1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_tx_edma.h> 113 #include <dev/ath/if_ath_beacon.h> 114 #include <dev/ath/if_ath_spectral.h> 115 #include <dev/ath/if_athdfs.h> 116 117 #ifdef ATH_TX99_DIAG 118 #include <dev/ath/ath_tx99/ath_tx99.h> 119 #endif 120 121 #ifdef ATH_DEBUG_ALQ 122 #include <dev/ath/if_ath_alq.h> 123 #endif 124 125 /* 126 * Only enable this if you're working on PS-POLL support. 127 */ 128 #undef ATH_SW_PSQ 129 130 /* 131 * ATH_BCBUF determines the number of vap's that can transmit 132 * beacons and also (currently) the number of vap's that can 133 * have unique mac addresses/bssid. When staggering beacons 134 * 4 is probably a good max as otherwise the beacons become 135 * very closely spaced and there is limited time for cab q traffic 136 * to go out. You can burst beacons instead but that is not good 137 * for stations in power save and at some point you really want 138 * another radio (and channel). 139 * 140 * The limit on the number of mac addresses is tied to our use of 141 * the U/L bit and tracking addresses in a byte; it would be 142 * worthwhile to allow more for applications like proxy sta. 143 */ 144 CTASSERT(ATH_BCBUF <= 8); 145 146 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 147 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 148 const uint8_t [IEEE80211_ADDR_LEN], 149 const uint8_t [IEEE80211_ADDR_LEN]); 150 static void ath_vap_delete(struct ieee80211vap *); 151 static void ath_init(void *); 152 static void ath_stop_locked(struct ifnet *); 153 static void ath_stop(struct ifnet *); 154 static int ath_reset_vap(struct ieee80211vap *, u_long); 155 static void ath_start_queue(struct ifnet *ifp); 156 static int ath_media_change(struct ifnet *); 157 static void ath_watchdog(void *); 158 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 159 static void ath_fatal_proc(void *, int); 160 static void ath_bmiss_vap(struct ieee80211vap *); 161 static void ath_bmiss_proc(void *, int); 162 static void ath_key_update_begin(struct ieee80211vap *); 163 static void ath_key_update_end(struct ieee80211vap *); 164 static void ath_update_mcast(struct ifnet *); 165 static void ath_update_promisc(struct ifnet *); 166 static void ath_updateslot(struct ifnet *); 167 static void ath_bstuck_proc(void *, int); 168 static void ath_reset_proc(void *, int); 169 static int ath_desc_alloc(struct ath_softc *); 170 static void ath_desc_free(struct ath_softc *); 171 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 172 const uint8_t [IEEE80211_ADDR_LEN]); 173 static void ath_node_cleanup(struct ieee80211_node *); 174 static void ath_node_free(struct ieee80211_node *); 175 static void ath_node_getsignal(const struct ieee80211_node *, 176 int8_t *, int8_t *); 177 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 178 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 179 static int ath_tx_setup(struct ath_softc *, int, int); 180 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 181 static void ath_tx_cleanup(struct ath_softc *); 182 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 183 int dosched); 184 static void ath_tx_proc_q0(void *, int); 185 static void ath_tx_proc_q0123(void *, int); 186 static void ath_tx_proc(void *, int); 187 static void ath_txq_sched_tasklet(void *, int); 188 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 189 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 190 static void ath_scan_start(struct ieee80211com *); 191 static void ath_scan_end(struct ieee80211com *); 192 static void ath_set_channel(struct ieee80211com *); 193 #ifdef ATH_ENABLE_11N 194 static void ath_update_chw(struct ieee80211com *); 195 #endif /* ATH_ENABLE_11N */ 196 static void ath_calibrate(void *); 197 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 198 static void ath_setup_stationkey(struct ieee80211_node *); 199 static void ath_newassoc(struct ieee80211_node *, int); 200 static int ath_setregdomain(struct ieee80211com *, 201 struct ieee80211_regdomain *, int, 202 struct ieee80211_channel []); 203 static void ath_getradiocaps(struct ieee80211com *, int, int *, 204 struct ieee80211_channel []); 205 static int ath_getchannels(struct ath_softc *); 206 207 static int ath_rate_setup(struct ath_softc *, u_int mode); 208 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 209 210 static void ath_announce(struct ath_softc *); 211 212 static void ath_dfs_tasklet(void *, int); 213 static void ath_node_powersave(struct ieee80211_node *, int); 214 static int ath_node_set_tim(struct ieee80211_node *, int); 215 216 #ifdef IEEE80211_SUPPORT_TDMA 217 #include <dev/ath/if_ath_tdma.h> 218 #endif 219 220 SYSCTL_DECL(_hw_ath); 221 222 /* XXX validate sysctl values */ 223 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 224 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 225 0, "long chip calibration interval (secs)"); 226 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 227 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 228 0, "short chip calibration interval (msecs)"); 229 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 230 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 231 0, "reset chip calibration results (secs)"); 232 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 233 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 234 0, "ANI calibration (msecs)"); 235 236 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 237 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 238 0, "rx buffers allocated"); 239 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 240 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 241 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 242 0, "tx buffers allocated"); 243 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 244 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 245 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 246 0, "tx (mgmt) buffers allocated"); 247 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 248 249 int ath_bstuck_threshold = 4; /* max missed beacons */ 250 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 251 0, "max missed beacon xmits before chip reset"); 252 253 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 254 255 void 256 ath_legacy_attach_comp_func(struct ath_softc *sc) 257 { 258 259 /* 260 * Special case certain configurations. Note the 261 * CAB queue is handled by these specially so don't 262 * include them when checking the txq setup mask. 263 */ 264 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 265 case 0x01: 266 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 267 break; 268 case 0x0f: 269 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 270 break; 271 default: 272 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 273 break; 274 } 275 } 276 277 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 278 #define HAL_MODE_HT40 \ 279 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 280 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 281 int 282 ath_attach(u_int16_t devid, struct ath_softc *sc) 283 { 284 struct ifnet *ifp; 285 struct ieee80211com *ic; 286 struct ath_hal *ah = NULL; 287 HAL_STATUS status; 288 int error = 0, i; 289 u_int wmodes; 290 uint8_t macaddr[IEEE80211_ADDR_LEN]; 291 int rx_chainmask, tx_chainmask; 292 293 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 294 295 CURVNET_SET(vnet0); 296 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 297 if (ifp == NULL) { 298 device_printf(sc->sc_dev, "can not if_alloc()\n"); 299 error = ENOSPC; 300 CURVNET_RESTORE(); 301 goto bad; 302 } 303 ic = ifp->if_l2com; 304 305 /* set these up early for if_printf use */ 306 if_initname(ifp, device_get_name(sc->sc_dev), 307 device_get_unit(sc->sc_dev)); 308 CURVNET_RESTORE(); 309 310 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 311 sc->sc_eepromdata, &status); 312 if (ah == NULL) { 313 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 314 status); 315 error = ENXIO; 316 goto bad; 317 } 318 sc->sc_ah = ah; 319 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 320 #ifdef ATH_DEBUG 321 sc->sc_debug = ath_debug; 322 #endif 323 324 /* 325 * Setup the DMA/EDMA functions based on the current 326 * hardware support. 327 * 328 * This is required before the descriptors are allocated. 329 */ 330 if (ath_hal_hasedma(sc->sc_ah)) { 331 sc->sc_isedma = 1; 332 ath_recv_setup_edma(sc); 333 ath_xmit_setup_edma(sc); 334 } else { 335 ath_recv_setup_legacy(sc); 336 ath_xmit_setup_legacy(sc); 337 } 338 339 /* 340 * Check if the MAC has multi-rate retry support. 341 * We do this by trying to setup a fake extended 342 * descriptor. MAC's that don't have support will 343 * return false w/o doing anything. MAC's that do 344 * support it will return true w/o doing anything. 345 */ 346 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 347 348 /* 349 * Check if the device has hardware counters for PHY 350 * errors. If so we need to enable the MIB interrupt 351 * so we can act on stat triggers. 352 */ 353 if (ath_hal_hwphycounters(ah)) 354 sc->sc_needmib = 1; 355 356 /* 357 * Get the hardware key cache size. 358 */ 359 sc->sc_keymax = ath_hal_keycachesize(ah); 360 if (sc->sc_keymax > ATH_KEYMAX) { 361 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 362 ATH_KEYMAX, sc->sc_keymax); 363 sc->sc_keymax = ATH_KEYMAX; 364 } 365 /* 366 * Reset the key cache since some parts do not 367 * reset the contents on initial power up. 368 */ 369 for (i = 0; i < sc->sc_keymax; i++) 370 ath_hal_keyreset(ah, i); 371 372 /* 373 * Collect the default channel list. 374 */ 375 error = ath_getchannels(sc); 376 if (error != 0) 377 goto bad; 378 379 /* 380 * Setup rate tables for all potential media types. 381 */ 382 ath_rate_setup(sc, IEEE80211_MODE_11A); 383 ath_rate_setup(sc, IEEE80211_MODE_11B); 384 ath_rate_setup(sc, IEEE80211_MODE_11G); 385 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 386 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 387 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 388 ath_rate_setup(sc, IEEE80211_MODE_11NA); 389 ath_rate_setup(sc, IEEE80211_MODE_11NG); 390 ath_rate_setup(sc, IEEE80211_MODE_HALF); 391 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 392 393 /* NB: setup here so ath_rate_update is happy */ 394 ath_setcurmode(sc, IEEE80211_MODE_11A); 395 396 /* 397 * Allocate TX descriptors and populate the lists. 398 */ 399 error = ath_desc_alloc(sc); 400 if (error != 0) { 401 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 402 error); 403 goto bad; 404 } 405 error = ath_txdma_setup(sc); 406 if (error != 0) { 407 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 408 error); 409 goto bad; 410 } 411 412 /* 413 * Allocate RX descriptors and populate the lists. 414 */ 415 error = ath_rxdma_setup(sc); 416 if (error != 0) { 417 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 418 error); 419 goto bad; 420 } 421 422 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 423 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 424 425 ATH_TXBUF_LOCK_INIT(sc); 426 427 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 428 taskqueue_thread_enqueue, &sc->sc_tq); 429 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 430 "%s taskq", ifp->if_xname); 431 432 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 433 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 434 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 435 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 436 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 437 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 438 439 /* XXX make this a higher priority taskqueue? */ 440 TASK_INIT(&sc->sc_txpkttask, 0, ath_start_task, sc); 441 442 /* 443 * Allocate hardware transmit queues: one queue for 444 * beacon frames and one data queue for each QoS 445 * priority. Note that the hal handles resetting 446 * these queues at the needed time. 447 * 448 * XXX PS-Poll 449 */ 450 sc->sc_bhalq = ath_beaconq_setup(sc); 451 if (sc->sc_bhalq == (u_int) -1) { 452 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 453 error = EIO; 454 goto bad2; 455 } 456 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 457 if (sc->sc_cabq == NULL) { 458 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 459 error = EIO; 460 goto bad2; 461 } 462 /* NB: insure BK queue is the lowest priority h/w queue */ 463 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 464 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 465 ieee80211_wme_acnames[WME_AC_BK]); 466 error = EIO; 467 goto bad2; 468 } 469 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 470 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 471 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 472 /* 473 * Not enough hardware tx queues to properly do WME; 474 * just punt and assign them all to the same h/w queue. 475 * We could do a better job of this if, for example, 476 * we allocate queues when we switch from station to 477 * AP mode. 478 */ 479 if (sc->sc_ac2q[WME_AC_VI] != NULL) 480 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 481 if (sc->sc_ac2q[WME_AC_BE] != NULL) 482 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 483 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 484 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 485 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 486 } 487 488 /* 489 * Attach the TX completion function. 490 * 491 * The non-EDMA chips may have some special case optimisations; 492 * this method gives everyone a chance to attach cleanly. 493 */ 494 sc->sc_tx.xmit_attach_comp_func(sc); 495 496 /* 497 * Setup rate control. Some rate control modules 498 * call back to change the anntena state so expose 499 * the necessary entry points. 500 * XXX maybe belongs in struct ath_ratectrl? 501 */ 502 sc->sc_setdefantenna = ath_setdefantenna; 503 sc->sc_rc = ath_rate_attach(sc); 504 if (sc->sc_rc == NULL) { 505 error = EIO; 506 goto bad2; 507 } 508 509 /* Attach DFS module */ 510 if (! ath_dfs_attach(sc)) { 511 device_printf(sc->sc_dev, 512 "%s: unable to attach DFS\n", __func__); 513 error = EIO; 514 goto bad2; 515 } 516 517 /* Attach spectral module */ 518 if (ath_spectral_attach(sc) < 0) { 519 device_printf(sc->sc_dev, 520 "%s: unable to attach spectral\n", __func__); 521 error = EIO; 522 goto bad2; 523 } 524 525 /* Start DFS processing tasklet */ 526 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 527 528 /* Configure LED state */ 529 sc->sc_blinking = 0; 530 sc->sc_ledstate = 1; 531 sc->sc_ledon = 0; /* low true */ 532 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 533 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 534 535 /* 536 * Don't setup hardware-based blinking. 537 * 538 * Although some NICs may have this configured in the 539 * default reset register values, the user may wish 540 * to alter which pins have which function. 541 * 542 * The reference driver attaches the MAC network LED to GPIO1 and 543 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 544 * NIC has these reversed. 545 */ 546 sc->sc_hardled = (1 == 0); 547 sc->sc_led_net_pin = -1; 548 sc->sc_led_pwr_pin = -1; 549 /* 550 * Auto-enable soft led processing for IBM cards and for 551 * 5211 minipci cards. Users can also manually enable/disable 552 * support with a sysctl. 553 */ 554 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 555 ath_led_config(sc); 556 ath_hal_setledstate(ah, HAL_LED_INIT); 557 558 ifp->if_softc = sc; 559 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 560 ifp->if_start = ath_start_queue; 561 ifp->if_ioctl = ath_ioctl; 562 ifp->if_init = ath_init; 563 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 564 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 565 IFQ_SET_READY(&ifp->if_snd); 566 567 ic->ic_ifp = ifp; 568 /* XXX not right but it's not used anywhere important */ 569 ic->ic_phytype = IEEE80211_T_OFDM; 570 ic->ic_opmode = IEEE80211_M_STA; 571 ic->ic_caps = 572 IEEE80211_C_STA /* station mode */ 573 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 574 | IEEE80211_C_HOSTAP /* hostap mode */ 575 | IEEE80211_C_MONITOR /* monitor mode */ 576 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 577 | IEEE80211_C_WDS /* 4-address traffic works */ 578 | IEEE80211_C_MBSS /* mesh point link mode */ 579 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 580 | IEEE80211_C_SHSLOT /* short slot time supported */ 581 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 582 #ifndef ATH_ENABLE_11N 583 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 584 #endif 585 | IEEE80211_C_TXFRAG /* handle tx frags */ 586 #ifdef ATH_ENABLE_DFS 587 | IEEE80211_C_DFS /* Enable radar detection */ 588 #endif 589 ; 590 /* 591 * Query the hal to figure out h/w crypto support. 592 */ 593 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 594 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 595 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 596 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 597 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 598 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 599 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 600 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 601 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 602 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 603 /* 604 * Check if h/w does the MIC and/or whether the 605 * separate key cache entries are required to 606 * handle both tx+rx MIC keys. 607 */ 608 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 609 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 610 /* 611 * If the h/w supports storing tx+rx MIC keys 612 * in one cache slot automatically enable use. 613 */ 614 if (ath_hal_hastkipsplit(ah) || 615 !ath_hal_settkipsplit(ah, AH_FALSE)) 616 sc->sc_splitmic = 1; 617 /* 618 * If the h/w can do TKIP MIC together with WME then 619 * we use it; otherwise we force the MIC to be done 620 * in software by the net80211 layer. 621 */ 622 if (ath_hal_haswmetkipmic(ah)) 623 sc->sc_wmetkipmic = 1; 624 } 625 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 626 /* 627 * Check for multicast key search support. 628 */ 629 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 630 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 631 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 632 } 633 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 634 /* 635 * Mark key cache slots associated with global keys 636 * as in use. If we knew TKIP was not to be used we 637 * could leave the +32, +64, and +32+64 slots free. 638 */ 639 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 640 setbit(sc->sc_keymap, i); 641 setbit(sc->sc_keymap, i+64); 642 if (sc->sc_splitmic) { 643 setbit(sc->sc_keymap, i+32); 644 setbit(sc->sc_keymap, i+32+64); 645 } 646 } 647 /* 648 * TPC support can be done either with a global cap or 649 * per-packet support. The latter is not available on 650 * all parts. We're a bit pedantic here as all parts 651 * support a global cap. 652 */ 653 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 654 ic->ic_caps |= IEEE80211_C_TXPMGT; 655 656 /* 657 * Mark WME capability only if we have sufficient 658 * hardware queues to do proper priority scheduling. 659 */ 660 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 661 ic->ic_caps |= IEEE80211_C_WME; 662 /* 663 * Check for misc other capabilities. 664 */ 665 if (ath_hal_hasbursting(ah)) 666 ic->ic_caps |= IEEE80211_C_BURST; 667 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 668 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 669 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 670 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 671 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 672 if (ath_hal_hasfastframes(ah)) 673 ic->ic_caps |= IEEE80211_C_FF; 674 wmodes = ath_hal_getwirelessmodes(ah); 675 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 676 ic->ic_caps |= IEEE80211_C_TURBOP; 677 #ifdef IEEE80211_SUPPORT_TDMA 678 if (ath_hal_macversion(ah) > 0x78) { 679 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 680 ic->ic_tdma_update = ath_tdma_update; 681 } 682 #endif 683 684 /* 685 * TODO: enforce that at least this many frames are available 686 * in the txbuf list before allowing data frames (raw or 687 * otherwise) to be transmitted. 688 */ 689 sc->sc_txq_data_minfree = 10; 690 /* 691 * Leave this as default to maintain legacy behaviour. 692 * Shortening the cabq/mcastq may end up causing some 693 * undesirable behaviour. 694 */ 695 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 696 697 /* Enable CABQ by default */ 698 sc->sc_cabq_enable = 1; 699 700 /* 701 * Allow the TX and RX chainmasks to be overridden by 702 * environment variables and/or device.hints. 703 * 704 * This must be done early - before the hardware is 705 * calibrated or before the 802.11n stream calculation 706 * is done. 707 */ 708 if (resource_int_value(device_get_name(sc->sc_dev), 709 device_get_unit(sc->sc_dev), "rx_chainmask", 710 &rx_chainmask) == 0) { 711 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 712 rx_chainmask); 713 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 714 } 715 if (resource_int_value(device_get_name(sc->sc_dev), 716 device_get_unit(sc->sc_dev), "tx_chainmask", 717 &tx_chainmask) == 0) { 718 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 719 tx_chainmask); 720 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 721 } 722 723 /* 724 * Disable MRR with protected frames by default. 725 * Only 802.11n series NICs can handle this. 726 */ 727 sc->sc_mrrprot = 0; /* XXX should be a capability */ 728 729 /* 730 * Query the enterprise mode information the HAL. 731 */ 732 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 733 &sc->sc_ent_cfg) == HAL_OK) 734 sc->sc_use_ent = 1; 735 736 #ifdef ATH_ENABLE_11N 737 /* 738 * Query HT capabilities 739 */ 740 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 741 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 742 int rxs, txs; 743 744 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 745 746 sc->sc_mrrprot = 1; /* XXX should be a capability */ 747 748 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 749 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 750 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 751 | IEEE80211_HTCAP_MAXAMSDU_3839 752 /* max A-MSDU length */ 753 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 754 ; 755 756 /* 757 * Enable short-GI for HT20 only if the hardware 758 * advertises support. 