xref: /freebsd/sys/dev/ath/if_ath.c (revision 2710751bc309af25c6dea1171781678258e83840)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_llc.h>
82 
83 #include <net80211/ieee80211_var.h>
84 #include <net80211/ieee80211_regdomain.h>
85 #ifdef IEEE80211_SUPPORT_SUPERG
86 #include <net80211/ieee80211_superg.h>
87 #endif
88 #ifdef IEEE80211_SUPPORT_TDMA
89 #include <net80211/ieee80211_tdma.h>
90 #endif
91 
92 #include <net/bpf.h>
93 
94 #ifdef INET
95 #include <netinet/in.h>
96 #include <netinet/if_ether.h>
97 #endif
98 
99 #include <dev/ath/if_athvar.h>
100 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101 #include <dev/ath/ath_hal/ah_diagcodes.h>
102 
103 #include <dev/ath/if_ath_debug.h>
104 #include <dev/ath/if_ath_misc.h>
105 #include <dev/ath/if_ath_tsf.h>
106 #include <dev/ath/if_ath_tx.h>
107 #include <dev/ath/if_ath_sysctl.h>
108 #include <dev/ath/if_ath_led.h>
109 #include <dev/ath/if_ath_keycache.h>
110 #include <dev/ath/if_ath_rx.h>
111 #include <dev/ath/if_ath_rx_edma.h>
112 #include <dev/ath/if_ath_tx_edma.h>
113 #include <dev/ath/if_ath_beacon.h>
114 #include <dev/ath/if_ath_spectral.h>
115 #include <dev/ath/if_athdfs.h>
116 
117 #ifdef ATH_TX99_DIAG
118 #include <dev/ath/ath_tx99/ath_tx99.h>
119 #endif
120 
121 #ifdef	ATH_DEBUG_ALQ
122 #include <dev/ath/if_ath_alq.h>
123 #endif
124 
125 /*
126  * Only enable this if you're working on PS-POLL support.
127  */
128 #undef	ATH_SW_PSQ
129 
130 /*
131  * ATH_BCBUF determines the number of vap's that can transmit
132  * beacons and also (currently) the number of vap's that can
133  * have unique mac addresses/bssid.  When staggering beacons
134  * 4 is probably a good max as otherwise the beacons become
135  * very closely spaced and there is limited time for cab q traffic
136  * to go out.  You can burst beacons instead but that is not good
137  * for stations in power save and at some point you really want
138  * another radio (and channel).
139  *
140  * The limit on the number of mac addresses is tied to our use of
141  * the U/L bit and tracking addresses in a byte; it would be
142  * worthwhile to allow more for applications like proxy sta.
143  */
144 CTASSERT(ATH_BCBUF <= 8);
145 
146 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
147 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
148 		    const uint8_t [IEEE80211_ADDR_LEN],
149 		    const uint8_t [IEEE80211_ADDR_LEN]);
150 static void	ath_vap_delete(struct ieee80211vap *);
151 static void	ath_init(void *);
152 static void	ath_stop_locked(struct ifnet *);
153 static void	ath_stop(struct ifnet *);
154 static int	ath_reset_vap(struct ieee80211vap *, u_long);
155 static void	ath_start_queue(struct ifnet *ifp);
156 static int	ath_media_change(struct ifnet *);
157 static void	ath_watchdog(void *);
158 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
159 static void	ath_fatal_proc(void *, int);
160 static void	ath_bmiss_vap(struct ieee80211vap *);
161 static void	ath_bmiss_proc(void *, int);
162 static void	ath_key_update_begin(struct ieee80211vap *);
163 static void	ath_key_update_end(struct ieee80211vap *);
164 static void	ath_update_mcast(struct ifnet *);
165 static void	ath_update_promisc(struct ifnet *);
166 static void	ath_updateslot(struct ifnet *);
167 static void	ath_bstuck_proc(void *, int);
168 static void	ath_reset_proc(void *, int);
169 static int	ath_desc_alloc(struct ath_softc *);
170 static void	ath_desc_free(struct ath_softc *);
171 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
172 			const uint8_t [IEEE80211_ADDR_LEN]);
173 static void	ath_node_cleanup(struct ieee80211_node *);
174 static void	ath_node_free(struct ieee80211_node *);
175 static void	ath_node_getsignal(const struct ieee80211_node *,
176 			int8_t *, int8_t *);
177 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
178 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
179 static int	ath_tx_setup(struct ath_softc *, int, int);
180 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
181 static void	ath_tx_cleanup(struct ath_softc *);
182 static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
183 		    int dosched);
184 static void	ath_tx_proc_q0(void *, int);
185 static void	ath_tx_proc_q0123(void *, int);
186 static void	ath_tx_proc(void *, int);
187 static void	ath_txq_sched_tasklet(void *, int);
188 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
189 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
190 static void	ath_scan_start(struct ieee80211com *);
191 static void	ath_scan_end(struct ieee80211com *);
192 static void	ath_set_channel(struct ieee80211com *);
193 #ifdef	ATH_ENABLE_11N
194 static void	ath_update_chw(struct ieee80211com *);
195 #endif	/* ATH_ENABLE_11N */
196 static void	ath_calibrate(void *);
197 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198 static void	ath_setup_stationkey(struct ieee80211_node *);
199 static void	ath_newassoc(struct ieee80211_node *, int);
200 static int	ath_setregdomain(struct ieee80211com *,
201 		    struct ieee80211_regdomain *, int,
202 		    struct ieee80211_channel []);
203 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
204 		    struct ieee80211_channel []);
205 static int	ath_getchannels(struct ath_softc *);
206 
207 static int	ath_rate_setup(struct ath_softc *, u_int mode);
208 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
209 
210 static void	ath_announce(struct ath_softc *);
211 
212 static void	ath_dfs_tasklet(void *, int);
213 static void	ath_node_powersave(struct ieee80211_node *, int);
214 static int	ath_node_set_tim(struct ieee80211_node *, int);
215 
216 #ifdef IEEE80211_SUPPORT_TDMA
217 #include <dev/ath/if_ath_tdma.h>
218 #endif
219 
220 SYSCTL_DECL(_hw_ath);
221 
222 /* XXX validate sysctl values */
223 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
224 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
225 	    0, "long chip calibration interval (secs)");
226 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
227 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
228 	    0, "short chip calibration interval (msecs)");
229 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
230 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
231 	    0, "reset chip calibration results (secs)");
232 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
233 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
234 	    0, "ANI calibration (msecs)");
235 
236 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
237 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
238 	    0, "rx buffers allocated");
239 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
240 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
241 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
242 	    0, "tx buffers allocated");
243 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
244 int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
245 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
246 	    0, "tx (mgmt) buffers allocated");
247 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
248 
249 int ath_bstuck_threshold = 4;		/* max missed beacons */
250 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
251 	    0, "max missed beacon xmits before chip reset");
252 
253 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
254 
255 void
256 ath_legacy_attach_comp_func(struct ath_softc *sc)
257 {
258 
259 	/*
260 	 * Special case certain configurations.  Note the
261 	 * CAB queue is handled by these specially so don't
262 	 * include them when checking the txq setup mask.
263 	 */
264 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
265 	case 0x01:
266 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
267 		break;
268 	case 0x0f:
269 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
270 		break;
271 	default:
272 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
273 		break;
274 	}
275 }
276 
277 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
278 #define	HAL_MODE_HT40 \
279 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
280 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
281 int
282 ath_attach(u_int16_t devid, struct ath_softc *sc)
283 {
284 	struct ifnet *ifp;
285 	struct ieee80211com *ic;
286 	struct ath_hal *ah = NULL;
287 	HAL_STATUS status;
288 	int error = 0, i;
289 	u_int wmodes;
290 	uint8_t macaddr[IEEE80211_ADDR_LEN];
291 	int rx_chainmask, tx_chainmask;
292 
293 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
294 
295 	CURVNET_SET(vnet0);
296 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
297 	if (ifp == NULL) {
298 		device_printf(sc->sc_dev, "can not if_alloc()\n");
299 		error = ENOSPC;
300 		CURVNET_RESTORE();
301 		goto bad;
302 	}
303 	ic = ifp->if_l2com;
304 
305 	/* set these up early for if_printf use */
306 	if_initname(ifp, device_get_name(sc->sc_dev),
307 		device_get_unit(sc->sc_dev));
308 	CURVNET_RESTORE();
309 
310 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
311 	    sc->sc_eepromdata, &status);
312 	if (ah == NULL) {
313 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
314 			status);
315 		error = ENXIO;
316 		goto bad;
317 	}
318 	sc->sc_ah = ah;
319 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
320 #ifdef	ATH_DEBUG
321 	sc->sc_debug = ath_debug;
322 #endif
323 
324 	/*
325 	 * Setup the DMA/EDMA functions based on the current
326 	 * hardware support.
327 	 *
328 	 * This is required before the descriptors are allocated.
329 	 */
330 	if (ath_hal_hasedma(sc->sc_ah)) {
331 		sc->sc_isedma = 1;
332 		ath_recv_setup_edma(sc);
333 		ath_xmit_setup_edma(sc);
334 	} else {
335 		ath_recv_setup_legacy(sc);
336 		ath_xmit_setup_legacy(sc);
337 	}
338 
339 	/*
340 	 * Check if the MAC has multi-rate retry support.
341 	 * We do this by trying to setup a fake extended
342 	 * descriptor.  MAC's that don't have support will
343 	 * return false w/o doing anything.  MAC's that do
344 	 * support it will return true w/o doing anything.
345 	 */
346 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
347 
348 	/*
349 	 * Check if the device has hardware counters for PHY
350 	 * errors.  If so we need to enable the MIB interrupt
351 	 * so we can act on stat triggers.
352 	 */
353 	if (ath_hal_hwphycounters(ah))
354 		sc->sc_needmib = 1;
355 
356 	/*
357 	 * Get the hardware key cache size.
358 	 */
359 	sc->sc_keymax = ath_hal_keycachesize(ah);
360 	if (sc->sc_keymax > ATH_KEYMAX) {
361 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
362 			ATH_KEYMAX, sc->sc_keymax);
363 		sc->sc_keymax = ATH_KEYMAX;
364 	}
365 	/*
366 	 * Reset the key cache since some parts do not
367 	 * reset the contents on initial power up.
368 	 */
369 	for (i = 0; i < sc->sc_keymax; i++)
370 		ath_hal_keyreset(ah, i);
371 
372 	/*
373 	 * Collect the default channel list.
374 	 */
375 	error = ath_getchannels(sc);
376 	if (error != 0)
377 		goto bad;
378 
379 	/*
380 	 * Setup rate tables for all potential media types.
381 	 */
382 	ath_rate_setup(sc, IEEE80211_MODE_11A);
383 	ath_rate_setup(sc, IEEE80211_MODE_11B);
384 	ath_rate_setup(sc, IEEE80211_MODE_11G);
385 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
386 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
387 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
388 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
389 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
390 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
391 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
392 
393 	/* NB: setup here so ath_rate_update is happy */
394 	ath_setcurmode(sc, IEEE80211_MODE_11A);
395 
396 	/*
397 	 * Allocate TX descriptors and populate the lists.
398 	 */
399 	error = ath_desc_alloc(sc);
400 	if (error != 0) {
401 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
402 		    error);
403 		goto bad;
404 	}
405 	error = ath_txdma_setup(sc);
406 	if (error != 0) {
407 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
408 		    error);
409 		goto bad;
410 	}
411 
412 	/*
413 	 * Allocate RX descriptors and populate the lists.
414 	 */
415 	error = ath_rxdma_setup(sc);
416 	if (error != 0) {
417 		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
418 		    error);
419 		goto bad;
420 	}
421 
422 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
423 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
424 
425 	ATH_TXBUF_LOCK_INIT(sc);
426 
427 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
428 		taskqueue_thread_enqueue, &sc->sc_tq);
429 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
430 		"%s taskq", ifp->if_xname);
431 
432 	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
433 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
434 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
435 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
436 	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
437 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
438 
439 	/* XXX make this a higher priority taskqueue? */
440 	TASK_INIT(&sc->sc_txpkttask, 0, ath_start_task, sc);
441 
442 	/*
443 	 * Allocate hardware transmit queues: one queue for
444 	 * beacon frames and one data queue for each QoS
445 	 * priority.  Note that the hal handles resetting
446 	 * these queues at the needed time.
447 	 *
448 	 * XXX PS-Poll
449 	 */
450 	sc->sc_bhalq = ath_beaconq_setup(sc);
451 	if (sc->sc_bhalq == (u_int) -1) {
452 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
453 		error = EIO;
454 		goto bad2;
455 	}
456 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
457 	if (sc->sc_cabq == NULL) {
458 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
459 		error = EIO;
460 		goto bad2;
461 	}
462 	/* NB: insure BK queue is the lowest priority h/w queue */
463 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
464 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
465 			ieee80211_wme_acnames[WME_AC_BK]);
466 		error = EIO;
467 		goto bad2;
468 	}
469 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
470 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
471 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
472 		/*
473 		 * Not enough hardware tx queues to properly do WME;
474 		 * just punt and assign them all to the same h/w queue.
475 		 * We could do a better job of this if, for example,
476 		 * we allocate queues when we switch from station to
477 		 * AP mode.
478 		 */
479 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
480 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
481 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
482 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
483 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
484 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
485 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
486 	}
487 
488 	/*
489 	 * Attach the TX completion function.
490 	 *
491 	 * The non-EDMA chips may have some special case optimisations;
492 	 * this method gives everyone a chance to attach cleanly.
493 	 */
494 	sc->sc_tx.xmit_attach_comp_func(sc);
495 
496 	/*
497 	 * Setup rate control.  Some rate control modules
498 	 * call back to change the anntena state so expose
499 	 * the necessary entry points.
500 	 * XXX maybe belongs in struct ath_ratectrl?
501 	 */
502 	sc->sc_setdefantenna = ath_setdefantenna;
503 	sc->sc_rc = ath_rate_attach(sc);
504 	if (sc->sc_rc == NULL) {
505 		error = EIO;
506 		goto bad2;
507 	}
508 
509 	/* Attach DFS module */
510 	if (! ath_dfs_attach(sc)) {
511 		device_printf(sc->sc_dev,
512 		    "%s: unable to attach DFS\n", __func__);
513 		error = EIO;
514 		goto bad2;
515 	}
516 
517 	/* Attach spectral module */
518 	if (ath_spectral_attach(sc) < 0) {
519 		device_printf(sc->sc_dev,
520 		    "%s: unable to attach spectral\n", __func__);
521 		error = EIO;
522 		goto bad2;
523 	}
524 
525 	/* Start DFS processing tasklet */
526 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
527 
528 	/* Configure LED state */
529 	sc->sc_blinking = 0;
530 	sc->sc_ledstate = 1;
531 	sc->sc_ledon = 0;			/* low true */
532 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
533 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
534 
535 	/*
536 	 * Don't setup hardware-based blinking.
537 	 *
538 	 * Although some NICs may have this configured in the
539 	 * default reset register values, the user may wish
540 	 * to alter which pins have which function.
541 	 *
542 	 * The reference driver attaches the MAC network LED to GPIO1 and
543 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
544 	 * NIC has these reversed.
545 	 */
546 	sc->sc_hardled = (1 == 0);
547 	sc->sc_led_net_pin = -1;
548 	sc->sc_led_pwr_pin = -1;
549 	/*
550 	 * Auto-enable soft led processing for IBM cards and for
551 	 * 5211 minipci cards.  Users can also manually enable/disable
552 	 * support with a sysctl.
553 	 */
554 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
555 	ath_led_config(sc);
556 	ath_hal_setledstate(ah, HAL_LED_INIT);
557 
558 	ifp->if_softc = sc;
559 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
560 	ifp->if_start = ath_start_queue;
561 	ifp->if_ioctl = ath_ioctl;
562 	ifp->if_init = ath_init;
563 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
564 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
565 	IFQ_SET_READY(&ifp->if_snd);
566 
567 	ic->ic_ifp = ifp;
568 	/* XXX not right but it's not used anywhere important */
569 	ic->ic_phytype = IEEE80211_T_OFDM;
570 	ic->ic_opmode = IEEE80211_M_STA;
571 	ic->ic_caps =
572 		  IEEE80211_C_STA		/* station mode */
573 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
574 		| IEEE80211_C_HOSTAP		/* hostap mode */
575 		| IEEE80211_C_MONITOR		/* monitor mode */
576 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
577 		| IEEE80211_C_WDS		/* 4-address traffic works */
578 		| IEEE80211_C_MBSS		/* mesh point link mode */
579 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
580 		| IEEE80211_C_SHSLOT		/* short slot time supported */
581 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
582 #ifndef	ATH_ENABLE_11N
583 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
584 #endif
585 		| IEEE80211_C_TXFRAG		/* handle tx frags */
586 #ifdef	ATH_ENABLE_DFS
587 		| IEEE80211_C_DFS		/* Enable radar detection */
588 #endif
589 		;
590 	/*
591 	 * Query the hal to figure out h/w crypto support.
592 	 */
593 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
594 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
595 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
596 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
597 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
598 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
599 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
600 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
601 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
602 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
603 		/*
604 		 * Check if h/w does the MIC and/or whether the
605 		 * separate key cache entries are required to
606 		 * handle both tx+rx MIC keys.
607 		 */
608 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
609 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
610 		/*
611 		 * If the h/w supports storing tx+rx MIC keys
612 		 * in one cache slot automatically enable use.
613 		 */
614 		if (ath_hal_hastkipsplit(ah) ||
615 		    !ath_hal_settkipsplit(ah, AH_FALSE))
616 			sc->sc_splitmic = 1;
617 		/*
618 		 * If the h/w can do TKIP MIC together with WME then
619 		 * we use it; otherwise we force the MIC to be done
620 		 * in software by the net80211 layer.
621 		 */
622 		if (ath_hal_haswmetkipmic(ah))
623 			sc->sc_wmetkipmic = 1;
624 	}
625 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
626 	/*
627 	 * Check for multicast key search support.
628 	 */
629 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
630 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
631 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
632 	}
633 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
634 	/*
635 	 * Mark key cache slots associated with global keys
636 	 * as in use.  If we knew TKIP was not to be used we
637 	 * could leave the +32, +64, and +32+64 slots free.
638 	 */
639 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
640 		setbit(sc->sc_keymap, i);
641 		setbit(sc->sc_keymap, i+64);
642 		if (sc->sc_splitmic) {
643 			setbit(sc->sc_keymap, i+32);
644 			setbit(sc->sc_keymap, i+32+64);
645 		}
646 	}
647 	/*
648 	 * TPC support can be done either with a global cap or
649 	 * per-packet support.  The latter is not available on
650 	 * all parts.  We're a bit pedantic here as all parts
651 	 * support a global cap.
652 	 */
653 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
654 		ic->ic_caps |= IEEE80211_C_TXPMGT;
655 
656 	/*
657 	 * Mark WME capability only if we have sufficient
658 	 * hardware queues to do proper priority scheduling.
659 	 */
660 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
661 		ic->ic_caps |= IEEE80211_C_WME;
662 	/*
663 	 * Check for misc other capabilities.
664 	 */
665 	if (ath_hal_hasbursting(ah))
666 		ic->ic_caps |= IEEE80211_C_BURST;
667 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
668 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
669 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
670 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
671 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
672 	if (ath_hal_hasfastframes(ah))
673 		ic->ic_caps |= IEEE80211_C_FF;
674 	wmodes = ath_hal_getwirelessmodes(ah);
675 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
676 		ic->ic_caps |= IEEE80211_C_TURBOP;
677 #ifdef IEEE80211_SUPPORT_TDMA
678 	if (ath_hal_macversion(ah) > 0x78) {
679 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
680 		ic->ic_tdma_update = ath_tdma_update;
681 	}
682 #endif
683 
684 	/*
685 	 * TODO: enforce that at least this many frames are available
686 	 * in the txbuf list before allowing data frames (raw or
687 	 * otherwise) to be transmitted.
688 	 */
689 	sc->sc_txq_data_minfree = 10;
690 	/*
691 	 * Leave this as default to maintain legacy behaviour.
692 	 * Shortening the cabq/mcastq may end up causing some
693 	 * undesirable behaviour.
694 	 */
695 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
696 
697 	/*
698 	 * Default the maximum queue depth for a given node
699 	 * to 1/4'th the TX buffers, or 64, whichever
700 	 * is larger.
701 	 */
702 	sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4);
703 
704 	/* Enable CABQ by default */
705 	sc->sc_cabq_enable = 1;
706 
707 	/*
708 	 * Allow the TX and RX chainmasks to be overridden by
709 	 * environment variables and/or device.hints.
710 	 *
711 	 * This must be done early - before the hardware is
712 	 * calibrated or before the 802.11n stream calculation
713 	 * is done.
714 	 */
715 	if (resource_int_value(device_get_name(sc->sc_dev),
716 	    device_get_unit(sc->sc_dev), "rx_chainmask",
717 	    &rx_chainmask) == 0) {
718 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
719 		    rx_chainmask);
720 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
721 	}
722 	if (resource_int_value(device_get_name(sc->sc_dev),
723 	    device_get_unit(sc->sc_dev), "tx_chainmask",
724 	    &tx_chainmask) == 0) {
725 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
726 		    tx_chainmask);
727 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
728 	}
729 
730 	/*
731 	 * Query the TX/RX chainmask configuration.
732 	 *
733 	 * This is only relevant for 11n devices.
734 	 */
735 	ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
736 	ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
737 
738 	/*
739 	 * Disable MRR with protected frames by default.
740 	 * Only 802.11n series NICs can handle this.
741 	 */
742 	sc->sc_mrrprot = 0;	/* XXX should be a capability */
743 
744 	/*
745 	 * Query the enterprise mode information the HAL.
746 	 */
747 	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
748 	    &sc->sc_ent_cfg) == HAL_OK)
749 		sc->sc_use_ent = 1;
750 
751 #ifdef	ATH_ENABLE_11N
752 	/*
753 	 * Query HT capabilities
754 	 */
755 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
756 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
757 		uint32_t rxs, txs;
758 
759 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
760 
761 		sc->sc_mrrprot = 1;	/* XXX should be a capability */
762 
763 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
764 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
765 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
766 			    | IEEE80211_HTCAP_MAXAMSDU_3839
767 			    				/* max A-MSDU length */
768 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
769 			;
770 
771 		/*
772 		 * Enable short-GI for HT20 only if the hardware
773 		 * advertises support.
774 		 * Notably, anything earlier than the AR9287 doesn't.
775 		 */
776 		if ((ath_hal_getcapability(ah,
777 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
778 		    (wmodes & HAL_MODE_HT20)) {
779 			device_printf(sc->sc_dev,
780 			    "[HT] enabling short-GI in 20MHz mode\n");
781 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
782 		}
783 
784 		if (wmodes & HAL_MODE_HT40)
785 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
786 			    |  IEEE80211_HTCAP_SHORTGI40;
787 
788 		/*
789 		 * TX/RX streams need to be taken into account when
790 		 * negotiating which MCS rates it'll receive and
791 		 * what MCS rates are available for TX.
