieee80211_wme_acnames[WME_AC_BK]); 429 error = EIO; 430 goto bad2; 431 } 432 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 433 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 434 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 435 /* 436 * Not enough hardware tx queues to properly do WME; 437 * just punt and assign them all to the same h/w queue. 438 * We could do a better job of this if, for example, 439 * we allocate queues when we switch from station to 440 * AP mode. 441 */ 442 if (sc->sc_ac2q[WME_AC_VI] != NULL) 443 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 444 if (sc->sc_ac2q[WME_AC_BE] != NULL) 445 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 446 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 447 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 448 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 449 } 450 451 /* 452 * Special case certain configurations. Note the 453 * CAB queue is handled by these specially so don't 454 * include them when checking the txq setup mask. 455 */ 456 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 457 case 0x01: 458 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 459 break; 460 case 0x0f: 461 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 462 break; 463 default: 464 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 465 break; 466 } 467 468 /* 469 * Setup rate control. Some rate control modules 470 * call back to change the anntena state so expose 471 * the necessary entry points. 472 * XXX maybe belongs in struct ath_ratectrl? 473 */ 474 sc->sc_setdefantenna = ath_setdefantenna; 475 sc->sc_rc = ath_rate_attach(sc); 476 if (sc->sc_rc == NULL) { 477 error = EIO; 478 goto bad2; 479 } 480 481 /* Attach DFS module */ 482 if (! ath_dfs_attach(sc)) { 483 device_printf(sc->sc_dev, 484 "%s: unable to attach DFS\n", __func__); 485 error = EIO; 486 goto bad2; 487 } 488 489 /* Start DFS processing tasklet */ 490 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 491 492 /* Configure LED state */ 493 sc->sc_blinking = 0; 494 sc->sc_ledstate = 1; 495 sc->sc_ledon = 0; /* low true */ 496 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 497 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 498 499 /* 500 * Don't setup hardware-based blinking. 501 * 502 * Although some NICs may have this configured in the 503 * default reset register values, the user may wish 504 * to alter which pins have which function. 505 * 506 * The reference driver attaches the MAC network LED to GPIO1 and 507 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 508 * NIC has these reversed. 509 */ 510 sc->sc_hardled = (1 == 0); 511 sc->sc_led_net_pin = -1; 512 sc->sc_led_pwr_pin = -1; 513 /* 514 * Auto-enable soft led processing for IBM cards and for 515 * 5211 minipci cards. Users can also manually enable/disable 516 * support with a sysctl. 517 */ 518 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 519 ath_led_config(sc); 520 ath_hal_setledstate(ah, HAL_LED_INIT); 521 522 ifp->if_softc = sc; 523 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 524 ifp->if_start = ath_start; 525 ifp->if_ioctl = ath_ioctl; 526 ifp->if_init = ath_init; 527 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 528 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 529 IFQ_SET_READY(&ifp->if_snd); 530 531 ic->ic_ifp = ifp; 532 /* XXX not right but it's not used anywhere important */ 533 ic->ic_phytype = IEEE80211_T_OFDM; 534 ic->ic_opmode = IEEE80211_M_STA; 535 ic->ic_caps = 536 IEEE80211_C_STA /* station mode */ 537 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 538 | IEEE80211_C_HOSTAP /* hostap mode */ 539 | IEEE80211_C_MONITOR /* monitor mode */ 540 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 541 | IEEE80211_C_WDS /* 4-address traffic works */ 542 | IEEE80211_C_MBSS /* mesh point link mode */ 543 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 544 | IEEE80211_C_SHSLOT /* short slot time supported */ 545 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 546 #ifndef ATH_ENABLE_11N 547 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 548 #endif 549 | IEEE80211_C_TXFRAG /* handle tx frags */ 550 #ifdef ATH_ENABLE_DFS 551 | IEEE80211_C_DFS /* Enable radar detection */ 552 #endif 553 ; 554 /* 555 * Query the hal to figure out h/w crypto support. 556 */ 557 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 558 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 559 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 560 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 561 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 562 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 563 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 564 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 565 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 566 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 567 /* 568 * Check if h/w does the MIC and/or whether the 569 * separate key cache entries are required to 570 * handle both tx+rx MIC keys. 571 */ 572 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 573 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 574 /* 575 * If the h/w supports storing tx+rx MIC keys 576 * in one cache slot automatically enable use. 577 */ 578 if (ath_hal_hastkipsplit(ah) || 579 !ath_hal_settkipsplit(ah, AH_FALSE)) 580 sc->sc_splitmic = 1; 581 /* 582 * If the h/w can do TKIP MIC together with WME then 583 * we use it; otherwise we force the MIC to be done 584 * in software by the net80211 layer. 585 */ 586 if (ath_hal_haswmetkipmic(ah)) 587 sc->sc_wmetkipmic = 1; 588 } 589 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 590 /* 591 * Check for multicast key search support. 592 */ 593 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 594 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 595 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 596 } 597 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 598 /* 599 * Mark key cache slots associated with global keys 600 * as in use. If we knew TKIP was not to be used we 601 * could leave the +32, +64, and +32+64 slots free. 602 */ 603 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 604 setbit(sc->sc_keymap, i); 605 setbit(sc->sc_keymap, i+64); 606 if (sc->sc_splitmic) { 607 setbit(sc->sc_keymap, i+32); 608 setbit(sc->sc_keymap, i+32+64); 609 } 610 } 611 /* 612 * TPC support can be done either with a global cap or 613 * per-packet support. The latter is not available on 614 * all parts. We're a bit pedantic here as all parts 615 * support a global cap. 616 */ 617 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 618 ic->ic_caps |= IEEE80211_C_TXPMGT; 619 620 /* 621 * Mark WME capability only if we have sufficient 622 * hardware queues to do proper priority scheduling. 623 */ 624 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 625 ic->ic_caps |= IEEE80211_C_WME; 626 /* 627 * Check for misc other capabilities. 628 */ 629 if (ath_hal_hasbursting(ah)) 630 ic->ic_caps |= IEEE80211_C_BURST; 631 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 632 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 633 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 634 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 635 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 636 if (ath_hal_hasfastframes(ah)) 637 ic->ic_caps |= IEEE80211_C_FF; 638 wmodes = ath_hal_getwirelessmodes(ah); 639 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 640 ic->ic_caps |= IEEE80211_C_TURBOP; 641 #ifdef IEEE80211_SUPPORT_TDMA 642 if (ath_hal_macversion(ah) > 0x78) { 643 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 644 ic->ic_tdma_update = ath_tdma_update; 645 } 646 #endif 647 648 /* 649 * TODO: enforce that at least this many frames are available 650 * in the txbuf list before allowing data frames (raw or 651 * otherwise) to be transmitted. 652 */ 653 sc->sc_txq_data_minfree = 10; 654 /* 655 * Leave this as default to maintain legacy behaviour. 656 * Shortening the cabq/mcastq may end up causing some 657 * undesirable behaviour. 658 */ 659 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 660 661 /* 662 * Allow the TX and RX chainmasks to be overridden by 663 * environment variables and/or device.hints. 664 * 665 * This must be done early - before the hardware is 666 * calibrated or before the 802.11n stream calculation 667 * is done. 668 */ 669 if (resource_int_value(device_get_name(sc->sc_dev), 670 device_get_unit(sc->sc_dev), "rx_chainmask", 671 &rx_chainmask) == 0) { 672 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 673 rx_chainmask); 674 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 675 } 676 if (resource_int_value(device_get_name(sc->sc_dev), 677 device_get_unit(sc->sc_dev), "tx_chainmask", 678 &tx_chainmask) == 0) { 679 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 680 tx_chainmask); 681 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 682 } 683 684 #ifdef ATH_ENABLE_11N 685 /* 686 * Query HT capabilities 687 */ 688 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 689 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 690 int rxs, txs; 691 692 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 693 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 694 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 695 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 696 | IEEE80211_HTCAP_MAXAMSDU_3839 697 /* max A-MSDU length */ 698 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 699 ; 700 701 /* 702 * Enable short-GI for HT20 only if the hardware 703 * advertises support. 704 * Notably, anything earlier than the AR9287 doesn't. 705 */ 706 if ((ath_hal_getcapability(ah, 707 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 708 (wmodes & HAL_MODE_HT20)) { 709 device_printf(sc->sc_dev, 710 "[HT] enabling short-GI in 20MHz mode\n"); 711 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 712 } 713 714 if (wmodes & HAL_MODE_HT40) 715 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 716 | IEEE80211_HTCAP_SHORTGI40; 717 718 /* 719 * TX/RX streams need to be taken into account when 720 * negotiating which MCS rates it'll receive and 721 * what MCS rates are available for TX. 722 */ 723 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 724 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 725 726 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 727 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 728 729 ic->ic_txstream = txs; 730 ic->ic_rxstream = rxs; 731 732 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 733 &sc->sc_rts_aggr_limit); 734 if (sc->sc_rts_aggr_limit != (64 * 1024)) 735 device_printf(sc->sc_dev, 736 "[HT] RTS aggregates limited to %d KiB\n", 737 sc->sc_rts_aggr_limit / 1024); 738 739 device_printf(sc->sc_dev, 740 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 741 } 742 #endif 743 744 /* 745 * Initial aggregation settings. 746 */ 747 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 748 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 749 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 750 751 /* 752 * Check if the hardware requires PCI register serialisation. 753 * Some of the Owl based MACs require this. 754 */ 755 if (mp_ncpus > 1 && 756 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 757 0, NULL) == HAL_OK) { 758 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 759 device_printf(sc->sc_dev, 760 "Enabling register serialisation\n"); 761 } 762 763 /* 764 * Indicate we need the 802.11 header padded to a 765 * 32-bit boundary for 4-address and QoS frames. 766 */ 767 ic->ic_flags |= IEEE80211_F_DATAPAD; 768 769 /* 770 * Query the hal about antenna support. 771 */ 772 sc->sc_defant = ath_hal_getdefantenna(ah); 773 774 /* 775 * Not all chips have the VEOL support we want to 776 * use with IBSS beacons; check here for it. 777 */ 778 sc->sc_hasveol = ath_hal_hasveol(ah); 779 780 /* get mac address from hardware */ 781 ath_hal_getmac(ah, macaddr); 782 if (sc->sc_hasbmask) 783 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 784 785 /* NB: used to size node table key mapping array */ 786 ic->ic_max_keyix = sc->sc_keymax; 787 /* call MI attach routine. */ 788 ieee80211_ifattach(ic, macaddr); 789 ic->ic_setregdomain = ath_setregdomain; 790 ic->ic_getradiocaps = ath_getradiocaps; 791 sc->sc_opmode = HAL_M_STA; 792 793 /* override default methods */ 794 ic->ic_newassoc = ath_newassoc; 795 ic->ic_updateslot = ath_updateslot; 796 ic->ic_wme.wme_update = ath_wme_update; 797 ic->ic_vap_create = ath_vap_create; 798 ic->ic_vap_delete = ath_vap_delete; 799 ic->ic_raw_xmit = ath_raw_xmit; 800 ic->ic_update_mcast = ath_update_mcast; 801 ic->ic_update_promisc = ath_update_promisc; 802 ic->ic_node_alloc = ath_node_alloc; 803 sc->sc_node_free = ic->ic_node_free; 804 ic->ic_node_free = ath_node_free; 805 sc->sc_node_cleanup = ic->ic_node_cleanup; 806 ic->ic_node_cleanup = ath_node_cleanup; 807 ic->ic_node_getsignal = ath_node_getsignal; 808 ic->ic_scan_start = ath_scan_start; 809 ic->ic_scan_end = ath_scan_end; 810 ic->ic_set_channel = ath_set_channel; 811 #ifdef ATH_ENABLE_11N 812 /* 802.11n specific - but just override anyway */ 813 sc->sc_addba_request = ic->ic_addba_request; 814 sc->sc_addba_response = ic->ic_addba_response; 815 sc->sc_addba_stop = ic->ic_addba_stop; 816 sc->sc_bar_response = ic->ic_bar_response; 817 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 818 819 ic->ic_addba_request = ath_addba_request; 820 ic->ic_addba_response = ath_addba_response; 821 ic->ic_addba_response_timeout = ath_addba_response_timeout; 822 ic->ic_addba_stop = ath_addba_stop; 823 ic->ic_bar_response = ath_bar_response; 824 825 ic->ic_update_chw = ath_update_chw; 826 #endif /* ATH_ENABLE_11N */ 827 828 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 829 /* 830 * There's one vendor bitmap entry in the RX radiotap 831 * header; make sure that's taken into account. 832 */ 833 ieee80211_radiotap_attachv(ic, 834 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 835 ATH_TX_RADIOTAP_PRESENT, 836 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 837 ATH_RX_RADIOTAP_PRESENT); 838 #else 839 /* 840 * No vendor bitmap/extensions are present. 841 */ 842 ieee80211_radiotap_attach(ic, 843 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 844 ATH_TX_RADIOTAP_PRESENT, 845 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 846 ATH_RX_RADIOTAP_PRESENT); 847 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 848 849 /* 850 * Setup dynamic sysctl's now that country code and 851 * regdomain are available from the hal. 852 */ 853 ath_sysctlattach(sc); 854 ath_sysctl_stats_attach(sc); 855 ath_sysctl_hal_attach(sc); 856 857 if (bootverbose) 858 ieee80211_announce(ic); 859 ath_announce(sc); 860 return 0; 861 bad2: 862 ath_tx_cleanup(sc); 863 ath_desc_free(sc); 864 ath_rxdma_teardown(sc); 865 bad: 866 if (ah) 867 ath_hal_detach(ah); 868 if (ifp != NULL) 869 if_free(ifp); 870 sc->sc_invalid = 1; 871 return error; 872 } 873 874 int 875 ath_detach(struct ath_softc *sc) 876 { 877 struct ifnet *ifp = sc->sc_ifp; 878 879 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 880 __func__, ifp->if_flags); 881 882 /* 883 * NB: the order of these is important: 884 * o stop the chip so no more interrupts will fire 885 * o call the 802.11 layer before detaching the hal to 886 * insure callbacks into the driver to delete global 887 * key cache entries can be handled 888 * o free the taskqueue which drains any pending tasks 889 * o reclaim the tx queue data structures after calling 890 * the 802.11 layer as we'll get called back to reclaim 891 * node state and potentially want to use them 892 * o to cleanup the tx queues the hal is called, so detach 893 * it last 894 * Other than that, it's straightforward... 895 */ 896 ath_stop(ifp); 897 ieee80211_ifdetach(ifp->if_l2com); 898 taskqueue_free(sc->sc_tq); 899 #ifdef ATH_TX99_DIAG 900 if (sc->sc_tx99 != NULL) 901 sc->sc_tx99->detach(sc->sc_tx99); 902 #endif 903 ath_rate_detach(sc->sc_rc); 904 905 ath_dfs_detach(sc); 906 ath_desc_free(sc); 907 ath_rxdma_teardown(sc); 908 ath_tx_cleanup(sc); 909 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 910 if_free(ifp); 911 912 return 0; 913 } 914 915 /* 916 * MAC address handling for multiple BSS on the same radio. 917 * The first vap uses the MAC address from the EEPROM. For 918 * subsequent vap's we set the U/L bit (bit 1) in the MAC 919 * address and use the next six bits as an index. 920 */ 921 static void 922 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 923 { 924 int i; 925 926 if (clone && sc->sc_hasbmask) { 927 /* NB: we only do this if h/w supports multiple bssid */ 928 for (i = 0; i < 8; i++) 929 if ((sc->sc_bssidmask & (1<<i)) == 0) 930 break; 931 if (i != 0) 932 mac[0] |= (i << 2)|0x2; 933 } else 934 i = 0; 935 sc->sc_bssidmask |= 1<<i; 936 sc->sc_hwbssidmask[0] &= ~mac[0]; 937 if (i == 0) 938 sc->sc_nbssid0++; 939 } 940 941 static void 942 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 943 { 944 int i = mac[0] >> 2; 945 uint8_t mask; 946 947 if (i != 0 || --sc->sc_nbssid0 == 0) { 948 sc->sc_bssidmask &= ~(1<<i); 949 /* recalculate bssid mask from remaining addresses */ 950 mask = 0xff; 951 for (i = 1; i < 8; i++) 952 if (sc->sc_bssidmask & (1<<i)) 953 mask &= ~((i<<2)|0x2); 954 sc->sc_hwbssidmask[0] |= mask; 955 } 956 } 957 958 /* 959 * Assign a beacon xmit slot. We try to space out 960 * assignments so when beacons are staggered the 961 * traffic coming out of the cab q has maximal time 962 * to go out before the next beacon is scheduled. 