xref: /freebsd/sys/dev/ath/if_ath.c (revision 2be1a816b9ff69588e55be0a84cbe2a31efc0f2f)
1 /*-
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysctl.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/errno.h>
54 #include <sys/callout.h>
55 #include <sys/bus.h>
56 #include <sys/endian.h>
57 #include <sys/kthread.h>
58 #include <sys/taskqueue.h>
59 
60 #include <machine/bus.h>
61 
62 #include <net/if.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 #include <net/if_arp.h>
67 #include <net/ethernet.h>
68 #include <net/if_llc.h>
69 
70 #include <net80211/ieee80211_var.h>
71 
72 #include <net/bpf.h>
73 
74 #ifdef INET
75 #include <netinet/in.h>
76 #include <netinet/if_ether.h>
77 #endif
78 
79 #include <dev/ath/if_athvar.h>
80 #include <contrib/dev/ath/ah_desc.h>
81 #include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
82 
83 #ifdef ATH_TX99_DIAG
84 #include <dev/ath/ath_tx99/ath_tx99.h>
85 #endif
86 
87 /*
88  * ATH_BCBUF determines the number of vap's that can transmit
89  * beacons and also (currently) the number of vap's that can
90  * have unique mac addresses/bssid.  When staggering beacons
91  * 4 is probably a good max as otherwise the beacons become
92  * very closely spaced and there is limited time for cab q traffic
93  * to go out.  You can burst beacons instead but that is not good
94  * for stations in power save and at some point you really want
95  * another radio (and channel).
96  *
97  * The limit on the number of mac addresses is tied to our use of
98  * the U/L bit and tracking addresses in a byte; it would be
99  * worthwhile to allow more for applications like proxy sta.
100  */
101 CTASSERT(ATH_BCBUF <= 8);
102 
103 /* unaligned little endian access */
104 #define LE_READ_2(p)							\
105 	((u_int16_t)							\
106 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
107 #define LE_READ_4(p)							\
108 	((u_int32_t)							\
109 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
110 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
111 
112 enum {
113 	ATH_LED_TX,
114 	ATH_LED_RX,
115 	ATH_LED_POLL,
116 };
117 
118 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
119 		    const char name[IFNAMSIZ], int unit, int opmode,
120 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
121 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
122 static void	ath_vap_delete(struct ieee80211vap *);
123 static void	ath_init(void *);
124 static void	ath_stop_locked(struct ifnet *);
125 static void	ath_stop(struct ifnet *);
126 static void	ath_start(struct ifnet *);
127 static int	ath_reset(struct ifnet *);
128 static int	ath_reset_vap(struct ieee80211vap *, u_long);
129 static int	ath_media_change(struct ifnet *);
130 static void	ath_watchdog(struct ifnet *);
131 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
132 static void	ath_fatal_proc(void *, int);
133 static void	ath_rxorn_proc(void *, int);
134 static void	ath_bmiss_vap(struct ieee80211vap *);
135 static void	ath_bmiss_proc(void *, int);
136 static int	ath_key_alloc(struct ieee80211vap *,
137 			const struct ieee80211_key *,
138 			ieee80211_keyix *, ieee80211_keyix *);
139 static int	ath_key_delete(struct ieee80211vap *,
140 			const struct ieee80211_key *);
141 static int	ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
142 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
143 static void	ath_key_update_begin(struct ieee80211vap *);
144 static void	ath_key_update_end(struct ieee80211vap *);
145 static void	ath_update_mcast(struct ifnet *);
146 static void	ath_update_promisc(struct ifnet *);
147 static void	ath_mode_init(struct ath_softc *);
148 static void	ath_setslottime(struct ath_softc *);
149 static void	ath_updateslot(struct ifnet *);
150 static int	ath_beaconq_setup(struct ath_hal *);
151 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
152 static void	ath_beacon_update(struct ieee80211vap *, int item);
153 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
154 static void	ath_beacon_proc(void *, int);
155 static struct ath_buf *ath_beacon_generate(struct ath_softc *,
156 			struct ieee80211vap *);
157 static void	ath_bstuck_proc(void *, int);
158 static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
159 static void	ath_beacon_free(struct ath_softc *);
160 static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
161 static void	ath_descdma_cleanup(struct ath_softc *sc,
162 			struct ath_descdma *, ath_bufhead *);
163 static int	ath_desc_alloc(struct ath_softc *);
164 static void	ath_desc_free(struct ath_softc *);
165 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
166 static void	ath_node_free(struct ieee80211_node *);
167 static void	ath_node_getsignal(const struct ieee80211_node *,
168 			int8_t *, int8_t *);
169 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
170 static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
171 			int subtype, int rssi, int noise, u_int32_t rstamp);
172 static void	ath_setdefantenna(struct ath_softc *, u_int);
173 static void	ath_rx_proc(void *, int);
174 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
175 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
176 static int	ath_tx_setup(struct ath_softc *, int, int);
177 static int	ath_wme_update(struct ieee80211com *);
178 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
179 static void	ath_tx_cleanup(struct ath_softc *);
180 static void	ath_freetx(struct mbuf *);
181 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
182 			     struct ath_buf *, struct mbuf *);
183 static void	ath_tx_proc_q0(void *, int);
184 static void	ath_tx_proc_q0123(void *, int);
185 static void	ath_tx_proc(void *, int);
186 static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
187 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
188 static void	ath_draintxq(struct ath_softc *);
189 static void	ath_stoprecv(struct ath_softc *);
190 static int	ath_startrecv(struct ath_softc *);
191 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
192 static void	ath_scan_start(struct ieee80211com *);
193 static void	ath_scan_end(struct ieee80211com *);
194 static void	ath_set_channel(struct ieee80211com *);
195 static void	ath_calibrate(void *);
196 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
197 static void	ath_setup_stationkey(struct ieee80211_node *);
198 static void	ath_newassoc(struct ieee80211_node *, int);
199 static int	ath_setregdomain(struct ieee80211com *,
200 		    struct ieee80211_regdomain *, int,
201 		    struct ieee80211_channel []);
202 static void	ath_getradiocaps(struct ieee80211com *, int *,
203 		    struct ieee80211_channel []);
204 static int	ath_getchannels(struct ath_softc *);
205 static void	ath_led_event(struct ath_softc *, int);
206 
207 static int	ath_rate_setup(struct ath_softc *, u_int mode);
208 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
209 
210 static void	ath_sysctlattach(struct ath_softc *);
211 static int	ath_raw_xmit(struct ieee80211_node *,
212 			struct mbuf *, const struct ieee80211_bpf_params *);
213 static void	ath_bpfattach(struct ath_softc *);
214 static void	ath_announce(struct ath_softc *);
215 
216 SYSCTL_DECL(_hw_ath);
217 
218 /* XXX validate sysctl values */
219 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
220 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
221 	    0, "chip calibration interval (secs)");
222 
223 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
224 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
225 	    0, "rx buffers allocated");
226 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
227 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
228 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
229 	    0, "tx buffers allocated");
230 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
231 
232 #ifdef ATH_DEBUG
233 static	int ath_debug = 0;
234 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
235 	    0, "control debugging printfs");
236 TUNABLE_INT("hw.ath.debug", &ath_debug);
237 enum {
238 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
239 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
240 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
241 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
242 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
243 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
244 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
245 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
246 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
247 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
248 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
249 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
250 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
251 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
252 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
253 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
254 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
255 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
256 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
257 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
258 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
259 	ATH_DEBUG_ANY		= 0xffffffff
260 };
261 #define	IFF_DUMPPKTS(sc, m) \
262 	((sc->sc_debug & (m)) || \
263 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
264 #define	DPRINTF(sc, m, fmt, ...) do {				\
265 	if (sc->sc_debug & (m))					\
266 		printf(fmt, __VA_ARGS__);			\
267 } while (0)
268 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
269 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
270 		ath_keyprint(sc, __func__, ix, hk, mac);	\
271 } while (0)
272 static	void ath_printrxbuf(const struct ath_buf *bf, u_int ix, int);
273 static	void ath_printtxbuf(const struct ath_buf *bf, u_int qnum, u_int ix, int done);
274 #else
275 #define	IFF_DUMPPKTS(sc, m) \
276 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
277 #define	DPRINTF(sc, m, fmt, ...) do {				\
278 	(void) sc;						\
279 } while (0)
280 #define	KEYPRINTF(sc, k, ix, mac) do {				\
281 	(void) sc;						\
282 } while (0)
283 #endif
284 
285 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
286 
287 int
288 ath_attach(u_int16_t devid, struct ath_softc *sc)
289 {
290 	struct ifnet *ifp;
291 	struct ieee80211com *ic;
292 	struct ath_hal *ah = NULL;
293 	HAL_STATUS status;
294 	int error = 0, i;
295 
296 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
297 
298 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
299 	if (ifp == NULL) {
300 		device_printf(sc->sc_dev, "can not if_alloc()\n");
301 		error = ENOSPC;
302 		goto bad;
303 	}
304 	ic = ifp->if_l2com;
305 
306 	/* set these up early for if_printf use */
307 	if_initname(ifp, device_get_name(sc->sc_dev),
308 		device_get_unit(sc->sc_dev));
309 
310 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
311 	if (ah == NULL) {
312 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
313 			status);
314 		error = ENXIO;
315 		goto bad;
316 	}
317 	if (ah->ah_abi != HAL_ABI_VERSION) {
318 		if_printf(ifp, "HAL ABI mismatch detected "
319 			"(HAL:0x%x != driver:0x%x)\n",
320 			ah->ah_abi, HAL_ABI_VERSION);
321 		error = ENXIO;
322 		goto bad;
323 	}
324 	sc->sc_ah = ah;
325 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
326 
327 	/*
328 	 * Check if the MAC has multi-rate retry support.
329 	 * We do this by trying to setup a fake extended
330 	 * descriptor.  MAC's that don't have support will
331 	 * return false w/o doing anything.  MAC's that do
332 	 * support it will return true w/o doing anything.
333 	 */
334 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
335 
336 	/*
337 	 * Check if the device has hardware counters for PHY
338 	 * errors.  If so we need to enable the MIB interrupt
339 	 * so we can act on stat triggers.
340 	 */
341 	if (ath_hal_hwphycounters(ah))
342 		sc->sc_needmib = 1;
343 
344 	/*
345 	 * Get the hardware key cache size.
346 	 */
347 	sc->sc_keymax = ath_hal_keycachesize(ah);
348 	if (sc->sc_keymax > ATH_KEYMAX) {
349 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
350 			ATH_KEYMAX, sc->sc_keymax);
351 		sc->sc_keymax = ATH_KEYMAX;
352 	}
353 	/*
354 	 * Reset the key cache since some parts do not
355 	 * reset the contents on initial power up.
356 	 */
357 	for (i = 0; i < sc->sc_keymax; i++)
358 		ath_hal_keyreset(ah, i);
359 
360 	/*
361 	 * Collect the default channel list.
362 	 */
363 	error = ath_getchannels(sc);
364 	if (error != 0)
365 		goto bad;
366 
367 	/*
368 	 * Setup rate tables for all potential media types.
369 	 */
370 	ath_rate_setup(sc, IEEE80211_MODE_11A);
371 	ath_rate_setup(sc, IEEE80211_MODE_11B);
372 	ath_rate_setup(sc, IEEE80211_MODE_11G);
373 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
374 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
375 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
376 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
377 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
378 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
379 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
380 
381 	/* NB: setup here so ath_rate_update is happy */
382 	ath_setcurmode(sc, IEEE80211_MODE_11A);
383 
384 	/*
385 	 * Allocate tx+rx descriptors and populate the lists.
386 	 */
387 	error = ath_desc_alloc(sc);
388 	if (error != 0) {
389 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
390 		goto bad;
391 	}
392 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
393 
394 	ATH_TXBUF_LOCK_INIT(sc);
395 
396 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
397 		taskqueue_thread_enqueue, &sc->sc_tq);
398 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
399 		"%s taskq", ifp->if_xname);
400 
401 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
402 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
403 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
404 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
405 
406 	/*
407 	 * Allocate hardware transmit queues: one queue for
408 	 * beacon frames and one data queue for each QoS
409 	 * priority.  Note that the hal handles reseting
410 	 * these queues at the needed time.
411 	 *
412 	 * XXX PS-Poll
413 	 */
414 	sc->sc_bhalq = ath_beaconq_setup(ah);
415 	if (sc->sc_bhalq == (u_int) -1) {
416 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
417 		error = EIO;
418 		goto bad2;
419 	}
420 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
421 	if (sc->sc_cabq == NULL) {
422 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
423 		error = EIO;
424 		goto bad2;
425 	}
426 	/* NB: insure BK queue is the lowest priority h/w queue */
427 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
428 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
429 			ieee80211_wme_acnames[WME_AC_BK]);
430 		error = EIO;
431 		goto bad2;
432 	}
433 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
434 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
435 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
436 		/*
437 		 * Not enough hardware tx queues to properly do WME;
438 		 * just punt and assign them all to the same h/w queue.
439 		 * We could do a better job of this if, for example,
440 		 * we allocate queues when we switch from station to
441 		 * AP mode.
442 		 */
443 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
444 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
445 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
446 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
447 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
448 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
449 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
450 	}
451 
452 	/*
453 	 * Special case certain configurations.  Note the
454 	 * CAB queue is handled by these specially so don't
455 	 * include them when checking the txq setup mask.
456 	 */
457 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
458 	case 0x01:
459 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
460 		break;
461 	case 0x0f:
462 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
463 		break;
464 	default:
465 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
466 		break;
467 	}
468 
469 	/*
470 	 * Setup rate control.  Some rate control modules
471 	 * call back to change the anntena state so expose
472 	 * the necessary entry points.
473 	 * XXX maybe belongs in struct ath_ratectrl?
474 	 */
475 	sc->sc_setdefantenna = ath_setdefantenna;
476 	sc->sc_rc = ath_rate_attach(sc);
477 	if (sc->sc_rc == NULL) {
478 		error = EIO;
479 		goto bad2;
480 	}
481 
482 	sc->sc_blinking = 0;
483 	sc->sc_ledstate = 1;
484 	sc->sc_ledon = 0;			/* low true */
485 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
486 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
487 	/*
488 	 * Auto-enable soft led processing for IBM cards and for
489 	 * 5211 minipci cards.  Users can also manually enable/disable
490 	 * support with a sysctl.
491 	 */
492 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
493 	if (sc->sc_softled) {
494 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
495 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
496 	}
497 
498 	ifp->if_softc = sc;
499 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
500 	ifp->if_start = ath_start;
501 	ifp->if_watchdog = ath_watchdog;
502 	ifp->if_ioctl = ath_ioctl;
503 	ifp->if_init = ath_init;
504 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
505 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
506 	IFQ_SET_READY(&ifp->if_snd);
507 
508 	ic->ic_ifp = ifp;
509 	/* XXX not right but it's not used anywhere important */
510 	ic->ic_phytype = IEEE80211_T_OFDM;
511 	ic->ic_opmode = IEEE80211_M_STA;
512 	ic->ic_caps =
513 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
514 		| IEEE80211_C_HOSTAP		/* hostap mode */
515 		| IEEE80211_C_MONITOR		/* monitor mode */
516 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
517 		| IEEE80211_C_WDS		/* 4-address traffic works */
518 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
519 		| IEEE80211_C_SHSLOT		/* short slot time supported */
520 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
521 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
522 		| IEEE80211_C_TXFRAG		/* handle tx frags */
523 		;
524 	/*
525 	 * Query the hal to figure out h/w crypto support.
526 	 */
527 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
528 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
529 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
530 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
531 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
532 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
533 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
534 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
535 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
536 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
537 		/*
538 		 * Check if h/w does the MIC and/or whether the
539 		 * separate key cache entries are required to
540 		 * handle both tx+rx MIC keys.
541 		 */
542 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
543 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
544 		/*
545 		 * If the h/w supports storing tx+rx MIC keys
546 		 * in one cache slot automatically enable use.
547 		 */
548 		if (ath_hal_hastkipsplit(ah) ||
549 		    !ath_hal_settkipsplit(ah, AH_FALSE))
550 			sc->sc_splitmic = 1;
551 		/*
552 		 * If the h/w can do TKIP MIC together with WME then
553 		 * we use it; otherwise we force the MIC to be done
554 		 * in software by the net80211 layer.
555 		 */
556 		if (ath_hal_haswmetkipmic(ah))
557 			sc->sc_wmetkipmic = 1;
558 	}
559 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
560 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
561 	/*
562 	 * Mark key cache slots associated with global keys
563 	 * as in use.  If we knew TKIP was not to be used we
564 	 * could leave the +32, +64, and +32+64 slots free.
565 	 */
566 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
567 		setbit(sc->sc_keymap, i);
568 		setbit(sc->sc_keymap, i+64);
569 		if (sc->sc_splitmic) {
570 			setbit(sc->sc_keymap, i+32);
571 			setbit(sc->sc_keymap, i+32+64);
572 		}
573 	}
574 	/*
575 	 * TPC support can be done either with a global cap or
576 	 * per-packet support.  The latter is not available on
577 	 * all parts.  We're a bit pedantic here as all parts
578 	 * support a global cap.
579 	 */
580 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
581 		ic->ic_caps |= IEEE80211_C_TXPMGT;
582 
583 	/*
584 	 * Mark WME capability only if we have sufficient
585 	 * hardware queues to do proper priority scheduling.
586 	 */
587 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
588 		ic->ic_caps |= IEEE80211_C_WME;
589 	/*
590 	 * Check for misc other capabilities.
591 	 */
592 	if (ath_hal_hasbursting(ah))
593 		ic->ic_caps |= IEEE80211_C_BURST;
594 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
595 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
596 	if (ath_hal_hasfastframes(ah))
597 		ic->ic_caps |= IEEE80211_C_FF;
598 	if (ath_hal_getwirelessmodes(ah, ic->ic_regdomain.country) & (HAL_MODE_108G|HAL_MODE_TURBO))
599 		ic->ic_caps |= IEEE80211_C_TURBOP;
600 
601 	/*
602 	 * Indicate we need the 802.11 header padded to a
603 	 * 32-bit boundary for 4-address and QoS frames.
604 	 */
605 	ic->ic_flags |= IEEE80211_F_DATAPAD;
606 
607 	/*
608 	 * Query the hal about antenna support.
609 	 */
610 	sc->sc_defant = ath_hal_getdefantenna(ah);
611 
612 	/*
613 	 * Not all chips have the VEOL support we want to
614 	 * use with IBSS beacons; check here for it.
615 	 */
616 	sc->sc_hasveol = ath_hal_hasveol(ah);
617 
618 	/* get mac address from hardware */
619 	ath_hal_getmac(ah, ic->ic_myaddr);
620 	if (sc->sc_hasbmask)
621 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
622 
623 	/* NB: used to size node table key mapping array */
624 	ic->ic_max_keyix = sc->sc_keymax;
625 	/* call MI attach routine. */
626 	ieee80211_ifattach(ic);
627 	ic->ic_setregdomain = ath_setregdomain;
628 	ic->ic_getradiocaps = ath_getradiocaps;
629 	sc->sc_opmode = HAL_M_STA;
630 
631 	/* override default methods */
632 	ic->ic_newassoc = ath_newassoc;
633 	ic->ic_updateslot = ath_updateslot;
634 	ic->ic_wme.wme_update = ath_wme_update;
635 	ic->ic_vap_create = ath_vap_create;
636 	ic->ic_vap_delete = ath_vap_delete;
637 	ic->ic_raw_xmit = ath_raw_xmit;
638 	ic->ic_update_mcast = ath_update_mcast;
639 	ic->ic_update_promisc = ath_update_promisc;
640 	ic->ic_node_alloc = ath_node_alloc;
641 	sc->sc_node_free = ic->ic_node_free;
642 	ic->ic_node_free = ath_node_free;
643 	ic->ic_node_getsignal = ath_node_getsignal;
644 	ic->ic_scan_start = ath_scan_start;
645 	ic->ic_scan_end = ath_scan_end;
646 	ic->ic_set_channel = ath_set_channel;
647 
648 	ath_bpfattach(sc);
649 	/*
650 	 * Setup dynamic sysctl's now that country code and
651 	 * regdomain are available from the hal.
652 	 */
653 	ath_sysctlattach(sc);
654 
655 	if (bootverbose)
656 		ieee80211_announce(ic);
657 	ath_announce(sc);
658 	return 0;
659 bad2:
660 	ath_tx_cleanup(sc);
661 	ath_desc_free(sc);
662 bad:
663 	if (ah)
664 		ath_hal_detach(ah);
665 	if (ifp != NULL)
666 		if_free(ifp);
667 	sc->sc_invalid = 1;
668 	return error;
669 }
670 
671 int
672 ath_detach(struct ath_softc *sc)
673 {
674 	struct ifnet *ifp = sc->sc_ifp;
675 
676 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
677 		__func__, ifp->if_flags);
678 
679 	ath_stop(ifp);
680 	bpfdetach(ifp);
681 	/*
682 	 * NB: the order of these is important:
683 	 * o call the 802.11 layer before detaching the hal to
684 	 *   insure callbacks into the driver to delete global
685 	 *   key cache entries can be handled
686 	 * o reclaim the tx queue data structures after calling
687 	 *   the 802.11 layer as we'll get called back to reclaim
688 	 *   node state and potentially want to use them
689 	 * o to cleanup the tx queues the hal is called, so detach
690 	 *   it last
691 	 * Other than that, it's straightforward...
692 	 */
693 	ieee80211_ifdetach(ifp->if_l2com);
694 #ifdef ATH_TX99_DIAG
695 	if (sc->sc_tx99 != NULL)
696 		sc->sc_tx99->detach(sc->sc_tx99);
697 #endif
698 	taskqueue_free(sc->sc_tq);
699 	ath_rate_detach(sc->sc_rc);
700 	ath_desc_free(sc);
701 	ath_tx_cleanup(sc);
702 	ath_hal_detach(sc->sc_ah);
703 	if_free(ifp);
704 
705 	return 0;
706 }
707 
708 /*
709  * MAC address handling for multiple BSS on the same radio.
710  * The first vap uses the MAC address from the EEPROM.  For
711  * subsequent vap's we set the U/L bit (bit 1) in the MAC
712  * address and use the next six bits as an index.
713  */
714 static void
715 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
716 {
717 	int i;
718 
719 	if (clone && sc->sc_hasbmask) {
720 		/* NB: we only do this if h/w supports multiple bssid */
721 		for (i = 0; i < 8; i++)
722 			if ((sc->sc_bssidmask & (1<<i)) == 0)
723 				break;
724 		if (i != 0)
725 			mac[0] |= (i << 2)|0x2;
726 	} else
727 		i = 0;
728 	sc->sc_bssidmask |= 1<<i;
729 	sc->sc_hwbssidmask[0] &= ~mac[0];
730 	if (i == 0)
731 		sc->sc_nbssid0++;
732 }
733 
734 static void
735 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
736 {
737 	int i = mac[0] >> 2;
738 	uint8_t mask;
739 
740 	if (i != 0 || --sc->sc_nbssid0 == 0) {
741 		sc->sc_bssidmask &= ~(1<<i);
742 		/* recalculate bssid mask from remaining addresses */
743 		mask = 0xff;
744 		for (i = 1; i < 8; i++)
745 			if (sc->sc_bssidmask & (1<<i))
746 				mask &= ~((i<<2)|0x2);
747 		sc->sc_hwbssidmask[0] |= mask;
748 	}
749 }
750 
751 /*
752  * Assign a beacon xmit slot.  We try to space out
753  * assignments so when beacons are staggered the
754  * traffic coming out of the cab q has maximal time
755  * to go out before the next beacon is scheduled.
756  */
757 static int
758 assign_bslot(struct ath_softc *sc)
759 {
760 	u_int slot, free;
761 
762 	free = 0;
763 	for (slot = 0; slot < ATH_BCBUF; slot++)
764 		if (sc->sc_bslot[slot] == NULL) {
765 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
766 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
767 				return slot;
768 			free = slot;
769 			/* NB: keep looking for a double slot */
770 		}
771 	return free;
772 }
773 
774 static struct ieee80211vap *
775 ath_vap_create(struct ieee80211com *ic,
776 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
777 	const uint8_t bssid[IEEE80211_ADDR_LEN],
778 	const uint8_t mac0[IEEE80211_ADDR_LEN])
779 {
780 	struct ath_softc *sc = ic->ic_ifp->if_softc;
781 	struct ath_vap *avp;
782 	struct ieee80211vap *vap;
783 	uint8_t mac[IEEE80211_ADDR_LEN];
784 	int ic_opmode, needbeacon, error;
785 
786 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
787 	    M_80211_VAP, M_WAITOK | M_ZERO);
788 	needbeacon = 0;
789 	IEEE80211_ADDR_COPY(mac, mac0);
790 
791 	ATH_LOCK(sc);
792 	switch (opmode) {
793 	case IEEE80211_M_STA:
794 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 sta for now */
795 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
796 			goto bad;
797 		}
798 		if (sc->sc_nvaps) {
799 			/*
800 			 * When there are multiple vaps we must fall
801 			 * back to s/w beacon miss handling.
802 			 */
803 			flags |= IEEE80211_CLONE_NOBEACONS;
804 		}
805 		if (flags & IEEE80211_CLONE_NOBEACONS) {
806 			sc->sc_swbmiss = 1;
807 			ic_opmode = IEEE80211_M_HOSTAP;
808 		} else
809 			ic_opmode = opmode;
810 		break;
811 	case IEEE80211_M_IBSS:
812 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
813 			device_printf(sc->sc_dev,
814 			    "only 1 ibss vap supported\n");
815 			goto bad;
816 		}
817 		ic_opmode = opmode;
818 		needbeacon = 1;
819 		break;
820 	case IEEE80211_M_AHDEMO:
821 		/* fall thru... */
822 	case IEEE80211_M_MONITOR:
823 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
824 			/* XXX not right for monitor mode */
825 			ic_opmode = ic->ic_opmode;
826 		} else
827 			ic_opmode = opmode;
828 		break;
829 	case IEEE80211_M_HOSTAP:
830 		needbeacon = 1;
831 		/* fall thru... */
832 	case IEEE80211_M_WDS:
833 		if (sc->sc_nvaps && ic->ic_opmode == IEEE80211_M_STA) {
834 			device_printf(sc->sc_dev,
835 			    "wds not supported in sta mode\n");
836 			goto bad;
837 		}
838 		if (opmode == IEEE80211_M_WDS) {
839 			/*
840 			 * Silently remove any request for a unique
841 			 * bssid; WDS vap's always share the local
842 			 * mac address.
843 			 */
844 			flags &= ~IEEE80211_CLONE_BSSID;
845 		}
846 		ic_opmode = IEEE80211_M_HOSTAP;
847 		break;
848 	default:
849 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
850 		goto bad;
851 	}
852 	/*
853 	 * Check that a beacon buffer is available; the code below assumes it.
854 	 */
855 	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
856 		device_printf(sc->sc_dev, "no beacon buffer available\n");
857 		goto bad;
858 	}
859 
860 	/* STA, AHDEMO? */
861 	if (opmode == IEEE80211_M_HOSTAP) {
862 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
863 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
864 	}
865 
866 	vap = &avp->av_vap;
867 	/* XXX can't hold mutex across if_alloc */
868 	ATH_UNLOCK(sc);
869 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
870 	    bssid, mac);
871 	ATH_LOCK(sc);
872 	if (error != 0) {
873 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
874 		    __func__, error);
875 		goto bad2;
876 	}
877 
878 	/* h/w crypto support */
879 	vap->iv_key_alloc = ath_key_alloc;
880 	vap->iv_key_delete = ath_key_delete;
881 	vap->iv_key_set = ath_key_set;
882 	vap->iv_key_update_begin = ath_key_update_begin;
883 	vap->iv_key_update_end = ath_key_update_end;
884 
885 	/* override various methods */
886 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
887 	vap->iv_recv_mgmt = ath_recv_mgmt;
888 	vap->iv_reset = ath_reset_vap;
889 	vap->iv_update_beacon = ath_beacon_update;
890 	avp->av_newstate = vap->iv_newstate;
891 	vap->iv_newstate = ath_newstate;
892 	avp->av_bmiss = vap->iv_bmiss;
893 	vap->iv_bmiss = ath_bmiss_vap;
894 
895 	avp->av_bslot = -1;
896 	if (needbeacon) {
897 		/*
898 		 * Allocate beacon state and setup the q for buffered
899 		 * multicast frames.  We know a beacon buffer is
900 		 * available because we checked above.
901 		 */
902 		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
903 		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
904 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
905 			/*
906 			 * Assign the vap to a beacon xmit slot.  As above
907 			 * this cannot fail to find a free one.
908 			 */
909 			avp->av_bslot = assign_bslot(sc);
910 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
911 			    ("beacon slot %u not empty", avp->av_bslot));
912 			sc->sc_bslot[avp->av_bslot] = vap;
913 			sc->sc_nbcnvaps++;
914 		}
915 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
916 			/*
917 			 * Multple vaps are to transmit beacons and we
918 			 * have h/w support for TSF adjusting; enable
919 			 * use of staggered beacons.
920 			 */
921 			sc->sc_stagbeacons = 1;
922 		}
923 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
924 	}
925 
926 	ic->ic_opmode = ic_opmode;
927 	if (opmode != IEEE80211_M_WDS) {
928 		sc->sc_nvaps++;
929 		if (opmode == IEEE80211_M_STA)
930 			sc->sc_nstavaps++;
931 	}
932 	switch (ic_opmode) {
933 	case IEEE80211_M_IBSS:
934 		sc->sc_opmode = HAL_M_IBSS;
935 		break;
936 	case IEEE80211_M_STA:
937 		sc->sc_opmode = HAL_M_STA;
938 		break;
939 	case IEEE80211_M_AHDEMO:
940 	case IEEE80211_M_HOSTAP:
941 		sc->sc_opmode = HAL_M_HOSTAP;
942 		break;
943 	case IEEE80211_M_MONITOR:
944 		sc->sc_opmode = HAL_M_MONITOR;
945 		break;
946 	default:
947 		/* XXX should not happen */
948 		break;
949 	}
950 	if (sc->sc_hastsfadd) {
951 		/*
952 		 * Configure whether or not TSF adjust should be done.