792 		 */
793 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
794 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
795 		ic->ic_txstream = txs;
796 		ic->ic_rxstream = rxs;
797 
798 		/*
799 		 * Setup TX and RX STBC based on what the HAL allows and
800 		 * the currently configured chainmask set.
801 		 * Ie - don't enable STBC TX if only one chain is enabled.
802 		 * STBC RX is fine on a single RX chain; it just won't
803 		 * provide any real benefit.
804 		 */
805 		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
806 		    NULL) == HAL_OK) {
807 			sc->sc_rx_stbc = 1;
808 			device_printf(sc->sc_dev,
809 			    "[HT] 1 stream STBC receive enabled\n");
810 			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
811 		}
812 		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
813 		    NULL) == HAL_OK) {
814 			sc->sc_tx_stbc = 1;
815 			device_printf(sc->sc_dev,
816 			    "[HT] 1 stream STBC transmit enabled\n");
817 			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
818 		}
819 
820 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
821 		    &sc->sc_rts_aggr_limit);
822 		if (sc->sc_rts_aggr_limit != (64 * 1024))
823 			device_printf(sc->sc_dev,
824 			    "[HT] RTS aggregates limited to %d KiB\n",
825 			    sc->sc_rts_aggr_limit / 1024);
826 
827 		device_printf(sc->sc_dev,
828 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
829 	}
830 #endif
831 
832 	/*
833 	 * Initial aggregation settings.
834 	 */
835 	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
836 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
837 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
838 	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
839 	sc->sc_delim_min_pad = 0;
840 
841 	/*
842 	 * Check if the hardware requires PCI register serialisation.
843 	 * Some of the Owl based MACs require this.
844 	 */
845 	if (mp_ncpus > 1 &&
846 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
847 	     0, NULL) == HAL_OK) {
848 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
849 		device_printf(sc->sc_dev,
850 		    "Enabling register serialisation\n");
851 	}
852 
853 	/*
854 	 * Initialise the deferred completed RX buffer list.
855 	 */
856 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
857 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
858 
859 	/*
860 	 * Indicate we need the 802.11 header padded to a
861 	 * 32-bit boundary for 4-address and QoS frames.
862 	 */
863 	ic->ic_flags |= IEEE80211_F_DATAPAD;
864 
865 	/*
866 	 * Query the hal about antenna support.
867 	 */
868 	sc->sc_defant = ath_hal_getdefantenna(ah);
869 
870 	/*
871 	 * Not all chips have the VEOL support we want to
872 	 * use with IBSS beacons; check here for it.
873 	 */
874 	sc->sc_hasveol = ath_hal_hasveol(ah);
875 
876 	/* get mac address from hardware */
877 	ath_hal_getmac(ah, macaddr);
878 	if (sc->sc_hasbmask)
879 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
880 
881 	/* NB: used to size node table key mapping array */
882 	ic->ic_max_keyix = sc->sc_keymax;
883 	/* call MI attach routine. */
884 	ieee80211_ifattach(ic, macaddr);
885 	ic->ic_setregdomain = ath_setregdomain;
886 	ic->ic_getradiocaps = ath_getradiocaps;
887 	sc->sc_opmode = HAL_M_STA;
888 
889 	/* override default methods */
890 	ic->ic_newassoc = ath_newassoc;
891 	ic->ic_updateslot = ath_updateslot;
892 	ic->ic_wme.wme_update = ath_wme_update;
893 	ic->ic_vap_create = ath_vap_create;
894 	ic->ic_vap_delete = ath_vap_delete;
895 	ic->ic_raw_xmit = ath_raw_xmit;
896 	ic->ic_update_mcast = ath_update_mcast;
897 	ic->ic_update_promisc = ath_update_promisc;
898 	ic->ic_node_alloc = ath_node_alloc;
899 	sc->sc_node_free = ic->ic_node_free;
900 	ic->ic_node_free = ath_node_free;
901 	sc->sc_node_cleanup = ic->ic_node_cleanup;
902 	ic->ic_node_cleanup = ath_node_cleanup;
903 	ic->ic_node_getsignal = ath_node_getsignal;
904 	ic->ic_scan_start = ath_scan_start;
905 	ic->ic_scan_end = ath_scan_end;
906 	ic->ic_set_channel = ath_set_channel;
907 #ifdef	ATH_ENABLE_11N
908 	/* 802.11n specific - but just override anyway */
909 	sc->sc_addba_request = ic->ic_addba_request;
910 	sc->sc_addba_response = ic->ic_addba_response;
911 	sc->sc_addba_stop = ic->ic_addba_stop;
912 	sc->sc_bar_response = ic->ic_bar_response;
913 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
914 
915 	ic->ic_addba_request = ath_addba_request;
916 	ic->ic_addba_response = ath_addba_response;
917 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
918 	ic->ic_addba_stop = ath_addba_stop;
919 	ic->ic_bar_response = ath_bar_response;
920 
921 	ic->ic_update_chw = ath_update_chw;
922 #endif	/* ATH_ENABLE_11N */
923 
924 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
925 	/*
926 	 * There's one vendor bitmap entry in the RX radiotap
927 	 * header; make sure that's taken into account.
928 	 */
929 	ieee80211_radiotap_attachv(ic,
930 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
931 		ATH_TX_RADIOTAP_PRESENT,
932 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
933 		ATH_RX_RADIOTAP_PRESENT);
934 #else
935 	/*
936 	 * No vendor bitmap/extensions are present.
937 	 */
938 	ieee80211_radiotap_attach(ic,
939 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
940 		ATH_TX_RADIOTAP_PRESENT,
941 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
942 		ATH_RX_RADIOTAP_PRESENT);
943 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
944 
945 	/*
946 	 * Setup the ALQ logging if required
947 	 */
948 #ifdef	ATH_DEBUG_ALQ
949 	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
950 	if_ath_alq_setcfg(&sc->sc_alq,
951 	    sc->sc_ah->ah_macVersion,
952 	    sc->sc_ah->ah_macRev,
953 	    sc->sc_ah->ah_phyRev,
954 	    sc->sc_ah->ah_magic);
955 #endif
956 
957 	/*
958 	 * Setup dynamic sysctl's now that country code and
959 	 * regdomain are available from the hal.
960 	 */
961 	ath_sysctlattach(sc);
962 	ath_sysctl_stats_attach(sc);
963 	ath_sysctl_hal_attach(sc);
964 
965 	if (bootverbose)
966 		ieee80211_announce(ic);
967 	ath_announce(sc);
968 	return 0;
969 bad2:
970 	ath_tx_cleanup(sc);
971 	ath_desc_free(sc);
972 	ath_txdma_teardown(sc);
973 	ath_rxdma_teardown(sc);
974 bad:
975 	if (ah)
976 		ath_hal_detach(ah);
977 
978 	/*
979 	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
980 	 */
981 	if (ifp != NULL && ifp->if_vnet) {
982 		CURVNET_SET(ifp->if_vnet);
983 		if_free(ifp);
984 		CURVNET_RESTORE();
985 	} else if (ifp != NULL)
986 		if_free(ifp);
987 	sc->sc_invalid = 1;
988 	return error;
989 }
990 
991 int
992 ath_detach(struct ath_softc *sc)
993 {
994 	struct ifnet *ifp = sc->sc_ifp;
995 
996 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
997 		__func__, ifp->if_flags);
998 
999 	/*
1000 	 * NB: the order of these is important:
1001 	 * o stop the chip so no more interrupts will fire
1002 	 * o call the 802.11 layer before detaching the hal to
1003 	 *   insure callbacks into the driver to delete global
1004 	 *   key cache entries can be handled
1005 	 * o free the taskqueue which drains any pending tasks
1006 	 * o reclaim the tx queue data structures after calling
1007 	 *   the 802.11 layer as we'll get called back to reclaim
1008 	 *   node state and potentially want to use them
1009 	 * o to cleanup the tx queues the hal is called, so detach
1010 	 *   it last
1011 	 * Other than that, it's straightforward...
1012 	 */
1013 	ath_stop(ifp);
1014 	ieee80211_ifdetach(ifp->if_l2com);
1015 	taskqueue_free(sc->sc_tq);
1016 #ifdef ATH_TX99_DIAG
1017 	if (sc->sc_tx99 != NULL)
1018 		sc->sc_tx99->detach(sc->sc_tx99);
1019 #endif
1020 	ath_rate_detach(sc->sc_rc);
1021 #ifdef	ATH_DEBUG_ALQ
1022 	if_ath_alq_tidyup(&sc->sc_alq);
1023 #endif
1024 	ath_spectral_detach(sc);
1025 	ath_dfs_detach(sc);
1026 	ath_desc_free(sc);
1027 	ath_txdma_teardown(sc);
1028 	ath_rxdma_teardown(sc);
1029 	ath_tx_cleanup(sc);
1030 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1031 
1032 	CURVNET_SET(ifp->if_vnet);
1033 	if_free(ifp);
1034 	CURVNET_RESTORE();
1035 
1036 	return 0;
1037 }
1038 
1039 /*
1040  * MAC address handling for multiple BSS on the same radio.
1041  * The first vap uses the MAC address from the EEPROM.  For
1042  * subsequent vap's we set the U/L bit (bit 1) in the MAC
1043  * address and use the next six bits as an index.
1044  */
1045 static void
1046 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1047 {
1048 	int i;
1049 
1050 	if (clone && sc->sc_hasbmask) {
1051 		/* NB: we only do this if h/w supports multiple bssid */
1052 		for (i = 0; i < 8; i++)
1053 			if ((sc->sc_bssidmask & (1<<i)) == 0)
1054 				break;
1055 		if (i != 0)
1056 			mac[0] |= (i << 2)|0x2;
1057 	} else
1058 		i = 0;
1059 	sc->sc_bssidmask |= 1<<i;
1060 	sc->sc_hwbssidmask[0] &= ~mac[0];
1061 	if (i == 0)
1062 		sc->sc_nbssid0++;
1063 }
1064 
1065 static void
1066 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1067 {
1068 	int i = mac[0] >> 2;
1069 	uint8_t mask;
1070 
1071 	if (i != 0 || --sc->sc_nbssid0 == 0) {
1072 		sc->sc_bssidmask &= ~(1<<i);
1073 		/* recalculate bssid mask from remaining addresses */
1074 		mask = 0xff;
1075 		for (i = 1; i < 8; i++)
1076 			if (sc->sc_bssidmask & (1<<i))
1077 				mask &= ~((i<<2)|0x2);
1078 		sc->sc_hwbssidmask[0] |= mask;
1079 	}
1080 }
1081 
1082 /*
1083  * Assign a beacon xmit slot.  We try to space out
1084  * assignments so when beacons are staggered the
1085  * traffic coming out of the cab q has maximal time
1086  * to go out before the next beacon is scheduled.
1087  */
1088 static int
1089 assign_bslot(struct ath_softc *sc)
1090 {
1091 	u_int slot, free;
1092 
1093 	free = 0;
1094 	for (slot = 0; slot < ATH_BCBUF; slot++)
1095 		if (sc->sc_bslot[slot] == NULL) {
1096 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1097 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1098 				return slot;
1099 			free = slot;
1100 			/* NB: keep looking for a double slot */
1101 		}
1102 	return free;
1103 }
1104 
1105 static struct ieee80211vap *
1106 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1107     enum ieee80211_opmode opmode, int flags,
1108     const uint8_t bssid[IEEE80211_ADDR_LEN],
1109     const uint8_t mac0[IEEE80211_ADDR_LEN])
1110 {
1111 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1112 	struct ath_vap *avp;
1113 	struct ieee80211vap *vap;
1114 	uint8_t mac[IEEE80211_ADDR_LEN];
1115 	int needbeacon, error;
1116 	enum ieee80211_opmode ic_opmode;
1117 
1118 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1119 	    M_80211_VAP, M_WAITOK | M_ZERO);
1120 	needbeacon = 0;
1121 	IEEE80211_ADDR_COPY(mac, mac0);
1122 
1123 	ATH_LOCK(sc);
1124 	ic_opmode = opmode;		/* default to opmode of new vap */
1125 	switch (opmode) {
1126 	case IEEE80211_M_STA:
1127 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1128 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1129 			goto bad;
1130 		}
1131 		if (sc->sc_nvaps) {
1132 			/*
1133 			 * With multiple vaps we must fall back
1134 			 * to s/w beacon miss handling.
1135 			 */
1136 			flags |= IEEE80211_CLONE_NOBEACONS;
1137 		}
1138 		if (flags & IEEE80211_CLONE_NOBEACONS) {
1139 			/*
1140 			 * Station mode w/o beacons are implemented w/ AP mode.
1141 			 */
1142 			ic_opmode = IEEE80211_M_HOSTAP;
1143 		}
1144 		break;
1145 	case IEEE80211_M_IBSS:
1146 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1147 			device_printf(sc->sc_dev,
1148 			    "only 1 ibss vap supported\n");
1149 			goto bad;
1150 		}
1151 		needbeacon = 1;
1152 		break;
1153 	case IEEE80211_M_AHDEMO:
1154 #ifdef IEEE80211_SUPPORT_TDMA
1155 		if (flags & IEEE80211_CLONE_TDMA) {
1156 			if (sc->sc_nvaps != 0) {
1157 				device_printf(sc->sc_dev,
1158 				    "only 1 tdma vap supported\n");
1159 				goto bad;
1160 			}
1161 			needbeacon = 1;
1162 			flags |= IEEE80211_CLONE_NOBEACONS;
1163 		}
1164 		/* fall thru... */
1165 #endif
1166 	case IEEE80211_M_MONITOR:
1167 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1168 			/*
1169 			 * Adopt existing mode.  Adding a monitor or ahdemo
1170 			 * vap to an existing configuration is of dubious
1171 			 * value but should be ok.
1172 			 */
1173 			/* XXX not right for monitor mode */
1174 			ic_opmode = ic->ic_opmode;
1175 		}
1176 		break;
1177 	case IEEE80211_M_HOSTAP:
1178 	case IEEE80211_M_MBSS:
1179 		needbeacon = 1;
1180 		break;
1181 	case IEEE80211_M_WDS:
1182 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1183 			device_printf(sc->sc_dev,
1184 			    "wds not supported in sta mode\n");
1185 			goto bad;
1186 		}
1187 		/*
1188 		 * Silently remove any request for a unique
1189 		 * bssid; WDS vap's always share the local
1190 		 * mac address.
1191 		 */
1192 		flags &= ~IEEE80211_CLONE_BSSID;
1193 		if (sc->sc_nvaps == 0)
1194 			ic_opmode = IEEE80211_M_HOSTAP;
1195 		else
1196 			ic_opmode = ic->ic_opmode;
1197 		break;
1198 	default:
1199 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1200 		goto bad;
1201 	}
1202 	/*
1203 	 * Check that a beacon buffer is available; the code below assumes it.
1204 	 */
1205 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1206 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1207 		goto bad;
1208 	}
1209 
1210 	/* STA, AHDEMO? */
1211 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1212 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1213 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1214 	}
1215 
1216 	vap = &avp->av_vap;
1217 	/* XXX can't hold mutex across if_alloc */
1218 	ATH_UNLOCK(sc);
1219 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1220 	    bssid, mac);
1221 	ATH_LOCK(sc);
1222 	if (error != 0) {
1223 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1224 		    __func__, error);
1225 		goto bad2;
1226 	}
1227 
1228 	/* h/w crypto support */
1229 	vap->iv_key_alloc = ath_key_alloc;
1230 	vap->iv_key_delete = ath_key_delete;
1231 	vap->iv_key_set = ath_key_set;
1232 	vap->iv_key_update_begin = ath_key_update_begin;
1233 	vap->iv_key_update_end = ath_key_update_end;
1234 
1235 	/* override various methods */
1236 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1237 	vap->iv_recv_mgmt = ath_recv_mgmt;
1238 	vap->iv_reset = ath_reset_vap;
1239 	vap->iv_update_beacon = ath_beacon_update;
1240 	avp->av_newstate = vap->iv_newstate;
1241 	vap->iv_newstate = ath_newstate;
1242 	avp->av_bmiss = vap->iv_bmiss;
1243 	vap->iv_bmiss = ath_bmiss_vap;
1244 
1245 	avp->av_node_ps = vap->iv_node_ps;
1246 	vap->iv_node_ps = ath_node_powersave;
1247 
1248 	avp->av_set_tim = vap->iv_set_tim;
1249 	vap->iv_set_tim = ath_node_set_tim;
1250 
1251 	/* Set default parameters */
1252 
1253 	/*
1254 	 * Anything earlier than some AR9300 series MACs don't
1255 	 * support a smaller MPDU density.
1256 	 */
1257 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1258 	/*
1259 	 * All NICs can handle the maximum size, however
1260 	 * AR5416 based MACs can only TX aggregates w/ RTS
1261 	 * protection when the total aggregate size is <= 8k.
1262 	 * However, for now that's enforced by the TX path.
1263 	 */
1264 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1265 
1266 	avp->av_bslot = -1;
1267 	if (needbeacon) {
1268 		/*
1269 		 * Allocate beacon state and setup the q for buffered
1270 		 * multicast frames.  We know a beacon buffer is
1271 		 * available because we checked above.
1272 		 */
1273 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1274 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1275 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1276 			/*
1277 			 * Assign the vap to a beacon xmit slot.  As above
1278 			 * this cannot fail to find a free one.
1279 			 */
1280 			avp->av_bslot = assign_bslot(sc);
1281 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1282 			    ("beacon slot %u not empty", avp->av_bslot));
1283 			sc->sc_bslot[avp->av_bslot] = vap;
1284 			sc->sc_nbcnvaps++;
1285 		}
1286 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1287 			/*
1288 			 * Multple vaps are to transmit beacons and we
1289 			 * have h/w support for TSF adjusting; enable
1290 			 * use of staggered beacons.
1291 			 */
1292 			sc->sc_stagbeacons = 1;
1293 		}
1294 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1295 	}
1296 
1297 	ic->ic_opmode = ic_opmode;
1298 	if (opmode != IEEE80211_M_WDS) {
1299 		sc->sc_nvaps++;
1300 		if (opmode == IEEE80211_M_STA)
1301 			sc->sc_nstavaps++;
1302 		if (opmode == IEEE80211_M_MBSS)
1303 			sc->sc_nmeshvaps++;
1304 	}
1305 	switch (ic_opmode) {
1306 	case IEEE80211_M_IBSS:
1307 		sc->sc_opmode = HAL_M_IBSS;
1308 		break;
1309 	case IEEE80211_M_STA:
1310 		sc->sc_opmode = HAL_M_STA;
1311 		break;
1312 	case IEEE80211_M_AHDEMO:
1313 #ifdef IEEE80211_SUPPORT_TDMA
1314 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1315 			sc->sc_tdma = 1;
1316 			/* NB: disable tsf adjust */
1317 			sc->sc_stagbeacons = 0;
1318 		}
1319 		/*
1320 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1321 		 * just ap mode.
1322 		 */
1323 		/* fall thru... */
1324 #endif
1325 	case IEEE80211_M_HOSTAP:
1326 	case IEEE80211_M_MBSS:
1327 		sc->sc_opmode = HAL_M_HOSTAP;
1328 		break;
1329 	case IEEE80211_M_MONITOR:
1330 		sc->sc_opmode = HAL_M_MONITOR;
1331 		break;
1332 	default:
1333 		/* XXX should not happen */
1334 		break;
1335 	}
1336 	if (sc->sc_hastsfadd) {
1337 		/*
1338 		 * Configure whether or not TSF adjust should be done.
1339 		 */
1340 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1341 	}
1342 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1343 		/*
1344 		 * Enable s/w beacon miss handling.
1345 		 */
1346 		sc->sc_swbmiss = 1;
1347 	}
1348 	ATH_UNLOCK(sc);
1349 
1350 	/* complete setup */
1351 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1352 	return vap;
1353 bad2:
1354 	reclaim_address(sc, mac);
1355 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1356 bad:
1357 	free(avp, M_80211_VAP);
1358 	ATH_UNLOCK(sc);
1359 	return NULL;
1360 }
1361 
1362 static void
1363 ath_vap_delete(struct ieee80211vap *vap)
1364 {
1365 	struct ieee80211com *ic = vap->iv_ic;
1366 	struct ifnet *ifp = ic->ic_ifp;
1367 	struct ath_softc *sc = ifp->if_softc;
1368 	struct ath_hal *ah = sc->sc_ah;
1369 	struct ath_vap *avp = ATH_VAP(vap);
1370 
1371 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1372 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1373 		/*
1374 		 * Quiesce the hardware while we remove the vap.  In
1375 		 * particular we need to reclaim all references to
1376 		 * the vap state by any frames pending on the tx queues.
1377 		 */
1378 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1379 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1380 		/* XXX Do all frames from all vaps/nodes need draining here? */
1381 		ath_stoprecv(sc, 1);		/* stop recv side */
1382 	}
1383 
1384 	ieee80211_vap_detach(vap);
1385 
1386 	/*
1387 	 * XXX Danger Will Robinson! Danger!
1388 	 *
1389 	 * Because ieee80211_vap_detach() can queue a frame (the station
1390 	 * diassociate message?) after we've drained the TXQ and
1391 	 * flushed the software TXQ, we will end up with a frame queued
1392 	 * to a node whose vap is about to be freed.
1393 	 *
1394 	 * To work around this, flush the hardware/software again.
1395 	 * This may be racy - the ath task may be running and the packet
1396 	 * may be being scheduled between sw->hw txq. Tsk.
1397 	 *
1398 	 * TODO: figure out why a new node gets allocated somewhere around
1399 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1400 	 * call!)
1401 	 */
1402 
1403 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1404 
1405 	ATH_LOCK(sc);
1406 	/*
1407 	 * Reclaim beacon state.  Note this must be done before
1408 	 * the vap instance is reclaimed as we may have a reference
1409 	 * to it in the buffer for the beacon frame.
1410 	 */
1411 	if (avp->av_bcbuf != NULL) {
1412 		if (avp->av_bslot != -1) {
1413 			sc->sc_bslot[avp->av_bslot] = NULL;
1414 			sc->sc_nbcnvaps--;
1415 		}
1416 		ath_beacon_return(sc, avp->av_bcbuf);
1417 		avp->av_bcbuf = NULL;
1418 		if (sc->sc_nbcnvaps == 0) {
1419 			sc->sc_stagbeacons = 0;
1420 			if (sc->sc_hastsfadd)
1421 				ath_hal_settsfadjust(sc->sc_ah, 0);
1422 		}
1423 		/*
1424 		 * Reclaim any pending mcast frames for the vap.
1425 		 */
1426 		ath_tx_draintxq(sc, &avp->av_mcastq);
1427 	}
1428 	/*
1429 	 * Update bookkeeping.