963 */ 964 static int 965 assign_bslot(struct ath_softc *sc) 966 { 967 u_int slot, free; 968 969 free = 0; 970 for (slot = 0; slot < ATH_BCBUF; slot++) 971 if (sc->sc_bslot[slot] == NULL) { 972 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 973 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 974 return slot; 975 free = slot; 976 /* NB: keep looking for a double slot */ 977 } 978 return free; 979 } 980 981 static struct ieee80211vap * 982 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 983 enum ieee80211_opmode opmode, int flags, 984 const uint8_t bssid[IEEE80211_ADDR_LEN], 985 const uint8_t mac0[IEEE80211_ADDR_LEN]) 986 { 987 struct ath_softc *sc = ic->ic_ifp->if_softc; 988 struct ath_vap *avp; 989 struct ieee80211vap *vap; 990 uint8_t mac[IEEE80211_ADDR_LEN]; 991 int needbeacon, error; 992 enum ieee80211_opmode ic_opmode; 993 994 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 995 M_80211_VAP, M_WAITOK | M_ZERO); 996 needbeacon = 0; 997 IEEE80211_ADDR_COPY(mac, mac0); 998 999 ATH_LOCK(sc); 1000 ic_opmode = opmode; /* default to opmode of new vap */ 1001 switch (opmode) { 1002 case IEEE80211_M_STA: 1003 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1004 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1005 goto bad; 1006 } 1007 if (sc->sc_nvaps) { 1008 /* 1009 * With multiple vaps we must fall back 1010 * to s/w beacon miss handling. 1011 */ 1012 flags |= IEEE80211_CLONE_NOBEACONS; 1013 } 1014 if (flags & IEEE80211_CLONE_NOBEACONS) { 1015 /* 1016 * Station mode w/o beacons are implemented w/ AP mode. 1017 */ 1018 ic_opmode = IEEE80211_M_HOSTAP; 1019 } 1020 break; 1021 case IEEE80211_M_IBSS: 1022 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1023 device_printf(sc->sc_dev, 1024 "only 1 ibss vap supported\n"); 1025 goto bad; 1026 } 1027 needbeacon = 1; 1028 break; 1029 case IEEE80211_M_AHDEMO: 1030 #ifdef IEEE80211_SUPPORT_TDMA 1031 if (flags & IEEE80211_CLONE_TDMA) { 1032 if (sc->sc_nvaps != 0) { 1033 device_printf(sc->sc_dev, 1034 "only 1 tdma vap supported\n"); 1035 goto bad; 1036 } 1037 needbeacon = 1; 1038 flags |= IEEE80211_CLONE_NOBEACONS; 1039 } 1040 /* fall thru... */ 1041 #endif 1042 case IEEE80211_M_MONITOR: 1043 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1044 /* 1045 * Adopt existing mode. Adding a monitor or ahdemo 1046 * vap to an existing configuration is of dubious 1047 * value but should be ok. 1048 */ 1049 /* XXX not right for monitor mode */ 1050 ic_opmode = ic->ic_opmode; 1051 } 1052 break; 1053 case IEEE80211_M_HOSTAP: 1054 case IEEE80211_M_MBSS: 1055 needbeacon = 1; 1056 break; 1057 case IEEE80211_M_WDS: 1058 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1059 device_printf(sc->sc_dev, 1060 "wds not supported in sta mode\n"); 1061 goto bad; 1062 } 1063 /* 1064 * Silently remove any request for a unique 1065 * bssid; WDS vap's always share the local 1066 * mac address. 1067 */ 1068 flags &= ~IEEE80211_CLONE_BSSID; 1069 if (sc->sc_nvaps == 0) 1070 ic_opmode = IEEE80211_M_HOSTAP; 1071 else 1072 ic_opmode = ic->ic_opmode; 1073 break; 1074 default: 1075 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1076 goto bad; 1077 } 1078 /* 1079 * Check that a beacon buffer is available; the code below assumes it. 1080 */ 1081 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1082 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1083 goto bad; 1084 } 1085 1086 /* STA, AHDEMO? */ 1087 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1088 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1089 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1090 } 1091 1092 vap = &avp->av_vap; 1093 /* XXX can't hold mutex across if_alloc */ 1094 ATH_UNLOCK(sc); 1095 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1096 bssid, mac); 1097 ATH_LOCK(sc); 1098 if (error != 0) { 1099 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1100 __func__, error); 1101 goto bad2; 1102 } 1103 1104 /* h/w crypto support */ 1105 vap->iv_key_alloc = ath_key_alloc; 1106 vap->iv_key_delete = ath_key_delete; 1107 vap->iv_key_set = ath_key_set; 1108 vap->iv_key_update_begin = ath_key_update_begin; 1109 vap->iv_key_update_end = ath_key_update_end; 1110 1111 /* override various methods */ 1112 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1113 vap->iv_recv_mgmt = ath_recv_mgmt; 1114 vap->iv_reset = ath_reset_vap; 1115 vap->iv_update_beacon = ath_beacon_update; 1116 avp->av_newstate = vap->iv_newstate; 1117 vap->iv_newstate = ath_newstate; 1118 avp->av_bmiss = vap->iv_bmiss; 1119 vap->iv_bmiss = ath_bmiss_vap; 1120 1121 /* Set default parameters */ 1122 1123 /* 1124 * Anything earlier than some AR9300 series MACs don't 1125 * support a smaller MPDU density. 1126 */ 1127 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1128 /* 1129 * All NICs can handle the maximum size, however 1130 * AR5416 based MACs can only TX aggregates w/ RTS 1131 * protection when the total aggregate size is <= 8k. 1132 * However, for now that's enforced by the TX path. 1133 */ 1134 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1135 1136 avp->av_bslot = -1; 1137 if (needbeacon) { 1138 /* 1139 * Allocate beacon state and setup the q for buffered 1140 * multicast frames. We know a beacon buffer is 1141 * available because we checked above. 1142 */ 1143 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1144 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1145 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1146 /* 1147 * Assign the vap to a beacon xmit slot. As above 1148 * this cannot fail to find a free one. 1149 */ 1150 avp->av_bslot = assign_bslot(sc); 1151 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1152 ("beacon slot %u not empty", avp->av_bslot)); 1153 sc->sc_bslot[avp->av_bslot] = vap; 1154 sc->sc_nbcnvaps++; 1155 } 1156 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1157 /* 1158 * Multple vaps are to transmit beacons and we 1159 * have h/w support for TSF adjusting; enable 1160 * use of staggered beacons. 1161 */ 1162 sc->sc_stagbeacons = 1; 1163 } 1164 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1165 } 1166 1167 ic->ic_opmode = ic_opmode; 1168 if (opmode != IEEE80211_M_WDS) { 1169 sc->sc_nvaps++; 1170 if (opmode == IEEE80211_M_STA) 1171 sc->sc_nstavaps++; 1172 if (opmode == IEEE80211_M_MBSS) 1173 sc->sc_nmeshvaps++; 1174 } 1175 switch (ic_opmode) { 1176 case IEEE80211_M_IBSS: 1177 sc->sc_opmode = HAL_M_IBSS; 1178 break; 1179 case IEEE80211_M_STA: 1180 sc->sc_opmode = HAL_M_STA; 1181 break; 1182 case IEEE80211_M_AHDEMO: 1183 #ifdef IEEE80211_SUPPORT_TDMA 1184 if (vap->iv_caps & IEEE80211_C_TDMA) { 1185 sc->sc_tdma = 1; 1186 /* NB: disable tsf adjust */ 1187 sc->sc_stagbeacons = 0; 1188 } 1189 /* 1190 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1191 * just ap mode. 1192 */ 1193 /* fall thru... */ 1194 #endif 1195 case IEEE80211_M_HOSTAP: 1196 case IEEE80211_M_MBSS: 1197 sc->sc_opmode = HAL_M_HOSTAP; 1198 break; 1199 case IEEE80211_M_MONITOR: 1200 sc->sc_opmode = HAL_M_MONITOR; 1201 break; 1202 default: 1203 /* XXX should not happen */ 1204 break; 1205 } 1206 if (sc->sc_hastsfadd) { 1207 /* 1208 * Configure whether or not TSF adjust should be done. 1209 */ 1210 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1211 } 1212 if (flags & IEEE80211_CLONE_NOBEACONS) { 1213 /* 1214 * Enable s/w beacon miss handling. 1215 */ 1216 sc->sc_swbmiss = 1; 1217 } 1218 ATH_UNLOCK(sc); 1219 1220 /* complete setup */ 1221 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1222 return vap; 1223 bad2: 1224 reclaim_address(sc, mac); 1225 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1226 bad: 1227 free(avp, M_80211_VAP); 1228 ATH_UNLOCK(sc); 1229 return NULL; 1230 } 1231 1232 static void 1233 ath_vap_delete(struct ieee80211vap *vap) 1234 { 1235 struct ieee80211com *ic = vap->iv_ic; 1236 struct ifnet *ifp = ic->ic_ifp; 1237 struct ath_softc *sc = ifp->if_softc; 1238 struct ath_hal *ah = sc->sc_ah; 1239 struct ath_vap *avp = ATH_VAP(vap); 1240 1241 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1242 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1243 /* 1244 * Quiesce the hardware while we remove the vap. In 1245 * particular we need to reclaim all references to 1246 * the vap state by any frames pending on the tx queues. 1247 */ 1248 ath_hal_intrset(ah, 0); /* disable interrupts */ 1249 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1250 /* XXX Do all frames from all vaps/nodes need draining here? */ 1251 ath_stoprecv(sc, 1); /* stop recv side */ 1252 } 1253 1254 ieee80211_vap_detach(vap); 1255 1256 /* 1257 * XXX Danger Will Robinson! Danger! 1258 * 1259 * Because ieee80211_vap_detach() can queue a frame (the station 1260 * diassociate message?) after we've drained the TXQ and 1261 * flushed the software TXQ, we will end up with a frame queued 1262 * to a node whose vap is about to be freed. 1263 * 1264 * To work around this, flush the hardware/software again. 1265 * This may be racy - the ath task may be running and the packet 1266 * may be being scheduled between sw->hw txq. Tsk. 1267 * 1268 * TODO: figure out why a new node gets allocated somewhere around 1269 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1270 * call!) 1271 */ 1272 1273 ath_draintxq(sc, ATH_RESET_DEFAULT); 1274 1275 ATH_LOCK(sc); 1276 /* 1277 * Reclaim beacon state. Note this must be done before 1278 * the vap instance is reclaimed as we may have a reference 1279 * to it in the buffer for the beacon frame. 1280 */ 1281 if (avp->av_bcbuf != NULL) { 1282 if (avp->av_bslot != -1) { 1283 sc->sc_bslot[avp->av_bslot] = NULL; 1284 sc->sc_nbcnvaps--; 1285 } 1286 ath_beacon_return(sc, avp->av_bcbuf); 1287 avp->av_bcbuf = NULL; 1288 if (sc->sc_nbcnvaps == 0) { 1289 sc->sc_stagbeacons = 0; 1290 if (sc->sc_hastsfadd) 1291 ath_hal_settsfadjust(sc->sc_ah, 0); 1292 } 1293 /* 1294 * Reclaim any pending mcast frames for the vap. 1295 */ 1296 ath_tx_draintxq(sc, &avp->av_mcastq); 1297 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1298 } 1299 /* 1300 * Update bookkeeping. 1301 */ 1302 if (vap->iv_opmode == IEEE80211_M_STA) { 1303 sc->sc_nstavaps--; 1304 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1305 sc->sc_swbmiss = 0; 1306 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1307 vap->iv_opmode == IEEE80211_M_MBSS) { 1308 reclaim_address(sc, vap->iv_myaddr); 1309 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1310 if (vap->iv_opmode == IEEE80211_M_MBSS) 1311 sc->sc_nmeshvaps--; 1312 } 1313 if (vap->iv_opmode != IEEE80211_M_WDS) 1314 sc->sc_nvaps--; 1315 #ifdef IEEE80211_SUPPORT_TDMA 1316 /* TDMA operation ceases when the last vap is destroyed */ 1317 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1318 sc->sc_tdma = 0; 1319 sc->sc_swbmiss = 0; 1320 } 1321 #endif 1322 free(avp, M_80211_VAP); 1323 1324 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1325 /* 1326 * Restart rx+tx machines if still running (RUNNING will 1327 * be reset if we just destroyed the last vap). 1328 */ 1329 if (ath_startrecv(sc) != 0) 1330 if_printf(ifp, "%s: unable to restart recv logic\n", 1331 __func__); 1332 if (sc->sc_beacons) { /* restart beacons */ 1333 #ifdef IEEE80211_SUPPORT_TDMA 1334 if (sc->sc_tdma) 1335 ath_tdma_config(sc, NULL); 1336 else 1337 #endif 1338 ath_beacon_config(sc, NULL); 1339 } 1340 ath_hal_intrset(ah, sc->sc_imask); 1341 } 1342 ATH_UNLOCK(sc); 1343 } 1344 1345 void 1346 ath_suspend(struct ath_softc *sc) 1347 { 1348 struct ifnet *ifp = sc->sc_ifp; 1349 struct ieee80211com *ic = ifp->if_l2com; 1350 1351 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1352 __func__, ifp->if_flags); 1353 1354 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1355 1356 ieee80211_suspend_all(ic); 1357 /* 1358 * NB: don't worry about putting the chip in low power 1359 * mode; pci will power off our socket on suspend and 1360 * CardBus detaches the device. 1361 */ 1362 1363 /* 1364 * XXX ensure none of the taskqueues are running 1365 * XXX ensure sc_invalid is 1 1366 * XXX ensure the calibration callout is disabled 1367 */ 1368 1369 /* Disable the PCIe PHY, complete with workarounds */ 1370 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1371 } 1372 1373 /* 1374 * Reset the key cache since some parts do not reset the 1375 * contents on resume. First we clear all entries, then 1376 * re-load keys that the 802.11 layer assumes are setup 1377 * in h/w. 1378 */ 1379 static void 1380 ath_reset_keycache(struct ath_softc *sc) 1381 { 1382 struct ifnet *ifp = sc->sc_ifp; 1383 struct ieee80211com *ic = ifp->if_l2com; 1384 struct ath_hal *ah = sc->sc_ah; 1385 int i; 1386 1387 for (i = 0; i < sc->sc_keymax; i++) 1388 ath_hal_keyreset(ah, i); 1389 ieee80211_crypto_reload_keys(ic); 1390 } 1391 1392 void 1393 ath_resume(struct ath_softc *sc) 1394 { 1395 struct ifnet *ifp = sc->sc_ifp; 1396 struct ieee80211com *ic = ifp->if_l2com; 1397 struct ath_hal *ah = sc->sc_ah; 1398 HAL_STATUS status; 1399 1400 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1401 __func__, ifp->if_flags); 1402 1403 /* Re-enable PCIe, re-enable the PCIe bus */ 1404 ath_hal_enablepcie(ah, 0, 0); 1405 1406 /* 1407 * Must reset the chip before we reload the 1408 * keycache as we were powered down on suspend. 1409 */ 1410 ath_hal_reset(ah, sc->sc_opmode, 1411 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1412 AH_FALSE, &status); 1413 ath_reset_keycache(sc); 1414 1415 /* Let DFS at it in case it's a DFS channel */ 1416 ath_dfs_radar_enable(sc, ic->ic_curchan); 1417 1418 /* Restore the LED configuration */ 1419 ath_led_config(sc); 1420 ath_hal_setledstate(ah, HAL_LED_INIT); 1421 1422 if (sc->sc_resume_up) 1423 ieee80211_resume_all(ic); 1424 1425 /* XXX beacons ? */ 1426 } 1427 1428 void 1429 ath_shutdown(struct ath_softc *sc) 1430 { 1431 struct ifnet *ifp = sc->sc_ifp; 1432 1433 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1434 __func__, ifp->if_flags); 1435 1436 ath_stop(ifp); 1437 /* NB: no point powering down chip as we're about to reboot */ 1438 } 1439 1440 /* 1441 * Interrupt handler. Most of the actual processing is deferred. 1442 */ 1443 void 1444 ath_intr(void *arg) 1445 { 1446 struct ath_softc *sc = arg; 1447 struct ifnet *ifp = sc->sc_ifp; 1448 struct ath_hal *ah = sc->sc_ah; 1449 HAL_INT status = 0; 1450 uint32_t txqs; 1451 1452 /* 1453 * If we're inside a reset path, just print a warning and 1454 * clear the ISR. The reset routine will finish it for us. 1455 */ 1456 ATH_PCU_LOCK(sc); 1457 if (sc->sc_inreset_cnt) { 1458 HAL_INT status; 1459 ath_hal_getisr(ah, &status); /* clear ISR */ 1460 ath_hal_intrset(ah, 0); /* disable further intr's */ 1461 DPRINTF(sc, ATH_DEBUG_ANY, 1462 "%s: in reset, ignoring: status=0x%x\n", 1463 __func__, status); 1464 ATH_PCU_UNLOCK(sc); 1465 return; 1466 } 1467 1468 if (sc->sc_invalid) { 1469 /* 1470 * The hardware is not ready/present, don't touch anything. 1471 * Note this can happen early on if the IRQ is shared. 1472 */ 1473 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1474 ATH_PCU_UNLOCK(sc); 1475 return; 1476 } 1477 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1478 ATH_PCU_UNLOCK(sc); 1479 return; 1480 } 1481 1482 if ((ifp->if_flags & IFF_UP) == 0 || 1483 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1484 HAL_INT status; 1485 1486 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1487 __func__, ifp->if_flags); 1488 ath_hal_getisr(ah, &status); /* clear ISR */ 1489 ath_hal_intrset(ah, 0); /* disable further intr's */ 1490 ATH_PCU_UNLOCK(sc); 1491 return; 1492 } 1493 1494 /* 1495 * Figure out the reason(s) for the interrupt. Note 1496 * that the hal returns a pseudo-ISR that may include 1497 * bits we haven't explicitly enabled so we mask the 1498 * value to insure we only process bits we requested. 1499 */ 1500 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1501 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1502 CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status); 1503 #ifdef ATH_KTR_INTR_DEBUG 1504 CTR5(ATH_KTR_INTR, 1505 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1506 ah->ah_intrstate[0], 1507 ah->ah_intrstate[1], 1508 ah->ah_intrstate[2], 1509 ah->ah_intrstate[3], 1510 ah->ah_intrstate[6]); 1511 #endif 1512 1513 /* Squirrel away SYNC interrupt debugging */ 1514 if (ah->ah_syncstate != 0) { 1515 int i; 1516 for (i = 0; i < 32; i++) 1517 if (ah->ah_syncstate & (i << i)) 1518 sc->sc_intr_stats.sync_intr[i]++; 1519 } 1520 1521 status &= sc->sc_imask; /* discard unasked for bits */ 1522 1523 /* Short-circuit un-handled interrupts */ 1524 if (status == 0x0) { 1525 ATH_PCU_UNLOCK(sc); 1526 return; 1527 } 1528 1529 /* 1530 * Take a note that we're inside the interrupt handler, so 1531 * the reset routines know to wait. 1532 */ 1533 sc->sc_intr_cnt++; 1534 ATH_PCU_UNLOCK(sc); 1535 1536 /* 1537 * Handle the interrupt. We won't run concurrent with the reset 1538 * or channel change routines as they'll wait for sc_intr_cnt 1539 * to be 0 before continuing. 1540 */ 1541 if (status & HAL_INT_FATAL) { 1542 sc->sc_stats.ast_hardware++; 1543 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1544 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1545 } else { 1546 if (status & HAL_INT_SWBA) { 1547 /* 1548 * Software beacon alert--time to send a beacon. 1549 * Handle beacon transmission directly; deferring 1550 * this is too slow to meet timing constraints 1551 * under load. 1552 */ 1553 #ifdef IEEE80211_SUPPORT_TDMA 1554 if (sc->sc_tdma) { 1555 if (sc->sc_tdmaswba == 0) { 1556 struct ieee80211com *ic = ifp->if_l2com; 1557 struct ieee80211vap *vap = 1558 TAILQ_FIRST(&ic->ic_vaps); 1559 ath_tdma_beacon_send(sc, vap); 1560 sc->sc_tdmaswba = 1561 vap->iv_tdma->tdma_bintval; 1562 } else 1563 sc->sc_tdmaswba--; 1564 } else 1565 #endif 1566 { 1567 ath_beacon_proc(sc, 0); 1568 #ifdef IEEE80211_SUPPORT_SUPERG 1569 /* 1570 * Schedule the rx taskq in case there's no 1571 * traffic so any frames held on the staging 1572 * queue are aged and potentially flushed. 