953 		 */
954 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
955 	}
956 	ATH_UNLOCK(sc);
957 
958 	/* complete setup */
959 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
960 	return vap;
961 bad2:
962 	reclaim_address(sc, mac);
963 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
964 bad:
965 	free(avp, M_80211_VAP);
966 	ATH_UNLOCK(sc);
967 	return NULL;
968 }
969 
970 static void
971 ath_vap_delete(struct ieee80211vap *vap)
972 {
973 	struct ieee80211com *ic = vap->iv_ic;
974 	struct ifnet *ifp = ic->ic_ifp;
975 	struct ath_softc *sc = ifp->if_softc;
976 	struct ath_hal *ah = sc->sc_ah;
977 	struct ath_vap *avp = ATH_VAP(vap);
978 
979 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
980 		/*
981 		 * Quiesce the hardware while we remove the vap.  In
982 		 * particular we need to reclaim all references to
983 		 * the vap state by any frames pending on the tx queues.
984 		 */
985 		ath_hal_intrset(ah, 0);		/* disable interrupts */
986 		ath_draintxq(sc);		/* stop xmit side */
987 		ath_stoprecv(sc);		/* stop recv side */
988 	}
989 
990 	ieee80211_vap_detach(vap);
991 	ATH_LOCK(sc);
992 	/*
993 	 * Reclaim beacon state.  Note this must be done before
994 	 * the vap instance is reclaimed as we may have a reference
995 	 * to it in the buffer for the beacon frame.
996 	 */
997 	if (avp->av_bcbuf != NULL) {
998 		if (avp->av_bslot != -1) {
999 			sc->sc_bslot[avp->av_bslot] = NULL;
1000 			sc->sc_nbcnvaps--;
1001 		}
1002 		ath_beacon_return(sc, avp->av_bcbuf);
1003 		avp->av_bcbuf = NULL;
1004 		if (sc->sc_nbcnvaps == 0) {
1005 			sc->sc_stagbeacons = 0;
1006 			if (sc->sc_hastsfadd)
1007 				ath_hal_settsfadjust(sc->sc_ah, 0);
1008 		}
1009 		/*
1010 		 * Reclaim any pending mcast frames for the vap.
1011 		 */
1012 		ath_tx_draintxq(sc, &avp->av_mcastq);
1013 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1014 	}
1015 	/*
1016 	 * Update bookkeeping.
1017 	 */
1018 	if (vap->iv_opmode == IEEE80211_M_STA) {
1019 		sc->sc_nstavaps--;
1020 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1021 			sc->sc_swbmiss = 0;
1022 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
1023 		reclaim_address(sc, vap->iv_myaddr);
1024 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1025 	}
1026 	if (vap->iv_opmode != IEEE80211_M_WDS)
1027 		sc->sc_nvaps--;
1028 	ATH_UNLOCK(sc);
1029 	free(avp, M_80211_VAP);
1030 
1031 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1032 		/*
1033 		 * Restart rx+tx machines if still running (RUNNING will
1034 		 * be reset if we just destroyed the last vap).
1035 		 */
1036 		if (ath_startrecv(sc) != 0)
1037 			if_printf(ifp, "%s: unable to restart recv logic\n",
1038 			    __func__);
1039 		if (sc->sc_beacons)
1040 			ath_beacon_config(sc, NULL);
1041 		ath_hal_intrset(ah, sc->sc_imask);
1042 	}
1043 }
1044 
1045 void
1046 ath_suspend(struct ath_softc *sc)
1047 {
1048 	struct ifnet *ifp = sc->sc_ifp;
1049 
1050 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1051 		__func__, ifp->if_flags);
1052 
1053 	ath_stop(ifp);
1054 }
1055 
1056 void
1057 ath_resume(struct ath_softc *sc)
1058 {
1059 	struct ifnet *ifp = sc->sc_ifp;
1060 
1061 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1062 		__func__, ifp->if_flags);
1063 
1064 	if (ifp->if_flags & IFF_UP) {
1065 		ath_init(sc);
1066 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1067 			ath_start(ifp);
1068 	}
1069 	if (sc->sc_softled) {
1070 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
1071 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
1072 	}
1073 }
1074 
1075 void
1076 ath_shutdown(struct ath_softc *sc)
1077 {
1078 	struct ifnet *ifp = sc->sc_ifp;
1079 
1080 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1081 		__func__, ifp->if_flags);
1082 
1083 	ath_stop(ifp);
1084 }
1085 
1086 /*
1087  * Interrupt handler.  Most of the actual processing is deferred.
1088  */
1089 void
1090 ath_intr(void *arg)
1091 {
1092 	struct ath_softc *sc = arg;
1093 	struct ifnet *ifp = sc->sc_ifp;
1094 	struct ath_hal *ah = sc->sc_ah;
1095 	HAL_INT status;
1096 
1097 	if (sc->sc_invalid) {
1098 		/*
1099 		 * The hardware is not ready/present, don't touch anything.
1100 		 * Note this can happen early on if the IRQ is shared.
1101 		 */
1102 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1103 		return;
1104 	}
1105 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1106 		return;
1107 	if ((ifp->if_flags & IFF_UP) == 0 ||
1108 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1109 		HAL_INT status;
1110 
1111 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1112 			__func__, ifp->if_flags);
1113 		ath_hal_getisr(ah, &status);	/* clear ISR */
1114 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1115 		return;
1116 	}
1117 	/*
1118 	 * Figure out the reason(s) for the interrupt.  Note
1119 	 * that the hal returns a pseudo-ISR that may include
1120 	 * bits we haven't explicitly enabled so we mask the
1121 	 * value to insure we only process bits we requested.
1122 	 */
1123 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1124 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1125 	status &= sc->sc_imask;			/* discard unasked for bits */
1126 	if (status & HAL_INT_FATAL) {
1127 		sc->sc_stats.ast_hardware++;
1128 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1129 		ath_fatal_proc(sc, 0);
1130 	} else if (status & HAL_INT_RXORN) {
1131 		sc->sc_stats.ast_rxorn++;
1132 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1133 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rxorntask);
1134 	} else {
1135 		if (status & HAL_INT_SWBA) {
1136 			/*
1137 			 * Software beacon alert--time to send a beacon.
1138 			 * Handle beacon transmission directly; deferring
1139 			 * this is too slow to meet timing constraints
1140 			 * under load.
1141 			 */
1142 			ath_beacon_proc(sc, 0);
1143 		}
1144 		if (status & HAL_INT_RXEOL) {
1145 			/*
1146 			 * NB: the hardware should re-read the link when
1147 			 *     RXE bit is written, but it doesn't work at
1148 			 *     least on older hardware revs.
1149 			 */
1150 			sc->sc_stats.ast_rxeol++;
1151 			sc->sc_rxlink = NULL;
1152 		}
1153 		if (status & HAL_INT_TXURN) {
1154 			sc->sc_stats.ast_txurn++;
1155 			/* bump tx trigger level */
1156 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1157 		}
1158 		if (status & HAL_INT_RX)
1159 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1160 		if (status & HAL_INT_TX)
1161 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1162 		if (status & HAL_INT_BMISS) {
1163 			sc->sc_stats.ast_bmiss++;
1164 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1165 		}
1166 		if (status & HAL_INT_MIB) {
1167 			sc->sc_stats.ast_mib++;
1168 			/*
1169 			 * Disable interrupts until we service the MIB
1170 			 * interrupt; otherwise it will continue to fire.
1171 			 */
1172 			ath_hal_intrset(ah, 0);
1173 			/*
1174 			 * Let the hal handle the event.  We assume it will
1175 			 * clear whatever condition caused the interrupt.
1176 			 */
1177 			ath_hal_mibevent(ah, &sc->sc_halstats);
1178 			ath_hal_intrset(ah, sc->sc_imask);
1179 		}
1180 	}
1181 }
1182 
1183 static void
1184 ath_fatal_proc(void *arg, int pending)
1185 {
1186 	struct ath_softc *sc = arg;
1187 	struct ifnet *ifp = sc->sc_ifp;
1188 	u_int32_t *state;
1189 	u_int32_t len;
1190 	void *sp;
1191 
1192 	if_printf(ifp, "hardware error; resetting\n");
1193 	/*
1194 	 * Fatal errors are unrecoverable.  Typically these
1195 	 * are caused by DMA errors.  Collect h/w state from
1196 	 * the hal so we can diagnose what's going on.
1197 	 */
1198 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1199 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1200 		state = sp;
1201 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1202 		    state[0], state[1] , state[2], state[3],
1203 		    state[4], state[5]);
1204 	}
1205 	ath_reset(ifp);
1206 }
1207 
1208 static void
1209 ath_rxorn_proc(void *arg, int pending)
1210 {
1211 	struct ath_softc *sc = arg;
1212 	struct ifnet *ifp = sc->sc_ifp;
1213 
1214 	if_printf(ifp, "rx FIFO overrun; resetting\n");
1215 	ath_reset(ifp);
1216 }
1217 
1218 static void
1219 ath_bmiss_vap(struct ieee80211vap *vap)
1220 {
1221 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
1222 	u_int64_t lastrx = sc->sc_lastrx;
1223 	u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1224 	u_int bmisstimeout =
1225 		vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1226 
1227 	DPRINTF(sc, ATH_DEBUG_BEACON,
1228 	    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1229 	    __func__, (unsigned long long) tsf,
1230 	    (unsigned long long)(tsf - lastrx),
1231 	    (unsigned long long) lastrx, bmisstimeout);
1232 	/*
1233 	 * Workaround phantom bmiss interrupts by sanity-checking
1234 	 * the time of our last rx'd frame.  If it is within the
1235 	 * beacon miss interval then ignore the interrupt.  If it's
1236 	 * truly a bmiss we'll get another interrupt soon and that'll
1237 	 * be dispatched up for processing.
1238 	 */
1239 	if (tsf - lastrx > bmisstimeout)
1240 		ATH_VAP(vap)->av_bmiss(vap);
1241 	else
1242 		sc->sc_stats.ast_bmiss_phantom++;
1243 }
1244 
1245 static void
1246 ath_bmiss_proc(void *arg, int pending)
1247 {
1248 	struct ath_softc *sc = arg;
1249 	struct ifnet *ifp = sc->sc_ifp;
1250 
1251 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1252 	ieee80211_beacon_miss(ifp->if_l2com);
1253 }
1254 
1255 /*
1256  * Convert net80211 channel to a HAL channel with the flags
1257  * constrained to reflect the current operating mode and
1258  * the frequency possibly mapped for GSM channels.
1259  */
1260 static void
1261 ath_mapchan(HAL_CHANNEL *hc, const struct ieee80211_channel *chan)
1262 {
1263 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1264 	static const u_int modeflags[IEEE80211_MODE_MAX] = {
1265 		0,			/* IEEE80211_MODE_AUTO */
1266 		CHANNEL_A,		/* IEEE80211_MODE_11A */
1267 		CHANNEL_B,		/* IEEE80211_MODE_11B */
1268 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
1269 		0,			/* IEEE80211_MODE_FH */
1270 		CHANNEL_108A,		/* IEEE80211_MODE_TURBO_A */
1271 		CHANNEL_108G,		/* IEEE80211_MODE_TURBO_G */
1272 		CHANNEL_ST,		/* IEEE80211_MODE_STURBO_A */
1273 		CHANNEL_A,		/* IEEE80211_MODE_11NA */
1274 		CHANNEL_PUREG,		/* IEEE80211_MODE_11NG */
1275 	};
1276 	enum ieee80211_phymode mode = ieee80211_chan2mode(chan);
1277 
1278 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
1279 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
1280 	hc->channelFlags = modeflags[mode];
1281 	if (IEEE80211_IS_CHAN_HALF(chan))
1282 		hc->channelFlags |= CHANNEL_HALF;
1283 	if (IEEE80211_IS_CHAN_QUARTER(chan))
1284 		hc->channelFlags |= CHANNEL_QUARTER;
1285 	if (IEEE80211_IS_CHAN_HT20(chan))
1286 		hc->channelFlags |= CHANNEL_HT20;
1287 	if (IEEE80211_IS_CHAN_HT40D(chan))
1288 		hc->channelFlags |= CHANNEL_HT40MINUS;
1289 	if (IEEE80211_IS_CHAN_HT40U(chan))
1290 		hc->channelFlags |= CHANNEL_HT40PLUS;
1291 
1292 	hc->channel = IEEE80211_IS_CHAN_GSM(chan) ?
1293 		2422 + (922 - chan->ic_freq) : chan->ic_freq;
1294 #undef N
1295 }
1296 
1297 /*
1298  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1299  * calcs together with WME.  If necessary disable the crypto
1300  * hardware and mark the 802.11 state so keys will be setup
1301  * with the MIC work done in software.
1302  */
1303 static void
1304 ath_settkipmic(struct ath_softc *sc)
1305 {
1306 	struct ifnet *ifp = sc->sc_ifp;
1307 	struct ieee80211com *ic = ifp->if_l2com;
1308 
1309 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1310 		if (ic->ic_flags & IEEE80211_F_WME) {
1311 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1312 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1313 		} else {
1314 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1315 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1316 		}
1317 	}
1318 }
1319 
1320 static void
1321 ath_init(void *arg)
1322 {
1323 	struct ath_softc *sc = (struct ath_softc *) arg;
1324 	struct ifnet *ifp = sc->sc_ifp;
1325 	struct ieee80211com *ic = ifp->if_l2com;
1326 	struct ath_hal *ah = sc->sc_ah;
1327 	HAL_STATUS status;
1328 
1329 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1330 		__func__, ifp->if_flags);
1331 
1332 	ATH_LOCK(sc);
1333 	/*
1334 	 * Stop anything previously setup.  This is safe
1335 	 * whether this is the first time through or not.
1336 	 */
1337 	ath_stop_locked(ifp);
1338 
1339 	/*
1340 	 * The basic interface to setting the hardware in a good
1341 	 * state is ``reset''.  On return the hardware is known to
1342 	 * be powered up and with interrupts disabled.  This must
1343 	 * be followed by initialization of the appropriate bits
1344 	 * and then setup of the interrupt mask.
1345 	 */
1346 	ath_mapchan(&sc->sc_curchan, ic->ic_curchan);
1347 	ath_settkipmic(sc);
1348 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1349 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1350 			status);
1351 		ATH_UNLOCK(sc);
1352 		return;
1353 	}
1354 	ath_chan_change(sc, ic->ic_curchan);
1355 
1356 	/*
1357 	 * Likewise this is set during reset so update
1358 	 * state cached in the driver.
1359 	 */
1360 	sc->sc_diversity = ath_hal_getdiversity(ah);
1361 	sc->sc_calinterval = 1;
1362 	sc->sc_caltries = 0;
1363 
1364 	/*
1365 	 * Setup the hardware after reset: the key cache
1366 	 * is filled as needed and the receive engine is
1367 	 * set going.  Frame transmit is handled entirely
1368 	 * in the frame output path; there's nothing to do
1369 	 * here except setup the interrupt mask.
1370 	 */
1371 	if (ath_startrecv(sc) != 0) {
1372 		if_printf(ifp, "unable to start recv logic\n");
1373 		ATH_UNLOCK(sc);
1374 		return;
1375 	}
1376 
1377 	/*
1378 	 * Enable interrupts.
1379 	 */
1380 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1381 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1382 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1383 	/*
1384 	 * Enable MIB interrupts when there are hardware phy counters.
1385 	 * Note we only do this (at the moment) for station mode.
1386 	 */
1387 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1388 		sc->sc_imask |= HAL_INT_MIB;
1389 
1390 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1391 	ath_hal_intrset(ah, sc->sc_imask);
1392 
1393 	ATH_UNLOCK(sc);
1394 
1395 #ifdef ATH_TX99_DIAG
1396 	if (sc->sc_tx99 != NULL)
1397 		sc->sc_tx99->start(sc->sc_tx99);
1398 	else
1399 #endif
1400 	ieee80211_start_all(ic);		/* start all vap's */
1401 }
1402 
1403 static void
1404 ath_stop_locked(struct ifnet *ifp)
1405 {
1406 	struct ath_softc *sc = ifp->if_softc;
1407 	struct ath_hal *ah = sc->sc_ah;
1408 
1409 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1410 		__func__, sc->sc_invalid, ifp->if_flags);
1411 
1412 	ATH_LOCK_ASSERT(sc);
1413 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1414 		/*
1415 		 * Shutdown the hardware and driver:
1416 		 *    reset 802.11 state machine
1417 		 *    turn off timers
1418 		 *    disable interrupts
1419 		 *    turn off the radio
1420 		 *    clear transmit machinery
1421 		 *    clear receive machinery
1422 		 *    drain and release tx queues
1423 		 *    reclaim beacon resources
1424 		 *    power down hardware
1425 		 *
1426 		 * Note that some of this work is not possible if the
1427 		 * hardware is gone (invalid).
1428 		 */
1429 #ifdef ATH_TX99_DIAG
1430 		if (sc->sc_tx99 != NULL)
1431 			sc->sc_tx99->stop(sc->sc_tx99);
1432 #endif
1433 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1434 		ifp->if_timer = 0;
1435 		if (!sc->sc_invalid) {
1436 			if (sc->sc_softled) {
1437 				callout_stop(&sc->sc_ledtimer);
1438 				ath_hal_gpioset(ah, sc->sc_ledpin,
1439 					!sc->sc_ledon);
1440 				sc->sc_blinking = 0;
1441 			}
1442 			ath_hal_intrset(ah, 0);
1443 		}
1444 		ath_draintxq(sc);
1445 		if (!sc->sc_invalid) {
1446 			ath_stoprecv(sc);
1447 			ath_hal_phydisable(ah);
1448 		} else
1449 			sc->sc_rxlink = NULL;
1450 		ath_beacon_free(sc);	/* XXX not needed */
1451 	}
1452 }
1453 
1454 static void
1455 ath_stop(struct ifnet *ifp)
1456 {
1457 	struct ath_softc *sc = ifp->if_softc;
1458 
1459 	ATH_LOCK(sc);
1460 	ath_stop_locked(ifp);
1461 	if (!sc->sc_invalid) {
1462 		/*
1463 		 * Set the chip in full sleep mode.  Note that we are
1464 		 * careful to do this only when bringing the interface
1465 		 * completely to a stop.  When the chip is in this state
1466 		 * it must be carefully woken up or references to
1467 		 * registers in the PCI clock domain may freeze the bus
1468 		 * (and system).  This varies by chip and is mostly an
1469 		 * issue with newer parts that go to sleep more quickly.
1470 		 */
1471 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1472 	}
1473 	ATH_UNLOCK(sc);
1474 }
1475 
1476 /*
1477  * Reset the hardware w/o losing operational state.  This is
1478  * basically a more efficient way of doing ath_stop, ath_init,
1479  * followed by state transitions to the current 802.11
1480  * operational state.  Used to recover from various errors and
1481  * to reset or reload hardware state.
1482  */
1483 static int
1484 ath_reset(struct ifnet *ifp)
1485 {
1486 	struct ath_softc *sc = ifp->if_softc;
1487 	struct ieee80211com *ic = ifp->if_l2com;
1488 	struct ath_hal *ah = sc->sc_ah;
1489 	HAL_STATUS status;
1490 
1491 	/*
1492 	 * Convert to a HAL channel description with the flags
1493 	 * constrained to reflect the current operating mode.
1494 	 */
1495 	ath_mapchan(&sc->sc_curchan, ic->ic_curchan);
1496 
1497 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1498 	ath_draintxq(sc);		/* stop xmit side */
1499 	ath_stoprecv(sc);		/* stop recv side */
1500 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1501 	/* NB: indicate channel change so we do a full reset */
1502 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_TRUE, &status))
1503 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1504 			__func__, status);
1505 	sc->sc_diversity = ath_hal_getdiversity(ah);
1506 	sc->sc_calinterval = 1;
1507 	sc->sc_caltries = 0;
1508 	if (ath_startrecv(sc) != 0)	/* restart recv */
1509 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1510 	/*
1511 	 * We may be doing a reset in response to an ioctl
1512 	 * that changes the channel so update any state that
1513 	 * might change as a result.
1514 	 */
1515 	ath_chan_change(sc, ic->ic_curchan);
1516 	if (sc->sc_beacons)
1517 		ath_beacon_config(sc, NULL);	/* restart beacons */
1518 	ath_hal_intrset(ah, sc->sc_imask);
1519 
1520 	ath_start(ifp);			/* restart xmit */
1521 	return 0;
1522 }
1523 
1524 static int
1525 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1526 {
1527 	return ath_reset(vap->iv_ic->ic_ifp);
1528 }
1529 
1530 static int
1531 ath_ff_always(struct ath_txq *txq, struct ath_buf *bf)
1532 {
1533 	return 0;
1534 }
1535 
1536 #if 0
1537 static int
1538 ath_ff_ageflushtestdone(struct ath_txq *txq, struct ath_buf *bf)
1539 {
1540 	return (txq->axq_curage - bf->bf_age) < ATH_FF_STAGEMAX;
1541 }
1542 #endif
1543 
1544 /*
1545  * Flush FF staging queue.
1546  */
1547 static void
1548 ath_ff_stageq_flush(struct ath_softc *sc, struct ath_txq *txq,
1549 	int (*ath_ff_flushdonetest)(struct ath_txq *txq, struct ath_buf *bf))
1550 {
1551 	struct ath_buf *bf;
1552 	struct ieee80211_node *ni;
1553 	int pktlen, pri;
1554 
1555 	for (;;) {
1556 		ATH_TXQ_LOCK(txq);
1557 		/*
1558 		 * Go from the back (oldest) to front so we can
1559 		 * stop early based on the age of the entry.
1560 		 */
1561 		bf = TAILQ_LAST(&txq->axq_stageq, axq_headtype);
1562 		if (bf == NULL || ath_ff_flushdonetest(txq, bf)) {
1563 			ATH_TXQ_UNLOCK(txq);
1564 			break;
1565 		}
1566 
1567 		ni = bf->bf_node;
1568 		pri = M_WME_GETAC(bf->bf_m);
1569 		KASSERT(ATH_NODE(ni)->an_ff_buf[pri],
1570 			("no bf on staging queue %p", bf));
1571 		ATH_NODE(ni)->an_ff_buf[pri] = NULL;
1572 		TAILQ_REMOVE(&txq->axq_stageq, bf, bf_stagelist);
1573 
1574 		ATH_TXQ_UNLOCK(txq);
1575 
1576 		DPRINTF(sc, ATH_DEBUG_FF, "%s: flush frame, age %u\n",
1577 			__func__, bf->bf_age);
1578 
1579 		sc->sc_stats.ast_ff_flush++;
1580 
1581 		/* encap and xmit */
1582 		bf->bf_m = ieee80211_encap(ni, bf->bf_m);
1583 		if (bf->bf_m == NULL) {
1584 			DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1585 				"%s: discard, encapsulation failure\n",
1586 				__func__);
1587 			sc->sc_stats.ast_tx_encap++;
1588 			goto bad;
1589 		}
1590 		pktlen = bf->bf_m->m_pkthdr.len; /* NB: don't reference below */
1591 		if (ath_tx_start(sc, ni, bf, bf->bf_m) == 0) {
1592 #if 0 /*XXX*/
1593 			ifp->if_opackets++;
1594 #endif
1595 			continue;
1596 		}
1597 	bad:
1598 		if (ni != NULL)
1599 			ieee80211_free_node(ni);
1600 		bf->bf_node = NULL;
1601 		if (bf->bf_m != NULL) {
1602 			m_freem(bf->bf_m);
1603 			bf->bf_m = NULL;
1604 		}
1605 
1606 		ATH_TXBUF_LOCK(sc);
1607 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1608 		ATH_TXBUF_UNLOCK(sc);
1609 	}
1610 }
1611 
1612 static __inline u_int32_t
1613 ath_ff_approx_txtime(struct ath_softc *sc, struct ath_node *an, struct mbuf *m)
1614 {
1615 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1616 	u_int32_t framelen;
1617 	struct ath_buf *bf;
1618 
1619 	/*
1620 	 * Approximate the frame length to be transmitted. A swag to add
1621 	 * the following maximal values to the skb payload:
1622 	 *   - 32: 802.11 encap + CRC
1623 	 *   - 24: encryption overhead (if wep bit)
1624 	 *   - 4 + 6: fast-frame header and padding
1625 	 *   - 16: 2 LLC FF tunnel headers
1626 	 *   - 14: 1 802.3 FF tunnel header (skb already accounts for 2nd)
1627 	 */
1628 	framelen = m->m_pkthdr.len + 32 + 4 + 6 + 16 + 14;
1629 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
1630 		framelen += 24;
1631 	bf = an->an_ff_buf[M_WME_GETAC(m)];
1632 	if (bf != NULL)
1633 		framelen += bf->bf_m->m_pkthdr.len;
1634 	return ath_hal_computetxtime(sc->sc_ah, sc->sc_currates, framelen,
1635 			sc->sc_lastdatarix, AH_FALSE);
1636 }
1637 
1638 /*
1639  * Determine if a data frame may be aggregated via ff tunnelling.
1640  * Note the caller is responsible for checking if the destination
1641  * supports fast frames.
1642  *
1643  *  NB: allowing EAPOL frames to be aggregated with other unicast traffic.
1644  *      Do 802.1x EAPOL frames proceed in the clear? Then they couldn't
1645  *      be aggregated with other types of frames when encryption is on?
1646  *
1647  *  NB: assumes lock on an_ff_buf effectively held by txq lock mechanism.
1648  */
1649 static __inline int
1650 ath_ff_can_aggregate(struct ath_softc *sc,
1651 	struct ath_node *an, struct mbuf *m, int *flushq)
1652 {
1653 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1654 	struct ath_txq *txq;
1655 	u_int32_t txoplimit;
1656 	u_int pri;
1657 
1658 	*flushq = 0;
1659 
1660 	/*
1661 	 * If there is no frame to combine with and the txq has
1662 	 * fewer frames than the minimum required; then do not
1663 	 * attempt to aggregate this frame.
1664 	 */
1665 	pri = M_WME_GETAC(m);
1666 	txq = sc->sc_ac2q[pri];
1667 	if (an->an_ff_buf[pri] == NULL && txq->axq_depth < sc->sc_fftxqmin)
1668 		return 0;
1669 	/*
1670 	 * When not in station mode never aggregate a multicast
1671 	 * frame; this insures, for example, that a combined frame
1672 	 * does not require multiple encryption keys when using
1673 	 * 802.1x/WPA.
1674 	 */
1675 	if (ic->ic_opmode != IEEE80211_M_STA &&
1676 	    ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost))
1677 		return 0;
1678 	/*
1679 	 * Consult the max bursting interval to insure a combined
1680 	 * frame fits within the TxOp window.
1681 	 */
1682 	txoplimit = IEEE80211_TXOP_TO_US(
1683 		ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit);
1684 	if (txoplimit != 0 && ath_ff_approx_txtime(sc, an, m) > txoplimit) {
1685 		DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1686 			"%s: FF TxOp violation\n", __func__);
1687 		if (an->an_ff_buf[pri] != NULL)
1688 			*flushq = 1;
1689 		return 0;
1690 	}
1691 	return 1;		/* try to aggregate */
1692 }
1693 
1694 /*
1695  * Check if the supplied frame can be partnered with an existing
1696  * or pending frame.  Return a reference to any frame that should be
1697  * sent on return; otherwise return NULL.
1698  */
1699 static struct mbuf *
1700 ath_ff_check(struct ath_softc *sc, struct ath_txq *txq,
1701 	struct ath_buf *bf, struct mbuf *m, struct ieee80211_node *ni)
1702 {
1703 	struct ath_node *an = ATH_NODE(ni);
1704 	struct ath_buf *bfstaged;
1705 	int ff_flush, pri;
1706 
1707 	/*
1708 	 * Check if the supplied frame can be aggregated.
1709 	 *
1710 	 * NB: we use the txq lock to protect references to
1711 	 *     an->an_ff_txbuf in ath_ff_can_aggregate().
1712 	 */
1713 	ATH_TXQ_LOCK(txq);
1714 	pri = M_WME_GETAC(m);
1715 	if (ath_ff_can_aggregate(sc, an, m, &ff_flush)) {
1716 		struct ath_buf *bfstaged = an->an_ff_buf[pri];
1717 		if (bfstaged != NULL) {
1718 			/*
1719 			 * A frame is available for partnering; remove
1720 			 * it, chain it to this one, and encapsulate.
1721 			 */
1722 			an->an_ff_buf[pri] = NULL;
1723 			TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1724 			ATH_TXQ_UNLOCK(txq);
1725 
1726 			/*
1727 			 * Chain mbufs and add FF magic.
1728 			 */
1729 			DPRINTF(sc, ATH_DEBUG_FF,
1730 				"[%s] aggregate fast-frame, age %u\n",
1731 				ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1732 			m->m_nextpkt = NULL;
1733 			bfstaged->bf_m->m_nextpkt = m;
1734 			m = bfstaged->bf_m;
1735 			bfstaged->bf_m = NULL;
1736 			m->m_flags |= M_FF;
1737 			/*
1738 			 * Release the node reference held while
1739 			 * the packet sat on an_ff_buf[]
1740 			 */
1741 			bfstaged->bf_node = NULL;
1742 			ieee80211_free_node(ni);
1743 
1744 			/*
1745 			 * Return bfstaged to the free list.
