1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_tx_edma.h> 113 #include <dev/ath/if_ath_beacon.h> 114 #include <dev/ath/if_athdfs.h> 115 116 #ifdef ATH_TX99_DIAG 117 #include <dev/ath/ath_tx99/ath_tx99.h> 118 #endif 119 120 /* 121 * ATH_BCBUF determines the number of vap's that can transmit 122 * beacons and also (currently) the number of vap's that can 123 * have unique mac addresses/bssid. When staggering beacons 124 * 4 is probably a good max as otherwise the beacons become 125 * very closely spaced and there is limited time for cab q traffic 126 * to go out. You can burst beacons instead but that is not good 127 * for stations in power save and at some point you really want 128 * another radio (and channel). 129 * 130 * The limit on the number of mac addresses is tied to our use of 131 * the U/L bit and tracking addresses in a byte; it would be 132 * worthwhile to allow more for applications like proxy sta. 133 */ 134 CTASSERT(ATH_BCBUF <= 8); 135 136 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 137 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 138 const uint8_t [IEEE80211_ADDR_LEN], 139 const uint8_t [IEEE80211_ADDR_LEN]); 140 static void ath_vap_delete(struct ieee80211vap *); 141 static void ath_init(void *); 142 static void ath_stop_locked(struct ifnet *); 143 static void ath_stop(struct ifnet *); 144 static int ath_reset_vap(struct ieee80211vap *, u_long); 145 static void ath_start_queue(struct ifnet *ifp); 146 static int ath_media_change(struct ifnet *); 147 static void ath_watchdog(void *); 148 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 149 static void ath_fatal_proc(void *, int); 150 static void ath_bmiss_vap(struct ieee80211vap *); 151 static void ath_bmiss_proc(void *, int); 152 static void ath_key_update_begin(struct ieee80211vap *); 153 static void ath_key_update_end(struct ieee80211vap *); 154 static void ath_update_mcast(struct ifnet *); 155 static void ath_update_promisc(struct ifnet *); 156 static void ath_updateslot(struct ifnet *); 157 static void ath_bstuck_proc(void *, int); 158 static void ath_reset_proc(void *, int); 159 static int ath_desc_alloc(struct ath_softc *); 160 static void ath_desc_free(struct ath_softc *); 161 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 162 const uint8_t [IEEE80211_ADDR_LEN]); 163 static void ath_node_cleanup(struct ieee80211_node *); 164 static void ath_node_free(struct ieee80211_node *); 165 static void ath_node_getsignal(const struct ieee80211_node *, 166 int8_t *, int8_t *); 167 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 168 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 169 static int ath_tx_setup(struct ath_softc *, int, int); 170 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 171 static void ath_tx_cleanup(struct ath_softc *); 172 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 173 int dosched); 174 static void ath_tx_proc_q0(void *, int); 175 static void ath_tx_proc_q0123(void *, int); 176 static void ath_tx_proc(void *, int); 177 static void ath_txq_sched_tasklet(void *, int); 178 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 179 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 180 static void ath_scan_start(struct ieee80211com *); 181 static void ath_scan_end(struct ieee80211com *); 182 static void ath_set_channel(struct ieee80211com *); 183 #ifdef ATH_ENABLE_11N 184 static void ath_update_chw(struct ieee80211com *); 185 #endif /* ATH_ENABLE_11N */ 186 static void ath_calibrate(void *); 187 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 188 static void ath_setup_stationkey(struct ieee80211_node *); 189 static void ath_newassoc(struct ieee80211_node *, int); 190 static int ath_setregdomain(struct ieee80211com *, 191 struct ieee80211_regdomain *, int, 192 struct ieee80211_channel []); 193 static void ath_getradiocaps(struct ieee80211com *, int, int *, 194 struct ieee80211_channel []); 195 static int ath_getchannels(struct ath_softc *); 196 197 static int ath_rate_setup(struct ath_softc *, u_int mode); 198 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 199 200 static void ath_announce(struct ath_softc *); 201 202 static void ath_dfs_tasklet(void *, int); 203 static void ath_node_powersave(struct ieee80211_node *, int); 204 static int ath_node_set_tim(struct ieee80211_node *, int); 205 206 #ifdef IEEE80211_SUPPORT_TDMA 207 #include <dev/ath/if_ath_tdma.h> 208 #endif 209 210 SYSCTL_DECL(_hw_ath); 211 212 /* XXX validate sysctl values */ 213 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 214 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 215 0, "long chip calibration interval (secs)"); 216 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 217 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 218 0, "short chip calibration interval (msecs)"); 219 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 220 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 221 0, "reset chip calibration results (secs)"); 222 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 223 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 224 0, "ANI calibration (msecs)"); 225 226 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 227 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 228 0, "rx buffers allocated"); 229 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 230 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 231 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 232 0, "tx buffers allocated"); 233 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 234 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 235 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 236 0, "tx (mgmt) buffers allocated"); 237 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 238 239 int ath_bstuck_threshold = 4; /* max missed beacons */ 240 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 241 0, "max missed beacon xmits before chip reset"); 242 243 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 244 245 void 246 ath_legacy_attach_comp_func(struct ath_softc *sc) 247 { 248 249 /* 250 * Special case certain configurations. Note the 251 * CAB queue is handled by these specially so don't 252 * include them when checking the txq setup mask. 253 */ 254 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 255 case 0x01: 256 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 257 break; 258 case 0x0f: 259 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 260 break; 261 default: 262 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 263 break; 264 } 265 } 266 267 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 268 #define HAL_MODE_HT40 \ 269 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 270 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 271 int 272 ath_attach(u_int16_t devid, struct ath_softc *sc) 273 { 274 struct ifnet *ifp; 275 struct ieee80211com *ic; 276 struct ath_hal *ah = NULL; 277 HAL_STATUS status; 278 int error = 0, i; 279 u_int wmodes; 280 uint8_t macaddr[IEEE80211_ADDR_LEN]; 281 int rx_chainmask, tx_chainmask; 282 283 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 284 285 CURVNET_SET(vnet0); 286 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 287 if (ifp == NULL) { 288 device_printf(sc->sc_dev, "can not if_alloc()\n"); 289 error = ENOSPC; 290 goto bad; 291 } 292 ic = ifp->if_l2com; 293 294 /* set these up early for if_printf use */ 295 if_initname(ifp, device_get_name(sc->sc_dev), 296 device_get_unit(sc->sc_dev)); 297 CURVNET_RESTORE(); 298 299 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 300 sc->sc_eepromdata, &status); 301 if (ah == NULL) { 302 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 303 status); 304 error = ENXIO; 305 goto bad; 306 } 307 sc->sc_ah = ah; 308 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 309 #ifdef ATH_DEBUG 310 sc->sc_debug = ath_debug; 311 #endif 312 313 /* 314 * Setup the DMA/EDMA functions based on the current 315 * hardware support. 316 * 317 * This is required before the descriptors are allocated. 318 */ 319 if (ath_hal_hasedma(sc->sc_ah)) { 320 sc->sc_isedma = 1; 321 ath_recv_setup_edma(sc); 322 ath_xmit_setup_edma(sc); 323 } else { 324 ath_recv_setup_legacy(sc); 325 ath_xmit_setup_legacy(sc); 326 } 327 328 /* 329 * Check if the MAC has multi-rate retry support. 330 * We do this by trying to setup a fake extended 331 * descriptor. MAC's that don't have support will 332 * return false w/o doing anything. MAC's that do 333 * support it will return true w/o doing anything. 334 */ 335 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 336 337 /* 338 * Check if the device has hardware counters for PHY 339 * errors. If so we need to enable the MIB interrupt 340 * so we can act on stat triggers. 341 */ 342 if (ath_hal_hwphycounters(ah)) 343 sc->sc_needmib = 1; 344 345 /* 346 * Get the hardware key cache size. 347 */ 348 sc->sc_keymax = ath_hal_keycachesize(ah); 349 if (sc->sc_keymax > ATH_KEYMAX) { 350 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 351 ATH_KEYMAX, sc->sc_keymax); 352 sc->sc_keymax = ATH_KEYMAX; 353 } 354 /* 355 * Reset the key cache since some parts do not 356 * reset the contents on initial power up. 357 */ 358 for (i = 0; i < sc->sc_keymax; i++) 359 ath_hal_keyreset(ah, i); 360 361 /* 362 * Collect the default channel list. 363 */ 364 error = ath_getchannels(sc); 365 if (error != 0) 366 goto bad; 367 368 /* 369 * Setup rate tables for all potential media types. 370 */ 371 ath_rate_setup(sc, IEEE80211_MODE_11A); 372 ath_rate_setup(sc, IEEE80211_MODE_11B); 373 ath_rate_setup(sc, IEEE80211_MODE_11G); 374 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 375 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 376 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 377 ath_rate_setup(sc, IEEE80211_MODE_11NA); 378 ath_rate_setup(sc, IEEE80211_MODE_11NG); 379 ath_rate_setup(sc, IEEE80211_MODE_HALF); 380 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 381 382 /* NB: setup here so ath_rate_update is happy */ 383 ath_setcurmode(sc, IEEE80211_MODE_11A); 384 385 /* 386 * Allocate TX descriptors and populate the lists. 387 */ 388 error = ath_desc_alloc(sc); 389 if (error != 0) { 390 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 391 error); 392 goto bad; 393 } 394 error = ath_txdma_setup(sc); 395 if (error != 0) { 396 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 397 error); 398 goto bad; 399 } 400 401 /* 402 * Allocate RX descriptors and populate the lists. 403 */ 404 error = ath_rxdma_setup(sc); 405 if (error != 0) { 406 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 407 error); 408 goto bad; 409 } 410 411 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 412 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 413 414 ATH_TXBUF_LOCK_INIT(sc); 415 416 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 417 taskqueue_thread_enqueue, &sc->sc_tq); 418 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 419 "%s taskq", ifp->if_xname); 420 421 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 422 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 423 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 424 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 425 TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc); 426 TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc); 427 428 /* 429 * Allocate hardware transmit queues: one queue for 430 * beacon frames and one data queue for each QoS 431 * priority. Note that the hal handles resetting 432 * these queues at the needed time. 433 * 434 * XXX PS-Poll 435 */ 436 sc->sc_bhalq = ath_beaconq_setup(sc); 437 if (sc->sc_bhalq == (u_int) -1) { 438 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 439 error = EIO; 440 goto bad2; 441 } 442 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 443 if (sc->sc_cabq == NULL) { 444 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 445 error = EIO; 446 goto bad2; 447 } 448 /* NB: insure BK queue is the lowest priority h/w queue */ 449 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 450 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 451 ieee80211_wme_acnames[WME_AC_BK]); 452 error = EIO; 453 goto bad2; 454 } 455 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 456 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 457 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 458 /* 459 * Not enough hardware tx queues to properly do WME; 460 * just punt and assign them all to the same h/w queue. 461 * We could do a better job of this if, for example, 462 * we allocate queues when we switch from station to 463 * AP mode. 464 */ 465 if (sc->sc_ac2q[WME_AC_VI] != NULL) 466 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 467 if (sc->sc_ac2q[WME_AC_BE] != NULL) 468 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 469 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 470 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 471 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 472 } 473 474 /* 475 * Attach the TX completion function. 476 * 477 * The non-EDMA chips may have some special case optimisations; 478 * this method gives everyone a chance to attach cleanly. 479 */ 480 sc->sc_tx.xmit_attach_comp_func(sc); 481 482 /* 483 * Setup rate control. Some rate control modules 484 * call back to change the anntena state so expose 485 * the necessary entry points. 486 * XXX maybe belongs in struct ath_ratectrl? 487 */ 488 sc->sc_setdefantenna = ath_setdefantenna; 489 sc->sc_rc = ath_rate_attach(sc); 490 if (sc->sc_rc == NULL) { 491 error = EIO; 492 goto bad2; 493 } 494 495 /* Attach DFS module */ 496 if (! ath_dfs_attach(sc)) { 497 device_printf(sc->sc_dev, 498 "%s: unable to attach DFS\n", __func__); 499 error = EIO; 500 goto bad2; 501 } 502 503 /* Start DFS processing tasklet */ 504 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 505 506 /* Configure LED state */ 507 sc->sc_blinking = 0; 508 sc->sc_ledstate = 1; 509 sc->sc_ledon = 0; /* low true */ 510 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 511 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 512 513 /* 514 * Don't setup hardware-based blinking. 515 * 516 * Although some NICs may have this configured in the 517 * default reset register values, the user may wish 518 * to alter which pins have which function. 519 * 520 * The reference driver attaches the MAC network LED to GPIO1 and 521 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 522 * NIC has these reversed. 523 */ 524 sc->sc_hardled = (1 == 0); 525 sc->sc_led_net_pin = -1; 526 sc->sc_led_pwr_pin = -1; 527 /* 528 * Auto-enable soft led processing for IBM cards and for 529 * 5211 minipci cards. Users can also manually enable/disable 530 * support with a sysctl. 531 */ 532 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 533 ath_led_config(sc); 534 ath_hal_setledstate(ah, HAL_LED_INIT); 535 536 ifp->if_softc = sc; 537 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 538 ifp->if_start = ath_start_queue; 539 ifp->if_ioctl = ath_ioctl; 540 ifp->if_init = ath_init; 541 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 542 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 543 IFQ_SET_READY(&ifp->if_snd); 544 545 ic->ic_ifp = ifp; 546 /* XXX not right but it's not used anywhere important */ 547 ic->ic_phytype = IEEE80211_T_OFDM; 548 ic->ic_opmode = IEEE80211_M_STA; 549 ic->ic_caps = 550 IEEE80211_C_STA /* station mode */ 551 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 552 | IEEE80211_C_HOSTAP /* hostap mode */ 553 | IEEE80211_C_MONITOR /* monitor mode */ 554 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 555 | IEEE80211_C_WDS /* 4-address traffic works */ 556 | IEEE80211_C_MBSS /* mesh point link mode */ 557 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 558 | IEEE80211_C_SHSLOT /* short slot time supported */ 559 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 560 #ifndef ATH_ENABLE_11N 561 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 562 #endif 563 | IEEE80211_C_TXFRAG /* handle tx frags */ 564 #ifdef ATH_ENABLE_DFS 565 | IEEE80211_C_DFS /* Enable radar detection */ 566 #endif 567 ; 568 /* 569 * Query the hal to figure out h/w crypto support. 570 */ 571 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 572 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 573 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 574 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 575 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 576 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 577 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 578 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 579 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 580 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 581 /* 582 * Check if h/w does the MIC and/or whether the 583 * separate key cache entries are required to 584 * handle both tx+rx MIC keys. 585 */ 586 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 587 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 588 /* 589 * If the h/w supports storing tx+rx MIC keys 590 * in one cache slot automatically enable use. 591 */ 592 if (ath_hal_hastkipsplit(ah) || 593 !ath_hal_settkipsplit(ah, AH_FALSE)) 594 sc->sc_splitmic = 1; 595 /* 596 * If the h/w can do TKIP MIC together with WME then 597 * we use it; otherwise we force the MIC to be done 598 * in software by the net80211 layer. 599 */ 600 if (ath_hal_haswmetkipmic(ah)) 601 sc->sc_wmetkipmic = 1; 602 } 603 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 604 /* 605 * Check for multicast key search support. 606 */ 607 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 608 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 609 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 610 } 611 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 612 /* 613 * Mark key cache slots associated with global keys 614 * as in use. If we knew TKIP was not to be used we 615 * could leave the +32, +64, and +32+64 slots free. 616 */ 617 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 618 setbit(sc->sc_keymap, i); 619 setbit(sc->sc_keymap, i+64); 620 if (sc->sc_splitmic) { 621 setbit(sc->sc_keymap, i+32); 622 setbit(sc->sc_keymap, i+32+64); 623 } 624 } 625 /* 626 * TPC support can be done either with a global cap or 627 * per-packet support. The latter is not available on 628 * all parts. We're a bit pedantic here as all parts 629 * support a global cap. 630 */ 631 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 632 ic->ic_caps |= IEEE80211_C_TXPMGT; 633 634 /* 635 * Mark WME capability only if we have sufficient 636 * hardware queues to do proper priority scheduling. 637 */ 638 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 639 ic->ic_caps |= IEEE80211_C_WME; 640 /* 641 * Check for misc other capabilities. 642 */ 643 if (ath_hal_hasbursting(ah)) 644 ic->ic_caps |= IEEE80211_C_BURST; 645 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 646 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 647 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 648 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 649 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 650 if (ath_hal_hasfastframes(ah)) 651 ic->ic_caps |= IEEE80211_C_FF; 652 wmodes = ath_hal_getwirelessmodes(ah); 653 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 654 ic->ic_caps |= IEEE80211_C_TURBOP; 655 #ifdef IEEE80211_SUPPORT_TDMA 656 if (ath_hal_macversion(ah) > 0x78) { 657 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 658 ic->ic_tdma_update = ath_tdma_update; 659 } 660 #endif 661 662 /* 663 * TODO: enforce that at least this many frames are available 664 * in the txbuf list before allowing data frames (raw or 665 * otherwise) to be transmitted. 666 */ 667 sc->sc_txq_data_minfree = 10; 668 /* 669 * Leave this as default to maintain legacy behaviour. 670 * Shortening the cabq/mcastq may end up causing some 671 * undesirable behaviour. 672 */ 673 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 674 675 /* 676 * Allow the TX and RX chainmasks to be overridden by 677 * environment variables and/or device.hints. 678 * 679 * This must be done early - before the hardware is 680 * calibrated or before the 802.11n stream calculation 681 * is done. 682 */ 683 if (resource_int_value(device_get_name(sc->sc_dev), 684 device_get_unit(sc->sc_dev), "rx_chainmask", 685 &rx_chainmask) == 0) { 686 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 687 rx_chainmask); 688 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 689 } 690 if (resource_int_value(device_get_name(sc->sc_dev), 691 device_get_unit(sc->sc_dev), "tx_chainmask", 692 &tx_chainmask) == 0) { 693 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 694 tx_chainmask); 695 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 696 } 697 698 /* 699 * Disable MRR with protected frames by default. 