1 /*- 2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/sysctl.h> 46 #include <sys/mbuf.h> 47 #include <sys/malloc.h> 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 #include <sys/kernel.h> 51 #include <sys/socket.h> 52 #include <sys/sockio.h> 53 #include <sys/errno.h> 54 #include <sys/callout.h> 55 #include <sys/bus.h> 56 #include <sys/endian.h> 57 #include <sys/kthread.h> 58 #include <sys/taskqueue.h> 59 60 #include <machine/bus.h> 61 62 #include <net/if.h> 63 #include <net/if_dl.h> 64 #include <net/if_media.h> 65 #include <net/if_types.h> 66 #include <net/if_arp.h> 67 #include <net/ethernet.h> 68 #include <net/if_llc.h> 69 70 #include <net80211/ieee80211_var.h> 71 72 #include <net/bpf.h> 73 74 #ifdef INET 75 #include <netinet/in.h> 76 #include <netinet/if_ether.h> 77 #endif 78 79 #include <dev/ath/if_athvar.h> 80 #include <contrib/dev/ath/ah_desc.h> 81 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */ 82 83 #ifdef ATH_TX99_DIAG 84 #include <dev/ath/ath_tx99/ath_tx99.h> 85 #endif 86 87 /* 88 * ATH_BCBUF determines the number of vap's that can transmit 89 * beacons and also (currently) the number of vap's that can 90 * have unique mac addresses/bssid. When staggering beacons 91 * 4 is probably a good max as otherwise the beacons become 92 * very closely spaced and there is limited time for cab q traffic 93 * to go out. You can burst beacons instead but that is not good 94 * for stations in power save and at some point you really want 95 * another radio (and channel). 96 * 97 * The limit on the number of mac addresses is tied to our use of 98 * the U/L bit and tracking addresses in a byte; it would be 99 * worthwhile to allow more for applications like proxy sta. 100 */ 101 CTASSERT(ATH_BCBUF <= 8); 102 103 /* unaligned little endian access */ 104 #define LE_READ_2(p) \ 105 ((u_int16_t) \ 106 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 107 #define LE_READ_4(p) \ 108 ((u_int32_t) \ 109 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 110 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 111 112 enum { 113 ATH_LED_TX, 114 ATH_LED_RX, 115 ATH_LED_POLL, 116 }; 117 118 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 119 const char name[IFNAMSIZ], int unit, int opmode, 120 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 121 const uint8_t mac[IEEE80211_ADDR_LEN]); 122 static void ath_vap_delete(struct ieee80211vap *); 123 static void ath_init(void *); 124 static void ath_stop_locked(struct ifnet *); 125 static void ath_stop(struct ifnet *); 126 static void ath_start(struct ifnet *); 127 static int ath_reset(struct ifnet *); 128 static int ath_reset_vap(struct ieee80211vap *, u_long); 129 static int ath_media_change(struct ifnet *); 130 static void ath_watchdog(struct ifnet *); 131 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 132 static void ath_fatal_proc(void *, int); 133 static void ath_rxorn_proc(void *, int); 134 static void ath_bmiss_vap(struct ieee80211vap *); 135 static void ath_bmiss_proc(void *, int); 136 static int ath_key_alloc(struct ieee80211vap *, 137 const struct ieee80211_key *, 138 ieee80211_keyix *, ieee80211_keyix *); 139 static int ath_key_delete(struct ieee80211vap *, 140 const struct ieee80211_key *); 141 static int ath_key_set(struct ieee80211vap *, const struct ieee80211_key *, 142 const u_int8_t mac[IEEE80211_ADDR_LEN]); 143 static void ath_key_update_begin(struct ieee80211vap *); 144 static void ath_key_update_end(struct ieee80211vap *); 145 static void ath_update_mcast(struct ifnet *); 146 static void ath_update_promisc(struct ifnet *); 147 static void ath_mode_init(struct ath_softc *); 148 static void ath_setslottime(struct ath_softc *); 149 static void ath_updateslot(struct ifnet *); 150 static int ath_beaconq_setup(struct ath_hal *); 151 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 152 static void ath_beacon_update(struct ieee80211vap *, int item); 153 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 154 static void ath_beacon_proc(void *, int); 155 static struct ath_buf *ath_beacon_generate(struct ath_softc *, 156 struct ieee80211vap *); 157 static void ath_bstuck_proc(void *, int); 158 static void ath_beacon_return(struct ath_softc *, struct ath_buf *); 159 static void ath_beacon_free(struct ath_softc *); 160 static void ath_beacon_config(struct ath_softc *, struct ieee80211vap *); 161 static void ath_descdma_cleanup(struct ath_softc *sc, 162 struct ath_descdma *, ath_bufhead *); 163 static int ath_desc_alloc(struct ath_softc *); 164 static void ath_desc_free(struct ath_softc *); 165 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *); 166 static void ath_node_free(struct ieee80211_node *); 167 static void ath_node_getsignal(const struct ieee80211_node *, 168 int8_t *, int8_t *); 169 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 170 static void ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 171 int subtype, int rssi, int noise, u_int32_t rstamp); 172 static void ath_setdefantenna(struct ath_softc *, u_int); 173 static void ath_rx_proc(void *, int); 174 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 175 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 176 static int ath_tx_setup(struct ath_softc *, int, int); 177 static int ath_wme_update(struct ieee80211com *); 178 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 179 static void ath_tx_cleanup(struct ath_softc *); 180 static void ath_freetx(struct mbuf *); 181 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 182 struct ath_buf *, struct mbuf *); 183 static void ath_tx_proc_q0(void *, int); 184 static void ath_tx_proc_q0123(void *, int); 185 static void ath_tx_proc(void *, int); 186 static void ath_tx_draintxq(struct ath_softc *, struct ath_txq *); 187 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 188 static void ath_draintxq(struct ath_softc *); 189 static void ath_stoprecv(struct ath_softc *); 190 static int ath_startrecv(struct ath_softc *); 191 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 192 static void ath_scan_start(struct ieee80211com *); 193 static void ath_scan_end(struct ieee80211com *); 194 static void ath_set_channel(struct ieee80211com *); 195 static void ath_calibrate(void *); 196 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 197 static void ath_setup_stationkey(struct ieee80211_node *); 198 static void ath_newassoc(struct ieee80211_node *, int); 199 static int ath_setregdomain(struct ieee80211com *, 200 struct ieee80211_regdomain *, int, 201 struct ieee80211_channel []); 202 static void ath_getradiocaps(struct ieee80211com *, int *, 203 struct ieee80211_channel []); 204 static int ath_getchannels(struct ath_softc *); 205 static void ath_led_event(struct ath_softc *, int); 206 207 static int ath_rate_setup(struct ath_softc *, u_int mode); 208 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 209 210 static void ath_sysctlattach(struct ath_softc *); 211 static int ath_raw_xmit(struct ieee80211_node *, 212 struct mbuf *, const struct ieee80211_bpf_params *); 213 static void ath_bpfattach(struct ath_softc *); 214 static void ath_announce(struct ath_softc *); 215 216 SYSCTL_DECL(_hw_ath); 217 218 /* XXX validate sysctl values */ 219 static int ath_calinterval = 30; /* calibrate every 30 secs */ 220 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval, 221 0, "chip calibration interval (secs)"); 222 223 static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 224 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 225 0, "rx buffers allocated"); 226 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 227 static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 228 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 229 0, "tx buffers allocated"); 230 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 231 232 #ifdef ATH_DEBUG 233 static int ath_debug = 0; 234 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug, 235 0, "control debugging printfs"); 236 TUNABLE_INT("hw.ath.debug", &ath_debug); 237 enum { 238 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 239 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 240 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 241 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 242 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 243 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 244 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 245 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 246 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 247 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 248 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 249 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 250 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 251 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 252 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */ 253 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */ 254 ATH_DEBUG_NODE = 0x00080000, /* node management */ 255 ATH_DEBUG_LED = 0x00100000, /* led management */ 256 ATH_DEBUG_FF = 0x00200000, /* fast frames */ 257 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */ 258 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */ 259 ATH_DEBUG_ANY = 0xffffffff 260 }; 261 #define IFF_DUMPPKTS(sc, m) \ 262 ((sc->sc_debug & (m)) || \ 263 (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 264 #define DPRINTF(sc, m, fmt, ...) do { \ 265 if (sc->sc_debug & (m)) \ 266 printf(fmt, __VA_ARGS__); \ 267 } while (0) 268 #define KEYPRINTF(sc, ix, hk, mac) do { \ 269 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \ 270 ath_keyprint(sc, __func__, ix, hk, mac); \ 271 } while (0) 272 static void ath_printrxbuf(const struct ath_buf *bf, u_int ix, int); 273 static void ath_printtxbuf(const struct ath_buf *bf, u_int qnum, u_int ix, int done); 274 #else 275 #define IFF_DUMPPKTS(sc, m) \ 276 ((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 277 #define DPRINTF(sc, m, fmt, ...) do { \ 278 (void) sc; \ 279 } while (0) 280 #define KEYPRINTF(sc, k, ix, mac) do { \ 281 (void) sc; \ 282 } while (0) 283 #endif 284 285 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 286 287 int 288 ath_attach(u_int16_t devid, struct ath_softc *sc) 289 { 290 struct ifnet *ifp; 291 struct ieee80211com *ic; 292 struct ath_hal *ah = NULL; 293 HAL_STATUS status; 294 int error = 0, i; 295 296 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 297 298 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 299 if (ifp == NULL) { 300 device_printf(sc->sc_dev, "can not if_alloc()\n"); 301 error = ENOSPC; 302 goto bad; 303 } 304 ic = ifp->if_l2com; 305 306 /* set these up early for if_printf use */ 307 if_initname(ifp, device_get_name(sc->sc_dev), 308 device_get_unit(sc->sc_dev)); 309 310 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); 311 if (ah == NULL) { 312 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 313 status); 314 error = ENXIO; 315 goto bad; 316 } 317 if (ah->ah_abi != HAL_ABI_VERSION) { 318 if_printf(ifp, "HAL ABI mismatch detected " 319 "(HAL:0x%x != driver:0x%x)\n", 320 ah->ah_abi, HAL_ABI_VERSION); 321 error = ENXIO; 322 goto bad; 323 } 324 sc->sc_ah = ah; 325 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 326 327 /* 328 * Check if the MAC has multi-rate retry support. 329 * We do this by trying to setup a fake extended 330 * descriptor. MAC's that don't have support will 331 * return false w/o doing anything. MAC's that do 332 * support it will return true w/o doing anything. 333 */ 334 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 335 336 /* 337 * Check if the device has hardware counters for PHY 338 * errors. If so we need to enable the MIB interrupt 339 * so we can act on stat triggers. 340 */ 341 if (ath_hal_hwphycounters(ah)) 342 sc->sc_needmib = 1; 343 344 /* 345 * Get the hardware key cache size. 346 */ 347 sc->sc_keymax = ath_hal_keycachesize(ah); 348 if (sc->sc_keymax > ATH_KEYMAX) { 349 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 350 ATH_KEYMAX, sc->sc_keymax); 351 sc->sc_keymax = ATH_KEYMAX; 352 } 353 /* 354 * Reset the key cache since some parts do not 355 * reset the contents on initial power up. 356 */ 357 for (i = 0; i < sc->sc_keymax; i++) 358 ath_hal_keyreset(ah, i); 359 360 /* 361 * Collect the default channel list. 362 */ 363 error = ath_getchannels(sc); 364 if (error != 0) 365 goto bad; 366 367 /* 368 * Setup rate tables for all potential media types. 369 */ 370 ath_rate_setup(sc, IEEE80211_MODE_11A); 371 ath_rate_setup(sc, IEEE80211_MODE_11B); 372 ath_rate_setup(sc, IEEE80211_MODE_11G); 373 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 374 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 375 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 376 ath_rate_setup(sc, IEEE80211_MODE_11NA); 377 ath_rate_setup(sc, IEEE80211_MODE_11NG); 378 ath_rate_setup(sc, IEEE80211_MODE_HALF); 379 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 380 381 /* NB: setup here so ath_rate_update is happy */ 382 ath_setcurmode(sc, IEEE80211_MODE_11A); 383 384 /* 385 * Allocate tx+rx descriptors and populate the lists. 386 */ 387 error = ath_desc_alloc(sc); 388 if (error != 0) { 389 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 390 goto bad; 391 } 392 callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE); 393 394 ATH_TXBUF_LOCK_INIT(sc); 395 396 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 397 taskqueue_thread_enqueue, &sc->sc_tq); 398 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 399 "%s taskq", ifp->if_xname); 400 401 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc); 402 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc); 403 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 404 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 405 406 /* 407 * Allocate hardware transmit queues: one queue for 408 * beacon frames and one data queue for each QoS 409 * priority. Note that the hal handles reseting 410 * these queues at the needed time. 411 * 412 * XXX PS-Poll 413 */ 414 sc->sc_bhalq = ath_beaconq_setup(ah); 415 if (sc->sc_bhalq == (u_int) -1) { 416 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 417 error = EIO; 418 goto bad2; 419 } 420 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 421 if (sc->sc_cabq == NULL) { 422 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 423 error = EIO; 424 goto bad2; 425 } 426 /* NB: insure BK queue is the lowest priority h/w queue */ 427 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 428 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 429 ieee80211_wme_acnames[WME_AC_BK]); 430 error = EIO; 431 goto bad2; 432 } 433 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 434 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 435 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 436 /* 437 * Not enough hardware tx queues to properly do WME; 438 * just punt and assign them all to the same h/w queue. 439 * We could do a better job of this if, for example, 440 * we allocate queues when we switch from station to 441 * AP mode. 442 */ 443 if (sc->sc_ac2q[WME_AC_VI] != NULL) 444 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 445 if (sc->sc_ac2q[WME_AC_BE] != NULL) 446 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 447 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 448 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 449 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 450 } 451 452 /* 453 * Special case certain configurations. Note the 454 * CAB queue is handled by these specially so don't 455 * include them when checking the txq setup mask. 456 */ 457 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 458 case 0x01: 459 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 460 break; 461 case 0x0f: 462 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 463 break; 464 default: 465 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 466 break; 467 } 468 469 /* 470 * Setup rate control. Some rate control modules 471 * call back to change the anntena state so expose 472 * the necessary entry points. 473 * XXX maybe belongs in struct ath_ratectrl? 474 */ 475 sc->sc_setdefantenna = ath_setdefantenna; 476 sc->sc_rc = ath_rate_attach(sc); 477 if (sc->sc_rc == NULL) { 478 error = EIO; 479 goto bad2; 480 } 481 482 sc->sc_blinking = 0; 483 sc->sc_ledstate = 1; 484 sc->sc_ledon = 0; /* low true */ 485 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 486 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 487 /* 488 * Auto-enable soft led processing for IBM cards and for 489 * 5211 minipci cards. Users can also manually enable/disable 490 * support with a sysctl. 491 */ 492 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 493 if (sc->sc_softled) { 494 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin); 495 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 496 } 497 498 ifp->if_softc = sc; 499 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 500 ifp->if_start = ath_start; 501 ifp->if_watchdog = ath_watchdog; 502 ifp->if_ioctl = ath_ioctl; 503 ifp->if_init = ath_init; 504 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 505 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 506 IFQ_SET_READY(&ifp->if_snd); 507 508 ic->ic_ifp = ifp; 509 /* XXX not right but it's not used anywhere important */ 510 ic->ic_phytype = IEEE80211_T_OFDM; 511 ic->ic_opmode = IEEE80211_M_STA; 512 ic->ic_caps = 513 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 514 | IEEE80211_C_HOSTAP /* hostap mode */ 515 | IEEE80211_C_MONITOR /* monitor mode */ 516 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 517 | IEEE80211_C_WDS /* 4-address traffic works */ 518 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 519 | IEEE80211_C_SHSLOT /* short slot time supported */ 520 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 521 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 522 | IEEE80211_C_TXFRAG /* handle tx frags */ 523 ; 524 /* 525 * Query the hal to figure out h/w crypto support. 526 */ 527 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 528 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 529 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 530 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 531 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 532 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 533 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 534 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 535 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 536 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 537 /* 538 * Check if h/w does the MIC and/or whether the 539 * separate key cache entries are required to 540 * handle both tx+rx MIC keys. 541 */ 542 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 543 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 544 /* 545 * If the h/w supports storing tx+rx MIC keys 546 * in one cache slot automatically enable use. 547 */ 548 if (ath_hal_hastkipsplit(ah) || 549 !ath_hal_settkipsplit(ah, AH_FALSE)) 550 sc->sc_splitmic = 1; 551 /* 552 * If the h/w can do TKIP MIC together with WME then 553 * we use it; otherwise we force the MIC to be done 554 * in software by the net80211 layer. 555 */ 556 if (ath_hal_haswmetkipmic(ah)) 557 sc->sc_wmetkipmic = 1; 558 } 559 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 560 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 561 /* 562 * Mark key cache slots associated with global keys 563 * as in use. If we knew TKIP was not to be used we 564 * could leave the +32, +64, and +32+64 slots free. 565 */ 566 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 567 setbit(sc->sc_keymap, i); 568 setbit(sc->sc_keymap, i+64); 569 if (sc->sc_splitmic) { 570 setbit(sc->sc_keymap, i+32); 571 setbit(sc->sc_keymap, i+32+64); 572 } 573 } 574 /* 575 * TPC support can be done either with a global cap or 576 * per-packet support. The latter is not available on 577 * all parts. We're a bit pedantic here as all parts 578 * support a global cap. 579 */ 580 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 581 ic->ic_caps |= IEEE80211_C_TXPMGT; 582 583 /* 584 * Mark WME capability only if we have sufficient 585 * hardware queues to do proper priority scheduling. 586 */ 587 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 588 ic->ic_caps |= IEEE80211_C_WME; 589 /* 590 * Check for misc other capabilities. 591 */ 592 if (ath_hal_hasbursting(ah)) 593 ic->ic_caps |= IEEE80211_C_BURST; 594 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 595 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 596 if (ath_hal_hasfastframes(ah)) 597 ic->ic_caps |= IEEE80211_C_FF; 598 if (ath_hal_getwirelessmodes(ah, ic->ic_regdomain.country) & (HAL_MODE_108G|HAL_MODE_TURBO)) 599 ic->ic_caps |= IEEE80211_C_TURBOP; 600 601 /* 602 * Indicate we need the 802.11 header padded to a 603 * 32-bit boundary for 4-address and QoS frames. 604 */ 605 ic->ic_flags |= IEEE80211_F_DATAPAD; 606 607 /* 608 * Query the hal about antenna support. 609 */ 610 sc->sc_defant = ath_hal_getdefantenna(ah); 611 612 /* 613 * Not all chips have the VEOL support we want to 614 * use with IBSS beacons; check here for it. 615 */ 616 sc->sc_hasveol = ath_hal_hasveol(ah); 617 618 /* get mac address from hardware */ 619 ath_hal_getmac(ah, ic->ic_myaddr); 620 if (sc->sc_hasbmask) 621 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 622 623 /* NB: used to size node table key mapping array */ 624 ic->ic_max_keyix = sc->sc_keymax; 625 /* call MI attach routine. */ 626 ieee80211_ifattach(ic); 627 ic->ic_setregdomain = ath_setregdomain; 628 ic->ic_getradiocaps = ath_getradiocaps; 629 sc->sc_opmode = HAL_M_STA; 630 631 /* override default methods */ 632 ic->ic_newassoc = ath_newassoc; 633 ic->ic_updateslot = ath_updateslot; 634 ic->ic_wme.wme_update = ath_wme_update; 635 ic->ic_vap_create = ath_vap_create; 636 ic->ic_vap_delete = ath_vap_delete; 637 ic->ic_raw_xmit = ath_raw_xmit; 638 ic->ic_update_mcast = ath_update_mcast; 639 ic->ic_update_promisc = ath_update_promisc; 640 ic->ic_node_alloc = ath_node_alloc; 641 sc->sc_node_free = ic->ic_node_free; 642 ic->ic_node_free = ath_node_free; 643 ic->ic_node_getsignal = ath_node_getsignal; 644 ic->ic_scan_start = ath_scan_start; 645 ic->ic_scan_end = ath_scan_end; 646 ic->ic_set_channel = ath_set_channel; 647 648 ath_bpfattach(sc); 649 /* 650 * Setup dynamic sysctl's now that country code and 651 * regdomain are available from the hal. 652 */ 653 ath_sysctlattach(sc); 654 655 if (bootverbose) 656 ieee80211_announce(ic); 657 ath_announce(sc); 658 return 0; 659 bad2: 660 ath_tx_cleanup(sc); 661 ath_desc_free(sc); 662 bad: 663 if (ah) 664 ath_hal_detach(ah); 665 if (ifp != NULL) 666 if_free(ifp); 667 sc->sc_invalid = 1; 668 return error; 669 } 670 671 int 672 ath_detach(struct ath_softc *sc) 673 { 674 struct ifnet *ifp = sc->sc_ifp; 675 676 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 677 __func__, ifp->if_flags); 678 679 ath_stop(ifp); 680 bpfdetach(ifp); 681 /* 682 * NB: the order of these is important: 683 * o call the 802.11 layer before detaching the hal to 684 * insure callbacks into the driver to delete global 685 * key cache entries can be handled 686 * o reclaim the tx queue data structures after calling 687 * the 802.11 layer as we'll get called back to reclaim 688 * node state and potentially want to use them 689 * o to cleanup the tx queues the hal is called, so detach 690 * it last 691 * Other than that, it's straightforward... 692 */ 693 ieee80211_ifdetach(ifp->if_l2com); 694 #ifdef ATH_TX99_DIAG 695 if (sc->sc_tx99 != NULL) 696 sc->sc_tx99->detach(sc->sc_tx99); 697 #endif 698 taskqueue_free(sc->sc_tq); 699 ath_rate_detach(sc->sc_rc); 700 ath_desc_free(sc); 701 ath_tx_cleanup(sc); 702 ath_hal_detach(sc->sc_ah); 703 if_free(ifp); 704 705 return 0; 706 } 707 708 /* 709 * MAC address handling for multiple BSS on the same radio. 710 * The first vap uses the MAC address from the EEPROM. For 711 * subsequent vap's we set the U/L bit (bit 1) in the MAC 712 * address and use the next six bits as an index. 713 */ 714 static void 715 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 716 { 717 int i; 718 719 if (clone && sc->sc_hasbmask) { 720 /* NB: we only do this if h/w supports multiple bssid */ 721 for (i = 0; i < 8; i++) 722 if ((sc->sc_bssidmask & (1<<i)) == 0) 723 break; 724 if (i != 0) 725 mac[0] |= (i << 2)|0x2; 726 } else 727 i = 0; 728 sc->sc_bssidmask |= 1<<i; 729 sc->sc_hwbssidmask[0] &= ~mac[0]; 730 if (i == 0) 731 sc->sc_nbssid0++; 732 } 733 734 static void 735 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 736 { 737 int i = mac[0] >> 2; 738 uint8_t mask; 739 740 if (i != 0 || --sc->sc_nbssid0 == 0) { 741 sc->sc_bssidmask &= ~(1<<i); 742 /* recalculate bssid mask from remaining addresses */ 743 mask = 0xff; 744 for (i = 1; i < 8; i++) 745 if (sc->sc_bssidmask & (1<<i)) 746 mask &= ~((i<<2)|0x2); 747 sc->sc_hwbssidmask[0] |= mask; 748 } 749 } 750 751 /* 752 * Assign a beacon xmit slot. We try to space out 753 * assignments so when beacons are staggered the 754 * traffic coming out of the cab q has maximal time 755 * to go out before the next beacon is scheduled. 756 */ 757 static int 758 assign_bslot(struct ath_softc *sc) 759 { 760 u_int slot, free; 761 762 free = 0; 763 for (slot = 0; slot < ATH_BCBUF; slot++) 764 if (sc->sc_bslot[slot] == NULL) { 765 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 766 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 767 return slot; 768 free = slot; 769 /* NB: keep looking for a double slot */ 770 } 771 return free; 772 } 773 774 static struct ieee80211vap * 775 ath_vap_create(struct ieee80211com *ic, 776 const char name[IFNAMSIZ], int unit, int opmode, int flags, 777 const uint8_t bssid[IEEE80211_ADDR_LEN], 778 const uint8_t mac0[IEEE80211_ADDR_LEN]) 779 { 780 struct ath_softc *sc = ic->ic_ifp->if_softc; 781 struct ath_vap *avp; 782 struct ieee80211vap *vap; 783 uint8_t mac[IEEE80211_ADDR_LEN]; 784 int ic_opmode, needbeacon, error; 785 786 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 787 M_80211_VAP, M_WAITOK | M_ZERO); 788 needbeacon = 0; 789 IEEE80211_ADDR_COPY(mac, mac0); 790 791 ATH_LOCK(sc); 792 switch (opmode) { 793 case IEEE80211_M_STA: 794 if (sc->sc_nstavaps != 0) { /* XXX only 1 sta for now */ 795 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 796 goto bad; 797 } 798 if (sc->sc_nvaps) { 799 /* 800 * When there are multiple vaps we must fall 801 * back to s/w beacon miss handling. 802 */ 803 flags |= IEEE80211_CLONE_NOBEACONS; 804 } 805 if (flags & IEEE80211_CLONE_NOBEACONS) { 806 sc->sc_swbmiss = 1; 807 ic_opmode = IEEE80211_M_HOSTAP; 808 } else 809 ic_opmode = opmode; 810 break; 811 case IEEE80211_M_IBSS: 812 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 813 device_printf(sc->sc_dev, 814 "only 1 ibss vap supported\n"); 815 goto bad; 816 } 817 ic_opmode = opmode; 818 needbeacon = 1; 819 break; 820 case IEEE80211_M_AHDEMO: 821 /* fall thru... */ 822 case IEEE80211_M_MONITOR: 823 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 824 /* XXX not right for monitor mode */ 825 ic_opmode = ic->ic_opmode; 826 } else 827 ic_opmode = opmode; 828 break; 829 case IEEE80211_M_HOSTAP: 830 needbeacon = 1; 831 /* fall thru... */ 832 case IEEE80211_M_WDS: 833 if (sc->sc_nvaps && ic->ic_opmode == IEEE80211_M_STA) { 834 device_printf(sc->sc_dev, 835 "wds not supported in sta mode\n"); 836 goto bad; 837 } 838 if (opmode == IEEE80211_M_WDS) { 839 /* 840 * Silently remove any request for a unique 841 * bssid; WDS vap's always share the local 842 * mac address. 