1573 */ 1574 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1575 #endif 1576 } 1577 } 1578 if (status & HAL_INT_RXEOL) { 1579 int imask; 1580 CTR0(ATH_KTR_ERR, "ath_intr: RXEOL"); 1581 ATH_PCU_LOCK(sc); 1582 /* 1583 * NB: the hardware should re-read the link when 1584 * RXE bit is written, but it doesn't work at 1585 * least on older hardware revs. 1586 */ 1587 sc->sc_stats.ast_rxeol++; 1588 /* 1589 * Disable RXEOL/RXORN - prevent an interrupt 1590 * storm until the PCU logic can be reset. 1591 * In case the interface is reset some other 1592 * way before "sc_kickpcu" is called, don't 1593 * modify sc_imask - that way if it is reset 1594 * by a call to ath_reset() somehow, the 1595 * interrupt mask will be correctly reprogrammed. 1596 */ 1597 imask = sc->sc_imask; 1598 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1599 ath_hal_intrset(ah, imask); 1600 /* 1601 * Only blank sc_rxlink if we've not yet kicked 1602 * the PCU. 1603 * 1604 * This isn't entirely correct - the correct solution 1605 * would be to have a PCU lock and engage that for 1606 * the duration of the PCU fiddling; which would include 1607 * running the RX process. Otherwise we could end up 1608 * messing up the RX descriptor chain and making the 1609 * RX desc list much shorter. 1610 */ 1611 if (! sc->sc_kickpcu) 1612 sc->sc_rxlink = NULL; 1613 sc->sc_kickpcu = 1; 1614 /* 1615 * Enqueue an RX proc, to handled whatever 1616 * is in the RX queue. 1617 * This will then kick the PCU. 1618 */ 1619 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1620 ATH_PCU_UNLOCK(sc); 1621 } 1622 if (status & HAL_INT_TXURN) { 1623 sc->sc_stats.ast_txurn++; 1624 /* bump tx trigger level */ 1625 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1626 } 1627 if (status & HAL_INT_RX) { 1628 sc->sc_stats.ast_rx_intr++; 1629 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1630 } 1631 if (status & HAL_INT_TX) { 1632 sc->sc_stats.ast_tx_intr++; 1633 /* 1634 * Grab all the currently set bits in the HAL txq bitmap 1635 * and blank them. This is the only place we should be 1636 * doing this. 1637 */ 1638 ATH_PCU_LOCK(sc); 1639 txqs = 0xffffffff; 1640 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1641 sc->sc_txq_active |= txqs; 1642 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1643 ATH_PCU_UNLOCK(sc); 1644 } 1645 if (status & HAL_INT_BMISS) { 1646 sc->sc_stats.ast_bmiss++; 1647 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1648 } 1649 if (status & HAL_INT_GTT) 1650 sc->sc_stats.ast_tx_timeout++; 1651 if (status & HAL_INT_CST) 1652 sc->sc_stats.ast_tx_cst++; 1653 if (status & HAL_INT_MIB) { 1654 sc->sc_stats.ast_mib++; 1655 ATH_PCU_LOCK(sc); 1656 /* 1657 * Disable interrupts until we service the MIB 1658 * interrupt; otherwise it will continue to fire. 1659 */ 1660 ath_hal_intrset(ah, 0); 1661 /* 1662 * Let the hal handle the event. We assume it will 1663 * clear whatever condition caused the interrupt. 1664 */ 1665 ath_hal_mibevent(ah, &sc->sc_halstats); 1666 /* 1667 * Don't reset the interrupt if we've just 1668 * kicked the PCU, or we may get a nested 1669 * RXEOL before the rxproc has had a chance 1670 * to run. 1671 */ 1672 if (sc->sc_kickpcu == 0) 1673 ath_hal_intrset(ah, sc->sc_imask); 1674 ATH_PCU_UNLOCK(sc); 1675 } 1676 if (status & HAL_INT_RXORN) { 1677 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1678 CTR0(ATH_KTR_ERR, "ath_intr: RXORN"); 1679 sc->sc_stats.ast_rxorn++; 1680 } 1681 } 1682 ATH_PCU_LOCK(sc); 1683 sc->sc_intr_cnt--; 1684 ATH_PCU_UNLOCK(sc); 1685 } 1686 1687 static void 1688 ath_fatal_proc(void *arg, int pending) 1689 { 1690 struct ath_softc *sc = arg; 1691 struct ifnet *ifp = sc->sc_ifp; 1692 u_int32_t *state; 1693 u_int32_t len; 1694 void *sp; 1695 1696 if_printf(ifp, "hardware error; resetting\n"); 1697 /* 1698 * Fatal errors are unrecoverable. Typically these 1699 * are caused by DMA errors. Collect h/w state from 1700 * the hal so we can diagnose what's going on. 1701 */ 1702 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1703 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1704 state = sp; 1705 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1706 state[0], state[1] , state[2], state[3], 1707 state[4], state[5]); 1708 } 1709 ath_reset(ifp, ATH_RESET_NOLOSS); 1710 } 1711 1712 static void 1713 ath_bmiss_vap(struct ieee80211vap *vap) 1714 { 1715 /* 1716 * Workaround phantom bmiss interrupts by sanity-checking 1717 * the time of our last rx'd frame. If it is within the 1718 * beacon miss interval then ignore the interrupt. If it's 1719 * truly a bmiss we'll get another interrupt soon and that'll 1720 * be dispatched up for processing. Note this applies only 1721 * for h/w beacon miss events. 1722 */ 1723 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1724 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1725 struct ath_softc *sc = ifp->if_softc; 1726 u_int64_t lastrx = sc->sc_lastrx; 1727 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1728 /* XXX should take a locked ref to iv_bss */ 1729 u_int bmisstimeout = 1730 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1731 1732 DPRINTF(sc, ATH_DEBUG_BEACON, 1733 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1734 __func__, (unsigned long long) tsf, 1735 (unsigned long long)(tsf - lastrx), 1736 (unsigned long long) lastrx, bmisstimeout); 1737 1738 if (tsf - lastrx <= bmisstimeout) { 1739 sc->sc_stats.ast_bmiss_phantom++; 1740 return; 1741 } 1742 } 1743 ATH_VAP(vap)->av_bmiss(vap); 1744 } 1745 1746 static int 1747 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1748 { 1749 uint32_t rsize; 1750 void *sp; 1751 1752 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1753 return 0; 1754 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1755 *hangs = *(uint32_t *)sp; 1756 return 1; 1757 } 1758 1759 static void 1760 ath_bmiss_proc(void *arg, int pending) 1761 { 1762 struct ath_softc *sc = arg; 1763 struct ifnet *ifp = sc->sc_ifp; 1764 uint32_t hangs; 1765 1766 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1767 1768 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1769 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1770 ath_reset(ifp, ATH_RESET_NOLOSS); 1771 } else 1772 ieee80211_beacon_miss(ifp->if_l2com); 1773 } 1774 1775 /* 1776 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1777 * calcs together with WME. If necessary disable the crypto 1778 * hardware and mark the 802.11 state so keys will be setup 1779 * with the MIC work done in software. 1780 */ 1781 static void 1782 ath_settkipmic(struct ath_softc *sc) 1783 { 1784 struct ifnet *ifp = sc->sc_ifp; 1785 struct ieee80211com *ic = ifp->if_l2com; 1786 1787 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1788 if (ic->ic_flags & IEEE80211_F_WME) { 1789 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1790 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1791 } else { 1792 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1793 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1794 } 1795 } 1796 } 1797 1798 static void 1799 ath_init(void *arg) 1800 { 1801 struct ath_softc *sc = (struct ath_softc *) arg; 1802 struct ifnet *ifp = sc->sc_ifp; 1803 struct ieee80211com *ic = ifp->if_l2com; 1804 struct ath_hal *ah = sc->sc_ah; 1805 HAL_STATUS status; 1806 1807 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1808 __func__, ifp->if_flags); 1809 1810 ATH_LOCK(sc); 1811 /* 1812 * Stop anything previously setup. This is safe 1813 * whether this is the first time through or not. 1814 */ 1815 ath_stop_locked(ifp); 1816 1817 /* 1818 * The basic interface to setting the hardware in a good 1819 * state is ``reset''. On return the hardware is known to 1820 * be powered up and with interrupts disabled. This must 1821 * be followed by initialization of the appropriate bits 1822 * and then setup of the interrupt mask. 1823 */ 1824 ath_settkipmic(sc); 1825 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1826 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1827 status); 1828 ATH_UNLOCK(sc); 1829 return; 1830 } 1831 ath_chan_change(sc, ic->ic_curchan); 1832 1833 /* Let DFS at it in case it's a DFS channel */ 1834 ath_dfs_radar_enable(sc, ic->ic_curchan); 1835 1836 /* 1837 * Likewise this is set during reset so update 1838 * state cached in the driver. 1839 */ 1840 sc->sc_diversity = ath_hal_getdiversity(ah); 1841 sc->sc_lastlongcal = 0; 1842 sc->sc_resetcal = 1; 1843 sc->sc_lastcalreset = 0; 1844 sc->sc_lastani = 0; 1845 sc->sc_lastshortcal = 0; 1846 sc->sc_doresetcal = AH_FALSE; 1847 /* 1848 * Beacon timers were cleared here; give ath_newstate() 1849 * a hint that the beacon timers should be poked when 1850 * things transition to the RUN state. 1851 */ 1852 sc->sc_beacons = 0; 1853 1854 /* 1855 * Setup the hardware after reset: the key cache 1856 * is filled as needed and the receive engine is 1857 * set going. Frame transmit is handled entirely 1858 * in the frame output path; there's nothing to do 1859 * here except setup the interrupt mask. 1860 */ 1861 if (ath_startrecv(sc) != 0) { 1862 if_printf(ifp, "unable to start recv logic\n"); 1863 ATH_UNLOCK(sc); 1864 return; 1865 } 1866 1867 /* 1868 * Enable interrupts. 1869 */ 1870 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1871 | HAL_INT_RXEOL | HAL_INT_RXORN 1872 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1873 /* 1874 * Enable MIB interrupts when there are hardware phy counters. 1875 * Note we only do this (at the moment) for station mode. 1876 */ 1877 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1878 sc->sc_imask |= HAL_INT_MIB; 1879 1880 /* Enable global TX timeout and carrier sense timeout if available */ 1881 if (ath_hal_gtxto_supported(ah)) 1882 sc->sc_imask |= HAL_INT_GTT; 1883 1884 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1885 __func__, sc->sc_imask); 1886 1887 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1888 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1889 ath_hal_intrset(ah, sc->sc_imask); 1890 1891 ATH_UNLOCK(sc); 1892 1893 #ifdef ATH_TX99_DIAG 1894 if (sc->sc_tx99 != NULL) 1895 sc->sc_tx99->start(sc->sc_tx99); 1896 else 1897 #endif 1898 ieee80211_start_all(ic); /* start all vap's */ 1899 } 1900 1901 static void 1902 ath_stop_locked(struct ifnet *ifp) 1903 { 1904 struct ath_softc *sc = ifp->if_softc; 1905 struct ath_hal *ah = sc->sc_ah; 1906 1907 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1908 __func__, sc->sc_invalid, ifp->if_flags); 1909 1910 ATH_LOCK_ASSERT(sc); 1911 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1912 /* 1913 * Shutdown the hardware and driver: 1914 * reset 802.11 state machine 1915 * turn off timers 1916 * disable interrupts 1917 * turn off the radio 1918 * clear transmit machinery 1919 * clear receive machinery 1920 * drain and release tx queues 1921 * reclaim beacon resources 1922 * power down hardware 1923 * 1924 * Note that some of this work is not possible if the 1925 * hardware is gone (invalid). 1926 */ 1927 #ifdef ATH_TX99_DIAG 1928 if (sc->sc_tx99 != NULL) 1929 sc->sc_tx99->stop(sc->sc_tx99); 1930 #endif 1931 callout_stop(&sc->sc_wd_ch); 1932 sc->sc_wd_timer = 0; 1933 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1934 if (!sc->sc_invalid) { 1935 if (sc->sc_softled) { 1936 callout_stop(&sc->sc_ledtimer); 1937 ath_hal_gpioset(ah, sc->sc_ledpin, 1938 !sc->sc_ledon); 1939 sc->sc_blinking = 0; 1940 } 1941 ath_hal_intrset(ah, 0); 1942 } 1943 ath_draintxq(sc, ATH_RESET_DEFAULT); 1944 if (!sc->sc_invalid) { 1945 ath_stoprecv(sc, 1); 1946 ath_hal_phydisable(ah); 1947 } else 1948 sc->sc_rxlink = NULL; 1949 ath_beacon_free(sc); /* XXX not needed */ 1950 } 1951 } 1952 1953 #define MAX_TXRX_ITERATIONS 1000 1954 static void 1955 ath_txrx_stop_locked(struct ath_softc *sc) 1956 { 1957 int i = MAX_TXRX_ITERATIONS; 1958 1959 ATH_UNLOCK_ASSERT(sc); 1960 ATH_PCU_LOCK_ASSERT(sc); 1961 1962 /* 1963 * Sleep until all the pending operations have completed. 1964 * 1965 * The caller must ensure that reset has been incremented 1966 * or the pending operations may continue being queued. 1967 */ 1968 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 1969 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 1970 if (i <= 0) 1971 break; 1972 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 1973 i--; 1974 } 1975 1976 if (i <= 0) 1977 device_printf(sc->sc_dev, 1978 "%s: didn't finish after %d iterations\n", 1979 __func__, MAX_TXRX_ITERATIONS); 1980 } 1981 #undef MAX_TXRX_ITERATIONS 1982 1983 #if 0 1984 static void 1985 ath_txrx_stop(struct ath_softc *sc) 1986 { 1987 ATH_UNLOCK_ASSERT(sc); 1988 ATH_PCU_UNLOCK_ASSERT(sc); 1989 1990 ATH_PCU_LOCK(sc); 1991 ath_txrx_stop_locked(sc); 1992 ATH_PCU_UNLOCK(sc); 1993 } 1994 #endif 1995 1996 static void 1997 ath_txrx_start(struct ath_softc *sc) 1998 { 1999 2000 taskqueue_unblock(sc->sc_tq); 2001 } 2002 2003 /* 2004 * Grab the reset lock, and wait around until noone else 2005 * is trying to do anything with it. 2006 * 2007 * This is totally horrible but we can't hold this lock for 2008 * long enough to do TX/RX or we end up with net80211/ip stack 2009 * LORs and eventual deadlock. 2010 * 2011 * "dowait" signals whether to spin, waiting for the reset 2012 * lock count to reach 0. This should (for now) only be used 2013 * during the reset path, as the rest of the code may not 2014 * be locking-reentrant enough to behave correctly. 2015 * 2016 * Another, cleaner way should be found to serialise all of 2017 * these operations. 2018 */ 2019 #define MAX_RESET_ITERATIONS 10 2020 static int 2021 ath_reset_grablock(struct ath_softc *sc, int dowait) 2022 { 2023 int w = 0; 2024 int i = MAX_RESET_ITERATIONS; 2025 2026 ATH_PCU_LOCK_ASSERT(sc); 2027 do { 2028 if (sc->sc_inreset_cnt == 0) { 2029 w = 1; 2030 break; 2031 } 2032 if (dowait == 0) { 2033 w = 0; 2034 break; 2035 } 2036 ATH_PCU_UNLOCK(sc); 2037 pause("ath_reset_grablock", 1); 2038 i--; 2039 ATH_PCU_LOCK(sc); 2040 } while (i > 0); 2041 2042 /* 2043 * We always increment the refcounter, regardless 2044 * of whether we succeeded to get it in an exclusive 2045 * way. 2046 */ 2047 sc->sc_inreset_cnt++; 2048 2049 if (i <= 0) 2050 device_printf(sc->sc_dev, 2051 "%s: didn't finish after %d iterations\n", 2052 __func__, MAX_RESET_ITERATIONS); 2053 2054 if (w == 0) 2055 device_printf(sc->sc_dev, 2056 "%s: warning, recursive reset path!\n", 2057 __func__); 2058 2059 return w; 2060 } 2061 #undef MAX_RESET_ITERATIONS 2062 2063 /* 2064 * XXX TODO: write ath_reset_releaselock 2065 */ 2066 2067 static void 2068 ath_stop(struct ifnet *ifp) 2069 { 2070 struct ath_softc *sc = ifp->if_softc; 2071 2072 ATH_LOCK(sc); 2073 ath_stop_locked(ifp); 2074 ATH_UNLOCK(sc); 2075 } 2076 2077 /* 2078 * Reset the hardware w/o losing operational state. This is 2079 * basically a more efficient way of doing ath_stop, ath_init, 2080 * followed by state transitions to the current 802.11 2081 * operational state. Used to recover from various errors and 2082 * to reset or reload hardware state. 2083 */ 2084 int 2085 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2086 { 2087 struct ath_softc *sc = ifp->if_softc; 2088 struct ieee80211com *ic = ifp->if_l2com; 2089 struct ath_hal *ah = sc->sc_ah; 2090 HAL_STATUS status; 2091 int i; 2092 2093 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2094 2095 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2096 ATH_PCU_UNLOCK_ASSERT(sc); 2097 ATH_UNLOCK_ASSERT(sc); 2098 2099 /* Try to (stop any further TX/RX from occuring */ 2100 taskqueue_block(sc->sc_tq); 2101 2102 ATH_PCU_LOCK(sc); 2103 ath_hal_intrset(ah, 0); /* disable interrupts */ 2104 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2105 if (ath_reset_grablock(sc, 1) == 0) { 2106 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2107 __func__); 2108 } 2109 ATH_PCU_UNLOCK(sc); 2110 2111 /* 2112 * Should now wait for pending TX/RX to complete 2113 * and block future ones from occuring. This needs to be 2114 * done before the TX queue is drained. 2115 */ 2116 ath_draintxq(sc, reset_type); /* stop xmit side */ 2117 2118 /* 2119 * Regardless of whether we're doing a no-loss flush or 2120 * not, stop the PCU and handle what's in the RX queue. 2121 * That way frames aren't dropped which shouldn't be. 2122 */ 2123 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2124 ath_rx_flush(sc); 2125 2126 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2127 /* NB: indicate channel change so we do a full reset */ 2128 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2129 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2130 __func__, status); 2131 sc->sc_diversity = ath_hal_getdiversity(ah); 2132 2133 /* Let DFS at it in case it's a DFS channel */ 2134 ath_dfs_radar_enable(sc, ic->ic_curchan); 2135 2136 if (ath_startrecv(sc) != 0) /* restart recv */ 2137 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2138 /* 2139 * We may be doing a reset in response to an ioctl 2140 * that changes the channel so update any state that 2141 * might change as a result. 