1746 			 */
1747 			ATH_TXBUF_LOCK(sc);
1748 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bfstaged, bf_list);
1749 			ATH_TXBUF_UNLOCK(sc);
1750 
1751 			return m;		/* ready to go */
1752 		} else {
1753 			/*
1754 			 * No frame available, queue this frame to wait
1755 			 * for a partner.  Note that we hold the buffer
1756 			 * and a reference to the node; we need the
1757 			 * buffer in particular so we're certain we
1758 			 * can flush the frame at a later time.
1759 			 */
1760 			DPRINTF(sc, ATH_DEBUG_FF,
1761 				"[%s] stage fast-frame, age %u\n",
1762 				ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1763 
1764 			bf->bf_m = m;
1765 			bf->bf_node = ni;	/* NB: held reference */
1766 			bf->bf_age = txq->axq_curage;
1767 			an->an_ff_buf[pri] = bf;
1768 			TAILQ_INSERT_HEAD(&txq->axq_stageq, bf, bf_stagelist);
1769 			ATH_TXQ_UNLOCK(txq);
1770 
1771 			return NULL;		/* consumed */
1772 		}
1773 	}
1774 	/*
1775 	 * Frame could not be aggregated, it needs to be returned
1776 	 * to the caller for immediate transmission.  In addition
1777 	 * we check if we should first flush a frame from the
1778 	 * staging queue before sending this one.
1779 	 *
1780 	 * NB: ath_ff_can_aggregate only marks ff_flush if a frame
1781 	 *     is present to flush.
1782 	 */
1783 	if (ff_flush) {
1784 		int pktlen;
1785 
1786 		bfstaged = an->an_ff_buf[pri];
1787 		an->an_ff_buf[pri] = NULL;
1788 		TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1789 		ATH_TXQ_UNLOCK(txq);
1790 
1791 		DPRINTF(sc, ATH_DEBUG_FF, "[%s] flush staged frame\n",
1792 			ether_sprintf(an->an_node.ni_macaddr));
1793 
1794 		/* encap and xmit */
1795 		bfstaged->bf_m = ieee80211_encap(ni, bfstaged->bf_m);
1796 		if (bfstaged->bf_m == NULL) {
1797 			DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1798 				"%s: discard, encap failure\n", __func__);
1799 			sc->sc_stats.ast_tx_encap++;
1800 			goto ff_flushbad;
1801 		}
1802 		pktlen = bfstaged->bf_m->m_pkthdr.len;
1803 		if (ath_tx_start(sc, ni, bfstaged, bfstaged->bf_m)) {
1804 			DPRINTF(sc, ATH_DEBUG_XMIT,
1805 				"%s: discard, xmit failure\n", __func__);
1806 	ff_flushbad:
1807 			/*
1808 			 * Unable to transmit frame that was on the staging
1809 			 * queue.  Reclaim the node reference and other
1810 			 * resources.
1811 			 */
1812 			if (ni != NULL)
1813 				ieee80211_free_node(ni);
1814 			bfstaged->bf_node = NULL;
1815 			if (bfstaged->bf_m != NULL) {
1816 				m_freem(bfstaged->bf_m);
1817 				bfstaged->bf_m = NULL;
1818 			}
1819 
1820 			ATH_TXBUF_LOCK(sc);
1821 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bfstaged, bf_list);
1822 			ATH_TXBUF_UNLOCK(sc);
1823 		} else {
1824 #if 0
1825 			ifp->if_opackets++;
1826 #endif
1827 		}
1828 	} else {
1829 		if (an->an_ff_buf[pri] != NULL) {
1830 			/*
1831 			 * XXX: out-of-order condition only occurs for AP
1832 			 * mode and multicast.  There may be no valid way
1833 			 * to get this condition.
1834 			 */
1835 			DPRINTF(sc, ATH_DEBUG_FF, "[%s] out-of-order frame\n",
1836 				ether_sprintf(an->an_node.ni_macaddr));
1837 			/* XXX stat */
1838 		}
1839 		ATH_TXQ_UNLOCK(txq);
1840 	}
1841 	return m;
1842 }
1843 
1844 /*
1845  * Cleanup driver resources when we run out of buffers
1846  * while processing fragments; return the tx buffers
1847  * allocated and drop node references.
1848  */
1849 static void
1850 ath_txfrag_cleanup(struct ath_softc *sc,
1851 	ath_bufhead *frags, struct ieee80211_node *ni)
1852 {
1853 	struct ath_buf *bf, *next;
1854 
1855 	ATH_TXBUF_LOCK_ASSERT(sc);
1856 
1857 	STAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
1858 		/* NB: bf assumed clean */
1859 		STAILQ_REMOVE_HEAD(frags, bf_list);
1860 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1861 		ieee80211_node_decref(ni);
1862 	}
1863 }
1864 
1865 /*
1866  * Setup xmit of a fragmented frame.  Allocate a buffer
1867  * for each frag and bump the node reference count to
1868  * reflect the held reference to be setup by ath_tx_start.
1869  */
1870 static int
1871 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1872 	struct mbuf *m0, struct ieee80211_node *ni)
1873 {
1874 	struct mbuf *m;
1875 	struct ath_buf *bf;
1876 
1877 	ATH_TXBUF_LOCK(sc);
1878 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1879 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1880 		if (bf == NULL) {	/* out of buffers, cleanup */
1881 			ath_txfrag_cleanup(sc, frags, ni);
1882 			break;
1883 		}
1884 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1885 		ieee80211_node_incref(ni);
1886 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1887 	}
1888 	ATH_TXBUF_UNLOCK(sc);
1889 
1890 	return !STAILQ_EMPTY(frags);
1891 }
1892 
1893 static void
1894 ath_start(struct ifnet *ifp)
1895 {
1896 	struct ath_softc *sc = ifp->if_softc;
1897 	struct ieee80211com *ic = ifp->if_l2com;
1898 	struct ieee80211_node *ni;
1899 	struct ath_buf *bf;
1900 	struct mbuf *m, *next;
1901 	struct ath_txq *txq;
1902 	ath_bufhead frags;
1903 	int pri;
1904 
1905 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1906 		return;
1907 	for (;;) {
1908 		/*
1909 		 * Grab a TX buffer and associated resources.
1910 		 */
1911 		ATH_TXBUF_LOCK(sc);
1912 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1913 		if (bf != NULL)
1914 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1915 		ATH_TXBUF_UNLOCK(sc);
1916 		if (bf == NULL) {
1917 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1918 				__func__);
1919 			sc->sc_stats.ast_tx_qstop++;
1920 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1921 			break;
1922 		}
1923 
1924 		IFQ_DEQUEUE(&ifp->if_snd, m);
1925 		if (m == NULL) {
1926 			ATH_TXBUF_LOCK(sc);
1927 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1928 			ATH_TXBUF_UNLOCK(sc);
1929 			break;
1930 		}
1931 		STAILQ_INIT(&frags);
1932 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1933 		pri = M_WME_GETAC(m);
1934 		txq = sc->sc_ac2q[pri];
1935 		if (ni->ni_ath_flags & IEEE80211_NODE_FF) {
1936 			/*
1937 			 * Check queue length; if too deep drop this
1938 			 * frame (tail drop considered good).
1939 			 */
1940 			if (txq->axq_depth >= sc->sc_fftxqmax) {
1941 				DPRINTF(sc, ATH_DEBUG_FF,
1942 				    "[%s] tail drop on q %u depth %u\n",
1943 				    ether_sprintf(ni->ni_macaddr),
1944 				    txq->axq_qnum, txq->axq_depth);
1945 				sc->sc_stats.ast_tx_qfull++;
1946 				m_freem(m);
1947 				goto reclaim;
1948 			}
1949 			m = ath_ff_check(sc, txq, bf, m, ni);
1950 			if (m == NULL) {
1951 				/* NB: ni ref & bf held on stageq */
1952 				continue;
1953 			}
1954 		}
1955 		ifp->if_opackets++;
1956 		/*
1957 		 * Encapsulate the packet in prep for transmission.
1958 		 */
1959 		m = ieee80211_encap(ni, m);
1960 		if (m == NULL) {
1961 			DPRINTF(sc, ATH_DEBUG_XMIT,
1962 			    "%s: encapsulation failure\n", __func__);
1963 			sc->sc_stats.ast_tx_encap++;
1964 			goto bad;
1965 		}
1966 		/*
1967 		 * Check for fragmentation.  If this frame
1968 		 * has been broken up verify we have enough
1969 		 * buffers to send all the fragments so all
1970 		 * go out or none...
1971 		 */
1972 		if ((m->m_flags & M_FRAG) &&
1973 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
1974 			DPRINTF(sc, ATH_DEBUG_XMIT,
1975 			    "%s: out of txfrag buffers\n", __func__);
1976 			ic->ic_stats.is_tx_nobuf++;	/* XXX */
1977 			ath_freetx(m);
1978 			goto bad;
1979 		}
1980 	nextfrag:
1981 		/*
1982 		 * Pass the frame to the h/w for transmission.
1983 		 * Fragmented frames have each frag chained together
1984 		 * with m_nextpkt.  We know there are sufficient ath_buf's
1985 		 * to send all the frags because of work done by
1986 		 * ath_txfrag_setup.  We leave m_nextpkt set while
1987 		 * calling ath_tx_start so it can use it to extend the
1988 		 * the tx duration to cover the subsequent frag and
1989 		 * so it can reclaim all the mbufs in case of an error;
1990 		 * ath_tx_start clears m_nextpkt once it commits to
1991 		 * handing the frame to the hardware.
1992 		 */
1993 		next = m->m_nextpkt;
1994 		if (ath_tx_start(sc, ni, bf, m)) {
1995 	bad:
1996 			ifp->if_oerrors++;
1997 	reclaim:
1998 			bf->bf_m = NULL;
1999 			bf->bf_node = NULL;
2000 			ATH_TXBUF_LOCK(sc);
2001 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2002 			ath_txfrag_cleanup(sc, &frags, ni);
2003 			ATH_TXBUF_UNLOCK(sc);
2004 			if (ni != NULL)
2005 				ieee80211_free_node(ni);
2006 			continue;
2007 		}
2008 		if (next != NULL) {
2009 			/*
2010 			 * Beware of state changing between frags.
2011 			 * XXX check sta power-save state?
2012 			 */
2013 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2014 				DPRINTF(sc, ATH_DEBUG_XMIT,
2015 				    "%s: flush fragmented packet, state %s\n",
2016 				    __func__,
2017 				    ieee80211_state_name[ni->ni_vap->iv_state]);
2018 				ath_freetx(next);
2019 				goto reclaim;
2020 			}
2021 			m = next;
2022 			bf = STAILQ_FIRST(&frags);
2023 			KASSERT(bf != NULL, ("no buf for txfrag"));
2024 			STAILQ_REMOVE_HEAD(&frags, bf_list);
2025 			goto nextfrag;
2026 		}
2027 
2028 		ifp->if_timer = 5;
2029 #if 0
2030 		/*
2031 		 * Flush stale frames from the fast-frame staging queue.
2032 		 */
2033 		if (ic->ic_opmode != IEEE80211_M_STA)
2034 			ath_ff_stageq_flush(sc, txq, ath_ff_ageflushtestdone);
2035 #endif
2036 	}
2037 }
2038 
2039 static int
2040 ath_media_change(struct ifnet *ifp)
2041 {
2042 	int error = ieee80211_media_change(ifp);
2043 	/* NB: only the fixed rate can change and that doesn't need a reset */
2044 	return (error == ENETRESET ? 0 : error);
2045 }
2046 
2047 #ifdef ATH_DEBUG
2048 static void
2049 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
2050 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
2051 {
2052 	static const char *ciphers[] = {
2053 		"WEP",
2054 		"AES-OCB",
2055 		"AES-CCM",
2056 		"CKIP",
2057 		"TKIP",
2058 		"CLR",
2059 	};
2060 	int i, n;
2061 
2062 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
2063 	for (i = 0, n = hk->kv_len; i < n; i++)
2064 		printf("%02x", hk->kv_val[i]);
2065 	printf(" mac %s", ether_sprintf(mac));
2066 	if (hk->kv_type == HAL_CIPHER_TKIP) {
2067 		printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
2068 		for (i = 0; i < sizeof(hk->kv_mic); i++)
2069 			printf("%02x", hk->kv_mic[i]);
2070 #if HAL_ABI_VERSION > 0x06052200
2071 		if (!sc->sc_splitmic) {
2072 			printf(" txmic ");
2073 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
2074 				printf("%02x", hk->kv_txmic[i]);
2075 		}
2076 #endif
2077 	}
2078 	printf("\n");
2079 }
2080 #endif
2081 
2082 /*
2083  * Set a TKIP key into the hardware.  This handles the
2084  * potential distribution of key state to multiple key
2085  * cache slots for TKIP.
2086  */
2087 static int
2088 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
2089 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
2090 {
2091 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
2092 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
2093 	struct ath_hal *ah = sc->sc_ah;
2094 
2095 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
2096 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
2097 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
2098 		if (sc->sc_splitmic) {
2099 			/*
2100 			 * TX key goes at first index, RX key at the rx index.
2101 			 * The hal handles the MIC keys at index+64.
2102 			 */
2103 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
2104 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
2105 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
2106 				return 0;
2107 
2108 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2109 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
2110 			/* XXX delete tx key on failure? */
2111 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
2112 		} else {
2113 			/*
2114 			 * Room for both TX+RX MIC keys in one key cache
2115 			 * slot, just set key at the first index; the hal
2116 			 * will handle the rest.
2117 			 */
2118 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2119 #if HAL_ABI_VERSION > 0x06052200
2120 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
2121 #endif
2122 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
2123 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2124 		}
2125 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
2126 #if HAL_ABI_VERSION > 0x06052200
2127 		memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
2128 #else
2129 		memcpy(hk->kv_mic, k->wk_mic, sizeof(hk->kv_mic));
2130 #endif
2131 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
2132 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2133 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
2134 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2135 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
2136 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2137 	}
2138 	return 0;
2139 #undef IEEE80211_KEY_XR
2140 }
2141 
2142 /*
2143  * Set a net80211 key into the hardware.  This handles the
2144  * potential distribution of key state to multiple key
2145  * cache slots for TKIP with hardware MIC support.
2146  */
2147 static int
2148 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
2149 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
2150 	struct ieee80211_node *bss)
2151 {
2152 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2153 	static const u_int8_t ciphermap[] = {
2154 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
2155 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
2156 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
2157 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
2158 		(u_int8_t) -1,		/* 4 is not allocated */
2159 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
2160 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
2161 	};
2162 	struct ath_hal *ah = sc->sc_ah;
2163 	const struct ieee80211_cipher *cip = k->wk_cipher;
2164 	u_int8_t gmac[IEEE80211_ADDR_LEN];
2165 	const u_int8_t *mac;
2166 	HAL_KEYVAL hk;
2167 
2168 	memset(&hk, 0, sizeof(hk));
2169 	/*
2170 	 * Software crypto uses a "clear key" so non-crypto
2171 	 * state kept in the key cache are maintained and
2172 	 * so that rx frames have an entry to match.
2173 	 */
2174 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
2175 		KASSERT(cip->ic_cipher < N(ciphermap),
2176 			("invalid cipher type %u", cip->ic_cipher));
2177 		hk.kv_type = ciphermap[cip->ic_cipher];
2178 		hk.kv_len = k->wk_keylen;
2179 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
2180 	} else
2181 		hk.kv_type = HAL_CIPHER_CLR;
2182 
2183 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
2184 		/*
2185 		 * Group keys on hardware that supports multicast frame
2186 		 * key search use a mac that is the sender's address with
2187 		 * the high bit set instead of the app-specified address.
2188 		 */
2189 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
2190 		gmac[0] |= 0x80;
2191 		mac = gmac;
2192 	} else
2193 		mac = mac0;
2194 
2195 	if (hk.kv_type == HAL_CIPHER_TKIP &&
2196 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2197 		return ath_keyset_tkip(sc, k, &hk, mac);
2198 	} else {
2199 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
2200 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
2201 	}
2202 #undef N
2203 }
2204 
2205 /*
2206  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2207  * each key, one for decrypt/encrypt and the other for the MIC.
2208  */
2209 static u_int16_t
2210 key_alloc_2pair(struct ath_softc *sc,
2211 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2212 {
2213 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2214 	u_int i, keyix;
2215 
2216 	KASSERT(sc->sc_splitmic, ("key cache !split"));
2217 	/* XXX could optimize */
2218 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2219 		u_int8_t b = sc->sc_keymap[i];
2220 		if (b != 0xff) {
2221 			/*
2222 			 * One or more slots in this byte are free.
2223 			 */
2224 			keyix = i*NBBY;
2225 			while (b & 1) {
2226 		again:
2227 				keyix++;
2228 				b >>= 1;
2229 			}
2230 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
2231 			if (isset(sc->sc_keymap, keyix+32) ||
2232 			    isset(sc->sc_keymap, keyix+64) ||
2233 			    isset(sc->sc_keymap, keyix+32+64)) {
2234 				/* full pair unavailable */
2235 				/* XXX statistic */
2236 				if (keyix == (i+1)*NBBY) {
2237 					/* no slots were appropriate, advance */
2238 					continue;
2239 				}
2240 				goto again;
2241 			}
2242 			setbit(sc->sc_keymap, keyix);
2243 			setbit(sc->sc_keymap, keyix+64);
2244 			setbit(sc->sc_keymap, keyix+32);
2245 			setbit(sc->sc_keymap, keyix+32+64);
2246 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2247 				"%s: key pair %u,%u %u,%u\n",
2248 				__func__, keyix, keyix+64,
2249 				keyix+32, keyix+32+64);
2250 			*txkeyix = keyix;
2251 			*rxkeyix = keyix+32;
2252 			return 1;
2253 		}
2254 	}
2255 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2256 	return 0;
2257 #undef N
2258 }
2259 
2260 /*
2261  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2262  * each key, one for decrypt/encrypt and the other for the MIC.
2263  */
2264 static u_int16_t
2265 key_alloc_pair(struct ath_softc *sc,
2266 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2267 {
2268 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2269 	u_int i, keyix;
2270 
2271 	KASSERT(!sc->sc_splitmic, ("key cache split"));
2272 	/* XXX could optimize */
2273 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2274 		u_int8_t b = sc->sc_keymap[i];
2275 		if (b != 0xff) {
2276 			/*
2277 			 * One or more slots in this byte are free.
2278 			 */
2279 			keyix = i*NBBY;
2280 			while (b & 1) {
2281 		again:
2282 				keyix++;
2283 				b >>= 1;
2284 			}
2285 			if (isset(sc->sc_keymap, keyix+64)) {
2286 				/* full pair unavailable */
2287 				/* XXX statistic */
2288 				if (keyix == (i+1)*NBBY) {
2289 					/* no slots were appropriate, advance */
2290 					continue;
2291 				}
2292 				goto again;
2293 			}
2294 			setbit(sc->sc_keymap, keyix);
2295 			setbit(sc->sc_keymap, keyix+64);
2296 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2297 				"%s: key pair %u,%u\n",
2298 				__func__, keyix, keyix+64);
2299 			*txkeyix = *rxkeyix = keyix;
2300 			return 1;
2301 		}
2302 	}
2303 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2304 	return 0;
2305 #undef N
2306 }
2307 
2308 /*
2309  * Allocate a single key cache slot.
2310  */
2311 static int
2312 key_alloc_single(struct ath_softc *sc,
2313 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2314 {
2315 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2316 	u_int i, keyix;
2317 
2318 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2319 	for (i = 0; i < N(sc->sc_keymap); i++) {
2320 		u_int8_t b = sc->sc_keymap[i];
2321 		if (b != 0xff) {
2322 			/*
2323 			 * One or more slots are free.
2324 			 */
2325 			keyix = i*NBBY;
2326 			while (b & 1)
2327 				keyix++, b >>= 1;
2328 			setbit(sc->sc_keymap, keyix);
2329 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2330 				__func__, keyix);
2331 			*txkeyix = *rxkeyix = keyix;
2332 			return 1;
2333 		}
2334 	}
2335 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2336 	return 0;
2337 #undef N
2338 }
2339 
2340 /*
2341  * Allocate one or more key cache slots for a uniacst key.  The
2342  * key itself is needed only to identify the cipher.  For hardware
2343  * TKIP with split cipher+MIC keys we allocate two key cache slot
2344  * pairs so that we can setup separate TX and RX MIC keys.  Note
2345  * that the MIC key for a TKIP key at slot i is assumed by the
2346  * hardware to be at slot i+64.  This limits TKIP keys to the first
2347  * 64 entries.
2348  */
2349 static int
2350 ath_key_alloc(struct ieee80211vap *vap, const struct ieee80211_key *k,
2351 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2352 {
2353 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2354 
2355 	/*
2356 	 * Group key allocation must be handled specially for
2357 	 * parts that do not support multicast key cache search
2358 	 * functionality.  For those parts the key id must match
2359 	 * the h/w key index so lookups find the right key.  On
2360 	 * parts w/ the key search facility we install the sender's
2361 	 * mac address (with the high bit set) and let the hardware
2362 	 * find the key w/o using the key id.  This is preferred as
2363 	 * it permits us to support multiple users for adhoc and/or
2364 	 * multi-station operation.
2365 	 */
2366 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
2367 		if (!(&vap->iv_nw_keys[0] <= k &&
2368 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2369 			/* should not happen */
2370 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2371 				"%s: bogus group key\n", __func__);
2372 			return 0;
2373 		}
2374 		/*
2375 		 * XXX we pre-allocate the global keys so
2376 		 * have no way to check if they've already been allocated.
2377 		 */
2378 		*keyix = *rxkeyix = k - vap->iv_nw_keys;
2379 		return 1;
2380 	}
2381 
2382 	/*
2383 	 * We allocate two pair for TKIP when using the h/w to do
2384 	 * the MIC.  For everything else, including software crypto,
2385 	 * we allocate a single entry.  Note that s/w crypto requires
2386 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
2387 	 * not support pass-through cache entries and we map all
2388 	 * those requests to slot 0.
2389 	 */
2390 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2391 		return key_alloc_single(sc, keyix, rxkeyix);
2392 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2393 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2394 		if (sc->sc_splitmic)
2395 			return key_alloc_2pair(sc, keyix, rxkeyix);
2396 		else
2397 			return key_alloc_pair(sc, keyix, rxkeyix);
2398 	} else {
2399 		return key_alloc_single(sc, keyix, rxkeyix);
2400 	}
2401 }
2402 
2403 /*
2404  * Delete an entry in the key cache allocated by ath_key_alloc.
2405  */
2406 static int
2407 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2408 {
2409 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2410 	struct ath_hal *ah = sc->sc_ah;
2411 	const struct ieee80211_cipher *cip = k->wk_cipher;
2412 	u_int keyix = k->wk_keyix;
2413 
2414 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2415 
2416 	ath_hal_keyreset(ah, keyix);
2417 	/*
2418 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
2419 	 */
2420 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2421 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2422 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
2423 	if (keyix >= IEEE80211_WEP_NKID) {
2424 		/*
2425 		 * Don't touch keymap entries for global keys so
2426 		 * they are never considered for dynamic allocation.
2427 		 */
2428 		clrbit(sc->sc_keymap, keyix);
2429 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2430 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2431 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
2432 			if (sc->sc_splitmic) {
2433 				/* +32 for RX key, +32+64 for RX key MIC */
2434 				clrbit(sc->sc_keymap, keyix+32);
2435 				clrbit(sc->sc_keymap, keyix+32+64);
2436 			}
2437 		}
2438 	}
2439 	return 1;
2440 }
2441 
2442 /*
2443  * Set the key cache contents for the specified key.  Key cache
2444  * slot(s) must already have been allocated by ath_key_alloc.
2445  */
2446 static int
2447 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
2448 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2449 {
2450 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2451 
2452 	return ath_keyset(sc, k, mac, vap->iv_bss);
2453 }
2454 
2455 /*
2456  * Block/unblock tx+rx processing while a key change is done.
2457  * We assume the caller serializes key management operations
2458  * so we only need to worry about synchronization with other
2459  * uses that originate in the driver.
2460  */
2461 static void
2462 ath_key_update_begin(struct ieee80211vap *vap)
2463 {
2464 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2465 	struct ath_softc *sc = ifp->if_softc;
2466 
2467 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2468 	taskqueue_block(sc->sc_tq);
2469 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2470 }
2471 
2472 static void
2473 ath_key_update_end(struct ieee80211vap *vap)
2474 {
2475 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2476 	struct ath_softc *sc = ifp->if_softc;
2477 
2478 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2479 	IF_UNLOCK(&ifp->if_snd);
2480 	taskqueue_unblock(sc->sc_tq);
2481 }
2482 
2483 /*
2484  * Calculate the receive filter according to the
2485  * operating mode and state:
2486  *
2487  * o always accept unicast, broadcast, and multicast traffic
2488  * o accept PHY error frames when hardware doesn't have MIB support
2489  *   to count and we need them for ANI (sta mode only at the moment)
2490  *   and we are not scanning (ANI is disabled)
2491  *   NB: only with recent hal's; older hal's add rx filter bits out
2492  *       of sight and we need to blindly preserve them
2493  * o probe request frames are accepted only when operating in
2494  *   hostap, adhoc, or monitor modes
2495  * o enable promiscuous mode
2496  *   - when in monitor mode
2497  *   - if interface marked PROMISC (assumes bridge setting is filtered)
2498  * o accept beacons:
2499  *   - when operating in station mode for collecting rssi data when
2500  *     the station is otherwise quiet, or
2501  *   - when operating in adhoc mode so the 802.11 layer creates
2502  *     node table entries for peers,
2503  *   - when scanning
2504  *   - when doing s/w beacon miss (e.g. for ap+sta)
2505  *   - when operating in ap mode in 11g to detect overlapping bss that
2506  *     require protection
2507  * o accept control frames:
2508  *   - when in monitor mode
2509  * XXX BAR frames for 11n
2510  * XXX HT protection for 11n
2511  */
2512 static u_int32_t
2513 ath_calcrxfilter(struct ath_softc *sc)
2514 {
2515 	struct ifnet *ifp = sc->sc_ifp;
2516 	struct ieee80211com *ic = ifp->if_l2com;
2517 	u_int32_t rfilt;
2518 
2519 #if HAL_ABI_VERSION < 0x08011600
2520 	rfilt = (ath_hal_getrxfilter(sc->sc_ah) &
2521 		(HAL_RX_FILTER_PHYRADAR | HAL_RX_FILTER_PHYERR))
2522 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2523 #else
2524 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2525 	if (ic->ic_opmode == IEEE80211_M_STA &&
2526 	    !sc->sc_needmib && !sc->sc_scanning)
2527 		rfilt |= HAL_RX_FILTER_PHYERR;
2528 #endif
2529 	if (ic->ic_opmode != IEEE80211_M_STA)
2530 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2531 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2532 		rfilt |= HAL_RX_FILTER_PROM;
2533 	if (ic->ic_opmode == IEEE80211_M_STA ||
2534 	    sc->sc_opmode == HAL_M_IBSS ||
2535 	    sc->sc_swbmiss || sc->sc_scanning)
2536 		rfilt |= HAL_RX_FILTER_BEACON;
2537 	/*
2538 	 * NB: We don't recalculate the rx filter when
2539 	 * ic_protmode changes; otherwise we could do
2540 	 * this only when ic_protmode != NONE.
2541 	 */
2542 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2543 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2544 		rfilt |= HAL_RX_FILTER_BEACON;
2545 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2546 		rfilt |= HAL_RX_FILTER_CONTROL;
2547 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2548 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2549 	return rfilt;
2550 }
2551 
2552 static void
2553 ath_update_promisc(struct ifnet *ifp)
2554 {
2555 	struct ath_softc *sc = ifp->if_softc;
2556 	u_int32_t rfilt;
2557 
2558 	/* configure rx filter */
2559 	rfilt = ath_calcrxfilter(sc);
2560 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2561 
2562 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2563 }
2564 
2565 static void
2566 ath_update_mcast(struct ifnet *ifp)
2567 {
2568 	struct ath_softc *sc = ifp->if_softc;
2569 	u_int32_t mfilt[2];
2570 
2571 	/* calculate and install multicast filter */
2572 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2573 		struct ifmultiaddr *ifma;
2574 		/*
2575 		 * Merge multicast addresses to form the hardware filter.
2576 		 */
2577 		mfilt[0] = mfilt[1] = 0;
2578 		IF_ADDR_LOCK(ifp);	/* XXX need some fiddling to remove? */
2579 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2580 			caddr_t dl;
2581 			u_int32_t val;
2582 			u_int8_t pos;
2583 
2584 			/* calculate XOR of eight 6bit values */
2585 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2586 			val = LE_READ_4(dl + 0);
2587 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2588 			val = LE_READ_4(dl + 3);
2589 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2590 			pos &= 0x3f;
2591 			mfilt[pos / 32] |= (1 << (pos % 32));
2592 		}
2593 		IF_ADDR_UNLOCK(ifp);
2594 	} else
2595 		mfilt[0] = mfilt[1] = ~0;
2596 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2597 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2598 		__func__, mfilt[0], mfilt[1]);
2599 }
2600 
2601 static void
2602 ath_mode_init(struct ath_softc *sc)
2603 {
2604 	struct ifnet *ifp = sc->sc_ifp;
2605 	struct ieee80211com *ic = ifp->if_l2com;
2606 	struct ath_hal *ah = sc->sc_ah;
2607 	u_int32_t rfilt;
2608 
2609 	/* configure rx filter */
2610 	rfilt = ath_calcrxfilter(sc);
2611 	ath_hal_setrxfilter(ah, rfilt);
2612 
2613 	/* configure operational mode */
2614 	ath_hal_setopmode(ah);
2615 
2616 	/*
2617 	 * Handle any link-level address change.  Note that we only
2618 	 * need to force ic_myaddr; any other addresses are handled
2619 	 * as a byproduct of the ifnet code marking the interface
2620 	 * down then up.