843 */ 844 flags &= ~IEEE80211_CLONE_BSSID; 845 } 846 ic_opmode = IEEE80211_M_HOSTAP; 847 break; 848 default: 849 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 850 goto bad; 851 } 852 /* 853 * Check that a beacon buffer is available; the code below assumes it. 854 */ 855 if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) { 856 device_printf(sc->sc_dev, "no beacon buffer available\n"); 857 goto bad; 858 } 859 860 /* STA, AHDEMO? */ 861 if (opmode == IEEE80211_M_HOSTAP) { 862 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 863 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 864 } 865 866 vap = &avp->av_vap; 867 /* XXX can't hold mutex across if_alloc */ 868 ATH_UNLOCK(sc); 869 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 870 bssid, mac); 871 ATH_LOCK(sc); 872 if (error != 0) { 873 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 874 __func__, error); 875 goto bad2; 876 } 877 878 /* h/w crypto support */ 879 vap->iv_key_alloc = ath_key_alloc; 880 vap->iv_key_delete = ath_key_delete; 881 vap->iv_key_set = ath_key_set; 882 vap->iv_key_update_begin = ath_key_update_begin; 883 vap->iv_key_update_end = ath_key_update_end; 884 885 /* override various methods */ 886 avp->av_recv_mgmt = vap->iv_recv_mgmt; 887 vap->iv_recv_mgmt = ath_recv_mgmt; 888 vap->iv_reset = ath_reset_vap; 889 vap->iv_update_beacon = ath_beacon_update; 890 avp->av_newstate = vap->iv_newstate; 891 vap->iv_newstate = ath_newstate; 892 avp->av_bmiss = vap->iv_bmiss; 893 vap->iv_bmiss = ath_bmiss_vap; 894 895 avp->av_bslot = -1; 896 if (needbeacon) { 897 /* 898 * Allocate beacon state and setup the q for buffered 899 * multicast frames. We know a beacon buffer is 900 * available because we checked above. 901 */ 902 avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf); 903 STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list); 904 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 905 /* 906 * Assign the vap to a beacon xmit slot. As above 907 * this cannot fail to find a free one. 908 */ 909 avp->av_bslot = assign_bslot(sc); 910 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 911 ("beacon slot %u not empty", avp->av_bslot)); 912 sc->sc_bslot[avp->av_bslot] = vap; 913 sc->sc_nbcnvaps++; 914 } 915 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 916 /* 917 * Multple vaps are to transmit beacons and we 918 * have h/w support for TSF adjusting; enable 919 * use of staggered beacons. 920 */ 921 sc->sc_stagbeacons = 1; 922 } 923 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 924 } 925 926 ic->ic_opmode = ic_opmode; 927 if (opmode != IEEE80211_M_WDS) { 928 sc->sc_nvaps++; 929 if (opmode == IEEE80211_M_STA) 930 sc->sc_nstavaps++; 931 } 932 switch (ic_opmode) { 933 case IEEE80211_M_IBSS: 934 sc->sc_opmode = HAL_M_IBSS; 935 break; 936 case IEEE80211_M_STA: 937 sc->sc_opmode = HAL_M_STA; 938 break; 939 case IEEE80211_M_AHDEMO: 940 case IEEE80211_M_HOSTAP: 941 sc->sc_opmode = HAL_M_HOSTAP; 942 break; 943 case IEEE80211_M_MONITOR: 944 sc->sc_opmode = HAL_M_MONITOR; 945 break; 946 default: 947 /* XXX should not happen */ 948 break; 949 } 950 if (sc->sc_hastsfadd) { 951 /* 952 * Configure whether or not TSF adjust should be done. 953 */ 954 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 955 } 956 ATH_UNLOCK(sc); 957 958 /* complete setup */ 959 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 960 return vap; 961 bad2: 962 reclaim_address(sc, mac); 963 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 964 bad: 965 free(avp, M_80211_VAP); 966 ATH_UNLOCK(sc); 967 return NULL; 968 } 969 970 static void 971 ath_vap_delete(struct ieee80211vap *vap) 972 { 973 struct ieee80211com *ic = vap->iv_ic; 974 struct ifnet *ifp = ic->ic_ifp; 975 struct ath_softc *sc = ifp->if_softc; 976 struct ath_hal *ah = sc->sc_ah; 977 struct ath_vap *avp = ATH_VAP(vap); 978 979 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 980 /* 981 * Quiesce the hardware while we remove the vap. In 982 * particular we need to reclaim all references to 983 * the vap state by any frames pending on the tx queues. 984 */ 985 ath_hal_intrset(ah, 0); /* disable interrupts */ 986 ath_draintxq(sc); /* stop xmit side */ 987 ath_stoprecv(sc); /* stop recv side */ 988 } 989 990 ieee80211_vap_detach(vap); 991 ATH_LOCK(sc); 992 /* 993 * Reclaim beacon state. Note this must be done before 994 * the vap instance is reclaimed as we may have a reference 995 * to it in the buffer for the beacon frame. 996 */ 997 if (avp->av_bcbuf != NULL) { 998 if (avp->av_bslot != -1) { 999 sc->sc_bslot[avp->av_bslot] = NULL; 1000 sc->sc_nbcnvaps--; 1001 } 1002 ath_beacon_return(sc, avp->av_bcbuf); 1003 avp->av_bcbuf = NULL; 1004 if (sc->sc_nbcnvaps == 0) { 1005 sc->sc_stagbeacons = 0; 1006 if (sc->sc_hastsfadd) 1007 ath_hal_settsfadjust(sc->sc_ah, 0); 1008 } 1009 /* 1010 * Reclaim any pending mcast frames for the vap. 1011 */ 1012 ath_tx_draintxq(sc, &avp->av_mcastq); 1013 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1014 } 1015 /* 1016 * Update bookkeeping. 1017 */ 1018 if (vap->iv_opmode == IEEE80211_M_STA) { 1019 sc->sc_nstavaps--; 1020 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1021 sc->sc_swbmiss = 0; 1022 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 1023 reclaim_address(sc, vap->iv_myaddr); 1024 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1025 } 1026 if (vap->iv_opmode != IEEE80211_M_WDS) 1027 sc->sc_nvaps--; 1028 ATH_UNLOCK(sc); 1029 free(avp, M_80211_VAP); 1030 1031 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1032 /* 1033 * Restart rx+tx machines if still running (RUNNING will 1034 * be reset if we just destroyed the last vap). 1035 */ 1036 if (ath_startrecv(sc) != 0) 1037 if_printf(ifp, "%s: unable to restart recv logic\n", 1038 __func__); 1039 if (sc->sc_beacons) 1040 ath_beacon_config(sc, NULL); 1041 ath_hal_intrset(ah, sc->sc_imask); 1042 } 1043 } 1044 1045 void 1046 ath_suspend(struct ath_softc *sc) 1047 { 1048 struct ifnet *ifp = sc->sc_ifp; 1049 1050 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1051 __func__, ifp->if_flags); 1052 1053 ath_stop(ifp); 1054 } 1055 1056 void 1057 ath_resume(struct ath_softc *sc) 1058 { 1059 struct ifnet *ifp = sc->sc_ifp; 1060 1061 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1062 __func__, ifp->if_flags); 1063 1064 if (ifp->if_flags & IFF_UP) { 1065 ath_init(sc); 1066 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1067 ath_start(ifp); 1068 } 1069 if (sc->sc_softled) { 1070 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin); 1071 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 1072 } 1073 } 1074 1075 void 1076 ath_shutdown(struct ath_softc *sc) 1077 { 1078 struct ifnet *ifp = sc->sc_ifp; 1079 1080 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1081 __func__, ifp->if_flags); 1082 1083 ath_stop(ifp); 1084 } 1085 1086 /* 1087 * Interrupt handler. Most of the actual processing is deferred. 1088 */ 1089 void 1090 ath_intr(void *arg) 1091 { 1092 struct ath_softc *sc = arg; 1093 struct ifnet *ifp = sc->sc_ifp; 1094 struct ath_hal *ah = sc->sc_ah; 1095 HAL_INT status; 1096 1097 if (sc->sc_invalid) { 1098 /* 1099 * The hardware is not ready/present, don't touch anything. 1100 * Note this can happen early on if the IRQ is shared. 1101 */ 1102 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1103 return; 1104 } 1105 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 1106 return; 1107 if ((ifp->if_flags & IFF_UP) == 0 || 1108 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1109 HAL_INT status; 1110 1111 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1112 __func__, ifp->if_flags); 1113 ath_hal_getisr(ah, &status); /* clear ISR */ 1114 ath_hal_intrset(ah, 0); /* disable further intr's */ 1115 return; 1116 } 1117 /* 1118 * Figure out the reason(s) for the interrupt. Note 1119 * that the hal returns a pseudo-ISR that may include 1120 * bits we haven't explicitly enabled so we mask the 1121 * value to insure we only process bits we requested. 1122 */ 1123 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1124 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1125 status &= sc->sc_imask; /* discard unasked for bits */ 1126 if (status & HAL_INT_FATAL) { 1127 sc->sc_stats.ast_hardware++; 1128 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1129 ath_fatal_proc(sc, 0); 1130 } else if (status & HAL_INT_RXORN) { 1131 sc->sc_stats.ast_rxorn++; 1132 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1133 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxorntask); 1134 } else { 1135 if (status & HAL_INT_SWBA) { 1136 /* 1137 * Software beacon alert--time to send a beacon. 1138 * Handle beacon transmission directly; deferring 1139 * this is too slow to meet timing constraints 1140 * under load. 1141 */ 1142 ath_beacon_proc(sc, 0); 1143 } 1144 if (status & HAL_INT_RXEOL) { 1145 /* 1146 * NB: the hardware should re-read the link when 1147 * RXE bit is written, but it doesn't work at 1148 * least on older hardware revs. 1149 */ 1150 sc->sc_stats.ast_rxeol++; 1151 sc->sc_rxlink = NULL; 1152 } 1153 if (status & HAL_INT_TXURN) { 1154 sc->sc_stats.ast_txurn++; 1155 /* bump tx trigger level */ 1156 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1157 } 1158 if (status & HAL_INT_RX) 1159 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1160 if (status & HAL_INT_TX) 1161 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1162 if (status & HAL_INT_BMISS) { 1163 sc->sc_stats.ast_bmiss++; 1164 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1165 } 1166 if (status & HAL_INT_MIB) { 1167 sc->sc_stats.ast_mib++; 1168 /* 1169 * Disable interrupts until we service the MIB 1170 * interrupt; otherwise it will continue to fire. 1171 */ 1172 ath_hal_intrset(ah, 0); 1173 /* 1174 * Let the hal handle the event. We assume it will 1175 * clear whatever condition caused the interrupt. 1176 */ 1177 ath_hal_mibevent(ah, &sc->sc_halstats); 1178 ath_hal_intrset(ah, sc->sc_imask); 1179 } 1180 } 1181 } 1182 1183 static void 1184 ath_fatal_proc(void *arg, int pending) 1185 { 1186 struct ath_softc *sc = arg; 1187 struct ifnet *ifp = sc->sc_ifp; 1188 u_int32_t *state; 1189 u_int32_t len; 1190 void *sp; 1191 1192 if_printf(ifp, "hardware error; resetting\n"); 1193 /* 1194 * Fatal errors are unrecoverable. Typically these 1195 * are caused by DMA errors. Collect h/w state from 1196 * the hal so we can diagnose what's going on. 1197 */ 1198 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1199 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1200 state = sp; 1201 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1202 state[0], state[1] , state[2], state[3], 1203 state[4], state[5]); 1204 } 1205 ath_reset(ifp); 1206 } 1207 1208 static void 1209 ath_rxorn_proc(void *arg, int pending) 1210 { 1211 struct ath_softc *sc = arg; 1212 struct ifnet *ifp = sc->sc_ifp; 1213 1214 if_printf(ifp, "rx FIFO overrun; resetting\n"); 1215 ath_reset(ifp); 1216 } 1217 1218 static void 1219 ath_bmiss_vap(struct ieee80211vap *vap) 1220 { 1221 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 1222 u_int64_t lastrx = sc->sc_lastrx; 1223 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1224 u_int bmisstimeout = 1225 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1226 1227 DPRINTF(sc, ATH_DEBUG_BEACON, 1228 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1229 __func__, (unsigned long long) tsf, 1230 (unsigned long long)(tsf - lastrx), 1231 (unsigned long long) lastrx, bmisstimeout); 1232 /* 1233 * Workaround phantom bmiss interrupts by sanity-checking 1234 * the time of our last rx'd frame. If it is within the 1235 * beacon miss interval then ignore the interrupt. If it's 1236 * truly a bmiss we'll get another interrupt soon and that'll 1237 * be dispatched up for processing. 1238 */ 1239 if (tsf - lastrx > bmisstimeout) 1240 ATH_VAP(vap)->av_bmiss(vap); 1241 else 1242 sc->sc_stats.ast_bmiss_phantom++; 1243 } 1244 1245 static void 1246 ath_bmiss_proc(void *arg, int pending) 1247 { 1248 struct ath_softc *sc = arg; 1249 struct ifnet *ifp = sc->sc_ifp; 1250 1251 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1252 ieee80211_beacon_miss(ifp->if_l2com); 1253 } 1254 1255 /* 1256 * Convert net80211 channel to a HAL channel with the flags 1257 * constrained to reflect the current operating mode and 1258 * the frequency possibly mapped for GSM channels. 1259 */ 1260 static void 1261 ath_mapchan(HAL_CHANNEL *hc, const struct ieee80211_channel *chan) 1262 { 1263 #define N(a) (sizeof(a) / sizeof(a[0])) 1264 static const u_int modeflags[IEEE80211_MODE_MAX] = { 1265 0, /* IEEE80211_MODE_AUTO */ 1266 CHANNEL_A, /* IEEE80211_MODE_11A */ 1267 CHANNEL_B, /* IEEE80211_MODE_11B */ 1268 CHANNEL_PUREG, /* IEEE80211_MODE_11G */ 1269 0, /* IEEE80211_MODE_FH */ 1270 CHANNEL_108A, /* IEEE80211_MODE_TURBO_A */ 1271 CHANNEL_108G, /* IEEE80211_MODE_TURBO_G */ 1272 CHANNEL_ST, /* IEEE80211_MODE_STURBO_A */ 1273 CHANNEL_A, /* IEEE80211_MODE_11NA */ 1274 CHANNEL_PUREG, /* IEEE80211_MODE_11NG */ 1275 }; 1276 enum ieee80211_phymode mode = ieee80211_chan2mode(chan); 1277 1278 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode)); 1279 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode)); 1280 hc->channelFlags = modeflags[mode]; 1281 if (IEEE80211_IS_CHAN_HALF(chan)) 1282 hc->channelFlags |= CHANNEL_HALF; 1283 if (IEEE80211_IS_CHAN_QUARTER(chan)) 1284 hc->channelFlags |= CHANNEL_QUARTER; 1285 if (IEEE80211_IS_CHAN_HT20(chan)) 1286 hc->channelFlags |= CHANNEL_HT20; 1287 if (IEEE80211_IS_CHAN_HT40D(chan)) 1288 hc->channelFlags |= CHANNEL_HT40MINUS; 1289 if (IEEE80211_IS_CHAN_HT40U(chan)) 1290 hc->channelFlags |= CHANNEL_HT40PLUS; 1291 1292 hc->channel = IEEE80211_IS_CHAN_GSM(chan) ? 1293 2422 + (922 - chan->ic_freq) : chan->ic_freq; 1294 #undef N 1295 } 1296 1297 /* 1298 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1299 * calcs together with WME. If necessary disable the crypto 1300 * hardware and mark the 802.11 state so keys will be setup 1301 * with the MIC work done in software. 1302 */ 1303 static void 1304 ath_settkipmic(struct ath_softc *sc) 1305 { 1306 struct ifnet *ifp = sc->sc_ifp; 1307 struct ieee80211com *ic = ifp->if_l2com; 1308 1309 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1310 if (ic->ic_flags & IEEE80211_F_WME) { 1311 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1312 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1313 } else { 1314 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1315 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1316 } 1317 } 1318 } 1319 1320 static void 1321 ath_init(void *arg) 1322 { 1323 struct ath_softc *sc = (struct ath_softc *) arg; 1324 struct ifnet *ifp = sc->sc_ifp; 1325 struct ieee80211com *ic = ifp->if_l2com; 1326 struct ath_hal *ah = sc->sc_ah; 1327 HAL_STATUS status; 1328 1329 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1330 __func__, ifp->if_flags); 1331 1332 ATH_LOCK(sc); 1333 /* 1334 * Stop anything previously setup. This is safe 1335 * whether this is the first time through or not. 1336 */ 1337 ath_stop_locked(ifp); 1338 1339 /* 1340 * The basic interface to setting the hardware in a good 1341 * state is ``reset''. On return the hardware is known to 1342 * be powered up and with interrupts disabled. This must 1343 * be followed by initialization of the appropriate bits 1344 * and then setup of the interrupt mask. 1345 */ 1346 ath_mapchan(&sc->sc_curchan, ic->ic_curchan); 1347 ath_settkipmic(sc); 1348 if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status)) { 1349 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1350 status); 1351 ATH_UNLOCK(sc); 1352 return; 1353 } 1354 ath_chan_change(sc, ic->ic_curchan); 1355 1356 /* 1357 * Likewise this is set during reset so update 1358 * state cached in the driver. 1359 */ 1360 sc->sc_diversity = ath_hal_getdiversity(ah); 1361 sc->sc_calinterval = 1; 1362 sc->sc_caltries = 0; 1363 1364 /* 1365 * Setup the hardware after reset: the key cache 1366 * is filled as needed and the receive engine is 1367 * set going. Frame transmit is handled entirely 1368 * in the frame output path; there's nothing to do 1369 * here except setup the interrupt mask. 1370 */ 1371 if (ath_startrecv(sc) != 0) { 1372 if_printf(ifp, "unable to start recv logic\n"); 1373 ATH_UNLOCK(sc); 1374 return; 1375 } 1376 1377 /* 1378 * Enable interrupts. 1379 */ 1380 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1381 | HAL_INT_RXEOL | HAL_INT_RXORN 1382 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1383 /* 1384 * Enable MIB interrupts when there are hardware phy counters. 1385 * Note we only do this (at the moment) for station mode. 1386 */ 1387 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1388 sc->sc_imask |= HAL_INT_MIB; 1389 1390 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1391 ath_hal_intrset(ah, sc->sc_imask); 1392 1393 ATH_UNLOCK(sc); 1394 1395 #ifdef ATH_TX99_DIAG 1396 if (sc->sc_tx99 != NULL) 1397 sc->sc_tx99->start(sc->sc_tx99); 1398 else 1399 #endif 1400 ieee80211_start_all(ic); /* start all vap's */ 1401 } 1402 1403 static void 1404 ath_stop_locked(struct ifnet *ifp) 1405 { 1406 struct ath_softc *sc = ifp->if_softc; 1407 struct ath_hal *ah = sc->sc_ah; 1408 1409 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1410 __func__, sc->sc_invalid, ifp->if_flags); 1411 1412 ATH_LOCK_ASSERT(sc); 1413 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1414 /* 1415 * Shutdown the hardware and driver: 1416 * reset 802.11 state machine 1417 * turn off timers 1418 * disable interrupts 1419 * turn off the radio 1420 * clear transmit machinery 1421 * clear receive machinery 1422 * drain and release tx queues 1423 * reclaim beacon resources 1424 * power down hardware 1425 * 1426 * Note that some of this work is not possible if the 1427 * hardware is gone (invalid). 1428 */ 1429 #ifdef ATH_TX99_DIAG 1430 if (sc->sc_tx99 != NULL) 1431 sc->sc_tx99->stop(sc->sc_tx99); 1432 #endif 1433 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1434 ifp->if_timer = 0; 1435 if (!sc->sc_invalid) { 1436 if (sc->sc_softled) { 1437 callout_stop(&sc->sc_ledtimer); 1438 ath_hal_gpioset(ah, sc->sc_ledpin, 1439 !sc->sc_ledon); 1440 sc->sc_blinking = 0; 1441 } 1442 ath_hal_intrset(ah, 0); 1443 } 1444 ath_draintxq(sc); 1445 if (!sc->sc_invalid) { 1446 ath_stoprecv(sc); 1447 ath_hal_phydisable(ah); 1448 } else 1449 sc->sc_rxlink = NULL; 1450 ath_beacon_free(sc); /* XXX not needed */ 1451 } 1452 } 1453 1454 static void 1455 ath_stop(struct ifnet *ifp) 1456 { 1457 struct ath_softc *sc = ifp->if_softc; 1458 1459 ATH_LOCK(sc); 1460 ath_stop_locked(ifp); 1461 if (!sc->sc_invalid) { 1462 /* 1463 * Set the chip in full sleep mode. Note that we are 1464 * careful to do this only when bringing the interface 1465 * completely to a stop. When the chip is in this state 1466 * it must be carefully woken up or references to 1467 * registers in the PCI clock domain may freeze the bus 1468 * (and system). This varies by chip and is mostly an 1469 * issue with newer parts that go to sleep more quickly. 1470 */ 1471 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 1472 } 1473 ATH_UNLOCK(sc); 1474 } 1475 1476 /* 1477 * Reset the hardware w/o losing operational state. This is 1478 * basically a more efficient way of doing ath_stop, ath_init, 1479 * followed by state transitions to the current 802.11 1480 * operational state. Used to recover from various errors and 1481 * to reset or reload hardware state. 1482 */ 1483 static int 1484 ath_reset(struct ifnet *ifp) 1485 { 1486 struct ath_softc *sc = ifp->if_softc; 1487 struct ieee80211com *ic = ifp->if_l2com; 1488 struct ath_hal *ah = sc->sc_ah; 1489 HAL_STATUS status; 1490 1491 /* 1492 * Convert to a HAL channel description with the flags 1493 * constrained to reflect the current operating mode. 1494 */ 1495 ath_mapchan(&sc->sc_curchan, ic->ic_curchan); 1496 1497 ath_hal_intrset(ah, 0); /* disable interrupts */ 1498 ath_draintxq(sc); /* stop xmit side */ 1499 ath_stoprecv(sc); /* stop recv side */ 1500 ath_settkipmic(sc); /* configure TKIP MIC handling */ 1501 /* NB: indicate channel change so we do a full reset */ 1502 if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_TRUE, &status)) 1503 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1504 __func__, status); 1505 sc->sc_diversity = ath_hal_getdiversity(ah); 1506 sc->sc_calinterval = 1; 1507 sc->sc_caltries = 0; 1508 if (ath_startrecv(sc) != 0) /* restart recv */ 1509 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1510 /* 1511 * We may be doing a reset in response to an ioctl 1512 * that changes the channel so update any state that 1513 * might change as a result. 1514 */ 1515 ath_chan_change(sc, ic->ic_curchan); 1516 if (sc->sc_beacons) 1517 ath_beacon_config(sc, NULL); /* restart beacons */ 1518 ath_hal_intrset(ah, sc->sc_imask); 1519 1520 ath_start(ifp); /* restart xmit */ 1521 return 0; 1522 } 1523 1524 static int 1525 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 1526 { 1527 return ath_reset(vap->iv_ic->ic_ifp); 1528 } 1529 1530 static int 1531 ath_ff_always(struct ath_txq *txq, struct ath_buf *bf) 1532 { 1533 return 0; 1534 } 1535 1536 #if 0 1537 static int 1538 ath_ff_ageflushtestdone(struct ath_txq *txq, struct ath_buf *bf) 1539 { 1540 return (txq->axq_curage - bf->bf_age) < ATH_FF_STAGEMAX; 1541 } 1542 #endif 1543 1544 /* 1545 * Flush FF staging queue. 1546 */ 1547 static void 1548 ath_ff_stageq_flush(struct ath_softc *sc, struct ath_txq *txq, 1549 int (*ath_ff_flushdonetest)(struct ath_txq *txq, struct ath_buf *bf)) 1550 { 1551 struct ath_buf *bf; 1552 struct ieee80211_node *ni; 1553 int pktlen, pri; 1554 1555 for (;;) { 1556 ATH_TXQ_LOCK(txq); 1557 /* 1558 * Go from the back (oldest) to front so we can 1559 * stop early based on the age of the entry. 1560 */ 1561 bf = TAILQ_LAST(&txq->axq_stageq, axq_headtype); 1562 if (bf == NULL || ath_ff_flushdonetest(txq, bf)) { 1563 ATH_TXQ_UNLOCK(txq); 1564 break; 1565 } 1566 1567 ni = bf->bf_node; 1568 pri = M_WME_GETAC(bf->bf_m); 1569 KASSERT(ATH_NODE(ni)->an_ff_buf[pri], 1570 ("no bf on staging queue %p", bf)); 1571 ATH_NODE(ni)->an_ff_buf[pri] = NULL; 1572 TAILQ_REMOVE(&txq->axq_stageq, bf, bf_stagelist); 1573 1574 ATH_TXQ_UNLOCK(txq); 1575 1576 DPRINTF(sc, ATH_DEBUG_FF, "%s: flush frame, age %u\n", 1577 __func__, bf->bf_age); 1578 1579 sc->sc_stats.ast_ff_flush++; 1580 1581 /* encap and xmit */ 1582 bf->bf_m = ieee80211_encap(ni, bf->bf_m); 1583 if (bf->bf_m == NULL) { 1584 DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF, 1585 "%s: discard, encapsulation failure\n", 1586 __func__); 1587 sc->sc_stats.ast_tx_encap++; 1588 goto bad; 1589 } 1590 pktlen = bf->bf_m->m_pkthdr.len; /* NB: don't reference below */ 1591 if (ath_tx_start(sc, ni, bf, bf->bf_m) == 0) { 1592 #if 0 /*XXX*/ 1593 ifp->if_opackets++; 1594 #endif 1595 continue; 1596 } 1597 bad: 1598 if (ni != NULL) 1599 ieee80211_free_node(ni); 1600 bf->bf_node = NULL; 1601 if (bf->bf_m != NULL) { 1602 m_freem(bf->bf_m); 1603 bf->bf_m = NULL; 1604 } 1605 1606 ATH_TXBUF_LOCK(sc); 1607 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1608 ATH_TXBUF_UNLOCK(sc); 1609 } 1610 } 1611 1612 static __inline u_int32_t 1613 ath_ff_approx_txtime(struct ath_softc *sc, struct ath_node *an, struct mbuf *m) 1614 { 1615 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1616 u_int32_t framelen; 1617 struct ath_buf *bf; 1618 1619 /* 1620 * Approximate the frame length to be transmitted. A swag to add 1621 * the following maximal values to the skb payload: 1622 * - 32: 802.11 encap + CRC 1623 * - 24: encryption overhead (if wep bit) 1624 * - 4 + 6: fast-frame header and padding 1625 * - 16: 2 LLC FF tunnel headers 1626 * - 14: 1 802.3 FF tunnel header (skb already accounts for 2nd) 1627 */ 1628 framelen = m->m_pkthdr.len + 32 + 4 + 6 + 16 + 14; 1629 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1630 framelen += 24; 1631 bf = an->an_ff_buf[M_WME_GETAC(m)]; 1632 if (bf != NULL) 1633 framelen += bf->bf_m->m_pkthdr.len; 1634 return ath_hal_computetxtime(sc->sc_ah, sc->sc_currates, framelen, 1635 sc->sc_lastdatarix, AH_FALSE); 1636 } 1637 1638 /* 1639 * Determine if a data frame may be aggregated via ff tunnelling. 1640 * Note the caller is responsible for checking if the destination 1641 * supports fast frames. 1642 * 1643 * NB: allowing EAPOL frames to be aggregated with other unicast traffic. 1644 * Do 802.1x EAPOL frames proceed in the clear? Then they couldn't 1645 * be aggregated with other types of frames when encryption is on? 1646 * 1647 * NB: assumes lock on an_ff_buf effectively held by txq lock mechanism. 1648 */ 1649 static __inline int 1650 ath_ff_can_aggregate(struct ath_softc *sc, 1651 struct ath_node *an, struct mbuf *m, int *flushq) 1652 { 1653 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1654 struct ath_txq *txq; 1655 u_int32_t txoplimit; 1656 u_int pri; 1657 1658 *flushq = 0; 1659 1660 /* 1661 * If there is no frame to combine with and the txq has 1662 * fewer frames than the minimum required; then do not 1663 * attempt to aggregate this frame. 1664 */ 1665 pri = M_WME_GETAC(m); 1666 txq = sc->sc_ac2q[pri]; 1667 if (an->an_ff_buf[pri] == NULL && txq->axq_depth < sc->sc_fftxqmin) 1668 return 0; 1669 /* 1670 * When not in station mode never aggregate a multicast 1671 * frame; this insures, for example, that a combined frame 1672 * does not require multiple encryption keys when using 1673 * 802.1x/WPA. 1674 */ 1675 if (ic->ic_opmode != IEEE80211_M_STA && 1676 ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) 1677 return 0; 1678 /* 1679 * Consult the max bursting interval to insure a combined 1680 * frame fits within the TxOp window. 1681 */ 1682 txoplimit = IEEE80211_TXOP_TO_US( 1683 ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit); 1684 if (txoplimit != 0 && ath_ff_approx_txtime(sc, an, m) > txoplimit) { 1685 DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF, 1686 "%s: FF TxOp violation\n", __func__); 1687 if (an->an_ff_buf[pri] != NULL) 1688 *flushq = 1; 1689 return 0; 1690 } 1691 return 1; /* try to aggregate */ 1692 } 1693 1694 /* 1695 * Check if the supplied frame can be partnered with an existing 1696 * or pending frame. Return a reference to any frame that should be 1697 * sent on return; otherwise return NULL. 1698 */ 1699 static struct mbuf * 1700 ath_ff_check(struct ath_softc *sc, struct ath_txq *txq, 1701 struct ath_buf *bf, struct mbuf *m, struct ieee80211_node *ni) 1702 { 1703 struct ath_node *an = ATH_NODE(ni); 1704 struct ath_buf *bfstaged; 1705 int ff_flush, pri; 1706 1707 /* 1708 * Check if the supplied frame can be aggregated. 1709 * 1710 * NB: we use the txq lock to protect references to 1711 * an->an_ff_txbuf in ath_ff_can_aggregate(). 1712 */ 1713 ATH_TXQ_LOCK(txq); 1714 pri = M_WME_GETAC(m); 1715 if (ath_ff_can_aggregate(sc, an, m, &ff_flush)) { 1716 struct ath_buf *bfstaged = an->an_ff_buf[pri]; 1717 if (bfstaged != NULL) { 1718 /* 1719 * A frame is available for partnering; remove 1720 * it, chain it to this one, and encapsulate. 1721 */ 1722 an->an_ff_buf[pri] = NULL; 1723 TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist); 1724 ATH_TXQ_UNLOCK(txq); 1725 1726 /* 1727 * Chain mbufs and add FF magic. 