700 * Only 802.11n series NICs can handle this. 701 */ 702 sc->sc_mrrprot = 0; /* XXX should be a capability */ 703 704 /* 705 * Query the enterprise mode information the HAL. 706 */ 707 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 708 &sc->sc_ent_cfg) == HAL_OK) 709 sc->sc_use_ent = 1; 710 711 #ifdef ATH_ENABLE_11N 712 /* 713 * Query HT capabilities 714 */ 715 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 716 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 717 int rxs, txs; 718 719 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 720 721 sc->sc_mrrprot = 1; /* XXX should be a capability */ 722 723 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 724 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 725 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 726 | IEEE80211_HTCAP_MAXAMSDU_3839 727 /* max A-MSDU length */ 728 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 729 ; 730 731 /* 732 * Enable short-GI for HT20 only if the hardware 733 * advertises support. 734 * Notably, anything earlier than the AR9287 doesn't. 735 */ 736 if ((ath_hal_getcapability(ah, 737 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 738 (wmodes & HAL_MODE_HT20)) { 739 device_printf(sc->sc_dev, 740 "[HT] enabling short-GI in 20MHz mode\n"); 741 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 742 } 743 744 if (wmodes & HAL_MODE_HT40) 745 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 746 | IEEE80211_HTCAP_SHORTGI40; 747 748 /* 749 * TX/RX streams need to be taken into account when 750 * negotiating which MCS rates it'll receive and 751 * what MCS rates are available for TX. 752 */ 753 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 754 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 755 756 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 757 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 758 759 ic->ic_txstream = txs; 760 ic->ic_rxstream = rxs; 761 762 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 763 &sc->sc_rts_aggr_limit); 764 if (sc->sc_rts_aggr_limit != (64 * 1024)) 765 device_printf(sc->sc_dev, 766 "[HT] RTS aggregates limited to %d KiB\n", 767 sc->sc_rts_aggr_limit / 1024); 768 769 device_printf(sc->sc_dev, 770 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 771 } 772 #endif 773 774 /* 775 * Initial aggregation settings. 776 */ 777 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 778 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 779 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 780 781 /* 782 * Check if the hardware requires PCI register serialisation. 783 * Some of the Owl based MACs require this. 784 */ 785 if (mp_ncpus > 1 && 786 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 787 0, NULL) == HAL_OK) { 788 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 789 device_printf(sc->sc_dev, 790 "Enabling register serialisation\n"); 791 } 792 793 /* 794 * Indicate we need the 802.11 header padded to a 795 * 32-bit boundary for 4-address and QoS frames. 796 */ 797 ic->ic_flags |= IEEE80211_F_DATAPAD; 798 799 /* 800 * Query the hal about antenna support. 801 */ 802 sc->sc_defant = ath_hal_getdefantenna(ah); 803 804 /* 805 * Not all chips have the VEOL support we want to 806 * use with IBSS beacons; check here for it. 807 */ 808 sc->sc_hasveol = ath_hal_hasveol(ah); 809 810 /* get mac address from hardware */ 811 ath_hal_getmac(ah, macaddr); 812 if (sc->sc_hasbmask) 813 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 814 815 /* NB: used to size node table key mapping array */ 816 ic->ic_max_keyix = sc->sc_keymax; 817 /* call MI attach routine. */ 818 ieee80211_ifattach(ic, macaddr); 819 ic->ic_setregdomain = ath_setregdomain; 820 ic->ic_getradiocaps = ath_getradiocaps; 821 sc->sc_opmode = HAL_M_STA; 822 823 /* override default methods */ 824 ic->ic_newassoc = ath_newassoc; 825 ic->ic_updateslot = ath_updateslot; 826 ic->ic_wme.wme_update = ath_wme_update; 827 ic->ic_vap_create = ath_vap_create; 828 ic->ic_vap_delete = ath_vap_delete; 829 ic->ic_raw_xmit = ath_raw_xmit; 830 ic->ic_update_mcast = ath_update_mcast; 831 ic->ic_update_promisc = ath_update_promisc; 832 ic->ic_node_alloc = ath_node_alloc; 833 sc->sc_node_free = ic->ic_node_free; 834 ic->ic_node_free = ath_node_free; 835 sc->sc_node_cleanup = ic->ic_node_cleanup; 836 ic->ic_node_cleanup = ath_node_cleanup; 837 ic->ic_node_getsignal = ath_node_getsignal; 838 ic->ic_scan_start = ath_scan_start; 839 ic->ic_scan_end = ath_scan_end; 840 ic->ic_set_channel = ath_set_channel; 841 #ifdef ATH_ENABLE_11N 842 /* 802.11n specific - but just override anyway */ 843 sc->sc_addba_request = ic->ic_addba_request; 844 sc->sc_addba_response = ic->ic_addba_response; 845 sc->sc_addba_stop = ic->ic_addba_stop; 846 sc->sc_bar_response = ic->ic_bar_response; 847 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 848 849 ic->ic_addba_request = ath_addba_request; 850 ic->ic_addba_response = ath_addba_response; 851 ic->ic_addba_response_timeout = ath_addba_response_timeout; 852 ic->ic_addba_stop = ath_addba_stop; 853 ic->ic_bar_response = ath_bar_response; 854 855 ic->ic_update_chw = ath_update_chw; 856 #endif /* ATH_ENABLE_11N */ 857 858 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 859 /* 860 * There's one vendor bitmap entry in the RX radiotap 861 * header; make sure that's taken into account. 862 */ 863 ieee80211_radiotap_attachv(ic, 864 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 865 ATH_TX_RADIOTAP_PRESENT, 866 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 867 ATH_RX_RADIOTAP_PRESENT); 868 #else 869 /* 870 * No vendor bitmap/extensions are present. 871 */ 872 ieee80211_radiotap_attach(ic, 873 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 874 ATH_TX_RADIOTAP_PRESENT, 875 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 876 ATH_RX_RADIOTAP_PRESENT); 877 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 878 879 /* 880 * Setup dynamic sysctl's now that country code and 881 * regdomain are available from the hal. 882 */ 883 ath_sysctlattach(sc); 884 ath_sysctl_stats_attach(sc); 885 ath_sysctl_hal_attach(sc); 886 887 if (bootverbose) 888 ieee80211_announce(ic); 889 ath_announce(sc); 890 return 0; 891 bad2: 892 ath_tx_cleanup(sc); 893 ath_desc_free(sc); 894 ath_txdma_teardown(sc); 895 ath_rxdma_teardown(sc); 896 bad: 897 if (ah) 898 ath_hal_detach(ah); 899 if (ifp != NULL) { 900 CURVNET_SET(ifp->if_vnet); 901 if_free(ifp); 902 CURVNET_RESTORE(); 903 } 904 sc->sc_invalid = 1; 905 return error; 906 } 907 908 int 909 ath_detach(struct ath_softc *sc) 910 { 911 struct ifnet *ifp = sc->sc_ifp; 912 913 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 914 __func__, ifp->if_flags); 915 916 /* 917 * NB: the order of these is important: 918 * o stop the chip so no more interrupts will fire 919 * o call the 802.11 layer before detaching the hal to 920 * insure callbacks into the driver to delete global 921 * key cache entries can be handled 922 * o free the taskqueue which drains any pending tasks 923 * o reclaim the tx queue data structures after calling 924 * the 802.11 layer as we'll get called back to reclaim 925 * node state and potentially want to use them 926 * o to cleanup the tx queues the hal is called, so detach 927 * it last 928 * Other than that, it's straightforward... 929 */ 930 ath_stop(ifp); 931 ieee80211_ifdetach(ifp->if_l2com); 932 taskqueue_free(sc->sc_tq); 933 #ifdef ATH_TX99_DIAG 934 if (sc->sc_tx99 != NULL) 935 sc->sc_tx99->detach(sc->sc_tx99); 936 #endif 937 ath_rate_detach(sc->sc_rc); 938 939 ath_dfs_detach(sc); 940 ath_desc_free(sc); 941 ath_txdma_teardown(sc); 942 ath_rxdma_teardown(sc); 943 ath_tx_cleanup(sc); 944 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 945 946 CURVNET_SET(ifp->if_vnet); 947 if_free(ifp); 948 CURVNET_RESTORE(); 949 950 return 0; 951 } 952 953 /* 954 * MAC address handling for multiple BSS on the same radio. 955 * The first vap uses the MAC address from the EEPROM. For 956 * subsequent vap's we set the U/L bit (bit 1) in the MAC 957 * address and use the next six bits as an index. 958 */ 959 static void 960 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 961 { 962 int i; 963 964 if (clone && sc->sc_hasbmask) { 965 /* NB: we only do this if h/w supports multiple bssid */ 966 for (i = 0; i < 8; i++) 967 if ((sc->sc_bssidmask & (1<<i)) == 0) 968 break; 969 if (i != 0) 970 mac[0] |= (i << 2)|0x2; 971 } else 972 i = 0; 973 sc->sc_bssidmask |= 1<<i; 974 sc->sc_hwbssidmask[0] &= ~mac[0]; 975 if (i == 0) 976 sc->sc_nbssid0++; 977 } 978 979 static void 980 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 981 { 982 int i = mac[0] >> 2; 983 uint8_t mask; 984 985 if (i != 0 || --sc->sc_nbssid0 == 0) { 986 sc->sc_bssidmask &= ~(1<<i); 987 /* recalculate bssid mask from remaining addresses */ 988 mask = 0xff; 989 for (i = 1; i < 8; i++) 990 if (sc->sc_bssidmask & (1<<i)) 991 mask &= ~((i<<2)|0x2); 992 sc->sc_hwbssidmask[0] |= mask; 993 } 994 } 995 996 /* 997 * Assign a beacon xmit slot. We try to space out 998 * assignments so when beacons are staggered the 999 * traffic coming out of the cab q has maximal time 1000 * to go out before the next beacon is scheduled. 1001 */ 1002 static int 1003 assign_bslot(struct ath_softc *sc) 1004 { 1005 u_int slot, free; 1006 1007 free = 0; 1008 for (slot = 0; slot < ATH_BCBUF; slot++) 1009 if (sc->sc_bslot[slot] == NULL) { 1010 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1011 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1012 return slot; 1013 free = slot; 1014 /* NB: keep looking for a double slot */ 1015 } 1016 return free; 1017 } 1018 1019 static struct ieee80211vap * 1020 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1021 enum ieee80211_opmode opmode, int flags, 1022 const uint8_t bssid[IEEE80211_ADDR_LEN], 1023 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1024 { 1025 struct ath_softc *sc = ic->ic_ifp->if_softc; 1026 struct ath_vap *avp; 1027 struct ieee80211vap *vap; 1028 uint8_t mac[IEEE80211_ADDR_LEN]; 1029 int needbeacon, error; 1030 enum ieee80211_opmode ic_opmode; 1031 1032 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1033 M_80211_VAP, M_WAITOK | M_ZERO); 1034 needbeacon = 0; 1035 IEEE80211_ADDR_COPY(mac, mac0); 1036 1037 ATH_LOCK(sc); 1038 ic_opmode = opmode; /* default to opmode of new vap */ 1039 switch (opmode) { 1040 case IEEE80211_M_STA: 1041 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1042 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1043 goto bad; 1044 } 1045 if (sc->sc_nvaps) { 1046 /* 1047 * With multiple vaps we must fall back 1048 * to s/w beacon miss handling. 1049 */ 1050 flags |= IEEE80211_CLONE_NOBEACONS; 1051 } 1052 if (flags & IEEE80211_CLONE_NOBEACONS) { 1053 /* 1054 * Station mode w/o beacons are implemented w/ AP mode. 1055 */ 1056 ic_opmode = IEEE80211_M_HOSTAP; 1057 } 1058 break; 1059 case IEEE80211_M_IBSS: 1060 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1061 device_printf(sc->sc_dev, 1062 "only 1 ibss vap supported\n"); 1063 goto bad; 1064 } 1065 needbeacon = 1; 1066 break; 1067 case IEEE80211_M_AHDEMO: 1068 #ifdef IEEE80211_SUPPORT_TDMA 1069 if (flags & IEEE80211_CLONE_TDMA) { 1070 if (sc->sc_nvaps != 0) { 1071 device_printf(sc->sc_dev, 1072 "only 1 tdma vap supported\n"); 1073 goto bad; 1074 } 1075 needbeacon = 1; 1076 flags |= IEEE80211_CLONE_NOBEACONS; 1077 } 1078 /* fall thru... */ 1079 #endif 1080 case IEEE80211_M_MONITOR: 1081 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1082 /* 1083 * Adopt existing mode. Adding a monitor or ahdemo 1084 * vap to an existing configuration is of dubious 1085 * value but should be ok. 1086 */ 1087 /* XXX not right for monitor mode */ 1088 ic_opmode = ic->ic_opmode; 1089 } 1090 break; 1091 case IEEE80211_M_HOSTAP: 1092 case IEEE80211_M_MBSS: 1093 needbeacon = 1; 1094 break; 1095 case IEEE80211_M_WDS: 1096 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1097 device_printf(sc->sc_dev, 1098 "wds not supported in sta mode\n"); 1099 goto bad; 1100 } 1101 /* 1102 * Silently remove any request for a unique 1103 * bssid; WDS vap's always share the local 1104 * mac address. 1105 */ 1106 flags &= ~IEEE80211_CLONE_BSSID; 1107 if (sc->sc_nvaps == 0) 1108 ic_opmode = IEEE80211_M_HOSTAP; 1109 else 1110 ic_opmode = ic->ic_opmode; 1111 break; 1112 default: 1113 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1114 goto bad; 1115 } 1116 /* 1117 * Check that a beacon buffer is available; the code below assumes it. 1118 */ 1119 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1120 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1121 goto bad; 1122 } 1123 1124 /* STA, AHDEMO? */ 1125 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1126 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1127 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1128 } 1129 1130 vap = &avp->av_vap; 1131 /* XXX can't hold mutex across if_alloc */ 1132 ATH_UNLOCK(sc); 1133 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1134 bssid, mac); 1135 ATH_LOCK(sc); 1136 if (error != 0) { 1137 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1138 __func__, error); 1139 goto bad2; 1140 } 1141 1142 /* h/w crypto support */ 1143 vap->iv_key_alloc = ath_key_alloc; 1144 vap->iv_key_delete = ath_key_delete; 1145 vap->iv_key_set = ath_key_set; 1146 vap->iv_key_update_begin = ath_key_update_begin; 1147 vap->iv_key_update_end = ath_key_update_end; 1148 1149 /* override various methods */ 1150 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1151 vap->iv_recv_mgmt = ath_recv_mgmt; 1152 vap->iv_reset = ath_reset_vap; 1153 vap->iv_update_beacon = ath_beacon_update; 1154 avp->av_newstate = vap->iv_newstate; 1155 vap->iv_newstate = ath_newstate; 1156 avp->av_bmiss = vap->iv_bmiss; 1157 vap->iv_bmiss = ath_bmiss_vap; 1158 1159 avp->av_node_ps = vap->iv_node_ps; 1160 vap->iv_node_ps = ath_node_powersave; 1161 1162 avp->av_set_tim = vap->iv_set_tim; 1163 vap->iv_set_tim = ath_node_set_tim; 1164 1165 /* Set default parameters */ 1166 1167 /* 1168 * Anything earlier than some AR9300 series MACs don't 1169 * support a smaller MPDU density. 1170 */ 1171 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1172 /* 1173 * All NICs can handle the maximum size, however 1174 * AR5416 based MACs can only TX aggregates w/ RTS 1175 * protection when the total aggregate size is <= 8k. 1176 * However, for now that's enforced by the TX path. 1177 */ 1178 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1179 1180 avp->av_bslot = -1; 1181 if (needbeacon) { 1182 /* 1183 * Allocate beacon state and setup the q for buffered 1184 * multicast frames. We know a beacon buffer is 1185 * available because we checked above. 1186 */ 1187 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1188 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1189 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1190 /* 1191 * Assign the vap to a beacon xmit slot. As above 1192 * this cannot fail to find a free one. 1193 */ 1194 avp->av_bslot = assign_bslot(sc); 1195 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1196 ("beacon slot %u not empty", avp->av_bslot)); 1197 sc->sc_bslot[avp->av_bslot] = vap; 1198 sc->sc_nbcnvaps++; 1199 } 1200 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1201 /* 1202 * Multple vaps are to transmit beacons and we 1203 * have h/w support for TSF adjusting; enable 1204 * use of staggered beacons. 1205 */ 1206 sc->sc_stagbeacons = 1; 1207 } 1208 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1209 } 1210 1211 ic->ic_opmode = ic_opmode; 1212 if (opmode != IEEE80211_M_WDS) { 1213 sc->sc_nvaps++; 1214 if (opmode == IEEE80211_M_STA) 1215 sc->sc_nstavaps++; 1216 if (opmode == IEEE80211_M_MBSS) 1217 sc->sc_nmeshvaps++; 1218 } 1219 switch (ic_opmode) { 1220 case IEEE80211_M_IBSS: 1221 sc->sc_opmode = HAL_M_IBSS; 1222 break; 1223 case IEEE80211_M_STA: 1224 sc->sc_opmode = HAL_M_STA; 1225 break; 1226 case IEEE80211_M_AHDEMO: 1227 #ifdef IEEE80211_SUPPORT_TDMA 1228 if (vap->iv_caps & IEEE80211_C_TDMA) { 1229 sc->sc_tdma = 1; 1230 /* NB: disable tsf adjust */ 1231 sc->sc_stagbeacons = 0; 1232 } 1233 /* 1234 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1235 * just ap mode. 1236 */ 1237 /* fall thru... */ 1238 #endif 1239 case IEEE80211_M_HOSTAP: 1240 case IEEE80211_M_MBSS: 1241 sc->sc_opmode = HAL_M_HOSTAP; 1242 break; 1243 case IEEE80211_M_MONITOR: 1244 sc->sc_opmode = HAL_M_MONITOR; 1245 break; 1246 default: 1247 /* XXX should not happen */ 1248 break; 1249 } 1250 if (sc->sc_hastsfadd) { 1251 /* 1252 * Configure whether or not TSF adjust should be done. 1253 */ 1254 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1255 } 1256 if (flags & IEEE80211_CLONE_NOBEACONS) { 1257 /* 1258 * Enable s/w beacon miss handling. 1259 */ 1260 sc->sc_swbmiss = 1; 1261 } 1262 ATH_UNLOCK(sc); 1263 1264 /* complete setup */ 1265 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1266 return vap; 1267 bad2: 1268 reclaim_address(sc, mac); 1269 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1270 bad: 1271 free(avp, M_80211_VAP); 1272 ATH_UNLOCK(sc); 1273 return NULL; 1274 } 1275 1276 static void 1277 ath_vap_delete(struct ieee80211vap *vap) 1278 { 1279 struct ieee80211com *ic = vap->iv_ic; 1280 struct ifnet *ifp = ic->ic_ifp; 1281 struct ath_softc *sc = ifp->if_softc; 1282 struct ath_hal *ah = sc->sc_ah; 1283 struct ath_vap *avp = ATH_VAP(vap); 1284 1285 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1286 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1287 /* 1288 * Quiesce the hardware while we remove the vap. In 1289 * particular we need to reclaim all references to 1290 * the vap state by any frames pending on the tx queues. 1291 */ 1292 ath_hal_intrset(ah, 0); /* disable interrupts */ 1293 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1294 /* XXX Do all frames from all vaps/nodes need draining here? */ 1295 ath_stoprecv(sc, 1); /* stop recv side */ 1296 } 1297 1298 ieee80211_vap_detach(vap); 1299 1300 /* 1301 * XXX Danger Will Robinson! Danger! 1302 * 1303 * Because ieee80211_vap_detach() can queue a frame (the station 1304 * diassociate message?) after we've drained the TXQ and 1305 * flushed the software TXQ, we will end up with a frame queued 1306 * to a node whose vap is about to be freed. 1307 * 1308 * To work around this, flush the hardware/software again. 1309 * This may be racy - the ath task may be running and the packet 1310 * may be being scheduled between sw->hw txq. Tsk. 1311 * 1312 * TODO: figure out why a new node gets allocated somewhere around 1313 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1314 * call!) 1315 */ 1316 1317 ath_draintxq(sc, ATH_RESET_DEFAULT); 1318 1319 ATH_LOCK(sc); 1320 /* 1321 * Reclaim beacon state. Note this must be done before 1322 * the vap instance is reclaimed as we may have a reference 1323 * to it in the buffer for the beacon frame. 1324 */ 1325 if (avp->av_bcbuf != NULL) { 1326 if (avp->av_bslot != -1) { 1327 sc->sc_bslot[avp->av_bslot] = NULL; 1328 sc->sc_nbcnvaps--; 1329 } 1330 ath_beacon_return(sc, avp->av_bcbuf); 1331 avp->av_bcbuf = NULL; 1332 if (sc->sc_nbcnvaps == 0) { 1333 sc->sc_stagbeacons = 0; 1334 if (sc->sc_hastsfadd) 1335 ath_hal_settsfadjust(sc->sc_ah, 0); 1336 } 1337 /* 1338 * Reclaim any pending mcast frames for the vap. 1339 */ 1340 ath_tx_draintxq(sc, &avp->av_mcastq); 1341 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1342 } 1343 /* 1344 * Update bookkeeping. 1345 */ 1346 if (vap->iv_opmode == IEEE80211_M_STA) { 1347 sc->sc_nstavaps--; 1348 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1349 sc->sc_swbmiss = 0; 1350 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1351 vap->iv_opmode == IEEE80211_M_MBSS) { 1352 reclaim_address(sc, vap->iv_myaddr); 1353 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1354 if (vap->iv_opmode == IEEE80211_M_MBSS) 1355 sc->sc_nmeshvaps--; 1356 } 1357 if (vap->iv_opmode != IEEE80211_M_WDS) 1358 sc->sc_nvaps--; 1359 #ifdef IEEE80211_SUPPORT_TDMA 1360 /* TDMA operation ceases when the last vap is destroyed */ 1361 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1362 sc->sc_tdma = 0; 1363 sc->sc_swbmiss = 0; 1364 } 1365 #endif 1366 free(avp, M_80211_VAP); 1367 1368 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1369 /* 1370 * Restart rx+tx machines if still running (RUNNING will 1371 * be reset if we just destroyed the last vap). 1372 */ 1373 if (ath_startrecv(sc) != 0) 1374 if_printf(ifp, "%s: unable to restart recv logic\n", 1375 __func__); 1376 if (sc->sc_beacons) { /* restart beacons */ 1377 #ifdef IEEE80211_SUPPORT_TDMA 1378 if (sc->sc_tdma) 1379 ath_tdma_config(sc, NULL); 1380 else 1381 #endif 1382 ath_beacon_config(sc, NULL); 1383 } 1384 ath_hal_intrset(ah, sc->sc_imask); 1385 } 1386 ATH_UNLOCK(sc); 1387 } 1388 1389 void 1390 ath_suspend(struct ath_softc *sc) 1391 { 1392 struct ifnet *ifp = sc->sc_ifp; 1393 struct ieee80211com *ic = ifp->if_l2com; 1394 1395 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1396 __func__, ifp->if_flags); 1397 1398 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1399 1400 ieee80211_suspend_all(ic); 1401 /* 1402 * NB: don't worry about putting the chip in low power 1403 * mode; pci will power off our socket on suspend and 1404 * CardBus detaches the device. 