xref: /freebsd/sys/dev/ath/if_ath.c (revision 282a3889ebf826db9839be296ff1dd903f6d6d6e)
1 /*-
2  * Copyright (c) 2002-2007 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysctl.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/errno.h>
54 #include <sys/callout.h>
55 #include <sys/bus.h>
56 #include <sys/endian.h>
57 #include <sys/kthread.h>
58 #include <sys/taskqueue.h>
59 
60 #include <machine/bus.h>
61 
62 #include <net/if.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 #include <net/if_arp.h>
67 #include <net/ethernet.h>
68 #include <net/if_llc.h>
69 
70 #include <net80211/ieee80211_var.h>
71 
72 #include <net/bpf.h>
73 
74 #ifdef INET
75 #include <netinet/in.h>
76 #include <netinet/if_ether.h>
77 #endif
78 
79 #include <dev/ath/if_athvar.h>
80 #include <contrib/dev/ath/ah_desc.h>
81 #include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
82 
83 #ifdef ATH_TX99_DIAG
84 #include <dev/ath/ath_tx99/ath_tx99.h>
85 #endif
86 
87 /* unaligned little endian access */
88 #define LE_READ_2(p)							\
89 	((u_int16_t)							\
90 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
91 #define LE_READ_4(p)							\
92 	((u_int32_t)							\
93 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
94 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
95 
96 enum {
97 	ATH_LED_TX,
98 	ATH_LED_RX,
99 	ATH_LED_POLL,
100 };
101 
102 static void	ath_init(void *);
103 static void	ath_stop_locked(struct ifnet *);
104 static void	ath_stop(struct ifnet *);
105 static void	ath_start(struct ifnet *);
106 static int	ath_reset(struct ifnet *);
107 static int	ath_media_change(struct ifnet *);
108 static void	ath_watchdog(struct ifnet *);
109 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
110 static void	ath_fatal_proc(void *, int);
111 static void	ath_rxorn_proc(void *, int);
112 static void	ath_bmiss_proc(void *, int);
113 static int	ath_key_alloc(struct ieee80211com *,
114 			const struct ieee80211_key *,
115 			ieee80211_keyix *, ieee80211_keyix *);
116 static int	ath_key_delete(struct ieee80211com *,
117 			const struct ieee80211_key *);
118 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
119 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
120 static void	ath_key_update_begin(struct ieee80211com *);
121 static void	ath_key_update_end(struct ieee80211com *);
122 static void	ath_mode_init(struct ath_softc *);
123 static void	ath_setslottime(struct ath_softc *);
124 static void	ath_updateslot(struct ifnet *);
125 static int	ath_beaconq_setup(struct ath_hal *);
126 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
127 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
128 static void	ath_beacon_proc(void *, int);
129 static void	ath_bstuck_proc(void *, int);
130 static void	ath_beacon_free(struct ath_softc *);
131 static void	ath_beacon_config(struct ath_softc *);
132 static void	ath_descdma_cleanup(struct ath_softc *sc,
133 			struct ath_descdma *, ath_bufhead *);
134 static int	ath_desc_alloc(struct ath_softc *);
135 static void	ath_desc_free(struct ath_softc *);
136 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
137 static void	ath_node_free(struct ieee80211_node *);
138 static int8_t	ath_node_getrssi(const struct ieee80211_node *);
139 static void	ath_node_getsignal(const struct ieee80211_node *,
140 			int8_t *, int8_t *);
141 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
142 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
143 			struct ieee80211_node *ni,
144 			int subtype, int rssi, int noise, u_int32_t rstamp);
145 static void	ath_setdefantenna(struct ath_softc *, u_int);
146 static void	ath_rx_proc(void *, int);
147 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
148 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
149 static int	ath_tx_setup(struct ath_softc *, int, int);
150 static int	ath_wme_update(struct ieee80211com *);
151 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
152 static void	ath_tx_cleanup(struct ath_softc *);
153 static void	ath_freetx(struct mbuf *);
154 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
155 			     struct ath_buf *, struct mbuf *);
156 static void	ath_tx_proc_q0(void *, int);
157 static void	ath_tx_proc_q0123(void *, int);
158 static void	ath_tx_proc(void *, int);
159 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
160 static void	ath_draintxq(struct ath_softc *);
161 static void	ath_stoprecv(struct ath_softc *);
162 static int	ath_startrecv(struct ath_softc *);
163 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
164 static void	ath_scan_start(struct ieee80211com *);
165 static void	ath_scan_end(struct ieee80211com *);
166 static void	ath_set_channel(struct ieee80211com *);
167 static void	ath_calibrate(void *);
168 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
169 static void	ath_setup_stationkey(struct ieee80211_node *);
170 static void	ath_newassoc(struct ieee80211_node *, int);
171 static int	ath_getchannels(struct ath_softc *,
172 			HAL_REG_DOMAIN, HAL_CTRY_CODE, HAL_BOOL, HAL_BOOL);
173 static void	ath_led_event(struct ath_softc *, int);
174 static void	ath_update_txpow(struct ath_softc *);
175 
176 static int	ath_rate_setup(struct ath_softc *, u_int mode);
177 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
178 
179 static void	ath_sysctlattach(struct ath_softc *);
180 static int	ath_raw_xmit(struct ieee80211_node *,
181 			struct mbuf *, const struct ieee80211_bpf_params *);
182 static void	ath_bpfattach(struct ath_softc *);
183 static void	ath_announce(struct ath_softc *);
184 
185 SYSCTL_DECL(_hw_ath);
186 
187 /* XXX validate sysctl values */
188 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
189 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
190 	    0, "chip calibration interval (secs)");
191 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
192 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RW, &ath_outdoor,
193 	    0, "outdoor operation");
194 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
195 static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
196 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RW, &ath_xchanmode,
197 	    0, "extended channel mode");
198 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
199 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
200 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RW, &ath_countrycode,
201 	    0, "country code");
202 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
203 static	int ath_regdomain = 0;			/* regulatory domain */
204 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
205 	    0, "regulatory domain");
206 
207 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
208 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
209 	    0, "rx buffers allocated");
210 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
211 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
212 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
213 	    0, "tx buffers allocated");
214 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
215 
216 #ifdef ATH_DEBUG
217 static	int ath_debug = 0;
218 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
219 	    0, "control debugging printfs");
220 TUNABLE_INT("hw.ath.debug", &ath_debug);
221 enum {
222 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
223 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
224 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
225 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
226 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
227 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
228 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
229 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
230 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
231 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
232 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
233 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
234 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
235 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
236 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
237 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
238 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
239 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
240 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
241 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
242 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
243 	ATH_DEBUG_ANY		= 0xffffffff
244 };
245 #define	IFF_DUMPPKTS(sc, m) \
246 	((sc->sc_debug & (m)) || \
247 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
248 #define	DPRINTF(sc, m, fmt, ...) do {				\
249 	if (sc->sc_debug & (m))					\
250 		printf(fmt, __VA_ARGS__);			\
251 } while (0)
252 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
253 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
254 		ath_keyprint(sc, __func__, ix, hk, mac);	\
255 } while (0)
256 static	void ath_printrxbuf(const struct ath_buf *bf, u_int ix, int);
257 static	void ath_printtxbuf(const struct ath_buf *bf, u_int qnum, u_int ix, int done);
258 #else
259 #define	IFF_DUMPPKTS(sc, m) \
260 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
261 #define	DPRINTF(sc, m, fmt, ...) do {				\
262 	(void) sc;						\
263 } while (0)
264 #define	KEYPRINTF(sc, k, ix, mac) do {				\
265 	(void) sc;						\
266 } while (0)
267 #endif
268 
269 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
270 
271 int
272 ath_attach(u_int16_t devid, struct ath_softc *sc)
273 {
274 	struct ifnet *ifp;
275 	struct ieee80211com *ic = &sc->sc_ic;
276 	struct ath_hal *ah = NULL;
277 	HAL_STATUS status;
278 	int error = 0, i;
279 
280 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
281 
282 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
283 	if (ifp == NULL) {
284 		device_printf(sc->sc_dev, "can not if_alloc()\n");
285 		error = ENOSPC;
286 		goto bad;
287 	}
288 
289 	/* set these up early for if_printf use */
290 	if_initname(ifp, device_get_name(sc->sc_dev),
291 		device_get_unit(sc->sc_dev));
292 
293 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
294 	if (ah == NULL) {
295 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
296 			status);
297 		error = ENXIO;
298 		goto bad;
299 	}
300 	if (ah->ah_abi != HAL_ABI_VERSION) {
301 		if_printf(ifp, "HAL ABI mismatch detected "
302 			"(HAL:0x%x != driver:0x%x)\n",
303 			ah->ah_abi, HAL_ABI_VERSION);
304 		error = ENXIO;
305 		goto bad;
306 	}
307 	sc->sc_ah = ah;
308 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
309 
310 	/*
311 	 * Check if the MAC has multi-rate retry support.
312 	 * We do this by trying to setup a fake extended
313 	 * descriptor.  MAC's that don't have support will
314 	 * return false w/o doing anything.  MAC's that do
315 	 * support it will return true w/o doing anything.
316 	 */
317 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
318 
319 	/*
320 	 * Check if the device has hardware counters for PHY
321 	 * errors.  If so we need to enable the MIB interrupt
322 	 * so we can act on stat triggers.
323 	 */
324 	if (ath_hal_hwphycounters(ah))
325 		sc->sc_needmib = 1;
326 
327 	/*
328 	 * Get the hardware key cache size.
329 	 */
330 	sc->sc_keymax = ath_hal_keycachesize(ah);
331 	if (sc->sc_keymax > ATH_KEYMAX) {
332 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
333 			ATH_KEYMAX, sc->sc_keymax);
334 		sc->sc_keymax = ATH_KEYMAX;
335 	}
336 	/*
337 	 * Reset the key cache since some parts do not
338 	 * reset the contents on initial power up.
339 	 */
340 	for (i = 0; i < sc->sc_keymax; i++)
341 		ath_hal_keyreset(ah, i);
342 
343 	/*
344 	 * Collect the channel list using the default country
345 	 * code and including outdoor channels.  The 802.11 layer
346 	 * is resposible for filtering this list based on settings
347 	 * like the phy mode.
348 	 */
349 	error = ath_getchannels(sc, ath_regdomain, ath_countrycode,
350 			ath_outdoor != 0, ath_xchanmode != 0);
351 	if (error != 0)
352 		goto bad;
353 
354 	/*
355 	 * Setup rate tables for all potential media types.
356 	 */
357 	ath_rate_setup(sc, IEEE80211_MODE_11A);
358 	ath_rate_setup(sc, IEEE80211_MODE_11B);
359 	ath_rate_setup(sc, IEEE80211_MODE_11G);
360 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
361 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
362 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
363 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
364 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
365 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
366 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
367 
368 	/* NB: setup here so ath_rate_update is happy */
369 	ath_setcurmode(sc, IEEE80211_MODE_11A);
370 
371 	/*
372 	 * Allocate tx+rx descriptors and populate the lists.
373 	 */
374 	error = ath_desc_alloc(sc);
375 	if (error != 0) {
376 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
377 		goto bad;
378 	}
379 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
380 	callout_init(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
381 
382 	ATH_TXBUF_LOCK_INIT(sc);
383 
384 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
385 		taskqueue_thread_enqueue, &sc->sc_tq);
386 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
387 		"%s taskq", ifp->if_xname);
388 
389 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
390 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
391 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
392 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
393 
394 	/*
395 	 * Allocate hardware transmit queues: one queue for
396 	 * beacon frames and one data queue for each QoS
397 	 * priority.  Note that the hal handles reseting
398 	 * these queues at the needed time.
399 	 *
400 	 * XXX PS-Poll
401 	 */
402 	sc->sc_bhalq = ath_beaconq_setup(ah);
403 	if (sc->sc_bhalq == (u_int) -1) {
404 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
405 		error = EIO;
406 		goto bad2;
407 	}
408 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
409 	if (sc->sc_cabq == NULL) {
410 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
411 		error = EIO;
412 		goto bad2;
413 	}
414 	/* NB: s/w q, qnum used only by WITNESS */
415 	ath_txq_init(sc, &sc->sc_mcastq, HAL_NUM_TX_QUEUES+1);
416 	/* NB: insure BK queue is the lowest priority h/w queue */
417 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
418 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
419 			ieee80211_wme_acnames[WME_AC_BK]);
420 		error = EIO;
421 		goto bad2;
422 	}
423 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
424 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
425 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
426 		/*
427 		 * Not enough hardware tx queues to properly do WME;
428 		 * just punt and assign them all to the same h/w queue.
429 		 * We could do a better job of this if, for example,
430 		 * we allocate queues when we switch from station to
431 		 * AP mode.
432 		 */
433 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
434 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
435 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
436 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
437 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
438 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
439 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
440 	}
441 
442 	/*
443 	 * Special case certain configurations.  Note the
444 	 * CAB queue is handled by these specially so don't
445 	 * include them when checking the txq setup mask.
446 	 */
447 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
448 	case 0x01:
449 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
450 		break;
451 	case 0x0f:
452 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
453 		break;
454 	default:
455 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
456 		break;
457 	}
458 
459 	/*
460 	 * Setup rate control.  Some rate control modules
461 	 * call back to change the anntena state so expose
462 	 * the necessary entry points.
463 	 * XXX maybe belongs in struct ath_ratectrl?
464 	 */
465 	sc->sc_setdefantenna = ath_setdefantenna;
466 	sc->sc_rc = ath_rate_attach(sc);
467 	if (sc->sc_rc == NULL) {
468 		error = EIO;
469 		goto bad2;
470 	}
471 
472 	sc->sc_blinking = 0;
473 	sc->sc_ledstate = 1;
474 	sc->sc_ledon = 0;			/* low true */
475 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
476 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
477 	/*
478 	 * Auto-enable soft led processing for IBM cards and for
479 	 * 5211 minipci cards.  Users can also manually enable/disable
480 	 * support with a sysctl.
481 	 */
482 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
483 	if (sc->sc_softled) {
484 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
485 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
486 	}
487 
488 	ifp->if_softc = sc;
489 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
490 	ifp->if_start = ath_start;
491 	ifp->if_watchdog = ath_watchdog;
492 	ifp->if_ioctl = ath_ioctl;
493 	ifp->if_init = ath_init;
494 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
495 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
496 	IFQ_SET_READY(&ifp->if_snd);
497 
498 	ic->ic_ifp = ifp;
499 	ic->ic_reset = ath_reset;
500 	ic->ic_newassoc = ath_newassoc;
501 	ic->ic_updateslot = ath_updateslot;
502 	ic->ic_wme.wme_update = ath_wme_update;
503 	/* XXX not right but it's not used anywhere important */
504 	ic->ic_phytype = IEEE80211_T_OFDM;
505 	ic->ic_opmode = IEEE80211_M_STA;
506 	ic->ic_caps =
507 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
508 		| IEEE80211_C_HOSTAP		/* hostap mode */
509 		| IEEE80211_C_MONITOR		/* monitor mode */
510 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
511 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
512 		| IEEE80211_C_SHSLOT		/* short slot time supported */
513 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
514 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
515 		| IEEE80211_C_TXFRAG		/* handle tx frags */
516 		;
517 	/*
518 	 * Query the hal to figure out h/w crypto support.
519 	 */
520 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
521 		ic->ic_caps |= IEEE80211_C_WEP;
522 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
523 		ic->ic_caps |= IEEE80211_C_AES;
524 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
525 		ic->ic_caps |= IEEE80211_C_AES_CCM;
526 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
527 		ic->ic_caps |= IEEE80211_C_CKIP;
528 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
529 		ic->ic_caps |= IEEE80211_C_TKIP;
530 		/*
531 		 * Check if h/w does the MIC and/or whether the
532 		 * separate key cache entries are required to
533 		 * handle both tx+rx MIC keys.
534 		 */
535 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
536 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
537 		/*
538 		 * If the h/w supports storing tx+rx MIC keys
539 		 * in one cache slot automatically enable use.
540 		 */
541 		if (ath_hal_hastkipsplit(ah) ||
542 		    !ath_hal_settkipsplit(ah, AH_FALSE))
543 			sc->sc_splitmic = 1;
544 	}
545 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
546 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
547 	/*
548 	 * Mark key cache slots associated with global keys
549 	 * as in use.  If we knew TKIP was not to be used we
550 	 * could leave the +32, +64, and +32+64 slots free.
551 	 */
552 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
553 		setbit(sc->sc_keymap, i);
554 		setbit(sc->sc_keymap, i+64);
555 		if (sc->sc_splitmic) {
556 			setbit(sc->sc_keymap, i+32);
557 			setbit(sc->sc_keymap, i+32+64);
558 		}
559 	}
560 	/*
561 	 * TPC support can be done either with a global cap or
562 	 * per-packet support.  The latter is not available on
563 	 * all parts.  We're a bit pedantic here as all parts
564 	 * support a global cap.
565 	 */
566 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
567 		ic->ic_caps |= IEEE80211_C_TXPMGT;
568 
569 	/*
570 	 * Mark WME capability only if we have sufficient
571 	 * hardware queues to do proper priority scheduling.
572 	 */
573 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
574 		ic->ic_caps |= IEEE80211_C_WME;
575 	/*
576 	 * Check for misc other capabilities.
577 	 */
578 	if (ath_hal_hasbursting(ah))
579 		ic->ic_caps |= IEEE80211_C_BURST;
580 	if (ath_hal_hasfastframes(ah))
581 		ic->ic_caps |= IEEE80211_C_FF;
582 	if (ath_hal_getwirelessmodes(ah, ath_countrycode) & (HAL_MODE_108G|HAL_MODE_TURBO))
583 		ic->ic_caps |= IEEE80211_C_TURBOP;
584 
585 	/*
586 	 * Indicate we need the 802.11 header padded to a
587 	 * 32-bit boundary for 4-address and QoS frames.
588 	 */
589 	ic->ic_flags |= IEEE80211_F_DATAPAD;
590 
591 	/*
592 	 * Query the hal about antenna support.
593 	 */
594 	sc->sc_defant = ath_hal_getdefantenna(ah);
595 
596 	/*
597 	 * Not all chips have the VEOL support we want to
598 	 * use with IBSS beacons; check here for it.
599 	 */
600 	sc->sc_hasveol = ath_hal_hasveol(ah);
601 
602 	/* get mac address from hardware */
603 	ath_hal_getmac(ah, ic->ic_myaddr);
604 
605 	/* call MI attach routine. */
606 	ieee80211_ifattach(ic);
607 	sc->sc_opmode = ic->ic_opmode;
608 	/* override default methods */
609 	ic->ic_node_alloc = ath_node_alloc;
610 	sc->sc_node_free = ic->ic_node_free;
611 	ic->ic_node_free = ath_node_free;
612 	ic->ic_node_getrssi = ath_node_getrssi;
613 	ic->ic_node_getsignal = ath_node_getsignal;
614 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
615 	ic->ic_recv_mgmt = ath_recv_mgmt;
616 	sc->sc_newstate = ic->ic_newstate;
617 	ic->ic_newstate = ath_newstate;
618 	ic->ic_scan_start = ath_scan_start;
619 	ic->ic_scan_end = ath_scan_end;
620 	ic->ic_set_channel = ath_set_channel;
621 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
622 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
623 	ic->ic_crypto.cs_key_delete = ath_key_delete;
624 	ic->ic_crypto.cs_key_set = ath_key_set;
625 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
626 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
627 	ic->ic_raw_xmit = ath_raw_xmit;
628 	/* complete initialization */
629 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
630 
631 	ath_bpfattach(sc);
632 	/*
633 	 * Setup dynamic sysctl's now that country code and
634 	 * regdomain are available from the hal.
635 	 */
636 	ath_sysctlattach(sc);
637 
638 	if (bootverbose)
639 		ieee80211_announce(ic);
640 	ath_announce(sc);
641 	return 0;
642 bad2:
643 	ath_tx_cleanup(sc);
644 	ath_desc_free(sc);
645 bad:
646 	if (ah)
647 		ath_hal_detach(ah);
648 	if (ifp != NULL)
649 		if_free(ifp);
650 	sc->sc_invalid = 1;
651 	return error;
652 }
653 
654 int
655 ath_detach(struct ath_softc *sc)
656 {
657 	struct ifnet *ifp = sc->sc_ifp;
658 
659 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
660 		__func__, ifp->if_flags);
661 
662 	ath_stop(ifp);
663 	bpfdetach(ifp);
664 	/*
665 	 * NB: the order of these is important:
666 	 * o call the 802.11 layer before detaching the hal to
667 	 *   insure callbacks into the driver to delete global
668 	 *   key cache entries can be handled
669 	 * o reclaim the tx queue data structures after calling
670 	 *   the 802.11 layer as we'll get called back to reclaim
671 	 *   node state and potentially want to use them
672 	 * o to cleanup the tx queues the hal is called, so detach
673 	 *   it last
674 	 * Other than that, it's straightforward...
675 	 */
676 	ieee80211_ifdetach(&sc->sc_ic);
677 #ifdef ATH_TX99_DIAG
678 	if (sc->sc_tx99 != NULL)
679 		sc->sc_tx99->detach(sc->sc_tx99);
680 #endif
681 	taskqueue_free(sc->sc_tq);
682 	ath_rate_detach(sc->sc_rc);
683 	ath_desc_free(sc);
684 	ath_tx_cleanup(sc);
685 	ath_hal_detach(sc->sc_ah);
686 	if_free(ifp);
687 
688 	return 0;
689 }
690 
691 void
692 ath_suspend(struct ath_softc *sc)
693 {
694 	struct ifnet *ifp = sc->sc_ifp;
695 
696 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
697 		__func__, ifp->if_flags);
698 
699 	ath_stop(ifp);
700 }
701 
702 void
703 ath_resume(struct ath_softc *sc)
704 {
705 	struct ifnet *ifp = sc->sc_ifp;
706 
707 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
708 		__func__, ifp->if_flags);
709 
710 	if (ifp->if_flags & IFF_UP) {
711 		ath_init(sc);
712 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
713 			ath_start(ifp);
714 	}
715 	if (sc->sc_softled) {
716 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
717 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
718 	}
719 }
720 
721 void
722 ath_shutdown(struct ath_softc *sc)
723 {
724 	struct ifnet *ifp = sc->sc_ifp;
725 
726 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
727 		__func__, ifp->if_flags);
728 
729 	ath_stop(ifp);
730 }
731 
732 /*
733  * Interrupt handler.  Most of the actual processing is deferred.
734  */
735 void
736 ath_intr(void *arg)
737 {
738 	struct ath_softc *sc = arg;
739 	struct ifnet *ifp = sc->sc_ifp;
740 	struct ath_hal *ah = sc->sc_ah;
741 	HAL_INT status;
742 
743 	if (sc->sc_invalid) {
744 		/*
745 		 * The hardware is not ready/present, don't touch anything.
746 		 * Note this can happen early on if the IRQ is shared.
747 		 */
748 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
749 		return;
750 	}
751 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
752 		return;
753 	if ((ifp->if_flags & IFF_UP) == 0 ||
754 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
755 		HAL_INT status;
756 
757 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
758 			__func__, ifp->if_flags);
759 		ath_hal_getisr(ah, &status);	/* clear ISR */
760 		ath_hal_intrset(ah, 0);		/* disable further intr's */
761 		return;
762 	}
763 	/*
764 	 * Figure out the reason(s) for the interrupt.  Note
765 	 * that the hal returns a pseudo-ISR that may include
766 	 * bits we haven't explicitly enabled so we mask the
767 	 * value to insure we only process bits we requested.
768 	 */
769 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
770 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
771 	status &= sc->sc_imask;			/* discard unasked for bits */
772 	if (status & HAL_INT_FATAL) {
773 		sc->sc_stats.ast_hardware++;
774 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
775 		ath_fatal_proc(sc, 0);
776 	} else if (status & HAL_INT_RXORN) {
777 		sc->sc_stats.ast_rxorn++;
778 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
779 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rxorntask);
780 	} else {
781 		if (status & HAL_INT_SWBA) {
782 			/*
783 			 * Software beacon alert--time to send a beacon.
784 			 * Handle beacon transmission directly; deferring
785 			 * this is too slow to meet timing constraints
786 			 * under load.
787 			 */
788 			ath_beacon_proc(sc, 0);
789 		}
790 		if (status & HAL_INT_RXEOL) {
791 			/*
792 			 * NB: the hardware should re-read the link when
793 			 *     RXE bit is written, but it doesn't work at
794 			 *     least on older hardware revs.
795 			 */
796 			sc->sc_stats.ast_rxeol++;
797 			sc->sc_rxlink = NULL;
798 		}
799 		if (status & HAL_INT_TXURN) {
800 			sc->sc_stats.ast_txurn++;
801 			/* bump tx trigger level */
802 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
803 		}
804 		if (status & HAL_INT_RX)
805 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
806 		if (status & HAL_INT_TX)
807 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
808 		if (status & HAL_INT_BMISS) {
809 			sc->sc_stats.ast_bmiss++;
810 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
811 		}
812 		if (status & HAL_INT_MIB) {
813 			sc->sc_stats.ast_mib++;
814 			/*
815 			 * Disable interrupts until we service the MIB
816 			 * interrupt; otherwise it will continue to fire.
817 			 */
818 			ath_hal_intrset(ah, 0);
819 			/*
820 			 * Let the hal handle the event.  We assume it will
821 			 * clear whatever condition caused the interrupt.
822 			 */
823 			ath_hal_mibevent(ah, &sc->sc_halstats);
824 			ath_hal_intrset(ah, sc->sc_imask);
825 		}
826 	}
827 }
828 
829 static void
830 ath_fatal_proc(void *arg, int pending)
831 {
832 	struct ath_softc *sc = arg;
833 	struct ifnet *ifp = sc->sc_ifp;
834 	u_int32_t *state;
835 	u_int32_t len;
836 	void *sp;
837 
838 	if_printf(ifp, "hardware error; resetting\n");
839 	/*
840 	 * Fatal errors are unrecoverable.  Typically these
841 	 * are caused by DMA errors.  Collect h/w state from
842 	 * the hal so we can diagnose what's going on.
843 	 */
844 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
845 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
846 		state = sp;
847 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
848 		    state[0], state[1] , state[2], state[3],
849 		    state[4], state[5]);
850 	}
851 	ath_reset(ifp);
852 }
853 
854 static void
855 ath_rxorn_proc(void *arg, int pending)
856 {
857 	struct ath_softc *sc = arg;
858 	struct ifnet *ifp = sc->sc_ifp;
859 
860 	if_printf(ifp, "rx FIFO overrun; resetting\n");
861 	ath_reset(ifp);
862 }
863 
864 static void
865 ath_bmiss_proc(void *arg, int pending)
866 {
867 	struct ath_softc *sc = arg;
868 	struct ieee80211com *ic = &sc->sc_ic;
869 
870 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
871 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
872 		("unexpect operating mode %u", ic->ic_opmode));
873 	if (ic->ic_state == IEEE80211_S_RUN) {
874 		u_int64_t lastrx = sc->sc_lastrx;
875 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
876 		u_int bmisstimeout =
877 			ic->ic_bmissthreshold * ic->ic_bss->ni_intval * 1024;
878 
879 		DPRINTF(sc, ATH_DEBUG_BEACON,
880 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
881 		    __func__, (unsigned long long) tsf,
882 		    (unsigned long long)(tsf - lastrx),
883 		    (unsigned long long) lastrx, bmisstimeout);
884 		/*
885 		 * Workaround phantom bmiss interrupts by sanity-checking
886 		 * the time of our last rx'd frame.  If it is within the
887 		 * beacon miss interval then ignore the interrupt.  If it's
888 		 * truly a bmiss we'll get another interrupt soon and that'll
889 		 * be dispatched up for processing.
890 		 */
891 		if (tsf - lastrx > bmisstimeout) {
892 			NET_LOCK_GIANT();
893 			ieee80211_beacon_miss(ic);
894 			NET_UNLOCK_GIANT();
895 		} else
896 			sc->sc_stats.ast_bmiss_phantom++;
897 	}
898 }
899 
900 /*
901  * Convert net80211 channel to a HAL channel with the flags
902  * constrained to reflect the current operating mode and
903  * the frequency possibly mapped for GSM channels.