1728 */ 1729 DPRINTF(sc, ATH_DEBUG_FF, 1730 "[%s] aggregate fast-frame, age %u\n", 1731 ether_sprintf(ni->ni_macaddr), txq->axq_curage); 1732 m->m_nextpkt = NULL; 1733 bfstaged->bf_m->m_nextpkt = m; 1734 m = bfstaged->bf_m; 1735 bfstaged->bf_m = NULL; 1736 m->m_flags |= M_FF; 1737 /* 1738 * Release the node reference held while 1739 * the packet sat on an_ff_buf[] 1740 */ 1741 bfstaged->bf_node = NULL; 1742 ieee80211_free_node(ni); 1743 1744 /* 1745 * Return bfstaged to the free list. 1746 */ 1747 ATH_TXBUF_LOCK(sc); 1748 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bfstaged, bf_list); 1749 ATH_TXBUF_UNLOCK(sc); 1750 1751 return m; /* ready to go */ 1752 } else { 1753 /* 1754 * No frame available, queue this frame to wait 1755 * for a partner. Note that we hold the buffer 1756 * and a reference to the node; we need the 1757 * buffer in particular so we're certain we 1758 * can flush the frame at a later time. 1759 */ 1760 DPRINTF(sc, ATH_DEBUG_FF, 1761 "[%s] stage fast-frame, age %u\n", 1762 ether_sprintf(ni->ni_macaddr), txq->axq_curage); 1763 1764 bf->bf_m = m; 1765 bf->bf_node = ni; /* NB: held reference */ 1766 bf->bf_age = txq->axq_curage; 1767 an->an_ff_buf[pri] = bf; 1768 TAILQ_INSERT_HEAD(&txq->axq_stageq, bf, bf_stagelist); 1769 ATH_TXQ_UNLOCK(txq); 1770 1771 return NULL; /* consumed */ 1772 } 1773 } 1774 /* 1775 * Frame could not be aggregated, it needs to be returned 1776 * to the caller for immediate transmission. In addition 1777 * we check if we should first flush a frame from the 1778 * staging queue before sending this one. 1779 * 1780 * NB: ath_ff_can_aggregate only marks ff_flush if a frame 1781 * is present to flush. 1782 */ 1783 if (ff_flush) { 1784 int pktlen; 1785 1786 bfstaged = an->an_ff_buf[pri]; 1787 an->an_ff_buf[pri] = NULL; 1788 TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist); 1789 ATH_TXQ_UNLOCK(txq); 1790 1791 DPRINTF(sc, ATH_DEBUG_FF, "[%s] flush staged frame\n", 1792 ether_sprintf(an->an_node.ni_macaddr)); 1793 1794 /* encap and xmit */ 1795 bfstaged->bf_m = ieee80211_encap(ni, bfstaged->bf_m); 1796 if (bfstaged->bf_m == NULL) { 1797 DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF, 1798 "%s: discard, encap failure\n", __func__); 1799 sc->sc_stats.ast_tx_encap++; 1800 goto ff_flushbad; 1801 } 1802 pktlen = bfstaged->bf_m->m_pkthdr.len; 1803 if (ath_tx_start(sc, ni, bfstaged, bfstaged->bf_m)) { 1804 DPRINTF(sc, ATH_DEBUG_XMIT, 1805 "%s: discard, xmit failure\n", __func__); 1806 ff_flushbad: 1807 /* 1808 * Unable to transmit frame that was on the staging 1809 * queue. Reclaim the node reference and other 1810 * resources. 1811 */ 1812 if (ni != NULL) 1813 ieee80211_free_node(ni); 1814 bfstaged->bf_node = NULL; 1815 if (bfstaged->bf_m != NULL) { 1816 m_freem(bfstaged->bf_m); 1817 bfstaged->bf_m = NULL; 1818 } 1819 1820 ATH_TXBUF_LOCK(sc); 1821 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bfstaged, bf_list); 1822 ATH_TXBUF_UNLOCK(sc); 1823 } else { 1824 #if 0 1825 ifp->if_opackets++; 1826 #endif 1827 } 1828 } else { 1829 if (an->an_ff_buf[pri] != NULL) { 1830 /* 1831 * XXX: out-of-order condition only occurs for AP 1832 * mode and multicast. There may be no valid way 1833 * to get this condition. 1834 */ 1835 DPRINTF(sc, ATH_DEBUG_FF, "[%s] out-of-order frame\n", 1836 ether_sprintf(an->an_node.ni_macaddr)); 1837 /* XXX stat */ 1838 } 1839 ATH_TXQ_UNLOCK(txq); 1840 } 1841 return m; 1842 } 1843 1844 /* 1845 * Cleanup driver resources when we run out of buffers 1846 * while processing fragments; return the tx buffers 1847 * allocated and drop node references. 1848 */ 1849 static void 1850 ath_txfrag_cleanup(struct ath_softc *sc, 1851 ath_bufhead *frags, struct ieee80211_node *ni) 1852 { 1853 struct ath_buf *bf, *next; 1854 1855 ATH_TXBUF_LOCK_ASSERT(sc); 1856 1857 STAILQ_FOREACH_SAFE(bf, frags, bf_list, next) { 1858 /* NB: bf assumed clean */ 1859 STAILQ_REMOVE_HEAD(frags, bf_list); 1860 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1861 ieee80211_node_decref(ni); 1862 } 1863 } 1864 1865 /* 1866 * Setup xmit of a fragmented frame. Allocate a buffer 1867 * for each frag and bump the node reference count to 1868 * reflect the held reference to be setup by ath_tx_start. 1869 */ 1870 static int 1871 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, 1872 struct mbuf *m0, struct ieee80211_node *ni) 1873 { 1874 struct mbuf *m; 1875 struct ath_buf *bf; 1876 1877 ATH_TXBUF_LOCK(sc); 1878 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 1879 bf = STAILQ_FIRST(&sc->sc_txbuf); 1880 if (bf == NULL) { /* out of buffers, cleanup */ 1881 ath_txfrag_cleanup(sc, frags, ni); 1882 break; 1883 } 1884 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1885 ieee80211_node_incref(ni); 1886 STAILQ_INSERT_TAIL(frags, bf, bf_list); 1887 } 1888 ATH_TXBUF_UNLOCK(sc); 1889 1890 return !STAILQ_EMPTY(frags); 1891 } 1892 1893 static void 1894 ath_start(struct ifnet *ifp) 1895 { 1896 struct ath_softc *sc = ifp->if_softc; 1897 struct ieee80211com *ic = ifp->if_l2com; 1898 struct ieee80211_node *ni; 1899 struct ath_buf *bf; 1900 struct mbuf *m, *next; 1901 struct ath_txq *txq; 1902 ath_bufhead frags; 1903 int pri; 1904 1905 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 1906 return; 1907 for (;;) { 1908 /* 1909 * Grab a TX buffer and associated resources. 1910 */ 1911 ATH_TXBUF_LOCK(sc); 1912 bf = STAILQ_FIRST(&sc->sc_txbuf); 1913 if (bf != NULL) 1914 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1915 ATH_TXBUF_UNLOCK(sc); 1916 if (bf == NULL) { 1917 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n", 1918 __func__); 1919 sc->sc_stats.ast_tx_qstop++; 1920 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1921 break; 1922 } 1923 1924 IFQ_DEQUEUE(&ifp->if_snd, m); 1925 if (m == NULL) { 1926 ATH_TXBUF_LOCK(sc); 1927 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1928 ATH_TXBUF_UNLOCK(sc); 1929 break; 1930 } 1931 STAILQ_INIT(&frags); 1932 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1933 pri = M_WME_GETAC(m); 1934 txq = sc->sc_ac2q[pri]; 1935 if (ni->ni_ath_flags & IEEE80211_NODE_FF) { 1936 /* 1937 * Check queue length; if too deep drop this 1938 * frame (tail drop considered good). 1939 */ 1940 if (txq->axq_depth >= sc->sc_fftxqmax) { 1941 DPRINTF(sc, ATH_DEBUG_FF, 1942 "[%s] tail drop on q %u depth %u\n", 1943 ether_sprintf(ni->ni_macaddr), 1944 txq->axq_qnum, txq->axq_depth); 1945 sc->sc_stats.ast_tx_qfull++; 1946 m_freem(m); 1947 goto reclaim; 1948 } 1949 m = ath_ff_check(sc, txq, bf, m, ni); 1950 if (m == NULL) { 1951 /* NB: ni ref & bf held on stageq */ 1952 continue; 1953 } 1954 } 1955 ifp->if_opackets++; 1956 /* 1957 * Encapsulate the packet in prep for transmission. 1958 */ 1959 m = ieee80211_encap(ni, m); 1960 if (m == NULL) { 1961 DPRINTF(sc, ATH_DEBUG_XMIT, 1962 "%s: encapsulation failure\n", __func__); 1963 sc->sc_stats.ast_tx_encap++; 1964 goto bad; 1965 } 1966 /* 1967 * Check for fragmentation. If this frame 1968 * has been broken up verify we have enough 1969 * buffers to send all the fragments so all 1970 * go out or none... 1971 */ 1972 if ((m->m_flags & M_FRAG) && 1973 !ath_txfrag_setup(sc, &frags, m, ni)) { 1974 DPRINTF(sc, ATH_DEBUG_XMIT, 1975 "%s: out of txfrag buffers\n", __func__); 1976 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1977 ath_freetx(m); 1978 goto bad; 1979 } 1980 nextfrag: 1981 /* 1982 * Pass the frame to the h/w for transmission. 1983 * Fragmented frames have each frag chained together 1984 * with m_nextpkt. We know there are sufficient ath_buf's 1985 * to send all the frags because of work done by 1986 * ath_txfrag_setup. We leave m_nextpkt set while 1987 * calling ath_tx_start so it can use it to extend the 1988 * the tx duration to cover the subsequent frag and 1989 * so it can reclaim all the mbufs in case of an error; 1990 * ath_tx_start clears m_nextpkt once it commits to 1991 * handing the frame to the hardware. 1992 */ 1993 next = m->m_nextpkt; 1994 if (ath_tx_start(sc, ni, bf, m)) { 1995 bad: 1996 ifp->if_oerrors++; 1997 reclaim: 1998 bf->bf_m = NULL; 1999 bf->bf_node = NULL; 2000 ATH_TXBUF_LOCK(sc); 2001 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 2002 ath_txfrag_cleanup(sc, &frags, ni); 2003 ATH_TXBUF_UNLOCK(sc); 2004 if (ni != NULL) 2005 ieee80211_free_node(ni); 2006 continue; 2007 } 2008 if (next != NULL) { 2009 /* 2010 * Beware of state changing between frags. 2011 * XXX check sta power-save state? 2012 */ 2013 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2014 DPRINTF(sc, ATH_DEBUG_XMIT, 2015 "%s: flush fragmented packet, state %s\n", 2016 __func__, 2017 ieee80211_state_name[ni->ni_vap->iv_state]); 2018 ath_freetx(next); 2019 goto reclaim; 2020 } 2021 m = next; 2022 bf = STAILQ_FIRST(&frags); 2023 KASSERT(bf != NULL, ("no buf for txfrag")); 2024 STAILQ_REMOVE_HEAD(&frags, bf_list); 2025 goto nextfrag; 2026 } 2027 2028 ifp->if_timer = 5; 2029 #if 0 2030 /* 2031 * Flush stale frames from the fast-frame staging queue. 2032 */ 2033 if (ic->ic_opmode != IEEE80211_M_STA) 2034 ath_ff_stageq_flush(sc, txq, ath_ff_ageflushtestdone); 2035 #endif 2036 } 2037 } 2038 2039 static int 2040 ath_media_change(struct ifnet *ifp) 2041 { 2042 int error = ieee80211_media_change(ifp); 2043 /* NB: only the fixed rate can change and that doesn't need a reset */ 2044 return (error == ENETRESET ? 0 : error); 2045 } 2046 2047 #ifdef ATH_DEBUG 2048 static void 2049 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix, 2050 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 2051 { 2052 static const char *ciphers[] = { 2053 "WEP", 2054 "AES-OCB", 2055 "AES-CCM", 2056 "CKIP", 2057 "TKIP", 2058 "CLR", 2059 }; 2060 int i, n; 2061 2062 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); 2063 for (i = 0, n = hk->kv_len; i < n; i++) 2064 printf("%02x", hk->kv_val[i]); 2065 printf(" mac %s", ether_sprintf(mac)); 2066 if (hk->kv_type == HAL_CIPHER_TKIP) { 2067 printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic"); 2068 for (i = 0; i < sizeof(hk->kv_mic); i++) 2069 printf("%02x", hk->kv_mic[i]); 2070 #if HAL_ABI_VERSION > 0x06052200 2071 if (!sc->sc_splitmic) { 2072 printf(" txmic "); 2073 for (i = 0; i < sizeof(hk->kv_txmic); i++) 2074 printf("%02x", hk->kv_txmic[i]); 2075 } 2076 #endif 2077 } 2078 printf("\n"); 2079 } 2080 #endif 2081 2082 /* 2083 * Set a TKIP key into the hardware. This handles the 2084 * potential distribution of key state to multiple key 2085 * cache slots for TKIP. 2086 */ 2087 static int 2088 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, 2089 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 2090 { 2091 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) 2092 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; 2093 struct ath_hal *ah = sc->sc_ah; 2094 2095 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, 2096 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher)); 2097 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { 2098 if (sc->sc_splitmic) { 2099 /* 2100 * TX key goes at first index, RX key at the rx index. 2101 * The hal handles the MIC keys at index+64. 2102 */ 2103 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); 2104 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 2105 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid)) 2106 return 0; 2107 2108 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 2109 KEYPRINTF(sc, k->wk_keyix+32, hk, mac); 2110 /* XXX delete tx key on failure? */ 2111 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac); 2112 } else { 2113 /* 2114 * Room for both TX+RX MIC keys in one key cache 2115 * slot, just set key at the first index; the hal 2116 * will handle the rest. 2117 */ 2118 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 2119 #if HAL_ABI_VERSION > 0x06052200 2120 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 2121 #endif 2122 KEYPRINTF(sc, k->wk_keyix, hk, mac); 2123 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 2124 } 2125 } else if (k->wk_flags & IEEE80211_KEY_XMIT) { 2126 #if HAL_ABI_VERSION > 0x06052200 2127 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 2128 #else 2129 memcpy(hk->kv_mic, k->wk_mic, sizeof(hk->kv_mic)); 2130 #endif 2131 KEYPRINTF(sc, k->wk_keyix, hk, mac); 2132 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 2133 } else if (k->wk_flags & IEEE80211_KEY_RECV) { 2134 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 2135 KEYPRINTF(sc, k->wk_keyix, hk, mac); 2136 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 2137 } 2138 return 0; 2139 #undef IEEE80211_KEY_XR 2140 } 2141 2142 /* 2143 * Set a net80211 key into the hardware. This handles the 2144 * potential distribution of key state to multiple key 2145 * cache slots for TKIP with hardware MIC support. 2146 */ 2147 static int 2148 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k, 2149 const u_int8_t mac0[IEEE80211_ADDR_LEN], 2150 struct ieee80211_node *bss) 2151 { 2152 #define N(a) (sizeof(a)/sizeof(a[0])) 2153 static const u_int8_t ciphermap[] = { 2154 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ 2155 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ 2156 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ 2157 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ 2158 (u_int8_t) -1, /* 4 is not allocated */ 2159 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ 2160 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ 2161 }; 2162 struct ath_hal *ah = sc->sc_ah; 2163 const struct ieee80211_cipher *cip = k->wk_cipher; 2164 u_int8_t gmac[IEEE80211_ADDR_LEN]; 2165 const u_int8_t *mac; 2166 HAL_KEYVAL hk; 2167 2168 memset(&hk, 0, sizeof(hk)); 2169 /* 2170 * Software crypto uses a "clear key" so non-crypto 2171 * state kept in the key cache are maintained and 2172 * so that rx frames have an entry to match. 2173 */ 2174 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { 2175 KASSERT(cip->ic_cipher < N(ciphermap), 2176 ("invalid cipher type %u", cip->ic_cipher)); 2177 hk.kv_type = ciphermap[cip->ic_cipher]; 2178 hk.kv_len = k->wk_keylen; 2179 memcpy(hk.kv_val, k->wk_key, k->wk_keylen); 2180 } else 2181 hk.kv_type = HAL_CIPHER_CLR; 2182 2183 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) { 2184 /* 2185 * Group keys on hardware that supports multicast frame 2186 * key search use a mac that is the sender's address with 2187 * the high bit set instead of the app-specified address. 2188 */ 2189 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr); 2190 gmac[0] |= 0x80; 2191 mac = gmac; 2192 } else 2193 mac = mac0; 2194 2195 if (hk.kv_type == HAL_CIPHER_TKIP && 2196 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 2197 return ath_keyset_tkip(sc, k, &hk, mac); 2198 } else { 2199 KEYPRINTF(sc, k->wk_keyix, &hk, mac); 2200 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac); 2201 } 2202 #undef N 2203 } 2204 2205 /* 2206 * Allocate tx/rx key slots for TKIP. We allocate two slots for 2207 * each key, one for decrypt/encrypt and the other for the MIC. 2208 */ 2209 static u_int16_t 2210 key_alloc_2pair(struct ath_softc *sc, 2211 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 2212 { 2213 #define N(a) (sizeof(a)/sizeof(a[0])) 2214 u_int i, keyix; 2215 2216 KASSERT(sc->sc_splitmic, ("key cache !split")); 2217 /* XXX could optimize */ 2218 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 2219 u_int8_t b = sc->sc_keymap[i]; 2220 if (b != 0xff) { 2221 /* 2222 * One or more slots in this byte are free. 2223 */ 2224 keyix = i*NBBY; 2225 while (b & 1) { 2226 again: 2227 keyix++; 2228 b >>= 1; 2229 } 2230 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ 2231 if (isset(sc->sc_keymap, keyix+32) || 2232 isset(sc->sc_keymap, keyix+64) || 2233 isset(sc->sc_keymap, keyix+32+64)) { 2234 /* full pair unavailable */ 2235 /* XXX statistic */ 2236 if (keyix == (i+1)*NBBY) { 2237 /* no slots were appropriate, advance */ 2238 continue; 2239 } 2240 goto again; 2241 } 2242 setbit(sc->sc_keymap, keyix); 2243 setbit(sc->sc_keymap, keyix+64); 2244 setbit(sc->sc_keymap, keyix+32); 2245 setbit(sc->sc_keymap, keyix+32+64); 2246 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 2247 "%s: key pair %u,%u %u,%u\n", 2248 __func__, keyix, keyix+64, 2249 keyix+32, keyix+32+64); 2250 *txkeyix = keyix; 2251 *rxkeyix = keyix+32; 2252 return 1; 2253 } 2254 } 2255 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 2256 return 0; 2257 #undef N 2258 } 2259 2260 /* 2261 * Allocate tx/rx key slots for TKIP. We allocate two slots for 2262 * each key, one for decrypt/encrypt and the other for the MIC. 2263 */ 2264 static u_int16_t 2265 key_alloc_pair(struct ath_softc *sc, 2266 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 2267 { 2268 #define N(a) (sizeof(a)/sizeof(a[0])) 2269 u_int i, keyix; 2270 2271 KASSERT(!sc->sc_splitmic, ("key cache split")); 2272 /* XXX could optimize */ 2273 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 2274 u_int8_t b = sc->sc_keymap[i]; 2275 if (b != 0xff) { 2276 /* 2277 * One or more slots in this byte are free. 2278 */ 2279 keyix = i*NBBY; 2280 while (b & 1) { 2281 again: 2282 keyix++; 2283 b >>= 1; 2284 } 2285 if (isset(sc->sc_keymap, keyix+64)) { 2286 /* full pair unavailable */ 2287 /* XXX statistic */ 2288 if (keyix == (i+1)*NBBY) { 2289 /* no slots were appropriate, advance */ 2290 continue; 2291 } 2292 goto again; 2293 } 2294 setbit(sc->sc_keymap, keyix); 2295 setbit(sc->sc_keymap, keyix+64); 2296 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 2297 "%s: key pair %u,%u\n", 2298 __func__, keyix, keyix+64); 2299 *txkeyix = *rxkeyix = keyix; 2300 return 1; 2301 } 2302 } 2303 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 2304 return 0; 2305 #undef N 2306 } 2307 2308 /* 2309 * Allocate a single key cache slot. 2310 */ 2311 static int 2312 key_alloc_single(struct ath_softc *sc, 2313 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 2314 { 2315 #define N(a) (sizeof(a)/sizeof(a[0])) 2316 u_int i, keyix; 2317 2318 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ 2319 for (i = 0; i < N(sc->sc_keymap); i++) { 2320 u_int8_t b = sc->sc_keymap[i]; 2321 if (b != 0xff) { 2322 /* 2323 * One or more slots are free. 2324 */ 2325 keyix = i*NBBY; 2326 while (b & 1) 2327 keyix++, b >>= 1; 2328 setbit(sc->sc_keymap, keyix); 2329 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", 2330 __func__, keyix); 2331 *txkeyix = *rxkeyix = keyix; 2332 return 1; 2333 } 2334 } 2335 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); 2336 return 0; 2337 #undef N 2338 } 2339 2340 /* 2341 * Allocate one or more key cache slots for a uniacst key. The 2342 * key itself is needed only to identify the cipher. For hardware 2343 * TKIP with split cipher+MIC keys we allocate two key cache slot 2344 * pairs so that we can setup separate TX and RX MIC keys. Note 2345 * that the MIC key for a TKIP key at slot i is assumed by the 2346 * hardware to be at slot i+64. This limits TKIP keys to the first 2347 * 64 entries. 2348 */ 2349 static int 2350 ath_key_alloc(struct ieee80211vap *vap, const struct ieee80211_key *k, 2351 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 2352 { 2353 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 2354 2355 /* 2356 * Group key allocation must be handled specially for 2357 * parts that do not support multicast key cache search 2358 * functionality. For those parts the key id must match 2359 * the h/w key index so lookups find the right key. On 2360 * parts w/ the key search facility we install the sender's 2361 * mac address (with the high bit set) and let the hardware 2362 * find the key w/o using the key id. This is preferred as 2363 * it permits us to support multiple users for adhoc and/or 2364 * multi-station operation. 2365 */ 2366 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) { 2367 if (!(&vap->iv_nw_keys[0] <= k && 2368 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { 2369 /* should not happen */ 2370 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 2371 "%s: bogus group key\n", __func__); 2372 return 0; 2373 } 2374 /* 2375 * XXX we pre-allocate the global keys so 2376 * have no way to check if they've already been allocated. 2377 */ 2378 *keyix = *rxkeyix = k - vap->iv_nw_keys; 2379 return 1; 2380 } 2381 2382 /* 2383 * We allocate two pair for TKIP when using the h/w to do 2384 * the MIC. For everything else, including software crypto, 2385 * we allocate a single entry. Note that s/w crypto requires 2386 * a pass-through slot on the 5211 and 5212. The 5210 does 2387 * not support pass-through cache entries and we map all 2388 * those requests to slot 0. 2389 */ 2390 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 2391 return key_alloc_single(sc, keyix, rxkeyix); 2392 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && 2393 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 2394 if (sc->sc_splitmic) 2395 return key_alloc_2pair(sc, keyix, rxkeyix); 2396 else 2397 return key_alloc_pair(sc, keyix, rxkeyix); 2398 } else { 2399 return key_alloc_single(sc, keyix, rxkeyix); 2400 } 2401 } 2402 2403 /* 2404 * Delete an entry in the key cache allocated by ath_key_alloc. 2405 */ 2406 static int 2407 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 2408 { 2409 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 2410 struct ath_hal *ah = sc->sc_ah; 2411 const struct ieee80211_cipher *cip = k->wk_cipher; 2412 u_int keyix = k->wk_keyix; 2413 2414 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); 2415 2416 ath_hal_keyreset(ah, keyix); 2417 /* 2418 * Handle split tx/rx keying required for TKIP with h/w MIC. 2419 */ 2420 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 2421 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) 2422 ath_hal_keyreset(ah, keyix+32); /* RX key */ 2423 if (keyix >= IEEE80211_WEP_NKID) { 2424 /* 2425 * Don't touch keymap entries for global keys so 2426 * they are never considered for dynamic allocation. 2427 */ 2428 clrbit(sc->sc_keymap, keyix); 2429 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 2430 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 2431 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ 2432 if (sc->sc_splitmic) { 2433 /* +32 for RX key, +32+64 for RX key MIC */ 2434 clrbit(sc->sc_keymap, keyix+32); 2435 clrbit(sc->sc_keymap, keyix+32+64); 2436 } 2437 } 2438 } 2439 return 1; 2440 } 2441 2442 /* 2443 * Set the key cache contents for the specified key. Key cache 2444 * slot(s) must already have been allocated by ath_key_alloc. 2445 */ 2446 static int 2447 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k, 2448 const u_int8_t mac[IEEE80211_ADDR_LEN]) 2449 { 2450 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 2451 2452 return ath_keyset(sc, k, mac, vap->iv_bss); 2453 } 2454 2455 /* 2456 * Block/unblock tx+rx processing while a key change is done. 2457 * We assume the caller serializes key management operations 2458 * so we only need to worry about synchronization with other 2459 * uses that originate in the driver. 2460 */ 2461 static void 2462 ath_key_update_begin(struct ieee80211vap *vap) 2463 { 2464 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2465 struct ath_softc *sc = ifp->if_softc; 2466 2467 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2468 taskqueue_block(sc->sc_tq); 2469 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2470 } 2471 2472 static void 2473 ath_key_update_end(struct ieee80211vap *vap) 2474 { 2475 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2476 struct ath_softc *sc = ifp->if_softc; 2477 2478 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2479 IF_UNLOCK(&ifp->if_snd); 2480 taskqueue_unblock(sc->sc_tq); 2481 } 2482 2483 /* 2484 * Calculate the receive filter according to the 2485 * operating mode and state: 2486 * 2487 * o always accept unicast, broadcast, and multicast traffic 2488 * o accept PHY error frames when hardware doesn't have MIB support 2489 * to count and we need them for ANI (sta mode only at the moment) 2490 * and we are not scanning (ANI is disabled) 2491 * NB: only with recent hal's; older hal's add rx filter bits out 2492 * of sight and we need to blindly preserve them 2493 * o probe request frames are accepted only when operating in 2494 * hostap, adhoc, or monitor modes 2495 * o enable promiscuous mode 2496 * - when in monitor mode 2497 * - if interface marked PROMISC (assumes bridge setting is filtered) 2498 * o accept beacons: 2499 * - when operating in station mode for collecting rssi data when 2500 * the station is otherwise quiet, or 2501 * - when operating in adhoc mode so the 802.11 layer creates 2502 * node table entries for peers, 2503 * - when scanning 2504 * - when doing s/w beacon miss (e.g. for ap+sta) 2505 * - when operating in ap mode in 11g to detect overlapping bss that 2506 * require protection 2507 * o accept control frames: 2508 * - when in monitor mode 2509 * XXX BAR frames for 11n 2510 * XXX HT protection for 11n 2511 */ 2512 static u_int32_t 2513 ath_calcrxfilter(struct ath_softc *sc) 2514 { 2515 struct ifnet *ifp = sc->sc_ifp; 2516 struct ieee80211com *ic = ifp->if_l2com; 2517 u_int32_t rfilt; 2518 2519 #if HAL_ABI_VERSION < 0x08011600 2520 rfilt = (ath_hal_getrxfilter(sc->sc_ah) & 2521 (HAL_RX_FILTER_PHYRADAR | HAL_RX_FILTER_PHYERR)) 2522 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 2523 #else 2524 rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 2525 if (ic->ic_opmode == IEEE80211_M_STA && 2526 !sc->sc_needmib && !sc->sc_scanning) 2527 rfilt |= HAL_RX_FILTER_PHYERR; 2528 #endif 2529 if (ic->ic_opmode != IEEE80211_M_STA) 2530 rfilt |= HAL_RX_FILTER_PROBEREQ; 2531 if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC)) 2532 rfilt |= HAL_RX_FILTER_PROM; 2533 if (ic->ic_opmode == IEEE80211_M_STA || 2534 sc->sc_opmode == HAL_M_IBSS || 2535 sc->sc_swbmiss || sc->sc_scanning) 2536 rfilt |= HAL_RX_FILTER_BEACON; 2537 /* 2538 * NB: We don't recalculate the rx filter when 2539 * ic_protmode changes; otherwise we could do 2540 * this only when ic_protmode != NONE. 2541 */ 2542 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 2543 IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) 2544 rfilt |= HAL_RX_FILTER_BEACON; 2545 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2546 rfilt |= HAL_RX_FILTER_CONTROL; 2547 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n", 2548 __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags); 2549 return rfilt; 2550 } 2551 2552 static void 2553 ath_update_promisc(struct ifnet *ifp) 2554 { 2555 struct ath_softc *sc = ifp->if_softc; 2556 u_int32_t rfilt; 2557 2558 /* configure rx filter */ 2559 rfilt = ath_calcrxfilter(sc); 2560 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2561 2562 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2563 } 2564 2565 static void 2566 ath_update_mcast(struct ifnet *ifp) 2567 { 2568 struct ath_softc *sc = ifp->if_softc; 2569 u_int32_t mfilt[2]; 2570 2571 /* calculate and install multicast filter */ 2572 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2573 struct ifmultiaddr *ifma; 2574 /* 2575 * Merge multicast addresses to form the hardware filter. 2576 */ 2577 mfilt[0] = mfilt[1] = 0; 2578 IF_ADDR_LOCK(ifp); /* XXX need some fiddling to remove? */ 2579 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2580 caddr_t dl; 2581 u_int32_t val; 2582 u_int8_t pos; 2583 2584 /* calculate XOR of eight 6bit values */ 2585 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2586 val = LE_READ_4(dl + 0); 2587 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2588 val = LE_READ_4(dl + 3); 2589 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2590 pos &= 0x3f; 2591 mfilt[pos / 32] |= (1 << (pos % 32)); 2592 } 2593 IF_ADDR_UNLOCK(ifp); 2594 } else 2595 mfilt[0] = mfilt[1] = ~0; 2596 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2597 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2598 __func__, mfilt[0], mfilt[1]); 2599 } 2600 2601 static void 2602 ath_mode_init(struct ath_softc *sc) 2603 { 2604 struct ifnet *ifp = sc->sc_ifp; 2605 struct ieee80211com *ic = ifp->if_l2com; 2606 struct ath_hal *ah = sc->sc_ah; 2607 u_int32_t rfilt; 2608 2609 /* configure rx filter */ 2610 rfilt = ath_calcrxfilter(sc); 2611 ath_hal_setrxfilter(ah, rfilt); 2612 2613 /* configure operational mode */ 2614 ath_hal_setopmode(ah); 2615 2616 /* 2617 * Handle any link-level address change. Note that we only 2618 * need to force ic_myaddr; any other addresses are handled 2619 * as a byproduct of the ifnet code marking the interface 2620 * down then up. 2621 * 2622 * XXX should get from lladdr instead of arpcom but that's more work 2623 */ 2624 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); 2625 ath_hal_setmac(ah, ic->ic_myaddr); 2626 2627 /* calculate and install multicast filter */ 2628 ath_update_mcast(ifp); 2629 } 2630 2631 /* 2632 * Set the slot time based on the current setting. 