1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_tx_edma.h> 113 #include <dev/ath/if_ath_beacon.h> 114 #include <dev/ath/if_athdfs.h> 115 116 #ifdef ATH_TX99_DIAG 117 #include <dev/ath/ath_tx99/ath_tx99.h> 118 #endif 119 120 /* 121 * ATH_BCBUF determines the number of vap's that can transmit 122 * beacons and also (currently) the number of vap's that can 123 * have unique mac addresses/bssid. When staggering beacons 124 * 4 is probably a good max as otherwise the beacons become 125 * very closely spaced and there is limited time for cab q traffic 126 * to go out. You can burst beacons instead but that is not good 127 * for stations in power save and at some point you really want 128 * another radio (and channel). 129 * 130 * The limit on the number of mac addresses is tied to our use of 131 * the U/L bit and tracking addresses in a byte; it would be 132 * worthwhile to allow more for applications like proxy sta. 133 */ 134 CTASSERT(ATH_BCBUF <= 8); 135 136 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 137 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 138 const uint8_t [IEEE80211_ADDR_LEN], 139 const uint8_t [IEEE80211_ADDR_LEN]); 140 static void ath_vap_delete(struct ieee80211vap *); 141 static void ath_init(void *); 142 static void ath_stop_locked(struct ifnet *); 143 static void ath_stop(struct ifnet *); 144 static int ath_reset_vap(struct ieee80211vap *, u_long); 145 static int ath_media_change(struct ifnet *); 146 static void ath_watchdog(void *); 147 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 148 static void ath_fatal_proc(void *, int); 149 static void ath_bmiss_vap(struct ieee80211vap *); 150 static void ath_bmiss_proc(void *, int); 151 static void ath_key_update_begin(struct ieee80211vap *); 152 static void ath_key_update_end(struct ieee80211vap *); 153 static void ath_update_mcast(struct ifnet *); 154 static void ath_update_promisc(struct ifnet *); 155 static void ath_updateslot(struct ifnet *); 156 static void ath_bstuck_proc(void *, int); 157 static void ath_reset_proc(void *, int); 158 static int ath_desc_alloc(struct ath_softc *); 159 static void ath_desc_free(struct ath_softc *); 160 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 161 const uint8_t [IEEE80211_ADDR_LEN]); 162 static void ath_node_cleanup(struct ieee80211_node *); 163 static void ath_node_free(struct ieee80211_node *); 164 static void ath_node_getsignal(const struct ieee80211_node *, 165 int8_t *, int8_t *); 166 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 167 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 168 static int ath_tx_setup(struct ath_softc *, int, int); 169 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 170 static void ath_tx_cleanup(struct ath_softc *); 171 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 172 int dosched); 173 static void ath_tx_proc_q0(void *, int); 174 static void ath_tx_proc_q0123(void *, int); 175 static void ath_tx_proc(void *, int); 176 static void ath_txq_sched_tasklet(void *, int); 177 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 178 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 179 static void ath_scan_start(struct ieee80211com *); 180 static void ath_scan_end(struct ieee80211com *); 181 static void ath_set_channel(struct ieee80211com *); 182 #ifdef ATH_ENABLE_11N 183 static void ath_update_chw(struct ieee80211com *); 184 #endif /* ATH_ENABLE_11N */ 185 static void ath_calibrate(void *); 186 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 187 static void ath_setup_stationkey(struct ieee80211_node *); 188 static void ath_newassoc(struct ieee80211_node *, int); 189 static int ath_setregdomain(struct ieee80211com *, 190 struct ieee80211_regdomain *, int, 191 struct ieee80211_channel []); 192 static void ath_getradiocaps(struct ieee80211com *, int, int *, 193 struct ieee80211_channel []); 194 static int ath_getchannels(struct ath_softc *); 195 196 static int ath_rate_setup(struct ath_softc *, u_int mode); 197 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 198 199 static void ath_announce(struct ath_softc *); 200 201 static void ath_dfs_tasklet(void *, int); 202 203 #ifdef IEEE80211_SUPPORT_TDMA 204 #include <dev/ath/if_ath_tdma.h> 205 #endif 206 207 SYSCTL_DECL(_hw_ath); 208 209 /* XXX validate sysctl values */ 210 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 211 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 212 0, "long chip calibration interval (secs)"); 213 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 214 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 215 0, "short chip calibration interval (msecs)"); 216 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 217 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 218 0, "reset chip calibration results (secs)"); 219 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 220 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 221 0, "ANI calibration (msecs)"); 222 223 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 224 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 225 0, "rx buffers allocated"); 226 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 227 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 228 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 229 0, "tx buffers allocated"); 230 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 231 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 232 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 233 0, "tx (mgmt) buffers allocated"); 234 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 235 236 int ath_bstuck_threshold = 4; /* max missed beacons */ 237 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 238 0, "max missed beacon xmits before chip reset"); 239 240 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 241 242 void 243 ath_legacy_attach_comp_func(struct ath_softc *sc) 244 { 245 246 /* 247 * Special case certain configurations. Note the 248 * CAB queue is handled by these specially so don't 249 * include them when checking the txq setup mask. 250 */ 251 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 252 case 0x01: 253 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 254 break; 255 case 0x0f: 256 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 257 break; 258 default: 259 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 260 break; 261 } 262 } 263 264 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 265 #define HAL_MODE_HT40 \ 266 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 267 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 268 int 269 ath_attach(u_int16_t devid, struct ath_softc *sc) 270 { 271 struct ifnet *ifp; 272 struct ieee80211com *ic; 273 struct ath_hal *ah = NULL; 274 HAL_STATUS status; 275 int error = 0, i; 276 u_int wmodes; 277 uint8_t macaddr[IEEE80211_ADDR_LEN]; 278 int rx_chainmask, tx_chainmask; 279 280 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 281 282 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 283 if (ifp == NULL) { 284 device_printf(sc->sc_dev, "can not if_alloc()\n"); 285 error = ENOSPC; 286 goto bad; 287 } 288 ic = ifp->if_l2com; 289 290 /* set these up early for if_printf use */ 291 if_initname(ifp, device_get_name(sc->sc_dev), 292 device_get_unit(sc->sc_dev)); 293 294 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 295 sc->sc_eepromdata, &status); 296 if (ah == NULL) { 297 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 298 status); 299 error = ENXIO; 300 goto bad; 301 } 302 sc->sc_ah = ah; 303 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 304 #ifdef ATH_DEBUG 305 sc->sc_debug = ath_debug; 306 #endif 307 308 /* 309 * Setup the DMA/EDMA functions based on the current 310 * hardware support. 311 * 312 * This is required before the descriptors are allocated. 313 */ 314 if (ath_hal_hasedma(sc->sc_ah)) { 315 sc->sc_isedma = 1; 316 ath_recv_setup_edma(sc); 317 ath_xmit_setup_edma(sc); 318 } else { 319 ath_recv_setup_legacy(sc); 320 ath_xmit_setup_legacy(sc); 321 } 322 323 /* 324 * Check if the MAC has multi-rate retry support. 325 * We do this by trying to setup a fake extended 326 * descriptor. MAC's that don't have support will 327 * return false w/o doing anything. MAC's that do 328 * support it will return true w/o doing anything. 329 */ 330 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 331 332 /* 333 * Check if the device has hardware counters for PHY 334 * errors. If so we need to enable the MIB interrupt 335 * so we can act on stat triggers. 336 */ 337 if (ath_hal_hwphycounters(ah)) 338 sc->sc_needmib = 1; 339 340 /* 341 * Get the hardware key cache size. 342 */ 343 sc->sc_keymax = ath_hal_keycachesize(ah); 344 if (sc->sc_keymax > ATH_KEYMAX) { 345 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 346 ATH_KEYMAX, sc->sc_keymax); 347 sc->sc_keymax = ATH_KEYMAX; 348 } 349 /* 350 * Reset the key cache since some parts do not 351 * reset the contents on initial power up. 352 */ 353 for (i = 0; i < sc->sc_keymax; i++) 354 ath_hal_keyreset(ah, i); 355 356 /* 357 * Collect the default channel list. 358 */ 359 error = ath_getchannels(sc); 360 if (error != 0) 361 goto bad; 362 363 /* 364 * Setup rate tables for all potential media types. 365 */ 366 ath_rate_setup(sc, IEEE80211_MODE_11A); 367 ath_rate_setup(sc, IEEE80211_MODE_11B); 368 ath_rate_setup(sc, IEEE80211_MODE_11G); 369 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 370 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 371 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 372 ath_rate_setup(sc, IEEE80211_MODE_11NA); 373 ath_rate_setup(sc, IEEE80211_MODE_11NG); 374 ath_rate_setup(sc, IEEE80211_MODE_HALF); 375 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 376 377 /* NB: setup here so ath_rate_update is happy */ 378 ath_setcurmode(sc, IEEE80211_MODE_11A); 379 380 /* 381 * Allocate TX descriptors and populate the lists. 382 */ 383 error = ath_desc_alloc(sc); 384 if (error != 0) { 385 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 386 error); 387 goto bad; 388 } 389 error = ath_txdma_setup(sc); 390 if (error != 0) { 391 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 392 error); 393 goto bad; 394 } 395 396 /* 397 * Allocate RX descriptors and populate the lists. 398 */ 399 error = ath_rxdma_setup(sc); 400 if (error != 0) { 401 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 402 error); 403 goto bad; 404 } 405 406 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 407 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 408 409 ATH_TXBUF_LOCK_INIT(sc); 410 411 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 412 taskqueue_thread_enqueue, &sc->sc_tq); 413 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 414 "%s taskq", ifp->if_xname); 415 416 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 417 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 418 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 419 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 420 TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc); 421 TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc); 422 423 /* 424 * Allocate hardware transmit queues: one queue for 425 * beacon frames and one data queue for each QoS 426 * priority. Note that the hal handles resetting 427 * these queues at the needed time. 428 * 429 * XXX PS-Poll 430 */ 431 sc->sc_bhalq = ath_beaconq_setup(sc); 432 if (sc->sc_bhalq == (u_int) -1) { 433 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 434 error = EIO; 435 goto bad2; 436 } 437 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 438 if (sc->sc_cabq == NULL) { 439 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 440 error = EIO; 441 goto bad2; 442 } 443 /* NB: insure BK queue is the lowest priority h/w queue */ 444 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 445 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 446 ieee80211_wme_acnames[WME_AC_BK]); 447 error = EIO; 448 goto bad2; 449 } 450 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 451 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 452 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 453 /* 454 * Not enough hardware tx queues to properly do WME; 455 * just punt and assign them all to the same h/w queue. 456 * We could do a better job of this if, for example, 457 * we allocate queues when we switch from station to 458 * AP mode. 459 */ 460 if (sc->sc_ac2q[WME_AC_VI] != NULL) 461 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 462 if (sc->sc_ac2q[WME_AC_BE] != NULL) 463 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 464 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 465 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 466 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 467 } 468 469 /* 470 * Attach the TX completion function. 471 * 472 * The non-EDMA chips may have some special case optimisations; 473 * this method gives everyone a chance to attach cleanly. 474 */ 475 sc->sc_tx.xmit_attach_comp_func(sc); 476 477 /* 478 * Setup rate control. Some rate control modules 479 * call back to change the anntena state so expose 480 * the necessary entry points. 481 * XXX maybe belongs in struct ath_ratectrl? 482 */ 483 sc->sc_setdefantenna = ath_setdefantenna; 484 sc->sc_rc = ath_rate_attach(sc); 485 if (sc->sc_rc == NULL) { 486 error = EIO; 487 goto bad2; 488 } 489 490 /* Attach DFS module */ 491 if (! ath_dfs_attach(sc)) { 492 device_printf(sc->sc_dev, 493 "%s: unable to attach DFS\n", __func__); 494 error = EIO; 495 goto bad2; 496 } 497 498 /* Start DFS processing tasklet */ 499 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 500 501 /* Configure LED state */ 502 sc->sc_blinking = 0; 503 sc->sc_ledstate = 1; 504 sc->sc_ledon = 0; /* low true */ 505 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 506 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 507 508 /* 509 * Don't setup hardware-based blinking. 510 * 511 * Although some NICs may have this configured in the 512 * default reset register values, the user may wish 513 * to alter which pins have which function. 514 * 515 * The reference driver attaches the MAC network LED to GPIO1 and 516 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 517 * NIC has these reversed. 518 */ 519 sc->sc_hardled = (1 == 0); 520 sc->sc_led_net_pin = -1; 521 sc->sc_led_pwr_pin = -1; 522 /* 523 * Auto-enable soft led processing for IBM cards and for 524 * 5211 minipci cards. Users can also manually enable/disable 525 * support with a sysctl. 526 */ 527 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 528 ath_led_config(sc); 529 ath_hal_setledstate(ah, HAL_LED_INIT); 530 531 ifp->if_softc = sc; 532 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 533 ifp->if_start = ath_start; 534 ifp->if_ioctl = ath_ioctl; 535 ifp->if_init = ath_init; 536 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 537 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 538 IFQ_SET_READY(&ifp->if_snd); 539 540 ic->ic_ifp = ifp; 541 /* XXX not right but it's not used anywhere important */ 542 ic->ic_phytype = IEEE80211_T_OFDM; 543 ic->ic_opmode = IEEE80211_M_STA; 544 ic->ic_caps = 545 IEEE80211_C_STA /* station mode */ 546 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 547 | IEEE80211_C_HOSTAP /* hostap mode */ 548 | IEEE80211_C_MONITOR /* monitor mode */ 549 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 550 | IEEE80211_C_WDS /* 4-address traffic works */ 551 | IEEE80211_C_MBSS /* mesh point link mode */ 552 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 553 | IEEE80211_C_SHSLOT /* short slot time supported */ 554 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 555 #ifndef ATH_ENABLE_11N 556 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 557 #endif 558 | IEEE80211_C_TXFRAG /* handle tx frags */ 559 #ifdef ATH_ENABLE_DFS 560 | IEEE80211_C_DFS /* Enable radar detection */ 561 #endif 562 ; 563 /* 564 * Query the hal to figure out h/w crypto support. 565 */ 566 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 567 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 568 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 569 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 570 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 571 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 572 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 573 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 574 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 575 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 576 /* 577 * Check if h/w does the MIC and/or whether the 578 * separate key cache entries are required to 579 * handle both tx+rx MIC keys. 580 */ 581 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 582 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 583 /* 584 * If the h/w supports storing tx+rx MIC keys 585 * in one cache slot automatically enable use. 586 */ 587 if (ath_hal_hastkipsplit(ah) || 588 !ath_hal_settkipsplit(ah, AH_FALSE)) 589 sc->sc_splitmic = 1; 590 /* 591 * If the h/w can do TKIP MIC together with WME then 592 * we use it; otherwise we force the MIC to be done 593 * in software by the net80211 layer. 594 */ 595 if (ath_hal_haswmetkipmic(ah)) 596 sc->sc_wmetkipmic = 1; 597 } 598 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 599 /* 600 * Check for multicast key search support. 601 */ 602 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 603 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 604 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 605 } 606 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 607 /* 608 * Mark key cache slots associated with global keys 609 * as in use. If we knew TKIP was not to be used we 610 * could leave the +32, +64, and +32+64 slots free. 611 */ 612 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 613 setbit(sc->sc_keymap, i); 614 setbit(sc->sc_keymap, i+64); 615 if (sc->sc_splitmic) { 616 setbit(sc->sc_keymap, i+32); 617 setbit(sc->sc_keymap, i+32+64); 618 } 619 } 620 /* 621 * TPC support can be done either with a global cap or 622 * per-packet support. The latter is not available on 623 * all parts. We're a bit pedantic here as all parts 624 * support a global cap. 625 */ 626 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 627 ic->ic_caps |= IEEE80211_C_TXPMGT; 628 629 /* 630 * Mark WME capability only if we have sufficient 631 * hardware queues to do proper priority scheduling. 632 */ 633 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 634 ic->ic_caps |= IEEE80211_C_WME; 635 /* 636 * Check for misc other capabilities. 637 */ 638 if (ath_hal_hasbursting(ah)) 639 ic->ic_caps |= IEEE80211_C_BURST; 640 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 641 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 642 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 643 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 644 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 645 if (ath_hal_hasfastframes(ah)) 646 ic->ic_caps |= IEEE80211_C_FF; 647 wmodes = ath_hal_getwirelessmodes(ah); 648 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 649 ic->ic_caps |= IEEE80211_C_TURBOP; 650 #ifdef IEEE80211_SUPPORT_TDMA 651 if (ath_hal_macversion(ah) > 0x78) { 652 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 653 ic->ic_tdma_update = ath_tdma_update; 654 } 655 #endif 656 657 /* 658 * TODO: enforce that at least this many frames are available 659 * in the txbuf list before allowing data frames (raw or 660 * otherwise) to be transmitted. 661 */ 662 sc->sc_txq_data_minfree = 10; 663 /* 664 * Leave this as default to maintain legacy behaviour. 665 * Shortening the cabq/mcastq may end up causing some 666 * undesirable behaviour. 667 */ 668 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 669 670 /* 671 * Allow the TX and RX chainmasks to be overridden by 672 * environment variables and/or device.hints. 