2142 */ 2143 ath_chan_change(sc, ic->ic_curchan); 2144 if (sc->sc_beacons) { /* restart beacons */ 2145 #ifdef IEEE80211_SUPPORT_TDMA 2146 if (sc->sc_tdma) 2147 ath_tdma_config(sc, NULL); 2148 else 2149 #endif 2150 ath_beacon_config(sc, NULL); 2151 } 2152 2153 /* 2154 * Release the reset lock and re-enable interrupts here. 2155 * If an interrupt was being processed in ath_intr(), 2156 * it would disable interrupts at this point. So we have 2157 * to atomically enable interrupts and decrement the 2158 * reset counter - this way ath_intr() doesn't end up 2159 * disabling interrupts without a corresponding enable 2160 * in the rest or channel change path. 2161 */ 2162 ATH_PCU_LOCK(sc); 2163 sc->sc_inreset_cnt--; 2164 /* XXX only do this if sc_inreset_cnt == 0? */ 2165 ath_hal_intrset(ah, sc->sc_imask); 2166 ATH_PCU_UNLOCK(sc); 2167 2168 /* 2169 * TX and RX can be started here. If it were started with 2170 * sc_inreset_cnt > 0, the TX and RX path would abort. 2171 * Thus if this is a nested call through the reset or 2172 * channel change code, TX completion will occur but 2173 * RX completion and ath_start / ath_tx_start will not 2174 * run. 2175 */ 2176 2177 /* Restart TX/RX as needed */ 2178 ath_txrx_start(sc); 2179 2180 /* XXX Restart TX completion and pending TX */ 2181 if (reset_type == ATH_RESET_NOLOSS) { 2182 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2183 if (ATH_TXQ_SETUP(sc, i)) { 2184 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2185 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2186 ath_txq_sched(sc, &sc->sc_txq[i]); 2187 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2188 } 2189 } 2190 } 2191 2192 /* 2193 * This may have been set during an ath_start() call which 2194 * set this once it detected a concurrent TX was going on. 2195 * So, clear it. 2196 */ 2197 IF_LOCK(&ifp->if_snd); 2198 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2199 IF_UNLOCK(&ifp->if_snd); 2200 2201 /* Handle any frames in the TX queue */ 2202 /* 2203 * XXX should this be done by the caller, rather than 2204 * ath_reset() ? 2205 */ 2206 ath_start(ifp); /* restart xmit */ 2207 return 0; 2208 } 2209 2210 static int 2211 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2212 { 2213 struct ieee80211com *ic = vap->iv_ic; 2214 struct ifnet *ifp = ic->ic_ifp; 2215 struct ath_softc *sc = ifp->if_softc; 2216 struct ath_hal *ah = sc->sc_ah; 2217 2218 switch (cmd) { 2219 case IEEE80211_IOC_TXPOWER: 2220 /* 2221 * If per-packet TPC is enabled, then we have nothing 2222 * to do; otherwise we need to force the global limit. 2223 * All this can happen directly; no need to reset. 2224 */ 2225 if (!ath_hal_gettpc(ah)) 2226 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2227 return 0; 2228 } 2229 /* XXX? Full or NOLOSS? */ 2230 return ath_reset(ifp, ATH_RESET_FULL); 2231 } 2232 2233 struct ath_buf * 2234 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2235 { 2236 struct ath_buf *bf; 2237 2238 ATH_TXBUF_LOCK_ASSERT(sc); 2239 2240 if (btype == ATH_BUFTYPE_MGMT) 2241 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2242 else 2243 bf = TAILQ_FIRST(&sc->sc_txbuf); 2244 2245 if (bf == NULL) { 2246 sc->sc_stats.ast_tx_getnobuf++; 2247 } else { 2248 if (bf->bf_flags & ATH_BUF_BUSY) { 2249 sc->sc_stats.ast_tx_getbusybuf++; 2250 bf = NULL; 2251 } 2252 } 2253 2254 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2255 if (btype == ATH_BUFTYPE_MGMT) 2256 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2257 else { 2258 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2259 sc->sc_txbuf_cnt--; 2260 2261 /* 2262 * This shuldn't happen; however just to be 2263 * safe print a warning and fudge the txbuf 2264 * count. 2265 */ 2266 if (sc->sc_txbuf_cnt < 0) { 2267 device_printf(sc->sc_dev, 2268 "%s: sc_txbuf_cnt < 0?\n", 2269 __func__); 2270 sc->sc_txbuf_cnt = 0; 2271 } 2272 } 2273 } else 2274 bf = NULL; 2275 2276 if (bf == NULL) { 2277 /* XXX should check which list, mgmt or otherwise */ 2278 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2279 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2280 "out of xmit buffers" : "xmit buffer busy"); 2281 return NULL; 2282 } 2283 2284 /* XXX TODO: should do this at buffer list initialisation */ 2285 /* XXX (then, ensure the buffer has the right flag set) */ 2286 if (btype == ATH_BUFTYPE_MGMT) 2287 bf->bf_flags |= ATH_BUF_MGMT; 2288 else 2289 bf->bf_flags &= (~ATH_BUF_MGMT); 2290 2291 /* Valid bf here; clear some basic fields */ 2292 bf->bf_next = NULL; /* XXX just to be sure */ 2293 bf->bf_last = NULL; /* XXX again, just to be sure */ 2294 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2295 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2296 2297 return bf; 2298 } 2299 2300 /* 2301 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2302 * can't be thrown back on the queue as they could still be 2303 * in use by the hardware. 2304 * 2305 * This duplicates the buffer, or returns NULL. 2306 * 2307 * The descriptor is also copied but the link pointers and 2308 * the DMA segments aren't copied; this frame should thus 2309 * be again passed through the descriptor setup/chain routines 2310 * so the link is correct. 2311 * 2312 * The caller must free the buffer using ath_freebuf(). 2313 * 2314 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2315 * XXX in the TX pathway when retries are needed. 2316 * XXX Figure out how to keep some buffers free, or factor the 2317 * XXX number of busy buffers into the xmit path (ath_start()) 2318 * XXX so we don't over-commit. 2319 */ 2320 struct ath_buf * 2321 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2322 { 2323 struct ath_buf *tbf; 2324 2325 tbf = ath_getbuf(sc, 2326 (bf->bf_flags & ATH_BUF_MGMT) ? 2327 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2328 if (tbf == NULL) 2329 return NULL; /* XXX failure? Why? */ 2330 2331 /* Copy basics */ 2332 tbf->bf_next = NULL; 2333 tbf->bf_nseg = bf->bf_nseg; 2334 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2335 tbf->bf_status = bf->bf_status; 2336 tbf->bf_m = bf->bf_m; 2337 tbf->bf_node = bf->bf_node; 2338 /* will be setup by the chain/setup function */ 2339 tbf->bf_lastds = NULL; 2340 /* for now, last == self */ 2341 tbf->bf_last = tbf; 2342 tbf->bf_comp = bf->bf_comp; 2343 2344 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2345 2346 /* The caller has to re-init the descriptor + links */ 2347 2348 /* Copy state */ 2349 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2350 2351 return tbf; 2352 } 2353 2354 struct ath_buf * 2355 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2356 { 2357 struct ath_buf *bf; 2358 2359 ATH_TXBUF_LOCK(sc); 2360 bf = _ath_getbuf_locked(sc, btype); 2361 /* 2362 * If a mgmt buffer was requested but we're out of those, 2363 * try requesting a normal one. 2364 */ 2365 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2366 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2367 ATH_TXBUF_UNLOCK(sc); 2368 if (bf == NULL) { 2369 struct ifnet *ifp = sc->sc_ifp; 2370 2371 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2372 sc->sc_stats.ast_tx_qstop++; 2373 IF_LOCK(&ifp->if_snd); 2374 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2375 IF_UNLOCK(&ifp->if_snd); 2376 } 2377 return bf; 2378 } 2379 2380 void 2381 ath_start(struct ifnet *ifp) 2382 { 2383 struct ath_softc *sc = ifp->if_softc; 2384 struct ieee80211_node *ni; 2385 struct ath_buf *bf; 2386 struct mbuf *m, *next; 2387 ath_bufhead frags; 2388 2389 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2390 return; 2391 2392 /* XXX is it ok to hold the ATH_LOCK here? */ 2393 ATH_PCU_LOCK(sc); 2394 if (sc->sc_inreset_cnt > 0) { 2395 device_printf(sc->sc_dev, 2396 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2397 ATH_PCU_UNLOCK(sc); 2398 IF_LOCK(&ifp->if_snd); 2399 sc->sc_stats.ast_tx_qstop++; 2400 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2401 IF_UNLOCK(&ifp->if_snd); 2402 return; 2403 } 2404 sc->sc_txstart_cnt++; 2405 ATH_PCU_UNLOCK(sc); 2406 2407 for (;;) { 2408 ATH_TXBUF_LOCK(sc); 2409 if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) { 2410 /* XXX increment counter? */ 2411 ATH_TXBUF_UNLOCK(sc); 2412 IF_LOCK(&ifp->if_snd); 2413 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2414 IF_UNLOCK(&ifp->if_snd); 2415 break; 2416 } 2417 ATH_TXBUF_UNLOCK(sc); 2418 2419 /* 2420 * Grab a TX buffer and associated resources. 2421 */ 2422 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2423 if (bf == NULL) 2424 break; 2425 2426 IFQ_DEQUEUE(&ifp->if_snd, m); 2427 if (m == NULL) { 2428 ATH_TXBUF_LOCK(sc); 2429 ath_returnbuf_head(sc, bf); 2430 ATH_TXBUF_UNLOCK(sc); 2431 break; 2432 } 2433 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2434 /* 2435 * Check for fragmentation. If this frame 2436 * has been broken up verify we have enough 2437 * buffers to send all the fragments so all 2438 * go out or none... 2439 */ 2440 TAILQ_INIT(&frags); 2441 if ((m->m_flags & M_FRAG) && 2442 !ath_txfrag_setup(sc, &frags, m, ni)) { 2443 DPRINTF(sc, ATH_DEBUG_XMIT, 2444 "%s: out of txfrag buffers\n", __func__); 2445 sc->sc_stats.ast_tx_nofrag++; 2446 ifp->if_oerrors++; 2447 ath_freetx(m); 2448 goto bad; 2449 } 2450 ifp->if_opackets++; 2451 nextfrag: 2452 /* 2453 * Pass the frame to the h/w for transmission. 2454 * Fragmented frames have each frag chained together 2455 * with m_nextpkt. We know there are sufficient ath_buf's 2456 * to send all the frags because of work done by 2457 * ath_txfrag_setup. We leave m_nextpkt set while 2458 * calling ath_tx_start so it can use it to extend the 2459 * the tx duration to cover the subsequent frag and 2460 * so it can reclaim all the mbufs in case of an error; 2461 * ath_tx_start clears m_nextpkt once it commits to 2462 * handing the frame to the hardware. 2463 */ 2464 next = m->m_nextpkt; 2465 if (ath_tx_start(sc, ni, bf, m)) { 2466 bad: 2467 ifp->if_oerrors++; 2468 reclaim: 2469 bf->bf_m = NULL; 2470 bf->bf_node = NULL; 2471 ATH_TXBUF_LOCK(sc); 2472 ath_returnbuf_head(sc, bf); 2473 ath_txfrag_cleanup(sc, &frags, ni); 2474 ATH_TXBUF_UNLOCK(sc); 2475 if (ni != NULL) 2476 ieee80211_free_node(ni); 2477 continue; 2478 } 2479 if (next != NULL) { 2480 /* 2481 * Beware of state changing between frags. 2482 * XXX check sta power-save state? 2483 */ 2484 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2485 DPRINTF(sc, ATH_DEBUG_XMIT, 2486 "%s: flush fragmented packet, state %s\n", 2487 __func__, 2488 ieee80211_state_name[ni->ni_vap->iv_state]); 2489 ath_freetx(next); 2490 goto reclaim; 2491 } 2492 m = next; 2493 bf = TAILQ_FIRST(&frags); 2494 KASSERT(bf != NULL, ("no buf for txfrag")); 2495 TAILQ_REMOVE(&frags, bf, bf_list); 2496 goto nextfrag; 2497 } 2498 2499 sc->sc_wd_timer = 5; 2500 } 2501 2502 ATH_PCU_LOCK(sc); 2503 sc->sc_txstart_cnt--; 2504 ATH_PCU_UNLOCK(sc); 2505 } 2506 2507 static int 2508 ath_media_change(struct ifnet *ifp) 2509 { 2510 int error = ieee80211_media_change(ifp); 2511 /* NB: only the fixed rate can change and that doesn't need a reset */ 2512 return (error == ENETRESET ? 0 : error); 2513 } 2514 2515 /* 2516 * Block/unblock tx+rx processing while a key change is done. 2517 * We assume the caller serializes key management operations 2518 * so we only need to worry about synchronization with other 2519 * uses that originate in the driver. 2520 */ 2521 static void 2522 ath_key_update_begin(struct ieee80211vap *vap) 2523 { 2524 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2525 struct ath_softc *sc = ifp->if_softc; 2526 2527 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2528 taskqueue_block(sc->sc_tq); 2529 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2530 } 2531 2532 static void 2533 ath_key_update_end(struct ieee80211vap *vap) 2534 { 2535 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2536 struct ath_softc *sc = ifp->if_softc; 2537 2538 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2539 IF_UNLOCK(&ifp->if_snd); 2540 taskqueue_unblock(sc->sc_tq); 2541 } 2542 2543 static void 2544 ath_update_promisc(struct ifnet *ifp) 2545 { 2546 struct ath_softc *sc = ifp->if_softc; 2547 u_int32_t rfilt; 2548 2549 /* configure rx filter */ 2550 rfilt = ath_calcrxfilter(sc); 2551 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2552 2553 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2554 } 2555 2556 static void 2557 ath_update_mcast(struct ifnet *ifp) 2558 { 2559 struct ath_softc *sc = ifp->if_softc; 2560 u_int32_t mfilt[2]; 2561 2562 /* calculate and install multicast filter */ 2563 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2564 struct ifmultiaddr *ifma; 2565 /* 2566 * Merge multicast addresses to form the hardware filter. 2567 */ 2568 mfilt[0] = mfilt[1] = 0; 2569 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2570 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2571 caddr_t dl; 2572 u_int32_t val; 2573 u_int8_t pos; 2574 2575 /* calculate XOR of eight 6bit values */ 2576 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2577 val = LE_READ_4(dl + 0); 2578 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2579 val = LE_READ_4(dl + 3); 2580 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2581 pos &= 0x3f; 2582 mfilt[pos / 32] |= (1 << (pos % 32)); 2583 } 2584 if_maddr_runlock(ifp); 2585 } else 2586 mfilt[0] = mfilt[1] = ~0; 2587 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2588 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2589 __func__, mfilt[0], mfilt[1]); 2590 } 2591 2592 void 2593 ath_mode_init(struct ath_softc *sc) 2594 { 2595 struct ifnet *ifp = sc->sc_ifp; 2596 struct ath_hal *ah = sc->sc_ah; 2597 u_int32_t rfilt; 2598 2599 /* configure rx filter */ 2600 rfilt = ath_calcrxfilter(sc); 2601 ath_hal_setrxfilter(ah, rfilt); 2602 2603 /* configure operational mode */ 2604 ath_hal_setopmode(ah); 2605 2606 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 2607 "%s: ah=%p, ifp=%p, if_addr=%p\n", 2608 __func__, 2609 ah, 2610 ifp, 2611 (ifp == NULL) ? NULL : ifp->if_addr); 2612 2613 /* handle any link-level address change */ 2614 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2615 2616 /* calculate and install multicast filter */ 2617 ath_update_mcast(ifp); 2618 } 2619 2620 /* 2621 * Set the slot time based on the current setting. 2622 */ 2623 void 2624 ath_setslottime(struct ath_softc *sc) 2625 { 2626 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2627 struct ath_hal *ah = sc->sc_ah; 2628 u_int usec; 2629 2630 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2631 usec = 13; 2632 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2633 usec = 21; 2634 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2635 /* honor short/long slot time only in 11g */ 2636 /* XXX shouldn't honor on pure g or turbo g channel */ 2637 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2638 usec = HAL_SLOT_TIME_9; 2639 else 2640 usec = HAL_SLOT_TIME_20; 2641 } else 2642 usec = HAL_SLOT_TIME_9; 2643 2644 DPRINTF(sc, ATH_DEBUG_RESET, 2645 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2646 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2647 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2648 2649 ath_hal_setslottime(ah, usec); 2650 sc->sc_updateslot = OK; 2651 } 2652 2653 /* 2654 * Callback from the 802.11 layer to update the 2655 * slot time based on the current setting. 2656 */ 2657 static void 2658 ath_updateslot(struct ifnet *ifp) 2659 { 2660 struct ath_softc *sc = ifp->if_softc; 2661 struct ieee80211com *ic = ifp->if_l2com; 2662 2663 /* 2664 * When not coordinating the BSS, change the hardware 2665 * immediately. For other operation we defer the change 2666 * until beacon updates have propagated to the stations. 2667 */ 2668 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2669 ic->ic_opmode == IEEE80211_M_MBSS) 2670 sc->sc_updateslot = UPDATE; 2671 else 2672 ath_setslottime(sc); 2673 } 2674 2675 /* 2676 * Append the contents of src to dst; both queues 2677 * are assumed to be locked. 2678 */ 2679 void 2680 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2681 { 2682 2683 ATH_TXQ_LOCK_ASSERT(dst); 2684 ATH_TXQ_LOCK_ASSERT(src); 2685 2686 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2687 dst->axq_link = src->axq_link; 2688 src->axq_link = NULL; 2689 dst->axq_depth += src->axq_depth; 2690 dst->axq_aggr_depth += src->axq_aggr_depth; 2691 src->axq_depth = 0; 2692 src->axq_aggr_depth = 0; 2693 } 2694 2695 /* 2696 * Reset the hardware, with no loss. 2697 * 2698 * This can't be used for a general case reset. 2699 */ 2700 static void 2701 ath_reset_proc(void *arg, int pending) 2702 { 2703 struct ath_softc *sc = arg; 2704 struct ifnet *ifp = sc->sc_ifp; 2705 2706 #if 0 2707 if_printf(ifp, "%s: resetting\n", __func__); 2708 #endif 2709 ath_reset(ifp, ATH_RESET_NOLOSS); 2710 } 2711 2712 /* 2713 * Reset the hardware after detecting beacons have stopped. 2714 */ 2715 static void 2716 ath_bstuck_proc(void *arg, int pending) 2717 { 2718 struct ath_softc *sc = arg; 2719 struct ifnet *ifp = sc->sc_ifp; 2720 uint32_t hangs = 0; 2721 2722 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2723 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2724 2725 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2726 sc->sc_bmisscount); 2727 sc->sc_stats.ast_bstuck++; 2728 /* 2729 * This assumes that there's no simultaneous channel mode change 2730 * occuring. 