1405 */ 1406 1407 /* 1408 * XXX ensure none of the taskqueues are running 1409 * XXX ensure sc_invalid is 1 1410 * XXX ensure the calibration callout is disabled 1411 */ 1412 1413 /* Disable the PCIe PHY, complete with workarounds */ 1414 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1415 } 1416 1417 /* 1418 * Reset the key cache since some parts do not reset the 1419 * contents on resume. First we clear all entries, then 1420 * re-load keys that the 802.11 layer assumes are setup 1421 * in h/w. 1422 */ 1423 static void 1424 ath_reset_keycache(struct ath_softc *sc) 1425 { 1426 struct ifnet *ifp = sc->sc_ifp; 1427 struct ieee80211com *ic = ifp->if_l2com; 1428 struct ath_hal *ah = sc->sc_ah; 1429 int i; 1430 1431 for (i = 0; i < sc->sc_keymax; i++) 1432 ath_hal_keyreset(ah, i); 1433 ieee80211_crypto_reload_keys(ic); 1434 } 1435 1436 void 1437 ath_resume(struct ath_softc *sc) 1438 { 1439 struct ifnet *ifp = sc->sc_ifp; 1440 struct ieee80211com *ic = ifp->if_l2com; 1441 struct ath_hal *ah = sc->sc_ah; 1442 HAL_STATUS status; 1443 1444 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1445 __func__, ifp->if_flags); 1446 1447 /* Re-enable PCIe, re-enable the PCIe bus */ 1448 ath_hal_enablepcie(ah, 0, 0); 1449 1450 /* 1451 * Must reset the chip before we reload the 1452 * keycache as we were powered down on suspend. 1453 */ 1454 ath_hal_reset(ah, sc->sc_opmode, 1455 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1456 AH_FALSE, &status); 1457 ath_reset_keycache(sc); 1458 1459 /* Let DFS at it in case it's a DFS channel */ 1460 ath_dfs_radar_enable(sc, ic->ic_curchan); 1461 1462 /* Restore the LED configuration */ 1463 ath_led_config(sc); 1464 ath_hal_setledstate(ah, HAL_LED_INIT); 1465 1466 if (sc->sc_resume_up) 1467 ieee80211_resume_all(ic); 1468 1469 /* XXX beacons ? */ 1470 } 1471 1472 void 1473 ath_shutdown(struct ath_softc *sc) 1474 { 1475 struct ifnet *ifp = sc->sc_ifp; 1476 1477 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1478 __func__, ifp->if_flags); 1479 1480 ath_stop(ifp); 1481 /* NB: no point powering down chip as we're about to reboot */ 1482 } 1483 1484 /* 1485 * Interrupt handler. Most of the actual processing is deferred. 1486 */ 1487 void 1488 ath_intr(void *arg) 1489 { 1490 struct ath_softc *sc = arg; 1491 struct ifnet *ifp = sc->sc_ifp; 1492 struct ath_hal *ah = sc->sc_ah; 1493 HAL_INT status = 0; 1494 uint32_t txqs; 1495 1496 /* 1497 * If we're inside a reset path, just print a warning and 1498 * clear the ISR. The reset routine will finish it for us. 1499 */ 1500 ATH_PCU_LOCK(sc); 1501 if (sc->sc_inreset_cnt) { 1502 HAL_INT status; 1503 ath_hal_getisr(ah, &status); /* clear ISR */ 1504 ath_hal_intrset(ah, 0); /* disable further intr's */ 1505 DPRINTF(sc, ATH_DEBUG_ANY, 1506 "%s: in reset, ignoring: status=0x%x\n", 1507 __func__, status); 1508 ATH_PCU_UNLOCK(sc); 1509 return; 1510 } 1511 1512 if (sc->sc_invalid) { 1513 /* 1514 * The hardware is not ready/present, don't touch anything. 1515 * Note this can happen early on if the IRQ is shared. 1516 */ 1517 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1518 ATH_PCU_UNLOCK(sc); 1519 return; 1520 } 1521 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1522 ATH_PCU_UNLOCK(sc); 1523 return; 1524 } 1525 1526 if ((ifp->if_flags & IFF_UP) == 0 || 1527 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1528 HAL_INT status; 1529 1530 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1531 __func__, ifp->if_flags); 1532 ath_hal_getisr(ah, &status); /* clear ISR */ 1533 ath_hal_intrset(ah, 0); /* disable further intr's */ 1534 ATH_PCU_UNLOCK(sc); 1535 return; 1536 } 1537 1538 /* 1539 * Figure out the reason(s) for the interrupt. Note 1540 * that the hal returns a pseudo-ISR that may include 1541 * bits we haven't explicitly enabled so we mask the 1542 * value to insure we only process bits we requested. 1543 */ 1544 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1545 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1546 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 1547 #ifdef ATH_KTR_INTR_DEBUG 1548 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 1549 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1550 ah->ah_intrstate[0], 1551 ah->ah_intrstate[1], 1552 ah->ah_intrstate[2], 1553 ah->ah_intrstate[3], 1554 ah->ah_intrstate[6]); 1555 #endif 1556 1557 /* Squirrel away SYNC interrupt debugging */ 1558 if (ah->ah_syncstate != 0) { 1559 int i; 1560 for (i = 0; i < 32; i++) 1561 if (ah->ah_syncstate & (i << i)) 1562 sc->sc_intr_stats.sync_intr[i]++; 1563 } 1564 1565 status &= sc->sc_imask; /* discard unasked for bits */ 1566 1567 /* Short-circuit un-handled interrupts */ 1568 if (status == 0x0) { 1569 ATH_PCU_UNLOCK(sc); 1570 return; 1571 } 1572 1573 /* 1574 * Take a note that we're inside the interrupt handler, so 1575 * the reset routines know to wait. 1576 */ 1577 sc->sc_intr_cnt++; 1578 ATH_PCU_UNLOCK(sc); 1579 1580 /* 1581 * Handle the interrupt. We won't run concurrent with the reset 1582 * or channel change routines as they'll wait for sc_intr_cnt 1583 * to be 0 before continuing. 1584 */ 1585 if (status & HAL_INT_FATAL) { 1586 sc->sc_stats.ast_hardware++; 1587 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1588 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1589 } else { 1590 if (status & HAL_INT_SWBA) { 1591 /* 1592 * Software beacon alert--time to send a beacon. 1593 * Handle beacon transmission directly; deferring 1594 * this is too slow to meet timing constraints 1595 * under load. 1596 */ 1597 #ifdef IEEE80211_SUPPORT_TDMA 1598 if (sc->sc_tdma) { 1599 if (sc->sc_tdmaswba == 0) { 1600 struct ieee80211com *ic = ifp->if_l2com; 1601 struct ieee80211vap *vap = 1602 TAILQ_FIRST(&ic->ic_vaps); 1603 ath_tdma_beacon_send(sc, vap); 1604 sc->sc_tdmaswba = 1605 vap->iv_tdma->tdma_bintval; 1606 } else 1607 sc->sc_tdmaswba--; 1608 } else 1609 #endif 1610 { 1611 ath_beacon_proc(sc, 0); 1612 #ifdef IEEE80211_SUPPORT_SUPERG 1613 /* 1614 * Schedule the rx taskq in case there's no 1615 * traffic so any frames held on the staging 1616 * queue are aged and potentially flushed. 1617 */ 1618 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1619 #endif 1620 } 1621 } 1622 if (status & HAL_INT_RXEOL) { 1623 int imask; 1624 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 1625 ATH_PCU_LOCK(sc); 1626 /* 1627 * NB: the hardware should re-read the link when 1628 * RXE bit is written, but it doesn't work at 1629 * least on older hardware revs. 1630 */ 1631 sc->sc_stats.ast_rxeol++; 1632 /* 1633 * Disable RXEOL/RXORN - prevent an interrupt 1634 * storm until the PCU logic can be reset. 1635 * In case the interface is reset some other 1636 * way before "sc_kickpcu" is called, don't 1637 * modify sc_imask - that way if it is reset 1638 * by a call to ath_reset() somehow, the 1639 * interrupt mask will be correctly reprogrammed. 1640 */ 1641 imask = sc->sc_imask; 1642 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1643 ath_hal_intrset(ah, imask); 1644 /* 1645 * Only blank sc_rxlink if we've not yet kicked 1646 * the PCU. 1647 * 1648 * This isn't entirely correct - the correct solution 1649 * would be to have a PCU lock and engage that for 1650 * the duration of the PCU fiddling; which would include 1651 * running the RX process. Otherwise we could end up 1652 * messing up the RX descriptor chain and making the 1653 * RX desc list much shorter. 1654 */ 1655 if (! sc->sc_kickpcu) 1656 sc->sc_rxlink = NULL; 1657 sc->sc_kickpcu = 1; 1658 /* 1659 * Enqueue an RX proc, to handled whatever 1660 * is in the RX queue. 1661 * This will then kick the PCU. 1662 */ 1663 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1664 ATH_PCU_UNLOCK(sc); 1665 } 1666 if (status & HAL_INT_TXURN) { 1667 sc->sc_stats.ast_txurn++; 1668 /* bump tx trigger level */ 1669 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1670 } 1671 /* 1672 * Handle both the legacy and RX EDMA interrupt bits. 1673 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1674 */ 1675 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1676 sc->sc_stats.ast_rx_intr++; 1677 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1678 } 1679 if (status & HAL_INT_TX) { 1680 sc->sc_stats.ast_tx_intr++; 1681 /* 1682 * Grab all the currently set bits in the HAL txq bitmap 1683 * and blank them. This is the only place we should be 1684 * doing this. 1685 */ 1686 if (! sc->sc_isedma) { 1687 ATH_PCU_LOCK(sc); 1688 txqs = 0xffffffff; 1689 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1690 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 1691 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 1692 txqs, 1693 sc->sc_txq_active, 1694 sc->sc_txq_active | txqs); 1695 sc->sc_txq_active |= txqs; 1696 ATH_PCU_UNLOCK(sc); 1697 } 1698 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1699 } 1700 if (status & HAL_INT_BMISS) { 1701 sc->sc_stats.ast_bmiss++; 1702 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1703 } 1704 if (status & HAL_INT_GTT) 1705 sc->sc_stats.ast_tx_timeout++; 1706 if (status & HAL_INT_CST) 1707 sc->sc_stats.ast_tx_cst++; 1708 if (status & HAL_INT_MIB) { 1709 sc->sc_stats.ast_mib++; 1710 ATH_PCU_LOCK(sc); 1711 /* 1712 * Disable interrupts until we service the MIB 1713 * interrupt; otherwise it will continue to fire. 1714 */ 1715 ath_hal_intrset(ah, 0); 1716 /* 1717 * Let the hal handle the event. We assume it will 1718 * clear whatever condition caused the interrupt. 1719 */ 1720 ath_hal_mibevent(ah, &sc->sc_halstats); 1721 /* 1722 * Don't reset the interrupt if we've just 1723 * kicked the PCU, or we may get a nested 1724 * RXEOL before the rxproc has had a chance 1725 * to run. 1726 */ 1727 if (sc->sc_kickpcu == 0) 1728 ath_hal_intrset(ah, sc->sc_imask); 1729 ATH_PCU_UNLOCK(sc); 1730 } 1731 if (status & HAL_INT_RXORN) { 1732 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1733 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 1734 sc->sc_stats.ast_rxorn++; 1735 } 1736 } 1737 ATH_PCU_LOCK(sc); 1738 sc->sc_intr_cnt--; 1739 ATH_PCU_UNLOCK(sc); 1740 } 1741 1742 static void 1743 ath_fatal_proc(void *arg, int pending) 1744 { 1745 struct ath_softc *sc = arg; 1746 struct ifnet *ifp = sc->sc_ifp; 1747 u_int32_t *state; 1748 u_int32_t len; 1749 void *sp; 1750 1751 if_printf(ifp, "hardware error; resetting\n"); 1752 /* 1753 * Fatal errors are unrecoverable. Typically these 1754 * are caused by DMA errors. Collect h/w state from 1755 * the hal so we can diagnose what's going on. 1756 */ 1757 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1758 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1759 state = sp; 1760 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1761 state[0], state[1] , state[2], state[3], 1762 state[4], state[5]); 1763 } 1764 ath_reset(ifp, ATH_RESET_NOLOSS); 1765 } 1766 1767 static void 1768 ath_bmiss_vap(struct ieee80211vap *vap) 1769 { 1770 /* 1771 * Workaround phantom bmiss interrupts by sanity-checking 1772 * the time of our last rx'd frame. If it is within the 1773 * beacon miss interval then ignore the interrupt. If it's 1774 * truly a bmiss we'll get another interrupt soon and that'll 1775 * be dispatched up for processing. Note this applies only 1776 * for h/w beacon miss events. 1777 */ 1778 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1779 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1780 struct ath_softc *sc = ifp->if_softc; 1781 u_int64_t lastrx = sc->sc_lastrx; 1782 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1783 /* XXX should take a locked ref to iv_bss */ 1784 u_int bmisstimeout = 1785 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1786 1787 DPRINTF(sc, ATH_DEBUG_BEACON, 1788 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1789 __func__, (unsigned long long) tsf, 1790 (unsigned long long)(tsf - lastrx), 1791 (unsigned long long) lastrx, bmisstimeout); 1792 1793 if (tsf - lastrx <= bmisstimeout) { 1794 sc->sc_stats.ast_bmiss_phantom++; 1795 return; 1796 } 1797 } 1798 ATH_VAP(vap)->av_bmiss(vap); 1799 } 1800 1801 static int 1802 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1803 { 1804 uint32_t rsize; 1805 void *sp; 1806 1807 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1808 return 0; 1809 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1810 *hangs = *(uint32_t *)sp; 1811 return 1; 1812 } 1813 1814 static void 1815 ath_bmiss_proc(void *arg, int pending) 1816 { 1817 struct ath_softc *sc = arg; 1818 struct ifnet *ifp = sc->sc_ifp; 1819 uint32_t hangs; 1820 1821 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1822 1823 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1824 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1825 ath_reset(ifp, ATH_RESET_NOLOSS); 1826 } else 1827 ieee80211_beacon_miss(ifp->if_l2com); 1828 } 1829 1830 /* 1831 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1832 * calcs together with WME. If necessary disable the crypto 1833 * hardware and mark the 802.11 state so keys will be setup 1834 * with the MIC work done in software. 1835 */ 1836 static void 1837 ath_settkipmic(struct ath_softc *sc) 1838 { 1839 struct ifnet *ifp = sc->sc_ifp; 1840 struct ieee80211com *ic = ifp->if_l2com; 1841 1842 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1843 if (ic->ic_flags & IEEE80211_F_WME) { 1844 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1845 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1846 } else { 1847 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1848 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1849 } 1850 } 1851 } 1852 1853 static void 1854 ath_init(void *arg) 1855 { 1856 struct ath_softc *sc = (struct ath_softc *) arg; 1857 struct ifnet *ifp = sc->sc_ifp; 1858 struct ieee80211com *ic = ifp->if_l2com; 1859 struct ath_hal *ah = sc->sc_ah; 1860 HAL_STATUS status; 1861 1862 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1863 __func__, ifp->if_flags); 1864 1865 ATH_LOCK(sc); 1866 /* 1867 * Stop anything previously setup. This is safe 1868 * whether this is the first time through or not. 1869 */ 1870 ath_stop_locked(ifp); 1871 1872 /* 1873 * The basic interface to setting the hardware in a good 1874 * state is ``reset''. On return the hardware is known to 1875 * be powered up and with interrupts disabled. This must 1876 * be followed by initialization of the appropriate bits 1877 * and then setup of the interrupt mask. 1878 */ 1879 ath_settkipmic(sc); 1880 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1881 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1882 status); 1883 ATH_UNLOCK(sc); 1884 return; 1885 } 1886 ath_chan_change(sc, ic->ic_curchan); 1887 1888 /* Let DFS at it in case it's a DFS channel */ 1889 ath_dfs_radar_enable(sc, ic->ic_curchan); 1890 1891 /* 1892 * Likewise this is set during reset so update 1893 * state cached in the driver. 1894 */ 1895 sc->sc_diversity = ath_hal_getdiversity(ah); 1896 sc->sc_lastlongcal = 0; 1897 sc->sc_resetcal = 1; 1898 sc->sc_lastcalreset = 0; 1899 sc->sc_lastani = 0; 1900 sc->sc_lastshortcal = 0; 1901 sc->sc_doresetcal = AH_FALSE; 1902 /* 1903 * Beacon timers were cleared here; give ath_newstate() 1904 * a hint that the beacon timers should be poked when 1905 * things transition to the RUN state. 1906 */ 1907 sc->sc_beacons = 0; 1908 1909 /* 1910 * Setup the hardware after reset: the key cache 1911 * is filled as needed and the receive engine is 1912 * set going. Frame transmit is handled entirely 1913 * in the frame output path; there's nothing to do 1914 * here except setup the interrupt mask. 1915 */ 1916 if (ath_startrecv(sc) != 0) { 1917 if_printf(ifp, "unable to start recv logic\n"); 1918 ATH_UNLOCK(sc); 1919 return; 1920 } 1921 1922 /* 1923 * Enable interrupts. 1924 */ 1925 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1926 | HAL_INT_RXEOL | HAL_INT_RXORN 1927 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1928 1929 /* 1930 * Enable RX EDMA bits. Note these overlap with 1931 * HAL_INT_RX and HAL_INT_RXDESC respectively. 1932 */ 1933 if (sc->sc_isedma) 1934 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 1935 1936 /* 1937 * Enable MIB interrupts when there are hardware phy counters. 1938 * Note we only do this (at the moment) for station mode. 1939 */ 1940 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1941 sc->sc_imask |= HAL_INT_MIB; 1942 1943 /* Enable global TX timeout and carrier sense timeout if available */ 1944 if (ath_hal_gtxto_supported(ah)) 1945 sc->sc_imask |= HAL_INT_GTT; 1946 1947 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1948 __func__, sc->sc_imask); 1949 1950 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1951 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1952 ath_hal_intrset(ah, sc->sc_imask); 1953 1954 ATH_UNLOCK(sc); 1955 1956 #ifdef ATH_TX99_DIAG 1957 if (sc->sc_tx99 != NULL) 1958 sc->sc_tx99->start(sc->sc_tx99); 1959 else 1960 #endif 1961 ieee80211_start_all(ic); /* start all vap's */ 1962 } 1963 1964 static void 1965 ath_stop_locked(struct ifnet *ifp) 1966 { 1967 struct ath_softc *sc = ifp->if_softc; 1968 struct ath_hal *ah = sc->sc_ah; 1969 1970 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1971 __func__, sc->sc_invalid, ifp->if_flags); 1972 1973 ATH_LOCK_ASSERT(sc); 1974 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1975 /* 1976 * Shutdown the hardware and driver: 1977 * reset 802.11 state machine 1978 * turn off timers 1979 * disable interrupts 1980 * turn off the radio 1981 * clear transmit machinery 1982 * clear receive machinery 1983 * drain and release tx queues 1984 * reclaim beacon resources 1985 * power down hardware 1986 * 1987 * Note that some of this work is not possible if the 1988 * hardware is gone (invalid). 1989 */ 1990 #ifdef ATH_TX99_DIAG 1991 if (sc->sc_tx99 != NULL) 1992 sc->sc_tx99->stop(sc->sc_tx99); 1993 #endif 1994 callout_stop(&sc->sc_wd_ch); 1995 sc->sc_wd_timer = 0; 1996 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1997 if (!sc->sc_invalid) { 1998 if (sc->sc_softled) { 1999 callout_stop(&sc->sc_ledtimer); 2000 ath_hal_gpioset(ah, sc->sc_ledpin, 2001 !sc->sc_ledon); 2002 sc->sc_blinking = 0; 2003 } 2004 ath_hal_intrset(ah, 0); 2005 } 2006 ath_draintxq(sc, ATH_RESET_DEFAULT); 2007 if (!sc->sc_invalid) { 2008 ath_stoprecv(sc, 1); 2009 ath_hal_phydisable(ah); 2010 } else 2011 sc->sc_rxlink = NULL; 2012 ath_beacon_free(sc); /* XXX not needed */ 2013 } 2014 } 2015 2016 #define MAX_TXRX_ITERATIONS 1000 2017 static void 2018 ath_txrx_stop_locked(struct ath_softc *sc) 2019 { 2020 int i = MAX_TXRX_ITERATIONS; 2021 2022 ATH_UNLOCK_ASSERT(sc); 2023 ATH_PCU_LOCK_ASSERT(sc); 2024 2025 /* 2026 * Sleep until all the pending operations have completed. 2027 * 2028 * The caller must ensure that reset has been incremented 2029 * or the pending operations may continue being queued. 2030 */ 2031 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2032 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2033 if (i <= 0) 2034 break; 2035 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 2036 i--; 2037 } 2038 2039 if (i <= 0) 2040 device_printf(sc->sc_dev, 2041 "%s: didn't finish after %d iterations\n", 2042 __func__, MAX_TXRX_ITERATIONS); 2043 } 2044 #undef MAX_TXRX_ITERATIONS 2045 2046 #if 0 2047 static void 2048 ath_txrx_stop(struct ath_softc *sc) 2049 { 2050 ATH_UNLOCK_ASSERT(sc); 2051 ATH_PCU_UNLOCK_ASSERT(sc); 2052 2053 ATH_PCU_LOCK(sc); 2054 ath_txrx_stop_locked(sc); 2055 ATH_PCU_UNLOCK(sc); 2056 } 2057 #endif 2058 2059 static void 2060 ath_txrx_start(struct ath_softc *sc) 2061 { 2062 2063 taskqueue_unblock(sc->sc_tq); 2064 } 2065 2066 /* 2067 * Grab the reset lock, and wait around until noone else 2068 * is trying to do anything with it. 2069 * 2070 * This is totally horrible but we can't hold this lock for 2071 * long enough to do TX/RX or we end up with net80211/ip stack 2072 * LORs and eventual deadlock. 2073 * 2074 * "dowait" signals whether to spin, waiting for the reset 2075 * lock count to reach 0. This should (for now) only be used 2076 * during the reset path, as the rest of the code may not 2077 * be locking-reentrant enough to behave correctly. 2078 * 2079 * Another, cleaner way should be found to serialise all of 2080 * these operations. 2081 */ 2082 #define MAX_RESET_ITERATIONS 10 2083 static int 2084 ath_reset_grablock(struct ath_softc *sc, int dowait) 2085 { 2086 int w = 0; 2087 int i = MAX_RESET_ITERATIONS; 2088 2089 ATH_PCU_LOCK_ASSERT(sc); 2090 do { 2091 if (sc->sc_inreset_cnt == 0) { 2092 w = 1; 2093 break; 2094 } 2095 if (dowait == 0) { 2096 w = 0; 2097 break; 2098 } 2099 ATH_PCU_UNLOCK(sc); 2100 pause("ath_reset_grablock", 1); 2101 i--; 2102 ATH_PCU_LOCK(sc); 2103 } while (i > 0); 2104 2105 /* 2106 * We always increment the refcounter, regardless 2107 * of whether we succeeded to get it in an exclusive 2108 * way. 2109 */ 2110 sc->sc_inreset_cnt++; 2111 2112 if (i <= 0) 2113 device_printf(sc->sc_dev, 2114 "%s: didn't finish after %d iterations\n", 2115 __func__, MAX_RESET_ITERATIONS); 2116 2117 if (w == 0) 2118 device_printf(sc->sc_dev, 2119 "%s: warning, recursive reset path!\n", 2120 __func__); 2121 2122 return w; 2123 } 2124 #undef MAX_RESET_ITERATIONS 2125 2126 /* 2127 * XXX TODO: write ath_reset_releaselock 2128 */ 2129 2130 static void 2131 ath_stop(struct ifnet *ifp) 2132 { 2133 struct ath_softc *sc = ifp->if_softc; 2134 2135 ATH_LOCK(sc); 2136 ath_stop_locked(ifp); 2137 ATH_UNLOCK(sc); 2138 } 2139 2140 /* 2141 * Reset the hardware w/o losing operational state. This is 2142 * basically a more efficient way of doing ath_stop, ath_init, 2143 * followed by state transitions to the current 802.11 2144 * operational state. Used to recover from various errors and 2145 * to reset or reload hardware state. 