904  */
905 static void
906 ath_mapchan(HAL_CHANNEL *hc, const struct ieee80211_channel *chan)
907 {
908 #define	N(a)	(sizeof(a) / sizeof(a[0]))
909 	static const u_int modeflags[IEEE80211_MODE_MAX] = {
910 		0,			/* IEEE80211_MODE_AUTO */
911 		CHANNEL_A,		/* IEEE80211_MODE_11A */
912 		CHANNEL_B,		/* IEEE80211_MODE_11B */
913 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
914 		0,			/* IEEE80211_MODE_FH */
915 		CHANNEL_108A,		/* IEEE80211_MODE_TURBO_A */
916 		CHANNEL_108G,		/* IEEE80211_MODE_TURBO_G */
917 		CHANNEL_ST,		/* IEEE80211_MODE_STURBO_A */
918 		CHANNEL_A,		/* IEEE80211_MODE_11NA */
919 		CHANNEL_PUREG,		/* IEEE80211_MODE_11NG */
920 	};
921 	enum ieee80211_phymode mode = ieee80211_chan2mode(chan);
922 
923 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
924 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
925 	hc->channelFlags = modeflags[mode];
926 	if (IEEE80211_IS_CHAN_HALF(chan))
927 		hc->channelFlags |= CHANNEL_HALF;
928 	if (IEEE80211_IS_CHAN_QUARTER(chan))
929 		hc->channelFlags |= CHANNEL_QUARTER;
930 	if (IEEE80211_IS_CHAN_HT20(chan))
931 		hc->channelFlags |= CHANNEL_HT20;
932 	if (IEEE80211_IS_CHAN_HT40D(chan))
933 		hc->channelFlags |= CHANNEL_HT40MINUS;
934 	if (IEEE80211_IS_CHAN_HT40U(chan))
935 		hc->channelFlags |= CHANNEL_HT40PLUS;
936 
937 	hc->channel = IEEE80211_IS_CHAN_GSM(chan) ?
938 		2422 + (922 - chan->ic_freq) : chan->ic_freq;
939 #undef N
940 }
941 
942 static void
943 ath_init(void *arg)
944 {
945 	struct ath_softc *sc = (struct ath_softc *) arg;
946 	struct ieee80211com *ic = &sc->sc_ic;
947 	struct ifnet *ifp = sc->sc_ifp;
948 	struct ath_hal *ah = sc->sc_ah;
949 	HAL_STATUS status;
950 
951 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
952 		__func__, ifp->if_flags);
953 
954 	ATH_LOCK(sc);
955 	/*
956 	 * Stop anything previously setup.  This is safe
957 	 * whether this is the first time through or not.
958 	 */
959 	ath_stop_locked(ifp);
960 
961 	/*
962 	 * The basic interface to setting the hardware in a good
963 	 * state is ``reset''.  On return the hardware is known to
964 	 * be powered up and with interrupts disabled.  This must
965 	 * be followed by initialization of the appropriate bits
966 	 * and then setup of the interrupt mask.
967 	 */
968 	ath_mapchan(&sc->sc_curchan, ic->ic_curchan);
969 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
970 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
971 			status);
972 		goto done;
973 	}
974 
975 	/*
976 	 * This is needed only to setup initial state
977 	 * but it's best done after a reset.
978 	 */
979 	ath_update_txpow(sc);
980 	/*
981 	 * Likewise this is set during reset so update
982 	 * state cached in the driver.
983 	 */
984 	sc->sc_diversity = ath_hal_getdiversity(ah);
985 	sc->sc_calinterval = 1;
986 	sc->sc_caltries = 0;
987 
988 	/*
989 	 * Setup the hardware after reset: the key cache
990 	 * is filled as needed and the receive engine is
991 	 * set going.  Frame transmit is handled entirely
992 	 * in the frame output path; there's nothing to do
993 	 * here except setup the interrupt mask.
994 	 */
995 	if (ath_startrecv(sc) != 0) {
996 		if_printf(ifp, "unable to start recv logic\n");
997 		goto done;
998 	}
999 
1000 	/*
1001 	 * Enable interrupts.
1002 	 */
1003 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1004 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1005 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1006 	/*
1007 	 * Enable MIB interrupts when there are hardware phy counters.
1008 	 * Note we only do this (at the moment) for station mode.
1009 	 */
1010 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1011 		sc->sc_imask |= HAL_INT_MIB;
1012 	ath_hal_intrset(ah, sc->sc_imask);
1013 
1014 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1015 	ic->ic_state = IEEE80211_S_INIT;
1016 
1017 	/*
1018 	 * The hardware should be ready to go now so it's safe
1019 	 * to kick the 802.11 state machine as it's likely to
1020 	 * immediately call back to us to send mgmt frames.
1021 	 */
1022 	ath_chan_change(sc, ic->ic_curchan);
1023 #ifdef ATH_TX99_DIAG
1024 	if (sc->sc_tx99 != NULL)
1025 		sc->sc_tx99->start(sc->sc_tx99);
1026 	else
1027 #endif
1028 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1029 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1030 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1031 	} else
1032 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1033 done:
1034 	ATH_UNLOCK(sc);
1035 }
1036 
1037 static void
1038 ath_stop_locked(struct ifnet *ifp)
1039 {
1040 	struct ath_softc *sc = ifp->if_softc;
1041 	struct ieee80211com *ic = &sc->sc_ic;
1042 	struct ath_hal *ah = sc->sc_ah;
1043 
1044 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1045 		__func__, sc->sc_invalid, ifp->if_flags);
1046 
1047 	ATH_LOCK_ASSERT(sc);
1048 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1049 		/*
1050 		 * Shutdown the hardware and driver:
1051 		 *    reset 802.11 state machine
1052 		 *    turn off timers
1053 		 *    disable interrupts
1054 		 *    turn off the radio
1055 		 *    clear transmit machinery
1056 		 *    clear receive machinery
1057 		 *    drain and release tx queues
1058 		 *    reclaim beacon resources
1059 		 *    power down hardware
1060 		 *
1061 		 * Note that some of this work is not possible if the
1062 		 * hardware is gone (invalid).
1063 		 */
1064 #ifdef ATH_TX99_DIAG
1065 		if (sc->sc_tx99 != NULL)
1066 			sc->sc_tx99->stop(sc->sc_tx99);
1067 #endif
1068 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1069 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1070 		ifp->if_timer = 0;
1071 		if (!sc->sc_invalid) {
1072 			if (sc->sc_softled) {
1073 				callout_stop(&sc->sc_ledtimer);
1074 				ath_hal_gpioset(ah, sc->sc_ledpin,
1075 					!sc->sc_ledon);
1076 				sc->sc_blinking = 0;
1077 			}
1078 			ath_hal_intrset(ah, 0);
1079 		}
1080 		ath_draintxq(sc);
1081 		if (!sc->sc_invalid) {
1082 			ath_stoprecv(sc);
1083 			ath_hal_phydisable(ah);
1084 		} else
1085 			sc->sc_rxlink = NULL;
1086 		IFQ_DRV_PURGE(&ifp->if_snd);
1087 		ath_beacon_free(sc);
1088 	}
1089 }
1090 
1091 static void
1092 ath_stop(struct ifnet *ifp)
1093 {
1094 	struct ath_softc *sc = ifp->if_softc;
1095 
1096 	ATH_LOCK(sc);
1097 	ath_stop_locked(ifp);
1098 	if (!sc->sc_invalid) {
1099 		/*
1100 		 * Set the chip in full sleep mode.  Note that we are
1101 		 * careful to do this only when bringing the interface
1102 		 * completely to a stop.  When the chip is in this state
1103 		 * it must be carefully woken up or references to
1104 		 * registers in the PCI clock domain may freeze the bus
1105 		 * (and system).  This varies by chip and is mostly an
1106 		 * issue with newer parts that go to sleep more quickly.
1107 		 */
1108 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1109 	}
1110 	ATH_UNLOCK(sc);
1111 }
1112 
1113 /*
1114  * Reset the hardware w/o losing operational state.  This is
1115  * basically a more efficient way of doing ath_stop, ath_init,
1116  * followed by state transitions to the current 802.11
1117  * operational state.  Used to recover from various errors and
1118  * to reset or reload hardware state.
1119  */
1120 static int
1121 ath_reset(struct ifnet *ifp)
1122 {
1123 	struct ath_softc *sc = ifp->if_softc;
1124 	struct ieee80211com *ic = &sc->sc_ic;
1125 	struct ath_hal *ah = sc->sc_ah;
1126 	HAL_STATUS status;
1127 
1128 	/*
1129 	 * Convert to a HAL channel description with the flags
1130 	 * constrained to reflect the current operating mode.
1131 	 */
1132 	ath_mapchan(&sc->sc_curchan, ic->ic_curchan);
1133 
1134 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1135 	ath_draintxq(sc);		/* stop xmit side */
1136 	ath_stoprecv(sc);		/* stop recv side */
1137 	/* NB: indicate channel change so we do a full reset */
1138 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_TRUE, &status))
1139 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1140 			__func__, status);
1141 	ath_update_txpow(sc);		/* update tx power state */
1142 	sc->sc_diversity = ath_hal_getdiversity(ah);
1143 	sc->sc_calinterval = 1;
1144 	sc->sc_caltries = 0;
1145 	if (ath_startrecv(sc) != 0)	/* restart recv */
1146 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1147 	/*
1148 	 * We may be doing a reset in response to an ioctl
1149 	 * that changes the channel so update any state that
1150 	 * might change as a result.
1151 	 */
1152 	ath_chan_change(sc, ic->ic_curchan);
1153 	if (ic->ic_state == IEEE80211_S_RUN)
1154 		ath_beacon_config(sc);	/* restart beacons */
1155 	ath_hal_intrset(ah, sc->sc_imask);
1156 
1157 	ath_start(ifp);			/* restart xmit */
1158 	return 0;
1159 }
1160 
1161 static int
1162 ath_ff_always(struct ath_txq *txq, struct ath_buf *bf)
1163 {
1164 	return 0;
1165 }
1166 
1167 #if 0
1168 static int
1169 ath_ff_ageflushtestdone(struct ath_txq *txq, struct ath_buf *bf)
1170 {
1171 	return (txq->axq_curage - bf->bf_age) < ATH_FF_STAGEMAX;
1172 }
1173 #endif
1174 
1175 /*
1176  * Flush FF staging queue.
1177  */
1178 static void
1179 ath_ff_stageq_flush(struct ath_softc *sc, struct ath_txq *txq,
1180 	int (*ath_ff_flushdonetest)(struct ath_txq *txq, struct ath_buf *bf))
1181 {
1182 	struct ath_buf *bf;
1183 	struct ieee80211_node *ni;
1184 	int pktlen, pri;
1185 
1186 	for (;;) {
1187 		ATH_TXQ_LOCK(txq);
1188 		/*
1189 		 * Go from the back (oldest) to front so we can
1190 		 * stop early based on the age of the entry.
1191 		 */
1192 		bf = TAILQ_LAST(&txq->axq_stageq, axq_headtype);
1193 		if (bf == NULL || ath_ff_flushdonetest(txq, bf)) {
1194 			ATH_TXQ_UNLOCK(txq);
1195 			break;
1196 		}
1197 
1198 		ni = bf->bf_node;
1199 		pri = M_WME_GETAC(bf->bf_m);
1200 		KASSERT(ATH_NODE(ni)->an_ff_buf[pri],
1201 			("no bf on staging queue %p", bf));
1202 		ATH_NODE(ni)->an_ff_buf[pri] = NULL;
1203 		TAILQ_REMOVE(&txq->axq_stageq, bf, bf_stagelist);
1204 
1205 		ATH_TXQ_UNLOCK(txq);
1206 
1207 		DPRINTF(sc, ATH_DEBUG_FF, "%s: flush frame, age %u\n",
1208 			__func__, bf->bf_age);
1209 
1210 		sc->sc_stats.ast_ff_flush++;
1211 
1212 		/* encap and xmit */
1213 		bf->bf_m = ieee80211_encap(&sc->sc_ic, bf->bf_m, ni);
1214 		if (bf->bf_m == NULL) {
1215 			DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1216 				"%s: discard, encapsulation failure\n",
1217 				__func__);
1218 			sc->sc_stats.ast_tx_encap++;
1219 			goto bad;
1220 		}
1221 		pktlen = bf->bf_m->m_pkthdr.len; /* NB: don't reference below */
1222 		if (ath_tx_start(sc, ni, bf, bf->bf_m) == 0) {
1223 #if 0 /*XXX*/
1224 			ifp->if_opackets++;
1225 #endif
1226 			continue;
1227 		}
1228 	bad:
1229 		if (ni != NULL)
1230 			ieee80211_free_node(ni);
1231 		bf->bf_node = NULL;
1232 		if (bf->bf_m != NULL) {
1233 			m_freem(bf->bf_m);
1234 			bf->bf_m = NULL;
1235 		}
1236 
1237 		ATH_TXBUF_LOCK(sc);
1238 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1239 		ATH_TXBUF_UNLOCK(sc);
1240 	}
1241 }
1242 
1243 static __inline u_int32_t
1244 ath_ff_approx_txtime(struct ath_softc *sc, struct ath_node *an, struct mbuf *m)
1245 {
1246 	u_int32_t framelen;
1247 	struct ath_buf *bf;
1248 
1249 	/*
1250 	 * Approximate the frame length to be transmitted. A swag to add
1251 	 * the following maximal values to the skb payload:
1252 	 *   - 32: 802.11 encap + CRC
1253 	 *   - 24: encryption overhead (if wep bit)
1254 	 *   - 4 + 6: fast-frame header and padding
1255 	 *   - 16: 2 LLC FF tunnel headers
1256 	 *   - 14: 1 802.3 FF tunnel header (skb already accounts for 2nd)
1257 	 */
1258 	framelen = m->m_pkthdr.len + 32 + 4 + 6 + 16 + 14;
1259 	if (sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY)
1260 		framelen += 24;
1261 	bf = an->an_ff_buf[M_WME_GETAC(m)];
1262 	if (bf != NULL)
1263 		framelen += bf->bf_m->m_pkthdr.len;
1264 	return ath_hal_computetxtime(sc->sc_ah, sc->sc_currates, framelen,
1265 			sc->sc_lastdatarix, AH_FALSE);
1266 }
1267 
1268 /*
1269  * Determine if a data frame may be aggregated via ff tunnelling.
1270  * Note the caller is responsible for checking if the destination
1271  * supports fast frames.
1272  *
1273  *  NB: allowing EAPOL frames to be aggregated with other unicast traffic.
1274  *      Do 802.1x EAPOL frames proceed in the clear? Then they couldn't
1275  *      be aggregated with other types of frames when encryption is on?
1276  *
1277  *  NB: assumes lock on an_ff_buf effectively held by txq lock mechanism.
1278  */
1279 static __inline int
1280 ath_ff_can_aggregate(struct ath_softc *sc,
1281 	struct ath_node *an, struct mbuf *m, int *flushq)
1282 {
1283 	struct ieee80211com *ic = &sc->sc_ic;
1284 	struct ath_txq *txq;
1285 	u_int32_t txoplimit;
1286 	u_int pri;
1287 
1288 	*flushq = 0;
1289 
1290 	/*
1291 	 * If there is no frame to combine with and the txq has
1292 	 * fewer frames than the minimum required; then do not
1293 	 * attempt to aggregate this frame.
1294 	 */
1295 	pri = M_WME_GETAC(m);
1296 	txq = sc->sc_ac2q[pri];
1297 	if (an->an_ff_buf[pri] == NULL && txq->axq_depth < sc->sc_fftxqmin)
1298 		return 0;
1299 	/*
1300 	 * When not in station mode never aggregate a multicast
1301 	 * frame; this insures, for example, that a combined frame
1302 	 * does not require multiple encryption keys when using
1303 	 * 802.1x/WPA.
1304 	 */
1305 	if (ic->ic_opmode != IEEE80211_M_STA &&
1306 	    ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost))
1307 		return 0;
1308 	/*
1309 	 * Consult the max bursting interval to insure a combined
1310 	 * frame fits within the TxOp window.
1311 	 */
1312 	txoplimit = IEEE80211_TXOP_TO_US(
1313 		ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit);
1314 	if (txoplimit != 0 && ath_ff_approx_txtime(sc, an, m) > txoplimit) {
1315 		DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1316 			"%s: FF TxOp violation\n", __func__);
1317 		if (an->an_ff_buf[pri] != NULL)
1318 			*flushq = 1;
1319 		return 0;
1320 	}
1321 	return 1;		/* try to aggregate */
1322 }
1323 
1324 /*
1325  * Check if the supplied frame can be partnered with an existing
1326  * or pending frame.  Return a reference to any frame that should be
1327  * sent on return; otherwise return NULL.
1328  */
1329 static struct mbuf *
1330 ath_ff_check(struct ath_softc *sc, struct ath_txq *txq,
1331 	struct ath_buf *bf, struct mbuf *m, struct ieee80211_node *ni)
1332 {
1333 	struct ieee80211com *ic = ni->ni_ic;
1334 	struct ath_node *an = ATH_NODE(ni);
1335 	struct ath_buf *bfstaged;
1336 	int ff_flush, pri;
1337 
1338 	/*
1339 	 * Check if the supplied frame can be aggregated.
1340 	 *
1341 	 * NB: we use the txq lock to protect references to
1342 	 *     an->an_ff_txbuf in ath_ff_can_aggregate().
1343 	 */
1344 	ATH_TXQ_LOCK(txq);
1345 	pri = M_WME_GETAC(m);
1346 	if (ath_ff_can_aggregate(sc, an, m, &ff_flush)) {
1347 		struct ath_buf *bfstaged = an->an_ff_buf[pri];
1348 		if (bfstaged != NULL) {
1349 			/*
1350 			 * A frame is available for partnering; remove
1351 			 * it, chain it to this one, and encapsulate.
1352 			 */
1353 			an->an_ff_buf[pri] = NULL;
1354 			TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1355 			ATH_TXQ_UNLOCK(txq);
1356 
1357 			/*
1358 			 * Chain mbufs and add FF magic.
1359 			 */
1360 			DPRINTF(sc, ATH_DEBUG_FF,
1361 				"[%s] aggregate fast-frame, age %u\n",
1362 				ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1363 			m->m_nextpkt = NULL;
1364 			bfstaged->bf_m->m_nextpkt = m;
1365 			m = bfstaged->bf_m;
1366 			bfstaged->bf_m = NULL;
1367 			m->m_flags |= M_FF;
1368 			/*
1369 			 * Release the node reference held while
1370 			 * the packet sat on an_ff_buf[]
1371 			 */
1372 			bfstaged->bf_node = NULL;
1373 			ieee80211_free_node(ni);
1374 
1375 			/*
1376 			 * Return bfstaged to the free list.
1377 			 */
1378 			ATH_TXBUF_LOCK(sc);
1379 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bfstaged, bf_list);
1380 			ATH_TXBUF_UNLOCK(sc);
1381 
1382 			return m;		/* ready to go */
1383 		} else {
1384 			/*
1385 			 * No frame available, queue this frame to wait
1386 			 * for a partner.  Note that we hold the buffer
1387 			 * and a reference to the node; we need the
1388 			 * buffer in particular so we're certain we
1389 			 * can flush the frame at a later time.
1390 			 */
1391 			DPRINTF(sc, ATH_DEBUG_FF,
1392 				"[%s] stage fast-frame, age %u\n",
1393 				ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1394 
1395 			bf->bf_m = m;
1396 			bf->bf_node = ni;	/* NB: held reference */
1397 			bf->bf_age = txq->axq_curage;
1398 			an->an_ff_buf[pri] = bf;
1399 			TAILQ_INSERT_HEAD(&txq->axq_stageq, bf, bf_stagelist);
1400 			ATH_TXQ_UNLOCK(txq);
1401 
1402 			return NULL;		/* consumed */
1403 		}
1404 	}
1405 	/*
1406 	 * Frame could not be aggregated, it needs to be returned
1407 	 * to the caller for immediate transmission.  In addition
1408 	 * we check if we should first flush a frame from the
1409 	 * staging queue before sending this one.
1410 	 *
1411 	 * NB: ath_ff_can_aggregate only marks ff_flush if a frame
1412 	 *     is present to flush.
1413 	 */
1414 	if (ff_flush) {
1415 		int pktlen;
1416 
1417 		bfstaged = an->an_ff_buf[pri];
1418 		an->an_ff_buf[pri] = NULL;
1419 		TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1420 		ATH_TXQ_UNLOCK(txq);
1421 
1422 		DPRINTF(sc, ATH_DEBUG_FF, "[%s] flush staged frame\n",
1423 			ether_sprintf(an->an_node.ni_macaddr));
1424 
1425 		/* encap and xmit */
1426 		bfstaged->bf_m = ieee80211_encap(ic, bfstaged->bf_m, ni);
1427 		if (bfstaged->bf_m == NULL) {
1428 			DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1429 				"%s: discard, encap failure\n", __func__);
1430 			sc->sc_stats.ast_tx_encap++;
1431 			goto ff_flushbad;
1432 		}
1433 		pktlen = bfstaged->bf_m->m_pkthdr.len;
1434 		if (ath_tx_start(sc, ni, bfstaged, bfstaged->bf_m)) {
1435 			DPRINTF(sc, ATH_DEBUG_XMIT,
1436 				"%s: discard, xmit failure\n", __func__);
1437 	ff_flushbad:
1438 			/*
1439 			 * Unable to transmit frame that was on the staging
1440 			 * queue.  Reclaim the node reference and other
1441 			 * resources.
1442 			 */
1443 			if (ni != NULL)
1444 				ieee80211_free_node(ni);
1445 			bfstaged->bf_node = NULL;
1446 			if (bfstaged->bf_m != NULL) {
1447 				m_freem(bfstaged->bf_m);
1448 				bfstaged->bf_m = NULL;
1449 			}
1450 
1451 			ATH_TXBUF_LOCK(sc);
1452 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bfstaged, bf_list);
1453 			ATH_TXBUF_UNLOCK(sc);
1454 		} else {
1455 #if 0
1456 			ifp->if_opackets++;
1457 #endif
1458 		}
1459 	} else {
1460 		if (an->an_ff_buf[pri] != NULL) {
1461 			/*
1462 			 * XXX: out-of-order condition only occurs for AP
1463 			 * mode and multicast.  There may be no valid way
1464 			 * to get this condition.
1465 			 */
1466 			DPRINTF(sc, ATH_DEBUG_FF, "[%s] out-of-order frame\n",
1467 				ether_sprintf(an->an_node.ni_macaddr));
1468 			/* XXX stat */
1469 		}
1470 		ATH_TXQ_UNLOCK(txq);
1471 	}
1472 	return m;
1473 }
1474 
1475 /*
1476  * Cleanup driver resources when we run out of buffers
1477  * while processing fragments; return the tx buffers
1478  * allocated and drop node references.
1479  */
1480 static void
1481 ath_txfrag_cleanup(struct ath_softc *sc,
1482 	ath_bufhead *frags, struct ieee80211_node *ni)
1483 {
1484 	struct ath_buf *bf, *next;
1485 
1486 	ATH_TXBUF_LOCK_ASSERT(sc);
1487 
1488 	STAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
1489 		/* NB: bf assumed clean */
1490 		STAILQ_REMOVE_HEAD(frags, bf_list);
1491 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1492 		ieee80211_node_decref(ni);
1493 	}
1494 }
1495 
1496 /*
1497  * Setup xmit of a fragmented frame.  Allocate a buffer
1498  * for each frag and bump the node reference count to
1499  * reflect the held reference to be setup by ath_tx_start.
1500  */
1501 static int
1502 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1503 	struct mbuf *m0, struct ieee80211_node *ni)
1504 {
1505 	struct mbuf *m;
1506 	struct ath_buf *bf;
1507 
1508 	ATH_TXBUF_LOCK(sc);
1509 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1510 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1511 		if (bf == NULL) {	/* out of buffers, cleanup */
1512 			ath_txfrag_cleanup(sc, frags, ni);
1513 			break;
1514 		}
1515 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1516 		ieee80211_node_incref(ni);
1517 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1518 	}
1519 	ATH_TXBUF_UNLOCK(sc);
1520 
1521 	return !STAILQ_EMPTY(frags);
1522 }
1523 
1524 static void
1525 ath_start(struct ifnet *ifp)
1526 {
1527 	struct ath_softc *sc = ifp->if_softc;
1528 	struct ath_hal *ah = sc->sc_ah;
1529 	struct ieee80211com *ic = &sc->sc_ic;
1530 	struct ieee80211_node *ni;
1531 	struct ath_buf *bf;
1532 	struct mbuf *m, *next;
1533 	struct ieee80211_frame *wh;
1534 	struct ether_header *eh;
1535 	struct ath_txq *txq;
1536 	ath_bufhead frags;
1537 	int pri;
1538 
1539 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1540 		return;
1541 	for (;;) {
1542 		/*
1543 		 * Grab a TX buffer and associated resources.
1544 		 */
1545 		ATH_TXBUF_LOCK(sc);
1546 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1547 		if (bf != NULL)
1548 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1549 		ATH_TXBUF_UNLOCK(sc);
1550 		if (bf == NULL) {
1551 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1552 				__func__);
1553 			sc->sc_stats.ast_tx_qstop++;
1554 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1555 			break;
1556 		}
1557 		/*
1558 		 * Poll the management queue for frames; they
1559 		 * have priority over normal data frames.
1560 		 */
1561 		IF_DEQUEUE(&ic->ic_mgtq, m);
1562 		if (m == NULL) {
1563 			/*
1564 			 * No data frames go out unless we're associated.
1565 			 */
1566 			if (ic->ic_state != IEEE80211_S_RUN) {
1567 				DPRINTF(sc, ATH_DEBUG_XMIT,
1568 				    "%s: discard data packet, state %s\n",
1569 				    __func__,
1570 				    ieee80211_state_name[ic->ic_state]);
1571 				sc->sc_stats.ast_tx_discard++;
1572 				ATH_TXBUF_LOCK(sc);
1573 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1574 				ATH_TXBUF_UNLOCK(sc);
1575 				break;
1576 			}
1577 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1578 			if (m == NULL) {
1579 				ATH_TXBUF_LOCK(sc);
1580 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1581 				ATH_TXBUF_UNLOCK(sc);
1582 				break;
1583 			}
1584 			STAILQ_INIT(&frags);
1585 			/*
1586 			 * Find the node for the destination so we can do
1587 			 * things like power save and fast frames aggregation.
1588 			 */
1589 			if (m->m_len < sizeof(struct ether_header) &&
1590 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1591 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1592 				ni = NULL;
1593 				goto bad;
1594 			}
1595 			eh = mtod(m, struct ether_header *);
1596 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1597 			if (ni == NULL) {
1598 				/* NB: ieee80211_find_txnode does stat+msg */
1599 				m_freem(m);
1600 				goto bad;
1601 			}
1602 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1603 			    (m->m_flags & M_PWR_SAV) == 0) {
1604 				/*
1605 				 * Station in power save mode; pass the frame
1606 				 * to the 802.11 layer and continue.  We'll get
1607 				 * the frame back when the time is right.
1608 				 */
1609 				ieee80211_pwrsave(ni, m);
1610 				/*
1611 				 * If we're in power save mode 'cuz of a bg
1612 				 * scan cancel it so the traffic can flow.
1613 				 * The packet we just queued will automatically
1614 				 * get sent when we drop out of power save.
1615 				 * XXX locking
1616 				 */
1617 				if (ic->ic_flags & IEEE80211_F_SCAN)
1618 					ieee80211_cancel_scan(ic);
1619 				goto reclaim;
1620 			}
1621 			/* calculate priority so we can find the tx queue */
1622 			if (ieee80211_classify(ic, m, ni)) {
1623 				DPRINTF(sc, ATH_DEBUG_XMIT,
1624 					"%s: discard, classification failure\n",
1625 					__func__);
1626 				m_freem(m);
1627 				goto bad;
1628 			}
1629 			pri = M_WME_GETAC(m);
1630 			txq = sc->sc_ac2q[pri];
1631 			if (ni->ni_ath_flags & IEEE80211_NODE_FF) {
1632 				/*
1633 				 * Check queue length; if too deep drop this
1634 				 * frame (tail drop considered good).