759 * Notably, anything earlier than the AR9287 doesn't. 760 */ 761 if ((ath_hal_getcapability(ah, 762 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 763 (wmodes & HAL_MODE_HT20)) { 764 device_printf(sc->sc_dev, 765 "[HT] enabling short-GI in 20MHz mode\n"); 766 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 767 } 768 769 if (wmodes & HAL_MODE_HT40) 770 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 771 | IEEE80211_HTCAP_SHORTGI40; 772 773 /* 774 * TX/RX streams need to be taken into account when 775 * negotiating which MCS rates it'll receive and 776 * what MCS rates are available for TX. 777 */ 778 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 779 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 780 781 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 782 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 783 784 ic->ic_txstream = txs; 785 ic->ic_rxstream = rxs; 786 787 /* 788 * Setup TX and RX STBC based on what the HAL allows and 789 * the currently configured chainmask set. 790 * Ie - don't enable STBC TX if only one chain is enabled. 791 * STBC RX is fine on a single RX chain; it just won't 792 * provide any real benefit. 793 */ 794 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 795 NULL) == HAL_OK) { 796 sc->sc_rx_stbc = 1; 797 device_printf(sc->sc_dev, 798 "[HT] 1 stream STBC receive enabled\n"); 799 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 800 } 801 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 802 NULL) == HAL_OK) { 803 sc->sc_tx_stbc = 1; 804 device_printf(sc->sc_dev, 805 "[HT] 1 stream STBC transmit enabled\n"); 806 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 807 } 808 809 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 810 &sc->sc_rts_aggr_limit); 811 if (sc->sc_rts_aggr_limit != (64 * 1024)) 812 device_printf(sc->sc_dev, 813 "[HT] RTS aggregates limited to %d KiB\n", 814 sc->sc_rts_aggr_limit / 1024); 815 816 device_printf(sc->sc_dev, 817 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 818 } 819 #endif 820 821 /* 822 * Initial aggregation settings. 823 */ 824 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 825 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 826 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 827 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 828 sc->sc_delim_min_pad = 0; 829 830 /* 831 * Check if the hardware requires PCI register serialisation. 832 * Some of the Owl based MACs require this. 833 */ 834 if (mp_ncpus > 1 && 835 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 836 0, NULL) == HAL_OK) { 837 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 838 device_printf(sc->sc_dev, 839 "Enabling register serialisation\n"); 840 } 841 842 /* 843 * Initialise the deferred completed RX buffer list. 844 */ 845 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 846 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 847 848 /* 849 * Indicate we need the 802.11 header padded to a 850 * 32-bit boundary for 4-address and QoS frames. 851 */ 852 ic->ic_flags |= IEEE80211_F_DATAPAD; 853 854 /* 855 * Query the hal about antenna support. 856 */ 857 sc->sc_defant = ath_hal_getdefantenna(ah); 858 859 /* 860 * Not all chips have the VEOL support we want to 861 * use with IBSS beacons; check here for it. 862 */ 863 sc->sc_hasveol = ath_hal_hasveol(ah); 864 865 /* get mac address from hardware */ 866 ath_hal_getmac(ah, macaddr); 867 if (sc->sc_hasbmask) 868 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 869 870 /* NB: used to size node table key mapping array */ 871 ic->ic_max_keyix = sc->sc_keymax; 872 /* call MI attach routine. */ 873 ieee80211_ifattach(ic, macaddr); 874 ic->ic_setregdomain = ath_setregdomain; 875 ic->ic_getradiocaps = ath_getradiocaps; 876 sc->sc_opmode = HAL_M_STA; 877 878 /* override default methods */ 879 ic->ic_newassoc = ath_newassoc; 880 ic->ic_updateslot = ath_updateslot; 881 ic->ic_wme.wme_update = ath_wme_update; 882 ic->ic_vap_create = ath_vap_create; 883 ic->ic_vap_delete = ath_vap_delete; 884 ic->ic_raw_xmit = ath_raw_xmit; 885 ic->ic_update_mcast = ath_update_mcast; 886 ic->ic_update_promisc = ath_update_promisc; 887 ic->ic_node_alloc = ath_node_alloc; 888 sc->sc_node_free = ic->ic_node_free; 889 ic->ic_node_free = ath_node_free; 890 sc->sc_node_cleanup = ic->ic_node_cleanup; 891 ic->ic_node_cleanup = ath_node_cleanup; 892 ic->ic_node_getsignal = ath_node_getsignal; 893 ic->ic_scan_start = ath_scan_start; 894 ic->ic_scan_end = ath_scan_end; 895 ic->ic_set_channel = ath_set_channel; 896 #ifdef ATH_ENABLE_11N 897 /* 802.11n specific - but just override anyway */ 898 sc->sc_addba_request = ic->ic_addba_request; 899 sc->sc_addba_response = ic->ic_addba_response; 900 sc->sc_addba_stop = ic->ic_addba_stop; 901 sc->sc_bar_response = ic->ic_bar_response; 902 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 903 904 ic->ic_addba_request = ath_addba_request; 905 ic->ic_addba_response = ath_addba_response; 906 ic->ic_addba_response_timeout = ath_addba_response_timeout; 907 ic->ic_addba_stop = ath_addba_stop; 908 ic->ic_bar_response = ath_bar_response; 909 910 ic->ic_update_chw = ath_update_chw; 911 #endif /* ATH_ENABLE_11N */ 912 913 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 914 /* 915 * There's one vendor bitmap entry in the RX radiotap 916 * header; make sure that's taken into account. 917 */ 918 ieee80211_radiotap_attachv(ic, 919 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 920 ATH_TX_RADIOTAP_PRESENT, 921 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 922 ATH_RX_RADIOTAP_PRESENT); 923 #else 924 /* 925 * No vendor bitmap/extensions are present. 926 */ 927 ieee80211_radiotap_attach(ic, 928 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 929 ATH_TX_RADIOTAP_PRESENT, 930 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 931 ATH_RX_RADIOTAP_PRESENT); 932 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 933 934 /* 935 * Setup the ALQ logging if required 936 */ 937 #ifdef ATH_DEBUG_ALQ 938 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 939 if_ath_alq_setcfg(&sc->sc_alq, 940 sc->sc_ah->ah_macVersion, 941 sc->sc_ah->ah_macRev, 942 sc->sc_ah->ah_phyRev, 943 sc->sc_ah->ah_magic); 944 #endif 945 946 /* 947 * Setup dynamic sysctl's now that country code and 948 * regdomain are available from the hal. 949 */ 950 ath_sysctlattach(sc); 951 ath_sysctl_stats_attach(sc); 952 ath_sysctl_hal_attach(sc); 953 954 if (bootverbose) 955 ieee80211_announce(ic); 956 ath_announce(sc); 957 return 0; 958 bad2: 959 ath_tx_cleanup(sc); 960 ath_desc_free(sc); 961 ath_txdma_teardown(sc); 962 ath_rxdma_teardown(sc); 963 bad: 964 if (ah) 965 ath_hal_detach(ah); 966 967 /* 968 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE.. 969 */ 970 if (ifp != NULL && ifp->if_vnet) { 971 CURVNET_SET(ifp->if_vnet); 972 if_free(ifp); 973 CURVNET_RESTORE(); 974 } else if (ifp != NULL) 975 if_free(ifp); 976 sc->sc_invalid = 1; 977 return error; 978 } 979 980 int 981 ath_detach(struct ath_softc *sc) 982 { 983 struct ifnet *ifp = sc->sc_ifp; 984 985 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 986 __func__, ifp->if_flags); 987 988 /* 989 * NB: the order of these is important: 990 * o stop the chip so no more interrupts will fire 991 * o call the 802.11 layer before detaching the hal to 992 * insure callbacks into the driver to delete global 993 * key cache entries can be handled 994 * o free the taskqueue which drains any pending tasks 995 * o reclaim the tx queue data structures after calling 996 * the 802.11 layer as we'll get called back to reclaim 997 * node state and potentially want to use them 998 * o to cleanup the tx queues the hal is called, so detach 999 * it last 1000 * Other than that, it's straightforward... 1001 */ 1002 ath_stop(ifp); 1003 ieee80211_ifdetach(ifp->if_l2com); 1004 taskqueue_free(sc->sc_tq); 1005 #ifdef ATH_TX99_DIAG 1006 if (sc->sc_tx99 != NULL) 1007 sc->sc_tx99->detach(sc->sc_tx99); 1008 #endif 1009 ath_rate_detach(sc->sc_rc); 1010 #ifdef ATH_DEBUG_ALQ 1011 if_ath_alq_tidyup(&sc->sc_alq); 1012 #endif 1013 ath_spectral_detach(sc); 1014 ath_dfs_detach(sc); 1015 ath_desc_free(sc); 1016 ath_txdma_teardown(sc); 1017 ath_rxdma_teardown(sc); 1018 ath_tx_cleanup(sc); 1019 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1020 1021 CURVNET_SET(ifp->if_vnet); 1022 if_free(ifp); 1023 CURVNET_RESTORE(); 1024 1025 return 0; 1026 } 1027 1028 /* 1029 * MAC address handling for multiple BSS on the same radio. 1030 * The first vap uses the MAC address from the EEPROM. For 1031 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1032 * address and use the next six bits as an index. 1033 */ 1034 static void 1035 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1036 { 1037 int i; 1038 1039 if (clone && sc->sc_hasbmask) { 1040 /* NB: we only do this if h/w supports multiple bssid */ 1041 for (i = 0; i < 8; i++) 1042 if ((sc->sc_bssidmask & (1<<i)) == 0) 1043 break; 1044 if (i != 0) 1045 mac[0] |= (i << 2)|0x2; 1046 } else 1047 i = 0; 1048 sc->sc_bssidmask |= 1<<i; 1049 sc->sc_hwbssidmask[0] &= ~mac[0]; 1050 if (i == 0) 1051 sc->sc_nbssid0++; 1052 } 1053 1054 static void 1055 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1056 { 1057 int i = mac[0] >> 2; 1058 uint8_t mask; 1059 1060 if (i != 0 || --sc->sc_nbssid0 == 0) { 1061 sc->sc_bssidmask &= ~(1<<i); 1062 /* recalculate bssid mask from remaining addresses */ 1063 mask = 0xff; 1064 for (i = 1; i < 8; i++) 1065 if (sc->sc_bssidmask & (1<<i)) 1066 mask &= ~((i<<2)|0x2); 1067 sc->sc_hwbssidmask[0] |= mask; 1068 } 1069 } 1070 1071 /* 1072 * Assign a beacon xmit slot. We try to space out 1073 * assignments so when beacons are staggered the 1074 * traffic coming out of the cab q has maximal time 1075 * to go out before the next beacon is scheduled. 1076 */ 1077 static int 1078 assign_bslot(struct ath_softc *sc) 1079 { 1080 u_int slot, free; 1081 1082 free = 0; 1083 for (slot = 0; slot < ATH_BCBUF; slot++) 1084 if (sc->sc_bslot[slot] == NULL) { 1085 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1086 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1087 return slot; 1088 free = slot; 1089 /* NB: keep looking for a double slot */ 1090 } 1091 return free; 1092 } 1093 1094 static struct ieee80211vap * 1095 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1096 enum ieee80211_opmode opmode, int flags, 1097 const uint8_t bssid[IEEE80211_ADDR_LEN], 1098 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1099 { 1100 struct ath_softc *sc = ic->ic_ifp->if_softc; 1101 struct ath_vap *avp; 1102 struct ieee80211vap *vap; 1103 uint8_t mac[IEEE80211_ADDR_LEN]; 1104 int needbeacon, error; 1105 enum ieee80211_opmode ic_opmode; 1106 1107 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1108 M_80211_VAP, M_WAITOK | M_ZERO); 1109 needbeacon = 0; 1110 IEEE80211_ADDR_COPY(mac, mac0); 1111 1112 ATH_LOCK(sc); 1113 ic_opmode = opmode; /* default to opmode of new vap */ 1114 switch (opmode) { 1115 case IEEE80211_M_STA: 1116 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1117 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1118 goto bad; 1119 } 1120 if (sc->sc_nvaps) { 1121 /* 1122 * With multiple vaps we must fall back 1123 * to s/w beacon miss handling. 1124 */ 1125 flags |= IEEE80211_CLONE_NOBEACONS; 1126 } 1127 if (flags & IEEE80211_CLONE_NOBEACONS) { 1128 /* 1129 * Station mode w/o beacons are implemented w/ AP mode. 1130 */ 1131 ic_opmode = IEEE80211_M_HOSTAP; 1132 } 1133 break; 1134 case IEEE80211_M_IBSS: 1135 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1136 device_printf(sc->sc_dev, 1137 "only 1 ibss vap supported\n"); 1138 goto bad; 1139 } 1140 needbeacon = 1; 1141 break; 1142 case IEEE80211_M_AHDEMO: 1143 #ifdef IEEE80211_SUPPORT_TDMA 1144 if (flags & IEEE80211_CLONE_TDMA) { 1145 if (sc->sc_nvaps != 0) { 1146 device_printf(sc->sc_dev, 1147 "only 1 tdma vap supported\n"); 1148 goto bad; 1149 } 1150 needbeacon = 1; 1151 flags |= IEEE80211_CLONE_NOBEACONS; 1152 } 1153 /* fall thru... */ 1154 #endif 1155 case IEEE80211_M_MONITOR: 1156 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1157 /* 1158 * Adopt existing mode. Adding a monitor or ahdemo 1159 * vap to an existing configuration is of dubious 1160 * value but should be ok. 1161 */ 1162 /* XXX not right for monitor mode */ 1163 ic_opmode = ic->ic_opmode; 1164 } 1165 break; 1166 case IEEE80211_M_HOSTAP: 1167 case IEEE80211_M_MBSS: 1168 needbeacon = 1; 1169 break; 1170 case IEEE80211_M_WDS: 1171 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1172 device_printf(sc->sc_dev, 1173 "wds not supported in sta mode\n"); 1174 goto bad; 1175 } 1176 /* 1177 * Silently remove any request for a unique 1178 * bssid; WDS vap's always share the local 1179 * mac address. 1180 */ 1181 flags &= ~IEEE80211_CLONE_BSSID; 1182 if (sc->sc_nvaps == 0) 1183 ic_opmode = IEEE80211_M_HOSTAP; 1184 else 1185 ic_opmode = ic->ic_opmode; 1186 break; 1187 default: 1188 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1189 goto bad; 1190 } 1191 /* 1192 * Check that a beacon buffer is available; the code below assumes it. 1193 */ 1194 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1195 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1196 goto bad; 1197 } 1198 1199 /* STA, AHDEMO? */ 1200 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1201 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1202 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1203 } 1204 1205 vap = &avp->av_vap; 1206 /* XXX can't hold mutex across if_alloc */ 1207 ATH_UNLOCK(sc); 1208 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1209 bssid, mac); 1210 ATH_LOCK(sc); 1211 if (error != 0) { 1212 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1213 __func__, error); 1214 goto bad2; 1215 } 1216 1217 /* h/w crypto support */ 1218 vap->iv_key_alloc = ath_key_alloc; 1219 vap->iv_key_delete = ath_key_delete; 1220 vap->iv_key_set = ath_key_set; 1221 vap->iv_key_update_begin = ath_key_update_begin; 1222 vap->iv_key_update_end = ath_key_update_end; 1223 1224 /* override various methods */ 1225 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1226 vap->iv_recv_mgmt = ath_recv_mgmt; 1227 vap->iv_reset = ath_reset_vap; 1228 vap->iv_update_beacon = ath_beacon_update; 1229 avp->av_newstate = vap->iv_newstate; 1230 vap->iv_newstate = ath_newstate; 1231 avp->av_bmiss = vap->iv_bmiss; 1232 vap->iv_bmiss = ath_bmiss_vap; 1233 1234 avp->av_node_ps = vap->iv_node_ps; 1235 vap->iv_node_ps = ath_node_powersave; 1236 1237 avp->av_set_tim = vap->iv_set_tim; 1238 vap->iv_set_tim = ath_node_set_tim; 1239 1240 /* Set default parameters */ 1241 1242 /* 1243 * Anything earlier than some AR9300 series MACs don't 1244 * support a smaller MPDU density. 1245 */ 1246 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1247 /* 1248 * All NICs can handle the maximum size, however 1249 * AR5416 based MACs can only TX aggregates w/ RTS 1250 * protection when the total aggregate size is <= 8k. 1251 * However, for now that's enforced by the TX path. 1252 */ 1253 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1254 1255 avp->av_bslot = -1; 1256 if (needbeacon) { 1257 /* 1258 * Allocate beacon state and setup the q for buffered 1259 * multicast frames. We know a beacon buffer is 1260 * available because we checked above. 1261 */ 1262 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1263 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1264 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1265 /* 1266 * Assign the vap to a beacon xmit slot. As above 1267 * this cannot fail to find a free one. 1268 */ 1269 avp->av_bslot = assign_bslot(sc); 1270 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1271 ("beacon slot %u not empty", avp->av_bslot)); 1272 sc->sc_bslot[avp->av_bslot] = vap; 1273 sc->sc_nbcnvaps++; 1274 } 1275 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1276 /* 1277 * Multple vaps are to transmit beacons and we 1278 * have h/w support for TSF adjusting; enable 1279 * use of staggered beacons. 1280 */ 1281 sc->sc_stagbeacons = 1; 1282 } 1283 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1284 } 1285 1286 ic->ic_opmode = ic_opmode; 1287 if (opmode != IEEE80211_M_WDS) { 1288 sc->sc_nvaps++; 1289 if (opmode == IEEE80211_M_STA) 1290 sc->sc_nstavaps++; 1291 if (opmode == IEEE80211_M_MBSS) 1292 sc->sc_nmeshvaps++; 1293 } 1294 switch (ic_opmode) { 1295 case IEEE80211_M_IBSS: 1296 sc->sc_opmode = HAL_M_IBSS; 1297 break; 1298 case IEEE80211_M_STA: 1299 sc->sc_opmode = HAL_M_STA; 1300 break; 1301 case IEEE80211_M_AHDEMO: 1302 #ifdef IEEE80211_SUPPORT_TDMA 1303 if (vap->iv_caps & IEEE80211_C_TDMA) { 1304 sc->sc_tdma = 1; 1305 /* NB: disable tsf adjust */ 1306 sc->sc_stagbeacons = 0; 1307 } 1308 /* 1309 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1310 * just ap mode. 1311 */ 1312 /* fall thru... */ 1313 #endif 1314 case IEEE80211_M_HOSTAP: 1315 case IEEE80211_M_MBSS: 1316 sc->sc_opmode = HAL_M_HOSTAP; 1317 break; 1318 case IEEE80211_M_MONITOR: 1319 sc->sc_opmode = HAL_M_MONITOR; 1320 break; 1321 default: 1322 /* XXX should not happen */ 1323 break; 1324 } 1325 if (sc->sc_hastsfadd) { 1326 /* 1327 * Configure whether or not TSF adjust should be done. 1328 */ 1329 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1330 } 1331 if (flags & IEEE80211_CLONE_NOBEACONS) { 1332 /* 1333 * Enable s/w beacon miss handling. 1334 */ 1335 sc->sc_swbmiss = 1; 1336 } 1337 ATH_UNLOCK(sc); 1338 1339 /* complete setup */ 1340 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1341 return vap; 1342 bad2: 1343 reclaim_address(sc, mac); 1344 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1345 bad: 1346 free(avp, M_80211_VAP); 1347 ATH_UNLOCK(sc); 1348 return NULL; 1349 } 1350 1351 static void 1352 ath_vap_delete(struct ieee80211vap *vap) 1353 { 1354 struct ieee80211com *ic = vap->iv_ic; 1355 struct ifnet *ifp = ic->ic_ifp; 1356 struct ath_softc *sc = ifp->if_softc; 1357 struct ath_hal *ah = sc->sc_ah; 1358 struct ath_vap *avp = ATH_VAP(vap); 1359 1360 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1361 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1362 /* 1363 * Quiesce the hardware while we remove the vap. In 1364 * particular we need to reclaim all references to 1365 * the vap state by any frames pending on the tx queues. 1366 */ 1367 ath_hal_intrset(ah, 0); /* disable interrupts */ 1368 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1369 /* XXX Do all frames from all vaps/nodes need draining here? */ 1370 ath_stoprecv(sc, 1); /* stop recv side */ 1371 } 1372 1373 ieee80211_vap_detach(vap); 1374 1375 /* 1376 * XXX Danger Will Robinson! Danger! 1377 * 1378 * Because ieee80211_vap_detach() can queue a frame (the station 1379 * diassociate message?) after we've drained the TXQ and 1380 * flushed the software TXQ, we will end up with a frame queued 1381 * to a node whose vap is about to be freed. 1382 * 1383 * To work around this, flush the hardware/software again. 1384 * This may be racy - the ath task may be running and the packet 1385 * may be being scheduled between sw->hw txq. Tsk. 1386 * 1387 * TODO: figure out why a new node gets allocated somewhere around 1388 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1389 * call!) 1390 */ 1391 1392 ath_draintxq(sc, ATH_RESET_DEFAULT); 1393 1394 ATH_LOCK(sc); 1395 /* 1396 * Reclaim beacon state. Note this must be done before 1397 * the vap instance is reclaimed as we may have a reference 1398 * to it in the buffer for the beacon frame. 1399 */ 1400 if (avp->av_bcbuf != NULL) { 1401 if (avp->av_bslot != -1) { 1402 sc->sc_bslot[avp->av_bslot] = NULL; 1403 sc->sc_nbcnvaps--; 1404 } 1405 ath_beacon_return(sc, avp->av_bcbuf); 1406 avp->av_bcbuf = NULL; 1407 if (sc->sc_nbcnvaps == 0) { 1408 sc->sc_stagbeacons = 0; 1409 if (sc->sc_hastsfadd) 1410 ath_hal_settsfadjust(sc->sc_ah, 0); 1411 } 1412 /* 1413 * Reclaim any pending mcast frames for the vap. 1414 */ 1415 ath_tx_draintxq(sc, &avp->av_mcastq); 1416 } 1417 /* 1418 * Update bookkeeping. 1419 */ 1420 if (vap->iv_opmode == IEEE80211_M_STA) { 1421 sc->sc_nstavaps--; 1422 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1423 sc->sc_swbmiss = 0; 1424 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1425 vap->iv_opmode == IEEE80211_M_MBSS) { 1426 reclaim_address(sc, vap->iv_myaddr); 1427 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1428 if (vap->iv_opmode == IEEE80211_M_MBSS) 1429 sc->sc_nmeshvaps--; 1430 } 1431 if (vap->iv_opmode != IEEE80211_M_WDS) 1432 sc->sc_nvaps--; 1433 #ifdef IEEE80211_SUPPORT_TDMA 1434 /* TDMA operation ceases when the last vap is destroyed */ 1435 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1436 sc->sc_tdma = 0; 1437 sc->sc_swbmiss = 0; 1438 } 1439 #endif 1440 free(avp, M_80211_VAP); 1441 1442 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1443 /* 1444 * Restart rx+tx machines if still running (RUNNING will 1445 * be reset if we just destroyed the last vap). 1446 */ 1447 if (ath_startrecv(sc) != 0) 1448 if_printf(ifp, "%s: unable to restart recv logic\n", 1449 __func__); 1450 if (sc->sc_beacons) { /* restart beacons */ 1451 #ifdef IEEE80211_SUPPORT_TDMA 1452 if (sc->sc_tdma) 1453 ath_tdma_config(sc, NULL); 1454 else 1455 #endif 1456 ath_beacon_config(sc, NULL); 1457 } 1458 ath_hal_intrset(ah, sc->sc_imask); 1459 } 1460 ATH_UNLOCK(sc); 1461 } 1462 1463 void 1464 ath_suspend(struct ath_softc *sc) 1465 { 1466 struct ifnet *ifp = sc->sc_ifp; 1467 struct ieee80211com *ic = ifp->if_l2com; 1468 1469 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1470 __func__, ifp->if_flags); 1471 1472 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1473 1474 ieee80211_suspend_all(ic); 1475 /* 1476 * NB: don't worry about putting the chip in low power 1477 * mode; pci will power off our socket on suspend and 1478 * CardBus detaches the device. 