673 * 674 * This must be done early - before the hardware is 675 * calibrated or before the 802.11n stream calculation 676 * is done. 677 */ 678 if (resource_int_value(device_get_name(sc->sc_dev), 679 device_get_unit(sc->sc_dev), "rx_chainmask", 680 &rx_chainmask) == 0) { 681 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 682 rx_chainmask); 683 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 684 } 685 if (resource_int_value(device_get_name(sc->sc_dev), 686 device_get_unit(sc->sc_dev), "tx_chainmask", 687 &tx_chainmask) == 0) { 688 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 689 tx_chainmask); 690 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 691 } 692 693 /* 694 * Disable MRR with protected frames by default. 695 * Only 802.11n series NICs can handle this. 696 */ 697 sc->sc_mrrprot = 0; /* XXX should be a capability */ 698 699 #ifdef ATH_ENABLE_11N 700 /* 701 * Query HT capabilities 702 */ 703 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 704 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 705 int rxs, txs; 706 707 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 708 709 sc->sc_mrrprot = 1; /* XXX should be a capability */ 710 711 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 712 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 713 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 714 | IEEE80211_HTCAP_MAXAMSDU_3839 715 /* max A-MSDU length */ 716 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 717 ; 718 719 /* 720 * Enable short-GI for HT20 only if the hardware 721 * advertises support. 722 * Notably, anything earlier than the AR9287 doesn't. 723 */ 724 if ((ath_hal_getcapability(ah, 725 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 726 (wmodes & HAL_MODE_HT20)) { 727 device_printf(sc->sc_dev, 728 "[HT] enabling short-GI in 20MHz mode\n"); 729 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 730 } 731 732 if (wmodes & HAL_MODE_HT40) 733 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 734 | IEEE80211_HTCAP_SHORTGI40; 735 736 /* 737 * TX/RX streams need to be taken into account when 738 * negotiating which MCS rates it'll receive and 739 * what MCS rates are available for TX. 740 */ 741 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 742 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 743 744 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 745 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 746 747 ic->ic_txstream = txs; 748 ic->ic_rxstream = rxs; 749 750 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 751 &sc->sc_rts_aggr_limit); 752 if (sc->sc_rts_aggr_limit != (64 * 1024)) 753 device_printf(sc->sc_dev, 754 "[HT] RTS aggregates limited to %d KiB\n", 755 sc->sc_rts_aggr_limit / 1024); 756 757 device_printf(sc->sc_dev, 758 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 759 } 760 #endif 761 762 /* 763 * Initial aggregation settings. 764 */ 765 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 766 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 767 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 768 769 /* 770 * Check if the hardware requires PCI register serialisation. 771 * Some of the Owl based MACs require this. 772 */ 773 if (mp_ncpus > 1 && 774 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 775 0, NULL) == HAL_OK) { 776 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 777 device_printf(sc->sc_dev, 778 "Enabling register serialisation\n"); 779 } 780 781 /* 782 * Indicate we need the 802.11 header padded to a 783 * 32-bit boundary for 4-address and QoS frames. 784 */ 785 ic->ic_flags |= IEEE80211_F_DATAPAD; 786 787 /* 788 * Query the hal about antenna support. 789 */ 790 sc->sc_defant = ath_hal_getdefantenna(ah); 791 792 /* 793 * Not all chips have the VEOL support we want to 794 * use with IBSS beacons; check here for it. 795 */ 796 sc->sc_hasveol = ath_hal_hasveol(ah); 797 798 /* get mac address from hardware */ 799 ath_hal_getmac(ah, macaddr); 800 if (sc->sc_hasbmask) 801 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 802 803 /* NB: used to size node table key mapping array */ 804 ic->ic_max_keyix = sc->sc_keymax; 805 /* call MI attach routine. */ 806 ieee80211_ifattach(ic, macaddr); 807 ic->ic_setregdomain = ath_setregdomain; 808 ic->ic_getradiocaps = ath_getradiocaps; 809 sc->sc_opmode = HAL_M_STA; 810 811 /* override default methods */ 812 ic->ic_newassoc = ath_newassoc; 813 ic->ic_updateslot = ath_updateslot; 814 ic->ic_wme.wme_update = ath_wme_update; 815 ic->ic_vap_create = ath_vap_create; 816 ic->ic_vap_delete = ath_vap_delete; 817 ic->ic_raw_xmit = ath_raw_xmit; 818 ic->ic_update_mcast = ath_update_mcast; 819 ic->ic_update_promisc = ath_update_promisc; 820 ic->ic_node_alloc = ath_node_alloc; 821 sc->sc_node_free = ic->ic_node_free; 822 ic->ic_node_free = ath_node_free; 823 sc->sc_node_cleanup = ic->ic_node_cleanup; 824 ic->ic_node_cleanup = ath_node_cleanup; 825 ic->ic_node_getsignal = ath_node_getsignal; 826 ic->ic_scan_start = ath_scan_start; 827 ic->ic_scan_end = ath_scan_end; 828 ic->ic_set_channel = ath_set_channel; 829 #ifdef ATH_ENABLE_11N 830 /* 802.11n specific - but just override anyway */ 831 sc->sc_addba_request = ic->ic_addba_request; 832 sc->sc_addba_response = ic->ic_addba_response; 833 sc->sc_addba_stop = ic->ic_addba_stop; 834 sc->sc_bar_response = ic->ic_bar_response; 835 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 836 837 ic->ic_addba_request = ath_addba_request; 838 ic->ic_addba_response = ath_addba_response; 839 ic->ic_addba_response_timeout = ath_addba_response_timeout; 840 ic->ic_addba_stop = ath_addba_stop; 841 ic->ic_bar_response = ath_bar_response; 842 843 ic->ic_update_chw = ath_update_chw; 844 #endif /* ATH_ENABLE_11N */ 845 846 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 847 /* 848 * There's one vendor bitmap entry in the RX radiotap 849 * header; make sure that's taken into account. 850 */ 851 ieee80211_radiotap_attachv(ic, 852 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 853 ATH_TX_RADIOTAP_PRESENT, 854 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 855 ATH_RX_RADIOTAP_PRESENT); 856 #else 857 /* 858 * No vendor bitmap/extensions are present. 859 */ 860 ieee80211_radiotap_attach(ic, 861 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 862 ATH_TX_RADIOTAP_PRESENT, 863 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 864 ATH_RX_RADIOTAP_PRESENT); 865 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 866 867 /* 868 * Setup dynamic sysctl's now that country code and 869 * regdomain are available from the hal. 870 */ 871 ath_sysctlattach(sc); 872 ath_sysctl_stats_attach(sc); 873 ath_sysctl_hal_attach(sc); 874 875 if (bootverbose) 876 ieee80211_announce(ic); 877 ath_announce(sc); 878 return 0; 879 bad2: 880 ath_tx_cleanup(sc); 881 ath_desc_free(sc); 882 ath_txdma_teardown(sc); 883 ath_rxdma_teardown(sc); 884 bad: 885 if (ah) 886 ath_hal_detach(ah); 887 if (ifp != NULL) 888 if_free(ifp); 889 sc->sc_invalid = 1; 890 return error; 891 } 892 893 int 894 ath_detach(struct ath_softc *sc) 895 { 896 struct ifnet *ifp = sc->sc_ifp; 897 898 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 899 __func__, ifp->if_flags); 900 901 /* 902 * NB: the order of these is important: 903 * o stop the chip so no more interrupts will fire 904 * o call the 802.11 layer before detaching the hal to 905 * insure callbacks into the driver to delete global 906 * key cache entries can be handled 907 * o free the taskqueue which drains any pending tasks 908 * o reclaim the tx queue data structures after calling 909 * the 802.11 layer as we'll get called back to reclaim 910 * node state and potentially want to use them 911 * o to cleanup the tx queues the hal is called, so detach 912 * it last 913 * Other than that, it's straightforward... 914 */ 915 ath_stop(ifp); 916 ieee80211_ifdetach(ifp->if_l2com); 917 taskqueue_free(sc->sc_tq); 918 #ifdef ATH_TX99_DIAG 919 if (sc->sc_tx99 != NULL) 920 sc->sc_tx99->detach(sc->sc_tx99); 921 #endif 922 ath_rate_detach(sc->sc_rc); 923 924 ath_dfs_detach(sc); 925 ath_desc_free(sc); 926 ath_txdma_teardown(sc); 927 ath_rxdma_teardown(sc); 928 ath_tx_cleanup(sc); 929 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 930 if_free(ifp); 931 932 return 0; 933 } 934 935 /* 936 * MAC address handling for multiple BSS on the same radio. 937 * The first vap uses the MAC address from the EEPROM. For 938 * subsequent vap's we set the U/L bit (bit 1) in the MAC 939 * address and use the next six bits as an index. 940 */ 941 static void 942 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 943 { 944 int i; 945 946 if (clone && sc->sc_hasbmask) { 947 /* NB: we only do this if h/w supports multiple bssid */ 948 for (i = 0; i < 8; i++) 949 if ((sc->sc_bssidmask & (1<<i)) == 0) 950 break; 951 if (i != 0) 952 mac[0] |= (i << 2)|0x2; 953 } else 954 i = 0; 955 sc->sc_bssidmask |= 1<<i; 956 sc->sc_hwbssidmask[0] &= ~mac[0]; 957 if (i == 0) 958 sc->sc_nbssid0++; 959 } 960 961 static void 962 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 963 { 964 int i = mac[0] >> 2; 965 uint8_t mask; 966 967 if (i != 0 || --sc->sc_nbssid0 == 0) { 968 sc->sc_bssidmask &= ~(1<<i); 969 /* recalculate bssid mask from remaining addresses */ 970 mask = 0xff; 971 for (i = 1; i < 8; i++) 972 if (sc->sc_bssidmask & (1<<i)) 973 mask &= ~((i<<2)|0x2); 974 sc->sc_hwbssidmask[0] |= mask; 975 } 976 } 977 978 /* 979 * Assign a beacon xmit slot. We try to space out 980 * assignments so when beacons are staggered the 981 * traffic coming out of the cab q has maximal time 982 * to go out before the next beacon is scheduled. 983 */ 984 static int 985 assign_bslot(struct ath_softc *sc) 986 { 987 u_int slot, free; 988 989 free = 0; 990 for (slot = 0; slot < ATH_BCBUF; slot++) 991 if (sc->sc_bslot[slot] == NULL) { 992 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 993 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 994 return slot; 995 free = slot; 996 /* NB: keep looking for a double slot */ 997 } 998 return free; 999 } 1000 1001 static struct ieee80211vap * 1002 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1003 enum ieee80211_opmode opmode, int flags, 1004 const uint8_t bssid[IEEE80211_ADDR_LEN], 1005 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1006 { 1007 struct ath_softc *sc = ic->ic_ifp->if_softc; 1008 struct ath_vap *avp; 1009 struct ieee80211vap *vap; 1010 uint8_t mac[IEEE80211_ADDR_LEN]; 1011 int needbeacon, error; 1012 enum ieee80211_opmode ic_opmode; 1013 1014 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1015 M_80211_VAP, M_WAITOK | M_ZERO); 1016 needbeacon = 0; 1017 IEEE80211_ADDR_COPY(mac, mac0); 1018 1019 ATH_LOCK(sc); 1020 ic_opmode = opmode; /* default to opmode of new vap */ 1021 switch (opmode) { 1022 case IEEE80211_M_STA: 1023 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1024 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1025 goto bad; 1026 } 1027 if (sc->sc_nvaps) { 1028 /* 1029 * With multiple vaps we must fall back 1030 * to s/w beacon miss handling. 1031 */ 1032 flags |= IEEE80211_CLONE_NOBEACONS; 1033 } 1034 if (flags & IEEE80211_CLONE_NOBEACONS) { 1035 /* 1036 * Station mode w/o beacons are implemented w/ AP mode. 1037 */ 1038 ic_opmode = IEEE80211_M_HOSTAP; 1039 } 1040 break; 1041 case IEEE80211_M_IBSS: 1042 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1043 device_printf(sc->sc_dev, 1044 "only 1 ibss vap supported\n"); 1045 goto bad; 1046 } 1047 needbeacon = 1; 1048 break; 1049 case IEEE80211_M_AHDEMO: 1050 #ifdef IEEE80211_SUPPORT_TDMA 1051 if (flags & IEEE80211_CLONE_TDMA) { 1052 if (sc->sc_nvaps != 0) { 1053 device_printf(sc->sc_dev, 1054 "only 1 tdma vap supported\n"); 1055 goto bad; 1056 } 1057 needbeacon = 1; 1058 flags |= IEEE80211_CLONE_NOBEACONS; 1059 } 1060 /* fall thru... */ 1061 #endif 1062 case IEEE80211_M_MONITOR: 1063 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1064 /* 1065 * Adopt existing mode. Adding a monitor or ahdemo 1066 * vap to an existing configuration is of dubious 1067 * value but should be ok. 1068 */ 1069 /* XXX not right for monitor mode */ 1070 ic_opmode = ic->ic_opmode; 1071 } 1072 break; 1073 case IEEE80211_M_HOSTAP: 1074 case IEEE80211_M_MBSS: 1075 needbeacon = 1; 1076 break; 1077 case IEEE80211_M_WDS: 1078 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1079 device_printf(sc->sc_dev, 1080 "wds not supported in sta mode\n"); 1081 goto bad; 1082 } 1083 /* 1084 * Silently remove any request for a unique 1085 * bssid; WDS vap's always share the local 1086 * mac address. 1087 */ 1088 flags &= ~IEEE80211_CLONE_BSSID; 1089 if (sc->sc_nvaps == 0) 1090 ic_opmode = IEEE80211_M_HOSTAP; 1091 else 1092 ic_opmode = ic->ic_opmode; 1093 break; 1094 default: 1095 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1096 goto bad; 1097 } 1098 /* 1099 * Check that a beacon buffer is available; the code below assumes it. 1100 */ 1101 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1102 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1103 goto bad; 1104 } 1105 1106 /* STA, AHDEMO? */ 1107 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1108 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1109 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1110 } 1111 1112 vap = &avp->av_vap; 1113 /* XXX can't hold mutex across if_alloc */ 1114 ATH_UNLOCK(sc); 1115 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1116 bssid, mac); 1117 ATH_LOCK(sc); 1118 if (error != 0) { 1119 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1120 __func__, error); 1121 goto bad2; 1122 } 1123 1124 /* h/w crypto support */ 1125 vap->iv_key_alloc = ath_key_alloc; 1126 vap->iv_key_delete = ath_key_delete; 1127 vap->iv_key_set = ath_key_set; 1128 vap->iv_key_update_begin = ath_key_update_begin; 1129 vap->iv_key_update_end = ath_key_update_end; 1130 1131 /* override various methods */ 1132 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1133 vap->iv_recv_mgmt = ath_recv_mgmt; 1134 vap->iv_reset = ath_reset_vap; 1135 vap->iv_update_beacon = ath_beacon_update; 1136 avp->av_newstate = vap->iv_newstate; 1137 vap->iv_newstate = ath_newstate; 1138 avp->av_bmiss = vap->iv_bmiss; 1139 vap->iv_bmiss = ath_bmiss_vap; 1140 1141 /* Set default parameters */ 1142 1143 /* 1144 * Anything earlier than some AR9300 series MACs don't 1145 * support a smaller MPDU density. 1146 */ 1147 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1148 /* 1149 * All NICs can handle the maximum size, however 1150 * AR5416 based MACs can only TX aggregates w/ RTS 1151 * protection when the total aggregate size is <= 8k. 1152 * However, for now that's enforced by the TX path. 1153 */ 1154 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1155 1156 avp->av_bslot = -1; 1157 if (needbeacon) { 1158 /* 1159 * Allocate beacon state and setup the q for buffered 1160 * multicast frames. We know a beacon buffer is 1161 * available because we checked above. 1162 */ 1163 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1164 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1165 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1166 /* 1167 * Assign the vap to a beacon xmit slot. As above 1168 * this cannot fail to find a free one. 1169 */ 1170 avp->av_bslot = assign_bslot(sc); 1171 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1172 ("beacon slot %u not empty", avp->av_bslot)); 1173 sc->sc_bslot[avp->av_bslot] = vap; 1174 sc->sc_nbcnvaps++; 1175 } 1176 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1177 /* 1178 * Multple vaps are to transmit beacons and we 1179 * have h/w support for TSF adjusting; enable 1180 * use of staggered beacons. 1181 */ 1182 sc->sc_stagbeacons = 1; 1183 } 1184 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1185 } 1186 1187 ic->ic_opmode = ic_opmode; 1188 if (opmode != IEEE80211_M_WDS) { 1189 sc->sc_nvaps++; 1190 if (opmode == IEEE80211_M_STA) 1191 sc->sc_nstavaps++; 1192 if (opmode == IEEE80211_M_MBSS) 1193 sc->sc_nmeshvaps++; 1194 } 1195 switch (ic_opmode) { 1196 case IEEE80211_M_IBSS: 1197 sc->sc_opmode = HAL_M_IBSS; 1198 break; 1199 case IEEE80211_M_STA: 1200 sc->sc_opmode = HAL_M_STA; 1201 break; 1202 case IEEE80211_M_AHDEMO: 1203 #ifdef IEEE80211_SUPPORT_TDMA 1204 if (vap->iv_caps & IEEE80211_C_TDMA) { 1205 sc->sc_tdma = 1; 1206 /* NB: disable tsf adjust */ 1207 sc->sc_stagbeacons = 0; 1208 } 1209 /* 1210 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1211 * just ap mode. 1212 */ 1213 /* fall thru... */ 1214 #endif 1215 case IEEE80211_M_HOSTAP: 1216 case IEEE80211_M_MBSS: 1217 sc->sc_opmode = HAL_M_HOSTAP; 1218 break; 1219 case IEEE80211_M_MONITOR: 1220 sc->sc_opmode = HAL_M_MONITOR; 1221 break; 1222 default: 1223 /* XXX should not happen */ 1224 break; 1225 } 1226 if (sc->sc_hastsfadd) { 1227 /* 1228 * Configure whether or not TSF adjust should be done. 1229 */ 1230 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1231 } 1232 if (flags & IEEE80211_CLONE_NOBEACONS) { 1233 /* 1234 * Enable s/w beacon miss handling. 1235 */ 1236 sc->sc_swbmiss = 1; 1237 } 1238 ATH_UNLOCK(sc); 1239 1240 /* complete setup */ 1241 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1242 return vap; 1243 bad2: 1244 reclaim_address(sc, mac); 1245 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1246 bad: 1247 free(avp, M_80211_VAP); 1248 ATH_UNLOCK(sc); 1249 return NULL; 1250 } 1251 1252 static void 1253 ath_vap_delete(struct ieee80211vap *vap) 1254 { 1255 struct ieee80211com *ic = vap->iv_ic; 1256 struct ifnet *ifp = ic->ic_ifp; 1257 struct ath_softc *sc = ifp->if_softc; 1258 struct ath_hal *ah = sc->sc_ah; 1259 struct ath_vap *avp = ATH_VAP(vap); 1260 1261 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1262 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1263 /* 1264 * Quiesce the hardware while we remove the vap. In 1265 * particular we need to reclaim all references to 1266 * the vap state by any frames pending on the tx queues. 1267 */ 1268 ath_hal_intrset(ah, 0); /* disable interrupts */ 1269 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1270 /* XXX Do all frames from all vaps/nodes need draining here? */ 1271 ath_stoprecv(sc, 1); /* stop recv side */ 1272 } 1273 1274 ieee80211_vap_detach(vap); 1275 1276 /* 1277 * XXX Danger Will Robinson! Danger! 1278 * 1279 * Because ieee80211_vap_detach() can queue a frame (the station 1280 * diassociate message?) after we've drained the TXQ and 1281 * flushed the software TXQ, we will end up with a frame queued 1282 * to a node whose vap is about to be freed. 1283 * 1284 * To work around this, flush the hardware/software again. 1285 * This may be racy - the ath task may be running and the packet 1286 * may be being scheduled between sw->hw txq. Tsk. 1287 * 1288 * TODO: figure out why a new node gets allocated somewhere around 1289 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1290 * call!) 1291 */ 1292 1293 ath_draintxq(sc, ATH_RESET_DEFAULT); 1294 1295 ATH_LOCK(sc); 1296 /* 1297 * Reclaim beacon state. Note this must be done before 1298 * the vap instance is reclaimed as we may have a reference 1299 * to it in the buffer for the beacon frame. 1300 */ 1301 if (avp->av_bcbuf != NULL) { 1302 if (avp->av_bslot != -1) { 1303 sc->sc_bslot[avp->av_bslot] = NULL; 1304 sc->sc_nbcnvaps--; 1305 } 1306 ath_beacon_return(sc, avp->av_bcbuf); 1307 avp->av_bcbuf = NULL; 1308 if (sc->sc_nbcnvaps == 0) { 1309 sc->sc_stagbeacons = 0; 1310 if (sc->sc_hastsfadd) 1311 ath_hal_settsfadjust(sc->sc_ah, 0); 1312 } 1313 /* 1314 * Reclaim any pending mcast frames for the vap. 1315 */ 1316 ath_tx_draintxq(sc, &avp->av_mcastq); 1317 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1318 } 1319 /* 1320 * Update bookkeeping. 