2621 	 *
2622 	 * XXX should get from lladdr instead of arpcom but that's more work
2623 	 */
2624 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2625 	ath_hal_setmac(ah, ic->ic_myaddr);
2626 
2627 	/* calculate and install multicast filter */
2628 	ath_update_mcast(ifp);
2629 }
2630 
2631 /*
2632  * Set the slot time based on the current setting.
2633  */
2634 static void
2635 ath_setslottime(struct ath_softc *sc)
2636 {
2637 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2638 	struct ath_hal *ah = sc->sc_ah;
2639 	u_int usec;
2640 
2641 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2642 		usec = 13;
2643 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2644 		usec = 21;
2645 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2646 		/* honor short/long slot time only in 11g */
2647 		/* XXX shouldn't honor on pure g or turbo g channel */
2648 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2649 			usec = HAL_SLOT_TIME_9;
2650 		else
2651 			usec = HAL_SLOT_TIME_20;
2652 	} else
2653 		usec = HAL_SLOT_TIME_9;
2654 
2655 	DPRINTF(sc, ATH_DEBUG_RESET,
2656 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2657 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2658 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2659 
2660 	ath_hal_setslottime(ah, usec);
2661 	sc->sc_updateslot = OK;
2662 }
2663 
2664 /*
2665  * Callback from the 802.11 layer to update the
2666  * slot time based on the current setting.
2667  */
2668 static void
2669 ath_updateslot(struct ifnet *ifp)
2670 {
2671 	struct ath_softc *sc = ifp->if_softc;
2672 	struct ieee80211com *ic = ifp->if_l2com;
2673 
2674 	/*
2675 	 * When not coordinating the BSS, change the hardware
2676 	 * immediately.  For other operation we defer the change
2677 	 * until beacon updates have propagated to the stations.
2678 	 */
2679 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2680 		sc->sc_updateslot = UPDATE;
2681 	else
2682 		ath_setslottime(sc);
2683 }
2684 
2685 /*
2686  * Setup a h/w transmit queue for beacons.
2687  */
2688 static int
2689 ath_beaconq_setup(struct ath_hal *ah)
2690 {
2691 	HAL_TXQ_INFO qi;
2692 
2693 	memset(&qi, 0, sizeof(qi));
2694 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2695 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2696 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2697 	/* NB: for dynamic turbo, don't enable any other interrupts */
2698 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2699 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2700 }
2701 
2702 /*
2703  * Setup the transmit queue parameters for the beacon queue.
2704  */
2705 static int
2706 ath_beaconq_config(struct ath_softc *sc)
2707 {
2708 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2709 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2710 	struct ath_hal *ah = sc->sc_ah;
2711 	HAL_TXQ_INFO qi;
2712 
2713 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2714 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2715 		/*
2716 		 * Always burst out beacon and CAB traffic.
2717 		 */
2718 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2719 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2720 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2721 	} else {
2722 		struct wmeParams *wmep =
2723 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2724 		/*
2725 		 * Adhoc mode; important thing is to use 2x cwmin.
2726 		 */
2727 		qi.tqi_aifs = wmep->wmep_aifsn;
2728 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2729 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2730 	}
2731 
2732 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2733 		device_printf(sc->sc_dev, "unable to update parameters for "
2734 			"beacon hardware queue!\n");
2735 		return 0;
2736 	} else {
2737 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2738 		return 1;
2739 	}
2740 #undef ATH_EXPONENT_TO_VALUE
2741 }
2742 
2743 /*
2744  * Allocate and setup an initial beacon frame.
2745  */
2746 static int
2747 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2748 {
2749 	struct ieee80211vap *vap = ni->ni_vap;
2750 	struct ath_vap *avp = ATH_VAP(vap);
2751 	struct ath_buf *bf;
2752 	struct mbuf *m;
2753 	int error;
2754 
2755 	bf = avp->av_bcbuf;
2756 	if (bf->bf_m != NULL) {
2757 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2758 		m_freem(bf->bf_m);
2759 		bf->bf_m = NULL;
2760 	}
2761 	if (bf->bf_node != NULL) {
2762 		ieee80211_free_node(bf->bf_node);
2763 		bf->bf_node = NULL;
2764 	}
2765 
2766 	/*
2767 	 * NB: the beacon data buffer must be 32-bit aligned;
2768 	 * we assume the mbuf routines will return us something
2769 	 * with this alignment (perhaps should assert).
2770 	 */
2771 	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2772 	if (m == NULL) {
2773 		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2774 		sc->sc_stats.ast_be_nombuf++;
2775 		return ENOMEM;
2776 	}
2777 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2778 				     bf->bf_segs, &bf->bf_nseg,
2779 				     BUS_DMA_NOWAIT);
2780 	if (error != 0) {
2781 		device_printf(sc->sc_dev,
2782 		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2783 		    __func__, error);
2784 		m_freem(m);
2785 		return error;
2786 	}
2787 
2788 	/*
2789 	 * Calculate a TSF adjustment factor required for staggered
2790 	 * beacons.  Note that we assume the format of the beacon
2791 	 * frame leaves the tstamp field immediately following the
2792 	 * header.
2793 	 */
2794 	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2795 		uint64_t tsfadjust;
2796 		struct ieee80211_frame *wh;
2797 
2798 		/*
2799 		 * The beacon interval is in TU's; the TSF is in usecs.
2800 		 * We figure out how many TU's to add to align the timestamp
2801 		 * then convert to TSF units and handle byte swapping before
2802 		 * inserting it in the frame.  The hardware will then add this
2803 		 * each time a beacon frame is sent.  Note that we align vap's
2804 		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2805 		 * timestamp in one beacon interval while the others get a
2806 		 * timstamp aligned to the next interval.
2807 		 */
2808 		tsfadjust = ni->ni_intval *
2809 		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2810 		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2811 
2812 		DPRINTF(sc, ATH_DEBUG_BEACON,
2813 		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2814 		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2815 		    avp->av_bslot, ni->ni_intval, le64toh(tsfadjust));
2816 
2817 		wh = mtod(m, struct ieee80211_frame *);
2818 		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2819 	}
2820 	bf->bf_m = m;
2821 	bf->bf_node = ieee80211_ref_node(ni);
2822 
2823 	return 0;
2824 }
2825 
2826 /*
2827  * Setup the beacon frame for transmit.
2828  */
2829 static void
2830 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2831 {
2832 #define	USE_SHPREAMBLE(_ic) \
2833 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2834 		== IEEE80211_F_SHPREAMBLE)
2835 	struct ieee80211_node *ni = bf->bf_node;
2836 	struct ieee80211com *ic = ni->ni_ic;
2837 	struct mbuf *m = bf->bf_m;
2838 	struct ath_hal *ah = sc->sc_ah;
2839 	struct ath_desc *ds;
2840 	int flags, antenna;
2841 	const HAL_RATE_TABLE *rt;
2842 	u_int8_t rix, rate;
2843 
2844 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2845 		__func__, m, m->m_len);
2846 
2847 	/* setup descriptors */
2848 	ds = bf->bf_desc;
2849 
2850 	flags = HAL_TXDESC_NOACK;
2851 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2852 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2853 		flags |= HAL_TXDESC_VEOL;
2854 		/*
2855 		 * Let hardware handle antenna switching.
2856 		 */
2857 		antenna = sc->sc_txantenna;
2858 	} else {
2859 		ds->ds_link = 0;
2860 		/*
2861 		 * Switch antenna every 4 beacons.
2862 		 * XXX assumes two antenna
2863 		 */
2864 		if (sc->sc_txantenna != 0)
2865 			antenna = sc->sc_txantenna;
2866 		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2867 			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2868 		else
2869 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2870 	}
2871 
2872 	KASSERT(bf->bf_nseg == 1,
2873 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2874 	ds->ds_data = bf->bf_segs[0].ds_addr;
2875 	/*
2876 	 * Calculate rate code.
2877 	 * XXX everything at min xmit rate
2878 	 */
2879 	rix = 0;
2880 	rt = sc->sc_currates;
2881 	rate = rt->info[rix].rateCode;
2882 	if (USE_SHPREAMBLE(ic))
2883 		rate |= rt->info[rix].shortPreamble;
2884 	ath_hal_setuptxdesc(ah, ds
2885 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2886 		, sizeof(struct ieee80211_frame)/* header length */
2887 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2888 		, ni->ni_txpower		/* txpower XXX */
2889 		, rate, 1			/* series 0 rate/tries */
2890 		, HAL_TXKEYIX_INVALID		/* no encryption */
2891 		, antenna			/* antenna mode */
2892 		, flags				/* no ack, veol for beacons */
2893 		, 0				/* rts/cts rate */
2894 		, 0				/* rts/cts duration */
2895 	);
2896 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2897 	ath_hal_filltxdesc(ah, ds
2898 		, roundup(m->m_len, 4)		/* buffer length */
2899 		, AH_TRUE			/* first segment */
2900 		, AH_TRUE			/* last segment */
2901 		, ds				/* first descriptor */
2902 	);
2903 #if 0
2904 	ath_desc_swap(ds);
2905 #endif
2906 #undef USE_SHPREAMBLE
2907 }
2908 
2909 static void
2910 ath_beacon_update(struct ieee80211vap *vap, int item)
2911 {
2912 	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2913 
2914 	setbit(bo->bo_flags, item);
2915 }
2916 
2917 /*
2918  * Append the contents of src to dst; both queues
2919  * are assumed to be locked.
2920  */
2921 static void
2922 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2923 {
2924 	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2925 	dst->axq_link = src->axq_link;
2926 	src->axq_link = NULL;
2927 	dst->axq_depth += src->axq_depth;
2928 	src->axq_depth = 0;
2929 }
2930 
2931 /*
2932  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2933  * frame contents are done as needed and the slot time is
2934  * also adjusted based on current state.
2935  */
2936 static void
2937 ath_beacon_proc(void *arg, int pending)
2938 {
2939 	struct ath_softc *sc = arg;
2940 	struct ath_hal *ah = sc->sc_ah;
2941 	struct ieee80211vap *vap;
2942 	struct ath_buf *bf;
2943 	int slot, otherant;
2944 	uint32_t bfaddr;
2945 
2946 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2947 		__func__, pending);
2948 	/*
2949 	 * Check if the previous beacon has gone out.  If
2950 	 * not don't try to post another, skip this period
2951 	 * and wait for the next.  Missed beacons indicate
2952 	 * a problem and should not occur.  If we miss too
2953 	 * many consecutive beacons reset the device.
2954 	 */
2955 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2956 		sc->sc_bmisscount++;
2957 		DPRINTF(sc, ATH_DEBUG_BEACON,
2958 			"%s: missed %u consecutive beacons\n",
2959 			__func__, sc->sc_bmisscount);
2960 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2961 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2962 		return;
2963 	}
2964 	if (sc->sc_bmisscount != 0) {
2965 		DPRINTF(sc, ATH_DEBUG_BEACON,
2966 			"%s: resume beacon xmit after %u misses\n",
2967 			__func__, sc->sc_bmisscount);
2968 		sc->sc_bmisscount = 0;
2969 	}
2970 
2971 	if (sc->sc_stagbeacons) {			/* staggered beacons */
2972 		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2973 		uint32_t tsftu;
2974 
2975 		tsftu = ath_hal_gettsf32(ah) >> 10;
2976 		/* XXX lintval */
2977 		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2978 		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2979 		bfaddr = 0;
2980 		if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
2981 			bf = ath_beacon_generate(sc, vap);
2982 			if (bf != NULL)
2983 				bfaddr = bf->bf_daddr;
2984 		}
2985 	} else {					/* burst'd beacons */
2986 		uint32_t *bflink = &bfaddr;
2987 
2988 		for (slot = 0; slot < ATH_BCBUF; slot++) {
2989 			vap = sc->sc_bslot[slot];
2990 			if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
2991 				bf = ath_beacon_generate(sc, vap);
2992 				if (bf != NULL) {
2993 					*bflink = bf->bf_daddr;
2994 					bflink = &bf->bf_desc->ds_link;
2995 				}
2996 			}
2997 		}
2998 		*bflink = 0;				/* terminate list */
2999 	}
3000 
3001 	/*
3002 	 * Handle slot time change when a non-ERP station joins/leaves
3003 	 * an 11g network.  The 802.11 layer notifies us via callback,
3004 	 * we mark updateslot, then wait one beacon before effecting
3005 	 * the change.  This gives associated stations at least one
3006 	 * beacon interval to note the state change.
3007 	 */
3008 	/* XXX locking */
3009 	if (sc->sc_updateslot == UPDATE) {
3010 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
3011 		sc->sc_slotupdate = slot;
3012 	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
3013 		ath_setslottime(sc);		/* commit change to h/w */
3014 
3015 	/*
3016 	 * Check recent per-antenna transmit statistics and flip
3017 	 * the default antenna if noticeably more frames went out
3018 	 * on the non-default antenna.
3019 	 * XXX assumes 2 anntenae
3020 	 */
3021 	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
3022 		otherant = sc->sc_defant & 1 ? 2 : 1;
3023 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
3024 			ath_setdefantenna(sc, otherant);
3025 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
3026 	}
3027 
3028 	if (bfaddr != 0) {
3029 		/*
3030 		 * Stop any current dma and put the new frame on the queue.
3031 		 * This should never fail since we check above that no frames
3032 		 * are still pending on the queue.
3033 		 */
3034 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
3035 			DPRINTF(sc, ATH_DEBUG_ANY,
3036 				"%s: beacon queue %u did not stop?\n",
3037 				__func__, sc->sc_bhalq);
3038 		}
3039 		/* NB: cabq traffic should already be queued and primed */
3040 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
3041 		ath_hal_txstart(ah, sc->sc_bhalq);
3042 
3043 		sc->sc_stats.ast_be_xmit++;
3044 	}
3045 }
3046 
3047 static struct ath_buf *
3048 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
3049 {
3050 	struct ath_vap *avp = ATH_VAP(vap);
3051 	struct ath_txq *cabq = sc->sc_cabq;
3052 	struct ath_buf *bf;
3053 	struct mbuf *m;
3054 	int nmcastq, error;
3055 
3056 	KASSERT(vap->iv_state == IEEE80211_S_RUN,
3057 	    ("not running, state %d", vap->iv_state));
3058 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3059 
3060 	/*
3061 	 * Update dynamic beacon contents.  If this returns
3062 	 * non-zero then we need to remap the memory because
3063 	 * the beacon frame changed size (probably because
3064 	 * of the TIM bitmap).
3065 	 */
3066 	bf = avp->av_bcbuf;
3067 	m = bf->bf_m;
3068 	nmcastq = avp->av_mcastq.axq_depth;
3069 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
3070 		/* XXX too conservative? */
3071 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3072 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3073 					     bf->bf_segs, &bf->bf_nseg,
3074 					     BUS_DMA_NOWAIT);
3075 		if (error != 0) {
3076 			if_printf(vap->iv_ifp,
3077 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3078 			    __func__, error);
3079 			return NULL;
3080 		}
3081 	}
3082 	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
3083 		DPRINTF(sc, ATH_DEBUG_BEACON,
3084 		    "%s: cabq did not drain, mcastq %u cabq %u\n",
3085 		    __func__, nmcastq, cabq->axq_depth);
3086 		sc->sc_stats.ast_cabq_busy++;
3087 		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
3088 			/*
3089 			 * CABQ traffic from a previous vap is still pending.
3090 			 * We must drain the q before this beacon frame goes
3091 			 * out as otherwise this vap's stations will get cab
3092 			 * frames from a different vap.
3093 			 * XXX could be slow causing us to miss DBA
3094 			 */
3095 			ath_tx_draintxq(sc, cabq);
3096 		}
3097 	}
3098 	ath_beacon_setup(sc, bf);
3099 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3100 
3101 	/*
3102 	 * Enable the CAB queue before the beacon queue to
3103 	 * insure cab frames are triggered by this beacon.
3104 	 */
3105 	if (avp->av_boff.bo_tim[4] & 1) {
3106 		struct ath_hal *ah = sc->sc_ah;
3107 
3108 		/* NB: only at DTIM */
3109 		ATH_TXQ_LOCK(cabq);
3110 		ATH_TXQ_LOCK(&avp->av_mcastq);
3111 		if (nmcastq) {
3112 			struct ath_buf *bfm;
3113 
3114 			/*
3115 			 * Move frames from the s/w mcast q to the h/w cab q.
3116 			 * XXX MORE_DATA bit
3117 			 */
3118 			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
3119 			if (cabq->axq_link != NULL) {
3120 				*cabq->axq_link = bfm->bf_daddr;
3121 			} else
3122 				ath_hal_puttxbuf(ah, cabq->axq_qnum,
3123 					bfm->bf_daddr);
3124 			ath_txqmove(cabq, &avp->av_mcastq);
3125 
3126 			sc->sc_stats.ast_cabq_xmit += nmcastq;
3127 		}
3128 		/* NB: gated by beacon so safe to start here */
3129 		ath_hal_txstart(ah, cabq->axq_qnum);
3130 		ATH_TXQ_UNLOCK(cabq);
3131 		ATH_TXQ_UNLOCK(&avp->av_mcastq);
3132 	}
3133 	return bf;
3134 }
3135 
3136 static void
3137 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3138 {
3139 	struct ath_vap *avp = ATH_VAP(vap);
3140 	struct ath_hal *ah = sc->sc_ah;
3141 	struct ath_buf *bf;
3142 	struct mbuf *m;
3143 	int error;
3144 
3145 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3146 
3147 	/*
3148 	 * Update dynamic beacon contents.  If this returns
3149 	 * non-zero then we need to remap the memory because
3150 	 * the beacon frame changed size (probably because
3151 	 * of the TIM bitmap).
3152 	 */
3153 	bf = avp->av_bcbuf;
3154 	m = bf->bf_m;
3155 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3156 		/* XXX too conservative? */
3157 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3158 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3159 					     bf->bf_segs, &bf->bf_nseg,
3160 					     BUS_DMA_NOWAIT);
3161 		if (error != 0) {
3162 			if_printf(vap->iv_ifp,
3163 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3164 			    __func__, error);
3165 			return;
3166 		}
3167 	}
3168 	ath_beacon_setup(sc, bf);
3169 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3170 
3171 	/* NB: caller is known to have already stopped tx dma */
3172 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3173 	ath_hal_txstart(ah, sc->sc_bhalq);
3174 }
3175 
3176 /*
3177  * Reset the hardware after detecting beacons have stopped.
3178  */
3179 static void
3180 ath_bstuck_proc(void *arg, int pending)
3181 {
3182 	struct ath_softc *sc = arg;
3183 	struct ifnet *ifp = sc->sc_ifp;
3184 
3185 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3186 		sc->sc_bmisscount);
3187 	ath_reset(ifp);
3188 }
3189 
3190 /*
3191  * Reclaim beacon resources and return buffer to the pool.
3192  */
3193 static void
3194 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3195 {
3196 
3197 	if (bf->bf_m != NULL) {
3198 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3199 		m_freem(bf->bf_m);
3200 		bf->bf_m = NULL;
3201 	}
3202 	if (bf->bf_node != NULL) {
3203 		ieee80211_free_node(bf->bf_node);
3204 		bf->bf_node = NULL;
3205 	}
3206 	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3207 }
3208 
3209 /*
3210  * Reclaim beacon resources.
3211  */
3212 static void
3213 ath_beacon_free(struct ath_softc *sc)
3214 {
3215 	struct ath_buf *bf;
3216 
3217 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3218 		if (bf->bf_m != NULL) {
3219 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3220 			m_freem(bf->bf_m);
3221 			bf->bf_m = NULL;
3222 		}
3223 		if (bf->bf_node != NULL) {
3224 			ieee80211_free_node(bf->bf_node);
3225 			bf->bf_node = NULL;
3226 		}
3227 	}
3228 }
3229 
3230 /*
3231  * Configure the beacon and sleep timers.
3232  *
3233  * When operating as an AP this resets the TSF and sets
3234  * up the hardware to notify us when we need to issue beacons.
3235  *
3236  * When operating in station mode this sets up the beacon
3237  * timers according to the timestamp of the last received
3238  * beacon and the current TSF, configures PCF and DTIM
3239  * handling, programs the sleep registers so the hardware
3240  * will wakeup in time to receive beacons, and configures
3241  * the beacon miss handling so we'll receive a BMISS
3242  * interrupt when we stop seeing beacons from the AP
3243  * we've associated with.
3244  */
3245 static void
3246 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3247 {
3248 #define	TSF_TO_TU(_h,_l) \
3249 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3250 #define	FUDGE	2
3251 	struct ath_hal *ah = sc->sc_ah;
3252 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3253 	struct ieee80211_node *ni;
3254 	u_int32_t nexttbtt, intval, tsftu;
3255 	u_int64_t tsf;
3256 
3257 	if (vap == NULL)
3258 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3259 	ni = vap->iv_bss;
3260 
3261 	/* extract tstamp from last beacon and convert to TU */
3262 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3263 			     LE_READ_4(ni->ni_tstamp.data));
3264 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3265 		/*
3266 		 * For multi-bss ap support beacons are either staggered
3267 		 * evenly over N slots or burst together.  For the former
3268 		 * arrange for the SWBA to be delivered for each slot.
3269 		 * Slots that are not occupied will generate nothing.
3270 		 */
3271 		/* NB: the beacon interval is kept internally in TU's */
3272 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3273 		if (sc->sc_stagbeacons)
3274 			intval /= ATH_BCBUF;
3275 	} else {
3276 		/* NB: the beacon interval is kept internally in TU's */
3277 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3278 	}
3279 	if (nexttbtt == 0)		/* e.g. for ap mode */
3280 		nexttbtt = intval;
3281 	else if (intval)		/* NB: can be 0 for monitor mode */
3282 		nexttbtt = roundup(nexttbtt, intval);
3283 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3284 		__func__, nexttbtt, intval, ni->ni_intval);
3285 	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3286 		HAL_BEACON_STATE bs;
3287 		int dtimperiod, dtimcount;
3288 		int cfpperiod, cfpcount;
3289 
3290 		/*
3291 		 * Setup dtim and cfp parameters according to
3292 		 * last beacon we received (which may be none).
3293 		 */
3294 		dtimperiod = ni->ni_dtim_period;
3295 		if (dtimperiod <= 0)		/* NB: 0 if not known */
3296 			dtimperiod = 1;
3297 		dtimcount = ni->ni_dtim_count;
3298 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3299 			dtimcount = 0;		/* XXX? */
3300 		cfpperiod = 1;			/* NB: no PCF support yet */
3301 		cfpcount = 0;
3302 		/*
3303 		 * Pull nexttbtt forward to reflect the current
3304 		 * TSF and calculate dtim+cfp state for the result.
3305 		 */
3306 		tsf = ath_hal_gettsf64(ah);
3307 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3308 		do {
3309 			nexttbtt += intval;
3310 			if (--dtimcount < 0) {
3311 				dtimcount = dtimperiod - 1;
3312 				if (--cfpcount < 0)
3313 					cfpcount = cfpperiod - 1;
3314 			}
3315 		} while (nexttbtt < tsftu);
3316 		memset(&bs, 0, sizeof(bs));
3317 		bs.bs_intval = intval;
3318 		bs.bs_nexttbtt = nexttbtt;
3319 		bs.bs_dtimperiod = dtimperiod*intval;
3320 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3321 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3322 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3323 		bs.bs_cfpmaxduration = 0;
3324 #if 0
3325 		/*
3326 		 * The 802.11 layer records the offset to the DTIM
3327 		 * bitmap while receiving beacons; use it here to
3328 		 * enable h/w detection of our AID being marked in
3329 		 * the bitmap vector (to indicate frames for us are
3330 		 * pending at the AP).
3331 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3332 		 * XXX enable based on h/w rev for newer chips
3333 		 */
3334 		bs.bs_timoffset = ni->ni_timoff;
3335 #endif
3336 		/*
3337 		 * Calculate the number of consecutive beacons to miss
3338 		 * before taking a BMISS interrupt.
3339 		 * Note that we clamp the result to at most 10 beacons.
3340 		 */
3341 		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3342 		if (bs.bs_bmissthreshold > 10)
3343 			bs.bs_bmissthreshold = 10;
3344 		else if (bs.bs_bmissthreshold <= 0)
3345 			bs.bs_bmissthreshold = 1;
3346 
3347 		/*
3348 		 * Calculate sleep duration.  The configuration is
3349 		 * given in ms.  We insure a multiple of the beacon
3350 		 * period is used.  Also, if the sleep duration is
3351 		 * greater than the DTIM period then it makes senses
3352 		 * to make it a multiple of that.
3353 		 *
3354 		 * XXX fixed at 100ms
3355 		 */
3356 		bs.bs_sleepduration =
3357 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3358 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3359 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3360 
3361 		DPRINTF(sc, ATH_DEBUG_BEACON,
3362 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3363 			, __func__
3364 			, tsf, tsftu
3365 			, bs.bs_intval
3366 			, bs.bs_nexttbtt
3367 			, bs.bs_dtimperiod
3368 			, bs.bs_nextdtim
3369 			, bs.bs_bmissthreshold
3370 			, bs.bs_sleepduration
3371 			, bs.bs_cfpperiod
3372 			, bs.bs_cfpmaxduration
3373 			, bs.bs_cfpnext
3374 			, bs.bs_timoffset
3375 		);
3376 		ath_hal_intrset(ah, 0);
3377 		ath_hal_beacontimers(ah, &bs);
3378 		sc->sc_imask |= HAL_INT_BMISS;
3379 		ath_hal_intrset(ah, sc->sc_imask);
3380 	} else {
3381 		ath_hal_intrset(ah, 0);
3382 		if (nexttbtt == intval)
3383 			intval |= HAL_BEACON_RESET_TSF;
3384 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3385 			/*
3386 			 * In IBSS mode enable the beacon timers but only
3387 			 * enable SWBA interrupts if we need to manually
3388 			 * prepare beacon frames.  Otherwise we use a
3389 			 * self-linked tx descriptor and let the hardware
3390 			 * deal with things.
3391 			 */
3392 			intval |= HAL_BEACON_ENA;
3393 			if (!sc->sc_hasveol)
3394 				sc->sc_imask |= HAL_INT_SWBA;
3395 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3396 				/*
3397 				 * Pull nexttbtt forward to reflect
3398 				 * the current TSF.
3399 				 */
3400 				tsf = ath_hal_gettsf64(ah);
3401 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3402 				do {
3403 					nexttbtt += intval;
3404 				} while (nexttbtt < tsftu);
3405 			}
3406 			ath_beaconq_config(sc);
3407 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3408 			/*
3409 			 * In AP mode we enable the beacon timers and
3410 			 * SWBA interrupts to prepare beacon frames.
3411 			 */
3412 			intval |= HAL_BEACON_ENA;
3413 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3414 			ath_beaconq_config(sc);
3415 		}
3416 		ath_hal_beaconinit(ah, nexttbtt, intval);
3417 		sc->sc_bmisscount = 0;
3418 		ath_hal_intrset(ah, sc->sc_imask);
3419 		/*
3420 		 * When using a self-linked beacon descriptor in
3421 		 * ibss mode load it once here.
3422 		 */
3423 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3424 			ath_beacon_start_adhoc(sc, vap);
3425 	}
3426 	sc->sc_syncbeacon = 0;
3427 #undef FUDGE
3428 #undef TSF_TO_TU
3429 }
3430 
3431 static void
3432 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3433 {
3434 	bus_addr_t *paddr = (bus_addr_t*) arg;
3435 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3436 	*paddr = segs->ds_addr;
3437 }
3438 
3439 static int
3440 ath_descdma_setup(struct ath_softc *sc,
3441 	struct ath_descdma *dd, ath_bufhead *head,
3442 	const char *name, int nbuf, int ndesc)
3443 {
3444 #define	DS2PHYS(_dd, _ds) \
3445 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3446 	struct ifnet *ifp = sc->sc_ifp;
3447 	struct ath_desc *ds;
3448 	struct ath_buf *bf;
3449 	int i, bsize, error;
3450 
3451 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3452 	    __func__, name, nbuf, ndesc);
3453 
3454 	dd->dd_name = name;
3455 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
3456 
3457 	/*
3458 	 * Setup DMA descriptor area.