2146 */ 2147 int 2148 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2149 { 2150 struct ath_softc *sc = ifp->if_softc; 2151 struct ieee80211com *ic = ifp->if_l2com; 2152 struct ath_hal *ah = sc->sc_ah; 2153 HAL_STATUS status; 2154 int i; 2155 2156 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2157 2158 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2159 ATH_PCU_UNLOCK_ASSERT(sc); 2160 ATH_UNLOCK_ASSERT(sc); 2161 2162 /* Try to (stop any further TX/RX from occuring */ 2163 taskqueue_block(sc->sc_tq); 2164 2165 ATH_PCU_LOCK(sc); 2166 ath_hal_intrset(ah, 0); /* disable interrupts */ 2167 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2168 if (ath_reset_grablock(sc, 1) == 0) { 2169 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2170 __func__); 2171 } 2172 ATH_PCU_UNLOCK(sc); 2173 2174 /* 2175 * Should now wait for pending TX/RX to complete 2176 * and block future ones from occuring. This needs to be 2177 * done before the TX queue is drained. 2178 */ 2179 ath_draintxq(sc, reset_type); /* stop xmit side */ 2180 2181 /* 2182 * Regardless of whether we're doing a no-loss flush or 2183 * not, stop the PCU and handle what's in the RX queue. 2184 * That way frames aren't dropped which shouldn't be. 2185 */ 2186 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2187 ath_rx_flush(sc); 2188 2189 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2190 /* NB: indicate channel change so we do a full reset */ 2191 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2192 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2193 __func__, status); 2194 sc->sc_diversity = ath_hal_getdiversity(ah); 2195 2196 /* Let DFS at it in case it's a DFS channel */ 2197 ath_dfs_radar_enable(sc, ic->ic_curchan); 2198 2199 if (ath_startrecv(sc) != 0) /* restart recv */ 2200 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2201 /* 2202 * We may be doing a reset in response to an ioctl 2203 * that changes the channel so update any state that 2204 * might change as a result. 2205 */ 2206 ath_chan_change(sc, ic->ic_curchan); 2207 if (sc->sc_beacons) { /* restart beacons */ 2208 #ifdef IEEE80211_SUPPORT_TDMA 2209 if (sc->sc_tdma) 2210 ath_tdma_config(sc, NULL); 2211 else 2212 #endif 2213 ath_beacon_config(sc, NULL); 2214 } 2215 2216 /* 2217 * Release the reset lock and re-enable interrupts here. 2218 * If an interrupt was being processed in ath_intr(), 2219 * it would disable interrupts at this point. So we have 2220 * to atomically enable interrupts and decrement the 2221 * reset counter - this way ath_intr() doesn't end up 2222 * disabling interrupts without a corresponding enable 2223 * in the rest or channel change path. 2224 */ 2225 ATH_PCU_LOCK(sc); 2226 sc->sc_inreset_cnt--; 2227 /* XXX only do this if sc_inreset_cnt == 0? */ 2228 ath_hal_intrset(ah, sc->sc_imask); 2229 ATH_PCU_UNLOCK(sc); 2230 2231 /* 2232 * TX and RX can be started here. If it were started with 2233 * sc_inreset_cnt > 0, the TX and RX path would abort. 2234 * Thus if this is a nested call through the reset or 2235 * channel change code, TX completion will occur but 2236 * RX completion and ath_start / ath_tx_start will not 2237 * run. 2238 */ 2239 2240 /* Restart TX/RX as needed */ 2241 ath_txrx_start(sc); 2242 2243 /* XXX Restart TX completion and pending TX */ 2244 if (reset_type == ATH_RESET_NOLOSS) { 2245 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2246 if (ATH_TXQ_SETUP(sc, i)) { 2247 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2248 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2249 ath_txq_sched(sc, &sc->sc_txq[i]); 2250 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2251 } 2252 } 2253 } 2254 2255 /* 2256 * This may have been set during an ath_start() call which 2257 * set this once it detected a concurrent TX was going on. 2258 * So, clear it. 2259 */ 2260 IF_LOCK(&ifp->if_snd); 2261 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2262 IF_UNLOCK(&ifp->if_snd); 2263 2264 /* Handle any frames in the TX queue */ 2265 /* 2266 * XXX should this be done by the caller, rather than 2267 * ath_reset() ? 2268 */ 2269 ath_tx_kick(sc); /* restart xmit */ 2270 return 0; 2271 } 2272 2273 static int 2274 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2275 { 2276 struct ieee80211com *ic = vap->iv_ic; 2277 struct ifnet *ifp = ic->ic_ifp; 2278 struct ath_softc *sc = ifp->if_softc; 2279 struct ath_hal *ah = sc->sc_ah; 2280 2281 switch (cmd) { 2282 case IEEE80211_IOC_TXPOWER: 2283 /* 2284 * If per-packet TPC is enabled, then we have nothing 2285 * to do; otherwise we need to force the global limit. 2286 * All this can happen directly; no need to reset. 2287 */ 2288 if (!ath_hal_gettpc(ah)) 2289 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2290 return 0; 2291 } 2292 /* XXX? Full or NOLOSS? */ 2293 return ath_reset(ifp, ATH_RESET_FULL); 2294 } 2295 2296 struct ath_buf * 2297 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2298 { 2299 struct ath_buf *bf; 2300 2301 ATH_TXBUF_LOCK_ASSERT(sc); 2302 2303 if (btype == ATH_BUFTYPE_MGMT) 2304 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2305 else 2306 bf = TAILQ_FIRST(&sc->sc_txbuf); 2307 2308 if (bf == NULL) { 2309 sc->sc_stats.ast_tx_getnobuf++; 2310 } else { 2311 if (bf->bf_flags & ATH_BUF_BUSY) { 2312 sc->sc_stats.ast_tx_getbusybuf++; 2313 bf = NULL; 2314 } 2315 } 2316 2317 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2318 if (btype == ATH_BUFTYPE_MGMT) 2319 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2320 else { 2321 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2322 sc->sc_txbuf_cnt--; 2323 2324 /* 2325 * This shuldn't happen; however just to be 2326 * safe print a warning and fudge the txbuf 2327 * count. 2328 */ 2329 if (sc->sc_txbuf_cnt < 0) { 2330 device_printf(sc->sc_dev, 2331 "%s: sc_txbuf_cnt < 0?\n", 2332 __func__); 2333 sc->sc_txbuf_cnt = 0; 2334 } 2335 } 2336 } else 2337 bf = NULL; 2338 2339 if (bf == NULL) { 2340 /* XXX should check which list, mgmt or otherwise */ 2341 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2342 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2343 "out of xmit buffers" : "xmit buffer busy"); 2344 return NULL; 2345 } 2346 2347 /* XXX TODO: should do this at buffer list initialisation */ 2348 /* XXX (then, ensure the buffer has the right flag set) */ 2349 if (btype == ATH_BUFTYPE_MGMT) 2350 bf->bf_flags |= ATH_BUF_MGMT; 2351 else 2352 bf->bf_flags &= (~ATH_BUF_MGMT); 2353 2354 /* Valid bf here; clear some basic fields */ 2355 bf->bf_next = NULL; /* XXX just to be sure */ 2356 bf->bf_last = NULL; /* XXX again, just to be sure */ 2357 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2358 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2359 2360 /* 2361 * Track the descriptor ID only if doing EDMA 2362 */ 2363 if (sc->sc_isedma) { 2364 bf->bf_descid = sc->sc_txbuf_descid; 2365 sc->sc_txbuf_descid++; 2366 } 2367 2368 return bf; 2369 } 2370 2371 /* 2372 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2373 * can't be thrown back on the queue as they could still be 2374 * in use by the hardware. 2375 * 2376 * This duplicates the buffer, or returns NULL. 2377 * 2378 * The descriptor is also copied but the link pointers and 2379 * the DMA segments aren't copied; this frame should thus 2380 * be again passed through the descriptor setup/chain routines 2381 * so the link is correct. 2382 * 2383 * The caller must free the buffer using ath_freebuf(). 2384 * 2385 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2386 * XXX in the TX pathway when retries are needed. 2387 * XXX Figure out how to keep some buffers free, or factor the 2388 * XXX number of busy buffers into the xmit path (ath_start()) 2389 * XXX so we don't over-commit. 2390 */ 2391 struct ath_buf * 2392 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2393 { 2394 struct ath_buf *tbf; 2395 2396 tbf = ath_getbuf(sc, 2397 (bf->bf_flags & ATH_BUF_MGMT) ? 2398 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2399 if (tbf == NULL) 2400 return NULL; /* XXX failure? Why? */ 2401 2402 /* Copy basics */ 2403 tbf->bf_next = NULL; 2404 tbf->bf_nseg = bf->bf_nseg; 2405 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2406 tbf->bf_status = bf->bf_status; 2407 tbf->bf_m = bf->bf_m; 2408 tbf->bf_node = bf->bf_node; 2409 /* will be setup by the chain/setup function */ 2410 tbf->bf_lastds = NULL; 2411 /* for now, last == self */ 2412 tbf->bf_last = tbf; 2413 tbf->bf_comp = bf->bf_comp; 2414 2415 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2416 2417 /* The caller has to re-init the descriptor + links */ 2418 2419 /* Copy state */ 2420 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2421 2422 return tbf; 2423 } 2424 2425 struct ath_buf * 2426 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2427 { 2428 struct ath_buf *bf; 2429 2430 ATH_TXBUF_LOCK(sc); 2431 bf = _ath_getbuf_locked(sc, btype); 2432 /* 2433 * If a mgmt buffer was requested but we're out of those, 2434 * try requesting a normal one. 2435 */ 2436 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2437 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2438 ATH_TXBUF_UNLOCK(sc); 2439 if (bf == NULL) { 2440 struct ifnet *ifp = sc->sc_ifp; 2441 2442 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2443 sc->sc_stats.ast_tx_qstop++; 2444 IF_LOCK(&ifp->if_snd); 2445 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2446 IF_UNLOCK(&ifp->if_snd); 2447 } 2448 return bf; 2449 } 2450 2451 static void 2452 ath_start_queue(struct ifnet *ifp) 2453 { 2454 struct ath_softc *sc = ifp->if_softc; 2455 2456 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start"); 2457 ath_tx_kick(sc); 2458 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished"); 2459 } 2460 2461 void 2462 ath_start_task(void *arg, int npending) 2463 { 2464 struct ath_softc *sc = (struct ath_softc *) arg; 2465 struct ifnet *ifp = sc->sc_ifp; 2466 2467 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start"); 2468 2469 /* XXX is it ok to hold the ATH_LOCK here? */ 2470 ATH_PCU_LOCK(sc); 2471 if (sc->sc_inreset_cnt > 0) { 2472 device_printf(sc->sc_dev, 2473 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2474 ATH_PCU_UNLOCK(sc); 2475 IF_LOCK(&ifp->if_snd); 2476 sc->sc_stats.ast_tx_qstop++; 2477 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2478 IF_UNLOCK(&ifp->if_snd); 2479 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 2480 return; 2481 } 2482 sc->sc_txstart_cnt++; 2483 ATH_PCU_UNLOCK(sc); 2484 2485 ath_start(sc->sc_ifp); 2486 2487 ATH_PCU_LOCK(sc); 2488 sc->sc_txstart_cnt--; 2489 ATH_PCU_UNLOCK(sc); 2490 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished"); 2491 } 2492 2493 void 2494 ath_start(struct ifnet *ifp) 2495 { 2496 struct ath_softc *sc = ifp->if_softc; 2497 struct ieee80211_node *ni; 2498 struct ath_buf *bf; 2499 struct mbuf *m, *next; 2500 ath_bufhead frags; 2501 int npkts = 0; 2502 2503 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2504 return; 2505 2506 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called"); 2507 2508 for (;;) { 2509 ATH_TXBUF_LOCK(sc); 2510 if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) { 2511 /* XXX increment counter? */ 2512 ATH_TXBUF_UNLOCK(sc); 2513 IF_LOCK(&ifp->if_snd); 2514 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2515 IF_UNLOCK(&ifp->if_snd); 2516 break; 2517 } 2518 ATH_TXBUF_UNLOCK(sc); 2519 2520 /* 2521 * Grab a TX buffer and associated resources. 2522 */ 2523 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2524 if (bf == NULL) 2525 break; 2526 2527 IFQ_DEQUEUE(&ifp->if_snd, m); 2528 if (m == NULL) { 2529 ATH_TXBUF_LOCK(sc); 2530 ath_returnbuf_head(sc, bf); 2531 ATH_TXBUF_UNLOCK(sc); 2532 break; 2533 } 2534 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2535 npkts ++; 2536 /* 2537 * Check for fragmentation. If this frame 2538 * has been broken up verify we have enough 2539 * buffers to send all the fragments so all 2540 * go out or none... 2541 */ 2542 TAILQ_INIT(&frags); 2543 if ((m->m_flags & M_FRAG) && 2544 !ath_txfrag_setup(sc, &frags, m, ni)) { 2545 DPRINTF(sc, ATH_DEBUG_XMIT, 2546 "%s: out of txfrag buffers\n", __func__); 2547 sc->sc_stats.ast_tx_nofrag++; 2548 ifp->if_oerrors++; 2549 ath_freetx(m); 2550 goto bad; 2551 } 2552 ifp->if_opackets++; 2553 nextfrag: 2554 /* 2555 * Pass the frame to the h/w for transmission. 2556 * Fragmented frames have each frag chained together 2557 * with m_nextpkt. We know there are sufficient ath_buf's 2558 * to send all the frags because of work done by 2559 * ath_txfrag_setup. We leave m_nextpkt set while 2560 * calling ath_tx_start so it can use it to extend the 2561 * the tx duration to cover the subsequent frag and 2562 * so it can reclaim all the mbufs in case of an error; 2563 * ath_tx_start clears m_nextpkt once it commits to 2564 * handing the frame to the hardware. 2565 */ 2566 next = m->m_nextpkt; 2567 if (ath_tx_start(sc, ni, bf, m)) { 2568 bad: 2569 ifp->if_oerrors++; 2570 reclaim: 2571 bf->bf_m = NULL; 2572 bf->bf_node = NULL; 2573 ATH_TXBUF_LOCK(sc); 2574 ath_returnbuf_head(sc, bf); 2575 ath_txfrag_cleanup(sc, &frags, ni); 2576 ATH_TXBUF_UNLOCK(sc); 2577 if (ni != NULL) 2578 ieee80211_free_node(ni); 2579 continue; 2580 } 2581 2582 /* 2583 * Check here if the node is in power save state. 2584 */ 2585 ath_tx_update_tim(sc, ni, 1); 2586 2587 if (next != NULL) { 2588 /* 2589 * Beware of state changing between frags. 2590 * XXX check sta power-save state? 2591 */ 2592 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2593 DPRINTF(sc, ATH_DEBUG_XMIT, 2594 "%s: flush fragmented packet, state %s\n", 2595 __func__, 2596 ieee80211_state_name[ni->ni_vap->iv_state]); 2597 ath_freetx(next); 2598 goto reclaim; 2599 } 2600 m = next; 2601 bf = TAILQ_FIRST(&frags); 2602 KASSERT(bf != NULL, ("no buf for txfrag")); 2603 TAILQ_REMOVE(&frags, bf, bf_list); 2604 goto nextfrag; 2605 } 2606 2607 sc->sc_wd_timer = 5; 2608 } 2609 ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts); 2610 } 2611 2612 static int 2613 ath_media_change(struct ifnet *ifp) 2614 { 2615 int error = ieee80211_media_change(ifp); 2616 /* NB: only the fixed rate can change and that doesn't need a reset */ 2617 return (error == ENETRESET ? 0 : error); 2618 } 2619 2620 /* 2621 * Block/unblock tx+rx processing while a key change is done. 2622 * We assume the caller serializes key management operations 2623 * so we only need to worry about synchronization with other 2624 * uses that originate in the driver. 2625 */ 2626 static void 2627 ath_key_update_begin(struct ieee80211vap *vap) 2628 { 2629 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2630 struct ath_softc *sc = ifp->if_softc; 2631 2632 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2633 taskqueue_block(sc->sc_tq); 2634 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2635 } 2636 2637 static void 2638 ath_key_update_end(struct ieee80211vap *vap) 2639 { 2640 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2641 struct ath_softc *sc = ifp->if_softc; 2642 2643 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2644 IF_UNLOCK(&ifp->if_snd); 2645 taskqueue_unblock(sc->sc_tq); 2646 } 2647 2648 static void 2649 ath_update_promisc(struct ifnet *ifp) 2650 { 2651 struct ath_softc *sc = ifp->if_softc; 2652 u_int32_t rfilt; 2653 2654 /* configure rx filter */ 2655 rfilt = ath_calcrxfilter(sc); 2656 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2657 2658 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2659 } 2660 2661 static void 2662 ath_update_mcast(struct ifnet *ifp) 2663 { 2664 struct ath_softc *sc = ifp->if_softc; 2665 u_int32_t mfilt[2]; 2666 2667 /* calculate and install multicast filter */ 2668 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2669 struct ifmultiaddr *ifma; 2670 /* 2671 * Merge multicast addresses to form the hardware filter. 2672 */ 2673 mfilt[0] = mfilt[1] = 0; 2674 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2675 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2676 caddr_t dl; 2677 u_int32_t val; 2678 u_int8_t pos; 2679 2680 /* calculate XOR of eight 6bit values */ 2681 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2682 val = LE_READ_4(dl + 0); 2683 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2684 val = LE_READ_4(dl + 3); 2685 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2686 pos &= 0x3f; 2687 mfilt[pos / 32] |= (1 << (pos % 32)); 2688 } 2689 if_maddr_runlock(ifp); 2690 } else 2691 mfilt[0] = mfilt[1] = ~0; 2692 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2693 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2694 __func__, mfilt[0], mfilt[1]); 2695 } 2696 2697 void 2698 ath_mode_init(struct ath_softc *sc) 2699 { 2700 struct ifnet *ifp = sc->sc_ifp; 2701 struct ath_hal *ah = sc->sc_ah; 2702 u_int32_t rfilt; 2703 2704 /* configure rx filter */ 2705 rfilt = ath_calcrxfilter(sc); 2706 ath_hal_setrxfilter(ah, rfilt); 2707 2708 /* configure operational mode */ 2709 ath_hal_setopmode(ah); 2710 2711 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 2712 "%s: ah=%p, ifp=%p, if_addr=%p\n", 2713 __func__, 2714 ah, 2715 ifp, 2716 (ifp == NULL) ? NULL : ifp->if_addr); 2717 2718 /* handle any link-level address change */ 2719 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2720 2721 /* calculate and install multicast filter */ 2722 ath_update_mcast(ifp); 2723 } 2724 2725 /* 2726 * Set the slot time based on the current setting. 2727 */ 2728 void 2729 ath_setslottime(struct ath_softc *sc) 2730 { 2731 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2732 struct ath_hal *ah = sc->sc_ah; 2733 u_int usec; 2734 2735 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2736 usec = 13; 2737 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2738 usec = 21; 2739 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2740 /* honor short/long slot time only in 11g */ 2741 /* XXX shouldn't honor on pure g or turbo g channel */ 2742 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2743 usec = HAL_SLOT_TIME_9; 2744 else 2745 usec = HAL_SLOT_TIME_20; 2746 } else 2747 usec = HAL_SLOT_TIME_9; 2748 2749 DPRINTF(sc, ATH_DEBUG_RESET, 2750 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2751 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2752 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2753 2754 ath_hal_setslottime(ah, usec); 2755 sc->sc_updateslot = OK; 2756 } 2757 2758 /* 2759 * Callback from the 802.11 layer to update the 2760 * slot time based on the current setting. 2761 */ 2762 static void 2763 ath_updateslot(struct ifnet *ifp) 2764 { 2765 struct ath_softc *sc = ifp->if_softc; 2766 struct ieee80211com *ic = ifp->if_l2com; 2767 2768 /* 2769 * When not coordinating the BSS, change the hardware 2770 * immediately. For other operation we defer the change 2771 * until beacon updates have propagated to the stations. 2772 */ 2773 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2774 ic->ic_opmode == IEEE80211_M_MBSS) 2775 sc->sc_updateslot = UPDATE; 2776 else 2777 ath_setslottime(sc); 2778 } 2779 2780 /* 2781 * Append the contents of src to dst; both queues 2782 * are assumed to be locked. 2783 */ 2784 void 2785 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2786 { 2787 2788 ATH_TXQ_LOCK_ASSERT(dst); 2789 ATH_TXQ_LOCK_ASSERT(src); 2790 2791 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2792 dst->axq_link = src->axq_link; 2793 src->axq_link = NULL; 2794 dst->axq_depth += src->axq_depth; 2795 dst->axq_aggr_depth += src->axq_aggr_depth; 2796 src->axq_depth = 0; 2797 src->axq_aggr_depth = 0; 2798 } 2799 2800 /* 2801 * Reset the hardware, with no loss. 2802 * 2803 * This can't be used for a general case reset. 2804 */ 2805 static void 2806 ath_reset_proc(void *arg, int pending) 2807 { 2808 struct ath_softc *sc = arg; 2809 struct ifnet *ifp = sc->sc_ifp; 2810 2811 #if 0 2812 if_printf(ifp, "%s: resetting\n", __func__); 2813 #endif 2814 ath_reset(ifp, ATH_RESET_NOLOSS); 2815 } 2816 2817 /* 2818 * Reset the hardware after detecting beacons have stopped. 2819 */ 2820 static void 2821 ath_bstuck_proc(void *arg, int pending) 2822 { 2823 struct ath_softc *sc = arg; 2824 struct ifnet *ifp = sc->sc_ifp; 2825 uint32_t hangs = 0; 2826 2827 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2828 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2829 2830 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2831 sc->sc_bmisscount); 2832 sc->sc_stats.ast_bstuck++; 2833 /* 2834 * This assumes that there's no simultaneous channel mode change 2835 * occuring. 2836 */ 2837 ath_reset(ifp, ATH_RESET_NOLOSS); 2838 } 2839 2840 static void 2841 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2842 { 2843 bus_addr_t *paddr = (bus_addr_t*) arg; 2844 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2845 *paddr = segs->ds_addr; 2846 } 2847 2848 /* 2849 * Allocate the descriptors and appropriate DMA tag/setup. 2850 * 2851 * For some situations (eg EDMA TX completion), there isn't a requirement 2852 * for the ath_buf entries to be allocated. 