1321 */ 1322 if (vap->iv_opmode == IEEE80211_M_STA) { 1323 sc->sc_nstavaps--; 1324 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1325 sc->sc_swbmiss = 0; 1326 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1327 vap->iv_opmode == IEEE80211_M_MBSS) { 1328 reclaim_address(sc, vap->iv_myaddr); 1329 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1330 if (vap->iv_opmode == IEEE80211_M_MBSS) 1331 sc->sc_nmeshvaps--; 1332 } 1333 if (vap->iv_opmode != IEEE80211_M_WDS) 1334 sc->sc_nvaps--; 1335 #ifdef IEEE80211_SUPPORT_TDMA 1336 /* TDMA operation ceases when the last vap is destroyed */ 1337 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1338 sc->sc_tdma = 0; 1339 sc->sc_swbmiss = 0; 1340 } 1341 #endif 1342 free(avp, M_80211_VAP); 1343 1344 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1345 /* 1346 * Restart rx+tx machines if still running (RUNNING will 1347 * be reset if we just destroyed the last vap). 1348 */ 1349 if (ath_startrecv(sc) != 0) 1350 if_printf(ifp, "%s: unable to restart recv logic\n", 1351 __func__); 1352 if (sc->sc_beacons) { /* restart beacons */ 1353 #ifdef IEEE80211_SUPPORT_TDMA 1354 if (sc->sc_tdma) 1355 ath_tdma_config(sc, NULL); 1356 else 1357 #endif 1358 ath_beacon_config(sc, NULL); 1359 } 1360 ath_hal_intrset(ah, sc->sc_imask); 1361 } 1362 ATH_UNLOCK(sc); 1363 } 1364 1365 void 1366 ath_suspend(struct ath_softc *sc) 1367 { 1368 struct ifnet *ifp = sc->sc_ifp; 1369 struct ieee80211com *ic = ifp->if_l2com; 1370 1371 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1372 __func__, ifp->if_flags); 1373 1374 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1375 1376 ieee80211_suspend_all(ic); 1377 /* 1378 * NB: don't worry about putting the chip in low power 1379 * mode; pci will power off our socket on suspend and 1380 * CardBus detaches the device. 1381 */ 1382 1383 /* 1384 * XXX ensure none of the taskqueues are running 1385 * XXX ensure sc_invalid is 1 1386 * XXX ensure the calibration callout is disabled 1387 */ 1388 1389 /* Disable the PCIe PHY, complete with workarounds */ 1390 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1391 } 1392 1393 /* 1394 * Reset the key cache since some parts do not reset the 1395 * contents on resume. First we clear all entries, then 1396 * re-load keys that the 802.11 layer assumes are setup 1397 * in h/w. 1398 */ 1399 static void 1400 ath_reset_keycache(struct ath_softc *sc) 1401 { 1402 struct ifnet *ifp = sc->sc_ifp; 1403 struct ieee80211com *ic = ifp->if_l2com; 1404 struct ath_hal *ah = sc->sc_ah; 1405 int i; 1406 1407 for (i = 0; i < sc->sc_keymax; i++) 1408 ath_hal_keyreset(ah, i); 1409 ieee80211_crypto_reload_keys(ic); 1410 } 1411 1412 void 1413 ath_resume(struct ath_softc *sc) 1414 { 1415 struct ifnet *ifp = sc->sc_ifp; 1416 struct ieee80211com *ic = ifp->if_l2com; 1417 struct ath_hal *ah = sc->sc_ah; 1418 HAL_STATUS status; 1419 1420 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1421 __func__, ifp->if_flags); 1422 1423 /* Re-enable PCIe, re-enable the PCIe bus */ 1424 ath_hal_enablepcie(ah, 0, 0); 1425 1426 /* 1427 * Must reset the chip before we reload the 1428 * keycache as we were powered down on suspend. 1429 */ 1430 ath_hal_reset(ah, sc->sc_opmode, 1431 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1432 AH_FALSE, &status); 1433 ath_reset_keycache(sc); 1434 1435 /* Let DFS at it in case it's a DFS channel */ 1436 ath_dfs_radar_enable(sc, ic->ic_curchan); 1437 1438 /* Restore the LED configuration */ 1439 ath_led_config(sc); 1440 ath_hal_setledstate(ah, HAL_LED_INIT); 1441 1442 if (sc->sc_resume_up) 1443 ieee80211_resume_all(ic); 1444 1445 /* XXX beacons ? */ 1446 } 1447 1448 void 1449 ath_shutdown(struct ath_softc *sc) 1450 { 1451 struct ifnet *ifp = sc->sc_ifp; 1452 1453 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1454 __func__, ifp->if_flags); 1455 1456 ath_stop(ifp); 1457 /* NB: no point powering down chip as we're about to reboot */ 1458 } 1459 1460 /* 1461 * Interrupt handler. Most of the actual processing is deferred. 1462 */ 1463 void 1464 ath_intr(void *arg) 1465 { 1466 struct ath_softc *sc = arg; 1467 struct ifnet *ifp = sc->sc_ifp; 1468 struct ath_hal *ah = sc->sc_ah; 1469 HAL_INT status = 0; 1470 uint32_t txqs; 1471 1472 /* 1473 * If we're inside a reset path, just print a warning and 1474 * clear the ISR. The reset routine will finish it for us. 1475 */ 1476 ATH_PCU_LOCK(sc); 1477 if (sc->sc_inreset_cnt) { 1478 HAL_INT status; 1479 ath_hal_getisr(ah, &status); /* clear ISR */ 1480 ath_hal_intrset(ah, 0); /* disable further intr's */ 1481 DPRINTF(sc, ATH_DEBUG_ANY, 1482 "%s: in reset, ignoring: status=0x%x\n", 1483 __func__, status); 1484 ATH_PCU_UNLOCK(sc); 1485 return; 1486 } 1487 1488 if (sc->sc_invalid) { 1489 /* 1490 * The hardware is not ready/present, don't touch anything. 1491 * Note this can happen early on if the IRQ is shared. 1492 */ 1493 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1494 ATH_PCU_UNLOCK(sc); 1495 return; 1496 } 1497 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1498 ATH_PCU_UNLOCK(sc); 1499 return; 1500 } 1501 1502 if ((ifp->if_flags & IFF_UP) == 0 || 1503 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1504 HAL_INT status; 1505 1506 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1507 __func__, ifp->if_flags); 1508 ath_hal_getisr(ah, &status); /* clear ISR */ 1509 ath_hal_intrset(ah, 0); /* disable further intr's */ 1510 ATH_PCU_UNLOCK(sc); 1511 return; 1512 } 1513 1514 /* 1515 * Figure out the reason(s) for the interrupt. Note 1516 * that the hal returns a pseudo-ISR that may include 1517 * bits we haven't explicitly enabled so we mask the 1518 * value to insure we only process bits we requested. 1519 */ 1520 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1521 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1522 CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status); 1523 #ifdef ATH_KTR_INTR_DEBUG 1524 CTR5(ATH_KTR_INTR, 1525 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1526 ah->ah_intrstate[0], 1527 ah->ah_intrstate[1], 1528 ah->ah_intrstate[2], 1529 ah->ah_intrstate[3], 1530 ah->ah_intrstate[6]); 1531 #endif 1532 1533 /* Squirrel away SYNC interrupt debugging */ 1534 if (ah->ah_syncstate != 0) { 1535 int i; 1536 for (i = 0; i < 32; i++) 1537 if (ah->ah_syncstate & (i << i)) 1538 sc->sc_intr_stats.sync_intr[i]++; 1539 } 1540 1541 status &= sc->sc_imask; /* discard unasked for bits */ 1542 1543 /* Short-circuit un-handled interrupts */ 1544 if (status == 0x0) { 1545 ATH_PCU_UNLOCK(sc); 1546 return; 1547 } 1548 1549 /* 1550 * Take a note that we're inside the interrupt handler, so 1551 * the reset routines know to wait. 1552 */ 1553 sc->sc_intr_cnt++; 1554 ATH_PCU_UNLOCK(sc); 1555 1556 /* 1557 * Handle the interrupt. We won't run concurrent with the reset 1558 * or channel change routines as they'll wait for sc_intr_cnt 1559 * to be 0 before continuing. 1560 */ 1561 if (status & HAL_INT_FATAL) { 1562 sc->sc_stats.ast_hardware++; 1563 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1564 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1565 } else { 1566 if (status & HAL_INT_SWBA) { 1567 /* 1568 * Software beacon alert--time to send a beacon. 1569 * Handle beacon transmission directly; deferring 1570 * this is too slow to meet timing constraints 1571 * under load. 1572 */ 1573 #ifdef IEEE80211_SUPPORT_TDMA 1574 if (sc->sc_tdma) { 1575 if (sc->sc_tdmaswba == 0) { 1576 struct ieee80211com *ic = ifp->if_l2com; 1577 struct ieee80211vap *vap = 1578 TAILQ_FIRST(&ic->ic_vaps); 1579 ath_tdma_beacon_send(sc, vap); 1580 sc->sc_tdmaswba = 1581 vap->iv_tdma->tdma_bintval; 1582 } else 1583 sc->sc_tdmaswba--; 1584 } else 1585 #endif 1586 { 1587 ath_beacon_proc(sc, 0); 1588 #ifdef IEEE80211_SUPPORT_SUPERG 1589 /* 1590 * Schedule the rx taskq in case there's no 1591 * traffic so any frames held on the staging 1592 * queue are aged and potentially flushed. 1593 */ 1594 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1595 #endif 1596 } 1597 } 1598 if (status & HAL_INT_RXEOL) { 1599 int imask; 1600 CTR0(ATH_KTR_ERR, "ath_intr: RXEOL"); 1601 ATH_PCU_LOCK(sc); 1602 /* 1603 * NB: the hardware should re-read the link when 1604 * RXE bit is written, but it doesn't work at 1605 * least on older hardware revs. 1606 */ 1607 sc->sc_stats.ast_rxeol++; 1608 /* 1609 * Disable RXEOL/RXORN - prevent an interrupt 1610 * storm until the PCU logic can be reset. 1611 * In case the interface is reset some other 1612 * way before "sc_kickpcu" is called, don't 1613 * modify sc_imask - that way if it is reset 1614 * by a call to ath_reset() somehow, the 1615 * interrupt mask will be correctly reprogrammed. 1616 */ 1617 imask = sc->sc_imask; 1618 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1619 ath_hal_intrset(ah, imask); 1620 /* 1621 * Only blank sc_rxlink if we've not yet kicked 1622 * the PCU. 1623 * 1624 * This isn't entirely correct - the correct solution 1625 * would be to have a PCU lock and engage that for 1626 * the duration of the PCU fiddling; which would include 1627 * running the RX process. Otherwise we could end up 1628 * messing up the RX descriptor chain and making the 1629 * RX desc list much shorter. 1630 */ 1631 if (! sc->sc_kickpcu) 1632 sc->sc_rxlink = NULL; 1633 sc->sc_kickpcu = 1; 1634 /* 1635 * Enqueue an RX proc, to handled whatever 1636 * is in the RX queue. 1637 * This will then kick the PCU. 1638 */ 1639 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1640 ATH_PCU_UNLOCK(sc); 1641 } 1642 if (status & HAL_INT_TXURN) { 1643 sc->sc_stats.ast_txurn++; 1644 /* bump tx trigger level */ 1645 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1646 } 1647 /* 1648 * Handle both the legacy and RX EDMA interrupt bits. 1649 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1650 */ 1651 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1652 sc->sc_stats.ast_rx_intr++; 1653 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1654 } 1655 if (status & HAL_INT_TX) { 1656 sc->sc_stats.ast_tx_intr++; 1657 /* 1658 * Grab all the currently set bits in the HAL txq bitmap 1659 * and blank them. This is the only place we should be 1660 * doing this. 1661 */ 1662 if (! sc->sc_isedma) { 1663 ATH_PCU_LOCK(sc); 1664 txqs = 0xffffffff; 1665 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1666 sc->sc_txq_active |= txqs; 1667 ATH_PCU_UNLOCK(sc); 1668 } 1669 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1670 } 1671 if (status & HAL_INT_BMISS) { 1672 sc->sc_stats.ast_bmiss++; 1673 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1674 } 1675 if (status & HAL_INT_GTT) 1676 sc->sc_stats.ast_tx_timeout++; 1677 if (status & HAL_INT_CST) 1678 sc->sc_stats.ast_tx_cst++; 1679 if (status & HAL_INT_MIB) { 1680 sc->sc_stats.ast_mib++; 1681 ATH_PCU_LOCK(sc); 1682 /* 1683 * Disable interrupts until we service the MIB 1684 * interrupt; otherwise it will continue to fire. 1685 */ 1686 ath_hal_intrset(ah, 0); 1687 /* 1688 * Let the hal handle the event. We assume it will 1689 * clear whatever condition caused the interrupt. 1690 */ 1691 ath_hal_mibevent(ah, &sc->sc_halstats); 1692 /* 1693 * Don't reset the interrupt if we've just 1694 * kicked the PCU, or we may get a nested 1695 * RXEOL before the rxproc has had a chance 1696 * to run. 1697 */ 1698 if (sc->sc_kickpcu == 0) 1699 ath_hal_intrset(ah, sc->sc_imask); 1700 ATH_PCU_UNLOCK(sc); 1701 } 1702 if (status & HAL_INT_RXORN) { 1703 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1704 CTR0(ATH_KTR_ERR, "ath_intr: RXORN"); 1705 sc->sc_stats.ast_rxorn++; 1706 } 1707 } 1708 ATH_PCU_LOCK(sc); 1709 sc->sc_intr_cnt--; 1710 ATH_PCU_UNLOCK(sc); 1711 } 1712 1713 static void 1714 ath_fatal_proc(void *arg, int pending) 1715 { 1716 struct ath_softc *sc = arg; 1717 struct ifnet *ifp = sc->sc_ifp; 1718 u_int32_t *state; 1719 u_int32_t len; 1720 void *sp; 1721 1722 if_printf(ifp, "hardware error; resetting\n"); 1723 /* 1724 * Fatal errors are unrecoverable. Typically these 1725 * are caused by DMA errors. Collect h/w state from 1726 * the hal so we can diagnose what's going on. 1727 */ 1728 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1729 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1730 state = sp; 1731 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1732 state[0], state[1] , state[2], state[3], 1733 state[4], state[5]); 1734 } 1735 ath_reset(ifp, ATH_RESET_NOLOSS); 1736 } 1737 1738 static void 1739 ath_bmiss_vap(struct ieee80211vap *vap) 1740 { 1741 /* 1742 * Workaround phantom bmiss interrupts by sanity-checking 1743 * the time of our last rx'd frame. If it is within the 1744 * beacon miss interval then ignore the interrupt. If it's 1745 * truly a bmiss we'll get another interrupt soon and that'll 1746 * be dispatched up for processing. Note this applies only 1747 * for h/w beacon miss events. 1748 */ 1749 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1750 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1751 struct ath_softc *sc = ifp->if_softc; 1752 u_int64_t lastrx = sc->sc_lastrx; 1753 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1754 /* XXX should take a locked ref to iv_bss */ 1755 u_int bmisstimeout = 1756 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1757 1758 DPRINTF(sc, ATH_DEBUG_BEACON, 1759 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1760 __func__, (unsigned long long) tsf, 1761 (unsigned long long)(tsf - lastrx), 1762 (unsigned long long) lastrx, bmisstimeout); 1763 1764 if (tsf - lastrx <= bmisstimeout) { 1765 sc->sc_stats.ast_bmiss_phantom++; 1766 return; 1767 } 1768 } 1769 ATH_VAP(vap)->av_bmiss(vap); 1770 } 1771 1772 static int 1773 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1774 { 1775 uint32_t rsize; 1776 void *sp; 1777 1778 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1779 return 0; 1780 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1781 *hangs = *(uint32_t *)sp; 1782 return 1; 1783 } 1784 1785 static void 1786 ath_bmiss_proc(void *arg, int pending) 1787 { 1788 struct ath_softc *sc = arg; 1789 struct ifnet *ifp = sc->sc_ifp; 1790 uint32_t hangs; 1791 1792 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1793 1794 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1795 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1796 ath_reset(ifp, ATH_RESET_NOLOSS); 1797 } else 1798 ieee80211_beacon_miss(ifp->if_l2com); 1799 } 1800 1801 /* 1802 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1803 * calcs together with WME. If necessary disable the crypto 1804 * hardware and mark the 802.11 state so keys will be setup 1805 * with the MIC work done in software. 1806 */ 1807 static void 1808 ath_settkipmic(struct ath_softc *sc) 1809 { 1810 struct ifnet *ifp = sc->sc_ifp; 1811 struct ieee80211com *ic = ifp->if_l2com; 1812 1813 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1814 if (ic->ic_flags & IEEE80211_F_WME) { 1815 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1816 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1817 } else { 1818 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1819 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1820 } 1821 } 1822 } 1823 1824 static void 1825 ath_init(void *arg) 1826 { 1827 struct ath_softc *sc = (struct ath_softc *) arg; 1828 struct ifnet *ifp = sc->sc_ifp; 1829 struct ieee80211com *ic = ifp->if_l2com; 1830 struct ath_hal *ah = sc->sc_ah; 1831 HAL_STATUS status; 1832 1833 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1834 __func__, ifp->if_flags); 1835 1836 ATH_LOCK(sc); 1837 /* 1838 * Stop anything previously setup. This is safe 1839 * whether this is the first time through or not. 1840 */ 1841 ath_stop_locked(ifp); 1842 1843 /* 1844 * The basic interface to setting the hardware in a good 1845 * state is ``reset''. On return the hardware is known to 1846 * be powered up and with interrupts disabled. This must 1847 * be followed by initialization of the appropriate bits 1848 * and then setup of the interrupt mask. 1849 */ 1850 ath_settkipmic(sc); 1851 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1852 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1853 status); 1854 ATH_UNLOCK(sc); 1855 return; 1856 } 1857 ath_chan_change(sc, ic->ic_curchan); 1858 1859 /* Let DFS at it in case it's a DFS channel */ 1860 ath_dfs_radar_enable(sc, ic->ic_curchan); 1861 1862 /* 1863 * Likewise this is set during reset so update 1864 * state cached in the driver. 1865 */ 1866 sc->sc_diversity = ath_hal_getdiversity(ah); 1867 sc->sc_lastlongcal = 0; 1868 sc->sc_resetcal = 1; 1869 sc->sc_lastcalreset = 0; 1870 sc->sc_lastani = 0; 1871 sc->sc_lastshortcal = 0; 1872 sc->sc_doresetcal = AH_FALSE; 1873 /* 1874 * Beacon timers were cleared here; give ath_newstate() 1875 * a hint that the beacon timers should be poked when 1876 * things transition to the RUN state. 1877 */ 1878 sc->sc_beacons = 0; 1879 1880 /* 1881 * Setup the hardware after reset: the key cache 1882 * is filled as needed and the receive engine is 1883 * set going. Frame transmit is handled entirely 1884 * in the frame output path; there's nothing to do 1885 * here except setup the interrupt mask. 1886 */ 1887 if (ath_startrecv(sc) != 0) { 1888 if_printf(ifp, "unable to start recv logic\n"); 1889 ATH_UNLOCK(sc); 1890 return; 1891 } 1892 1893 /* 1894 * Enable interrupts. 1895 */ 1896 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1897 | HAL_INT_RXEOL | HAL_INT_RXORN 1898 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1899 1900 /* 1901 * Enable RX EDMA bits. Note these overlap with 1902 * HAL_INT_RX and HAL_INT_RXDESC respectively. 1903 */ 1904 if (sc->sc_isedma) 1905 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 1906 1907 /* 1908 * Enable MIB interrupts when there are hardware phy counters. 1909 * Note we only do this (at the moment) for station mode. 1910 */ 1911 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1912 sc->sc_imask |= HAL_INT_MIB; 1913 1914 /* Enable global TX timeout and carrier sense timeout if available */ 1915 if (ath_hal_gtxto_supported(ah)) 1916 sc->sc_imask |= HAL_INT_GTT; 1917 1918 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1919 __func__, sc->sc_imask); 1920 1921 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1922 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1923 ath_hal_intrset(ah, sc->sc_imask); 1924 1925 ATH_UNLOCK(sc); 1926 1927 #ifdef ATH_TX99_DIAG 1928 if (sc->sc_tx99 != NULL) 1929 sc->sc_tx99->start(sc->sc_tx99); 1930 else 1931 #endif 1932 ieee80211_start_all(ic); /* start all vap's */ 1933 } 1934 1935 static void 1936 ath_stop_locked(struct ifnet *ifp) 1937 { 1938 struct ath_softc *sc = ifp->if_softc; 1939 struct ath_hal *ah = sc->sc_ah; 1940 1941 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1942 __func__, sc->sc_invalid, ifp->if_flags); 1943 1944 ATH_LOCK_ASSERT(sc); 1945 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1946 /* 1947 * Shutdown the hardware and driver: 1948 * reset 802.11 state machine 1949 * turn off timers 1950 * disable interrupts 1951 * turn off the radio 1952 * clear transmit machinery 1953 * clear receive machinery 1954 * drain and release tx queues 1955 * reclaim beacon resources 1956 * power down hardware 1957 * 1958 * Note that some of this work is not possible if the 1959 * hardware is gone (invalid). 1960 */ 1961 #ifdef ATH_TX99_DIAG 1962 if (sc->sc_tx99 != NULL) 1963 sc->sc_tx99->stop(sc->sc_tx99); 1964 #endif 1965 callout_stop(&sc->sc_wd_ch); 1966 sc->sc_wd_timer = 0; 1967 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1968 if (!sc->sc_invalid) { 1969 if (sc->sc_softled) { 1970 callout_stop(&sc->sc_ledtimer); 1971 ath_hal_gpioset(ah, sc->sc_ledpin, 1972 !sc->sc_ledon); 1973 sc->sc_blinking = 0; 1974 } 1975 ath_hal_intrset(ah, 0); 1976 } 1977 ath_draintxq(sc, ATH_RESET_DEFAULT); 1978 if (!sc->sc_invalid) { 1979 ath_stoprecv(sc, 1); 1980 ath_hal_phydisable(ah); 1981 } else 1982 sc->sc_rxlink = NULL; 1983 ath_beacon_free(sc); /* XXX not needed */ 1984 } 1985 } 1986 1987 #define MAX_TXRX_ITERATIONS 1000 1988 static void 1989 ath_txrx_stop_locked(struct ath_softc *sc) 1990 { 1991 int i = MAX_TXRX_ITERATIONS; 1992 1993 ATH_UNLOCK_ASSERT(sc); 1994 ATH_PCU_LOCK_ASSERT(sc); 1995 1996 /* 1997 * Sleep until all the pending operations have completed. 