1635 				 */
1636 				if (txq->axq_depth >= sc->sc_fftxqmax) {
1637 					DPRINTF(sc, ATH_DEBUG_FF,
1638 					    "[%s] tail drop on q %u depth %u\n",
1639 					    ether_sprintf(ni->ni_macaddr),
1640 					    txq->axq_qnum, txq->axq_depth);
1641 					sc->sc_stats.ast_tx_qfull++;
1642 					m_freem(m);
1643 					goto reclaim;
1644 				}
1645 				m = ath_ff_check(sc, txq, bf, m, ni);
1646 				if (m == NULL) {
1647 					/* NB: ni ref & bf held on stageq */
1648 					continue;
1649 				}
1650 			}
1651 			ifp->if_opackets++;
1652 			BPF_MTAP(ifp, m);
1653 			/*
1654 			 * Encapsulate the packet in prep for transmission.
1655 			 */
1656 			m = ieee80211_encap(ic, m, ni);
1657 			if (m == NULL) {
1658 				DPRINTF(sc, ATH_DEBUG_XMIT,
1659 					"%s: encapsulation failure\n",
1660 					__func__);
1661 				sc->sc_stats.ast_tx_encap++;
1662 				goto bad;
1663 			}
1664 			/*
1665 			 * Check for fragmentation.  If this frame
1666 			 * has been broken up verify we have enough
1667 			 * buffers to send all the fragments so all
1668 			 * go out or none...
1669 			 */
1670 			if ((m->m_flags & M_FRAG) &&
1671 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
1672 				DPRINTF(sc, ATH_DEBUG_XMIT,
1673 				    "%s: out of txfrag buffers\n", __func__);
1674 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1675 				ath_freetx(m);
1676 				goto bad;
1677 			}
1678 		} else {
1679 			/*
1680 			 * Hack!  The referenced node pointer is in the
1681 			 * rcvif field of the packet header.  This is
1682 			 * placed there by ieee80211_mgmt_output because
1683 			 * we need to hold the reference with the frame
1684 			 * and there's no other way (other than packet
1685 			 * tags which we consider too expensive to use)
1686 			 * to pass it along.
1687 			 */
1688 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1689 			m->m_pkthdr.rcvif = NULL;
1690 
1691 			wh = mtod(m, struct ieee80211_frame *);
1692 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1693 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1694 				/* fill time stamp */
1695 				u_int64_t tsf;
1696 				u_int32_t *tstamp;
1697 
1698 				tsf = ath_hal_gettsf64(ah);
1699 				/* XXX: adjust 100us delay to xmit */
1700 				tsf += 100;
1701 				tstamp = (u_int32_t *)&wh[1];
1702 				tstamp[0] = htole32(tsf & 0xffffffff);
1703 				tstamp[1] = htole32(tsf >> 32);
1704 			}
1705 			sc->sc_stats.ast_tx_mgmt++;
1706 		}
1707 
1708 	nextfrag:
1709 		/*
1710 		 * Pass the frame to the h/w for transmission.
1711 		 * Fragmented frames have each frag chained together
1712 		 * with m_nextpkt.  We know there are sufficient ath_buf's
1713 		 * to send all the frags because of work done by
1714 		 * ath_txfrag_setup.  We leave m_nextpkt set while
1715 		 * calling ath_tx_start so it can use it to extend the
1716 		 * the tx duration to cover the subsequent frag and
1717 		 * so it can reclaim all the mbufs in case of an error;
1718 		 * ath_tx_start clears m_nextpkt once it commits to
1719 		 * handing the frame to the hardware.
1720 		 */
1721 		next = m->m_nextpkt;
1722 		if (ath_tx_start(sc, ni, bf, m)) {
1723 	bad:
1724 			ifp->if_oerrors++;
1725 	reclaim:
1726 			bf->bf_m = NULL;
1727 			bf->bf_node = NULL;
1728 			ATH_TXBUF_LOCK(sc);
1729 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1730 			ath_txfrag_cleanup(sc, &frags, ni);
1731 			ATH_TXBUF_UNLOCK(sc);
1732 			if (ni != NULL)
1733 				ieee80211_free_node(ni);
1734 			continue;
1735 		}
1736 		if (next != NULL) {
1737 			/*
1738 			 * Beware of state changing between frags.
1739 			 * XXX check sta power-save state?
1740 			 */
1741 			if (ic->ic_state != IEEE80211_S_RUN) {
1742 				DPRINTF(sc, ATH_DEBUG_XMIT,
1743 				    "%s: flush fragmented packet, state %s\n",
1744 				    __func__,
1745 				    ieee80211_state_name[ic->ic_state]);
1746 				ath_freetx(next);
1747 				goto reclaim;
1748 			}
1749 			m = next;
1750 			bf = STAILQ_FIRST(&frags);
1751 			KASSERT(bf != NULL, ("no buf for txfrag"));
1752 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1753 			goto nextfrag;
1754 		}
1755 
1756 		ifp->if_timer = 5;
1757 #if 0
1758 		/*
1759 		 * Flush stale frames from the fast-frame staging queue.
1760 		 */
1761 		if (ic->ic_opmode != IEEE80211_M_STA)
1762 			ath_ff_stageq_flush(sc, txq, ath_ff_ageflushtestdone);
1763 #endif
1764 	}
1765 }
1766 
1767 static int
1768 ath_media_change(struct ifnet *ifp)
1769 {
1770 #define	IS_UP(ifp) \
1771 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1772 	int error;
1773 
1774 	error = ieee80211_media_change(ifp);
1775 	if (error == ENETRESET) {
1776 		struct ath_softc *sc = ifp->if_softc;
1777 		struct ieee80211com *ic = &sc->sc_ic;
1778 
1779 		if (ic->ic_opmode == IEEE80211_M_AHDEMO) {
1780 			/*
1781 			 * Adhoc demo mode is just ibss mode w/o beacons
1782 			 * (mostly).  The hal knows nothing about it;
1783 			 * tell it we're operating in ibss mode.
1784 			 */
1785 			sc->sc_opmode = HAL_M_IBSS;
1786 		} else
1787 			sc->sc_opmode = ic->ic_opmode;
1788 		if (IS_UP(ifp))
1789 			ath_init(sc);		/* XXX lose error */
1790 		error = 0;
1791 	}
1792 	return error;
1793 #undef IS_UP
1794 }
1795 
1796 #ifdef ATH_DEBUG
1797 static void
1798 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
1799 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1800 {
1801 	static const char *ciphers[] = {
1802 		"WEP",
1803 		"AES-OCB",
1804 		"AES-CCM",
1805 		"CKIP",
1806 		"TKIP",
1807 		"CLR",
1808 	};
1809 	int i, n;
1810 
1811 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1812 	for (i = 0, n = hk->kv_len; i < n; i++)
1813 		printf("%02x", hk->kv_val[i]);
1814 	printf(" mac %s", ether_sprintf(mac));
1815 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1816 		printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
1817 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1818 			printf("%02x", hk->kv_mic[i]);
1819 #if HAL_ABI_VERSION > 0x06052200
1820 		if (!sc->sc_splitmic) {
1821 			printf(" txmic ");
1822 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
1823 				printf("%02x", hk->kv_txmic[i]);
1824 		}
1825 #endif
1826 	}
1827 	printf("\n");
1828 }
1829 #endif
1830 
1831 /*
1832  * Set a TKIP key into the hardware.  This handles the
1833  * potential distribution of key state to multiple key
1834  * cache slots for TKIP.
1835  */
1836 static int
1837 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1838 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1839 {
1840 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1841 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1842 	struct ath_hal *ah = sc->sc_ah;
1843 
1844 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1845 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1846 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1847 		if (sc->sc_splitmic) {
1848 			/*
1849 			 * TX key goes at first index, RX key at the rx index.
1850 			 * The hal handles the MIC keys at index+64.
1851 			 */
1852 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1853 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1854 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1855 				return 0;
1856 
1857 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1858 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1859 			/* XXX delete tx key on failure? */
1860 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1861 		} else {
1862 			/*
1863 			 * Room for both TX+RX MIC keys in one key cache
1864 			 * slot, just set key at the first index; the hal
1865 			 * will handle the reset.
1866 			 */
1867 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1868 #if HAL_ABI_VERSION > 0x06052200
1869 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1870 #endif
1871 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1872 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1873 		}
1874 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1875 		/*
1876 		 * TX/RX key goes at first index.
1877 		 * The hal handles the MIC keys are index+64.
1878 		 */
1879 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1880 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1881 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1882 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1883 	}
1884 	return 0;
1885 #undef IEEE80211_KEY_XR
1886 }
1887 
1888 /*
1889  * Set a net80211 key into the hardware.  This handles the
1890  * potential distribution of key state to multiple key
1891  * cache slots for TKIP with hardware MIC support.
1892  */
1893 static int
1894 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1895 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1896 	struct ieee80211_node *bss)
1897 {
1898 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1899 	static const u_int8_t ciphermap[] = {
1900 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1901 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1902 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1903 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1904 		(u_int8_t) -1,		/* 4 is not allocated */
1905 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1906 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1907 	};
1908 	struct ath_hal *ah = sc->sc_ah;
1909 	const struct ieee80211_cipher *cip = k->wk_cipher;
1910 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1911 	const u_int8_t *mac;
1912 	HAL_KEYVAL hk;
1913 
1914 	memset(&hk, 0, sizeof(hk));
1915 	/*
1916 	 * Software crypto uses a "clear key" so non-crypto
1917 	 * state kept in the key cache are maintained and
1918 	 * so that rx frames have an entry to match.
1919 	 */
1920 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1921 		KASSERT(cip->ic_cipher < N(ciphermap),
1922 			("invalid cipher type %u", cip->ic_cipher));
1923 		hk.kv_type = ciphermap[cip->ic_cipher];
1924 		hk.kv_len = k->wk_keylen;
1925 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1926 	} else
1927 		hk.kv_type = HAL_CIPHER_CLR;
1928 
1929 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1930 		/*
1931 		 * Group keys on hardware that supports multicast frame
1932 		 * key search use a mac that is the sender's address with
1933 		 * the high bit set instead of the app-specified address.
1934 		 */
1935 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1936 		gmac[0] |= 0x80;
1937 		mac = gmac;
1938 	} else
1939 		mac = mac0;
1940 
1941 	if (hk.kv_type == HAL_CIPHER_TKIP &&
1942 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1943 		return ath_keyset_tkip(sc, k, &hk, mac);
1944 	} else {
1945 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1946 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1947 	}
1948 #undef N
1949 }
1950 
1951 /*
1952  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1953  * each key, one for decrypt/encrypt and the other for the MIC.
1954  */
1955 static u_int16_t
1956 key_alloc_2pair(struct ath_softc *sc,
1957 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1958 {
1959 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1960 	u_int i, keyix;
1961 
1962 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1963 	/* XXX could optimize */
1964 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1965 		u_int8_t b = sc->sc_keymap[i];
1966 		if (b != 0xff) {
1967 			/*
1968 			 * One or more slots in this byte are free.
1969 			 */
1970 			keyix = i*NBBY;
1971 			while (b & 1) {
1972 		again:
1973 				keyix++;
1974 				b >>= 1;
1975 			}
1976 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1977 			if (isset(sc->sc_keymap, keyix+32) ||
1978 			    isset(sc->sc_keymap, keyix+64) ||
1979 			    isset(sc->sc_keymap, keyix+32+64)) {
1980 				/* full pair unavailable */
1981 				/* XXX statistic */
1982 				if (keyix == (i+1)*NBBY) {
1983 					/* no slots were appropriate, advance */
1984 					continue;
1985 				}
1986 				goto again;
1987 			}
1988 			setbit(sc->sc_keymap, keyix);
1989 			setbit(sc->sc_keymap, keyix+64);
1990 			setbit(sc->sc_keymap, keyix+32);
1991 			setbit(sc->sc_keymap, keyix+32+64);
1992 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1993 				"%s: key pair %u,%u %u,%u\n",
1994 				__func__, keyix, keyix+64,
1995 				keyix+32, keyix+32+64);
1996 			*txkeyix = keyix;
1997 			*rxkeyix = keyix+32;
1998 			return 1;
1999 		}
2000 	}
2001 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2002 	return 0;
2003 #undef N
2004 }
2005 
2006 /*
2007  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2008  * each key, one for decrypt/encrypt and the other for the MIC.
2009  */
2010 static u_int16_t
2011 key_alloc_pair(struct ath_softc *sc,
2012 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2013 {
2014 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2015 	u_int i, keyix;
2016 
2017 	KASSERT(!sc->sc_splitmic, ("key cache split"));
2018 	/* XXX could optimize */
2019 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2020 		u_int8_t b = sc->sc_keymap[i];
2021 		if (b != 0xff) {
2022 			/*
2023 			 * One or more slots in this byte are free.
2024 			 */
2025 			keyix = i*NBBY;
2026 			while (b & 1) {
2027 		again:
2028 				keyix++;
2029 				b >>= 1;
2030 			}
2031 			if (isset(sc->sc_keymap, keyix+64)) {
2032 				/* full pair unavailable */
2033 				/* XXX statistic */
2034 				if (keyix == (i+1)*NBBY) {
2035 					/* no slots were appropriate, advance */
2036 					continue;
2037 				}
2038 				goto again;
2039 			}
2040 			setbit(sc->sc_keymap, keyix);
2041 			setbit(sc->sc_keymap, keyix+64);
2042 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2043 				"%s: key pair %u,%u\n",
2044 				__func__, keyix, keyix+64);
2045 			*txkeyix = *rxkeyix = keyix;
2046 			return 1;
2047 		}
2048 	}
2049 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2050 	return 0;
2051 #undef N
2052 }
2053 
2054 /*
2055  * Allocate a single key cache slot.
2056  */
2057 static int
2058 key_alloc_single(struct ath_softc *sc,
2059 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2060 {
2061 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2062 	u_int i, keyix;
2063 
2064 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2065 	for (i = 0; i < N(sc->sc_keymap); i++) {
2066 		u_int8_t b = sc->sc_keymap[i];
2067 		if (b != 0xff) {
2068 			/*
2069 			 * One or more slots are free.
2070 			 */
2071 			keyix = i*NBBY;
2072 			while (b & 1)
2073 				keyix++, b >>= 1;
2074 			setbit(sc->sc_keymap, keyix);
2075 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2076 				__func__, keyix);
2077 			*txkeyix = *rxkeyix = keyix;
2078 			return 1;
2079 		}
2080 	}
2081 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2082 	return 0;
2083 #undef N
2084 }
2085 
2086 /*
2087  * Allocate one or more key cache slots for a uniacst key.  The
2088  * key itself is needed only to identify the cipher.  For hardware
2089  * TKIP with split cipher+MIC keys we allocate two key cache slot
2090  * pairs so that we can setup separate TX and RX MIC keys.  Note
2091  * that the MIC key for a TKIP key at slot i is assumed by the
2092  * hardware to be at slot i+64.  This limits TKIP keys to the first
2093  * 64 entries.
2094  */
2095 static int
2096 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
2097 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2098 {
2099 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2100 
2101 	/*
2102 	 * Group key allocation must be handled specially for
2103 	 * parts that do not support multicast key cache search
2104 	 * functionality.  For those parts the key id must match
2105 	 * the h/w key index so lookups find the right key.  On
2106 	 * parts w/ the key search facility we install the sender's
2107 	 * mac address (with the high bit set) and let the hardware
2108 	 * find the key w/o using the key id.  This is preferred as
2109 	 * it permits us to support multiple users for adhoc and/or
2110 	 * multi-station operation.
2111 	 */
2112 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
2113 		if (!(&ic->ic_nw_keys[0] <= k &&
2114 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
2115 			/* should not happen */
2116 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2117 				"%s: bogus group key\n", __func__);
2118 			return 0;
2119 		}
2120 		/*
2121 		 * XXX we pre-allocate the global keys so
2122 		 * have no way to check if they've already been allocated.
2123 		 */
2124 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
2125 		return 1;
2126 	}
2127 
2128 	/*
2129 	 * We allocate two pair for TKIP when using the h/w to do
2130 	 * the MIC.  For everything else, including software crypto,
2131 	 * we allocate a single entry.  Note that s/w crypto requires
2132 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
2133 	 * not support pass-through cache entries and we map all
2134 	 * those requests to slot 0.
2135 	 */
2136 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2137 		return key_alloc_single(sc, keyix, rxkeyix);
2138 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2139 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2140 		if (sc->sc_splitmic)
2141 			return key_alloc_2pair(sc, keyix, rxkeyix);
2142 		else
2143 			return key_alloc_pair(sc, keyix, rxkeyix);
2144 	} else {
2145 		return key_alloc_single(sc, keyix, rxkeyix);
2146 	}
2147 }
2148 
2149 /*
2150  * Delete an entry in the key cache allocated by ath_key_alloc.
2151  */
2152 static int
2153 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2154 {
2155 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2156 	struct ath_hal *ah = sc->sc_ah;
2157 	const struct ieee80211_cipher *cip = k->wk_cipher;
2158 	u_int keyix = k->wk_keyix;
2159 
2160 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2161 
2162 	ath_hal_keyreset(ah, keyix);
2163 	/*
2164 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
2165 	 */
2166 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2167 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2168 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
2169 	if (keyix >= IEEE80211_WEP_NKID) {
2170 		/*
2171 		 * Don't touch keymap entries for global keys so
2172 		 * they are never considered for dynamic allocation.
2173 		 */
2174 		clrbit(sc->sc_keymap, keyix);
2175 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2176 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2177 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
2178 			if (sc->sc_splitmic) {
2179 				/* +32 for RX key, +32+64 for RX key MIC */
2180 				clrbit(sc->sc_keymap, keyix+32);
2181 				clrbit(sc->sc_keymap, keyix+32+64);
2182 			}
2183 		}
2184 	}
2185 	return 1;
2186 }
2187 
2188 /*
2189  * Set the key cache contents for the specified key.  Key cache
2190  * slot(s) must already have been allocated by ath_key_alloc.
2191  */
2192 static int
2193 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2194 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2195 {
2196 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2197 
2198 	return ath_keyset(sc, k, mac, ic->ic_bss);
2199 }
2200 
2201 /*
2202  * Block/unblock tx+rx processing while a key change is done.
2203  * We assume the caller serializes key management operations
2204  * so we only need to worry about synchronization with other
2205  * uses that originate in the driver.
2206  */
2207 static void
2208 ath_key_update_begin(struct ieee80211com *ic)
2209 {
2210 	struct ifnet *ifp = ic->ic_ifp;
2211 	struct ath_softc *sc = ifp->if_softc;
2212 
2213 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2214 #if 0
2215 	tasklet_disable(&sc->sc_rxtq);
2216 #endif
2217 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2218 }
2219 
2220 static void
2221 ath_key_update_end(struct ieee80211com *ic)
2222 {
2223 	struct ifnet *ifp = ic->ic_ifp;
2224 	struct ath_softc *sc = ifp->if_softc;
2225 
2226 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2227 	IF_UNLOCK(&ifp->if_snd);
2228 #if 0
2229 	tasklet_enable(&sc->sc_rxtq);
2230 #endif
2231 }
2232 
2233 /*
2234  * Calculate the receive filter according to the
2235  * operating mode and state:
2236  *
2237  * o always accept unicast, broadcast, and multicast traffic
2238  * o maintain current state of phy error reception (the hal
2239  *   may enable phy error frames for noise immunity work)
2240  * o probe request frames are accepted only when operating in
2241  *   hostap, adhoc, or monitor modes
2242  * o enable promiscuous mode according to the interface state
2243  * o accept beacons:
2244  *   - when operating in adhoc mode so the 802.11 layer creates
2245  *     node table entries for peers,
2246  *   - when operating in station mode for collecting rssi data when
2247  *     the station is otherwise quiet, or
2248  *   - when scanning
2249  * o accept control frames:
2250  *   - when in monitor mode
2251  */
2252 static u_int32_t
2253 ath_calcrxfilter(struct ath_softc *sc)
2254 {
2255 #define	RX_FILTER_PRESERVE	(HAL_RX_FILTER_PHYERR | HAL_RX_FILTER_PHYRADAR)
2256 	struct ieee80211com *ic = &sc->sc_ic;
2257 	struct ath_hal *ah = sc->sc_ah;
2258 	struct ifnet *ifp = sc->sc_ifp;
2259 	u_int32_t rfilt;
2260 
2261 	rfilt = (ath_hal_getrxfilter(ah) & RX_FILTER_PRESERVE)
2262 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2263 	if (ic->ic_opmode != IEEE80211_M_STA)
2264 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2265 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
2266 	    (ifp->if_flags & IFF_PROMISC))
2267 		rfilt |= HAL_RX_FILTER_PROM;
2268 	if (ic->ic_opmode == IEEE80211_M_STA ||
2269 	    ic->ic_opmode == IEEE80211_M_IBSS ||
2270 	    sc->sc_scanning)
2271 		rfilt |= HAL_RX_FILTER_BEACON;
2272 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2273 		rfilt |= HAL_RX_FILTER_CONTROL;
2274 	return rfilt;
2275 #undef RX_FILTER_PRESERVE
2276 }
2277 
2278 static void
2279 ath_mode_init(struct ath_softc *sc)
2280 {
2281 	struct ieee80211com *ic = &sc->sc_ic;
2282 	struct ath_hal *ah = sc->sc_ah;
2283 	struct ifnet *ifp = sc->sc_ifp;
2284 	u_int32_t rfilt, mfilt[2], val;
2285 	u_int8_t pos;
2286 	struct ifmultiaddr *ifma;
2287 
2288 	/* configure rx filter */
2289 	rfilt = ath_calcrxfilter(sc);
2290 	ath_hal_setrxfilter(ah, rfilt);
2291 
2292 	/* configure operational mode */
2293 	ath_hal_setopmode(ah);
2294 
2295 	/*
2296 	 * Handle any link-level address change.  Note that we only
2297 	 * need to force ic_myaddr; any other addresses are handled
2298 	 * as a byproduct of the ifnet code marking the interface
2299 	 * down then up.
2300 	 *
2301 	 * XXX should get from lladdr instead of arpcom but that's more work
2302 	 */
2303 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2304 	ath_hal_setmac(ah, ic->ic_myaddr);
2305 
2306 	/* calculate and install multicast filter */
2307 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2308 		mfilt[0] = mfilt[1] = 0;
2309 		IF_ADDR_LOCK(ifp);
2310 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2311 			caddr_t dl;
2312 
2313 			/* calculate XOR of eight 6bit values */
2314 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2315 			val = LE_READ_4(dl + 0);
2316 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2317 			val = LE_READ_4(dl + 3);
2318 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2319 			pos &= 0x3f;
2320 			mfilt[pos / 32] |= (1 << (pos % 32));
2321 		}
2322 		IF_ADDR_UNLOCK(ifp);
2323 	} else {
2324 		mfilt[0] = mfilt[1] = ~0;
2325 	}
2326 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
2327 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
2328 		__func__, rfilt, mfilt[0], mfilt[1]);
2329 }
2330 
2331 /*
2332  * Set the slot time based on the current setting.
2333  */
2334 static void
2335 ath_setslottime(struct ath_softc *sc)
2336 {
2337 	struct ieee80211com *ic = &sc->sc_ic;
2338 	struct ath_hal *ah = sc->sc_ah;
2339 	u_int usec;
2340 
2341 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2342 		usec = 13;
2343 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2344 		usec = 21;
2345 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2346 		/* honor short/long slot time only in 11g */
2347 		/* XXX shouldn't honor on pure g or turbo g channel */
2348 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2349 			usec = HAL_SLOT_TIME_9;
2350 		else
2351 			usec = HAL_SLOT_TIME_20;
2352 	} else
2353 		usec = HAL_SLOT_TIME_9;
2354 
2355 	DPRINTF(sc, ATH_DEBUG_RESET,
2356 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2357 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2358 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2359 
2360 	ath_hal_setslottime(ah, usec);
2361 	sc->sc_updateslot = OK;
2362 }
2363 
2364 /*
2365  * Callback from the 802.11 layer to update the
2366  * slot time based on the current setting.
2367  */
2368 static void
2369 ath_updateslot(struct ifnet *ifp)
2370 {
2371 	struct ath_softc *sc = ifp->if_softc;
2372 	struct ieee80211com *ic = &sc->sc_ic;
2373 
2374 	/*
2375 	 * When not coordinating the BSS, change the hardware
2376 	 * immediately.  For other operation we defer the change
2377 	 * until beacon updates have propagated to the stations.
2378 	 */
2379 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2380 		sc->sc_updateslot = UPDATE;
2381 	else
2382 		ath_setslottime(sc);
2383 }
2384 
2385 /*
2386  * Setup a h/w transmit queue for beacons.
2387  */
2388 static int
2389 ath_beaconq_setup(struct ath_hal *ah)
2390 {
2391 	HAL_TXQ_INFO qi;
2392 
2393 	memset(&qi, 0, sizeof(qi));
2394 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2395 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2396 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2397 	/* NB: for dynamic turbo, don't enable any other interrupts */
2398 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2399 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2400 }
2401 
2402 /*
2403  * Setup the transmit queue parameters for the beacon queue.
2404  */
2405 static int
2406 ath_beaconq_config(struct ath_softc *sc)
2407 {
2408 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2409 	struct ieee80211com *ic = &sc->sc_ic;
2410 	struct ath_hal *ah = sc->sc_ah;
2411 	HAL_TXQ_INFO qi;
2412 
2413 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2414 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2415 		/*
2416 		 * Always burst out beacon and CAB traffic.
2417 		 */
2418 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2419 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2420 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2421 	} else {
2422 		struct wmeParams *wmep =
2423 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2424 		/*
2425 		 * Adhoc mode; important thing is to use 2x cwmin.
2426 		 */
2427 		qi.tqi_aifs = wmep->wmep_aifsn;
2428 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2429 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2430 	}
2431 
2432 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2433 		device_printf(sc->sc_dev, "unable to update parameters for "
2434 			"beacon hardware queue!\n");
2435 		return 0;
2436 	} else {
2437 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2438 		return 1;
2439 	}
2440 #undef ATH_EXPONENT_TO_VALUE
2441 }
2442 
2443 /*
2444  * Allocate and setup an initial beacon frame.
2445  */
2446 static int
2447 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2448 {
2449 	struct ieee80211com *ic = ni->ni_ic;
2450 	struct ath_buf *bf;
2451 	struct mbuf *m;
2452 	int error;
2453 
2454 	bf = STAILQ_FIRST(&sc->sc_bbuf);
2455 	if (bf == NULL) {
2456 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2457 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
2458 		return ENOMEM;			/* XXX */
2459 	}
2460 	/*
2461 	 * NB: the beacon data buffer must be 32-bit aligned;
2462 	 * we assume the mbuf routines will return us something
2463 	 * with this alignment (perhaps should assert).
2464 	 */
2465 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2466 	if (m == NULL) {
2467 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2468 			__func__);
2469 		sc->sc_stats.ast_be_nombuf++;
2470 		return ENOMEM;
2471 	}
2472 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2473 				     bf->bf_segs, &bf->bf_nseg,
2474 				     BUS_DMA_NOWAIT);
2475 	if (error == 0) {
2476 		bf->bf_m = m;
2477 		bf->bf_node = ieee80211_ref_node(ni);
2478 	} else {
2479 		m_freem(m);
2480 	}
2481 	return error;
2482 }
2483 
2484 /*
2485  * Setup the beacon frame for transmit.
2486  */
2487 static void
2488 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2489 {
2490 #define	USE_SHPREAMBLE(_ic) \
2491 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2492 		== IEEE80211_F_SHPREAMBLE)
2493 	struct ieee80211_node *ni = bf->bf_node;
2494 	struct ieee80211com *ic = ni->ni_ic;
2495 	struct mbuf *m = bf->bf_m;
2496 	struct ath_hal *ah = sc->sc_ah;
2497 	struct ath_desc *ds;
2498 	int flags, antenna;
2499 	const HAL_RATE_TABLE *rt;
2500 	u_int8_t rix, rate;
2501 
2502 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2503 		__func__, m, m->m_len);
2504 
2505 	/* setup descriptors */
2506 	ds = bf->bf_desc;
2507 
2508 	flags = HAL_TXDESC_NOACK;
2509 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2510 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2511 		flags |= HAL_TXDESC_VEOL;
2512 		/*
2513 		 * Let hardware handle antenna switching.
2514 		 */
2515 		antenna = sc->sc_txantenna;
2516 	} else {
2517 		ds->ds_link = 0;
2518 		/*
2519 		 * Switch antenna every 4 beacons.