2853 */ 2854 int 2855 ath_descdma_alloc_desc(struct ath_softc *sc, 2856 struct ath_descdma *dd, ath_bufhead *head, 2857 const char *name, int ds_size, int ndesc) 2858 { 2859 #define DS2PHYS(_dd, _ds) \ 2860 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2861 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2862 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2863 struct ifnet *ifp = sc->sc_ifp; 2864 int error; 2865 2866 dd->dd_descsize = ds_size; 2867 2868 DPRINTF(sc, ATH_DEBUG_RESET, 2869 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 2870 __func__, name, ndesc, dd->dd_descsize); 2871 2872 dd->dd_name = name; 2873 dd->dd_desc_len = dd->dd_descsize * ndesc; 2874 2875 /* 2876 * Merlin work-around: 2877 * Descriptors that cross the 4KB boundary can't be used. 2878 * Assume one skipped descriptor per 4KB page. 2879 */ 2880 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2881 int numpages = dd->dd_desc_len / 4096; 2882 dd->dd_desc_len += ds_size * numpages; 2883 } 2884 2885 /* 2886 * Setup DMA descriptor area. 2887 */ 2888 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 2889 PAGE_SIZE, 0, /* alignment, bounds */ 2890 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2891 BUS_SPACE_MAXADDR, /* highaddr */ 2892 NULL, NULL, /* filter, filterarg */ 2893 dd->dd_desc_len, /* maxsize */ 2894 1, /* nsegments */ 2895 dd->dd_desc_len, /* maxsegsize */ 2896 BUS_DMA_ALLOCNOW, /* flags */ 2897 NULL, /* lockfunc */ 2898 NULL, /* lockarg */ 2899 &dd->dd_dmat); 2900 if (error != 0) { 2901 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 2902 return error; 2903 } 2904 2905 /* allocate descriptors */ 2906 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 2907 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 2908 &dd->dd_dmamap); 2909 if (error != 0) { 2910 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2911 "error %u\n", ndesc, dd->dd_name, error); 2912 goto fail1; 2913 } 2914 2915 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 2916 dd->dd_desc, dd->dd_desc_len, 2917 ath_load_cb, &dd->dd_desc_paddr, 2918 BUS_DMA_NOWAIT); 2919 if (error != 0) { 2920 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2921 dd->dd_name, error); 2922 goto fail2; 2923 } 2924 2925 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2926 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 2927 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 2928 /*XXX*/ (u_long) dd->dd_desc_len); 2929 2930 return (0); 2931 2932 fail2: 2933 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2934 fail1: 2935 bus_dma_tag_destroy(dd->dd_dmat); 2936 memset(dd, 0, sizeof(*dd)); 2937 return error; 2938 #undef DS2PHYS 2939 #undef ATH_DESC_4KB_BOUND_CHECK 2940 } 2941 2942 int 2943 ath_descdma_setup(struct ath_softc *sc, 2944 struct ath_descdma *dd, ath_bufhead *head, 2945 const char *name, int ds_size, int nbuf, int ndesc) 2946 { 2947 #define DS2PHYS(_dd, _ds) \ 2948 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2949 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2950 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2951 struct ifnet *ifp = sc->sc_ifp; 2952 uint8_t *ds; 2953 struct ath_buf *bf; 2954 int i, bsize, error; 2955 2956 /* Allocate descriptors */ 2957 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 2958 nbuf * ndesc); 2959 2960 /* Assume any errors during allocation were dealt with */ 2961 if (error != 0) { 2962 return (error); 2963 } 2964 2965 ds = (uint8_t *) dd->dd_desc; 2966 2967 /* allocate rx buffers */ 2968 bsize = sizeof(struct ath_buf) * nbuf; 2969 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2970 if (bf == NULL) { 2971 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2972 dd->dd_name, bsize); 2973 goto fail3; 2974 } 2975 dd->dd_bufptr = bf; 2976 2977 TAILQ_INIT(head); 2978 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 2979 bf->bf_desc = (struct ath_desc *) ds; 2980 bf->bf_daddr = DS2PHYS(dd, ds); 2981 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2982 /* 2983 * Merlin WAR: Skip descriptor addresses which 2984 * cause 4KB boundary crossing along any point 2985 * in the descriptor. 2986 */ 2987 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 2988 dd->dd_descsize)) { 2989 /* Start at the next page */ 2990 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 2991 bf->bf_desc = (struct ath_desc *) ds; 2992 bf->bf_daddr = DS2PHYS(dd, ds); 2993 } 2994 } 2995 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 2996 &bf->bf_dmamap); 2997 if (error != 0) { 2998 if_printf(ifp, "unable to create dmamap for %s " 2999 "buffer %u, error %u\n", dd->dd_name, i, error); 3000 ath_descdma_cleanup(sc, dd, head); 3001 return error; 3002 } 3003 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3004 TAILQ_INSERT_TAIL(head, bf, bf_list); 3005 } 3006 3007 /* 3008 * XXX TODO: ensure that ds doesn't overflow the descriptor 3009 * allocation otherwise weird stuff will occur and crash your 3010 * machine. 3011 */ 3012 return 0; 3013 /* XXX this should likely just call ath_descdma_cleanup() */ 3014 fail3: 3015 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3016 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3017 bus_dma_tag_destroy(dd->dd_dmat); 3018 memset(dd, 0, sizeof(*dd)); 3019 return error; 3020 #undef DS2PHYS 3021 #undef ATH_DESC_4KB_BOUND_CHECK 3022 } 3023 3024 /* 3025 * Allocate ath_buf entries but no descriptor contents. 3026 * 3027 * This is for RX EDMA where the descriptors are the header part of 3028 * the RX buffer. 3029 */ 3030 int 3031 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3032 struct ath_descdma *dd, ath_bufhead *head, 3033 const char *name, int nbuf, int rx_status_len) 3034 { 3035 struct ifnet *ifp = sc->sc_ifp; 3036 struct ath_buf *bf; 3037 int i, bsize, error; 3038 3039 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3040 __func__, name, nbuf); 3041 3042 dd->dd_name = name; 3043 /* 3044 * This is (mostly) purely for show. We're not allocating any actual 3045 * descriptors here as EDMA RX has the descriptor be part 3046 * of the RX buffer. 3047 * 3048 * However, dd_desc_len is used by ath_descdma_free() to determine 3049 * whether we have already freed this DMA mapping. 3050 */ 3051 dd->dd_desc_len = rx_status_len * nbuf; 3052 dd->dd_descsize = rx_status_len; 3053 3054 /* allocate rx buffers */ 3055 bsize = sizeof(struct ath_buf) * nbuf; 3056 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3057 if (bf == NULL) { 3058 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3059 dd->dd_name, bsize); 3060 error = ENOMEM; 3061 goto fail3; 3062 } 3063 dd->dd_bufptr = bf; 3064 3065 TAILQ_INIT(head); 3066 for (i = 0; i < nbuf; i++, bf++) { 3067 bf->bf_desc = NULL; 3068 bf->bf_daddr = 0; 3069 bf->bf_lastds = NULL; /* Just an initial value */ 3070 3071 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3072 &bf->bf_dmamap); 3073 if (error != 0) { 3074 if_printf(ifp, "unable to create dmamap for %s " 3075 "buffer %u, error %u\n", dd->dd_name, i, error); 3076 ath_descdma_cleanup(sc, dd, head); 3077 return error; 3078 } 3079 TAILQ_INSERT_TAIL(head, bf, bf_list); 3080 } 3081 return 0; 3082 fail3: 3083 memset(dd, 0, sizeof(*dd)); 3084 return error; 3085 } 3086 3087 void 3088 ath_descdma_cleanup(struct ath_softc *sc, 3089 struct ath_descdma *dd, ath_bufhead *head) 3090 { 3091 struct ath_buf *bf; 3092 struct ieee80211_node *ni; 3093 3094 if (dd->dd_dmamap != 0) { 3095 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3096 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3097 bus_dma_tag_destroy(dd->dd_dmat); 3098 } 3099 3100 if (head != NULL) { 3101 TAILQ_FOREACH(bf, head, bf_list) { 3102 if (bf->bf_m) { 3103 m_freem(bf->bf_m); 3104 bf->bf_m = NULL; 3105 } 3106 if (bf->bf_dmamap != NULL) { 3107 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3108 bf->bf_dmamap = NULL; 3109 } 3110 ni = bf->bf_node; 3111 bf->bf_node = NULL; 3112 if (ni != NULL) { 3113 /* 3114 * Reclaim node reference. 3115 */ 3116 ieee80211_free_node(ni); 3117 } 3118 } 3119 } 3120 3121 if (head != NULL) 3122 TAILQ_INIT(head); 3123 3124 if (dd->dd_bufptr != NULL) 3125 free(dd->dd_bufptr, M_ATHDEV); 3126 memset(dd, 0, sizeof(*dd)); 3127 } 3128 3129 static int 3130 ath_desc_alloc(struct ath_softc *sc) 3131 { 3132 int error; 3133 3134 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3135 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC); 3136 if (error != 0) { 3137 return error; 3138 } 3139 sc->sc_txbuf_cnt = ath_txbuf; 3140 3141 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3142 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3143 ATH_TXDESC); 3144 if (error != 0) { 3145 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3146 return error; 3147 } 3148 3149 /* 3150 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3151 * flag doesn't have to be set in ath_getbuf_locked(). 3152 */ 3153 3154 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3155 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3156 if (error != 0) { 3157 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3158 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3159 &sc->sc_txbuf_mgmt); 3160 return error; 3161 } 3162 return 0; 3163 } 3164 3165 static void 3166 ath_desc_free(struct ath_softc *sc) 3167 { 3168 3169 if (sc->sc_bdma.dd_desc_len != 0) 3170 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3171 if (sc->sc_txdma.dd_desc_len != 0) 3172 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3173 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3174 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3175 &sc->sc_txbuf_mgmt); 3176 } 3177 3178 static struct ieee80211_node * 3179 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3180 { 3181 struct ieee80211com *ic = vap->iv_ic; 3182 struct ath_softc *sc = ic->ic_ifp->if_softc; 3183 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3184 struct ath_node *an; 3185 3186 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3187 if (an == NULL) { 3188 /* XXX stat+msg */ 3189 return NULL; 3190 } 3191 ath_rate_node_init(sc, an); 3192 3193 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3194 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3195 device_get_nameunit(sc->sc_dev), an); 3196 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3197 3198 /* XXX setup ath_tid */ 3199 ath_tx_tid_init(sc, an); 3200 3201 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3202 return &an->an_node; 3203 } 3204 3205 static void 3206 ath_node_cleanup(struct ieee80211_node *ni) 3207 { 3208 struct ieee80211com *ic = ni->ni_ic; 3209 struct ath_softc *sc = ic->ic_ifp->if_softc; 3210 3211 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3212 ath_tx_node_flush(sc, ATH_NODE(ni)); 3213 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3214 sc->sc_node_cleanup(ni); 3215 } 3216 3217 static void 3218 ath_node_free(struct ieee80211_node *ni) 3219 { 3220 struct ieee80211com *ic = ni->ni_ic; 3221 struct ath_softc *sc = ic->ic_ifp->if_softc; 3222 3223 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3224 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3225 sc->sc_node_free(ni); 3226 } 3227 3228 static void 3229 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3230 { 3231 struct ieee80211com *ic = ni->ni_ic; 3232 struct ath_softc *sc = ic->ic_ifp->if_softc; 3233 struct ath_hal *ah = sc->sc_ah; 3234 3235 *rssi = ic->ic_node_getrssi(ni); 3236 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3237 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3238 else 3239 *noise = -95; /* nominally correct */ 3240 } 3241 3242 /* 3243 * Set the default antenna. 3244 */ 3245 void 3246 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3247 { 3248 struct ath_hal *ah = sc->sc_ah; 3249 3250 /* XXX block beacon interrupts */ 3251 ath_hal_setdefantenna(ah, antenna); 3252 if (sc->sc_defant != antenna) 3253 sc->sc_stats.ast_ant_defswitch++; 3254 sc->sc_defant = antenna; 3255 sc->sc_rxotherant = 0; 3256 } 3257 3258 static void 3259 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3260 { 3261 txq->axq_qnum = qnum; 3262 txq->axq_ac = 0; 3263 txq->axq_depth = 0; 3264 txq->axq_aggr_depth = 0; 3265 txq->axq_intrcnt = 0; 3266 txq->axq_link = NULL; 3267 txq->axq_softc = sc; 3268 TAILQ_INIT(&txq->axq_q); 3269 TAILQ_INIT(&txq->axq_tidq); 3270 ATH_TXQ_LOCK_INIT(sc, txq); 3271 } 3272 3273 /* 3274 * Setup a h/w transmit queue. 3275 */ 3276 static struct ath_txq * 3277 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3278 { 3279 #define N(a) (sizeof(a)/sizeof(a[0])) 3280 struct ath_hal *ah = sc->sc_ah; 3281 HAL_TXQ_INFO qi; 3282 int qnum; 3283 3284 memset(&qi, 0, sizeof(qi)); 3285 qi.tqi_subtype = subtype; 3286 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3287 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3288 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3289 /* 3290 * Enable interrupts only for EOL and DESC conditions. 3291 * We mark tx descriptors to receive a DESC interrupt 3292 * when a tx queue gets deep; otherwise waiting for the 3293 * EOL to reap descriptors. Note that this is done to 3294 * reduce interrupt load and this only defers reaping 3295 * descriptors, never transmitting frames. Aside from 3296 * reducing interrupts this also permits more concurrency. 3297 * The only potential downside is if the tx queue backs 3298 * up in which case the top half of the kernel may backup 3299 * due to a lack of tx descriptors. 3300 */ 3301 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3302 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3303 if (qnum == -1) { 3304 /* 3305 * NB: don't print a message, this happens 3306 * normally on parts with too few tx queues 3307 */ 3308 return NULL; 3309 } 3310 if (qnum >= N(sc->sc_txq)) { 3311 device_printf(sc->sc_dev, 3312 "hal qnum %u out of range, max %zu!\n", 3313 qnum, N(sc->sc_txq)); 3314 ath_hal_releasetxqueue(ah, qnum); 3315 return NULL; 3316 } 3317 if (!ATH_TXQ_SETUP(sc, qnum)) { 3318 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3319 sc->sc_txqsetup |= 1<<qnum; 3320 } 3321 return &sc->sc_txq[qnum]; 3322 #undef N 3323 } 3324 3325 /* 3326 * Setup a hardware data transmit queue for the specified 3327 * access control. The hal may not support all requested 3328 * queues in which case it will return a reference to a 3329 * previously setup queue. We record the mapping from ac's 3330 * to h/w queues for use by ath_tx_start and also track 3331 * the set of h/w queues being used to optimize work in the 3332 * transmit interrupt handler and related routines. 3333 */ 3334 static int 3335 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3336 { 3337 #define N(a) (sizeof(a)/sizeof(a[0])) 3338 struct ath_txq *txq; 3339 3340 if (ac >= N(sc->sc_ac2q)) { 3341 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3342 ac, N(sc->sc_ac2q)); 3343 return 0; 3344 } 3345 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3346 if (txq != NULL) { 3347 txq->axq_ac = ac; 3348 sc->sc_ac2q[ac] = txq; 3349 return 1; 3350 } else 3351 return 0; 3352 #undef N 3353 } 3354 3355 /* 3356 * Update WME parameters for a transmit queue. 3357 */ 3358 static int 3359 ath_txq_update(struct ath_softc *sc, int ac) 3360 { 3361 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3362 #define ATH_TXOP_TO_US(v) (v<<5) 3363 struct ifnet *ifp = sc->sc_ifp; 3364 struct ieee80211com *ic = ifp->if_l2com; 3365 struct ath_txq *txq = sc->sc_ac2q[ac]; 3366 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3367 struct ath_hal *ah = sc->sc_ah; 3368 HAL_TXQ_INFO qi; 3369 3370 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3371 #ifdef IEEE80211_SUPPORT_TDMA 3372 if (sc->sc_tdma) { 3373 /* 3374 * AIFS is zero so there's no pre-transmit wait. The 3375 * burst time defines the slot duration and is configured 3376 * through net80211. The QCU is setup to not do post-xmit 3377 * back off, lockout all lower-priority QCU's, and fire 3378 * off the DMA beacon alert timer which is setup based 3379 * on the slot configuration. 3380 */ 3381 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3382 | HAL_TXQ_TXERRINT_ENABLE 3383 | HAL_TXQ_TXURNINT_ENABLE 3384 | HAL_TXQ_TXEOLINT_ENABLE 3385 | HAL_TXQ_DBA_GATED 3386 | HAL_TXQ_BACKOFF_DISABLE 3387 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3388 ; 3389 qi.tqi_aifs = 0; 3390 /* XXX +dbaprep? */ 3391 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3392 qi.tqi_burstTime = qi.tqi_readyTime; 3393 } else { 3394 #endif 3395 /* 3396 * XXX shouldn't this just use the default flags 3397 * used in the previous queue setup? 3398 */ 3399 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3400 | HAL_TXQ_TXERRINT_ENABLE 3401 | HAL_TXQ_TXDESCINT_ENABLE 3402 | HAL_TXQ_TXURNINT_ENABLE 3403 | HAL_TXQ_TXEOLINT_ENABLE 3404 ; 3405 qi.tqi_aifs = wmep->wmep_aifsn; 3406 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3407 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3408 qi.tqi_readyTime = 0; 3409 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3410 #ifdef IEEE80211_SUPPORT_TDMA 3411 } 3412 #endif 3413 3414 DPRINTF(sc, ATH_DEBUG_RESET, 3415 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3416 __func__, txq->axq_qnum, qi.tqi_qflags, 3417 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3418 3419 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3420 if_printf(ifp, "unable to update hardware queue " 3421 "parameters for %s traffic!\n", 3422 ieee80211_wme_acnames[ac]); 3423 return 0; 3424 } else { 3425 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3426 return 1; 3427 } 3428 #undef ATH_TXOP_TO_US 3429 #undef ATH_EXPONENT_TO_VALUE 3430 } 3431 3432 /* 3433 * Callback from the 802.11 layer to update WME parameters. 3434 */ 3435 int 3436 ath_wme_update(struct ieee80211com *ic) 3437 { 3438 struct ath_softc *sc = ic->ic_ifp->if_softc; 3439 3440 return !ath_txq_update(sc, WME_AC_BE) || 3441 !ath_txq_update(sc, WME_AC_BK) || 3442 !ath_txq_update(sc, WME_AC_VI) || 3443 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3444 } 3445 3446 /* 3447 * Reclaim resources for a setup queue. 3448 */ 3449 static void 3450 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3451 { 3452 3453 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3454 ATH_TXQ_LOCK_DESTROY(txq); 3455 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3456 } 3457 3458 /* 3459 * Reclaim all tx queue resources. 3460 */ 3461 static void 3462 ath_tx_cleanup(struct ath_softc *sc) 3463 { 3464 int i; 3465 3466 ATH_TXBUF_LOCK_DESTROY(sc); 3467 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3468 if (ATH_TXQ_SETUP(sc, i)) 3469 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3470 } 3471 3472 /* 3473 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3474 * using the current rates in sc_rixmap. 3475 */ 3476 int 3477 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3478 { 3479 int rix = sc->sc_rixmap[rate]; 3480 /* NB: return lowest rix for invalid rate */ 3481 return (rix == 0xff ? 0 : rix); 3482 } 3483 3484 static void 3485 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3486 struct ath_buf *bf) 3487 { 3488 struct ieee80211_node *ni = bf->bf_node; 3489 struct ifnet *ifp = sc->sc_ifp; 3490 struct ieee80211com *ic = ifp->if_l2com; 3491 int sr, lr, pri; 3492 3493 if (ts->ts_status == 0) { 3494 u_int8_t txant = ts->ts_antenna; 3495 sc->sc_stats.ast_ant_tx[txant]++; 3496 sc->sc_ant_tx[txant]++; 3497 if (ts->ts_finaltsi != 0) 3498 sc->sc_stats.ast_tx_altrate++; 3499 pri = M_WME_GETAC(bf->bf_m); 3500 if (pri >= WME_AC_VO) 3501 ic->ic_wme.wme_hipri_traffic++; 3502 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3503 ni->ni_inact = ni->ni_inact_reload; 3504 } else { 3505 if (ts->ts_status & HAL_TXERR_XRETRY) 3506 sc->sc_stats.ast_tx_xretries++; 3507 if (ts->ts_status & HAL_TXERR_FIFO) 3508 sc->sc_stats.ast_tx_fifoerr++; 3509 if (ts->ts_status & HAL_TXERR_FILT) 3510 sc->sc_stats.ast_tx_filtered++; 3511 if (ts->ts_status & HAL_TXERR_XTXOP) 3512 sc->sc_stats.ast_tx_xtxop++; 3513 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3514 sc->sc_stats.ast_tx_timerexpired++; 3515 3516 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 3517 sc->sc_stats.ast_tx_data_underrun++; 3518 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 3519 sc->sc_stats.ast_tx_delim_underrun++; 3520 3521 if (bf->bf_m->m_flags & M_FF) 3522 sc->sc_stats.ast_ff_txerr++; 3523 } 3524 /* XXX when is this valid? */ 3525 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 3526 sc->sc_stats.ast_tx_desccfgerr++; 3527 3528 sr = ts->ts_shortretry; 3529 lr = ts->ts_longretry; 3530 sc->sc_stats.ast_tx_shortretry += sr; 3531 sc->sc_stats.ast_tx_longretry += lr; 3532 3533 } 3534 3535 /* 3536 * The default completion. If fail is 1, this means 3537 * "please don't retry the frame, and just return -1 status 3538 * to the net80211 stack. 3539 */ 3540 void 3541 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3542 { 3543 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3544 int st; 3545 3546 if (fail == 1) 3547 st = -1; 3548 else 3549 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3550 ts->ts_status : HAL_TXERR_XRETRY; 3551 3552 if (bf->bf_state.bfs_dobaw) 3553 device_printf(sc->sc_dev, 3554 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3555 __func__, 3556 bf, 3557 SEQNO(bf->bf_state.bfs_seqno)); 3558 if (bf->bf_next != NULL) 3559 device_printf(sc->sc_dev, 3560 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3561 __func__, 3562 bf, 3563 SEQNO(bf->bf_state.bfs_seqno)); 3564 3565 /* 3566 * Check if the node software queue is empty; if so 3567 * then clear the TIM. 3568 * 3569 * This needs to be done before the buffer is freed as 3570 * otherwise the node reference will have been released 3571 * and the node may not actually exist any longer. 3572 * 3573 * XXX I don't like this belonging here, but it's cleaner 3574 * to do it here right now then all the other places 3575 * where ath_tx_default_comp() is called. 