1998 * 1999 * The caller must ensure that reset has been incremented 2000 * or the pending operations may continue being queued. 2001 */ 2002 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2003 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2004 if (i <= 0) 2005 break; 2006 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 2007 i--; 2008 } 2009 2010 if (i <= 0) 2011 device_printf(sc->sc_dev, 2012 "%s: didn't finish after %d iterations\n", 2013 __func__, MAX_TXRX_ITERATIONS); 2014 } 2015 #undef MAX_TXRX_ITERATIONS 2016 2017 #if 0 2018 static void 2019 ath_txrx_stop(struct ath_softc *sc) 2020 { 2021 ATH_UNLOCK_ASSERT(sc); 2022 ATH_PCU_UNLOCK_ASSERT(sc); 2023 2024 ATH_PCU_LOCK(sc); 2025 ath_txrx_stop_locked(sc); 2026 ATH_PCU_UNLOCK(sc); 2027 } 2028 #endif 2029 2030 static void 2031 ath_txrx_start(struct ath_softc *sc) 2032 { 2033 2034 taskqueue_unblock(sc->sc_tq); 2035 } 2036 2037 /* 2038 * Grab the reset lock, and wait around until noone else 2039 * is trying to do anything with it. 2040 * 2041 * This is totally horrible but we can't hold this lock for 2042 * long enough to do TX/RX or we end up with net80211/ip stack 2043 * LORs and eventual deadlock. 2044 * 2045 * "dowait" signals whether to spin, waiting for the reset 2046 * lock count to reach 0. This should (for now) only be used 2047 * during the reset path, as the rest of the code may not 2048 * be locking-reentrant enough to behave correctly. 2049 * 2050 * Another, cleaner way should be found to serialise all of 2051 * these operations. 2052 */ 2053 #define MAX_RESET_ITERATIONS 10 2054 static int 2055 ath_reset_grablock(struct ath_softc *sc, int dowait) 2056 { 2057 int w = 0; 2058 int i = MAX_RESET_ITERATIONS; 2059 2060 ATH_PCU_LOCK_ASSERT(sc); 2061 do { 2062 if (sc->sc_inreset_cnt == 0) { 2063 w = 1; 2064 break; 2065 } 2066 if (dowait == 0) { 2067 w = 0; 2068 break; 2069 } 2070 ATH_PCU_UNLOCK(sc); 2071 pause("ath_reset_grablock", 1); 2072 i--; 2073 ATH_PCU_LOCK(sc); 2074 } while (i > 0); 2075 2076 /* 2077 * We always increment the refcounter, regardless 2078 * of whether we succeeded to get it in an exclusive 2079 * way. 2080 */ 2081 sc->sc_inreset_cnt++; 2082 2083 if (i <= 0) 2084 device_printf(sc->sc_dev, 2085 "%s: didn't finish after %d iterations\n", 2086 __func__, MAX_RESET_ITERATIONS); 2087 2088 if (w == 0) 2089 device_printf(sc->sc_dev, 2090 "%s: warning, recursive reset path!\n", 2091 __func__); 2092 2093 return w; 2094 } 2095 #undef MAX_RESET_ITERATIONS 2096 2097 /* 2098 * XXX TODO: write ath_reset_releaselock 2099 */ 2100 2101 static void 2102 ath_stop(struct ifnet *ifp) 2103 { 2104 struct ath_softc *sc = ifp->if_softc; 2105 2106 ATH_LOCK(sc); 2107 ath_stop_locked(ifp); 2108 ATH_UNLOCK(sc); 2109 } 2110 2111 /* 2112 * Reset the hardware w/o losing operational state. This is 2113 * basically a more efficient way of doing ath_stop, ath_init, 2114 * followed by state transitions to the current 802.11 2115 * operational state. Used to recover from various errors and 2116 * to reset or reload hardware state. 2117 */ 2118 int 2119 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2120 { 2121 struct ath_softc *sc = ifp->if_softc; 2122 struct ieee80211com *ic = ifp->if_l2com; 2123 struct ath_hal *ah = sc->sc_ah; 2124 HAL_STATUS status; 2125 int i; 2126 2127 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2128 2129 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2130 ATH_PCU_UNLOCK_ASSERT(sc); 2131 ATH_UNLOCK_ASSERT(sc); 2132 2133 /* Try to (stop any further TX/RX from occuring */ 2134 taskqueue_block(sc->sc_tq); 2135 2136 ATH_PCU_LOCK(sc); 2137 ath_hal_intrset(ah, 0); /* disable interrupts */ 2138 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2139 if (ath_reset_grablock(sc, 1) == 0) { 2140 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2141 __func__); 2142 } 2143 ATH_PCU_UNLOCK(sc); 2144 2145 /* 2146 * Should now wait for pending TX/RX to complete 2147 * and block future ones from occuring. This needs to be 2148 * done before the TX queue is drained. 2149 */ 2150 ath_draintxq(sc, reset_type); /* stop xmit side */ 2151 2152 /* 2153 * Regardless of whether we're doing a no-loss flush or 2154 * not, stop the PCU and handle what's in the RX queue. 2155 * That way frames aren't dropped which shouldn't be. 2156 */ 2157 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2158 ath_rx_flush(sc); 2159 2160 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2161 /* NB: indicate channel change so we do a full reset */ 2162 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2163 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2164 __func__, status); 2165 sc->sc_diversity = ath_hal_getdiversity(ah); 2166 2167 /* Let DFS at it in case it's a DFS channel */ 2168 ath_dfs_radar_enable(sc, ic->ic_curchan); 2169 2170 if (ath_startrecv(sc) != 0) /* restart recv */ 2171 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2172 /* 2173 * We may be doing a reset in response to an ioctl 2174 * that changes the channel so update any state that 2175 * might change as a result. 2176 */ 2177 ath_chan_change(sc, ic->ic_curchan); 2178 if (sc->sc_beacons) { /* restart beacons */ 2179 #ifdef IEEE80211_SUPPORT_TDMA 2180 if (sc->sc_tdma) 2181 ath_tdma_config(sc, NULL); 2182 else 2183 #endif 2184 ath_beacon_config(sc, NULL); 2185 } 2186 2187 /* 2188 * Release the reset lock and re-enable interrupts here. 2189 * If an interrupt was being processed in ath_intr(), 2190 * it would disable interrupts at this point. So we have 2191 * to atomically enable interrupts and decrement the 2192 * reset counter - this way ath_intr() doesn't end up 2193 * disabling interrupts without a corresponding enable 2194 * in the rest or channel change path. 2195 */ 2196 ATH_PCU_LOCK(sc); 2197 sc->sc_inreset_cnt--; 2198 /* XXX only do this if sc_inreset_cnt == 0? */ 2199 ath_hal_intrset(ah, sc->sc_imask); 2200 ATH_PCU_UNLOCK(sc); 2201 2202 /* 2203 * TX and RX can be started here. If it were started with 2204 * sc_inreset_cnt > 0, the TX and RX path would abort. 2205 * Thus if this is a nested call through the reset or 2206 * channel change code, TX completion will occur but 2207 * RX completion and ath_start / ath_tx_start will not 2208 * run. 2209 */ 2210 2211 /* Restart TX/RX as needed */ 2212 ath_txrx_start(sc); 2213 2214 /* XXX Restart TX completion and pending TX */ 2215 if (reset_type == ATH_RESET_NOLOSS) { 2216 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2217 if (ATH_TXQ_SETUP(sc, i)) { 2218 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2219 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2220 ath_txq_sched(sc, &sc->sc_txq[i]); 2221 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2222 } 2223 } 2224 } 2225 2226 /* 2227 * This may have been set during an ath_start() call which 2228 * set this once it detected a concurrent TX was going on. 2229 * So, clear it. 2230 */ 2231 IF_LOCK(&ifp->if_snd); 2232 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2233 IF_UNLOCK(&ifp->if_snd); 2234 2235 /* Handle any frames in the TX queue */ 2236 /* 2237 * XXX should this be done by the caller, rather than 2238 * ath_reset() ? 2239 */ 2240 ath_start(ifp); /* restart xmit */ 2241 return 0; 2242 } 2243 2244 static int 2245 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2246 { 2247 struct ieee80211com *ic = vap->iv_ic; 2248 struct ifnet *ifp = ic->ic_ifp; 2249 struct ath_softc *sc = ifp->if_softc; 2250 struct ath_hal *ah = sc->sc_ah; 2251 2252 switch (cmd) { 2253 case IEEE80211_IOC_TXPOWER: 2254 /* 2255 * If per-packet TPC is enabled, then we have nothing 2256 * to do; otherwise we need to force the global limit. 2257 * All this can happen directly; no need to reset. 2258 */ 2259 if (!ath_hal_gettpc(ah)) 2260 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2261 return 0; 2262 } 2263 /* XXX? Full or NOLOSS? */ 2264 return ath_reset(ifp, ATH_RESET_FULL); 2265 } 2266 2267 struct ath_buf * 2268 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2269 { 2270 struct ath_buf *bf; 2271 2272 ATH_TXBUF_LOCK_ASSERT(sc); 2273 2274 if (btype == ATH_BUFTYPE_MGMT) 2275 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2276 else 2277 bf = TAILQ_FIRST(&sc->sc_txbuf); 2278 2279 if (bf == NULL) { 2280 sc->sc_stats.ast_tx_getnobuf++; 2281 } else { 2282 if (bf->bf_flags & ATH_BUF_BUSY) { 2283 sc->sc_stats.ast_tx_getbusybuf++; 2284 bf = NULL; 2285 } 2286 } 2287 2288 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2289 if (btype == ATH_BUFTYPE_MGMT) 2290 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2291 else { 2292 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2293 sc->sc_txbuf_cnt--; 2294 2295 /* 2296 * This shuldn't happen; however just to be 2297 * safe print a warning and fudge the txbuf 2298 * count. 2299 */ 2300 if (sc->sc_txbuf_cnt < 0) { 2301 device_printf(sc->sc_dev, 2302 "%s: sc_txbuf_cnt < 0?\n", 2303 __func__); 2304 sc->sc_txbuf_cnt = 0; 2305 } 2306 } 2307 } else 2308 bf = NULL; 2309 2310 if (bf == NULL) { 2311 /* XXX should check which list, mgmt or otherwise */ 2312 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2313 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2314 "out of xmit buffers" : "xmit buffer busy"); 2315 return NULL; 2316 } 2317 2318 /* XXX TODO: should do this at buffer list initialisation */ 2319 /* XXX (then, ensure the buffer has the right flag set) */ 2320 if (btype == ATH_BUFTYPE_MGMT) 2321 bf->bf_flags |= ATH_BUF_MGMT; 2322 else 2323 bf->bf_flags &= (~ATH_BUF_MGMT); 2324 2325 /* Valid bf here; clear some basic fields */ 2326 bf->bf_next = NULL; /* XXX just to be sure */ 2327 bf->bf_last = NULL; /* XXX again, just to be sure */ 2328 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2329 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2330 2331 /* 2332 * Track the descriptor ID only if doing EDMA 2333 */ 2334 if (sc->sc_isedma) { 2335 bf->bf_descid = sc->sc_txbuf_descid; 2336 sc->sc_txbuf_descid++; 2337 } 2338 2339 return bf; 2340 } 2341 2342 /* 2343 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2344 * can't be thrown back on the queue as they could still be 2345 * in use by the hardware. 2346 * 2347 * This duplicates the buffer, or returns NULL. 2348 * 2349 * The descriptor is also copied but the link pointers and 2350 * the DMA segments aren't copied; this frame should thus 2351 * be again passed through the descriptor setup/chain routines 2352 * so the link is correct. 2353 * 2354 * The caller must free the buffer using ath_freebuf(). 2355 * 2356 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2357 * XXX in the TX pathway when retries are needed. 2358 * XXX Figure out how to keep some buffers free, or factor the 2359 * XXX number of busy buffers into the xmit path (ath_start()) 2360 * XXX so we don't over-commit. 2361 */ 2362 struct ath_buf * 2363 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2364 { 2365 struct ath_buf *tbf; 2366 2367 tbf = ath_getbuf(sc, 2368 (bf->bf_flags & ATH_BUF_MGMT) ? 2369 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2370 if (tbf == NULL) 2371 return NULL; /* XXX failure? Why? */ 2372 2373 /* Copy basics */ 2374 tbf->bf_next = NULL; 2375 tbf->bf_nseg = bf->bf_nseg; 2376 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2377 tbf->bf_status = bf->bf_status; 2378 tbf->bf_m = bf->bf_m; 2379 tbf->bf_node = bf->bf_node; 2380 /* will be setup by the chain/setup function */ 2381 tbf->bf_lastds = NULL; 2382 /* for now, last == self */ 2383 tbf->bf_last = tbf; 2384 tbf->bf_comp = bf->bf_comp; 2385 2386 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2387 2388 /* The caller has to re-init the descriptor + links */ 2389 2390 /* Copy state */ 2391 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2392 2393 return tbf; 2394 } 2395 2396 struct ath_buf * 2397 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2398 { 2399 struct ath_buf *bf; 2400 2401 ATH_TXBUF_LOCK(sc); 2402 bf = _ath_getbuf_locked(sc, btype); 2403 /* 2404 * If a mgmt buffer was requested but we're out of those, 2405 * try requesting a normal one. 2406 */ 2407 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2408 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2409 ATH_TXBUF_UNLOCK(sc); 2410 if (bf == NULL) { 2411 struct ifnet *ifp = sc->sc_ifp; 2412 2413 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2414 sc->sc_stats.ast_tx_qstop++; 2415 IF_LOCK(&ifp->if_snd); 2416 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2417 IF_UNLOCK(&ifp->if_snd); 2418 } 2419 return bf; 2420 } 2421 2422 void 2423 ath_start(struct ifnet *ifp) 2424 { 2425 struct ath_softc *sc = ifp->if_softc; 2426 struct ieee80211_node *ni; 2427 struct ath_buf *bf; 2428 struct mbuf *m, *next; 2429 ath_bufhead frags; 2430 2431 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2432 return; 2433 2434 /* XXX is it ok to hold the ATH_LOCK here? */ 2435 ATH_PCU_LOCK(sc); 2436 if (sc->sc_inreset_cnt > 0) { 2437 device_printf(sc->sc_dev, 2438 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2439 ATH_PCU_UNLOCK(sc); 2440 IF_LOCK(&ifp->if_snd); 2441 sc->sc_stats.ast_tx_qstop++; 2442 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2443 IF_UNLOCK(&ifp->if_snd); 2444 return; 2445 } 2446 sc->sc_txstart_cnt++; 2447 ATH_PCU_UNLOCK(sc); 2448 2449 for (;;) { 2450 ATH_TXBUF_LOCK(sc); 2451 if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) { 2452 /* XXX increment counter? */ 2453 ATH_TXBUF_UNLOCK(sc); 2454 IF_LOCK(&ifp->if_snd); 2455 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2456 IF_UNLOCK(&ifp->if_snd); 2457 break; 2458 } 2459 ATH_TXBUF_UNLOCK(sc); 2460 2461 /* 2462 * Grab a TX buffer and associated resources. 2463 */ 2464 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2465 if (bf == NULL) 2466 break; 2467 2468 IFQ_DEQUEUE(&ifp->if_snd, m); 2469 if (m == NULL) { 2470 ATH_TXBUF_LOCK(sc); 2471 ath_returnbuf_head(sc, bf); 2472 ATH_TXBUF_UNLOCK(sc); 2473 break; 2474 } 2475 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2476 /* 2477 * Check for fragmentation. If this frame 2478 * has been broken up verify we have enough 2479 * buffers to send all the fragments so all 2480 * go out or none... 2481 */ 2482 TAILQ_INIT(&frags); 2483 if ((m->m_flags & M_FRAG) && 2484 !ath_txfrag_setup(sc, &frags, m, ni)) { 2485 DPRINTF(sc, ATH_DEBUG_XMIT, 2486 "%s: out of txfrag buffers\n", __func__); 2487 sc->sc_stats.ast_tx_nofrag++; 2488 ifp->if_oerrors++; 2489 ath_freetx(m); 2490 goto bad; 2491 } 2492 ifp->if_opackets++; 2493 nextfrag: 2494 /* 2495 * Pass the frame to the h/w for transmission. 2496 * Fragmented frames have each frag chained together 2497 * with m_nextpkt. We know there are sufficient ath_buf's 2498 * to send all the frags because of work done by 2499 * ath_txfrag_setup. We leave m_nextpkt set while 2500 * calling ath_tx_start so it can use it to extend the 2501 * the tx duration to cover the subsequent frag and 2502 * so it can reclaim all the mbufs in case of an error; 2503 * ath_tx_start clears m_nextpkt once it commits to 2504 * handing the frame to the hardware. 2505 */ 2506 next = m->m_nextpkt; 2507 if (ath_tx_start(sc, ni, bf, m)) { 2508 bad: 2509 ifp->if_oerrors++; 2510 reclaim: 2511 bf->bf_m = NULL; 2512 bf->bf_node = NULL; 2513 ATH_TXBUF_LOCK(sc); 2514 ath_returnbuf_head(sc, bf); 2515 ath_txfrag_cleanup(sc, &frags, ni); 2516 ATH_TXBUF_UNLOCK(sc); 2517 if (ni != NULL) 2518 ieee80211_free_node(ni); 2519 continue; 2520 } 2521 if (next != NULL) { 2522 /* 2523 * Beware of state changing between frags. 2524 * XXX check sta power-save state? 2525 */ 2526 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2527 DPRINTF(sc, ATH_DEBUG_XMIT, 2528 "%s: flush fragmented packet, state %s\n", 2529 __func__, 2530 ieee80211_state_name[ni->ni_vap->iv_state]); 2531 ath_freetx(next); 2532 goto reclaim; 2533 } 2534 m = next; 2535 bf = TAILQ_FIRST(&frags); 2536 KASSERT(bf != NULL, ("no buf for txfrag")); 2537 TAILQ_REMOVE(&frags, bf, bf_list); 2538 goto nextfrag; 2539 } 2540 2541 sc->sc_wd_timer = 5; 2542 } 2543 2544 ATH_PCU_LOCK(sc); 2545 sc->sc_txstart_cnt--; 2546 ATH_PCU_UNLOCK(sc); 2547 } 2548 2549 static int 2550 ath_media_change(struct ifnet *ifp) 2551 { 2552 int error = ieee80211_media_change(ifp); 2553 /* NB: only the fixed rate can change and that doesn't need a reset */ 2554 return (error == ENETRESET ? 0 : error); 2555 } 2556 2557 /* 2558 * Block/unblock tx+rx processing while a key change is done. 2559 * We assume the caller serializes key management operations 2560 * so we only need to worry about synchronization with other 2561 * uses that originate in the driver. 2562 */ 2563 static void 2564 ath_key_update_begin(struct ieee80211vap *vap) 2565 { 2566 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2567 struct ath_softc *sc = ifp->if_softc; 2568 2569 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2570 taskqueue_block(sc->sc_tq); 2571 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2572 } 2573 2574 static void 2575 ath_key_update_end(struct ieee80211vap *vap) 2576 { 2577 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2578 struct ath_softc *sc = ifp->if_softc; 2579 2580 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2581 IF_UNLOCK(&ifp->if_snd); 2582 taskqueue_unblock(sc->sc_tq); 2583 } 2584 2585 static void 2586 ath_update_promisc(struct ifnet *ifp) 2587 { 2588 struct ath_softc *sc = ifp->if_softc; 2589 u_int32_t rfilt; 2590 2591 /* configure rx filter */ 2592 rfilt = ath_calcrxfilter(sc); 2593 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2594 2595 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2596 } 2597 2598 static void 2599 ath_update_mcast(struct ifnet *ifp) 2600 { 2601 struct ath_softc *sc = ifp->if_softc; 2602 u_int32_t mfilt[2]; 2603 2604 /* calculate and install multicast filter */ 2605 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2606 struct ifmultiaddr *ifma; 2607 /* 2608 * Merge multicast addresses to form the hardware filter. 2609 */ 2610 mfilt[0] = mfilt[1] = 0; 2611 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2612 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2613 caddr_t dl; 2614 u_int32_t val; 2615 u_int8_t pos; 2616 2617 /* calculate XOR of eight 6bit values */ 2618 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2619 val = LE_READ_4(dl + 0); 2620 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2621 val = LE_READ_4(dl + 3); 2622 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2623 pos &= 0x3f; 2624 mfilt[pos / 32] |= (1 << (pos % 32)); 2625 } 2626 if_maddr_runlock(ifp); 2627 } else 2628 mfilt[0] = mfilt[1] = ~0; 2629 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2630 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2631 __func__, mfilt[0], mfilt[1]); 2632 } 2633 2634 void 2635 ath_mode_init(struct ath_softc *sc) 2636 { 2637 struct ifnet *ifp = sc->sc_ifp; 2638 struct ath_hal *ah = sc->sc_ah; 2639 u_int32_t rfilt; 2640 2641 /* configure rx filter */ 2642 rfilt = ath_calcrxfilter(sc); 2643 ath_hal_setrxfilter(ah, rfilt); 2644 2645 /* configure operational mode */ 2646 ath_hal_setopmode(ah); 2647 2648 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 2649 "%s: ah=%p, ifp=%p, if_addr=%p\n", 2650 __func__, 2651 ah, 2652 ifp, 2653 (ifp == NULL) ? NULL : ifp->if_addr); 2654 2655 /* handle any link-level address change */ 2656 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2657 2658 /* calculate and install multicast filter */ 2659 ath_update_mcast(ifp); 2660 } 2661 2662 /* 2663 * Set the slot time based on the current setting. 