2633 */ 2634 static void 2635 ath_setslottime(struct ath_softc *sc) 2636 { 2637 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2638 struct ath_hal *ah = sc->sc_ah; 2639 u_int usec; 2640 2641 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2642 usec = 13; 2643 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2644 usec = 21; 2645 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2646 /* honor short/long slot time only in 11g */ 2647 /* XXX shouldn't honor on pure g or turbo g channel */ 2648 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2649 usec = HAL_SLOT_TIME_9; 2650 else 2651 usec = HAL_SLOT_TIME_20; 2652 } else 2653 usec = HAL_SLOT_TIME_9; 2654 2655 DPRINTF(sc, ATH_DEBUG_RESET, 2656 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2657 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2658 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2659 2660 ath_hal_setslottime(ah, usec); 2661 sc->sc_updateslot = OK; 2662 } 2663 2664 /* 2665 * Callback from the 802.11 layer to update the 2666 * slot time based on the current setting. 2667 */ 2668 static void 2669 ath_updateslot(struct ifnet *ifp) 2670 { 2671 struct ath_softc *sc = ifp->if_softc; 2672 struct ieee80211com *ic = ifp->if_l2com; 2673 2674 /* 2675 * When not coordinating the BSS, change the hardware 2676 * immediately. For other operation we defer the change 2677 * until beacon updates have propagated to the stations. 2678 */ 2679 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 2680 sc->sc_updateslot = UPDATE; 2681 else 2682 ath_setslottime(sc); 2683 } 2684 2685 /* 2686 * Setup a h/w transmit queue for beacons. 2687 */ 2688 static int 2689 ath_beaconq_setup(struct ath_hal *ah) 2690 { 2691 HAL_TXQ_INFO qi; 2692 2693 memset(&qi, 0, sizeof(qi)); 2694 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2695 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2696 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2697 /* NB: for dynamic turbo, don't enable any other interrupts */ 2698 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2699 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2700 } 2701 2702 /* 2703 * Setup the transmit queue parameters for the beacon queue. 2704 */ 2705 static int 2706 ath_beaconq_config(struct ath_softc *sc) 2707 { 2708 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2709 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2710 struct ath_hal *ah = sc->sc_ah; 2711 HAL_TXQ_INFO qi; 2712 2713 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2714 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2715 /* 2716 * Always burst out beacon and CAB traffic. 2717 */ 2718 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2719 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2720 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2721 } else { 2722 struct wmeParams *wmep = 2723 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2724 /* 2725 * Adhoc mode; important thing is to use 2x cwmin. 2726 */ 2727 qi.tqi_aifs = wmep->wmep_aifsn; 2728 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2729 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2730 } 2731 2732 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2733 device_printf(sc->sc_dev, "unable to update parameters for " 2734 "beacon hardware queue!\n"); 2735 return 0; 2736 } else { 2737 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2738 return 1; 2739 } 2740 #undef ATH_EXPONENT_TO_VALUE 2741 } 2742 2743 /* 2744 * Allocate and setup an initial beacon frame. 2745 */ 2746 static int 2747 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2748 { 2749 struct ieee80211vap *vap = ni->ni_vap; 2750 struct ath_vap *avp = ATH_VAP(vap); 2751 struct ath_buf *bf; 2752 struct mbuf *m; 2753 int error; 2754 2755 bf = avp->av_bcbuf; 2756 if (bf->bf_m != NULL) { 2757 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2758 m_freem(bf->bf_m); 2759 bf->bf_m = NULL; 2760 } 2761 if (bf->bf_node != NULL) { 2762 ieee80211_free_node(bf->bf_node); 2763 bf->bf_node = NULL; 2764 } 2765 2766 /* 2767 * NB: the beacon data buffer must be 32-bit aligned; 2768 * we assume the mbuf routines will return us something 2769 * with this alignment (perhaps should assert). 2770 */ 2771 m = ieee80211_beacon_alloc(ni, &avp->av_boff); 2772 if (m == NULL) { 2773 device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__); 2774 sc->sc_stats.ast_be_nombuf++; 2775 return ENOMEM; 2776 } 2777 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 2778 bf->bf_segs, &bf->bf_nseg, 2779 BUS_DMA_NOWAIT); 2780 if (error != 0) { 2781 device_printf(sc->sc_dev, 2782 "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n", 2783 __func__, error); 2784 m_freem(m); 2785 return error; 2786 } 2787 2788 /* 2789 * Calculate a TSF adjustment factor required for staggered 2790 * beacons. Note that we assume the format of the beacon 2791 * frame leaves the tstamp field immediately following the 2792 * header. 2793 */ 2794 if (sc->sc_stagbeacons && avp->av_bslot > 0) { 2795 uint64_t tsfadjust; 2796 struct ieee80211_frame *wh; 2797 2798 /* 2799 * The beacon interval is in TU's; the TSF is in usecs. 2800 * We figure out how many TU's to add to align the timestamp 2801 * then convert to TSF units and handle byte swapping before 2802 * inserting it in the frame. The hardware will then add this 2803 * each time a beacon frame is sent. Note that we align vap's 2804 * 1..N and leave vap 0 untouched. This means vap 0 has a 2805 * timestamp in one beacon interval while the others get a 2806 * timstamp aligned to the next interval. 2807 */ 2808 tsfadjust = ni->ni_intval * 2809 (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF; 2810 tsfadjust = htole64(tsfadjust << 10); /* TU -> TSF */ 2811 2812 DPRINTF(sc, ATH_DEBUG_BEACON, 2813 "%s: %s beacons bslot %d intval %u tsfadjust %llu\n", 2814 __func__, sc->sc_stagbeacons ? "stagger" : "burst", 2815 avp->av_bslot, ni->ni_intval, le64toh(tsfadjust)); 2816 2817 wh = mtod(m, struct ieee80211_frame *); 2818 memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust)); 2819 } 2820 bf->bf_m = m; 2821 bf->bf_node = ieee80211_ref_node(ni); 2822 2823 return 0; 2824 } 2825 2826 /* 2827 * Setup the beacon frame for transmit. 2828 */ 2829 static void 2830 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2831 { 2832 #define USE_SHPREAMBLE(_ic) \ 2833 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2834 == IEEE80211_F_SHPREAMBLE) 2835 struct ieee80211_node *ni = bf->bf_node; 2836 struct ieee80211com *ic = ni->ni_ic; 2837 struct mbuf *m = bf->bf_m; 2838 struct ath_hal *ah = sc->sc_ah; 2839 struct ath_desc *ds; 2840 int flags, antenna; 2841 const HAL_RATE_TABLE *rt; 2842 u_int8_t rix, rate; 2843 2844 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n", 2845 __func__, m, m->m_len); 2846 2847 /* setup descriptors */ 2848 ds = bf->bf_desc; 2849 2850 flags = HAL_TXDESC_NOACK; 2851 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2852 ds->ds_link = bf->bf_daddr; /* self-linked */ 2853 flags |= HAL_TXDESC_VEOL; 2854 /* 2855 * Let hardware handle antenna switching. 2856 */ 2857 antenna = sc->sc_txantenna; 2858 } else { 2859 ds->ds_link = 0; 2860 /* 2861 * Switch antenna every 4 beacons. 2862 * XXX assumes two antenna 2863 */ 2864 if (sc->sc_txantenna != 0) 2865 antenna = sc->sc_txantenna; 2866 else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0) 2867 antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1); 2868 else 2869 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2870 } 2871 2872 KASSERT(bf->bf_nseg == 1, 2873 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 2874 ds->ds_data = bf->bf_segs[0].ds_addr; 2875 /* 2876 * Calculate rate code. 2877 * XXX everything at min xmit rate 2878 */ 2879 rix = 0; 2880 rt = sc->sc_currates; 2881 rate = rt->info[rix].rateCode; 2882 if (USE_SHPREAMBLE(ic)) 2883 rate |= rt->info[rix].shortPreamble; 2884 ath_hal_setuptxdesc(ah, ds 2885 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2886 , sizeof(struct ieee80211_frame)/* header length */ 2887 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2888 , ni->ni_txpower /* txpower XXX */ 2889 , rate, 1 /* series 0 rate/tries */ 2890 , HAL_TXKEYIX_INVALID /* no encryption */ 2891 , antenna /* antenna mode */ 2892 , flags /* no ack, veol for beacons */ 2893 , 0 /* rts/cts rate */ 2894 , 0 /* rts/cts duration */ 2895 ); 2896 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2897 ath_hal_filltxdesc(ah, ds 2898 , roundup(m->m_len, 4) /* buffer length */ 2899 , AH_TRUE /* first segment */ 2900 , AH_TRUE /* last segment */ 2901 , ds /* first descriptor */ 2902 ); 2903 #if 0 2904 ath_desc_swap(ds); 2905 #endif 2906 #undef USE_SHPREAMBLE 2907 } 2908 2909 static void 2910 ath_beacon_update(struct ieee80211vap *vap, int item) 2911 { 2912 struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff; 2913 2914 setbit(bo->bo_flags, item); 2915 } 2916 2917 /* 2918 * Append the contents of src to dst; both queues 2919 * are assumed to be locked. 2920 */ 2921 static void 2922 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2923 { 2924 STAILQ_CONCAT(&dst->axq_q, &src->axq_q); 2925 dst->axq_link = src->axq_link; 2926 src->axq_link = NULL; 2927 dst->axq_depth += src->axq_depth; 2928 src->axq_depth = 0; 2929 } 2930 2931 /* 2932 * Transmit a beacon frame at SWBA. Dynamic updates to the 2933 * frame contents are done as needed and the slot time is 2934 * also adjusted based on current state. 2935 */ 2936 static void 2937 ath_beacon_proc(void *arg, int pending) 2938 { 2939 struct ath_softc *sc = arg; 2940 struct ath_hal *ah = sc->sc_ah; 2941 struct ieee80211vap *vap; 2942 struct ath_buf *bf; 2943 int slot, otherant; 2944 uint32_t bfaddr; 2945 2946 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2947 __func__, pending); 2948 /* 2949 * Check if the previous beacon has gone out. If 2950 * not don't try to post another, skip this period 2951 * and wait for the next. Missed beacons indicate 2952 * a problem and should not occur. If we miss too 2953 * many consecutive beacons reset the device. 2954 */ 2955 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2956 sc->sc_bmisscount++; 2957 DPRINTF(sc, ATH_DEBUG_BEACON, 2958 "%s: missed %u consecutive beacons\n", 2959 __func__, sc->sc_bmisscount); 2960 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */ 2961 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 2962 return; 2963 } 2964 if (sc->sc_bmisscount != 0) { 2965 DPRINTF(sc, ATH_DEBUG_BEACON, 2966 "%s: resume beacon xmit after %u misses\n", 2967 __func__, sc->sc_bmisscount); 2968 sc->sc_bmisscount = 0; 2969 } 2970 2971 if (sc->sc_stagbeacons) { /* staggered beacons */ 2972 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2973 uint32_t tsftu; 2974 2975 tsftu = ath_hal_gettsf32(ah) >> 10; 2976 /* XXX lintval */ 2977 slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval; 2978 vap = sc->sc_bslot[(slot+1) % ATH_BCBUF]; 2979 bfaddr = 0; 2980 if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) { 2981 bf = ath_beacon_generate(sc, vap); 2982 if (bf != NULL) 2983 bfaddr = bf->bf_daddr; 2984 } 2985 } else { /* burst'd beacons */ 2986 uint32_t *bflink = &bfaddr; 2987 2988 for (slot = 0; slot < ATH_BCBUF; slot++) { 2989 vap = sc->sc_bslot[slot]; 2990 if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) { 2991 bf = ath_beacon_generate(sc, vap); 2992 if (bf != NULL) { 2993 *bflink = bf->bf_daddr; 2994 bflink = &bf->bf_desc->ds_link; 2995 } 2996 } 2997 } 2998 *bflink = 0; /* terminate list */ 2999 } 3000 3001 /* 3002 * Handle slot time change when a non-ERP station joins/leaves 3003 * an 11g network. The 802.11 layer notifies us via callback, 3004 * we mark updateslot, then wait one beacon before effecting 3005 * the change. This gives associated stations at least one 3006 * beacon interval to note the state change. 3007 */ 3008 /* XXX locking */ 3009 if (sc->sc_updateslot == UPDATE) { 3010 sc->sc_updateslot = COMMIT; /* commit next beacon */ 3011 sc->sc_slotupdate = slot; 3012 } else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot) 3013 ath_setslottime(sc); /* commit change to h/w */ 3014 3015 /* 3016 * Check recent per-antenna transmit statistics and flip 3017 * the default antenna if noticeably more frames went out 3018 * on the non-default antenna. 3019 * XXX assumes 2 anntenae 3020 */ 3021 if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) { 3022 otherant = sc->sc_defant & 1 ? 2 : 1; 3023 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 3024 ath_setdefantenna(sc, otherant); 3025 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 3026 } 3027 3028 if (bfaddr != 0) { 3029 /* 3030 * Stop any current dma and put the new frame on the queue. 3031 * This should never fail since we check above that no frames 3032 * are still pending on the queue. 3033 */ 3034 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 3035 DPRINTF(sc, ATH_DEBUG_ANY, 3036 "%s: beacon queue %u did not stop?\n", 3037 __func__, sc->sc_bhalq); 3038 } 3039 /* NB: cabq traffic should already be queued and primed */ 3040 ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr); 3041 ath_hal_txstart(ah, sc->sc_bhalq); 3042 3043 sc->sc_stats.ast_be_xmit++; 3044 } 3045 } 3046 3047 static struct ath_buf * 3048 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap) 3049 { 3050 struct ath_vap *avp = ATH_VAP(vap); 3051 struct ath_txq *cabq = sc->sc_cabq; 3052 struct ath_buf *bf; 3053 struct mbuf *m; 3054 int nmcastq, error; 3055 3056 KASSERT(vap->iv_state == IEEE80211_S_RUN, 3057 ("not running, state %d", vap->iv_state)); 3058 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3059 3060 /* 3061 * Update dynamic beacon contents. If this returns 3062 * non-zero then we need to remap the memory because 3063 * the beacon frame changed size (probably because 3064 * of the TIM bitmap). 3065 */ 3066 bf = avp->av_bcbuf; 3067 m = bf->bf_m; 3068 nmcastq = avp->av_mcastq.axq_depth; 3069 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) { 3070 /* XXX too conservative? */ 3071 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3072 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3073 bf->bf_segs, &bf->bf_nseg, 3074 BUS_DMA_NOWAIT); 3075 if (error != 0) { 3076 if_printf(vap->iv_ifp, 3077 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3078 __func__, error); 3079 return NULL; 3080 } 3081 } 3082 if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) { 3083 DPRINTF(sc, ATH_DEBUG_BEACON, 3084 "%s: cabq did not drain, mcastq %u cabq %u\n", 3085 __func__, nmcastq, cabq->axq_depth); 3086 sc->sc_stats.ast_cabq_busy++; 3087 if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) { 3088 /* 3089 * CABQ traffic from a previous vap is still pending. 3090 * We must drain the q before this beacon frame goes 3091 * out as otherwise this vap's stations will get cab 3092 * frames from a different vap. 3093 * XXX could be slow causing us to miss DBA 3094 */ 3095 ath_tx_draintxq(sc, cabq); 3096 } 3097 } 3098 ath_beacon_setup(sc, bf); 3099 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3100 3101 /* 3102 * Enable the CAB queue before the beacon queue to 3103 * insure cab frames are triggered by this beacon. 3104 */ 3105 if (avp->av_boff.bo_tim[4] & 1) { 3106 struct ath_hal *ah = sc->sc_ah; 3107 3108 /* NB: only at DTIM */ 3109 ATH_TXQ_LOCK(cabq); 3110 ATH_TXQ_LOCK(&avp->av_mcastq); 3111 if (nmcastq) { 3112 struct ath_buf *bfm; 3113 3114 /* 3115 * Move frames from the s/w mcast q to the h/w cab q. 3116 * XXX MORE_DATA bit 3117 */ 3118 bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q); 3119 if (cabq->axq_link != NULL) { 3120 *cabq->axq_link = bfm->bf_daddr; 3121 } else 3122 ath_hal_puttxbuf(ah, cabq->axq_qnum, 3123 bfm->bf_daddr); 3124 ath_txqmove(cabq, &avp->av_mcastq); 3125 3126 sc->sc_stats.ast_cabq_xmit += nmcastq; 3127 } 3128 /* NB: gated by beacon so safe to start here */ 3129 ath_hal_txstart(ah, cabq->axq_qnum); 3130 ATH_TXQ_UNLOCK(cabq); 3131 ATH_TXQ_UNLOCK(&avp->av_mcastq); 3132 } 3133 return bf; 3134 } 3135 3136 static void 3137 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap) 3138 { 3139 struct ath_vap *avp = ATH_VAP(vap); 3140 struct ath_hal *ah = sc->sc_ah; 3141 struct ath_buf *bf; 3142 struct mbuf *m; 3143 int error; 3144 3145 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3146 3147 /* 3148 * Update dynamic beacon contents. If this returns 3149 * non-zero then we need to remap the memory because 3150 * the beacon frame changed size (probably because 3151 * of the TIM bitmap). 3152 */ 3153 bf = avp->av_bcbuf; 3154 m = bf->bf_m; 3155 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) { 3156 /* XXX too conservative? */ 3157 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3158 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3159 bf->bf_segs, &bf->bf_nseg, 3160 BUS_DMA_NOWAIT); 3161 if (error != 0) { 3162 if_printf(vap->iv_ifp, 3163 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3164 __func__, error); 3165 return; 3166 } 3167 } 3168 ath_beacon_setup(sc, bf); 3169 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3170 3171 /* NB: caller is known to have already stopped tx dma */ 3172 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 3173 ath_hal_txstart(ah, sc->sc_bhalq); 3174 } 3175 3176 /* 3177 * Reset the hardware after detecting beacons have stopped. 3178 */ 3179 static void 3180 ath_bstuck_proc(void *arg, int pending) 3181 { 3182 struct ath_softc *sc = arg; 3183 struct ifnet *ifp = sc->sc_ifp; 3184 3185 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3186 sc->sc_bmisscount); 3187 ath_reset(ifp); 3188 } 3189 3190 /* 3191 * Reclaim beacon resources and return buffer to the pool. 3192 */ 3193 static void 3194 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf) 3195 { 3196 3197 if (bf->bf_m != NULL) { 3198 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3199 m_freem(bf->bf_m); 3200 bf->bf_m = NULL; 3201 } 3202 if (bf->bf_node != NULL) { 3203 ieee80211_free_node(bf->bf_node); 3204 bf->bf_node = NULL; 3205 } 3206 STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list); 3207 } 3208 3209 /* 3210 * Reclaim beacon resources. 3211 */ 3212 static void 3213 ath_beacon_free(struct ath_softc *sc) 3214 { 3215 struct ath_buf *bf; 3216 3217 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 3218 if (bf->bf_m != NULL) { 3219 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3220 m_freem(bf->bf_m); 3221 bf->bf_m = NULL; 3222 } 3223 if (bf->bf_node != NULL) { 3224 ieee80211_free_node(bf->bf_node); 3225 bf->bf_node = NULL; 3226 } 3227 } 3228 } 3229 3230 /* 3231 * Configure the beacon and sleep timers. 3232 * 3233 * When operating as an AP this resets the TSF and sets 3234 * up the hardware to notify us when we need to issue beacons. 3235 * 3236 * When operating in station mode this sets up the beacon 3237 * timers according to the timestamp of the last received 3238 * beacon and the current TSF, configures PCF and DTIM 3239 * handling, programs the sleep registers so the hardware 3240 * will wakeup in time to receive beacons, and configures 3241 * the beacon miss handling so we'll receive a BMISS 3242 * interrupt when we stop seeing beacons from the AP 3243 * we've associated with. 3244 */ 3245 static void 3246 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap) 3247 { 3248 #define TSF_TO_TU(_h,_l) \ 3249 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 3250 #define FUDGE 2 3251 struct ath_hal *ah = sc->sc_ah; 3252 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3253 struct ieee80211_node *ni; 3254 u_int32_t nexttbtt, intval, tsftu; 3255 u_int64_t tsf; 3256 3257 if (vap == NULL) 3258 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 3259 ni = vap->iv_bss; 3260 3261 /* extract tstamp from last beacon and convert to TU */ 3262 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 3263 LE_READ_4(ni->ni_tstamp.data)); 3264 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 3265 /* 3266 * For multi-bss ap support beacons are either staggered 3267 * evenly over N slots or burst together. For the former 3268 * arrange for the SWBA to be delivered for each slot. 3269 * Slots that are not occupied will generate nothing. 3270 */ 3271 /* NB: the beacon interval is kept internally in TU's */ 3272 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3273 if (sc->sc_stagbeacons) 3274 intval /= ATH_BCBUF; 3275 } else { 3276 /* NB: the beacon interval is kept internally in TU's */ 3277 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3278 } 3279 if (nexttbtt == 0) /* e.g. for ap mode */ 3280 nexttbtt = intval; 3281 else if (intval) /* NB: can be 0 for monitor mode */ 3282 nexttbtt = roundup(nexttbtt, intval); 3283 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 3284 __func__, nexttbtt, intval, ni->ni_intval); 3285 if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) { 3286 HAL_BEACON_STATE bs; 3287 int dtimperiod, dtimcount; 3288 int cfpperiod, cfpcount; 3289 3290 /* 3291 * Setup dtim and cfp parameters according to 3292 * last beacon we received (which may be none). 3293 */ 3294 dtimperiod = ni->ni_dtim_period; 3295 if (dtimperiod <= 0) /* NB: 0 if not known */ 3296 dtimperiod = 1; 3297 dtimcount = ni->ni_dtim_count; 3298 if (dtimcount >= dtimperiod) /* NB: sanity check */ 3299 dtimcount = 0; /* XXX? */ 3300 cfpperiod = 1; /* NB: no PCF support yet */ 3301 cfpcount = 0; 3302 /* 3303 * Pull nexttbtt forward to reflect the current 3304 * TSF and calculate dtim+cfp state for the result. 3305 */ 3306 tsf = ath_hal_gettsf64(ah); 3307 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3308 do { 3309 nexttbtt += intval; 3310 if (--dtimcount < 0) { 3311 dtimcount = dtimperiod - 1; 3312 if (--cfpcount < 0) 3313 cfpcount = cfpperiod - 1; 3314 } 3315 } while (nexttbtt < tsftu); 3316 memset(&bs, 0, sizeof(bs)); 3317 bs.bs_intval = intval; 3318 bs.bs_nexttbtt = nexttbtt; 3319 bs.bs_dtimperiod = dtimperiod*intval; 3320 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 3321 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 3322 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 3323 bs.bs_cfpmaxduration = 0; 3324 #if 0 3325 /* 3326 * The 802.11 layer records the offset to the DTIM 3327 * bitmap while receiving beacons; use it here to 3328 * enable h/w detection of our AID being marked in 3329 * the bitmap vector (to indicate frames for us are 3330 * pending at the AP). 3331 * XXX do DTIM handling in s/w to WAR old h/w bugs 3332 * XXX enable based on h/w rev for newer chips 3333 */ 3334 bs.bs_timoffset = ni->ni_timoff; 3335 #endif 3336 /* 3337 * Calculate the number of consecutive beacons to miss 3338 * before taking a BMISS interrupt. 3339 * Note that we clamp the result to at most 10 beacons. 3340 */ 3341 bs.bs_bmissthreshold = vap->iv_bmissthreshold; 3342 if (bs.bs_bmissthreshold > 10) 3343 bs.bs_bmissthreshold = 10; 3344 else if (bs.bs_bmissthreshold <= 0) 3345 bs.bs_bmissthreshold = 1; 3346 3347 /* 3348 * Calculate sleep duration. The configuration is 3349 * given in ms. We insure a multiple of the beacon 3350 * period is used. Also, if the sleep duration is 3351 * greater than the DTIM period then it makes senses 3352 * to make it a multiple of that. 3353 * 3354 * XXX fixed at 100ms 3355 */ 3356 bs.bs_sleepduration = 3357 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 3358 if (bs.bs_sleepduration > bs.bs_dtimperiod) 3359 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 3360 3361 DPRINTF(sc, ATH_DEBUG_BEACON, 3362 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 3363 , __func__ 3364 , tsf, tsftu 3365 , bs.bs_intval 3366 , bs.bs_nexttbtt 3367 , bs.bs_dtimperiod 3368 , bs.bs_nextdtim 3369 , bs.bs_bmissthreshold 3370 , bs.bs_sleepduration 3371 , bs.bs_cfpperiod 3372 , bs.bs_cfpmaxduration 3373 , bs.bs_cfpnext 3374 , bs.bs_timoffset 3375 ); 3376 ath_hal_intrset(ah, 0); 3377 ath_hal_beacontimers(ah, &bs); 3378 sc->sc_imask |= HAL_INT_BMISS; 3379 ath_hal_intrset(ah, sc->sc_imask); 3380 } else { 3381 ath_hal_intrset(ah, 0); 3382 if (nexttbtt == intval) 3383 intval |= HAL_BEACON_RESET_TSF; 3384 if (ic->ic_opmode == IEEE80211_M_IBSS) { 3385 /* 3386 * In IBSS mode enable the beacon timers but only 3387 * enable SWBA interrupts if we need to manually 3388 * prepare beacon frames. Otherwise we use a 3389 * self-linked tx descriptor and let the hardware 3390 * deal with things. 3391 */ 3392 intval |= HAL_BEACON_ENA; 3393 if (!sc->sc_hasveol) 3394 sc->sc_imask |= HAL_INT_SWBA; 3395 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 3396 /* 3397 * Pull nexttbtt forward to reflect 3398 * the current TSF. 3399 */ 3400 tsf = ath_hal_gettsf64(ah); 3401 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3402 do { 3403 nexttbtt += intval; 3404 } while (nexttbtt < tsftu); 3405 } 3406 ath_beaconq_config(sc); 3407 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 3408 /* 3409 * In AP mode we enable the beacon timers and 3410 * SWBA interrupts to prepare beacon frames. 3411 */ 3412 intval |= HAL_BEACON_ENA; 3413 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 3414 ath_beaconq_config(sc); 3415 } 3416 ath_hal_beaconinit(ah, nexttbtt, intval); 3417 sc->sc_bmisscount = 0; 3418 ath_hal_intrset(ah, sc->sc_imask); 3419 /* 3420 * When using a self-linked beacon descriptor in 3421 * ibss mode load it once here. 3422 */ 3423 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 3424 ath_beacon_start_adhoc(sc, vap); 3425 } 3426 sc->sc_syncbeacon = 0; 3427 #undef FUDGE 3428 #undef TSF_TO_TU 3429 } 3430 3431 static void 3432 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3433 { 3434 bus_addr_t *paddr = (bus_addr_t*) arg; 3435 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3436 *paddr = segs->ds_addr; 3437 } 3438 3439 static int 3440 ath_descdma_setup(struct ath_softc *sc, 3441 struct ath_descdma *dd, ath_bufhead *head, 3442 const char *name, int nbuf, int ndesc) 3443 { 3444 #define DS2PHYS(_dd, _ds) \ 3445 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3446 struct ifnet *ifp = sc->sc_ifp; 3447 struct ath_desc *ds; 3448 struct ath_buf *bf; 3449 int i, bsize, error; 3450 3451 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 3452 __func__, name, nbuf, ndesc); 3453 3454 dd->dd_name = name; 3455 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; 3456 3457 /* 3458 * Setup DMA descriptor area. 3459 */ 3460 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3461 PAGE_SIZE, 0, /* alignment, bounds */ 3462 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3463 BUS_SPACE_MAXADDR, /* highaddr */ 3464 NULL, NULL, /* filter, filterarg */ 3465 dd->dd_desc_len, /* maxsize */ 3466 1, /* nsegments */ 3467 dd->dd_desc_len, /* maxsegsize */ 3468 BUS_DMA_ALLOCNOW, /* flags */ 3469 NULL, /* lockfunc */ 3470 NULL, /* lockarg */ 3471 &dd->dd_dmat); 3472 if (error != 0) { 3473 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3474 return error; 3475 } 3476 3477 /* allocate descriptors */ 3478 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 3479 if (error != 0) { 3480 if_printf(ifp, "unable to create dmamap for %s descriptors, " 3481 "error %u\n", dd->dd_name, error); 3482 goto fail0; 3483 } 3484 3485 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3486 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3487 &dd->dd_dmamap); 3488 if (error != 0) { 3489 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3490 "error %u\n", nbuf * ndesc, dd->dd_name, error); 3491 goto fail1; 3492 } 3493 3494 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3495 dd->dd_desc, dd->dd_desc_len, 3496 ath_load_cb, &dd->dd_desc_paddr, 3497 BUS_DMA_NOWAIT); 3498 if (error != 0) { 3499 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3500 dd->dd_name, error); 3501 goto fail2; 3502 } 3503 3504 ds = dd->dd_desc; 3505 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3506 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 3507 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 3508 3509 /* allocate rx buffers */ 3510 bsize = sizeof(struct ath_buf) * nbuf; 3511 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3512 if (bf == NULL) { 3513 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3514 dd->dd_name, bsize); 3515 goto fail3; 3516 } 3517 dd->dd_bufptr = bf; 3518 3519 STAILQ_INIT(head); 3520 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { 3521 bf->bf_desc = ds; 3522 bf->bf_daddr = DS2PHYS(dd, ds); 3523 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3524 &bf->bf_dmamap); 3525 if (error != 0) { 3526 if_printf(ifp, "unable to create dmamap for %s " 3527 "buffer %u, error %u\n", dd->dd_name, i, error); 3528 ath_descdma_cleanup(sc, dd, head); 3529 return error; 3530 } 3531 STAILQ_INSERT_TAIL(head, bf, bf_list); 3532 } 3533 return 0; 3534 fail3: 3535 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3536 fail2: 3537 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3538 fail1: 3539 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3540 fail0: 3541 bus_dma_tag_destroy(dd->dd_dmat); 3542 memset(dd, 0, sizeof(*dd)); 3543 return error; 3544 #undef DS2PHYS 3545 } 3546 3547 static void 3548 ath_descdma_cleanup(struct ath_softc *sc, 3549 struct ath_descdma *dd, ath_bufhead *head) 3550 { 3551 struct ath_buf *bf; 3552 struct ieee80211_node *ni; 3553 3554 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3555 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3556 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3557 bus_dma_tag_destroy(dd->dd_dmat); 3558 3559 STAILQ_FOREACH(bf, head, bf_list) { 3560 if (bf->bf_m) { 3561 m_freem(bf->bf_m); 3562 bf->bf_m = NULL; 3563 } 3564 if (bf->bf_dmamap != NULL) { 3565 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3566 bf->bf_dmamap = NULL; 3567 } 3568 ni = bf->bf_node; 3569 bf->bf_node = NULL; 3570 if (ni != NULL) { 3571 /* 3572 * Reclaim node reference. 