3459 	 */
3460 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3461 		       PAGE_SIZE, 0,		/* alignment, bounds */
3462 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3463 		       BUS_SPACE_MAXADDR,	/* highaddr */
3464 		       NULL, NULL,		/* filter, filterarg */
3465 		       dd->dd_desc_len,		/* maxsize */
3466 		       1,			/* nsegments */
3467 		       dd->dd_desc_len,		/* maxsegsize */
3468 		       BUS_DMA_ALLOCNOW,	/* flags */
3469 		       NULL,			/* lockfunc */
3470 		       NULL,			/* lockarg */
3471 		       &dd->dd_dmat);
3472 	if (error != 0) {
3473 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3474 		return error;
3475 	}
3476 
3477 	/* allocate descriptors */
3478 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3479 	if (error != 0) {
3480 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3481 			"error %u\n", dd->dd_name, error);
3482 		goto fail0;
3483 	}
3484 
3485 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3486 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3487 				 &dd->dd_dmamap);
3488 	if (error != 0) {
3489 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3490 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3491 		goto fail1;
3492 	}
3493 
3494 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3495 				dd->dd_desc, dd->dd_desc_len,
3496 				ath_load_cb, &dd->dd_desc_paddr,
3497 				BUS_DMA_NOWAIT);
3498 	if (error != 0) {
3499 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3500 			dd->dd_name, error);
3501 		goto fail2;
3502 	}
3503 
3504 	ds = dd->dd_desc;
3505 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3506 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3507 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3508 
3509 	/* allocate rx buffers */
3510 	bsize = sizeof(struct ath_buf) * nbuf;
3511 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3512 	if (bf == NULL) {
3513 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3514 			dd->dd_name, bsize);
3515 		goto fail3;
3516 	}
3517 	dd->dd_bufptr = bf;
3518 
3519 	STAILQ_INIT(head);
3520 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3521 		bf->bf_desc = ds;
3522 		bf->bf_daddr = DS2PHYS(dd, ds);
3523 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3524 				&bf->bf_dmamap);
3525 		if (error != 0) {
3526 			if_printf(ifp, "unable to create dmamap for %s "
3527 				"buffer %u, error %u\n", dd->dd_name, i, error);
3528 			ath_descdma_cleanup(sc, dd, head);
3529 			return error;
3530 		}
3531 		STAILQ_INSERT_TAIL(head, bf, bf_list);
3532 	}
3533 	return 0;
3534 fail3:
3535 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3536 fail2:
3537 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3538 fail1:
3539 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3540 fail0:
3541 	bus_dma_tag_destroy(dd->dd_dmat);
3542 	memset(dd, 0, sizeof(*dd));
3543 	return error;
3544 #undef DS2PHYS
3545 }
3546 
3547 static void
3548 ath_descdma_cleanup(struct ath_softc *sc,
3549 	struct ath_descdma *dd, ath_bufhead *head)
3550 {
3551 	struct ath_buf *bf;
3552 	struct ieee80211_node *ni;
3553 
3554 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3555 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3556 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3557 	bus_dma_tag_destroy(dd->dd_dmat);
3558 
3559 	STAILQ_FOREACH(bf, head, bf_list) {
3560 		if (bf->bf_m) {
3561 			m_freem(bf->bf_m);
3562 			bf->bf_m = NULL;
3563 		}
3564 		if (bf->bf_dmamap != NULL) {
3565 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3566 			bf->bf_dmamap = NULL;
3567 		}
3568 		ni = bf->bf_node;
3569 		bf->bf_node = NULL;
3570 		if (ni != NULL) {
3571 			/*
3572 			 * Reclaim node reference.
3573 			 */
3574 			ieee80211_free_node(ni);
3575 		}
3576 	}
3577 
3578 	STAILQ_INIT(head);
3579 	free(dd->dd_bufptr, M_ATHDEV);
3580 	memset(dd, 0, sizeof(*dd));
3581 }
3582 
3583 static int
3584 ath_desc_alloc(struct ath_softc *sc)
3585 {
3586 	int error;
3587 
3588 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3589 			"rx", ath_rxbuf, 1);
3590 	if (error != 0)
3591 		return error;
3592 
3593 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3594 			"tx", ath_txbuf, ATH_TXDESC);
3595 	if (error != 0) {
3596 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3597 		return error;
3598 	}
3599 
3600 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3601 			"beacon", ATH_BCBUF, 1);
3602 	if (error != 0) {
3603 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3604 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3605 		return error;
3606 	}
3607 	return 0;
3608 }
3609 
3610 static void
3611 ath_desc_free(struct ath_softc *sc)
3612 {
3613 
3614 	if (sc->sc_bdma.dd_desc_len != 0)
3615 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3616 	if (sc->sc_txdma.dd_desc_len != 0)
3617 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3618 	if (sc->sc_rxdma.dd_desc_len != 0)
3619 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3620 }
3621 
3622 static struct ieee80211_node *
3623 ath_node_alloc(struct ieee80211_node_table *nt)
3624 {
3625 	struct ieee80211com *ic = nt->nt_ic;
3626 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3627 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3628 	struct ath_node *an;
3629 
3630 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3631 	if (an == NULL) {
3632 		/* XXX stat+msg */
3633 		return NULL;
3634 	}
3635 	ath_rate_node_init(sc, an);
3636 
3637 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3638 	return &an->an_node;
3639 }
3640 
3641 static void
3642 ath_node_free(struct ieee80211_node *ni)
3643 {
3644 	struct ieee80211com *ic = ni->ni_ic;
3645         struct ath_softc *sc = ic->ic_ifp->if_softc;
3646 
3647 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3648 
3649 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3650 	sc->sc_node_free(ni);
3651 }
3652 
3653 static void
3654 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3655 {
3656 	struct ieee80211com *ic = ni->ni_ic;
3657 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3658 	struct ath_hal *ah = sc->sc_ah;
3659 	HAL_CHANNEL hchan;
3660 
3661 	*rssi = ic->ic_node_getrssi(ni);
3662 	if (ni->ni_chan != IEEE80211_CHAN_ANYC) {
3663 		ath_mapchan(&hchan, ni->ni_chan);
3664 		*noise = ath_hal_getchannoise(ah, &hchan);
3665 	} else
3666 		*noise = -95;		/* nominally correct */
3667 }
3668 
3669 static int
3670 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3671 {
3672 	struct ath_hal *ah = sc->sc_ah;
3673 	int error;
3674 	struct mbuf *m;
3675 	struct ath_desc *ds;
3676 
3677 	m = bf->bf_m;
3678 	if (m == NULL) {
3679 		/*
3680 		 * NB: by assigning a page to the rx dma buffer we
3681 		 * implicitly satisfy the Atheros requirement that
3682 		 * this buffer be cache-line-aligned and sized to be
3683 		 * multiple of the cache line size.  Not doing this
3684 		 * causes weird stuff to happen (for the 5210 at least).
3685 		 */
3686 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3687 		if (m == NULL) {
3688 			DPRINTF(sc, ATH_DEBUG_ANY,
3689 				"%s: no mbuf/cluster\n", __func__);
3690 			sc->sc_stats.ast_rx_nombuf++;
3691 			return ENOMEM;
3692 		}
3693 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3694 
3695 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3696 					     bf->bf_dmamap, m,
3697 					     bf->bf_segs, &bf->bf_nseg,
3698 					     BUS_DMA_NOWAIT);
3699 		if (error != 0) {
3700 			DPRINTF(sc, ATH_DEBUG_ANY,
3701 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3702 			    __func__, error);
3703 			sc->sc_stats.ast_rx_busdma++;
3704 			m_freem(m);
3705 			return error;
3706 		}
3707 		KASSERT(bf->bf_nseg == 1,
3708 			("multi-segment packet; nseg %u", bf->bf_nseg));
3709 		bf->bf_m = m;
3710 	}
3711 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3712 
3713 	/*
3714 	 * Setup descriptors.  For receive we always terminate
3715 	 * the descriptor list with a self-linked entry so we'll
3716 	 * not get overrun under high load (as can happen with a
3717 	 * 5212 when ANI processing enables PHY error frames).
3718 	 *
3719 	 * To insure the last descriptor is self-linked we create
3720 	 * each descriptor as self-linked and add it to the end.  As
3721 	 * each additional descriptor is added the previous self-linked
3722 	 * entry is ``fixed'' naturally.  This should be safe even
3723 	 * if DMA is happening.  When processing RX interrupts we
3724 	 * never remove/process the last, self-linked, entry on the
3725 	 * descriptor list.  This insures the hardware always has
3726 	 * someplace to write a new frame.
3727 	 */
3728 	ds = bf->bf_desc;
3729 	ds->ds_link = bf->bf_daddr;	/* link to self */
3730 	ds->ds_data = bf->bf_segs[0].ds_addr;
3731 	ath_hal_setuprxdesc(ah, ds
3732 		, m->m_len		/* buffer size */
3733 		, 0
3734 	);
3735 
3736 	if (sc->sc_rxlink != NULL)
3737 		*sc->sc_rxlink = bf->bf_daddr;
3738 	sc->sc_rxlink = &ds->ds_link;
3739 	return 0;
3740 }
3741 
3742 /*
3743  * Extend 15-bit time stamp from rx descriptor to
3744  * a full 64-bit TSF using the specified TSF.
3745  */
3746 static __inline u_int64_t
3747 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3748 {
3749 	if ((tsf & 0x7fff) < rstamp)
3750 		tsf -= 0x8000;
3751 	return ((tsf &~ 0x7fff) | rstamp);
3752 }
3753 
3754 /*
3755  * Intercept management frames to collect beacon rssi data
3756  * and to do ibss merges.
3757  */
3758 static void
3759 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3760 	int subtype, int rssi, int noise, u_int32_t rstamp)
3761 {
3762 	struct ieee80211vap *vap = ni->ni_vap;
3763 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3764 
3765 	/*
3766 	 * Call up first so subsequent work can use information
3767 	 * potentially stored in the node (e.g. for ibss merge).
3768 	 */
3769 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, noise, rstamp);
3770 	switch (subtype) {
3771 	case IEEE80211_FC0_SUBTYPE_BEACON:
3772 		/* update rssi statistics for use by the hal */
3773 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3774 		if (sc->sc_syncbeacon &&
3775 		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3776 			/*
3777 			 * Resync beacon timers using the tsf of the beacon
3778 			 * frame we just received.
3779 			 */
3780 			ath_beacon_config(sc, vap);
3781 		}
3782 		/* fall thru... */
3783 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3784 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3785 		    vap->iv_state == IEEE80211_S_RUN) {
3786 			u_int64_t tsf = ath_extend_tsf(rstamp,
3787 				ath_hal_gettsf64(sc->sc_ah));
3788 			/*
3789 			 * Handle ibss merge as needed; check the tsf on the
3790 			 * frame before attempting the merge.  The 802.11 spec
3791 			 * says the station should change it's bssid to match
3792 			 * the oldest station with the same ssid, where oldest
3793 			 * is determined by the tsf.  Note that hardware
3794 			 * reconfiguration happens through callback to
3795 			 * ath_newstate as the state machine will go from
3796 			 * RUN -> RUN when this happens.
3797 			 */
3798 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3799 				DPRINTF(sc, ATH_DEBUG_STATE,
3800 				    "ibss merge, rstamp %u tsf %ju "
3801 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3802 				    (uintmax_t)ni->ni_tstamp.tsf);
3803 				(void) ieee80211_ibss_merge(ni);
3804 			}
3805 		}
3806 		break;
3807 	}
3808 }
3809 
3810 /*
3811  * Set the default antenna.
3812  */
3813 static void
3814 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3815 {
3816 	struct ath_hal *ah = sc->sc_ah;
3817 
3818 	/* XXX block beacon interrupts */
3819 	ath_hal_setdefantenna(ah, antenna);
3820 	if (sc->sc_defant != antenna)
3821 		sc->sc_stats.ast_ant_defswitch++;
3822 	sc->sc_defant = antenna;
3823 	sc->sc_rxotherant = 0;
3824 }
3825 
3826 static int
3827 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3828 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3829 {
3830 #define	CHANNEL_HT	(CHANNEL_HT20|CHANNEL_HT40PLUS|CHANNEL_HT40MINUS)
3831 	struct ath_softc *sc = ifp->if_softc;
3832 	u_int8_t rix;
3833 
3834 	/*
3835 	 * Discard anything shorter than an ack or cts.
3836 	 */
3837 	if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
3838 		DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
3839 			__func__, m->m_pkthdr.len);
3840 		sc->sc_stats.ast_rx_tooshort++;
3841 		return 0;
3842 	}
3843 	rix = rs->rs_rate;
3844 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3845 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3846 #if HAL_ABI_VERSION >= 0x07050400
3847 	if (sc->sc_curchan.channelFlags & CHANNEL_HT) {
3848 		/*
3849 		 * For HT operation we must specify the channel
3850 		 * attributes for each packet since they vary.
3851 		 * We deduce this by from HT40 bit in the rx
3852 		 * status and the MCS/legacy rate bit.
3853 		 */
3854 		sc->sc_rx_th.wr_chan_flags &= ~IEEE80211_CHAN_HT;
3855 		if (sc->sc_rx_th.wr_rate & 0x80) {	/* HT rate */
3856 			/* XXX 40U/40D */
3857 			sc->sc_rx_th.wr_chan_flags |=
3858 			    (rs->rs_flags & HAL_RX_2040) ?
3859 				IEEE80211_CHAN_HT40U : IEEE80211_CHAN_HT20;
3860 			if ((rs->rs_flags & HAL_RX_GI) == 0)
3861 				sc->sc_rx_th.wr_flags |=
3862 				    IEEE80211_RADIOTAP_F_SHORTGI;
3863 		}
3864 	}
3865 #endif
3866 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
3867 	if (rs->rs_status & HAL_RXERR_CRC)
3868 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3869 	/* XXX propagate other error flags from descriptor */
3870 	sc->sc_rx_th.wr_antsignal = rs->rs_rssi + nf;
3871 	sc->sc_rx_th.wr_antnoise = nf;
3872 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3873 
3874 	bpf_mtap2(ifp->if_bpf, &sc->sc_rx_th, sc->sc_rx_th_len, m);
3875 
3876 	return 1;
3877 #undef CHANNEL_HT
3878 }
3879 
3880 static void
3881 ath_handle_micerror(struct ieee80211com *ic,
3882 	struct ieee80211_frame *wh, int keyix)
3883 {
3884 	struct ieee80211_node *ni;
3885 
3886 	/* XXX recheck MIC to deal w/ chips that lie */
3887 	/* XXX discard MIC errors on !data frames */
3888 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3889 	if (ni != NULL) {
3890 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3891 		ieee80211_free_node(ni);
3892 	}
3893 }
3894 
3895 static void
3896 ath_rx_proc(void *arg, int npending)
3897 {
3898 #define	PA2DESC(_sc, _pa) \
3899 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3900 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3901 	struct ath_softc *sc = arg;
3902 	struct ath_buf *bf;
3903 	struct ifnet *ifp = sc->sc_ifp;
3904 	struct ieee80211com *ic = ifp->if_l2com;
3905 	struct ath_hal *ah = sc->sc_ah;
3906 	struct ath_desc *ds;
3907 	struct ath_rx_status *rs;
3908 	struct mbuf *m;
3909 	struct ieee80211_node *ni;
3910 	int len, type, ngood;
3911 	u_int phyerr;
3912 	HAL_STATUS status;
3913 	int16_t nf;
3914 	u_int64_t tsf;
3915 
3916 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3917 	ngood = 0;
3918 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3919 	tsf = ath_hal_gettsf64(ah);
3920 	do {
3921 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3922 		if (bf == NULL) {		/* NB: shouldn't happen */
3923 			if_printf(ifp, "%s: no buffer!\n", __func__);
3924 			break;
3925 		}
3926 		m = bf->bf_m;
3927 		if (m == NULL) {		/* NB: shouldn't happen */
3928 			/*
3929 			 * If mbuf allocation failed previously there
3930 			 * will be no mbuf; try again to re-populate it.
3931 			 */
3932 			/* XXX make debug msg */
3933 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3934 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3935 			goto rx_next;
3936 		}
3937 		ds = bf->bf_desc;
3938 		if (ds->ds_link == bf->bf_daddr) {
3939 			/* NB: never process the self-linked entry at the end */
3940 			break;
3941 		}
3942 		/* XXX sync descriptor memory */
3943 		/*
3944 		 * Must provide the virtual address of the current
3945 		 * descriptor, the physical address, and the virtual
3946 		 * address of the next descriptor in the h/w chain.
3947 		 * This allows the HAL to look ahead to see if the
3948 		 * hardware is done with a descriptor by checking the
3949 		 * done bit in the following descriptor and the address
3950 		 * of the current descriptor the DMA engine is working
3951 		 * on.  All this is necessary because of our use of
3952 		 * a self-linked list to avoid rx overruns.
3953 		 */
3954 		rs = &bf->bf_status.ds_rxstat;
3955 		status = ath_hal_rxprocdesc(ah, ds,
3956 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3957 #ifdef ATH_DEBUG
3958 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3959 			ath_printrxbuf(bf, 0, status == HAL_OK);
3960 #endif
3961 		if (status == HAL_EINPROGRESS)
3962 			break;
3963 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3964 		if (rs->rs_status != 0) {
3965 			if (rs->rs_status & HAL_RXERR_CRC)
3966 				sc->sc_stats.ast_rx_crcerr++;
3967 			if (rs->rs_status & HAL_RXERR_FIFO)
3968 				sc->sc_stats.ast_rx_fifoerr++;
3969 			if (rs->rs_status & HAL_RXERR_PHY) {
3970 				sc->sc_stats.ast_rx_phyerr++;
3971 				phyerr = rs->rs_phyerr & 0x1f;
3972 				sc->sc_stats.ast_rx_phy[phyerr]++;
3973 				goto rx_error;	/* NB: don't count in ierrors */
3974 			}
3975 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3976 				/*
3977 				 * Decrypt error.  If the error occurred
3978 				 * because there was no hardware key, then
3979 				 * let the frame through so the upper layers
3980 				 * can process it.  This is necessary for 5210
3981 				 * parts which have no way to setup a ``clear''
3982 				 * key cache entry.
3983 				 *
3984 				 * XXX do key cache faulting
3985 				 */
3986 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3987 					goto rx_accept;
3988 				sc->sc_stats.ast_rx_badcrypt++;
3989 			}
3990 			if (rs->rs_status & HAL_RXERR_MIC) {
3991 				sc->sc_stats.ast_rx_badmic++;
3992 				/*
3993 				 * Do minimal work required to hand off
3994 				 * the 802.11 header for notifcation.
3995 				 */
3996 				/* XXX frag's and qos frames */
3997 				len = rs->rs_datalen;
3998 				if (len >= sizeof (struct ieee80211_frame)) {
3999 					bus_dmamap_sync(sc->sc_dmat,
4000 					    bf->bf_dmamap,
4001 					    BUS_DMASYNC_POSTREAD);
4002 					ath_handle_micerror(ic,
4003 					    mtod(m, struct ieee80211_frame *),
4004 					    sc->sc_splitmic ?
4005 						rs->rs_keyix-32 : rs->rs_keyix);
4006 				}
4007 			}
4008 			ifp->if_ierrors++;
4009 rx_error:
4010 			/*
4011 			 * Cleanup any pending partial frame.
4012 			 */
4013 			if (sc->sc_rxpending != NULL) {
4014 				m_freem(sc->sc_rxpending);
4015 				sc->sc_rxpending = NULL;
4016 			}
4017 			/*
4018 			 * When a tap is present pass error frames
4019 			 * that have been requested.  By default we
4020 			 * pass decrypt+mic errors but others may be
4021 			 * interesting (e.g. crc).
4022 			 */
4023 			if (bpf_peers_present(ifp->if_bpf) &&
4024 			    (rs->rs_status & sc->sc_monpass)) {
4025 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4026 				    BUS_DMASYNC_POSTREAD);
4027 				/* NB: bpf needs the mbuf length setup */
4028 				len = rs->rs_datalen;
4029 				m->m_pkthdr.len = m->m_len = len;
4030 				(void) ath_rx_tap(ifp, m, rs, tsf, nf);
4031 			}
4032 			/* XXX pass MIC errors up for s/w reclaculation */
4033 			goto rx_next;
4034 		}
4035 rx_accept:
4036 		/*
4037 		 * Sync and unmap the frame.  At this point we're
4038 		 * committed to passing the mbuf somewhere so clear
4039 		 * bf_m; this means a new mbuf must be allocated
4040 		 * when the rx descriptor is setup again to receive
4041 		 * another frame.
4042 		 */
4043 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4044 		    BUS_DMASYNC_POSTREAD);
4045 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4046 		bf->bf_m = NULL;
4047 
4048 		len = rs->rs_datalen;
4049 		m->m_len = len;
4050 
4051 		if (rs->rs_more) {
4052 			/*
4053 			 * Frame spans multiple descriptors; save
4054 			 * it for the next completed descriptor, it
4055 			 * will be used to construct a jumbogram.
4056 			 */
4057 			if (sc->sc_rxpending != NULL) {
4058 				/* NB: max frame size is currently 2 clusters */
4059 				sc->sc_stats.ast_rx_toobig++;
4060 				m_freem(sc->sc_rxpending);
4061 			}
4062 			m->m_pkthdr.rcvif = ifp;
4063 			m->m_pkthdr.len = len;
4064 			sc->sc_rxpending = m;
4065 			goto rx_next;
4066 		} else if (sc->sc_rxpending != NULL) {
4067 			/*
4068 			 * This is the second part of a jumbogram,
4069 			 * chain it to the first mbuf, adjust the
4070 			 * frame length, and clear the rxpending state.
4071 			 */
4072 			sc->sc_rxpending->m_next = m;
4073 			sc->sc_rxpending->m_pkthdr.len += len;
4074 			m = sc->sc_rxpending;
4075 			sc->sc_rxpending = NULL;
4076 		} else {
4077 			/*
4078 			 * Normal single-descriptor receive; setup
4079 			 * the rcvif and packet length.
4080 			 */
4081 			m->m_pkthdr.rcvif = ifp;
4082 			m->m_pkthdr.len = len;
4083 		}
4084 
4085 		ifp->if_ipackets++;
4086 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
4087 
4088 		if (bpf_peers_present(ifp->if_bpf) &&
4089 		    !ath_rx_tap(ifp, m, rs, tsf, nf)) {
4090 			m_freem(m);		/* XXX reclaim */
4091 			goto rx_next;
4092 		}
4093 
4094 		/*
4095 		 * From this point on we assume the frame is at least
4096 		 * as large as ieee80211_frame_min; verify that.
4097 		 */
4098 		if (len < IEEE80211_MIN_LEN) {
4099 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
4100 				__func__, len);
4101 			sc->sc_stats.ast_rx_tooshort++;
4102 			m_freem(m);
4103 			goto rx_next;
4104 		}
4105 
4106 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
4107 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
4108 				   sc->sc_hwmap[rs->rs_rate].ieeerate,
4109 				   rs->rs_rssi);
4110 		}
4111 
4112 		m_adj(m, -IEEE80211_CRC_LEN);
4113 
4114 		/*
4115 		 * Locate the node for sender, track state, and then
4116 		 * pass the (referenced) node up to the 802.11 layer
4117 		 * for its use.
4118 		 */
4119 		ni = ieee80211_find_rxnode_withkey(ic,
4120 			mtod(m, const struct ieee80211_frame_min *),
4121 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
4122 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4123 		if (ni != NULL) {
4124 			/*
4125 			 * Sending station is known, dispatch directly.
4126 			 */
4127 			type = ieee80211_input(ni, m,
4128 			    rs->rs_rssi, nf, rs->rs_tstamp);
4129 			ieee80211_free_node(ni);
4130 			/*
4131 			 * Arrange to update the last rx timestamp only for
4132 			 * frames from our ap when operating in station mode.
4133 			 * This assumes the rx key is always setup when
4134 			 * associated.
4135 			 */
4136 			if (ic->ic_opmode == IEEE80211_M_STA &&
4137 			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4138 				ngood++;
4139 		} else {
4140 			type = ieee80211_input_all(ic, m,
4141 			    rs->rs_rssi, nf, rs->rs_tstamp);
4142 		}
4143 		/*
4144 		 * Track rx rssi and do any rx antenna management.
4145 		 */
4146 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4147 		if (sc->sc_diversity) {
4148 			/*
4149 			 * When using fast diversity, change the default rx
4150 			 * antenna if diversity chooses the other antenna 3
4151 			 * times in a row.
4152 			 */
4153 			if (sc->sc_defant != rs->rs_antenna) {
4154 				if (++sc->sc_rxotherant >= 3)
4155 					ath_setdefantenna(sc, rs->rs_antenna);
4156 			} else
4157 				sc->sc_rxotherant = 0;
4158 		}
4159 		if (sc->sc_softled) {
4160 			/*
4161 			 * Blink for any data frame.  Otherwise do a
4162 			 * heartbeat-style blink when idle.  The latter
4163 			 * is mainly for station mode where we depend on
4164 			 * periodic beacon frames to trigger the poll event.
4165 			 */
4166 			if (type == IEEE80211_FC0_TYPE_DATA) {
4167 				sc->sc_rxrate = rs->rs_rate;
4168 				ath_led_event(sc, ATH_LED_RX);
4169 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4170 				ath_led_event(sc, ATH_LED_POLL);
4171 		}
4172 rx_next:
4173 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4174 	} while (ath_rxbuf_init(sc, bf) == 0);
4175 
4176 	/* rx signal state monitoring */
4177 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
4178 	if (ngood)
4179 		sc->sc_lastrx = tsf;
4180 
4181 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
4182 	    !IFQ_IS_EMPTY(&ifp->if_snd))
4183 		ath_start(ifp);
4184 
4185 #undef PA2DESC
4186 }
4187 
4188 static void
4189 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4190 {
4191 	txq->axq_qnum = qnum;
4192 	txq->axq_depth = 0;
4193 	txq->axq_intrcnt = 0;
4194 	txq->axq_link = NULL;
4195 	STAILQ_INIT(&txq->axq_q);
4196 	ATH_TXQ_LOCK_INIT(sc, txq);
4197 	TAILQ_INIT(&txq->axq_stageq);
4198 	txq->axq_curage = 0;
4199 }
4200 
4201 /*
4202  * Setup a h/w transmit queue.
4203  */
4204 static struct ath_txq *
4205 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4206 {
4207 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4208 	struct ath_hal *ah = sc->sc_ah;
4209 	HAL_TXQ_INFO qi;
4210 	int qnum;
4211 
4212 	memset(&qi, 0, sizeof(qi));
4213 	qi.tqi_subtype = subtype;
4214 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4215 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4216 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4217 	/*
4218 	 * Enable interrupts only for EOL and DESC conditions.
4219 	 * We mark tx descriptors to receive a DESC interrupt
4220 	 * when a tx queue gets deep; otherwise waiting for the
4221 	 * EOL to reap descriptors.  Note that this is done to
4222 	 * reduce interrupt load and this only defers reaping
4223 	 * descriptors, never transmitting frames.  Aside from
4224 	 * reducing interrupts this also permits more concurrency.
4225 	 * The only potential downside is if the tx queue backs
4226 	 * up in which case the top half of the kernel may backup
4227 	 * due to a lack of tx descriptors.
4228 	 */
4229 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4230 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4231 	if (qnum == -1) {
4232 		/*
4233 		 * NB: don't print a message, this happens
4234 		 * normally on parts with too few tx queues
4235 		 */
4236 		return NULL;
4237 	}
4238 	if (qnum >= N(sc->sc_txq)) {
4239 		device_printf(sc->sc_dev,
4240 			"hal qnum %u out of range, max %zu!\n",
4241 			qnum, N(sc->sc_txq));
4242 		ath_hal_releasetxqueue(ah, qnum);
4243 		return NULL;
4244 	}
4245 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4246 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4247 		sc->sc_txqsetup |= 1<<qnum;
4248 	}
4249 	return &sc->sc_txq[qnum];
4250 #undef N
4251 }
4252 
4253 /*
4254  * Setup a hardware data transmit queue for the specified
4255  * access control.  The hal may not support all requested
4256  * queues in which case it will return a reference to a
4257  * previously setup queue.  We record the mapping from ac's
4258  * to h/w queues for use by ath_tx_start and also track
4259  * the set of h/w queues being used to optimize work in the
4260  * transmit interrupt handler and related routines.
4261  */
4262 static int
4263 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4264 {
4265 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4266 	struct ath_txq *txq;
4267 
4268 	if (ac >= N(sc->sc_ac2q)) {
4269 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4270 			ac, N(sc->sc_ac2q));
4271 		return 0;
4272 	}
4273 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4274 	if (txq != NULL) {
4275 		sc->sc_ac2q[ac] = txq;
4276 		return 1;
4277 	} else
4278 		return 0;
4279 #undef N
4280 }
4281 
4282 /*
4283  * Update WME parameters for a transmit queue.
4284  */
4285 static int
4286 ath_txq_update(struct ath_softc *sc, int ac)
4287 {
4288 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4289 #define	ATH_TXOP_TO_US(v)		(v<<5)
4290 	struct ifnet *ifp = sc->sc_ifp;
4291 	struct ieee80211com *ic = ifp->if_l2com;
4292 	struct ath_txq *txq = sc->sc_ac2q[ac];
4293 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4294 	struct ath_hal *ah = sc->sc_ah;
4295 	HAL_TXQ_INFO qi;
4296 
4297 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4298 	qi.tqi_aifs = wmep->wmep_aifsn;
4299 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4300 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4301 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4302 
4303 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4304 		if_printf(ifp, "unable to update hardware queue "
4305 			"parameters for %s traffic!\n",
4306 			ieee80211_wme_acnames[ac]);
4307 		return 0;
4308 	} else {
4309 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4310 		return 1;
4311 	}
4312 #undef ATH_TXOP_TO_US
4313 #undef ATH_EXPONENT_TO_VALUE
4314 }
4315 
4316 /*
4317  * Callback from the 802.11 layer to update WME parameters.
4318  */
4319 static int
4320 ath_wme_update(struct ieee80211com *ic)
4321 {
4322 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4323 
4324 	return !ath_txq_update(sc, WME_AC_BE) ||
4325 	    !ath_txq_update(sc, WME_AC_BK) ||
4326 	    !ath_txq_update(sc, WME_AC_VI) ||
4327 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4328 }
4329 
4330 /*
4331  * Reclaim resources for a setup queue.
4332  */
4333 static void
4334 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4335 {
4336 
4337 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4338 	ATH_TXQ_LOCK_DESTROY(txq);
4339 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4340 }
4341 
4342 /*
4343  * Reclaim all tx queue resources.
4344  */
4345 static void
4346 ath_tx_cleanup(struct ath_softc *sc)
4347 {
4348 	int i;
4349 
4350 	ATH_TXBUF_LOCK_DESTROY(sc);
4351 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4352 		if (ATH_TXQ_SETUP(sc, i))
4353 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4354 }
4355 
4356 /*
4357  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
4358  */
4359 static int
4360 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
4361 {
4362 	int i;
4363 
4364 	for (i = 0; i < rt->rateCount; i++)
4365 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
4366 			return i;
4367 	return 0;		/* NB: lowest rate */
4368 }
4369 
4370 /*
4371  * Reclaim mbuf resources.  For fragmented frames we
4372  * need to claim each frag chained with m_nextpkt.