2664 */ 2665 void 2666 ath_setslottime(struct ath_softc *sc) 2667 { 2668 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2669 struct ath_hal *ah = sc->sc_ah; 2670 u_int usec; 2671 2672 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2673 usec = 13; 2674 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2675 usec = 21; 2676 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2677 /* honor short/long slot time only in 11g */ 2678 /* XXX shouldn't honor on pure g or turbo g channel */ 2679 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2680 usec = HAL_SLOT_TIME_9; 2681 else 2682 usec = HAL_SLOT_TIME_20; 2683 } else 2684 usec = HAL_SLOT_TIME_9; 2685 2686 DPRINTF(sc, ATH_DEBUG_RESET, 2687 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2688 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2689 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2690 2691 ath_hal_setslottime(ah, usec); 2692 sc->sc_updateslot = OK; 2693 } 2694 2695 /* 2696 * Callback from the 802.11 layer to update the 2697 * slot time based on the current setting. 2698 */ 2699 static void 2700 ath_updateslot(struct ifnet *ifp) 2701 { 2702 struct ath_softc *sc = ifp->if_softc; 2703 struct ieee80211com *ic = ifp->if_l2com; 2704 2705 /* 2706 * When not coordinating the BSS, change the hardware 2707 * immediately. For other operation we defer the change 2708 * until beacon updates have propagated to the stations. 2709 */ 2710 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2711 ic->ic_opmode == IEEE80211_M_MBSS) 2712 sc->sc_updateslot = UPDATE; 2713 else 2714 ath_setslottime(sc); 2715 } 2716 2717 /* 2718 * Append the contents of src to dst; both queues 2719 * are assumed to be locked. 2720 */ 2721 void 2722 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2723 { 2724 2725 ATH_TXQ_LOCK_ASSERT(dst); 2726 ATH_TXQ_LOCK_ASSERT(src); 2727 2728 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2729 dst->axq_link = src->axq_link; 2730 src->axq_link = NULL; 2731 dst->axq_depth += src->axq_depth; 2732 dst->axq_aggr_depth += src->axq_aggr_depth; 2733 src->axq_depth = 0; 2734 src->axq_aggr_depth = 0; 2735 } 2736 2737 /* 2738 * Reset the hardware, with no loss. 2739 * 2740 * This can't be used for a general case reset. 2741 */ 2742 static void 2743 ath_reset_proc(void *arg, int pending) 2744 { 2745 struct ath_softc *sc = arg; 2746 struct ifnet *ifp = sc->sc_ifp; 2747 2748 #if 0 2749 if_printf(ifp, "%s: resetting\n", __func__); 2750 #endif 2751 ath_reset(ifp, ATH_RESET_NOLOSS); 2752 } 2753 2754 /* 2755 * Reset the hardware after detecting beacons have stopped. 2756 */ 2757 static void 2758 ath_bstuck_proc(void *arg, int pending) 2759 { 2760 struct ath_softc *sc = arg; 2761 struct ifnet *ifp = sc->sc_ifp; 2762 uint32_t hangs = 0; 2763 2764 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2765 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2766 2767 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2768 sc->sc_bmisscount); 2769 sc->sc_stats.ast_bstuck++; 2770 /* 2771 * This assumes that there's no simultaneous channel mode change 2772 * occuring. 2773 */ 2774 ath_reset(ifp, ATH_RESET_NOLOSS); 2775 } 2776 2777 static void 2778 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2779 { 2780 bus_addr_t *paddr = (bus_addr_t*) arg; 2781 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2782 *paddr = segs->ds_addr; 2783 } 2784 2785 /* 2786 * Allocate the descriptors and appropriate DMA tag/setup. 2787 * 2788 * For some situations (eg EDMA TX completion), there isn't a requirement 2789 * for the ath_buf entries to be allocated. 2790 */ 2791 int 2792 ath_descdma_alloc_desc(struct ath_softc *sc, 2793 struct ath_descdma *dd, ath_bufhead *head, 2794 const char *name, int ds_size, int ndesc) 2795 { 2796 #define DS2PHYS(_dd, _ds) \ 2797 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2798 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2799 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2800 struct ifnet *ifp = sc->sc_ifp; 2801 int error; 2802 2803 dd->dd_descsize = ds_size; 2804 2805 DPRINTF(sc, ATH_DEBUG_RESET, 2806 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 2807 __func__, name, ndesc, dd->dd_descsize); 2808 2809 dd->dd_name = name; 2810 dd->dd_desc_len = dd->dd_descsize * ndesc; 2811 2812 /* 2813 * Merlin work-around: 2814 * Descriptors that cross the 4KB boundary can't be used. 2815 * Assume one skipped descriptor per 4KB page. 2816 */ 2817 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2818 int numpages = dd->dd_desc_len / 4096; 2819 dd->dd_desc_len += ds_size * numpages; 2820 } 2821 2822 /* 2823 * Setup DMA descriptor area. 2824 */ 2825 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 2826 PAGE_SIZE, 0, /* alignment, bounds */ 2827 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2828 BUS_SPACE_MAXADDR, /* highaddr */ 2829 NULL, NULL, /* filter, filterarg */ 2830 dd->dd_desc_len, /* maxsize */ 2831 1, /* nsegments */ 2832 dd->dd_desc_len, /* maxsegsize */ 2833 BUS_DMA_ALLOCNOW, /* flags */ 2834 NULL, /* lockfunc */ 2835 NULL, /* lockarg */ 2836 &dd->dd_dmat); 2837 if (error != 0) { 2838 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 2839 return error; 2840 } 2841 2842 /* allocate descriptors */ 2843 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 2844 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 2845 &dd->dd_dmamap); 2846 if (error != 0) { 2847 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2848 "error %u\n", ndesc, dd->dd_name, error); 2849 goto fail1; 2850 } 2851 2852 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 2853 dd->dd_desc, dd->dd_desc_len, 2854 ath_load_cb, &dd->dd_desc_paddr, 2855 BUS_DMA_NOWAIT); 2856 if (error != 0) { 2857 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2858 dd->dd_name, error); 2859 goto fail2; 2860 } 2861 2862 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2863 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 2864 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 2865 /*XXX*/ (u_long) dd->dd_desc_len); 2866 2867 return (0); 2868 2869 fail2: 2870 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2871 fail1: 2872 bus_dma_tag_destroy(dd->dd_dmat); 2873 memset(dd, 0, sizeof(*dd)); 2874 return error; 2875 #undef DS2PHYS 2876 #undef ATH_DESC_4KB_BOUND_CHECK 2877 } 2878 2879 int 2880 ath_descdma_setup(struct ath_softc *sc, 2881 struct ath_descdma *dd, ath_bufhead *head, 2882 const char *name, int ds_size, int nbuf, int ndesc) 2883 { 2884 #define DS2PHYS(_dd, _ds) \ 2885 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2886 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2887 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2888 struct ifnet *ifp = sc->sc_ifp; 2889 uint8_t *ds; 2890 struct ath_buf *bf; 2891 int i, bsize, error; 2892 2893 /* Allocate descriptors */ 2894 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 2895 nbuf * ndesc); 2896 2897 /* Assume any errors during allocation were dealt with */ 2898 if (error != 0) { 2899 return (error); 2900 } 2901 2902 ds = (uint8_t *) dd->dd_desc; 2903 2904 /* allocate rx buffers */ 2905 bsize = sizeof(struct ath_buf) * nbuf; 2906 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2907 if (bf == NULL) { 2908 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2909 dd->dd_name, bsize); 2910 goto fail3; 2911 } 2912 dd->dd_bufptr = bf; 2913 2914 TAILQ_INIT(head); 2915 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 2916 bf->bf_desc = (struct ath_desc *) ds; 2917 bf->bf_daddr = DS2PHYS(dd, ds); 2918 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2919 /* 2920 * Merlin WAR: Skip descriptor addresses which 2921 * cause 4KB boundary crossing along any point 2922 * in the descriptor. 2923 */ 2924 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 2925 dd->dd_descsize)) { 2926 /* Start at the next page */ 2927 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 2928 bf->bf_desc = (struct ath_desc *) ds; 2929 bf->bf_daddr = DS2PHYS(dd, ds); 2930 } 2931 } 2932 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 2933 &bf->bf_dmamap); 2934 if (error != 0) { 2935 if_printf(ifp, "unable to create dmamap for %s " 2936 "buffer %u, error %u\n", dd->dd_name, i, error); 2937 ath_descdma_cleanup(sc, dd, head); 2938 return error; 2939 } 2940 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 2941 TAILQ_INSERT_TAIL(head, bf, bf_list); 2942 } 2943 2944 /* 2945 * XXX TODO: ensure that ds doesn't overflow the descriptor 2946 * allocation otherwise weird stuff will occur and crash your 2947 * machine. 2948 */ 2949 return 0; 2950 /* XXX this should likely just call ath_descdma_cleanup() */ 2951 fail3: 2952 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2953 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2954 bus_dma_tag_destroy(dd->dd_dmat); 2955 memset(dd, 0, sizeof(*dd)); 2956 return error; 2957 #undef DS2PHYS 2958 #undef ATH_DESC_4KB_BOUND_CHECK 2959 } 2960 2961 /* 2962 * Allocate ath_buf entries but no descriptor contents. 2963 * 2964 * This is for RX EDMA where the descriptors are the header part of 2965 * the RX buffer. 2966 */ 2967 int 2968 ath_descdma_setup_rx_edma(struct ath_softc *sc, 2969 struct ath_descdma *dd, ath_bufhead *head, 2970 const char *name, int nbuf, int rx_status_len) 2971 { 2972 struct ifnet *ifp = sc->sc_ifp; 2973 struct ath_buf *bf; 2974 int i, bsize, error; 2975 2976 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 2977 __func__, name, nbuf); 2978 2979 dd->dd_name = name; 2980 /* 2981 * This is (mostly) purely for show. We're not allocating any actual 2982 * descriptors here as EDMA RX has the descriptor be part 2983 * of the RX buffer. 2984 * 2985 * However, dd_desc_len is used by ath_descdma_free() to determine 2986 * whether we have already freed this DMA mapping. 2987 */ 2988 dd->dd_desc_len = rx_status_len * nbuf; 2989 dd->dd_descsize = rx_status_len; 2990 2991 /* allocate rx buffers */ 2992 bsize = sizeof(struct ath_buf) * nbuf; 2993 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2994 if (bf == NULL) { 2995 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2996 dd->dd_name, bsize); 2997 error = ENOMEM; 2998 goto fail3; 2999 } 3000 dd->dd_bufptr = bf; 3001 3002 TAILQ_INIT(head); 3003 for (i = 0; i < nbuf; i++, bf++) { 3004 bf->bf_desc = NULL; 3005 bf->bf_daddr = 0; 3006 bf->bf_lastds = NULL; /* Just an initial value */ 3007 3008 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3009 &bf->bf_dmamap); 3010 if (error != 0) { 3011 if_printf(ifp, "unable to create dmamap for %s " 3012 "buffer %u, error %u\n", dd->dd_name, i, error); 3013 ath_descdma_cleanup(sc, dd, head); 3014 return error; 3015 } 3016 TAILQ_INSERT_TAIL(head, bf, bf_list); 3017 } 3018 return 0; 3019 fail3: 3020 memset(dd, 0, sizeof(*dd)); 3021 return error; 3022 } 3023 3024 void 3025 ath_descdma_cleanup(struct ath_softc *sc, 3026 struct ath_descdma *dd, ath_bufhead *head) 3027 { 3028 struct ath_buf *bf; 3029 struct ieee80211_node *ni; 3030 3031 if (dd->dd_dmamap != 0) { 3032 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3033 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3034 bus_dma_tag_destroy(dd->dd_dmat); 3035 } 3036 3037 if (head != NULL) { 3038 TAILQ_FOREACH(bf, head, bf_list) { 3039 if (bf->bf_m) { 3040 m_freem(bf->bf_m); 3041 bf->bf_m = NULL; 3042 } 3043 if (bf->bf_dmamap != NULL) { 3044 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3045 bf->bf_dmamap = NULL; 3046 } 3047 ni = bf->bf_node; 3048 bf->bf_node = NULL; 3049 if (ni != NULL) { 3050 /* 3051 * Reclaim node reference. 3052 */ 3053 ieee80211_free_node(ni); 3054 } 3055 } 3056 } 3057 3058 if (head != NULL) 3059 TAILQ_INIT(head); 3060 3061 if (dd->dd_bufptr != NULL) 3062 free(dd->dd_bufptr, M_ATHDEV); 3063 memset(dd, 0, sizeof(*dd)); 3064 } 3065 3066 static int 3067 ath_desc_alloc(struct ath_softc *sc) 3068 { 3069 int error; 3070 3071 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3072 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC); 3073 if (error != 0) { 3074 return error; 3075 } 3076 sc->sc_txbuf_cnt = ath_txbuf; 3077 3078 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3079 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3080 ATH_TXDESC); 3081 if (error != 0) { 3082 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3083 return error; 3084 } 3085 3086 /* 3087 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3088 * flag doesn't have to be set in ath_getbuf_locked(). 3089 */ 3090 3091 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3092 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3093 if (error != 0) { 3094 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3095 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3096 &sc->sc_txbuf_mgmt); 3097 return error; 3098 } 3099 return 0; 3100 } 3101 3102 static void 3103 ath_desc_free(struct ath_softc *sc) 3104 { 3105 3106 if (sc->sc_bdma.dd_desc_len != 0) 3107 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3108 if (sc->sc_txdma.dd_desc_len != 0) 3109 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3110 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3111 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3112 &sc->sc_txbuf_mgmt); 3113 } 3114 3115 static struct ieee80211_node * 3116 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3117 { 3118 struct ieee80211com *ic = vap->iv_ic; 3119 struct ath_softc *sc = ic->ic_ifp->if_softc; 3120 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3121 struct ath_node *an; 3122 3123 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3124 if (an == NULL) { 3125 /* XXX stat+msg */ 3126 return NULL; 3127 } 3128 ath_rate_node_init(sc, an); 3129 3130 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3131 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3132 device_get_nameunit(sc->sc_dev), an); 3133 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3134 3135 /* XXX setup ath_tid */ 3136 ath_tx_tid_init(sc, an); 3137 3138 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3139 return &an->an_node; 3140 } 3141 3142 static void 3143 ath_node_cleanup(struct ieee80211_node *ni) 3144 { 3145 struct ieee80211com *ic = ni->ni_ic; 3146 struct ath_softc *sc = ic->ic_ifp->if_softc; 3147 3148 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3149 ath_tx_node_flush(sc, ATH_NODE(ni)); 3150 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3151 sc->sc_node_cleanup(ni); 3152 } 3153 3154 static void 3155 ath_node_free(struct ieee80211_node *ni) 3156 { 3157 struct ieee80211com *ic = ni->ni_ic; 3158 struct ath_softc *sc = ic->ic_ifp->if_softc; 3159 3160 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3161 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3162 sc->sc_node_free(ni); 3163 } 3164 3165 static void 3166 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3167 { 3168 struct ieee80211com *ic = ni->ni_ic; 3169 struct ath_softc *sc = ic->ic_ifp->if_softc; 3170 struct ath_hal *ah = sc->sc_ah; 3171 3172 *rssi = ic->ic_node_getrssi(ni); 3173 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3174 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3175 else 3176 *noise = -95; /* nominally correct */ 3177 } 3178 3179 /* 3180 * Set the default antenna. 3181 */ 3182 void 3183 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3184 { 3185 struct ath_hal *ah = sc->sc_ah; 3186 3187 /* XXX block beacon interrupts */ 3188 ath_hal_setdefantenna(ah, antenna); 3189 if (sc->sc_defant != antenna) 3190 sc->sc_stats.ast_ant_defswitch++; 3191 sc->sc_defant = antenna; 3192 sc->sc_rxotherant = 0; 3193 } 3194 3195 static void 3196 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3197 { 3198 txq->axq_qnum = qnum; 3199 txq->axq_ac = 0; 3200 txq->axq_depth = 0; 3201 txq->axq_aggr_depth = 0; 3202 txq->axq_intrcnt = 0; 3203 txq->axq_link = NULL; 3204 txq->axq_softc = sc; 3205 TAILQ_INIT(&txq->axq_q); 3206 TAILQ_INIT(&txq->axq_tidq); 3207 ATH_TXQ_LOCK_INIT(sc, txq); 3208 } 3209 3210 /* 3211 * Setup a h/w transmit queue. 3212 */ 3213 static struct ath_txq * 3214 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3215 { 3216 #define N(a) (sizeof(a)/sizeof(a[0])) 3217 struct ath_hal *ah = sc->sc_ah; 3218 HAL_TXQ_INFO qi; 3219 int qnum; 3220 3221 memset(&qi, 0, sizeof(qi)); 3222 qi.tqi_subtype = subtype; 3223 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3224 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3225 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3226 /* 3227 * Enable interrupts only for EOL and DESC conditions. 3228 * We mark tx descriptors to receive a DESC interrupt 3229 * when a tx queue gets deep; otherwise waiting for the 3230 * EOL to reap descriptors. Note that this is done to 3231 * reduce interrupt load and this only defers reaping 3232 * descriptors, never transmitting frames. Aside from 3233 * reducing interrupts this also permits more concurrency. 3234 * The only potential downside is if the tx queue backs 3235 * up in which case the top half of the kernel may backup 3236 * due to a lack of tx descriptors. 3237 */ 3238 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3239 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3240 if (qnum == -1) { 3241 /* 3242 * NB: don't print a message, this happens 3243 * normally on parts with too few tx queues 3244 */ 3245 return NULL; 3246 } 3247 if (qnum >= N(sc->sc_txq)) { 3248 device_printf(sc->sc_dev, 3249 "hal qnum %u out of range, max %zu!\n", 3250 qnum, N(sc->sc_txq)); 3251 ath_hal_releasetxqueue(ah, qnum); 3252 return NULL; 3253 } 3254 if (!ATH_TXQ_SETUP(sc, qnum)) { 3255 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3256 sc->sc_txqsetup |= 1<<qnum; 3257 } 3258 return &sc->sc_txq[qnum]; 3259 #undef N 3260 } 3261 3262 /* 3263 * Setup a hardware data transmit queue for the specified 3264 * access control. The hal may not support all requested 3265 * queues in which case it will return a reference to a 3266 * previously setup queue. We record the mapping from ac's 3267 * to h/w queues for use by ath_tx_start and also track 3268 * the set of h/w queues being used to optimize work in the 3269 * transmit interrupt handler and related routines. 3270 */ 3271 static int 3272 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3273 { 3274 #define N(a) (sizeof(a)/sizeof(a[0])) 3275 struct ath_txq *txq; 3276 3277 if (ac >= N(sc->sc_ac2q)) { 3278 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3279 ac, N(sc->sc_ac2q)); 3280 return 0; 3281 } 3282 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3283 if (txq != NULL) { 3284 txq->axq_ac = ac; 3285 sc->sc_ac2q[ac] = txq; 3286 return 1; 3287 } else 3288 return 0; 3289 #undef N 3290 } 3291 3292 /* 3293 * Update WME parameters for a transmit queue. 3294 */ 3295 static int 3296 ath_txq_update(struct ath_softc *sc, int ac) 3297 { 3298 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3299 #define ATH_TXOP_TO_US(v) (v<<5) 3300 struct ifnet *ifp = sc->sc_ifp; 3301 struct ieee80211com *ic = ifp->if_l2com; 3302 struct ath_txq *txq = sc->sc_ac2q[ac]; 3303 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3304 struct ath_hal *ah = sc->sc_ah; 3305 HAL_TXQ_INFO qi; 3306 3307 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3308 #ifdef IEEE80211_SUPPORT_TDMA 3309 if (sc->sc_tdma) { 3310 /* 3311 * AIFS is zero so there's no pre-transmit wait. The 3312 * burst time defines the slot duration and is configured 3313 * through net80211. The QCU is setup to not do post-xmit 3314 * back off, lockout all lower-priority QCU's, and fire 3315 * off the DMA beacon alert timer which is setup based 3316 * on the slot configuration. 3317 */ 3318 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3319 | HAL_TXQ_TXERRINT_ENABLE 3320 | HAL_TXQ_TXURNINT_ENABLE 3321 | HAL_TXQ_TXEOLINT_ENABLE 3322 | HAL_TXQ_DBA_GATED 3323 | HAL_TXQ_BACKOFF_DISABLE 3324 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3325 ; 3326 qi.tqi_aifs = 0; 3327 /* XXX +dbaprep? */ 3328 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3329 qi.tqi_burstTime = qi.tqi_readyTime; 3330 } else { 3331 #endif 3332 /* 3333 * XXX shouldn't this just use the default flags 3334 * used in the previous queue setup? 