1479 */ 1480 1481 /* 1482 * XXX ensure none of the taskqueues are running 1483 * XXX ensure sc_invalid is 1 1484 * XXX ensure the calibration callout is disabled 1485 */ 1486 1487 /* Disable the PCIe PHY, complete with workarounds */ 1488 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1489 } 1490 1491 /* 1492 * Reset the key cache since some parts do not reset the 1493 * contents on resume. First we clear all entries, then 1494 * re-load keys that the 802.11 layer assumes are setup 1495 * in h/w. 1496 */ 1497 static void 1498 ath_reset_keycache(struct ath_softc *sc) 1499 { 1500 struct ifnet *ifp = sc->sc_ifp; 1501 struct ieee80211com *ic = ifp->if_l2com; 1502 struct ath_hal *ah = sc->sc_ah; 1503 int i; 1504 1505 for (i = 0; i < sc->sc_keymax; i++) 1506 ath_hal_keyreset(ah, i); 1507 ieee80211_crypto_reload_keys(ic); 1508 } 1509 1510 /* 1511 * Fetch the current chainmask configuration based on the current 1512 * operating channel and options. 1513 */ 1514 static void 1515 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1516 { 1517 1518 /* 1519 * Set TX chainmask to the currently configured chainmask; 1520 * the TX chainmask depends upon the current operating mode. 1521 */ 1522 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1523 if (IEEE80211_IS_CHAN_HT(chan)) { 1524 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1525 } else { 1526 sc->sc_cur_txchainmask = 1; 1527 } 1528 } 1529 1530 void 1531 ath_resume(struct ath_softc *sc) 1532 { 1533 struct ifnet *ifp = sc->sc_ifp; 1534 struct ieee80211com *ic = ifp->if_l2com; 1535 struct ath_hal *ah = sc->sc_ah; 1536 HAL_STATUS status; 1537 1538 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1539 __func__, ifp->if_flags); 1540 1541 /* Re-enable PCIe, re-enable the PCIe bus */ 1542 ath_hal_enablepcie(ah, 0, 0); 1543 1544 /* 1545 * Must reset the chip before we reload the 1546 * keycache as we were powered down on suspend. 1547 */ 1548 ath_update_chainmasks(sc, 1549 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1550 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1551 sc->sc_cur_rxchainmask); 1552 ath_hal_reset(ah, sc->sc_opmode, 1553 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1554 AH_FALSE, &status); 1555 ath_reset_keycache(sc); 1556 1557 /* Let DFS at it in case it's a DFS channel */ 1558 ath_dfs_radar_enable(sc, ic->ic_curchan); 1559 1560 /* Let spectral at in case spectral is enabled */ 1561 ath_spectral_enable(sc, ic->ic_curchan); 1562 1563 /* Restore the LED configuration */ 1564 ath_led_config(sc); 1565 ath_hal_setledstate(ah, HAL_LED_INIT); 1566 1567 if (sc->sc_resume_up) 1568 ieee80211_resume_all(ic); 1569 1570 /* XXX beacons ? */ 1571 } 1572 1573 void 1574 ath_shutdown(struct ath_softc *sc) 1575 { 1576 struct ifnet *ifp = sc->sc_ifp; 1577 1578 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1579 __func__, ifp->if_flags); 1580 1581 ath_stop(ifp); 1582 /* NB: no point powering down chip as we're about to reboot */ 1583 } 1584 1585 /* 1586 * Interrupt handler. Most of the actual processing is deferred. 1587 */ 1588 void 1589 ath_intr(void *arg) 1590 { 1591 struct ath_softc *sc = arg; 1592 struct ifnet *ifp = sc->sc_ifp; 1593 struct ath_hal *ah = sc->sc_ah; 1594 HAL_INT status = 0; 1595 uint32_t txqs; 1596 1597 /* 1598 * If we're inside a reset path, just print a warning and 1599 * clear the ISR. The reset routine will finish it for us. 1600 */ 1601 ATH_PCU_LOCK(sc); 1602 if (sc->sc_inreset_cnt) { 1603 HAL_INT status; 1604 ath_hal_getisr(ah, &status); /* clear ISR */ 1605 ath_hal_intrset(ah, 0); /* disable further intr's */ 1606 DPRINTF(sc, ATH_DEBUG_ANY, 1607 "%s: in reset, ignoring: status=0x%x\n", 1608 __func__, status); 1609 ATH_PCU_UNLOCK(sc); 1610 return; 1611 } 1612 1613 if (sc->sc_invalid) { 1614 /* 1615 * The hardware is not ready/present, don't touch anything. 1616 * Note this can happen early on if the IRQ is shared. 1617 */ 1618 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1619 ATH_PCU_UNLOCK(sc); 1620 return; 1621 } 1622 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1623 ATH_PCU_UNLOCK(sc); 1624 return; 1625 } 1626 1627 if ((ifp->if_flags & IFF_UP) == 0 || 1628 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1629 HAL_INT status; 1630 1631 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1632 __func__, ifp->if_flags); 1633 ath_hal_getisr(ah, &status); /* clear ISR */ 1634 ath_hal_intrset(ah, 0); /* disable further intr's */ 1635 ATH_PCU_UNLOCK(sc); 1636 return; 1637 } 1638 1639 /* 1640 * Figure out the reason(s) for the interrupt. Note 1641 * that the hal returns a pseudo-ISR that may include 1642 * bits we haven't explicitly enabled so we mask the 1643 * value to insure we only process bits we requested. 1644 */ 1645 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1646 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1647 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 1648 #ifdef ATH_DEBUG_ALQ 1649 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 1650 ah->ah_syncstate); 1651 #endif /* ATH_DEBUG_ALQ */ 1652 #ifdef ATH_KTR_INTR_DEBUG 1653 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 1654 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1655 ah->ah_intrstate[0], 1656 ah->ah_intrstate[1], 1657 ah->ah_intrstate[2], 1658 ah->ah_intrstate[3], 1659 ah->ah_intrstate[6]); 1660 #endif 1661 1662 /* Squirrel away SYNC interrupt debugging */ 1663 if (ah->ah_syncstate != 0) { 1664 int i; 1665 for (i = 0; i < 32; i++) 1666 if (ah->ah_syncstate & (i << i)) 1667 sc->sc_intr_stats.sync_intr[i]++; 1668 } 1669 1670 status &= sc->sc_imask; /* discard unasked for bits */ 1671 1672 /* Short-circuit un-handled interrupts */ 1673 if (status == 0x0) { 1674 ATH_PCU_UNLOCK(sc); 1675 return; 1676 } 1677 1678 /* 1679 * Take a note that we're inside the interrupt handler, so 1680 * the reset routines know to wait. 1681 */ 1682 sc->sc_intr_cnt++; 1683 ATH_PCU_UNLOCK(sc); 1684 1685 /* 1686 * Handle the interrupt. We won't run concurrent with the reset 1687 * or channel change routines as they'll wait for sc_intr_cnt 1688 * to be 0 before continuing. 1689 */ 1690 if (status & HAL_INT_FATAL) { 1691 sc->sc_stats.ast_hardware++; 1692 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1693 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1694 } else { 1695 if (status & HAL_INT_SWBA) { 1696 /* 1697 * Software beacon alert--time to send a beacon. 1698 * Handle beacon transmission directly; deferring 1699 * this is too slow to meet timing constraints 1700 * under load. 1701 */ 1702 #ifdef IEEE80211_SUPPORT_TDMA 1703 if (sc->sc_tdma) { 1704 if (sc->sc_tdmaswba == 0) { 1705 struct ieee80211com *ic = ifp->if_l2com; 1706 struct ieee80211vap *vap = 1707 TAILQ_FIRST(&ic->ic_vaps); 1708 ath_tdma_beacon_send(sc, vap); 1709 sc->sc_tdmaswba = 1710 vap->iv_tdma->tdma_bintval; 1711 } else 1712 sc->sc_tdmaswba--; 1713 } else 1714 #endif 1715 { 1716 ath_beacon_proc(sc, 0); 1717 #ifdef IEEE80211_SUPPORT_SUPERG 1718 /* 1719 * Schedule the rx taskq in case there's no 1720 * traffic so any frames held on the staging 1721 * queue are aged and potentially flushed. 1722 */ 1723 sc->sc_rx.recv_sched(sc, 1); 1724 #endif 1725 } 1726 } 1727 if (status & HAL_INT_RXEOL) { 1728 int imask; 1729 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 1730 ATH_PCU_LOCK(sc); 1731 /* 1732 * NB: the hardware should re-read the link when 1733 * RXE bit is written, but it doesn't work at 1734 * least on older hardware revs. 1735 */ 1736 sc->sc_stats.ast_rxeol++; 1737 /* 1738 * Disable RXEOL/RXORN - prevent an interrupt 1739 * storm until the PCU logic can be reset. 1740 * In case the interface is reset some other 1741 * way before "sc_kickpcu" is called, don't 1742 * modify sc_imask - that way if it is reset 1743 * by a call to ath_reset() somehow, the 1744 * interrupt mask will be correctly reprogrammed. 1745 */ 1746 imask = sc->sc_imask; 1747 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1748 ath_hal_intrset(ah, imask); 1749 /* 1750 * Only blank sc_rxlink if we've not yet kicked 1751 * the PCU. 1752 * 1753 * This isn't entirely correct - the correct solution 1754 * would be to have a PCU lock and engage that for 1755 * the duration of the PCU fiddling; which would include 1756 * running the RX process. Otherwise we could end up 1757 * messing up the RX descriptor chain and making the 1758 * RX desc list much shorter. 1759 */ 1760 if (! sc->sc_kickpcu) 1761 sc->sc_rxlink = NULL; 1762 sc->sc_kickpcu = 1; 1763 ATH_PCU_UNLOCK(sc); 1764 /* 1765 * Enqueue an RX proc, to handled whatever 1766 * is in the RX queue. 1767 * This will then kick the PCU. 1768 */ 1769 sc->sc_rx.recv_sched(sc, 1); 1770 } 1771 if (status & HAL_INT_TXURN) { 1772 sc->sc_stats.ast_txurn++; 1773 /* bump tx trigger level */ 1774 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1775 } 1776 /* 1777 * Handle both the legacy and RX EDMA interrupt bits. 1778 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1779 */ 1780 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1781 sc->sc_stats.ast_rx_intr++; 1782 sc->sc_rx.recv_sched(sc, 1); 1783 } 1784 if (status & HAL_INT_TX) { 1785 sc->sc_stats.ast_tx_intr++; 1786 /* 1787 * Grab all the currently set bits in the HAL txq bitmap 1788 * and blank them. This is the only place we should be 1789 * doing this. 1790 */ 1791 if (! sc->sc_isedma) { 1792 ATH_PCU_LOCK(sc); 1793 txqs = 0xffffffff; 1794 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1795 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 1796 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 1797 txqs, 1798 sc->sc_txq_active, 1799 sc->sc_txq_active | txqs); 1800 sc->sc_txq_active |= txqs; 1801 ATH_PCU_UNLOCK(sc); 1802 } 1803 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1804 } 1805 if (status & HAL_INT_BMISS) { 1806 sc->sc_stats.ast_bmiss++; 1807 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1808 } 1809 if (status & HAL_INT_GTT) 1810 sc->sc_stats.ast_tx_timeout++; 1811 if (status & HAL_INT_CST) 1812 sc->sc_stats.ast_tx_cst++; 1813 if (status & HAL_INT_MIB) { 1814 sc->sc_stats.ast_mib++; 1815 ATH_PCU_LOCK(sc); 1816 /* 1817 * Disable interrupts until we service the MIB 1818 * interrupt; otherwise it will continue to fire. 1819 */ 1820 ath_hal_intrset(ah, 0); 1821 /* 1822 * Let the hal handle the event. We assume it will 1823 * clear whatever condition caused the interrupt. 1824 */ 1825 ath_hal_mibevent(ah, &sc->sc_halstats); 1826 /* 1827 * Don't reset the interrupt if we've just 1828 * kicked the PCU, or we may get a nested 1829 * RXEOL before the rxproc has had a chance 1830 * to run. 1831 */ 1832 if (sc->sc_kickpcu == 0) 1833 ath_hal_intrset(ah, sc->sc_imask); 1834 ATH_PCU_UNLOCK(sc); 1835 } 1836 if (status & HAL_INT_RXORN) { 1837 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1838 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 1839 sc->sc_stats.ast_rxorn++; 1840 } 1841 } 1842 ATH_PCU_LOCK(sc); 1843 sc->sc_intr_cnt--; 1844 ATH_PCU_UNLOCK(sc); 1845 } 1846 1847 static void 1848 ath_fatal_proc(void *arg, int pending) 1849 { 1850 struct ath_softc *sc = arg; 1851 struct ifnet *ifp = sc->sc_ifp; 1852 u_int32_t *state; 1853 u_int32_t len; 1854 void *sp; 1855 1856 if_printf(ifp, "hardware error; resetting\n"); 1857 /* 1858 * Fatal errors are unrecoverable. Typically these 1859 * are caused by DMA errors. Collect h/w state from 1860 * the hal so we can diagnose what's going on. 1861 */ 1862 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1863 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1864 state = sp; 1865 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1866 state[0], state[1] , state[2], state[3], 1867 state[4], state[5]); 1868 } 1869 ath_reset(ifp, ATH_RESET_NOLOSS); 1870 } 1871 1872 static void 1873 ath_bmiss_vap(struct ieee80211vap *vap) 1874 { 1875 /* 1876 * Workaround phantom bmiss interrupts by sanity-checking 1877 * the time of our last rx'd frame. If it is within the 1878 * beacon miss interval then ignore the interrupt. If it's 1879 * truly a bmiss we'll get another interrupt soon and that'll 1880 * be dispatched up for processing. Note this applies only 1881 * for h/w beacon miss events. 1882 */ 1883 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1884 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1885 struct ath_softc *sc = ifp->if_softc; 1886 u_int64_t lastrx = sc->sc_lastrx; 1887 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1888 /* XXX should take a locked ref to iv_bss */ 1889 u_int bmisstimeout = 1890 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1891 1892 DPRINTF(sc, ATH_DEBUG_BEACON, 1893 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1894 __func__, (unsigned long long) tsf, 1895 (unsigned long long)(tsf - lastrx), 1896 (unsigned long long) lastrx, bmisstimeout); 1897 1898 if (tsf - lastrx <= bmisstimeout) { 1899 sc->sc_stats.ast_bmiss_phantom++; 1900 return; 1901 } 1902 } 1903 ATH_VAP(vap)->av_bmiss(vap); 1904 } 1905 1906 int 1907 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1908 { 1909 uint32_t rsize; 1910 void *sp; 1911 1912 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1913 return 0; 1914 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1915 *hangs = *(uint32_t *)sp; 1916 return 1; 1917 } 1918 1919 static void 1920 ath_bmiss_proc(void *arg, int pending) 1921 { 1922 struct ath_softc *sc = arg; 1923 struct ifnet *ifp = sc->sc_ifp; 1924 uint32_t hangs; 1925 1926 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1927 1928 /* 1929 * Do a reset upon any becaon miss event. 1930 * 1931 * It may be a non-recognised RX clear hang which needs a reset 1932 * to clear. 1933 */ 1934 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1935 ath_reset(ifp, ATH_RESET_NOLOSS); 1936 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1937 } else { 1938 ath_reset(ifp, ATH_RESET_NOLOSS); 1939 ieee80211_beacon_miss(ifp->if_l2com); 1940 } 1941 } 1942 1943 /* 1944 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1945 * calcs together with WME. If necessary disable the crypto 1946 * hardware and mark the 802.11 state so keys will be setup 1947 * with the MIC work done in software. 1948 */ 1949 static void 1950 ath_settkipmic(struct ath_softc *sc) 1951 { 1952 struct ifnet *ifp = sc->sc_ifp; 1953 struct ieee80211com *ic = ifp->if_l2com; 1954 1955 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1956 if (ic->ic_flags & IEEE80211_F_WME) { 1957 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1958 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1959 } else { 1960 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1961 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1962 } 1963 } 1964 } 1965 1966 static void 1967 ath_init(void *arg) 1968 { 1969 struct ath_softc *sc = (struct ath_softc *) arg; 1970 struct ifnet *ifp = sc->sc_ifp; 1971 struct ieee80211com *ic = ifp->if_l2com; 1972 struct ath_hal *ah = sc->sc_ah; 1973 HAL_STATUS status; 1974 1975 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1976 __func__, ifp->if_flags); 1977 1978 ATH_LOCK(sc); 1979 /* 1980 * Stop anything previously setup. This is safe 1981 * whether this is the first time through or not. 1982 */ 1983 ath_stop_locked(ifp); 1984 1985 /* 1986 * The basic interface to setting the hardware in a good 1987 * state is ``reset''. On return the hardware is known to 1988 * be powered up and with interrupts disabled. This must 1989 * be followed by initialization of the appropriate bits 1990 * and then setup of the interrupt mask. 1991 */ 1992 ath_settkipmic(sc); 1993 ath_update_chainmasks(sc, ic->ic_curchan); 1994 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1995 sc->sc_cur_rxchainmask); 1996 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1997 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1998 status); 1999 ATH_UNLOCK(sc); 2000 return; 2001 } 2002 ath_chan_change(sc, ic->ic_curchan); 2003 2004 /* Let DFS at it in case it's a DFS channel */ 2005 ath_dfs_radar_enable(sc, ic->ic_curchan); 2006 2007 /* Let spectral at in case spectral is enabled */ 2008 ath_spectral_enable(sc, ic->ic_curchan); 2009 2010 /* 2011 * Likewise this is set during reset so update 2012 * state cached in the driver. 2013 */ 2014 sc->sc_diversity = ath_hal_getdiversity(ah); 2015 sc->sc_lastlongcal = 0; 2016 sc->sc_resetcal = 1; 2017 sc->sc_lastcalreset = 0; 2018 sc->sc_lastani = 0; 2019 sc->sc_lastshortcal = 0; 2020 sc->sc_doresetcal = AH_FALSE; 2021 /* 2022 * Beacon timers were cleared here; give ath_newstate() 2023 * a hint that the beacon timers should be poked when 2024 * things transition to the RUN state. 2025 */ 2026 sc->sc_beacons = 0; 2027 2028 /* 2029 * Setup the hardware after reset: the key cache 2030 * is filled as needed and the receive engine is 2031 * set going. Frame transmit is handled entirely 2032 * in the frame output path; there's nothing to do 2033 * here except setup the interrupt mask. 2034 */ 2035 if (ath_startrecv(sc) != 0) { 2036 if_printf(ifp, "unable to start recv logic\n"); 2037 ATH_UNLOCK(sc); 2038 return; 2039 } 2040 2041 /* 2042 * Enable interrupts. 2043 */ 2044 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2045 | HAL_INT_RXEOL | HAL_INT_RXORN 2046 | HAL_INT_TXURN 2047 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2048 2049 /* 2050 * Enable RX EDMA bits. Note these overlap with 2051 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2052 */ 2053 if (sc->sc_isedma) 2054 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2055 2056 /* 2057 * Enable MIB interrupts when there are hardware phy counters. 2058 * Note we only do this (at the moment) for station mode. 2059 */ 2060 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2061 sc->sc_imask |= HAL_INT_MIB; 2062 2063 /* Enable global TX timeout and carrier sense timeout if available */ 2064 if (ath_hal_gtxto_supported(ah)) 2065 sc->sc_imask |= HAL_INT_GTT; 2066 2067 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2068 __func__, sc->sc_imask); 2069 2070 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2071 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2072 ath_hal_intrset(ah, sc->sc_imask); 2073 2074 ATH_UNLOCK(sc); 2075 2076 #ifdef ATH_TX99_DIAG 2077 if (sc->sc_tx99 != NULL) 2078 sc->sc_tx99->start(sc->sc_tx99); 2079 else 2080 #endif 2081 ieee80211_start_all(ic); /* start all vap's */ 2082 } 2083 2084 static void 2085 ath_stop_locked(struct ifnet *ifp) 2086 { 2087 struct ath_softc *sc = ifp->if_softc; 2088 struct ath_hal *ah = sc->sc_ah; 2089 2090 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 2091 __func__, sc->sc_invalid, ifp->if_flags); 2092 2093 ATH_LOCK_ASSERT(sc); 2094 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2095 /* 2096 * Shutdown the hardware and driver: 2097 * reset 802.11 state machine 2098 * turn off timers 2099 * disable interrupts 2100 * turn off the radio 2101 * clear transmit machinery 2102 * clear receive machinery 2103 * drain and release tx queues 2104 * reclaim beacon resources 2105 * power down hardware 2106 * 2107 * Note that some of this work is not possible if the 2108 * hardware is gone (invalid). 2109 */ 2110 #ifdef ATH_TX99_DIAG 2111 if (sc->sc_tx99 != NULL) 2112 sc->sc_tx99->stop(sc->sc_tx99); 2113 #endif 2114 callout_stop(&sc->sc_wd_ch); 2115 sc->sc_wd_timer = 0; 2116 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2117 if (!sc->sc_invalid) { 2118 if (sc->sc_softled) { 2119 callout_stop(&sc->sc_ledtimer); 2120 ath_hal_gpioset(ah, sc->sc_ledpin, 2121 !sc->sc_ledon); 2122 sc->sc_blinking = 0; 2123 } 2124 ath_hal_intrset(ah, 0); 2125 } 2126 ath_draintxq(sc, ATH_RESET_DEFAULT); 2127 if (!sc->sc_invalid) { 2128 ath_stoprecv(sc, 1); 2129 ath_hal_phydisable(ah); 2130 } else 2131 sc->sc_rxlink = NULL; 2132 ath_beacon_free(sc); /* XXX not needed */ 2133 } 2134 } 2135 2136 #define MAX_TXRX_ITERATIONS 1000 2137 static void 2138 ath_txrx_stop_locked(struct ath_softc *sc) 2139 { 2140 int i = MAX_TXRX_ITERATIONS; 2141 2142 ATH_UNLOCK_ASSERT(sc); 2143 ATH_PCU_LOCK_ASSERT(sc); 2144 2145 /* 2146 * Sleep until all the pending operations have completed. 2147 * 2148 * The caller must ensure that reset has been incremented 2149 * or the pending operations may continue being queued. 2150 */ 2151 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2152 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2153 if (i <= 0) 2154 break; 2155 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 2156 i--; 2157 } 2158 2159 if (i <= 0) 2160 device_printf(sc->sc_dev, 2161 "%s: didn't finish after %d iterations\n", 2162 __func__, MAX_TXRX_ITERATIONS); 2163 } 2164 #undef MAX_TXRX_ITERATIONS 2165 2166 #if 0 2167 static void 2168 ath_txrx_stop(struct ath_softc *sc) 2169 { 2170 ATH_UNLOCK_ASSERT(sc); 2171 ATH_PCU_UNLOCK_ASSERT(sc); 2172 2173 ATH_PCU_LOCK(sc); 2174 ath_txrx_stop_locked(sc); 2175 ATH_PCU_UNLOCK(sc); 2176 } 2177 #endif 2178 2179 static void 2180 ath_txrx_start(struct ath_softc *sc) 2181 { 2182 2183 taskqueue_unblock(sc->sc_tq); 2184 } 2185 2186 /* 2187 * Grab the reset lock, and wait around until noone else 2188 * is trying to do anything with it. 2189 * 2190 * This is totally horrible but we can't hold this lock for 2191 * long enough to do TX/RX or we end up with net80211/ip stack 2192 * LORs and eventual deadlock. 2193 * 2194 * "dowait" signals whether to spin, waiting for the reset 2195 * lock count to reach 0. This should (for now) only be used 2196 * during the reset path, as the rest of the code may not 2197 * be locking-reentrant enough to behave correctly. 2198 * 2199 * Another, cleaner way should be found to serialise all of 2200 * these operations. 2201 */ 2202 #define MAX_RESET_ITERATIONS 10 2203 static int 2204 ath_reset_grablock(struct ath_softc *sc, int dowait) 2205 { 2206 int w = 0; 2207 int i = MAX_RESET_ITERATIONS; 2208 2209 ATH_PCU_LOCK_ASSERT(sc); 2210 do { 2211 if (sc->sc_inreset_cnt == 0) { 2212 w = 1; 2213 break; 2214 } 2215 if (dowait == 0) { 2216 w = 0; 2217 break; 2218 } 2219 ATH_PCU_UNLOCK(sc); 2220 pause("ath_reset_grablock", 1); 2221 i--; 2222 ATH_PCU_LOCK(sc); 2223 } while (i > 0); 2224 2225 /* 2226 * We always increment the refcounter, regardless 2227 * of whether we succeeded to get it in an exclusive 2228 * way. 2229 */ 2230 sc->sc_inreset_cnt++; 2231 2232 if (i <= 0) 2233 device_printf(sc->sc_dev, 2234 "%s: didn't finish after %d iterations\n", 2235 __func__, MAX_RESET_ITERATIONS); 2236 2237 if (w == 0) 2238 device_printf(sc->sc_dev, 2239 "%s: warning, recursive reset path!\n", 2240 __func__); 2241 2242 return w; 2243 } 2244 #undef MAX_RESET_ITERATIONS 2245 2246 /* 2247 * XXX TODO: write ath_reset_releaselock 2248 */ 2249 2250 static void 2251 ath_stop(struct ifnet *ifp) 2252 { 2253 struct ath_softc *sc = ifp->if_softc; 2254 2255 ATH_LOCK(sc); 2256 ath_stop_locked(ifp); 2257 ATH_UNLOCK(sc); 2258 } 2259 2260 /* 2261 * Reset the hardware w/o losing operational state. This is 2262 * basically a more efficient way of doing ath_stop, ath_init, 2263 * followed by state transitions to the current 802.11 2264 * operational state. Used to recover from various errors and 2265 * to reset or reload hardware state. 