3576 * 3577 * XXX TODO: during drain, ensure that the callback is 3578 * being called so we get a chance to update the TIM. 3579 */ 3580 if (bf->bf_node) 3581 ath_tx_update_tim(sc, bf->bf_node, 0); 3582 3583 /* 3584 * Do any tx complete callback. Note this must 3585 * be done before releasing the node reference. 3586 * This will free the mbuf, release the net80211 3587 * node and recycle the ath_buf. 3588 */ 3589 ath_tx_freebuf(sc, bf, st); 3590 } 3591 3592 /* 3593 * Update rate control with the given completion status. 3594 */ 3595 void 3596 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3597 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3598 int nframes, int nbad) 3599 { 3600 struct ath_node *an; 3601 3602 /* Only for unicast frames */ 3603 if (ni == NULL) 3604 return; 3605 3606 an = ATH_NODE(ni); 3607 ATH_NODE_UNLOCK_ASSERT(an); 3608 3609 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3610 ATH_NODE_LOCK(an); 3611 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3612 ATH_NODE_UNLOCK(an); 3613 } 3614 } 3615 3616 /* 3617 * Update the busy status of the last frame on the free list. 3618 * When doing TDMA, the busy flag tracks whether the hardware 3619 * currently points to this buffer or not, and thus gated DMA 3620 * may restart by re-reading the last descriptor in this 3621 * buffer. 3622 * 3623 * This should be called in the completion function once one 3624 * of the buffers has been used. 3625 */ 3626 static void 3627 ath_tx_update_busy(struct ath_softc *sc) 3628 { 3629 struct ath_buf *last; 3630 3631 /* 3632 * Since the last frame may still be marked 3633 * as ATH_BUF_BUSY, unmark it here before 3634 * finishing the frame processing. 3635 * Since we've completed a frame (aggregate 3636 * or otherwise), the hardware has moved on 3637 * and is no longer referencing the previous 3638 * descriptor. 3639 */ 3640 ATH_TXBUF_LOCK_ASSERT(sc); 3641 last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 3642 if (last != NULL) 3643 last->bf_flags &= ~ATH_BUF_BUSY; 3644 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3645 if (last != NULL) 3646 last->bf_flags &= ~ATH_BUF_BUSY; 3647 } 3648 3649 /* 3650 * Process the completion of the given buffer. 3651 * 3652 * This calls the rate control update and then the buffer completion. 3653 * This will either free the buffer or requeue it. In any case, the 3654 * bf pointer should be treated as invalid after this function is called. 3655 */ 3656 void 3657 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 3658 struct ath_tx_status *ts, struct ath_buf *bf) 3659 { 3660 struct ieee80211_node *ni = bf->bf_node; 3661 struct ath_node *an = NULL; 3662 3663 ATH_TXQ_UNLOCK_ASSERT(txq); 3664 3665 /* If unicast frame, update general statistics */ 3666 if (ni != NULL) { 3667 an = ATH_NODE(ni); 3668 /* update statistics */ 3669 ath_tx_update_stats(sc, ts, bf); 3670 } 3671 3672 /* 3673 * Call the completion handler. 3674 * The completion handler is responsible for 3675 * calling the rate control code. 3676 * 3677 * Frames with no completion handler get the 3678 * rate control code called here. 3679 */ 3680 if (bf->bf_comp == NULL) { 3681 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3682 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3683 /* 3684 * XXX assume this isn't an aggregate 3685 * frame. 3686 */ 3687 ath_tx_update_ratectrl(sc, ni, 3688 bf->bf_state.bfs_rc, ts, 3689 bf->bf_state.bfs_pktlen, 1, 3690 (ts->ts_status == 0 ? 0 : 1)); 3691 } 3692 ath_tx_default_comp(sc, bf, 0); 3693 } else 3694 bf->bf_comp(sc, bf, 0); 3695 } 3696 3697 3698 3699 /* 3700 * Process completed xmit descriptors from the specified queue. 3701 * Kick the packet scheduler if needed. This can occur from this 3702 * particular task. 3703 */ 3704 static int 3705 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3706 { 3707 struct ath_hal *ah = sc->sc_ah; 3708 struct ath_buf *bf; 3709 struct ath_desc *ds; 3710 struct ath_tx_status *ts; 3711 struct ieee80211_node *ni; 3712 #ifdef IEEE80211_SUPPORT_SUPERG 3713 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3714 #endif /* IEEE80211_SUPPORT_SUPERG */ 3715 int nacked; 3716 HAL_STATUS status; 3717 3718 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3719 __func__, txq->axq_qnum, 3720 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3721 txq->axq_link); 3722 3723 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 3724 "ath_tx_processq: txq=%u head %p link %p depth %p", 3725 txq->axq_qnum, 3726 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3727 txq->axq_link, 3728 txq->axq_depth); 3729 3730 nacked = 0; 3731 for (;;) { 3732 ATH_TXQ_LOCK(txq); 3733 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3734 bf = TAILQ_FIRST(&txq->axq_q); 3735 if (bf == NULL) { 3736 ATH_TXQ_UNLOCK(txq); 3737 break; 3738 } 3739 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3740 ts = &bf->bf_status.ds_txstat; 3741 3742 status = ath_hal_txprocdesc(ah, ds, ts); 3743 #ifdef ATH_DEBUG 3744 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3745 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3746 status == HAL_OK); 3747 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 3748 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3749 status == HAL_OK); 3750 #endif 3751 3752 if (status == HAL_EINPROGRESS) { 3753 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 3754 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 3755 txq->axq_qnum, bf, ds); 3756 ATH_TXQ_UNLOCK(txq); 3757 break; 3758 } 3759 ATH_TXQ_REMOVE(txq, bf, bf_list); 3760 #ifdef IEEE80211_SUPPORT_TDMA 3761 if (txq->axq_depth > 0) { 3762 /* 3763 * More frames follow. Mark the buffer busy 3764 * so it's not re-used while the hardware may 3765 * still re-read the link field in the descriptor. 3766 * 3767 * Use the last buffer in an aggregate as that 3768 * is where the hardware may be - intermediate 3769 * descriptors won't be "busy". 3770 */ 3771 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3772 } else 3773 #else 3774 if (txq->axq_depth == 0) 3775 #endif 3776 txq->axq_link = NULL; 3777 if (bf->bf_state.bfs_aggr) 3778 txq->axq_aggr_depth--; 3779 3780 ni = bf->bf_node; 3781 3782 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 3783 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 3784 txq->axq_qnum, bf, ds, ni, ts->ts_status); 3785 /* 3786 * If unicast frame was ack'd update RSSI, 3787 * including the last rx time used to 3788 * workaround phantom bmiss interrupts. 3789 */ 3790 if (ni != NULL && ts->ts_status == 0 && 3791 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3792 nacked++; 3793 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3794 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3795 ts->ts_rssi); 3796 } 3797 ATH_TXQ_UNLOCK(txq); 3798 3799 /* 3800 * Update statistics and call completion 3801 */ 3802 ath_tx_process_buf_completion(sc, txq, ts, bf); 3803 3804 /* XXX at this point, bf and ni may be totally invalid */ 3805 } 3806 #ifdef IEEE80211_SUPPORT_SUPERG 3807 /* 3808 * Flush fast-frame staging queue when traffic slows. 3809 */ 3810 if (txq->axq_depth <= 1) 3811 ieee80211_ff_flush(ic, txq->axq_ac); 3812 #endif 3813 3814 /* Kick the TXQ scheduler */ 3815 if (dosched) { 3816 ATH_TXQ_LOCK(txq); 3817 ath_txq_sched(sc, txq); 3818 ATH_TXQ_UNLOCK(txq); 3819 } 3820 3821 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3822 "ath_tx_processq: txq=%u: done", 3823 txq->axq_qnum); 3824 3825 return nacked; 3826 } 3827 3828 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3829 3830 /* 3831 * Deferred processing of transmit interrupt; special-cased 3832 * for a single hardware transmit queue (e.g. 5210 and 5211). 3833 */ 3834 static void 3835 ath_tx_proc_q0(void *arg, int npending) 3836 { 3837 struct ath_softc *sc = arg; 3838 struct ifnet *ifp = sc->sc_ifp; 3839 uint32_t txqs; 3840 3841 ATH_PCU_LOCK(sc); 3842 sc->sc_txproc_cnt++; 3843 txqs = sc->sc_txq_active; 3844 sc->sc_txq_active &= ~txqs; 3845 ATH_PCU_UNLOCK(sc); 3846 3847 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3848 "ath_tx_proc_q0: txqs=0x%08x", txqs); 3849 3850 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 3851 /* XXX why is lastrx updated in tx code? */ 3852 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3853 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3854 ath_tx_processq(sc, sc->sc_cabq, 1); 3855 IF_LOCK(&ifp->if_snd); 3856 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3857 IF_UNLOCK(&ifp->if_snd); 3858 sc->sc_wd_timer = 0; 3859 3860 if (sc->sc_softled) 3861 ath_led_event(sc, sc->sc_txrix); 3862 3863 ATH_PCU_LOCK(sc); 3864 sc->sc_txproc_cnt--; 3865 ATH_PCU_UNLOCK(sc); 3866 3867 ath_tx_kick(sc); 3868 } 3869 3870 /* 3871 * Deferred processing of transmit interrupt; special-cased 3872 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3873 */ 3874 static void 3875 ath_tx_proc_q0123(void *arg, int npending) 3876 { 3877 struct ath_softc *sc = arg; 3878 struct ifnet *ifp = sc->sc_ifp; 3879 int nacked; 3880 uint32_t txqs; 3881 3882 ATH_PCU_LOCK(sc); 3883 sc->sc_txproc_cnt++; 3884 txqs = sc->sc_txq_active; 3885 sc->sc_txq_active &= ~txqs; 3886 ATH_PCU_UNLOCK(sc); 3887 3888 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3889 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 3890 3891 /* 3892 * Process each active queue. 3893 */ 3894 nacked = 0; 3895 if (TXQACTIVE(txqs, 0)) 3896 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 3897 if (TXQACTIVE(txqs, 1)) 3898 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 3899 if (TXQACTIVE(txqs, 2)) 3900 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 3901 if (TXQACTIVE(txqs, 3)) 3902 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 3903 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3904 ath_tx_processq(sc, sc->sc_cabq, 1); 3905 if (nacked) 3906 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3907 3908 IF_LOCK(&ifp->if_snd); 3909 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3910 IF_UNLOCK(&ifp->if_snd); 3911 sc->sc_wd_timer = 0; 3912 3913 if (sc->sc_softled) 3914 ath_led_event(sc, sc->sc_txrix); 3915 3916 ATH_PCU_LOCK(sc); 3917 sc->sc_txproc_cnt--; 3918 ATH_PCU_UNLOCK(sc); 3919 3920 ath_tx_kick(sc); 3921 } 3922 3923 /* 3924 * Deferred processing of transmit interrupt. 3925 */ 3926 static void 3927 ath_tx_proc(void *arg, int npending) 3928 { 3929 struct ath_softc *sc = arg; 3930 struct ifnet *ifp = sc->sc_ifp; 3931 int i, nacked; 3932 uint32_t txqs; 3933 3934 ATH_PCU_LOCK(sc); 3935 sc->sc_txproc_cnt++; 3936 txqs = sc->sc_txq_active; 3937 sc->sc_txq_active &= ~txqs; 3938 ATH_PCU_UNLOCK(sc); 3939 3940 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 3941 3942 /* 3943 * Process each active queue. 3944 */ 3945 nacked = 0; 3946 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3947 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 3948 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 3949 if (nacked) 3950 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3951 3952 /* XXX check this inside of IF_LOCK? */ 3953 IF_LOCK(&ifp->if_snd); 3954 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3955 IF_UNLOCK(&ifp->if_snd); 3956 sc->sc_wd_timer = 0; 3957 3958 if (sc->sc_softled) 3959 ath_led_event(sc, sc->sc_txrix); 3960 3961 ATH_PCU_LOCK(sc); 3962 sc->sc_txproc_cnt--; 3963 ATH_PCU_UNLOCK(sc); 3964 3965 ath_tx_kick(sc); 3966 } 3967 #undef TXQACTIVE 3968 3969 /* 3970 * Deferred processing of TXQ rescheduling. 3971 */ 3972 static void 3973 ath_txq_sched_tasklet(void *arg, int npending) 3974 { 3975 struct ath_softc *sc = arg; 3976 int i; 3977 3978 /* XXX is skipping ok? */ 3979 ATH_PCU_LOCK(sc); 3980 #if 0 3981 if (sc->sc_inreset_cnt > 0) { 3982 device_printf(sc->sc_dev, 3983 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 3984 ATH_PCU_UNLOCK(sc); 3985 return; 3986 } 3987 #endif 3988 sc->sc_txproc_cnt++; 3989 ATH_PCU_UNLOCK(sc); 3990 3991 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3992 if (ATH_TXQ_SETUP(sc, i)) { 3993 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3994 ath_txq_sched(sc, &sc->sc_txq[i]); 3995 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3996 } 3997 } 3998 3999 ATH_PCU_LOCK(sc); 4000 sc->sc_txproc_cnt--; 4001 ATH_PCU_UNLOCK(sc); 4002 } 4003 4004 void 4005 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4006 { 4007 4008 ATH_TXBUF_LOCK_ASSERT(sc); 4009 4010 if (bf->bf_flags & ATH_BUF_MGMT) 4011 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4012 else { 4013 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4014 sc->sc_txbuf_cnt++; 4015 if (sc->sc_txbuf_cnt > ath_txbuf) { 4016 device_printf(sc->sc_dev, 4017 "%s: sc_txbuf_cnt > %d?\n", 4018 __func__, 4019 ath_txbuf); 4020 sc->sc_txbuf_cnt = ath_txbuf; 4021 } 4022 } 4023 } 4024 4025 void 4026 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4027 { 4028 4029 ATH_TXBUF_LOCK_ASSERT(sc); 4030 4031 if (bf->bf_flags & ATH_BUF_MGMT) 4032 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4033 else { 4034 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4035 sc->sc_txbuf_cnt++; 4036 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4037 device_printf(sc->sc_dev, 4038 "%s: sc_txbuf_cnt > %d?\n", 4039 __func__, 4040 ATH_TXBUF); 4041 sc->sc_txbuf_cnt = ATH_TXBUF; 4042 } 4043 } 4044 } 4045 4046 /* 4047 * Return a buffer to the pool and update the 'busy' flag on the 4048 * previous 'tail' entry. 4049 * 4050 * This _must_ only be called when the buffer is involved in a completed 4051 * TX. The logic is that if it was part of an active TX, the previous 4052 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4053 * for restart (eg for TDMA.) 4054 * 4055 * The caller must free the mbuf and recycle the node reference. 4056 */ 4057 void 4058 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4059 { 4060 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4061 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 4062 4063 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4064 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4065 4066 ATH_TXBUF_LOCK(sc); 4067 ath_tx_update_busy(sc); 4068 ath_returnbuf_tail(sc, bf); 4069 ATH_TXBUF_UNLOCK(sc); 4070 } 4071 4072 /* 4073 * This is currently used by ath_tx_draintxq() and 4074 * ath_tx_tid_free_pkts(). 4075 * 4076 * It recycles a single ath_buf. 4077 */ 4078 void 4079 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4080 { 4081 struct ieee80211_node *ni = bf->bf_node; 4082 struct mbuf *m0 = bf->bf_m; 4083 4084 bf->bf_node = NULL; 4085 bf->bf_m = NULL; 4086 4087 /* Free the buffer, it's not needed any longer */ 4088 ath_freebuf(sc, bf); 4089 4090 if (ni != NULL) { 4091 /* 4092 * Do any callback and reclaim the node reference. 4093 */ 4094 if (m0->m_flags & M_TXCB) 4095 ieee80211_process_callback(ni, m0, status); 4096 ieee80211_free_node(ni); 4097 } 4098 m_freem(m0); 4099 4100 /* 4101 * XXX the buffer used to be freed -after-, but the DMA map was 4102 * freed where ath_freebuf() now is. I've no idea what this 4103 * will do. 4104 */ 4105 } 4106 4107 void 4108 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4109 { 4110 #ifdef ATH_DEBUG 4111 struct ath_hal *ah = sc->sc_ah; 4112 #endif 4113 struct ath_buf *bf; 4114 u_int ix; 4115 4116 /* 4117 * NB: this assumes output has been stopped and 4118 * we do not need to block ath_tx_proc 4119 */ 4120 ATH_TXBUF_LOCK(sc); 4121 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4122 if (bf != NULL) 4123 bf->bf_flags &= ~ATH_BUF_BUSY; 4124 bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 4125 if (bf != NULL) 4126 bf->bf_flags &= ~ATH_BUF_BUSY; 4127 ATH_TXBUF_UNLOCK(sc); 4128 4129 for (ix = 0;; ix++) { 4130 ATH_TXQ_LOCK(txq); 4131 bf = TAILQ_FIRST(&txq->axq_q); 4132 if (bf == NULL) { 4133 txq->axq_link = NULL; 4134 /* 4135 * There's currently no flag that indicates 4136 * a buffer is on the FIFO. So until that 4137 * occurs, just clear the FIFO counter here. 4138 * 4139 * Yes, this means that if something in parallel 4140 * is pushing things onto this TXQ and pushing 4141 * _that_ into the hardware, things will get 4142 * very fruity very quickly. 4143 */ 4144 txq->axq_fifo_depth = 0; 4145 ATH_TXQ_UNLOCK(txq); 4146 break; 4147 } 4148 ATH_TXQ_REMOVE(txq, bf, bf_list); 4149 if (bf->bf_state.bfs_aggr) 4150 txq->axq_aggr_depth--; 4151 #ifdef ATH_DEBUG 4152 if (sc->sc_debug & ATH_DEBUG_RESET) { 4153 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4154 int status = 0; 4155 4156 /* 4157 * EDMA operation has a TX completion FIFO 4158 * separate from the TX descriptor, so this 4159 * method of checking the "completion" status 4160 * is wrong. 4161 */ 4162 if (! sc->sc_isedma) { 4163 status = (ath_hal_txprocdesc(ah, 4164 bf->bf_lastds, 4165 &bf->bf_status.ds_txstat) == HAL_OK); 4166 } 4167 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4168 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4169 bf->bf_m->m_len, 0, -1); 4170 } 4171 #endif /* ATH_DEBUG */ 4172 /* 4173 * Since we're now doing magic in the completion 4174 * functions, we -must- call it for aggregation 4175 * destinations or BAW tracking will get upset. 4176 */ 4177 /* 4178 * Clear ATH_BUF_BUSY; the completion handler 4179 * will free the buffer. 4180 */ 4181 ATH_TXQ_UNLOCK(txq); 4182 bf->bf_flags &= ~ATH_BUF_BUSY; 4183 if (bf->bf_comp) 4184 bf->bf_comp(sc, bf, 1); 4185 else 4186 ath_tx_default_comp(sc, bf, 1); 4187 } 4188 4189 /* 4190 * Drain software queued frames which are on 4191 * active TIDs. 4192 */ 4193 ath_tx_txq_drain(sc, txq); 4194 } 4195 4196 static void 4197 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4198 { 4199 struct ath_hal *ah = sc->sc_ah; 4200 4201 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4202 __func__, txq->axq_qnum, 4203 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4204 txq->axq_link); 4205 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4206 } 4207 4208 int 4209 ath_stoptxdma(struct ath_softc *sc) 4210 { 4211 struct ath_hal *ah = sc->sc_ah; 4212 int i; 4213 4214 /* XXX return value */ 4215 if (sc->sc_invalid) 4216 return 0; 4217 4218 if (!sc->sc_invalid) { 4219 /* don't touch the hardware if marked invalid */ 4220 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4221 __func__, sc->sc_bhalq, 4222 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4223 NULL); 4224 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4225 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4226 if (ATH_TXQ_SETUP(sc, i)) 4227 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4228 } 4229 4230 return 1; 4231 } 4232 4233 /* 4234 * Drain the transmit queues and reclaim resources. 4235 */ 4236 void 4237 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4238 { 4239 #ifdef ATH_DEBUG 4240 struct ath_hal *ah = sc->sc_ah; 4241 #endif 4242 struct ifnet *ifp = sc->sc_ifp; 4243 int i; 4244 4245 (void) ath_stoptxdma(sc); 4246 4247 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4248 /* 4249 * XXX TODO: should we just handle the completed TX frames 4250 * here, whether or not the reset is a full one or not? 4251 */ 4252 if (ATH_TXQ_SETUP(sc, i)) { 4253 if (reset_type == ATH_RESET_NOLOSS) 4254 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4255 else 4256 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4257 } 4258 } 4259 #ifdef ATH_DEBUG 4260 if (sc->sc_debug & ATH_DEBUG_RESET) { 4261 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 4262 if (bf != NULL && bf->bf_m != NULL) { 4263 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4264 ath_hal_txprocdesc(ah, bf->bf_lastds, 4265 &bf->bf_status.ds_txstat) == HAL_OK); 4266 ieee80211_dump_pkt(ifp->if_l2com, 4267 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4268 0, -1); 4269 } 4270 } 4271 #endif /* ATH_DEBUG */ 4272 IF_LOCK(&ifp->if_snd); 4273 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4274 IF_UNLOCK(&ifp->if_snd); 4275 sc->sc_wd_timer = 0; 4276 } 4277 4278 /* 4279 * Update internal state after a channel change. 4280 */ 4281 static void 4282 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4283 { 4284 enum ieee80211_phymode mode; 4285 4286 /* 4287 * Change channels and update the h/w rate map 4288 * if we're switching; e.g. 11a to 11b/g. 4289 */ 4290 mode = ieee80211_chan2mode(chan); 4291 if (mode != sc->sc_curmode) 4292 ath_setcurmode(sc, mode); 4293 sc->sc_curchan = chan; 4294 } 4295 4296 /* 4297 * Set/change channels. If the channel is really being changed, 4298 * it's done by resetting the chip. To accomplish this we must 4299 * first cleanup any pending DMA, then restart stuff after a la 4300 * ath_init. 4301 */ 4302 static int 4303 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4304 { 4305 struct ifnet *ifp = sc->sc_ifp; 4306 struct ieee80211com *ic = ifp->if_l2com; 4307 struct ath_hal *ah = sc->sc_ah; 4308 int ret = 0; 4309 4310 /* Treat this as an interface reset */ 4311 ATH_PCU_UNLOCK_ASSERT(sc); 4312 ATH_UNLOCK_ASSERT(sc); 4313 4314 /* (Try to) stop TX/RX from occuring */ 4315 taskqueue_block(sc->sc_tq); 4316 4317 ATH_PCU_LOCK(sc); 4318 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4319 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4320 if (ath_reset_grablock(sc, 1) == 0) { 4321 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4322 __func__); 4323 } 4324 ATH_PCU_UNLOCK(sc); 4325 4326 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4327 __func__, ieee80211_chan2ieee(ic, chan), 4328 chan->ic_freq, chan->ic_flags); 4329 if (chan != sc->sc_curchan) { 4330 HAL_STATUS status; 4331 /* 4332 * To switch channels clear any pending DMA operations; 4333 * wait long enough for the RX fifo to drain, reset the 4334 * hardware at the new frequency, and then re-enable 4335 * the relevant bits of the h/w. 4336 */ 4337 #if 0 4338 ath_hal_intrset(ah, 0); /* disable interrupts */ 4339 #endif 4340 ath_stoprecv(sc, 1); /* turn off frame recv */ 4341 /* 4342 * First, handle completed TX/RX frames. 