2520 		 * XXX assumes two antenna
2521 		 */
2522 		antenna = sc->sc_txantenna != 0 ? sc->sc_txantenna
2523 			: (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2524 	}
2525 
2526 	KASSERT(bf->bf_nseg == 1,
2527 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2528 	ds->ds_data = bf->bf_segs[0].ds_addr;
2529 	/*
2530 	 * Calculate rate code.
2531 	 * XXX everything at min xmit rate
2532 	 */
2533 	rix = sc->sc_minrateix;
2534 	rt = sc->sc_currates;
2535 	rate = rt->info[rix].rateCode;
2536 	if (USE_SHPREAMBLE(ic))
2537 		rate |= rt->info[rix].shortPreamble;
2538 	ath_hal_setuptxdesc(ah, ds
2539 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2540 		, sizeof(struct ieee80211_frame)/* header length */
2541 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2542 		, ni->ni_txpower		/* txpower XXX */
2543 		, rate, 1			/* series 0 rate/tries */
2544 		, HAL_TXKEYIX_INVALID		/* no encryption */
2545 		, antenna			/* antenna mode */
2546 		, flags				/* no ack, veol for beacons */
2547 		, 0				/* rts/cts rate */
2548 		, 0				/* rts/cts duration */
2549 	);
2550 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2551 	ath_hal_filltxdesc(ah, ds
2552 		, roundup(m->m_len, 4)		/* buffer length */
2553 		, AH_TRUE			/* first segment */
2554 		, AH_TRUE			/* last segment */
2555 		, ds				/* first descriptor */
2556 	);
2557 #undef USE_SHPREAMBLE
2558 }
2559 
2560 /*
2561  * Append the contents of src to dst; both queues
2562  * are assumed to be locked.
2563  */
2564 static void
2565 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2566 {
2567 	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2568 	dst->axq_link = src->axq_link;
2569 	src->axq_link = NULL;
2570 	dst->axq_depth += src->axq_depth;
2571 	src->axq_depth = 0;
2572 }
2573 
2574 /*
2575  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2576  * frame contents are done as needed and the slot time is
2577  * also adjusted based on current state.
2578  */
2579 static void
2580 ath_beacon_proc(void *arg, int pending)
2581 {
2582 	struct ath_softc *sc = arg;
2583 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2584 	struct ieee80211_node *ni = bf->bf_node;
2585 	struct ieee80211com *ic = ni->ni_ic;
2586 	struct ath_hal *ah = sc->sc_ah;
2587 	struct ath_txq *cabq = sc->sc_cabq;
2588 	struct mbuf *m;
2589 	int ncabq, nmcastq, error, otherant;
2590 
2591 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2592 		__func__, pending);
2593 
2594 	if (ic->ic_opmode == IEEE80211_M_STA ||
2595 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2596 	    bf == NULL || bf->bf_m == NULL) {
2597 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2598 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2599 		return;
2600 	}
2601 	/*
2602 	 * Check if the previous beacon has gone out.  If
2603 	 * not don't try to post another, skip this period
2604 	 * and wait for the next.  Missed beacons indicate
2605 	 * a problem and should not occur.  If we miss too
2606 	 * many consecutive beacons reset the device.
2607 	 */
2608 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2609 		sc->sc_bmisscount++;
2610 		DPRINTF(sc, ATH_DEBUG_BEACON,
2611 			"%s: missed %u consecutive beacons\n",
2612 			__func__, sc->sc_bmisscount);
2613 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2614 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2615 		return;
2616 	}
2617 	if (sc->sc_bmisscount != 0) {
2618 		DPRINTF(sc, ATH_DEBUG_BEACON,
2619 			"%s: resume beacon xmit after %u misses\n",
2620 			__func__, sc->sc_bmisscount);
2621 		sc->sc_bmisscount = 0;
2622 	}
2623 
2624 	/*
2625 	 * Update dynamic beacon contents.  If this returns
2626 	 * non-zero then we need to remap the memory because
2627 	 * the beacon frame changed size (probably because
2628 	 * of the TIM bitmap).
2629 	 */
2630 	m = bf->bf_m;
2631 	nmcastq = sc->sc_mcastq.axq_depth;
2632 	ncabq = ath_hal_numtxpending(ah, cabq->axq_qnum);
2633 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq+nmcastq)) {
2634 		/* XXX too conservative? */
2635 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2636 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2637 					     bf->bf_segs, &bf->bf_nseg,
2638 					     BUS_DMA_NOWAIT);
2639 		if (error != 0) {
2640 			if_printf(ic->ic_ifp,
2641 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2642 			    __func__, error);
2643 			return;
2644 		}
2645 	}
2646 	if (ncabq && (sc->sc_boff.bo_tim[4] & 1)) {
2647 		/*
2648 		 * CABQ traffic from the previous DTIM is still pending.
2649 		 * This is ok for now but when there are multiple vap's
2650 		 * and we are using staggered beacons we'll want to drain
2651 		 * the cabq before loading frames for the different vap.
2652 		 */
2653 		DPRINTF(sc, ATH_DEBUG_BEACON,
2654 		    "%s: cabq did not drain, mcastq %u cabq %u/%u\n",
2655 		    __func__, nmcastq, ncabq, cabq->axq_depth);
2656 		sc->sc_stats.ast_cabq_busy++;
2657 	}
2658 
2659 	/*
2660 	 * Handle slot time change when a non-ERP station joins/leaves
2661 	 * an 11g network.  The 802.11 layer notifies us via callback,
2662 	 * we mark updateslot, then wait one beacon before effecting
2663 	 * the change.  This gives associated stations at least one
2664 	 * beacon interval to note the state change.
2665 	 */
2666 	/* XXX locking */
2667 	if (sc->sc_updateslot == UPDATE)
2668 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2669 	else if (sc->sc_updateslot == COMMIT)
2670 		ath_setslottime(sc);		/* commit change to h/w */
2671 
2672 	/*
2673 	 * Check recent per-antenna transmit statistics and flip
2674 	 * the default antenna if noticeably more frames went out
2675 	 * on the non-default antenna.
2676 	 * XXX assumes 2 anntenae
2677 	 */
2678 	otherant = sc->sc_defant & 1 ? 2 : 1;
2679 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2680 		ath_setdefantenna(sc, otherant);
2681 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2682 
2683 	/*
2684 	 * Construct tx descriptor.
2685 	 */
2686 	ath_beacon_setup(sc, bf);
2687 
2688 	/*
2689 	 * Stop any current dma and put the new frame on the queue.
2690 	 * This should never fail since we check above that no frames
2691 	 * are still pending on the queue.
2692 	 */
2693 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2694 		DPRINTF(sc, ATH_DEBUG_ANY,
2695 			"%s: beacon queue %u did not stop?\n",
2696 			__func__, sc->sc_bhalq);
2697 	}
2698 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2699 
2700 	/*
2701 	 * Enable the CAB queue before the beacon queue to
2702 	 * insure cab frames are triggered by this beacon.
2703 	 */
2704 	if (sc->sc_boff.bo_tim_len && (sc->sc_boff.bo_tim[4] & 1)) {
2705 		/* NB: only at DTIM */
2706 		ATH_TXQ_LOCK(cabq);
2707 		ATH_TXQ_LOCK(&sc->sc_mcastq);
2708 		if (nmcastq) {
2709 			struct ath_buf *bfm;
2710 
2711 			/*
2712 			 * Move frames from the s/w mcast q to the h/w cab q.
2713 			 */
2714 			bfm = STAILQ_FIRST(&sc->sc_mcastq.axq_q);
2715 			if (cabq->axq_link != NULL) {
2716 				*cabq->axq_link = bfm->bf_daddr;
2717 			} else
2718 				ath_hal_puttxbuf(ah, cabq->axq_qnum,
2719 					bfm->bf_daddr);
2720 			ath_txqmove(cabq, &sc->sc_mcastq);
2721 
2722 			sc->sc_stats.ast_cabq_xmit += nmcastq;
2723 		}
2724 		/* NB: gated by beacon so safe to start here */
2725 		ath_hal_txstart(ah, cabq->axq_qnum);
2726 		ATH_TXQ_UNLOCK(cabq);
2727 		ATH_TXQ_UNLOCK(&sc->sc_mcastq);
2728 	}
2729 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2730 	ath_hal_txstart(ah, sc->sc_bhalq);
2731 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2732 		"%s: TXDP[%u] = %p (%p)\n", __func__,
2733 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2734 
2735 	sc->sc_stats.ast_be_xmit++;
2736 }
2737 
2738 /*
2739  * Reset the hardware after detecting beacons have stopped.
2740  */
2741 static void
2742 ath_bstuck_proc(void *arg, int pending)
2743 {
2744 	struct ath_softc *sc = arg;
2745 	struct ifnet *ifp = sc->sc_ifp;
2746 
2747 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2748 		sc->sc_bmisscount);
2749 	ath_reset(ifp);
2750 }
2751 
2752 /*
2753  * Reclaim beacon resources.
2754  */
2755 static void
2756 ath_beacon_free(struct ath_softc *sc)
2757 {
2758 	struct ath_buf *bf;
2759 
2760 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2761 		if (bf->bf_m != NULL) {
2762 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2763 			m_freem(bf->bf_m);
2764 			bf->bf_m = NULL;
2765 		}
2766 		if (bf->bf_node != NULL) {
2767 			ieee80211_free_node(bf->bf_node);
2768 			bf->bf_node = NULL;
2769 		}
2770 	}
2771 }
2772 
2773 /*
2774  * Configure the beacon and sleep timers.
2775  *
2776  * When operating as an AP this resets the TSF and sets
2777  * up the hardware to notify us when we need to issue beacons.
2778  *
2779  * When operating in station mode this sets up the beacon
2780  * timers according to the timestamp of the last received
2781  * beacon and the current TSF, configures PCF and DTIM
2782  * handling, programs the sleep registers so the hardware
2783  * will wakeup in time to receive beacons, and configures
2784  * the beacon miss handling so we'll receive a BMISS
2785  * interrupt when we stop seeing beacons from the AP
2786  * we've associated with.
2787  */
2788 static void
2789 ath_beacon_config(struct ath_softc *sc)
2790 {
2791 #define	TSF_TO_TU(_h,_l) \
2792 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2793 #define	FUDGE	2
2794 	struct ath_hal *ah = sc->sc_ah;
2795 	struct ieee80211com *ic = &sc->sc_ic;
2796 	struct ieee80211_node *ni = ic->ic_bss;
2797 	u_int32_t nexttbtt, intval, tsftu;
2798 	u_int64_t tsf;
2799 
2800 	/* extract tstamp from last beacon and convert to TU */
2801 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2802 			     LE_READ_4(ni->ni_tstamp.data));
2803 	/* NB: the beacon interval is kept internally in TU's */
2804 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2805 	if (nexttbtt == 0)		/* e.g. for ap mode */
2806 		nexttbtt = intval;
2807 	else if (intval)		/* NB: can be 0 for monitor mode */
2808 		nexttbtt = roundup(nexttbtt, intval);
2809 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2810 		__func__, nexttbtt, intval, ni->ni_intval);
2811 	if (ic->ic_opmode == IEEE80211_M_STA) {
2812 		HAL_BEACON_STATE bs;
2813 		int dtimperiod, dtimcount;
2814 		int cfpperiod, cfpcount;
2815 
2816 		/*
2817 		 * Setup dtim and cfp parameters according to
2818 		 * last beacon we received (which may be none).
2819 		 */
2820 		dtimperiod = ni->ni_dtim_period;
2821 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2822 			dtimperiod = 1;
2823 		dtimcount = ni->ni_dtim_count;
2824 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2825 			dtimcount = 0;		/* XXX? */
2826 		cfpperiod = 1;			/* NB: no PCF support yet */
2827 		cfpcount = 0;
2828 		/*
2829 		 * Pull nexttbtt forward to reflect the current
2830 		 * TSF and calculate dtim+cfp state for the result.
2831 		 */
2832 		tsf = ath_hal_gettsf64(ah);
2833 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2834 		do {
2835 			nexttbtt += intval;
2836 			if (--dtimcount < 0) {
2837 				dtimcount = dtimperiod - 1;
2838 				if (--cfpcount < 0)
2839 					cfpcount = cfpperiod - 1;
2840 			}
2841 		} while (nexttbtt < tsftu);
2842 		memset(&bs, 0, sizeof(bs));
2843 		bs.bs_intval = intval;
2844 		bs.bs_nexttbtt = nexttbtt;
2845 		bs.bs_dtimperiod = dtimperiod*intval;
2846 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2847 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2848 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2849 		bs.bs_cfpmaxduration = 0;
2850 #if 0
2851 		/*
2852 		 * The 802.11 layer records the offset to the DTIM
2853 		 * bitmap while receiving beacons; use it here to
2854 		 * enable h/w detection of our AID being marked in
2855 		 * the bitmap vector (to indicate frames for us are
2856 		 * pending at the AP).
2857 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2858 		 * XXX enable based on h/w rev for newer chips
2859 		 */
2860 		bs.bs_timoffset = ni->ni_timoff;
2861 #endif
2862 		/*
2863 		 * Calculate the number of consecutive beacons to miss
2864 		 * before taking a BMISS interrupt.
2865 		 * Note that we clamp the result to at most 10 beacons.
2866 		 */
2867 		bs.bs_bmissthreshold = ic->ic_bmissthreshold;
2868 		if (bs.bs_bmissthreshold > 10)
2869 			bs.bs_bmissthreshold = 10;
2870 		else if (bs.bs_bmissthreshold <= 0)
2871 			bs.bs_bmissthreshold = 1;
2872 
2873 		/*
2874 		 * Calculate sleep duration.  The configuration is
2875 		 * given in ms.  We insure a multiple of the beacon
2876 		 * period is used.  Also, if the sleep duration is
2877 		 * greater than the DTIM period then it makes senses
2878 		 * to make it a multiple of that.
2879 		 *
2880 		 * XXX fixed at 100ms
2881 		 */
2882 		bs.bs_sleepduration =
2883 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2884 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2885 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2886 
2887 		DPRINTF(sc, ATH_DEBUG_BEACON,
2888 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2889 			, __func__
2890 			, tsf, tsftu
2891 			, bs.bs_intval
2892 			, bs.bs_nexttbtt
2893 			, bs.bs_dtimperiod
2894 			, bs.bs_nextdtim
2895 			, bs.bs_bmissthreshold
2896 			, bs.bs_sleepduration
2897 			, bs.bs_cfpperiod
2898 			, bs.bs_cfpmaxduration
2899 			, bs.bs_cfpnext
2900 			, bs.bs_timoffset
2901 		);
2902 		ath_hal_intrset(ah, 0);
2903 		ath_hal_beacontimers(ah, &bs);
2904 		sc->sc_imask |= HAL_INT_BMISS;
2905 		ath_hal_intrset(ah, sc->sc_imask);
2906 	} else {
2907 		ath_hal_intrset(ah, 0);
2908 		if (nexttbtt == intval)
2909 			intval |= HAL_BEACON_RESET_TSF;
2910 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2911 			/*
2912 			 * In IBSS mode enable the beacon timers but only
2913 			 * enable SWBA interrupts if we need to manually
2914 			 * prepare beacon frames.  Otherwise we use a
2915 			 * self-linked tx descriptor and let the hardware
2916 			 * deal with things.
2917 			 */
2918 			intval |= HAL_BEACON_ENA;
2919 			if (!sc->sc_hasveol)
2920 				sc->sc_imask |= HAL_INT_SWBA;
2921 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2922 				/*
2923 				 * Pull nexttbtt forward to reflect
2924 				 * the current TSF.
2925 				 */
2926 				tsf = ath_hal_gettsf64(ah);
2927 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2928 				do {
2929 					nexttbtt += intval;
2930 				} while (nexttbtt < tsftu);
2931 			}
2932 			ath_beaconq_config(sc);
2933 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2934 			/*
2935 			 * In AP mode we enable the beacon timers and
2936 			 * SWBA interrupts to prepare beacon frames.
2937 			 */
2938 			intval |= HAL_BEACON_ENA;
2939 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2940 			ath_beaconq_config(sc);
2941 		}
2942 		ath_hal_beaconinit(ah, nexttbtt, intval);
2943 		sc->sc_bmisscount = 0;
2944 		ath_hal_intrset(ah, sc->sc_imask);
2945 		/*
2946 		 * When using a self-linked beacon descriptor in
2947 		 * ibss mode load it once here.
2948 		 */
2949 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2950 			ath_beacon_proc(sc, 0);
2951 	}
2952 	sc->sc_syncbeacon = 0;
2953 #undef FUDGE
2954 #undef TSF_TO_TU
2955 }
2956 
2957 static void
2958 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2959 {
2960 	bus_addr_t *paddr = (bus_addr_t*) arg;
2961 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2962 	*paddr = segs->ds_addr;
2963 }
2964 
2965 static int
2966 ath_descdma_setup(struct ath_softc *sc,
2967 	struct ath_descdma *dd, ath_bufhead *head,
2968 	const char *name, int nbuf, int ndesc)
2969 {
2970 #define	DS2PHYS(_dd, _ds) \
2971 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2972 	struct ifnet *ifp = sc->sc_ifp;
2973 	struct ath_desc *ds;
2974 	struct ath_buf *bf;
2975 	int i, bsize, error;
2976 
2977 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2978 	    __func__, name, nbuf, ndesc);
2979 
2980 	dd->dd_name = name;
2981 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2982 
2983 	/*
2984 	 * Setup DMA descriptor area.
2985 	 */
2986 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2987 		       PAGE_SIZE, 0,		/* alignment, bounds */
2988 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2989 		       BUS_SPACE_MAXADDR,	/* highaddr */
2990 		       NULL, NULL,		/* filter, filterarg */
2991 		       dd->dd_desc_len,		/* maxsize */
2992 		       1,			/* nsegments */
2993 		       dd->dd_desc_len,		/* maxsegsize */
2994 		       BUS_DMA_ALLOCNOW,	/* flags */
2995 		       NULL,			/* lockfunc */
2996 		       NULL,			/* lockarg */
2997 		       &dd->dd_dmat);
2998 	if (error != 0) {
2999 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3000 		return error;
3001 	}
3002 
3003 	/* allocate descriptors */
3004 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3005 	if (error != 0) {
3006 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3007 			"error %u\n", dd->dd_name, error);
3008 		goto fail0;
3009 	}
3010 
3011 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3012 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3013 				 &dd->dd_dmamap);
3014 	if (error != 0) {
3015 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3016 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3017 		goto fail1;
3018 	}
3019 
3020 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3021 				dd->dd_desc, dd->dd_desc_len,
3022 				ath_load_cb, &dd->dd_desc_paddr,
3023 				BUS_DMA_NOWAIT);
3024 	if (error != 0) {
3025 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3026 			dd->dd_name, error);
3027 		goto fail2;
3028 	}
3029 
3030 	ds = dd->dd_desc;
3031 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3032 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3033 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3034 
3035 	/* allocate rx buffers */
3036 	bsize = sizeof(struct ath_buf) * nbuf;
3037 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3038 	if (bf == NULL) {
3039 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3040 			dd->dd_name, bsize);
3041 		goto fail3;
3042 	}
3043 	dd->dd_bufptr = bf;
3044 
3045 	STAILQ_INIT(head);
3046 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3047 		bf->bf_desc = ds;
3048 		bf->bf_daddr = DS2PHYS(dd, ds);
3049 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3050 				&bf->bf_dmamap);
3051 		if (error != 0) {
3052 			if_printf(ifp, "unable to create dmamap for %s "
3053 				"buffer %u, error %u\n", dd->dd_name, i, error);
3054 			ath_descdma_cleanup(sc, dd, head);
3055 			return error;
3056 		}
3057 		STAILQ_INSERT_TAIL(head, bf, bf_list);
3058 	}
3059 	return 0;
3060 fail3:
3061 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3062 fail2:
3063 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3064 fail1:
3065 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3066 fail0:
3067 	bus_dma_tag_destroy(dd->dd_dmat);
3068 	memset(dd, 0, sizeof(*dd));
3069 	return error;
3070 #undef DS2PHYS
3071 }
3072 
3073 static void
3074 ath_descdma_cleanup(struct ath_softc *sc,
3075 	struct ath_descdma *dd, ath_bufhead *head)
3076 {
3077 	struct ath_buf *bf;
3078 	struct ieee80211_node *ni;
3079 
3080 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3081 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3082 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3083 	bus_dma_tag_destroy(dd->dd_dmat);
3084 
3085 	STAILQ_FOREACH(bf, head, bf_list) {
3086 		if (bf->bf_m) {
3087 			m_freem(bf->bf_m);
3088 			bf->bf_m = NULL;
3089 		}
3090 		if (bf->bf_dmamap != NULL) {
3091 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3092 			bf->bf_dmamap = NULL;
3093 		}
3094 		ni = bf->bf_node;
3095 		bf->bf_node = NULL;
3096 		if (ni != NULL) {
3097 			/*
3098 			 * Reclaim node reference.
3099 			 */
3100 			ieee80211_free_node(ni);
3101 		}
3102 	}
3103 
3104 	STAILQ_INIT(head);
3105 	free(dd->dd_bufptr, M_ATHDEV);
3106 	memset(dd, 0, sizeof(*dd));
3107 }
3108 
3109 static int
3110 ath_desc_alloc(struct ath_softc *sc)
3111 {
3112 	int error;
3113 
3114 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3115 			"rx", ath_rxbuf, 1);
3116 	if (error != 0)
3117 		return error;
3118 
3119 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3120 			"tx", ath_txbuf, ATH_TXDESC);
3121 	if (error != 0) {
3122 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3123 		return error;
3124 	}
3125 
3126 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3127 			"beacon", 1, 1);
3128 	if (error != 0) {
3129 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3130 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3131 		return error;
3132 	}
3133 	return 0;
3134 }
3135 
3136 static void
3137 ath_desc_free(struct ath_softc *sc)
3138 {
3139 
3140 	if (sc->sc_bdma.dd_desc_len != 0)
3141 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3142 	if (sc->sc_txdma.dd_desc_len != 0)
3143 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3144 	if (sc->sc_rxdma.dd_desc_len != 0)
3145 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3146 }
3147 
3148 static struct ieee80211_node *
3149 ath_node_alloc(struct ieee80211_node_table *nt)
3150 {
3151 	struct ieee80211com *ic = nt->nt_ic;
3152 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3153 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3154 	struct ath_node *an;
3155 
3156 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3157 	if (an == NULL) {
3158 		/* XXX stat+msg */
3159 		return NULL;
3160 	}
3161 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
3162 	ath_rate_node_init(sc, an);
3163 
3164 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3165 	return &an->an_node;
3166 }
3167 
3168 static void
3169 ath_node_free(struct ieee80211_node *ni)
3170 {
3171 	struct ieee80211com *ic = ni->ni_ic;
3172         struct ath_softc *sc = ic->ic_ifp->if_softc;
3173 
3174 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3175 
3176 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3177 	sc->sc_node_free(ni);
3178 }
3179 
3180 static int8_t
3181 ath_node_getrssi(const struct ieee80211_node *ni)
3182 {
3183 #define	HAL_EP_RND(x, mul) \
3184 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
3185 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
3186 	int32_t rssi;
3187 
3188 	/*
3189 	 * When only one frame is received there will be no state in
3190 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
3191 	 */
3192 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
3193 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
3194 	else
3195 		rssi = ni->ni_rssi;
3196 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
3197 #undef HAL_EP_RND
3198 }
3199 
3200 static void
3201 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3202 {
3203 	struct ieee80211com *ic = ni->ni_ic;
3204 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3205 	struct ath_hal *ah = sc->sc_ah;
3206 	HAL_CHANNEL hchan;
3207 
3208 	*rssi = ath_node_getrssi(ni);
3209 	if (ni->ni_chan != IEEE80211_CHAN_ANYC) {
3210 		ath_mapchan(&hchan, ni->ni_chan);
3211 		*noise = ath_hal_getchannoise(ah, &hchan);
3212 	} else
3213 		*noise = -95;		/* nominally correct */
3214 }
3215 
3216 static int
3217 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3218 {
3219 	struct ath_hal *ah = sc->sc_ah;
3220 	int error;
3221 	struct mbuf *m;
3222 	struct ath_desc *ds;
3223 
3224 	m = bf->bf_m;
3225 	if (m == NULL) {
3226 		/*
3227 		 * NB: by assigning a page to the rx dma buffer we
3228 		 * implicitly satisfy the Atheros requirement that
3229 		 * this buffer be cache-line-aligned and sized to be
3230 		 * multiple of the cache line size.  Not doing this
3231 		 * causes weird stuff to happen (for the 5210 at least).
3232 		 */
3233 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3234 		if (m == NULL) {
3235 			DPRINTF(sc, ATH_DEBUG_ANY,
3236 				"%s: no mbuf/cluster\n", __func__);
3237 			sc->sc_stats.ast_rx_nombuf++;
3238 			return ENOMEM;
3239 		}
3240 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3241 
3242 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3243 					     bf->bf_dmamap, m,
3244 					     bf->bf_segs, &bf->bf_nseg,
3245 					     BUS_DMA_NOWAIT);
3246 		if (error != 0) {
3247 			DPRINTF(sc, ATH_DEBUG_ANY,
3248 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3249 			    __func__, error);
3250 			sc->sc_stats.ast_rx_busdma++;
3251 			m_freem(m);
3252 			return error;
3253 		}
3254 		KASSERT(bf->bf_nseg == 1,
3255 			("multi-segment packet; nseg %u", bf->bf_nseg));
3256 		bf->bf_m = m;
3257 	}
3258 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3259 
3260 	/*
3261 	 * Setup descriptors.  For receive we always terminate
3262 	 * the descriptor list with a self-linked entry so we'll
3263 	 * not get overrun under high load (as can happen with a
3264 	 * 5212 when ANI processing enables PHY error frames).
3265 	 *
3266 	 * To insure the last descriptor is self-linked we create
3267 	 * each descriptor as self-linked and add it to the end.  As
3268 	 * each additional descriptor is added the previous self-linked
3269 	 * entry is ``fixed'' naturally.  This should be safe even
3270 	 * if DMA is happening.  When processing RX interrupts we
3271 	 * never remove/process the last, self-linked, entry on the
3272 	 * descriptor list.  This insures the hardware always has
3273 	 * someplace to write a new frame.
3274 	 */
3275 	ds = bf->bf_desc;
3276 	ds->ds_link = bf->bf_daddr;	/* link to self */
3277 	ds->ds_data = bf->bf_segs[0].ds_addr;
3278 	ath_hal_setuprxdesc(ah, ds
3279 		, m->m_len		/* buffer size */
3280 		, 0
3281 	);
3282 
3283 	if (sc->sc_rxlink != NULL)
3284 		*sc->sc_rxlink = bf->bf_daddr;
3285 	sc->sc_rxlink = &ds->ds_link;
3286 	return 0;
3287 }
3288 
3289 /*
3290  * Extend 15-bit time stamp from rx descriptor to
3291  * a full 64-bit TSF using the specified TSF.
3292  */
3293 static __inline u_int64_t
3294 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3295 {
3296 	if ((tsf & 0x7fff) < rstamp)
3297 		tsf -= 0x8000;
3298 	return ((tsf &~ 0x7fff) | rstamp);
3299 }
3300 
3301 /*
3302  * Intercept management frames to collect beacon rssi data
3303  * and to do ibss merges.
3304  */
3305 static void
3306 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3307 	struct ieee80211_node *ni,
3308 	int subtype, int rssi, int noise, u_int32_t rstamp)
3309 {
3310 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3311 
3312 	/*
3313 	 * Call up first so subsequent work can use information
3314 	 * potentially stored in the node (e.g. for ibss merge).
3315 	 */
3316 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, noise, rstamp);
3317 	switch (subtype) {
3318 	case IEEE80211_FC0_SUBTYPE_BEACON:
3319 		/* update rssi statistics for use by the hal */
3320 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3321 		if (sc->sc_syncbeacon &&
3322 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
3323 			/*
3324 			 * Resync beacon timers using the tsf of the beacon
3325 			 * frame we just received.