3335 */ 3336 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3337 | HAL_TXQ_TXERRINT_ENABLE 3338 | HAL_TXQ_TXDESCINT_ENABLE 3339 | HAL_TXQ_TXURNINT_ENABLE 3340 | HAL_TXQ_TXEOLINT_ENABLE 3341 ; 3342 qi.tqi_aifs = wmep->wmep_aifsn; 3343 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3344 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3345 qi.tqi_readyTime = 0; 3346 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3347 #ifdef IEEE80211_SUPPORT_TDMA 3348 } 3349 #endif 3350 3351 DPRINTF(sc, ATH_DEBUG_RESET, 3352 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3353 __func__, txq->axq_qnum, qi.tqi_qflags, 3354 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3355 3356 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3357 if_printf(ifp, "unable to update hardware queue " 3358 "parameters for %s traffic!\n", 3359 ieee80211_wme_acnames[ac]); 3360 return 0; 3361 } else { 3362 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3363 return 1; 3364 } 3365 #undef ATH_TXOP_TO_US 3366 #undef ATH_EXPONENT_TO_VALUE 3367 } 3368 3369 /* 3370 * Callback from the 802.11 layer to update WME parameters. 3371 */ 3372 int 3373 ath_wme_update(struct ieee80211com *ic) 3374 { 3375 struct ath_softc *sc = ic->ic_ifp->if_softc; 3376 3377 return !ath_txq_update(sc, WME_AC_BE) || 3378 !ath_txq_update(sc, WME_AC_BK) || 3379 !ath_txq_update(sc, WME_AC_VI) || 3380 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3381 } 3382 3383 /* 3384 * Reclaim resources for a setup queue. 3385 */ 3386 static void 3387 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3388 { 3389 3390 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3391 ATH_TXQ_LOCK_DESTROY(txq); 3392 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3393 } 3394 3395 /* 3396 * Reclaim all tx queue resources. 3397 */ 3398 static void 3399 ath_tx_cleanup(struct ath_softc *sc) 3400 { 3401 int i; 3402 3403 ATH_TXBUF_LOCK_DESTROY(sc); 3404 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3405 if (ATH_TXQ_SETUP(sc, i)) 3406 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3407 } 3408 3409 /* 3410 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3411 * using the current rates in sc_rixmap. 3412 */ 3413 int 3414 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3415 { 3416 int rix = sc->sc_rixmap[rate]; 3417 /* NB: return lowest rix for invalid rate */ 3418 return (rix == 0xff ? 0 : rix); 3419 } 3420 3421 static void 3422 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3423 struct ath_buf *bf) 3424 { 3425 struct ieee80211_node *ni = bf->bf_node; 3426 struct ifnet *ifp = sc->sc_ifp; 3427 struct ieee80211com *ic = ifp->if_l2com; 3428 int sr, lr, pri; 3429 3430 if (ts->ts_status == 0) { 3431 u_int8_t txant = ts->ts_antenna; 3432 sc->sc_stats.ast_ant_tx[txant]++; 3433 sc->sc_ant_tx[txant]++; 3434 if (ts->ts_finaltsi != 0) 3435 sc->sc_stats.ast_tx_altrate++; 3436 pri = M_WME_GETAC(bf->bf_m); 3437 if (pri >= WME_AC_VO) 3438 ic->ic_wme.wme_hipri_traffic++; 3439 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3440 ni->ni_inact = ni->ni_inact_reload; 3441 } else { 3442 if (ts->ts_status & HAL_TXERR_XRETRY) 3443 sc->sc_stats.ast_tx_xretries++; 3444 if (ts->ts_status & HAL_TXERR_FIFO) 3445 sc->sc_stats.ast_tx_fifoerr++; 3446 if (ts->ts_status & HAL_TXERR_FILT) 3447 sc->sc_stats.ast_tx_filtered++; 3448 if (ts->ts_status & HAL_TXERR_XTXOP) 3449 sc->sc_stats.ast_tx_xtxop++; 3450 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3451 sc->sc_stats.ast_tx_timerexpired++; 3452 3453 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 3454 sc->sc_stats.ast_tx_data_underrun++; 3455 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 3456 sc->sc_stats.ast_tx_delim_underrun++; 3457 3458 if (bf->bf_m->m_flags & M_FF) 3459 sc->sc_stats.ast_ff_txerr++; 3460 } 3461 /* XXX when is this valid? */ 3462 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 3463 sc->sc_stats.ast_tx_desccfgerr++; 3464 3465 sr = ts->ts_shortretry; 3466 lr = ts->ts_longretry; 3467 sc->sc_stats.ast_tx_shortretry += sr; 3468 sc->sc_stats.ast_tx_longretry += lr; 3469 3470 } 3471 3472 /* 3473 * The default completion. If fail is 1, this means 3474 * "please don't retry the frame, and just return -1 status 3475 * to the net80211 stack. 3476 */ 3477 void 3478 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3479 { 3480 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3481 int st; 3482 3483 if (fail == 1) 3484 st = -1; 3485 else 3486 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3487 ts->ts_status : HAL_TXERR_XRETRY; 3488 3489 if (bf->bf_state.bfs_dobaw) 3490 device_printf(sc->sc_dev, 3491 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3492 __func__, 3493 bf, 3494 SEQNO(bf->bf_state.bfs_seqno)); 3495 if (bf->bf_next != NULL) 3496 device_printf(sc->sc_dev, 3497 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3498 __func__, 3499 bf, 3500 SEQNO(bf->bf_state.bfs_seqno)); 3501 3502 /* 3503 * Do any tx complete callback. Note this must 3504 * be done before releasing the node reference. 3505 * This will free the mbuf, release the net80211 3506 * node and recycle the ath_buf. 3507 */ 3508 ath_tx_freebuf(sc, bf, st); 3509 } 3510 3511 /* 3512 * Update rate control with the given completion status. 3513 */ 3514 void 3515 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3516 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3517 int nframes, int nbad) 3518 { 3519 struct ath_node *an; 3520 3521 /* Only for unicast frames */ 3522 if (ni == NULL) 3523 return; 3524 3525 an = ATH_NODE(ni); 3526 3527 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3528 ATH_NODE_LOCK(an); 3529 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3530 ATH_NODE_UNLOCK(an); 3531 } 3532 } 3533 3534 /* 3535 * Update the busy status of the last frame on the free list. 3536 * When doing TDMA, the busy flag tracks whether the hardware 3537 * currently points to this buffer or not, and thus gated DMA 3538 * may restart by re-reading the last descriptor in this 3539 * buffer. 3540 * 3541 * This should be called in the completion function once one 3542 * of the buffers has been used. 3543 */ 3544 static void 3545 ath_tx_update_busy(struct ath_softc *sc) 3546 { 3547 struct ath_buf *last; 3548 3549 /* 3550 * Since the last frame may still be marked 3551 * as ATH_BUF_BUSY, unmark it here before 3552 * finishing the frame processing. 3553 * Since we've completed a frame (aggregate 3554 * or otherwise), the hardware has moved on 3555 * and is no longer referencing the previous 3556 * descriptor. 3557 */ 3558 ATH_TXBUF_LOCK_ASSERT(sc); 3559 last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 3560 if (last != NULL) 3561 last->bf_flags &= ~ATH_BUF_BUSY; 3562 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3563 if (last != NULL) 3564 last->bf_flags &= ~ATH_BUF_BUSY; 3565 } 3566 3567 /* 3568 * Process the completion of the given buffer. 3569 * 3570 * This calls the rate control update and then the buffer completion. 3571 * This will either free the buffer or requeue it. In any case, the 3572 * bf pointer should be treated as invalid after this function is called. 3573 */ 3574 void 3575 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 3576 struct ath_tx_status *ts, struct ath_buf *bf) 3577 { 3578 struct ieee80211_node *ni = bf->bf_node; 3579 struct ath_node *an = NULL; 3580 3581 ATH_TXQ_UNLOCK_ASSERT(txq); 3582 3583 /* If unicast frame, update general statistics */ 3584 if (ni != NULL) { 3585 an = ATH_NODE(ni); 3586 /* update statistics */ 3587 ath_tx_update_stats(sc, ts, bf); 3588 } 3589 3590 /* 3591 * Call the completion handler. 3592 * The completion handler is responsible for 3593 * calling the rate control code. 3594 * 3595 * Frames with no completion handler get the 3596 * rate control code called here. 3597 */ 3598 if (bf->bf_comp == NULL) { 3599 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3600 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3601 /* 3602 * XXX assume this isn't an aggregate 3603 * frame. 3604 */ 3605 ath_tx_update_ratectrl(sc, ni, 3606 bf->bf_state.bfs_rc, ts, 3607 bf->bf_state.bfs_pktlen, 1, 3608 (ts->ts_status == 0 ? 0 : 1)); 3609 } 3610 ath_tx_default_comp(sc, bf, 0); 3611 } else 3612 bf->bf_comp(sc, bf, 0); 3613 } 3614 3615 3616 3617 /* 3618 * Process completed xmit descriptors from the specified queue. 3619 * Kick the packet scheduler if needed. This can occur from this 3620 * particular task. 3621 */ 3622 static int 3623 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3624 { 3625 struct ath_hal *ah = sc->sc_ah; 3626 struct ath_buf *bf; 3627 struct ath_desc *ds; 3628 struct ath_tx_status *ts; 3629 struct ieee80211_node *ni; 3630 #ifdef IEEE80211_SUPPORT_SUPERG 3631 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3632 #endif /* IEEE80211_SUPPORT_SUPERG */ 3633 int nacked; 3634 HAL_STATUS status; 3635 3636 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3637 __func__, txq->axq_qnum, 3638 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3639 txq->axq_link); 3640 nacked = 0; 3641 for (;;) { 3642 ATH_TXQ_LOCK(txq); 3643 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3644 bf = TAILQ_FIRST(&txq->axq_q); 3645 if (bf == NULL) { 3646 ATH_TXQ_UNLOCK(txq); 3647 break; 3648 } 3649 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3650 ts = &bf->bf_status.ds_txstat; 3651 status = ath_hal_txprocdesc(ah, ds, ts); 3652 #ifdef ATH_DEBUG 3653 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3654 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3655 status == HAL_OK); 3656 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) { 3657 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3658 status == HAL_OK); 3659 } 3660 #endif 3661 if (status == HAL_EINPROGRESS) { 3662 ATH_TXQ_UNLOCK(txq); 3663 break; 3664 } 3665 ATH_TXQ_REMOVE(txq, bf, bf_list); 3666 #ifdef IEEE80211_SUPPORT_TDMA 3667 if (txq->axq_depth > 0) { 3668 /* 3669 * More frames follow. Mark the buffer busy 3670 * so it's not re-used while the hardware may 3671 * still re-read the link field in the descriptor. 3672 * 3673 * Use the last buffer in an aggregate as that 3674 * is where the hardware may be - intermediate 3675 * descriptors won't be "busy". 3676 */ 3677 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3678 } else 3679 #else 3680 if (txq->axq_depth == 0) 3681 #endif 3682 txq->axq_link = NULL; 3683 if (bf->bf_state.bfs_aggr) 3684 txq->axq_aggr_depth--; 3685 3686 ni = bf->bf_node; 3687 /* 3688 * If unicast frame was ack'd update RSSI, 3689 * including the last rx time used to 3690 * workaround phantom bmiss interrupts. 3691 */ 3692 if (ni != NULL && ts->ts_status == 0 && 3693 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3694 nacked++; 3695 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3696 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3697 ts->ts_rssi); 3698 } 3699 ATH_TXQ_UNLOCK(txq); 3700 3701 /* 3702 * Update statistics and call completion 3703 */ 3704 ath_tx_process_buf_completion(sc, txq, ts, bf); 3705 3706 3707 } 3708 #ifdef IEEE80211_SUPPORT_SUPERG 3709 /* 3710 * Flush fast-frame staging queue when traffic slows. 3711 */ 3712 if (txq->axq_depth <= 1) 3713 ieee80211_ff_flush(ic, txq->axq_ac); 3714 #endif 3715 3716 /* Kick the TXQ scheduler */ 3717 if (dosched) { 3718 ATH_TXQ_LOCK(txq); 3719 ath_txq_sched(sc, txq); 3720 ATH_TXQ_UNLOCK(txq); 3721 } 3722 3723 return nacked; 3724 } 3725 3726 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3727 3728 /* 3729 * Deferred processing of transmit interrupt; special-cased 3730 * for a single hardware transmit queue (e.g. 5210 and 5211). 3731 */ 3732 static void 3733 ath_tx_proc_q0(void *arg, int npending) 3734 { 3735 struct ath_softc *sc = arg; 3736 struct ifnet *ifp = sc->sc_ifp; 3737 uint32_t txqs; 3738 3739 ATH_PCU_LOCK(sc); 3740 sc->sc_txproc_cnt++; 3741 txqs = sc->sc_txq_active; 3742 sc->sc_txq_active &= ~txqs; 3743 ATH_PCU_UNLOCK(sc); 3744 3745 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 3746 /* XXX why is lastrx updated in tx code? */ 3747 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3748 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3749 ath_tx_processq(sc, sc->sc_cabq, 1); 3750 IF_LOCK(&ifp->if_snd); 3751 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3752 IF_UNLOCK(&ifp->if_snd); 3753 sc->sc_wd_timer = 0; 3754 3755 if (sc->sc_softled) 3756 ath_led_event(sc, sc->sc_txrix); 3757 3758 ATH_PCU_LOCK(sc); 3759 sc->sc_txproc_cnt--; 3760 ATH_PCU_UNLOCK(sc); 3761 3762 ath_tx_kick(sc); 3763 } 3764 3765 /* 3766 * Deferred processing of transmit interrupt; special-cased 3767 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3768 */ 3769 static void 3770 ath_tx_proc_q0123(void *arg, int npending) 3771 { 3772 struct ath_softc *sc = arg; 3773 struct ifnet *ifp = sc->sc_ifp; 3774 int nacked; 3775 uint32_t txqs; 3776 3777 ATH_PCU_LOCK(sc); 3778 sc->sc_txproc_cnt++; 3779 txqs = sc->sc_txq_active; 3780 sc->sc_txq_active &= ~txqs; 3781 ATH_PCU_UNLOCK(sc); 3782 3783 /* 3784 * Process each active queue. 3785 */ 3786 nacked = 0; 3787 if (TXQACTIVE(txqs, 0)) 3788 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 3789 if (TXQACTIVE(txqs, 1)) 3790 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 3791 if (TXQACTIVE(txqs, 2)) 3792 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 3793 if (TXQACTIVE(txqs, 3)) 3794 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 3795 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3796 ath_tx_processq(sc, sc->sc_cabq, 1); 3797 if (nacked) 3798 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3799 3800 IF_LOCK(&ifp->if_snd); 3801 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3802 IF_UNLOCK(&ifp->if_snd); 3803 sc->sc_wd_timer = 0; 3804 3805 if (sc->sc_softled) 3806 ath_led_event(sc, sc->sc_txrix); 3807 3808 ATH_PCU_LOCK(sc); 3809 sc->sc_txproc_cnt--; 3810 ATH_PCU_UNLOCK(sc); 3811 3812 ath_tx_kick(sc); 3813 } 3814 3815 /* 3816 * Deferred processing of transmit interrupt. 3817 */ 3818 static void 3819 ath_tx_proc(void *arg, int npending) 3820 { 3821 struct ath_softc *sc = arg; 3822 struct ifnet *ifp = sc->sc_ifp; 3823 int i, nacked; 3824 uint32_t txqs; 3825 3826 ATH_PCU_LOCK(sc); 3827 sc->sc_txproc_cnt++; 3828 txqs = sc->sc_txq_active; 3829 sc->sc_txq_active &= ~txqs; 3830 ATH_PCU_UNLOCK(sc); 3831 3832 /* 3833 * Process each active queue. 3834 */ 3835 nacked = 0; 3836 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3837 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 3838 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 3839 if (nacked) 3840 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3841 3842 /* XXX check this inside of IF_LOCK? */ 3843 IF_LOCK(&ifp->if_snd); 3844 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3845 IF_UNLOCK(&ifp->if_snd); 3846 sc->sc_wd_timer = 0; 3847 3848 if (sc->sc_softled) 3849 ath_led_event(sc, sc->sc_txrix); 3850 3851 ATH_PCU_LOCK(sc); 3852 sc->sc_txproc_cnt--; 3853 ATH_PCU_UNLOCK(sc); 3854 3855 ath_tx_kick(sc); 3856 } 3857 #undef TXQACTIVE 3858 3859 /* 3860 * Deferred processing of TXQ rescheduling. 3861 */ 3862 static void 3863 ath_txq_sched_tasklet(void *arg, int npending) 3864 { 3865 struct ath_softc *sc = arg; 3866 int i; 3867 3868 /* XXX is skipping ok? */ 3869 ATH_PCU_LOCK(sc); 3870 #if 0 3871 if (sc->sc_inreset_cnt > 0) { 3872 device_printf(sc->sc_dev, 3873 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 3874 ATH_PCU_UNLOCK(sc); 3875 return; 3876 } 3877 #endif 3878 sc->sc_txproc_cnt++; 3879 ATH_PCU_UNLOCK(sc); 3880 3881 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3882 if (ATH_TXQ_SETUP(sc, i)) { 3883 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3884 ath_txq_sched(sc, &sc->sc_txq[i]); 3885 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3886 } 3887 } 3888 3889 ATH_PCU_LOCK(sc); 3890 sc->sc_txproc_cnt--; 3891 ATH_PCU_UNLOCK(sc); 3892 } 3893 3894 void 3895 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 3896 { 3897 3898 ATH_TXBUF_LOCK_ASSERT(sc); 3899 3900 if (bf->bf_flags & ATH_BUF_MGMT) 3901 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 3902 else { 3903 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3904 sc->sc_txbuf_cnt++; 3905 if (sc->sc_txbuf_cnt > ath_txbuf) { 3906 device_printf(sc->sc_dev, 3907 "%s: sc_txbuf_cnt > %d?\n", 3908 __func__, 3909 ath_txbuf); 3910 sc->sc_txbuf_cnt = ath_txbuf; 3911 } 3912 } 3913 } 3914 3915 void 3916 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 3917 { 3918 3919 ATH_TXBUF_LOCK_ASSERT(sc); 3920 3921 if (bf->bf_flags & ATH_BUF_MGMT) 3922 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 3923 else { 3924 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 3925 sc->sc_txbuf_cnt++; 3926 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 3927 device_printf(sc->sc_dev, 3928 "%s: sc_txbuf_cnt > %d?\n", 3929 __func__, 3930 ATH_TXBUF); 3931 sc->sc_txbuf_cnt = ATH_TXBUF; 3932 } 3933 } 3934 } 3935 3936 /* 3937 * Return a buffer to the pool and update the 'busy' flag on the 3938 * previous 'tail' entry. 3939 * 3940 * This _must_ only be called when the buffer is involved in a completed 3941 * TX. The logic is that if it was part of an active TX, the previous 3942 * buffer on the list is now not involved in a halted TX DMA queue, waiting 3943 * for restart (eg for TDMA.) 3944 * 3945 * The caller must free the mbuf and recycle the node reference. 3946 */ 3947 void 3948 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 3949 { 3950 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3951 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 3952 3953 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 3954 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 3955 3956 ATH_TXBUF_LOCK(sc); 3957 ath_tx_update_busy(sc); 3958 ath_returnbuf_tail(sc, bf); 3959 ATH_TXBUF_UNLOCK(sc); 3960 } 3961 3962 /* 3963 * This is currently used by ath_tx_draintxq() and 3964 * ath_tx_tid_free_pkts(). 3965 * 3966 * It recycles a single ath_buf. 3967 */ 3968 void 3969 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 3970 { 3971 struct ieee80211_node *ni = bf->bf_node; 3972 struct mbuf *m0 = bf->bf_m; 3973 3974 bf->bf_node = NULL; 3975 bf->bf_m = NULL; 3976 3977 /* Free the buffer, it's not needed any longer */ 3978 ath_freebuf(sc, bf); 3979 3980 if (ni != NULL) { 3981 /* 3982 * Do any callback and reclaim the node reference. 3983 */ 3984 if (m0->m_flags & M_TXCB) 3985 ieee80211_process_callback(ni, m0, status); 3986 ieee80211_free_node(ni); 3987 } 3988 m_freem(m0); 3989 3990 /* 3991 * XXX the buffer used to be freed -after-, but the DMA map was 3992 * freed where ath_freebuf() now is. I've no idea what this 3993 * will do. 3994 */ 3995 } 3996 3997 void 3998 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 3999 { 4000 #ifdef ATH_DEBUG 4001 struct ath_hal *ah = sc->sc_ah; 4002 #endif 4003 struct ath_buf *bf; 4004 u_int ix; 4005 4006 /* 4007 * NB: this assumes output has been stopped and 4008 * we do not need to block ath_tx_proc 4009 */ 4010 ATH_TXBUF_LOCK(sc); 4011 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4012 if (bf != NULL) 4013 bf->bf_flags &= ~ATH_BUF_BUSY; 4014 bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 4015 if (bf != NULL) 4016 bf->bf_flags &= ~ATH_BUF_BUSY; 4017 ATH_TXBUF_UNLOCK(sc); 4018 4019 for (ix = 0;; ix++) { 4020 ATH_TXQ_LOCK(txq); 4021 bf = TAILQ_FIRST(&txq->axq_q); 4022 if (bf == NULL) { 4023 txq->axq_link = NULL; 4024 /* 4025 * There's currently no flag that indicates 4026 * a buffer is on the FIFO. So until that 4027 * occurs, just clear the FIFO counter here. 4028 * 4029 * Yes, this means that if something in parallel 4030 * is pushing things onto this TXQ and pushing 4031 * _that_ into the hardware, things will get 4032 * very fruity very quickly. 