4343 */ 4344 ath_rx_flush(sc); 4345 ath_draintxq(sc, ATH_RESET_NOLOSS); 4346 /* 4347 * Next, flush the non-scheduled frames. 4348 */ 4349 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4350 4351 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4352 if_printf(ifp, "%s: unable to reset " 4353 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4354 __func__, ieee80211_chan2ieee(ic, chan), 4355 chan->ic_freq, chan->ic_flags, status); 4356 ret = EIO; 4357 goto finish; 4358 } 4359 sc->sc_diversity = ath_hal_getdiversity(ah); 4360 4361 /* Let DFS at it in case it's a DFS channel */ 4362 ath_dfs_radar_enable(sc, chan); 4363 4364 /* 4365 * Re-enable rx framework. 4366 */ 4367 if (ath_startrecv(sc) != 0) { 4368 if_printf(ifp, "%s: unable to restart recv logic\n", 4369 __func__); 4370 ret = EIO; 4371 goto finish; 4372 } 4373 4374 /* 4375 * Change channels and update the h/w rate map 4376 * if we're switching; e.g. 11a to 11b/g. 4377 */ 4378 ath_chan_change(sc, chan); 4379 4380 /* 4381 * Reset clears the beacon timers; reset them 4382 * here if needed. 4383 */ 4384 if (sc->sc_beacons) { /* restart beacons */ 4385 #ifdef IEEE80211_SUPPORT_TDMA 4386 if (sc->sc_tdma) 4387 ath_tdma_config(sc, NULL); 4388 else 4389 #endif 4390 ath_beacon_config(sc, NULL); 4391 } 4392 4393 /* 4394 * Re-enable interrupts. 4395 */ 4396 #if 0 4397 ath_hal_intrset(ah, sc->sc_imask); 4398 #endif 4399 } 4400 4401 finish: 4402 ATH_PCU_LOCK(sc); 4403 sc->sc_inreset_cnt--; 4404 /* XXX only do this if sc_inreset_cnt == 0? */ 4405 ath_hal_intrset(ah, sc->sc_imask); 4406 ATH_PCU_UNLOCK(sc); 4407 4408 IF_LOCK(&ifp->if_snd); 4409 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4410 IF_UNLOCK(&ifp->if_snd); 4411 ath_txrx_start(sc); 4412 /* XXX ath_start? */ 4413 4414 return ret; 4415 } 4416 4417 /* 4418 * Periodically recalibrate the PHY to account 4419 * for temperature/environment changes. 4420 */ 4421 static void 4422 ath_calibrate(void *arg) 4423 { 4424 struct ath_softc *sc = arg; 4425 struct ath_hal *ah = sc->sc_ah; 4426 struct ifnet *ifp = sc->sc_ifp; 4427 struct ieee80211com *ic = ifp->if_l2com; 4428 HAL_BOOL longCal, isCalDone = AH_TRUE; 4429 HAL_BOOL aniCal, shortCal = AH_FALSE; 4430 int nextcal; 4431 4432 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4433 goto restart; 4434 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4435 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4436 if (sc->sc_doresetcal) 4437 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4438 4439 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4440 if (aniCal) { 4441 sc->sc_stats.ast_ani_cal++; 4442 sc->sc_lastani = ticks; 4443 ath_hal_ani_poll(ah, sc->sc_curchan); 4444 } 4445 4446 if (longCal) { 4447 sc->sc_stats.ast_per_cal++; 4448 sc->sc_lastlongcal = ticks; 4449 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4450 /* 4451 * Rfgain is out of bounds, reset the chip 4452 * to load new gain values. 4453 */ 4454 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4455 "%s: rfgain change\n", __func__); 4456 sc->sc_stats.ast_per_rfgain++; 4457 sc->sc_resetcal = 0; 4458 sc->sc_doresetcal = AH_TRUE; 4459 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4460 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4461 return; 4462 } 4463 /* 4464 * If this long cal is after an idle period, then 4465 * reset the data collection state so we start fresh. 4466 */ 4467 if (sc->sc_resetcal) { 4468 (void) ath_hal_calreset(ah, sc->sc_curchan); 4469 sc->sc_lastcalreset = ticks; 4470 sc->sc_lastshortcal = ticks; 4471 sc->sc_resetcal = 0; 4472 sc->sc_doresetcal = AH_TRUE; 4473 } 4474 } 4475 4476 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4477 if (shortCal || longCal) { 4478 isCalDone = AH_FALSE; 4479 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4480 if (longCal) { 4481 /* 4482 * Calibrate noise floor data again in case of change. 4483 */ 4484 ath_hal_process_noisefloor(ah); 4485 } 4486 } else { 4487 DPRINTF(sc, ATH_DEBUG_ANY, 4488 "%s: calibration of channel %u failed\n", 4489 __func__, sc->sc_curchan->ic_freq); 4490 sc->sc_stats.ast_per_calfail++; 4491 } 4492 if (shortCal) 4493 sc->sc_lastshortcal = ticks; 4494 } 4495 if (!isCalDone) { 4496 restart: 4497 /* 4498 * Use a shorter interval to potentially collect multiple 4499 * data samples required to complete calibration. Once 4500 * we're told the work is done we drop back to a longer 4501 * interval between requests. We're more aggressive doing 4502 * work when operating as an AP to improve operation right 4503 * after startup. 4504 */ 4505 sc->sc_lastshortcal = ticks; 4506 nextcal = ath_shortcalinterval*hz/1000; 4507 if (sc->sc_opmode != HAL_M_HOSTAP) 4508 nextcal *= 10; 4509 sc->sc_doresetcal = AH_TRUE; 4510 } else { 4511 /* nextcal should be the shortest time for next event */ 4512 nextcal = ath_longcalinterval*hz; 4513 if (sc->sc_lastcalreset == 0) 4514 sc->sc_lastcalreset = sc->sc_lastlongcal; 4515 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4516 sc->sc_resetcal = 1; /* setup reset next trip */ 4517 sc->sc_doresetcal = AH_FALSE; 4518 } 4519 /* ANI calibration may occur more often than short/long/resetcal */ 4520 if (ath_anicalinterval > 0) 4521 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4522 4523 if (nextcal != 0) { 4524 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4525 __func__, nextcal, isCalDone ? "" : "!"); 4526 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4527 } else { 4528 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4529 __func__); 4530 /* NB: don't rearm timer */ 4531 } 4532 } 4533 4534 static void 4535 ath_scan_start(struct ieee80211com *ic) 4536 { 4537 struct ifnet *ifp = ic->ic_ifp; 4538 struct ath_softc *sc = ifp->if_softc; 4539 struct ath_hal *ah = sc->sc_ah; 4540 u_int32_t rfilt; 4541 4542 /* XXX calibration timer? */ 4543 4544 ATH_LOCK(sc); 4545 sc->sc_scanning = 1; 4546 sc->sc_syncbeacon = 0; 4547 rfilt = ath_calcrxfilter(sc); 4548 ATH_UNLOCK(sc); 4549 4550 ATH_PCU_LOCK(sc); 4551 ath_hal_setrxfilter(ah, rfilt); 4552 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4553 ATH_PCU_UNLOCK(sc); 4554 4555 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4556 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4557 } 4558 4559 static void 4560 ath_scan_end(struct ieee80211com *ic) 4561 { 4562 struct ifnet *ifp = ic->ic_ifp; 4563 struct ath_softc *sc = ifp->if_softc; 4564 struct ath_hal *ah = sc->sc_ah; 4565 u_int32_t rfilt; 4566 4567 ATH_LOCK(sc); 4568 sc->sc_scanning = 0; 4569 rfilt = ath_calcrxfilter(sc); 4570 ATH_UNLOCK(sc); 4571 4572 ATH_PCU_LOCK(sc); 4573 ath_hal_setrxfilter(ah, rfilt); 4574 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4575 4576 ath_hal_process_noisefloor(ah); 4577 ATH_PCU_UNLOCK(sc); 4578 4579 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4580 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4581 sc->sc_curaid); 4582 } 4583 4584 #ifdef ATH_ENABLE_11N 4585 /* 4586 * For now, just do a channel change. 4587 * 4588 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4589 * control state and resetting the hardware without dropping frames out 4590 * of the queue. 4591 * 4592 * The unfortunate trouble here is making absolutely sure that the 4593 * channel width change has propagated enough so the hardware 4594 * absolutely isn't handed bogus frames for it's current operating 4595 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4596 * does occur in parallel, we need to make certain we've blocked 4597 * any further ongoing TX (and RX, that can cause raw TX) 4598 * before we do this. 4599 */ 4600 static void 4601 ath_update_chw(struct ieee80211com *ic) 4602 { 4603 struct ifnet *ifp = ic->ic_ifp; 4604 struct ath_softc *sc = ifp->if_softc; 4605 4606 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4607 ath_set_channel(ic); 4608 } 4609 #endif /* ATH_ENABLE_11N */ 4610 4611 static void 4612 ath_set_channel(struct ieee80211com *ic) 4613 { 4614 struct ifnet *ifp = ic->ic_ifp; 4615 struct ath_softc *sc = ifp->if_softc; 4616 4617 (void) ath_chan_set(sc, ic->ic_curchan); 4618 /* 4619 * If we are returning to our bss channel then mark state 4620 * so the next recv'd beacon's tsf will be used to sync the 4621 * beacon timers. Note that since we only hear beacons in 4622 * sta/ibss mode this has no effect in other operating modes. 4623 */ 4624 ATH_LOCK(sc); 4625 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4626 sc->sc_syncbeacon = 1; 4627 ATH_UNLOCK(sc); 4628 } 4629 4630 /* 4631 * Walk the vap list and check if there any vap's in RUN state. 4632 */ 4633 static int 4634 ath_isanyrunningvaps(struct ieee80211vap *this) 4635 { 4636 struct ieee80211com *ic = this->iv_ic; 4637 struct ieee80211vap *vap; 4638 4639 IEEE80211_LOCK_ASSERT(ic); 4640 4641 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4642 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4643 return 1; 4644 } 4645 return 0; 4646 } 4647 4648 static int 4649 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4650 { 4651 struct ieee80211com *ic = vap->iv_ic; 4652 struct ath_softc *sc = ic->ic_ifp->if_softc; 4653 struct ath_vap *avp = ATH_VAP(vap); 4654 struct ath_hal *ah = sc->sc_ah; 4655 struct ieee80211_node *ni = NULL; 4656 int i, error, stamode; 4657 u_int32_t rfilt; 4658 int csa_run_transition = 0; 4659 static const HAL_LED_STATE leds[] = { 4660 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4661 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4662 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4663 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4664 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4665 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4666 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4667 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4668 }; 4669 4670 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4671 ieee80211_state_name[vap->iv_state], 4672 ieee80211_state_name[nstate]); 4673 4674 /* 4675 * net80211 _should_ have the comlock asserted at this point. 4676 * There are some comments around the calls to vap->iv_newstate 4677 * which indicate that it (newstate) may end up dropping the 4678 * lock. This and the subsequent lock assert check after newstate 4679 * are an attempt to catch these and figure out how/why. 4680 */ 4681 IEEE80211_LOCK_ASSERT(ic); 4682 4683 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4684 csa_run_transition = 1; 4685 4686 callout_drain(&sc->sc_cal_ch); 4687 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4688 4689 if (nstate == IEEE80211_S_SCAN) { 4690 /* 4691 * Scanning: turn off beacon miss and don't beacon. 4692 * Mark beacon state so when we reach RUN state we'll 4693 * [re]setup beacons. Unblock the task q thread so 4694 * deferred interrupt processing is done. 4695 */ 4696 ath_hal_intrset(ah, 4697 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4698 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4699 sc->sc_beacons = 0; 4700 taskqueue_unblock(sc->sc_tq); 4701 } 4702 4703 ni = ieee80211_ref_node(vap->iv_bss); 4704 rfilt = ath_calcrxfilter(sc); 4705 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4706 vap->iv_opmode == IEEE80211_M_AHDEMO || 4707 vap->iv_opmode == IEEE80211_M_IBSS); 4708 if (stamode && nstate == IEEE80211_S_RUN) { 4709 sc->sc_curaid = ni->ni_associd; 4710 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4711 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4712 } 4713 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4714 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4715 ath_hal_setrxfilter(ah, rfilt); 4716 4717 /* XXX is this to restore keycache on resume? */ 4718 if (vap->iv_opmode != IEEE80211_M_STA && 4719 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4720 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4721 if (ath_hal_keyisvalid(ah, i)) 4722 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4723 } 4724 4725 /* 4726 * Invoke the parent method to do net80211 work. 4727 */ 4728 error = avp->av_newstate(vap, nstate, arg); 4729 if (error != 0) 4730 goto bad; 4731 4732 /* 4733 * See above: ensure av_newstate() doesn't drop the lock 4734 * on us. 4735 */ 4736 IEEE80211_LOCK_ASSERT(ic); 4737 4738 if (nstate == IEEE80211_S_RUN) { 4739 /* NB: collect bss node again, it may have changed */ 4740 ieee80211_free_node(ni); 4741 ni = ieee80211_ref_node(vap->iv_bss); 4742 4743 DPRINTF(sc, ATH_DEBUG_STATE, 4744 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 4745 "capinfo 0x%04x chan %d\n", __func__, 4746 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 4747 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 4748 4749 switch (vap->iv_opmode) { 4750 #ifdef IEEE80211_SUPPORT_TDMA 4751 case IEEE80211_M_AHDEMO: 4752 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 4753 break; 4754 /* fall thru... */ 4755 #endif 4756 case IEEE80211_M_HOSTAP: 4757 case IEEE80211_M_IBSS: 4758 case IEEE80211_M_MBSS: 4759 /* 4760 * Allocate and setup the beacon frame. 4761 * 4762 * Stop any previous beacon DMA. This may be 4763 * necessary, for example, when an ibss merge 4764 * causes reconfiguration; there will be a state 4765 * transition from RUN->RUN that means we may 4766 * be called with beacon transmission active. 4767 */ 4768 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4769 4770 error = ath_beacon_alloc(sc, ni); 4771 if (error != 0) 4772 goto bad; 4773 /* 4774 * If joining an adhoc network defer beacon timer 4775 * configuration to the next beacon frame so we 4776 * have a current TSF to use. Otherwise we're 4777 * starting an ibss/bss so there's no need to delay; 4778 * if this is the first vap moving to RUN state, then 4779 * beacon state needs to be [re]configured. 4780 */ 4781 if (vap->iv_opmode == IEEE80211_M_IBSS && 4782 ni->ni_tstamp.tsf != 0) { 4783 sc->sc_syncbeacon = 1; 4784 } else if (!sc->sc_beacons) { 4785 #ifdef IEEE80211_SUPPORT_TDMA 4786 if (vap->iv_caps & IEEE80211_C_TDMA) 4787 ath_tdma_config(sc, vap); 4788 else 4789 #endif 4790 ath_beacon_config(sc, vap); 4791 sc->sc_beacons = 1; 4792 } 4793 break; 4794 case IEEE80211_M_STA: 4795 /* 4796 * Defer beacon timer configuration to the next 4797 * beacon frame so we have a current TSF to use 4798 * (any TSF collected when scanning is likely old). 4799 * However if it's due to a CSA -> RUN transition, 4800 * force a beacon update so we pick up a lack of 4801 * beacons from an AP in CAC and thus force a 4802 * scan. 4803 */ 4804 sc->sc_syncbeacon = 1; 4805 if (csa_run_transition) 4806 ath_beacon_config(sc, vap); 4807 break; 4808 case IEEE80211_M_MONITOR: 4809 /* 4810 * Monitor mode vaps have only INIT->RUN and RUN->RUN 4811 * transitions so we must re-enable interrupts here to 4812 * handle the case of a single monitor mode vap. 4813 */ 4814 ath_hal_intrset(ah, sc->sc_imask); 4815 break; 4816 case IEEE80211_M_WDS: 4817 break; 4818 default: 4819 break; 4820 } 4821 /* 4822 * Let the hal process statistics collected during a 4823 * scan so it can provide calibrated noise floor data. 4824 */ 4825 ath_hal_process_noisefloor(ah); 4826 /* 4827 * Reset rssi stats; maybe not the best place... 4828 */ 4829 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4830 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4831 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4832 /* 4833 * Finally, start any timers and the task q thread 4834 * (in case we didn't go through SCAN state). 4835 */ 4836 if (ath_longcalinterval != 0) { 4837 /* start periodic recalibration timer */ 4838 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4839 } else { 4840 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4841 "%s: calibration disabled\n", __func__); 4842 } 4843 taskqueue_unblock(sc->sc_tq); 4844 } else if (nstate == IEEE80211_S_INIT) { 4845 /* 4846 * If there are no vaps left in RUN state then 4847 * shutdown host/driver operation: 4848 * o disable interrupts 4849 * o disable the task queue thread 4850 * o mark beacon processing as stopped 4851 */ 4852 if (!ath_isanyrunningvaps(vap)) { 4853 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4854 /* disable interrupts */ 4855 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4856 taskqueue_block(sc->sc_tq); 4857 sc->sc_beacons = 0; 4858 } 4859 #ifdef IEEE80211_SUPPORT_TDMA 4860 ath_hal_setcca(ah, AH_TRUE); 4861 #endif 4862 } 4863 bad: 4864 ieee80211_free_node(ni); 4865 return error; 4866 } 4867 4868 /* 4869 * Allocate a key cache slot to the station so we can 4870 * setup a mapping from key index to node. The key cache 4871 * slot is needed for managing antenna state and for 4872 * compression when stations do not use crypto. We do 4873 * it uniliaterally here; if crypto is employed this slot 4874 * will be reassigned. 4875 */ 4876 static void 4877 ath_setup_stationkey(struct ieee80211_node *ni) 4878 { 4879 struct ieee80211vap *vap = ni->ni_vap; 4880 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4881 ieee80211_keyix keyix, rxkeyix; 4882 4883 /* XXX should take a locked ref to vap->iv_bss */ 4884 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4885 /* 4886 * Key cache is full; we'll fall back to doing 4887 * the more expensive lookup in software. Note 4888 * this also means no h/w compression. 4889 */ 4890 /* XXX msg+statistic */ 4891 } else { 4892 /* XXX locking? */ 4893 ni->ni_ucastkey.wk_keyix = keyix; 4894 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4895 /* NB: must mark device key to get called back on delete */ 4896 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 4897 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 4898 /* NB: this will create a pass-thru key entry */ 4899 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 4900 } 4901 } 4902 4903 /* 4904 * Setup driver-specific state for a newly associated node. 4905 * Note that we're called also on a re-associate, the isnew 4906 * param tells us if this is the first time or not. 4907 */ 4908 static void 4909 ath_newassoc(struct ieee80211_node *ni, int isnew) 4910 { 4911 struct ath_node *an = ATH_NODE(ni); 4912 struct ieee80211vap *vap = ni->ni_vap; 4913 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4914 const struct ieee80211_txparam *tp = ni->ni_txparms; 4915 4916 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 4917 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 4918 4919 ath_rate_newassoc(sc, an, isnew); 4920 if (isnew && 4921 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 4922 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4923 ath_setup_stationkey(ni); 4924 } 4925 4926 static int 4927 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 4928 int nchans, struct ieee80211_channel chans[]) 4929 { 4930 struct ath_softc *sc = ic->ic_ifp->if_softc; 4931 struct ath_hal *ah = sc->sc_ah; 4932 HAL_STATUS status; 4933 4934 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4935 "%s: rd %u cc %u location %c%s\n", 4936 __func__, reg->regdomain, reg->country, reg->location, 4937 reg->ecm ? " ecm" : ""); 4938 4939 status = ath_hal_set_channels(ah, chans, nchans, 4940 reg->country, reg->regdomain); 4941 if (status != HAL_OK) { 4942 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 4943 __func__, status); 4944 return EINVAL; /* XXX */ 4945 } 4946 4947 return 0; 4948 } 4949 4950 static void 4951 ath_getradiocaps(struct ieee80211com *ic, 4952 int maxchans, int *nchans, struct ieee80211_channel chans[]) 4953 { 4954 struct ath_softc *sc = ic->ic_ifp->if_softc; 4955 struct ath_hal *ah = sc->sc_ah; 4956 4957 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 4958 __func__, SKU_DEBUG, CTRY_DEFAULT); 4959 4960 /* XXX check return */ 4961 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 4962 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 4963 4964 } 4965 4966 static int 4967 ath_getchannels(struct ath_softc *sc) 4968 { 4969 struct ifnet *ifp = sc->sc_ifp; 4970 struct ieee80211com *ic = ifp->if_l2com; 4971 struct ath_hal *ah = sc->sc_ah; 4972 HAL_STATUS status; 4973 4974 /* 4975 * Collect channel set based on EEPROM contents. 