4373  */
4374 static void
4375 ath_freetx(struct mbuf *m)
4376 {
4377 	struct mbuf *next;
4378 
4379 	do {
4380 		next = m->m_nextpkt;
4381 		m->m_nextpkt = NULL;
4382 		m_freem(m);
4383 	} while ((m = next) != NULL);
4384 }
4385 
4386 static int
4387 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
4388 {
4389 	struct mbuf *m;
4390 	int error;
4391 
4392 	/*
4393 	 * Load the DMA map so any coalescing is done.  This
4394 	 * also calculates the number of descriptors we need.
4395 	 */
4396 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4397 				     bf->bf_segs, &bf->bf_nseg,
4398 				     BUS_DMA_NOWAIT);
4399 	if (error == EFBIG) {
4400 		/* XXX packet requires too many descriptors */
4401 		bf->bf_nseg = ATH_TXDESC+1;
4402 	} else if (error != 0) {
4403 		sc->sc_stats.ast_tx_busdma++;
4404 		ath_freetx(m0);
4405 		return error;
4406 	}
4407 	/*
4408 	 * Discard null packets and check for packets that
4409 	 * require too many TX descriptors.  We try to convert
4410 	 * the latter to a cluster.
4411 	 */
4412 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
4413 		sc->sc_stats.ast_tx_linear++;
4414 		m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
4415 		if (m == NULL) {
4416 			ath_freetx(m0);
4417 			sc->sc_stats.ast_tx_nombuf++;
4418 			return ENOMEM;
4419 		}
4420 		m0 = m;
4421 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4422 					     bf->bf_segs, &bf->bf_nseg,
4423 					     BUS_DMA_NOWAIT);
4424 		if (error != 0) {
4425 			sc->sc_stats.ast_tx_busdma++;
4426 			ath_freetx(m0);
4427 			return error;
4428 		}
4429 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
4430 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
4431 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
4432 		sc->sc_stats.ast_tx_nodata++;
4433 		ath_freetx(m0);
4434 		return EIO;
4435 	}
4436 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
4437 		__func__, m0, m0->m_pkthdr.len);
4438 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
4439 	bf->bf_m = m0;
4440 
4441 	return 0;
4442 }
4443 
4444 static void
4445 ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
4446 {
4447 	struct ath_hal *ah = sc->sc_ah;
4448 	struct ath_desc *ds, *ds0;
4449 	int i;
4450 
4451 	/*
4452 	 * Fillin the remainder of the descriptor info.
4453 	 */
4454 	ds0 = ds = bf->bf_desc;
4455 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4456 		ds->ds_data = bf->bf_segs[i].ds_addr;
4457 		if (i == bf->bf_nseg - 1)
4458 			ds->ds_link = 0;
4459 		else
4460 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4461 		ath_hal_filltxdesc(ah, ds
4462 			, bf->bf_segs[i].ds_len	/* segment length */
4463 			, i == 0		/* first segment */
4464 			, i == bf->bf_nseg - 1	/* last segment */
4465 			, ds0			/* first descriptor */
4466 		);
4467 		DPRINTF(sc, ATH_DEBUG_XMIT,
4468 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4469 			__func__, i, ds->ds_link, ds->ds_data,
4470 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4471 	}
4472 	/*
4473 	 * Insert the frame on the outbound list and pass it on
4474 	 * to the hardware.  Multicast frames buffered for power
4475 	 * save stations and transmit from the CAB queue are stored
4476 	 * on a s/w only queue and loaded on to the CAB queue in
4477 	 * the SWBA handler since frames only go out on DTIM and
4478 	 * to avoid possible races.
4479 	 */
4480 	ATH_TXQ_LOCK(txq);
4481 	if (txq->axq_qnum != ATH_TXQ_SWQ) {
4482 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4483 		if (txq->axq_link == NULL) {
4484 			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4485 			DPRINTF(sc, ATH_DEBUG_XMIT,
4486 			    "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
4487 			    txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
4488 			    txq->axq_depth);
4489 		} else {
4490 			*txq->axq_link = bf->bf_daddr;
4491 			DPRINTF(sc, ATH_DEBUG_XMIT,
4492 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4493 			    txq->axq_qnum, txq->axq_link,
4494 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4495 		}
4496 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4497 		ath_hal_txstart(ah, txq->axq_qnum);
4498 	} else {
4499 		if (txq->axq_link != NULL) {
4500 			struct ath_buf *last = ATH_TXQ_LAST(txq);
4501 			struct ieee80211_frame *wh;
4502 
4503 			/* mark previous frame */
4504 			wh = mtod(last->bf_m, struct ieee80211_frame *);
4505 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
4506 			bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
4507 			    BUS_DMASYNC_PREWRITE);
4508 
4509 			/* link descriptor */
4510 			*txq->axq_link = bf->bf_daddr;
4511 		}
4512 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4513 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4514 	}
4515 	ATH_TXQ_UNLOCK(txq);
4516 }
4517 
4518 static int
4519 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
4520     struct mbuf *m0)
4521 {
4522 	struct ieee80211vap *vap = ni->ni_vap;
4523 	struct ath_vap *avp = ATH_VAP(vap);
4524 	struct ath_hal *ah = sc->sc_ah;
4525 	struct ifnet *ifp = sc->sc_ifp;
4526 	struct ieee80211com *ic = ifp->if_l2com;
4527 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
4528 	int error, iswep, ismcast, isfrag, ismrr;
4529 	int keyix, hdrlen, pktlen, try0;
4530 	u_int8_t rix, txrate, ctsrate;
4531 	u_int8_t cix = 0xff;		/* NB: silence compiler */
4532 	struct ath_desc *ds;
4533 	struct ath_txq *txq;
4534 	struct ieee80211_frame *wh;
4535 	u_int subtype, flags, ctsduration;
4536 	HAL_PKT_TYPE atype;
4537 	const HAL_RATE_TABLE *rt;
4538 	HAL_BOOL shortPreamble;
4539 	struct ath_node *an;
4540 	u_int pri;
4541 
4542 	wh = mtod(m0, struct ieee80211_frame *);
4543 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
4544 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
4545 	isfrag = m0->m_flags & M_FRAG;
4546 	hdrlen = ieee80211_anyhdrsize(wh);
4547 	/*
4548 	 * Packet length must not include any
4549 	 * pad bytes; deduct them here.
4550 	 */
4551 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
4552 
4553 	if (iswep) {
4554 		const struct ieee80211_cipher *cip;
4555 		struct ieee80211_key *k;
4556 
4557 		/*
4558 		 * Construct the 802.11 header+trailer for an encrypted
4559 		 * frame. The only reason this can fail is because of an
4560 		 * unknown or unsupported cipher/key type.
4561 		 */
4562 		k = ieee80211_crypto_encap(ni, m0);
4563 		if (k == NULL) {
4564 			/*
4565 			 * This can happen when the key is yanked after the
4566 			 * frame was queued.  Just discard the frame; the
4567 			 * 802.11 layer counts failures and provides
4568 			 * debugging/diagnostics.
4569 			 */
4570 			ath_freetx(m0);
4571 			return EIO;
4572 		}
4573 		/*
4574 		 * Adjust the packet + header lengths for the crypto
4575 		 * additions and calculate the h/w key index.  When
4576 		 * a s/w mic is done the frame will have had any mic
4577 		 * added to it prior to entry so m0->m_pkthdr.len will
4578 		 * account for it. Otherwise we need to add it to the
4579 		 * packet length.
4580 		 */
4581 		cip = k->wk_cipher;
4582 		hdrlen += cip->ic_header;
4583 		pktlen += cip->ic_header + cip->ic_trailer;
4584 		/* NB: frags always have any TKIP MIC done in s/w */
4585 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
4586 			pktlen += cip->ic_miclen;
4587 		keyix = k->wk_keyix;
4588 
4589 		/* packet header may have moved, reset our local pointer */
4590 		wh = mtod(m0, struct ieee80211_frame *);
4591 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
4592 		/*
4593 		 * Use station key cache slot, if assigned.
4594 		 */
4595 		keyix = ni->ni_ucastkey.wk_keyix;
4596 		if (keyix == IEEE80211_KEYIX_NONE)
4597 			keyix = HAL_TXKEYIX_INVALID;
4598 	} else
4599 		keyix = HAL_TXKEYIX_INVALID;
4600 
4601 	pktlen += IEEE80211_CRC_LEN;
4602 
4603 	/*
4604 	 * Load the DMA map so any coalescing is done.  This
4605 	 * also calculates the number of descriptors we need.
4606 	 */
4607 	error = ath_tx_dmasetup(sc, bf, m0);
4608 	if (error != 0)
4609 		return error;
4610 	bf->bf_node = ni;			/* NB: held reference */
4611 	m0 = bf->bf_m;				/* NB: may have changed */
4612 	wh = mtod(m0, struct ieee80211_frame *);
4613 
4614 	/* setup descriptors */
4615 	ds = bf->bf_desc;
4616 	rt = sc->sc_currates;
4617 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4618 
4619 	/*
4620 	 * NB: the 802.11 layer marks whether or not we should
4621 	 * use short preamble based on the current mode and
4622 	 * negotiated parameters.
4623 	 */
4624 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
4625 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
4626 		shortPreamble = AH_TRUE;
4627 		sc->sc_stats.ast_tx_shortpre++;
4628 	} else {
4629 		shortPreamble = AH_FALSE;
4630 	}
4631 
4632 	an = ATH_NODE(ni);
4633 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
4634 	ismrr = 0;				/* default no multi-rate retry*/
4635 	pri = M_WME_GETAC(m0);			/* honor classification */
4636 	/*
4637 	 * Calculate Atheros packet type from IEEE80211 packet header,
4638 	 * setup for rate calculations, and select h/w transmit queue.
4639 	 */
4640 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
4641 	case IEEE80211_FC0_TYPE_MGT:
4642 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4643 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
4644 			atype = HAL_PKT_TYPE_BEACON;
4645 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4646 			atype = HAL_PKT_TYPE_PROBE_RESP;
4647 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
4648 			atype = HAL_PKT_TYPE_ATIM;
4649 		else
4650 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
4651 		rix = an->an_mgmtrix;
4652 		txrate = rt->info[rix].rateCode;
4653 		if (shortPreamble)
4654 			txrate |= rt->info[rix].shortPreamble;
4655 		try0 = ATH_TXMGTTRY;
4656 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4657 		break;
4658 	case IEEE80211_FC0_TYPE_CTL:
4659 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
4660 		rix = an->an_mgmtrix;
4661 		txrate = rt->info[rix].rateCode;
4662 		if (shortPreamble)
4663 			txrate |= rt->info[rix].shortPreamble;
4664 		try0 = ATH_TXMGTTRY;
4665 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4666 		break;
4667 	case IEEE80211_FC0_TYPE_DATA:
4668 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
4669 		/*
4670 		 * Data frames: multicast frames go out at a fixed rate,
4671 		 * otherwise consult the rate control module for the
4672 		 * rate to use.
4673 		 */
4674 		if (ismcast) {
4675 			rix = an->an_mcastrix;
4676 			txrate = rt->info[rix].rateCode;
4677 			if (shortPreamble)
4678 				txrate |= rt->info[rix].shortPreamble;
4679 			try0 = 1;
4680 		} else {
4681 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
4682 				&rix, &try0, &txrate);
4683 			sc->sc_txrate = txrate;		/* for LED blinking */
4684 			sc->sc_lastdatarix = rix;	/* for fast frames */
4685 			if (try0 != ATH_TXMAXTRY)
4686 				ismrr = 1;
4687 		}
4688 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
4689 			flags |= HAL_TXDESC_NOACK;
4690 		break;
4691 	default:
4692 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
4693 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
4694 		/* XXX statistic */
4695 		ath_freetx(m0);
4696 		return EIO;
4697 	}
4698 	txq = sc->sc_ac2q[pri];
4699 
4700 	/*
4701 	 * When servicing one or more stations in power-save mode
4702 	 * (or) if there is some mcast data waiting on the mcast
4703 	 * queue (to prevent out of order delivery) multicast
4704 	 * frames must be buffered until after the beacon.
4705 	 */
4706 	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
4707 		txq = &avp->av_mcastq;
4708 
4709 	/*
4710 	 * Calculate miscellaneous flags.
4711 	 */
4712 	if (ismcast) {
4713 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
4714 	} else if (pktlen > vap->iv_rtsthreshold &&
4715 	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
4716 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
4717 		cix = rt->info[rix].controlRate;
4718 		sc->sc_stats.ast_tx_rts++;
4719 	}
4720 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
4721 		sc->sc_stats.ast_tx_noack++;
4722 
4723 	/*
4724 	 * If 802.11g protection is enabled, determine whether
4725 	 * to use RTS/CTS or just CTS.  Note that this is only
4726 	 * done for OFDM unicast frames.
4727 	 */
4728 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
4729 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
4730 	    (flags & HAL_TXDESC_NOACK) == 0) {
4731 		/* XXX fragments must use CCK rates w/ protection */
4732 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4733 			flags |= HAL_TXDESC_RTSENA;
4734 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4735 			flags |= HAL_TXDESC_CTSENA;
4736 		if (isfrag) {
4737 			/*
4738 			 * For frags it would be desirable to use the
4739 			 * highest CCK rate for RTS/CTS.  But stations
4740 			 * farther away may detect it at a lower CCK rate
4741 			 * so use the configured protection rate instead
4742 			 * (for now).
4743 			 */
4744 			cix = rt->info[sc->sc_protrix].controlRate;
4745 		} else
4746 			cix = rt->info[sc->sc_protrix].controlRate;
4747 		sc->sc_stats.ast_tx_protect++;
4748 	}
4749 
4750 	/*
4751 	 * Calculate duration.  This logically belongs in the 802.11
4752 	 * layer but it lacks sufficient information to calculate it.
4753 	 */
4754 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
4755 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
4756 		u_int16_t dur;
4757 		if (shortPreamble)
4758 			dur = rt->info[rix].spAckDuration;
4759 		else
4760 			dur = rt->info[rix].lpAckDuration;
4761 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
4762 			dur += dur;		/* additional SIFS+ACK */
4763 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
4764 			/*
4765 			 * Include the size of next fragment so NAV is
4766 			 * updated properly.  The last fragment uses only
4767 			 * the ACK duration
4768 			 */
4769 			dur += ath_hal_computetxtime(ah, rt,
4770 					m0->m_nextpkt->m_pkthdr.len,
4771 					rix, shortPreamble);
4772 		}
4773 		if (isfrag) {
4774 			/*
4775 			 * Force hardware to use computed duration for next
4776 			 * fragment by disabling multi-rate retry which updates
4777 			 * duration based on the multi-rate duration table.
4778 			 */
4779 			ismrr = 0;
4780 			try0 = ATH_TXMGTTRY;	/* XXX? */
4781 		}
4782 		*(u_int16_t *)wh->i_dur = htole16(dur);
4783 	}
4784 
4785 	/*
4786 	 * Calculate RTS/CTS rate and duration if needed.
4787 	 */
4788 	ctsduration = 0;
4789 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
4790 		/*
4791 		 * CTS transmit rate is derived from the transmit rate
4792 		 * by looking in the h/w rate table.  We must also factor
4793 		 * in whether or not a short preamble is to be used.
4794 		 */
4795 		/* NB: cix is set above where RTS/CTS is enabled */
4796 		KASSERT(cix != 0xff, ("cix not setup"));
4797 		ctsrate = rt->info[cix].rateCode;
4798 		/*
4799 		 * Compute the transmit duration based on the frame
4800 		 * size and the size of an ACK frame.  We call into the
4801 		 * HAL to do the computation since it depends on the
4802 		 * characteristics of the actual PHY being used.
4803 		 *
4804 		 * NB: CTS is assumed the same size as an ACK so we can
4805 		 *     use the precalculated ACK durations.
4806 		 */
4807 		if (shortPreamble) {
4808 			ctsrate |= rt->info[cix].shortPreamble;
4809 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4810 				ctsduration += rt->info[cix].spAckDuration;
4811 			ctsduration += ath_hal_computetxtime(ah,
4812 				rt, pktlen, rix, AH_TRUE);
4813 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4814 				ctsduration += rt->info[rix].spAckDuration;
4815 		} else {
4816 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4817 				ctsduration += rt->info[cix].lpAckDuration;
4818 			ctsduration += ath_hal_computetxtime(ah,
4819 				rt, pktlen, rix, AH_FALSE);
4820 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4821 				ctsduration += rt->info[rix].lpAckDuration;
4822 		}
4823 		/*
4824 		 * Must disable multi-rate retry when using RTS/CTS.
4825 		 */
4826 		ismrr = 0;
4827 		try0 = ATH_TXMGTTRY;		/* XXX */
4828 	} else
4829 		ctsrate = 0;
4830 
4831 	/*
4832 	 * At this point we are committed to sending the frame
4833 	 * and we don't need to look at m_nextpkt; clear it in
4834 	 * case this frame is part of frag chain.
4835 	 */
4836 	m0->m_nextpkt = NULL;
4837 
4838 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
4839 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
4840 			sc->sc_hwmap[txrate].ieeerate, -1);
4841 
4842 	if (bpf_peers_present(ifp->if_bpf)) {
4843 		u_int64_t tsf = ath_hal_gettsf64(ah);
4844 
4845 		sc->sc_tx_th.wt_tsf = htole64(tsf);
4846 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
4847 		if (iswep)
4848 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4849 		if (isfrag)
4850 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
4851 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
4852 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
4853 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
4854 
4855 		bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
4856 	}
4857 
4858 	/*
4859 	 * Determine if a tx interrupt should be generated for
4860 	 * this descriptor.  We take a tx interrupt to reap
4861 	 * descriptors when the h/w hits an EOL condition or
4862 	 * when the descriptor is specifically marked to generate
4863 	 * an interrupt.  We periodically mark descriptors in this
4864 	 * way to insure timely replenishing of the supply needed
4865 	 * for sending frames.  Defering interrupts reduces system
4866 	 * load and potentially allows more concurrent work to be
4867 	 * done but if done to aggressively can cause senders to
4868 	 * backup.
4869 	 *
4870 	 * NB: use >= to deal with sc_txintrperiod changing
4871 	 *     dynamically through sysctl.
4872 	 */
4873 	if (flags & HAL_TXDESC_INTREQ) {
4874 		txq->axq_intrcnt = 0;
4875 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4876 		flags |= HAL_TXDESC_INTREQ;
4877 		txq->axq_intrcnt = 0;
4878 	}
4879 
4880 	/*
4881 	 * Formulate first tx descriptor with tx controls.
4882 	 */
4883 	/* XXX check return value? */
4884 	ath_hal_setuptxdesc(ah, ds
4885 		, pktlen		/* packet length */
4886 		, hdrlen		/* header length */
4887 		, atype			/* Atheros packet type */
4888 		, ni->ni_txpower	/* txpower */
4889 		, txrate, try0		/* series 0 rate/tries */
4890 		, keyix			/* key cache index */
4891 		, sc->sc_txantenna	/* antenna mode */
4892 		, flags			/* flags */
4893 		, ctsrate		/* rts/cts rate */
4894 		, ctsduration		/* rts/cts duration */
4895 	);
4896 	bf->bf_flags = flags;
4897 	/*
4898 	 * Setup the multi-rate retry state only when we're
4899 	 * going to use it.  This assumes ath_hal_setuptxdesc
4900 	 * initializes the descriptors (so we don't have to)
4901 	 * when the hardware supports multi-rate retry and
4902 	 * we don't use it.
4903 	 */
4904 	if (ismrr)
4905 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4906 
4907 	ath_tx_handoff(sc, txq, bf);
4908 	return 0;
4909 }
4910 
4911 /*
4912  * Process completed xmit descriptors from the specified queue.
4913  */
4914 static int
4915 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4916 {
4917 	struct ath_hal *ah = sc->sc_ah;
4918 	struct ifnet *ifp = sc->sc_ifp;
4919 	struct ieee80211com *ic = ifp->if_l2com;
4920 	struct ath_buf *bf;
4921 	struct ath_desc *ds, *ds0;
4922 	struct ath_tx_status *ts;
4923 	struct ieee80211_node *ni;
4924 	struct ath_node *an;
4925 	int sr, lr, pri, nacked;
4926 	HAL_STATUS status;
4927 
4928 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4929 		__func__, txq->axq_qnum,
4930 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4931 		txq->axq_link);
4932 	nacked = 0;
4933 	for (;;) {
4934 		ATH_TXQ_LOCK(txq);
4935 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4936 		bf = STAILQ_FIRST(&txq->axq_q);
4937 		if (bf == NULL) {
4938 			ATH_TXQ_UNLOCK(txq);
4939 			break;
4940 		}
4941 		ds0 = &bf->bf_desc[0];
4942 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4943 		ts = &bf->bf_status.ds_txstat;
4944 		status = ath_hal_txprocdesc(ah, ds, ts);
4945 #ifdef ATH_DEBUG
4946 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4947 			ath_printtxbuf(bf, txq->axq_qnum, 0, status == HAL_OK);
4948 #endif
4949 		if (status == HAL_EINPROGRESS) {
4950 			ATH_TXQ_UNLOCK(txq);
4951 			break;
4952 		}
4953 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4954 		if (txq->axq_depth == 0)
4955 			txq->axq_link = NULL;
4956 		ATH_TXQ_UNLOCK(txq);
4957 
4958 		ni = bf->bf_node;
4959 		if (ni != NULL) {
4960 			an = ATH_NODE(ni);
4961 			if (ts->ts_status == 0) {
4962 				u_int8_t txant = ts->ts_antenna;
4963 				sc->sc_stats.ast_ant_tx[txant]++;
4964 				sc->sc_ant_tx[txant]++;
4965 				if (ts->ts_rate & HAL_TXSTAT_ALTRATE)
4966 					sc->sc_stats.ast_tx_altrate++;
4967 				sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4968 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4969 					ts->ts_rssi);
4970 				pri = M_WME_GETAC(bf->bf_m);
4971 				if (pri >= WME_AC_VO)
4972 					ic->ic_wme.wme_hipri_traffic++;
4973 				ni->ni_inact = ni->ni_inact_reload;
4974 			} else {
4975 				if (ts->ts_status & HAL_TXERR_XRETRY)
4976 					sc->sc_stats.ast_tx_xretries++;
4977 				if (ts->ts_status & HAL_TXERR_FIFO)
4978 					sc->sc_stats.ast_tx_fifoerr++;
4979 				if (ts->ts_status & HAL_TXERR_FILT)
4980 					sc->sc_stats.ast_tx_filtered++;
4981 				if (bf->bf_m->m_flags & M_FF)
4982 					sc->sc_stats.ast_ff_txerr++;
4983 			}
4984 			sr = ts->ts_shortretry;
4985 			lr = ts->ts_longretry;
4986 			sc->sc_stats.ast_tx_shortretry += sr;
4987 			sc->sc_stats.ast_tx_longretry += lr;
4988 			/*
4989 			 * Hand the descriptor to the rate control algorithm.
4990 			 */
4991 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4992 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4993 				/*
4994 				 * If frame was ack'd update the last rx time
4995 				 * used to workaround phantom bmiss interrupts.
4996 				 */
4997 				if (ts->ts_status == 0)
4998 					nacked++;
4999 				ath_rate_tx_complete(sc, an, bf);
5000 			}
5001 			/*
5002 			 * Do any tx complete callback.  Note this must
5003 			 * be done before releasing the node reference.
5004 			 */
5005 			if (bf->bf_m->m_flags & M_TXCB)
5006 				ieee80211_process_callback(ni, bf->bf_m,
5007 					ts->ts_status);
5008 			/*
5009 			 * Reclaim reference to node.
5010 			 *
5011 			 * NB: the node may be reclaimed here if, for example
5012 			 *     this is a DEAUTH message that was sent and the
5013 			 *     node was timed out due to inactivity.
5014 			 */
5015 			ieee80211_free_node(ni);
5016 		}
5017 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5018 		    BUS_DMASYNC_POSTWRITE);
5019 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5020 
5021 		m_freem(bf->bf_m);
5022 		bf->bf_m = NULL;
5023 		bf->bf_node = NULL;
5024 
5025 		ATH_TXBUF_LOCK(sc);
5026 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5027 		ATH_TXBUF_UNLOCK(sc);
5028 	}
5029 	/*
5030 	 * Flush fast-frame staging queue when traffic slows.
5031 	 */
5032 	if (txq->axq_depth <= 1)
5033 		ath_ff_stageq_flush(sc, txq, ath_ff_always);
5034 	return nacked;
5035 }
5036 
5037 static __inline int
5038 txqactive(struct ath_hal *ah, int qnum)
5039 {
5040 	u_int32_t txqs = 1<<qnum;
5041 	ath_hal_gettxintrtxqs(ah, &txqs);
5042 	return (txqs & (1<<qnum));
5043 }
5044 
5045 /*
5046  * Deferred processing of transmit interrupt; special-cased
5047  * for a single hardware transmit queue (e.g. 5210 and 5211).
5048  */
5049 static void
5050 ath_tx_proc_q0(void *arg, int npending)
5051 {
5052 	struct ath_softc *sc = arg;
5053 	struct ifnet *ifp = sc->sc_ifp;
5054 
5055 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
5056 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5057 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5058 		ath_tx_processq(sc, sc->sc_cabq);
5059 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5060 	ifp->if_timer = 0;
5061 
5062 	if (sc->sc_softled)
5063 		ath_led_event(sc, ATH_LED_TX);
5064 
5065 	ath_start(ifp);
5066 }
5067 
5068 /*
5069  * Deferred processing of transmit interrupt; special-cased
5070  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5071  */
5072 static void
5073 ath_tx_proc_q0123(void *arg, int npending)
5074 {
5075 	struct ath_softc *sc = arg;
5076 	struct ifnet *ifp = sc->sc_ifp;
5077 	int nacked;
5078 
5079 	/*
5080 	 * Process each active queue.
5081 	 */
5082 	nacked = 0;
5083 	if (txqactive(sc->sc_ah, 0))
5084 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
5085 	if (txqactive(sc->sc_ah, 1))
5086 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
5087 	if (txqactive(sc->sc_ah, 2))
5088 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
5089 	if (txqactive(sc->sc_ah, 3))
5090 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
5091 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5092 		ath_tx_processq(sc, sc->sc_cabq);
5093 	if (nacked)
5094 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5095 
5096 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5097 	ifp->if_timer = 0;
5098 
5099 	if (sc->sc_softled)
5100 		ath_led_event(sc, ATH_LED_TX);
5101 
5102 	ath_start(ifp);
5103 }
5104 
5105 /*
5106  * Deferred processing of transmit interrupt.
5107  */
5108 static void
5109 ath_tx_proc(void *arg, int npending)
5110 {
5111 	struct ath_softc *sc = arg;
5112 	struct ifnet *ifp = sc->sc_ifp;
5113 	int i, nacked;
5114 
5115 	/*
5116 	 * Process each active queue.
5117 	 */
5118 	nacked = 0;
5119 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5120 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
5121 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
5122 	if (nacked)
5123 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5124 
5125 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5126 	ifp->if_timer = 0;
5127 
5128 	if (sc->sc_softled)
5129 		ath_led_event(sc, ATH_LED_TX);
5130 
5131 	ath_start(ifp);
5132 }
5133 
5134 static void
5135 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5136 {
5137 #ifdef ATH_DEBUG
5138 	struct ath_hal *ah = sc->sc_ah;
5139 #endif
5140 	struct ieee80211_node *ni;
5141 	struct ath_buf *bf;
5142 	u_int ix;
5143 
5144 	/*
5145 	 * NB: this assumes output has been stopped and
5146 	 *     we do not need to block ath_tx_tasklet
5147 	 */
5148 	for (ix = 0;; ix++) {
5149 		ATH_TXQ_LOCK(txq);
5150 		bf = STAILQ_FIRST(&txq->axq_q);
5151 		if (bf == NULL) {
5152 			txq->axq_link = NULL;
5153 			ATH_TXQ_UNLOCK(txq);
5154 			break;
5155 		}
5156 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5157 		ATH_TXQ_UNLOCK(txq);
5158 #ifdef ATH_DEBUG
5159 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5160 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5161 
5162 			ath_printtxbuf(bf, txq->axq_qnum, ix,
5163 				ath_hal_txprocdesc(ah, bf->bf_desc,
5164 				    &bf->bf_status.ds_txstat) == HAL_OK);
5165 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, caddr_t),
5166 				bf->bf_m->m_len, 0, -1);
5167 		}
5168 #endif /* ATH_DEBUG */
5169 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5170 		ni = bf->bf_node;
5171 		bf->bf_node = NULL;
5172 		if (ni != NULL) {
5173 			/*
5174 			 * Do any callback and reclaim the node reference.
5175 			 */
5176 			if (bf->bf_m->m_flags & M_TXCB)
5177 				ieee80211_process_callback(ni, bf->bf_m, -1);
5178 			ieee80211_free_node(ni);
5179 		}
5180 		m_freem(bf->bf_m);
5181 		bf->bf_m = NULL;
5182 
5183 		ATH_TXBUF_LOCK(sc);
5184 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5185 		ATH_TXBUF_UNLOCK(sc);
5186 	}
5187 }
5188 
5189 static void
5190 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5191 {
5192 	struct ath_hal *ah = sc->sc_ah;
5193 
5194 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5195 	    __func__, txq->axq_qnum,
5196 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5197 	    txq->axq_link);
5198 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5199 }
5200 
5201 /*
5202  * Drain the transmit queues and reclaim resources.