4033 */ 4034 txq->axq_fifo_depth = 0; 4035 ATH_TXQ_UNLOCK(txq); 4036 break; 4037 } 4038 ATH_TXQ_REMOVE(txq, bf, bf_list); 4039 if (bf->bf_state.bfs_aggr) 4040 txq->axq_aggr_depth--; 4041 #ifdef ATH_DEBUG 4042 if (sc->sc_debug & ATH_DEBUG_RESET) { 4043 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4044 int status = 0; 4045 4046 /* 4047 * EDMA operation has a TX completion FIFO 4048 * separate from the TX descriptor, so this 4049 * method of checking the "completion" status 4050 * is wrong. 4051 */ 4052 if (! sc->sc_isedma) { 4053 status = (ath_hal_txprocdesc(ah, 4054 bf->bf_lastds, 4055 &bf->bf_status.ds_txstat) == HAL_OK); 4056 } 4057 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4058 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4059 bf->bf_m->m_len, 0, -1); 4060 } 4061 #endif /* ATH_DEBUG */ 4062 /* 4063 * Since we're now doing magic in the completion 4064 * functions, we -must- call it for aggregation 4065 * destinations or BAW tracking will get upset. 4066 */ 4067 /* 4068 * Clear ATH_BUF_BUSY; the completion handler 4069 * will free the buffer. 4070 */ 4071 ATH_TXQ_UNLOCK(txq); 4072 bf->bf_flags &= ~ATH_BUF_BUSY; 4073 if (bf->bf_comp) 4074 bf->bf_comp(sc, bf, 1); 4075 else 4076 ath_tx_default_comp(sc, bf, 1); 4077 } 4078 4079 /* 4080 * Drain software queued frames which are on 4081 * active TIDs. 4082 */ 4083 ath_tx_txq_drain(sc, txq); 4084 } 4085 4086 static void 4087 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4088 { 4089 struct ath_hal *ah = sc->sc_ah; 4090 4091 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4092 __func__, txq->axq_qnum, 4093 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4094 txq->axq_link); 4095 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4096 } 4097 4098 int 4099 ath_stoptxdma(struct ath_softc *sc) 4100 { 4101 struct ath_hal *ah = sc->sc_ah; 4102 int i; 4103 4104 /* XXX return value */ 4105 if (sc->sc_invalid) 4106 return 0; 4107 4108 if (!sc->sc_invalid) { 4109 /* don't touch the hardware if marked invalid */ 4110 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4111 __func__, sc->sc_bhalq, 4112 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4113 NULL); 4114 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4115 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4116 if (ATH_TXQ_SETUP(sc, i)) 4117 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4118 } 4119 4120 return 1; 4121 } 4122 4123 /* 4124 * Drain the transmit queues and reclaim resources. 4125 */ 4126 void 4127 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4128 { 4129 #ifdef ATH_DEBUG 4130 struct ath_hal *ah = sc->sc_ah; 4131 #endif 4132 struct ifnet *ifp = sc->sc_ifp; 4133 int i; 4134 4135 (void) ath_stoptxdma(sc); 4136 4137 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4138 /* 4139 * XXX TODO: should we just handle the completed TX frames 4140 * here, whether or not the reset is a full one or not? 4141 */ 4142 if (ATH_TXQ_SETUP(sc, i)) { 4143 if (reset_type == ATH_RESET_NOLOSS) 4144 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4145 else 4146 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4147 } 4148 } 4149 #ifdef ATH_DEBUG 4150 if (sc->sc_debug & ATH_DEBUG_RESET) { 4151 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 4152 if (bf != NULL && bf->bf_m != NULL) { 4153 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4154 ath_hal_txprocdesc(ah, bf->bf_lastds, 4155 &bf->bf_status.ds_txstat) == HAL_OK); 4156 ieee80211_dump_pkt(ifp->if_l2com, 4157 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4158 0, -1); 4159 } 4160 } 4161 #endif /* ATH_DEBUG */ 4162 IF_LOCK(&ifp->if_snd); 4163 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4164 IF_UNLOCK(&ifp->if_snd); 4165 sc->sc_wd_timer = 0; 4166 } 4167 4168 /* 4169 * Update internal state after a channel change. 4170 */ 4171 static void 4172 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4173 { 4174 enum ieee80211_phymode mode; 4175 4176 /* 4177 * Change channels and update the h/w rate map 4178 * if we're switching; e.g. 11a to 11b/g. 4179 */ 4180 mode = ieee80211_chan2mode(chan); 4181 if (mode != sc->sc_curmode) 4182 ath_setcurmode(sc, mode); 4183 sc->sc_curchan = chan; 4184 } 4185 4186 /* 4187 * Set/change channels. If the channel is really being changed, 4188 * it's done by resetting the chip. To accomplish this we must 4189 * first cleanup any pending DMA, then restart stuff after a la 4190 * ath_init. 4191 */ 4192 static int 4193 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4194 { 4195 struct ifnet *ifp = sc->sc_ifp; 4196 struct ieee80211com *ic = ifp->if_l2com; 4197 struct ath_hal *ah = sc->sc_ah; 4198 int ret = 0; 4199 4200 /* Treat this as an interface reset */ 4201 ATH_PCU_UNLOCK_ASSERT(sc); 4202 ATH_UNLOCK_ASSERT(sc); 4203 4204 /* (Try to) stop TX/RX from occuring */ 4205 taskqueue_block(sc->sc_tq); 4206 4207 ATH_PCU_LOCK(sc); 4208 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4209 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4210 if (ath_reset_grablock(sc, 1) == 0) { 4211 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4212 __func__); 4213 } 4214 ATH_PCU_UNLOCK(sc); 4215 4216 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4217 __func__, ieee80211_chan2ieee(ic, chan), 4218 chan->ic_freq, chan->ic_flags); 4219 if (chan != sc->sc_curchan) { 4220 HAL_STATUS status; 4221 /* 4222 * To switch channels clear any pending DMA operations; 4223 * wait long enough for the RX fifo to drain, reset the 4224 * hardware at the new frequency, and then re-enable 4225 * the relevant bits of the h/w. 4226 */ 4227 #if 0 4228 ath_hal_intrset(ah, 0); /* disable interrupts */ 4229 #endif 4230 ath_stoprecv(sc, 1); /* turn off frame recv */ 4231 /* 4232 * First, handle completed TX/RX frames. 4233 */ 4234 ath_rx_flush(sc); 4235 ath_draintxq(sc, ATH_RESET_NOLOSS); 4236 /* 4237 * Next, flush the non-scheduled frames. 4238 */ 4239 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4240 4241 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4242 if_printf(ifp, "%s: unable to reset " 4243 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4244 __func__, ieee80211_chan2ieee(ic, chan), 4245 chan->ic_freq, chan->ic_flags, status); 4246 ret = EIO; 4247 goto finish; 4248 } 4249 sc->sc_diversity = ath_hal_getdiversity(ah); 4250 4251 /* Let DFS at it in case it's a DFS channel */ 4252 ath_dfs_radar_enable(sc, chan); 4253 4254 /* 4255 * Re-enable rx framework. 4256 */ 4257 if (ath_startrecv(sc) != 0) { 4258 if_printf(ifp, "%s: unable to restart recv logic\n", 4259 __func__); 4260 ret = EIO; 4261 goto finish; 4262 } 4263 4264 /* 4265 * Change channels and update the h/w rate map 4266 * if we're switching; e.g. 11a to 11b/g. 4267 */ 4268 ath_chan_change(sc, chan); 4269 4270 /* 4271 * Reset clears the beacon timers; reset them 4272 * here if needed. 4273 */ 4274 if (sc->sc_beacons) { /* restart beacons */ 4275 #ifdef IEEE80211_SUPPORT_TDMA 4276 if (sc->sc_tdma) 4277 ath_tdma_config(sc, NULL); 4278 else 4279 #endif 4280 ath_beacon_config(sc, NULL); 4281 } 4282 4283 /* 4284 * Re-enable interrupts. 4285 */ 4286 #if 0 4287 ath_hal_intrset(ah, sc->sc_imask); 4288 #endif 4289 } 4290 4291 finish: 4292 ATH_PCU_LOCK(sc); 4293 sc->sc_inreset_cnt--; 4294 /* XXX only do this if sc_inreset_cnt == 0? */ 4295 ath_hal_intrset(ah, sc->sc_imask); 4296 ATH_PCU_UNLOCK(sc); 4297 4298 IF_LOCK(&ifp->if_snd); 4299 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4300 IF_UNLOCK(&ifp->if_snd); 4301 ath_txrx_start(sc); 4302 /* XXX ath_start? */ 4303 4304 return ret; 4305 } 4306 4307 /* 4308 * Periodically recalibrate the PHY to account 4309 * for temperature/environment changes. 4310 */ 4311 static void 4312 ath_calibrate(void *arg) 4313 { 4314 struct ath_softc *sc = arg; 4315 struct ath_hal *ah = sc->sc_ah; 4316 struct ifnet *ifp = sc->sc_ifp; 4317 struct ieee80211com *ic = ifp->if_l2com; 4318 HAL_BOOL longCal, isCalDone; 4319 HAL_BOOL aniCal, shortCal = AH_FALSE; 4320 int nextcal; 4321 4322 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4323 goto restart; 4324 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4325 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4326 if (sc->sc_doresetcal) 4327 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4328 4329 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4330 if (aniCal) { 4331 sc->sc_stats.ast_ani_cal++; 4332 sc->sc_lastani = ticks; 4333 ath_hal_ani_poll(ah, sc->sc_curchan); 4334 } 4335 4336 if (longCal) { 4337 sc->sc_stats.ast_per_cal++; 4338 sc->sc_lastlongcal = ticks; 4339 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4340 /* 4341 * Rfgain is out of bounds, reset the chip 4342 * to load new gain values. 4343 */ 4344 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4345 "%s: rfgain change\n", __func__); 4346 sc->sc_stats.ast_per_rfgain++; 4347 sc->sc_resetcal = 0; 4348 sc->sc_doresetcal = AH_TRUE; 4349 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4350 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4351 return; 4352 } 4353 /* 4354 * If this long cal is after an idle period, then 4355 * reset the data collection state so we start fresh. 4356 */ 4357 if (sc->sc_resetcal) { 4358 (void) ath_hal_calreset(ah, sc->sc_curchan); 4359 sc->sc_lastcalreset = ticks; 4360 sc->sc_lastshortcal = ticks; 4361 sc->sc_resetcal = 0; 4362 sc->sc_doresetcal = AH_TRUE; 4363 } 4364 } 4365 4366 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4367 if (shortCal || longCal) { 4368 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4369 if (longCal) { 4370 /* 4371 * Calibrate noise floor data again in case of change. 4372 */ 4373 ath_hal_process_noisefloor(ah); 4374 } 4375 } else { 4376 DPRINTF(sc, ATH_DEBUG_ANY, 4377 "%s: calibration of channel %u failed\n", 4378 __func__, sc->sc_curchan->ic_freq); 4379 sc->sc_stats.ast_per_calfail++; 4380 } 4381 if (shortCal) 4382 sc->sc_lastshortcal = ticks; 4383 } 4384 if (!isCalDone) { 4385 restart: 4386 /* 4387 * Use a shorter interval to potentially collect multiple 4388 * data samples required to complete calibration. Once 4389 * we're told the work is done we drop back to a longer 4390 * interval between requests. We're more aggressive doing 4391 * work when operating as an AP to improve operation right 4392 * after startup. 4393 */ 4394 sc->sc_lastshortcal = ticks; 4395 nextcal = ath_shortcalinterval*hz/1000; 4396 if (sc->sc_opmode != HAL_M_HOSTAP) 4397 nextcal *= 10; 4398 sc->sc_doresetcal = AH_TRUE; 4399 } else { 4400 /* nextcal should be the shortest time for next event */ 4401 nextcal = ath_longcalinterval*hz; 4402 if (sc->sc_lastcalreset == 0) 4403 sc->sc_lastcalreset = sc->sc_lastlongcal; 4404 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4405 sc->sc_resetcal = 1; /* setup reset next trip */ 4406 sc->sc_doresetcal = AH_FALSE; 4407 } 4408 /* ANI calibration may occur more often than short/long/resetcal */ 4409 if (ath_anicalinterval > 0) 4410 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4411 4412 if (nextcal != 0) { 4413 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4414 __func__, nextcal, isCalDone ? "" : "!"); 4415 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4416 } else { 4417 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4418 __func__); 4419 /* NB: don't rearm timer */ 4420 } 4421 } 4422 4423 static void 4424 ath_scan_start(struct ieee80211com *ic) 4425 { 4426 struct ifnet *ifp = ic->ic_ifp; 4427 struct ath_softc *sc = ifp->if_softc; 4428 struct ath_hal *ah = sc->sc_ah; 4429 u_int32_t rfilt; 4430 4431 /* XXX calibration timer? */ 4432 4433 ATH_LOCK(sc); 4434 sc->sc_scanning = 1; 4435 sc->sc_syncbeacon = 0; 4436 rfilt = ath_calcrxfilter(sc); 4437 ATH_UNLOCK(sc); 4438 4439 ATH_PCU_LOCK(sc); 4440 ath_hal_setrxfilter(ah, rfilt); 4441 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4442 ATH_PCU_UNLOCK(sc); 4443 4444 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4445 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4446 } 4447 4448 static void 4449 ath_scan_end(struct ieee80211com *ic) 4450 { 4451 struct ifnet *ifp = ic->ic_ifp; 4452 struct ath_softc *sc = ifp->if_softc; 4453 struct ath_hal *ah = sc->sc_ah; 4454 u_int32_t rfilt; 4455 4456 ATH_LOCK(sc); 4457 sc->sc_scanning = 0; 4458 rfilt = ath_calcrxfilter(sc); 4459 ATH_UNLOCK(sc); 4460 4461 ATH_PCU_LOCK(sc); 4462 ath_hal_setrxfilter(ah, rfilt); 4463 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4464 4465 ath_hal_process_noisefloor(ah); 4466 ATH_PCU_UNLOCK(sc); 4467 4468 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4469 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4470 sc->sc_curaid); 4471 } 4472 4473 #ifdef ATH_ENABLE_11N 4474 /* 4475 * For now, just do a channel change. 4476 * 4477 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4478 * control state and resetting the hardware without dropping frames out 4479 * of the queue. 4480 * 4481 * The unfortunate trouble here is making absolutely sure that the 4482 * channel width change has propagated enough so the hardware 4483 * absolutely isn't handed bogus frames for it's current operating 4484 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4485 * does occur in parallel, we need to make certain we've blocked 4486 * any further ongoing TX (and RX, that can cause raw TX) 4487 * before we do this. 4488 */ 4489 static void 4490 ath_update_chw(struct ieee80211com *ic) 4491 { 4492 struct ifnet *ifp = ic->ic_ifp; 4493 struct ath_softc *sc = ifp->if_softc; 4494 4495 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4496 ath_set_channel(ic); 4497 } 4498 #endif /* ATH_ENABLE_11N */ 4499 4500 static void 4501 ath_set_channel(struct ieee80211com *ic) 4502 { 4503 struct ifnet *ifp = ic->ic_ifp; 4504 struct ath_softc *sc = ifp->if_softc; 4505 4506 (void) ath_chan_set(sc, ic->ic_curchan); 4507 /* 4508 * If we are returning to our bss channel then mark state 4509 * so the next recv'd beacon's tsf will be used to sync the 4510 * beacon timers. Note that since we only hear beacons in 4511 * sta/ibss mode this has no effect in other operating modes. 4512 */ 4513 ATH_LOCK(sc); 4514 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4515 sc->sc_syncbeacon = 1; 4516 ATH_UNLOCK(sc); 4517 } 4518 4519 /* 4520 * Walk the vap list and check if there any vap's in RUN state. 4521 */ 4522 static int 4523 ath_isanyrunningvaps(struct ieee80211vap *this) 4524 { 4525 struct ieee80211com *ic = this->iv_ic; 4526 struct ieee80211vap *vap; 4527 4528 IEEE80211_LOCK_ASSERT(ic); 4529 4530 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4531 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4532 return 1; 4533 } 4534 return 0; 4535 } 4536 4537 static int 4538 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4539 { 4540 struct ieee80211com *ic = vap->iv_ic; 4541 struct ath_softc *sc = ic->ic_ifp->if_softc; 4542 struct ath_vap *avp = ATH_VAP(vap); 4543 struct ath_hal *ah = sc->sc_ah; 4544 struct ieee80211_node *ni = NULL; 4545 int i, error, stamode; 4546 u_int32_t rfilt; 4547 int csa_run_transition = 0; 4548 static const HAL_LED_STATE leds[] = { 4549 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4550 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4551 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4552 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4553 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4554 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4555 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4556 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4557 }; 4558 4559 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4560 ieee80211_state_name[vap->iv_state], 4561 ieee80211_state_name[nstate]); 4562 4563 /* 4564 * net80211 _should_ have the comlock asserted at this point. 4565 * There are some comments around the calls to vap->iv_newstate 4566 * which indicate that it (newstate) may end up dropping the 4567 * lock. This and the subsequent lock assert check after newstate 4568 * are an attempt to catch these and figure out how/why. 4569 */ 4570 IEEE80211_LOCK_ASSERT(ic); 4571 4572 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4573 csa_run_transition = 1; 4574 4575 callout_drain(&sc->sc_cal_ch); 4576 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4577 4578 if (nstate == IEEE80211_S_SCAN) { 4579 /* 4580 * Scanning: turn off beacon miss and don't beacon. 4581 * Mark beacon state so when we reach RUN state we'll 4582 * [re]setup beacons. Unblock the task q thread so 4583 * deferred interrupt processing is done. 4584 */ 4585 ath_hal_intrset(ah, 4586 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4587 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4588 sc->sc_beacons = 0; 4589 taskqueue_unblock(sc->sc_tq); 4590 } 4591 4592 ni = ieee80211_ref_node(vap->iv_bss); 4593 rfilt = ath_calcrxfilter(sc); 4594 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4595 vap->iv_opmode == IEEE80211_M_AHDEMO || 4596 vap->iv_opmode == IEEE80211_M_IBSS); 4597 if (stamode && nstate == IEEE80211_S_RUN) { 4598 sc->sc_curaid = ni->ni_associd; 4599 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4600 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4601 } 4602 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4603 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4604 ath_hal_setrxfilter(ah, rfilt); 4605 4606 /* XXX is this to restore keycache on resume? */ 4607 if (vap->iv_opmode != IEEE80211_M_STA && 4608 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4609 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4610 if (ath_hal_keyisvalid(ah, i)) 4611 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4612 } 4613 4614 /* 4615 * Invoke the parent method to do net80211 work. 4616 */ 4617 error = avp->av_newstate(vap, nstate, arg); 4618 if (error != 0) 4619 goto bad; 4620 4621 /* 4622 * See above: ensure av_newstate() doesn't drop the lock 4623 * on us. 4624 */ 4625 IEEE80211_LOCK_ASSERT(ic); 4626 4627 if (nstate == IEEE80211_S_RUN) { 4628 /* NB: collect bss node again, it may have changed */ 4629 ieee80211_free_node(ni); 4630 ni = ieee80211_ref_node(vap->iv_bss); 4631 4632 DPRINTF(sc, ATH_DEBUG_STATE, 4633 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 4634 "capinfo 0x%04x chan %d\n", __func__, 4635 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 4636 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 4637 4638 switch (vap->iv_opmode) { 4639 #ifdef IEEE80211_SUPPORT_TDMA 4640 case IEEE80211_M_AHDEMO: 4641 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 4642 break; 4643 /* fall thru... */ 4644 #endif 4645 case IEEE80211_M_HOSTAP: 4646 case IEEE80211_M_IBSS: 4647 case IEEE80211_M_MBSS: 4648 /* 4649 * Allocate and setup the beacon frame. 4650 * 4651 * Stop any previous beacon DMA. This may be 4652 * necessary, for example, when an ibss merge 4653 * causes reconfiguration; there will be a state 4654 * transition from RUN->RUN that means we may 4655 * be called with beacon transmission active. 4656 */ 4657 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4658 4659 error = ath_beacon_alloc(sc, ni); 4660 if (error != 0) 4661 goto bad; 4662 /* 4663 * If joining an adhoc network defer beacon timer 4664 * configuration to the next beacon frame so we 4665 * have a current TSF to use. Otherwise we're 4666 * starting an ibss/bss so there's no need to delay; 4667 * if this is the first vap moving to RUN state, then 4668 * beacon state needs to be [re]configured. 4669 */ 4670 if (vap->iv_opmode == IEEE80211_M_IBSS && 4671 ni->ni_tstamp.tsf != 0) { 4672 sc->sc_syncbeacon = 1; 4673 } else if (!sc->sc_beacons) { 4674 #ifdef IEEE80211_SUPPORT_TDMA 4675 if (vap->iv_caps & IEEE80211_C_TDMA) 4676 ath_tdma_config(sc, vap); 4677 else 4678 #endif 4679 ath_beacon_config(sc, vap); 4680 sc->sc_beacons = 1; 4681 } 4682 break; 4683 case IEEE80211_M_STA: 4684 /* 4685 * Defer beacon timer configuration to the next 4686 * beacon frame so we have a current TSF to use 4687 * (any TSF collected when scanning is likely old). 