3573 */ 3574 ieee80211_free_node(ni); 3575 } 3576 } 3577 3578 STAILQ_INIT(head); 3579 free(dd->dd_bufptr, M_ATHDEV); 3580 memset(dd, 0, sizeof(*dd)); 3581 } 3582 3583 static int 3584 ath_desc_alloc(struct ath_softc *sc) 3585 { 3586 int error; 3587 3588 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 3589 "rx", ath_rxbuf, 1); 3590 if (error != 0) 3591 return error; 3592 3593 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3594 "tx", ath_txbuf, ATH_TXDESC); 3595 if (error != 0) { 3596 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3597 return error; 3598 } 3599 3600 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3601 "beacon", ATH_BCBUF, 1); 3602 if (error != 0) { 3603 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3604 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3605 return error; 3606 } 3607 return 0; 3608 } 3609 3610 static void 3611 ath_desc_free(struct ath_softc *sc) 3612 { 3613 3614 if (sc->sc_bdma.dd_desc_len != 0) 3615 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3616 if (sc->sc_txdma.dd_desc_len != 0) 3617 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3618 if (sc->sc_rxdma.dd_desc_len != 0) 3619 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3620 } 3621 3622 static struct ieee80211_node * 3623 ath_node_alloc(struct ieee80211_node_table *nt) 3624 { 3625 struct ieee80211com *ic = nt->nt_ic; 3626 struct ath_softc *sc = ic->ic_ifp->if_softc; 3627 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3628 struct ath_node *an; 3629 3630 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3631 if (an == NULL) { 3632 /* XXX stat+msg */ 3633 return NULL; 3634 } 3635 ath_rate_node_init(sc, an); 3636 3637 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3638 return &an->an_node; 3639 } 3640 3641 static void 3642 ath_node_free(struct ieee80211_node *ni) 3643 { 3644 struct ieee80211com *ic = ni->ni_ic; 3645 struct ath_softc *sc = ic->ic_ifp->if_softc; 3646 3647 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3648 3649 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3650 sc->sc_node_free(ni); 3651 } 3652 3653 static void 3654 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3655 { 3656 struct ieee80211com *ic = ni->ni_ic; 3657 struct ath_softc *sc = ic->ic_ifp->if_softc; 3658 struct ath_hal *ah = sc->sc_ah; 3659 HAL_CHANNEL hchan; 3660 3661 *rssi = ic->ic_node_getrssi(ni); 3662 if (ni->ni_chan != IEEE80211_CHAN_ANYC) { 3663 ath_mapchan(&hchan, ni->ni_chan); 3664 *noise = ath_hal_getchannoise(ah, &hchan); 3665 } else 3666 *noise = -95; /* nominally correct */ 3667 } 3668 3669 static int 3670 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 3671 { 3672 struct ath_hal *ah = sc->sc_ah; 3673 int error; 3674 struct mbuf *m; 3675 struct ath_desc *ds; 3676 3677 m = bf->bf_m; 3678 if (m == NULL) { 3679 /* 3680 * NB: by assigning a page to the rx dma buffer we 3681 * implicitly satisfy the Atheros requirement that 3682 * this buffer be cache-line-aligned and sized to be 3683 * multiple of the cache line size. Not doing this 3684 * causes weird stuff to happen (for the 5210 at least). 3685 */ 3686 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 3687 if (m == NULL) { 3688 DPRINTF(sc, ATH_DEBUG_ANY, 3689 "%s: no mbuf/cluster\n", __func__); 3690 sc->sc_stats.ast_rx_nombuf++; 3691 return ENOMEM; 3692 } 3693 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 3694 3695 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, 3696 bf->bf_dmamap, m, 3697 bf->bf_segs, &bf->bf_nseg, 3698 BUS_DMA_NOWAIT); 3699 if (error != 0) { 3700 DPRINTF(sc, ATH_DEBUG_ANY, 3701 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n", 3702 __func__, error); 3703 sc->sc_stats.ast_rx_busdma++; 3704 m_freem(m); 3705 return error; 3706 } 3707 KASSERT(bf->bf_nseg == 1, 3708 ("multi-segment packet; nseg %u", bf->bf_nseg)); 3709 bf->bf_m = m; 3710 } 3711 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 3712 3713 /* 3714 * Setup descriptors. For receive we always terminate 3715 * the descriptor list with a self-linked entry so we'll 3716 * not get overrun under high load (as can happen with a 3717 * 5212 when ANI processing enables PHY error frames). 3718 * 3719 * To insure the last descriptor is self-linked we create 3720 * each descriptor as self-linked and add it to the end. As 3721 * each additional descriptor is added the previous self-linked 3722 * entry is ``fixed'' naturally. This should be safe even 3723 * if DMA is happening. When processing RX interrupts we 3724 * never remove/process the last, self-linked, entry on the 3725 * descriptor list. This insures the hardware always has 3726 * someplace to write a new frame. 3727 */ 3728 ds = bf->bf_desc; 3729 ds->ds_link = bf->bf_daddr; /* link to self */ 3730 ds->ds_data = bf->bf_segs[0].ds_addr; 3731 ath_hal_setuprxdesc(ah, ds 3732 , m->m_len /* buffer size */ 3733 , 0 3734 ); 3735 3736 if (sc->sc_rxlink != NULL) 3737 *sc->sc_rxlink = bf->bf_daddr; 3738 sc->sc_rxlink = &ds->ds_link; 3739 return 0; 3740 } 3741 3742 /* 3743 * Extend 15-bit time stamp from rx descriptor to 3744 * a full 64-bit TSF using the specified TSF. 3745 */ 3746 static __inline u_int64_t 3747 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf) 3748 { 3749 if ((tsf & 0x7fff) < rstamp) 3750 tsf -= 0x8000; 3751 return ((tsf &~ 0x7fff) | rstamp); 3752 } 3753 3754 /* 3755 * Intercept management frames to collect beacon rssi data 3756 * and to do ibss merges. 3757 */ 3758 static void 3759 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 3760 int subtype, int rssi, int noise, u_int32_t rstamp) 3761 { 3762 struct ieee80211vap *vap = ni->ni_vap; 3763 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 3764 3765 /* 3766 * Call up first so subsequent work can use information 3767 * potentially stored in the node (e.g. for ibss merge). 3768 */ 3769 ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, noise, rstamp); 3770 switch (subtype) { 3771 case IEEE80211_FC0_SUBTYPE_BEACON: 3772 /* update rssi statistics for use by the hal */ 3773 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 3774 if (sc->sc_syncbeacon && 3775 ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) { 3776 /* 3777 * Resync beacon timers using the tsf of the beacon 3778 * frame we just received. 3779 */ 3780 ath_beacon_config(sc, vap); 3781 } 3782 /* fall thru... */ 3783 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 3784 if (vap->iv_opmode == IEEE80211_M_IBSS && 3785 vap->iv_state == IEEE80211_S_RUN) { 3786 u_int64_t tsf = ath_extend_tsf(rstamp, 3787 ath_hal_gettsf64(sc->sc_ah)); 3788 /* 3789 * Handle ibss merge as needed; check the tsf on the 3790 * frame before attempting the merge. The 802.11 spec 3791 * says the station should change it's bssid to match 3792 * the oldest station with the same ssid, where oldest 3793 * is determined by the tsf. Note that hardware 3794 * reconfiguration happens through callback to 3795 * ath_newstate as the state machine will go from 3796 * RUN -> RUN when this happens. 3797 */ 3798 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 3799 DPRINTF(sc, ATH_DEBUG_STATE, 3800 "ibss merge, rstamp %u tsf %ju " 3801 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 3802 (uintmax_t)ni->ni_tstamp.tsf); 3803 (void) ieee80211_ibss_merge(ni); 3804 } 3805 } 3806 break; 3807 } 3808 } 3809 3810 /* 3811 * Set the default antenna. 3812 */ 3813 static void 3814 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3815 { 3816 struct ath_hal *ah = sc->sc_ah; 3817 3818 /* XXX block beacon interrupts */ 3819 ath_hal_setdefantenna(ah, antenna); 3820 if (sc->sc_defant != antenna) 3821 sc->sc_stats.ast_ant_defswitch++; 3822 sc->sc_defant = antenna; 3823 sc->sc_rxotherant = 0; 3824 } 3825 3826 static int 3827 ath_rx_tap(struct ifnet *ifp, struct mbuf *m, 3828 const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf) 3829 { 3830 #define CHANNEL_HT (CHANNEL_HT20|CHANNEL_HT40PLUS|CHANNEL_HT40MINUS) 3831 struct ath_softc *sc = ifp->if_softc; 3832 u_int8_t rix; 3833 3834 /* 3835 * Discard anything shorter than an ack or cts. 3836 */ 3837 if (m->m_pkthdr.len < IEEE80211_ACK_LEN) { 3838 DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n", 3839 __func__, m->m_pkthdr.len); 3840 sc->sc_stats.ast_rx_tooshort++; 3841 return 0; 3842 } 3843 rix = rs->rs_rate; 3844 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 3845 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 3846 #if HAL_ABI_VERSION >= 0x07050400 3847 if (sc->sc_curchan.channelFlags & CHANNEL_HT) { 3848 /* 3849 * For HT operation we must specify the channel 3850 * attributes for each packet since they vary. 3851 * We deduce this by from HT40 bit in the rx 3852 * status and the MCS/legacy rate bit. 3853 */ 3854 sc->sc_rx_th.wr_chan_flags &= ~IEEE80211_CHAN_HT; 3855 if (sc->sc_rx_th.wr_rate & 0x80) { /* HT rate */ 3856 /* XXX 40U/40D */ 3857 sc->sc_rx_th.wr_chan_flags |= 3858 (rs->rs_flags & HAL_RX_2040) ? 3859 IEEE80211_CHAN_HT40U : IEEE80211_CHAN_HT20; 3860 if ((rs->rs_flags & HAL_RX_GI) == 0) 3861 sc->sc_rx_th.wr_flags |= 3862 IEEE80211_RADIOTAP_F_SHORTGI; 3863 } 3864 } 3865 #endif 3866 sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf)); 3867 if (rs->rs_status & HAL_RXERR_CRC) 3868 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 3869 /* XXX propagate other error flags from descriptor */ 3870 sc->sc_rx_th.wr_antsignal = rs->rs_rssi + nf; 3871 sc->sc_rx_th.wr_antnoise = nf; 3872 sc->sc_rx_th.wr_antenna = rs->rs_antenna; 3873 3874 bpf_mtap2(ifp->if_bpf, &sc->sc_rx_th, sc->sc_rx_th_len, m); 3875 3876 return 1; 3877 #undef CHANNEL_HT 3878 } 3879 3880 static void 3881 ath_handle_micerror(struct ieee80211com *ic, 3882 struct ieee80211_frame *wh, int keyix) 3883 { 3884 struct ieee80211_node *ni; 3885 3886 /* XXX recheck MIC to deal w/ chips that lie */ 3887 /* XXX discard MIC errors on !data frames */ 3888 ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh); 3889 if (ni != NULL) { 3890 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix); 3891 ieee80211_free_node(ni); 3892 } 3893 } 3894 3895 static void 3896 ath_rx_proc(void *arg, int npending) 3897 { 3898 #define PA2DESC(_sc, _pa) \ 3899 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 3900 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 3901 struct ath_softc *sc = arg; 3902 struct ath_buf *bf; 3903 struct ifnet *ifp = sc->sc_ifp; 3904 struct ieee80211com *ic = ifp->if_l2com; 3905 struct ath_hal *ah = sc->sc_ah; 3906 struct ath_desc *ds; 3907 struct ath_rx_status *rs; 3908 struct mbuf *m; 3909 struct ieee80211_node *ni; 3910 int len, type, ngood; 3911 u_int phyerr; 3912 HAL_STATUS status; 3913 int16_t nf; 3914 u_int64_t tsf; 3915 3916 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 3917 ngood = 0; 3918 nf = ath_hal_getchannoise(ah, &sc->sc_curchan); 3919 tsf = ath_hal_gettsf64(ah); 3920 do { 3921 bf = STAILQ_FIRST(&sc->sc_rxbuf); 3922 if (bf == NULL) { /* NB: shouldn't happen */ 3923 if_printf(ifp, "%s: no buffer!\n", __func__); 3924 break; 3925 } 3926 m = bf->bf_m; 3927 if (m == NULL) { /* NB: shouldn't happen */ 3928 /* 3929 * If mbuf allocation failed previously there 3930 * will be no mbuf; try again to re-populate it. 3931 */ 3932 /* XXX make debug msg */ 3933 if_printf(ifp, "%s: no mbuf!\n", __func__); 3934 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 3935 goto rx_next; 3936 } 3937 ds = bf->bf_desc; 3938 if (ds->ds_link == bf->bf_daddr) { 3939 /* NB: never process the self-linked entry at the end */ 3940 break; 3941 } 3942 /* XXX sync descriptor memory */ 3943 /* 3944 * Must provide the virtual address of the current 3945 * descriptor, the physical address, and the virtual 3946 * address of the next descriptor in the h/w chain. 3947 * This allows the HAL to look ahead to see if the 3948 * hardware is done with a descriptor by checking the 3949 * done bit in the following descriptor and the address 3950 * of the current descriptor the DMA engine is working 3951 * on. All this is necessary because of our use of 3952 * a self-linked list to avoid rx overruns. 3953 */ 3954 rs = &bf->bf_status.ds_rxstat; 3955 status = ath_hal_rxprocdesc(ah, ds, 3956 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 3957 #ifdef ATH_DEBUG 3958 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 3959 ath_printrxbuf(bf, 0, status == HAL_OK); 3960 #endif 3961 if (status == HAL_EINPROGRESS) 3962 break; 3963 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 3964 if (rs->rs_status != 0) { 3965 if (rs->rs_status & HAL_RXERR_CRC) 3966 sc->sc_stats.ast_rx_crcerr++; 3967 if (rs->rs_status & HAL_RXERR_FIFO) 3968 sc->sc_stats.ast_rx_fifoerr++; 3969 if (rs->rs_status & HAL_RXERR_PHY) { 3970 sc->sc_stats.ast_rx_phyerr++; 3971 phyerr = rs->rs_phyerr & 0x1f; 3972 sc->sc_stats.ast_rx_phy[phyerr]++; 3973 goto rx_error; /* NB: don't count in ierrors */ 3974 } 3975 if (rs->rs_status & HAL_RXERR_DECRYPT) { 3976 /* 3977 * Decrypt error. If the error occurred 3978 * because there was no hardware key, then 3979 * let the frame through so the upper layers 3980 * can process it. This is necessary for 5210 3981 * parts which have no way to setup a ``clear'' 3982 * key cache entry. 3983 * 3984 * XXX do key cache faulting 3985 */ 3986 if (rs->rs_keyix == HAL_RXKEYIX_INVALID) 3987 goto rx_accept; 3988 sc->sc_stats.ast_rx_badcrypt++; 3989 } 3990 if (rs->rs_status & HAL_RXERR_MIC) { 3991 sc->sc_stats.ast_rx_badmic++; 3992 /* 3993 * Do minimal work required to hand off 3994 * the 802.11 header for notifcation. 3995 */ 3996 /* XXX frag's and qos frames */ 3997 len = rs->rs_datalen; 3998 if (len >= sizeof (struct ieee80211_frame)) { 3999 bus_dmamap_sync(sc->sc_dmat, 4000 bf->bf_dmamap, 4001 BUS_DMASYNC_POSTREAD); 4002 ath_handle_micerror(ic, 4003 mtod(m, struct ieee80211_frame *), 4004 sc->sc_splitmic ? 4005 rs->rs_keyix-32 : rs->rs_keyix); 4006 } 4007 } 4008 ifp->if_ierrors++; 4009 rx_error: 4010 /* 4011 * Cleanup any pending partial frame. 4012 */ 4013 if (sc->sc_rxpending != NULL) { 4014 m_freem(sc->sc_rxpending); 4015 sc->sc_rxpending = NULL; 4016 } 4017 /* 4018 * When a tap is present pass error frames 4019 * that have been requested. By default we 4020 * pass decrypt+mic errors but others may be 4021 * interesting (e.g. crc). 4022 */ 4023 if (bpf_peers_present(ifp->if_bpf) && 4024 (rs->rs_status & sc->sc_monpass)) { 4025 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4026 BUS_DMASYNC_POSTREAD); 4027 /* NB: bpf needs the mbuf length setup */ 4028 len = rs->rs_datalen; 4029 m->m_pkthdr.len = m->m_len = len; 4030 (void) ath_rx_tap(ifp, m, rs, tsf, nf); 4031 } 4032 /* XXX pass MIC errors up for s/w reclaculation */ 4033 goto rx_next; 4034 } 4035 rx_accept: 4036 /* 4037 * Sync and unmap the frame. At this point we're 4038 * committed to passing the mbuf somewhere so clear 4039 * bf_m; this means a new mbuf must be allocated 4040 * when the rx descriptor is setup again to receive 4041 * another frame. 4042 */ 4043 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4044 BUS_DMASYNC_POSTREAD); 4045 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4046 bf->bf_m = NULL; 4047 4048 len = rs->rs_datalen; 4049 m->m_len = len; 4050 4051 if (rs->rs_more) { 4052 /* 4053 * Frame spans multiple descriptors; save 4054 * it for the next completed descriptor, it 4055 * will be used to construct a jumbogram. 4056 */ 4057 if (sc->sc_rxpending != NULL) { 4058 /* NB: max frame size is currently 2 clusters */ 4059 sc->sc_stats.ast_rx_toobig++; 4060 m_freem(sc->sc_rxpending); 4061 } 4062 m->m_pkthdr.rcvif = ifp; 4063 m->m_pkthdr.len = len; 4064 sc->sc_rxpending = m; 4065 goto rx_next; 4066 } else if (sc->sc_rxpending != NULL) { 4067 /* 4068 * This is the second part of a jumbogram, 4069 * chain it to the first mbuf, adjust the 4070 * frame length, and clear the rxpending state. 4071 */ 4072 sc->sc_rxpending->m_next = m; 4073 sc->sc_rxpending->m_pkthdr.len += len; 4074 m = sc->sc_rxpending; 4075 sc->sc_rxpending = NULL; 4076 } else { 4077 /* 4078 * Normal single-descriptor receive; setup 4079 * the rcvif and packet length. 4080 */ 4081 m->m_pkthdr.rcvif = ifp; 4082 m->m_pkthdr.len = len; 4083 } 4084 4085 ifp->if_ipackets++; 4086 sc->sc_stats.ast_ant_rx[rs->rs_antenna]++; 4087 4088 if (bpf_peers_present(ifp->if_bpf) && 4089 !ath_rx_tap(ifp, m, rs, tsf, nf)) { 4090 m_freem(m); /* XXX reclaim */ 4091 goto rx_next; 4092 } 4093 4094 /* 4095 * From this point on we assume the frame is at least 4096 * as large as ieee80211_frame_min; verify that. 4097 */ 4098 if (len < IEEE80211_MIN_LEN) { 4099 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n", 4100 __func__, len); 4101 sc->sc_stats.ast_rx_tooshort++; 4102 m_freem(m); 4103 goto rx_next; 4104 } 4105 4106 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 4107 ieee80211_dump_pkt(ic, mtod(m, caddr_t), len, 4108 sc->sc_hwmap[rs->rs_rate].ieeerate, 4109 rs->rs_rssi); 4110 } 4111 4112 m_adj(m, -IEEE80211_CRC_LEN); 4113 4114 /* 4115 * Locate the node for sender, track state, and then 4116 * pass the (referenced) node up to the 802.11 layer 4117 * for its use. 4118 */ 4119 ni = ieee80211_find_rxnode_withkey(ic, 4120 mtod(m, const struct ieee80211_frame_min *), 4121 rs->rs_keyix == HAL_RXKEYIX_INVALID ? 4122 IEEE80211_KEYIX_NONE : rs->rs_keyix); 4123 if (ni != NULL) { 4124 /* 4125 * Sending station is known, dispatch directly. 4126 */ 4127 type = ieee80211_input(ni, m, 4128 rs->rs_rssi, nf, rs->rs_tstamp); 4129 ieee80211_free_node(ni); 4130 /* 4131 * Arrange to update the last rx timestamp only for 4132 * frames from our ap when operating in station mode. 4133 * This assumes the rx key is always setup when 4134 * associated. 4135 */ 4136 if (ic->ic_opmode == IEEE80211_M_STA && 4137 rs->rs_keyix != HAL_RXKEYIX_INVALID) 4138 ngood++; 4139 } else { 4140 type = ieee80211_input_all(ic, m, 4141 rs->rs_rssi, nf, rs->rs_tstamp); 4142 } 4143 /* 4144 * Track rx rssi and do any rx antenna management. 4145 */ 4146 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi); 4147 if (sc->sc_diversity) { 4148 /* 4149 * When using fast diversity, change the default rx 4150 * antenna if diversity chooses the other antenna 3 4151 * times in a row. 4152 */ 4153 if (sc->sc_defant != rs->rs_antenna) { 4154 if (++sc->sc_rxotherant >= 3) 4155 ath_setdefantenna(sc, rs->rs_antenna); 4156 } else 4157 sc->sc_rxotherant = 0; 4158 } 4159 if (sc->sc_softled) { 4160 /* 4161 * Blink for any data frame. Otherwise do a 4162 * heartbeat-style blink when idle. The latter 4163 * is mainly for station mode where we depend on 4164 * periodic beacon frames to trigger the poll event. 4165 */ 4166 if (type == IEEE80211_FC0_TYPE_DATA) { 4167 sc->sc_rxrate = rs->rs_rate; 4168 ath_led_event(sc, ATH_LED_RX); 4169 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 4170 ath_led_event(sc, ATH_LED_POLL); 4171 } 4172 rx_next: 4173 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 4174 } while (ath_rxbuf_init(sc, bf) == 0); 4175 4176 /* rx signal state monitoring */ 4177 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan); 4178 if (ngood) 4179 sc->sc_lastrx = tsf; 4180 4181 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 4182 !IFQ_IS_EMPTY(&ifp->if_snd)) 4183 ath_start(ifp); 4184 4185 #undef PA2DESC 4186 } 4187 4188 static void 4189 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4190 { 4191 txq->axq_qnum = qnum; 4192 txq->axq_depth = 0; 4193 txq->axq_intrcnt = 0; 4194 txq->axq_link = NULL; 4195 STAILQ_INIT(&txq->axq_q); 4196 ATH_TXQ_LOCK_INIT(sc, txq); 4197 TAILQ_INIT(&txq->axq_stageq); 4198 txq->axq_curage = 0; 4199 } 4200 4201 /* 4202 * Setup a h/w transmit queue. 4203 */ 4204 static struct ath_txq * 4205 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4206 { 4207 #define N(a) (sizeof(a)/sizeof(a[0])) 4208 struct ath_hal *ah = sc->sc_ah; 4209 HAL_TXQ_INFO qi; 4210 int qnum; 4211 4212 memset(&qi, 0, sizeof(qi)); 4213 qi.tqi_subtype = subtype; 4214 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4215 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4216 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4217 /* 4218 * Enable interrupts only for EOL and DESC conditions. 4219 * We mark tx descriptors to receive a DESC interrupt 4220 * when a tx queue gets deep; otherwise waiting for the 4221 * EOL to reap descriptors. Note that this is done to 4222 * reduce interrupt load and this only defers reaping 4223 * descriptors, never transmitting frames. Aside from 4224 * reducing interrupts this also permits more concurrency. 4225 * The only potential downside is if the tx queue backs 4226 * up in which case the top half of the kernel may backup 4227 * due to a lack of tx descriptors. 4228 */ 4229 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 4230 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4231 if (qnum == -1) { 4232 /* 4233 * NB: don't print a message, this happens 4234 * normally on parts with too few tx queues 4235 */ 4236 return NULL; 4237 } 4238 if (qnum >= N(sc->sc_txq)) { 4239 device_printf(sc->sc_dev, 4240 "hal qnum %u out of range, max %zu!\n", 4241 qnum, N(sc->sc_txq)); 4242 ath_hal_releasetxqueue(ah, qnum); 4243 return NULL; 4244 } 4245 if (!ATH_TXQ_SETUP(sc, qnum)) { 4246 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4247 sc->sc_txqsetup |= 1<<qnum; 4248 } 4249 return &sc->sc_txq[qnum]; 4250 #undef N 4251 } 4252 4253 /* 4254 * Setup a hardware data transmit queue for the specified 4255 * access control. The hal may not support all requested 4256 * queues in which case it will return a reference to a 4257 * previously setup queue. We record the mapping from ac's 4258 * to h/w queues for use by ath_tx_start and also track 4259 * the set of h/w queues being used to optimize work in the 4260 * transmit interrupt handler and related routines. 4261 */ 4262 static int 4263 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4264 { 4265 #define N(a) (sizeof(a)/sizeof(a[0])) 4266 struct ath_txq *txq; 4267 4268 if (ac >= N(sc->sc_ac2q)) { 4269 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4270 ac, N(sc->sc_ac2q)); 4271 return 0; 4272 } 4273 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4274 if (txq != NULL) { 4275 sc->sc_ac2q[ac] = txq; 4276 return 1; 4277 } else 4278 return 0; 4279 #undef N 4280 } 4281 4282 /* 4283 * Update WME parameters for a transmit queue. 4284 */ 4285 static int 4286 ath_txq_update(struct ath_softc *sc, int ac) 4287 { 4288 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4289 #define ATH_TXOP_TO_US(v) (v<<5) 4290 struct ifnet *ifp = sc->sc_ifp; 4291 struct ieee80211com *ic = ifp->if_l2com; 4292 struct ath_txq *txq = sc->sc_ac2q[ac]; 4293 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4294 struct ath_hal *ah = sc->sc_ah; 4295 HAL_TXQ_INFO qi; 4296 4297 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4298 qi.tqi_aifs = wmep->wmep_aifsn; 4299 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4300 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4301 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 4302 4303 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4304 if_printf(ifp, "unable to update hardware queue " 4305 "parameters for %s traffic!\n", 4306 ieee80211_wme_acnames[ac]); 4307 return 0; 4308 } else { 4309 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4310 return 1; 4311 } 4312 #undef ATH_TXOP_TO_US 4313 #undef ATH_EXPONENT_TO_VALUE 4314 } 4315 4316 /* 4317 * Callback from the 802.11 layer to update WME parameters. 4318 */ 4319 static int 4320 ath_wme_update(struct ieee80211com *ic) 4321 { 4322 struct ath_softc *sc = ic->ic_ifp->if_softc; 4323 4324 return !ath_txq_update(sc, WME_AC_BE) || 4325 !ath_txq_update(sc, WME_AC_BK) || 4326 !ath_txq_update(sc, WME_AC_VI) || 4327 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4328 } 4329 4330 /* 4331 * Reclaim resources for a setup queue. 4332 */ 4333 static void 4334 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4335 { 4336 4337 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4338 ATH_TXQ_LOCK_DESTROY(txq); 4339 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4340 } 4341 4342 /* 4343 * Reclaim all tx queue resources. 4344 */ 4345 static void 4346 ath_tx_cleanup(struct ath_softc *sc) 4347 { 4348 int i; 4349 4350 ATH_TXBUF_LOCK_DESTROY(sc); 4351 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4352 if (ATH_TXQ_SETUP(sc, i)) 4353 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4354 } 4355 4356 /* 4357 * Return h/w rate index for an IEEE rate (w/o basic rate bit). 4358 */ 4359 static int 4360 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate) 4361 { 4362 int i; 4363 4364 for (i = 0; i < rt->rateCount; i++) 4365 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate) 4366 return i; 4367 return 0; /* NB: lowest rate */ 4368 } 4369 4370 /* 4371 * Reclaim mbuf resources. For fragmented frames we 4372 * need to claim each frag chained with m_nextpkt. 4373 */ 4374 static void 4375 ath_freetx(struct mbuf *m) 4376 { 4377 struct mbuf *next; 4378 4379 do { 4380 next = m->m_nextpkt; 4381 m->m_nextpkt = NULL; 4382 m_freem(m); 4383 } while ((m = next) != NULL); 4384 } 4385 4386 static int 4387 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0) 4388 { 4389 struct mbuf *m; 4390 int error; 4391 4392 /* 4393 * Load the DMA map so any coalescing is done. This 4394 * also calculates the number of descriptors we need. 4395 */ 4396 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 4397 bf->bf_segs, &bf->bf_nseg, 4398 BUS_DMA_NOWAIT); 4399 if (error == EFBIG) { 4400 /* XXX packet requires too many descriptors */ 4401 bf->bf_nseg = ATH_TXDESC+1; 4402 } else if (error != 0) { 4403 sc->sc_stats.ast_tx_busdma++; 4404 ath_freetx(m0); 4405 return error; 4406 } 4407 /* 4408 * Discard null packets and check for packets that 4409 * require too many TX descriptors. We try to convert 4410 * the latter to a cluster. 