1430 	 */
1431 	if (vap->iv_opmode == IEEE80211_M_STA) {
1432 		sc->sc_nstavaps--;
1433 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1434 			sc->sc_swbmiss = 0;
1435 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1436 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1437 		reclaim_address(sc, vap->iv_myaddr);
1438 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1439 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1440 			sc->sc_nmeshvaps--;
1441 	}
1442 	if (vap->iv_opmode != IEEE80211_M_WDS)
1443 		sc->sc_nvaps--;
1444 #ifdef IEEE80211_SUPPORT_TDMA
1445 	/* TDMA operation ceases when the last vap is destroyed */
1446 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1447 		sc->sc_tdma = 0;
1448 		sc->sc_swbmiss = 0;
1449 	}
1450 #endif
1451 	free(avp, M_80211_VAP);
1452 
1453 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1454 		/*
1455 		 * Restart rx+tx machines if still running (RUNNING will
1456 		 * be reset if we just destroyed the last vap).
1457 		 */
1458 		if (ath_startrecv(sc) != 0)
1459 			if_printf(ifp, "%s: unable to restart recv logic\n",
1460 			    __func__);
1461 		if (sc->sc_beacons) {		/* restart beacons */
1462 #ifdef IEEE80211_SUPPORT_TDMA
1463 			if (sc->sc_tdma)
1464 				ath_tdma_config(sc, NULL);
1465 			else
1466 #endif
1467 				ath_beacon_config(sc, NULL);
1468 		}
1469 		ath_hal_intrset(ah, sc->sc_imask);
1470 	}
1471 	ATH_UNLOCK(sc);
1472 }
1473 
1474 void
1475 ath_suspend(struct ath_softc *sc)
1476 {
1477 	struct ifnet *ifp = sc->sc_ifp;
1478 	struct ieee80211com *ic = ifp->if_l2com;
1479 
1480 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1481 		__func__, ifp->if_flags);
1482 
1483 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1484 
1485 	ieee80211_suspend_all(ic);
1486 	/*
1487 	 * NB: don't worry about putting the chip in low power
1488 	 * mode; pci will power off our socket on suspend and
1489 	 * CardBus detaches the device.
1490 	 */
1491 
1492 	/*
1493 	 * XXX ensure none of the taskqueues are running
1494 	 * XXX ensure sc_invalid is 1
1495 	 * XXX ensure the calibration callout is disabled
1496 	 */
1497 
1498 	/* Disable the PCIe PHY, complete with workarounds */
1499 	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1500 }
1501 
1502 /*
1503  * Reset the key cache since some parts do not reset the
1504  * contents on resume.  First we clear all entries, then
1505  * re-load keys that the 802.11 layer assumes are setup
1506  * in h/w.
1507  */
1508 static void
1509 ath_reset_keycache(struct ath_softc *sc)
1510 {
1511 	struct ifnet *ifp = sc->sc_ifp;
1512 	struct ieee80211com *ic = ifp->if_l2com;
1513 	struct ath_hal *ah = sc->sc_ah;
1514 	int i;
1515 
1516 	for (i = 0; i < sc->sc_keymax; i++)
1517 		ath_hal_keyreset(ah, i);
1518 	ieee80211_crypto_reload_keys(ic);
1519 }
1520 
1521 /*
1522  * Fetch the current chainmask configuration based on the current
1523  * operating channel and options.
1524  */
1525 static void
1526 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1527 {
1528 
1529 	/*
1530 	 * Set TX chainmask to the currently configured chainmask;
1531 	 * the TX chainmask depends upon the current operating mode.
1532 	 */
1533 	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1534 	if (IEEE80211_IS_CHAN_HT(chan)) {
1535 		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1536 	} else {
1537 		sc->sc_cur_txchainmask = 1;
1538 	}
1539 
1540 	DPRINTF(sc, ATH_DEBUG_RESET,
1541 	    "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1542 	    __func__,
1543 	    sc->sc_cur_txchainmask,
1544 	    sc->sc_cur_rxchainmask);
1545 }
1546 
1547 void
1548 ath_resume(struct ath_softc *sc)
1549 {
1550 	struct ifnet *ifp = sc->sc_ifp;
1551 	struct ieee80211com *ic = ifp->if_l2com;
1552 	struct ath_hal *ah = sc->sc_ah;
1553 	HAL_STATUS status;
1554 
1555 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1556 		__func__, ifp->if_flags);
1557 
1558 	/* Re-enable PCIe, re-enable the PCIe bus */
1559 	ath_hal_enablepcie(ah, 0, 0);
1560 
1561 	/*
1562 	 * Must reset the chip before we reload the
1563 	 * keycache as we were powered down on suspend.
1564 	 */
1565 	ath_update_chainmasks(sc,
1566 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1567 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1568 	    sc->sc_cur_rxchainmask);
1569 	ath_hal_reset(ah, sc->sc_opmode,
1570 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1571 	    AH_FALSE, &status);
1572 	ath_reset_keycache(sc);
1573 
1574 	/* Let DFS at it in case it's a DFS channel */
1575 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1576 
1577 	/* Let spectral at in case spectral is enabled */
1578 	ath_spectral_enable(sc, ic->ic_curchan);
1579 
1580 	/* Restore the LED configuration */
1581 	ath_led_config(sc);
1582 	ath_hal_setledstate(ah, HAL_LED_INIT);
1583 
1584 	if (sc->sc_resume_up)
1585 		ieee80211_resume_all(ic);
1586 
1587 	/* XXX beacons ? */
1588 }
1589 
1590 void
1591 ath_shutdown(struct ath_softc *sc)
1592 {
1593 	struct ifnet *ifp = sc->sc_ifp;
1594 
1595 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1596 		__func__, ifp->if_flags);
1597 
1598 	ath_stop(ifp);
1599 	/* NB: no point powering down chip as we're about to reboot */
1600 }
1601 
1602 /*
1603  * Interrupt handler.  Most of the actual processing is deferred.
1604  */
1605 void
1606 ath_intr(void *arg)
1607 {
1608 	struct ath_softc *sc = arg;
1609 	struct ifnet *ifp = sc->sc_ifp;
1610 	struct ath_hal *ah = sc->sc_ah;
1611 	HAL_INT status = 0;
1612 	uint32_t txqs;
1613 
1614 	/*
1615 	 * If we're inside a reset path, just print a warning and
1616 	 * clear the ISR. The reset routine will finish it for us.
1617 	 */
1618 	ATH_PCU_LOCK(sc);
1619 	if (sc->sc_inreset_cnt) {
1620 		HAL_INT status;
1621 		ath_hal_getisr(ah, &status);	/* clear ISR */
1622 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1623 		DPRINTF(sc, ATH_DEBUG_ANY,
1624 		    "%s: in reset, ignoring: status=0x%x\n",
1625 		    __func__, status);
1626 		ATH_PCU_UNLOCK(sc);
1627 		return;
1628 	}
1629 
1630 	if (sc->sc_invalid) {
1631 		/*
1632 		 * The hardware is not ready/present, don't touch anything.
1633 		 * Note this can happen early on if the IRQ is shared.
1634 		 */
1635 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1636 		ATH_PCU_UNLOCK(sc);
1637 		return;
1638 	}
1639 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1640 		ATH_PCU_UNLOCK(sc);
1641 		return;
1642 	}
1643 
1644 	if ((ifp->if_flags & IFF_UP) == 0 ||
1645 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1646 		HAL_INT status;
1647 
1648 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1649 			__func__, ifp->if_flags);
1650 		ath_hal_getisr(ah, &status);	/* clear ISR */
1651 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1652 		ATH_PCU_UNLOCK(sc);
1653 		return;
1654 	}
1655 
1656 	/*
1657 	 * Figure out the reason(s) for the interrupt.  Note
1658 	 * that the hal returns a pseudo-ISR that may include
1659 	 * bits we haven't explicitly enabled so we mask the
1660 	 * value to insure we only process bits we requested.
1661 	 */
1662 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1663 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1664 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
1665 #ifdef	ATH_DEBUG_ALQ
1666 	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
1667 	    ah->ah_syncstate);
1668 #endif	/* ATH_DEBUG_ALQ */
1669 #ifdef	ATH_KTR_INTR_DEBUG
1670 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
1671 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1672 	    ah->ah_intrstate[0],
1673 	    ah->ah_intrstate[1],
1674 	    ah->ah_intrstate[2],
1675 	    ah->ah_intrstate[3],
1676 	    ah->ah_intrstate[6]);
1677 #endif
1678 
1679 	/* Squirrel away SYNC interrupt debugging */
1680 	if (ah->ah_syncstate != 0) {
1681 		int i;
1682 		for (i = 0; i < 32; i++)
1683 			if (ah->ah_syncstate & (i << i))
1684 				sc->sc_intr_stats.sync_intr[i]++;
1685 	}
1686 
1687 	status &= sc->sc_imask;			/* discard unasked for bits */
1688 
1689 	/* Short-circuit un-handled interrupts */
1690 	if (status == 0x0) {
1691 		ATH_PCU_UNLOCK(sc);
1692 		return;
1693 	}
1694 
1695 	/*
1696 	 * Take a note that we're inside the interrupt handler, so
1697 	 * the reset routines know to wait.
1698 	 */
1699 	sc->sc_intr_cnt++;
1700 	ATH_PCU_UNLOCK(sc);
1701 
1702 	/*
1703 	 * Handle the interrupt. We won't run concurrent with the reset
1704 	 * or channel change routines as they'll wait for sc_intr_cnt
1705 	 * to be 0 before continuing.
1706 	 */
1707 	if (status & HAL_INT_FATAL) {
1708 		sc->sc_stats.ast_hardware++;
1709 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1710 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1711 	} else {
1712 		if (status & HAL_INT_SWBA) {
1713 			/*
1714 			 * Software beacon alert--time to send a beacon.
1715 			 * Handle beacon transmission directly; deferring
1716 			 * this is too slow to meet timing constraints
1717 			 * under load.
1718 			 */
1719 #ifdef IEEE80211_SUPPORT_TDMA
1720 			if (sc->sc_tdma) {
1721 				if (sc->sc_tdmaswba == 0) {
1722 					struct ieee80211com *ic = ifp->if_l2com;
1723 					struct ieee80211vap *vap =
1724 					    TAILQ_FIRST(&ic->ic_vaps);
1725 					ath_tdma_beacon_send(sc, vap);
1726 					sc->sc_tdmaswba =
1727 					    vap->iv_tdma->tdma_bintval;
1728 				} else
1729 					sc->sc_tdmaswba--;
1730 			} else
1731 #endif
1732 			{
1733 				ath_beacon_proc(sc, 0);
1734 #ifdef IEEE80211_SUPPORT_SUPERG
1735 				/*
1736 				 * Schedule the rx taskq in case there's no
1737 				 * traffic so any frames held on the staging
1738 				 * queue are aged and potentially flushed.
1739 				 */
1740 				sc->sc_rx.recv_sched(sc, 1);
1741 #endif
1742 			}
1743 		}
1744 		if (status & HAL_INT_RXEOL) {
1745 			int imask;
1746 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
1747 			ATH_PCU_LOCK(sc);
1748 			/*
1749 			 * NB: the hardware should re-read the link when
1750 			 *     RXE bit is written, but it doesn't work at
1751 			 *     least on older hardware revs.
1752 			 */
1753 			sc->sc_stats.ast_rxeol++;
1754 			/*
1755 			 * Disable RXEOL/RXORN - prevent an interrupt
1756 			 * storm until the PCU logic can be reset.
1757 			 * In case the interface is reset some other
1758 			 * way before "sc_kickpcu" is called, don't
1759 			 * modify sc_imask - that way if it is reset
1760 			 * by a call to ath_reset() somehow, the
1761 			 * interrupt mask will be correctly reprogrammed.
1762 			 */
1763 			imask = sc->sc_imask;
1764 			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1765 			ath_hal_intrset(ah, imask);
1766 			/*
1767 			 * Only blank sc_rxlink if we've not yet kicked
1768 			 * the PCU.
1769 			 *
1770 			 * This isn't entirely correct - the correct solution
1771 			 * would be to have a PCU lock and engage that for
1772 			 * the duration of the PCU fiddling; which would include
1773 			 * running the RX process. Otherwise we could end up
1774 			 * messing up the RX descriptor chain and making the
1775 			 * RX desc list much shorter.
1776 			 */
1777 			if (! sc->sc_kickpcu)
1778 				sc->sc_rxlink = NULL;
1779 			sc->sc_kickpcu = 1;
1780 			ATH_PCU_UNLOCK(sc);
1781 			/*
1782 			 * Enqueue an RX proc, to handled whatever
1783 			 * is in the RX queue.
1784 			 * This will then kick the PCU.
1785 			 */
1786 			sc->sc_rx.recv_sched(sc, 1);
1787 		}
1788 		if (status & HAL_INT_TXURN) {
1789 			sc->sc_stats.ast_txurn++;
1790 			/* bump tx trigger level */
1791 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1792 		}
1793 		/*
1794 		 * Handle both the legacy and RX EDMA interrupt bits.
1795 		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
1796 		 */
1797 		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
1798 			sc->sc_stats.ast_rx_intr++;
1799 			sc->sc_rx.recv_sched(sc, 1);
1800 		}
1801 		if (status & HAL_INT_TX) {
1802 			sc->sc_stats.ast_tx_intr++;
1803 			/*
1804 			 * Grab all the currently set bits in the HAL txq bitmap
1805 			 * and blank them. This is the only place we should be
1806 			 * doing this.
1807 			 */
1808 			if (! sc->sc_isedma) {
1809 				ATH_PCU_LOCK(sc);
1810 				txqs = 0xffffffff;
1811 				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1812 				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
1813 				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
1814 				    txqs,
1815 				    sc->sc_txq_active,
1816 				    sc->sc_txq_active | txqs);
1817 				sc->sc_txq_active |= txqs;
1818 				ATH_PCU_UNLOCK(sc);
1819 			}
1820 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1821 		}
1822 		if (status & HAL_INT_BMISS) {
1823 			sc->sc_stats.ast_bmiss++;
1824 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1825 		}
1826 		if (status & HAL_INT_GTT)
1827 			sc->sc_stats.ast_tx_timeout++;
1828 		if (status & HAL_INT_CST)
1829 			sc->sc_stats.ast_tx_cst++;
1830 		if (status & HAL_INT_MIB) {
1831 			sc->sc_stats.ast_mib++;
1832 			ATH_PCU_LOCK(sc);
1833 			/*
1834 			 * Disable interrupts until we service the MIB
1835 			 * interrupt; otherwise it will continue to fire.
1836 			 */
1837 			ath_hal_intrset(ah, 0);
1838 			/*
1839 			 * Let the hal handle the event.  We assume it will
1840 			 * clear whatever condition caused the interrupt.
1841 			 */
1842 			ath_hal_mibevent(ah, &sc->sc_halstats);
1843 			/*
1844 			 * Don't reset the interrupt if we've just
1845 			 * kicked the PCU, or we may get a nested
1846 			 * RXEOL before the rxproc has had a chance
1847 			 * to run.
1848 			 */
1849 			if (sc->sc_kickpcu == 0)
1850 				ath_hal_intrset(ah, sc->sc_imask);
1851 			ATH_PCU_UNLOCK(sc);
1852 		}
1853 		if (status & HAL_INT_RXORN) {
1854 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1855 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
1856 			sc->sc_stats.ast_rxorn++;
1857 		}
1858 	}
1859 	ATH_PCU_LOCK(sc);
1860 	sc->sc_intr_cnt--;
1861 	ATH_PCU_UNLOCK(sc);
1862 }
1863 
1864 static void
1865 ath_fatal_proc(void *arg, int pending)
1866 {
1867 	struct ath_softc *sc = arg;
1868 	struct ifnet *ifp = sc->sc_ifp;
1869 	u_int32_t *state;
1870 	u_int32_t len;
1871 	void *sp;
1872 
1873 	if_printf(ifp, "hardware error; resetting\n");
1874 	/*
1875 	 * Fatal errors are unrecoverable.  Typically these
1876 	 * are caused by DMA errors.  Collect h/w state from
1877 	 * the hal so we can diagnose what's going on.
1878 	 */
1879 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1880 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1881 		state = sp;
1882 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1883 		    state[0], state[1] , state[2], state[3],
1884 		    state[4], state[5]);
1885 	}
1886 	ath_reset(ifp, ATH_RESET_NOLOSS);
1887 }
1888 
1889 static void
1890 ath_bmiss_vap(struct ieee80211vap *vap)
1891 {
1892 	/*
1893 	 * Workaround phantom bmiss interrupts by sanity-checking
1894 	 * the time of our last rx'd frame.  If it is within the
1895 	 * beacon miss interval then ignore the interrupt.  If it's
1896 	 * truly a bmiss we'll get another interrupt soon and that'll
1897 	 * be dispatched up for processing.  Note this applies only
1898 	 * for h/w beacon miss events.
1899 	 */
1900 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1901 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1902 		struct ath_softc *sc = ifp->if_softc;
1903 		u_int64_t lastrx = sc->sc_lastrx;
1904 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1905 		/* XXX should take a locked ref to iv_bss */
1906 		u_int bmisstimeout =
1907 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1908 
1909 		DPRINTF(sc, ATH_DEBUG_BEACON,
1910 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1911 		    __func__, (unsigned long long) tsf,
1912 		    (unsigned long long)(tsf - lastrx),
1913 		    (unsigned long long) lastrx, bmisstimeout);
1914 
1915 		if (tsf - lastrx <= bmisstimeout) {
1916 			sc->sc_stats.ast_bmiss_phantom++;
1917 			return;
1918 		}
1919 	}
1920 	ATH_VAP(vap)->av_bmiss(vap);
1921 }
1922 
1923 int
1924 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1925 {
1926 	uint32_t rsize;
1927 	void *sp;
1928 
1929 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1930 		return 0;
1931 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1932 	*hangs = *(uint32_t *)sp;
1933 	return 1;
1934 }
1935 
1936 static void
1937 ath_bmiss_proc(void *arg, int pending)
1938 {
1939 	struct ath_softc *sc = arg;
1940 	struct ifnet *ifp = sc->sc_ifp;
1941 	uint32_t hangs;
1942 
1943 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1944 
1945 	/*
1946 	 * Do a reset upon any becaon miss event.
1947 	 *
1948 	 * It may be a non-recognised RX clear hang which needs a reset
1949 	 * to clear.
1950 	 */
1951 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1952 		ath_reset(ifp, ATH_RESET_NOLOSS);
1953 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1954 	} else {
1955 		ath_reset(ifp, ATH_RESET_NOLOSS);
1956 		ieee80211_beacon_miss(ifp->if_l2com);
1957 	}
1958 }
1959 
1960 /*
1961  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1962  * calcs together with WME.  If necessary disable the crypto
1963  * hardware and mark the 802.11 state so keys will be setup
1964  * with the MIC work done in software.
1965  */
1966 static void
1967 ath_settkipmic(struct ath_softc *sc)
1968 {
1969 	struct ifnet *ifp = sc->sc_ifp;
1970 	struct ieee80211com *ic = ifp->if_l2com;
1971 
1972 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1973 		if (ic->ic_flags & IEEE80211_F_WME) {
1974 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1975 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1976 		} else {
1977 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1978 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1979 		}
1980 	}
1981 }
1982 
1983 static void
1984 ath_init(void *arg)
1985 {
1986 	struct ath_softc *sc = (struct ath_softc *) arg;
1987 	struct ifnet *ifp = sc->sc_ifp;
1988 	struct ieee80211com *ic = ifp->if_l2com;
1989 	struct ath_hal *ah = sc->sc_ah;
1990 	HAL_STATUS status;
1991 
1992 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1993 		__func__, ifp->if_flags);
1994 
1995 	ATH_LOCK(sc);
1996 	/*
1997 	 * Stop anything previously setup.  This is safe
1998 	 * whether this is the first time through or not.
1999 	 */
2000 	ath_stop_locked(ifp);
2001 
2002 	/*
2003 	 * The basic interface to setting the hardware in a good
2004 	 * state is ``reset''.  On return the hardware is known to
2005 	 * be powered up and with interrupts disabled.  This must
2006 	 * be followed by initialization of the appropriate bits
2007 	 * and then setup of the interrupt mask.
2008 	 */
2009 	ath_settkipmic(sc);
2010 	ath_update_chainmasks(sc, ic->ic_curchan);
2011 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2012 	    sc->sc_cur_rxchainmask);
2013 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
2014 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
2015 			status);
2016 		ATH_UNLOCK(sc);
2017 		return;
2018 	}
2019 	ath_chan_change(sc, ic->ic_curchan);
2020 
2021 	/* Let DFS at it in case it's a DFS channel */
2022 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2023 
2024 	/* Let spectral at in case spectral is enabled */
2025 	ath_spectral_enable(sc, ic->ic_curchan);
2026 
2027 	/*
2028 	 * Likewise this is set during reset so update
2029 	 * state cached in the driver.
2030 	 */
2031 	sc->sc_diversity = ath_hal_getdiversity(ah);
2032 	sc->sc_lastlongcal = 0;
2033 	sc->sc_resetcal = 1;
2034 	sc->sc_lastcalreset = 0;
2035 	sc->sc_lastani = 0;
2036 	sc->sc_lastshortcal = 0;
2037 	sc->sc_doresetcal = AH_FALSE;
2038 	/*
2039 	 * Beacon timers were cleared here; give ath_newstate()
2040 	 * a hint that the beacon timers should be poked when
2041 	 * things transition to the RUN state.
2042 	 */
2043 	sc->sc_beacons = 0;
2044 
2045 	/*
2046 	 * Setup the hardware after reset: the key cache
2047 	 * is filled as needed and the receive engine is
2048 	 * set going.  Frame transmit is handled entirely
2049 	 * in the frame output path; there's nothing to do
2050 	 * here except setup the interrupt mask.
2051 	 */
2052 	if (ath_startrecv(sc) != 0) {
2053 		if_printf(ifp, "unable to start recv logic\n");
2054 		ATH_UNLOCK(sc);
2055 		return;
2056 	}
2057 
2058 	/*
2059 	 * Enable interrupts.
2060 	 */
2061 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2062 		  | HAL_INT_RXEOL | HAL_INT_RXORN
2063 		  | HAL_INT_TXURN
2064 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2065 
2066 	/*
2067 	 * Enable RX EDMA bits.  Note these overlap with
2068 	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2069 	 */
2070 	if (sc->sc_isedma)
2071 		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2072 
2073 	/*
2074 	 * Enable MIB interrupts when there are hardware phy counters.
2075 	 * Note we only do this (at the moment) for station mode.