3326 			 */
3327 			ath_beacon_config(sc);
3328 		}
3329 		/* fall thru... */
3330 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3331 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
3332 		    ic->ic_state == IEEE80211_S_RUN) {
3333 			u_int64_t tsf = ath_extend_tsf(rstamp,
3334 				ath_hal_gettsf64(sc->sc_ah));
3335 			/*
3336 			 * Handle ibss merge as needed; check the tsf on the
3337 			 * frame before attempting the merge.  The 802.11 spec
3338 			 * says the station should change it's bssid to match
3339 			 * the oldest station with the same ssid, where oldest
3340 			 * is determined by the tsf.  Note that hardware
3341 			 * reconfiguration happens through callback to
3342 			 * ath_newstate as the state machine will go from
3343 			 * RUN -> RUN when this happens.
3344 			 */
3345 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3346 				DPRINTF(sc, ATH_DEBUG_STATE,
3347 				    "ibss merge, rstamp %u tsf %ju "
3348 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3349 				    (uintmax_t)ni->ni_tstamp.tsf);
3350 				(void) ieee80211_ibss_merge(ni);
3351 			}
3352 		}
3353 		break;
3354 	}
3355 }
3356 
3357 /*
3358  * Set the default antenna.
3359  */
3360 static void
3361 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3362 {
3363 	struct ath_hal *ah = sc->sc_ah;
3364 
3365 	/* XXX block beacon interrupts */
3366 	ath_hal_setdefantenna(ah, antenna);
3367 	if (sc->sc_defant != antenna)
3368 		sc->sc_stats.ast_ant_defswitch++;
3369 	sc->sc_defant = antenna;
3370 	sc->sc_rxotherant = 0;
3371 }
3372 
3373 static int
3374 ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
3375 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3376 {
3377 #define	CHANNEL_HT	(CHANNEL_HT20|CHANNEL_HT40PLUS|CHANNEL_HT40MINUS)
3378 	u_int8_t rix;
3379 
3380 	KASSERT(sc->sc_drvbpf != NULL, ("no tap"));
3381 
3382 	/*
3383 	 * Discard anything shorter than an ack or cts.
3384 	 */
3385 	if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
3386 		DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
3387 			__func__, m->m_pkthdr.len);
3388 		sc->sc_stats.ast_rx_tooshort++;
3389 		return 0;
3390 	}
3391 	rix = rs->rs_rate;
3392 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3393 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3394 #if HAL_ABI_VERSION >= 0x07050400
3395 	if (sc->sc_curchan.channelFlags & CHANNEL_HT) {
3396 		/*
3397 		 * For HT operation we must specify the channel
3398 		 * attributes for each packet since they vary.
3399 		 * We deduce this by from HT40 bit in the rx
3400 		 * status and the MCS/legacy rate bit.
3401 		 */
3402 		sc->sc_rx_th.wr_chan_flags &= ~IEEE80211_CHAN_HT;
3403 		if (sc->sc_rx_th.wr_rate & 0x80) {	/* HT rate */
3404 			/* XXX 40U/40D */
3405 			sc->sc_rx_th.wr_chan_flags |=
3406 			    (rs->rs_flags & HAL_RX_2040) ?
3407 				IEEE80211_CHAN_HT40U : IEEE80211_CHAN_HT20;
3408 			if ((rs->rs_flags & HAL_RX_GI) == 0)
3409 				sc->sc_rx_th.wr_flags |=
3410 				    IEEE80211_RADIOTAP_F_SHORTGI;
3411 		}
3412 	}
3413 #endif
3414 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
3415 	if (rs->rs_status & HAL_RXERR_CRC)
3416 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3417 	/* XXX propagate other error flags from descriptor */
3418 	sc->sc_rx_th.wr_antsignal = rs->rs_rssi + nf;
3419 	sc->sc_rx_th.wr_antnoise = nf;
3420 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3421 
3422 	bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th, sc->sc_rx_th_len, m);
3423 
3424 	return 1;
3425 #undef CHANNEL_HT
3426 }
3427 
3428 static void
3429 ath_rx_proc(void *arg, int npending)
3430 {
3431 #define	PA2DESC(_sc, _pa) \
3432 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3433 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3434 	struct ath_softc *sc = arg;
3435 	struct ath_buf *bf;
3436 	struct ieee80211com *ic = &sc->sc_ic;
3437 	struct ifnet *ifp = sc->sc_ifp;
3438 	struct ath_hal *ah = sc->sc_ah;
3439 	struct ath_desc *ds;
3440 	struct ath_rx_status *rs;
3441 	struct mbuf *m;
3442 	struct ieee80211_node *ni;
3443 	struct ath_node *an;
3444 	int len, type, ngood;
3445 	u_int phyerr;
3446 	HAL_STATUS status;
3447 	int16_t nf;
3448 	u_int64_t tsf;
3449 
3450 	NET_LOCK_GIANT();		/* XXX */
3451 
3452 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3453 	ngood = 0;
3454 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3455 	tsf = ath_hal_gettsf64(ah);
3456 	do {
3457 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3458 		if (bf == NULL) {		/* NB: shouldn't happen */
3459 			if_printf(ifp, "%s: no buffer!\n", __func__);
3460 			break;
3461 		}
3462 		m = bf->bf_m;
3463 		if (m == NULL) {		/* NB: shouldn't happen */
3464 			/*
3465 			 * If mbuf allocation failed previously there
3466 			 * will be no mbuf; try again to re-populate it.
3467 			 */
3468 			/* XXX make debug msg */
3469 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3470 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3471 			goto rx_next;
3472 		}
3473 		ds = bf->bf_desc;
3474 		if (ds->ds_link == bf->bf_daddr) {
3475 			/* NB: never process the self-linked entry at the end */
3476 			break;
3477 		}
3478 		/* XXX sync descriptor memory */
3479 		/*
3480 		 * Must provide the virtual address of the current
3481 		 * descriptor, the physical address, and the virtual
3482 		 * address of the next descriptor in the h/w chain.
3483 		 * This allows the HAL to look ahead to see if the
3484 		 * hardware is done with a descriptor by checking the
3485 		 * done bit in the following descriptor and the address
3486 		 * of the current descriptor the DMA engine is working
3487 		 * on.  All this is necessary because of our use of
3488 		 * a self-linked list to avoid rx overruns.
3489 		 */
3490 		rs = &bf->bf_status.ds_rxstat;
3491 		status = ath_hal_rxprocdesc(ah, ds,
3492 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3493 #ifdef ATH_DEBUG
3494 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3495 			ath_printrxbuf(bf, 0, status == HAL_OK);
3496 #endif
3497 		if (status == HAL_EINPROGRESS)
3498 			break;
3499 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3500 		if (rs->rs_status != 0) {
3501 			if (rs->rs_status & HAL_RXERR_CRC)
3502 				sc->sc_stats.ast_rx_crcerr++;
3503 			if (rs->rs_status & HAL_RXERR_FIFO)
3504 				sc->sc_stats.ast_rx_fifoerr++;
3505 			if (rs->rs_status & HAL_RXERR_PHY) {
3506 				sc->sc_stats.ast_rx_phyerr++;
3507 				phyerr = rs->rs_phyerr & 0x1f;
3508 				sc->sc_stats.ast_rx_phy[phyerr]++;
3509 				goto rx_error;	/* NB: don't count in ierrors */
3510 			}
3511 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3512 				/*
3513 				 * Decrypt error.  If the error occurred
3514 				 * because there was no hardware key, then
3515 				 * let the frame through so the upper layers
3516 				 * can process it.  This is necessary for 5210
3517 				 * parts which have no way to setup a ``clear''
3518 				 * key cache entry.
3519 				 *
3520 				 * XXX do key cache faulting
3521 				 */
3522 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3523 					goto rx_accept;
3524 				sc->sc_stats.ast_rx_badcrypt++;
3525 			}
3526 			if (rs->rs_status & HAL_RXERR_MIC) {
3527 				sc->sc_stats.ast_rx_badmic++;
3528 				/*
3529 				 * Do minimal work required to hand off
3530 				 * the 802.11 header for notifcation.
3531 				 */
3532 				/* XXX frag's and qos frames */
3533 				len = rs->rs_datalen;
3534 				if (len >= sizeof (struct ieee80211_frame)) {
3535 					bus_dmamap_sync(sc->sc_dmat,
3536 					    bf->bf_dmamap,
3537 					    BUS_DMASYNC_POSTREAD);
3538 					ieee80211_notify_michael_failure(ic,
3539 					    mtod(m, struct ieee80211_frame *),
3540 					    sc->sc_splitmic ?
3541 					        rs->rs_keyix-32 : rs->rs_keyix
3542 					);
3543 				}
3544 			}
3545 			ifp->if_ierrors++;
3546 rx_error:
3547 			/*
3548 			 * Cleanup any pending partial frame.
3549 			 */
3550 			if (sc->sc_rxpending != NULL) {
3551 				m_freem(sc->sc_rxpending);
3552 				sc->sc_rxpending = NULL;
3553 			}
3554 			/*
3555 			 * When a tap is present pass error frames
3556 			 * that have been requested.  By default we
3557 			 * pass decrypt+mic errors but others may be
3558 			 * interesting (e.g. crc).
3559 			 */
3560 			if (bpf_peers_present(sc->sc_drvbpf) &&
3561 			    (rs->rs_status & sc->sc_monpass)) {
3562 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3563 				    BUS_DMASYNC_POSTREAD);
3564 				/* NB: bpf needs the mbuf length setup */
3565 				len = rs->rs_datalen;
3566 				m->m_pkthdr.len = m->m_len = len;
3567 				(void) ath_rx_tap(sc, m, rs, tsf, nf);
3568 			}
3569 			/* XXX pass MIC errors up for s/w reclaculation */
3570 			goto rx_next;
3571 		}
3572 rx_accept:
3573 		/*
3574 		 * Sync and unmap the frame.  At this point we're
3575 		 * committed to passing the mbuf somewhere so clear
3576 		 * bf_m; this means a new mbuf must be allocated
3577 		 * when the rx descriptor is setup again to receive
3578 		 * another frame.
3579 		 */
3580 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3581 		    BUS_DMASYNC_POSTREAD);
3582 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3583 		bf->bf_m = NULL;
3584 
3585 		len = rs->rs_datalen;
3586 		m->m_len = len;
3587 
3588 		if (rs->rs_more) {
3589 			/*
3590 			 * Frame spans multiple descriptors; save
3591 			 * it for the next completed descriptor, it
3592 			 * will be used to construct a jumbogram.
3593 			 */
3594 			if (sc->sc_rxpending != NULL) {
3595 				/* NB: max frame size is currently 2 clusters */
3596 				sc->sc_stats.ast_rx_toobig++;
3597 				m_freem(sc->sc_rxpending);
3598 			}
3599 			m->m_pkthdr.rcvif = ifp;
3600 			m->m_pkthdr.len = len;
3601 			sc->sc_rxpending = m;
3602 			goto rx_next;
3603 		} else if (sc->sc_rxpending != NULL) {
3604 			/*
3605 			 * This is the second part of a jumbogram,
3606 			 * chain it to the first mbuf, adjust the
3607 			 * frame length, and clear the rxpending state.
3608 			 */
3609 			sc->sc_rxpending->m_next = m;
3610 			sc->sc_rxpending->m_pkthdr.len += len;
3611 			m = sc->sc_rxpending;
3612 			sc->sc_rxpending = NULL;
3613 		} else {
3614 			/*
3615 			 * Normal single-descriptor receive; setup
3616 			 * the rcvif and packet length.
3617 			 */
3618 			m->m_pkthdr.rcvif = ifp;
3619 			m->m_pkthdr.len = len;
3620 		}
3621 
3622 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
3623 
3624 		if (bpf_peers_present(sc->sc_drvbpf) &&
3625 		    !ath_rx_tap(sc, m, rs, tsf, nf)) {
3626 			m_freem(m);		/* XXX reclaim */
3627 			goto rx_next;
3628 		}
3629 
3630 		/*
3631 		 * From this point on we assume the frame is at least
3632 		 * as large as ieee80211_frame_min; verify that.
3633 		 */
3634 		if (len < IEEE80211_MIN_LEN) {
3635 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3636 				__func__, len);
3637 			sc->sc_stats.ast_rx_tooshort++;
3638 			m_freem(m);
3639 			goto rx_next;
3640 		}
3641 
3642 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3643 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
3644 				   sc->sc_hwmap[rs->rs_rate].ieeerate,
3645 				   rs->rs_rssi);
3646 		}
3647 
3648 		m_adj(m, -IEEE80211_CRC_LEN);
3649 
3650 		/*
3651 		 * Locate the node for sender, track state, and then
3652 		 * pass the (referenced) node up to the 802.11 layer
3653 		 * for its use.
3654 		 */
3655 		ni = ieee80211_find_rxnode_withkey(ic,
3656 			mtod(m, const struct ieee80211_frame_min *),
3657 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
3658 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
3659 		/*
3660 		 * Track rx rssi and do any rx antenna management.
3661 		 */
3662 		an = ATH_NODE(ni);
3663 		ATH_RSSI_LPF(an->an_avgrssi, rs->rs_rssi);
3664 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
3665 		/*
3666 		 * Send frame up for processing.
3667 		 */
3668 		type = ieee80211_input(ic, m, ni,
3669 			rs->rs_rssi, nf, rs->rs_tstamp);
3670 		ieee80211_free_node(ni);
3671 		if (sc->sc_diversity) {
3672 			/*
3673 			 * When using fast diversity, change the default rx
3674 			 * antenna if diversity chooses the other antenna 3
3675 			 * times in a row.
3676 			 */
3677 			if (sc->sc_defant != rs->rs_antenna) {
3678 				if (++sc->sc_rxotherant >= 3)
3679 					ath_setdefantenna(sc, rs->rs_antenna);
3680 			} else
3681 				sc->sc_rxotherant = 0;
3682 		}
3683 		if (sc->sc_softled) {
3684 			/*
3685 			 * Blink for any data frame.  Otherwise do a
3686 			 * heartbeat-style blink when idle.  The latter
3687 			 * is mainly for station mode where we depend on
3688 			 * periodic beacon frames to trigger the poll event.
3689 			 */
3690 			if (type == IEEE80211_FC0_TYPE_DATA) {
3691 				sc->sc_rxrate = rs->rs_rate;
3692 				ath_led_event(sc, ATH_LED_RX);
3693 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3694 				ath_led_event(sc, ATH_LED_POLL);
3695 		}
3696 		/*
3697 		 * Arrange to update the last rx timestamp only for
3698 		 * frames from our ap when operating in station mode.
3699 		 * This assumes the rx key is always setup when associated.
3700 		 */
3701 		if (ic->ic_opmode == IEEE80211_M_STA &&
3702 		    rs->rs_keyix != HAL_RXKEYIX_INVALID)
3703 			ngood++;
3704 rx_next:
3705 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3706 	} while (ath_rxbuf_init(sc, bf) == 0);
3707 
3708 	/* rx signal state monitoring */
3709 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3710 	if (ngood)
3711 		sc->sc_lastrx = tsf;
3712 
3713 	/* NB: may want to check mgtq too */
3714 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
3715 	    !IFQ_IS_EMPTY(&ifp->if_snd))
3716 		ath_start(ifp);
3717 
3718 	NET_UNLOCK_GIANT();		/* XXX */
3719 #undef PA2DESC
3720 }
3721 
3722 static void
3723 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3724 {
3725 	txq->axq_qnum = qnum;
3726 	txq->axq_depth = 0;
3727 	txq->axq_intrcnt = 0;
3728 	txq->axq_link = NULL;
3729 	STAILQ_INIT(&txq->axq_q);
3730 	ATH_TXQ_LOCK_INIT(sc, txq);
3731 	TAILQ_INIT(&txq->axq_stageq);
3732 	txq->axq_curage = 0;
3733 }
3734 
3735 /*
3736  * Setup a h/w transmit queue.
3737  */
3738 static struct ath_txq *
3739 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3740 {
3741 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3742 	struct ath_hal *ah = sc->sc_ah;
3743 	HAL_TXQ_INFO qi;
3744 	int qnum;
3745 
3746 	memset(&qi, 0, sizeof(qi));
3747 	qi.tqi_subtype = subtype;
3748 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3749 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3750 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3751 	/*
3752 	 * Enable interrupts only for EOL and DESC conditions.
3753 	 * We mark tx descriptors to receive a DESC interrupt
3754 	 * when a tx queue gets deep; otherwise waiting for the
3755 	 * EOL to reap descriptors.  Note that this is done to
3756 	 * reduce interrupt load and this only defers reaping
3757 	 * descriptors, never transmitting frames.  Aside from
3758 	 * reducing interrupts this also permits more concurrency.
3759 	 * The only potential downside is if the tx queue backs
3760 	 * up in which case the top half of the kernel may backup
3761 	 * due to a lack of tx descriptors.
3762 	 */
3763 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3764 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3765 	if (qnum == -1) {
3766 		/*
3767 		 * NB: don't print a message, this happens
3768 		 * normally on parts with too few tx queues
3769 		 */
3770 		return NULL;
3771 	}
3772 	if (qnum >= N(sc->sc_txq)) {
3773 		device_printf(sc->sc_dev,
3774 			"hal qnum %u out of range, max %zu!\n",
3775 			qnum, N(sc->sc_txq));
3776 		ath_hal_releasetxqueue(ah, qnum);
3777 		return NULL;
3778 	}
3779 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3780 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3781 		sc->sc_txqsetup |= 1<<qnum;
3782 	}
3783 	return &sc->sc_txq[qnum];
3784 #undef N
3785 }
3786 
3787 /*
3788  * Setup a hardware data transmit queue for the specified
3789  * access control.  The hal may not support all requested
3790  * queues in which case it will return a reference to a
3791  * previously setup queue.  We record the mapping from ac's
3792  * to h/w queues for use by ath_tx_start and also track
3793  * the set of h/w queues being used to optimize work in the
3794  * transmit interrupt handler and related routines.
3795  */
3796 static int
3797 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3798 {
3799 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3800 	struct ath_txq *txq;
3801 
3802 	if (ac >= N(sc->sc_ac2q)) {
3803 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3804 			ac, N(sc->sc_ac2q));
3805 		return 0;
3806 	}
3807 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3808 	if (txq != NULL) {
3809 		sc->sc_ac2q[ac] = txq;
3810 		return 1;
3811 	} else
3812 		return 0;
3813 #undef N
3814 }
3815 
3816 /*
3817  * Update WME parameters for a transmit queue.
3818  */
3819 static int
3820 ath_txq_update(struct ath_softc *sc, int ac)
3821 {
3822 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3823 #define	ATH_TXOP_TO_US(v)		(v<<5)
3824 	struct ieee80211com *ic = &sc->sc_ic;
3825 	struct ath_txq *txq = sc->sc_ac2q[ac];
3826 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3827 	struct ath_hal *ah = sc->sc_ah;
3828 	HAL_TXQ_INFO qi;
3829 
3830 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3831 	qi.tqi_aifs = wmep->wmep_aifsn;
3832 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3833 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3834 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3835 
3836 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3837 		device_printf(sc->sc_dev, "unable to update hardware queue "
3838 			"parameters for %s traffic!\n",
3839 			ieee80211_wme_acnames[ac]);
3840 		return 0;
3841 	} else {
3842 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3843 		return 1;
3844 	}
3845 #undef ATH_TXOP_TO_US
3846 #undef ATH_EXPONENT_TO_VALUE
3847 }
3848 
3849 /*
3850  * Callback from the 802.11 layer to update WME parameters.
3851  */
3852 static int
3853 ath_wme_update(struct ieee80211com *ic)
3854 {
3855 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3856 
3857 	return !ath_txq_update(sc, WME_AC_BE) ||
3858 	    !ath_txq_update(sc, WME_AC_BK) ||
3859 	    !ath_txq_update(sc, WME_AC_VI) ||
3860 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3861 }
3862 
3863 /*
3864  * Reclaim resources for a setup queue.
3865  */
3866 static void
3867 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3868 {
3869 
3870 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3871 	ATH_TXQ_LOCK_DESTROY(txq);
3872 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3873 }
3874 
3875 /*
3876  * Reclaim all tx queue resources.
3877  */
3878 static void
3879 ath_tx_cleanup(struct ath_softc *sc)
3880 {
3881 	int i;
3882 
3883 	ATH_TXBUF_LOCK_DESTROY(sc);
3884 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3885 		if (ATH_TXQ_SETUP(sc, i))
3886 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3887 	ATH_TXQ_LOCK_DESTROY(&sc->sc_mcastq);
3888 }
3889 
3890 /*
3891  * Defragment an mbuf chain, returning at most maxfrags separate
3892  * mbufs+clusters.  If this is not possible NULL is returned and
3893  * the original mbuf chain is left in it's present (potentially
3894  * modified) state.  We use two techniques: collapsing consecutive
3895  * mbufs and replacing consecutive mbufs by a cluster.
3896  */
3897 static struct mbuf *
3898 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3899 {
3900 	struct mbuf *m, *n, *n2, **prev;
3901 	u_int curfrags;
3902 
3903 	/*
3904 	 * Calculate the current number of frags.
3905 	 */
3906 	curfrags = 0;
3907 	for (m = m0; m != NULL; m = m->m_next)
3908 		curfrags++;
3909 	/*
3910 	 * First, try to collapse mbufs.  Note that we always collapse
3911 	 * towards the front so we don't need to deal with moving the
3912 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3913 	 * less data than the following.
3914 	 */
3915 	m = m0;
3916 again:
3917 	for (;;) {
3918 		n = m->m_next;
3919 		if (n == NULL)
3920 			break;
3921 		if ((m->m_flags & M_RDONLY) == 0 &&
3922 		    n->m_len < M_TRAILINGSPACE(m)) {
3923 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3924 				n->m_len);
3925 			m->m_len += n->m_len;
3926 			m->m_next = n->m_next;
3927 			m_free(n);
3928 			if (--curfrags <= maxfrags)
3929 				return m0;
3930 		} else
3931 			m = n;
3932 	}
3933 	KASSERT(maxfrags > 1,
3934 		("maxfrags %u, but normal collapse failed", maxfrags));
3935 	/*
3936 	 * Collapse consecutive mbufs to a cluster.
3937 	 */
3938 	prev = &m0->m_next;		/* NB: not the first mbuf */
3939 	while ((n = *prev) != NULL) {
3940 		if ((n2 = n->m_next) != NULL &&
3941 		    n->m_len + n2->m_len < MCLBYTES) {
3942 			m = m_getcl(how, MT_DATA, 0);
3943 			if (m == NULL)
3944 				goto bad;
3945 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3946 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3947 				n2->m_len);
3948 			m->m_len = n->m_len + n2->m_len;
3949 			m->m_next = n2->m_next;
3950 			*prev = m;
3951 			m_free(n);
3952 			m_free(n2);
3953 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3954 				return m0;
3955 			/*
3956 			 * Still not there, try the normal collapse
3957 			 * again before we allocate another cluster.
3958 			 */
3959 			goto again;
3960 		}
3961 		prev = &n->m_next;
3962 	}
3963 	/*
3964 	 * No place where we can collapse to a cluster; punt.
3965 	 * This can occur if, for example, you request 2 frags
3966 	 * but the packet requires that both be clusters (we
3967 	 * never reallocate the first mbuf to avoid moving the
3968 	 * packet header).
3969 	 */
3970 bad:
3971 	return NULL;
3972 }
3973 
3974 /*
3975  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3976  */
3977 static int
3978 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3979 {
3980 	int i;
3981 
3982 	for (i = 0; i < rt->rateCount; i++)
3983 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3984 			return i;
3985 	return 0;		/* NB: lowest rate */
3986 }
3987 
3988 /*
3989  * Reclaim mbuf resources.  For fragmented frames we
3990  * need to claim each frag chained with m_nextpkt.
3991  */
3992 static void
3993 ath_freetx(struct mbuf *m)
3994 {
3995 	struct mbuf *next;
3996 
3997 	do {
3998 		next = m->m_nextpkt;
3999 		m->m_nextpkt = NULL;
4000 		m_freem(m);
4001 	} while ((m = next) != NULL);
4002 }
4003 
4004 static int
4005 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
4006 {
4007 	struct mbuf *m;
4008 	int error;
4009 
4010 	/*
4011 	 * Load the DMA map so any coalescing is done.  This
4012 	 * also calculates the number of descriptors we need.
4013 	 */
4014 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4015 				     bf->bf_segs, &bf->bf_nseg,
4016 				     BUS_DMA_NOWAIT);
4017 	if (error == EFBIG) {
4018 		/* XXX packet requires too many descriptors */
4019 		bf->bf_nseg = ATH_TXDESC+1;
4020 	} else if (error != 0) {
4021 		sc->sc_stats.ast_tx_busdma++;
4022 		ath_freetx(m0);
4023 		return error;
4024 	}
4025 	/*
4026 	 * Discard null packets and check for packets that
4027 	 * require too many TX descriptors.  We try to convert
4028 	 * the latter to a cluster.
4029 	 */
4030 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
4031 		sc->sc_stats.ast_tx_linear++;
4032 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
4033 		if (m == NULL) {
4034 			ath_freetx(m0);
4035 			sc->sc_stats.ast_tx_nombuf++;
4036 			return ENOMEM;
4037 		}
4038 		m0 = m;
4039 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4040 					     bf->bf_segs, &bf->bf_nseg,
4041 					     BUS_DMA_NOWAIT);
4042 		if (error != 0) {
4043 			sc->sc_stats.ast_tx_busdma++;
4044 			ath_freetx(m0);
4045 			return error;
4046 		}
4047 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
4048 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
4049 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
4050 		sc->sc_stats.ast_tx_nodata++;
4051 		ath_freetx(m0);
4052 		return EIO;
4053 	}
4054 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
4055 		__func__, m0, m0->m_pkthdr.len);
4056 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
4057 	bf->bf_m = m0;
4058 
4059 	return 0;
4060 }
4061 
4062 static void
4063 ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
4064 {
4065 	struct ath_hal *ah = sc->sc_ah;
4066 	struct ath_desc *ds, *ds0;
4067 	int i;
4068 
4069 	/*
4070 	 * Fillin the remainder of the descriptor info.
4071 	 */
4072 	ds0 = ds = bf->bf_desc;
4073 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4074 		ds->ds_data = bf->bf_segs[i].ds_addr;
4075 		if (i == bf->bf_nseg - 1)
4076 			ds->ds_link = 0;
4077 		else
4078 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4079 		ath_hal_filltxdesc(ah, ds
4080 			, bf->bf_segs[i].ds_len	/* segment length */
4081 			, i == 0		/* first segment */
4082 			, i == bf->bf_nseg - 1	/* last segment */
4083 			, ds0			/* first descriptor */
4084 		);
4085 		DPRINTF(sc, ATH_DEBUG_XMIT,
4086 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4087 			__func__, i, ds->ds_link, ds->ds_data,
4088 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4089 	}
4090 	/*
4091 	 * Insert the frame on the outbound list and pass it on
4092 	 * to the hardware.  Multicast frames buffered for power
4093 	 * save stations and transmit from the CAB queue are stored
4094 	 * on a s/w only queue and loaded on to the CAB queue in
4095 	 * the SWBA handler since frames only go out on DTIM and
4096 	 * to avoid possible races.
4097 	 */
4098 	ATH_TXQ_LOCK(txq);
4099 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4100 	if (txq != &sc->sc_mcastq) {
4101 		if (txq->axq_link == NULL) {
4102 			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4103 			DPRINTF(sc, ATH_DEBUG_XMIT,
4104 			    "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
4105 			    txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
4106 			    txq->axq_depth);
4107 		} else {
4108 			*txq->axq_link = bf->bf_daddr;
4109 			DPRINTF(sc, ATH_DEBUG_XMIT,
4110 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4111 			    txq->axq_qnum, txq->axq_link,
4112 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4113 		}
4114 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4115 		ath_hal_txstart(ah, txq->axq_qnum);
4116 	} else {
4117 		if (txq->axq_link != NULL)
4118 			*txq->axq_link = bf->bf_daddr;
4119 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4120 	}
4121 	ATH_TXQ_UNLOCK(txq);
4122 }
4123 
4124 static int
4125 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
4126     struct mbuf *m0)
4127 {
4128 	struct ieee80211com *ic = &sc->sc_ic;
4129 	struct ath_hal *ah = sc->sc_ah;
4130 	struct ifnet *ifp = sc->sc_ifp;
4131 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
4132 	int error, iswep, ismcast, isfrag, ismrr;
4133 	int keyix, hdrlen, pktlen, try0;
4134 	u_int8_t rix, txrate, ctsrate;
4135 	u_int8_t cix = 0xff;		/* NB: silence compiler */
4136 	struct ath_desc *ds;
4137 	struct ath_txq *txq;
4138 	struct ieee80211_frame *wh;
4139 	u_int subtype, flags, ctsduration;
4140 	HAL_PKT_TYPE atype;
4141 	const HAL_RATE_TABLE *rt;
4142 	HAL_BOOL shortPreamble;
4143 	struct ath_node *an;
4144 	u_int pri;
4145 
4146 	wh = mtod(m0, struct ieee80211_frame *);
4147 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
4148 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
4149 	isfrag = m0->m_flags & M_FRAG;
4150 	hdrlen = ieee80211_anyhdrsize(wh);
4151 	/*
4152 	 * Packet length must not include any
4153 	 * pad bytes; deduct them here.