4411 */ 4412 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */ 4413 sc->sc_stats.ast_tx_linear++; 4414 m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC); 4415 if (m == NULL) { 4416 ath_freetx(m0); 4417 sc->sc_stats.ast_tx_nombuf++; 4418 return ENOMEM; 4419 } 4420 m0 = m; 4421 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 4422 bf->bf_segs, &bf->bf_nseg, 4423 BUS_DMA_NOWAIT); 4424 if (error != 0) { 4425 sc->sc_stats.ast_tx_busdma++; 4426 ath_freetx(m0); 4427 return error; 4428 } 4429 KASSERT(bf->bf_nseg <= ATH_TXDESC, 4430 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 4431 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 4432 sc->sc_stats.ast_tx_nodata++; 4433 ath_freetx(m0); 4434 return EIO; 4435 } 4436 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", 4437 __func__, m0, m0->m_pkthdr.len); 4438 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 4439 bf->bf_m = m0; 4440 4441 return 0; 4442 } 4443 4444 static void 4445 ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf) 4446 { 4447 struct ath_hal *ah = sc->sc_ah; 4448 struct ath_desc *ds, *ds0; 4449 int i; 4450 4451 /* 4452 * Fillin the remainder of the descriptor info. 4453 */ 4454 ds0 = ds = bf->bf_desc; 4455 for (i = 0; i < bf->bf_nseg; i++, ds++) { 4456 ds->ds_data = bf->bf_segs[i].ds_addr; 4457 if (i == bf->bf_nseg - 1) 4458 ds->ds_link = 0; 4459 else 4460 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 4461 ath_hal_filltxdesc(ah, ds 4462 , bf->bf_segs[i].ds_len /* segment length */ 4463 , i == 0 /* first segment */ 4464 , i == bf->bf_nseg - 1 /* last segment */ 4465 , ds0 /* first descriptor */ 4466 ); 4467 DPRINTF(sc, ATH_DEBUG_XMIT, 4468 "%s: %d: %08x %08x %08x %08x %08x %08x\n", 4469 __func__, i, ds->ds_link, ds->ds_data, 4470 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); 4471 } 4472 /* 4473 * Insert the frame on the outbound list and pass it on 4474 * to the hardware. Multicast frames buffered for power 4475 * save stations and transmit from the CAB queue are stored 4476 * on a s/w only queue and loaded on to the CAB queue in 4477 * the SWBA handler since frames only go out on DTIM and 4478 * to avoid possible races. 4479 */ 4480 ATH_TXQ_LOCK(txq); 4481 if (txq->axq_qnum != ATH_TXQ_SWQ) { 4482 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 4483 if (txq->axq_link == NULL) { 4484 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 4485 DPRINTF(sc, ATH_DEBUG_XMIT, 4486 "%s: TXDP[%u] = %p (%p) depth %d\n", __func__, 4487 txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc, 4488 txq->axq_depth); 4489 } else { 4490 *txq->axq_link = bf->bf_daddr; 4491 DPRINTF(sc, ATH_DEBUG_XMIT, 4492 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 4493 txq->axq_qnum, txq->axq_link, 4494 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); 4495 } 4496 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 4497 ath_hal_txstart(ah, txq->axq_qnum); 4498 } else { 4499 if (txq->axq_link != NULL) { 4500 struct ath_buf *last = ATH_TXQ_LAST(txq); 4501 struct ieee80211_frame *wh; 4502 4503 /* mark previous frame */ 4504 wh = mtod(last->bf_m, struct ieee80211_frame *); 4505 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 4506 bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap, 4507 BUS_DMASYNC_PREWRITE); 4508 4509 /* link descriptor */ 4510 *txq->axq_link = bf->bf_daddr; 4511 } 4512 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 4513 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 4514 } 4515 ATH_TXQ_UNLOCK(txq); 4516 } 4517 4518 static int 4519 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 4520 struct mbuf *m0) 4521 { 4522 struct ieee80211vap *vap = ni->ni_vap; 4523 struct ath_vap *avp = ATH_VAP(vap); 4524 struct ath_hal *ah = sc->sc_ah; 4525 struct ifnet *ifp = sc->sc_ifp; 4526 struct ieee80211com *ic = ifp->if_l2com; 4527 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 4528 int error, iswep, ismcast, isfrag, ismrr; 4529 int keyix, hdrlen, pktlen, try0; 4530 u_int8_t rix, txrate, ctsrate; 4531 u_int8_t cix = 0xff; /* NB: silence compiler */ 4532 struct ath_desc *ds; 4533 struct ath_txq *txq; 4534 struct ieee80211_frame *wh; 4535 u_int subtype, flags, ctsduration; 4536 HAL_PKT_TYPE atype; 4537 const HAL_RATE_TABLE *rt; 4538 HAL_BOOL shortPreamble; 4539 struct ath_node *an; 4540 u_int pri; 4541 4542 wh = mtod(m0, struct ieee80211_frame *); 4543 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 4544 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 4545 isfrag = m0->m_flags & M_FRAG; 4546 hdrlen = ieee80211_anyhdrsize(wh); 4547 /* 4548 * Packet length must not include any 4549 * pad bytes; deduct them here. 4550 */ 4551 pktlen = m0->m_pkthdr.len - (hdrlen & 3); 4552 4553 if (iswep) { 4554 const struct ieee80211_cipher *cip; 4555 struct ieee80211_key *k; 4556 4557 /* 4558 * Construct the 802.11 header+trailer for an encrypted 4559 * frame. The only reason this can fail is because of an 4560 * unknown or unsupported cipher/key type. 4561 */ 4562 k = ieee80211_crypto_encap(ni, m0); 4563 if (k == NULL) { 4564 /* 4565 * This can happen when the key is yanked after the 4566 * frame was queued. Just discard the frame; the 4567 * 802.11 layer counts failures and provides 4568 * debugging/diagnostics. 4569 */ 4570 ath_freetx(m0); 4571 return EIO; 4572 } 4573 /* 4574 * Adjust the packet + header lengths for the crypto 4575 * additions and calculate the h/w key index. When 4576 * a s/w mic is done the frame will have had any mic 4577 * added to it prior to entry so m0->m_pkthdr.len will 4578 * account for it. Otherwise we need to add it to the 4579 * packet length. 4580 */ 4581 cip = k->wk_cipher; 4582 hdrlen += cip->ic_header; 4583 pktlen += cip->ic_header + cip->ic_trailer; 4584 /* NB: frags always have any TKIP MIC done in s/w */ 4585 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag) 4586 pktlen += cip->ic_miclen; 4587 keyix = k->wk_keyix; 4588 4589 /* packet header may have moved, reset our local pointer */ 4590 wh = mtod(m0, struct ieee80211_frame *); 4591 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 4592 /* 4593 * Use station key cache slot, if assigned. 4594 */ 4595 keyix = ni->ni_ucastkey.wk_keyix; 4596 if (keyix == IEEE80211_KEYIX_NONE) 4597 keyix = HAL_TXKEYIX_INVALID; 4598 } else 4599 keyix = HAL_TXKEYIX_INVALID; 4600 4601 pktlen += IEEE80211_CRC_LEN; 4602 4603 /* 4604 * Load the DMA map so any coalescing is done. This 4605 * also calculates the number of descriptors we need. 4606 */ 4607 error = ath_tx_dmasetup(sc, bf, m0); 4608 if (error != 0) 4609 return error; 4610 bf->bf_node = ni; /* NB: held reference */ 4611 m0 = bf->bf_m; /* NB: may have changed */ 4612 wh = mtod(m0, struct ieee80211_frame *); 4613 4614 /* setup descriptors */ 4615 ds = bf->bf_desc; 4616 rt = sc->sc_currates; 4617 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 4618 4619 /* 4620 * NB: the 802.11 layer marks whether or not we should 4621 * use short preamble based on the current mode and 4622 * negotiated parameters. 4623 */ 4624 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 4625 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { 4626 shortPreamble = AH_TRUE; 4627 sc->sc_stats.ast_tx_shortpre++; 4628 } else { 4629 shortPreamble = AH_FALSE; 4630 } 4631 4632 an = ATH_NODE(ni); 4633 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 4634 ismrr = 0; /* default no multi-rate retry*/ 4635 pri = M_WME_GETAC(m0); /* honor classification */ 4636 /* 4637 * Calculate Atheros packet type from IEEE80211 packet header, 4638 * setup for rate calculations, and select h/w transmit queue. 4639 */ 4640 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 4641 case IEEE80211_FC0_TYPE_MGT: 4642 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 4643 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 4644 atype = HAL_PKT_TYPE_BEACON; 4645 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 4646 atype = HAL_PKT_TYPE_PROBE_RESP; 4647 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 4648 atype = HAL_PKT_TYPE_ATIM; 4649 else 4650 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 4651 rix = an->an_mgmtrix; 4652 txrate = rt->info[rix].rateCode; 4653 if (shortPreamble) 4654 txrate |= rt->info[rix].shortPreamble; 4655 try0 = ATH_TXMGTTRY; 4656 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 4657 break; 4658 case IEEE80211_FC0_TYPE_CTL: 4659 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 4660 rix = an->an_mgmtrix; 4661 txrate = rt->info[rix].rateCode; 4662 if (shortPreamble) 4663 txrate |= rt->info[rix].shortPreamble; 4664 try0 = ATH_TXMGTTRY; 4665 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 4666 break; 4667 case IEEE80211_FC0_TYPE_DATA: 4668 atype = HAL_PKT_TYPE_NORMAL; /* default */ 4669 /* 4670 * Data frames: multicast frames go out at a fixed rate, 4671 * otherwise consult the rate control module for the 4672 * rate to use. 4673 */ 4674 if (ismcast) { 4675 rix = an->an_mcastrix; 4676 txrate = rt->info[rix].rateCode; 4677 if (shortPreamble) 4678 txrate |= rt->info[rix].shortPreamble; 4679 try0 = 1; 4680 } else { 4681 ath_rate_findrate(sc, an, shortPreamble, pktlen, 4682 &rix, &try0, &txrate); 4683 sc->sc_txrate = txrate; /* for LED blinking */ 4684 sc->sc_lastdatarix = rix; /* for fast frames */ 4685 if (try0 != ATH_TXMAXTRY) 4686 ismrr = 1; 4687 } 4688 if (cap->cap_wmeParams[pri].wmep_noackPolicy) 4689 flags |= HAL_TXDESC_NOACK; 4690 break; 4691 default: 4692 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 4693 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 4694 /* XXX statistic */ 4695 ath_freetx(m0); 4696 return EIO; 4697 } 4698 txq = sc->sc_ac2q[pri]; 4699 4700 /* 4701 * When servicing one or more stations in power-save mode 4702 * (or) if there is some mcast data waiting on the mcast 4703 * queue (to prevent out of order delivery) multicast 4704 * frames must be buffered until after the beacon. 4705 */ 4706 if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth)) 4707 txq = &avp->av_mcastq; 4708 4709 /* 4710 * Calculate miscellaneous flags. 4711 */ 4712 if (ismcast) { 4713 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 4714 } else if (pktlen > vap->iv_rtsthreshold && 4715 (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) { 4716 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 4717 cix = rt->info[rix].controlRate; 4718 sc->sc_stats.ast_tx_rts++; 4719 } 4720 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ 4721 sc->sc_stats.ast_tx_noack++; 4722 4723 /* 4724 * If 802.11g protection is enabled, determine whether 4725 * to use RTS/CTS or just CTS. Note that this is only 4726 * done for OFDM unicast frames. 4727 */ 4728 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 4729 rt->info[rix].phy == IEEE80211_T_OFDM && 4730 (flags & HAL_TXDESC_NOACK) == 0) { 4731 /* XXX fragments must use CCK rates w/ protection */ 4732 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 4733 flags |= HAL_TXDESC_RTSENA; 4734 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 4735 flags |= HAL_TXDESC_CTSENA; 4736 if (isfrag) { 4737 /* 4738 * For frags it would be desirable to use the 4739 * highest CCK rate for RTS/CTS. But stations 4740 * farther away may detect it at a lower CCK rate 4741 * so use the configured protection rate instead 4742 * (for now). 4743 */ 4744 cix = rt->info[sc->sc_protrix].controlRate; 4745 } else 4746 cix = rt->info[sc->sc_protrix].controlRate; 4747 sc->sc_stats.ast_tx_protect++; 4748 } 4749 4750 /* 4751 * Calculate duration. This logically belongs in the 802.11 4752 * layer but it lacks sufficient information to calculate it. 4753 */ 4754 if ((flags & HAL_TXDESC_NOACK) == 0 && 4755 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 4756 u_int16_t dur; 4757 if (shortPreamble) 4758 dur = rt->info[rix].spAckDuration; 4759 else 4760 dur = rt->info[rix].lpAckDuration; 4761 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 4762 dur += dur; /* additional SIFS+ACK */ 4763 KASSERT(m0->m_nextpkt != NULL, ("no fragment")); 4764 /* 4765 * Include the size of next fragment so NAV is 4766 * updated properly. The last fragment uses only 4767 * the ACK duration 4768 */ 4769 dur += ath_hal_computetxtime(ah, rt, 4770 m0->m_nextpkt->m_pkthdr.len, 4771 rix, shortPreamble); 4772 } 4773 if (isfrag) { 4774 /* 4775 * Force hardware to use computed duration for next 4776 * fragment by disabling multi-rate retry which updates 4777 * duration based on the multi-rate duration table. 4778 */ 4779 ismrr = 0; 4780 try0 = ATH_TXMGTTRY; /* XXX? */ 4781 } 4782 *(u_int16_t *)wh->i_dur = htole16(dur); 4783 } 4784 4785 /* 4786 * Calculate RTS/CTS rate and duration if needed. 4787 */ 4788 ctsduration = 0; 4789 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 4790 /* 4791 * CTS transmit rate is derived from the transmit rate 4792 * by looking in the h/w rate table. We must also factor 4793 * in whether or not a short preamble is to be used. 4794 */ 4795 /* NB: cix is set above where RTS/CTS is enabled */ 4796 KASSERT(cix != 0xff, ("cix not setup")); 4797 ctsrate = rt->info[cix].rateCode; 4798 /* 4799 * Compute the transmit duration based on the frame 4800 * size and the size of an ACK frame. We call into the 4801 * HAL to do the computation since it depends on the 4802 * characteristics of the actual PHY being used. 4803 * 4804 * NB: CTS is assumed the same size as an ACK so we can 4805 * use the precalculated ACK durations. 4806 */ 4807 if (shortPreamble) { 4808 ctsrate |= rt->info[cix].shortPreamble; 4809 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 4810 ctsduration += rt->info[cix].spAckDuration; 4811 ctsduration += ath_hal_computetxtime(ah, 4812 rt, pktlen, rix, AH_TRUE); 4813 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 4814 ctsduration += rt->info[rix].spAckDuration; 4815 } else { 4816 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 4817 ctsduration += rt->info[cix].lpAckDuration; 4818 ctsduration += ath_hal_computetxtime(ah, 4819 rt, pktlen, rix, AH_FALSE); 4820 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 4821 ctsduration += rt->info[rix].lpAckDuration; 4822 } 4823 /* 4824 * Must disable multi-rate retry when using RTS/CTS. 4825 */ 4826 ismrr = 0; 4827 try0 = ATH_TXMGTTRY; /* XXX */ 4828 } else 4829 ctsrate = 0; 4830 4831 /* 4832 * At this point we are committed to sending the frame 4833 * and we don't need to look at m_nextpkt; clear it in 4834 * case this frame is part of frag chain. 4835 */ 4836 m0->m_nextpkt = NULL; 4837 4838 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 4839 ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len, 4840 sc->sc_hwmap[txrate].ieeerate, -1); 4841 4842 if (bpf_peers_present(ifp->if_bpf)) { 4843 u_int64_t tsf = ath_hal_gettsf64(ah); 4844 4845 sc->sc_tx_th.wt_tsf = htole64(tsf); 4846 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags; 4847 if (iswep) 4848 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 4849 if (isfrag) 4850 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 4851 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate; 4852 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 4853 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 4854 4855 bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0); 4856 } 4857 4858 /* 4859 * Determine if a tx interrupt should be generated for 4860 * this descriptor. We take a tx interrupt to reap 4861 * descriptors when the h/w hits an EOL condition or 4862 * when the descriptor is specifically marked to generate 4863 * an interrupt. We periodically mark descriptors in this 4864 * way to insure timely replenishing of the supply needed 4865 * for sending frames. Defering interrupts reduces system 4866 * load and potentially allows more concurrent work to be 4867 * done but if done to aggressively can cause senders to 4868 * backup. 4869 * 4870 * NB: use >= to deal with sc_txintrperiod changing 4871 * dynamically through sysctl. 4872 */ 4873 if (flags & HAL_TXDESC_INTREQ) { 4874 txq->axq_intrcnt = 0; 4875 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 4876 flags |= HAL_TXDESC_INTREQ; 4877 txq->axq_intrcnt = 0; 4878 } 4879 4880 /* 4881 * Formulate first tx descriptor with tx controls. 4882 */ 4883 /* XXX check return value? */ 4884 ath_hal_setuptxdesc(ah, ds 4885 , pktlen /* packet length */ 4886 , hdrlen /* header length */ 4887 , atype /* Atheros packet type */ 4888 , ni->ni_txpower /* txpower */ 4889 , txrate, try0 /* series 0 rate/tries */ 4890 , keyix /* key cache index */ 4891 , sc->sc_txantenna /* antenna mode */ 4892 , flags /* flags */ 4893 , ctsrate /* rts/cts rate */ 4894 , ctsduration /* rts/cts duration */ 4895 ); 4896 bf->bf_flags = flags; 4897 /* 4898 * Setup the multi-rate retry state only when we're 4899 * going to use it. This assumes ath_hal_setuptxdesc 4900 * initializes the descriptors (so we don't have to) 4901 * when the hardware supports multi-rate retry and 4902 * we don't use it. 4903 */ 4904 if (ismrr) 4905 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix); 4906 4907 ath_tx_handoff(sc, txq, bf); 4908 return 0; 4909 } 4910 4911 /* 4912 * Process completed xmit descriptors from the specified queue. 4913 */ 4914 static int 4915 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 4916 { 4917 struct ath_hal *ah = sc->sc_ah; 4918 struct ifnet *ifp = sc->sc_ifp; 4919 struct ieee80211com *ic = ifp->if_l2com; 4920 struct ath_buf *bf; 4921 struct ath_desc *ds, *ds0; 4922 struct ath_tx_status *ts; 4923 struct ieee80211_node *ni; 4924 struct ath_node *an; 4925 int sr, lr, pri, nacked; 4926 HAL_STATUS status; 4927 4928 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4929 __func__, txq->axq_qnum, 4930 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4931 txq->axq_link); 4932 nacked = 0; 4933 for (;;) { 4934 ATH_TXQ_LOCK(txq); 4935 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4936 bf = STAILQ_FIRST(&txq->axq_q); 4937 if (bf == NULL) { 4938 ATH_TXQ_UNLOCK(txq); 4939 break; 4940 } 4941 ds0 = &bf->bf_desc[0]; 4942 ds = &bf->bf_desc[bf->bf_nseg - 1]; 4943 ts = &bf->bf_status.ds_txstat; 4944 status = ath_hal_txprocdesc(ah, ds, ts); 4945 #ifdef ATH_DEBUG 4946 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4947 ath_printtxbuf(bf, txq->axq_qnum, 0, status == HAL_OK); 4948 #endif 4949 if (status == HAL_EINPROGRESS) { 4950 ATH_TXQ_UNLOCK(txq); 4951 break; 4952 } 4953 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 4954 if (txq->axq_depth == 0) 4955 txq->axq_link = NULL; 4956 ATH_TXQ_UNLOCK(txq); 4957 4958 ni = bf->bf_node; 4959 if (ni != NULL) { 4960 an = ATH_NODE(ni); 4961 if (ts->ts_status == 0) { 4962 u_int8_t txant = ts->ts_antenna; 4963 sc->sc_stats.ast_ant_tx[txant]++; 4964 sc->sc_ant_tx[txant]++; 4965 if (ts->ts_rate & HAL_TXSTAT_ALTRATE) 4966 sc->sc_stats.ast_tx_altrate++; 4967 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4968 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4969 ts->ts_rssi); 4970 pri = M_WME_GETAC(bf->bf_m); 4971 if (pri >= WME_AC_VO) 4972 ic->ic_wme.wme_hipri_traffic++; 4973 ni->ni_inact = ni->ni_inact_reload; 4974 } else { 4975 if (ts->ts_status & HAL_TXERR_XRETRY) 4976 sc->sc_stats.ast_tx_xretries++; 4977 if (ts->ts_status & HAL_TXERR_FIFO) 4978 sc->sc_stats.ast_tx_fifoerr++; 4979 if (ts->ts_status & HAL_TXERR_FILT) 4980 sc->sc_stats.ast_tx_filtered++; 4981 if (bf->bf_m->m_flags & M_FF) 4982 sc->sc_stats.ast_ff_txerr++; 4983 } 4984 sr = ts->ts_shortretry; 4985 lr = ts->ts_longretry; 4986 sc->sc_stats.ast_tx_shortretry += sr; 4987 sc->sc_stats.ast_tx_longretry += lr; 4988 /* 4989 * Hand the descriptor to the rate control algorithm. 4990 */ 4991 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4992 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) { 4993 /* 4994 * If frame was ack'd update the last rx time 4995 * used to workaround phantom bmiss interrupts. 4996 */ 4997 if (ts->ts_status == 0) 4998 nacked++; 4999 ath_rate_tx_complete(sc, an, bf); 5000 } 5001 /* 5002 * Do any tx complete callback. Note this must 5003 * be done before releasing the node reference. 5004 */ 5005 if (bf->bf_m->m_flags & M_TXCB) 5006 ieee80211_process_callback(ni, bf->bf_m, 5007 ts->ts_status); 5008 /* 5009 * Reclaim reference to node. 5010 * 5011 * NB: the node may be reclaimed here if, for example 5012 * this is a DEAUTH message that was sent and the 5013 * node was timed out due to inactivity. 5014 */ 5015 ieee80211_free_node(ni); 5016 } 5017 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 5018 BUS_DMASYNC_POSTWRITE); 5019 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 5020 5021 m_freem(bf->bf_m); 5022 bf->bf_m = NULL; 5023 bf->bf_node = NULL; 5024 5025 ATH_TXBUF_LOCK(sc); 5026 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 5027 ATH_TXBUF_UNLOCK(sc); 5028 } 5029 /* 5030 * Flush fast-frame staging queue when traffic slows. 5031 */ 5032 if (txq->axq_depth <= 1) 5033 ath_ff_stageq_flush(sc, txq, ath_ff_always); 5034 return nacked; 5035 } 5036 5037 static __inline int 5038 txqactive(struct ath_hal *ah, int qnum) 5039 { 5040 u_int32_t txqs = 1<<qnum; 5041 ath_hal_gettxintrtxqs(ah, &txqs); 5042 return (txqs & (1<<qnum)); 5043 } 5044 5045 /* 5046 * Deferred processing of transmit interrupt; special-cased 5047 * for a single hardware transmit queue (e.g. 5210 and 5211). 5048 */ 5049 static void 5050 ath_tx_proc_q0(void *arg, int npending) 5051 { 5052 struct ath_softc *sc = arg; 5053 struct ifnet *ifp = sc->sc_ifp; 5054 5055 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0])) 5056 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 5057 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 5058 ath_tx_processq(sc, sc->sc_cabq); 5059 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5060 ifp->if_timer = 0; 5061 5062 if (sc->sc_softled) 5063 ath_led_event(sc, ATH_LED_TX); 5064 5065 ath_start(ifp); 5066 } 5067 5068 /* 5069 * Deferred processing of transmit interrupt; special-cased 5070 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 5071 */ 5072 static void 5073 ath_tx_proc_q0123(void *arg, int npending) 5074 { 5075 struct ath_softc *sc = arg; 5076 struct ifnet *ifp = sc->sc_ifp; 5077 int nacked; 5078 5079 /* 5080 * Process each active queue. 5081 */ 5082 nacked = 0; 5083 if (txqactive(sc->sc_ah, 0)) 5084 nacked += ath_tx_processq(sc, &sc->sc_txq[0]); 5085 if (txqactive(sc->sc_ah, 1)) 5086 nacked += ath_tx_processq(sc, &sc->sc_txq[1]); 5087 if (txqactive(sc->sc_ah, 2)) 5088 nacked += ath_tx_processq(sc, &sc->sc_txq[2]); 5089 if (txqactive(sc->sc_ah, 3)) 5090 nacked += ath_tx_processq(sc, &sc->sc_txq[3]); 5091 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 5092 ath_tx_processq(sc, sc->sc_cabq); 5093 if (nacked) 5094 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 5095 5096 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5097 ifp->if_timer = 0; 5098 5099 if (sc->sc_softled) 5100 ath_led_event(sc, ATH_LED_TX); 5101 5102 ath_start(ifp); 5103 } 5104 5105 /* 5106 * Deferred processing of transmit interrupt. 5107 */ 5108 static void 5109 ath_tx_proc(void *arg, int npending) 5110 { 5111 struct ath_softc *sc = arg; 5112 struct ifnet *ifp = sc->sc_ifp; 5113 int i, nacked; 5114 5115 /* 5116 * Process each active queue. 5117 */ 5118 nacked = 0; 5119 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5120 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i)) 5121 nacked += ath_tx_processq(sc, &sc->sc_txq[i]); 5122 if (nacked) 5123 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 5124 5125 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5126 ifp->if_timer = 0; 5127 5128 if (sc->sc_softled) 5129 ath_led_event(sc, ATH_LED_TX); 5130 5131 ath_start(ifp); 5132 } 5133 5134 static void 5135 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5136 { 5137 #ifdef ATH_DEBUG 5138 struct ath_hal *ah = sc->sc_ah; 5139 #endif 5140 struct ieee80211_node *ni; 5141 struct ath_buf *bf; 5142 u_int ix; 5143 5144 /* 5145 * NB: this assumes output has been stopped and 5146 * we do not need to block ath_tx_tasklet 5147 */ 5148 for (ix = 0;; ix++) { 5149 ATH_TXQ_LOCK(txq); 5150 bf = STAILQ_FIRST(&txq->axq_q); 5151 if (bf == NULL) { 5152 txq->axq_link = NULL; 5153 ATH_TXQ_UNLOCK(txq); 5154 break; 5155 } 5156 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 5157 ATH_TXQ_UNLOCK(txq); 5158 #ifdef ATH_DEBUG 5159 if (sc->sc_debug & ATH_DEBUG_RESET) { 5160 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5161 5162 ath_printtxbuf(bf, txq->axq_qnum, ix, 5163 ath_hal_txprocdesc(ah, bf->bf_desc, 5164 &bf->bf_status.ds_txstat) == HAL_OK); 5165 ieee80211_dump_pkt(ic, mtod(bf->bf_m, caddr_t), 5166 bf->bf_m->m_len, 0, -1); 5167 } 5168 #endif /* ATH_DEBUG */ 5169 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 5170 ni = bf->bf_node; 5171 bf->bf_node = NULL; 5172 if (ni != NULL) { 5173 /* 5174 * Do any callback and reclaim the node reference. 5175 */ 5176 if (bf->bf_m->m_flags & M_TXCB) 5177 ieee80211_process_callback(ni, bf->bf_m, -1); 5178 ieee80211_free_node(ni); 5179 } 5180 m_freem(bf->bf_m); 5181 bf->bf_m = NULL; 5182 5183 ATH_TXBUF_LOCK(sc); 5184 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 5185 ATH_TXBUF_UNLOCK(sc); 5186 } 5187 } 5188 5189 static void 5190 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5191 { 5192 struct ath_hal *ah = sc->sc_ah; 5193 5194 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5195 __func__, txq->axq_qnum, 5196 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5197 txq->axq_link); 5198 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5199 } 5200 5201 /* 5202 * Drain the transmit queues and reclaim resources. 5203 */ 5204 static void 5205 ath_draintxq(struct ath_softc *sc) 5206 { 5207 struct ath_hal *ah = sc->sc_ah; 5208 struct ifnet *ifp = sc->sc_ifp; 5209 int i; 5210 5211 /* XXX return value */ 5212 if (!sc->sc_invalid) { 5213 /* don't touch the hardware if marked invalid */ 5214 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5215 __func__, sc->sc_bhalq, 5216 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5217 NULL); 5218 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5219 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5220 if (ATH_TXQ_SETUP(sc, i)) 5221 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5222 } 5223 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5224 if (ATH_TXQ_SETUP(sc, i)) 5225 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5226 #ifdef ATH_DEBUG 5227 if (sc->sc_debug & ATH_DEBUG_RESET) { 5228 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf); 5229 if (bf != NULL && bf->bf_m != NULL) { 5230 ath_printtxbuf(bf, sc->sc_bhalq, 0, 5231 ath_hal_txprocdesc(ah, bf->bf_desc, 5232 &bf->bf_status.ds_txstat) == HAL_OK); 5233 ieee80211_dump_pkt(ifp->if_l2com, mtod(bf->bf_m, caddr_t), 5234 bf->bf_m->m_len, 0, -1); 5235 } 5236 } 5237 #endif /* ATH_DEBUG */ 5238 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5239 ifp->if_timer = 0; 5240 } 5241 5242 /* 5243 * Disable the receive h/w in preparation for a reset. 5244 */ 5245 static void 5246 ath_stoprecv(struct ath_softc *sc) 5247 { 5248 #define PA2DESC(_sc, _pa) \ 5249 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 5250 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 5251 struct ath_hal *ah = sc->sc_ah; 5252 5253 ath_hal_stoppcurecv(ah); /* disable PCU */ 5254 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 5255 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 5256 DELAY(3000); /* 3ms is long enough for 1 frame */ 5257 #ifdef ATH_DEBUG 5258 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 5259 struct ath_buf *bf; 5260 u_int ix; 5261 5262 printf("%s: rx queue %p, link %p\n", __func__, 5263 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 5264 ix = 0; 5265 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5266 struct ath_desc *ds = bf->bf_desc; 5267 struct ath_rx_status *rs = &bf->bf_status.ds_rxstat; 5268 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 5269 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 5270 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 5271 ath_printrxbuf(bf, ix, status == HAL_OK); 5272 ix++; 5273 } 5274 } 5275 #endif 5276 if (sc->sc_rxpending != NULL) { 5277 m_freem(sc->sc_rxpending); 5278 sc->sc_rxpending = NULL; 5279 } 5280 sc->sc_rxlink = NULL; /* just in case */ 5281 #undef PA2DESC 5282 } 5283 5284 /* 5285 * Enable the receive h/w following a reset. 