2076 	 */
2077 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2078 		sc->sc_imask |= HAL_INT_MIB;
2079 
2080 	/* Enable global TX timeout and carrier sense timeout if available */
2081 	if (ath_hal_gtxto_supported(ah))
2082 		sc->sc_imask |= HAL_INT_GTT;
2083 
2084 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2085 		__func__, sc->sc_imask);
2086 
2087 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2088 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2089 	ath_hal_intrset(ah, sc->sc_imask);
2090 
2091 	ATH_UNLOCK(sc);
2092 
2093 #ifdef ATH_TX99_DIAG
2094 	if (sc->sc_tx99 != NULL)
2095 		sc->sc_tx99->start(sc->sc_tx99);
2096 	else
2097 #endif
2098 	ieee80211_start_all(ic);		/* start all vap's */
2099 }
2100 
2101 static void
2102 ath_stop_locked(struct ifnet *ifp)
2103 {
2104 	struct ath_softc *sc = ifp->if_softc;
2105 	struct ath_hal *ah = sc->sc_ah;
2106 
2107 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2108 		__func__, sc->sc_invalid, ifp->if_flags);
2109 
2110 	ATH_LOCK_ASSERT(sc);
2111 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2112 		/*
2113 		 * Shutdown the hardware and driver:
2114 		 *    reset 802.11 state machine
2115 		 *    turn off timers
2116 		 *    disable interrupts
2117 		 *    turn off the radio
2118 		 *    clear transmit machinery
2119 		 *    clear receive machinery
2120 		 *    drain and release tx queues
2121 		 *    reclaim beacon resources
2122 		 *    power down hardware
2123 		 *
2124 		 * Note that some of this work is not possible if the
2125 		 * hardware is gone (invalid).
2126 		 */
2127 #ifdef ATH_TX99_DIAG
2128 		if (sc->sc_tx99 != NULL)
2129 			sc->sc_tx99->stop(sc->sc_tx99);
2130 #endif
2131 		callout_stop(&sc->sc_wd_ch);
2132 		sc->sc_wd_timer = 0;
2133 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2134 		if (!sc->sc_invalid) {
2135 			if (sc->sc_softled) {
2136 				callout_stop(&sc->sc_ledtimer);
2137 				ath_hal_gpioset(ah, sc->sc_ledpin,
2138 					!sc->sc_ledon);
2139 				sc->sc_blinking = 0;
2140 			}
2141 			ath_hal_intrset(ah, 0);
2142 		}
2143 		ath_draintxq(sc, ATH_RESET_DEFAULT);
2144 		if (!sc->sc_invalid) {
2145 			ath_stoprecv(sc, 1);
2146 			ath_hal_phydisable(ah);
2147 		} else
2148 			sc->sc_rxlink = NULL;
2149 		ath_beacon_free(sc);	/* XXX not needed */
2150 	}
2151 }
2152 
2153 #define	MAX_TXRX_ITERATIONS	1000
2154 static void
2155 ath_txrx_stop_locked(struct ath_softc *sc)
2156 {
2157 	int i = MAX_TXRX_ITERATIONS;
2158 
2159 	ATH_UNLOCK_ASSERT(sc);
2160 	ATH_PCU_LOCK_ASSERT(sc);
2161 
2162 	/*
2163 	 * Sleep until all the pending operations have completed.
2164 	 *
2165 	 * The caller must ensure that reset has been incremented
2166 	 * or the pending operations may continue being queued.
2167 	 */
2168 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2169 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2170 		if (i <= 0)
2171 			break;
2172 		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
2173 		i--;
2174 	}
2175 
2176 	if (i <= 0)
2177 		device_printf(sc->sc_dev,
2178 		    "%s: didn't finish after %d iterations\n",
2179 		    __func__, MAX_TXRX_ITERATIONS);
2180 }
2181 #undef	MAX_TXRX_ITERATIONS
2182 
2183 #if 0
2184 static void
2185 ath_txrx_stop(struct ath_softc *sc)
2186 {
2187 	ATH_UNLOCK_ASSERT(sc);
2188 	ATH_PCU_UNLOCK_ASSERT(sc);
2189 
2190 	ATH_PCU_LOCK(sc);
2191 	ath_txrx_stop_locked(sc);
2192 	ATH_PCU_UNLOCK(sc);
2193 }
2194 #endif
2195 
2196 static void
2197 ath_txrx_start(struct ath_softc *sc)
2198 {
2199 
2200 	taskqueue_unblock(sc->sc_tq);
2201 }
2202 
2203 /*
2204  * Grab the reset lock, and wait around until noone else
2205  * is trying to do anything with it.
2206  *
2207  * This is totally horrible but we can't hold this lock for
2208  * long enough to do TX/RX or we end up with net80211/ip stack
2209  * LORs and eventual deadlock.
2210  *
2211  * "dowait" signals whether to spin, waiting for the reset
2212  * lock count to reach 0. This should (for now) only be used
2213  * during the reset path, as the rest of the code may not
2214  * be locking-reentrant enough to behave correctly.
2215  *
2216  * Another, cleaner way should be found to serialise all of
2217  * these operations.
2218  */
2219 #define	MAX_RESET_ITERATIONS	10
2220 static int
2221 ath_reset_grablock(struct ath_softc *sc, int dowait)
2222 {
2223 	int w = 0;
2224 	int i = MAX_RESET_ITERATIONS;
2225 
2226 	ATH_PCU_LOCK_ASSERT(sc);
2227 	do {
2228 		if (sc->sc_inreset_cnt == 0) {
2229 			w = 1;
2230 			break;
2231 		}
2232 		if (dowait == 0) {
2233 			w = 0;
2234 			break;
2235 		}
2236 		ATH_PCU_UNLOCK(sc);
2237 		pause("ath_reset_grablock", 1);
2238 		i--;
2239 		ATH_PCU_LOCK(sc);
2240 	} while (i > 0);
2241 
2242 	/*
2243 	 * We always increment the refcounter, regardless
2244 	 * of whether we succeeded to get it in an exclusive
2245 	 * way.
2246 	 */
2247 	sc->sc_inreset_cnt++;
2248 
2249 	if (i <= 0)
2250 		device_printf(sc->sc_dev,
2251 		    "%s: didn't finish after %d iterations\n",
2252 		    __func__, MAX_RESET_ITERATIONS);
2253 
2254 	if (w == 0)
2255 		device_printf(sc->sc_dev,
2256 		    "%s: warning, recursive reset path!\n",
2257 		    __func__);
2258 
2259 	return w;
2260 }
2261 #undef MAX_RESET_ITERATIONS
2262 
2263 /*
2264  * XXX TODO: write ath_reset_releaselock
2265  */
2266 
2267 static void
2268 ath_stop(struct ifnet *ifp)
2269 {
2270 	struct ath_softc *sc = ifp->if_softc;
2271 
2272 	ATH_LOCK(sc);
2273 	ath_stop_locked(ifp);
2274 	ATH_UNLOCK(sc);
2275 }
2276 
2277 /*
2278  * Reset the hardware w/o losing operational state.  This is
2279  * basically a more efficient way of doing ath_stop, ath_init,
2280  * followed by state transitions to the current 802.11
2281  * operational state.  Used to recover from various errors and
2282  * to reset or reload hardware state.
2283  */
2284 int
2285 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2286 {
2287 	struct ath_softc *sc = ifp->if_softc;
2288 	struct ieee80211com *ic = ifp->if_l2com;
2289 	struct ath_hal *ah = sc->sc_ah;
2290 	HAL_STATUS status;
2291 	int i;
2292 
2293 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2294 
2295 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2296 	ATH_PCU_UNLOCK_ASSERT(sc);
2297 	ATH_UNLOCK_ASSERT(sc);
2298 
2299 	/* Try to (stop any further TX/RX from occuring */
2300 	taskqueue_block(sc->sc_tq);
2301 
2302 	ATH_PCU_LOCK(sc);
2303 	ath_hal_intrset(ah, 0);		/* disable interrupts */
2304 	ath_txrx_stop_locked(sc);	/* Ensure TX/RX is stopped */
2305 	if (ath_reset_grablock(sc, 1) == 0) {
2306 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2307 		    __func__);
2308 	}
2309 	ATH_PCU_UNLOCK(sc);
2310 
2311 	/*
2312 	 * Should now wait for pending TX/RX to complete
2313 	 * and block future ones from occuring. This needs to be
2314 	 * done before the TX queue is drained.
2315 	 */
2316 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2317 
2318 	/*
2319 	 * Regardless of whether we're doing a no-loss flush or
2320 	 * not, stop the PCU and handle what's in the RX queue.
2321 	 * That way frames aren't dropped which shouldn't be.
2322 	 */
2323 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2324 	ath_rx_flush(sc);
2325 
2326 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2327 	/* NB: indicate channel change so we do a full reset */
2328 	ath_update_chainmasks(sc, ic->ic_curchan);
2329 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2330 	    sc->sc_cur_rxchainmask);
2331 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2332 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2333 			__func__, status);
2334 	sc->sc_diversity = ath_hal_getdiversity(ah);
2335 
2336 	/* Let DFS at it in case it's a DFS channel */
2337 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2338 
2339 	/* Let spectral at in case spectral is enabled */
2340 	ath_spectral_enable(sc, ic->ic_curchan);
2341 
2342 	if (ath_startrecv(sc) != 0)	/* restart recv */
2343 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2344 	/*
2345 	 * We may be doing a reset in response to an ioctl
2346 	 * that changes the channel so update any state that
2347 	 * might change as a result.
2348 	 */
2349 	ath_chan_change(sc, ic->ic_curchan);
2350 	if (sc->sc_beacons) {		/* restart beacons */
2351 #ifdef IEEE80211_SUPPORT_TDMA
2352 		if (sc->sc_tdma)
2353 			ath_tdma_config(sc, NULL);
2354 		else
2355 #endif
2356 			ath_beacon_config(sc, NULL);
2357 	}
2358 
2359 	/*
2360 	 * Release the reset lock and re-enable interrupts here.
2361 	 * If an interrupt was being processed in ath_intr(),
2362 	 * it would disable interrupts at this point. So we have
2363 	 * to atomically enable interrupts and decrement the
2364 	 * reset counter - this way ath_intr() doesn't end up
2365 	 * disabling interrupts without a corresponding enable
2366 	 * in the rest or channel change path.
2367 	 */
2368 	ATH_PCU_LOCK(sc);
2369 	sc->sc_inreset_cnt--;
2370 	/* XXX only do this if sc_inreset_cnt == 0? */
2371 	ath_hal_intrset(ah, sc->sc_imask);
2372 	ATH_PCU_UNLOCK(sc);
2373 
2374 	/*
2375 	 * TX and RX can be started here. If it were started with
2376 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2377 	 * Thus if this is a nested call through the reset or
2378 	 * channel change code, TX completion will occur but
2379 	 * RX completion and ath_start / ath_tx_start will not
2380 	 * run.
2381 	 */
2382 
2383 	/* Restart TX/RX as needed */
2384 	ath_txrx_start(sc);
2385 
2386 	/* Restart TX completion and pending TX */
2387 	if (reset_type == ATH_RESET_NOLOSS) {
2388 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2389 			if (ATH_TXQ_SETUP(sc, i)) {
2390 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2391 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2392 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2393 
2394 				ATH_TX_LOCK(sc);
2395 				ath_txq_sched(sc, &sc->sc_txq[i]);
2396 				ATH_TX_UNLOCK(sc);
2397 			}
2398 		}
2399 	}
2400 
2401 	/*
2402 	 * This may have been set during an ath_start() call which
2403 	 * set this once it detected a concurrent TX was going on.
2404 	 * So, clear it.
2405 	 */
2406 	IF_LOCK(&ifp->if_snd);
2407 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2408 	IF_UNLOCK(&ifp->if_snd);
2409 
2410 	/* Handle any frames in the TX queue */
2411 	/*
2412 	 * XXX should this be done by the caller, rather than
2413 	 * ath_reset() ?
2414 	 */
2415 	ath_tx_kick(sc);		/* restart xmit */
2416 	return 0;
2417 }
2418 
2419 static int
2420 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2421 {
2422 	struct ieee80211com *ic = vap->iv_ic;
2423 	struct ifnet *ifp = ic->ic_ifp;
2424 	struct ath_softc *sc = ifp->if_softc;
2425 	struct ath_hal *ah = sc->sc_ah;
2426 
2427 	switch (cmd) {
2428 	case IEEE80211_IOC_TXPOWER:
2429 		/*
2430 		 * If per-packet TPC is enabled, then we have nothing
2431 		 * to do; otherwise we need to force the global limit.
2432 		 * All this can happen directly; no need to reset.
2433 		 */
2434 		if (!ath_hal_gettpc(ah))
2435 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2436 		return 0;
2437 	}
2438 	/* XXX? Full or NOLOSS? */
2439 	return ath_reset(ifp, ATH_RESET_FULL);
2440 }
2441 
2442 struct ath_buf *
2443 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2444 {
2445 	struct ath_buf *bf;
2446 
2447 	ATH_TXBUF_LOCK_ASSERT(sc);
2448 
2449 	if (btype == ATH_BUFTYPE_MGMT)
2450 		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2451 	else
2452 		bf = TAILQ_FIRST(&sc->sc_txbuf);
2453 
2454 	if (bf == NULL) {
2455 		sc->sc_stats.ast_tx_getnobuf++;
2456 	} else {
2457 		if (bf->bf_flags & ATH_BUF_BUSY) {
2458 			sc->sc_stats.ast_tx_getbusybuf++;
2459 			bf = NULL;
2460 		}
2461 	}
2462 
2463 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2464 		if (btype == ATH_BUFTYPE_MGMT)
2465 			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2466 		else {
2467 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2468 			sc->sc_txbuf_cnt--;
2469 
2470 			/*
2471 			 * This shuldn't happen; however just to be
2472 			 * safe print a warning and fudge the txbuf
2473 			 * count.
2474 			 */
2475 			if (sc->sc_txbuf_cnt < 0) {
2476 				device_printf(sc->sc_dev,
2477 				    "%s: sc_txbuf_cnt < 0?\n",
2478 				    __func__);
2479 				sc->sc_txbuf_cnt = 0;
2480 			}
2481 		}
2482 	} else
2483 		bf = NULL;
2484 
2485 	if (bf == NULL) {
2486 		/* XXX should check which list, mgmt or otherwise */
2487 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2488 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2489 			"out of xmit buffers" : "xmit buffer busy");
2490 		return NULL;
2491 	}
2492 
2493 	/* XXX TODO: should do this at buffer list initialisation */
2494 	/* XXX (then, ensure the buffer has the right flag set) */
2495 	bf->bf_flags = 0;
2496 	if (btype == ATH_BUFTYPE_MGMT)
2497 		bf->bf_flags |= ATH_BUF_MGMT;
2498 	else
2499 		bf->bf_flags &= (~ATH_BUF_MGMT);
2500 
2501 	/* Valid bf here; clear some basic fields */
2502 	bf->bf_next = NULL;	/* XXX just to be sure */
2503 	bf->bf_last = NULL;	/* XXX again, just to be sure */
2504 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2505 	bzero(&bf->bf_state, sizeof(bf->bf_state));
2506 
2507 	/*
2508 	 * Track the descriptor ID only if doing EDMA
2509 	 */
2510 	if (sc->sc_isedma) {
2511 		bf->bf_descid = sc->sc_txbuf_descid;
2512 		sc->sc_txbuf_descid++;
2513 	}
2514 
2515 	return bf;
2516 }
2517 
2518 /*
2519  * When retrying a software frame, buffers marked ATH_BUF_BUSY
2520  * can't be thrown back on the queue as they could still be
2521  * in use by the hardware.
2522  *
2523  * This duplicates the buffer, or returns NULL.
2524  *
2525  * The descriptor is also copied but the link pointers and
2526  * the DMA segments aren't copied; this frame should thus
2527  * be again passed through the descriptor setup/chain routines
2528  * so the link is correct.
2529  *
2530  * The caller must free the buffer using ath_freebuf().
2531  */
2532 struct ath_buf *
2533 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
2534 {
2535 	struct ath_buf *tbf;
2536 
2537 	tbf = ath_getbuf(sc,
2538 	    (bf->bf_flags & ATH_BUF_MGMT) ?
2539 	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2540 	if (tbf == NULL)
2541 		return NULL;	/* XXX failure? Why? */
2542 
2543 	/* Copy basics */
2544 	tbf->bf_next = NULL;
2545 	tbf->bf_nseg = bf->bf_nseg;
2546 	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
2547 	tbf->bf_status = bf->bf_status;
2548 	tbf->bf_m = bf->bf_m;
2549 	tbf->bf_node = bf->bf_node;
2550 	/* will be setup by the chain/setup function */
2551 	tbf->bf_lastds = NULL;
2552 	/* for now, last == self */
2553 	tbf->bf_last = tbf;
2554 	tbf->bf_comp = bf->bf_comp;
2555 
2556 	/* NOTE: DMA segments will be setup by the setup/chain functions */
2557 
2558 	/* The caller has to re-init the descriptor + links */
2559 
2560 	/*
2561 	 * Free the DMA mapping here, before we NULL the mbuf.
2562 	 * We must only call bus_dmamap_unload() once per mbuf chain
2563 	 * or behaviour is undefined.
2564 	 */
2565 	if (bf->bf_m != NULL) {
2566 		/*
2567 		 * XXX is this POSTWRITE call required?
2568 		 */
2569 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2570 		    BUS_DMASYNC_POSTWRITE);
2571 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2572 	}
2573 
2574 	bf->bf_m = NULL;
2575 	bf->bf_node = NULL;
2576 
2577 	/* Copy state */
2578 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2579 
2580 	return tbf;
2581 }
2582 
2583 struct ath_buf *
2584 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
2585 {
2586 	struct ath_buf *bf;
2587 
2588 	ATH_TXBUF_LOCK(sc);
2589 	bf = _ath_getbuf_locked(sc, btype);
2590 	/*
2591 	 * If a mgmt buffer was requested but we're out of those,
2592 	 * try requesting a normal one.
2593 	 */
2594 	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
2595 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
2596 	ATH_TXBUF_UNLOCK(sc);
2597 	if (bf == NULL) {
2598 		struct ifnet *ifp = sc->sc_ifp;
2599 
2600 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2601 		sc->sc_stats.ast_tx_qstop++;
2602 		IF_LOCK(&ifp->if_snd);
2603 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2604 		IF_UNLOCK(&ifp->if_snd);
2605 	}
2606 	return bf;
2607 }
2608 
2609 static void
2610 ath_start_queue(struct ifnet *ifp)
2611 {
2612 	struct ath_softc *sc = ifp->if_softc;
2613 
2614 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start");
2615 	ath_tx_kick(sc);
2616 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished");
2617 }
2618 
2619 void
2620 ath_start_task(void *arg, int npending)
2621 {
2622 	struct ath_softc *sc = (struct ath_softc *) arg;
2623 	struct ifnet *ifp = sc->sc_ifp;
2624 
2625 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start");
2626 
2627 	/* XXX is it ok to hold the ATH_LOCK here? */
2628 	ATH_PCU_LOCK(sc);
2629 	if (sc->sc_inreset_cnt > 0) {
2630 		device_printf(sc->sc_dev,
2631 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2632 		ATH_PCU_UNLOCK(sc);
2633 		IF_LOCK(&ifp->if_snd);
2634 		sc->sc_stats.ast_tx_qstop++;
2635 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2636 		IF_UNLOCK(&ifp->if_snd);
2637 		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
2638 		return;
2639 	}
2640 	sc->sc_txstart_cnt++;
2641 	ATH_PCU_UNLOCK(sc);
2642 
2643 	ATH_TX_LOCK(sc);
2644 	ath_start(sc->sc_ifp);
2645 	ATH_TX_UNLOCK(sc);
2646 
2647 	ATH_PCU_LOCK(sc);
2648 	sc->sc_txstart_cnt--;
2649 	ATH_PCU_UNLOCK(sc);
2650 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished");
2651 }
2652 
2653 void
2654 ath_start(struct ifnet *ifp)
2655 {
2656 	struct ath_softc *sc = ifp->if_softc;
2657 	struct ieee80211_node *ni;
2658 	struct ath_buf *bf;
2659 	struct mbuf *m, *next;
2660 	ath_bufhead frags;
2661 	int npkts = 0;
2662 
2663 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2664 		return;
2665 
2666 	ATH_TX_LOCK_ASSERT(sc);
2667 
2668 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called");
2669 
2670 	for (;;) {
2671 		/*
2672 		 * Grab the frame that we're going to try and transmit.
2673 		 */
2674 		IFQ_DEQUEUE(&ifp->if_snd, m);
2675 		if (m == NULL)
2676 			break;
2677 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2678 
2679 		/*
2680 		 * Enforce how deep a node queue can get.
2681 		 *
2682 		 * XXX it would be nicer if we kept an mbuf queue per
2683 		 * node and only whacked them into ath_bufs when we
2684 		 * are ready to schedule some traffic from them.
2685 		 * .. that may come later.
2686 		 *
2687 		 * XXX we should also track the per-node hardware queue
2688 		 * depth so it is easy to limit the _SUM_ of the swq and
2689 		 * hwq frames.  Since we only schedule two HWQ frames
2690 		 * at a time, this should be OK for now.
2691 		 */
2692 		if ((!(m->m_flags & M_EAPOL)) &&
2693 		    (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
2694 			sc->sc_stats.ast_tx_nodeq_overflow++;
2695 			if (ni != NULL)
2696 				ieee80211_free_node(ni);
2697 			m_freem(m);
2698 			m = NULL;
2699 			continue;
2700 		}
2701 
2702 		/*
2703 		 * Check how many TX buffers are available.
2704 		 *
2705 		 * If this is for non-EAPOL traffic, just leave some
2706 		 * space free in order for buffer cloning and raw
2707 		 * frame transmission to occur.
2708 		 *
2709 		 * If it's for EAPOL traffic, ignore this for now.
2710 		 * Management traffic will be sent via the raw transmit
2711 		 * method which bypasses this check.
2712 		 *
2713 		 * This is needed to ensure that EAPOL frames during
2714 		 * (re) keying have a chance to go out.
2715 		 *
2716 		 * See kern/138379 for more information.
2717 		 */
2718 		if ((!(m->m_flags & M_EAPOL)) &&
2719 		    (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
2720 			sc->sc_stats.ast_tx_nobuf++;
2721 			IF_LOCK(&ifp->if_snd);
2722 			_IF_PREPEND(&ifp->if_snd, m);
2723 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2724 			IF_UNLOCK(&ifp->if_snd);
2725 			m = NULL;
2726 			break;
2727 		}
2728 
2729 		/*
2730 		 * Grab a TX buffer and associated resources.
2731 		 *
2732 		 * If it's an EAPOL frame, allocate a MGMT ath_buf.
2733 		 * That way even with temporary buffer exhaustion due to
2734 		 * the data path doesn't leave us without the ability
2735 		 * to transmit management frames.
2736 		 *
2737 		 * Otherwise allocate a normal buffer.
2738 		 */
2739 		if (m->m_flags & M_EAPOL)
2740 			bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
2741 		else
2742 			bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
2743 
2744 		if (bf == NULL) {
2745 			/*
2746 			 * If we failed to allocate a buffer, prepend it
2747 			 * and continue.
2748 			 *
2749 			 * We shouldn't fail normally, due to the check
2750 			 * above.
2751 			 */
2752 			sc->sc_stats.ast_tx_nobuf++;
2753 			IF_LOCK(&ifp->if_snd);
2754 			_IF_PREPEND(&ifp->if_snd, m);
2755 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2756 			IF_UNLOCK(&ifp->if_snd);
2757 			m = NULL;
2758 			break;
2759 		}
2760 
2761 		npkts ++;
2762 
2763 		/*
2764 		 * Check for fragmentation.  If this frame
2765 		 * has been broken up verify we have enough
2766 		 * buffers to send all the fragments so all
2767 		 * go out or none...