2731 */ 2732 ath_reset(ifp, ATH_RESET_NOLOSS); 2733 } 2734 2735 static void 2736 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2737 { 2738 bus_addr_t *paddr = (bus_addr_t*) arg; 2739 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2740 *paddr = segs->ds_addr; 2741 } 2742 2743 int 2744 ath_descdma_setup(struct ath_softc *sc, 2745 struct ath_descdma *dd, ath_bufhead *head, 2746 const char *name, int nbuf, int ndesc) 2747 { 2748 #define DS2PHYS(_dd, _ds) \ 2749 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2750 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2751 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2752 struct ifnet *ifp = sc->sc_ifp; 2753 uint8_t *ds; 2754 struct ath_buf *bf; 2755 int i, bsize, error; 2756 int desc_len; 2757 2758 desc_len = sizeof(struct ath_desc); 2759 2760 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 2761 __func__, name, nbuf, ndesc); 2762 2763 dd->dd_name = name; 2764 dd->dd_desc_len = desc_len * nbuf * ndesc; 2765 2766 /* 2767 * Merlin work-around: 2768 * Descriptors that cross the 4KB boundary can't be used. 2769 * Assume one skipped descriptor per 4KB page. 2770 */ 2771 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2772 int numdescpage = 4096 / (desc_len * ndesc); 2773 dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096; 2774 } 2775 2776 /* 2777 * Setup DMA descriptor area. 2778 */ 2779 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 2780 PAGE_SIZE, 0, /* alignment, bounds */ 2781 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2782 BUS_SPACE_MAXADDR, /* highaddr */ 2783 NULL, NULL, /* filter, filterarg */ 2784 dd->dd_desc_len, /* maxsize */ 2785 1, /* nsegments */ 2786 dd->dd_desc_len, /* maxsegsize */ 2787 BUS_DMA_ALLOCNOW, /* flags */ 2788 NULL, /* lockfunc */ 2789 NULL, /* lockarg */ 2790 &dd->dd_dmat); 2791 if (error != 0) { 2792 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 2793 return error; 2794 } 2795 2796 /* allocate descriptors */ 2797 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2798 if (error != 0) { 2799 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2800 "error %u\n", dd->dd_name, error); 2801 goto fail0; 2802 } 2803 2804 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 2805 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 2806 &dd->dd_dmamap); 2807 if (error != 0) { 2808 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2809 "error %u\n", nbuf * ndesc, dd->dd_name, error); 2810 goto fail1; 2811 } 2812 2813 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 2814 dd->dd_desc, dd->dd_desc_len, 2815 ath_load_cb, &dd->dd_desc_paddr, 2816 BUS_DMA_NOWAIT); 2817 if (error != 0) { 2818 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2819 dd->dd_name, error); 2820 goto fail2; 2821 } 2822 2823 ds = (uint8_t *) dd->dd_desc; 2824 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2825 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 2826 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 2827 2828 /* allocate rx buffers */ 2829 bsize = sizeof(struct ath_buf) * nbuf; 2830 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2831 if (bf == NULL) { 2832 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2833 dd->dd_name, bsize); 2834 goto fail3; 2835 } 2836 dd->dd_bufptr = bf; 2837 2838 TAILQ_INIT(head); 2839 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) { 2840 bf->bf_desc = (struct ath_desc *) ds; 2841 bf->bf_daddr = DS2PHYS(dd, ds); 2842 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2843 /* 2844 * Merlin WAR: Skip descriptor addresses which 2845 * cause 4KB boundary crossing along any point 2846 * in the descriptor. 2847 */ 2848 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 2849 desc_len * ndesc)) { 2850 /* Start at the next page */ 2851 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 2852 bf->bf_desc = (struct ath_desc *) ds; 2853 bf->bf_daddr = DS2PHYS(dd, ds); 2854 } 2855 } 2856 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 2857 &bf->bf_dmamap); 2858 if (error != 0) { 2859 if_printf(ifp, "unable to create dmamap for %s " 2860 "buffer %u, error %u\n", dd->dd_name, i, error); 2861 ath_descdma_cleanup(sc, dd, head); 2862 return error; 2863 } 2864 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 2865 TAILQ_INSERT_TAIL(head, bf, bf_list); 2866 } 2867 return 0; 2868 fail3: 2869 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2870 fail2: 2871 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2872 fail1: 2873 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2874 fail0: 2875 bus_dma_tag_destroy(dd->dd_dmat); 2876 memset(dd, 0, sizeof(*dd)); 2877 return error; 2878 #undef DS2PHYS 2879 #undef ATH_DESC_4KB_BOUND_CHECK 2880 } 2881 2882 void 2883 ath_descdma_cleanup(struct ath_softc *sc, 2884 struct ath_descdma *dd, ath_bufhead *head) 2885 { 2886 struct ath_buf *bf; 2887 struct ieee80211_node *ni; 2888 2889 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2890 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2891 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2892 bus_dma_tag_destroy(dd->dd_dmat); 2893 2894 TAILQ_FOREACH(bf, head, bf_list) { 2895 if (bf->bf_m) { 2896 m_freem(bf->bf_m); 2897 bf->bf_m = NULL; 2898 } 2899 if (bf->bf_dmamap != NULL) { 2900 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2901 bf->bf_dmamap = NULL; 2902 } 2903 ni = bf->bf_node; 2904 bf->bf_node = NULL; 2905 if (ni != NULL) { 2906 /* 2907 * Reclaim node reference. 2908 */ 2909 ieee80211_free_node(ni); 2910 } 2911 } 2912 2913 TAILQ_INIT(head); 2914 free(dd->dd_bufptr, M_ATHDEV); 2915 memset(dd, 0, sizeof(*dd)); 2916 } 2917 2918 static int 2919 ath_desc_alloc(struct ath_softc *sc) 2920 { 2921 int error; 2922 2923 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 2924 "tx", ath_txbuf, ATH_TXDESC); 2925 if (error != 0) { 2926 return error; 2927 } 2928 sc->sc_txbuf_cnt = ath_txbuf; 2929 2930 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 2931 "tx_mgmt", ath_txbuf_mgmt, ATH_TXDESC); 2932 if (error != 0) { 2933 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2934 return error; 2935 } 2936 2937 /* 2938 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 2939 * flag doesn't have to be set in ath_getbuf_locked(). 2940 */ 2941 2942 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 2943 "beacon", ATH_BCBUF, 1); 2944 if (error != 0) { 2945 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2946 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 2947 &sc->sc_txbuf_mgmt); 2948 return error; 2949 } 2950 return 0; 2951 } 2952 2953 static void 2954 ath_desc_free(struct ath_softc *sc) 2955 { 2956 2957 if (sc->sc_bdma.dd_desc_len != 0) 2958 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 2959 if (sc->sc_txdma.dd_desc_len != 0) 2960 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2961 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 2962 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 2963 &sc->sc_txbuf_mgmt); 2964 } 2965 2966 static struct ieee80211_node * 2967 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 2968 { 2969 struct ieee80211com *ic = vap->iv_ic; 2970 struct ath_softc *sc = ic->ic_ifp->if_softc; 2971 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 2972 struct ath_node *an; 2973 2974 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 2975 if (an == NULL) { 2976 /* XXX stat+msg */ 2977 return NULL; 2978 } 2979 ath_rate_node_init(sc, an); 2980 2981 /* Setup the mutex - there's no associd yet so set the name to NULL */ 2982 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 2983 device_get_nameunit(sc->sc_dev), an); 2984 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 2985 2986 /* XXX setup ath_tid */ 2987 ath_tx_tid_init(sc, an); 2988 2989 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 2990 return &an->an_node; 2991 } 2992 2993 static void 2994 ath_node_cleanup(struct ieee80211_node *ni) 2995 { 2996 struct ieee80211com *ic = ni->ni_ic; 2997 struct ath_softc *sc = ic->ic_ifp->if_softc; 2998 2999 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3000 ath_tx_node_flush(sc, ATH_NODE(ni)); 3001 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3002 sc->sc_node_cleanup(ni); 3003 } 3004 3005 static void 3006 ath_node_free(struct ieee80211_node *ni) 3007 { 3008 struct ieee80211com *ic = ni->ni_ic; 3009 struct ath_softc *sc = ic->ic_ifp->if_softc; 3010 3011 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3012 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3013 sc->sc_node_free(ni); 3014 } 3015 3016 static void 3017 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3018 { 3019 struct ieee80211com *ic = ni->ni_ic; 3020 struct ath_softc *sc = ic->ic_ifp->if_softc; 3021 struct ath_hal *ah = sc->sc_ah; 3022 3023 *rssi = ic->ic_node_getrssi(ni); 3024 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3025 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3026 else 3027 *noise = -95; /* nominally correct */ 3028 } 3029 3030 /* 3031 * Set the default antenna. 3032 */ 3033 void 3034 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3035 { 3036 struct ath_hal *ah = sc->sc_ah; 3037 3038 /* XXX block beacon interrupts */ 3039 ath_hal_setdefantenna(ah, antenna); 3040 if (sc->sc_defant != antenna) 3041 sc->sc_stats.ast_ant_defswitch++; 3042 sc->sc_defant = antenna; 3043 sc->sc_rxotherant = 0; 3044 } 3045 3046 static void 3047 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3048 { 3049 txq->axq_qnum = qnum; 3050 txq->axq_ac = 0; 3051 txq->axq_depth = 0; 3052 txq->axq_aggr_depth = 0; 3053 txq->axq_intrcnt = 0; 3054 txq->axq_link = NULL; 3055 txq->axq_softc = sc; 3056 TAILQ_INIT(&txq->axq_q); 3057 TAILQ_INIT(&txq->axq_tidq); 3058 ATH_TXQ_LOCK_INIT(sc, txq); 3059 } 3060 3061 /* 3062 * Setup a h/w transmit queue. 3063 */ 3064 static struct ath_txq * 3065 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3066 { 3067 #define N(a) (sizeof(a)/sizeof(a[0])) 3068 struct ath_hal *ah = sc->sc_ah; 3069 HAL_TXQ_INFO qi; 3070 int qnum; 3071 3072 memset(&qi, 0, sizeof(qi)); 3073 qi.tqi_subtype = subtype; 3074 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3075 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3076 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3077 /* 3078 * Enable interrupts only for EOL and DESC conditions. 3079 * We mark tx descriptors to receive a DESC interrupt 3080 * when a tx queue gets deep; otherwise waiting for the 3081 * EOL to reap descriptors. Note that this is done to 3082 * reduce interrupt load and this only defers reaping 3083 * descriptors, never transmitting frames. Aside from 3084 * reducing interrupts this also permits more concurrency. 3085 * The only potential downside is if the tx queue backs 3086 * up in which case the top half of the kernel may backup 3087 * due to a lack of tx descriptors. 3088 */ 3089 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3090 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3091 if (qnum == -1) { 3092 /* 3093 * NB: don't print a message, this happens 3094 * normally on parts with too few tx queues 3095 */ 3096 return NULL; 3097 } 3098 if (qnum >= N(sc->sc_txq)) { 3099 device_printf(sc->sc_dev, 3100 "hal qnum %u out of range, max %zu!\n", 3101 qnum, N(sc->sc_txq)); 3102 ath_hal_releasetxqueue(ah, qnum); 3103 return NULL; 3104 } 3105 if (!ATH_TXQ_SETUP(sc, qnum)) { 3106 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3107 sc->sc_txqsetup |= 1<<qnum; 3108 } 3109 return &sc->sc_txq[qnum]; 3110 #undef N 3111 } 3112 3113 /* 3114 * Setup a hardware data transmit queue for the specified 3115 * access control. The hal may not support all requested 3116 * queues in which case it will return a reference to a 3117 * previously setup queue. We record the mapping from ac's 3118 * to h/w queues for use by ath_tx_start and also track 3119 * the set of h/w queues being used to optimize work in the 3120 * transmit interrupt handler and related routines. 3121 */ 3122 static int 3123 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3124 { 3125 #define N(a) (sizeof(a)/sizeof(a[0])) 3126 struct ath_txq *txq; 3127 3128 if (ac >= N(sc->sc_ac2q)) { 3129 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3130 ac, N(sc->sc_ac2q)); 3131 return 0; 3132 } 3133 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3134 if (txq != NULL) { 3135 txq->axq_ac = ac; 3136 sc->sc_ac2q[ac] = txq; 3137 return 1; 3138 } else 3139 return 0; 3140 #undef N 3141 } 3142 3143 /* 3144 * Update WME parameters for a transmit queue. 3145 */ 3146 static int 3147 ath_txq_update(struct ath_softc *sc, int ac) 3148 { 3149 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3150 #define ATH_TXOP_TO_US(v) (v<<5) 3151 struct ifnet *ifp = sc->sc_ifp; 3152 struct ieee80211com *ic = ifp->if_l2com; 3153 struct ath_txq *txq = sc->sc_ac2q[ac]; 3154 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3155 struct ath_hal *ah = sc->sc_ah; 3156 HAL_TXQ_INFO qi; 3157 3158 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3159 #ifdef IEEE80211_SUPPORT_TDMA 3160 if (sc->sc_tdma) { 3161 /* 3162 * AIFS is zero so there's no pre-transmit wait. The 3163 * burst time defines the slot duration and is configured 3164 * through net80211. The QCU is setup to not do post-xmit 3165 * back off, lockout all lower-priority QCU's, and fire 3166 * off the DMA beacon alert timer which is setup based 3167 * on the slot configuration. 3168 */ 3169 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3170 | HAL_TXQ_TXERRINT_ENABLE 3171 | HAL_TXQ_TXURNINT_ENABLE 3172 | HAL_TXQ_TXEOLINT_ENABLE 3173 | HAL_TXQ_DBA_GATED 3174 | HAL_TXQ_BACKOFF_DISABLE 3175 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3176 ; 3177 qi.tqi_aifs = 0; 3178 /* XXX +dbaprep? */ 3179 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3180 qi.tqi_burstTime = qi.tqi_readyTime; 3181 } else { 3182 #endif 3183 /* 3184 * XXX shouldn't this just use the default flags 3185 * used in the previous queue setup? 3186 */ 3187 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3188 | HAL_TXQ_TXERRINT_ENABLE 3189 | HAL_TXQ_TXDESCINT_ENABLE 3190 | HAL_TXQ_TXURNINT_ENABLE 3191 | HAL_TXQ_TXEOLINT_ENABLE 3192 ; 3193 qi.tqi_aifs = wmep->wmep_aifsn; 3194 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3195 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3196 qi.tqi_readyTime = 0; 3197 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3198 #ifdef IEEE80211_SUPPORT_TDMA 3199 } 3200 #endif 3201 3202 DPRINTF(sc, ATH_DEBUG_RESET, 3203 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3204 __func__, txq->axq_qnum, qi.tqi_qflags, 3205 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3206 3207 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3208 if_printf(ifp, "unable to update hardware queue " 3209 "parameters for %s traffic!\n", 3210 ieee80211_wme_acnames[ac]); 3211 return 0; 3212 } else { 3213 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3214 return 1; 3215 } 3216 #undef ATH_TXOP_TO_US 3217 #undef ATH_EXPONENT_TO_VALUE 3218 } 3219 3220 /* 3221 * Callback from the 802.11 layer to update WME parameters. 3222 */ 3223 int 3224 ath_wme_update(struct ieee80211com *ic) 3225 { 3226 struct ath_softc *sc = ic->ic_ifp->if_softc; 3227 3228 return !ath_txq_update(sc, WME_AC_BE) || 3229 !ath_txq_update(sc, WME_AC_BK) || 3230 !ath_txq_update(sc, WME_AC_VI) || 3231 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3232 } 3233 3234 /* 3235 * Reclaim resources for a setup queue. 3236 */ 3237 static void 3238 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3239 { 3240 3241 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3242 ATH_TXQ_LOCK_DESTROY(txq); 3243 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3244 } 3245 3246 /* 3247 * Reclaim all tx queue resources. 3248 */ 3249 static void 3250 ath_tx_cleanup(struct ath_softc *sc) 3251 { 3252 int i; 3253 3254 ATH_TXBUF_LOCK_DESTROY(sc); 3255 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3256 if (ATH_TXQ_SETUP(sc, i)) 3257 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3258 } 3259 3260 /* 3261 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3262 * using the current rates in sc_rixmap. 3263 */ 3264 int 3265 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3266 { 3267 int rix = sc->sc_rixmap[rate]; 3268 /* NB: return lowest rix for invalid rate */ 3269 return (rix == 0xff ? 0 : rix); 3270 } 3271 3272 static void 3273 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3274 struct ath_buf *bf) 3275 { 3276 struct ieee80211_node *ni = bf->bf_node; 3277 struct ifnet *ifp = sc->sc_ifp; 3278 struct ieee80211com *ic = ifp->if_l2com; 3279 int sr, lr, pri; 3280 3281 if (ts->ts_status == 0) { 3282 u_int8_t txant = ts->ts_antenna; 3283 sc->sc_stats.ast_ant_tx[txant]++; 3284 sc->sc_ant_tx[txant]++; 3285 if (ts->ts_finaltsi != 0) 3286 sc->sc_stats.ast_tx_altrate++; 3287 pri = M_WME_GETAC(bf->bf_m); 3288 if (pri >= WME_AC_VO) 3289 ic->ic_wme.wme_hipri_traffic++; 3290 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3291 ni->ni_inact = ni->ni_inact_reload; 3292 } else { 3293 if (ts->ts_status & HAL_TXERR_XRETRY) 3294 sc->sc_stats.ast_tx_xretries++; 3295 if (ts->ts_status & HAL_TXERR_FIFO) 3296 sc->sc_stats.ast_tx_fifoerr++; 3297 if (ts->ts_status & HAL_TXERR_FILT) 3298 sc->sc_stats.ast_tx_filtered++; 3299 if (ts->ts_status & HAL_TXERR_XTXOP) 3300 sc->sc_stats.ast_tx_xtxop++; 3301 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3302 sc->sc_stats.ast_tx_timerexpired++; 3303 3304 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 3305 sc->sc_stats.ast_tx_data_underrun++; 3306 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 3307 sc->sc_stats.ast_tx_delim_underrun++; 3308 3309 if (bf->bf_m->m_flags & M_FF) 3310 sc->sc_stats.ast_ff_txerr++; 3311 } 3312 /* XXX when is this valid? */ 3313 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 3314 sc->sc_stats.ast_tx_desccfgerr++; 3315 3316 sr = ts->ts_shortretry; 3317 lr = ts->ts_longretry; 3318 sc->sc_stats.ast_tx_shortretry += sr; 3319 sc->sc_stats.ast_tx_longretry += lr; 3320 3321 } 3322 3323 /* 3324 * The default completion. If fail is 1, this means 3325 * "please don't retry the frame, and just return -1 status 3326 * to the net80211 stack. 