4154 	 */
4155 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
4156 
4157 	if (iswep) {
4158 		const struct ieee80211_cipher *cip;
4159 		struct ieee80211_key *k;
4160 
4161 		/*
4162 		 * Construct the 802.11 header+trailer for an encrypted
4163 		 * frame. The only reason this can fail is because of an
4164 		 * unknown or unsupported cipher/key type.
4165 		 */
4166 		k = ieee80211_crypto_encap(ic, ni, m0);
4167 		if (k == NULL) {
4168 			/*
4169 			 * This can happen when the key is yanked after the
4170 			 * frame was queued.  Just discard the frame; the
4171 			 * 802.11 layer counts failures and provides
4172 			 * debugging/diagnostics.
4173 			 */
4174 			ath_freetx(m0);
4175 			return EIO;
4176 		}
4177 		/*
4178 		 * Adjust the packet + header lengths for the crypto
4179 		 * additions and calculate the h/w key index.  When
4180 		 * a s/w mic is done the frame will have had any mic
4181 		 * added to it prior to entry so m0->m_pkthdr.len will
4182 		 * account for it. Otherwise we need to add it to the
4183 		 * packet length.
4184 		 */
4185 		cip = k->wk_cipher;
4186 		hdrlen += cip->ic_header;
4187 		pktlen += cip->ic_header + cip->ic_trailer;
4188 		/* NB: frags always have any TKIP MIC done in s/w */
4189 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
4190 			pktlen += cip->ic_miclen;
4191 		keyix = k->wk_keyix;
4192 
4193 		/* packet header may have moved, reset our local pointer */
4194 		wh = mtod(m0, struct ieee80211_frame *);
4195 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
4196 		/*
4197 		 * Use station key cache slot, if assigned.
4198 		 */
4199 		keyix = ni->ni_ucastkey.wk_keyix;
4200 		if (keyix == IEEE80211_KEYIX_NONE)
4201 			keyix = HAL_TXKEYIX_INVALID;
4202 	} else
4203 		keyix = HAL_TXKEYIX_INVALID;
4204 
4205 	pktlen += IEEE80211_CRC_LEN;
4206 
4207 	/*
4208 	 * Load the DMA map so any coalescing is done.  This
4209 	 * also calculates the number of descriptors we need.
4210 	 */
4211 	error = ath_tx_dmasetup(sc, bf, m0);
4212 	if (error != 0)
4213 		return error;
4214 	bf->bf_node = ni;			/* NB: held reference */
4215 	m0 = bf->bf_m;				/* NB: may have changed */
4216 	wh = mtod(m0, struct ieee80211_frame *);
4217 
4218 	/* setup descriptors */
4219 	ds = bf->bf_desc;
4220 	rt = sc->sc_currates;
4221 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4222 
4223 	/*
4224 	 * NB: the 802.11 layer marks whether or not we should
4225 	 * use short preamble based on the current mode and
4226 	 * negotiated parameters.
4227 	 */
4228 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
4229 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
4230 		shortPreamble = AH_TRUE;
4231 		sc->sc_stats.ast_tx_shortpre++;
4232 	} else {
4233 		shortPreamble = AH_FALSE;
4234 	}
4235 
4236 	an = ATH_NODE(ni);
4237 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
4238 	ismrr = 0;				/* default no multi-rate retry*/
4239 	/*
4240 	 * Calculate Atheros packet type from IEEE80211 packet header,
4241 	 * setup for rate calculations, and select h/w transmit queue.
4242 	 */
4243 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
4244 	case IEEE80211_FC0_TYPE_MGT:
4245 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4246 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
4247 			atype = HAL_PKT_TYPE_BEACON;
4248 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4249 			atype = HAL_PKT_TYPE_PROBE_RESP;
4250 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
4251 			atype = HAL_PKT_TYPE_ATIM;
4252 		else
4253 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
4254 		rix = sc->sc_minrateix;
4255 		txrate = rt->info[rix].rateCode;
4256 		if (shortPreamble)
4257 			txrate |= rt->info[rix].shortPreamble;
4258 		try0 = ATH_TXMGTTRY;
4259 		/* NB: force all management frames to highest queue */
4260 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
4261 			/* NB: force all management frames to highest queue */
4262 			pri = WME_AC_VO;
4263 		} else
4264 			pri = WME_AC_BE;
4265 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4266 		break;
4267 	case IEEE80211_FC0_TYPE_CTL:
4268 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
4269 		rix = sc->sc_minrateix;
4270 		txrate = rt->info[rix].rateCode;
4271 		if (shortPreamble)
4272 			txrate |= rt->info[rix].shortPreamble;
4273 		try0 = ATH_TXMGTTRY;
4274 		/* NB: force all ctl frames to highest queue */
4275 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
4276 			/* NB: force all ctl frames to highest queue */
4277 			pri = WME_AC_VO;
4278 		} else
4279 			pri = WME_AC_BE;
4280 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4281 		break;
4282 	case IEEE80211_FC0_TYPE_DATA:
4283 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
4284 		/*
4285 		 * Data frames: multicast frames go out at a fixed rate,
4286 		 * otherwise consult the rate control module for the
4287 		 * rate to use.
4288 		 */
4289 		if (ismcast) {
4290 			/*
4291 			 * Check mcast rate setting in case it's changed.
4292 			 * XXX move out of fastpath
4293 			 */
4294 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
4295 				sc->sc_mcastrix =
4296 					ath_tx_findrix(rt, ic->ic_mcast_rate);
4297 				sc->sc_mcastrate = ic->ic_mcast_rate;
4298 			}
4299 			rix = sc->sc_mcastrix;
4300 			txrate = rt->info[rix].rateCode;
4301 			if (shortPreamble)
4302 				txrate |= rt->info[rix].shortPreamble;
4303 			try0 = 1;
4304 		} else {
4305 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
4306 				&rix, &try0, &txrate);
4307 			sc->sc_txrate = txrate;		/* for LED blinking */
4308 			sc->sc_lastdatarix = rix;	/* for fast frames */
4309 			if (try0 != ATH_TXMAXTRY)
4310 				ismrr = 1;
4311 		}
4312 		pri = M_WME_GETAC(m0);
4313 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
4314 			flags |= HAL_TXDESC_NOACK;
4315 		break;
4316 	default:
4317 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
4318 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
4319 		/* XXX statistic */
4320 		ath_freetx(m0);
4321 		return EIO;
4322 	}
4323 	txq = sc->sc_ac2q[pri];
4324 
4325 	/*
4326 	 * When servicing one or more stations in power-save mode
4327 	 * (or) if there is some mcast data waiting on the mcast
4328 	 * queue (to prevent out of order delivery) multicast
4329 	 * frames must be buffered until after the beacon.
4330 	 */
4331 	if (ismcast && (ic->ic_ps_sta || sc->sc_mcastq.axq_depth)) {
4332 		txq = &sc->sc_mcastq;
4333 		/* XXX? more bit in 802.11 frame header */
4334 	}
4335 
4336 	/*
4337 	 * Calculate miscellaneous flags.
4338 	 */
4339 	if (ismcast) {
4340 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
4341 	} else if (pktlen > ic->ic_rtsthreshold &&
4342 	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
4343 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
4344 		cix = rt->info[rix].controlRate;
4345 		sc->sc_stats.ast_tx_rts++;
4346 	}
4347 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
4348 		sc->sc_stats.ast_tx_noack++;
4349 
4350 	/*
4351 	 * If 802.11g protection is enabled, determine whether
4352 	 * to use RTS/CTS or just CTS.  Note that this is only
4353 	 * done for OFDM unicast frames.
4354 	 */
4355 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
4356 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
4357 	    (flags & HAL_TXDESC_NOACK) == 0) {
4358 		/* XXX fragments must use CCK rates w/ protection */
4359 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4360 			flags |= HAL_TXDESC_RTSENA;
4361 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4362 			flags |= HAL_TXDESC_CTSENA;
4363 		if (isfrag) {
4364 			/*
4365 			 * For frags it would be desirable to use the
4366 			 * highest CCK rate for RTS/CTS.  But stations
4367 			 * farther away may detect it at a lower CCK rate
4368 			 * so use the configured protection rate instead
4369 			 * (for now).
4370 			 */
4371 			cix = rt->info[sc->sc_protrix].controlRate;
4372 		} else
4373 			cix = rt->info[sc->sc_protrix].controlRate;
4374 		sc->sc_stats.ast_tx_protect++;
4375 	}
4376 
4377 	/*
4378 	 * Calculate duration.  This logically belongs in the 802.11
4379 	 * layer but it lacks sufficient information to calculate it.
4380 	 */
4381 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
4382 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
4383 		u_int16_t dur;
4384 		if (shortPreamble)
4385 			dur = rt->info[rix].spAckDuration;
4386 		else
4387 			dur = rt->info[rix].lpAckDuration;
4388 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
4389 			dur += dur;		/* additional SIFS+ACK */
4390 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
4391 			/*
4392 			 * Include the size of next fragment so NAV is
4393 			 * updated properly.  The last fragment uses only
4394 			 * the ACK duration
4395 			 */
4396 			dur += ath_hal_computetxtime(ah, rt,
4397 					m0->m_nextpkt->m_pkthdr.len,
4398 					rix, shortPreamble);
4399 		}
4400 		if (isfrag) {
4401 			/*
4402 			 * Force hardware to use computed duration for next
4403 			 * fragment by disabling multi-rate retry which updates
4404 			 * duration based on the multi-rate duration table.
4405 			 */
4406 			ismrr = 0;
4407 			try0 = ATH_TXMGTTRY;	/* XXX? */
4408 		}
4409 		*(u_int16_t *)wh->i_dur = htole16(dur);
4410 	}
4411 
4412 	/*
4413 	 * Calculate RTS/CTS rate and duration if needed.
4414 	 */
4415 	ctsduration = 0;
4416 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
4417 		/*
4418 		 * CTS transmit rate is derived from the transmit rate
4419 		 * by looking in the h/w rate table.  We must also factor
4420 		 * in whether or not a short preamble is to be used.
4421 		 */
4422 		/* NB: cix is set above where RTS/CTS is enabled */
4423 		KASSERT(cix != 0xff, ("cix not setup"));
4424 		ctsrate = rt->info[cix].rateCode;
4425 		/*
4426 		 * Compute the transmit duration based on the frame
4427 		 * size and the size of an ACK frame.  We call into the
4428 		 * HAL to do the computation since it depends on the
4429 		 * characteristics of the actual PHY being used.
4430 		 *
4431 		 * NB: CTS is assumed the same size as an ACK so we can
4432 		 *     use the precalculated ACK durations.
4433 		 */
4434 		if (shortPreamble) {
4435 			ctsrate |= rt->info[cix].shortPreamble;
4436 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4437 				ctsduration += rt->info[cix].spAckDuration;
4438 			ctsduration += ath_hal_computetxtime(ah,
4439 				rt, pktlen, rix, AH_TRUE);
4440 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4441 				ctsduration += rt->info[rix].spAckDuration;
4442 		} else {
4443 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4444 				ctsduration += rt->info[cix].lpAckDuration;
4445 			ctsduration += ath_hal_computetxtime(ah,
4446 				rt, pktlen, rix, AH_FALSE);
4447 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4448 				ctsduration += rt->info[rix].lpAckDuration;
4449 		}
4450 		/*
4451 		 * Must disable multi-rate retry when using RTS/CTS.
4452 		 */
4453 		ismrr = 0;
4454 		try0 = ATH_TXMGTTRY;		/* XXX */
4455 	} else
4456 		ctsrate = 0;
4457 
4458 	/*
4459 	 * At this point we are committed to sending the frame
4460 	 * and we don't need to look at m_nextpkt; clear it in
4461 	 * case this frame is part of frag chain.
4462 	 */
4463 	m0->m_nextpkt = NULL;
4464 
4465 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
4466 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
4467 			sc->sc_hwmap[txrate].ieeerate, -1);
4468 
4469 	if (bpf_peers_present(ic->ic_rawbpf))
4470 		bpf_mtap(ic->ic_rawbpf, m0);
4471 	if (bpf_peers_present(sc->sc_drvbpf)) {
4472 		u_int64_t tsf = ath_hal_gettsf64(ah);
4473 
4474 		sc->sc_tx_th.wt_tsf = htole64(tsf);
4475 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
4476 		if (iswep)
4477 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4478 		if (isfrag)
4479 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
4480 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
4481 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
4482 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
4483 
4484 		bpf_mtap2(sc->sc_drvbpf,
4485 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
4486 	}
4487 
4488 	/*
4489 	 * Determine if a tx interrupt should be generated for
4490 	 * this descriptor.  We take a tx interrupt to reap
4491 	 * descriptors when the h/w hits an EOL condition or
4492 	 * when the descriptor is specifically marked to generate
4493 	 * an interrupt.  We periodically mark descriptors in this
4494 	 * way to insure timely replenishing of the supply needed
4495 	 * for sending frames.  Defering interrupts reduces system
4496 	 * load and potentially allows more concurrent work to be
4497 	 * done but if done to aggressively can cause senders to
4498 	 * backup.
4499 	 *
4500 	 * NB: use >= to deal with sc_txintrperiod changing
4501 	 *     dynamically through sysctl.
4502 	 */
4503 	if (flags & HAL_TXDESC_INTREQ) {
4504 		txq->axq_intrcnt = 0;
4505 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4506 		flags |= HAL_TXDESC_INTREQ;
4507 		txq->axq_intrcnt = 0;
4508 	}
4509 
4510 	/*
4511 	 * Formulate first tx descriptor with tx controls.
4512 	 */
4513 	/* XXX check return value? */
4514 	ath_hal_setuptxdesc(ah, ds
4515 		, pktlen		/* packet length */
4516 		, hdrlen		/* header length */
4517 		, atype			/* Atheros packet type */
4518 		, ni->ni_txpower	/* txpower */
4519 		, txrate, try0		/* series 0 rate/tries */
4520 		, keyix			/* key cache index */
4521 		, sc->sc_txantenna	/* antenna mode */
4522 		, flags			/* flags */
4523 		, ctsrate		/* rts/cts rate */
4524 		, ctsduration		/* rts/cts duration */
4525 	);
4526 	bf->bf_flags = flags;
4527 	/*
4528 	 * Setup the multi-rate retry state only when we're
4529 	 * going to use it.  This assumes ath_hal_setuptxdesc
4530 	 * initializes the descriptors (so we don't have to)
4531 	 * when the hardware supports multi-rate retry and
4532 	 * we don't use it.
4533 	 */
4534 	if (ismrr)
4535 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4536 
4537 	ath_tx_handoff(sc, txq, bf);
4538 	return 0;
4539 }
4540 
4541 /*
4542  * Process completed xmit descriptors from the specified queue.
4543  */
4544 static int
4545 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4546 {
4547 	struct ath_hal *ah = sc->sc_ah;
4548 	struct ieee80211com *ic = &sc->sc_ic;
4549 	struct ath_buf *bf;
4550 	struct ath_desc *ds, *ds0;
4551 	struct ath_tx_status *ts;
4552 	struct ieee80211_node *ni;
4553 	struct ath_node *an;
4554 	int sr, lr, pri, nacked;
4555 	HAL_STATUS status;
4556 
4557 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4558 		__func__, txq->axq_qnum,
4559 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4560 		txq->axq_link);
4561 	nacked = 0;
4562 	for (;;) {
4563 		ATH_TXQ_LOCK(txq);
4564 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4565 		bf = STAILQ_FIRST(&txq->axq_q);
4566 		if (bf == NULL) {
4567 			ATH_TXQ_UNLOCK(txq);
4568 			break;
4569 		}
4570 		ds0 = &bf->bf_desc[0];
4571 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4572 		ts = &bf->bf_status.ds_txstat;
4573 		status = ath_hal_txprocdesc(ah, ds, ts);
4574 #ifdef ATH_DEBUG
4575 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4576 			ath_printtxbuf(bf, txq->axq_qnum, 0, status == HAL_OK);
4577 #endif
4578 		if (status == HAL_EINPROGRESS) {
4579 			ATH_TXQ_UNLOCK(txq);
4580 			break;
4581 		}
4582 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4583 		if (txq->axq_depth == 0)
4584 			txq->axq_link = NULL;
4585 		ATH_TXQ_UNLOCK(txq);
4586 
4587 		ni = bf->bf_node;
4588 		if (ni != NULL) {
4589 			an = ATH_NODE(ni);
4590 			if (ts->ts_status == 0) {
4591 				u_int8_t txant = ts->ts_antenna;
4592 				sc->sc_stats.ast_ant_tx[txant]++;
4593 				sc->sc_ant_tx[txant]++;
4594 				if (ts->ts_rate & HAL_TXSTAT_ALTRATE)
4595 					sc->sc_stats.ast_tx_altrate++;
4596 				sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4597 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4598 					ts->ts_rssi);
4599 				pri = M_WME_GETAC(bf->bf_m);
4600 				if (pri >= WME_AC_VO)
4601 					ic->ic_wme.wme_hipri_traffic++;
4602 				ni->ni_inact = ni->ni_inact_reload;
4603 			} else {
4604 				if (ts->ts_status & HAL_TXERR_XRETRY)
4605 					sc->sc_stats.ast_tx_xretries++;
4606 				if (ts->ts_status & HAL_TXERR_FIFO)
4607 					sc->sc_stats.ast_tx_fifoerr++;
4608 				if (ts->ts_status & HAL_TXERR_FILT)
4609 					sc->sc_stats.ast_tx_filtered++;
4610 				if (bf->bf_m->m_flags & M_FF)
4611 					sc->sc_stats.ast_ff_txerr++;
4612 			}
4613 			sr = ts->ts_shortretry;
4614 			lr = ts->ts_longretry;
4615 			sc->sc_stats.ast_tx_shortretry += sr;
4616 			sc->sc_stats.ast_tx_longretry += lr;
4617 			/*
4618 			 * Hand the descriptor to the rate control algorithm.
4619 			 */
4620 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4621 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4622 				/*
4623 				 * If frame was ack'd update the last rx time
4624 				 * used to workaround phantom bmiss interrupts.
4625 				 */
4626 				if (ts->ts_status == 0)
4627 					nacked++;
4628 				ath_rate_tx_complete(sc, an, bf);
4629 			}
4630 			/*
4631 			 * Do any tx complete callback.  Note this must
4632 			 * be done before releasing the node reference.
4633 			 */
4634 			if (bf->bf_m->m_flags & M_TXCB)
4635 				ieee80211_process_callback(ni, bf->bf_m,
4636 					ts->ts_status);
4637 			/*
4638 			 * Reclaim reference to node.
4639 			 *
4640 			 * NB: the node may be reclaimed here if, for example
4641 			 *     this is a DEAUTH message that was sent and the
4642 			 *     node was timed out due to inactivity.
4643 			 */
4644 			ieee80211_free_node(ni);
4645 		}
4646 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4647 		    BUS_DMASYNC_POSTWRITE);
4648 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4649 
4650 		m_freem(bf->bf_m);
4651 		bf->bf_m = NULL;
4652 		bf->bf_node = NULL;
4653 
4654 		ATH_TXBUF_LOCK(sc);
4655 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4656 		ATH_TXBUF_UNLOCK(sc);
4657 	}
4658 	/*
4659 	 * Flush fast-frame staging queue when traffic slows.
4660 	 */
4661 	if (txq->axq_depth <= 1)
4662 		ath_ff_stageq_flush(sc, txq, ath_ff_always);
4663 	return nacked;
4664 }
4665 
4666 static __inline int
4667 txqactive(struct ath_hal *ah, int qnum)
4668 {
4669 	u_int32_t txqs = 1<<qnum;
4670 	ath_hal_gettxintrtxqs(ah, &txqs);
4671 	return (txqs & (1<<qnum));
4672 }
4673 
4674 /*
4675  * Deferred processing of transmit interrupt; special-cased
4676  * for a single hardware transmit queue (e.g. 5210 and 5211).
4677  */
4678 static void
4679 ath_tx_proc_q0(void *arg, int npending)
4680 {
4681 	struct ath_softc *sc = arg;
4682 	struct ifnet *ifp = sc->sc_ifp;
4683 
4684 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
4685 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4686 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4687 		ath_tx_processq(sc, sc->sc_cabq);
4688 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4689 	ifp->if_timer = 0;
4690 
4691 	if (sc->sc_softled)
4692 		ath_led_event(sc, ATH_LED_TX);
4693 
4694 	ath_start(ifp);
4695 }
4696 
4697 /*
4698  * Deferred processing of transmit interrupt; special-cased
4699  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4700  */
4701 static void
4702 ath_tx_proc_q0123(void *arg, int npending)
4703 {
4704 	struct ath_softc *sc = arg;
4705 	struct ifnet *ifp = sc->sc_ifp;
4706 	int nacked;
4707 
4708 	/*
4709 	 * Process each active queue.
4710 	 */
4711 	nacked = 0;
4712 	if (txqactive(sc->sc_ah, 0))
4713 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4714 	if (txqactive(sc->sc_ah, 1))
4715 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4716 	if (txqactive(sc->sc_ah, 2))
4717 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4718 	if (txqactive(sc->sc_ah, 3))
4719 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4720 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4721 		ath_tx_processq(sc, sc->sc_cabq);
4722 	if (nacked)
4723 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4724 
4725 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4726 	ifp->if_timer = 0;
4727 
4728 	if (sc->sc_softled)
4729 		ath_led_event(sc, ATH_LED_TX);
4730 
4731 	ath_start(ifp);
4732 }
4733 
4734 /*
4735  * Deferred processing of transmit interrupt.
4736  */
4737 static void
4738 ath_tx_proc(void *arg, int npending)
4739 {
4740 	struct ath_softc *sc = arg;
4741 	struct ifnet *ifp = sc->sc_ifp;
4742 	int i, nacked;
4743 
4744 	/*
4745 	 * Process each active queue.
4746 	 */
4747 	nacked = 0;
4748 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4749 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4750 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4751 	if (nacked)
4752 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4753 
4754 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4755 	ifp->if_timer = 0;
4756 
4757 	if (sc->sc_softled)
4758 		ath_led_event(sc, ATH_LED_TX);
4759 
4760 	ath_start(ifp);
4761 }
4762 
4763 static void
4764 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4765 {
4766 #ifdef ATH_DEBUG
4767 	struct ath_hal *ah = sc->sc_ah;
4768 #endif
4769 	struct ieee80211_node *ni;
4770 	struct ath_buf *bf;
4771 	u_int ix;
4772 
4773 	/*
4774 	 * NB: this assumes output has been stopped and
4775 	 *     we do not need to block ath_tx_tasklet
4776 	 */
4777 	for (ix = 0;; ix++) {
4778 		ATH_TXQ_LOCK(txq);
4779 		bf = STAILQ_FIRST(&txq->axq_q);
4780 		if (bf == NULL) {
4781 			txq->axq_link = NULL;
4782 			ATH_TXQ_UNLOCK(txq);
4783 			break;
4784 		}
4785 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4786 		ATH_TXQ_UNLOCK(txq);
4787 #ifdef ATH_DEBUG
4788 		if (sc->sc_debug & ATH_DEBUG_RESET) {
4789 			ath_printtxbuf(bf, txq->axq_qnum, ix,
4790 				ath_hal_txprocdesc(ah, bf->bf_desc,
4791 				    &bf->bf_status.ds_txstat) == HAL_OK);
4792 			ieee80211_dump_pkt(&sc->sc_ic, mtod(bf->bf_m, caddr_t),
4793 				bf->bf_m->m_len, 0, -1);
4794 		}
4795 #endif /* ATH_DEBUG */
4796 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4797 		ni = bf->bf_node;
4798 		bf->bf_node = NULL;
4799 		if (ni != NULL) {
4800 			/*
4801 			 * Do any callback and reclaim the node reference.
4802 			 */
4803 			if (bf->bf_m->m_flags & M_TXCB)
4804 				ieee80211_process_callback(ni, bf->bf_m, -1);
4805 			ieee80211_free_node(ni);
4806 		}
4807 		m_freem(bf->bf_m);
4808 		bf->bf_m = NULL;
4809 
4810 		ATH_TXBUF_LOCK(sc);
4811 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4812 		ATH_TXBUF_UNLOCK(sc);
4813 	}
4814 }
4815 
4816 static void
4817 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4818 {
4819 	struct ath_hal *ah = sc->sc_ah;
4820 
4821 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4822 	    __func__, txq->axq_qnum,
4823 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4824 	    txq->axq_link);
4825 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4826 }
4827 
4828 /*
4829  * Drain the transmit queues and reclaim resources.
4830  */
4831 static void
4832 ath_draintxq(struct ath_softc *sc)
4833 {
4834 	struct ath_hal *ah = sc->sc_ah;
4835 	struct ifnet *ifp = sc->sc_ifp;
4836 	int i;
4837 
4838 	/* XXX return value */
4839 	if (!sc->sc_invalid) {
4840 		/* don't touch the hardware if marked invalid */
4841 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4842 		    __func__, sc->sc_bhalq,
4843 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4844 		    NULL);
4845 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4846 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4847 			if (ATH_TXQ_SETUP(sc, i))
4848 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4849 	}
4850 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4851 		if (ATH_TXQ_SETUP(sc, i))
4852 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4853 	ath_tx_draintxq(sc, &sc->sc_mcastq);
4854 #ifdef ATH_DEBUG
4855 	if (sc->sc_debug & ATH_DEBUG_RESET) {
4856 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
4857 		if (bf != NULL && bf->bf_m != NULL) {
4858 			ath_printtxbuf(bf, sc->sc_bhalq, 0,
4859 				ath_hal_txprocdesc(ah, bf->bf_desc,
4860 				    &bf->bf_status.ds_txstat) == HAL_OK);
4861 			ieee80211_dump_pkt(&sc->sc_ic, mtod(bf->bf_m, caddr_t),
4862 				bf->bf_m->m_len, 0, -1);
4863 		}
4864 	}
4865 #endif /* ATH_DEBUG */
4866 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4867 	ifp->if_timer = 0;
4868 }
4869 
4870 /*
4871  * Disable the receive h/w in preparation for a reset.
4872  */
4873 static void
4874 ath_stoprecv(struct ath_softc *sc)
4875 {
4876 #define	PA2DESC(_sc, _pa) \
4877 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4878 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4879 	struct ath_hal *ah = sc->sc_ah;
4880 
4881 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4882 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4883 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4884 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4885 #ifdef ATH_DEBUG
4886 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4887 		struct ath_buf *bf;
4888 		u_int ix;
4889 
4890 		printf("%s: rx queue %p, link %p\n", __func__,
4891 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4892 		ix = 0;
4893 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4894 			struct ath_desc *ds = bf->bf_desc;
4895 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
4896 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4897 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4898 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4899 				ath_printrxbuf(bf, ix, status == HAL_OK);
4900 			ix++;
4901 		}
4902 	}
4903 #endif
4904 	if (sc->sc_rxpending != NULL) {
4905 		m_freem(sc->sc_rxpending);
4906 		sc->sc_rxpending = NULL;
4907 	}
4908 	sc->sc_rxlink = NULL;		/* just in case */
4909 #undef PA2DESC
4910 }
4911 
4912 /*
4913  * Enable the receive h/w following a reset.