2768 		 */
2769 		TAILQ_INIT(&frags);
2770 		if ((m->m_flags & M_FRAG) &&
2771 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2772 			DPRINTF(sc, ATH_DEBUG_XMIT,
2773 			    "%s: out of txfrag buffers\n", __func__);
2774 			sc->sc_stats.ast_tx_nofrag++;
2775 			ifp->if_oerrors++;
2776 			ath_freetx(m);
2777 			goto bad;
2778 		}
2779 		ifp->if_opackets++;
2780 	nextfrag:
2781 		/*
2782 		 * Pass the frame to the h/w for transmission.
2783 		 * Fragmented frames have each frag chained together
2784 		 * with m_nextpkt.  We know there are sufficient ath_buf's
2785 		 * to send all the frags because of work done by
2786 		 * ath_txfrag_setup.  We leave m_nextpkt set while
2787 		 * calling ath_tx_start so it can use it to extend the
2788 		 * the tx duration to cover the subsequent frag and
2789 		 * so it can reclaim all the mbufs in case of an error;
2790 		 * ath_tx_start clears m_nextpkt once it commits to
2791 		 * handing the frame to the hardware.
2792 		 */
2793 		next = m->m_nextpkt;
2794 		if (ath_tx_start(sc, ni, bf, m)) {
2795 	bad:
2796 			ifp->if_oerrors++;
2797 	reclaim:
2798 			bf->bf_m = NULL;
2799 			bf->bf_node = NULL;
2800 			ATH_TXBUF_LOCK(sc);
2801 			ath_returnbuf_head(sc, bf);
2802 			ath_txfrag_cleanup(sc, &frags, ni);
2803 			ATH_TXBUF_UNLOCK(sc);
2804 			/*
2805 			 * XXX todo, free the node outside of
2806 			 * the TX lock context!
2807 			 */
2808 			if (ni != NULL)
2809 				ieee80211_free_node(ni);
2810 			continue;
2811 		}
2812 
2813 		/*
2814 		 * Check here if the node is in power save state.
2815 		 */
2816 		ath_tx_update_tim(sc, ni, 1);
2817 
2818 		if (next != NULL) {
2819 			/*
2820 			 * Beware of state changing between frags.
2821 			 * XXX check sta power-save state?
2822 			 */
2823 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2824 				DPRINTF(sc, ATH_DEBUG_XMIT,
2825 				    "%s: flush fragmented packet, state %s\n",
2826 				    __func__,
2827 				    ieee80211_state_name[ni->ni_vap->iv_state]);
2828 				/* XXX dmamap */
2829 				ath_freetx(next);
2830 				goto reclaim;
2831 			}
2832 			m = next;
2833 			bf = TAILQ_FIRST(&frags);
2834 			KASSERT(bf != NULL, ("no buf for txfrag"));
2835 			TAILQ_REMOVE(&frags, bf, bf_list);
2836 			goto nextfrag;
2837 		}
2838 
2839 		sc->sc_wd_timer = 5;
2840 	}
2841 	ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts);
2842 }
2843 static int
2844 ath_media_change(struct ifnet *ifp)
2845 {
2846 	int error = ieee80211_media_change(ifp);
2847 	/* NB: only the fixed rate can change and that doesn't need a reset */
2848 	return (error == ENETRESET ? 0 : error);
2849 }
2850 
2851 /*
2852  * Block/unblock tx+rx processing while a key change is done.
2853  * We assume the caller serializes key management operations
2854  * so we only need to worry about synchronization with other
2855  * uses that originate in the driver.
2856  */
2857 static void
2858 ath_key_update_begin(struct ieee80211vap *vap)
2859 {
2860 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2861 	struct ath_softc *sc = ifp->if_softc;
2862 
2863 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2864 	taskqueue_block(sc->sc_tq);
2865 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2866 }
2867 
2868 static void
2869 ath_key_update_end(struct ieee80211vap *vap)
2870 {
2871 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2872 	struct ath_softc *sc = ifp->if_softc;
2873 
2874 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2875 	IF_UNLOCK(&ifp->if_snd);
2876 	taskqueue_unblock(sc->sc_tq);
2877 }
2878 
2879 static void
2880 ath_update_promisc(struct ifnet *ifp)
2881 {
2882 	struct ath_softc *sc = ifp->if_softc;
2883 	u_int32_t rfilt;
2884 
2885 	/* configure rx filter */
2886 	rfilt = ath_calcrxfilter(sc);
2887 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2888 
2889 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2890 }
2891 
2892 static void
2893 ath_update_mcast(struct ifnet *ifp)
2894 {
2895 	struct ath_softc *sc = ifp->if_softc;
2896 	u_int32_t mfilt[2];
2897 
2898 	/* calculate and install multicast filter */
2899 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2900 		struct ifmultiaddr *ifma;
2901 		/*
2902 		 * Merge multicast addresses to form the hardware filter.
2903 		 */
2904 		mfilt[0] = mfilt[1] = 0;
2905 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2906 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2907 			caddr_t dl;
2908 			u_int32_t val;
2909 			u_int8_t pos;
2910 
2911 			/* calculate XOR of eight 6bit values */
2912 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2913 			val = LE_READ_4(dl + 0);
2914 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2915 			val = LE_READ_4(dl + 3);
2916 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2917 			pos &= 0x3f;
2918 			mfilt[pos / 32] |= (1 << (pos % 32));
2919 		}
2920 		if_maddr_runlock(ifp);
2921 	} else
2922 		mfilt[0] = mfilt[1] = ~0;
2923 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2924 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2925 		__func__, mfilt[0], mfilt[1]);
2926 }
2927 
2928 void
2929 ath_mode_init(struct ath_softc *sc)
2930 {
2931 	struct ifnet *ifp = sc->sc_ifp;
2932 	struct ath_hal *ah = sc->sc_ah;
2933 	u_int32_t rfilt;
2934 
2935 	/* configure rx filter */
2936 	rfilt = ath_calcrxfilter(sc);
2937 	ath_hal_setrxfilter(ah, rfilt);
2938 
2939 	/* configure operational mode */
2940 	ath_hal_setopmode(ah);
2941 
2942 	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
2943 	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
2944 	    __func__,
2945 	    ah,
2946 	    ifp,
2947 	    (ifp == NULL) ? NULL : ifp->if_addr);
2948 
2949 	/* handle any link-level address change */
2950 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2951 
2952 	/* calculate and install multicast filter */
2953 	ath_update_mcast(ifp);
2954 }
2955 
2956 /*
2957  * Set the slot time based on the current setting.
2958  */
2959 void
2960 ath_setslottime(struct ath_softc *sc)
2961 {
2962 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2963 	struct ath_hal *ah = sc->sc_ah;
2964 	u_int usec;
2965 
2966 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2967 		usec = 13;
2968 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2969 		usec = 21;
2970 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2971 		/* honor short/long slot time only in 11g */
2972 		/* XXX shouldn't honor on pure g or turbo g channel */
2973 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2974 			usec = HAL_SLOT_TIME_9;
2975 		else
2976 			usec = HAL_SLOT_TIME_20;
2977 	} else
2978 		usec = HAL_SLOT_TIME_9;
2979 
2980 	DPRINTF(sc, ATH_DEBUG_RESET,
2981 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2982 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2983 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2984 
2985 	ath_hal_setslottime(ah, usec);
2986 	sc->sc_updateslot = OK;
2987 }
2988 
2989 /*
2990  * Callback from the 802.11 layer to update the
2991  * slot time based on the current setting.
2992  */
2993 static void
2994 ath_updateslot(struct ifnet *ifp)
2995 {
2996 	struct ath_softc *sc = ifp->if_softc;
2997 	struct ieee80211com *ic = ifp->if_l2com;
2998 
2999 	/*
3000 	 * When not coordinating the BSS, change the hardware
3001 	 * immediately.  For other operation we defer the change
3002 	 * until beacon updates have propagated to the stations.
3003 	 */
3004 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3005 	    ic->ic_opmode == IEEE80211_M_MBSS)
3006 		sc->sc_updateslot = UPDATE;
3007 	else
3008 		ath_setslottime(sc);
3009 }
3010 
3011 /*
3012  * Append the contents of src to dst; both queues
3013  * are assumed to be locked.
3014  */
3015 void
3016 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3017 {
3018 
3019 	ATH_TXQ_LOCK_ASSERT(src);
3020 	ATH_TXQ_LOCK_ASSERT(dst);
3021 
3022 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3023 	dst->axq_link = src->axq_link;
3024 	src->axq_link = NULL;
3025 	dst->axq_depth += src->axq_depth;
3026 	dst->axq_aggr_depth += src->axq_aggr_depth;
3027 	src->axq_depth = 0;
3028 	src->axq_aggr_depth = 0;
3029 }
3030 
3031 /*
3032  * Reset the hardware, with no loss.
3033  *
3034  * This can't be used for a general case reset.
3035  */
3036 static void
3037 ath_reset_proc(void *arg, int pending)
3038 {
3039 	struct ath_softc *sc = arg;
3040 	struct ifnet *ifp = sc->sc_ifp;
3041 
3042 #if 0
3043 	if_printf(ifp, "%s: resetting\n", __func__);
3044 #endif
3045 	ath_reset(ifp, ATH_RESET_NOLOSS);
3046 }
3047 
3048 /*
3049  * Reset the hardware after detecting beacons have stopped.
3050  */
3051 static void
3052 ath_bstuck_proc(void *arg, int pending)
3053 {
3054 	struct ath_softc *sc = arg;
3055 	struct ifnet *ifp = sc->sc_ifp;
3056 	uint32_t hangs = 0;
3057 
3058 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3059 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3060 
3061 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3062 		sc->sc_bmisscount);
3063 	sc->sc_stats.ast_bstuck++;
3064 	/*
3065 	 * This assumes that there's no simultaneous channel mode change
3066 	 * occuring.
3067 	 */
3068 	ath_reset(ifp, ATH_RESET_NOLOSS);
3069 }
3070 
3071 static void
3072 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3073 {
3074 	bus_addr_t *paddr = (bus_addr_t*) arg;
3075 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3076 	*paddr = segs->ds_addr;
3077 }
3078 
3079 /*
3080  * Allocate the descriptors and appropriate DMA tag/setup.
3081  *
3082  * For some situations (eg EDMA TX completion), there isn't a requirement
3083  * for the ath_buf entries to be allocated.
3084  */
3085 int
3086 ath_descdma_alloc_desc(struct ath_softc *sc,
3087 	struct ath_descdma *dd, ath_bufhead *head,
3088 	const char *name, int ds_size, int ndesc)
3089 {
3090 #define	DS2PHYS(_dd, _ds) \
3091 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3092 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3093 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3094 	struct ifnet *ifp = sc->sc_ifp;
3095 	int error;
3096 
3097 	dd->dd_descsize = ds_size;
3098 
3099 	DPRINTF(sc, ATH_DEBUG_RESET,
3100 	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
3101 	    __func__, name, ndesc, dd->dd_descsize);
3102 
3103 	dd->dd_name = name;
3104 	dd->dd_desc_len = dd->dd_descsize * ndesc;
3105 
3106 	/*
3107 	 * Merlin work-around:
3108 	 * Descriptors that cross the 4KB boundary can't be used.
3109 	 * Assume one skipped descriptor per 4KB page.
3110 	 */
3111 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3112 		int numpages = dd->dd_desc_len / 4096;
3113 		dd->dd_desc_len += ds_size * numpages;
3114 	}
3115 
3116 	/*
3117 	 * Setup DMA descriptor area.
3118 	 *
3119 	 * BUS_DMA_ALLOCNOW is not used; we never use bounce
3120 	 * buffers for the descriptors themselves.
3121 	 */
3122 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3123 		       PAGE_SIZE, 0,		/* alignment, bounds */
3124 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3125 		       BUS_SPACE_MAXADDR,	/* highaddr */
3126 		       NULL, NULL,		/* filter, filterarg */
3127 		       dd->dd_desc_len,		/* maxsize */
3128 		       1,			/* nsegments */
3129 		       dd->dd_desc_len,		/* maxsegsize */
3130 		       0,			/* flags */
3131 		       NULL,			/* lockfunc */
3132 		       NULL,			/* lockarg */
3133 		       &dd->dd_dmat);
3134 	if (error != 0) {
3135 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3136 		return error;
3137 	}
3138 
3139 	/* allocate descriptors */
3140 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3141 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3142 				 &dd->dd_dmamap);
3143 	if (error != 0) {
3144 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3145 			"error %u\n", ndesc, dd->dd_name, error);
3146 		goto fail1;
3147 	}
3148 
3149 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3150 				dd->dd_desc, dd->dd_desc_len,
3151 				ath_load_cb, &dd->dd_desc_paddr,
3152 				BUS_DMA_NOWAIT);
3153 	if (error != 0) {
3154 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3155 			dd->dd_name, error);
3156 		goto fail2;
3157 	}
3158 
3159 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3160 	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
3161 	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
3162 	    /*XXX*/ (u_long) dd->dd_desc_len);
3163 
3164 	return (0);
3165 
3166 fail2:
3167 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3168 fail1:
3169 	bus_dma_tag_destroy(dd->dd_dmat);
3170 	memset(dd, 0, sizeof(*dd));
3171 	return error;
3172 #undef DS2PHYS
3173 #undef ATH_DESC_4KB_BOUND_CHECK
3174 }
3175 
3176 int
3177 ath_descdma_setup(struct ath_softc *sc,
3178 	struct ath_descdma *dd, ath_bufhead *head,
3179 	const char *name, int ds_size, int nbuf, int ndesc)
3180 {
3181 #define	DS2PHYS(_dd, _ds) \
3182 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3183 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3184 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3185 	struct ifnet *ifp = sc->sc_ifp;
3186 	uint8_t *ds;
3187 	struct ath_buf *bf;
3188 	int i, bsize, error;
3189 
3190 	/* Allocate descriptors */
3191 	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3192 	    nbuf * ndesc);
3193 
3194 	/* Assume any errors during allocation were dealt with */
3195 	if (error != 0) {
3196 		return (error);
3197 	}
3198 
3199 	ds = (uint8_t *) dd->dd_desc;
3200 
3201 	/* allocate rx buffers */
3202 	bsize = sizeof(struct ath_buf) * nbuf;
3203 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3204 	if (bf == NULL) {
3205 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3206 			dd->dd_name, bsize);
3207 		goto fail3;
3208 	}
3209 	dd->dd_bufptr = bf;
3210 
3211 	TAILQ_INIT(head);
3212 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3213 		bf->bf_desc = (struct ath_desc *) ds;
3214 		bf->bf_daddr = DS2PHYS(dd, ds);
3215 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3216 			/*
3217 			 * Merlin WAR: Skip descriptor addresses which
3218 			 * cause 4KB boundary crossing along any point
3219 			 * in the descriptor.
3220 			 */
3221 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3222 			     dd->dd_descsize)) {
3223 				/* Start at the next page */
3224 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3225 				bf->bf_desc = (struct ath_desc *) ds;
3226 				bf->bf_daddr = DS2PHYS(dd, ds);
3227 			}
3228 		}
3229 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3230 				&bf->bf_dmamap);
3231 		if (error != 0) {
3232 			if_printf(ifp, "unable to create dmamap for %s "
3233 				"buffer %u, error %u\n", dd->dd_name, i, error);
3234 			ath_descdma_cleanup(sc, dd, head);
3235 			return error;
3236 		}
3237 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3238 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3239 	}
3240 
3241 	/*
3242 	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3243 	 * allocation otherwise weird stuff will occur and crash your
3244 	 * machine.
3245 	 */
3246 	return 0;
3247 	/* XXX this should likely just call ath_descdma_cleanup() */
3248 fail3:
3249 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3250 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3251 	bus_dma_tag_destroy(dd->dd_dmat);
3252 	memset(dd, 0, sizeof(*dd));
3253 	return error;
3254 #undef DS2PHYS
3255 #undef ATH_DESC_4KB_BOUND_CHECK
3256 }
3257 
3258 /*
3259  * Allocate ath_buf entries but no descriptor contents.
3260  *
3261  * This is for RX EDMA where the descriptors are the header part of
3262  * the RX buffer.
3263  */
3264 int
3265 ath_descdma_setup_rx_edma(struct ath_softc *sc,
3266 	struct ath_descdma *dd, ath_bufhead *head,
3267 	const char *name, int nbuf, int rx_status_len)
3268 {
3269 	struct ifnet *ifp = sc->sc_ifp;
3270 	struct ath_buf *bf;
3271 	int i, bsize, error;
3272 
3273 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3274 	    __func__, name, nbuf);
3275 
3276 	dd->dd_name = name;
3277 	/*
3278 	 * This is (mostly) purely for show.  We're not allocating any actual
3279 	 * descriptors here as EDMA RX has the descriptor be part
3280 	 * of the RX buffer.
3281 	 *
3282 	 * However, dd_desc_len is used by ath_descdma_free() to determine
3283 	 * whether we have already freed this DMA mapping.
3284 	 */
3285 	dd->dd_desc_len = rx_status_len * nbuf;
3286 	dd->dd_descsize = rx_status_len;
3287 
3288 	/* allocate rx buffers */
3289 	bsize = sizeof(struct ath_buf) * nbuf;
3290 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3291 	if (bf == NULL) {
3292 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3293 			dd->dd_name, bsize);
3294 		error = ENOMEM;
3295 		goto fail3;
3296 	}
3297 	dd->dd_bufptr = bf;
3298 
3299 	TAILQ_INIT(head);
3300 	for (i = 0; i < nbuf; i++, bf++) {
3301 		bf->bf_desc = NULL;
3302 		bf->bf_daddr = 0;
3303 		bf->bf_lastds = NULL;	/* Just an initial value */
3304 
3305 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3306 				&bf->bf_dmamap);
3307 		if (error != 0) {
3308 			if_printf(ifp, "unable to create dmamap for %s "
3309 				"buffer %u, error %u\n", dd->dd_name, i, error);
3310 			ath_descdma_cleanup(sc, dd, head);
3311 			return error;
3312 		}
3313 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3314 	}
3315 	return 0;
3316 fail3:
3317 	memset(dd, 0, sizeof(*dd));
3318 	return error;
3319 }
3320 
3321 void
3322 ath_descdma_cleanup(struct ath_softc *sc,
3323 	struct ath_descdma *dd, ath_bufhead *head)
3324 {
3325 	struct ath_buf *bf;
3326 	struct ieee80211_node *ni;
3327 	int do_warning = 0;
3328 
3329 	if (dd->dd_dmamap != 0) {
3330 		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3331 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3332 		bus_dma_tag_destroy(dd->dd_dmat);
3333 	}
3334 
3335 	if (head != NULL) {
3336 		TAILQ_FOREACH(bf, head, bf_list) {
3337 			if (bf->bf_m) {
3338 				/*
3339 				 * XXX warn if there's buffers here.
3340 				 * XXX it should have been freed by the
3341 				 * owner!
3342 				 */
3343 
3344 				if (do_warning == 0) {
3345 					do_warning = 1;
3346 					device_printf(sc->sc_dev,
3347 					    "%s: %s: mbuf should've been"
3348 					    " unmapped/freed!\n",
3349 					    __func__,
3350 					    dd->dd_name);
3351 				}
3352 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3353 				    BUS_DMASYNC_POSTREAD);
3354 				bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3355 				m_freem(bf->bf_m);
3356 				bf->bf_m = NULL;
3357 			}
3358 			if (bf->bf_dmamap != NULL) {
3359 				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3360 				bf->bf_dmamap = NULL;
3361 			}
3362 			ni = bf->bf_node;
3363 			bf->bf_node = NULL;
3364 			if (ni != NULL) {
3365 				/*
3366 				 * Reclaim node reference.
3367 				 */
3368 				ieee80211_free_node(ni);
3369 			}
3370 		}
3371 	}
3372 
3373 	if (head != NULL)
3374 		TAILQ_INIT(head);
3375 
3376 	if (dd->dd_bufptr != NULL)
3377 		free(dd->dd_bufptr, M_ATHDEV);
3378 	memset(dd, 0, sizeof(*dd));
3379 }
3380 
3381 static int
3382 ath_desc_alloc(struct ath_softc *sc)
3383 {
3384 	int error;
3385 
3386 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3387 		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
3388 	if (error != 0) {
3389 		return error;
3390 	}
3391 	sc->sc_txbuf_cnt = ath_txbuf;
3392 
3393 	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3394 		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3395 		    ATH_TXDESC);
3396 	if (error != 0) {
3397 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3398 		return error;
3399 	}
3400 
3401 	/*
3402 	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3403 	 * flag doesn't have to be set in ath_getbuf_locked().
3404 	 */
3405 
3406 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3407 			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3408 	if (error != 0) {
3409 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3410 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3411 		    &sc->sc_txbuf_mgmt);
3412 		return error;
3413 	}
3414 	return 0;
3415 }
3416 
3417 static void
3418 ath_desc_free(struct ath_softc *sc)
3419 {
3420 
3421 	if (sc->sc_bdma.dd_desc_len != 0)
3422 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3423 	if (sc->sc_txdma.dd_desc_len != 0)
3424 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3425 	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3426 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3427 		    &sc->sc_txbuf_mgmt);
3428 }
3429 
3430 static struct ieee80211_node *
3431 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3432 {
3433 	struct ieee80211com *ic = vap->iv_ic;
3434 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3435 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3436 	struct ath_node *an;
3437 
3438 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3439 	if (an == NULL) {
3440 		/* XXX stat+msg */
3441 		return NULL;
3442 	}
3443 	ath_rate_node_init(sc, an);
3444 
3445 	/* Setup the mutex - there's no associd yet so set the name to NULL */
3446 	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3447 	    device_get_nameunit(sc->sc_dev), an);
3448 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3449 
3450 	/* XXX setup ath_tid */
3451 	ath_tx_tid_init(sc, an);
3452 
3453 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3454 	return &an->an_node;
3455 }
3456 
3457 static void
3458 ath_node_cleanup(struct ieee80211_node *ni)
3459 {
3460 	struct ieee80211com *ic = ni->ni_ic;
3461 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3462 
3463 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3464 	ath_tx_node_flush(sc, ATH_NODE(ni));
3465 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3466 	sc->sc_node_cleanup(ni);
3467 }
3468 
3469 static void
3470 ath_node_free(struct ieee80211_node *ni)
3471 {
3472 	struct ieee80211com *ic = ni->ni_ic;
3473 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3474 
3475 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3476 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3477 	sc->sc_node_free(ni);
3478 }
3479 
3480 static void
3481 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3482 {
3483 	struct ieee80211com *ic = ni->ni_ic;
3484 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3485 	struct ath_hal *ah = sc->sc_ah;
3486 
3487 	*rssi = ic->ic_node_getrssi(ni);
3488 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3489 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3490 	else
3491 		*noise = -95;		/* nominally correct */
3492 }
3493 
3494 /*
3495  * Set the default antenna.