3327 */ 3328 void 3329 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3330 { 3331 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3332 int st; 3333 3334 if (fail == 1) 3335 st = -1; 3336 else 3337 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3338 ts->ts_status : HAL_TXERR_XRETRY; 3339 3340 if (bf->bf_state.bfs_dobaw) 3341 device_printf(sc->sc_dev, 3342 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3343 __func__, 3344 bf, 3345 SEQNO(bf->bf_state.bfs_seqno)); 3346 if (bf->bf_next != NULL) 3347 device_printf(sc->sc_dev, 3348 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3349 __func__, 3350 bf, 3351 SEQNO(bf->bf_state.bfs_seqno)); 3352 3353 /* 3354 * Do any tx complete callback. Note this must 3355 * be done before releasing the node reference. 3356 * This will free the mbuf, release the net80211 3357 * node and recycle the ath_buf. 3358 */ 3359 ath_tx_freebuf(sc, bf, st); 3360 } 3361 3362 /* 3363 * Update rate control with the given completion status. 3364 */ 3365 void 3366 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3367 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3368 int nframes, int nbad) 3369 { 3370 struct ath_node *an; 3371 3372 /* Only for unicast frames */ 3373 if (ni == NULL) 3374 return; 3375 3376 an = ATH_NODE(ni); 3377 3378 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3379 ATH_NODE_LOCK(an); 3380 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3381 ATH_NODE_UNLOCK(an); 3382 } 3383 } 3384 3385 /* 3386 * Update the busy status of the last frame on the free list. 3387 * When doing TDMA, the busy flag tracks whether the hardware 3388 * currently points to this buffer or not, and thus gated DMA 3389 * may restart by re-reading the last descriptor in this 3390 * buffer. 3391 * 3392 * This should be called in the completion function once one 3393 * of the buffers has been used. 3394 */ 3395 static void 3396 ath_tx_update_busy(struct ath_softc *sc) 3397 { 3398 struct ath_buf *last; 3399 3400 /* 3401 * Since the last frame may still be marked 3402 * as ATH_BUF_BUSY, unmark it here before 3403 * finishing the frame processing. 3404 * Since we've completed a frame (aggregate 3405 * or otherwise), the hardware has moved on 3406 * and is no longer referencing the previous 3407 * descriptor. 3408 */ 3409 ATH_TXBUF_LOCK_ASSERT(sc); 3410 last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 3411 if (last != NULL) 3412 last->bf_flags &= ~ATH_BUF_BUSY; 3413 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3414 if (last != NULL) 3415 last->bf_flags &= ~ATH_BUF_BUSY; 3416 } 3417 3418 /* 3419 * Process completed xmit descriptors from the specified queue. 3420 * Kick the packet scheduler if needed. This can occur from this 3421 * particular task. 3422 */ 3423 static int 3424 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3425 { 3426 struct ath_hal *ah = sc->sc_ah; 3427 struct ath_buf *bf; 3428 struct ath_desc *ds; 3429 struct ath_tx_status *ts; 3430 struct ieee80211_node *ni; 3431 struct ath_node *an; 3432 #ifdef IEEE80211_SUPPORT_SUPERG 3433 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3434 #endif /* IEEE80211_SUPPORT_SUPERG */ 3435 int nacked; 3436 HAL_STATUS status; 3437 3438 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3439 __func__, txq->axq_qnum, 3440 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3441 txq->axq_link); 3442 nacked = 0; 3443 for (;;) { 3444 ATH_TXQ_LOCK(txq); 3445 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3446 bf = TAILQ_FIRST(&txq->axq_q); 3447 if (bf == NULL) { 3448 ATH_TXQ_UNLOCK(txq); 3449 break; 3450 } 3451 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3452 ts = &bf->bf_status.ds_txstat; 3453 status = ath_hal_txprocdesc(ah, ds, ts); 3454 #ifdef ATH_DEBUG 3455 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3456 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3457 status == HAL_OK); 3458 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) { 3459 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3460 status == HAL_OK); 3461 } 3462 #endif 3463 if (status == HAL_EINPROGRESS) { 3464 ATH_TXQ_UNLOCK(txq); 3465 break; 3466 } 3467 ATH_TXQ_REMOVE(txq, bf, bf_list); 3468 #ifdef IEEE80211_SUPPORT_TDMA 3469 if (txq->axq_depth > 0) { 3470 /* 3471 * More frames follow. Mark the buffer busy 3472 * so it's not re-used while the hardware may 3473 * still re-read the link field in the descriptor. 3474 * 3475 * Use the last buffer in an aggregate as that 3476 * is where the hardware may be - intermediate 3477 * descriptors won't be "busy". 3478 */ 3479 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3480 } else 3481 #else 3482 if (txq->axq_depth == 0) 3483 #endif 3484 txq->axq_link = NULL; 3485 if (bf->bf_state.bfs_aggr) 3486 txq->axq_aggr_depth--; 3487 3488 ni = bf->bf_node; 3489 /* 3490 * If unicast frame was ack'd update RSSI, 3491 * including the last rx time used to 3492 * workaround phantom bmiss interrupts. 3493 */ 3494 if (ni != NULL && ts->ts_status == 0 && 3495 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3496 nacked++; 3497 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3498 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3499 ts->ts_rssi); 3500 } 3501 ATH_TXQ_UNLOCK(txq); 3502 3503 /* If unicast frame, update general statistics */ 3504 if (ni != NULL) { 3505 an = ATH_NODE(ni); 3506 /* update statistics */ 3507 ath_tx_update_stats(sc, ts, bf); 3508 } 3509 3510 /* 3511 * Call the completion handler. 3512 * The completion handler is responsible for 3513 * calling the rate control code. 3514 * 3515 * Frames with no completion handler get the 3516 * rate control code called here. 3517 */ 3518 if (bf->bf_comp == NULL) { 3519 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3520 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3521 /* 3522 * XXX assume this isn't an aggregate 3523 * frame. 3524 */ 3525 ath_tx_update_ratectrl(sc, ni, 3526 bf->bf_state.bfs_rc, ts, 3527 bf->bf_state.bfs_pktlen, 1, 3528 (ts->ts_status == 0 ? 0 : 1)); 3529 } 3530 ath_tx_default_comp(sc, bf, 0); 3531 } else 3532 bf->bf_comp(sc, bf, 0); 3533 } 3534 #ifdef IEEE80211_SUPPORT_SUPERG 3535 /* 3536 * Flush fast-frame staging queue when traffic slows. 3537 */ 3538 if (txq->axq_depth <= 1) 3539 ieee80211_ff_flush(ic, txq->axq_ac); 3540 #endif 3541 3542 /* Kick the TXQ scheduler */ 3543 if (dosched) { 3544 ATH_TXQ_LOCK(txq); 3545 ath_txq_sched(sc, txq); 3546 ATH_TXQ_UNLOCK(txq); 3547 } 3548 3549 return nacked; 3550 } 3551 3552 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3553 3554 /* 3555 * Deferred processing of transmit interrupt; special-cased 3556 * for a single hardware transmit queue (e.g. 5210 and 5211). 3557 */ 3558 static void 3559 ath_tx_proc_q0(void *arg, int npending) 3560 { 3561 struct ath_softc *sc = arg; 3562 struct ifnet *ifp = sc->sc_ifp; 3563 uint32_t txqs; 3564 3565 ATH_PCU_LOCK(sc); 3566 sc->sc_txproc_cnt++; 3567 txqs = sc->sc_txq_active; 3568 sc->sc_txq_active &= ~txqs; 3569 ATH_PCU_UNLOCK(sc); 3570 3571 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 3572 /* XXX why is lastrx updated in tx code? */ 3573 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3574 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3575 ath_tx_processq(sc, sc->sc_cabq, 1); 3576 IF_LOCK(&ifp->if_snd); 3577 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3578 IF_UNLOCK(&ifp->if_snd); 3579 sc->sc_wd_timer = 0; 3580 3581 if (sc->sc_softled) 3582 ath_led_event(sc, sc->sc_txrix); 3583 3584 ATH_PCU_LOCK(sc); 3585 sc->sc_txproc_cnt--; 3586 ATH_PCU_UNLOCK(sc); 3587 3588 ath_tx_kick(sc); 3589 } 3590 3591 /* 3592 * Deferred processing of transmit interrupt; special-cased 3593 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3594 */ 3595 static void 3596 ath_tx_proc_q0123(void *arg, int npending) 3597 { 3598 struct ath_softc *sc = arg; 3599 struct ifnet *ifp = sc->sc_ifp; 3600 int nacked; 3601 uint32_t txqs; 3602 3603 ATH_PCU_LOCK(sc); 3604 sc->sc_txproc_cnt++; 3605 txqs = sc->sc_txq_active; 3606 sc->sc_txq_active &= ~txqs; 3607 ATH_PCU_UNLOCK(sc); 3608 3609 /* 3610 * Process each active queue. 3611 */ 3612 nacked = 0; 3613 if (TXQACTIVE(txqs, 0)) 3614 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 3615 if (TXQACTIVE(txqs, 1)) 3616 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 3617 if (TXQACTIVE(txqs, 2)) 3618 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 3619 if (TXQACTIVE(txqs, 3)) 3620 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 3621 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3622 ath_tx_processq(sc, sc->sc_cabq, 1); 3623 if (nacked) 3624 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3625 3626 IF_LOCK(&ifp->if_snd); 3627 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3628 IF_UNLOCK(&ifp->if_snd); 3629 sc->sc_wd_timer = 0; 3630 3631 if (sc->sc_softled) 3632 ath_led_event(sc, sc->sc_txrix); 3633 3634 ATH_PCU_LOCK(sc); 3635 sc->sc_txproc_cnt--; 3636 ATH_PCU_UNLOCK(sc); 3637 3638 ath_tx_kick(sc); 3639 } 3640 3641 /* 3642 * Deferred processing of transmit interrupt. 3643 */ 3644 static void 3645 ath_tx_proc(void *arg, int npending) 3646 { 3647 struct ath_softc *sc = arg; 3648 struct ifnet *ifp = sc->sc_ifp; 3649 int i, nacked; 3650 uint32_t txqs; 3651 3652 ATH_PCU_LOCK(sc); 3653 sc->sc_txproc_cnt++; 3654 txqs = sc->sc_txq_active; 3655 sc->sc_txq_active &= ~txqs; 3656 ATH_PCU_UNLOCK(sc); 3657 3658 /* 3659 * Process each active queue. 3660 */ 3661 nacked = 0; 3662 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3663 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 3664 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 3665 if (nacked) 3666 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3667 3668 /* XXX check this inside of IF_LOCK? */ 3669 IF_LOCK(&ifp->if_snd); 3670 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3671 IF_UNLOCK(&ifp->if_snd); 3672 sc->sc_wd_timer = 0; 3673 3674 if (sc->sc_softled) 3675 ath_led_event(sc, sc->sc_txrix); 3676 3677 ATH_PCU_LOCK(sc); 3678 sc->sc_txproc_cnt--; 3679 ATH_PCU_UNLOCK(sc); 3680 3681 ath_tx_kick(sc); 3682 } 3683 #undef TXQACTIVE 3684 3685 /* 3686 * Deferred processing of TXQ rescheduling. 3687 */ 3688 static void 3689 ath_txq_sched_tasklet(void *arg, int npending) 3690 { 3691 struct ath_softc *sc = arg; 3692 int i; 3693 3694 /* XXX is skipping ok? */ 3695 ATH_PCU_LOCK(sc); 3696 #if 0 3697 if (sc->sc_inreset_cnt > 0) { 3698 device_printf(sc->sc_dev, 3699 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 3700 ATH_PCU_UNLOCK(sc); 3701 return; 3702 } 3703 #endif 3704 sc->sc_txproc_cnt++; 3705 ATH_PCU_UNLOCK(sc); 3706 3707 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3708 if (ATH_TXQ_SETUP(sc, i)) { 3709 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3710 ath_txq_sched(sc, &sc->sc_txq[i]); 3711 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3712 } 3713 } 3714 3715 ATH_PCU_LOCK(sc); 3716 sc->sc_txproc_cnt--; 3717 ATH_PCU_UNLOCK(sc); 3718 } 3719 3720 void 3721 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 3722 { 3723 3724 ATH_TXBUF_LOCK_ASSERT(sc); 3725 3726 if (bf->bf_flags & ATH_BUF_MGMT) 3727 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 3728 else { 3729 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3730 sc->sc_txbuf_cnt++; 3731 if (sc->sc_txbuf_cnt > ath_txbuf) { 3732 device_printf(sc->sc_dev, 3733 "%s: sc_txbuf_cnt > %d?\n", 3734 __func__, 3735 ath_txbuf); 3736 sc->sc_txbuf_cnt = ath_txbuf; 3737 } 3738 } 3739 } 3740 3741 void 3742 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 3743 { 3744 3745 ATH_TXBUF_LOCK_ASSERT(sc); 3746 3747 if (bf->bf_flags & ATH_BUF_MGMT) 3748 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 3749 else { 3750 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 3751 sc->sc_txbuf_cnt++; 3752 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 3753 device_printf(sc->sc_dev, 3754 "%s: sc_txbuf_cnt > %d?\n", 3755 __func__, 3756 ATH_TXBUF); 3757 sc->sc_txbuf_cnt = ATH_TXBUF; 3758 } 3759 } 3760 } 3761 3762 /* 3763 * Return a buffer to the pool and update the 'busy' flag on the 3764 * previous 'tail' entry. 3765 * 3766 * This _must_ only be called when the buffer is involved in a completed 3767 * TX. The logic is that if it was part of an active TX, the previous 3768 * buffer on the list is now not involved in a halted TX DMA queue, waiting 3769 * for restart (eg for TDMA.) 3770 * 3771 * The caller must free the mbuf and recycle the node reference. 3772 */ 3773 void 3774 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 3775 { 3776 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3777 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 3778 3779 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 3780 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 3781 3782 ATH_TXBUF_LOCK(sc); 3783 ath_tx_update_busy(sc); 3784 ath_returnbuf_tail(sc, bf); 3785 ATH_TXBUF_UNLOCK(sc); 3786 } 3787 3788 /* 3789 * This is currently used by ath_tx_draintxq() and 3790 * ath_tx_tid_free_pkts(). 3791 * 3792 * It recycles a single ath_buf. 3793 */ 3794 void 3795 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 3796 { 3797 struct ieee80211_node *ni = bf->bf_node; 3798 struct mbuf *m0 = bf->bf_m; 3799 3800 bf->bf_node = NULL; 3801 bf->bf_m = NULL; 3802 3803 /* Free the buffer, it's not needed any longer */ 3804 ath_freebuf(sc, bf); 3805 3806 if (ni != NULL) { 3807 /* 3808 * Do any callback and reclaim the node reference. 3809 */ 3810 if (m0->m_flags & M_TXCB) 3811 ieee80211_process_callback(ni, m0, status); 3812 ieee80211_free_node(ni); 3813 } 3814 m_freem(m0); 3815 3816 /* 3817 * XXX the buffer used to be freed -after-, but the DMA map was 3818 * freed where ath_freebuf() now is. I've no idea what this 3819 * will do. 3820 */ 3821 } 3822 3823 void 3824 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 3825 { 3826 #ifdef ATH_DEBUG 3827 struct ath_hal *ah = sc->sc_ah; 3828 #endif 3829 struct ath_buf *bf; 3830 u_int ix; 3831 3832 /* 3833 * NB: this assumes output has been stopped and 3834 * we do not need to block ath_tx_proc 3835 */ 3836 ATH_TXBUF_LOCK(sc); 3837 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3838 if (bf != NULL) 3839 bf->bf_flags &= ~ATH_BUF_BUSY; 3840 bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 3841 if (bf != NULL) 3842 bf->bf_flags &= ~ATH_BUF_BUSY; 3843 ATH_TXBUF_UNLOCK(sc); 3844 3845 for (ix = 0;; ix++) { 3846 ATH_TXQ_LOCK(txq); 3847 bf = TAILQ_FIRST(&txq->axq_q); 3848 if (bf == NULL) { 3849 txq->axq_link = NULL; 3850 ATH_TXQ_UNLOCK(txq); 3851 break; 3852 } 3853 ATH_TXQ_REMOVE(txq, bf, bf_list); 3854 if (bf->bf_state.bfs_aggr) 3855 txq->axq_aggr_depth--; 3856 #ifdef ATH_DEBUG 3857 if (sc->sc_debug & ATH_DEBUG_RESET) { 3858 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3859 3860 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, 3861 ath_hal_txprocdesc(ah, bf->bf_lastds, 3862 &bf->bf_status.ds_txstat) == HAL_OK); 3863 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 3864 bf->bf_m->m_len, 0, -1); 3865 } 3866 #endif /* ATH_DEBUG */ 3867 /* 3868 * Since we're now doing magic in the completion 3869 * functions, we -must- call it for aggregation 3870 * destinations or BAW tracking will get upset. 3871 */ 3872 /* 3873 * Clear ATH_BUF_BUSY; the completion handler 3874 * will free the buffer. 3875 */ 3876 ATH_TXQ_UNLOCK(txq); 3877 bf->bf_flags &= ~ATH_BUF_BUSY; 3878 if (bf->bf_comp) 3879 bf->bf_comp(sc, bf, 1); 3880 else 3881 ath_tx_default_comp(sc, bf, 1); 3882 } 3883 3884 /* 3885 * Drain software queued frames which are on 3886 * active TIDs. 3887 */ 3888 ath_tx_txq_drain(sc, txq); 3889 } 3890 3891 static void 3892 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 3893 { 3894 struct ath_hal *ah = sc->sc_ah; 3895 3896 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 3897 __func__, txq->axq_qnum, 3898 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 3899 txq->axq_link); 3900 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 3901 } 3902 3903 static int 3904 ath_stoptxdma(struct ath_softc *sc) 3905 { 3906 struct ath_hal *ah = sc->sc_ah; 3907 int i; 3908 3909 /* XXX return value */ 3910 if (sc->sc_invalid) 3911 return 0; 3912 3913 if (!sc->sc_invalid) { 3914 /* don't touch the hardware if marked invalid */ 3915 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 3916 __func__, sc->sc_bhalq, 3917 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 3918 NULL); 3919 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 3920 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3921 if (ATH_TXQ_SETUP(sc, i)) 3922 ath_tx_stopdma(sc, &sc->sc_txq[i]); 3923 } 3924 3925 return 1; 3926 } 3927 3928 /* 3929 * Drain the transmit queues and reclaim resources. 3930 */ 3931 static void 3932 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 3933 { 3934 #ifdef ATH_DEBUG 3935 struct ath_hal *ah = sc->sc_ah; 3936 #endif 3937 struct ifnet *ifp = sc->sc_ifp; 3938 int i; 3939 3940 (void) ath_stoptxdma(sc); 3941 3942 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3943 /* 3944 * XXX TODO: should we just handle the completed TX frames 3945 * here, whether or not the reset is a full one or not? 3946 */ 3947 if (ATH_TXQ_SETUP(sc, i)) { 3948 if (reset_type == ATH_RESET_NOLOSS) 3949 ath_tx_processq(sc, &sc->sc_txq[i], 0); 3950 else 3951 ath_tx_draintxq(sc, &sc->sc_txq[i]); 3952 } 3953 } 3954 #ifdef ATH_DEBUG 3955 if (sc->sc_debug & ATH_DEBUG_RESET) { 3956 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 3957 if (bf != NULL && bf->bf_m != NULL) { 3958 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 3959 ath_hal_txprocdesc(ah, bf->bf_lastds, 3960 &bf->bf_status.ds_txstat) == HAL_OK); 3961 ieee80211_dump_pkt(ifp->if_l2com, 3962 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 3963 0, -1); 3964 } 3965 } 3966 #endif /* ATH_DEBUG */ 3967 IF_LOCK(&ifp->if_snd); 3968 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3969 IF_UNLOCK(&ifp->if_snd); 3970 sc->sc_wd_timer = 0; 3971 } 3972 3973 /* 3974 * Update internal state after a channel change. 