5286 */ 5287 static int 5288 ath_startrecv(struct ath_softc *sc) 5289 { 5290 struct ath_hal *ah = sc->sc_ah; 5291 struct ath_buf *bf; 5292 5293 sc->sc_rxlink = NULL; 5294 sc->sc_rxpending = NULL; 5295 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5296 int error = ath_rxbuf_init(sc, bf); 5297 if (error != 0) { 5298 DPRINTF(sc, ATH_DEBUG_RECV, 5299 "%s: ath_rxbuf_init failed %d\n", 5300 __func__, error); 5301 return error; 5302 } 5303 } 5304 5305 bf = STAILQ_FIRST(&sc->sc_rxbuf); 5306 ath_hal_putrxbuf(ah, bf->bf_daddr); 5307 ath_hal_rxena(ah); /* enable recv descriptors */ 5308 ath_mode_init(sc); /* set filters, etc. */ 5309 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 5310 return 0; 5311 } 5312 5313 /* 5314 * Update internal state after a channel change. 5315 */ 5316 static void 5317 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5318 { 5319 enum ieee80211_phymode mode; 5320 5321 /* 5322 * Change channels and update the h/w rate map 5323 * if we're switching; e.g. 11a to 11b/g. 5324 */ 5325 if (IEEE80211_IS_CHAN_HALF(chan)) 5326 mode = IEEE80211_MODE_HALF; 5327 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 5328 mode = IEEE80211_MODE_QUARTER; 5329 else 5330 mode = ieee80211_chan2mode(chan); 5331 if (mode != sc->sc_curmode) 5332 ath_setcurmode(sc, mode); 5333 5334 sc->sc_rx_th.wr_chan_flags = htole32(chan->ic_flags); 5335 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags; 5336 sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq); 5337 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq; 5338 sc->sc_rx_th.wr_chan_ieee = chan->ic_ieee; 5339 sc->sc_tx_th.wt_chan_ieee = sc->sc_rx_th.wr_chan_ieee; 5340 sc->sc_rx_th.wr_chan_maxpow = chan->ic_maxregpower; 5341 sc->sc_tx_th.wt_chan_maxpow = sc->sc_rx_th.wr_chan_maxpow; 5342 } 5343 5344 /* 5345 * Set/change channels. If the channel is really being changed, 5346 * it's done by reseting the chip. To accomplish this we must 5347 * first cleanup any pending DMA, then restart stuff after a la 5348 * ath_init. 5349 */ 5350 static int 5351 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5352 { 5353 struct ifnet *ifp = sc->sc_ifp; 5354 struct ieee80211com *ic = ifp->if_l2com; 5355 struct ath_hal *ah = sc->sc_ah; 5356 HAL_CHANNEL hchan; 5357 5358 /* 5359 * Convert to a HAL channel description with 5360 * the flags constrained to reflect the current 5361 * operating mode. 5362 */ 5363 ath_mapchan(&hchan, chan); 5364 5365 DPRINTF(sc, ATH_DEBUG_RESET, 5366 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n", 5367 __func__, 5368 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel, 5369 sc->sc_curchan.channelFlags), 5370 sc->sc_curchan.channel, sc->sc_curchan.channelFlags, 5371 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags), 5372 hchan.channel, hchan.channelFlags); 5373 if (hchan.channel != sc->sc_curchan.channel || 5374 hchan.channelFlags != sc->sc_curchan.channelFlags) { 5375 HAL_STATUS status; 5376 5377 /* 5378 * To switch channels clear any pending DMA operations; 5379 * wait long enough for the RX fifo to drain, reset the 5380 * hardware at the new frequency, and then re-enable 5381 * the relevant bits of the h/w. 5382 */ 5383 ath_hal_intrset(ah, 0); /* disable interrupts */ 5384 ath_draintxq(sc); /* clear pending tx frames */ 5385 ath_stoprecv(sc); /* turn off frame recv */ 5386 if (!ath_hal_reset(ah, sc->sc_opmode, &hchan, AH_TRUE, &status)) { 5387 if_printf(ifp, "%s: unable to reset " 5388 "channel %u (%u Mhz, flags 0x%x hal flags 0x%x), " 5389 "hal status %u\n", __func__, 5390 ieee80211_chan2ieee(ic, chan), chan->ic_freq, 5391 chan->ic_flags, hchan.channelFlags, status); 5392 return EIO; 5393 } 5394 sc->sc_curchan = hchan; 5395 sc->sc_diversity = ath_hal_getdiversity(ah); 5396 sc->sc_calinterval = 1; 5397 sc->sc_caltries = 0; 5398 5399 /* 5400 * Re-enable rx framework. 5401 */ 5402 if (ath_startrecv(sc) != 0) { 5403 if_printf(ifp, "%s: unable to restart recv logic\n", 5404 __func__); 5405 return EIO; 5406 } 5407 5408 /* 5409 * Change channels and update the h/w rate map 5410 * if we're switching; e.g. 11a to 11b/g. 5411 */ 5412 ath_chan_change(sc, chan); 5413 5414 /* 5415 * Re-enable interrupts. 5416 */ 5417 ath_hal_intrset(ah, sc->sc_imask); 5418 } 5419 return 0; 5420 } 5421 5422 /* 5423 * Periodically recalibrate the PHY to account 5424 * for temperature/environment changes. 5425 */ 5426 static void 5427 ath_calibrate(void *arg) 5428 { 5429 struct ath_softc *sc = arg; 5430 struct ath_hal *ah = sc->sc_ah; 5431 HAL_BOOL iqCalDone; 5432 5433 sc->sc_stats.ast_per_cal++; 5434 5435 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5436 /* 5437 * Rfgain is out of bounds, reset the chip 5438 * to load new gain values. 5439 */ 5440 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5441 "%s: rfgain change\n", __func__); 5442 sc->sc_stats.ast_per_rfgain++; 5443 ath_reset(sc->sc_ifp); 5444 } 5445 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) { 5446 DPRINTF(sc, ATH_DEBUG_ANY, 5447 "%s: calibration of channel %u failed\n", 5448 __func__, sc->sc_curchan.channel); 5449 sc->sc_stats.ast_per_calfail++; 5450 } 5451 /* 5452 * Calibrate noise floor data again in case of change. 5453 */ 5454 ath_hal_process_noisefloor(ah); 5455 /* 5456 * Poll more frequently when the IQ calibration is in 5457 * progress to speedup loading the final settings. 5458 * We temper this aggressive polling with an exponential 5459 * back off after 4 tries up to ath_calinterval. 5460 */ 5461 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) { 5462 sc->sc_caltries = 0; 5463 sc->sc_calinterval = ath_calinterval; 5464 } else if (sc->sc_caltries > 4) { 5465 sc->sc_caltries = 0; 5466 sc->sc_calinterval <<= 1; 5467 if (sc->sc_calinterval > ath_calinterval) 5468 sc->sc_calinterval = ath_calinterval; 5469 } 5470 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval, 5471 ("bad calibration interval %u", sc->sc_calinterval)); 5472 5473 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5474 "%s: next +%u (%siqCalDone tries %u)\n", __func__, 5475 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries); 5476 sc->sc_caltries++; 5477 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 5478 ath_calibrate, sc); 5479 } 5480 5481 static void 5482 ath_scan_start(struct ieee80211com *ic) 5483 { 5484 struct ifnet *ifp = ic->ic_ifp; 5485 struct ath_softc *sc = ifp->if_softc; 5486 struct ath_hal *ah = sc->sc_ah; 5487 u_int32_t rfilt; 5488 5489 /* XXX calibration timer? */ 5490 5491 sc->sc_scanning = 1; 5492 sc->sc_syncbeacon = 0; 5493 rfilt = ath_calcrxfilter(sc); 5494 ath_hal_setrxfilter(ah, rfilt); 5495 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5496 5497 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5498 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5499 } 5500 5501 static void 5502 ath_scan_end(struct ieee80211com *ic) 5503 { 5504 struct ifnet *ifp = ic->ic_ifp; 5505 struct ath_softc *sc = ifp->if_softc; 5506 struct ath_hal *ah = sc->sc_ah; 5507 u_int32_t rfilt; 5508 5509 sc->sc_scanning = 0; 5510 rfilt = ath_calcrxfilter(sc); 5511 ath_hal_setrxfilter(ah, rfilt); 5512 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5513 5514 ath_hal_process_noisefloor(ah); 5515 5516 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5517 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5518 sc->sc_curaid); 5519 } 5520 5521 static void 5522 ath_set_channel(struct ieee80211com *ic) 5523 { 5524 struct ifnet *ifp = ic->ic_ifp; 5525 struct ath_softc *sc = ifp->if_softc; 5526 5527 (void) ath_chan_set(sc, ic->ic_curchan); 5528 /* 5529 * If we are returning to our bss channel then mark state 5530 * so the next recv'd beacon's tsf will be used to sync the 5531 * beacon timers. Note that since we only hear beacons in 5532 * sta/ibss mode this has no effect in other operating modes. 5533 */ 5534 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5535 sc->sc_syncbeacon = 1; 5536 } 5537 5538 /* 5539 * Walk the vap list and check if there any vap's in RUN state. 5540 */ 5541 static int 5542 ath_isanyrunningvaps(struct ieee80211vap *this) 5543 { 5544 struct ieee80211com *ic = this->iv_ic; 5545 struct ieee80211vap *vap; 5546 5547 IEEE80211_LOCK_ASSERT(ic); 5548 5549 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5550 if (vap != this && vap->iv_state == IEEE80211_S_RUN) 5551 return 1; 5552 } 5553 return 0; 5554 } 5555 5556 static int 5557 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5558 { 5559 struct ieee80211com *ic = vap->iv_ic; 5560 struct ath_softc *sc = ic->ic_ifp->if_softc; 5561 struct ath_vap *avp = ATH_VAP(vap); 5562 struct ath_hal *ah = sc->sc_ah; 5563 struct ieee80211_node *ni = NULL; 5564 int i, error, stamode; 5565 u_int32_t rfilt; 5566 static const HAL_LED_STATE leds[] = { 5567 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5568 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5569 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5570 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5571 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5572 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5573 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5574 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5575 }; 5576 5577 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5578 ieee80211_state_name[vap->iv_state], 5579 ieee80211_state_name[nstate]); 5580 5581 callout_stop(&sc->sc_cal_ch); 5582 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5583 5584 if (nstate == IEEE80211_S_SCAN) { 5585 /* 5586 * Scanning: turn off beacon miss and don't beacon. 5587 * Mark beacon state so when we reach RUN state we'll 5588 * [re]setup beacons. Unblock the task q thread so 5589 * deferred interrupt processing is done. 5590 */ 5591 ath_hal_intrset(ah, 5592 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5593 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5594 sc->sc_beacons = 0; 5595 taskqueue_unblock(sc->sc_tq); 5596 } 5597 5598 ni = vap->iv_bss; 5599 rfilt = ath_calcrxfilter(sc); 5600 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5601 vap->iv_opmode == IEEE80211_M_IBSS); 5602 if (stamode && nstate == IEEE80211_S_RUN) { 5603 sc->sc_curaid = ni->ni_associd; 5604 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5605 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5606 } 5607 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5608 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5609 ath_hal_setrxfilter(ah, rfilt); 5610 5611 /* XXX is this to restore keycache on resume? */ 5612 if (vap->iv_opmode != IEEE80211_M_STA && 5613 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5614 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5615 if (ath_hal_keyisvalid(ah, i)) 5616 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5617 } 5618 /* 5619 * Notify the rate control algorithm so rates 5620 * are setup should ath_beacon_alloc be called. 5621 */ 5622 ath_rate_newstate(vap, nstate); 5623 5624 /* 5625 * Invoke the parent method to do net80211 work. 5626 */ 5627 error = avp->av_newstate(vap, nstate, arg); 5628 if (error != 0) 5629 goto bad; 5630 5631 if (nstate == IEEE80211_S_RUN) { 5632 /* NB: collect bss node again, it may have changed */ 5633 ni = vap->iv_bss; 5634 5635 DPRINTF(sc, ATH_DEBUG_STATE, 5636 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5637 "capinfo 0x%04x chan %d\n", __func__, 5638 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5639 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5640 5641 switch (vap->iv_opmode) { 5642 case IEEE80211_M_HOSTAP: 5643 case IEEE80211_M_IBSS: 5644 /* 5645 * Allocate and setup the beacon frame. 5646 * 5647 * Stop any previous beacon DMA. This may be 5648 * necessary, for example, when an ibss merge 5649 * causes reconfiguration; there will be a state 5650 * transition from RUN->RUN that means we may 5651 * be called with beacon transmission active. 5652 */ 5653 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5654 5655 error = ath_beacon_alloc(sc, ni); 5656 if (error != 0) 5657 goto bad; 5658 /* 5659 * If joining an adhoc network defer beacon timer 5660 * configuration to the next beacon frame so we 5661 * have a current TSF to use. Otherwise we're 5662 * starting an ibss/bss so there's no need to delay; 5663 * if this is the first vap moving to RUN state, then 5664 * beacon state needs to be [re]configured. 5665 */ 5666 if (vap->iv_opmode == IEEE80211_M_IBSS && 5667 ni->ni_tstamp.tsf != 0) { 5668 sc->sc_syncbeacon = 1; 5669 } else if (!sc->sc_beacons) { 5670 ath_beacon_config(sc, vap); 5671 sc->sc_beacons = 1; 5672 } 5673 break; 5674 case IEEE80211_M_STA: 5675 /* 5676 * Fakeup since we're not called by net80211. 5677 */ 5678 ath_newassoc(ni, 1); 5679 /* 5680 * Defer beacon timer configuration to the next 5681 * beacon frame so we have a current TSF to use 5682 * (any TSF collected when scanning is likely old). 5683 */ 5684 sc->sc_syncbeacon = 1; 5685 break; 5686 case IEEE80211_M_MONITOR: 5687 /* 5688 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5689 * transitions so we must re-enable interrupts here to 5690 * handle the case of a single monitor mode vap. 5691 */ 5692 ath_hal_intrset(ah, sc->sc_imask); 5693 break; 5694 case IEEE80211_M_WDS: 5695 break; 5696 default: 5697 break; 5698 } 5699 /* 5700 * Let the hal process statistics collected during a 5701 * scan so it can provide calibrated noise floor data. 5702 */ 5703 ath_hal_process_noisefloor(ah); 5704 /* 5705 * Reset rssi stats; maybe not the best place... 5706 */ 5707 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5708 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5709 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5710 /* 5711 * Finally, start any timers and the task q thread 5712 * (in case we didn't go through SCAN state). 5713 */ 5714 if (sc->sc_calinterval != 0) { 5715 /* start periodic recalibration timer */ 5716 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 5717 ath_calibrate, sc); 5718 } 5719 taskqueue_unblock(sc->sc_tq); 5720 } else if (nstate == IEEE80211_S_INIT) { 5721 /* 5722 * If there are no vaps left in RUN state then 5723 * shutdown host/driver operation: 5724 * o disable interrupts 5725 * o disable the task queue thread 5726 * o mark beacon processing as stopped 5727 */ 5728 if (!ath_isanyrunningvaps(vap)) { 5729 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5730 /* disable interrupts */ 5731 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5732 taskqueue_block(sc->sc_tq); 5733 sc->sc_beacons = 0; 5734 } 5735 } 5736 bad: 5737 return error; 5738 } 5739 5740 /* 5741 * Allocate a key cache slot to the station so we can 5742 * setup a mapping from key index to node. The key cache 5743 * slot is needed for managing antenna state and for 5744 * compression when stations do not use crypto. We do 5745 * it uniliaterally here; if crypto is employed this slot 5746 * will be reassigned. 5747 */ 5748 static void 5749 ath_setup_stationkey(struct ieee80211_node *ni) 5750 { 5751 struct ieee80211vap *vap = ni->ni_vap; 5752 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5753 ieee80211_keyix keyix, rxkeyix; 5754 5755 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5756 /* 5757 * Key cache is full; we'll fall back to doing 5758 * the more expensive lookup in software. Note 5759 * this also means no h/w compression. 5760 */ 5761 /* XXX msg+statistic */ 5762 } else { 5763 /* XXX locking? */ 5764 ni->ni_ucastkey.wk_keyix = keyix; 5765 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5766 /* NB: this will create a pass-thru key entry */ 5767 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, vap->iv_bss); 5768 } 5769 } 5770 5771 /* 5772 * Setup driver-specific state for a newly associated node. 5773 * Note that we're called also on a re-associate, the isnew 5774 * param tells us if this is the first time or not. 5775 */ 5776 static void 5777 ath_newassoc(struct ieee80211_node *ni, int isnew) 5778 { 5779 struct ath_node *an = ATH_NODE(ni); 5780 struct ieee80211vap *vap = ni->ni_vap; 5781 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5782 const struct ieee80211_txparam *tp; 5783 enum ieee80211_phymode mode; 5784 5785 /* 5786 * Deduce netband of station to simplify setting up xmit 5787 * parameters. Note this allows us to assign different 5788 * parameters to each station in a mixed bss (b/g, n/[abg]). 5789 */ 5790 if (ni->ni_flags & IEEE80211_NODE_HT) { 5791 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 5792 mode = IEEE80211_MODE_11NA; 5793 else 5794 mode = IEEE80211_MODE_11NG; 5795 } else if (IEEE80211_IS_CHAN_A(ni->ni_chan)) 5796 mode = IEEE80211_MODE_11A; 5797 else if (ni->ni_flags & IEEE80211_NODE_ERP) 5798 mode = IEEE80211_MODE_11G; 5799 else 5800 mode = IEEE80211_MODE_11B; 5801 tp = &vap->iv_txparms[mode]; 5802 an->an_tp = tp; 5803 an->an_mcastrix = ath_tx_findrix(sc->sc_rates[mode], tp->mcastrate); 5804 an->an_mgmtrix = ath_tx_findrix(sc->sc_rates[mode], tp->mgmtrate); 5805 5806 ath_rate_newassoc(sc, an, isnew); 5807 if (isnew && 5808 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5809 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5810 ath_setup_stationkey(ni); 5811 } 5812 5813 static int 5814 getchannels(struct ath_softc *sc, int *nchans, struct ieee80211_channel chans[], 5815 int cc, int ecm, int outdoor) 5816 { 5817 struct ath_hal *ah = sc->sc_ah; 5818 HAL_CHANNEL *halchans; 5819 int i, nhalchans, error; 5820 5821 halchans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 5822 M_TEMP, M_NOWAIT | M_ZERO); 5823 if (halchans == NULL) { 5824 device_printf(sc->sc_dev, 5825 "%s: unable to allocate channel table\n", __func__); 5826 return ENOMEM; 5827 } 5828 error = 0; 5829 if (!ath_hal_init_channels(ah, halchans, IEEE80211_CHAN_MAX, &nhalchans, 5830 NULL, 0, NULL, CTRY_DEFAULT, HAL_MODE_ALL, AH_FALSE, AH_TRUE)) { 5831 error = EINVAL; 5832 goto done; 5833 } 5834 if (nchans == NULL) /* no table requested */ 5835 goto done; 5836 5837 /* 5838 * Convert HAL channels to ieee80211 ones. 5839 */ 5840 for (i = 0; i < nhalchans; i++) { 5841 HAL_CHANNEL *c = &halchans[i]; 5842 struct ieee80211_channel *ichan = &chans[i]; 5843 5844 ichan->ic_ieee = ath_hal_mhz2ieee(ah, c->channel, 5845 c->channelFlags); 5846 if (bootverbose) 5847 device_printf(sc->sc_dev, "hal channel %u/%x -> %u " 5848 "maxpow %d minpow %d maxreg %d\n", 5849 c->channel, c->channelFlags, ichan->ic_ieee, 5850 c->maxTxPower, c->minTxPower, c->maxRegTxPower); 5851 ichan->ic_freq = c->channel; 5852 5853 if ((c->channelFlags & CHANNEL_PUREG) == CHANNEL_PUREG) { 5854 /* 5855 * Except for AR5211, HAL's PUREG means mixed 5856 * DSSS and OFDM. 5857 */ 5858 ichan->ic_flags = c->channelFlags &~ CHANNEL_PUREG; 5859 ichan->ic_flags |= IEEE80211_CHAN_G; 5860 } else { 5861 ichan->ic_flags = c->channelFlags; 5862 } 5863 5864 if (ath_hal_isgsmsku(ah)) { 5865 /* remap to true frequencies */ 5866 ichan->ic_freq = 922 + (2422 - ichan->ic_freq); 5867 ichan->ic_flags |= IEEE80211_CHAN_GSM; 5868 ichan->ic_ieee = ieee80211_mhz2ieee(ichan->ic_freq, 5869 ichan->ic_flags); 5870 } 5871 ichan->ic_maxregpower = c->maxRegTxPower; /* dBm */ 5872 /* XXX: old hal's don't provide maxTxPower for some parts */ 5873 ichan->ic_maxpower = (c->maxTxPower != 0) ? 5874 c->maxTxPower : 2*c->maxRegTxPower; /* 1/2 dBm */ 5875 ichan->ic_minpower = c->minTxPower; /* 1/2 dBm */ 5876 } 5877 *nchans = nhalchans; 5878 done: 5879 free(halchans, M_TEMP); 5880 return error; 5881 } 5882 5883 static int 5884 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, 5885 int nchans, struct ieee80211_channel chans[]) 5886 { 5887 struct ath_softc *sc = ic->ic_ifp->if_softc; 5888 struct ath_hal *ah = sc->sc_ah; 5889 u_int32_t ord; 5890 int error; 5891 5892 (void) ath_hal_getregdomain(ah, &ord); 5893 /* XXX map sku->rd */ 5894 ath_hal_setregdomain(ah, rd->regdomain); 5895 error = getchannels(sc, &nchans, chans, rd->country, 5896 rd->ecm ? AH_TRUE : AH_FALSE, 5897 rd->location == 'O' ? AH_TRUE : AH_FALSE); 5898 if (error != 0) { 5899 /* 5900 * Restore previous state. 5901 */ 5902 ath_hal_setregdomain(ah, ord); 5903 (void) getchannels(sc, NULL, NULL, ic->ic_regdomain.country, 5904 ic->ic_regdomain.ecm ? AH_TRUE : AH_FALSE, 5905 ic->ic_regdomain.location == 'O' ? AH_TRUE : AH_FALSE); 5906 return error; 5907 } 5908 return 0; 5909 } 5910 5911 static void 5912 ath_getradiocaps(struct ieee80211com *ic, 5913 int *nchans, struct ieee80211_channel chans[]) 5914 { 5915 struct ath_softc *sc = ic->ic_ifp->if_softc; 5916 struct ath_hal *ah = sc->sc_ah; 5917 u_int32_t ord; 5918 5919 (void) ath_hal_getregdomain(ah, &ord); 5920 ath_hal_setregdomain(ah, 0); 5921 /* XXX not quite right but close enough for now */ 5922 getchannels(sc, nchans, chans, CTRY_DEBUG, AH_TRUE, AH_FALSE); 5923 ath_hal_setregdomain(ah, ord); 5924 } 5925 5926 static int 5927 ath_mapregdomain(struct ath_softc *sc, u_int32_t rd) 5928 { 5929 /* map Atheros rd's to SKU's */ 5930 return rd; 5931 } 5932 5933 static int 5934 ath_getchannels(struct ath_softc *sc) 5935 { 5936 struct ifnet *ifp = sc->sc_ifp; 5937 struct ieee80211com *ic = ifp->if_l2com; 5938 struct ath_hal *ah = sc->sc_ah; 5939 u_int32_t rd, cc; 5940 int error; 5941 5942 /* 5943 * Convert HAL channels to ieee80211 ones. 5944 */ 5945 error = getchannels(sc, &ic->ic_nchans, ic->ic_channels, 5946 CTRY_DEFAULT, AH_TRUE, AH_FALSE); 5947 (void) ath_hal_getregdomain(ah, &rd); 5948 ath_hal_getcountrycode(ah, &cc); /* NB: cannot fail */ 5949 if (error) { 5950 if_printf(ifp, "%s: unable to collect channel list from hal, " 5951 "error %d\n", __func__, error); 5952 if (error == EINVAL) { 5953 if_printf(ifp, "%s: regdomain likely %u country code %u\n", 5954 __func__, rd, cc); 5955 } 5956 return error; 5957 } 5958 ic->ic_regdomain.regdomain = ath_mapregdomain(sc, rd); 5959 ic->ic_regdomain.country = cc; 5960 ic->ic_regdomain.ecm = 1; 5961 ic->ic_regdomain.location = 'I'; 5962 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5963 ic->ic_regdomain.isocc[1] = ' '; 5964 return 0; 5965 } 5966 5967 static void 5968 ath_led_done(void *arg) 5969 { 5970 struct ath_softc *sc = arg; 5971 5972 sc->sc_blinking = 0; 5973 } 5974 5975 /* 5976 * Turn the LED off: flip the pin and then set a timer so no 5977 * update will happen for the specified duration. 5978 */ 5979 static void 5980 ath_led_off(void *arg) 5981 { 5982 struct ath_softc *sc = arg; 5983 5984 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 5985 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 5986 } 5987 5988 /* 5989 * Blink the LED according to the specified on/off times. 5990 */ 5991 static void 5992 ath_led_blink(struct ath_softc *sc, int on, int off) 5993 { 5994 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 5995 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 5996 sc->sc_blinking = 1; 5997 sc->sc_ledoff = off; 5998 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 5999 } 6000 6001 static void 6002 ath_led_event(struct ath_softc *sc, int event) 6003 { 6004 6005 sc->sc_ledevent = ticks; /* time of last event */ 6006 if (sc->sc_blinking) /* don't interrupt active blink */ 6007 return; 6008 switch (event) { 6009 case ATH_LED_POLL: 6010 ath_led_blink(sc, sc->sc_hwmap[0].ledon, 6011 sc->sc_hwmap[0].ledoff); 6012 break; 6013 case ATH_LED_TX: 6014 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon, 6015 sc->sc_hwmap[sc->sc_txrate].ledoff); 6016 break; 6017 case ATH_LED_RX: 6018 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon, 6019 sc->sc_hwmap[sc->sc_rxrate].ledoff); 6020 break; 6021 } 6022 } 6023 6024 static int 6025 ath_rate_setup(struct ath_softc *sc, u_int mode) 6026 { 6027 struct ath_hal *ah = sc->sc_ah; 6028 const HAL_RATE_TABLE *rt; 6029 6030 switch (mode) { 6031 case IEEE80211_MODE_11A: 6032 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6033 break; 6034 case IEEE80211_MODE_HALF: 6035 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6036 break; 6037 case IEEE80211_MODE_QUARTER: 6038 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6039 break; 6040 case IEEE80211_MODE_11B: 6041 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6042 break; 6043 case IEEE80211_MODE_11G: 6044 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6045 break; 6046 case IEEE80211_MODE_TURBO_A: 6047 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6048 #if HAL_ABI_VERSION < 0x07013100 6049 if (rt == NULL) /* XXX bandaid for old hal's */ 6050 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6051 #endif 6052 break; 6053 case IEEE80211_MODE_TURBO_G: 6054 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6055 break; 6056 case IEEE80211_MODE_STURBO_A: 6057 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6058 break; 6059 case IEEE80211_MODE_11NA: 6060 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6061 break; 6062 case IEEE80211_MODE_11NG: 6063 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6064 break; 6065 default: 6066 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6067 __func__, mode); 6068 return 0; 6069 } 6070 sc->sc_rates[mode] = rt; 6071 return (rt != NULL); 6072 } 6073 6074 static void 6075 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6076 { 6077 #define N(a) (sizeof(a)/sizeof(a[0])) 6078 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6079 static const struct { 6080 u_int rate; /* tx/rx 802.11 rate */ 6081 u_int16_t timeOn; /* LED on time (ms) */ 6082 u_int16_t timeOff; /* LED off time (ms) */ 6083 } blinkrates[] = { 6084 { 108, 40, 10 }, 6085 { 96, 44, 11 }, 6086 { 72, 50, 13 }, 6087 { 48, 57, 14 }, 6088 { 36, 67, 16 }, 6089 { 24, 80, 20 }, 6090 { 22, 100, 25 }, 6091 { 18, 133, 34 }, 6092 { 12, 160, 40 }, 6093 { 10, 200, 50 }, 6094 { 6, 240, 58 }, 6095 { 4, 267, 66 }, 6096 { 2, 400, 100 }, 6097 { 0, 500, 130 }, 6098 /* XXX half/quarter rates */ 6099 }; 6100 const HAL_RATE_TABLE *rt; 6101 int i, j; 6102 6103 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6104 rt = sc->sc_rates[mode]; 6105 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6106 for (i = 0; i < rt->rateCount; i++) 6107 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 6108 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6109 for (i = 0; i < 32; i++) { 6110 u_int8_t ix = rt->rateCodeToIndex[i]; 6111 if (ix == 0xff) { 6112 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6113 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6114 continue; 6115 } 6116 sc->sc_hwmap[i].ieeerate = 6117 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL; 6118 if (rt->info[ix].phy == IEEE80211_T_HT) 6119 sc->sc_hwmap[i].ieeerate |= 0x80; /* MCS */ 6120 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6121 if (rt->info[ix].shortPreamble || 6122 rt->info[ix].phy == IEEE80211_T_OFDM) 6123 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6124 /* NB: receive frames include FCS */ 6125 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags | 6126 IEEE80211_RADIOTAP_F_FCS; 6127 /* setup blink rate table to avoid per-packet lookup */ 6128 for (j = 0; j < N(blinkrates)-1; j++) 6129 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6130 break; 6131 /* NB: this uses the last entry if the rate isn't found */ 6132 /* XXX beware of overlow */ 6133 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6134 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6135 } 6136 sc->sc_currates = rt; 6137 sc->sc_curmode = mode; 6138 /* 6139 * All protection frames are transmited at 2Mb/s for 6140 * 11g, otherwise at 1Mb/s. 6141 */ 6142 if (mode == IEEE80211_MODE_11G) 6143 sc->sc_protrix = ath_tx_findrix(rt, 2*2); 6144 else 6145 sc->sc_protrix = ath_tx_findrix(rt, 2*1); 6146 /* NB: caller is responsible for reseting rate control state */ 6147 #undef N 6148 } 6149 6150 #ifdef ATH_DEBUG 6151 static void 6152 ath_printrxbuf(const struct ath_buf *bf, u_int ix, int done) 6153 { 6154 const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat; 6155 const struct ath_desc *ds; 6156 int i; 6157 6158 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 6159 printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n" 6160 " %08x %08x %08x %08x\n", 6161 ix, ds, (const struct ath_desc *)bf->bf_daddr + i, 6162 ds->ds_link, ds->ds_data, 6163 !done ? "" : (rs->rs_status == 0) ? " *" : " !", 6164 ds->ds_ctl0, ds->ds_ctl1, 6165 ds->ds_hw[0], ds->ds_hw[1]); 6166 } 6167 } 6168 6169 static void 6170 ath_printtxbuf(const struct ath_buf *bf, u_int qnum, u_int ix, int done) 6171 { 6172 const struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 6173 const struct ath_desc *ds; 6174 int i; 6175 6176 printf("Q%u[%3u]", qnum, ix); 6177 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 6178 printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n" 6179 " %08x %08x %08x %08x %08x %08x\n", 6180 ds, (const struct ath_desc *)bf->bf_daddr + i, 6181 ds->ds_link, ds->ds_data, bf->bf_flags, 6182 !done ? "" : (ts->ts_status == 0) ? " *" : " !", 6183 ds->ds_ctl0, ds->ds_ctl1, 6184 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]); 6185 } 6186 } 6187 #endif /* ATH_DEBUG */ 6188 6189 static void 6190 ath_watchdog(struct ifnet *ifp) 6191 { 6192 struct ath_softc *sc = ifp->if_softc; 6193 6194 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && !sc->sc_invalid) { 6195 if_printf(ifp, "device timeout\n"); 6196 ath_reset(ifp); 6197 ifp->if_oerrors++; 6198 sc->sc_stats.ast_watchdog++; 6199 } 6200 } 6201 6202 #ifdef ATH_DIAGAPI 6203 /* 6204 * Diagnostic interface to the HAL. This is used by various 6205 * tools to do things like retrieve register contents for 6206 * debugging. The mechanism is intentionally opaque so that 6207 * it can change frequently w/o concern for compatiblity. 