2266 */ 2267 int 2268 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2269 { 2270 struct ath_softc *sc = ifp->if_softc; 2271 struct ieee80211com *ic = ifp->if_l2com; 2272 struct ath_hal *ah = sc->sc_ah; 2273 HAL_STATUS status; 2274 int i; 2275 2276 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2277 2278 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2279 ATH_PCU_UNLOCK_ASSERT(sc); 2280 ATH_UNLOCK_ASSERT(sc); 2281 2282 /* Try to (stop any further TX/RX from occuring */ 2283 taskqueue_block(sc->sc_tq); 2284 2285 ATH_PCU_LOCK(sc); 2286 ath_hal_intrset(ah, 0); /* disable interrupts */ 2287 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2288 if (ath_reset_grablock(sc, 1) == 0) { 2289 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2290 __func__); 2291 } 2292 ATH_PCU_UNLOCK(sc); 2293 2294 /* 2295 * Should now wait for pending TX/RX to complete 2296 * and block future ones from occuring. This needs to be 2297 * done before the TX queue is drained. 2298 */ 2299 ath_draintxq(sc, reset_type); /* stop xmit side */ 2300 2301 /* 2302 * Regardless of whether we're doing a no-loss flush or 2303 * not, stop the PCU and handle what's in the RX queue. 2304 * That way frames aren't dropped which shouldn't be. 2305 */ 2306 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2307 ath_rx_flush(sc); 2308 2309 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2310 /* NB: indicate channel change so we do a full reset */ 2311 ath_update_chainmasks(sc, ic->ic_curchan); 2312 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2313 sc->sc_cur_rxchainmask); 2314 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2315 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2316 __func__, status); 2317 sc->sc_diversity = ath_hal_getdiversity(ah); 2318 2319 /* Let DFS at it in case it's a DFS channel */ 2320 ath_dfs_radar_enable(sc, ic->ic_curchan); 2321 2322 /* Let spectral at in case spectral is enabled */ 2323 ath_spectral_enable(sc, ic->ic_curchan); 2324 2325 if (ath_startrecv(sc) != 0) /* restart recv */ 2326 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2327 /* 2328 * We may be doing a reset in response to an ioctl 2329 * that changes the channel so update any state that 2330 * might change as a result. 2331 */ 2332 ath_chan_change(sc, ic->ic_curchan); 2333 if (sc->sc_beacons) { /* restart beacons */ 2334 #ifdef IEEE80211_SUPPORT_TDMA 2335 if (sc->sc_tdma) 2336 ath_tdma_config(sc, NULL); 2337 else 2338 #endif 2339 ath_beacon_config(sc, NULL); 2340 } 2341 2342 /* 2343 * Release the reset lock and re-enable interrupts here. 2344 * If an interrupt was being processed in ath_intr(), 2345 * it would disable interrupts at this point. So we have 2346 * to atomically enable interrupts and decrement the 2347 * reset counter - this way ath_intr() doesn't end up 2348 * disabling interrupts without a corresponding enable 2349 * in the rest or channel change path. 2350 */ 2351 ATH_PCU_LOCK(sc); 2352 sc->sc_inreset_cnt--; 2353 /* XXX only do this if sc_inreset_cnt == 0? */ 2354 ath_hal_intrset(ah, sc->sc_imask); 2355 ATH_PCU_UNLOCK(sc); 2356 2357 /* 2358 * TX and RX can be started here. If it were started with 2359 * sc_inreset_cnt > 0, the TX and RX path would abort. 2360 * Thus if this is a nested call through the reset or 2361 * channel change code, TX completion will occur but 2362 * RX completion and ath_start / ath_tx_start will not 2363 * run. 2364 */ 2365 2366 /* Restart TX/RX as needed */ 2367 ath_txrx_start(sc); 2368 2369 /* Restart TX completion and pending TX */ 2370 if (reset_type == ATH_RESET_NOLOSS) { 2371 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2372 if (ATH_TXQ_SETUP(sc, i)) { 2373 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2374 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2375 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2376 2377 ATH_TX_LOCK(sc); 2378 ath_txq_sched(sc, &sc->sc_txq[i]); 2379 ATH_TX_UNLOCK(sc); 2380 } 2381 } 2382 } 2383 2384 /* 2385 * This may have been set during an ath_start() call which 2386 * set this once it detected a concurrent TX was going on. 2387 * So, clear it. 2388 */ 2389 IF_LOCK(&ifp->if_snd); 2390 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2391 IF_UNLOCK(&ifp->if_snd); 2392 2393 /* Handle any frames in the TX queue */ 2394 /* 2395 * XXX should this be done by the caller, rather than 2396 * ath_reset() ? 2397 */ 2398 ath_tx_kick(sc); /* restart xmit */ 2399 return 0; 2400 } 2401 2402 static int 2403 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2404 { 2405 struct ieee80211com *ic = vap->iv_ic; 2406 struct ifnet *ifp = ic->ic_ifp; 2407 struct ath_softc *sc = ifp->if_softc; 2408 struct ath_hal *ah = sc->sc_ah; 2409 2410 switch (cmd) { 2411 case IEEE80211_IOC_TXPOWER: 2412 /* 2413 * If per-packet TPC is enabled, then we have nothing 2414 * to do; otherwise we need to force the global limit. 2415 * All this can happen directly; no need to reset. 2416 */ 2417 if (!ath_hal_gettpc(ah)) 2418 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2419 return 0; 2420 } 2421 /* XXX? Full or NOLOSS? */ 2422 return ath_reset(ifp, ATH_RESET_FULL); 2423 } 2424 2425 struct ath_buf * 2426 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2427 { 2428 struct ath_buf *bf; 2429 2430 ATH_TXBUF_LOCK_ASSERT(sc); 2431 2432 if (btype == ATH_BUFTYPE_MGMT) 2433 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2434 else 2435 bf = TAILQ_FIRST(&sc->sc_txbuf); 2436 2437 if (bf == NULL) { 2438 sc->sc_stats.ast_tx_getnobuf++; 2439 } else { 2440 if (bf->bf_flags & ATH_BUF_BUSY) { 2441 sc->sc_stats.ast_tx_getbusybuf++; 2442 bf = NULL; 2443 } 2444 } 2445 2446 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2447 if (btype == ATH_BUFTYPE_MGMT) 2448 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2449 else { 2450 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2451 sc->sc_txbuf_cnt--; 2452 2453 /* 2454 * This shuldn't happen; however just to be 2455 * safe print a warning and fudge the txbuf 2456 * count. 2457 */ 2458 if (sc->sc_txbuf_cnt < 0) { 2459 device_printf(sc->sc_dev, 2460 "%s: sc_txbuf_cnt < 0?\n", 2461 __func__); 2462 sc->sc_txbuf_cnt = 0; 2463 } 2464 } 2465 } else 2466 bf = NULL; 2467 2468 if (bf == NULL) { 2469 /* XXX should check which list, mgmt or otherwise */ 2470 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2471 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2472 "out of xmit buffers" : "xmit buffer busy"); 2473 return NULL; 2474 } 2475 2476 /* XXX TODO: should do this at buffer list initialisation */ 2477 /* XXX (then, ensure the buffer has the right flag set) */ 2478 bf->bf_flags = 0; 2479 if (btype == ATH_BUFTYPE_MGMT) 2480 bf->bf_flags |= ATH_BUF_MGMT; 2481 else 2482 bf->bf_flags &= (~ATH_BUF_MGMT); 2483 2484 /* Valid bf here; clear some basic fields */ 2485 bf->bf_next = NULL; /* XXX just to be sure */ 2486 bf->bf_last = NULL; /* XXX again, just to be sure */ 2487 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2488 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2489 2490 /* 2491 * Track the descriptor ID only if doing EDMA 2492 */ 2493 if (sc->sc_isedma) { 2494 bf->bf_descid = sc->sc_txbuf_descid; 2495 sc->sc_txbuf_descid++; 2496 } 2497 2498 return bf; 2499 } 2500 2501 /* 2502 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2503 * can't be thrown back on the queue as they could still be 2504 * in use by the hardware. 2505 * 2506 * This duplicates the buffer, or returns NULL. 2507 * 2508 * The descriptor is also copied but the link pointers and 2509 * the DMA segments aren't copied; this frame should thus 2510 * be again passed through the descriptor setup/chain routines 2511 * so the link is correct. 2512 * 2513 * The caller must free the buffer using ath_freebuf(). 2514 */ 2515 struct ath_buf * 2516 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 2517 { 2518 struct ath_buf *tbf; 2519 2520 tbf = ath_getbuf(sc, 2521 (bf->bf_flags & ATH_BUF_MGMT) ? 2522 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2523 if (tbf == NULL) 2524 return NULL; /* XXX failure? Why? */ 2525 2526 /* Copy basics */ 2527 tbf->bf_next = NULL; 2528 tbf->bf_nseg = bf->bf_nseg; 2529 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 2530 tbf->bf_status = bf->bf_status; 2531 tbf->bf_m = bf->bf_m; 2532 tbf->bf_node = bf->bf_node; 2533 /* will be setup by the chain/setup function */ 2534 tbf->bf_lastds = NULL; 2535 /* for now, last == self */ 2536 tbf->bf_last = tbf; 2537 tbf->bf_comp = bf->bf_comp; 2538 2539 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2540 2541 /* The caller has to re-init the descriptor + links */ 2542 2543 /* 2544 * Free the DMA mapping here, before we NULL the mbuf. 2545 * We must only call bus_dmamap_unload() once per mbuf chain 2546 * or behaviour is undefined. 2547 */ 2548 if (bf->bf_m != NULL) { 2549 /* 2550 * XXX is this POSTWRITE call required? 2551 */ 2552 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 2553 BUS_DMASYNC_POSTWRITE); 2554 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2555 } 2556 2557 bf->bf_m = NULL; 2558 bf->bf_node = NULL; 2559 2560 /* Copy state */ 2561 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2562 2563 return tbf; 2564 } 2565 2566 struct ath_buf * 2567 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2568 { 2569 struct ath_buf *bf; 2570 2571 ATH_TXBUF_LOCK(sc); 2572 bf = _ath_getbuf_locked(sc, btype); 2573 /* 2574 * If a mgmt buffer was requested but we're out of those, 2575 * try requesting a normal one. 2576 */ 2577 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2578 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2579 ATH_TXBUF_UNLOCK(sc); 2580 if (bf == NULL) { 2581 struct ifnet *ifp = sc->sc_ifp; 2582 2583 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2584 sc->sc_stats.ast_tx_qstop++; 2585 IF_LOCK(&ifp->if_snd); 2586 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2587 IF_UNLOCK(&ifp->if_snd); 2588 } 2589 return bf; 2590 } 2591 2592 static void 2593 ath_start_queue(struct ifnet *ifp) 2594 { 2595 struct ath_softc *sc = ifp->if_softc; 2596 2597 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start"); 2598 ath_tx_kick(sc); 2599 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished"); 2600 } 2601 2602 void 2603 ath_start_task(void *arg, int npending) 2604 { 2605 struct ath_softc *sc = (struct ath_softc *) arg; 2606 struct ifnet *ifp = sc->sc_ifp; 2607 2608 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start"); 2609 2610 /* XXX is it ok to hold the ATH_LOCK here? */ 2611 ATH_PCU_LOCK(sc); 2612 if (sc->sc_inreset_cnt > 0) { 2613 device_printf(sc->sc_dev, 2614 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2615 ATH_PCU_UNLOCK(sc); 2616 IF_LOCK(&ifp->if_snd); 2617 sc->sc_stats.ast_tx_qstop++; 2618 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2619 IF_UNLOCK(&ifp->if_snd); 2620 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 2621 return; 2622 } 2623 sc->sc_txstart_cnt++; 2624 ATH_PCU_UNLOCK(sc); 2625 2626 ATH_TX_LOCK(sc); 2627 ath_start(sc->sc_ifp); 2628 ATH_TX_UNLOCK(sc); 2629 2630 ATH_PCU_LOCK(sc); 2631 sc->sc_txstart_cnt--; 2632 ATH_PCU_UNLOCK(sc); 2633 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished"); 2634 } 2635 2636 void 2637 ath_start(struct ifnet *ifp) 2638 { 2639 struct ath_softc *sc = ifp->if_softc; 2640 struct ieee80211_node *ni; 2641 struct ath_buf *bf; 2642 struct mbuf *m, *next; 2643 ath_bufhead frags; 2644 int npkts = 0; 2645 2646 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2647 return; 2648 2649 ATH_TX_LOCK_ASSERT(sc); 2650 2651 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called"); 2652 2653 for (;;) { 2654 ATH_TXBUF_LOCK(sc); 2655 if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) { 2656 /* XXX increment counter? */ 2657 ATH_TXBUF_UNLOCK(sc); 2658 IF_LOCK(&ifp->if_snd); 2659 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2660 IF_UNLOCK(&ifp->if_snd); 2661 break; 2662 } 2663 ATH_TXBUF_UNLOCK(sc); 2664 2665 /* 2666 * Grab a TX buffer and associated resources. 2667 */ 2668 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2669 if (bf == NULL) 2670 break; 2671 2672 IFQ_DEQUEUE(&ifp->if_snd, m); 2673 if (m == NULL) { 2674 ATH_TXBUF_LOCK(sc); 2675 ath_returnbuf_head(sc, bf); 2676 ATH_TXBUF_UNLOCK(sc); 2677 break; 2678 } 2679 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2680 npkts ++; 2681 /* 2682 * Check for fragmentation. If this frame 2683 * has been broken up verify we have enough 2684 * buffers to send all the fragments so all 2685 * go out or none... 2686 */ 2687 TAILQ_INIT(&frags); 2688 if ((m->m_flags & M_FRAG) && 2689 !ath_txfrag_setup(sc, &frags, m, ni)) { 2690 DPRINTF(sc, ATH_DEBUG_XMIT, 2691 "%s: out of txfrag buffers\n", __func__); 2692 sc->sc_stats.ast_tx_nofrag++; 2693 ifp->if_oerrors++; 2694 ath_freetx(m); 2695 goto bad; 2696 } 2697 ifp->if_opackets++; 2698 nextfrag: 2699 /* 2700 * Pass the frame to the h/w for transmission. 2701 * Fragmented frames have each frag chained together 2702 * with m_nextpkt. We know there are sufficient ath_buf's 2703 * to send all the frags because of work done by 2704 * ath_txfrag_setup. We leave m_nextpkt set while 2705 * calling ath_tx_start so it can use it to extend the 2706 * the tx duration to cover the subsequent frag and 2707 * so it can reclaim all the mbufs in case of an error; 2708 * ath_tx_start clears m_nextpkt once it commits to 2709 * handing the frame to the hardware. 2710 */ 2711 next = m->m_nextpkt; 2712 if (ath_tx_start(sc, ni, bf, m)) { 2713 bad: 2714 ifp->if_oerrors++; 2715 reclaim: 2716 bf->bf_m = NULL; 2717 bf->bf_node = NULL; 2718 ATH_TXBUF_LOCK(sc); 2719 ath_returnbuf_head(sc, bf); 2720 ath_txfrag_cleanup(sc, &frags, ni); 2721 ATH_TXBUF_UNLOCK(sc); 2722 /* 2723 * XXX todo, free the node outside of 2724 * the TX lock context! 2725 */ 2726 if (ni != NULL) 2727 ieee80211_free_node(ni); 2728 continue; 2729 } 2730 2731 /* 2732 * Check here if the node is in power save state. 2733 */ 2734 ath_tx_update_tim(sc, ni, 1); 2735 2736 if (next != NULL) { 2737 /* 2738 * Beware of state changing between frags. 2739 * XXX check sta power-save state? 2740 */ 2741 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2742 DPRINTF(sc, ATH_DEBUG_XMIT, 2743 "%s: flush fragmented packet, state %s\n", 2744 __func__, 2745 ieee80211_state_name[ni->ni_vap->iv_state]); 2746 /* XXX dmamap */ 2747 ath_freetx(next); 2748 goto reclaim; 2749 } 2750 m = next; 2751 bf = TAILQ_FIRST(&frags); 2752 KASSERT(bf != NULL, ("no buf for txfrag")); 2753 TAILQ_REMOVE(&frags, bf, bf_list); 2754 goto nextfrag; 2755 } 2756 2757 sc->sc_wd_timer = 5; 2758 } 2759 ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts); 2760 } 2761 static int 2762 ath_media_change(struct ifnet *ifp) 2763 { 2764 int error = ieee80211_media_change(ifp); 2765 /* NB: only the fixed rate can change and that doesn't need a reset */ 2766 return (error == ENETRESET ? 0 : error); 2767 } 2768 2769 /* 2770 * Block/unblock tx+rx processing while a key change is done. 2771 * We assume the caller serializes key management operations 2772 * so we only need to worry about synchronization with other 2773 * uses that originate in the driver. 2774 */ 2775 static void 2776 ath_key_update_begin(struct ieee80211vap *vap) 2777 { 2778 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2779 struct ath_softc *sc = ifp->if_softc; 2780 2781 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2782 taskqueue_block(sc->sc_tq); 2783 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2784 } 2785 2786 static void 2787 ath_key_update_end(struct ieee80211vap *vap) 2788 { 2789 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2790 struct ath_softc *sc = ifp->if_softc; 2791 2792 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2793 IF_UNLOCK(&ifp->if_snd); 2794 taskqueue_unblock(sc->sc_tq); 2795 } 2796 2797 static void 2798 ath_update_promisc(struct ifnet *ifp) 2799 { 2800 struct ath_softc *sc = ifp->if_softc; 2801 u_int32_t rfilt; 2802 2803 /* configure rx filter */ 2804 rfilt = ath_calcrxfilter(sc); 2805 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2806 2807 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2808 } 2809 2810 static void 2811 ath_update_mcast(struct ifnet *ifp) 2812 { 2813 struct ath_softc *sc = ifp->if_softc; 2814 u_int32_t mfilt[2]; 2815 2816 /* calculate and install multicast filter */ 2817 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2818 struct ifmultiaddr *ifma; 2819 /* 2820 * Merge multicast addresses to form the hardware filter. 2821 */ 2822 mfilt[0] = mfilt[1] = 0; 2823 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2824 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2825 caddr_t dl; 2826 u_int32_t val; 2827 u_int8_t pos; 2828 2829 /* calculate XOR of eight 6bit values */ 2830 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2831 val = LE_READ_4(dl + 0); 2832 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2833 val = LE_READ_4(dl + 3); 2834 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2835 pos &= 0x3f; 2836 mfilt[pos / 32] |= (1 << (pos % 32)); 2837 } 2838 if_maddr_runlock(ifp); 2839 } else 2840 mfilt[0] = mfilt[1] = ~0; 2841 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2842 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2843 __func__, mfilt[0], mfilt[1]); 2844 } 2845 2846 void 2847 ath_mode_init(struct ath_softc *sc) 2848 { 2849 struct ifnet *ifp = sc->sc_ifp; 2850 struct ath_hal *ah = sc->sc_ah; 2851 u_int32_t rfilt; 2852 2853 /* configure rx filter */ 2854 rfilt = ath_calcrxfilter(sc); 2855 ath_hal_setrxfilter(ah, rfilt); 2856 2857 /* configure operational mode */ 2858 ath_hal_setopmode(ah); 2859 2860 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 2861 "%s: ah=%p, ifp=%p, if_addr=%p\n", 2862 __func__, 2863 ah, 2864 ifp, 2865 (ifp == NULL) ? NULL : ifp->if_addr); 2866 2867 /* handle any link-level address change */ 2868 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2869 2870 /* calculate and install multicast filter */ 2871 ath_update_mcast(ifp); 2872 } 2873 2874 /* 2875 * Set the slot time based on the current setting. 2876 */ 2877 void 2878 ath_setslottime(struct ath_softc *sc) 2879 { 2880 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2881 struct ath_hal *ah = sc->sc_ah; 2882 u_int usec; 2883 2884 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2885 usec = 13; 2886 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2887 usec = 21; 2888 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2889 /* honor short/long slot time only in 11g */ 2890 /* XXX shouldn't honor on pure g or turbo g channel */ 2891 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2892 usec = HAL_SLOT_TIME_9; 2893 else 2894 usec = HAL_SLOT_TIME_20; 2895 } else 2896 usec = HAL_SLOT_TIME_9; 2897 2898 DPRINTF(sc, ATH_DEBUG_RESET, 2899 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2900 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2901 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2902 2903 ath_hal_setslottime(ah, usec); 2904 sc->sc_updateslot = OK; 2905 } 2906 2907 /* 2908 * Callback from the 802.11 layer to update the 2909 * slot time based on the current setting. 2910 */ 2911 static void 2912 ath_updateslot(struct ifnet *ifp) 2913 { 2914 struct ath_softc *sc = ifp->if_softc; 2915 struct ieee80211com *ic = ifp->if_l2com; 2916 2917 /* 2918 * When not coordinating the BSS, change the hardware 2919 * immediately. For other operation we defer the change 2920 * until beacon updates have propagated to the stations. 2921 */ 2922 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2923 ic->ic_opmode == IEEE80211_M_MBSS) 2924 sc->sc_updateslot = UPDATE; 2925 else 2926 ath_setslottime(sc); 2927 } 2928 2929 /* 2930 * Append the contents of src to dst; both queues 2931 * are assumed to be locked. 2932 */ 2933 void 2934 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2935 { 2936 2937 ATH_TXQ_LOCK_ASSERT(src); 2938 ATH_TXQ_LOCK_ASSERT(dst); 2939 2940 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2941 dst->axq_link = src->axq_link; 2942 src->axq_link = NULL; 2943 dst->axq_depth += src->axq_depth; 2944 dst->axq_aggr_depth += src->axq_aggr_depth; 2945 src->axq_depth = 0; 2946 src->axq_aggr_depth = 0; 2947 } 2948 2949 /* 2950 * Reset the hardware, with no loss. 2951 * 2952 * This can't be used for a general case reset. 2953 */ 2954 static void 2955 ath_reset_proc(void *arg, int pending) 2956 { 2957 struct ath_softc *sc = arg; 2958 struct ifnet *ifp = sc->sc_ifp; 2959 2960 #if 0 2961 if_printf(ifp, "%s: resetting\n", __func__); 2962 #endif 2963 ath_reset(ifp, ATH_RESET_NOLOSS); 2964 } 2965 2966 /* 2967 * Reset the hardware after detecting beacons have stopped. 2968 */ 2969 static void 2970 ath_bstuck_proc(void *arg, int pending) 2971 { 2972 struct ath_softc *sc = arg; 2973 struct ifnet *ifp = sc->sc_ifp; 2974 uint32_t hangs = 0; 2975 2976 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2977 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2978 2979 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2980 sc->sc_bmisscount); 2981 sc->sc_stats.ast_bstuck++; 2982 /* 2983 * This assumes that there's no simultaneous channel mode change 2984 * occuring. 2985 */ 2986 ath_reset(ifp, ATH_RESET_NOLOSS); 2987 } 2988 2989 static void 2990 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2991 { 2992 bus_addr_t *paddr = (bus_addr_t*) arg; 2993 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2994 *paddr = segs->ds_addr; 2995 } 2996 2997 /* 2998 * Allocate the descriptors and appropriate DMA tag/setup. 2999 * 3000 * For some situations (eg EDMA TX completion), there isn't a requirement 3001 * for the ath_buf entries to be allocated. 