4688 * However if it's due to a CSA -> RUN transition, 4689 * force a beacon update so we pick up a lack of 4690 * beacons from an AP in CAC and thus force a 4691 * scan. 4692 */ 4693 sc->sc_syncbeacon = 1; 4694 if (csa_run_transition) 4695 ath_beacon_config(sc, vap); 4696 break; 4697 case IEEE80211_M_MONITOR: 4698 /* 4699 * Monitor mode vaps have only INIT->RUN and RUN->RUN 4700 * transitions so we must re-enable interrupts here to 4701 * handle the case of a single monitor mode vap. 4702 */ 4703 ath_hal_intrset(ah, sc->sc_imask); 4704 break; 4705 case IEEE80211_M_WDS: 4706 break; 4707 default: 4708 break; 4709 } 4710 /* 4711 * Let the hal process statistics collected during a 4712 * scan so it can provide calibrated noise floor data. 4713 */ 4714 ath_hal_process_noisefloor(ah); 4715 /* 4716 * Reset rssi stats; maybe not the best place... 4717 */ 4718 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4719 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4720 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4721 /* 4722 * Finally, start any timers and the task q thread 4723 * (in case we didn't go through SCAN state). 4724 */ 4725 if (ath_longcalinterval != 0) { 4726 /* start periodic recalibration timer */ 4727 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4728 } else { 4729 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4730 "%s: calibration disabled\n", __func__); 4731 } 4732 taskqueue_unblock(sc->sc_tq); 4733 } else if (nstate == IEEE80211_S_INIT) { 4734 /* 4735 * If there are no vaps left in RUN state then 4736 * shutdown host/driver operation: 4737 * o disable interrupts 4738 * o disable the task queue thread 4739 * o mark beacon processing as stopped 4740 */ 4741 if (!ath_isanyrunningvaps(vap)) { 4742 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4743 /* disable interrupts */ 4744 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4745 taskqueue_block(sc->sc_tq); 4746 sc->sc_beacons = 0; 4747 } 4748 #ifdef IEEE80211_SUPPORT_TDMA 4749 ath_hal_setcca(ah, AH_TRUE); 4750 #endif 4751 } 4752 bad: 4753 ieee80211_free_node(ni); 4754 return error; 4755 } 4756 4757 /* 4758 * Allocate a key cache slot to the station so we can 4759 * setup a mapping from key index to node. The key cache 4760 * slot is needed for managing antenna state and for 4761 * compression when stations do not use crypto. We do 4762 * it uniliaterally here; if crypto is employed this slot 4763 * will be reassigned. 4764 */ 4765 static void 4766 ath_setup_stationkey(struct ieee80211_node *ni) 4767 { 4768 struct ieee80211vap *vap = ni->ni_vap; 4769 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4770 ieee80211_keyix keyix, rxkeyix; 4771 4772 /* XXX should take a locked ref to vap->iv_bss */ 4773 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4774 /* 4775 * Key cache is full; we'll fall back to doing 4776 * the more expensive lookup in software. Note 4777 * this also means no h/w compression. 4778 */ 4779 /* XXX msg+statistic */ 4780 } else { 4781 /* XXX locking? */ 4782 ni->ni_ucastkey.wk_keyix = keyix; 4783 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4784 /* NB: must mark device key to get called back on delete */ 4785 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 4786 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 4787 /* NB: this will create a pass-thru key entry */ 4788 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 4789 } 4790 } 4791 4792 /* 4793 * Setup driver-specific state for a newly associated node. 4794 * Note that we're called also on a re-associate, the isnew 4795 * param tells us if this is the first time or not. 4796 */ 4797 static void 4798 ath_newassoc(struct ieee80211_node *ni, int isnew) 4799 { 4800 struct ath_node *an = ATH_NODE(ni); 4801 struct ieee80211vap *vap = ni->ni_vap; 4802 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4803 const struct ieee80211_txparam *tp = ni->ni_txparms; 4804 4805 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 4806 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 4807 4808 ath_rate_newassoc(sc, an, isnew); 4809 if (isnew && 4810 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 4811 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4812 ath_setup_stationkey(ni); 4813 } 4814 4815 static int 4816 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 4817 int nchans, struct ieee80211_channel chans[]) 4818 { 4819 struct ath_softc *sc = ic->ic_ifp->if_softc; 4820 struct ath_hal *ah = sc->sc_ah; 4821 HAL_STATUS status; 4822 4823 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4824 "%s: rd %u cc %u location %c%s\n", 4825 __func__, reg->regdomain, reg->country, reg->location, 4826 reg->ecm ? " ecm" : ""); 4827 4828 status = ath_hal_set_channels(ah, chans, nchans, 4829 reg->country, reg->regdomain); 4830 if (status != HAL_OK) { 4831 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 4832 __func__, status); 4833 return EINVAL; /* XXX */ 4834 } 4835 4836 return 0; 4837 } 4838 4839 static void 4840 ath_getradiocaps(struct ieee80211com *ic, 4841 int maxchans, int *nchans, struct ieee80211_channel chans[]) 4842 { 4843 struct ath_softc *sc = ic->ic_ifp->if_softc; 4844 struct ath_hal *ah = sc->sc_ah; 4845 4846 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 4847 __func__, SKU_DEBUG, CTRY_DEFAULT); 4848 4849 /* XXX check return */ 4850 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 4851 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 4852 4853 } 4854 4855 static int 4856 ath_getchannels(struct ath_softc *sc) 4857 { 4858 struct ifnet *ifp = sc->sc_ifp; 4859 struct ieee80211com *ic = ifp->if_l2com; 4860 struct ath_hal *ah = sc->sc_ah; 4861 HAL_STATUS status; 4862 4863 /* 4864 * Collect channel set based on EEPROM contents. 4865 */ 4866 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 4867 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 4868 if (status != HAL_OK) { 4869 if_printf(ifp, "%s: unable to collect channel list from hal, " 4870 "status %d\n", __func__, status); 4871 return EINVAL; 4872 } 4873 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 4874 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 4875 /* XXX map Atheros sku's to net80211 SKU's */ 4876 /* XXX net80211 types too small */ 4877 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 4878 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 4879 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 4880 ic->ic_regdomain.isocc[1] = ' '; 4881 4882 ic->ic_regdomain.ecm = 1; 4883 ic->ic_regdomain.location = 'I'; 4884 4885 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4886 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 4887 __func__, sc->sc_eerd, sc->sc_eecc, 4888 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 4889 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 4890 return 0; 4891 } 4892 4893 static int 4894 ath_rate_setup(struct ath_softc *sc, u_int mode) 4895 { 4896 struct ath_hal *ah = sc->sc_ah; 4897 const HAL_RATE_TABLE *rt; 4898 4899 switch (mode) { 4900 case IEEE80211_MODE_11A: 4901 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 4902 break; 4903 case IEEE80211_MODE_HALF: 4904 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 4905 break; 4906 case IEEE80211_MODE_QUARTER: 4907 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 4908 break; 4909 case IEEE80211_MODE_11B: 4910 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 4911 break; 4912 case IEEE80211_MODE_11G: 4913 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 4914 break; 4915 case IEEE80211_MODE_TURBO_A: 4916 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 4917 break; 4918 case IEEE80211_MODE_TURBO_G: 4919 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 4920 break; 4921 case IEEE80211_MODE_STURBO_A: 4922 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 4923 break; 4924 case IEEE80211_MODE_11NA: 4925 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 4926 break; 4927 case IEEE80211_MODE_11NG: 4928 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 4929 break; 4930 default: 4931 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 4932 __func__, mode); 4933 return 0; 4934 } 4935 sc->sc_rates[mode] = rt; 4936 return (rt != NULL); 4937 } 4938 4939 static void 4940 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 4941 { 4942 #define N(a) (sizeof(a)/sizeof(a[0])) 4943 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 4944 static const struct { 4945 u_int rate; /* tx/rx 802.11 rate */ 4946 u_int16_t timeOn; /* LED on time (ms) */ 4947 u_int16_t timeOff; /* LED off time (ms) */ 4948 } blinkrates[] = { 4949 { 108, 40, 10 }, 4950 { 96, 44, 11 }, 4951 { 72, 50, 13 }, 4952 { 48, 57, 14 }, 4953 { 36, 67, 16 }, 4954 { 24, 80, 20 }, 4955 { 22, 100, 25 }, 4956 { 18, 133, 34 }, 4957 { 12, 160, 40 }, 4958 { 10, 200, 50 }, 4959 { 6, 240, 58 }, 4960 { 4, 267, 66 }, 4961 { 2, 400, 100 }, 4962 { 0, 500, 130 }, 4963 /* XXX half/quarter rates */ 4964 }; 4965 const HAL_RATE_TABLE *rt; 4966 int i, j; 4967 4968 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 4969 rt = sc->sc_rates[mode]; 4970 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 4971 for (i = 0; i < rt->rateCount; i++) { 4972 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 4973 if (rt->info[i].phy != IEEE80211_T_HT) 4974 sc->sc_rixmap[ieeerate] = i; 4975 else 4976 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 4977 } 4978 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 4979 for (i = 0; i < N(sc->sc_hwmap); i++) { 4980 if (i >= rt->rateCount) { 4981 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 4982 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 4983 continue; 4984 } 4985 sc->sc_hwmap[i].ieeerate = 4986 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 4987 if (rt->info[i].phy == IEEE80211_T_HT) 4988 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 4989 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 4990 if (rt->info[i].shortPreamble || 4991 rt->info[i].phy == IEEE80211_T_OFDM) 4992 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 4993 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 4994 for (j = 0; j < N(blinkrates)-1; j++) 4995 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 4996 break; 4997 /* NB: this uses the last entry if the rate isn't found */ 4998 /* XXX beware of overlow */ 4999 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5000 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5001 } 5002 sc->sc_currates = rt; 5003 sc->sc_curmode = mode; 5004 /* 5005 * All protection frames are transmited at 2Mb/s for 5006 * 11g, otherwise at 1Mb/s. 5007 */ 5008 if (mode == IEEE80211_MODE_11G) 5009 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 5010 else 5011 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 5012 /* NB: caller is responsible for resetting rate control state */ 5013 #undef N 5014 } 5015 5016 static void 5017 ath_watchdog(void *arg) 5018 { 5019 struct ath_softc *sc = arg; 5020 int do_reset = 0; 5021 5022 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 5023 struct ifnet *ifp = sc->sc_ifp; 5024 uint32_t hangs; 5025 5026 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 5027 hangs != 0) { 5028 if_printf(ifp, "%s hang detected (0x%x)\n", 5029 hangs & 0xff ? "bb" : "mac", hangs); 5030 } else 5031 if_printf(ifp, "device timeout\n"); 5032 do_reset = 1; 5033 ifp->if_oerrors++; 5034 sc->sc_stats.ast_watchdog++; 5035 } 5036 5037 /* 5038 * We can't hold the lock across the ath_reset() call. 5039 * 5040 * And since this routine can't hold a lock and sleep, 5041 * do the reset deferred. 5042 */ 5043 if (do_reset) { 5044 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5045 } 5046 5047 callout_schedule(&sc->sc_wd_ch, hz); 5048 } 5049 5050 /* 5051 * Fetch the rate control statistics for the given node. 5052 */ 5053 static int 5054 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 5055 { 5056 struct ath_node *an; 5057 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5058 struct ieee80211_node *ni; 5059 int error = 0; 5060 5061 /* Perform a lookup on the given node */ 5062 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 5063 if (ni == NULL) { 5064 error = EINVAL; 5065 goto bad; 5066 } 5067 5068 /* Lock the ath_node */ 5069 an = ATH_NODE(ni); 5070 ATH_NODE_LOCK(an); 5071 5072 /* Fetch the rate control stats for this node */ 5073 error = ath_rate_fetch_node_stats(sc, an, rs); 5074 5075 /* No matter what happens here, just drop through */ 5076 5077 /* Unlock the ath_node */ 5078 ATH_NODE_UNLOCK(an); 5079 5080 /* Unref the node */ 5081 ieee80211_node_decref(ni); 5082 5083 bad: 5084 return (error); 5085 } 5086 5087 #ifdef ATH_DIAGAPI 5088 /* 5089 * Diagnostic interface to the HAL. This is used by various 5090 * tools to do things like retrieve register contents for 5091 * debugging. The mechanism is intentionally opaque so that 5092 * it can change frequently w/o concern for compatiblity. 5093 */ 5094 static int 5095 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5096 { 5097 struct ath_hal *ah = sc->sc_ah; 5098 u_int id = ad->ad_id & ATH_DIAG_ID; 5099 void *indata = NULL; 5100 void *outdata = NULL; 5101 u_int32_t insize = ad->ad_in_size; 5102 u_int32_t outsize = ad->ad_out_size; 5103 int error = 0; 5104 5105 if (ad->ad_id & ATH_DIAG_IN) { 5106 /* 5107 * Copy in data. 5108 */ 5109 indata = malloc(insize, M_TEMP, M_NOWAIT); 5110 if (indata == NULL) { 5111 error = ENOMEM; 5112 goto bad; 5113 } 5114 error = copyin(ad->ad_in_data, indata, insize); 5115 if (error) 5116 goto bad; 5117 } 5118 if (ad->ad_id & ATH_DIAG_DYN) { 5119 /* 5120 * Allocate a buffer for the results (otherwise the HAL 5121 * returns a pointer to a buffer where we can read the 5122 * results). Note that we depend on the HAL leaving this 5123 * pointer for us to use below in reclaiming the buffer; 5124 * may want to be more defensive. 5125 */ 5126 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5127 if (outdata == NULL) { 5128 error = ENOMEM; 5129 goto bad; 5130 } 5131 } 5132 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5133 if (outsize < ad->ad_out_size) 5134 ad->ad_out_size = outsize; 5135 if (outdata != NULL) 5136 error = copyout(outdata, ad->ad_out_data, 5137 ad->ad_out_size); 5138 } else { 5139 error = EINVAL; 5140 } 5141 bad: 5142 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5143 free(indata, M_TEMP); 5144 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5145 free(outdata, M_TEMP); 5146 return error; 5147 } 5148 #endif /* ATH_DIAGAPI */ 5149 5150 static int 5151 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5152 { 5153 #define IS_RUNNING(ifp) \ 5154 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5155 struct ath_softc *sc = ifp->if_softc; 5156 struct ieee80211com *ic = ifp->if_l2com; 5157 struct ifreq *ifr = (struct ifreq *)data; 5158 const HAL_RATE_TABLE *rt; 5159 int error = 0; 5160 5161 switch (cmd) { 5162 case SIOCSIFFLAGS: 5163 ATH_LOCK(sc); 5164 if (IS_RUNNING(ifp)) { 5165 /* 5166 * To avoid rescanning another access point, 5167 * do not call ath_init() here. Instead, 5168 * only reflect promisc mode settings. 5169 */ 5170 ath_mode_init(sc); 5171 } else if (ifp->if_flags & IFF_UP) { 5172 /* 5173 * Beware of being called during attach/detach 5174 * to reset promiscuous mode. In that case we 5175 * will still be marked UP but not RUNNING. 5176 * However trying to re-init the interface 5177 * is the wrong thing to do as we've already 5178 * torn down much of our state. There's 5179 * probably a better way to deal with this. 5180 */ 5181 if (!sc->sc_invalid) 5182 ath_init(sc); /* XXX lose error */ 5183 } else { 5184 ath_stop_locked(ifp); 5185 #ifdef notyet 5186 /* XXX must wakeup in places like ath_vap_delete */ 5187 if (!sc->sc_invalid) 5188 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5189 #endif 5190 } 5191 ATH_UNLOCK(sc); 5192 break; 5193 case SIOCGIFMEDIA: 5194 case SIOCSIFMEDIA: 5195 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5196 break; 5197 case SIOCGATHSTATS: 5198 /* NB: embed these numbers to get a consistent view */ 5199 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5200 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5201 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5202 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5203 #ifdef IEEE80211_SUPPORT_TDMA 5204 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5205 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5206 #endif 5207 rt = sc->sc_currates; 5208 sc->sc_stats.ast_tx_rate = 5209 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5210 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 5211 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 5212 return copyout(&sc->sc_stats, 5213 ifr->ifr_data, sizeof (sc->sc_stats)); 5214 case SIOCGATHAGSTATS: 5215 return copyout(&sc->sc_aggr_stats, 5216 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 5217 case SIOCZATHSTATS: 5218 error = priv_check(curthread, PRIV_DRIVER); 5219 if (error == 0) { 5220 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 5221 memset(&sc->sc_aggr_stats, 0, 5222 sizeof(sc->sc_aggr_stats)); 5223 memset(&sc->sc_intr_stats, 0, 5224 sizeof(sc->sc_intr_stats)); 5225 } 5226 break; 5227 #ifdef ATH_DIAGAPI 5228 case SIOCGATHDIAG: 5229 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5230 break; 5231 case SIOCGATHPHYERR: 5232 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5233 break; 5234 #endif 5235 case SIOCGATHNODERATESTATS: 5236 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 5237 break; 5238 case SIOCGIFADDR: 5239 error = ether_ioctl(ifp, cmd, data); 5240 break; 5241 default: 5242 error = EINVAL; 5243 break; 5244 } 5245 return error; 5246 #undef IS_RUNNING 5247 } 5248 5249 /* 5250 * Announce various information on device/driver attach. 5251 */ 5252 static void 5253 ath_announce(struct ath_softc *sc) 5254 { 5255 struct ifnet *ifp = sc->sc_ifp; 5256 struct ath_hal *ah = sc->sc_ah; 5257 5258 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5259 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5260 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5261 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5262 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5263 if (bootverbose) { 5264 int i; 5265 for (i = 0; i <= WME_AC_VO; i++) { 5266 struct ath_txq *txq = sc->sc_ac2q[i]; 5267 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5268 txq->axq_qnum, ieee80211_wme_acnames[i]); 5269 } 5270 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5271 sc->sc_cabq->axq_qnum); 5272 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5273 } 5274 if (ath_rxbuf != ATH_RXBUF) 5275 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5276 if (ath_txbuf != ATH_TXBUF) 5277 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5278 if (sc->sc_mcastkey && bootverbose) 5279 if_printf(ifp, "using multicast key search\n"); 5280 } 5281 5282 static void 5283 ath_dfs_tasklet(void *p, int npending) 5284 { 5285 struct ath_softc *sc = (struct ath_softc *) p; 5286 struct ifnet *ifp = sc->sc_ifp; 5287 struct ieee80211com *ic = ifp->if_l2com; 5288 5289 /* 5290 * If previous processing has found a radar event, 5291 * signal this to the net80211 layer to begin DFS 5292 * processing. 5293 */ 5294 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 5295 /* DFS event found, initiate channel change */ 5296 /* 5297 * XXX doesn't currently tell us whether the event 5298 * XXX was found in the primary or extension 5299 * XXX channel! 5300 */ 5301 IEEE80211_LOCK(ic); 5302 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 5303 IEEE80211_UNLOCK(ic); 5304 } 5305 } 5306 5307 MODULE_VERSION(if_ath, 1); 5308 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 5309 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 5310 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 5311 #endif 5312