6208 */ 6209 static int 6210 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6211 { 6212 struct ath_hal *ah = sc->sc_ah; 6213 u_int id = ad->ad_id & ATH_DIAG_ID; 6214 void *indata = NULL; 6215 void *outdata = NULL; 6216 u_int32_t insize = ad->ad_in_size; 6217 u_int32_t outsize = ad->ad_out_size; 6218 int error = 0; 6219 6220 if (ad->ad_id & ATH_DIAG_IN) { 6221 /* 6222 * Copy in data. 6223 */ 6224 indata = malloc(insize, M_TEMP, M_NOWAIT); 6225 if (indata == NULL) { 6226 error = ENOMEM; 6227 goto bad; 6228 } 6229 error = copyin(ad->ad_in_data, indata, insize); 6230 if (error) 6231 goto bad; 6232 } 6233 if (ad->ad_id & ATH_DIAG_DYN) { 6234 /* 6235 * Allocate a buffer for the results (otherwise the HAL 6236 * returns a pointer to a buffer where we can read the 6237 * results). Note that we depend on the HAL leaving this 6238 * pointer for us to use below in reclaiming the buffer; 6239 * may want to be more defensive. 6240 */ 6241 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6242 if (outdata == NULL) { 6243 error = ENOMEM; 6244 goto bad; 6245 } 6246 } 6247 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6248 if (outsize < ad->ad_out_size) 6249 ad->ad_out_size = outsize; 6250 if (outdata != NULL) 6251 error = copyout(outdata, ad->ad_out_data, 6252 ad->ad_out_size); 6253 } else { 6254 error = EINVAL; 6255 } 6256 bad: 6257 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6258 free(indata, M_TEMP); 6259 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6260 free(outdata, M_TEMP); 6261 return error; 6262 } 6263 #endif /* ATH_DIAGAPI */ 6264 6265 static int 6266 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 6267 { 6268 #define IS_RUNNING(ifp) \ 6269 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 6270 struct ath_softc *sc = ifp->if_softc; 6271 struct ieee80211com *ic = ifp->if_l2com; 6272 struct ifreq *ifr = (struct ifreq *)data; 6273 int error = 0; 6274 6275 ATH_LOCK(sc); 6276 switch (cmd) { 6277 case SIOCSIFFLAGS: 6278 if (IS_RUNNING(ifp)) { 6279 /* 6280 * To avoid rescanning another access point, 6281 * do not call ath_init() here. Instead, 6282 * only reflect promisc mode settings. 6283 */ 6284 ath_mode_init(sc); 6285 } else if (ifp->if_flags & IFF_UP) { 6286 /* 6287 * Beware of being called during attach/detach 6288 * to reset promiscuous mode. In that case we 6289 * will still be marked UP but not RUNNING. 6290 * However trying to re-init the interface 6291 * is the wrong thing to do as we've already 6292 * torn down much of our state. There's 6293 * probably a better way to deal with this. 6294 */ 6295 if (!sc->sc_invalid) 6296 ath_init(sc); /* XXX lose error */ 6297 } else 6298 ath_stop_locked(ifp); 6299 break; 6300 case SIOCADDMULTI: 6301 case SIOCDELMULTI: 6302 /* 6303 * The upper layer has already installed/removed 6304 * the multicast address(es), just recalculate the 6305 * multicast filter for the card. 6306 */ 6307 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 6308 ath_mode_init(sc); 6309 break; 6310 case SIOCGIFMEDIA: 6311 case SIOCSIFMEDIA: 6312 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 6313 break; 6314 case SIOCGATHSTATS: 6315 /* NB: embed these numbers to get a consistent view */ 6316 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 6317 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 6318 #if 0 6319 ieee80211_getsignal(ic, &sc->sc_stats.ast_rx_rssi, 6320 &sc->sc_stats.ast_rx_noise); 6321 #endif 6322 sc->sc_stats.ast_tx_rate = sc->sc_hwmap[sc->sc_txrate].ieeerate; 6323 ATH_UNLOCK(sc); 6324 /* 6325 * NB: Drop the softc lock in case of a page fault; 6326 * we'll accept any potential inconsisentcy in the 6327 * statistics. The alternative is to copy the data 6328 * to a local structure. 6329 */ 6330 return copyout(&sc->sc_stats, 6331 ifr->ifr_data, sizeof (sc->sc_stats)); 6332 #ifdef ATH_DIAGAPI 6333 case SIOCGATHDIAG: 6334 ATH_UNLOCK(sc); 6335 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 6336 ATH_LOCK(sc); 6337 break; 6338 #endif 6339 default: 6340 error = ether_ioctl(ifp, cmd, data); 6341 break; 6342 } 6343 ATH_UNLOCK(sc); 6344 return error; 6345 #undef IS_RUNNING 6346 } 6347 6348 static int 6349 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS) 6350 { 6351 struct ath_softc *sc = arg1; 6352 u_int slottime = ath_hal_getslottime(sc->sc_ah); 6353 int error; 6354 6355 error = sysctl_handle_int(oidp, &slottime, 0, req); 6356 if (error || !req->newptr) 6357 return error; 6358 return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0; 6359 } 6360 6361 static int 6362 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS) 6363 { 6364 struct ath_softc *sc = arg1; 6365 u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah); 6366 int error; 6367 6368 error = sysctl_handle_int(oidp, &acktimeout, 0, req); 6369 if (error || !req->newptr) 6370 return error; 6371 return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0; 6372 } 6373 6374 static int 6375 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS) 6376 { 6377 struct ath_softc *sc = arg1; 6378 u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah); 6379 int error; 6380 6381 error = sysctl_handle_int(oidp, &ctstimeout, 0, req); 6382 if (error || !req->newptr) 6383 return error; 6384 return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0; 6385 } 6386 6387 static int 6388 ath_sysctl_softled(SYSCTL_HANDLER_ARGS) 6389 { 6390 struct ath_softc *sc = arg1; 6391 int softled = sc->sc_softled; 6392 int error; 6393 6394 error = sysctl_handle_int(oidp, &softled, 0, req); 6395 if (error || !req->newptr) 6396 return error; 6397 softled = (softled != 0); 6398 if (softled != sc->sc_softled) { 6399 if (softled) { 6400 /* NB: handle any sc_ledpin change */ 6401 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin); 6402 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, 6403 !sc->sc_ledon); 6404 } 6405 sc->sc_softled = softled; 6406 } 6407 return 0; 6408 } 6409 6410 static int 6411 ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS) 6412 { 6413 struct ath_softc *sc = arg1; 6414 int ledpin = sc->sc_ledpin; 6415 int error; 6416 6417 error = sysctl_handle_int(oidp, &ledpin, 0, req); 6418 if (error || !req->newptr) 6419 return error; 6420 if (ledpin != sc->sc_ledpin) { 6421 sc->sc_ledpin = ledpin; 6422 if (sc->sc_softled) { 6423 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin); 6424 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, 6425 !sc->sc_ledon); 6426 } 6427 } 6428 return 0; 6429 } 6430 6431 static int 6432 ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS) 6433 { 6434 struct ath_softc *sc = arg1; 6435 u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah); 6436 int error; 6437 6438 error = sysctl_handle_int(oidp, &txantenna, 0, req); 6439 if (!error && req->newptr) { 6440 /* XXX assumes 2 antenna ports */ 6441 if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B) 6442 return EINVAL; 6443 ath_hal_setantennaswitch(sc->sc_ah, txantenna); 6444 /* 6445 * NB: with the switch locked this isn't meaningful, 6446 * but set it anyway so things like radiotap get 6447 * consistent info in their data. 6448 */ 6449 sc->sc_txantenna = txantenna; 6450 } 6451 return error; 6452 } 6453 6454 static int 6455 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS) 6456 { 6457 struct ath_softc *sc = arg1; 6458 u_int defantenna = ath_hal_getdefantenna(sc->sc_ah); 6459 int error; 6460 6461 error = sysctl_handle_int(oidp, &defantenna, 0, req); 6462 if (!error && req->newptr) 6463 ath_hal_setdefantenna(sc->sc_ah, defantenna); 6464 return error; 6465 } 6466 6467 static int 6468 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS) 6469 { 6470 struct ath_softc *sc = arg1; 6471 u_int diversity = ath_hal_getdiversity(sc->sc_ah); 6472 int error; 6473 6474 error = sysctl_handle_int(oidp, &diversity, 0, req); 6475 if (error || !req->newptr) 6476 return error; 6477 if (!ath_hal_setdiversity(sc->sc_ah, diversity)) 6478 return EINVAL; 6479 sc->sc_diversity = diversity; 6480 return 0; 6481 } 6482 6483 static int 6484 ath_sysctl_diag(SYSCTL_HANDLER_ARGS) 6485 { 6486 struct ath_softc *sc = arg1; 6487 u_int32_t diag; 6488 int error; 6489 6490 if (!ath_hal_getdiag(sc->sc_ah, &diag)) 6491 return EINVAL; 6492 error = sysctl_handle_int(oidp, &diag, 0, req); 6493 if (error || !req->newptr) 6494 return error; 6495 return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0; 6496 } 6497 6498 static int 6499 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS) 6500 { 6501 struct ath_softc *sc = arg1; 6502 struct ifnet *ifp = sc->sc_ifp; 6503 u_int32_t scale; 6504 int error; 6505 6506 (void) ath_hal_gettpscale(sc->sc_ah, &scale); 6507 error = sysctl_handle_int(oidp, &scale, 0, req); 6508 if (error || !req->newptr) 6509 return error; 6510 return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : 6511 (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0; 6512 } 6513 6514 static int 6515 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS) 6516 { 6517 struct ath_softc *sc = arg1; 6518 u_int tpc = ath_hal_gettpc(sc->sc_ah); 6519 int error; 6520 6521 error = sysctl_handle_int(oidp, &tpc, 0, req); 6522 if (error || !req->newptr) 6523 return error; 6524 return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0; 6525 } 6526 6527 static int 6528 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS) 6529 { 6530 struct ath_softc *sc = arg1; 6531 struct ifnet *ifp = sc->sc_ifp; 6532 struct ath_hal *ah = sc->sc_ah; 6533 u_int rfkill = ath_hal_getrfkill(ah); 6534 int error; 6535 6536 error = sysctl_handle_int(oidp, &rfkill, 0, req); 6537 if (error || !req->newptr) 6538 return error; 6539 if (rfkill == ath_hal_getrfkill(ah)) /* unchanged */ 6540 return 0; 6541 if (!ath_hal_setrfkill(ah, rfkill)) 6542 return EINVAL; 6543 return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0; 6544 } 6545 6546 static int 6547 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS) 6548 { 6549 struct ath_softc *sc = arg1; 6550 u_int rfsilent; 6551 int error; 6552 6553 (void) ath_hal_getrfsilent(sc->sc_ah, &rfsilent); 6554 error = sysctl_handle_int(oidp, &rfsilent, 0, req); 6555 if (error || !req->newptr) 6556 return error; 6557 if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent)) 6558 return EINVAL; 6559 sc->sc_rfsilentpin = rfsilent & 0x1c; 6560 sc->sc_rfsilentpol = (rfsilent & 0x2) != 0; 6561 return 0; 6562 } 6563 6564 static int 6565 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS) 6566 { 6567 struct ath_softc *sc = arg1; 6568 u_int32_t tpack; 6569 int error; 6570 6571 (void) ath_hal_gettpack(sc->sc_ah, &tpack); 6572 error = sysctl_handle_int(oidp, &tpack, 0, req); 6573 if (error || !req->newptr) 6574 return error; 6575 return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0; 6576 } 6577 6578 static int 6579 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS) 6580 { 6581 struct ath_softc *sc = arg1; 6582 u_int32_t tpcts; 6583 int error; 6584 6585 (void) ath_hal_gettpcts(sc->sc_ah, &tpcts); 6586 error = sysctl_handle_int(oidp, &tpcts, 0, req); 6587 if (error || !req->newptr) 6588 return error; 6589 return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0; 6590 } 6591 6592 static void 6593 ath_sysctlattach(struct ath_softc *sc) 6594 { 6595 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 6596 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 6597 struct ath_hal *ah = sc->sc_ah; 6598 6599 #ifdef ATH_DEBUG 6600 sc->sc_debug = ath_debug; 6601 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6602 "debug", CTLFLAG_RW, &sc->sc_debug, 0, 6603 "control debugging printfs"); 6604 #endif 6605 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6606 "slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6607 ath_sysctl_slottime, "I", "802.11 slot time (us)"); 6608 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6609 "acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6610 ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)"); 6611 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6612 "ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6613 ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)"); 6614 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6615 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6616 ath_sysctl_softled, "I", "enable/disable software LED support"); 6617 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6618 "ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6619 ath_sysctl_ledpin, "I", "GPIO pin connected to LED"); 6620 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6621 "ledon", CTLFLAG_RW, &sc->sc_ledon, 0, 6622 "setting to turn LED on"); 6623 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6624 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 6625 "idle time for inactivity LED (ticks)"); 6626 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6627 "txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6628 ath_sysctl_txantenna, "I", "antenna switch"); 6629 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6630 "rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6631 ath_sysctl_rxantenna, "I", "default/rx antenna"); 6632 if (ath_hal_hasdiversity(ah)) 6633 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6634 "diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6635 ath_sysctl_diversity, "I", "antenna diversity"); 6636 sc->sc_txintrperiod = ATH_TXINTR_PERIOD; 6637 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6638 "txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0, 6639 "tx descriptor batching"); 6640 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6641 "diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6642 ath_sysctl_diag, "I", "h/w diagnostic control"); 6643 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6644 "tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6645 ath_sysctl_tpscale, "I", "tx power scaling"); 6646 if (ath_hal_hastpc(ah)) { 6647 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6648 "tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6649 ath_sysctl_tpc, "I", "enable/disable per-packet TPC"); 6650 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6651 "tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6652 ath_sysctl_tpack, "I", "tx power for ack frames"); 6653 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6654 "tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6655 ath_sysctl_tpcts, "I", "tx power for cts frames"); 6656 } 6657 if (ath_hal_hasfastframes(sc->sc_ah)) { 6658 sc->sc_fftxqmin = ATH_FF_TXQMIN; 6659 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6660 "fftxqmin", CTLFLAG_RW, &sc->sc_fftxqmin, 0, 6661 "min frames before fast-frame staging"); 6662 sc->sc_fftxqmax = ATH_FF_TXQMAX; 6663 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6664 "fftxqmax", CTLFLAG_RW, &sc->sc_fftxqmax, 0, 6665 "max queued frames before tail drop"); 6666 } 6667 if (ath_hal_hasrfsilent(ah)) { 6668 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6669 "rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6670 ath_sysctl_rfsilent, "I", "h/w RF silent config"); 6671 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6672 "rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6673 ath_sysctl_rfkill, "I", "enable/disable RF kill switch"); 6674 } 6675 sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC; 6676 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6677 "monpass", CTLFLAG_RW, &sc->sc_monpass, 0, 6678 "mask of error frames to pass when monitoring"); 6679 } 6680 6681 static void 6682 ath_bpfattach(struct ath_softc *sc) 6683 { 6684 struct ifnet *ifp = sc->sc_ifp; 6685 6686 bpfattach(ifp, DLT_IEEE802_11_RADIO, 6687 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th)); 6688 /* 6689 * Initialize constant fields. 6690 * XXX make header lengths a multiple of 32-bits so subsequent 6691 * headers are properly aligned; this is a kludge to keep 6692 * certain applications happy. 6693 * 6694 * NB: the channel is setup each time we transition to the 6695 * RUN state to avoid filling it in for each frame. 6696 */ 6697 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 6698 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 6699 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 6700 6701 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 6702 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 6703 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 6704 } 6705 6706 static int 6707 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni, 6708 struct ath_buf *bf, struct mbuf *m0, 6709 const struct ieee80211_bpf_params *params) 6710 { 6711 struct ifnet *ifp = sc->sc_ifp; 6712 struct ieee80211com *ic = ifp->if_l2com; 6713 struct ath_hal *ah = sc->sc_ah; 6714 int error, ismcast, ismrr; 6715 int hdrlen, pktlen, try0, txantenna; 6716 u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3; 6717 struct ieee80211_frame *wh; 6718 u_int flags, ctsduration; 6719 HAL_PKT_TYPE atype; 6720 const HAL_RATE_TABLE *rt; 6721 struct ath_desc *ds; 6722 u_int pri; 6723 6724 wh = mtod(m0, struct ieee80211_frame *); 6725 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 6726 hdrlen = ieee80211_anyhdrsize(wh); 6727 /* 6728 * Packet length must not include any 6729 * pad bytes; deduct them here. 6730 */ 6731 /* XXX honor IEEE80211_BPF_DATAPAD */ 6732 pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN; 6733 6734 error = ath_tx_dmasetup(sc, bf, m0); 6735 if (error != 0) 6736 return error; 6737 m0 = bf->bf_m; /* NB: may have changed */ 6738 wh = mtod(m0, struct ieee80211_frame *); 6739 bf->bf_node = ni; /* NB: held reference */ 6740 6741 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 6742 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 6743 if (params->ibp_flags & IEEE80211_BPF_RTS) 6744 flags |= HAL_TXDESC_RTSENA; 6745 else if (params->ibp_flags & IEEE80211_BPF_CTS) 6746 flags |= HAL_TXDESC_CTSENA; 6747 /* XXX leave ismcast to injector? */ 6748 if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast) 6749 flags |= HAL_TXDESC_NOACK; 6750 6751 rt = sc->sc_currates; 6752 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 6753 rix = ath_tx_findrix(rt, params->ibp_rate0); 6754 txrate = rt->info[rix].rateCode; 6755 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 6756 txrate |= rt->info[rix].shortPreamble; 6757 sc->sc_txrate = txrate; 6758 try0 = params->ibp_try0; 6759 ismrr = (params->ibp_try1 != 0); 6760 txantenna = params->ibp_pri >> 2; 6761 if (txantenna == 0) /* XXX? */ 6762 txantenna = sc->sc_txantenna; 6763 ctsduration = 0; 6764 if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) { 6765 cix = ath_tx_findrix(rt, params->ibp_ctsrate); 6766 ctsrate = rt->info[cix].rateCode; 6767 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) { 6768 ctsrate |= rt->info[cix].shortPreamble; 6769 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 6770 ctsduration += rt->info[cix].spAckDuration; 6771 ctsduration += ath_hal_computetxtime(ah, 6772 rt, pktlen, rix, AH_TRUE); 6773 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 6774 ctsduration += rt->info[rix].spAckDuration; 6775 } else { 6776 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 6777 ctsduration += rt->info[cix].lpAckDuration; 6778 ctsduration += ath_hal_computetxtime(ah, 6779 rt, pktlen, rix, AH_FALSE); 6780 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 6781 ctsduration += rt->info[rix].lpAckDuration; 6782 } 6783 ismrr = 0; /* XXX */ 6784 } else 6785 ctsrate = 0; 6786 pri = params->ibp_pri & 3; 6787 /* 6788 * NB: we mark all packets as type PSPOLL so the h/w won't 6789 * set the sequence number, duration, etc. 6790 */ 6791 atype = HAL_PKT_TYPE_PSPOLL; 6792 6793 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 6794 ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len, 6795 sc->sc_hwmap[txrate].ieeerate, -1); 6796 6797 if (bpf_peers_present(ifp->if_bpf)) { 6798 u_int64_t tsf = ath_hal_gettsf64(ah); 6799 6800 sc->sc_tx_th.wt_tsf = htole64(tsf); 6801 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags; 6802 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 6803 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 6804 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate; 6805 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 6806 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 6807 6808 bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0); 6809 } 6810 6811 /* 6812 * Formulate first tx descriptor with tx controls. 6813 */ 6814 ds = bf->bf_desc; 6815 /* XXX check return value? */ 6816 ath_hal_setuptxdesc(ah, ds 6817 , pktlen /* packet length */ 6818 , hdrlen /* header length */ 6819 , atype /* Atheros packet type */ 6820 , params->ibp_power /* txpower */ 6821 , txrate, try0 /* series 0 rate/tries */ 6822 , HAL_TXKEYIX_INVALID /* key cache index */ 6823 , txantenna /* antenna mode */ 6824 , flags /* flags */ 6825 , ctsrate /* rts/cts rate */ 6826 , ctsduration /* rts/cts duration */ 6827 ); 6828 bf->bf_flags = flags; 6829 6830 if (ismrr) { 6831 rix = ath_tx_findrix(rt, params->ibp_rate1); 6832 rate1 = rt->info[rix].rateCode; 6833 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 6834 rate1 |= rt->info[rix].shortPreamble; 6835 if (params->ibp_try2) { 6836 rix = ath_tx_findrix(rt, params->ibp_rate2); 6837 rate2 = rt->info[rix].rateCode; 6838 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 6839 rate2 |= rt->info[rix].shortPreamble; 6840 } else 6841 rate2 = 0; 6842 if (params->ibp_try3) { 6843 rix = ath_tx_findrix(rt, params->ibp_rate3); 6844 rate3 = rt->info[rix].rateCode; 6845 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 6846 rate3 |= rt->info[rix].shortPreamble; 6847 } else 6848 rate3 = 0; 6849 ath_hal_setupxtxdesc(ah, ds 6850 , rate1, params->ibp_try1 /* series 1 */ 6851 , rate2, params->ibp_try2 /* series 2 */ 6852 , rate3, params->ibp_try3 /* series 3 */ 6853 ); 6854 } 6855 6856 /* NB: no buffered multicast in power save support */ 6857 ath_tx_handoff(sc, sc->sc_ac2q[pri], bf); 6858 return 0; 6859 } 6860 6861 static int 6862 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 6863 const struct ieee80211_bpf_params *params) 6864 { 6865 struct ieee80211com *ic = ni->ni_ic; 6866 struct ifnet *ifp = ic->ic_ifp; 6867 struct ath_softc *sc = ifp->if_softc; 6868 struct ath_buf *bf; 6869 6870 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) { 6871 ieee80211_free_node(ni); 6872 m_freem(m); 6873 return ENETDOWN; 6874 } 6875 /* 6876 * Grab a TX buffer and associated resources. 6877 */ 6878 ATH_TXBUF_LOCK(sc); 6879 bf = STAILQ_FIRST(&sc->sc_txbuf); 6880 if (bf != NULL) 6881 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 6882 ATH_TXBUF_UNLOCK(sc); 6883 if (bf == NULL) { 6884 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n", 6885 __func__); 6886 sc->sc_stats.ast_tx_qstop++; 6887 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 6888 ieee80211_free_node(ni); 6889 m_freem(m); 6890 return ENOBUFS; 6891 } 6892 6893 ifp->if_opackets++; 6894 sc->sc_stats.ast_tx_raw++; 6895 6896 if (params == NULL) { 6897 /* 6898 * Legacy path; interpret frame contents to decide 6899 * precisely how to send the frame. 6900 */ 6901 if (ath_tx_start(sc, ni, bf, m)) 6902 goto bad; 6903 } else { 6904 /* 6905 * Caller supplied explicit parameters to use in 6906 * sending the frame. 6907 */ 6908 if (ath_tx_raw_start(sc, ni, bf, m, params)) 6909 goto bad; 6910 } 6911 ifp->if_timer = 5; 6912 6913 return 0; 6914 bad: 6915 ifp->if_oerrors++; 6916 ATH_TXBUF_LOCK(sc); 6917 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 6918 ATH_TXBUF_UNLOCK(sc); 6919 ieee80211_free_node(ni); 6920 return EIO; /* XXX */ 6921 } 6922 6923 /* 6924 * Announce various information on device/driver attach. 6925 */ 6926 static void 6927 ath_announce(struct ath_softc *sc) 6928 { 6929 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B) 6930 struct ifnet *ifp = sc->sc_ifp; 6931 struct ath_hal *ah = sc->sc_ah; 6932 u_int modes, cc; 6933 6934 if_printf(ifp, "mac %d.%d phy %d.%d", 6935 ah->ah_macVersion, ah->ah_macRev, 6936 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6937 /* 6938 * Print radio revision(s). We check the wireless modes 6939 * to avoid falsely printing revs for inoperable parts. 6940 * Dual-band radio revs are returned in the 5Ghz rev number. 6941 */ 6942 ath_hal_getcountrycode(ah, &cc); 6943 modes = ath_hal_getwirelessmodes(ah, cc); 6944 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) { 6945 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev) 6946 printf(" 5ghz radio %d.%d 2ghz radio %d.%d", 6947 ah->ah_analog5GhzRev >> 4, 6948 ah->ah_analog5GhzRev & 0xf, 6949 ah->ah_analog2GhzRev >> 4, 6950 ah->ah_analog2GhzRev & 0xf); 6951 else 6952 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 6953 ah->ah_analog5GhzRev & 0xf); 6954 } else 6955 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 6956 ah->ah_analog5GhzRev & 0xf); 6957 printf("\n"); 6958 if (bootverbose) { 6959 int i; 6960 for (i = 0; i <= WME_AC_VO; i++) { 6961 struct ath_txq *txq = sc->sc_ac2q[i]; 6962 if_printf(ifp, "Use hw queue %u for %s traffic\n", 6963 txq->axq_qnum, ieee80211_wme_acnames[i]); 6964 } 6965 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 6966 sc->sc_cabq->axq_qnum); 6967 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 6968 } 6969 if (ath_rxbuf != ATH_RXBUF) 6970 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 6971 if (ath_txbuf != ATH_TXBUF) 6972 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 6973 #undef HAL_MODE_DUALBAND 6974 } 6975