3002 */ 3003 int 3004 ath_descdma_alloc_desc(struct ath_softc *sc, 3005 struct ath_descdma *dd, ath_bufhead *head, 3006 const char *name, int ds_size, int ndesc) 3007 { 3008 #define DS2PHYS(_dd, _ds) \ 3009 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3010 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3011 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3012 struct ifnet *ifp = sc->sc_ifp; 3013 int error; 3014 3015 dd->dd_descsize = ds_size; 3016 3017 DPRINTF(sc, ATH_DEBUG_RESET, 3018 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 3019 __func__, name, ndesc, dd->dd_descsize); 3020 3021 dd->dd_name = name; 3022 dd->dd_desc_len = dd->dd_descsize * ndesc; 3023 3024 /* 3025 * Merlin work-around: 3026 * Descriptors that cross the 4KB boundary can't be used. 3027 * Assume one skipped descriptor per 4KB page. 3028 */ 3029 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3030 int numpages = dd->dd_desc_len / 4096; 3031 dd->dd_desc_len += ds_size * numpages; 3032 } 3033 3034 /* 3035 * Setup DMA descriptor area. 3036 * 3037 * BUS_DMA_ALLOCNOW is not used; we never use bounce 3038 * buffers for the descriptors themselves. 3039 */ 3040 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3041 PAGE_SIZE, 0, /* alignment, bounds */ 3042 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3043 BUS_SPACE_MAXADDR, /* highaddr */ 3044 NULL, NULL, /* filter, filterarg */ 3045 dd->dd_desc_len, /* maxsize */ 3046 1, /* nsegments */ 3047 dd->dd_desc_len, /* maxsegsize */ 3048 0, /* flags */ 3049 NULL, /* lockfunc */ 3050 NULL, /* lockarg */ 3051 &dd->dd_dmat); 3052 if (error != 0) { 3053 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3054 return error; 3055 } 3056 3057 /* allocate descriptors */ 3058 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3059 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3060 &dd->dd_dmamap); 3061 if (error != 0) { 3062 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3063 "error %u\n", ndesc, dd->dd_name, error); 3064 goto fail1; 3065 } 3066 3067 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3068 dd->dd_desc, dd->dd_desc_len, 3069 ath_load_cb, &dd->dd_desc_paddr, 3070 BUS_DMA_NOWAIT); 3071 if (error != 0) { 3072 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3073 dd->dd_name, error); 3074 goto fail2; 3075 } 3076 3077 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3078 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 3079 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 3080 /*XXX*/ (u_long) dd->dd_desc_len); 3081 3082 return (0); 3083 3084 fail2: 3085 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3086 fail1: 3087 bus_dma_tag_destroy(dd->dd_dmat); 3088 memset(dd, 0, sizeof(*dd)); 3089 return error; 3090 #undef DS2PHYS 3091 #undef ATH_DESC_4KB_BOUND_CHECK 3092 } 3093 3094 int 3095 ath_descdma_setup(struct ath_softc *sc, 3096 struct ath_descdma *dd, ath_bufhead *head, 3097 const char *name, int ds_size, int nbuf, int ndesc) 3098 { 3099 #define DS2PHYS(_dd, _ds) \ 3100 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3101 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3102 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3103 struct ifnet *ifp = sc->sc_ifp; 3104 uint8_t *ds; 3105 struct ath_buf *bf; 3106 int i, bsize, error; 3107 3108 /* Allocate descriptors */ 3109 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 3110 nbuf * ndesc); 3111 3112 /* Assume any errors during allocation were dealt with */ 3113 if (error != 0) { 3114 return (error); 3115 } 3116 3117 ds = (uint8_t *) dd->dd_desc; 3118 3119 /* allocate rx buffers */ 3120 bsize = sizeof(struct ath_buf) * nbuf; 3121 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3122 if (bf == NULL) { 3123 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3124 dd->dd_name, bsize); 3125 goto fail3; 3126 } 3127 dd->dd_bufptr = bf; 3128 3129 TAILQ_INIT(head); 3130 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 3131 bf->bf_desc = (struct ath_desc *) ds; 3132 bf->bf_daddr = DS2PHYS(dd, ds); 3133 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3134 /* 3135 * Merlin WAR: Skip descriptor addresses which 3136 * cause 4KB boundary crossing along any point 3137 * in the descriptor. 3138 */ 3139 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3140 dd->dd_descsize)) { 3141 /* Start at the next page */ 3142 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3143 bf->bf_desc = (struct ath_desc *) ds; 3144 bf->bf_daddr = DS2PHYS(dd, ds); 3145 } 3146 } 3147 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3148 &bf->bf_dmamap); 3149 if (error != 0) { 3150 if_printf(ifp, "unable to create dmamap for %s " 3151 "buffer %u, error %u\n", dd->dd_name, i, error); 3152 ath_descdma_cleanup(sc, dd, head); 3153 return error; 3154 } 3155 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3156 TAILQ_INSERT_TAIL(head, bf, bf_list); 3157 } 3158 3159 /* 3160 * XXX TODO: ensure that ds doesn't overflow the descriptor 3161 * allocation otherwise weird stuff will occur and crash your 3162 * machine. 3163 */ 3164 return 0; 3165 /* XXX this should likely just call ath_descdma_cleanup() */ 3166 fail3: 3167 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3168 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3169 bus_dma_tag_destroy(dd->dd_dmat); 3170 memset(dd, 0, sizeof(*dd)); 3171 return error; 3172 #undef DS2PHYS 3173 #undef ATH_DESC_4KB_BOUND_CHECK 3174 } 3175 3176 /* 3177 * Allocate ath_buf entries but no descriptor contents. 3178 * 3179 * This is for RX EDMA where the descriptors are the header part of 3180 * the RX buffer. 3181 */ 3182 int 3183 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3184 struct ath_descdma *dd, ath_bufhead *head, 3185 const char *name, int nbuf, int rx_status_len) 3186 { 3187 struct ifnet *ifp = sc->sc_ifp; 3188 struct ath_buf *bf; 3189 int i, bsize, error; 3190 3191 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3192 __func__, name, nbuf); 3193 3194 dd->dd_name = name; 3195 /* 3196 * This is (mostly) purely for show. We're not allocating any actual 3197 * descriptors here as EDMA RX has the descriptor be part 3198 * of the RX buffer. 3199 * 3200 * However, dd_desc_len is used by ath_descdma_free() to determine 3201 * whether we have already freed this DMA mapping. 3202 */ 3203 dd->dd_desc_len = rx_status_len * nbuf; 3204 dd->dd_descsize = rx_status_len; 3205 3206 /* allocate rx buffers */ 3207 bsize = sizeof(struct ath_buf) * nbuf; 3208 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3209 if (bf == NULL) { 3210 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3211 dd->dd_name, bsize); 3212 error = ENOMEM; 3213 goto fail3; 3214 } 3215 dd->dd_bufptr = bf; 3216 3217 TAILQ_INIT(head); 3218 for (i = 0; i < nbuf; i++, bf++) { 3219 bf->bf_desc = NULL; 3220 bf->bf_daddr = 0; 3221 bf->bf_lastds = NULL; /* Just an initial value */ 3222 3223 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3224 &bf->bf_dmamap); 3225 if (error != 0) { 3226 if_printf(ifp, "unable to create dmamap for %s " 3227 "buffer %u, error %u\n", dd->dd_name, i, error); 3228 ath_descdma_cleanup(sc, dd, head); 3229 return error; 3230 } 3231 TAILQ_INSERT_TAIL(head, bf, bf_list); 3232 } 3233 return 0; 3234 fail3: 3235 memset(dd, 0, sizeof(*dd)); 3236 return error; 3237 } 3238 3239 void 3240 ath_descdma_cleanup(struct ath_softc *sc, 3241 struct ath_descdma *dd, ath_bufhead *head) 3242 { 3243 struct ath_buf *bf; 3244 struct ieee80211_node *ni; 3245 int do_warning = 0; 3246 3247 if (dd->dd_dmamap != 0) { 3248 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3249 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3250 bus_dma_tag_destroy(dd->dd_dmat); 3251 } 3252 3253 if (head != NULL) { 3254 TAILQ_FOREACH(bf, head, bf_list) { 3255 if (bf->bf_m) { 3256 /* 3257 * XXX warn if there's buffers here. 3258 * XXX it should have been freed by the 3259 * owner! 3260 */ 3261 3262 if (do_warning == 0) { 3263 do_warning = 1; 3264 device_printf(sc->sc_dev, 3265 "%s: %s: mbuf should've been" 3266 " unmapped/freed!\n", 3267 __func__, 3268 dd->dd_name); 3269 } 3270 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3271 BUS_DMASYNC_POSTREAD); 3272 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3273 m_freem(bf->bf_m); 3274 bf->bf_m = NULL; 3275 } 3276 if (bf->bf_dmamap != NULL) { 3277 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3278 bf->bf_dmamap = NULL; 3279 } 3280 ni = bf->bf_node; 3281 bf->bf_node = NULL; 3282 if (ni != NULL) { 3283 /* 3284 * Reclaim node reference. 3285 */ 3286 ieee80211_free_node(ni); 3287 } 3288 } 3289 } 3290 3291 if (head != NULL) 3292 TAILQ_INIT(head); 3293 3294 if (dd->dd_bufptr != NULL) 3295 free(dd->dd_bufptr, M_ATHDEV); 3296 memset(dd, 0, sizeof(*dd)); 3297 } 3298 3299 static int 3300 ath_desc_alloc(struct ath_softc *sc) 3301 { 3302 int error; 3303 3304 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3305 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3306 if (error != 0) { 3307 return error; 3308 } 3309 sc->sc_txbuf_cnt = ath_txbuf; 3310 3311 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3312 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3313 ATH_TXDESC); 3314 if (error != 0) { 3315 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3316 return error; 3317 } 3318 3319 /* 3320 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3321 * flag doesn't have to be set in ath_getbuf_locked(). 3322 */ 3323 3324 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3325 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3326 if (error != 0) { 3327 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3328 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3329 &sc->sc_txbuf_mgmt); 3330 return error; 3331 } 3332 return 0; 3333 } 3334 3335 static void 3336 ath_desc_free(struct ath_softc *sc) 3337 { 3338 3339 if (sc->sc_bdma.dd_desc_len != 0) 3340 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3341 if (sc->sc_txdma.dd_desc_len != 0) 3342 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3343 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3344 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3345 &sc->sc_txbuf_mgmt); 3346 } 3347 3348 static struct ieee80211_node * 3349 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3350 { 3351 struct ieee80211com *ic = vap->iv_ic; 3352 struct ath_softc *sc = ic->ic_ifp->if_softc; 3353 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3354 struct ath_node *an; 3355 3356 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3357 if (an == NULL) { 3358 /* XXX stat+msg */ 3359 return NULL; 3360 } 3361 ath_rate_node_init(sc, an); 3362 3363 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3364 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3365 device_get_nameunit(sc->sc_dev), an); 3366 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3367 3368 /* XXX setup ath_tid */ 3369 ath_tx_tid_init(sc, an); 3370 3371 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3372 return &an->an_node; 3373 } 3374 3375 static void 3376 ath_node_cleanup(struct ieee80211_node *ni) 3377 { 3378 struct ieee80211com *ic = ni->ni_ic; 3379 struct ath_softc *sc = ic->ic_ifp->if_softc; 3380 3381 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3382 ath_tx_node_flush(sc, ATH_NODE(ni)); 3383 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3384 sc->sc_node_cleanup(ni); 3385 } 3386 3387 static void 3388 ath_node_free(struct ieee80211_node *ni) 3389 { 3390 struct ieee80211com *ic = ni->ni_ic; 3391 struct ath_softc *sc = ic->ic_ifp->if_softc; 3392 3393 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3394 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3395 sc->sc_node_free(ni); 3396 } 3397 3398 static void 3399 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3400 { 3401 struct ieee80211com *ic = ni->ni_ic; 3402 struct ath_softc *sc = ic->ic_ifp->if_softc; 3403 struct ath_hal *ah = sc->sc_ah; 3404 3405 *rssi = ic->ic_node_getrssi(ni); 3406 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3407 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3408 else 3409 *noise = -95; /* nominally correct */ 3410 } 3411 3412 /* 3413 * Set the default antenna. 3414 */ 3415 void 3416 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3417 { 3418 struct ath_hal *ah = sc->sc_ah; 3419 3420 /* XXX block beacon interrupts */ 3421 ath_hal_setdefantenna(ah, antenna); 3422 if (sc->sc_defant != antenna) 3423 sc->sc_stats.ast_ant_defswitch++; 3424 sc->sc_defant = antenna; 3425 sc->sc_rxotherant = 0; 3426 } 3427 3428 static void 3429 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3430 { 3431 txq->axq_qnum = qnum; 3432 txq->axq_ac = 0; 3433 txq->axq_depth = 0; 3434 txq->axq_aggr_depth = 0; 3435 txq->axq_intrcnt = 0; 3436 txq->axq_link = NULL; 3437 txq->axq_softc = sc; 3438 TAILQ_INIT(&txq->axq_q); 3439 TAILQ_INIT(&txq->axq_tidq); 3440 TAILQ_INIT(&txq->fifo.axq_q); 3441 ATH_TXQ_LOCK_INIT(sc, txq); 3442 } 3443 3444 /* 3445 * Setup a h/w transmit queue. 3446 */ 3447 static struct ath_txq * 3448 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3449 { 3450 #define N(a) (sizeof(a)/sizeof(a[0])) 3451 struct ath_hal *ah = sc->sc_ah; 3452 HAL_TXQ_INFO qi; 3453 int qnum; 3454 3455 memset(&qi, 0, sizeof(qi)); 3456 qi.tqi_subtype = subtype; 3457 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3458 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3459 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3460 /* 3461 * Enable interrupts only for EOL and DESC conditions. 3462 * We mark tx descriptors to receive a DESC interrupt 3463 * when a tx queue gets deep; otherwise waiting for the 3464 * EOL to reap descriptors. Note that this is done to 3465 * reduce interrupt load and this only defers reaping 3466 * descriptors, never transmitting frames. Aside from 3467 * reducing interrupts this also permits more concurrency. 3468 * The only potential downside is if the tx queue backs 3469 * up in which case the top half of the kernel may backup 3470 * due to a lack of tx descriptors. 3471 */ 3472 if (sc->sc_isedma) 3473 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3474 HAL_TXQ_TXOKINT_ENABLE; 3475 else 3476 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3477 HAL_TXQ_TXDESCINT_ENABLE; 3478 3479 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3480 if (qnum == -1) { 3481 /* 3482 * NB: don't print a message, this happens 3483 * normally on parts with too few tx queues 3484 */ 3485 return NULL; 3486 } 3487 if (qnum >= N(sc->sc_txq)) { 3488 device_printf(sc->sc_dev, 3489 "hal qnum %u out of range, max %zu!\n", 3490 qnum, N(sc->sc_txq)); 3491 ath_hal_releasetxqueue(ah, qnum); 3492 return NULL; 3493 } 3494 if (!ATH_TXQ_SETUP(sc, qnum)) { 3495 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3496 sc->sc_txqsetup |= 1<<qnum; 3497 } 3498 return &sc->sc_txq[qnum]; 3499 #undef N 3500 } 3501 3502 /* 3503 * Setup a hardware data transmit queue for the specified 3504 * access control. The hal may not support all requested 3505 * queues in which case it will return a reference to a 3506 * previously setup queue. We record the mapping from ac's 3507 * to h/w queues for use by ath_tx_start and also track 3508 * the set of h/w queues being used to optimize work in the 3509 * transmit interrupt handler and related routines. 3510 */ 3511 static int 3512 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3513 { 3514 #define N(a) (sizeof(a)/sizeof(a[0])) 3515 struct ath_txq *txq; 3516 3517 if (ac >= N(sc->sc_ac2q)) { 3518 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3519 ac, N(sc->sc_ac2q)); 3520 return 0; 3521 } 3522 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3523 if (txq != NULL) { 3524 txq->axq_ac = ac; 3525 sc->sc_ac2q[ac] = txq; 3526 return 1; 3527 } else 3528 return 0; 3529 #undef N 3530 } 3531 3532 /* 3533 * Update WME parameters for a transmit queue. 3534 */ 3535 static int 3536 ath_txq_update(struct ath_softc *sc, int ac) 3537 { 3538 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3539 #define ATH_TXOP_TO_US(v) (v<<5) 3540 struct ifnet *ifp = sc->sc_ifp; 3541 struct ieee80211com *ic = ifp->if_l2com; 3542 struct ath_txq *txq = sc->sc_ac2q[ac]; 3543 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3544 struct ath_hal *ah = sc->sc_ah; 3545 HAL_TXQ_INFO qi; 3546 3547 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3548 #ifdef IEEE80211_SUPPORT_TDMA 3549 if (sc->sc_tdma) { 3550 /* 3551 * AIFS is zero so there's no pre-transmit wait. The 3552 * burst time defines the slot duration and is configured 3553 * through net80211. The QCU is setup to not do post-xmit 3554 * back off, lockout all lower-priority QCU's, and fire 3555 * off the DMA beacon alert timer which is setup based 3556 * on the slot configuration. 3557 */ 3558 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3559 | HAL_TXQ_TXERRINT_ENABLE 3560 | HAL_TXQ_TXURNINT_ENABLE 3561 | HAL_TXQ_TXEOLINT_ENABLE 3562 | HAL_TXQ_DBA_GATED 3563 | HAL_TXQ_BACKOFF_DISABLE 3564 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3565 ; 3566 qi.tqi_aifs = 0; 3567 /* XXX +dbaprep? */ 3568 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3569 qi.tqi_burstTime = qi.tqi_readyTime; 3570 } else { 3571 #endif 3572 /* 3573 * XXX shouldn't this just use the default flags 3574 * used in the previous queue setup? 3575 */ 3576 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3577 | HAL_TXQ_TXERRINT_ENABLE 3578 | HAL_TXQ_TXDESCINT_ENABLE 3579 | HAL_TXQ_TXURNINT_ENABLE 3580 | HAL_TXQ_TXEOLINT_ENABLE 3581 ; 3582 qi.tqi_aifs = wmep->wmep_aifsn; 3583 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3584 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3585 qi.tqi_readyTime = 0; 3586 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3587 #ifdef IEEE80211_SUPPORT_TDMA 3588 } 3589 #endif 3590 3591 DPRINTF(sc, ATH_DEBUG_RESET, 3592 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3593 __func__, txq->axq_qnum, qi.tqi_qflags, 3594 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3595 3596 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3597 if_printf(ifp, "unable to update hardware queue " 3598 "parameters for %s traffic!\n", 3599 ieee80211_wme_acnames[ac]); 3600 return 0; 3601 } else { 3602 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3603 return 1; 3604 } 3605 #undef ATH_TXOP_TO_US 3606 #undef ATH_EXPONENT_TO_VALUE 3607 } 3608 3609 /* 3610 * Callback from the 802.11 layer to update WME parameters. 3611 */ 3612 int 3613 ath_wme_update(struct ieee80211com *ic) 3614 { 3615 struct ath_softc *sc = ic->ic_ifp->if_softc; 3616 3617 return !ath_txq_update(sc, WME_AC_BE) || 3618 !ath_txq_update(sc, WME_AC_BK) || 3619 !ath_txq_update(sc, WME_AC_VI) || 3620 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3621 } 3622 3623 /* 3624 * Reclaim resources for a setup queue. 3625 */ 3626 static void 3627 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3628 { 3629 3630 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3631 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3632 ATH_TXQ_LOCK_DESTROY(txq); 3633 } 3634 3635 /* 3636 * Reclaim all tx queue resources. 3637 */ 3638 static void 3639 ath_tx_cleanup(struct ath_softc *sc) 3640 { 3641 int i; 3642 3643 ATH_TXBUF_LOCK_DESTROY(sc); 3644 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3645 if (ATH_TXQ_SETUP(sc, i)) 3646 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3647 } 3648 3649 /* 3650 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3651 * using the current rates in sc_rixmap. 3652 */ 3653 int 3654 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3655 { 3656 int rix = sc->sc_rixmap[rate]; 3657 /* NB: return lowest rix for invalid rate */ 3658 return (rix == 0xff ? 0 : rix); 3659 } 3660 3661 static void 3662 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3663 struct ath_buf *bf) 3664 { 3665 struct ieee80211_node *ni = bf->bf_node; 3666 struct ifnet *ifp = sc->sc_ifp; 3667 struct ieee80211com *ic = ifp->if_l2com; 3668 int sr, lr, pri; 3669 3670 if (ts->ts_status == 0) { 3671 u_int8_t txant = ts->ts_antenna; 3672 sc->sc_stats.ast_ant_tx[txant]++; 3673 sc->sc_ant_tx[txant]++; 3674 if (ts->ts_finaltsi != 0) 3675 sc->sc_stats.ast_tx_altrate++; 3676 pri = M_WME_GETAC(bf->bf_m); 3677 if (pri >= WME_AC_VO) 3678 ic->ic_wme.wme_hipri_traffic++; 3679 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3680 ni->ni_inact = ni->ni_inact_reload; 3681 } else { 3682 if (ts->ts_status & HAL_TXERR_XRETRY) 3683 sc->sc_stats.ast_tx_xretries++; 3684 if (ts->ts_status & HAL_TXERR_FIFO) 3685 sc->sc_stats.ast_tx_fifoerr++; 3686 if (ts->ts_status & HAL_TXERR_FILT) 3687 sc->sc_stats.ast_tx_filtered++; 3688 if (ts->ts_status & HAL_TXERR_XTXOP) 3689 sc->sc_stats.ast_tx_xtxop++; 3690 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3691 sc->sc_stats.ast_tx_timerexpired++; 3692 3693 if (bf->bf_m->m_flags & M_FF) 3694 sc->sc_stats.ast_ff_txerr++; 3695 } 3696 /* XXX when is this valid? */ 3697 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 3698 sc->sc_stats.ast_tx_desccfgerr++; 3699 /* 3700 * This can be valid for successful frame transmission! 3701 * If there's a TX FIFO underrun during aggregate transmission, 3702 * the MAC will pad the rest of the aggregate with delimiters. 3703 * If a BA is returned, the frame is marked as "OK" and it's up 3704 * to the TX completion code to notice which frames weren't 3705 * successfully transmitted. 3706 */ 3707 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 3708 sc->sc_stats.ast_tx_data_underrun++; 3709 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 3710 sc->sc_stats.ast_tx_delim_underrun++; 3711 3712 sr = ts->ts_shortretry; 3713 lr = ts->ts_longretry; 3714 sc->sc_stats.ast_tx_shortretry += sr; 3715 sc->sc_stats.ast_tx_longretry += lr; 3716 3717 } 3718 3719 /* 3720 * The default completion. If fail is 1, this means 3721 * "please don't retry the frame, and just return -1 status 3722 * to the net80211 stack. 3723 */ 3724 void 3725 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3726 { 3727 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3728 int st; 3729 3730 if (fail == 1) 3731 st = -1; 3732 else 3733 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3734 ts->ts_status : HAL_TXERR_XRETRY; 3735 3736 #if 0 3737 if (bf->bf_state.bfs_dobaw) 3738 device_printf(sc->sc_dev, 3739 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3740 __func__, 3741 bf, 3742 SEQNO(bf->bf_state.bfs_seqno)); 3743 #endif 3744 if (bf->bf_next != NULL) 3745 device_printf(sc->sc_dev, 3746 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3747 __func__, 3748 bf, 3749 SEQNO(bf->bf_state.bfs_seqno)); 3750 3751 /* 3752 * Check if the node software queue is empty; if so 3753 * then clear the TIM. 3754 * 3755 * This needs to be done before the buffer is freed as 3756 * otherwise the node reference will have been released 3757 * and the node may not actually exist any longer. 