4914  */
4915 static int
4916 ath_startrecv(struct ath_softc *sc)
4917 {
4918 	struct ath_hal *ah = sc->sc_ah;
4919 	struct ath_buf *bf;
4920 
4921 	sc->sc_rxlink = NULL;
4922 	sc->sc_rxpending = NULL;
4923 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4924 		int error = ath_rxbuf_init(sc, bf);
4925 		if (error != 0) {
4926 			DPRINTF(sc, ATH_DEBUG_RECV,
4927 				"%s: ath_rxbuf_init failed %d\n",
4928 				__func__, error);
4929 			return error;
4930 		}
4931 	}
4932 
4933 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4934 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4935 	ath_hal_rxena(ah);		/* enable recv descriptors */
4936 	ath_mode_init(sc);		/* set filters, etc. */
4937 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4938 	return 0;
4939 }
4940 
4941 /*
4942  * Update internal state after a channel change.
4943  */
4944 static void
4945 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4946 {
4947 	enum ieee80211_phymode mode;
4948 
4949 	/*
4950 	 * Change channels and update the h/w rate map
4951 	 * if we're switching; e.g. 11a to 11b/g.
4952 	 */
4953 	if (IEEE80211_IS_CHAN_HALF(chan))
4954 		mode = IEEE80211_MODE_HALF;
4955 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
4956 		mode = IEEE80211_MODE_QUARTER;
4957 	else
4958 		mode = ieee80211_chan2mode(chan);
4959 	if (mode != sc->sc_curmode)
4960 		ath_setcurmode(sc, mode);
4961 
4962 	sc->sc_rx_th.wr_chan_flags = htole32(chan->ic_flags);
4963 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags;
4964 	sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq);
4965 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq;
4966 	sc->sc_rx_th.wr_chan_ieee = chan->ic_ieee;
4967 	sc->sc_tx_th.wt_chan_ieee = sc->sc_rx_th.wr_chan_ieee;
4968 	sc->sc_rx_th.wr_chan_maxpow = chan->ic_maxregpower;
4969 	sc->sc_tx_th.wt_chan_maxpow = sc->sc_rx_th.wr_chan_maxpow;
4970 }
4971 
4972 /*
4973  * Poll for a channel clear indication; this is required
4974  * for channels requiring DFS and not previously visited
4975  * and/or with a recent radar detection.
4976  */
4977 static void
4978 ath_dfswait(void *arg)
4979 {
4980 	struct ath_softc *sc = arg;
4981 	struct ath_hal *ah = sc->sc_ah;
4982 	HAL_CHANNEL hchan;
4983 
4984 	ath_hal_radar_wait(ah, &hchan);
4985 	DPRINTF(sc, ATH_DEBUG_DFS, "%s: radar_wait %u/%x/%x\n",
4986 	    __func__, hchan.channel, hchan.channelFlags, hchan.privFlags);
4987 
4988 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4989 		if_printf(sc->sc_ifp,
4990 		    "channel %u/0x%x/0x%x has interference\n",
4991 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4992 		return;
4993 	}
4994 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4995 		/* XXX should not happen */
4996 		return;
4997 	}
4998 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4999 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
5000 		sc->sc_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5001 		if_printf(sc->sc_ifp,
5002 		    "channel %u/0x%x/0x%x marked clear\n",
5003 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
5004 	} else
5005 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
5006 }
5007 
5008 /*
5009  * Set/change channels.  If the channel is really being changed,
5010  * it's done by reseting the chip.  To accomplish this we must
5011  * first cleanup any pending DMA, then restart stuff after a la
5012  * ath_init.
5013  */
5014 static int
5015 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5016 {
5017 	struct ath_hal *ah = sc->sc_ah;
5018 	struct ieee80211com *ic = &sc->sc_ic;
5019 	HAL_CHANNEL hchan;
5020 
5021 	/*
5022 	 * Convert to a HAL channel description with
5023 	 * the flags constrained to reflect the current
5024 	 * operating mode.
5025 	 */
5026 	ath_mapchan(&hchan, chan);
5027 
5028 	DPRINTF(sc, ATH_DEBUG_RESET,
5029 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
5030 	    __func__,
5031 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
5032 		sc->sc_curchan.channelFlags),
5033 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
5034 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
5035 	        hchan.channel, hchan.channelFlags);
5036 	if (hchan.channel != sc->sc_curchan.channel ||
5037 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
5038 		HAL_STATUS status;
5039 
5040 		/*
5041 		 * To switch channels clear any pending DMA operations;
5042 		 * wait long enough for the RX fifo to drain, reset the
5043 		 * hardware at the new frequency, and then re-enable
5044 		 * the relevant bits of the h/w.
5045 		 */
5046 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5047 		ath_draintxq(sc);		/* clear pending tx frames */
5048 		ath_stoprecv(sc);		/* turn off frame recv */
5049 		if (!ath_hal_reset(ah, sc->sc_opmode, &hchan, AH_TRUE, &status)) {
5050 			if_printf(ic->ic_ifp, "%s: unable to reset "
5051 			    "channel %u (%u Mhz, flags 0x%x hal flags 0x%x)\n",
5052 			    __func__, ieee80211_chan2ieee(ic, chan),
5053 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
5054 			return EIO;
5055 		}
5056 		sc->sc_curchan = hchan;
5057 		ath_update_txpow(sc);		/* update tx power state */
5058 		sc->sc_diversity = ath_hal_getdiversity(ah);
5059 		sc->sc_calinterval = 1;
5060 		sc->sc_caltries = 0;
5061 
5062 		/*
5063 		 * Re-enable rx framework.
5064 		 */
5065 		if (ath_startrecv(sc) != 0) {
5066 			if_printf(ic->ic_ifp,
5067 				"%s: unable to restart recv logic\n", __func__);
5068 			return EIO;
5069 		}
5070 
5071 		/*
5072 		 * Change channels and update the h/w rate map
5073 		 * if we're switching; e.g. 11a to 11b/g.
5074 		 */
5075 		ath_chan_change(sc, chan);
5076 
5077 		/*
5078 		 * Handle DFS required waiting period to determine
5079 		 * if channel is clear of radar traffic.
5080 		 */
5081 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
5082 #define	DFS_AND_NOT_CLEAR(_c) \
5083 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
5084 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
5085 				if_printf(sc->sc_ifp,
5086 					"wait for DFS clear channel signal\n");
5087 				/* XXX stop sndq */
5088 				sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5089 				callout_reset(&sc->sc_dfs_ch,
5090 					2 * hz, ath_dfswait, sc);
5091 			} else
5092 				callout_stop(&sc->sc_dfs_ch);
5093 #undef DFS_NOT_CLEAR
5094 		}
5095 
5096 		/*
5097 		 * Re-enable interrupts.
5098 		 */
5099 		ath_hal_intrset(ah, sc->sc_imask);
5100 	}
5101 	return 0;
5102 }
5103 
5104 /*
5105  * Periodically recalibrate the PHY to account
5106  * for temperature/environment changes.
5107  */
5108 static void
5109 ath_calibrate(void *arg)
5110 {
5111 	struct ath_softc *sc = arg;
5112 	struct ath_hal *ah = sc->sc_ah;
5113 	HAL_BOOL iqCalDone;
5114 
5115 	sc->sc_stats.ast_per_cal++;
5116 
5117 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5118 		/*
5119 		 * Rfgain is out of bounds, reset the chip
5120 		 * to load new gain values.
5121 		 */
5122 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5123 			"%s: rfgain change\n", __func__);
5124 		sc->sc_stats.ast_per_rfgain++;
5125 		ath_reset(sc->sc_ifp);
5126 	}
5127 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
5128 		DPRINTF(sc, ATH_DEBUG_ANY,
5129 			"%s: calibration of channel %u failed\n",
5130 			__func__, sc->sc_curchan.channel);
5131 		sc->sc_stats.ast_per_calfail++;
5132 	}
5133 	/*
5134 	 * Calibrate noise floor data again in case of change.
5135 	 */
5136 	ath_hal_process_noisefloor(ah);
5137 	/*
5138 	 * Poll more frequently when the IQ calibration is in
5139 	 * progress to speedup loading the final settings.
5140 	 * We temper this aggressive polling with an exponential
5141 	 * back off after 4 tries up to ath_calinterval.
5142 	 */
5143 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
5144 		sc->sc_caltries = 0;
5145 		sc->sc_calinterval = ath_calinterval;
5146 	} else if (sc->sc_caltries > 4) {
5147 		sc->sc_caltries = 0;
5148 		sc->sc_calinterval <<= 1;
5149 		if (sc->sc_calinterval > ath_calinterval)
5150 			sc->sc_calinterval = ath_calinterval;
5151 	}
5152 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
5153 		("bad calibration interval %u", sc->sc_calinterval));
5154 
5155 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5156 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
5157 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
5158 	sc->sc_caltries++;
5159 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
5160 		ath_calibrate, sc);
5161 }
5162 
5163 static void
5164 ath_scan_start(struct ieee80211com *ic)
5165 {
5166 	struct ifnet *ifp = ic->ic_ifp;
5167 	struct ath_softc *sc = ifp->if_softc;
5168 	struct ath_hal *ah = sc->sc_ah;
5169 	u_int32_t rfilt;
5170 
5171 	/* XXX calibration timer? */
5172 
5173 	sc->sc_scanning = 1;
5174 	sc->sc_syncbeacon = 0;
5175 	rfilt = ath_calcrxfilter(sc);
5176 	ath_hal_setrxfilter(ah, rfilt);
5177 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5178 
5179 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5180 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5181 }
5182 
5183 static void
5184 ath_scan_end(struct ieee80211com *ic)
5185 {
5186 	struct ifnet *ifp = ic->ic_ifp;
5187 	struct ath_softc *sc = ifp->if_softc;
5188 	struct ath_hal *ah = sc->sc_ah;
5189 	u_int32_t rfilt;
5190 
5191 	sc->sc_scanning = 0;
5192 	rfilt = ath_calcrxfilter(sc);
5193 	ath_hal_setrxfilter(ah, rfilt);
5194 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5195 
5196 	ath_hal_process_noisefloor(ah);
5197 
5198 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5199 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5200 		 sc->sc_curaid);
5201 }
5202 
5203 static void
5204 ath_set_channel(struct ieee80211com *ic)
5205 {
5206 	struct ifnet *ifp = ic->ic_ifp;
5207 	struct ath_softc *sc = ifp->if_softc;
5208 
5209 	(void) ath_chan_set(sc, ic->ic_curchan);
5210 	/*
5211 	 * If we are returning to our bss channel then mark state
5212 	 * so the next recv'd beacon's tsf will be used to sync the
5213 	 * beacon timers.  Note that since we only hear beacons in
5214 	 * sta/ibss mode this has no effect in other operating modes.
5215 	 */
5216 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5217 		sc->sc_syncbeacon = 1;
5218 }
5219 
5220 static int
5221 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
5222 {
5223 	struct ifnet *ifp = ic->ic_ifp;
5224 	struct ath_softc *sc = ifp->if_softc;
5225 	struct ath_hal *ah = sc->sc_ah;
5226 	struct ieee80211_node *ni;
5227 	int i, error, stamode;
5228 	u_int32_t rfilt;
5229 	static const HAL_LED_STATE leds[] = {
5230 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5231 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5232 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5233 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5234 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5235 	};
5236 
5237 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5238 		ieee80211_state_name[ic->ic_state],
5239 		ieee80211_state_name[nstate]);
5240 
5241 	callout_stop(&sc->sc_cal_ch);
5242 	callout_stop(&sc->sc_dfs_ch);
5243 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5244 
5245 	if (nstate == IEEE80211_S_INIT) {
5246 		/*
5247 		 * Shutdown host/driver operation:
5248 		 * o disable interrupts so we don't rx frames
5249 		 * o clean any pending items on the task q
5250 		 * o notify the rate control algorithm
5251 		 */
5252 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5253 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5254 #if 0
5255 		/* XXX can't use taskqueue_drain 'cuz we're holding sc_mtx */
5256 		taskqueue_drain(sc->sc_tq, &sc->sc_rxtask);
5257 		taskqueue_drain(sc->sc_tq, &sc->sc_rxorntask);
5258 		taskqueue_drain(sc->sc_tq, &sc->sc_bmisstask);
5259 		taskqueue_drain(sc->sc_tq, &sc->sc_bstucktask);
5260 #endif
5261 		ath_rate_newstate(sc, nstate);
5262 		goto done;
5263 	}
5264 	ni = ic->ic_bss;
5265 
5266 	rfilt = ath_calcrxfilter(sc);
5267 	stamode = (sc->sc_opmode == HAL_M_STA || sc->sc_opmode == HAL_M_IBSS);
5268 	if (stamode && nstate == IEEE80211_S_RUN) {
5269 		sc->sc_curaid = ni->ni_associd;
5270 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5271 	} else
5272 		sc->sc_curaid = 0;
5273 
5274 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5275 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5276 		 sc->sc_curaid);
5277 
5278 	ath_hal_setrxfilter(ah, rfilt);
5279 	if (stamode)
5280 		ath_hal_setassocid(ah, sc->sc_curbssid, ni->ni_associd);
5281 
5282 	if (ic->ic_opmode != IEEE80211_M_STA &&
5283 	    (ic->ic_flags & IEEE80211_F_PRIVACY)) {
5284 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5285 			if (ath_hal_keyisvalid(ah, i))
5286 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5287 	}
5288 
5289 	/*
5290 	 * Notify the rate control algorithm so rates
5291 	 * are setup should ath_beacon_alloc be called.
5292 	 */
5293 	ath_rate_newstate(sc, nstate);
5294 
5295 	if (nstate == IEEE80211_S_RUN) {
5296 		DPRINTF(sc, ATH_DEBUG_STATE,
5297 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
5298 			"capinfo=0x%04x chan=%d\n"
5299 			 , __func__
5300 			 , ic->ic_flags
5301 			 , ni->ni_intval
5302 			 , ether_sprintf(ni->ni_bssid)
5303 			 , ni->ni_capinfo
5304 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
5305 
5306 		switch (ic->ic_opmode) {
5307 		case IEEE80211_M_HOSTAP:
5308 		case IEEE80211_M_IBSS:
5309 			/*
5310 			 * Allocate and setup the beacon frame.
5311 			 *
5312 			 * Stop any previous beacon DMA.  This may be
5313 			 * necessary, for example, when an ibss merge
5314 			 * causes reconfiguration; there will be a state
5315 			 * transition from RUN->RUN that means we may
5316 			 * be called with beacon transmission active.
5317 			 */
5318 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5319 			ath_beacon_free(sc);
5320 			error = ath_beacon_alloc(sc, ni);
5321 			if (error != 0)
5322 				goto bad;
5323 			/*
5324 			 * If joining an adhoc network defer beacon timer
5325 			 * configuration to the next beacon frame so we
5326 			 * have a current TSF to use.  Otherwise we're
5327 			 * starting an ibss/bss so there's no need to delay.
5328 			 */
5329 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
5330 			    ic->ic_bss->ni_tstamp.tsf != 0)
5331 				sc->sc_syncbeacon = 1;
5332 			else
5333 				ath_beacon_config(sc);
5334 			break;
5335 		case IEEE80211_M_STA:
5336 			/*
5337 			 * Allocate a key cache slot to the station.
5338 			 */
5339 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
5340 			    sc->sc_hasclrkey &&
5341 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5342 				ath_setup_stationkey(ni);
5343 			/*
5344 			 * Defer beacon timer configuration to the next
5345 			 * beacon frame so we have a current TSF to use
5346 			 * (any TSF collected when scanning is likely old).
5347 			 */
5348 			sc->sc_syncbeacon = 1;
5349 			break;
5350 		default:
5351 			break;
5352 		}
5353 		/*
5354 		 * Let the hal process statistics collected during a
5355 		 * scan so it can provide calibrated noise floor data.
5356 		 */
5357 		ath_hal_process_noisefloor(ah);
5358 		/*
5359 		 * Reset rssi stats; maybe not the best place...
5360 		 */
5361 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5362 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5363 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5364 	} else {
5365 		ath_hal_intrset(ah,
5366 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5367 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5368 	}
5369 done:
5370 	/*
5371 	 * Invoke the parent method to complete the work.
5372 	 */
5373 	error = sc->sc_newstate(ic, nstate, arg);
5374 	/*
5375 	 * Finally, start any timers.
5376 	 */
5377 	if (nstate == IEEE80211_S_RUN) {
5378 		/* start periodic recalibration timer */
5379 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
5380 			ath_calibrate, sc);
5381 	}
5382 bad:
5383 	return error;
5384 }
5385 
5386 /*
5387  * Allocate a key cache slot to the station so we can
5388  * setup a mapping from key index to node. The key cache
5389  * slot is needed for managing antenna state and for
5390  * compression when stations do not use crypto.  We do
5391  * it uniliaterally here; if crypto is employed this slot
5392  * will be reassigned.
5393  */
5394 static void
5395 ath_setup_stationkey(struct ieee80211_node *ni)
5396 {
5397 	struct ieee80211com *ic = ni->ni_ic;
5398 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5399 	ieee80211_keyix keyix, rxkeyix;
5400 
5401 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5402 		/*
5403 		 * Key cache is full; we'll fall back to doing
5404 		 * the more expensive lookup in software.  Note
5405 		 * this also means no h/w compression.
5406 		 */
5407 		/* XXX msg+statistic */
5408 	} else {
5409 		/* XXX locking? */
5410 		ni->ni_ucastkey.wk_keyix = keyix;
5411 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5412 		/* NB: this will create a pass-thru key entry */
5413 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
5414 	}
5415 }
5416 
5417 /*
5418  * Setup driver-specific state for a newly associated node.
5419  * Note that we're called also on a re-associate, the isnew
5420  * param tells us if this is the first time or not.
5421  */
5422 static void
5423 ath_newassoc(struct ieee80211_node *ni, int isnew)
5424 {
5425 	struct ieee80211com *ic = ni->ni_ic;
5426 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5427 
5428 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
5429 	if (isnew &&
5430 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
5431 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
5432 		    ("new assoc with a unicast key already setup (keyix %u)",
5433 		    ni->ni_ucastkey.wk_keyix));
5434 		ath_setup_stationkey(ni);
5435 	}
5436 }
5437 
5438 static int
5439 ath_getchannels(struct ath_softc *sc,
5440     HAL_REG_DOMAIN rd, HAL_CTRY_CODE cc, HAL_BOOL outdoor, HAL_BOOL xchanmode)
5441 {
5442 	struct ieee80211com *ic = &sc->sc_ic;
5443 	struct ifnet *ifp = sc->sc_ifp;
5444 	struct ath_hal *ah = sc->sc_ah;
5445 	HAL_CHANNEL *chans;
5446 	int i, nchan;
5447 	u_int32_t regdomain;
5448 
5449 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
5450 			M_TEMP, M_NOWAIT);
5451 	if (chans == NULL) {
5452 		if_printf(ifp, "unable to allocate channel table\n");
5453 		return ENOMEM;
5454 	}
5455 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
5456 	    NULL, 0, NULL, cc, HAL_MODE_ALL, outdoor, xchanmode)) {
5457 		(void) ath_hal_getregdomain(ah, &regdomain);
5458 		if_printf(ifp, "unable to collect channel list from hal; "
5459 			"regdomain likely %u country code %u\n", regdomain, cc);
5460 		free(chans, M_TEMP);
5461 		return EINVAL;
5462 	}
5463 
5464 	/*
5465 	 * Convert HAL channels to ieee80211 ones.
5466 	 */
5467 	memset(ic->ic_channels, 0, sizeof(ic->ic_channels));
5468 	for (i = 0; i < nchan; i++) {
5469 		HAL_CHANNEL *c = &chans[i];
5470 		struct ieee80211_channel *ichan = &ic->ic_channels[i];
5471 
5472 		ichan->ic_ieee = ath_hal_mhz2ieee(ah, c->channel,
5473 					c->channelFlags);
5474 		if (bootverbose)
5475 			if_printf(ifp, "hal channel %u/%x -> %u\n",
5476 			    c->channel, c->channelFlags, ichan->ic_ieee);
5477 		ichan->ic_freq = c->channel;
5478 
5479 		if ((c->channelFlags & CHANNEL_PUREG) == CHANNEL_PUREG) {
5480 			/*
5481 			 * Except for AR5211, HAL's PUREG means mixed
5482 			 * DSSS and OFDM.
5483 			 */
5484 			ichan->ic_flags = c->channelFlags &~ CHANNEL_PUREG;
5485 			ichan->ic_flags |= IEEE80211_CHAN_G;
5486 		} else {
5487 			ichan->ic_flags = c->channelFlags;
5488 		}
5489 
5490 		if (ath_hal_isgsmsku(ah)) {
5491 			/* remap to true frequencies */
5492 			ichan->ic_freq = 922 + (2422 - ichan->ic_freq);
5493 			ichan->ic_flags |= IEEE80211_CHAN_GSM;
5494 			ichan->ic_ieee = ieee80211_mhz2ieee(ichan->ic_freq,
5495 						    ichan->ic_flags);
5496 		}
5497 		ichan->ic_maxregpower = c->maxRegTxPower;	/* dBm */
5498 		ichan->ic_maxpower = c->maxTxPower;		/* 1/2 dBm */
5499 		ichan->ic_minpower = c->minTxPower;		/* 1/2 dBm */
5500 	}
5501 	ic->ic_nchans = nchan;
5502 	free(chans, M_TEMP);
5503 	(void) ath_hal_getregdomain(ah, &sc->sc_regdomain);
5504 	ath_hal_getcountrycode(ah, &sc->sc_countrycode);
5505 	sc->sc_xchanmode = xchanmode;
5506 	sc->sc_outdoor = outdoor;
5507 	return 0;
5508 }
5509 
5510 static void
5511 ath_led_done(void *arg)
5512 {
5513 	struct ath_softc *sc = arg;
5514 
5515 	sc->sc_blinking = 0;
5516 }
5517 
5518 /*
5519  * Turn the LED off: flip the pin and then set a timer so no
5520  * update will happen for the specified duration.
5521  */
5522 static void
5523 ath_led_off(void *arg)
5524 {
5525 	struct ath_softc *sc = arg;
5526 
5527 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5528 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
5529 }
5530 
5531 /*
5532  * Blink the LED according to the specified on/off times.
5533  */
5534 static void
5535 ath_led_blink(struct ath_softc *sc, int on, int off)
5536 {
5537 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5538 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5539 	sc->sc_blinking = 1;
5540 	sc->sc_ledoff = off;
5541 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5542 }
5543 
5544 static void
5545 ath_led_event(struct ath_softc *sc, int event)
5546 {
5547 
5548 	sc->sc_ledevent = ticks;	/* time of last event */
5549 	if (sc->sc_blinking)		/* don't interrupt active blink */
5550 		return;
5551 	switch (event) {
5552 	case ATH_LED_POLL:
5553 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
5554 			sc->sc_hwmap[0].ledoff);
5555 		break;
5556 	case ATH_LED_TX:
5557 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
5558 			sc->sc_hwmap[sc->sc_txrate].ledoff);
5559 		break;
5560 	case ATH_LED_RX:
5561 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
5562 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
5563 		break;
5564 	}
5565 }
5566 
5567 static void
5568 ath_update_txpow(struct ath_softc *sc)
5569 {
5570 	struct ieee80211com *ic = &sc->sc_ic;
5571 	struct ath_hal *ah = sc->sc_ah;
5572 	u_int32_t txpow;
5573 
5574 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
5575 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
5576 		/* read back in case value is clamped */
5577 		if (ath_hal_gettxpowlimit(ah, &txpow))
5578 			ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
5579 	}
5580 	/*
5581 	 * Fetch max tx power level for status requests.
5582 	 */
5583 	if (ath_hal_getmaxtxpow(sc->sc_ah, &txpow))
5584 		ic->ic_bss->ni_txpower = txpow;
5585 }
5586 
5587 static int
5588 ath_rate_setup(struct ath_softc *sc, u_int mode)
5589 {
5590 	struct ath_hal *ah = sc->sc_ah;
5591 	const HAL_RATE_TABLE *rt;
5592 
5593 	switch (mode) {
5594 	case IEEE80211_MODE_11A:
5595 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5596 		break;
5597 	case IEEE80211_MODE_HALF:
5598 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5599 		break;
5600 	case IEEE80211_MODE_QUARTER:
5601 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5602 		break;
5603 	case IEEE80211_MODE_11B:
5604 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5605 		break;
5606 	case IEEE80211_MODE_11G:
5607 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5608 		break;
5609 	case IEEE80211_MODE_TURBO_A:
5610 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5611 		break;
5612 	case IEEE80211_MODE_TURBO_G:
5613 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5614 		break;
5615 	case IEEE80211_MODE_STURBO_A:
5616 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5617 		break;
5618 	case IEEE80211_MODE_11NA:
5619 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5620 		break;
5621 	case IEEE80211_MODE_11NG:
5622 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5623 		break;
5624 	default:
5625 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5626 			__func__, mode);
5627 		return 0;
5628 	}
5629 	sc->sc_rates[mode] = rt;
5630 	return (rt != NULL);
5631 }
5632 
5633 static void
5634 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5635 {
5636 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5637 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5638 	static const struct {
5639 		u_int		rate;		/* tx/rx 802.11 rate */
5640 		u_int16_t	timeOn;		/* LED on time (ms) */
5641 		u_int16_t	timeOff;	/* LED off time (ms) */
5642 	} blinkrates[] = {
5643 		{ 108,  40,  10 },
5644 		{  96,  44,  11 },
5645 		{  72,  50,  13 },
5646 		{  48,  57,  14 },
5647 		{  36,  67,  16 },
5648 		{  24,  80,  20 },
5649 		{  22, 100,  25 },
5650 		{  18, 133,  34 },
5651 		{  12, 160,  40 },
5652 		{  10, 200,  50 },
5653 		{   6, 240,  58 },
5654 		{   4, 267,  66 },
5655 		{   2, 400, 100 },
5656 		{   0, 500, 130 },
5657 		/* XXX half/quarter rates */
5658 	};
5659 	const HAL_RATE_TABLE *rt;
5660 	int i, j;
5661 
5662 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5663 	rt = sc->sc_rates[mode];
5664 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5665 	for (i = 0; i < rt->rateCount; i++)
5666 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5667 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5668 	for (i = 0; i < 32; i++) {
5669 		u_int8_t ix = rt->rateCodeToIndex[i];
5670 		if (ix == 0xff) {
5671 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5672 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5673 			continue;
5674 		}
5675 		sc->sc_hwmap[i].ieeerate =
5676 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5677 		if (rt->info[ix].phy == IEEE80211_T_HT)
5678 			sc->sc_hwmap[i].ieeerate |= 0x80;	/* MCS */
5679 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5680 		if (rt->info[ix].shortPreamble ||
5681 		    rt->info[ix].phy == IEEE80211_T_OFDM)
5682 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5683 		/* NB: receive frames include FCS */
5684 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5685 			IEEE80211_RADIOTAP_F_FCS;
5686 		/* setup blink rate table to avoid per-packet lookup */
5687 		for (j = 0; j < N(blinkrates)-1; j++)
5688 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5689 				break;
5690 		/* NB: this uses the last entry if the rate isn't found */
5691 		/* XXX beware of overlow */
5692 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5693 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5694 	}
5695 	sc->sc_currates = rt;
5696 	sc->sc_curmode = mode;
5697 	/*
5698 	 * All protection frames are transmited at 2Mb/s for
5699 	 * 11g, otherwise at 1Mb/s.
5700 	 */
5701 	if (mode == IEEE80211_MODE_11G)
5702 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5703 	else
5704 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5705 	/* rate index used to send management frames */
5706 	sc->sc_minrateix = 0;
5707 	/*
5708 	 * Setup multicast rate state.