3975 */ 3976 static void 3977 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 3978 { 3979 enum ieee80211_phymode mode; 3980 3981 /* 3982 * Change channels and update the h/w rate map 3983 * if we're switching; e.g. 11a to 11b/g. 3984 */ 3985 mode = ieee80211_chan2mode(chan); 3986 if (mode != sc->sc_curmode) 3987 ath_setcurmode(sc, mode); 3988 sc->sc_curchan = chan; 3989 } 3990 3991 /* 3992 * Set/change channels. If the channel is really being changed, 3993 * it's done by resetting the chip. To accomplish this we must 3994 * first cleanup any pending DMA, then restart stuff after a la 3995 * ath_init. 3996 */ 3997 static int 3998 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 3999 { 4000 struct ifnet *ifp = sc->sc_ifp; 4001 struct ieee80211com *ic = ifp->if_l2com; 4002 struct ath_hal *ah = sc->sc_ah; 4003 int ret = 0; 4004 4005 /* Treat this as an interface reset */ 4006 ATH_PCU_UNLOCK_ASSERT(sc); 4007 ATH_UNLOCK_ASSERT(sc); 4008 4009 /* (Try to) stop TX/RX from occuring */ 4010 taskqueue_block(sc->sc_tq); 4011 4012 ATH_PCU_LOCK(sc); 4013 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4014 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4015 if (ath_reset_grablock(sc, 1) == 0) { 4016 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4017 __func__); 4018 } 4019 ATH_PCU_UNLOCK(sc); 4020 4021 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4022 __func__, ieee80211_chan2ieee(ic, chan), 4023 chan->ic_freq, chan->ic_flags); 4024 if (chan != sc->sc_curchan) { 4025 HAL_STATUS status; 4026 /* 4027 * To switch channels clear any pending DMA operations; 4028 * wait long enough for the RX fifo to drain, reset the 4029 * hardware at the new frequency, and then re-enable 4030 * the relevant bits of the h/w. 4031 */ 4032 #if 0 4033 ath_hal_intrset(ah, 0); /* disable interrupts */ 4034 #endif 4035 ath_stoprecv(sc, 1); /* turn off frame recv */ 4036 /* 4037 * First, handle completed TX/RX frames. 4038 */ 4039 ath_rx_flush(sc); 4040 ath_draintxq(sc, ATH_RESET_NOLOSS); 4041 /* 4042 * Next, flush the non-scheduled frames. 4043 */ 4044 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4045 4046 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4047 if_printf(ifp, "%s: unable to reset " 4048 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4049 __func__, ieee80211_chan2ieee(ic, chan), 4050 chan->ic_freq, chan->ic_flags, status); 4051 ret = EIO; 4052 goto finish; 4053 } 4054 sc->sc_diversity = ath_hal_getdiversity(ah); 4055 4056 /* Let DFS at it in case it's a DFS channel */ 4057 ath_dfs_radar_enable(sc, chan); 4058 4059 /* 4060 * Re-enable rx framework. 4061 */ 4062 if (ath_startrecv(sc) != 0) { 4063 if_printf(ifp, "%s: unable to restart recv logic\n", 4064 __func__); 4065 ret = EIO; 4066 goto finish; 4067 } 4068 4069 /* 4070 * Change channels and update the h/w rate map 4071 * if we're switching; e.g. 11a to 11b/g. 4072 */ 4073 ath_chan_change(sc, chan); 4074 4075 /* 4076 * Reset clears the beacon timers; reset them 4077 * here if needed. 4078 */ 4079 if (sc->sc_beacons) { /* restart beacons */ 4080 #ifdef IEEE80211_SUPPORT_TDMA 4081 if (sc->sc_tdma) 4082 ath_tdma_config(sc, NULL); 4083 else 4084 #endif 4085 ath_beacon_config(sc, NULL); 4086 } 4087 4088 /* 4089 * Re-enable interrupts. 4090 */ 4091 #if 0 4092 ath_hal_intrset(ah, sc->sc_imask); 4093 #endif 4094 } 4095 4096 finish: 4097 ATH_PCU_LOCK(sc); 4098 sc->sc_inreset_cnt--; 4099 /* XXX only do this if sc_inreset_cnt == 0? */ 4100 ath_hal_intrset(ah, sc->sc_imask); 4101 ATH_PCU_UNLOCK(sc); 4102 4103 IF_LOCK(&ifp->if_snd); 4104 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4105 IF_UNLOCK(&ifp->if_snd); 4106 ath_txrx_start(sc); 4107 /* XXX ath_start? */ 4108 4109 return ret; 4110 } 4111 4112 /* 4113 * Periodically recalibrate the PHY to account 4114 * for temperature/environment changes. 4115 */ 4116 static void 4117 ath_calibrate(void *arg) 4118 { 4119 struct ath_softc *sc = arg; 4120 struct ath_hal *ah = sc->sc_ah; 4121 struct ifnet *ifp = sc->sc_ifp; 4122 struct ieee80211com *ic = ifp->if_l2com; 4123 HAL_BOOL longCal, isCalDone; 4124 HAL_BOOL aniCal, shortCal = AH_FALSE; 4125 int nextcal; 4126 4127 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4128 goto restart; 4129 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4130 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4131 if (sc->sc_doresetcal) 4132 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4133 4134 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4135 if (aniCal) { 4136 sc->sc_stats.ast_ani_cal++; 4137 sc->sc_lastani = ticks; 4138 ath_hal_ani_poll(ah, sc->sc_curchan); 4139 } 4140 4141 if (longCal) { 4142 sc->sc_stats.ast_per_cal++; 4143 sc->sc_lastlongcal = ticks; 4144 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4145 /* 4146 * Rfgain is out of bounds, reset the chip 4147 * to load new gain values. 4148 */ 4149 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4150 "%s: rfgain change\n", __func__); 4151 sc->sc_stats.ast_per_rfgain++; 4152 sc->sc_resetcal = 0; 4153 sc->sc_doresetcal = AH_TRUE; 4154 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4155 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4156 return; 4157 } 4158 /* 4159 * If this long cal is after an idle period, then 4160 * reset the data collection state so we start fresh. 4161 */ 4162 if (sc->sc_resetcal) { 4163 (void) ath_hal_calreset(ah, sc->sc_curchan); 4164 sc->sc_lastcalreset = ticks; 4165 sc->sc_lastshortcal = ticks; 4166 sc->sc_resetcal = 0; 4167 sc->sc_doresetcal = AH_TRUE; 4168 } 4169 } 4170 4171 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4172 if (shortCal || longCal) { 4173 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4174 if (longCal) { 4175 /* 4176 * Calibrate noise floor data again in case of change. 4177 */ 4178 ath_hal_process_noisefloor(ah); 4179 } 4180 } else { 4181 DPRINTF(sc, ATH_DEBUG_ANY, 4182 "%s: calibration of channel %u failed\n", 4183 __func__, sc->sc_curchan->ic_freq); 4184 sc->sc_stats.ast_per_calfail++; 4185 } 4186 if (shortCal) 4187 sc->sc_lastshortcal = ticks; 4188 } 4189 if (!isCalDone) { 4190 restart: 4191 /* 4192 * Use a shorter interval to potentially collect multiple 4193 * data samples required to complete calibration. Once 4194 * we're told the work is done we drop back to a longer 4195 * interval between requests. We're more aggressive doing 4196 * work when operating as an AP to improve operation right 4197 * after startup. 4198 */ 4199 sc->sc_lastshortcal = ticks; 4200 nextcal = ath_shortcalinterval*hz/1000; 4201 if (sc->sc_opmode != HAL_M_HOSTAP) 4202 nextcal *= 10; 4203 sc->sc_doresetcal = AH_TRUE; 4204 } else { 4205 /* nextcal should be the shortest time for next event */ 4206 nextcal = ath_longcalinterval*hz; 4207 if (sc->sc_lastcalreset == 0) 4208 sc->sc_lastcalreset = sc->sc_lastlongcal; 4209 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4210 sc->sc_resetcal = 1; /* setup reset next trip */ 4211 sc->sc_doresetcal = AH_FALSE; 4212 } 4213 /* ANI calibration may occur more often than short/long/resetcal */ 4214 if (ath_anicalinterval > 0) 4215 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4216 4217 if (nextcal != 0) { 4218 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4219 __func__, nextcal, isCalDone ? "" : "!"); 4220 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4221 } else { 4222 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4223 __func__); 4224 /* NB: don't rearm timer */ 4225 } 4226 } 4227 4228 static void 4229 ath_scan_start(struct ieee80211com *ic) 4230 { 4231 struct ifnet *ifp = ic->ic_ifp; 4232 struct ath_softc *sc = ifp->if_softc; 4233 struct ath_hal *ah = sc->sc_ah; 4234 u_int32_t rfilt; 4235 4236 /* XXX calibration timer? */ 4237 4238 ATH_LOCK(sc); 4239 sc->sc_scanning = 1; 4240 sc->sc_syncbeacon = 0; 4241 rfilt = ath_calcrxfilter(sc); 4242 ATH_UNLOCK(sc); 4243 4244 ATH_PCU_LOCK(sc); 4245 ath_hal_setrxfilter(ah, rfilt); 4246 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4247 ATH_PCU_UNLOCK(sc); 4248 4249 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4250 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4251 } 4252 4253 static void 4254 ath_scan_end(struct ieee80211com *ic) 4255 { 4256 struct ifnet *ifp = ic->ic_ifp; 4257 struct ath_softc *sc = ifp->if_softc; 4258 struct ath_hal *ah = sc->sc_ah; 4259 u_int32_t rfilt; 4260 4261 ATH_LOCK(sc); 4262 sc->sc_scanning = 0; 4263 rfilt = ath_calcrxfilter(sc); 4264 ATH_UNLOCK(sc); 4265 4266 ATH_PCU_LOCK(sc); 4267 ath_hal_setrxfilter(ah, rfilt); 4268 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4269 4270 ath_hal_process_noisefloor(ah); 4271 ATH_PCU_UNLOCK(sc); 4272 4273 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4274 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4275 sc->sc_curaid); 4276 } 4277 4278 #ifdef ATH_ENABLE_11N 4279 /* 4280 * For now, just do a channel change. 4281 * 4282 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4283 * control state and resetting the hardware without dropping frames out 4284 * of the queue. 4285 * 4286 * The unfortunate trouble here is making absolutely sure that the 4287 * channel width change has propagated enough so the hardware 4288 * absolutely isn't handed bogus frames for it's current operating 4289 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4290 * does occur in parallel, we need to make certain we've blocked 4291 * any further ongoing TX (and RX, that can cause raw TX) 4292 * before we do this. 4293 */ 4294 static void 4295 ath_update_chw(struct ieee80211com *ic) 4296 { 4297 struct ifnet *ifp = ic->ic_ifp; 4298 struct ath_softc *sc = ifp->if_softc; 4299 4300 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4301 ath_set_channel(ic); 4302 } 4303 #endif /* ATH_ENABLE_11N */ 4304 4305 static void 4306 ath_set_channel(struct ieee80211com *ic) 4307 { 4308 struct ifnet *ifp = ic->ic_ifp; 4309 struct ath_softc *sc = ifp->if_softc; 4310 4311 (void) ath_chan_set(sc, ic->ic_curchan); 4312 /* 4313 * If we are returning to our bss channel then mark state 4314 * so the next recv'd beacon's tsf will be used to sync the 4315 * beacon timers. Note that since we only hear beacons in 4316 * sta/ibss mode this has no effect in other operating modes. 4317 */ 4318 ATH_LOCK(sc); 4319 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4320 sc->sc_syncbeacon = 1; 4321 ATH_UNLOCK(sc); 4322 } 4323 4324 /* 4325 * Walk the vap list and check if there any vap's in RUN state. 4326 */ 4327 static int 4328 ath_isanyrunningvaps(struct ieee80211vap *this) 4329 { 4330 struct ieee80211com *ic = this->iv_ic; 4331 struct ieee80211vap *vap; 4332 4333 IEEE80211_LOCK_ASSERT(ic); 4334 4335 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4336 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4337 return 1; 4338 } 4339 return 0; 4340 } 4341 4342 static int 4343 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4344 { 4345 struct ieee80211com *ic = vap->iv_ic; 4346 struct ath_softc *sc = ic->ic_ifp->if_softc; 4347 struct ath_vap *avp = ATH_VAP(vap); 4348 struct ath_hal *ah = sc->sc_ah; 4349 struct ieee80211_node *ni = NULL; 4350 int i, error, stamode; 4351 u_int32_t rfilt; 4352 int csa_run_transition = 0; 4353 static const HAL_LED_STATE leds[] = { 4354 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4355 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4356 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4357 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4358 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4359 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4360 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4361 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4362 }; 4363 4364 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4365 ieee80211_state_name[vap->iv_state], 4366 ieee80211_state_name[nstate]); 4367 4368 /* 4369 * net80211 _should_ have the comlock asserted at this point. 4370 * There are some comments around the calls to vap->iv_newstate 4371 * which indicate that it (newstate) may end up dropping the 4372 * lock. This and the subsequent lock assert check after newstate 4373 * are an attempt to catch these and figure out how/why. 4374 */ 4375 IEEE80211_LOCK_ASSERT(ic); 4376 4377 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4378 csa_run_transition = 1; 4379 4380 callout_drain(&sc->sc_cal_ch); 4381 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4382 4383 if (nstate == IEEE80211_S_SCAN) { 4384 /* 4385 * Scanning: turn off beacon miss and don't beacon. 4386 * Mark beacon state so when we reach RUN state we'll 4387 * [re]setup beacons. Unblock the task q thread so 4388 * deferred interrupt processing is done. 4389 */ 4390 ath_hal_intrset(ah, 4391 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4392 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4393 sc->sc_beacons = 0; 4394 taskqueue_unblock(sc->sc_tq); 4395 } 4396 4397 ni = ieee80211_ref_node(vap->iv_bss); 4398 rfilt = ath_calcrxfilter(sc); 4399 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4400 vap->iv_opmode == IEEE80211_M_AHDEMO || 4401 vap->iv_opmode == IEEE80211_M_IBSS); 4402 if (stamode && nstate == IEEE80211_S_RUN) { 4403 sc->sc_curaid = ni->ni_associd; 4404 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4405 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4406 } 4407 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4408 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4409 ath_hal_setrxfilter(ah, rfilt); 4410 4411 /* XXX is this to restore keycache on resume? */ 4412 if (vap->iv_opmode != IEEE80211_M_STA && 4413 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4414 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4415 if (ath_hal_keyisvalid(ah, i)) 4416 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4417 } 4418 4419 /* 4420 * Invoke the parent method to do net80211 work. 4421 */ 4422 error = avp->av_newstate(vap, nstate, arg); 4423 if (error != 0) 4424 goto bad; 4425 4426 /* 4427 * See above: ensure av_newstate() doesn't drop the lock 4428 * on us. 4429 */ 4430 IEEE80211_LOCK_ASSERT(ic); 4431 4432 if (nstate == IEEE80211_S_RUN) { 4433 /* NB: collect bss node again, it may have changed */ 4434 ieee80211_free_node(ni); 4435 ni = ieee80211_ref_node(vap->iv_bss); 4436 4437 DPRINTF(sc, ATH_DEBUG_STATE, 4438 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 4439 "capinfo 0x%04x chan %d\n", __func__, 4440 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 4441 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 4442 4443 switch (vap->iv_opmode) { 4444 #ifdef IEEE80211_SUPPORT_TDMA 4445 case IEEE80211_M_AHDEMO: 4446 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 4447 break; 4448 /* fall thru... */ 4449 #endif 4450 case IEEE80211_M_HOSTAP: 4451 case IEEE80211_M_IBSS: 4452 case IEEE80211_M_MBSS: 4453 /* 4454 * Allocate and setup the beacon frame. 4455 * 4456 * Stop any previous beacon DMA. This may be 4457 * necessary, for example, when an ibss merge 4458 * causes reconfiguration; there will be a state 4459 * transition from RUN->RUN that means we may 4460 * be called with beacon transmission active. 4461 */ 4462 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4463 4464 error = ath_beacon_alloc(sc, ni); 4465 if (error != 0) 4466 goto bad; 4467 /* 4468 * If joining an adhoc network defer beacon timer 4469 * configuration to the next beacon frame so we 4470 * have a current TSF to use. Otherwise we're 4471 * starting an ibss/bss so there's no need to delay; 4472 * if this is the first vap moving to RUN state, then 4473 * beacon state needs to be [re]configured. 4474 */ 4475 if (vap->iv_opmode == IEEE80211_M_IBSS && 4476 ni->ni_tstamp.tsf != 0) { 4477 sc->sc_syncbeacon = 1; 4478 } else if (!sc->sc_beacons) { 4479 #ifdef IEEE80211_SUPPORT_TDMA 4480 if (vap->iv_caps & IEEE80211_C_TDMA) 4481 ath_tdma_config(sc, vap); 4482 else 4483 #endif 4484 ath_beacon_config(sc, vap); 4485 sc->sc_beacons = 1; 4486 } 4487 break; 4488 case IEEE80211_M_STA: 4489 /* 4490 * Defer beacon timer configuration to the next 4491 * beacon frame so we have a current TSF to use 4492 * (any TSF collected when scanning is likely old). 4493 * However if it's due to a CSA -> RUN transition, 4494 * force a beacon update so we pick up a lack of 4495 * beacons from an AP in CAC and thus force a 4496 * scan. 4497 */ 4498 sc->sc_syncbeacon = 1; 4499 if (csa_run_transition) 4500 ath_beacon_config(sc, vap); 4501 break; 4502 case IEEE80211_M_MONITOR: 4503 /* 4504 * Monitor mode vaps have only INIT->RUN and RUN->RUN 4505 * transitions so we must re-enable interrupts here to 4506 * handle the case of a single monitor mode vap. 4507 */ 4508 ath_hal_intrset(ah, sc->sc_imask); 4509 break; 4510 case IEEE80211_M_WDS: 4511 break; 4512 default: 4513 break; 4514 } 4515 /* 4516 * Let the hal process statistics collected during a 4517 * scan so it can provide calibrated noise floor data. 4518 */ 4519 ath_hal_process_noisefloor(ah); 4520 /* 4521 * Reset rssi stats; maybe not the best place... 4522 */ 4523 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4524 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4525 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4526 /* 4527 * Finally, start any timers and the task q thread 4528 * (in case we didn't go through SCAN state). 