3758 * 3759 * XXX I don't like this belonging here, but it's cleaner 3760 * to do it here right now then all the other places 3761 * where ath_tx_default_comp() is called. 3762 * 3763 * XXX TODO: during drain, ensure that the callback is 3764 * being called so we get a chance to update the TIM. 3765 */ 3766 if (bf->bf_node) 3767 ath_tx_update_tim(sc, bf->bf_node, 0); 3768 3769 /* 3770 * Do any tx complete callback. Note this must 3771 * be done before releasing the node reference. 3772 * This will free the mbuf, release the net80211 3773 * node and recycle the ath_buf. 3774 */ 3775 ath_tx_freebuf(sc, bf, st); 3776 } 3777 3778 /* 3779 * Update rate control with the given completion status. 3780 */ 3781 void 3782 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3783 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3784 int nframes, int nbad) 3785 { 3786 struct ath_node *an; 3787 3788 /* Only for unicast frames */ 3789 if (ni == NULL) 3790 return; 3791 3792 an = ATH_NODE(ni); 3793 ATH_NODE_UNLOCK_ASSERT(an); 3794 3795 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3796 ATH_NODE_LOCK(an); 3797 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3798 ATH_NODE_UNLOCK(an); 3799 } 3800 } 3801 3802 /* 3803 * Process the completion of the given buffer. 3804 * 3805 * This calls the rate control update and then the buffer completion. 3806 * This will either free the buffer or requeue it. In any case, the 3807 * bf pointer should be treated as invalid after this function is called. 3808 */ 3809 void 3810 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 3811 struct ath_tx_status *ts, struct ath_buf *bf) 3812 { 3813 struct ieee80211_node *ni = bf->bf_node; 3814 struct ath_node *an = NULL; 3815 3816 ATH_TX_UNLOCK_ASSERT(sc); 3817 3818 /* If unicast frame, update general statistics */ 3819 if (ni != NULL) { 3820 an = ATH_NODE(ni); 3821 /* update statistics */ 3822 ath_tx_update_stats(sc, ts, bf); 3823 } 3824 3825 /* 3826 * Call the completion handler. 3827 * The completion handler is responsible for 3828 * calling the rate control code. 3829 * 3830 * Frames with no completion handler get the 3831 * rate control code called here. 3832 */ 3833 if (bf->bf_comp == NULL) { 3834 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3835 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3836 /* 3837 * XXX assume this isn't an aggregate 3838 * frame. 3839 */ 3840 ath_tx_update_ratectrl(sc, ni, 3841 bf->bf_state.bfs_rc, ts, 3842 bf->bf_state.bfs_pktlen, 1, 3843 (ts->ts_status == 0 ? 0 : 1)); 3844 } 3845 ath_tx_default_comp(sc, bf, 0); 3846 } else 3847 bf->bf_comp(sc, bf, 0); 3848 } 3849 3850 3851 3852 /* 3853 * Process completed xmit descriptors from the specified queue. 3854 * Kick the packet scheduler if needed. This can occur from this 3855 * particular task. 3856 */ 3857 static int 3858 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3859 { 3860 struct ath_hal *ah = sc->sc_ah; 3861 struct ath_buf *bf; 3862 struct ath_desc *ds; 3863 struct ath_tx_status *ts; 3864 struct ieee80211_node *ni; 3865 #ifdef IEEE80211_SUPPORT_SUPERG 3866 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3867 #endif /* IEEE80211_SUPPORT_SUPERG */ 3868 int nacked; 3869 HAL_STATUS status; 3870 3871 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3872 __func__, txq->axq_qnum, 3873 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3874 txq->axq_link); 3875 3876 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 3877 "ath_tx_processq: txq=%u head %p link %p depth %p", 3878 txq->axq_qnum, 3879 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3880 txq->axq_link, 3881 txq->axq_depth); 3882 3883 nacked = 0; 3884 for (;;) { 3885 ATH_TXQ_LOCK(txq); 3886 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3887 bf = TAILQ_FIRST(&txq->axq_q); 3888 if (bf == NULL) { 3889 ATH_TXQ_UNLOCK(txq); 3890 break; 3891 } 3892 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3893 ts = &bf->bf_status.ds_txstat; 3894 3895 status = ath_hal_txprocdesc(ah, ds, ts); 3896 #ifdef ATH_DEBUG 3897 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3898 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3899 status == HAL_OK); 3900 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 3901 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3902 status == HAL_OK); 3903 #endif 3904 #ifdef ATH_DEBUG_ALQ 3905 if (if_ath_alq_checkdebug(&sc->sc_alq, 3906 ATH_ALQ_EDMA_TXSTATUS)) { 3907 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 3908 sc->sc_tx_statuslen, 3909 (char *) ds); 3910 } 3911 #endif 3912 3913 if (status == HAL_EINPROGRESS) { 3914 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 3915 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 3916 txq->axq_qnum, bf, ds); 3917 ATH_TXQ_UNLOCK(txq); 3918 break; 3919 } 3920 ATH_TXQ_REMOVE(txq, bf, bf_list); 3921 if (txq->axq_depth > 0) { 3922 /* 3923 * More frames follow. Mark the buffer busy 3924 * so it's not re-used while the hardware may 3925 * still re-read the link field in the descriptor. 3926 * 3927 * Use the last buffer in an aggregate as that 3928 * is where the hardware may be - intermediate 3929 * descriptors won't be "busy". 3930 */ 3931 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3932 } else 3933 txq->axq_link = NULL; 3934 if (bf->bf_state.bfs_aggr) 3935 txq->axq_aggr_depth--; 3936 3937 ni = bf->bf_node; 3938 3939 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 3940 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 3941 txq->axq_qnum, bf, ds, ni, ts->ts_status); 3942 /* 3943 * If unicast frame was ack'd update RSSI, 3944 * including the last rx time used to 3945 * workaround phantom bmiss interrupts. 3946 */ 3947 if (ni != NULL && ts->ts_status == 0 && 3948 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3949 nacked++; 3950 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3951 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3952 ts->ts_rssi); 3953 } 3954 ATH_TXQ_UNLOCK(txq); 3955 3956 /* 3957 * Update statistics and call completion 3958 */ 3959 ath_tx_process_buf_completion(sc, txq, ts, bf); 3960 3961 /* XXX at this point, bf and ni may be totally invalid */ 3962 } 3963 #ifdef IEEE80211_SUPPORT_SUPERG 3964 /* 3965 * Flush fast-frame staging queue when traffic slows. 3966 */ 3967 if (txq->axq_depth <= 1) 3968 ieee80211_ff_flush(ic, txq->axq_ac); 3969 #endif 3970 3971 /* Kick the software TXQ scheduler */ 3972 if (dosched) { 3973 ATH_TX_LOCK(sc); 3974 ath_txq_sched(sc, txq); 3975 ATH_TX_UNLOCK(sc); 3976 } 3977 3978 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3979 "ath_tx_processq: txq=%u: done", 3980 txq->axq_qnum); 3981 3982 return nacked; 3983 } 3984 3985 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3986 3987 /* 3988 * Deferred processing of transmit interrupt; special-cased 3989 * for a single hardware transmit queue (e.g. 5210 and 5211). 3990 */ 3991 static void 3992 ath_tx_proc_q0(void *arg, int npending) 3993 { 3994 struct ath_softc *sc = arg; 3995 struct ifnet *ifp = sc->sc_ifp; 3996 uint32_t txqs; 3997 3998 ATH_PCU_LOCK(sc); 3999 sc->sc_txproc_cnt++; 4000 txqs = sc->sc_txq_active; 4001 sc->sc_txq_active &= ~txqs; 4002 ATH_PCU_UNLOCK(sc); 4003 4004 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4005 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4006 4007 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4008 /* XXX why is lastrx updated in tx code? */ 4009 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4010 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4011 ath_tx_processq(sc, sc->sc_cabq, 1); 4012 IF_LOCK(&ifp->if_snd); 4013 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4014 IF_UNLOCK(&ifp->if_snd); 4015 sc->sc_wd_timer = 0; 4016 4017 if (sc->sc_softled) 4018 ath_led_event(sc, sc->sc_txrix); 4019 4020 ATH_PCU_LOCK(sc); 4021 sc->sc_txproc_cnt--; 4022 ATH_PCU_UNLOCK(sc); 4023 4024 ath_tx_kick(sc); 4025 } 4026 4027 /* 4028 * Deferred processing of transmit interrupt; special-cased 4029 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4030 */ 4031 static void 4032 ath_tx_proc_q0123(void *arg, int npending) 4033 { 4034 struct ath_softc *sc = arg; 4035 struct ifnet *ifp = sc->sc_ifp; 4036 int nacked; 4037 uint32_t txqs; 4038 4039 ATH_PCU_LOCK(sc); 4040 sc->sc_txproc_cnt++; 4041 txqs = sc->sc_txq_active; 4042 sc->sc_txq_active &= ~txqs; 4043 ATH_PCU_UNLOCK(sc); 4044 4045 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4046 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4047 4048 /* 4049 * Process each active queue. 4050 */ 4051 nacked = 0; 4052 if (TXQACTIVE(txqs, 0)) 4053 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4054 if (TXQACTIVE(txqs, 1)) 4055 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4056 if (TXQACTIVE(txqs, 2)) 4057 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4058 if (TXQACTIVE(txqs, 3)) 4059 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4060 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4061 ath_tx_processq(sc, sc->sc_cabq, 1); 4062 if (nacked) 4063 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4064 4065 IF_LOCK(&ifp->if_snd); 4066 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4067 IF_UNLOCK(&ifp->if_snd); 4068 sc->sc_wd_timer = 0; 4069 4070 if (sc->sc_softled) 4071 ath_led_event(sc, sc->sc_txrix); 4072 4073 ATH_PCU_LOCK(sc); 4074 sc->sc_txproc_cnt--; 4075 ATH_PCU_UNLOCK(sc); 4076 4077 ath_tx_kick(sc); 4078 } 4079 4080 /* 4081 * Deferred processing of transmit interrupt. 4082 */ 4083 static void 4084 ath_tx_proc(void *arg, int npending) 4085 { 4086 struct ath_softc *sc = arg; 4087 struct ifnet *ifp = sc->sc_ifp; 4088 int i, nacked; 4089 uint32_t txqs; 4090 4091 ATH_PCU_LOCK(sc); 4092 sc->sc_txproc_cnt++; 4093 txqs = sc->sc_txq_active; 4094 sc->sc_txq_active &= ~txqs; 4095 ATH_PCU_UNLOCK(sc); 4096 4097 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4098 4099 /* 4100 * Process each active queue. 4101 */ 4102 nacked = 0; 4103 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4104 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4105 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4106 if (nacked) 4107 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4108 4109 /* XXX check this inside of IF_LOCK? */ 4110 IF_LOCK(&ifp->if_snd); 4111 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4112 IF_UNLOCK(&ifp->if_snd); 4113 sc->sc_wd_timer = 0; 4114 4115 if (sc->sc_softled) 4116 ath_led_event(sc, sc->sc_txrix); 4117 4118 ATH_PCU_LOCK(sc); 4119 sc->sc_txproc_cnt--; 4120 ATH_PCU_UNLOCK(sc); 4121 4122 ath_tx_kick(sc); 4123 } 4124 #undef TXQACTIVE 4125 4126 /* 4127 * Deferred processing of TXQ rescheduling. 4128 */ 4129 static void 4130 ath_txq_sched_tasklet(void *arg, int npending) 4131 { 4132 struct ath_softc *sc = arg; 4133 int i; 4134 4135 /* XXX is skipping ok? */ 4136 ATH_PCU_LOCK(sc); 4137 #if 0 4138 if (sc->sc_inreset_cnt > 0) { 4139 device_printf(sc->sc_dev, 4140 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4141 ATH_PCU_UNLOCK(sc); 4142 return; 4143 } 4144 #endif 4145 sc->sc_txproc_cnt++; 4146 ATH_PCU_UNLOCK(sc); 4147 4148 ATH_TX_LOCK(sc); 4149 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4150 if (ATH_TXQ_SETUP(sc, i)) { 4151 ath_txq_sched(sc, &sc->sc_txq[i]); 4152 } 4153 } 4154 ATH_TX_UNLOCK(sc); 4155 4156 ATH_PCU_LOCK(sc); 4157 sc->sc_txproc_cnt--; 4158 ATH_PCU_UNLOCK(sc); 4159 } 4160 4161 void 4162 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4163 { 4164 4165 ATH_TXBUF_LOCK_ASSERT(sc); 4166 4167 if (bf->bf_flags & ATH_BUF_MGMT) 4168 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4169 else { 4170 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4171 sc->sc_txbuf_cnt++; 4172 if (sc->sc_txbuf_cnt > ath_txbuf) { 4173 device_printf(sc->sc_dev, 4174 "%s: sc_txbuf_cnt > %d?\n", 4175 __func__, 4176 ath_txbuf); 4177 sc->sc_txbuf_cnt = ath_txbuf; 4178 } 4179 } 4180 } 4181 4182 void 4183 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4184 { 4185 4186 ATH_TXBUF_LOCK_ASSERT(sc); 4187 4188 if (bf->bf_flags & ATH_BUF_MGMT) 4189 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4190 else { 4191 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4192 sc->sc_txbuf_cnt++; 4193 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4194 device_printf(sc->sc_dev, 4195 "%s: sc_txbuf_cnt > %d?\n", 4196 __func__, 4197 ATH_TXBUF); 4198 sc->sc_txbuf_cnt = ATH_TXBUF; 4199 } 4200 } 4201 } 4202 4203 /* 4204 * Free the holding buffer if it exists 4205 */ 4206 void 4207 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4208 { 4209 ATH_TXBUF_LOCK_ASSERT(sc); 4210 4211 if (txq->axq_holdingbf == NULL) 4212 return; 4213 4214 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4215 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4216 txq->axq_holdingbf = NULL; 4217 } 4218 4219 /* 4220 * Add this buffer to the holding queue, freeing the previous 4221 * one if it exists. 4222 */ 4223 static void 4224 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4225 { 4226 struct ath_txq *txq; 4227 4228 ATH_TXBUF_LOCK_ASSERT(sc); 4229 4230 /* XXX assert ATH_BUF_BUSY is set */ 4231 4232 /* XXX assert the tx queue is under the max number */ 4233 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4234 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4235 __func__, 4236 bf, 4237 bf->bf_state.bfs_tx_queue); 4238 bf->bf_flags &= ~ATH_BUF_BUSY; 4239 ath_returnbuf_tail(sc, bf); 4240 return; 4241 } 4242 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4243 ath_txq_freeholdingbuf(sc, txq); 4244 txq->axq_holdingbf = bf; 4245 } 4246 4247 /* 4248 * Return a buffer to the pool and update the 'busy' flag on the 4249 * previous 'tail' entry. 4250 * 4251 * This _must_ only be called when the buffer is involved in a completed 4252 * TX. The logic is that if it was part of an active TX, the previous 4253 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4254 * for restart (eg for TDMA.) 4255 * 4256 * The caller must free the mbuf and recycle the node reference. 4257 */ 4258 void 4259 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4260 { 4261 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4262 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4263 4264 /* 4265 * If this buffer is busy, push it onto the holding queue 4266 */ 4267 if (bf->bf_flags & ATH_BUF_BUSY) { 4268 ATH_TXBUF_LOCK(sc); 4269 ath_txq_addholdingbuf(sc, bf); 4270 ATH_TXBUF_UNLOCK(sc); 4271 return; 4272 } 4273 4274 /* 4275 * Not a busy buffer, so free normally 4276 */ 4277 ATH_TXBUF_LOCK(sc); 4278 ath_returnbuf_tail(sc, bf); 4279 ATH_TXBUF_UNLOCK(sc); 4280 } 4281 4282 /* 4283 * This is currently used by ath_tx_draintxq() and 4284 * ath_tx_tid_free_pkts(). 4285 * 4286 * It recycles a single ath_buf. 4287 */ 4288 void 4289 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4290 { 4291 struct ieee80211_node *ni = bf->bf_node; 4292 struct mbuf *m0 = bf->bf_m; 4293 4294 /* 4295 * Make sure that we only sync/unload if there's an mbuf. 4296 * If not (eg we cloned a buffer), the unload will have already 4297 * occured. 4298 */ 4299 if (bf->bf_m != NULL) { 4300 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4301 BUS_DMASYNC_POSTWRITE); 4302 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4303 } 4304 4305 bf->bf_node = NULL; 4306 bf->bf_m = NULL; 4307 4308 /* Free the buffer, it's not needed any longer */ 4309 ath_freebuf(sc, bf); 4310 4311 if (ni != NULL) { 4312 /* 4313 * Do any callback and reclaim the node reference. 4314 */ 4315 if (m0->m_flags & M_TXCB) 4316 ieee80211_process_callback(ni, m0, status); 4317 ieee80211_free_node(ni); 4318 } 4319 4320 /* Finally, we don't need this mbuf any longer */ 4321 m_freem(m0); 4322 } 4323 4324 static struct ath_buf * 4325 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4326 { 4327 struct ath_buf *bf; 4328 4329 ATH_TXQ_LOCK_ASSERT(txq); 4330 4331 /* 4332 * Drain the FIFO queue first, then if it's 4333 * empty, move to the normal frame queue. 4334 */ 4335 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4336 if (bf != NULL) { 4337 /* 4338 * Is it the last buffer in this set? 4339 * Decrement the FIFO counter. 4340 */ 4341 if (bf->bf_flags & ATH_BUF_FIFOEND) { 4342 if (txq->axq_fifo_depth == 0) { 4343 device_printf(sc->sc_dev, 4344 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 4345 __func__, 4346 txq->axq_qnum, 4347 txq->fifo.axq_depth); 4348 } else 4349 txq->axq_fifo_depth--; 4350 } 4351 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 4352 return (bf); 4353 } 4354 4355 /* 4356 * Debugging! 4357 */ 4358 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 4359 device_printf(sc->sc_dev, 4360 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 4361 __func__, 4362 txq->axq_qnum, 4363 txq->axq_fifo_depth, 4364 txq->fifo.axq_depth); 4365 } 4366 4367 /* 4368 * Now drain the pending queue. 4369 */ 4370 bf = TAILQ_FIRST(&txq->axq_q); 4371 if (bf == NULL) { 4372 txq->axq_link = NULL; 4373 return (NULL); 4374 } 4375 ATH_TXQ_REMOVE(txq, bf, bf_list); 4376 return (bf); 4377 } 4378 4379 void 4380 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4381 { 4382 #ifdef ATH_DEBUG 4383 struct ath_hal *ah = sc->sc_ah; 4384 #endif 4385 struct ath_buf *bf; 4386 u_int ix; 4387 4388 /* 4389 * NB: this assumes output has been stopped and 4390 * we do not need to block ath_tx_proc 4391 */ 4392 for (ix = 0;; ix++) { 4393 ATH_TXQ_LOCK(txq); 4394 bf = ath_tx_draintxq_get_one(sc, txq); 4395 if (bf == NULL) { 4396 ATH_TXQ_UNLOCK(txq); 4397 break; 4398 } 4399 if (bf->bf_state.bfs_aggr) 4400 txq->axq_aggr_depth--; 4401 #ifdef ATH_DEBUG 4402 if (sc->sc_debug & ATH_DEBUG_RESET) { 4403 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4404 int status = 0; 4405 4406 /* 4407 * EDMA operation has a TX completion FIFO 4408 * separate from the TX descriptor, so this 4409 * method of checking the "completion" status 4410 * is wrong. 4411 */ 4412 if (! sc->sc_isedma) { 4413 status = (ath_hal_txprocdesc(ah, 4414 bf->bf_lastds, 4415 &bf->bf_status.ds_txstat) == HAL_OK); 4416 } 4417 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4418 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4419 bf->bf_m->m_len, 0, -1); 4420 } 4421 #endif /* ATH_DEBUG */ 4422 /* 4423 * Since we're now doing magic in the completion 4424 * functions, we -must- call it for aggregation 4425 * destinations or BAW tracking will get upset. 4426 */ 4427 /* 4428 * Clear ATH_BUF_BUSY; the completion handler 4429 * will free the buffer. 4430 */ 4431 ATH_TXQ_UNLOCK(txq); 4432 bf->bf_flags &= ~ATH_BUF_BUSY; 4433 if (bf->bf_comp) 4434 bf->bf_comp(sc, bf, 1); 4435 else 4436 ath_tx_default_comp(sc, bf, 1); 4437 } 4438 4439 /* 4440 * Free the holding buffer if it exists 4441 */ 4442 ATH_TXBUF_LOCK(sc); 4443 ath_txq_freeholdingbuf(sc, txq); 4444 ATH_TXBUF_UNLOCK(sc); 4445 4446 /* 4447 * Drain software queued frames which are on 4448 * active TIDs. 4449 */ 4450 ath_tx_txq_drain(sc, txq); 4451 } 4452 4453 static void 4454 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4455 { 4456 struct ath_hal *ah = sc->sc_ah; 4457 4458 DPRINTF(sc, ATH_DEBUG_RESET, 4459 "%s: tx queue [%u] %p, flags 0x%08x, link %p\n", 4460 __func__, 4461 txq->axq_qnum, 4462 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4463 txq->axq_flags, 4464 txq->axq_link); 4465 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4466 } 4467 4468 int 4469 ath_stoptxdma(struct ath_softc *sc) 4470 { 4471 struct ath_hal *ah = sc->sc_ah; 4472 int i; 4473 4474 /* XXX return value */ 4475 if (sc->sc_invalid) 4476 return 0; 4477 4478 if (!sc->sc_invalid) { 4479 /* don't touch the hardware if marked invalid */ 4480 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4481 __func__, sc->sc_bhalq, 4482 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4483 NULL); 4484 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4485 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4486 if (ATH_TXQ_SETUP(sc, i)) 4487 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4488 } 4489 4490 return 1; 4491 } 4492 4493 /* 4494 * Drain the transmit queues and reclaim resources. 4495 */ 4496 void 4497 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4498 { 4499 #ifdef ATH_DEBUG 4500 struct ath_hal *ah = sc->sc_ah; 4501 #endif 4502 struct ifnet *ifp = sc->sc_ifp; 4503 int i; 4504 4505 (void) ath_stoptxdma(sc); 4506 4507 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4508 /* 4509 * XXX TODO: should we just handle the completed TX frames 4510 * here, whether or not the reset is a full one or not? 4511 */ 4512 if (ATH_TXQ_SETUP(sc, i)) { 4513 if (reset_type == ATH_RESET_NOLOSS) 4514 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4515 else 4516 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4517 } 4518 } 4519 #ifdef ATH_DEBUG 4520 if (sc->sc_debug & ATH_DEBUG_RESET) { 4521 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 4522 if (bf != NULL && bf->bf_m != NULL) { 4523 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4524 ath_hal_txprocdesc(ah, bf->bf_lastds, 4525 &bf->bf_status.ds_txstat) == HAL_OK); 4526 ieee80211_dump_pkt(ifp->if_l2com, 4527 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4528 0, -1); 4529 } 4530 } 4531 #endif /* ATH_DEBUG */ 4532 IF_LOCK(&ifp->if_snd); 4533 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4534 IF_UNLOCK(&ifp->if_snd); 4535 sc->sc_wd_timer = 0; 4536 } 4537 4538 /* 4539 * Update internal state after a channel change. 4540 */ 4541 static void 4542 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4543 { 4544 enum ieee80211_phymode mode; 4545 4546 /* 4547 * Change channels and update the h/w rate map 4548 * if we're switching; e.g. 11a to 11b/g. 4549 */ 4550 mode = ieee80211_chan2mode(chan); 4551 if (mode != sc->sc_curmode) 4552 ath_setcurmode(sc, mode); 4553 sc->sc_curchan = chan; 4554 } 4555 4556 /* 4557 * Set/change channels. If the channel is really being changed, 4558 * it's done by resetting the chip. To accomplish this we must 4559 * first cleanup any pending DMA, then restart stuff after a la 4560 * ath_init. 4561 */ 4562 static int 4563 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4564 { 4565 struct ifnet *ifp = sc->sc_ifp; 4566 struct ieee80211com *ic = ifp->if_l2com; 4567 struct ath_hal *ah = sc->sc_ah; 4568 int ret = 0; 4569 4570 /* Treat this as an interface reset */ 4571 ATH_PCU_UNLOCK_ASSERT(sc); 4572 ATH_UNLOCK_ASSERT(sc); 4573 4574 /* (Try to) stop TX/RX from occuring */ 4575 taskqueue_block(sc->sc_tq); 4576 4577 ATH_PCU_LOCK(sc); 4578 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4579 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4580 if (ath_reset_grablock(sc, 1) == 0) { 4581 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4582 __func__); 4583 } 4584 ATH_PCU_UNLOCK(sc); 4585 4586 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4587 __func__, ieee80211_chan2ieee(ic, chan), 4588 chan->ic_freq, chan->ic_flags); 4589 if (chan != sc->sc_curchan) { 4590 HAL_STATUS status; 4591 /* 4592 * To switch channels clear any pending DMA operations; 4593 * wait long enough for the RX fifo to drain, reset the 4594 * hardware at the new frequency, and then re-enable 4595 * the relevant bits of the h/w. 4596 */ 4597 #if 0 4598 ath_hal_intrset(ah, 0); /* disable interrupts */ 4599 #endif 4600 ath_stoprecv(sc, 1); /* turn off frame recv */ 4601 /* 4602 * First, handle completed TX/RX frames. 