3496  */
3497 void
3498 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3499 {
3500 	struct ath_hal *ah = sc->sc_ah;
3501 
3502 	/* XXX block beacon interrupts */
3503 	ath_hal_setdefantenna(ah, antenna);
3504 	if (sc->sc_defant != antenna)
3505 		sc->sc_stats.ast_ant_defswitch++;
3506 	sc->sc_defant = antenna;
3507 	sc->sc_rxotherant = 0;
3508 }
3509 
3510 static void
3511 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3512 {
3513 	txq->axq_qnum = qnum;
3514 	txq->axq_ac = 0;
3515 	txq->axq_depth = 0;
3516 	txq->axq_aggr_depth = 0;
3517 	txq->axq_intrcnt = 0;
3518 	txq->axq_link = NULL;
3519 	txq->axq_softc = sc;
3520 	TAILQ_INIT(&txq->axq_q);
3521 	TAILQ_INIT(&txq->axq_tidq);
3522 	TAILQ_INIT(&txq->fifo.axq_q);
3523 	ATH_TXQ_LOCK_INIT(sc, txq);
3524 }
3525 
3526 /*
3527  * Setup a h/w transmit queue.
3528  */
3529 static struct ath_txq *
3530 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3531 {
3532 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3533 	struct ath_hal *ah = sc->sc_ah;
3534 	HAL_TXQ_INFO qi;
3535 	int qnum;
3536 
3537 	memset(&qi, 0, sizeof(qi));
3538 	qi.tqi_subtype = subtype;
3539 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3540 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3541 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3542 	/*
3543 	 * Enable interrupts only for EOL and DESC conditions.
3544 	 * We mark tx descriptors to receive a DESC interrupt
3545 	 * when a tx queue gets deep; otherwise waiting for the
3546 	 * EOL to reap descriptors.  Note that this is done to
3547 	 * reduce interrupt load and this only defers reaping
3548 	 * descriptors, never transmitting frames.  Aside from
3549 	 * reducing interrupts this also permits more concurrency.
3550 	 * The only potential downside is if the tx queue backs
3551 	 * up in which case the top half of the kernel may backup
3552 	 * due to a lack of tx descriptors.
3553 	 */
3554 	if (sc->sc_isedma)
3555 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
3556 		    HAL_TXQ_TXOKINT_ENABLE;
3557 	else
3558 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
3559 		    HAL_TXQ_TXDESCINT_ENABLE;
3560 
3561 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3562 	if (qnum == -1) {
3563 		/*
3564 		 * NB: don't print a message, this happens
3565 		 * normally on parts with too few tx queues
3566 		 */
3567 		return NULL;
3568 	}
3569 	if (qnum >= N(sc->sc_txq)) {
3570 		device_printf(sc->sc_dev,
3571 			"hal qnum %u out of range, max %zu!\n",
3572 			qnum, N(sc->sc_txq));
3573 		ath_hal_releasetxqueue(ah, qnum);
3574 		return NULL;
3575 	}
3576 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3577 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3578 		sc->sc_txqsetup |= 1<<qnum;
3579 	}
3580 	return &sc->sc_txq[qnum];
3581 #undef N
3582 }
3583 
3584 /*
3585  * Setup a hardware data transmit queue for the specified
3586  * access control.  The hal may not support all requested
3587  * queues in which case it will return a reference to a
3588  * previously setup queue.  We record the mapping from ac's
3589  * to h/w queues for use by ath_tx_start and also track
3590  * the set of h/w queues being used to optimize work in the
3591  * transmit interrupt handler and related routines.
3592  */
3593 static int
3594 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3595 {
3596 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3597 	struct ath_txq *txq;
3598 
3599 	if (ac >= N(sc->sc_ac2q)) {
3600 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3601 			ac, N(sc->sc_ac2q));
3602 		return 0;
3603 	}
3604 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3605 	if (txq != NULL) {
3606 		txq->axq_ac = ac;
3607 		sc->sc_ac2q[ac] = txq;
3608 		return 1;
3609 	} else
3610 		return 0;
3611 #undef N
3612 }
3613 
3614 /*
3615  * Update WME parameters for a transmit queue.
3616  */
3617 static int
3618 ath_txq_update(struct ath_softc *sc, int ac)
3619 {
3620 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3621 #define	ATH_TXOP_TO_US(v)		(v<<5)
3622 	struct ifnet *ifp = sc->sc_ifp;
3623 	struct ieee80211com *ic = ifp->if_l2com;
3624 	struct ath_txq *txq = sc->sc_ac2q[ac];
3625 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3626 	struct ath_hal *ah = sc->sc_ah;
3627 	HAL_TXQ_INFO qi;
3628 
3629 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3630 #ifdef IEEE80211_SUPPORT_TDMA
3631 	if (sc->sc_tdma) {
3632 		/*
3633 		 * AIFS is zero so there's no pre-transmit wait.  The
3634 		 * burst time defines the slot duration and is configured
3635 		 * through net80211.  The QCU is setup to not do post-xmit
3636 		 * back off, lockout all lower-priority QCU's, and fire
3637 		 * off the DMA beacon alert timer which is setup based
3638 		 * on the slot configuration.
3639 		 */
3640 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3641 			      | HAL_TXQ_TXERRINT_ENABLE
3642 			      | HAL_TXQ_TXURNINT_ENABLE
3643 			      | HAL_TXQ_TXEOLINT_ENABLE
3644 			      | HAL_TXQ_DBA_GATED
3645 			      | HAL_TXQ_BACKOFF_DISABLE
3646 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3647 			      ;
3648 		qi.tqi_aifs = 0;
3649 		/* XXX +dbaprep? */
3650 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3651 		qi.tqi_burstTime = qi.tqi_readyTime;
3652 	} else {
3653 #endif
3654 		/*
3655 		 * XXX shouldn't this just use the default flags
3656 		 * used in the previous queue setup?
3657 		 */
3658 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3659 			      | HAL_TXQ_TXERRINT_ENABLE
3660 			      | HAL_TXQ_TXDESCINT_ENABLE
3661 			      | HAL_TXQ_TXURNINT_ENABLE
3662 			      | HAL_TXQ_TXEOLINT_ENABLE
3663 			      ;
3664 		qi.tqi_aifs = wmep->wmep_aifsn;
3665 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3666 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3667 		qi.tqi_readyTime = 0;
3668 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3669 #ifdef IEEE80211_SUPPORT_TDMA
3670 	}
3671 #endif
3672 
3673 	DPRINTF(sc, ATH_DEBUG_RESET,
3674 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3675 	    __func__, txq->axq_qnum, qi.tqi_qflags,
3676 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3677 
3678 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3679 		if_printf(ifp, "unable to update hardware queue "
3680 			"parameters for %s traffic!\n",
3681 			ieee80211_wme_acnames[ac]);
3682 		return 0;
3683 	} else {
3684 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3685 		return 1;
3686 	}
3687 #undef ATH_TXOP_TO_US
3688 #undef ATH_EXPONENT_TO_VALUE
3689 }
3690 
3691 /*
3692  * Callback from the 802.11 layer to update WME parameters.
3693  */
3694 int
3695 ath_wme_update(struct ieee80211com *ic)
3696 {
3697 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3698 
3699 	return !ath_txq_update(sc, WME_AC_BE) ||
3700 	    !ath_txq_update(sc, WME_AC_BK) ||
3701 	    !ath_txq_update(sc, WME_AC_VI) ||
3702 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3703 }
3704 
3705 /*
3706  * Reclaim resources for a setup queue.
3707  */
3708 static void
3709 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3710 {
3711 
3712 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3713 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3714 	ATH_TXQ_LOCK_DESTROY(txq);
3715 }
3716 
3717 /*
3718  * Reclaim all tx queue resources.
3719  */
3720 static void
3721 ath_tx_cleanup(struct ath_softc *sc)
3722 {
3723 	int i;
3724 
3725 	ATH_TXBUF_LOCK_DESTROY(sc);
3726 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3727 		if (ATH_TXQ_SETUP(sc, i))
3728 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3729 }
3730 
3731 /*
3732  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3733  * using the current rates in sc_rixmap.
3734  */
3735 int
3736 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3737 {
3738 	int rix = sc->sc_rixmap[rate];
3739 	/* NB: return lowest rix for invalid rate */
3740 	return (rix == 0xff ? 0 : rix);
3741 }
3742 
3743 static void
3744 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3745     struct ath_buf *bf)
3746 {
3747 	struct ieee80211_node *ni = bf->bf_node;
3748 	struct ifnet *ifp = sc->sc_ifp;
3749 	struct ieee80211com *ic = ifp->if_l2com;
3750 	int sr, lr, pri;
3751 
3752 	if (ts->ts_status == 0) {
3753 		u_int8_t txant = ts->ts_antenna;
3754 		sc->sc_stats.ast_ant_tx[txant]++;
3755 		sc->sc_ant_tx[txant]++;
3756 		if (ts->ts_finaltsi != 0)
3757 			sc->sc_stats.ast_tx_altrate++;
3758 		pri = M_WME_GETAC(bf->bf_m);
3759 		if (pri >= WME_AC_VO)
3760 			ic->ic_wme.wme_hipri_traffic++;
3761 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3762 			ni->ni_inact = ni->ni_inact_reload;
3763 	} else {
3764 		if (ts->ts_status & HAL_TXERR_XRETRY)
3765 			sc->sc_stats.ast_tx_xretries++;
3766 		if (ts->ts_status & HAL_TXERR_FIFO)
3767 			sc->sc_stats.ast_tx_fifoerr++;
3768 		if (ts->ts_status & HAL_TXERR_FILT)
3769 			sc->sc_stats.ast_tx_filtered++;
3770 		if (ts->ts_status & HAL_TXERR_XTXOP)
3771 			sc->sc_stats.ast_tx_xtxop++;
3772 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3773 			sc->sc_stats.ast_tx_timerexpired++;
3774 
3775 		if (bf->bf_m->m_flags & M_FF)
3776 			sc->sc_stats.ast_ff_txerr++;
3777 	}
3778 	/* XXX when is this valid? */
3779 	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
3780 		sc->sc_stats.ast_tx_desccfgerr++;
3781 	/*
3782 	 * This can be valid for successful frame transmission!
3783 	 * If there's a TX FIFO underrun during aggregate transmission,
3784 	 * the MAC will pad the rest of the aggregate with delimiters.
3785 	 * If a BA is returned, the frame is marked as "OK" and it's up
3786 	 * to the TX completion code to notice which frames weren't
3787 	 * successfully transmitted.
3788 	 */
3789 	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
3790 		sc->sc_stats.ast_tx_data_underrun++;
3791 	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
3792 		sc->sc_stats.ast_tx_delim_underrun++;
3793 
3794 	sr = ts->ts_shortretry;
3795 	lr = ts->ts_longretry;
3796 	sc->sc_stats.ast_tx_shortretry += sr;
3797 	sc->sc_stats.ast_tx_longretry += lr;
3798 
3799 }
3800 
3801 /*
3802  * The default completion. If fail is 1, this means
3803  * "please don't retry the frame, and just return -1 status
3804  * to the net80211 stack.
3805  */
3806 void
3807 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3808 {
3809 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3810 	int st;
3811 
3812 	if (fail == 1)
3813 		st = -1;
3814 	else
3815 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
3816 		    ts->ts_status : HAL_TXERR_XRETRY;
3817 
3818 #if 0
3819 	if (bf->bf_state.bfs_dobaw)
3820 		device_printf(sc->sc_dev,
3821 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
3822 		    __func__,
3823 		    bf,
3824 		    SEQNO(bf->bf_state.bfs_seqno));
3825 #endif
3826 	if (bf->bf_next != NULL)
3827 		device_printf(sc->sc_dev,
3828 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
3829 		    __func__,
3830 		    bf,
3831 		    SEQNO(bf->bf_state.bfs_seqno));
3832 
3833 	/*
3834 	 * Check if the node software queue is empty; if so
3835 	 * then clear the TIM.
3836 	 *
3837 	 * This needs to be done before the buffer is freed as
3838 	 * otherwise the node reference will have been released
3839 	 * and the node may not actually exist any longer.
3840 	 *
3841 	 * XXX I don't like this belonging here, but it's cleaner
3842 	 * to do it here right now then all the other places
3843 	 * where ath_tx_default_comp() is called.
3844 	 *
3845 	 * XXX TODO: during drain, ensure that the callback is
3846 	 * being called so we get a chance to update the TIM.
3847 	 */
3848 	if (bf->bf_node)
3849 		ath_tx_update_tim(sc, bf->bf_node, 0);
3850 
3851 	/*
3852 	 * Do any tx complete callback.  Note this must
3853 	 * be done before releasing the node reference.
3854 	 * This will free the mbuf, release the net80211
3855 	 * node and recycle the ath_buf.
3856 	 */
3857 	ath_tx_freebuf(sc, bf, st);
3858 }
3859 
3860 /*
3861  * Update rate control with the given completion status.
3862  */
3863 void
3864 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
3865     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
3866     int nframes, int nbad)
3867 {
3868 	struct ath_node *an;
3869 
3870 	/* Only for unicast frames */
3871 	if (ni == NULL)
3872 		return;
3873 
3874 	an = ATH_NODE(ni);
3875 	ATH_NODE_UNLOCK_ASSERT(an);
3876 
3877 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
3878 		ATH_NODE_LOCK(an);
3879 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
3880 		ATH_NODE_UNLOCK(an);
3881 	}
3882 }
3883 
3884 /*
3885  * Process the completion of the given buffer.
3886  *
3887  * This calls the rate control update and then the buffer completion.
3888  * This will either free the buffer or requeue it.  In any case, the
3889  * bf pointer should be treated as invalid after this function is called.
3890  */
3891 void
3892 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
3893     struct ath_tx_status *ts, struct ath_buf *bf)
3894 {
3895 	struct ieee80211_node *ni = bf->bf_node;
3896 	struct ath_node *an = NULL;
3897 
3898 	ATH_TX_UNLOCK_ASSERT(sc);
3899 	ATH_TXQ_UNLOCK_ASSERT(txq);
3900 
3901 	/* If unicast frame, update general statistics */
3902 	if (ni != NULL) {
3903 		an = ATH_NODE(ni);
3904 		/* update statistics */
3905 		ath_tx_update_stats(sc, ts, bf);
3906 	}
3907 
3908 	/*
3909 	 * Call the completion handler.
3910 	 * The completion handler is responsible for
3911 	 * calling the rate control code.
3912 	 *
3913 	 * Frames with no completion handler get the
3914 	 * rate control code called here.
3915 	 */
3916 	if (bf->bf_comp == NULL) {
3917 		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
3918 		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
3919 			/*
3920 			 * XXX assume this isn't an aggregate
3921 			 * frame.
3922 			 */
3923 			ath_tx_update_ratectrl(sc, ni,
3924 			     bf->bf_state.bfs_rc, ts,
3925 			    bf->bf_state.bfs_pktlen, 1,
3926 			    (ts->ts_status == 0 ? 0 : 1));
3927 		}
3928 		ath_tx_default_comp(sc, bf, 0);
3929 	} else
3930 		bf->bf_comp(sc, bf, 0);
3931 }
3932 
3933 
3934 
3935 /*
3936  * Process completed xmit descriptors from the specified queue.
3937  * Kick the packet scheduler if needed. This can occur from this
3938  * particular task.
3939  */
3940 static int
3941 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
3942 {
3943 	struct ath_hal *ah = sc->sc_ah;
3944 	struct ath_buf *bf;
3945 	struct ath_desc *ds;
3946 	struct ath_tx_status *ts;
3947 	struct ieee80211_node *ni;
3948 #ifdef	IEEE80211_SUPPORT_SUPERG
3949 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3950 #endif	/* IEEE80211_SUPPORT_SUPERG */
3951 	int nacked;
3952 	HAL_STATUS status;
3953 
3954 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3955 		__func__, txq->axq_qnum,
3956 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3957 		txq->axq_link);
3958 
3959 	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
3960 	    "ath_tx_processq: txq=%u head %p link %p depth %p",
3961 	    txq->axq_qnum,
3962 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3963 	    txq->axq_link,
3964 	    txq->axq_depth);
3965 
3966 	nacked = 0;
3967 	for (;;) {
3968 		ATH_TXQ_LOCK(txq);
3969 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3970 		bf = TAILQ_FIRST(&txq->axq_q);
3971 		if (bf == NULL) {
3972 			ATH_TXQ_UNLOCK(txq);
3973 			break;
3974 		}
3975 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
3976 		ts = &bf->bf_status.ds_txstat;
3977 
3978 		status = ath_hal_txprocdesc(ah, ds, ts);
3979 #ifdef ATH_DEBUG
3980 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3981 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3982 			    status == HAL_OK);
3983 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
3984 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3985 			    status == HAL_OK);
3986 #endif
3987 #ifdef	ATH_DEBUG_ALQ
3988 		if (if_ath_alq_checkdebug(&sc->sc_alq,
3989 		    ATH_ALQ_EDMA_TXSTATUS)) {
3990 			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
3991 			sc->sc_tx_statuslen,
3992 			(char *) ds);
3993 		}
3994 #endif
3995 
3996 		if (status == HAL_EINPROGRESS) {
3997 			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
3998 			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
3999 			    txq->axq_qnum, bf, ds);
4000 			ATH_TXQ_UNLOCK(txq);
4001 			break;
4002 		}
4003 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4004 
4005 		/*
4006 		 * Sanity check.
4007 		 */
4008 		if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4009 			device_printf(sc->sc_dev,
4010 			    "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4011 			    __func__,
4012 			    txq->axq_qnum,
4013 			    bf,
4014 			    bf->bf_state.bfs_tx_queue);
4015 		}
4016 		if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4017 			device_printf(sc->sc_dev,
4018 			    "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4019 			    __func__,
4020 			    txq->axq_qnum,
4021 			    bf->bf_last,
4022 			    bf->bf_last->bf_state.bfs_tx_queue);
4023 		}
4024 
4025 #if 0
4026 		if (txq->axq_depth > 0) {
4027 			/*
4028 			 * More frames follow.  Mark the buffer busy
4029 			 * so it's not re-used while the hardware may
4030 			 * still re-read the link field in the descriptor.
4031 			 *
4032 			 * Use the last buffer in an aggregate as that
4033 			 * is where the hardware may be - intermediate
4034 			 * descriptors won't be "busy".
4035 			 */
4036 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4037 		} else
4038 			txq->axq_link = NULL;
4039 #else
4040 		bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4041 #endif
4042 		if (bf->bf_state.bfs_aggr)
4043 			txq->axq_aggr_depth--;
4044 
4045 		ni = bf->bf_node;
4046 
4047 		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4048 		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4049 		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
4050 		/*
4051 		 * If unicast frame was ack'd update RSSI,
4052 		 * including the last rx time used to
4053 		 * workaround phantom bmiss interrupts.
4054 		 */
4055 		if (ni != NULL && ts->ts_status == 0 &&
4056 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4057 			nacked++;
4058 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4059 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4060 				ts->ts_rssi);
4061 		}
4062 		ATH_TXQ_UNLOCK(txq);
4063 
4064 		/*
4065 		 * Update statistics and call completion
4066 		 */
4067 		ath_tx_process_buf_completion(sc, txq, ts, bf);
4068 
4069 		/* XXX at this point, bf and ni may be totally invalid */
4070 	}
4071 #ifdef IEEE80211_SUPPORT_SUPERG
4072 	/*
4073 	 * Flush fast-frame staging queue when traffic slows.
4074 	 */
4075 	if (txq->axq_depth <= 1)
4076 		ieee80211_ff_flush(ic, txq->axq_ac);
4077 #endif
4078 
4079 	/* Kick the software TXQ scheduler */
4080 	if (dosched) {
4081 		ATH_TX_LOCK(sc);
4082 		ath_txq_sched(sc, txq);
4083 		ATH_TX_UNLOCK(sc);
4084 	}
4085 
4086 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4087 	    "ath_tx_processq: txq=%u: done",
4088 	    txq->axq_qnum);
4089 
4090 	return nacked;
4091 }
4092 
4093 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4094 
4095 /*
4096  * Deferred processing of transmit interrupt; special-cased
4097  * for a single hardware transmit queue (e.g. 5210 and 5211).
4098  */
4099 static void
4100 ath_tx_proc_q0(void *arg, int npending)
4101 {
4102 	struct ath_softc *sc = arg;
4103 	struct ifnet *ifp = sc->sc_ifp;
4104 	uint32_t txqs;
4105 
4106 	ATH_PCU_LOCK(sc);
4107 	sc->sc_txproc_cnt++;
4108 	txqs = sc->sc_txq_active;
4109 	sc->sc_txq_active &= ~txqs;
4110 	ATH_PCU_UNLOCK(sc);
4111 
4112 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4113 	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4114 
4115 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4116 		/* XXX why is lastrx updated in tx code? */
4117 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4118 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4119 		ath_tx_processq(sc, sc->sc_cabq, 1);
4120 	IF_LOCK(&ifp->if_snd);
4121 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4122 	IF_UNLOCK(&ifp->if_snd);
4123 	sc->sc_wd_timer = 0;
4124 
4125 	if (sc->sc_softled)
4126 		ath_led_event(sc, sc->sc_txrix);
4127 
4128 	ATH_PCU_LOCK(sc);
4129 	sc->sc_txproc_cnt--;
4130 	ATH_PCU_UNLOCK(sc);
4131 
4132 	ath_tx_kick(sc);
4133 }
4134 
4135 /*
4136  * Deferred processing of transmit interrupt; special-cased
4137  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4138  */
4139 static void
4140 ath_tx_proc_q0123(void *arg, int npending)
4141 {
4142 	struct ath_softc *sc = arg;
4143 	struct ifnet *ifp = sc->sc_ifp;
4144 	int nacked;
4145 	uint32_t txqs;
4146 
4147 	ATH_PCU_LOCK(sc);
4148 	sc->sc_txproc_cnt++;
4149 	txqs = sc->sc_txq_active;
4150 	sc->sc_txq_active &= ~txqs;
4151 	ATH_PCU_UNLOCK(sc);
4152 
4153 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4154 	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4155 
4156 	/*
4157 	 * Process each active queue.
4158 	 */
4159 	nacked = 0;
4160 	if (TXQACTIVE(txqs, 0))
4161 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4162 	if (TXQACTIVE(txqs, 1))
4163 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4164 	if (TXQACTIVE(txqs, 2))
4165 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4166 	if (TXQACTIVE(txqs, 3))
4167 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4168 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4169 		ath_tx_processq(sc, sc->sc_cabq, 1);
4170 	if (nacked)
4171 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4172 
4173 	IF_LOCK(&ifp->if_snd);
4174 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4175 	IF_UNLOCK(&ifp->if_snd);
4176 	sc->sc_wd_timer = 0;
4177 
4178 	if (sc->sc_softled)
4179 		ath_led_event(sc, sc->sc_txrix);
4180 
4181 	ATH_PCU_LOCK(sc);
4182 	sc->sc_txproc_cnt--;
4183 	ATH_PCU_UNLOCK(sc);
4184 
4185 	ath_tx_kick(sc);
4186 }
4187 
4188 /*
4189  * Deferred processing of transmit interrupt.