5203  */
5204 static void
5205 ath_draintxq(struct ath_softc *sc)
5206 {
5207 	struct ath_hal *ah = sc->sc_ah;
5208 	struct ifnet *ifp = sc->sc_ifp;
5209 	int i;
5210 
5211 	/* XXX return value */
5212 	if (!sc->sc_invalid) {
5213 		/* don't touch the hardware if marked invalid */
5214 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5215 		    __func__, sc->sc_bhalq,
5216 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5217 		    NULL);
5218 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5219 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5220 			if (ATH_TXQ_SETUP(sc, i))
5221 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5222 	}
5223 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5224 		if (ATH_TXQ_SETUP(sc, i))
5225 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
5226 #ifdef ATH_DEBUG
5227 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5228 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
5229 		if (bf != NULL && bf->bf_m != NULL) {
5230 			ath_printtxbuf(bf, sc->sc_bhalq, 0,
5231 				ath_hal_txprocdesc(ah, bf->bf_desc,
5232 				    &bf->bf_status.ds_txstat) == HAL_OK);
5233 			ieee80211_dump_pkt(ifp->if_l2com, mtod(bf->bf_m, caddr_t),
5234 				bf->bf_m->m_len, 0, -1);
5235 		}
5236 	}
5237 #endif /* ATH_DEBUG */
5238 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5239 	ifp->if_timer = 0;
5240 }
5241 
5242 /*
5243  * Disable the receive h/w in preparation for a reset.
5244  */
5245 static void
5246 ath_stoprecv(struct ath_softc *sc)
5247 {
5248 #define	PA2DESC(_sc, _pa) \
5249 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5250 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5251 	struct ath_hal *ah = sc->sc_ah;
5252 
5253 	ath_hal_stoppcurecv(ah);	/* disable PCU */
5254 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5255 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5256 	DELAY(3000);			/* 3ms is long enough for 1 frame */
5257 #ifdef ATH_DEBUG
5258 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5259 		struct ath_buf *bf;
5260 		u_int ix;
5261 
5262 		printf("%s: rx queue %p, link %p\n", __func__,
5263 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5264 		ix = 0;
5265 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5266 			struct ath_desc *ds = bf->bf_desc;
5267 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5268 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5269 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5270 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5271 				ath_printrxbuf(bf, ix, status == HAL_OK);
5272 			ix++;
5273 		}
5274 	}
5275 #endif
5276 	if (sc->sc_rxpending != NULL) {
5277 		m_freem(sc->sc_rxpending);
5278 		sc->sc_rxpending = NULL;
5279 	}
5280 	sc->sc_rxlink = NULL;		/* just in case */
5281 #undef PA2DESC
5282 }
5283 
5284 /*
5285  * Enable the receive h/w following a reset.
5286  */
5287 static int
5288 ath_startrecv(struct ath_softc *sc)
5289 {
5290 	struct ath_hal *ah = sc->sc_ah;
5291 	struct ath_buf *bf;
5292 
5293 	sc->sc_rxlink = NULL;
5294 	sc->sc_rxpending = NULL;
5295 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5296 		int error = ath_rxbuf_init(sc, bf);
5297 		if (error != 0) {
5298 			DPRINTF(sc, ATH_DEBUG_RECV,
5299 				"%s: ath_rxbuf_init failed %d\n",
5300 				__func__, error);
5301 			return error;
5302 		}
5303 	}
5304 
5305 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
5306 	ath_hal_putrxbuf(ah, bf->bf_daddr);
5307 	ath_hal_rxena(ah);		/* enable recv descriptors */
5308 	ath_mode_init(sc);		/* set filters, etc. */
5309 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5310 	return 0;
5311 }
5312 
5313 /*
5314  * Update internal state after a channel change.
5315  */
5316 static void
5317 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5318 {
5319 	enum ieee80211_phymode mode;
5320 
5321 	/*
5322 	 * Change channels and update the h/w rate map
5323 	 * if we're switching; e.g. 11a to 11b/g.
5324 	 */
5325 	if (IEEE80211_IS_CHAN_HALF(chan))
5326 		mode = IEEE80211_MODE_HALF;
5327 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
5328 		mode = IEEE80211_MODE_QUARTER;
5329 	else
5330 		mode = ieee80211_chan2mode(chan);
5331 	if (mode != sc->sc_curmode)
5332 		ath_setcurmode(sc, mode);
5333 
5334 	sc->sc_rx_th.wr_chan_flags = htole32(chan->ic_flags);
5335 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags;
5336 	sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq);
5337 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq;
5338 	sc->sc_rx_th.wr_chan_ieee = chan->ic_ieee;
5339 	sc->sc_tx_th.wt_chan_ieee = sc->sc_rx_th.wr_chan_ieee;
5340 	sc->sc_rx_th.wr_chan_maxpow = chan->ic_maxregpower;
5341 	sc->sc_tx_th.wt_chan_maxpow = sc->sc_rx_th.wr_chan_maxpow;
5342 }
5343 
5344 /*
5345  * Set/change channels.  If the channel is really being changed,
5346  * it's done by reseting the chip.  To accomplish this we must
5347  * first cleanup any pending DMA, then restart stuff after a la
5348  * ath_init.
5349  */
5350 static int
5351 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5352 {
5353 	struct ifnet *ifp = sc->sc_ifp;
5354 	struct ieee80211com *ic = ifp->if_l2com;
5355 	struct ath_hal *ah = sc->sc_ah;
5356 	HAL_CHANNEL hchan;
5357 
5358 	/*
5359 	 * Convert to a HAL channel description with
5360 	 * the flags constrained to reflect the current
5361 	 * operating mode.
5362 	 */
5363 	ath_mapchan(&hchan, chan);
5364 
5365 	DPRINTF(sc, ATH_DEBUG_RESET,
5366 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
5367 	    __func__,
5368 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
5369 		sc->sc_curchan.channelFlags),
5370 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
5371 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
5372 	        hchan.channel, hchan.channelFlags);
5373 	if (hchan.channel != sc->sc_curchan.channel ||
5374 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
5375 		HAL_STATUS status;
5376 
5377 		/*
5378 		 * To switch channels clear any pending DMA operations;
5379 		 * wait long enough for the RX fifo to drain, reset the
5380 		 * hardware at the new frequency, and then re-enable
5381 		 * the relevant bits of the h/w.
5382 		 */
5383 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5384 		ath_draintxq(sc);		/* clear pending tx frames */
5385 		ath_stoprecv(sc);		/* turn off frame recv */
5386 		if (!ath_hal_reset(ah, sc->sc_opmode, &hchan, AH_TRUE, &status)) {
5387 			if_printf(ifp, "%s: unable to reset "
5388 			    "channel %u (%u Mhz, flags 0x%x hal flags 0x%x), "
5389 			    "hal status %u\n", __func__,
5390 			    ieee80211_chan2ieee(ic, chan), chan->ic_freq,
5391 			    chan->ic_flags, hchan.channelFlags, status);
5392 			return EIO;
5393 		}
5394 		sc->sc_curchan = hchan;
5395 		sc->sc_diversity = ath_hal_getdiversity(ah);
5396 		sc->sc_calinterval = 1;
5397 		sc->sc_caltries = 0;
5398 
5399 		/*
5400 		 * Re-enable rx framework.
5401 		 */
5402 		if (ath_startrecv(sc) != 0) {
5403 			if_printf(ifp, "%s: unable to restart recv logic\n",
5404 			    __func__);
5405 			return EIO;
5406 		}
5407 
5408 		/*
5409 		 * Change channels and update the h/w rate map
5410 		 * if we're switching; e.g. 11a to 11b/g.
5411 		 */
5412 		ath_chan_change(sc, chan);
5413 
5414 		/*
5415 		 * Re-enable interrupts.
5416 		 */
5417 		ath_hal_intrset(ah, sc->sc_imask);
5418 	}
5419 	return 0;
5420 }
5421 
5422 /*
5423  * Periodically recalibrate the PHY to account
5424  * for temperature/environment changes.
5425  */
5426 static void
5427 ath_calibrate(void *arg)
5428 {
5429 	struct ath_softc *sc = arg;
5430 	struct ath_hal *ah = sc->sc_ah;
5431 	HAL_BOOL iqCalDone;
5432 
5433 	sc->sc_stats.ast_per_cal++;
5434 
5435 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5436 		/*
5437 		 * Rfgain is out of bounds, reset the chip
5438 		 * to load new gain values.
5439 		 */
5440 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5441 			"%s: rfgain change\n", __func__);
5442 		sc->sc_stats.ast_per_rfgain++;
5443 		ath_reset(sc->sc_ifp);
5444 	}
5445 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
5446 		DPRINTF(sc, ATH_DEBUG_ANY,
5447 			"%s: calibration of channel %u failed\n",
5448 			__func__, sc->sc_curchan.channel);
5449 		sc->sc_stats.ast_per_calfail++;
5450 	}
5451 	/*
5452 	 * Calibrate noise floor data again in case of change.
5453 	 */
5454 	ath_hal_process_noisefloor(ah);
5455 	/*
5456 	 * Poll more frequently when the IQ calibration is in
5457 	 * progress to speedup loading the final settings.
5458 	 * We temper this aggressive polling with an exponential
5459 	 * back off after 4 tries up to ath_calinterval.
5460 	 */
5461 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
5462 		sc->sc_caltries = 0;
5463 		sc->sc_calinterval = ath_calinterval;
5464 	} else if (sc->sc_caltries > 4) {
5465 		sc->sc_caltries = 0;
5466 		sc->sc_calinterval <<= 1;
5467 		if (sc->sc_calinterval > ath_calinterval)
5468 			sc->sc_calinterval = ath_calinterval;
5469 	}
5470 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
5471 		("bad calibration interval %u", sc->sc_calinterval));
5472 
5473 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5474 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
5475 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
5476 	sc->sc_caltries++;
5477 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
5478 		ath_calibrate, sc);
5479 }
5480 
5481 static void
5482 ath_scan_start(struct ieee80211com *ic)
5483 {
5484 	struct ifnet *ifp = ic->ic_ifp;
5485 	struct ath_softc *sc = ifp->if_softc;
5486 	struct ath_hal *ah = sc->sc_ah;
5487 	u_int32_t rfilt;
5488 
5489 	/* XXX calibration timer? */
5490 
5491 	sc->sc_scanning = 1;
5492 	sc->sc_syncbeacon = 0;
5493 	rfilt = ath_calcrxfilter(sc);
5494 	ath_hal_setrxfilter(ah, rfilt);
5495 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5496 
5497 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5498 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5499 }
5500 
5501 static void
5502 ath_scan_end(struct ieee80211com *ic)
5503 {
5504 	struct ifnet *ifp = ic->ic_ifp;
5505 	struct ath_softc *sc = ifp->if_softc;
5506 	struct ath_hal *ah = sc->sc_ah;
5507 	u_int32_t rfilt;
5508 
5509 	sc->sc_scanning = 0;
5510 	rfilt = ath_calcrxfilter(sc);
5511 	ath_hal_setrxfilter(ah, rfilt);
5512 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5513 
5514 	ath_hal_process_noisefloor(ah);
5515 
5516 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5517 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5518 		 sc->sc_curaid);
5519 }
5520 
5521 static void
5522 ath_set_channel(struct ieee80211com *ic)
5523 {
5524 	struct ifnet *ifp = ic->ic_ifp;
5525 	struct ath_softc *sc = ifp->if_softc;
5526 
5527 	(void) ath_chan_set(sc, ic->ic_curchan);
5528 	/*
5529 	 * If we are returning to our bss channel then mark state
5530 	 * so the next recv'd beacon's tsf will be used to sync the
5531 	 * beacon timers.  Note that since we only hear beacons in
5532 	 * sta/ibss mode this has no effect in other operating modes.
5533 	 */
5534 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5535 		sc->sc_syncbeacon = 1;
5536 }
5537 
5538 /*
5539  * Walk the vap list and check if there any vap's in RUN state.
5540  */
5541 static int
5542 ath_isanyrunningvaps(struct ieee80211vap *this)
5543 {
5544 	struct ieee80211com *ic = this->iv_ic;
5545 	struct ieee80211vap *vap;
5546 
5547 	IEEE80211_LOCK_ASSERT(ic);
5548 
5549 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5550 		if (vap != this && vap->iv_state == IEEE80211_S_RUN)
5551 			return 1;
5552 	}
5553 	return 0;
5554 }
5555 
5556 static int
5557 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5558 {
5559 	struct ieee80211com *ic = vap->iv_ic;
5560 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5561 	struct ath_vap *avp = ATH_VAP(vap);
5562 	struct ath_hal *ah = sc->sc_ah;
5563 	struct ieee80211_node *ni = NULL;
5564 	int i, error, stamode;
5565 	u_int32_t rfilt;
5566 	static const HAL_LED_STATE leds[] = {
5567 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5568 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5569 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5570 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5571 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5572 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5573 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5574 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5575 	};
5576 
5577 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5578 		ieee80211_state_name[vap->iv_state],
5579 		ieee80211_state_name[nstate]);
5580 
5581 	callout_stop(&sc->sc_cal_ch);
5582 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5583 
5584 	if (nstate == IEEE80211_S_SCAN) {
5585 		/*
5586 		 * Scanning: turn off beacon miss and don't beacon.
5587 		 * Mark beacon state so when we reach RUN state we'll
5588 		 * [re]setup beacons.  Unblock the task q thread so
5589 		 * deferred interrupt processing is done.
5590 		 */
5591 		ath_hal_intrset(ah,
5592 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5593 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5594 		sc->sc_beacons = 0;
5595 		taskqueue_unblock(sc->sc_tq);
5596 	}
5597 
5598 	ni = vap->iv_bss;
5599 	rfilt = ath_calcrxfilter(sc);
5600 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5601 		   vap->iv_opmode == IEEE80211_M_IBSS);
5602 	if (stamode && nstate == IEEE80211_S_RUN) {
5603 		sc->sc_curaid = ni->ni_associd;
5604 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5605 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5606 	}
5607 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5608 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5609 	ath_hal_setrxfilter(ah, rfilt);
5610 
5611 	/* XXX is this to restore keycache on resume? */
5612 	if (vap->iv_opmode != IEEE80211_M_STA &&
5613 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5614 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5615 			if (ath_hal_keyisvalid(ah, i))
5616 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5617 	}
5618 	/*
5619 	 * Notify the rate control algorithm so rates
5620 	 * are setup should ath_beacon_alloc be called.
5621 	 */
5622 	ath_rate_newstate(vap, nstate);
5623 
5624 	/*
5625 	 * Invoke the parent method to do net80211 work.
5626 	 */
5627 	error = avp->av_newstate(vap, nstate, arg);
5628 	if (error != 0)
5629 		goto bad;
5630 
5631 	if (nstate == IEEE80211_S_RUN) {
5632 		/* NB: collect bss node again, it may have changed */
5633 		ni = vap->iv_bss;
5634 
5635 		DPRINTF(sc, ATH_DEBUG_STATE,
5636 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5637 		    "capinfo 0x%04x chan %d\n", __func__,
5638 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5639 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5640 
5641 		switch (vap->iv_opmode) {
5642 		case IEEE80211_M_HOSTAP:
5643 		case IEEE80211_M_IBSS:
5644 			/*
5645 			 * Allocate and setup the beacon frame.
5646 			 *
5647 			 * Stop any previous beacon DMA.  This may be
5648 			 * necessary, for example, when an ibss merge
5649 			 * causes reconfiguration; there will be a state
5650 			 * transition from RUN->RUN that means we may
5651 			 * be called with beacon transmission active.
5652 			 */
5653 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5654 
5655 			error = ath_beacon_alloc(sc, ni);
5656 			if (error != 0)
5657 				goto bad;
5658 			/*
5659 			 * If joining an adhoc network defer beacon timer
5660 			 * configuration to the next beacon frame so we
5661 			 * have a current TSF to use.  Otherwise we're
5662 			 * starting an ibss/bss so there's no need to delay;
5663 			 * if this is the first vap moving to RUN state, then
5664 			 * beacon state needs to be [re]configured.
5665 			 */
5666 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5667 			    ni->ni_tstamp.tsf != 0) {
5668 				sc->sc_syncbeacon = 1;
5669 			} else if (!sc->sc_beacons) {
5670 				ath_beacon_config(sc, vap);
5671 				sc->sc_beacons = 1;
5672 			}
5673 			break;
5674 		case IEEE80211_M_STA:
5675 			/*
5676 			 * Fakeup since we're not called by net80211.
5677 			 */
5678 			ath_newassoc(ni, 1);
5679 			/*
5680 			 * Defer beacon timer configuration to the next
5681 			 * beacon frame so we have a current TSF to use
5682 			 * (any TSF collected when scanning is likely old).
5683 			 */
5684 			sc->sc_syncbeacon = 1;
5685 			break;
5686 		case IEEE80211_M_MONITOR:
5687 			/*
5688 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5689 			 * transitions so we must re-enable interrupts here to
5690 			 * handle the case of a single monitor mode vap.
5691 			 */
5692 			ath_hal_intrset(ah, sc->sc_imask);
5693 			break;
5694 		case IEEE80211_M_WDS:
5695 			break;
5696 		default:
5697 			break;
5698 		}
5699 		/*
5700 		 * Let the hal process statistics collected during a
5701 		 * scan so it can provide calibrated noise floor data.
5702 		 */
5703 		ath_hal_process_noisefloor(ah);
5704 		/*
5705 		 * Reset rssi stats; maybe not the best place...
5706 		 */
5707 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5708 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5709 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5710 		/*
5711 		 * Finally, start any timers and the task q thread
5712 		 * (in case we didn't go through SCAN state).
5713 		 */
5714 		if (sc->sc_calinterval != 0) {
5715 			/* start periodic recalibration timer */
5716 			callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
5717 				ath_calibrate, sc);
5718 		}
5719 		taskqueue_unblock(sc->sc_tq);
5720 	} else if (nstate == IEEE80211_S_INIT) {
5721 		/*
5722 		 * If there are no vaps left in RUN state then
5723 		 * shutdown host/driver operation:
5724 		 * o disable interrupts
5725 		 * o disable the task queue thread
5726 		 * o mark beacon processing as stopped
5727 		 */
5728 		if (!ath_isanyrunningvaps(vap)) {
5729 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5730 			/* disable interrupts  */
5731 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5732 			taskqueue_block(sc->sc_tq);
5733 			sc->sc_beacons = 0;
5734 		}
5735 	}
5736 bad:
5737 	return error;
5738 }
5739 
5740 /*
5741  * Allocate a key cache slot to the station so we can
5742  * setup a mapping from key index to node. The key cache
5743  * slot is needed for managing antenna state and for
5744  * compression when stations do not use crypto.  We do
5745  * it uniliaterally here; if crypto is employed this slot
5746  * will be reassigned.
5747  */
5748 static void
5749 ath_setup_stationkey(struct ieee80211_node *ni)
5750 {
5751 	struct ieee80211vap *vap = ni->ni_vap;
5752 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5753 	ieee80211_keyix keyix, rxkeyix;
5754 
5755 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5756 		/*
5757 		 * Key cache is full; we'll fall back to doing
5758 		 * the more expensive lookup in software.  Note
5759 		 * this also means no h/w compression.
5760 		 */
5761 		/* XXX msg+statistic */
5762 	} else {
5763 		/* XXX locking? */
5764 		ni->ni_ucastkey.wk_keyix = keyix;
5765 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5766 		/* NB: this will create a pass-thru key entry */
5767 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, vap->iv_bss);
5768 	}
5769 }
5770 
5771 /*
5772  * Setup driver-specific state for a newly associated node.
5773  * Note that we're called also on a re-associate, the isnew
5774  * param tells us if this is the first time or not.
5775  */
5776 static void
5777 ath_newassoc(struct ieee80211_node *ni, int isnew)
5778 {
5779 	struct ath_node *an = ATH_NODE(ni);
5780 	struct ieee80211vap *vap = ni->ni_vap;
5781 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5782 	const struct ieee80211_txparam *tp;
5783 	enum ieee80211_phymode mode;
5784 
5785 	/*
5786 	 * Deduce netband of station to simplify setting up xmit
5787 	 * parameters.  Note this allows us to assign different
5788 	 * parameters to each station in a mixed bss (b/g, n/[abg]).
5789 	 */
5790 	if (ni->ni_flags & IEEE80211_NODE_HT) {
5791 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
5792 			mode = IEEE80211_MODE_11NA;
5793 		else
5794 			mode = IEEE80211_MODE_11NG;
5795 	} else if (IEEE80211_IS_CHAN_A(ni->ni_chan))
5796 		mode = IEEE80211_MODE_11A;
5797 	else if (ni->ni_flags & IEEE80211_NODE_ERP)
5798 		mode = IEEE80211_MODE_11G;
5799 	else
5800 		mode = IEEE80211_MODE_11B;
5801 	tp = &vap->iv_txparms[mode];
5802 	an->an_tp = tp;
5803 	an->an_mcastrix = ath_tx_findrix(sc->sc_rates[mode], tp->mcastrate);
5804 	an->an_mgmtrix = ath_tx_findrix(sc->sc_rates[mode], tp->mgmtrate);
5805 
5806 	ath_rate_newassoc(sc, an, isnew);
5807 	if (isnew &&
5808 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5809 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5810 		ath_setup_stationkey(ni);
5811 }
5812 
5813 static int
5814 getchannels(struct ath_softc *sc, int *nchans, struct ieee80211_channel chans[],
5815 	int cc, int ecm, int outdoor)
5816 {
5817 	struct ath_hal *ah = sc->sc_ah;
5818 	HAL_CHANNEL *halchans;
5819 	int i, nhalchans, error;
5820 
5821 	halchans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
5822 			M_TEMP, M_NOWAIT | M_ZERO);
5823 	if (halchans == NULL) {
5824 		device_printf(sc->sc_dev,
5825 		    "%s: unable to allocate channel table\n", __func__);
5826 		return ENOMEM;
5827 	}
5828 	error = 0;
5829 	if (!ath_hal_init_channels(ah, halchans, IEEE80211_CHAN_MAX, &nhalchans,
5830 	    NULL, 0, NULL, CTRY_DEFAULT, HAL_MODE_ALL, AH_FALSE, AH_TRUE)) {
5831 		error = EINVAL;
5832 		goto done;
5833 	}
5834 	if (nchans == NULL)		/* no table requested */
5835 		goto done;
5836 
5837 	/*
5838 	 * Convert HAL channels to ieee80211 ones.
5839 	 */
5840 	for (i = 0; i < nhalchans; i++) {
5841 		HAL_CHANNEL *c = &halchans[i];
5842 		struct ieee80211_channel *ichan = &chans[i];
5843 
5844 		ichan->ic_ieee = ath_hal_mhz2ieee(ah, c->channel,
5845 					c->channelFlags);
5846 		if (bootverbose)
5847 			device_printf(sc->sc_dev, "hal channel %u/%x -> %u "
5848 			    "maxpow %d minpow %d maxreg %d\n",
5849 			    c->channel, c->channelFlags, ichan->ic_ieee,
5850 			    c->maxTxPower, c->minTxPower, c->maxRegTxPower);
5851 		ichan->ic_freq = c->channel;
5852 
5853 		if ((c->channelFlags & CHANNEL_PUREG) == CHANNEL_PUREG) {
5854 			/*
5855 			 * Except for AR5211, HAL's PUREG means mixed
5856 			 * DSSS and OFDM.
5857 			 */
5858 			ichan->ic_flags = c->channelFlags &~ CHANNEL_PUREG;
5859 			ichan->ic_flags |= IEEE80211_CHAN_G;
5860 		} else {
5861 			ichan->ic_flags = c->channelFlags;
5862 		}
5863 
5864 		if (ath_hal_isgsmsku(ah)) {
5865 			/* remap to true frequencies */
5866 			ichan->ic_freq = 922 + (2422 - ichan->ic_freq);
5867 			ichan->ic_flags |= IEEE80211_CHAN_GSM;
5868 			ichan->ic_ieee = ieee80211_mhz2ieee(ichan->ic_freq,
5869 						    ichan->ic_flags);
5870 		}
5871 		ichan->ic_maxregpower = c->maxRegTxPower;	/* dBm */
5872 		/* XXX: old hal's don't provide maxTxPower for some parts */
5873 		ichan->ic_maxpower = (c->maxTxPower != 0) ?
5874 		    c->maxTxPower : 2*c->maxRegTxPower;		/* 1/2 dBm */
5875 		ichan->ic_minpower = c->minTxPower;		/* 1/2 dBm */
5876 	}
5877 	*nchans = nhalchans;
5878 done:
5879 	free(halchans, M_TEMP);
5880 	return error;
5881 }
5882 
5883 static int
5884 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
5885 	int nchans, struct ieee80211_channel chans[])
5886 {
5887 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5888 	struct ath_hal *ah = sc->sc_ah;
5889 	u_int32_t ord;
5890 	int error;
5891 
5892 	(void) ath_hal_getregdomain(ah, &ord);
5893 	/* XXX map sku->rd */
5894 	ath_hal_setregdomain(ah, rd->regdomain);
5895 	error = getchannels(sc, &nchans, chans, rd->country,
5896 	     rd->ecm ? AH_TRUE : AH_FALSE,
5897 	     rd->location == 'O' ? AH_TRUE : AH_FALSE);
5898 	if (error != 0) {
5899 		/*
5900 		 * Restore previous state.
5901 		 */
5902 		ath_hal_setregdomain(ah, ord);
5903 		(void) getchannels(sc, NULL, NULL, ic->ic_regdomain.country,
5904 		     ic->ic_regdomain.ecm ? AH_TRUE : AH_FALSE,
5905 		     ic->ic_regdomain.location == 'O' ? AH_TRUE : AH_FALSE);
5906 		return error;
5907 	}
5908 	return 0;
5909 }
5910 
5911 static void
5912 ath_getradiocaps(struct ieee80211com *ic,
5913 	int *nchans, struct ieee80211_channel chans[])
5914 {
5915 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5916 	struct ath_hal *ah = sc->sc_ah;
5917 	u_int32_t ord;
5918 
5919 	(void) ath_hal_getregdomain(ah, &ord);
5920 	ath_hal_setregdomain(ah, 0);
5921 	/* XXX not quite right but close enough for now */
5922 	getchannels(sc, nchans, chans, CTRY_DEBUG, AH_TRUE, AH_FALSE);
5923 	ath_hal_setregdomain(ah, ord);
5924 }
5925 
5926 static int
5927 ath_mapregdomain(struct ath_softc *sc, u_int32_t rd)
5928 {
5929 	/* map Atheros rd's to SKU's */
5930 	return rd;
5931 }
5932 
5933 static int
5934 ath_getchannels(struct ath_softc *sc)
5935 {
5936 	struct ifnet *ifp = sc->sc_ifp;
5937 	struct ieee80211com *ic = ifp->if_l2com;
5938 	struct ath_hal *ah = sc->sc_ah;
5939 	u_int32_t rd, cc;
5940 	int error;
5941 
5942 	/*
5943 	 * Convert HAL channels to ieee80211 ones.
5944 	 */
5945 	error = getchannels(sc, &ic->ic_nchans, ic->ic_channels,
5946 	    CTRY_DEFAULT, AH_TRUE, AH_FALSE);
5947 	(void) ath_hal_getregdomain(ah, &rd);
5948 	ath_hal_getcountrycode(ah, &cc);	/* NB: cannot fail */
5949 	if (error) {
5950 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5951 		    "error %d\n", __func__, error);
5952 		if (error == EINVAL) {
5953 			if_printf(ifp, "%s: regdomain likely %u country code %u\n",
5954 			    __func__, rd, cc);
5955 		}
5956 		return error;
5957 	}
5958 	ic->ic_regdomain.regdomain = ath_mapregdomain(sc, rd);
5959 	ic->ic_regdomain.country = cc;
5960 	ic->ic_regdomain.ecm = 1;
5961 	ic->ic_regdomain.location = 'I';
5962 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5963 	ic->ic_regdomain.isocc[1] = ' ';
5964 	return 0;
5965 }
5966 
5967 static void
5968 ath_led_done(void *arg)
5969 {
5970 	struct ath_softc *sc = arg;
5971 
5972 	sc->sc_blinking = 0;
5973 }
5974 
5975 /*
5976  * Turn the LED off: flip the pin and then set a timer so no
5977  * update will happen for the specified duration.
5978  */
5979 static void
5980 ath_led_off(void *arg)
5981 {
5982 	struct ath_softc *sc = arg;
5983 
5984 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5985 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
5986 }
5987 
5988 /*
5989  * Blink the LED according to the specified on/off times.