4603 */ 4604 ath_rx_flush(sc); 4605 ath_draintxq(sc, ATH_RESET_NOLOSS); 4606 /* 4607 * Next, flush the non-scheduled frames. 4608 */ 4609 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4610 4611 ath_update_chainmasks(sc, chan); 4612 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 4613 sc->sc_cur_rxchainmask); 4614 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4615 if_printf(ifp, "%s: unable to reset " 4616 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4617 __func__, ieee80211_chan2ieee(ic, chan), 4618 chan->ic_freq, chan->ic_flags, status); 4619 ret = EIO; 4620 goto finish; 4621 } 4622 sc->sc_diversity = ath_hal_getdiversity(ah); 4623 4624 /* Let DFS at it in case it's a DFS channel */ 4625 ath_dfs_radar_enable(sc, chan); 4626 4627 /* Let spectral at in case spectral is enabled */ 4628 ath_spectral_enable(sc, chan); 4629 4630 /* 4631 * Re-enable rx framework. 4632 */ 4633 if (ath_startrecv(sc) != 0) { 4634 if_printf(ifp, "%s: unable to restart recv logic\n", 4635 __func__); 4636 ret = EIO; 4637 goto finish; 4638 } 4639 4640 /* 4641 * Change channels and update the h/w rate map 4642 * if we're switching; e.g. 11a to 11b/g. 4643 */ 4644 ath_chan_change(sc, chan); 4645 4646 /* 4647 * Reset clears the beacon timers; reset them 4648 * here if needed. 4649 */ 4650 if (sc->sc_beacons) { /* restart beacons */ 4651 #ifdef IEEE80211_SUPPORT_TDMA 4652 if (sc->sc_tdma) 4653 ath_tdma_config(sc, NULL); 4654 else 4655 #endif 4656 ath_beacon_config(sc, NULL); 4657 } 4658 4659 /* 4660 * Re-enable interrupts. 4661 */ 4662 #if 0 4663 ath_hal_intrset(ah, sc->sc_imask); 4664 #endif 4665 } 4666 4667 finish: 4668 ATH_PCU_LOCK(sc); 4669 sc->sc_inreset_cnt--; 4670 /* XXX only do this if sc_inreset_cnt == 0? */ 4671 ath_hal_intrset(ah, sc->sc_imask); 4672 ATH_PCU_UNLOCK(sc); 4673 4674 IF_LOCK(&ifp->if_snd); 4675 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4676 IF_UNLOCK(&ifp->if_snd); 4677 ath_txrx_start(sc); 4678 /* XXX ath_start? */ 4679 4680 return ret; 4681 } 4682 4683 /* 4684 * Periodically recalibrate the PHY to account 4685 * for temperature/environment changes. 4686 */ 4687 static void 4688 ath_calibrate(void *arg) 4689 { 4690 struct ath_softc *sc = arg; 4691 struct ath_hal *ah = sc->sc_ah; 4692 struct ifnet *ifp = sc->sc_ifp; 4693 struct ieee80211com *ic = ifp->if_l2com; 4694 HAL_BOOL longCal, isCalDone = AH_TRUE; 4695 HAL_BOOL aniCal, shortCal = AH_FALSE; 4696 int nextcal; 4697 4698 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4699 goto restart; 4700 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4701 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4702 if (sc->sc_doresetcal) 4703 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4704 4705 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4706 if (aniCal) { 4707 sc->sc_stats.ast_ani_cal++; 4708 sc->sc_lastani = ticks; 4709 ath_hal_ani_poll(ah, sc->sc_curchan); 4710 } 4711 4712 if (longCal) { 4713 sc->sc_stats.ast_per_cal++; 4714 sc->sc_lastlongcal = ticks; 4715 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4716 /* 4717 * Rfgain is out of bounds, reset the chip 4718 * to load new gain values. 4719 */ 4720 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4721 "%s: rfgain change\n", __func__); 4722 sc->sc_stats.ast_per_rfgain++; 4723 sc->sc_resetcal = 0; 4724 sc->sc_doresetcal = AH_TRUE; 4725 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4726 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4727 return; 4728 } 4729 /* 4730 * If this long cal is after an idle period, then 4731 * reset the data collection state so we start fresh. 4732 */ 4733 if (sc->sc_resetcal) { 4734 (void) ath_hal_calreset(ah, sc->sc_curchan); 4735 sc->sc_lastcalreset = ticks; 4736 sc->sc_lastshortcal = ticks; 4737 sc->sc_resetcal = 0; 4738 sc->sc_doresetcal = AH_TRUE; 4739 } 4740 } 4741 4742 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4743 if (shortCal || longCal) { 4744 isCalDone = AH_FALSE; 4745 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4746 if (longCal) { 4747 /* 4748 * Calibrate noise floor data again in case of change. 4749 */ 4750 ath_hal_process_noisefloor(ah); 4751 } 4752 } else { 4753 DPRINTF(sc, ATH_DEBUG_ANY, 4754 "%s: calibration of channel %u failed\n", 4755 __func__, sc->sc_curchan->ic_freq); 4756 sc->sc_stats.ast_per_calfail++; 4757 } 4758 if (shortCal) 4759 sc->sc_lastshortcal = ticks; 4760 } 4761 if (!isCalDone) { 4762 restart: 4763 /* 4764 * Use a shorter interval to potentially collect multiple 4765 * data samples required to complete calibration. Once 4766 * we're told the work is done we drop back to a longer 4767 * interval between requests. We're more aggressive doing 4768 * work when operating as an AP to improve operation right 4769 * after startup. 4770 */ 4771 sc->sc_lastshortcal = ticks; 4772 nextcal = ath_shortcalinterval*hz/1000; 4773 if (sc->sc_opmode != HAL_M_HOSTAP) 4774 nextcal *= 10; 4775 sc->sc_doresetcal = AH_TRUE; 4776 } else { 4777 /* nextcal should be the shortest time for next event */ 4778 nextcal = ath_longcalinterval*hz; 4779 if (sc->sc_lastcalreset == 0) 4780 sc->sc_lastcalreset = sc->sc_lastlongcal; 4781 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4782 sc->sc_resetcal = 1; /* setup reset next trip */ 4783 sc->sc_doresetcal = AH_FALSE; 4784 } 4785 /* ANI calibration may occur more often than short/long/resetcal */ 4786 if (ath_anicalinterval > 0) 4787 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4788 4789 if (nextcal != 0) { 4790 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4791 __func__, nextcal, isCalDone ? "" : "!"); 4792 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4793 } else { 4794 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4795 __func__); 4796 /* NB: don't rearm timer */ 4797 } 4798 } 4799 4800 static void 4801 ath_scan_start(struct ieee80211com *ic) 4802 { 4803 struct ifnet *ifp = ic->ic_ifp; 4804 struct ath_softc *sc = ifp->if_softc; 4805 struct ath_hal *ah = sc->sc_ah; 4806 u_int32_t rfilt; 4807 4808 /* XXX calibration timer? */ 4809 4810 ATH_LOCK(sc); 4811 sc->sc_scanning = 1; 4812 sc->sc_syncbeacon = 0; 4813 rfilt = ath_calcrxfilter(sc); 4814 ATH_UNLOCK(sc); 4815 4816 ATH_PCU_LOCK(sc); 4817 ath_hal_setrxfilter(ah, rfilt); 4818 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4819 ATH_PCU_UNLOCK(sc); 4820 4821 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4822 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4823 } 4824 4825 static void 4826 ath_scan_end(struct ieee80211com *ic) 4827 { 4828 struct ifnet *ifp = ic->ic_ifp; 4829 struct ath_softc *sc = ifp->if_softc; 4830 struct ath_hal *ah = sc->sc_ah; 4831 u_int32_t rfilt; 4832 4833 ATH_LOCK(sc); 4834 sc->sc_scanning = 0; 4835 rfilt = ath_calcrxfilter(sc); 4836 ATH_UNLOCK(sc); 4837 4838 ATH_PCU_LOCK(sc); 4839 ath_hal_setrxfilter(ah, rfilt); 4840 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4841 4842 ath_hal_process_noisefloor(ah); 4843 ATH_PCU_UNLOCK(sc); 4844 4845 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4846 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4847 sc->sc_curaid); 4848 } 4849 4850 #ifdef ATH_ENABLE_11N 4851 /* 4852 * For now, just do a channel change. 4853 * 4854 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4855 * control state and resetting the hardware without dropping frames out 4856 * of the queue. 4857 * 4858 * The unfortunate trouble here is making absolutely sure that the 4859 * channel width change has propagated enough so the hardware 4860 * absolutely isn't handed bogus frames for it's current operating 4861 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4862 * does occur in parallel, we need to make certain we've blocked 4863 * any further ongoing TX (and RX, that can cause raw TX) 4864 * before we do this. 4865 */ 4866 static void 4867 ath_update_chw(struct ieee80211com *ic) 4868 { 4869 struct ifnet *ifp = ic->ic_ifp; 4870 struct ath_softc *sc = ifp->if_softc; 4871 4872 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4873 ath_set_channel(ic); 4874 } 4875 #endif /* ATH_ENABLE_11N */ 4876 4877 static void 4878 ath_set_channel(struct ieee80211com *ic) 4879 { 4880 struct ifnet *ifp = ic->ic_ifp; 4881 struct ath_softc *sc = ifp->if_softc; 4882 4883 (void) ath_chan_set(sc, ic->ic_curchan); 4884 /* 4885 * If we are returning to our bss channel then mark state 4886 * so the next recv'd beacon's tsf will be used to sync the 4887 * beacon timers. Note that since we only hear beacons in 4888 * sta/ibss mode this has no effect in other operating modes. 4889 */ 4890 ATH_LOCK(sc); 4891 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4892 sc->sc_syncbeacon = 1; 4893 ATH_UNLOCK(sc); 4894 } 4895 4896 /* 4897 * Walk the vap list and check if there any vap's in RUN state. 4898 */ 4899 static int 4900 ath_isanyrunningvaps(struct ieee80211vap *this) 4901 { 4902 struct ieee80211com *ic = this->iv_ic; 4903 struct ieee80211vap *vap; 4904 4905 IEEE80211_LOCK_ASSERT(ic); 4906 4907 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4908 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4909 return 1; 4910 } 4911 return 0; 4912 } 4913 4914 static int 4915 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4916 { 4917 struct ieee80211com *ic = vap->iv_ic; 4918 struct ath_softc *sc = ic->ic_ifp->if_softc; 4919 struct ath_vap *avp = ATH_VAP(vap); 4920 struct ath_hal *ah = sc->sc_ah; 4921 struct ieee80211_node *ni = NULL; 4922 int i, error, stamode; 4923 u_int32_t rfilt; 4924 int csa_run_transition = 0; 4925 4926 static const HAL_LED_STATE leds[] = { 4927 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4928 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4929 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4930 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4931 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4932 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4933 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4934 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4935 }; 4936 4937 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4938 ieee80211_state_name[vap->iv_state], 4939 ieee80211_state_name[nstate]); 4940 4941 /* 4942 * net80211 _should_ have the comlock asserted at this point. 4943 * There are some comments around the calls to vap->iv_newstate 4944 * which indicate that it (newstate) may end up dropping the 4945 * lock. This and the subsequent lock assert check after newstate 4946 * are an attempt to catch these and figure out how/why. 4947 */ 4948 IEEE80211_LOCK_ASSERT(ic); 4949 4950 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4951 csa_run_transition = 1; 4952 4953 callout_drain(&sc->sc_cal_ch); 4954 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4955 4956 if (nstate == IEEE80211_S_SCAN) { 4957 /* 4958 * Scanning: turn off beacon miss and don't beacon. 4959 * Mark beacon state so when we reach RUN state we'll 4960 * [re]setup beacons. Unblock the task q thread so 4961 * deferred interrupt processing is done. 4962 */ 4963 ath_hal_intrset(ah, 4964 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4965 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4966 sc->sc_beacons = 0; 4967 taskqueue_unblock(sc->sc_tq); 4968 } 4969 4970 ni = ieee80211_ref_node(vap->iv_bss); 4971 rfilt = ath_calcrxfilter(sc); 4972 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4973 vap->iv_opmode == IEEE80211_M_AHDEMO || 4974 vap->iv_opmode == IEEE80211_M_IBSS); 4975 if (stamode && nstate == IEEE80211_S_RUN) { 4976 sc->sc_curaid = ni->ni_associd; 4977 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4978 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4979 } 4980 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4981 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4982 ath_hal_setrxfilter(ah, rfilt); 4983 4984 /* XXX is this to restore keycache on resume? */ 4985 if (vap->iv_opmode != IEEE80211_M_STA && 4986 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4987 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4988 if (ath_hal_keyisvalid(ah, i)) 4989 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4990 } 4991 4992 /* 4993 * Invoke the parent method to do net80211 work. 4994 */ 4995 error = avp->av_newstate(vap, nstate, arg); 4996 if (error != 0) 4997 goto bad; 4998 4999 /* 5000 * See above: ensure av_newstate() doesn't drop the lock 5001 * on us. 5002 */ 5003 IEEE80211_LOCK_ASSERT(ic); 5004 5005 if (nstate == IEEE80211_S_RUN) { 5006 /* NB: collect bss node again, it may have changed */ 5007 ieee80211_free_node(ni); 5008 ni = ieee80211_ref_node(vap->iv_bss); 5009 5010 DPRINTF(sc, ATH_DEBUG_STATE, 5011 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5012 "capinfo 0x%04x chan %d\n", __func__, 5013 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5014 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5015 5016 switch (vap->iv_opmode) { 5017 #ifdef IEEE80211_SUPPORT_TDMA 5018 case IEEE80211_M_AHDEMO: 5019 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5020 break; 5021 /* fall thru... */ 5022 #endif 5023 case IEEE80211_M_HOSTAP: 5024 case IEEE80211_M_IBSS: 5025 case IEEE80211_M_MBSS: 5026 /* 5027 * Allocate and setup the beacon frame. 5028 * 5029 * Stop any previous beacon DMA. This may be 5030 * necessary, for example, when an ibss merge 5031 * causes reconfiguration; there will be a state 5032 * transition from RUN->RUN that means we may 5033 * be called with beacon transmission active. 5034 */ 5035 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5036 5037 error = ath_beacon_alloc(sc, ni); 5038 if (error != 0) 5039 goto bad; 5040 /* 5041 * If joining an adhoc network defer beacon timer 5042 * configuration to the next beacon frame so we 5043 * have a current TSF to use. Otherwise we're 5044 * starting an ibss/bss so there's no need to delay; 5045 * if this is the first vap moving to RUN state, then 5046 * beacon state needs to be [re]configured. 5047 */ 5048 if (vap->iv_opmode == IEEE80211_M_IBSS && 5049 ni->ni_tstamp.tsf != 0) { 5050 sc->sc_syncbeacon = 1; 5051 } else if (!sc->sc_beacons) { 5052 #ifdef IEEE80211_SUPPORT_TDMA 5053 if (vap->iv_caps & IEEE80211_C_TDMA) 5054 ath_tdma_config(sc, vap); 5055 else 5056 #endif 5057 ath_beacon_config(sc, vap); 5058 sc->sc_beacons = 1; 5059 } 5060 break; 5061 case IEEE80211_M_STA: 5062 /* 5063 * Defer beacon timer configuration to the next 5064 * beacon frame so we have a current TSF to use 5065 * (any TSF collected when scanning is likely old). 5066 * However if it's due to a CSA -> RUN transition, 5067 * force a beacon update so we pick up a lack of 5068 * beacons from an AP in CAC and thus force a 5069 * scan. 5070 * 5071 * And, there's also corner cases here where 5072 * after a scan, the AP may have disappeared. 5073 * In that case, we may not receive an actual 5074 * beacon to update the beacon timer and thus we 5075 * won't get notified of the missing beacons. 5076 */ 5077 sc->sc_syncbeacon = 1; 5078 #if 0 5079 if (csa_run_transition) 5080 #endif 5081 ath_beacon_config(sc, vap); 5082 5083 /* 5084 * PR: kern/175227 5085 * 5086 * Reconfigure beacons during reset; as otherwise 5087 * we won't get the beacon timers reprogrammed 5088 * after a reset and thus we won't pick up a 5089 * beacon miss interrupt. 5090 * 5091 * Hopefully we'll see a beacon before the BMISS 5092 * timer fires (too often), leading to a STA 5093 * disassociation. 5094 */ 5095 sc->sc_beacons = 1; 5096 break; 5097 case IEEE80211_M_MONITOR: 5098 /* 5099 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5100 * transitions so we must re-enable interrupts here to 5101 * handle the case of a single monitor mode vap. 5102 */ 5103 ath_hal_intrset(ah, sc->sc_imask); 5104 break; 5105 case IEEE80211_M_WDS: 5106 break; 5107 default: 5108 break; 5109 } 5110 /* 5111 * Let the hal process statistics collected during a 5112 * scan so it can provide calibrated noise floor data. 5113 */ 5114 ath_hal_process_noisefloor(ah); 5115 /* 5116 * Reset rssi stats; maybe not the best place... 5117 */ 5118 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5119 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5120 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5121 /* 5122 * Finally, start any timers and the task q thread 5123 * (in case we didn't go through SCAN state). 5124 */ 5125 if (ath_longcalinterval != 0) { 5126 /* start periodic recalibration timer */ 5127 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5128 } else { 5129 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5130 "%s: calibration disabled\n", __func__); 5131 } 5132 taskqueue_unblock(sc->sc_tq); 5133 } else if (nstate == IEEE80211_S_INIT) { 5134 /* 5135 * If there are no vaps left in RUN state then 5136 * shutdown host/driver operation: 5137 * o disable interrupts 5138 * o disable the task queue thread 5139 * o mark beacon processing as stopped 5140 */ 5141 if (!ath_isanyrunningvaps(vap)) { 5142 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5143 /* disable interrupts */ 5144 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5145 taskqueue_block(sc->sc_tq); 5146 sc->sc_beacons = 0; 5147 } 5148 #ifdef IEEE80211_SUPPORT_TDMA 5149 ath_hal_setcca(ah, AH_TRUE); 5150 #endif 5151 } 5152 bad: 5153 ieee80211_free_node(ni); 5154 return error; 5155 } 5156 5157 /* 5158 * Allocate a key cache slot to the station so we can 5159 * setup a mapping from key index to node. The key cache 5160 * slot is needed for managing antenna state and for 5161 * compression when stations do not use crypto. We do 5162 * it uniliaterally here; if crypto is employed this slot 5163 * will be reassigned. 5164 */ 5165 static void 5166 ath_setup_stationkey(struct ieee80211_node *ni) 5167 { 5168 struct ieee80211vap *vap = ni->ni_vap; 5169 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5170 ieee80211_keyix keyix, rxkeyix; 5171 5172 /* XXX should take a locked ref to vap->iv_bss */ 5173 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5174 /* 5175 * Key cache is full; we'll fall back to doing 5176 * the more expensive lookup in software. Note 5177 * this also means no h/w compression. 5178 */ 5179 /* XXX msg+statistic */ 5180 } else { 5181 /* XXX locking? */ 5182 ni->ni_ucastkey.wk_keyix = keyix; 5183 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5184 /* NB: must mark device key to get called back on delete */ 5185 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5186 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5187 /* NB: this will create a pass-thru key entry */ 5188 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5189 } 5190 } 5191 5192 /* 5193 * Setup driver-specific state for a newly associated node. 5194 * Note that we're called also on a re-associate, the isnew 5195 * param tells us if this is the first time or not. 5196 */ 5197 static void 5198 ath_newassoc(struct ieee80211_node *ni, int isnew) 5199 { 5200 struct ath_node *an = ATH_NODE(ni); 5201 struct ieee80211vap *vap = ni->ni_vap; 5202 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5203 const struct ieee80211_txparam *tp = ni->ni_txparms; 5204 5205 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5206 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5207 5208 ath_rate_newassoc(sc, an, isnew); 5209 if (isnew && 5210 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5211 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5212 ath_setup_stationkey(ni); 5213 } 5214 5215 static int 5216 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5217 int nchans, struct ieee80211_channel chans[]) 5218 { 5219 struct ath_softc *sc = ic->ic_ifp->if_softc; 5220 struct ath_hal *ah = sc->sc_ah; 5221 HAL_STATUS status; 5222 5223 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5224 "%s: rd %u cc %u location %c%s\n", 5225 __func__, reg->regdomain, reg->country, reg->location, 5226 reg->ecm ? " ecm" : ""); 5227 5228 status = ath_hal_set_channels(ah, chans, nchans, 5229 reg->country, reg->regdomain); 5230 if (status != HAL_OK) { 5231 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5232 __func__, status); 5233 return EINVAL; /* XXX */ 5234 } 5235 5236 return 0; 5237 } 5238 5239 static void 5240 ath_getradiocaps(struct ieee80211com *ic, 5241 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5242 { 5243 struct ath_softc *sc = ic->ic_ifp->if_softc; 5244 struct ath_hal *ah = sc->sc_ah; 5245 5246 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5247 __func__, SKU_DEBUG, CTRY_DEFAULT); 5248 5249 /* XXX check return */ 5250 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5251 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5252 5253 } 5254 5255 static int 5256 ath_getchannels(struct ath_softc *sc) 5257 { 5258 struct ifnet *ifp = sc->sc_ifp; 5259 struct ieee80211com *ic = ifp->if_l2com; 5260 struct ath_hal *ah = sc->sc_ah; 5261 HAL_STATUS status; 5262 5263 /* 5264 * Collect channel set based on EEPROM contents. 