4529 */ 4530 if (ath_longcalinterval != 0) { 4531 /* start periodic recalibration timer */ 4532 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4533 } else { 4534 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4535 "%s: calibration disabled\n", __func__); 4536 } 4537 taskqueue_unblock(sc->sc_tq); 4538 } else if (nstate == IEEE80211_S_INIT) { 4539 /* 4540 * If there are no vaps left in RUN state then 4541 * shutdown host/driver operation: 4542 * o disable interrupts 4543 * o disable the task queue thread 4544 * o mark beacon processing as stopped 4545 */ 4546 if (!ath_isanyrunningvaps(vap)) { 4547 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4548 /* disable interrupts */ 4549 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4550 taskqueue_block(sc->sc_tq); 4551 sc->sc_beacons = 0; 4552 } 4553 #ifdef IEEE80211_SUPPORT_TDMA 4554 ath_hal_setcca(ah, AH_TRUE); 4555 #endif 4556 } 4557 bad: 4558 ieee80211_free_node(ni); 4559 return error; 4560 } 4561 4562 /* 4563 * Allocate a key cache slot to the station so we can 4564 * setup a mapping from key index to node. The key cache 4565 * slot is needed for managing antenna state and for 4566 * compression when stations do not use crypto. We do 4567 * it uniliaterally here; if crypto is employed this slot 4568 * will be reassigned. 4569 */ 4570 static void 4571 ath_setup_stationkey(struct ieee80211_node *ni) 4572 { 4573 struct ieee80211vap *vap = ni->ni_vap; 4574 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4575 ieee80211_keyix keyix, rxkeyix; 4576 4577 /* XXX should take a locked ref to vap->iv_bss */ 4578 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4579 /* 4580 * Key cache is full; we'll fall back to doing 4581 * the more expensive lookup in software. Note 4582 * this also means no h/w compression. 4583 */ 4584 /* XXX msg+statistic */ 4585 } else { 4586 /* XXX locking? */ 4587 ni->ni_ucastkey.wk_keyix = keyix; 4588 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4589 /* NB: must mark device key to get called back on delete */ 4590 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 4591 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 4592 /* NB: this will create a pass-thru key entry */ 4593 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 4594 } 4595 } 4596 4597 /* 4598 * Setup driver-specific state for a newly associated node. 4599 * Note that we're called also on a re-associate, the isnew 4600 * param tells us if this is the first time or not. 4601 */ 4602 static void 4603 ath_newassoc(struct ieee80211_node *ni, int isnew) 4604 { 4605 struct ath_node *an = ATH_NODE(ni); 4606 struct ieee80211vap *vap = ni->ni_vap; 4607 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4608 const struct ieee80211_txparam *tp = ni->ni_txparms; 4609 4610 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 4611 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 4612 4613 ath_rate_newassoc(sc, an, isnew); 4614 if (isnew && 4615 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 4616 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4617 ath_setup_stationkey(ni); 4618 } 4619 4620 static int 4621 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 4622 int nchans, struct ieee80211_channel chans[]) 4623 { 4624 struct ath_softc *sc = ic->ic_ifp->if_softc; 4625 struct ath_hal *ah = sc->sc_ah; 4626 HAL_STATUS status; 4627 4628 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4629 "%s: rd %u cc %u location %c%s\n", 4630 __func__, reg->regdomain, reg->country, reg->location, 4631 reg->ecm ? " ecm" : ""); 4632 4633 status = ath_hal_set_channels(ah, chans, nchans, 4634 reg->country, reg->regdomain); 4635 if (status != HAL_OK) { 4636 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 4637 __func__, status); 4638 return EINVAL; /* XXX */ 4639 } 4640 4641 return 0; 4642 } 4643 4644 static void 4645 ath_getradiocaps(struct ieee80211com *ic, 4646 int maxchans, int *nchans, struct ieee80211_channel chans[]) 4647 { 4648 struct ath_softc *sc = ic->ic_ifp->if_softc; 4649 struct ath_hal *ah = sc->sc_ah; 4650 4651 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 4652 __func__, SKU_DEBUG, CTRY_DEFAULT); 4653 4654 /* XXX check return */ 4655 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 4656 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 4657 4658 } 4659 4660 static int 4661 ath_getchannels(struct ath_softc *sc) 4662 { 4663 struct ifnet *ifp = sc->sc_ifp; 4664 struct ieee80211com *ic = ifp->if_l2com; 4665 struct ath_hal *ah = sc->sc_ah; 4666 HAL_STATUS status; 4667 4668 /* 4669 * Collect channel set based on EEPROM contents. 4670 */ 4671 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 4672 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 4673 if (status != HAL_OK) { 4674 if_printf(ifp, "%s: unable to collect channel list from hal, " 4675 "status %d\n", __func__, status); 4676 return EINVAL; 4677 } 4678 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 4679 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 4680 /* XXX map Atheros sku's to net80211 SKU's */ 4681 /* XXX net80211 types too small */ 4682 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 4683 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 4684 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 4685 ic->ic_regdomain.isocc[1] = ' '; 4686 4687 ic->ic_regdomain.ecm = 1; 4688 ic->ic_regdomain.location = 'I'; 4689 4690 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4691 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 4692 __func__, sc->sc_eerd, sc->sc_eecc, 4693 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 4694 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 4695 return 0; 4696 } 4697 4698 static int 4699 ath_rate_setup(struct ath_softc *sc, u_int mode) 4700 { 4701 struct ath_hal *ah = sc->sc_ah; 4702 const HAL_RATE_TABLE *rt; 4703 4704 switch (mode) { 4705 case IEEE80211_MODE_11A: 4706 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 4707 break; 4708 case IEEE80211_MODE_HALF: 4709 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 4710 break; 4711 case IEEE80211_MODE_QUARTER: 4712 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 4713 break; 4714 case IEEE80211_MODE_11B: 4715 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 4716 break; 4717 case IEEE80211_MODE_11G: 4718 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 4719 break; 4720 case IEEE80211_MODE_TURBO_A: 4721 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 4722 break; 4723 case IEEE80211_MODE_TURBO_G: 4724 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 4725 break; 4726 case IEEE80211_MODE_STURBO_A: 4727 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 4728 break; 4729 case IEEE80211_MODE_11NA: 4730 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 4731 break; 4732 case IEEE80211_MODE_11NG: 4733 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 4734 break; 4735 default: 4736 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 4737 __func__, mode); 4738 return 0; 4739 } 4740 sc->sc_rates[mode] = rt; 4741 return (rt != NULL); 4742 } 4743 4744 static void 4745 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 4746 { 4747 #define N(a) (sizeof(a)/sizeof(a[0])) 4748 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 4749 static const struct { 4750 u_int rate; /* tx/rx 802.11 rate */ 4751 u_int16_t timeOn; /* LED on time (ms) */ 4752 u_int16_t timeOff; /* LED off time (ms) */ 4753 } blinkrates[] = { 4754 { 108, 40, 10 }, 4755 { 96, 44, 11 }, 4756 { 72, 50, 13 }, 4757 { 48, 57, 14 }, 4758 { 36, 67, 16 }, 4759 { 24, 80, 20 }, 4760 { 22, 100, 25 }, 4761 { 18, 133, 34 }, 4762 { 12, 160, 40 }, 4763 { 10, 200, 50 }, 4764 { 6, 240, 58 }, 4765 { 4, 267, 66 }, 4766 { 2, 400, 100 }, 4767 { 0, 500, 130 }, 4768 /* XXX half/quarter rates */ 4769 }; 4770 const HAL_RATE_TABLE *rt; 4771 int i, j; 4772 4773 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 4774 rt = sc->sc_rates[mode]; 4775 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 4776 for (i = 0; i < rt->rateCount; i++) { 4777 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 4778 if (rt->info[i].phy != IEEE80211_T_HT) 4779 sc->sc_rixmap[ieeerate] = i; 4780 else 4781 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 4782 } 4783 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 4784 for (i = 0; i < N(sc->sc_hwmap); i++) { 4785 if (i >= rt->rateCount) { 4786 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 4787 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 4788 continue; 4789 } 4790 sc->sc_hwmap[i].ieeerate = 4791 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 4792 if (rt->info[i].phy == IEEE80211_T_HT) 4793 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 4794 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 4795 if (rt->info[i].shortPreamble || 4796 rt->info[i].phy == IEEE80211_T_OFDM) 4797 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 4798 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 4799 for (j = 0; j < N(blinkrates)-1; j++) 4800 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 4801 break; 4802 /* NB: this uses the last entry if the rate isn't found */ 4803 /* XXX beware of overlow */ 4804 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 4805 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 4806 } 4807 sc->sc_currates = rt; 4808 sc->sc_curmode = mode; 4809 /* 4810 * All protection frames are transmited at 2Mb/s for 4811 * 11g, otherwise at 1Mb/s. 4812 */ 4813 if (mode == IEEE80211_MODE_11G) 4814 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 4815 else 4816 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 4817 /* NB: caller is responsible for resetting rate control state */ 4818 #undef N 4819 } 4820 4821 static void 4822 ath_watchdog(void *arg) 4823 { 4824 struct ath_softc *sc = arg; 4825 int do_reset = 0; 4826 4827 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 4828 struct ifnet *ifp = sc->sc_ifp; 4829 uint32_t hangs; 4830 4831 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 4832 hangs != 0) { 4833 if_printf(ifp, "%s hang detected (0x%x)\n", 4834 hangs & 0xff ? "bb" : "mac", hangs); 4835 } else 4836 if_printf(ifp, "device timeout\n"); 4837 do_reset = 1; 4838 ifp->if_oerrors++; 4839 sc->sc_stats.ast_watchdog++; 4840 } 4841 4842 /* 4843 * We can't hold the lock across the ath_reset() call. 4844 * 4845 * And since this routine can't hold a lock and sleep, 4846 * do the reset deferred. 4847 */ 4848 if (do_reset) { 4849 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4850 } 4851 4852 callout_schedule(&sc->sc_wd_ch, hz); 4853 } 4854 4855 #ifdef ATH_DIAGAPI 4856 /* 4857 * Diagnostic interface to the HAL. This is used by various 4858 * tools to do things like retrieve register contents for 4859 * debugging. The mechanism is intentionally opaque so that 4860 * it can change frequently w/o concern for compatiblity. 4861 */ 4862 static int 4863 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 4864 { 4865 struct ath_hal *ah = sc->sc_ah; 4866 u_int id = ad->ad_id & ATH_DIAG_ID; 4867 void *indata = NULL; 4868 void *outdata = NULL; 4869 u_int32_t insize = ad->ad_in_size; 4870 u_int32_t outsize = ad->ad_out_size; 4871 int error = 0; 4872 4873 if (ad->ad_id & ATH_DIAG_IN) { 4874 /* 4875 * Copy in data. 4876 */ 4877 indata = malloc(insize, M_TEMP, M_NOWAIT); 4878 if (indata == NULL) { 4879 error = ENOMEM; 4880 goto bad; 4881 } 4882 error = copyin(ad->ad_in_data, indata, insize); 4883 if (error) 4884 goto bad; 4885 } 4886 if (ad->ad_id & ATH_DIAG_DYN) { 4887 /* 4888 * Allocate a buffer for the results (otherwise the HAL 4889 * returns a pointer to a buffer where we can read the 4890 * results). Note that we depend on the HAL leaving this 4891 * pointer for us to use below in reclaiming the buffer; 4892 * may want to be more defensive. 4893 */ 4894 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 4895 if (outdata == NULL) { 4896 error = ENOMEM; 4897 goto bad; 4898 } 4899 } 4900 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 4901 if (outsize < ad->ad_out_size) 4902 ad->ad_out_size = outsize; 4903 if (outdata != NULL) 4904 error = copyout(outdata, ad->ad_out_data, 4905 ad->ad_out_size); 4906 } else { 4907 error = EINVAL; 4908 } 4909 bad: 4910 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 4911 free(indata, M_TEMP); 4912 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 4913 free(outdata, M_TEMP); 4914 return error; 4915 } 4916 #endif /* ATH_DIAGAPI */ 4917 4918 static int 4919 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 4920 { 4921 #define IS_RUNNING(ifp) \ 4922 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 4923 struct ath_softc *sc = ifp->if_softc; 4924 struct ieee80211com *ic = ifp->if_l2com; 4925 struct ifreq *ifr = (struct ifreq *)data; 4926 const HAL_RATE_TABLE *rt; 4927 int error = 0; 4928 4929 switch (cmd) { 4930 case SIOCSIFFLAGS: 4931 ATH_LOCK(sc); 4932 if (IS_RUNNING(ifp)) { 4933 /* 4934 * To avoid rescanning another access point, 4935 * do not call ath_init() here. Instead, 4936 * only reflect promisc mode settings. 4937 */ 4938 ath_mode_init(sc); 4939 } else if (ifp->if_flags & IFF_UP) { 4940 /* 4941 * Beware of being called during attach/detach 4942 * to reset promiscuous mode. In that case we 4943 * will still be marked UP but not RUNNING. 4944 * However trying to re-init the interface 4945 * is the wrong thing to do as we've already 4946 * torn down much of our state. There's 4947 * probably a better way to deal with this. 4948 */ 4949 if (!sc->sc_invalid) 4950 ath_init(sc); /* XXX lose error */ 4951 } else { 4952 ath_stop_locked(ifp); 4953 #ifdef notyet 4954 /* XXX must wakeup in places like ath_vap_delete */ 4955 if (!sc->sc_invalid) 4956 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 4957 #endif 4958 } 4959 ATH_UNLOCK(sc); 4960 break; 4961 case SIOCGIFMEDIA: 4962 case SIOCSIFMEDIA: 4963 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 4964 break; 4965 case SIOCGATHSTATS: 4966 /* NB: embed these numbers to get a consistent view */ 4967 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 4968 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 4969 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 4970 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 4971 #ifdef IEEE80211_SUPPORT_TDMA 4972 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 4973 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 4974 #endif 4975 rt = sc->sc_currates; 4976 sc->sc_stats.ast_tx_rate = 4977 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 4978 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 4979 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 4980 return copyout(&sc->sc_stats, 4981 ifr->ifr_data, sizeof (sc->sc_stats)); 4982 case SIOCGATHAGSTATS: 4983 return copyout(&sc->sc_aggr_stats, 4984 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 4985 case SIOCZATHSTATS: 4986 error = priv_check(curthread, PRIV_DRIVER); 4987 if (error == 0) { 4988 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 4989 memset(&sc->sc_aggr_stats, 0, 4990 sizeof(sc->sc_aggr_stats)); 4991 memset(&sc->sc_intr_stats, 0, 4992 sizeof(sc->sc_intr_stats)); 4993 } 4994 break; 4995 #ifdef ATH_DIAGAPI 4996 case SIOCGATHDIAG: 4997 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 4998 break; 4999 case SIOCGATHPHYERR: 5000 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5001 break; 5002 #endif 5003 case SIOCGIFADDR: 5004 error = ether_ioctl(ifp, cmd, data); 5005 break; 5006 default: 5007 error = EINVAL; 5008 break; 5009 } 5010 return error; 5011 #undef IS_RUNNING 5012 } 5013 5014 /* 5015 * Announce various information on device/driver attach. 5016 */ 5017 static void 5018 ath_announce(struct ath_softc *sc) 5019 { 5020 struct ifnet *ifp = sc->sc_ifp; 5021 struct ath_hal *ah = sc->sc_ah; 5022 5023 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5024 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5025 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5026 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5027 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5028 if (bootverbose) { 5029 int i; 5030 for (i = 0; i <= WME_AC_VO; i++) { 5031 struct ath_txq *txq = sc->sc_ac2q[i]; 5032 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5033 txq->axq_qnum, ieee80211_wme_acnames[i]); 5034 } 5035 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5036 sc->sc_cabq->axq_qnum); 5037 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5038 } 5039 if (ath_rxbuf != ATH_RXBUF) 5040 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5041 if (ath_txbuf != ATH_TXBUF) 5042 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5043 if (sc->sc_mcastkey && bootverbose) 5044 if_printf(ifp, "using multicast key search\n"); 5045 } 5046 5047 static void 5048 ath_dfs_tasklet(void *p, int npending) 5049 { 5050 struct ath_softc *sc = (struct ath_softc *) p; 5051 struct ifnet *ifp = sc->sc_ifp; 5052 struct ieee80211com *ic = ifp->if_l2com; 5053 5054 /* 5055 * If previous processing has found a radar event, 5056 * signal this to the net80211 layer to begin DFS 5057 * processing. 5058 */ 5059 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 5060 /* DFS event found, initiate channel change */ 5061 /* 5062 * XXX doesn't currently tell us whether the event 5063 * XXX was found in the primary or extension 5064 * XXX channel! 5065 */ 5066 IEEE80211_LOCK(ic); 5067 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 5068 IEEE80211_UNLOCK(ic); 5069 } 5070 } 5071 5072 MODULE_VERSION(if_ath, 1); 5073 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 5074 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 5075 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 5076 #endif 5077