4190  */
4191 static void
4192 ath_tx_proc(void *arg, int npending)
4193 {
4194 	struct ath_softc *sc = arg;
4195 	struct ifnet *ifp = sc->sc_ifp;
4196 	int i, nacked;
4197 	uint32_t txqs;
4198 
4199 	ATH_PCU_LOCK(sc);
4200 	sc->sc_txproc_cnt++;
4201 	txqs = sc->sc_txq_active;
4202 	sc->sc_txq_active &= ~txqs;
4203 	ATH_PCU_UNLOCK(sc);
4204 
4205 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4206 
4207 	/*
4208 	 * Process each active queue.
4209 	 */
4210 	nacked = 0;
4211 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4212 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4213 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4214 	if (nacked)
4215 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4216 
4217 	/* XXX check this inside of IF_LOCK? */
4218 	IF_LOCK(&ifp->if_snd);
4219 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4220 	IF_UNLOCK(&ifp->if_snd);
4221 	sc->sc_wd_timer = 0;
4222 
4223 	if (sc->sc_softled)
4224 		ath_led_event(sc, sc->sc_txrix);
4225 
4226 	ATH_PCU_LOCK(sc);
4227 	sc->sc_txproc_cnt--;
4228 	ATH_PCU_UNLOCK(sc);
4229 
4230 	ath_tx_kick(sc);
4231 }
4232 #undef	TXQACTIVE
4233 
4234 /*
4235  * Deferred processing of TXQ rescheduling.
4236  */
4237 static void
4238 ath_txq_sched_tasklet(void *arg, int npending)
4239 {
4240 	struct ath_softc *sc = arg;
4241 	int i;
4242 
4243 	/* XXX is skipping ok? */
4244 	ATH_PCU_LOCK(sc);
4245 #if 0
4246 	if (sc->sc_inreset_cnt > 0) {
4247 		device_printf(sc->sc_dev,
4248 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4249 		ATH_PCU_UNLOCK(sc);
4250 		return;
4251 	}
4252 #endif
4253 	sc->sc_txproc_cnt++;
4254 	ATH_PCU_UNLOCK(sc);
4255 
4256 	ATH_TX_LOCK(sc);
4257 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4258 		if (ATH_TXQ_SETUP(sc, i)) {
4259 			ath_txq_sched(sc, &sc->sc_txq[i]);
4260 		}
4261 	}
4262 	ATH_TX_UNLOCK(sc);
4263 
4264 	ATH_PCU_LOCK(sc);
4265 	sc->sc_txproc_cnt--;
4266 	ATH_PCU_UNLOCK(sc);
4267 }
4268 
4269 void
4270 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4271 {
4272 
4273 	ATH_TXBUF_LOCK_ASSERT(sc);
4274 
4275 	if (bf->bf_flags & ATH_BUF_MGMT)
4276 		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4277 	else {
4278 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4279 		sc->sc_txbuf_cnt++;
4280 		if (sc->sc_txbuf_cnt > ath_txbuf) {
4281 			device_printf(sc->sc_dev,
4282 			    "%s: sc_txbuf_cnt > %d?\n",
4283 			    __func__,
4284 			    ath_txbuf);
4285 			sc->sc_txbuf_cnt = ath_txbuf;
4286 		}
4287 	}
4288 }
4289 
4290 void
4291 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4292 {
4293 
4294 	ATH_TXBUF_LOCK_ASSERT(sc);
4295 
4296 	if (bf->bf_flags & ATH_BUF_MGMT)
4297 		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4298 	else {
4299 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4300 		sc->sc_txbuf_cnt++;
4301 		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4302 			device_printf(sc->sc_dev,
4303 			    "%s: sc_txbuf_cnt > %d?\n",
4304 			    __func__,
4305 			    ATH_TXBUF);
4306 			sc->sc_txbuf_cnt = ATH_TXBUF;
4307 		}
4308 	}
4309 }
4310 
4311 /*
4312  * Free the holding buffer if it exists
4313  */
4314 void
4315 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
4316 {
4317 	ATH_TXBUF_UNLOCK_ASSERT(sc);
4318 	ATH_TXQ_LOCK_ASSERT(txq);
4319 
4320 	if (txq->axq_holdingbf == NULL)
4321 		return;
4322 
4323 	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
4324 
4325 	ATH_TXBUF_LOCK(sc);
4326 	ath_returnbuf_tail(sc, txq->axq_holdingbf);
4327 	ATH_TXBUF_UNLOCK(sc);
4328 
4329 	txq->axq_holdingbf = NULL;
4330 }
4331 
4332 /*
4333  * Add this buffer to the holding queue, freeing the previous
4334  * one if it exists.
4335  */
4336 static void
4337 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
4338 {
4339 	struct ath_txq *txq;
4340 
4341 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4342 
4343 	ATH_TXBUF_UNLOCK_ASSERT(sc);
4344 	ATH_TXQ_LOCK_ASSERT(txq);
4345 
4346 	/* XXX assert ATH_BUF_BUSY is set */
4347 
4348 	/* XXX assert the tx queue is under the max number */
4349 	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
4350 		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
4351 		    __func__,
4352 		    bf,
4353 		    bf->bf_state.bfs_tx_queue);
4354 		bf->bf_flags &= ~ATH_BUF_BUSY;
4355 		ath_returnbuf_tail(sc, bf);
4356 		return;
4357 	}
4358 	ath_txq_freeholdingbuf(sc, txq);
4359 	txq->axq_holdingbf = bf;
4360 }
4361 
4362 /*
4363  * Return a buffer to the pool and update the 'busy' flag on the
4364  * previous 'tail' entry.
4365  *
4366  * This _must_ only be called when the buffer is involved in a completed
4367  * TX. The logic is that if it was part of an active TX, the previous
4368  * buffer on the list is now not involved in a halted TX DMA queue, waiting
4369  * for restart (eg for TDMA.)
4370  *
4371  * The caller must free the mbuf and recycle the node reference.
4372  *
4373  * XXX This method of handling busy / holding buffers is insanely stupid.
4374  * It requires bf_state.bfs_tx_queue to be correctly assigned.  It would
4375  * be much nicer if buffers in the processq() methods would instead be
4376  * always completed there (pushed onto a txq or ath_bufhead) so we knew
4377  * exactly what hardware queue they came from in the first place.
4378  */
4379 void
4380 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4381 {
4382 	struct ath_txq *txq;
4383 
4384 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4385 
4386 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4387 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4388 
4389 	/*
4390 	 * If this buffer is busy, push it onto the holding queue.
4391 	 */
4392 	if (bf->bf_flags & ATH_BUF_BUSY) {
4393 		ATH_TXQ_LOCK(txq);
4394 		ath_txq_addholdingbuf(sc, bf);
4395 		ATH_TXQ_UNLOCK(txq);
4396 		return;
4397 	}
4398 
4399 	/*
4400 	 * Not a busy buffer, so free normally
4401 	 */
4402 	ATH_TXBUF_LOCK(sc);
4403 	ath_returnbuf_tail(sc, bf);
4404 	ATH_TXBUF_UNLOCK(sc);
4405 }
4406 
4407 /*
4408  * This is currently used by ath_tx_draintxq() and
4409  * ath_tx_tid_free_pkts().
4410  *
4411  * It recycles a single ath_buf.
4412  */
4413 void
4414 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4415 {
4416 	struct ieee80211_node *ni = bf->bf_node;
4417 	struct mbuf *m0 = bf->bf_m;
4418 
4419 	/*
4420 	 * Make sure that we only sync/unload if there's an mbuf.
4421 	 * If not (eg we cloned a buffer), the unload will have already
4422 	 * occured.
4423 	 */
4424 	if (bf->bf_m != NULL) {
4425 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4426 		    BUS_DMASYNC_POSTWRITE);
4427 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4428 	}
4429 
4430 	bf->bf_node = NULL;
4431 	bf->bf_m = NULL;
4432 
4433 	/* Free the buffer, it's not needed any longer */
4434 	ath_freebuf(sc, bf);
4435 
4436 	if (ni != NULL) {
4437 		/*
4438 		 * Do any callback and reclaim the node reference.
4439 		 */
4440 		if (m0->m_flags & M_TXCB)
4441 			ieee80211_process_callback(ni, m0, status);
4442 		ieee80211_free_node(ni);
4443 	}
4444 
4445 	/* Finally, we don't need this mbuf any longer */
4446 	m_freem(m0);
4447 }
4448 
4449 static struct ath_buf *
4450 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
4451 {
4452 	struct ath_buf *bf;
4453 
4454 	ATH_TXQ_LOCK_ASSERT(txq);
4455 
4456 	/*
4457 	 * Drain the FIFO queue first, then if it's
4458 	 * empty, move to the normal frame queue.
4459 	 */
4460 	bf = TAILQ_FIRST(&txq->fifo.axq_q);
4461 	if (bf != NULL) {
4462 		/*
4463 		 * Is it the last buffer in this set?
4464 		 * Decrement the FIFO counter.
4465 		 */
4466 		if (bf->bf_flags & ATH_BUF_FIFOEND) {
4467 			if (txq->axq_fifo_depth == 0) {
4468 				device_printf(sc->sc_dev,
4469 				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
4470 				    __func__,
4471 				    txq->axq_qnum,
4472 				    txq->fifo.axq_depth);
4473 			} else
4474 				txq->axq_fifo_depth--;
4475 		}
4476 		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
4477 		return (bf);
4478 	}
4479 
4480 	/*
4481 	 * Debugging!
4482 	 */
4483 	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
4484 		device_printf(sc->sc_dev,
4485 		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
4486 		    __func__,
4487 		    txq->axq_qnum,
4488 		    txq->axq_fifo_depth,
4489 		    txq->fifo.axq_depth);
4490 	}
4491 
4492 	/*
4493 	 * Now drain the pending queue.
4494 	 */
4495 	bf = TAILQ_FIRST(&txq->axq_q);
4496 	if (bf == NULL) {
4497 		txq->axq_link = NULL;
4498 		return (NULL);
4499 	}
4500 	ATH_TXQ_REMOVE(txq, bf, bf_list);
4501 	return (bf);
4502 }
4503 
4504 void
4505 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4506 {
4507 #ifdef ATH_DEBUG
4508 	struct ath_hal *ah = sc->sc_ah;
4509 #endif
4510 	struct ath_buf *bf;
4511 	u_int ix;
4512 
4513 	/*
4514 	 * NB: this assumes output has been stopped and
4515 	 *     we do not need to block ath_tx_proc
4516 	 */
4517 	for (ix = 0;; ix++) {
4518 		ATH_TXQ_LOCK(txq);
4519 		bf = ath_tx_draintxq_get_one(sc, txq);
4520 		if (bf == NULL) {
4521 			ATH_TXQ_UNLOCK(txq);
4522 			break;
4523 		}
4524 		if (bf->bf_state.bfs_aggr)
4525 			txq->axq_aggr_depth--;
4526 #ifdef ATH_DEBUG
4527 		if (sc->sc_debug & ATH_DEBUG_RESET) {
4528 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4529 			int status = 0;
4530 
4531 			/*
4532 			 * EDMA operation has a TX completion FIFO
4533 			 * separate from the TX descriptor, so this
4534 			 * method of checking the "completion" status
4535 			 * is wrong.
4536 			 */
4537 			if (! sc->sc_isedma) {
4538 				status = (ath_hal_txprocdesc(ah,
4539 				    bf->bf_lastds,
4540 				    &bf->bf_status.ds_txstat) == HAL_OK);
4541 			}
4542 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
4543 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4544 			    bf->bf_m->m_len, 0, -1);
4545 		}
4546 #endif /* ATH_DEBUG */
4547 		/*
4548 		 * Since we're now doing magic in the completion
4549 		 * functions, we -must- call it for aggregation
4550 		 * destinations or BAW tracking will get upset.
4551 		 */
4552 		/*
4553 		 * Clear ATH_BUF_BUSY; the completion handler
4554 		 * will free the buffer.
4555 		 */
4556 		ATH_TXQ_UNLOCK(txq);
4557 		bf->bf_flags &= ~ATH_BUF_BUSY;
4558 		if (bf->bf_comp)
4559 			bf->bf_comp(sc, bf, 1);
4560 		else
4561 			ath_tx_default_comp(sc, bf, 1);
4562 	}
4563 
4564 	/*
4565 	 * Free the holding buffer if it exists
4566 	 */
4567 	ATH_TXQ_LOCK(txq);
4568 	ath_txq_freeholdingbuf(sc, txq);
4569 	ATH_TXQ_UNLOCK(txq);
4570 
4571 	/*
4572 	 * Drain software queued frames which are on
4573 	 * active TIDs.
4574 	 */
4575 	ath_tx_txq_drain(sc, txq);
4576 }
4577 
4578 static void
4579 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4580 {
4581 	struct ath_hal *ah = sc->sc_ah;
4582 
4583 	DPRINTF(sc, ATH_DEBUG_RESET,
4584 	    "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, link %p\n",
4585 	    __func__,
4586 	    txq->axq_qnum,
4587 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4588 	    (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
4589 	    (int) ath_hal_numtxpending(ah, txq->axq_qnum),
4590 	    txq->axq_flags,
4591 	    txq->axq_link);
4592 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4593 }
4594 
4595 int
4596 ath_stoptxdma(struct ath_softc *sc)
4597 {
4598 	struct ath_hal *ah = sc->sc_ah;
4599 	int i;
4600 
4601 	/* XXX return value */
4602 	if (sc->sc_invalid)
4603 		return 0;
4604 
4605 	if (!sc->sc_invalid) {
4606 		/* don't touch the hardware if marked invalid */
4607 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4608 		    __func__, sc->sc_bhalq,
4609 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4610 		    NULL);
4611 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4612 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4613 			if (ATH_TXQ_SETUP(sc, i))
4614 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4615 	}
4616 
4617 	return 1;
4618 }
4619 
4620 #ifdef	ATH_DEBUG
4621 static void
4622 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
4623 {
4624 	struct ath_hal *ah = sc->sc_ah;
4625 	struct ath_buf *bf;
4626 	int i = 0;
4627 
4628 	if (! (sc->sc_debug & ATH_DEBUG_RESET))
4629 		return;
4630 
4631 	device_printf(sc->sc_dev, "%s: Q%d: begin\n",
4632 	    __func__, txq->axq_qnum);
4633 	TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
4634 		ath_printtxbuf(sc, bf, txq->axq_qnum, i,
4635 			ath_hal_txprocdesc(ah, bf->bf_lastds,
4636 			    &bf->bf_status.ds_txstat) == HAL_OK);
4637 		i++;
4638 	}
4639 	device_printf(sc->sc_dev, "%s: Q%d: end\n",
4640 	    __func__, txq->axq_qnum);
4641 }
4642 #endif /* ATH_DEBUG */
4643 
4644 /*
4645  * Drain the transmit queues and reclaim resources.
4646  */
4647 void
4648 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
4649 {
4650 #ifdef	ATH_DEBUG
4651 	struct ath_hal *ah = sc->sc_ah;
4652 #endif
4653 	struct ifnet *ifp = sc->sc_ifp;
4654 	int i;
4655 
4656 	(void) ath_stoptxdma(sc);
4657 
4658 	/*
4659 	 * Dump the queue contents
4660 	 */
4661 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4662 		/*
4663 		 * XXX TODO: should we just handle the completed TX frames
4664 		 * here, whether or not the reset is a full one or not?
4665 		 */
4666 		if (ATH_TXQ_SETUP(sc, i)) {
4667 #ifdef	ATH_DEBUG
4668 			if (sc->sc_debug & ATH_DEBUG_RESET)
4669 				ath_tx_dump(sc, &sc->sc_txq[i]);
4670 #endif	/* ATH_DEBUG */
4671 			if (reset_type == ATH_RESET_NOLOSS) {
4672 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
4673 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
4674 				/*
4675 				 * Free the holding buffer; DMA is now
4676 				 * stopped.
4677 				 */
4678 				ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
4679 				/*
4680 				 * Reset the link pointer to NULL; there's
4681 				 * no frames to chain DMA to.
4682 				 */
4683 				sc->sc_txq[i].axq_link = NULL;
4684 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
4685 			} else
4686 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
4687 		}
4688 	}
4689 #ifdef ATH_DEBUG
4690 	if (sc->sc_debug & ATH_DEBUG_RESET) {
4691 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
4692 		if (bf != NULL && bf->bf_m != NULL) {
4693 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4694 				ath_hal_txprocdesc(ah, bf->bf_lastds,
4695 				    &bf->bf_status.ds_txstat) == HAL_OK);
4696 			ieee80211_dump_pkt(ifp->if_l2com,
4697 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4698 			    0, -1);
4699 		}
4700 	}
4701 #endif /* ATH_DEBUG */
4702 	IF_LOCK(&ifp->if_snd);
4703 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4704 	IF_UNLOCK(&ifp->if_snd);
4705 	sc->sc_wd_timer = 0;
4706 }
4707 
4708 /*
4709  * Update internal state after a channel change.
4710  */
4711 static void
4712 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4713 {
4714 	enum ieee80211_phymode mode;
4715 
4716 	/*
4717 	 * Change channels and update the h/w rate map
4718 	 * if we're switching; e.g. 11a to 11b/g.
4719 	 */
4720 	mode = ieee80211_chan2mode(chan);
4721 	if (mode != sc->sc_curmode)
4722 		ath_setcurmode(sc, mode);
4723 	sc->sc_curchan = chan;
4724 }
4725 
4726 /*
4727  * Set/change channels.  If the channel is really being changed,
4728  * it's done by resetting the chip.  To accomplish this we must
4729  * first cleanup any pending DMA, then restart stuff after a la
4730  * ath_init.
4731  */
4732 static int
4733 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4734 {
4735 	struct ifnet *ifp = sc->sc_ifp;
4736 	struct ieee80211com *ic = ifp->if_l2com;
4737 	struct ath_hal *ah = sc->sc_ah;
4738 	int ret = 0;
4739 
4740 	/* Treat this as an interface reset */
4741 	ATH_PCU_UNLOCK_ASSERT(sc);
4742 	ATH_UNLOCK_ASSERT(sc);
4743 
4744 	/* (Try to) stop TX/RX from occuring */
4745 	taskqueue_block(sc->sc_tq);
4746 
4747 	ATH_PCU_LOCK(sc);
4748 	ath_hal_intrset(ah, 0);		/* Stop new RX/TX completion */
4749 	ath_txrx_stop_locked(sc);	/* Stop pending RX/TX completion */
4750 	if (ath_reset_grablock(sc, 1) == 0) {
4751 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
4752 		    __func__);
4753 	}
4754 	ATH_PCU_UNLOCK(sc);
4755 
4756 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4757 	    __func__, ieee80211_chan2ieee(ic, chan),
4758 	    chan->ic_freq, chan->ic_flags);
4759 	if (chan != sc->sc_curchan) {
4760 		HAL_STATUS status;
4761 		/*
4762 		 * To switch channels clear any pending DMA operations;
4763 		 * wait long enough for the RX fifo to drain, reset the
4764 		 * hardware at the new frequency, and then re-enable
4765 		 * the relevant bits of the h/w.
4766 		 */
4767 #if 0
4768 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4769 #endif
4770 		ath_stoprecv(sc, 1);		/* turn off frame recv */
4771 		/*
4772 		 * First, handle completed TX/RX frames.
4773 		 */
4774 		ath_rx_flush(sc);
4775 		ath_draintxq(sc, ATH_RESET_NOLOSS);
4776 		/*
4777 		 * Next, flush the non-scheduled frames.
4778 		 */
4779 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
4780 
4781 		ath_update_chainmasks(sc, chan);
4782 		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
4783 		    sc->sc_cur_rxchainmask);
4784 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4785 			if_printf(ifp, "%s: unable to reset "
4786 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4787 			    __func__, ieee80211_chan2ieee(ic, chan),
4788 			    chan->ic_freq, chan->ic_flags, status);
4789 			ret = EIO;
4790 			goto finish;
4791 		}
4792 		sc->sc_diversity = ath_hal_getdiversity(ah);
4793 
4794 		/* Let DFS at it in case it's a DFS channel */
4795 		ath_dfs_radar_enable(sc, chan);
4796 
4797 		/* Let spectral at in case spectral is enabled */
4798 		ath_spectral_enable(sc, chan);
4799 
4800 		/*
4801 		 * Re-enable rx framework.
4802 		 */
4803 		if (ath_startrecv(sc) != 0) {
4804 			if_printf(ifp, "%s: unable to restart recv logic\n",
4805 			    __func__);
4806 			ret = EIO;
4807 			goto finish;
4808 		}
4809 
4810 		/*
4811 		 * Change channels and update the h/w rate map
4812 		 * if we're switching; e.g. 11a to 11b/g.
4813 		 */
4814 		ath_chan_change(sc, chan);
4815 
4816 		/*
4817 		 * Reset clears the beacon timers; reset them
4818 		 * here if needed.
4819 		 */
4820 		if (sc->sc_beacons) {		/* restart beacons */
4821 #ifdef IEEE80211_SUPPORT_TDMA
4822 			if (sc->sc_tdma)
4823 				ath_tdma_config(sc, NULL);
4824 			else
4825 #endif
4826 			ath_beacon_config(sc, NULL);
4827 		}
4828 
4829 		/*
4830 		 * Re-enable interrupts.
4831 		 */
4832 #if 0
4833 		ath_hal_intrset(ah, sc->sc_imask);
4834 #endif
4835 	}
4836 
4837 finish:
4838 	ATH_PCU_LOCK(sc);
4839 	sc->sc_inreset_cnt--;
4840 	/* XXX only do this if sc_inreset_cnt == 0? */
4841 	ath_hal_intrset(ah, sc->sc_imask);
4842 	ATH_PCU_UNLOCK(sc);
4843 
4844 	IF_LOCK(&ifp->if_snd);
4845 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4846 	IF_UNLOCK(&ifp->if_snd);
4847 	ath_txrx_start(sc);
4848 	/* XXX ath_start? */
4849 
4850 	return ret;
4851 }
4852 
4853 /*
4854  * Periodically recalibrate the PHY to account
4855  * for temperature/environment changes.
4856  */
4857 static void
4858 ath_calibrate(void *arg)
4859 {
4860 	struct ath_softc *sc = arg;
4861 	struct ath_hal *ah = sc->sc_ah;
4862 	struct ifnet *ifp = sc->sc_ifp;
4863 	struct ieee80211com *ic = ifp->if_l2com;
4864 	HAL_BOOL longCal, isCalDone = AH_TRUE;
4865 	HAL_BOOL aniCal, shortCal = AH_FALSE;
4866 	int nextcal;
4867 
4868 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4869 		goto restart;
4870 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4871 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4872 	if (sc->sc_doresetcal)
4873 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4874 
4875 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4876 	if (aniCal) {
4877 		sc->sc_stats.ast_ani_cal++;
4878 		sc->sc_lastani = ticks;
4879 		ath_hal_ani_poll(ah, sc->sc_curchan);
4880 	}
4881 
4882 	if (longCal) {
4883 		sc->sc_stats.ast_per_cal++;
4884 		sc->sc_lastlongcal = ticks;
4885 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4886 			/*
4887 			 * Rfgain is out of bounds, reset the chip
4888 			 * to load new gain values.