5265 */ 5266 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5267 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5268 if (status != HAL_OK) { 5269 if_printf(ifp, "%s: unable to collect channel list from hal, " 5270 "status %d\n", __func__, status); 5271 return EINVAL; 5272 } 5273 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5274 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5275 /* XXX map Atheros sku's to net80211 SKU's */ 5276 /* XXX net80211 types too small */ 5277 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5278 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5279 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5280 ic->ic_regdomain.isocc[1] = ' '; 5281 5282 ic->ic_regdomain.ecm = 1; 5283 ic->ic_regdomain.location = 'I'; 5284 5285 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5286 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5287 __func__, sc->sc_eerd, sc->sc_eecc, 5288 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5289 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5290 return 0; 5291 } 5292 5293 static int 5294 ath_rate_setup(struct ath_softc *sc, u_int mode) 5295 { 5296 struct ath_hal *ah = sc->sc_ah; 5297 const HAL_RATE_TABLE *rt; 5298 5299 switch (mode) { 5300 case IEEE80211_MODE_11A: 5301 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5302 break; 5303 case IEEE80211_MODE_HALF: 5304 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5305 break; 5306 case IEEE80211_MODE_QUARTER: 5307 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5308 break; 5309 case IEEE80211_MODE_11B: 5310 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5311 break; 5312 case IEEE80211_MODE_11G: 5313 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5314 break; 5315 case IEEE80211_MODE_TURBO_A: 5316 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5317 break; 5318 case IEEE80211_MODE_TURBO_G: 5319 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5320 break; 5321 case IEEE80211_MODE_STURBO_A: 5322 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5323 break; 5324 case IEEE80211_MODE_11NA: 5325 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 5326 break; 5327 case IEEE80211_MODE_11NG: 5328 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 5329 break; 5330 default: 5331 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5332 __func__, mode); 5333 return 0; 5334 } 5335 sc->sc_rates[mode] = rt; 5336 return (rt != NULL); 5337 } 5338 5339 static void 5340 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5341 { 5342 #define N(a) (sizeof(a)/sizeof(a[0])) 5343 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5344 static const struct { 5345 u_int rate; /* tx/rx 802.11 rate */ 5346 u_int16_t timeOn; /* LED on time (ms) */ 5347 u_int16_t timeOff; /* LED off time (ms) */ 5348 } blinkrates[] = { 5349 { 108, 40, 10 }, 5350 { 96, 44, 11 }, 5351 { 72, 50, 13 }, 5352 { 48, 57, 14 }, 5353 { 36, 67, 16 }, 5354 { 24, 80, 20 }, 5355 { 22, 100, 25 }, 5356 { 18, 133, 34 }, 5357 { 12, 160, 40 }, 5358 { 10, 200, 50 }, 5359 { 6, 240, 58 }, 5360 { 4, 267, 66 }, 5361 { 2, 400, 100 }, 5362 { 0, 500, 130 }, 5363 /* XXX half/quarter rates */ 5364 }; 5365 const HAL_RATE_TABLE *rt; 5366 int i, j; 5367 5368 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5369 rt = sc->sc_rates[mode]; 5370 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5371 for (i = 0; i < rt->rateCount; i++) { 5372 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5373 if (rt->info[i].phy != IEEE80211_T_HT) 5374 sc->sc_rixmap[ieeerate] = i; 5375 else 5376 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 5377 } 5378 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5379 for (i = 0; i < N(sc->sc_hwmap); i++) { 5380 if (i >= rt->rateCount) { 5381 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5382 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5383 continue; 5384 } 5385 sc->sc_hwmap[i].ieeerate = 5386 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5387 if (rt->info[i].phy == IEEE80211_T_HT) 5388 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 5389 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5390 if (rt->info[i].shortPreamble || 5391 rt->info[i].phy == IEEE80211_T_OFDM) 5392 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5393 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 5394 for (j = 0; j < N(blinkrates)-1; j++) 5395 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5396 break; 5397 /* NB: this uses the last entry if the rate isn't found */ 5398 /* XXX beware of overlow */ 5399 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5400 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5401 } 5402 sc->sc_currates = rt; 5403 sc->sc_curmode = mode; 5404 /* 5405 * All protection frames are transmited at 2Mb/s for 5406 * 11g, otherwise at 1Mb/s. 5407 */ 5408 if (mode == IEEE80211_MODE_11G) 5409 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 5410 else 5411 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 5412 /* NB: caller is responsible for resetting rate control state */ 5413 #undef N 5414 } 5415 5416 static void 5417 ath_watchdog(void *arg) 5418 { 5419 struct ath_softc *sc = arg; 5420 int do_reset = 0; 5421 5422 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 5423 struct ifnet *ifp = sc->sc_ifp; 5424 uint32_t hangs; 5425 5426 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 5427 hangs != 0) { 5428 if_printf(ifp, "%s hang detected (0x%x)\n", 5429 hangs & 0xff ? "bb" : "mac", hangs); 5430 } else 5431 if_printf(ifp, "device timeout\n"); 5432 do_reset = 1; 5433 ifp->if_oerrors++; 5434 sc->sc_stats.ast_watchdog++; 5435 } 5436 5437 /* 5438 * We can't hold the lock across the ath_reset() call. 5439 * 5440 * And since this routine can't hold a lock and sleep, 5441 * do the reset deferred. 5442 */ 5443 if (do_reset) { 5444 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5445 } 5446 5447 callout_schedule(&sc->sc_wd_ch, hz); 5448 } 5449 5450 /* 5451 * Fetch the rate control statistics for the given node. 5452 */ 5453 static int 5454 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 5455 { 5456 struct ath_node *an; 5457 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5458 struct ieee80211_node *ni; 5459 int error = 0; 5460 5461 /* Perform a lookup on the given node */ 5462 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 5463 if (ni == NULL) { 5464 error = EINVAL; 5465 goto bad; 5466 } 5467 5468 /* Lock the ath_node */ 5469 an = ATH_NODE(ni); 5470 ATH_NODE_LOCK(an); 5471 5472 /* Fetch the rate control stats for this node */ 5473 error = ath_rate_fetch_node_stats(sc, an, rs); 5474 5475 /* No matter what happens here, just drop through */ 5476 5477 /* Unlock the ath_node */ 5478 ATH_NODE_UNLOCK(an); 5479 5480 /* Unref the node */ 5481 ieee80211_node_decref(ni); 5482 5483 bad: 5484 return (error); 5485 } 5486 5487 #ifdef ATH_DIAGAPI 5488 /* 5489 * Diagnostic interface to the HAL. This is used by various 5490 * tools to do things like retrieve register contents for 5491 * debugging. The mechanism is intentionally opaque so that 5492 * it can change frequently w/o concern for compatiblity. 5493 */ 5494 static int 5495 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5496 { 5497 struct ath_hal *ah = sc->sc_ah; 5498 u_int id = ad->ad_id & ATH_DIAG_ID; 5499 void *indata = NULL; 5500 void *outdata = NULL; 5501 u_int32_t insize = ad->ad_in_size; 5502 u_int32_t outsize = ad->ad_out_size; 5503 int error = 0; 5504 5505 if (ad->ad_id & ATH_DIAG_IN) { 5506 /* 5507 * Copy in data. 5508 */ 5509 indata = malloc(insize, M_TEMP, M_NOWAIT); 5510 if (indata == NULL) { 5511 error = ENOMEM; 5512 goto bad; 5513 } 5514 error = copyin(ad->ad_in_data, indata, insize); 5515 if (error) 5516 goto bad; 5517 } 5518 if (ad->ad_id & ATH_DIAG_DYN) { 5519 /* 5520 * Allocate a buffer for the results (otherwise the HAL 5521 * returns a pointer to a buffer where we can read the 5522 * results). Note that we depend on the HAL leaving this 5523 * pointer for us to use below in reclaiming the buffer; 5524 * may want to be more defensive. 5525 */ 5526 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5527 if (outdata == NULL) { 5528 error = ENOMEM; 5529 goto bad; 5530 } 5531 } 5532 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5533 if (outsize < ad->ad_out_size) 5534 ad->ad_out_size = outsize; 5535 if (outdata != NULL) 5536 error = copyout(outdata, ad->ad_out_data, 5537 ad->ad_out_size); 5538 } else { 5539 error = EINVAL; 5540 } 5541 bad: 5542 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5543 free(indata, M_TEMP); 5544 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5545 free(outdata, M_TEMP); 5546 return error; 5547 } 5548 #endif /* ATH_DIAGAPI */ 5549 5550 static int 5551 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5552 { 5553 #define IS_RUNNING(ifp) \ 5554 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5555 struct ath_softc *sc = ifp->if_softc; 5556 struct ieee80211com *ic = ifp->if_l2com; 5557 struct ifreq *ifr = (struct ifreq *)data; 5558 const HAL_RATE_TABLE *rt; 5559 int error = 0; 5560 5561 switch (cmd) { 5562 case SIOCSIFFLAGS: 5563 ATH_LOCK(sc); 5564 if (IS_RUNNING(ifp)) { 5565 /* 5566 * To avoid rescanning another access point, 5567 * do not call ath_init() here. Instead, 5568 * only reflect promisc mode settings. 5569 */ 5570 ath_mode_init(sc); 5571 } else if (ifp->if_flags & IFF_UP) { 5572 /* 5573 * Beware of being called during attach/detach 5574 * to reset promiscuous mode. In that case we 5575 * will still be marked UP but not RUNNING. 5576 * However trying to re-init the interface 5577 * is the wrong thing to do as we've already 5578 * torn down much of our state. There's 5579 * probably a better way to deal with this. 5580 */ 5581 if (!sc->sc_invalid) 5582 ath_init(sc); /* XXX lose error */ 5583 } else { 5584 ath_stop_locked(ifp); 5585 #ifdef notyet 5586 /* XXX must wakeup in places like ath_vap_delete */ 5587 if (!sc->sc_invalid) 5588 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5589 #endif 5590 } 5591 ATH_UNLOCK(sc); 5592 break; 5593 case SIOCGIFMEDIA: 5594 case SIOCSIFMEDIA: 5595 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5596 break; 5597 case SIOCGATHSTATS: 5598 /* NB: embed these numbers to get a consistent view */ 5599 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5600 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5601 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5602 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5603 #ifdef IEEE80211_SUPPORT_TDMA 5604 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5605 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5606 #endif 5607 rt = sc->sc_currates; 5608 sc->sc_stats.ast_tx_rate = 5609 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5610 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 5611 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 5612 return copyout(&sc->sc_stats, 5613 ifr->ifr_data, sizeof (sc->sc_stats)); 5614 case SIOCGATHAGSTATS: 5615 return copyout(&sc->sc_aggr_stats, 5616 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 5617 case SIOCZATHSTATS: 5618 error = priv_check(curthread, PRIV_DRIVER); 5619 if (error == 0) { 5620 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 5621 memset(&sc->sc_aggr_stats, 0, 5622 sizeof(sc->sc_aggr_stats)); 5623 memset(&sc->sc_intr_stats, 0, 5624 sizeof(sc->sc_intr_stats)); 5625 } 5626 break; 5627 #ifdef ATH_DIAGAPI 5628 case SIOCGATHDIAG: 5629 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5630 break; 5631 case SIOCGATHPHYERR: 5632 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5633 break; 5634 #endif 5635 case SIOCGATHSPECTRAL: 5636 error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr); 5637 break; 5638 case SIOCGATHNODERATESTATS: 5639 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 5640 break; 5641 case SIOCGIFADDR: 5642 error = ether_ioctl(ifp, cmd, data); 5643 break; 5644 default: 5645 error = EINVAL; 5646 break; 5647 } 5648 return error; 5649 #undef IS_RUNNING 5650 } 5651 5652 /* 5653 * Announce various information on device/driver attach. 5654 */ 5655 static void 5656 ath_announce(struct ath_softc *sc) 5657 { 5658 struct ifnet *ifp = sc->sc_ifp; 5659 struct ath_hal *ah = sc->sc_ah; 5660 5661 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5662 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5663 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5664 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5665 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5666 if (bootverbose) { 5667 int i; 5668 for (i = 0; i <= WME_AC_VO; i++) { 5669 struct ath_txq *txq = sc->sc_ac2q[i]; 5670 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5671 txq->axq_qnum, ieee80211_wme_acnames[i]); 5672 } 5673 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5674 sc->sc_cabq->axq_qnum); 5675 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5676 } 5677 if (ath_rxbuf != ATH_RXBUF) 5678 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5679 if (ath_txbuf != ATH_TXBUF) 5680 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5681 if (sc->sc_mcastkey && bootverbose) 5682 if_printf(ifp, "using multicast key search\n"); 5683 } 5684 5685 static void 5686 ath_dfs_tasklet(void *p, int npending) 5687 { 5688 struct ath_softc *sc = (struct ath_softc *) p; 5689 struct ifnet *ifp = sc->sc_ifp; 5690 struct ieee80211com *ic = ifp->if_l2com; 5691 5692 /* 5693 * If previous processing has found a radar event, 5694 * signal this to the net80211 layer to begin DFS 5695 * processing. 5696 */ 5697 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 5698 /* DFS event found, initiate channel change */ 5699 /* 5700 * XXX doesn't currently tell us whether the event 5701 * XXX was found in the primary or extension 5702 * XXX channel! 5703 */ 5704 IEEE80211_LOCK(ic); 5705 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 5706 IEEE80211_UNLOCK(ic); 5707 } 5708 } 5709 5710 /* 5711 * Enable/disable power save. This must be called with 5712 * no TX driver locks currently held, so it should only 5713 * be called from the RX path (which doesn't hold any 5714 * TX driver locks.) 5715 */ 5716 static void 5717 ath_node_powersave(struct ieee80211_node *ni, int enable) 5718 { 5719 #ifdef ATH_SW_PSQ 5720 struct ath_node *an = ATH_NODE(ni); 5721 struct ieee80211com *ic = ni->ni_ic; 5722 struct ath_softc *sc = ic->ic_ifp->if_softc; 5723 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5724 5725 ATH_NODE_UNLOCK_ASSERT(an); 5726 /* XXX and no TXQ locks should be held here */ 5727 5728 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n", 5729 __func__, ni, enable); 5730 5731 /* Suspend or resume software queue handling */ 5732 if (enable) 5733 ath_tx_node_sleep(sc, an); 5734 else 5735 ath_tx_node_wakeup(sc, an); 5736 5737 /* Update net80211 state */ 5738 avp->av_node_ps(ni, enable); 5739 #else 5740 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5741 5742 /* Update net80211 state */ 5743 avp->av_node_ps(ni, enable); 5744 #endif/* ATH_SW_PSQ */ 5745 } 5746 5747 /* 5748 * Notification from net80211 that the powersave queue state has 5749 * changed. 5750 * 5751 * Since the software queue also may have some frames: 5752 * 5753 * + if the node software queue has frames and the TID state 5754 * is 0, we set the TIM; 5755 * + if the node and the stack are both empty, we clear the TIM bit. 5756 * + If the stack tries to set the bit, always set it. 5757 * + If the stack tries to clear the bit, only clear it if the 5758 * software queue in question is also cleared. 5759 * 5760 * TODO: this is called during node teardown; so let's ensure this 5761 * is all correctly handled and that the TIM bit is cleared. 5762 * It may be that the node flush is called _AFTER_ the net80211 5763 * stack clears the TIM. 5764 * 5765 * Here is the racy part. Since it's possible >1 concurrent, 5766 * overlapping TXes will appear complete with a TX completion in 5767 * another thread, it's possible that the concurrent TIM calls will 5768 * clash. We can't hold the node lock here because setting the 5769 * TIM grabs the net80211 comlock and this may cause a LOR. 5770 * The solution is either to totally serialise _everything_ at 5771 * this point (ie, all TX, completion and any reset/flush go into 5772 * one taskqueue) or a new "ath TIM lock" needs to be created that 5773 * just wraps the driver state change and this call to avp->av_set_tim(). 5774 * 5775 * The same race exists in the net80211 power save queue handling 5776 * as well. Since multiple transmitting threads may queue frames 5777 * into the driver, as well as ps-poll and the driver transmitting 5778 * frames (and thus clearing the psq), it's quite possible that 5779 * a packet entering the PSQ and a ps-poll being handled will 5780 * race, causing the TIM to be cleared and not re-set. 5781 */ 5782 static int 5783 ath_node_set_tim(struct ieee80211_node *ni, int enable) 5784 { 5785 #ifdef ATH_SW_PSQ 5786 struct ieee80211com *ic = ni->ni_ic; 5787 struct ath_softc *sc = ic->ic_ifp->if_softc; 5788 struct ath_node *an = ATH_NODE(ni); 5789 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5790 int changed = 0; 5791 5792 ATH_NODE_UNLOCK_ASSERT(an); 5793 5794 /* 5795 * For now, just track and then update the TIM. 5796 */ 5797 ATH_NODE_LOCK(an); 5798 an->an_stack_psq = enable; 5799 5800 /* 5801 * This will get called for all operating modes, 5802 * even if avp->av_set_tim is unset. 5803 * It's currently set for hostap/ibss modes; but 5804 * the same infrastructure is used for both STA 5805 * and AP/IBSS node power save. 5806 */ 5807 if (avp->av_set_tim == NULL) { 5808 ATH_NODE_UNLOCK(an); 5809 return (0); 5810 } 5811 5812 /* 5813 * If setting the bit, always set it here. 5814 * If clearing the bit, only clear it if the 5815 * software queue is also empty. 5816 * 5817 * If the node has left power save, just clear the TIM 5818 * bit regardless of the state of the power save queue. 5819 * 5820 * XXX TODO: although atomics are used, it's quite possible 5821 * that a race will occur between this and setting/clearing 5822 * in another thread. TX completion will occur always in 5823 * one thread, however setting/clearing the TIM bit can come 5824 * from a variety of different process contexts! 5825 */ 5826 if (enable && an->an_tim_set == 1) { 5827 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5828 "%s: an=%p, enable=%d, tim_set=1, ignoring\n", 5829 __func__, an, enable); 5830 ATH_NODE_UNLOCK(an); 5831 } else if (enable) { 5832 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5833 "%s: an=%p, enable=%d, enabling TIM\n", 5834 __func__, an, enable); 5835 an->an_tim_set = 1; 5836 ATH_NODE_UNLOCK(an); 5837 changed = avp->av_set_tim(ni, enable); 5838 } else if (atomic_load_acq_int(&an->an_swq_depth) == 0) { 5839 /* disable */ 5840 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5841 "%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n", 5842 __func__, an, enable); 5843 an->an_tim_set = 0; 5844 ATH_NODE_UNLOCK(an); 5845 changed = avp->av_set_tim(ni, enable); 5846 } else if (! an->an_is_powersave) { 5847 /* 5848 * disable regardless; the node isn't in powersave now 5849 */ 5850 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5851 "%s: an=%p, enable=%d, an_pwrsave=0, disabling\n", 5852 __func__, an, enable); 5853 an->an_tim_set = 0; 5854 ATH_NODE_UNLOCK(an); 5855 changed = avp->av_set_tim(ni, enable); 5856 } else { 5857 /* 5858 * psq disable, node is currently in powersave, node 5859 * software queue isn't empty, so don't clear the TIM bit 5860 * for now. 5861 */ 5862 ATH_NODE_UNLOCK(an); 5863 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5864 "%s: enable=%d, an_swq_depth > 0, ignoring\n", 5865 __func__, enable); 5866 changed = 0; 5867 } 5868 5869 return (changed); 5870 #else 5871 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5872 5873 /* 5874 * Some operating modes don't set av_set_tim(), so don't 5875 * update it here. 5876 */ 5877 if (avp->av_set_tim == NULL) 5878 return (0); 5879 5880 return (avp->av_set_tim(ni, enable)); 5881 #endif /* ATH_SW_PSQ */ 5882 } 5883 5884 /* 5885 * Set or update the TIM from the software queue. 5886 * 5887 * Check the software queue depth before attempting to do lock 5888 * anything; that avoids trying to obtain the lock. Then, 5889 * re-check afterwards to ensure nothing has changed in the 5890 * meantime. 5891 * 5892 * set: This is designed to be called from the TX path, after 5893 * a frame has been queued; to see if the swq > 0. 5894 * 5895 * clear: This is designed to be called from the buffer completion point 5896 * (right now it's ath_tx_default_comp()) where the state of 5897 * a software queue has changed. 5898 * 5899 * It makes sense to place it at buffer free / completion rather 5900 * than after each software queue operation, as there's no real 5901 * point in churning the TIM bit as the last frames in the software 5902 * queue are transmitted. If they fail and we retry them, we'd 5903 * just be setting the TIM bit again anyway. 5904 */ 5905 void 5906 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 5907 int enable) 5908 { 5909 #ifdef ATH_SW_PSQ 5910 struct ath_node *an; 5911 struct ath_vap *avp; 5912 5913 /* Don't do this for broadcast/etc frames */ 5914 if (ni == NULL) 5915 return; 5916 5917 an = ATH_NODE(ni); 5918 avp = ATH_VAP(ni->ni_vap); 5919 5920 /* 5921 * And for operating modes without the TIM handler set, let's 5922 * just skip those. 5923 */ 5924 if (avp->av_set_tim == NULL) 5925 return; 5926 5927 ATH_NODE_UNLOCK_ASSERT(an); 5928 5929 if (enable) { 5930 /* 5931 * Don't bother grabbing the lock unless the queue is not 5932 * empty. 5933 */ 5934 if (atomic_load_acq_int(&an->an_swq_depth) == 0) 5935 return; 5936 5937 ATH_NODE_LOCK(an); 5938 if (an->an_is_powersave && 5939 an->an_tim_set == 0 && 5940 atomic_load_acq_int(&an->an_swq_depth) != 0) { 5941 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5942 "%s: an=%p, swq_depth>0, tim_set=0, set!\n", 5943 __func__, an); 5944 an->an_tim_set = 1; 5945 ATH_NODE_UNLOCK(an); 5946 (void) avp->av_set_tim(ni, 1); 5947 } else { 5948 ATH_NODE_UNLOCK(an); 5949 } 5950 } else { 5951 /* 5952 * Don't bother grabbing the lock unless the queue is empty. 5953 */ 5954 if (atomic_load_acq_int(&an->an_swq_depth) != 0) 5955 return; 5956 5957 ATH_NODE_LOCK(an); 5958 if (an->an_is_powersave && 5959 an->an_stack_psq == 0 && 5960 an->an_tim_set == 1 && 5961 atomic_load_acq_int(&an->an_swq_depth) == 0) { 5962 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5963 "%s: an=%p, swq_depth=0, tim_set=1, psq_set=0," 5964 " clear!\n", 5965 __func__, an); 5966 an->an_tim_set = 0; 5967 ATH_NODE_UNLOCK(an); 5968 (void) avp->av_set_tim(ni, 0); 5969 } else { 5970 ATH_NODE_UNLOCK(an); 5971 } 5972 } 5973 #else 5974 return; 5975 #endif /* ATH_SW_PSQ */ 5976 } 5977 5978 MODULE_VERSION(if_ath, 1); 5979 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 5980 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 5981 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 5982 #endif 5983