5990  */
5991 static void
5992 ath_led_blink(struct ath_softc *sc, int on, int off)
5993 {
5994 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5995 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5996 	sc->sc_blinking = 1;
5997 	sc->sc_ledoff = off;
5998 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5999 }
6000 
6001 static void
6002 ath_led_event(struct ath_softc *sc, int event)
6003 {
6004 
6005 	sc->sc_ledevent = ticks;	/* time of last event */
6006 	if (sc->sc_blinking)		/* don't interrupt active blink */
6007 		return;
6008 	switch (event) {
6009 	case ATH_LED_POLL:
6010 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
6011 			sc->sc_hwmap[0].ledoff);
6012 		break;
6013 	case ATH_LED_TX:
6014 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
6015 			sc->sc_hwmap[sc->sc_txrate].ledoff);
6016 		break;
6017 	case ATH_LED_RX:
6018 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
6019 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
6020 		break;
6021 	}
6022 }
6023 
6024 static int
6025 ath_rate_setup(struct ath_softc *sc, u_int mode)
6026 {
6027 	struct ath_hal *ah = sc->sc_ah;
6028 	const HAL_RATE_TABLE *rt;
6029 
6030 	switch (mode) {
6031 	case IEEE80211_MODE_11A:
6032 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6033 		break;
6034 	case IEEE80211_MODE_HALF:
6035 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6036 		break;
6037 	case IEEE80211_MODE_QUARTER:
6038 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6039 		break;
6040 	case IEEE80211_MODE_11B:
6041 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6042 		break;
6043 	case IEEE80211_MODE_11G:
6044 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6045 		break;
6046 	case IEEE80211_MODE_TURBO_A:
6047 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6048 #if HAL_ABI_VERSION < 0x07013100
6049 		if (rt == NULL)		/* XXX bandaid for old hal's */
6050 			rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6051 #endif
6052 		break;
6053 	case IEEE80211_MODE_TURBO_G:
6054 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6055 		break;
6056 	case IEEE80211_MODE_STURBO_A:
6057 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6058 		break;
6059 	case IEEE80211_MODE_11NA:
6060 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6061 		break;
6062 	case IEEE80211_MODE_11NG:
6063 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6064 		break;
6065 	default:
6066 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6067 			__func__, mode);
6068 		return 0;
6069 	}
6070 	sc->sc_rates[mode] = rt;
6071 	return (rt != NULL);
6072 }
6073 
6074 static void
6075 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6076 {
6077 #define	N(a)	(sizeof(a)/sizeof(a[0]))
6078 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6079 	static const struct {
6080 		u_int		rate;		/* tx/rx 802.11 rate */
6081 		u_int16_t	timeOn;		/* LED on time (ms) */
6082 		u_int16_t	timeOff;	/* LED off time (ms) */
6083 	} blinkrates[] = {
6084 		{ 108,  40,  10 },
6085 		{  96,  44,  11 },
6086 		{  72,  50,  13 },
6087 		{  48,  57,  14 },
6088 		{  36,  67,  16 },
6089 		{  24,  80,  20 },
6090 		{  22, 100,  25 },
6091 		{  18, 133,  34 },
6092 		{  12, 160,  40 },
6093 		{  10, 200,  50 },
6094 		{   6, 240,  58 },
6095 		{   4, 267,  66 },
6096 		{   2, 400, 100 },
6097 		{   0, 500, 130 },
6098 		/* XXX half/quarter rates */
6099 	};
6100 	const HAL_RATE_TABLE *rt;
6101 	int i, j;
6102 
6103 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6104 	rt = sc->sc_rates[mode];
6105 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6106 	for (i = 0; i < rt->rateCount; i++)
6107 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
6108 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6109 	for (i = 0; i < 32; i++) {
6110 		u_int8_t ix = rt->rateCodeToIndex[i];
6111 		if (ix == 0xff) {
6112 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6113 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6114 			continue;
6115 		}
6116 		sc->sc_hwmap[i].ieeerate =
6117 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
6118 		if (rt->info[ix].phy == IEEE80211_T_HT)
6119 			sc->sc_hwmap[i].ieeerate |= 0x80;	/* MCS */
6120 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6121 		if (rt->info[ix].shortPreamble ||
6122 		    rt->info[ix].phy == IEEE80211_T_OFDM)
6123 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6124 		/* NB: receive frames include FCS */
6125 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
6126 			IEEE80211_RADIOTAP_F_FCS;
6127 		/* setup blink rate table to avoid per-packet lookup */
6128 		for (j = 0; j < N(blinkrates)-1; j++)
6129 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6130 				break;
6131 		/* NB: this uses the last entry if the rate isn't found */
6132 		/* XXX beware of overlow */
6133 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6134 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6135 	}
6136 	sc->sc_currates = rt;
6137 	sc->sc_curmode = mode;
6138 	/*
6139 	 * All protection frames are transmited at 2Mb/s for
6140 	 * 11g, otherwise at 1Mb/s.
6141 	 */
6142 	if (mode == IEEE80211_MODE_11G)
6143 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
6144 	else
6145 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
6146 	/* NB: caller is responsible for reseting rate control state */
6147 #undef N
6148 }
6149 
6150 #ifdef ATH_DEBUG
6151 static void
6152 ath_printrxbuf(const struct ath_buf *bf, u_int ix, int done)
6153 {
6154 	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
6155 	const struct ath_desc *ds;
6156 	int i;
6157 
6158 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6159 		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
6160 		       "      %08x %08x %08x %08x\n",
6161 		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
6162 		    ds->ds_link, ds->ds_data,
6163 		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
6164 		    ds->ds_ctl0, ds->ds_ctl1,
6165 		    ds->ds_hw[0], ds->ds_hw[1]);
6166 	}
6167 }
6168 
6169 static void
6170 ath_printtxbuf(const struct ath_buf *bf, u_int qnum, u_int ix, int done)
6171 {
6172 	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
6173 	const struct ath_desc *ds;
6174 	int i;
6175 
6176 	printf("Q%u[%3u]", qnum, ix);
6177 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6178 		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
6179 		       "        %08x %08x %08x %08x %08x %08x\n",
6180 		    ds, (const struct ath_desc *)bf->bf_daddr + i,
6181 		    ds->ds_link, ds->ds_data, bf->bf_flags,
6182 		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
6183 		    ds->ds_ctl0, ds->ds_ctl1,
6184 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
6185 	}
6186 }
6187 #endif /* ATH_DEBUG */
6188 
6189 static void
6190 ath_watchdog(struct ifnet *ifp)
6191 {
6192 	struct ath_softc *sc = ifp->if_softc;
6193 
6194 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && !sc->sc_invalid) {
6195 		if_printf(ifp, "device timeout\n");
6196 		ath_reset(ifp);
6197 		ifp->if_oerrors++;
6198 		sc->sc_stats.ast_watchdog++;
6199 	}
6200 }
6201 
6202 #ifdef ATH_DIAGAPI
6203 /*
6204  * Diagnostic interface to the HAL.  This is used by various
6205  * tools to do things like retrieve register contents for
6206  * debugging.  The mechanism is intentionally opaque so that
6207  * it can change frequently w/o concern for compatiblity.
6208  */
6209 static int
6210 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6211 {
6212 	struct ath_hal *ah = sc->sc_ah;
6213 	u_int id = ad->ad_id & ATH_DIAG_ID;
6214 	void *indata = NULL;
6215 	void *outdata = NULL;
6216 	u_int32_t insize = ad->ad_in_size;
6217 	u_int32_t outsize = ad->ad_out_size;
6218 	int error = 0;
6219 
6220 	if (ad->ad_id & ATH_DIAG_IN) {
6221 		/*
6222 		 * Copy in data.
6223 		 */
6224 		indata = malloc(insize, M_TEMP, M_NOWAIT);
6225 		if (indata == NULL) {
6226 			error = ENOMEM;
6227 			goto bad;
6228 		}
6229 		error = copyin(ad->ad_in_data, indata, insize);
6230 		if (error)
6231 			goto bad;
6232 	}
6233 	if (ad->ad_id & ATH_DIAG_DYN) {
6234 		/*
6235 		 * Allocate a buffer for the results (otherwise the HAL
6236 		 * returns a pointer to a buffer where we can read the
6237 		 * results).  Note that we depend on the HAL leaving this
6238 		 * pointer for us to use below in reclaiming the buffer;
6239 		 * may want to be more defensive.
6240 		 */
6241 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6242 		if (outdata == NULL) {
6243 			error = ENOMEM;
6244 			goto bad;
6245 		}
6246 	}
6247 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6248 		if (outsize < ad->ad_out_size)
6249 			ad->ad_out_size = outsize;
6250 		if (outdata != NULL)
6251 			error = copyout(outdata, ad->ad_out_data,
6252 					ad->ad_out_size);
6253 	} else {
6254 		error = EINVAL;
6255 	}
6256 bad:
6257 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6258 		free(indata, M_TEMP);
6259 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6260 		free(outdata, M_TEMP);
6261 	return error;
6262 }
6263 #endif /* ATH_DIAGAPI */
6264 
6265 static int
6266 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6267 {
6268 #define	IS_RUNNING(ifp) \
6269 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6270 	struct ath_softc *sc = ifp->if_softc;
6271 	struct ieee80211com *ic = ifp->if_l2com;
6272 	struct ifreq *ifr = (struct ifreq *)data;
6273 	int error = 0;
6274 
6275 	ATH_LOCK(sc);
6276 	switch (cmd) {
6277 	case SIOCSIFFLAGS:
6278 		if (IS_RUNNING(ifp)) {
6279 			/*
6280 			 * To avoid rescanning another access point,
6281 			 * do not call ath_init() here.  Instead,
6282 			 * only reflect promisc mode settings.
6283 			 */
6284 			ath_mode_init(sc);
6285 		} else if (ifp->if_flags & IFF_UP) {
6286 			/*
6287 			 * Beware of being called during attach/detach
6288 			 * to reset promiscuous mode.  In that case we
6289 			 * will still be marked UP but not RUNNING.
6290 			 * However trying to re-init the interface
6291 			 * is the wrong thing to do as we've already
6292 			 * torn down much of our state.  There's
6293 			 * probably a better way to deal with this.
6294 			 */
6295 			if (!sc->sc_invalid)
6296 				ath_init(sc);	/* XXX lose error */
6297 		} else
6298 			ath_stop_locked(ifp);
6299 		break;
6300 	case SIOCADDMULTI:
6301 	case SIOCDELMULTI:
6302 		/*
6303 		 * The upper layer has already installed/removed
6304 		 * the multicast address(es), just recalculate the
6305 		 * multicast filter for the card.
6306 		 */
6307 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6308 			ath_mode_init(sc);
6309 		break;
6310 	case SIOCGIFMEDIA:
6311 	case SIOCSIFMEDIA:
6312 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6313 		break;
6314 	case SIOCGATHSTATS:
6315 		/* NB: embed these numbers to get a consistent view */
6316 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6317 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6318 #if 0
6319 		ieee80211_getsignal(ic, &sc->sc_stats.ast_rx_rssi,
6320 			&sc->sc_stats.ast_rx_noise);
6321 #endif
6322 		sc->sc_stats.ast_tx_rate = sc->sc_hwmap[sc->sc_txrate].ieeerate;
6323 		ATH_UNLOCK(sc);
6324 		/*
6325 		 * NB: Drop the softc lock in case of a page fault;
6326 		 * we'll accept any potential inconsisentcy in the
6327 		 * statistics.  The alternative is to copy the data
6328 		 * to a local structure.
6329 		 */
6330 		return copyout(&sc->sc_stats,
6331 				ifr->ifr_data, sizeof (sc->sc_stats));
6332 #ifdef ATH_DIAGAPI
6333 	case SIOCGATHDIAG:
6334 		ATH_UNLOCK(sc);
6335 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6336 		ATH_LOCK(sc);
6337 		break;
6338 #endif
6339 	default:
6340 		error = ether_ioctl(ifp, cmd, data);
6341 		break;
6342 	}
6343 	ATH_UNLOCK(sc);
6344 	return error;
6345 #undef IS_RUNNING
6346 }
6347 
6348 static int
6349 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
6350 {
6351 	struct ath_softc *sc = arg1;
6352 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
6353 	int error;
6354 
6355 	error = sysctl_handle_int(oidp, &slottime, 0, req);
6356 	if (error || !req->newptr)
6357 		return error;
6358 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
6359 }
6360 
6361 static int
6362 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
6363 {
6364 	struct ath_softc *sc = arg1;
6365 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
6366 	int error;
6367 
6368 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
6369 	if (error || !req->newptr)
6370 		return error;
6371 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
6372 }
6373 
6374 static int
6375 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
6376 {
6377 	struct ath_softc *sc = arg1;
6378 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
6379 	int error;
6380 
6381 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
6382 	if (error || !req->newptr)
6383 		return error;
6384 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
6385 }
6386 
6387 static int
6388 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
6389 {
6390 	struct ath_softc *sc = arg1;
6391 	int softled = sc->sc_softled;
6392 	int error;
6393 
6394 	error = sysctl_handle_int(oidp, &softled, 0, req);
6395 	if (error || !req->newptr)
6396 		return error;
6397 	softled = (softled != 0);
6398 	if (softled != sc->sc_softled) {
6399 		if (softled) {
6400 			/* NB: handle any sc_ledpin change */
6401 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
6402 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6403 				!sc->sc_ledon);
6404 		}
6405 		sc->sc_softled = softled;
6406 	}
6407 	return 0;
6408 }
6409 
6410 static int
6411 ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
6412 {
6413 	struct ath_softc *sc = arg1;
6414 	int ledpin = sc->sc_ledpin;
6415 	int error;
6416 
6417 	error = sysctl_handle_int(oidp, &ledpin, 0, req);
6418 	if (error || !req->newptr)
6419 		return error;
6420 	if (ledpin != sc->sc_ledpin) {
6421 		sc->sc_ledpin = ledpin;
6422 		if (sc->sc_softled) {
6423 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
6424 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6425 				!sc->sc_ledon);
6426 		}
6427 	}
6428 	return 0;
6429 }
6430 
6431 static int
6432 ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
6433 {
6434 	struct ath_softc *sc = arg1;
6435 	u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah);
6436 	int error;
6437 
6438 	error = sysctl_handle_int(oidp, &txantenna, 0, req);
6439 	if (!error && req->newptr) {
6440 		/* XXX assumes 2 antenna ports */
6441 		if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B)
6442 			return EINVAL;
6443 		ath_hal_setantennaswitch(sc->sc_ah, txantenna);
6444 		/*
6445 		 * NB: with the switch locked this isn't meaningful,
6446 		 *     but set it anyway so things like radiotap get
6447 		 *     consistent info in their data.
6448 		 */
6449 		sc->sc_txantenna = txantenna;
6450 	}
6451 	return error;
6452 }
6453 
6454 static int
6455 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
6456 {
6457 	struct ath_softc *sc = arg1;
6458 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
6459 	int error;
6460 
6461 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
6462 	if (!error && req->newptr)
6463 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
6464 	return error;
6465 }
6466 
6467 static int
6468 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
6469 {
6470 	struct ath_softc *sc = arg1;
6471 	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
6472 	int error;
6473 
6474 	error = sysctl_handle_int(oidp, &diversity, 0, req);
6475 	if (error || !req->newptr)
6476 		return error;
6477 	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
6478 		return EINVAL;
6479 	sc->sc_diversity = diversity;
6480 	return 0;
6481 }
6482 
6483 static int
6484 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
6485 {
6486 	struct ath_softc *sc = arg1;
6487 	u_int32_t diag;
6488 	int error;
6489 
6490 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
6491 		return EINVAL;
6492 	error = sysctl_handle_int(oidp, &diag, 0, req);
6493 	if (error || !req->newptr)
6494 		return error;
6495 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
6496 }
6497 
6498 static int
6499 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
6500 {
6501 	struct ath_softc *sc = arg1;
6502 	struct ifnet *ifp = sc->sc_ifp;
6503 	u_int32_t scale;
6504 	int error;
6505 
6506 	(void) ath_hal_gettpscale(sc->sc_ah, &scale);
6507 	error = sysctl_handle_int(oidp, &scale, 0, req);
6508 	if (error || !req->newptr)
6509 		return error;
6510 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL :
6511 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6512 }
6513 
6514 static int
6515 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
6516 {
6517 	struct ath_softc *sc = arg1;
6518 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
6519 	int error;
6520 
6521 	error = sysctl_handle_int(oidp, &tpc, 0, req);
6522 	if (error || !req->newptr)
6523 		return error;
6524 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
6525 }
6526 
6527 static int
6528 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
6529 {
6530 	struct ath_softc *sc = arg1;
6531 	struct ifnet *ifp = sc->sc_ifp;
6532 	struct ath_hal *ah = sc->sc_ah;
6533 	u_int rfkill = ath_hal_getrfkill(ah);
6534 	int error;
6535 
6536 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
6537 	if (error || !req->newptr)
6538 		return error;
6539 	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
6540 		return 0;
6541 	if (!ath_hal_setrfkill(ah, rfkill))
6542 		return EINVAL;
6543 	return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6544 }
6545 
6546 static int
6547 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
6548 {
6549 	struct ath_softc *sc = arg1;
6550 	u_int rfsilent;
6551 	int error;
6552 
6553 	(void) ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
6554 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
6555 	if (error || !req->newptr)
6556 		return error;
6557 	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
6558 		return EINVAL;
6559 	sc->sc_rfsilentpin = rfsilent & 0x1c;
6560 	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
6561 	return 0;
6562 }
6563 
6564 static int
6565 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
6566 {
6567 	struct ath_softc *sc = arg1;
6568 	u_int32_t tpack;
6569 	int error;
6570 
6571 	(void) ath_hal_gettpack(sc->sc_ah, &tpack);
6572 	error = sysctl_handle_int(oidp, &tpack, 0, req);
6573 	if (error || !req->newptr)
6574 		return error;
6575 	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
6576 }
6577 
6578 static int
6579 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
6580 {
6581 	struct ath_softc *sc = arg1;
6582 	u_int32_t tpcts;
6583 	int error;
6584 
6585 	(void) ath_hal_gettpcts(sc->sc_ah, &tpcts);
6586 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
6587 	if (error || !req->newptr)
6588 		return error;
6589 	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
6590 }
6591 
6592 static void
6593 ath_sysctlattach(struct ath_softc *sc)
6594 {
6595 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
6596 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
6597 	struct ath_hal *ah = sc->sc_ah;
6598 
6599 #ifdef	ATH_DEBUG
6600 	sc->sc_debug = ath_debug;
6601 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6602 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
6603 		"control debugging printfs");
6604 #endif
6605 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6606 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6607 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
6608 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6609 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6610 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
6611 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6612 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6613 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
6614 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6615 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6616 		ath_sysctl_softled, "I", "enable/disable software LED support");
6617 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6618 		"ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6619 		ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
6620 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6621 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
6622 		"setting to turn LED on");
6623 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6624 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
6625 		"idle time for inactivity LED (ticks)");
6626 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6627 		"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6628 		ath_sysctl_txantenna, "I", "antenna switch");
6629 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6630 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6631 		ath_sysctl_rxantenna, "I", "default/rx antenna");
6632 	if (ath_hal_hasdiversity(ah))
6633 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6634 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6635 			ath_sysctl_diversity, "I", "antenna diversity");
6636 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
6637 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6638 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
6639 		"tx descriptor batching");
6640 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6641 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6642 		ath_sysctl_diag, "I", "h/w diagnostic control");
6643 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6644 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6645 		ath_sysctl_tpscale, "I", "tx power scaling");
6646 	if (ath_hal_hastpc(ah)) {
6647 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6648 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6649 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
6650 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6651 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6652 			ath_sysctl_tpack, "I", "tx power for ack frames");
6653 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6654 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6655 			ath_sysctl_tpcts, "I", "tx power for cts frames");
6656 	}
6657 	if (ath_hal_hasfastframes(sc->sc_ah)) {
6658 		sc->sc_fftxqmin = ATH_FF_TXQMIN;
6659 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6660 			"fftxqmin", CTLFLAG_RW, &sc->sc_fftxqmin, 0,
6661 			"min frames before fast-frame staging");
6662 		sc->sc_fftxqmax = ATH_FF_TXQMAX;
6663 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6664 			"fftxqmax", CTLFLAG_RW, &sc->sc_fftxqmax, 0,
6665 			"max queued frames before tail drop");
6666 	}
6667 	if (ath_hal_hasrfsilent(ah)) {
6668 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6669 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6670 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
6671 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6672 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6673 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
6674 	}
6675 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
6676 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6677 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
6678 		"mask of error frames to pass when monitoring");
6679 }
6680 
6681 static void
6682 ath_bpfattach(struct ath_softc *sc)
6683 {
6684 	struct ifnet *ifp = sc->sc_ifp;
6685 
6686 	bpfattach(ifp, DLT_IEEE802_11_RADIO,
6687 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th));
6688 	/*
6689 	 * Initialize constant fields.
6690 	 * XXX make header lengths a multiple of 32-bits so subsequent
6691 	 *     headers are properly aligned; this is a kludge to keep
6692 	 *     certain applications happy.
6693 	 *
6694 	 * NB: the channel is setup each time we transition to the
6695 	 *     RUN state to avoid filling it in for each frame.
6696 	 */
6697 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
6698 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
6699 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
6700 
6701 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
6702 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
6703 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
6704 }
6705 
6706 static int
6707 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
6708 	struct ath_buf *bf, struct mbuf *m0,
6709 	const struct ieee80211_bpf_params *params)
6710 {
6711 	struct ifnet *ifp = sc->sc_ifp;
6712 	struct ieee80211com *ic = ifp->if_l2com;
6713 	struct ath_hal *ah = sc->sc_ah;
6714 	int error, ismcast, ismrr;
6715 	int hdrlen, pktlen, try0, txantenna;
6716 	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
6717 	struct ieee80211_frame *wh;
6718 	u_int flags, ctsduration;
6719 	HAL_PKT_TYPE atype;
6720 	const HAL_RATE_TABLE *rt;
6721 	struct ath_desc *ds;
6722 	u_int pri;
6723 
6724 	wh = mtod(m0, struct ieee80211_frame *);
6725 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
6726 	hdrlen = ieee80211_anyhdrsize(wh);
6727 	/*
6728 	 * Packet length must not include any
6729 	 * pad bytes; deduct them here.
6730 	 */
6731 	/* XXX honor IEEE80211_BPF_DATAPAD */
6732 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
6733 
6734 	error = ath_tx_dmasetup(sc, bf, m0);
6735 	if (error != 0)
6736 		return error;
6737 	m0 = bf->bf_m;				/* NB: may have changed */
6738 	wh = mtod(m0, struct ieee80211_frame *);
6739 	bf->bf_node = ni;			/* NB: held reference */
6740 
6741 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
6742 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
6743 	if (params->ibp_flags & IEEE80211_BPF_RTS)
6744 		flags |= HAL_TXDESC_RTSENA;
6745 	else if (params->ibp_flags & IEEE80211_BPF_CTS)
6746 		flags |= HAL_TXDESC_CTSENA;
6747 	/* XXX leave ismcast to injector? */
6748 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
6749 		flags |= HAL_TXDESC_NOACK;
6750 
6751 	rt = sc->sc_currates;
6752 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
6753 	rix = ath_tx_findrix(rt, params->ibp_rate0);
6754 	txrate = rt->info[rix].rateCode;
6755 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6756 		txrate |= rt->info[rix].shortPreamble;
6757 	sc->sc_txrate = txrate;
6758 	try0 = params->ibp_try0;
6759 	ismrr = (params->ibp_try1 != 0);
6760 	txantenna = params->ibp_pri >> 2;
6761 	if (txantenna == 0)			/* XXX? */
6762 		txantenna = sc->sc_txantenna;
6763 	ctsduration = 0;
6764 	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
6765 		cix = ath_tx_findrix(rt, params->ibp_ctsrate);
6766 		ctsrate = rt->info[cix].rateCode;
6767 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
6768 			ctsrate |= rt->info[cix].shortPreamble;
6769 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6770 				ctsduration += rt->info[cix].spAckDuration;
6771 			ctsduration += ath_hal_computetxtime(ah,
6772 				rt, pktlen, rix, AH_TRUE);
6773 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6774 				ctsduration += rt->info[rix].spAckDuration;
6775 		} else {
6776 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6777 				ctsduration += rt->info[cix].lpAckDuration;
6778 			ctsduration += ath_hal_computetxtime(ah,
6779 				rt, pktlen, rix, AH_FALSE);
6780 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6781 				ctsduration += rt->info[rix].lpAckDuration;
6782 		}
6783 		ismrr = 0;			/* XXX */
6784 	} else
6785 		ctsrate = 0;
6786 	pri = params->ibp_pri & 3;
6787 	/*
6788 	 * NB: we mark all packets as type PSPOLL so the h/w won't
6789 	 * set the sequence number, duration, etc.
6790 	 */
6791 	atype = HAL_PKT_TYPE_PSPOLL;
6792 
6793 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
6794 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
6795 			sc->sc_hwmap[txrate].ieeerate, -1);
6796 
6797 	if (bpf_peers_present(ifp->if_bpf)) {
6798 		u_int64_t tsf = ath_hal_gettsf64(ah);
6799 
6800 		sc->sc_tx_th.wt_tsf = htole64(tsf);
6801 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
6802 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
6803 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
6804 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
6805 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
6806 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
6807 
6808 		bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
6809 	}
6810 
6811 	/*
6812 	 * Formulate first tx descriptor with tx controls.
6813 	 */
6814 	ds = bf->bf_desc;
6815 	/* XXX check return value? */
6816 	ath_hal_setuptxdesc(ah, ds
6817 		, pktlen		/* packet length */
6818 		, hdrlen		/* header length */
6819 		, atype			/* Atheros packet type */
6820 		, params->ibp_power	/* txpower */
6821 		, txrate, try0		/* series 0 rate/tries */
6822 		, HAL_TXKEYIX_INVALID	/* key cache index */
6823 		, txantenna		/* antenna mode */
6824 		, flags			/* flags */
6825 		, ctsrate		/* rts/cts rate */
6826 		, ctsduration		/* rts/cts duration */
6827 	);
6828 	bf->bf_flags = flags;
6829 
6830 	if (ismrr) {
6831 		rix = ath_tx_findrix(rt, params->ibp_rate1);
6832 		rate1 = rt->info[rix].rateCode;
6833 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6834 			rate1 |= rt->info[rix].shortPreamble;
6835 		if (params->ibp_try2) {
6836 			rix = ath_tx_findrix(rt, params->ibp_rate2);
6837 			rate2 = rt->info[rix].rateCode;
6838 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6839 				rate2 |= rt->info[rix].shortPreamble;
6840 		} else
6841 			rate2 = 0;
6842 		if (params->ibp_try3) {
6843 			rix = ath_tx_findrix(rt, params->ibp_rate3);
6844 			rate3 = rt->info[rix].rateCode;
6845 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6846 				rate3 |= rt->info[rix].shortPreamble;
6847 		} else
6848 			rate3 = 0;
6849 		ath_hal_setupxtxdesc(ah, ds
6850 			, rate1, params->ibp_try1	/* series 1 */
6851 			, rate2, params->ibp_try2	/* series 2 */
6852 			, rate3, params->ibp_try3	/* series 3 */
6853 		);
6854 	}
6855 
6856 	/* NB: no buffered multicast in power save support */
6857 	ath_tx_handoff(sc, sc->sc_ac2q[pri], bf);
6858 	return 0;
6859 }
6860 
6861 static int
6862 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
6863 	const struct ieee80211_bpf_params *params)
6864 {
6865 	struct ieee80211com *ic = ni->ni_ic;
6866 	struct ifnet *ifp = ic->ic_ifp;
6867 	struct ath_softc *sc = ifp->if_softc;
6868 	struct ath_buf *bf;
6869 
6870 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
6871 		ieee80211_free_node(ni);
6872 		m_freem(m);
6873 		return ENETDOWN;
6874 	}
6875 	/*
6876 	 * Grab a TX buffer and associated resources.
6877 	 */
6878 	ATH_TXBUF_LOCK(sc);
6879 	bf = STAILQ_FIRST(&sc->sc_txbuf);
6880 	if (bf != NULL)
6881 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
6882 	ATH_TXBUF_UNLOCK(sc);
6883 	if (bf == NULL) {
6884 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
6885 			__func__);
6886 		sc->sc_stats.ast_tx_qstop++;
6887 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
6888 		ieee80211_free_node(ni);
6889 		m_freem(m);
6890 		return ENOBUFS;
6891 	}
6892 
6893 	ifp->if_opackets++;
6894 	sc->sc_stats.ast_tx_raw++;
6895 
6896 	if (params == NULL) {
6897 		/*
6898 		 * Legacy path; interpret frame contents to decide
6899 		 * precisely how to send the frame.
6900 		 */
6901 		if (ath_tx_start(sc, ni, bf, m))
6902 			goto bad;
6903 	} else {
6904 		/*
6905 		 * Caller supplied explicit parameters to use in
6906 		 * sending the frame.
6907 		 */
6908 		if (ath_tx_raw_start(sc, ni, bf, m, params))
6909 			goto bad;
6910 	}
6911 	ifp->if_timer = 5;
6912 
6913 	return 0;
6914 bad:
6915 	ifp->if_oerrors++;
6916 	ATH_TXBUF_LOCK(sc);
6917 	STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
6918 	ATH_TXBUF_UNLOCK(sc);
6919 	ieee80211_free_node(ni);
6920 	return EIO;		/* XXX */
6921 }
6922 
6923 /*
6924  * Announce various information on device/driver attach.
6925  */
6926 static void
6927 ath_announce(struct ath_softc *sc)
6928 {
6929 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
6930 	struct ifnet *ifp = sc->sc_ifp;
6931 	struct ath_hal *ah = sc->sc_ah;
6932 	u_int modes, cc;
6933 
6934 	if_printf(ifp, "mac %d.%d phy %d.%d",
6935 		ah->ah_macVersion, ah->ah_macRev,
6936 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6937 	/*
6938 	 * Print radio revision(s).  We check the wireless modes
6939 	 * to avoid falsely printing revs for inoperable parts.
6940 	 * Dual-band radio revs are returned in the 5Ghz rev number.
6941 	 */
6942 	ath_hal_getcountrycode(ah, &cc);
6943 	modes = ath_hal_getwirelessmodes(ah, cc);
6944 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
6945 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
6946 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
6947 				ah->ah_analog5GhzRev >> 4,
6948 				ah->ah_analog5GhzRev & 0xf,
6949 				ah->ah_analog2GhzRev >> 4,
6950 				ah->ah_analog2GhzRev & 0xf);
6951 		else
6952 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
6953 				ah->ah_analog5GhzRev & 0xf);
6954 	} else
6955 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
6956 			ah->ah_analog5GhzRev & 0xf);
6957 	printf("\n");
6958 	if (bootverbose) {
6959 		int i;
6960 		for (i = 0; i <= WME_AC_VO; i++) {
6961 			struct ath_txq *txq = sc->sc_ac2q[i];
6962 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6963 				txq->axq_qnum, ieee80211_wme_acnames[i]);
6964 		}
6965 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6966 			sc->sc_cabq->axq_qnum);
6967 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6968 	}
6969 	if (ath_rxbuf != ATH_RXBUF)
6970 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6971 	if (ath_txbuf != ATH_TXBUF)
6972 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6973 #undef HAL_MODE_DUALBAND
6974 }
6975