5709 	 */
5710 	/* XXX layering violation */
5711 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5712 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5713 	/* NB: caller is responsible for reseting rate control state */
5714 #undef N
5715 }
5716 
5717 #ifdef ATH_DEBUG
5718 static void
5719 ath_printrxbuf(const struct ath_buf *bf, u_int ix, int done)
5720 {
5721 	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5722 	const struct ath_desc *ds;
5723 	int i;
5724 
5725 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5726 		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
5727 		       "      %08x %08x %08x %08x\n",
5728 		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
5729 		    ds->ds_link, ds->ds_data,
5730 		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
5731 		    ds->ds_ctl0, ds->ds_ctl1,
5732 		    ds->ds_hw[0], ds->ds_hw[1]);
5733 	}
5734 }
5735 
5736 static void
5737 ath_printtxbuf(const struct ath_buf *bf, u_int qnum, u_int ix, int done)
5738 {
5739 	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
5740 	const struct ath_desc *ds;
5741 	int i;
5742 
5743 	printf("Q%u[%3u]", qnum, ix);
5744 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5745 		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
5746 		       "        %08x %08x %08x %08x %08x %08x\n",
5747 		    ds, (const struct ath_desc *)bf->bf_daddr + i,
5748 		    ds->ds_link, ds->ds_data, bf->bf_flags,
5749 		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
5750 		    ds->ds_ctl0, ds->ds_ctl1,
5751 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
5752 	}
5753 }
5754 #endif /* ATH_DEBUG */
5755 
5756 static void
5757 ath_watchdog(struct ifnet *ifp)
5758 {
5759 	struct ath_softc *sc = ifp->if_softc;
5760 
5761 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && !sc->sc_invalid) {
5762 		if_printf(ifp, "device timeout\n");
5763 		ath_reset(ifp);
5764 		ifp->if_oerrors++;
5765 		sc->sc_stats.ast_watchdog++;
5766 	}
5767 }
5768 
5769 #ifdef ATH_DIAGAPI
5770 /*
5771  * Diagnostic interface to the HAL.  This is used by various
5772  * tools to do things like retrieve register contents for
5773  * debugging.  The mechanism is intentionally opaque so that
5774  * it can change frequently w/o concern for compatiblity.
5775  */
5776 static int
5777 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5778 {
5779 	struct ath_hal *ah = sc->sc_ah;
5780 	u_int id = ad->ad_id & ATH_DIAG_ID;
5781 	void *indata = NULL;
5782 	void *outdata = NULL;
5783 	u_int32_t insize = ad->ad_in_size;
5784 	u_int32_t outsize = ad->ad_out_size;
5785 	int error = 0;
5786 
5787 	if (ad->ad_id & ATH_DIAG_IN) {
5788 		/*
5789 		 * Copy in data.
5790 		 */
5791 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5792 		if (indata == NULL) {
5793 			error = ENOMEM;
5794 			goto bad;
5795 		}
5796 		error = copyin(ad->ad_in_data, indata, insize);
5797 		if (error)
5798 			goto bad;
5799 	}
5800 	if (ad->ad_id & ATH_DIAG_DYN) {
5801 		/*
5802 		 * Allocate a buffer for the results (otherwise the HAL
5803 		 * returns a pointer to a buffer where we can read the
5804 		 * results).  Note that we depend on the HAL leaving this
5805 		 * pointer for us to use below in reclaiming the buffer;
5806 		 * may want to be more defensive.
5807 		 */
5808 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5809 		if (outdata == NULL) {
5810 			error = ENOMEM;
5811 			goto bad;
5812 		}
5813 	}
5814 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5815 		if (outsize < ad->ad_out_size)
5816 			ad->ad_out_size = outsize;
5817 		if (outdata != NULL)
5818 			error = copyout(outdata, ad->ad_out_data,
5819 					ad->ad_out_size);
5820 	} else {
5821 		error = EINVAL;
5822 	}
5823 bad:
5824 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5825 		free(indata, M_TEMP);
5826 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5827 		free(outdata, M_TEMP);
5828 	return error;
5829 }
5830 #endif /* ATH_DIAGAPI */
5831 
5832 static int
5833 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5834 {
5835 #define	IS_RUNNING(ifp) \
5836 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5837 	struct ath_softc *sc = ifp->if_softc;
5838 	struct ieee80211com *ic = &sc->sc_ic;
5839 	struct ifreq *ifr = (struct ifreq *)data;
5840 	int error = 0;
5841 
5842 	ATH_LOCK(sc);
5843 	switch (cmd) {
5844 	case SIOCSIFFLAGS:
5845 		if (IS_RUNNING(ifp)) {
5846 			/*
5847 			 * To avoid rescanning another access point,
5848 			 * do not call ath_init() here.  Instead,
5849 			 * only reflect promisc mode settings.
5850 			 */
5851 			ath_mode_init(sc);
5852 		} else if (ifp->if_flags & IFF_UP) {
5853 			/*
5854 			 * Beware of being called during attach/detach
5855 			 * to reset promiscuous mode.  In that case we
5856 			 * will still be marked UP but not RUNNING.
5857 			 * However trying to re-init the interface
5858 			 * is the wrong thing to do as we've already
5859 			 * torn down much of our state.  There's
5860 			 * probably a better way to deal with this.
5861 			 */
5862 			if (!sc->sc_invalid && ic->ic_bss != NULL)
5863 				ath_init(sc);	/* XXX lose error */
5864 		} else
5865 			ath_stop_locked(ifp);
5866 		break;
5867 	case SIOCADDMULTI:
5868 	case SIOCDELMULTI:
5869 		/*
5870 		 * The upper layer has already installed/removed
5871 		 * the multicast address(es), just recalculate the
5872 		 * multicast filter for the card.
5873 		 */
5874 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5875 			ath_mode_init(sc);
5876 		break;
5877 	case SIOCGATHSTATS:
5878 		/* NB: embed these numbers to get a consistent view */
5879 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5880 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5881 		ieee80211_getsignal(ic, &sc->sc_stats.ast_rx_rssi,
5882 			&sc->sc_stats.ast_rx_noise);
5883 		sc->sc_stats.ast_tx_rate = sc->sc_hwmap[sc->sc_txrate].ieeerate;
5884 		ATH_UNLOCK(sc);
5885 		/*
5886 		 * NB: Drop the softc lock in case of a page fault;
5887 		 * we'll accept any potential inconsisentcy in the
5888 		 * statistics.  The alternative is to copy the data
5889 		 * to a local structure.
5890 		 */
5891 		return copyout(&sc->sc_stats,
5892 				ifr->ifr_data, sizeof (sc->sc_stats));
5893 #ifdef ATH_DIAGAPI
5894 	case SIOCGATHDIAG:
5895 		ATH_UNLOCK(sc);
5896 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5897 		ATH_LOCK(sc);
5898 		break;
5899 #endif
5900 	default:
5901 		error = ieee80211_ioctl(ic, cmd, data);
5902 		if (error == ENETRESET) {
5903 			if (IS_RUNNING(ifp) &&
5904 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5905 				ath_init(sc);	/* XXX lose error */
5906 			error = 0;
5907 		}
5908 		if (error == ERESTART)
5909 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5910 		break;
5911 	}
5912 	ATH_UNLOCK(sc);
5913 	return error;
5914 #undef IS_RUNNING
5915 }
5916 
5917 static int
5918 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
5919 {
5920 	struct ath_softc *sc = arg1;
5921 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
5922 	int error;
5923 
5924 	error = sysctl_handle_int(oidp, &slottime, 0, req);
5925 	if (error || !req->newptr)
5926 		return error;
5927 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
5928 }
5929 
5930 static int
5931 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
5932 {
5933 	struct ath_softc *sc = arg1;
5934 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
5935 	int error;
5936 
5937 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
5938 	if (error || !req->newptr)
5939 		return error;
5940 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
5941 }
5942 
5943 static int
5944 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
5945 {
5946 	struct ath_softc *sc = arg1;
5947 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
5948 	int error;
5949 
5950 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
5951 	if (error || !req->newptr)
5952 		return error;
5953 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
5954 }
5955 
5956 static int
5957 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
5958 {
5959 	struct ath_softc *sc = arg1;
5960 	int softled = sc->sc_softled;
5961 	int error;
5962 
5963 	error = sysctl_handle_int(oidp, &softled, 0, req);
5964 	if (error || !req->newptr)
5965 		return error;
5966 	softled = (softled != 0);
5967 	if (softled != sc->sc_softled) {
5968 		if (softled) {
5969 			/* NB: handle any sc_ledpin change */
5970 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
5971 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
5972 				!sc->sc_ledon);
5973 		}
5974 		sc->sc_softled = softled;
5975 	}
5976 	return 0;
5977 }
5978 
5979 static int
5980 ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
5981 {
5982 	struct ath_softc *sc = arg1;
5983 	int ledpin = sc->sc_ledpin;
5984 	int error;
5985 
5986 	error = sysctl_handle_int(oidp, &ledpin, 0, req);
5987 	if (error || !req->newptr)
5988 		return error;
5989 	if (ledpin != sc->sc_ledpin) {
5990 		sc->sc_ledpin = ledpin;
5991 		if (sc->sc_softled) {
5992 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
5993 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
5994 				!sc->sc_ledon);
5995 		}
5996 	}
5997 	return 0;
5998 }
5999 
6000 static int
6001 ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
6002 {
6003 	struct ath_softc *sc = arg1;
6004 	u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah);
6005 	int error;
6006 
6007 	error = sysctl_handle_int(oidp, &txantenna, 0, req);
6008 	if (!error && req->newptr) {
6009 		/* XXX assumes 2 antenna ports */
6010 		if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B)
6011 			return EINVAL;
6012 		ath_hal_setantennaswitch(sc->sc_ah, txantenna);
6013 		/*
6014 		 * NB: with the switch locked this isn't meaningful,
6015 		 *     but set it anyway so things like radiotap get
6016 		 *     consistent info in their data.
6017 		 */
6018 		sc->sc_txantenna = txantenna;
6019 	}
6020 	return error;
6021 }
6022 
6023 static int
6024 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
6025 {
6026 	struct ath_softc *sc = arg1;
6027 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
6028 	int error;
6029 
6030 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
6031 	if (!error && req->newptr)
6032 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
6033 	return error;
6034 }
6035 
6036 static int
6037 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
6038 {
6039 	struct ath_softc *sc = arg1;
6040 	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
6041 	int error;
6042 
6043 	error = sysctl_handle_int(oidp, &diversity, 0, req);
6044 	if (error || !req->newptr)
6045 		return error;
6046 	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
6047 		return EINVAL;
6048 	sc->sc_diversity = diversity;
6049 	return 0;
6050 }
6051 
6052 static int
6053 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
6054 {
6055 	struct ath_softc *sc = arg1;
6056 	u_int32_t diag;
6057 	int error;
6058 
6059 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
6060 		return EINVAL;
6061 	error = sysctl_handle_int(oidp, &diag, 0, req);
6062 	if (error || !req->newptr)
6063 		return error;
6064 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
6065 }
6066 
6067 static int
6068 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
6069 {
6070 	struct ath_softc *sc = arg1;
6071 	struct ifnet *ifp = sc->sc_ifp;
6072 	u_int32_t scale;
6073 	int error;
6074 
6075 	(void) ath_hal_gettpscale(sc->sc_ah, &scale);
6076 	error = sysctl_handle_int(oidp, &scale, 0, req);
6077 	if (error || !req->newptr)
6078 		return error;
6079 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL :
6080 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6081 }
6082 
6083 static int
6084 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
6085 {
6086 	struct ath_softc *sc = arg1;
6087 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
6088 	int error;
6089 
6090 	error = sysctl_handle_int(oidp, &tpc, 0, req);
6091 	if (error || !req->newptr)
6092 		return error;
6093 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
6094 }
6095 
6096 static int
6097 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
6098 {
6099 	struct ath_softc *sc = arg1;
6100 	struct ifnet *ifp = sc->sc_ifp;
6101 	struct ath_hal *ah = sc->sc_ah;
6102 	u_int rfkill = ath_hal_getrfkill(ah);
6103 	int error;
6104 
6105 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
6106 	if (error || !req->newptr)
6107 		return error;
6108 	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
6109 		return 0;
6110 	if (!ath_hal_setrfkill(ah, rfkill))
6111 		return EINVAL;
6112 	return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6113 }
6114 
6115 static int
6116 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
6117 {
6118 	struct ath_softc *sc = arg1;
6119 	u_int rfsilent;
6120 	int error;
6121 
6122 	(void) ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
6123 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
6124 	if (error || !req->newptr)
6125 		return error;
6126 	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
6127 		return EINVAL;
6128 	sc->sc_rfsilentpin = rfsilent & 0x1c;
6129 	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
6130 	return 0;
6131 }
6132 
6133 static int
6134 ath_sysctl_countrycode(SYSCTL_HANDLER_ARGS)
6135 {
6136 	struct ath_softc *sc = arg1;
6137 	u_int32_t cc = sc->sc_countrycode;
6138 	struct ieee80211com *ic = &sc->sc_ic;
6139 	int error;
6140 
6141 	error = sysctl_handle_int(oidp, &cc, 0, req);
6142 	if (error || !req->newptr)
6143 		return error;
6144 	error = ath_getchannels(sc, sc->sc_regdomain, cc,
6145 			sc->sc_outdoor != 0, sc->sc_xchanmode != 0);
6146 	if (error != 0)
6147 		return error;
6148 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
6149 	/* setcurmode? */
6150 	return 0;
6151 }
6152 
6153 static int
6154 ath_sysctl_regdomain(SYSCTL_HANDLER_ARGS)
6155 {
6156 	struct ath_softc *sc = arg1;
6157 	u_int32_t rd = sc->sc_regdomain;
6158 	struct ieee80211com *ic = &sc->sc_ic;
6159 	int error;
6160 
6161 	error = sysctl_handle_int(oidp, &rd, 0, req);
6162 	if (error || !req->newptr)
6163 		return error;
6164 	if (!ath_hal_setregdomain(sc->sc_ah, rd))
6165 		return EINVAL;
6166 	error = ath_getchannels(sc, rd, sc->sc_countrycode,
6167 			sc->sc_outdoor != 0, sc->sc_xchanmode != 0);
6168 	if (error != 0)
6169 		return error;
6170 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
6171 	/* setcurmode? */
6172 	return 0;
6173 }
6174 
6175 static int
6176 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
6177 {
6178 	struct ath_softc *sc = arg1;
6179 	u_int32_t tpack;
6180 	int error;
6181 
6182 	(void) ath_hal_gettpack(sc->sc_ah, &tpack);
6183 	error = sysctl_handle_int(oidp, &tpack, 0, req);
6184 	if (error || !req->newptr)
6185 		return error;
6186 	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
6187 }
6188 
6189 static int
6190 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
6191 {
6192 	struct ath_softc *sc = arg1;
6193 	u_int32_t tpcts;
6194 	int error;
6195 
6196 	(void) ath_hal_gettpcts(sc->sc_ah, &tpcts);
6197 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
6198 	if (error || !req->newptr)
6199 		return error;
6200 	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
6201 }
6202 
6203 static void
6204 ath_sysctlattach(struct ath_softc *sc)
6205 {
6206 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
6207 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
6208 	struct ath_hal *ah = sc->sc_ah;
6209 
6210 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6211 		"countrycode", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6212 		ath_sysctl_countrycode, "I", "country code");
6213 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6214 		"regdomain", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6215 		ath_sysctl_regdomain, "I", "EEPROM regdomain code");
6216 #ifdef	ATH_DEBUG
6217 	sc->sc_debug = ath_debug;
6218 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6219 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
6220 		"control debugging printfs");
6221 #endif
6222 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6223 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6224 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
6225 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6226 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6227 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
6228 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6229 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6230 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
6231 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6232 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6233 		ath_sysctl_softled, "I", "enable/disable software LED support");
6234 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6235 		"ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6236 		ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
6237 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6238 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
6239 		"setting to turn LED on");
6240 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6241 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
6242 		"idle time for inactivity LED (ticks)");
6243 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6244 		"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6245 		ath_sysctl_txantenna, "I", "antenna switch");
6246 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6247 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6248 		ath_sysctl_rxantenna, "I", "default/rx antenna");
6249 	if (ath_hal_hasdiversity(ah))
6250 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6251 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6252 			ath_sysctl_diversity, "I", "antenna diversity");
6253 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
6254 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6255 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
6256 		"tx descriptor batching");
6257 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6258 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6259 		ath_sysctl_diag, "I", "h/w diagnostic control");
6260 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6261 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6262 		ath_sysctl_tpscale, "I", "tx power scaling");
6263 	if (ath_hal_hastpc(ah)) {
6264 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6265 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6266 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
6267 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6268 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6269 			ath_sysctl_tpack, "I", "tx power for ack frames");
6270 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6271 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6272 			ath_sysctl_tpcts, "I", "tx power for cts frames");
6273 	}
6274 	if (ath_hal_hasfastframes(sc->sc_ah)) {
6275 		sc->sc_fftxqmin = ATH_FF_TXQMIN;
6276 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6277 			"fftxqmin", CTLFLAG_RW, &sc->sc_fftxqmin, 0,
6278 			"min frames before fast-frame staging");
6279 		sc->sc_fftxqmax = ATH_FF_TXQMAX;
6280 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6281 			"fftxqmax", CTLFLAG_RW, &sc->sc_fftxqmax, 0,
6282 			"max queued frames before tail drop");
6283 	}
6284 	if (ath_hal_hasrfsilent(ah)) {
6285 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6286 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6287 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
6288 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6289 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6290 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
6291 	}
6292 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
6293 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6294 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
6295 		"mask of error frames to pass when monitoring");
6296 }
6297 
6298 static void
6299 ath_bpfattach(struct ath_softc *sc)
6300 {
6301 	struct ifnet *ifp = sc->sc_ifp;
6302 
6303 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
6304 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
6305 		&sc->sc_drvbpf);
6306 	/*
6307 	 * Initialize constant fields.
6308 	 * XXX make header lengths a multiple of 32-bits so subsequent
6309 	 *     headers are properly aligned; this is a kludge to keep
6310 	 *     certain applications happy.
6311 	 *
6312 	 * NB: the channel is setup each time we transition to the
6313 	 *     RUN state to avoid filling it in for each frame.
6314 	 */
6315 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
6316 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
6317 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
6318 
6319 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
6320 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
6321 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
6322 }
6323 
6324 static int
6325 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
6326 	struct ath_buf *bf, struct mbuf *m0,
6327 	const struct ieee80211_bpf_params *params)
6328 {
6329 	struct ieee80211com *ic = &sc->sc_ic;
6330 	struct ath_hal *ah = sc->sc_ah;
6331 	int error, ismcast, ismrr;
6332 	int hdrlen, pktlen, try0, txantenna;
6333 	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
6334 	struct ath_txq *txq;
6335 	struct ieee80211_frame *wh;
6336 	u_int flags, ctsduration;
6337 	HAL_PKT_TYPE atype;
6338 	const HAL_RATE_TABLE *rt;
6339 	struct ath_desc *ds;
6340 	u_int pri;
6341 
6342 	wh = mtod(m0, struct ieee80211_frame *);
6343 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
6344 	hdrlen = ieee80211_anyhdrsize(wh);
6345 	/*
6346 	 * Packet length must not include any
6347 	 * pad bytes; deduct them here.
6348 	 */
6349 	/* XXX honor IEEE80211_BPF_DATAPAD */
6350 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
6351 
6352 	error = ath_tx_dmasetup(sc, bf, m0);
6353 	if (error != 0)
6354 		return error;
6355 	m0 = bf->bf_m;				/* NB: may have changed */
6356 	wh = mtod(m0, struct ieee80211_frame *);
6357 	bf->bf_node = ni;			/* NB: held reference */
6358 
6359 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
6360 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
6361 	if (params->ibp_flags & IEEE80211_BPF_RTS)
6362 		flags |= HAL_TXDESC_RTSENA;
6363 	else if (params->ibp_flags & IEEE80211_BPF_CTS)
6364 		flags |= HAL_TXDESC_CTSENA;
6365 	/* XXX leave ismcast to injector? */
6366 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
6367 		flags |= HAL_TXDESC_NOACK;
6368 
6369 	rt = sc->sc_currates;
6370 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
6371 	rix = ath_tx_findrix(rt, params->ibp_rate0);
6372 	txrate = rt->info[rix].rateCode;
6373 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6374 		txrate |= rt->info[rix].shortPreamble;
6375 	sc->sc_txrate = txrate;
6376 	try0 = params->ibp_try0;
6377 	ismrr = (params->ibp_try1 != 0);
6378 	txantenna = params->ibp_pri >> 2;
6379 	if (txantenna == 0)			/* XXX? */
6380 		txantenna = sc->sc_txantenna;
6381 	ctsduration = 0;
6382 	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
6383 		cix = ath_tx_findrix(rt, params->ibp_ctsrate);
6384 		ctsrate = rt->info[cix].rateCode;
6385 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
6386 			ctsrate |= rt->info[cix].shortPreamble;
6387 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6388 				ctsduration += rt->info[cix].spAckDuration;
6389 			ctsduration += ath_hal_computetxtime(ah,
6390 				rt, pktlen, rix, AH_TRUE);
6391 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6392 				ctsduration += rt->info[rix].spAckDuration;
6393 		} else {
6394 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6395 				ctsduration += rt->info[cix].lpAckDuration;
6396 			ctsduration += ath_hal_computetxtime(ah,
6397 				rt, pktlen, rix, AH_FALSE);
6398 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6399 				ctsduration += rt->info[rix].lpAckDuration;
6400 		}
6401 		ismrr = 0;			/* XXX */
6402 	} else
6403 		ctsrate = 0;
6404 	pri = params->ibp_pri & 3;
6405 	/*
6406 	 * NB: we mark all packets as type PSPOLL so the h/w won't
6407 	 * set the sequence number, duration, etc.
6408 	 */
6409 	atype = HAL_PKT_TYPE_PSPOLL;
6410 
6411 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
6412 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
6413 			sc->sc_hwmap[txrate].ieeerate, -1);
6414 
6415 	if (bpf_peers_present(ic->ic_rawbpf))
6416 		bpf_mtap(ic->ic_rawbpf, m0);
6417 	if (bpf_peers_present(sc->sc_drvbpf)) {
6418 		u_int64_t tsf = ath_hal_gettsf64(ah);
6419 
6420 		sc->sc_tx_th.wt_tsf = htole64(tsf);
6421 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
6422 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
6423 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
6424 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
6425 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
6426 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
6427 
6428 		bpf_mtap2(sc->sc_drvbpf,
6429 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
6430 	}
6431 
6432 	/*
6433 	 * Formulate first tx descriptor with tx controls.
6434 	 */
6435 	ds = bf->bf_desc;
6436 	/* XXX check return value? */
6437 	ath_hal_setuptxdesc(ah, ds
6438 		, pktlen		/* packet length */
6439 		, hdrlen		/* header length */
6440 		, atype			/* Atheros packet type */
6441 		, params->ibp_power	/* txpower */
6442 		, txrate, try0		/* series 0 rate/tries */
6443 		, HAL_TXKEYIX_INVALID	/* key cache index */
6444 		, txantenna		/* antenna mode */
6445 		, flags			/* flags */
6446 		, ctsrate		/* rts/cts rate */
6447 		, ctsduration		/* rts/cts duration */
6448 	);
6449 	bf->bf_flags = flags;
6450 
6451 	if (ismrr) {
6452 		rix = ath_tx_findrix(rt, params->ibp_rate1);
6453 		rate1 = rt->info[rix].rateCode;
6454 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6455 			rate1 |= rt->info[rix].shortPreamble;
6456 		if (params->ibp_try2) {
6457 			rix = ath_tx_findrix(rt, params->ibp_rate2);
6458 			rate2 = rt->info[rix].rateCode;
6459 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6460 				rate2 |= rt->info[rix].shortPreamble;
6461 		} else
6462 			rate2 = 0;
6463 		if (params->ibp_try3) {
6464 			rix = ath_tx_findrix(rt, params->ibp_rate3);
6465 			rate3 = rt->info[rix].rateCode;
6466 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6467 				rate3 |= rt->info[rix].shortPreamble;
6468 		} else
6469 			rate3 = 0;
6470 		ath_hal_setupxtxdesc(ah, ds
6471 			, rate1, params->ibp_try1	/* series 1 */
6472 			, rate2, params->ibp_try2	/* series 2 */
6473 			, rate3, params->ibp_try3	/* series 3 */
6474 		);
6475 	}
6476 
6477 	/*
6478 	 * When servicing one or more stations in power-save mode
6479 	 * (or) if there is some mcast data waiting on the mcast
6480 	 * queue (to prevent out of order delivery) multicast
6481 	 * frames must be buffered until after the beacon.
6482 	 */
6483 	txq = sc->sc_ac2q[pri];
6484 	if (ismcast && (ic->ic_ps_sta || sc->sc_mcastq.axq_depth))
6485 		txq = &sc->sc_mcastq;
6486 	ath_tx_handoff(sc, txq, bf);
6487 	return 0;
6488 }
6489 
6490 static int
6491 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
6492 	const struct ieee80211_bpf_params *params)
6493 {
6494 	struct ieee80211com *ic = ni->ni_ic;
6495 	struct ifnet *ifp = ic->ic_ifp;
6496 	struct ath_softc *sc = ifp->if_softc;
6497 	struct ath_buf *bf;
6498 
6499 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
6500 		ieee80211_free_node(ni);
6501 		m_freem(m);
6502 		return ENETDOWN;
6503 	}
6504 	/*
6505 	 * Grab a TX buffer and associated resources.
6506 	 */
6507 	ATH_TXBUF_LOCK(sc);
6508 	bf = STAILQ_FIRST(&sc->sc_txbuf);
6509 	if (bf != NULL)
6510 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
6511 	ATH_TXBUF_UNLOCK(sc);
6512 	if (bf == NULL) {
6513 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
6514 			__func__);
6515 		sc->sc_stats.ast_tx_qstop++;
6516 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
6517 		ieee80211_free_node(ni);
6518 		m_freem(m);
6519 		return ENOBUFS;
6520 	}
6521 
6522 	ifp->if_opackets++;
6523 	sc->sc_stats.ast_tx_raw++;
6524 
6525 	if (params == NULL) {
6526 		/*
6527 		 * Legacy path; interpret frame contents to decide
6528 		 * precisely how to send the frame.
6529 		 */
6530 		if (ath_tx_start(sc, ni, bf, m))
6531 			goto bad;
6532 	} else {
6533 		/*
6534 		 * Caller supplied explicit parameters to use in
6535 		 * sending the frame.
6536 		 */
6537 		if (ath_tx_raw_start(sc, ni, bf, m, params))
6538 			goto bad;
6539 	}
6540 	ifp->if_timer = 5;
6541 
6542 	return 0;
6543 bad:
6544 	ifp->if_oerrors++;
6545 	ATH_TXBUF_LOCK(sc);
6546 	STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
6547 	ATH_TXBUF_UNLOCK(sc);
6548 	ieee80211_free_node(ni);
6549 	return EIO;		/* XXX */
6550 }
6551 
6552 /*
6553  * Announce various information on device/driver attach.
6554  */
6555 static void
6556 ath_announce(struct ath_softc *sc)
6557 {
6558 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
6559 	struct ifnet *ifp = sc->sc_ifp;
6560 	struct ath_hal *ah = sc->sc_ah;
6561 	u_int modes, cc;
6562 
6563 	if_printf(ifp, "mac %d.%d phy %d.%d",
6564 		ah->ah_macVersion, ah->ah_macRev,
6565 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6566 	/*
6567 	 * Print radio revision(s).  We check the wireless modes
6568 	 * to avoid falsely printing revs for inoperable parts.
6569 	 * Dual-band radio revs are returned in the 5Ghz rev number.
6570 	 */
6571 	ath_hal_getcountrycode(ah, &cc);
6572 	modes = ath_hal_getwirelessmodes(ah, cc);
6573 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
6574 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
6575 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
6576 				ah->ah_analog5GhzRev >> 4,
6577 				ah->ah_analog5GhzRev & 0xf,
6578 				ah->ah_analog2GhzRev >> 4,
6579 				ah->ah_analog2GhzRev & 0xf);
6580 		else
6581 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
6582 				ah->ah_analog5GhzRev & 0xf);
6583 	} else
6584 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
6585 			ah->ah_analog5GhzRev & 0xf);
6586 	printf("\n");
6587 	if (bootverbose) {
6588 		int i;
6589 		for (i = 0; i <= WME_AC_VO; i++) {
6590 			struct ath_txq *txq = sc->sc_ac2q[i];
6591 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6592 				txq->axq_qnum, ieee80211_wme_acnames[i]);
6593 		}
6594 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6595 			sc->sc_cabq->axq_qnum);
6596 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6597 	}
6598 	if (ath_rxbuf != ATH_RXBUF)
6599 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6600 	if (ath_txbuf != ATH_TXBUF)
6601 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6602 #undef HAL_MODE_DUALBAND
6603 }
6604