4976 */ 4977 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 4978 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 4979 if (status != HAL_OK) { 4980 if_printf(ifp, "%s: unable to collect channel list from hal, " 4981 "status %d\n", __func__, status); 4982 return EINVAL; 4983 } 4984 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 4985 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 4986 /* XXX map Atheros sku's to net80211 SKU's */ 4987 /* XXX net80211 types too small */ 4988 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 4989 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 4990 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 4991 ic->ic_regdomain.isocc[1] = ' '; 4992 4993 ic->ic_regdomain.ecm = 1; 4994 ic->ic_regdomain.location = 'I'; 4995 4996 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4997 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 4998 __func__, sc->sc_eerd, sc->sc_eecc, 4999 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5000 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5001 return 0; 5002 } 5003 5004 static int 5005 ath_rate_setup(struct ath_softc *sc, u_int mode) 5006 { 5007 struct ath_hal *ah = sc->sc_ah; 5008 const HAL_RATE_TABLE *rt; 5009 5010 switch (mode) { 5011 case IEEE80211_MODE_11A: 5012 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5013 break; 5014 case IEEE80211_MODE_HALF: 5015 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5016 break; 5017 case IEEE80211_MODE_QUARTER: 5018 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5019 break; 5020 case IEEE80211_MODE_11B: 5021 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5022 break; 5023 case IEEE80211_MODE_11G: 5024 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5025 break; 5026 case IEEE80211_MODE_TURBO_A: 5027 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5028 break; 5029 case IEEE80211_MODE_TURBO_G: 5030 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5031 break; 5032 case IEEE80211_MODE_STURBO_A: 5033 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5034 break; 5035 case IEEE80211_MODE_11NA: 5036 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 5037 break; 5038 case IEEE80211_MODE_11NG: 5039 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 5040 break; 5041 default: 5042 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5043 __func__, mode); 5044 return 0; 5045 } 5046 sc->sc_rates[mode] = rt; 5047 return (rt != NULL); 5048 } 5049 5050 static void 5051 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5052 { 5053 #define N(a) (sizeof(a)/sizeof(a[0])) 5054 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5055 static const struct { 5056 u_int rate; /* tx/rx 802.11 rate */ 5057 u_int16_t timeOn; /* LED on time (ms) */ 5058 u_int16_t timeOff; /* LED off time (ms) */ 5059 } blinkrates[] = { 5060 { 108, 40, 10 }, 5061 { 96, 44, 11 }, 5062 { 72, 50, 13 }, 5063 { 48, 57, 14 }, 5064 { 36, 67, 16 }, 5065 { 24, 80, 20 }, 5066 { 22, 100, 25 }, 5067 { 18, 133, 34 }, 5068 { 12, 160, 40 }, 5069 { 10, 200, 50 }, 5070 { 6, 240, 58 }, 5071 { 4, 267, 66 }, 5072 { 2, 400, 100 }, 5073 { 0, 500, 130 }, 5074 /* XXX half/quarter rates */ 5075 }; 5076 const HAL_RATE_TABLE *rt; 5077 int i, j; 5078 5079 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5080 rt = sc->sc_rates[mode]; 5081 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5082 for (i = 0; i < rt->rateCount; i++) { 5083 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5084 if (rt->info[i].phy != IEEE80211_T_HT) 5085 sc->sc_rixmap[ieeerate] = i; 5086 else 5087 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 5088 } 5089 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5090 for (i = 0; i < N(sc->sc_hwmap); i++) { 5091 if (i >= rt->rateCount) { 5092 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5093 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5094 continue; 5095 } 5096 sc->sc_hwmap[i].ieeerate = 5097 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5098 if (rt->info[i].phy == IEEE80211_T_HT) 5099 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 5100 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5101 if (rt->info[i].shortPreamble || 5102 rt->info[i].phy == IEEE80211_T_OFDM) 5103 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5104 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 5105 for (j = 0; j < N(blinkrates)-1; j++) 5106 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5107 break; 5108 /* NB: this uses the last entry if the rate isn't found */ 5109 /* XXX beware of overlow */ 5110 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5111 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5112 } 5113 sc->sc_currates = rt; 5114 sc->sc_curmode = mode; 5115 /* 5116 * All protection frames are transmited at 2Mb/s for 5117 * 11g, otherwise at 1Mb/s. 5118 */ 5119 if (mode == IEEE80211_MODE_11G) 5120 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 5121 else 5122 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 5123 /* NB: caller is responsible for resetting rate control state */ 5124 #undef N 5125 } 5126 5127 static void 5128 ath_watchdog(void *arg) 5129 { 5130 struct ath_softc *sc = arg; 5131 int do_reset = 0; 5132 5133 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 5134 struct ifnet *ifp = sc->sc_ifp; 5135 uint32_t hangs; 5136 5137 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 5138 hangs != 0) { 5139 if_printf(ifp, "%s hang detected (0x%x)\n", 5140 hangs & 0xff ? "bb" : "mac", hangs); 5141 } else 5142 if_printf(ifp, "device timeout\n"); 5143 do_reset = 1; 5144 ifp->if_oerrors++; 5145 sc->sc_stats.ast_watchdog++; 5146 } 5147 5148 /* 5149 * We can't hold the lock across the ath_reset() call. 5150 * 5151 * And since this routine can't hold a lock and sleep, 5152 * do the reset deferred. 5153 */ 5154 if (do_reset) { 5155 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5156 } 5157 5158 callout_schedule(&sc->sc_wd_ch, hz); 5159 } 5160 5161 /* 5162 * Fetch the rate control statistics for the given node. 5163 */ 5164 static int 5165 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 5166 { 5167 struct ath_node *an; 5168 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5169 struct ieee80211_node *ni; 5170 int error = 0; 5171 5172 /* Perform a lookup on the given node */ 5173 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 5174 if (ni == NULL) { 5175 error = EINVAL; 5176 goto bad; 5177 } 5178 5179 /* Lock the ath_node */ 5180 an = ATH_NODE(ni); 5181 ATH_NODE_LOCK(an); 5182 5183 /* Fetch the rate control stats for this node */ 5184 error = ath_rate_fetch_node_stats(sc, an, rs); 5185 5186 /* No matter what happens here, just drop through */ 5187 5188 /* Unlock the ath_node */ 5189 ATH_NODE_UNLOCK(an); 5190 5191 /* Unref the node */ 5192 ieee80211_node_decref(ni); 5193 5194 bad: 5195 return (error); 5196 } 5197 5198 #ifdef ATH_DIAGAPI 5199 /* 5200 * Diagnostic interface to the HAL. This is used by various 5201 * tools to do things like retrieve register contents for 5202 * debugging. The mechanism is intentionally opaque so that 5203 * it can change frequently w/o concern for compatiblity. 5204 */ 5205 static int 5206 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5207 { 5208 struct ath_hal *ah = sc->sc_ah; 5209 u_int id = ad->ad_id & ATH_DIAG_ID; 5210 void *indata = NULL; 5211 void *outdata = NULL; 5212 u_int32_t insize = ad->ad_in_size; 5213 u_int32_t outsize = ad->ad_out_size; 5214 int error = 0; 5215 5216 if (ad->ad_id & ATH_DIAG_IN) { 5217 /* 5218 * Copy in data. 5219 */ 5220 indata = malloc(insize, M_TEMP, M_NOWAIT); 5221 if (indata == NULL) { 5222 error = ENOMEM; 5223 goto bad; 5224 } 5225 error = copyin(ad->ad_in_data, indata, insize); 5226 if (error) 5227 goto bad; 5228 } 5229 if (ad->ad_id & ATH_DIAG_DYN) { 5230 /* 5231 * Allocate a buffer for the results (otherwise the HAL 5232 * returns a pointer to a buffer where we can read the 5233 * results). Note that we depend on the HAL leaving this 5234 * pointer for us to use below in reclaiming the buffer; 5235 * may want to be more defensive. 5236 */ 5237 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5238 if (outdata == NULL) { 5239 error = ENOMEM; 5240 goto bad; 5241 } 5242 } 5243 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5244 if (outsize < ad->ad_out_size) 5245 ad->ad_out_size = outsize; 5246 if (outdata != NULL) 5247 error = copyout(outdata, ad->ad_out_data, 5248 ad->ad_out_size); 5249 } else { 5250 error = EINVAL; 5251 } 5252 bad: 5253 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5254 free(indata, M_TEMP); 5255 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5256 free(outdata, M_TEMP); 5257 return error; 5258 } 5259 #endif /* ATH_DIAGAPI */ 5260 5261 static int 5262 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5263 { 5264 #define IS_RUNNING(ifp) \ 5265 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5266 struct ath_softc *sc = ifp->if_softc; 5267 struct ieee80211com *ic = ifp->if_l2com; 5268 struct ifreq *ifr = (struct ifreq *)data; 5269 const HAL_RATE_TABLE *rt; 5270 int error = 0; 5271 5272 switch (cmd) { 5273 case SIOCSIFFLAGS: 5274 ATH_LOCK(sc); 5275 if (IS_RUNNING(ifp)) { 5276 /* 5277 * To avoid rescanning another access point, 5278 * do not call ath_init() here. Instead, 5279 * only reflect promisc mode settings. 5280 */ 5281 ath_mode_init(sc); 5282 } else if (ifp->if_flags & IFF_UP) { 5283 /* 5284 * Beware of being called during attach/detach 5285 * to reset promiscuous mode. In that case we 5286 * will still be marked UP but not RUNNING. 5287 * However trying to re-init the interface 5288 * is the wrong thing to do as we've already 5289 * torn down much of our state. There's 5290 * probably a better way to deal with this. 5291 */ 5292 if (!sc->sc_invalid) 5293 ath_init(sc); /* XXX lose error */ 5294 } else { 5295 ath_stop_locked(ifp); 5296 #ifdef notyet 5297 /* XXX must wakeup in places like ath_vap_delete */ 5298 if (!sc->sc_invalid) 5299 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5300 #endif 5301 } 5302 ATH_UNLOCK(sc); 5303 break; 5304 case SIOCGIFMEDIA: 5305 case SIOCSIFMEDIA: 5306 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5307 break; 5308 case SIOCGATHSTATS: 5309 /* NB: embed these numbers to get a consistent view */ 5310 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5311 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5312 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5313 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5314 #ifdef IEEE80211_SUPPORT_TDMA 5315 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5316 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5317 #endif 5318 rt = sc->sc_currates; 5319 sc->sc_stats.ast_tx_rate = 5320 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5321 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 5322 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 5323 return copyout(&sc->sc_stats, 5324 ifr->ifr_data, sizeof (sc->sc_stats)); 5325 case SIOCGATHAGSTATS: 5326 return copyout(&sc->sc_aggr_stats, 5327 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 5328 case SIOCZATHSTATS: 5329 error = priv_check(curthread, PRIV_DRIVER); 5330 if (error == 0) { 5331 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 5332 memset(&sc->sc_aggr_stats, 0, 5333 sizeof(sc->sc_aggr_stats)); 5334 memset(&sc->sc_intr_stats, 0, 5335 sizeof(sc->sc_intr_stats)); 5336 } 5337 break; 5338 #ifdef ATH_DIAGAPI 5339 case SIOCGATHDIAG: 5340 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5341 break; 5342 case SIOCGATHPHYERR: 5343 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5344 break; 5345 #endif 5346 case SIOCGATHNODERATESTATS: 5347 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 5348 break; 5349 case SIOCGIFADDR: 5350 error = ether_ioctl(ifp, cmd, data); 5351 break; 5352 default: 5353 error = EINVAL; 5354 break; 5355 } 5356 return error; 5357 #undef IS_RUNNING 5358 } 5359 5360 /* 5361 * Announce various information on device/driver attach. 5362 */ 5363 static void 5364 ath_announce(struct ath_softc *sc) 5365 { 5366 struct ifnet *ifp = sc->sc_ifp; 5367 struct ath_hal *ah = sc->sc_ah; 5368 5369 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5370 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5371 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5372 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5373 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5374 if (bootverbose) { 5375 int i; 5376 for (i = 0; i <= WME_AC_VO; i++) { 5377 struct ath_txq *txq = sc->sc_ac2q[i]; 5378 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5379 txq->axq_qnum, ieee80211_wme_acnames[i]); 5380 } 5381 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5382 sc->sc_cabq->axq_qnum); 5383 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5384 } 5385 if (ath_rxbuf != ATH_RXBUF) 5386 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5387 if (ath_txbuf != ATH_TXBUF) 5388 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5389 if (sc->sc_mcastkey && bootverbose) 5390 if_printf(ifp, "using multicast key search\n"); 5391 } 5392 5393 static void 5394 ath_dfs_tasklet(void *p, int npending) 5395 { 5396 struct ath_softc *sc = (struct ath_softc *) p; 5397 struct ifnet *ifp = sc->sc_ifp; 5398 struct ieee80211com *ic = ifp->if_l2com; 5399 5400 /* 5401 * If previous processing has found a radar event, 5402 * signal this to the net80211 layer to begin DFS 5403 * processing. 5404 */ 5405 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 5406 /* DFS event found, initiate channel change */ 5407 /* 5408 * XXX doesn't currently tell us whether the event 5409 * XXX was found in the primary or extension 5410 * XXX channel! 5411 */ 5412 IEEE80211_LOCK(ic); 5413 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 5414 IEEE80211_UNLOCK(ic); 5415 } 5416 } 5417 5418 /* 5419 * Enable/disable power save. This must be called with 5420 * no TX driver locks currently held, so it should only 5421 * be called from the RX path (which doesn't hold any 5422 * TX driver locks.) 5423 */ 5424 static void 5425 ath_node_powersave(struct ieee80211_node *ni, int enable) 5426 { 5427 struct ath_node *an = ATH_NODE(ni); 5428 struct ieee80211com *ic = ni->ni_ic; 5429 struct ath_softc *sc = ic->ic_ifp->if_softc; 5430 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5431 5432 ATH_NODE_UNLOCK_ASSERT(an); 5433 /* XXX and no TXQ locks should be held here */ 5434 5435 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n", 5436 __func__, ni, enable); 5437 5438 /* Suspend or resume software queue handling */ 5439 if (enable) 5440 ath_tx_node_sleep(sc, an); 5441 else 5442 ath_tx_node_wakeup(sc, an); 5443 5444 /* Update net80211 state */ 5445 avp->av_node_ps(ni, enable); 5446 } 5447 5448 /* 5449 * Notification from net80211 that the powersave queue state has 5450 * changed. 5451 * 5452 * Since the software queue also may have some frames: 5453 * 5454 * + if the node software queue has frames and the TID state 5455 * is 0, we set the TIM; 5456 * + if the node and the stack are both empty, we clear the TIM bit. 5457 * + If the stack tries to set the bit, always set it. 5458 * + If the stack tries to clear the bit, only clear it if the 5459 * software queue in question is also cleared. 5460 * 5461 * TODO: this is called during node teardown; so let's ensure this 5462 * is all correctly handled and that the TIM bit is cleared. 5463 * It may be that the node flush is called _AFTER_ the net80211 5464 * stack clears the TIM. 5465 * 5466 * Here is the racy part. Since it's possible >1 concurrent, 5467 * overlapping TXes will appear complete with a TX completion in 5468 * another thread, it's possible that the concurrent TIM calls will 5469 * clash. We can't hold the node lock here because setting the 5470 * TIM grabs the net80211 comlock and this may cause a LOR. 5471 * The solution is either to totally serialise _everything_ at 5472 * this point (ie, all TX, completion and any reset/flush go into 5473 * one taskqueue) or a new "ath TIM lock" needs to be created that 5474 * just wraps the driver state change and this call to avp->av_set_tim(). 5475 * 5476 * The same race exists in the net80211 power save queue handling 5477 * as well. Since multiple transmitting threads may queue frames 5478 * into the driver, as well as ps-poll and the driver transmitting 5479 * frames (and thus clearing the psq), it's quite possible that 5480 * a packet entering the PSQ and a ps-poll being handled will 5481 * race, causing the TIM to be cleared and not re-set. 5482 */ 5483 static int 5484 ath_node_set_tim(struct ieee80211_node *ni, int enable) 5485 { 5486 struct ieee80211com *ic = ni->ni_ic; 5487 struct ath_softc *sc = ic->ic_ifp->if_softc; 5488 struct ath_node *an = ATH_NODE(ni); 5489 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5490 int changed = 0; 5491 5492 ATH_NODE_UNLOCK_ASSERT(an); 5493 5494 /* 5495 * For now, just track and then update the TIM. 5496 */ 5497 ATH_NODE_LOCK(an); 5498 an->an_stack_psq = enable; 5499 5500 /* 5501 * This will get called for all operating modes, 5502 * even if avp->av_set_tim is unset. 5503 * It's currently set for hostap/ibss modes; but 5504 * the same infrastructure is used for both STA 5505 * and AP/IBSS node power save. 5506 */ 5507 if (avp->av_set_tim == NULL) { 5508 ATH_NODE_UNLOCK(an); 5509 return (0); 5510 } 5511 5512 /* 5513 * If setting the bit, always set it here. 5514 * If clearing the bit, only clear it if the 5515 * software queue is also empty. 5516 * 5517 * If the node has left power save, just clear the TIM 5518 * bit regardless of the state of the power save queue. 5519 * 5520 * XXX TODO: although atomics are used, it's quite possible 5521 * that a race will occur between this and setting/clearing 5522 * in another thread. TX completion will occur always in 5523 * one thread, however setting/clearing the TIM bit can come 5524 * from a variety of different process contexts! 5525 */ 5526 if (enable && an->an_tim_set == 1) { 5527 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5528 "%s: an=%p, enable=%d, tim_set=1, ignoring\n", 5529 __func__, an, enable); 5530 ATH_NODE_UNLOCK(an); 5531 } else if (enable) { 5532 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5533 "%s: an=%p, enable=%d, enabling TIM\n", 5534 __func__, an, enable); 5535 an->an_tim_set = 1; 5536 ATH_NODE_UNLOCK(an); 5537 changed = avp->av_set_tim(ni, enable); 5538 } else if (atomic_load_acq_int(&an->an_swq_depth) == 0) { 5539 /* disable */ 5540 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5541 "%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n", 5542 __func__, an, enable); 5543 an->an_tim_set = 0; 5544 ATH_NODE_UNLOCK(an); 5545 changed = avp->av_set_tim(ni, enable); 5546 } else if (! an->an_is_powersave) { 5547 /* 5548 * disable regardless; the node isn't in powersave now 5549 */ 5550 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5551 "%s: an=%p, enable=%d, an_pwrsave=0, disabling\n", 5552 __func__, an, enable); 5553 an->an_tim_set = 0; 5554 ATH_NODE_UNLOCK(an); 5555 changed = avp->av_set_tim(ni, enable); 5556 } else { 5557 /* 5558 * psq disable, node is currently in powersave, node 5559 * software queue isn't empty, so don't clear the TIM bit 5560 * for now. 5561 */ 5562 ATH_NODE_UNLOCK(an); 5563 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5564 "%s: enable=%d, an_swq_depth > 0, ignoring\n", 5565 __func__, enable); 5566 changed = 0; 5567 } 5568 5569 return (changed); 5570 } 5571 5572 /* 5573 * Set or update the TIM from the software queue. 5574 * 5575 * Check the software queue depth before attempting to do lock 5576 * anything; that avoids trying to obtain the lock. Then, 5577 * re-check afterwards to ensure nothing has changed in the 5578 * meantime. 5579 * 5580 * set: This is designed to be called from the TX path, after 5581 * a frame has been queued; to see if the swq > 0. 5582 * 5583 * clear: This is designed to be called from the buffer completion point 5584 * (right now it's ath_tx_default_comp()) where the state of 5585 * a software queue has changed. 5586 * 5587 * It makes sense to place it at buffer free / completion rather 5588 * than after each software queue operation, as there's no real 5589 * point in churning the TIM bit as the last frames in the software 5590 * queue are transmitted. If they fail and we retry them, we'd 5591 * just be setting the TIM bit again anyway. 5592 */ 5593 void 5594 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 5595 int enable) 5596 { 5597 struct ath_node *an; 5598 struct ath_vap *avp; 5599 5600 /* Don't do this for broadcast/etc frames */ 5601 if (ni == NULL) 5602 return; 5603 5604 an = ATH_NODE(ni); 5605 avp = ATH_VAP(ni->ni_vap); 5606 5607 /* 5608 * And for operating modes without the TIM handler set, let's 5609 * just skip those. 5610 */ 5611 if (avp->av_set_tim == NULL) 5612 return; 5613 5614 ATH_NODE_UNLOCK_ASSERT(an); 5615 5616 if (enable) { 5617 /* 5618 * Don't bother grabbing the lock unless the queue is not 5619 * empty. 5620 */ 5621 if (atomic_load_acq_int(&an->an_swq_depth) == 0) 5622 return; 5623 5624 ATH_NODE_LOCK(an); 5625 if (an->an_is_powersave && 5626 an->an_tim_set == 0 && 5627 atomic_load_acq_int(&an->an_swq_depth) != 0) { 5628 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5629 "%s: an=%p, swq_depth>0, tim_set=0, set!\n", 5630 __func__, an); 5631 an->an_tim_set = 1; 5632 ATH_NODE_UNLOCK(an); 5633 (void) avp->av_set_tim(ni, 1); 5634 } else { 5635 ATH_NODE_UNLOCK(an); 5636 } 5637 } else { 5638 /* 5639 * Don't bother grabbing the lock unless the queue is empty. 5640 */ 5641 if (atomic_load_acq_int(&an->an_swq_depth) != 0) 5642 return; 5643 5644 ATH_NODE_LOCK(an); 5645 if (an->an_is_powersave && 5646 an->an_stack_psq == 0 && 5647 an->an_tim_set == 1 && 5648 atomic_load_acq_int(&an->an_swq_depth) == 0) { 5649 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5650 "%s: an=%p, swq_depth=0, tim_set=1, psq_set=0," 5651 " clear!\n", 5652 __func__, an); 5653 an->an_tim_set = 0; 5654 ATH_NODE_UNLOCK(an); 5655 (void) avp->av_set_tim(ni, 0); 5656 } else { 5657 ATH_NODE_UNLOCK(an); 5658 } 5659 } 5660 } 5661 5662 MODULE_VERSION(if_ath, 1); 5663 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 5664 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 5665 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 5666 #endif 5667