4889 			 */
4890 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4891 				"%s: rfgain change\n", __func__);
4892 			sc->sc_stats.ast_per_rfgain++;
4893 			sc->sc_resetcal = 0;
4894 			sc->sc_doresetcal = AH_TRUE;
4895 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4896 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4897 			return;
4898 		}
4899 		/*
4900 		 * If this long cal is after an idle period, then
4901 		 * reset the data collection state so we start fresh.
4902 		 */
4903 		if (sc->sc_resetcal) {
4904 			(void) ath_hal_calreset(ah, sc->sc_curchan);
4905 			sc->sc_lastcalreset = ticks;
4906 			sc->sc_lastshortcal = ticks;
4907 			sc->sc_resetcal = 0;
4908 			sc->sc_doresetcal = AH_TRUE;
4909 		}
4910 	}
4911 
4912 	/* Only call if we're doing a short/long cal, not for ANI calibration */
4913 	if (shortCal || longCal) {
4914 		isCalDone = AH_FALSE;
4915 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4916 			if (longCal) {
4917 				/*
4918 				 * Calibrate noise floor data again in case of change.
4919 				 */
4920 				ath_hal_process_noisefloor(ah);
4921 			}
4922 		} else {
4923 			DPRINTF(sc, ATH_DEBUG_ANY,
4924 				"%s: calibration of channel %u failed\n",
4925 				__func__, sc->sc_curchan->ic_freq);
4926 			sc->sc_stats.ast_per_calfail++;
4927 		}
4928 		if (shortCal)
4929 			sc->sc_lastshortcal = ticks;
4930 	}
4931 	if (!isCalDone) {
4932 restart:
4933 		/*
4934 		 * Use a shorter interval to potentially collect multiple
4935 		 * data samples required to complete calibration.  Once
4936 		 * we're told the work is done we drop back to a longer
4937 		 * interval between requests.  We're more aggressive doing
4938 		 * work when operating as an AP to improve operation right
4939 		 * after startup.
4940 		 */
4941 		sc->sc_lastshortcal = ticks;
4942 		nextcal = ath_shortcalinterval*hz/1000;
4943 		if (sc->sc_opmode != HAL_M_HOSTAP)
4944 			nextcal *= 10;
4945 		sc->sc_doresetcal = AH_TRUE;
4946 	} else {
4947 		/* nextcal should be the shortest time for next event */
4948 		nextcal = ath_longcalinterval*hz;
4949 		if (sc->sc_lastcalreset == 0)
4950 			sc->sc_lastcalreset = sc->sc_lastlongcal;
4951 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4952 			sc->sc_resetcal = 1;	/* setup reset next trip */
4953 		sc->sc_doresetcal = AH_FALSE;
4954 	}
4955 	/* ANI calibration may occur more often than short/long/resetcal */
4956 	if (ath_anicalinterval > 0)
4957 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4958 
4959 	if (nextcal != 0) {
4960 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4961 		    __func__, nextcal, isCalDone ? "" : "!");
4962 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4963 	} else {
4964 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4965 		    __func__);
4966 		/* NB: don't rearm timer */
4967 	}
4968 }
4969 
4970 static void
4971 ath_scan_start(struct ieee80211com *ic)
4972 {
4973 	struct ifnet *ifp = ic->ic_ifp;
4974 	struct ath_softc *sc = ifp->if_softc;
4975 	struct ath_hal *ah = sc->sc_ah;
4976 	u_int32_t rfilt;
4977 
4978 	/* XXX calibration timer? */
4979 
4980 	ATH_LOCK(sc);
4981 	sc->sc_scanning = 1;
4982 	sc->sc_syncbeacon = 0;
4983 	rfilt = ath_calcrxfilter(sc);
4984 	ATH_UNLOCK(sc);
4985 
4986 	ATH_PCU_LOCK(sc);
4987 	ath_hal_setrxfilter(ah, rfilt);
4988 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4989 	ATH_PCU_UNLOCK(sc);
4990 
4991 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4992 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4993 }
4994 
4995 static void
4996 ath_scan_end(struct ieee80211com *ic)
4997 {
4998 	struct ifnet *ifp = ic->ic_ifp;
4999 	struct ath_softc *sc = ifp->if_softc;
5000 	struct ath_hal *ah = sc->sc_ah;
5001 	u_int32_t rfilt;
5002 
5003 	ATH_LOCK(sc);
5004 	sc->sc_scanning = 0;
5005 	rfilt = ath_calcrxfilter(sc);
5006 	ATH_UNLOCK(sc);
5007 
5008 	ATH_PCU_LOCK(sc);
5009 	ath_hal_setrxfilter(ah, rfilt);
5010 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5011 
5012 	ath_hal_process_noisefloor(ah);
5013 	ATH_PCU_UNLOCK(sc);
5014 
5015 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5016 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5017 		 sc->sc_curaid);
5018 }
5019 
5020 #ifdef	ATH_ENABLE_11N
5021 /*
5022  * For now, just do a channel change.
5023  *
5024  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5025  * control state and resetting the hardware without dropping frames out
5026  * of the queue.
5027  *
5028  * The unfortunate trouble here is making absolutely sure that the
5029  * channel width change has propagated enough so the hardware
5030  * absolutely isn't handed bogus frames for it's current operating
5031  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5032  * does occur in parallel, we need to make certain we've blocked
5033  * any further ongoing TX (and RX, that can cause raw TX)
5034  * before we do this.
5035  */
5036 static void
5037 ath_update_chw(struct ieee80211com *ic)
5038 {
5039 	struct ifnet *ifp = ic->ic_ifp;
5040 	struct ath_softc *sc = ifp->if_softc;
5041 
5042 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5043 	ath_set_channel(ic);
5044 }
5045 #endif	/* ATH_ENABLE_11N */
5046 
5047 static void
5048 ath_set_channel(struct ieee80211com *ic)
5049 {
5050 	struct ifnet *ifp = ic->ic_ifp;
5051 	struct ath_softc *sc = ifp->if_softc;
5052 
5053 	(void) ath_chan_set(sc, ic->ic_curchan);
5054 	/*
5055 	 * If we are returning to our bss channel then mark state
5056 	 * so the next recv'd beacon's tsf will be used to sync the
5057 	 * beacon timers.  Note that since we only hear beacons in
5058 	 * sta/ibss mode this has no effect in other operating modes.
5059 	 */
5060 	ATH_LOCK(sc);
5061 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5062 		sc->sc_syncbeacon = 1;
5063 	ATH_UNLOCK(sc);
5064 }
5065 
5066 /*
5067  * Walk the vap list and check if there any vap's in RUN state.
5068  */
5069 static int
5070 ath_isanyrunningvaps(struct ieee80211vap *this)
5071 {
5072 	struct ieee80211com *ic = this->iv_ic;
5073 	struct ieee80211vap *vap;
5074 
5075 	IEEE80211_LOCK_ASSERT(ic);
5076 
5077 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5078 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5079 			return 1;
5080 	}
5081 	return 0;
5082 }
5083 
5084 static int
5085 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5086 {
5087 	struct ieee80211com *ic = vap->iv_ic;
5088 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5089 	struct ath_vap *avp = ATH_VAP(vap);
5090 	struct ath_hal *ah = sc->sc_ah;
5091 	struct ieee80211_node *ni = NULL;
5092 	int i, error, stamode;
5093 	u_int32_t rfilt;
5094 	int csa_run_transition = 0;
5095 
5096 	static const HAL_LED_STATE leds[] = {
5097 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5098 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5099 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5100 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5101 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5102 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5103 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5104 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5105 	};
5106 
5107 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5108 		ieee80211_state_name[vap->iv_state],
5109 		ieee80211_state_name[nstate]);
5110 
5111 	/*
5112 	 * net80211 _should_ have the comlock asserted at this point.
5113 	 * There are some comments around the calls to vap->iv_newstate
5114 	 * which indicate that it (newstate) may end up dropping the
5115 	 * lock.  This and the subsequent lock assert check after newstate
5116 	 * are an attempt to catch these and figure out how/why.
5117 	 */
5118 	IEEE80211_LOCK_ASSERT(ic);
5119 
5120 	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5121 		csa_run_transition = 1;
5122 
5123 	callout_drain(&sc->sc_cal_ch);
5124 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5125 
5126 	if (nstate == IEEE80211_S_SCAN) {
5127 		/*
5128 		 * Scanning: turn off beacon miss and don't beacon.
5129 		 * Mark beacon state so when we reach RUN state we'll
5130 		 * [re]setup beacons.  Unblock the task q thread so
5131 		 * deferred interrupt processing is done.
5132 		 */
5133 		ath_hal_intrset(ah,
5134 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5135 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5136 		sc->sc_beacons = 0;
5137 		taskqueue_unblock(sc->sc_tq);
5138 	}
5139 
5140 	ni = ieee80211_ref_node(vap->iv_bss);
5141 	rfilt = ath_calcrxfilter(sc);
5142 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5143 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5144 		   vap->iv_opmode == IEEE80211_M_IBSS);
5145 	if (stamode && nstate == IEEE80211_S_RUN) {
5146 		sc->sc_curaid = ni->ni_associd;
5147 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5148 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5149 	}
5150 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5151 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5152 	ath_hal_setrxfilter(ah, rfilt);
5153 
5154 	/* XXX is this to restore keycache on resume? */
5155 	if (vap->iv_opmode != IEEE80211_M_STA &&
5156 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5157 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5158 			if (ath_hal_keyisvalid(ah, i))
5159 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5160 	}
5161 
5162 	/*
5163 	 * Invoke the parent method to do net80211 work.
5164 	 */
5165 	error = avp->av_newstate(vap, nstate, arg);
5166 	if (error != 0)
5167 		goto bad;
5168 
5169 	/*
5170 	 * See above: ensure av_newstate() doesn't drop the lock
5171 	 * on us.
5172 	 */
5173 	IEEE80211_LOCK_ASSERT(ic);
5174 
5175 	if (nstate == IEEE80211_S_RUN) {
5176 		/* NB: collect bss node again, it may have changed */
5177 		ieee80211_free_node(ni);
5178 		ni = ieee80211_ref_node(vap->iv_bss);
5179 
5180 		DPRINTF(sc, ATH_DEBUG_STATE,
5181 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5182 		    "capinfo 0x%04x chan %d\n", __func__,
5183 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5184 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5185 
5186 		switch (vap->iv_opmode) {
5187 #ifdef IEEE80211_SUPPORT_TDMA
5188 		case IEEE80211_M_AHDEMO:
5189 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5190 				break;
5191 			/* fall thru... */
5192 #endif
5193 		case IEEE80211_M_HOSTAP:
5194 		case IEEE80211_M_IBSS:
5195 		case IEEE80211_M_MBSS:
5196 			/*
5197 			 * Allocate and setup the beacon frame.
5198 			 *
5199 			 * Stop any previous beacon DMA.  This may be
5200 			 * necessary, for example, when an ibss merge
5201 			 * causes reconfiguration; there will be a state
5202 			 * transition from RUN->RUN that means we may
5203 			 * be called with beacon transmission active.
5204 			 */
5205 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5206 
5207 			error = ath_beacon_alloc(sc, ni);
5208 			if (error != 0)
5209 				goto bad;
5210 			/*
5211 			 * If joining an adhoc network defer beacon timer
5212 			 * configuration to the next beacon frame so we
5213 			 * have a current TSF to use.  Otherwise we're
5214 			 * starting an ibss/bss so there's no need to delay;
5215 			 * if this is the first vap moving to RUN state, then
5216 			 * beacon state needs to be [re]configured.
5217 			 */
5218 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5219 			    ni->ni_tstamp.tsf != 0) {
5220 				sc->sc_syncbeacon = 1;
5221 			} else if (!sc->sc_beacons) {
5222 #ifdef IEEE80211_SUPPORT_TDMA
5223 				if (vap->iv_caps & IEEE80211_C_TDMA)
5224 					ath_tdma_config(sc, vap);
5225 				else
5226 #endif
5227 					ath_beacon_config(sc, vap);
5228 				sc->sc_beacons = 1;
5229 			}
5230 			break;
5231 		case IEEE80211_M_STA:
5232 			/*
5233 			 * Defer beacon timer configuration to the next
5234 			 * beacon frame so we have a current TSF to use
5235 			 * (any TSF collected when scanning is likely old).
5236 			 * However if it's due to a CSA -> RUN transition,
5237 			 * force a beacon update so we pick up a lack of
5238 			 * beacons from an AP in CAC and thus force a
5239 			 * scan.
5240 			 *
5241 			 * And, there's also corner cases here where
5242 			 * after a scan, the AP may have disappeared.
5243 			 * In that case, we may not receive an actual
5244 			 * beacon to update the beacon timer and thus we
5245 			 * won't get notified of the missing beacons.
5246 			 */
5247 			sc->sc_syncbeacon = 1;
5248 #if 0
5249 			if (csa_run_transition)
5250 #endif
5251 				ath_beacon_config(sc, vap);
5252 
5253 			/*
5254 			 * PR: kern/175227
5255 			 *
5256 			 * Reconfigure beacons during reset; as otherwise
5257 			 * we won't get the beacon timers reprogrammed
5258 			 * after a reset and thus we won't pick up a
5259 			 * beacon miss interrupt.
5260 			 *
5261 			 * Hopefully we'll see a beacon before the BMISS
5262 			 * timer fires (too often), leading to a STA
5263 			 * disassociation.
5264 			 */
5265 			sc->sc_beacons = 1;
5266 			break;
5267 		case IEEE80211_M_MONITOR:
5268 			/*
5269 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5270 			 * transitions so we must re-enable interrupts here to
5271 			 * handle the case of a single monitor mode vap.
5272 			 */
5273 			ath_hal_intrset(ah, sc->sc_imask);
5274 			break;
5275 		case IEEE80211_M_WDS:
5276 			break;
5277 		default:
5278 			break;
5279 		}
5280 		/*
5281 		 * Let the hal process statistics collected during a
5282 		 * scan so it can provide calibrated noise floor data.
5283 		 */
5284 		ath_hal_process_noisefloor(ah);
5285 		/*
5286 		 * Reset rssi stats; maybe not the best place...
5287 		 */
5288 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5289 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5290 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5291 		/*
5292 		 * Finally, start any timers and the task q thread
5293 		 * (in case we didn't go through SCAN state).
5294 		 */
5295 		if (ath_longcalinterval != 0) {
5296 			/* start periodic recalibration timer */
5297 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5298 		} else {
5299 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5300 			    "%s: calibration disabled\n", __func__);
5301 		}
5302 		taskqueue_unblock(sc->sc_tq);
5303 	} else if (nstate == IEEE80211_S_INIT) {
5304 		/*
5305 		 * If there are no vaps left in RUN state then
5306 		 * shutdown host/driver operation:
5307 		 * o disable interrupts
5308 		 * o disable the task queue thread
5309 		 * o mark beacon processing as stopped
5310 		 */
5311 		if (!ath_isanyrunningvaps(vap)) {
5312 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5313 			/* disable interrupts  */
5314 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5315 			taskqueue_block(sc->sc_tq);
5316 			sc->sc_beacons = 0;
5317 		}
5318 #ifdef IEEE80211_SUPPORT_TDMA
5319 		ath_hal_setcca(ah, AH_TRUE);
5320 #endif
5321 	}
5322 bad:
5323 	ieee80211_free_node(ni);
5324 	return error;
5325 }
5326 
5327 /*
5328  * Allocate a key cache slot to the station so we can
5329  * setup a mapping from key index to node. The key cache
5330  * slot is needed for managing antenna state and for
5331  * compression when stations do not use crypto.  We do
5332  * it uniliaterally here; if crypto is employed this slot
5333  * will be reassigned.
5334  */
5335 static void
5336 ath_setup_stationkey(struct ieee80211_node *ni)
5337 {
5338 	struct ieee80211vap *vap = ni->ni_vap;
5339 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5340 	ieee80211_keyix keyix, rxkeyix;
5341 
5342 	/* XXX should take a locked ref to vap->iv_bss */
5343 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5344 		/*
5345 		 * Key cache is full; we'll fall back to doing
5346 		 * the more expensive lookup in software.  Note
5347 		 * this also means no h/w compression.
5348 		 */
5349 		/* XXX msg+statistic */
5350 	} else {
5351 		/* XXX locking? */
5352 		ni->ni_ucastkey.wk_keyix = keyix;
5353 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5354 		/* NB: must mark device key to get called back on delete */
5355 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5356 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5357 		/* NB: this will create a pass-thru key entry */
5358 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
5359 	}
5360 }
5361 
5362 /*
5363  * Setup driver-specific state for a newly associated node.
5364  * Note that we're called also on a re-associate, the isnew
5365  * param tells us if this is the first time or not.
5366  */
5367 static void
5368 ath_newassoc(struct ieee80211_node *ni, int isnew)
5369 {
5370 	struct ath_node *an = ATH_NODE(ni);
5371 	struct ieee80211vap *vap = ni->ni_vap;
5372 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5373 	const struct ieee80211_txparam *tp = ni->ni_txparms;
5374 
5375 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5376 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5377 
5378 	ath_rate_newassoc(sc, an, isnew);
5379 	if (isnew &&
5380 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5381 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5382 		ath_setup_stationkey(ni);
5383 }
5384 
5385 static int
5386 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5387 	int nchans, struct ieee80211_channel chans[])
5388 {
5389 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5390 	struct ath_hal *ah = sc->sc_ah;
5391 	HAL_STATUS status;
5392 
5393 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5394 	    "%s: rd %u cc %u location %c%s\n",
5395 	    __func__, reg->regdomain, reg->country, reg->location,
5396 	    reg->ecm ? " ecm" : "");
5397 
5398 	status = ath_hal_set_channels(ah, chans, nchans,
5399 	    reg->country, reg->regdomain);
5400 	if (status != HAL_OK) {
5401 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5402 		    __func__, status);
5403 		return EINVAL;		/* XXX */
5404 	}
5405 
5406 	return 0;
5407 }
5408 
5409 static void
5410 ath_getradiocaps(struct ieee80211com *ic,
5411 	int maxchans, int *nchans, struct ieee80211_channel chans[])
5412 {
5413 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5414 	struct ath_hal *ah = sc->sc_ah;
5415 
5416 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5417 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5418 
5419 	/* XXX check return */
5420 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5421 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5422 
5423 }
5424 
5425 static int
5426 ath_getchannels(struct ath_softc *sc)
5427 {
5428 	struct ifnet *ifp = sc->sc_ifp;
5429 	struct ieee80211com *ic = ifp->if_l2com;
5430 	struct ath_hal *ah = sc->sc_ah;
5431 	HAL_STATUS status;
5432 
5433 	/*
5434 	 * Collect channel set based on EEPROM contents.
5435 	 */
5436 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5437 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5438 	if (status != HAL_OK) {
5439 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5440 		    "status %d\n", __func__, status);
5441 		return EINVAL;
5442 	}
5443 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5444 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5445 	/* XXX map Atheros sku's to net80211 SKU's */
5446 	/* XXX net80211 types too small */
5447 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5448 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5449 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5450 	ic->ic_regdomain.isocc[1] = ' ';
5451 
5452 	ic->ic_regdomain.ecm = 1;
5453 	ic->ic_regdomain.location = 'I';
5454 
5455 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5456 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5457 	    __func__, sc->sc_eerd, sc->sc_eecc,
5458 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5459 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5460 	return 0;
5461 }
5462 
5463 static int
5464 ath_rate_setup(struct ath_softc *sc, u_int mode)
5465 {
5466 	struct ath_hal *ah = sc->sc_ah;
5467 	const HAL_RATE_TABLE *rt;
5468 
5469 	switch (mode) {
5470 	case IEEE80211_MODE_11A:
5471 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5472 		break;
5473 	case IEEE80211_MODE_HALF:
5474 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5475 		break;
5476 	case IEEE80211_MODE_QUARTER:
5477 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5478 		break;
5479 	case IEEE80211_MODE_11B:
5480 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5481 		break;
5482 	case IEEE80211_MODE_11G:
5483 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5484 		break;
5485 	case IEEE80211_MODE_TURBO_A:
5486 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5487 		break;
5488 	case IEEE80211_MODE_TURBO_G:
5489 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5490 		break;
5491 	case IEEE80211_MODE_STURBO_A:
5492 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5493 		break;
5494 	case IEEE80211_MODE_11NA:
5495 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5496 		break;
5497 	case IEEE80211_MODE_11NG:
5498 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5499 		break;
5500 	default:
5501 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5502 			__func__, mode);
5503 		return 0;
5504 	}
5505 	sc->sc_rates[mode] = rt;
5506 	return (rt != NULL);
5507 }
5508 
5509 static void
5510 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5511 {
5512 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5513 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5514 	static const struct {
5515 		u_int		rate;		/* tx/rx 802.11 rate */
5516 		u_int16_t	timeOn;		/* LED on time (ms) */
5517 		u_int16_t	timeOff;	/* LED off time (ms) */
5518 	} blinkrates[] = {
5519 		{ 108,  40,  10 },
5520 		{  96,  44,  11 },
5521 		{  72,  50,  13 },
5522 		{  48,  57,  14 },
5523 		{  36,  67,  16 },
5524 		{  24,  80,  20 },
5525 		{  22, 100,  25 },
5526 		{  18, 133,  34 },
5527 		{  12, 160,  40 },
5528 		{  10, 200,  50 },
5529 		{   6, 240,  58 },
5530 		{   4, 267,  66 },
5531 		{   2, 400, 100 },
5532 		{   0, 500, 130 },
5533 		/* XXX half/quarter rates */
5534 	};
5535 	const HAL_RATE_TABLE *rt;
5536 	int i, j;
5537 
5538 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5539 	rt = sc->sc_rates[mode];
5540 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5541 	for (i = 0; i < rt->rateCount; i++) {
5542 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5543 		if (rt->info[i].phy != IEEE80211_T_HT)
5544 			sc->sc_rixmap[ieeerate] = i;
5545 		else
5546 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5547 	}
5548 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5549 	for (i = 0; i < N(sc->sc_hwmap); i++) {
5550 		if (i >= rt->rateCount) {
5551 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5552 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5553 			continue;
5554 		}
5555 		sc->sc_hwmap[i].ieeerate =
5556 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5557 		if (rt->info[i].phy == IEEE80211_T_HT)
5558 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5559 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5560 		if (rt->info[i].shortPreamble ||
5561 		    rt->info[i].phy == IEEE80211_T_OFDM)
5562 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5563 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5564 		for (j = 0; j < N(blinkrates)-1; j++)
5565 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5566 				break;
5567 		/* NB: this uses the last entry if the rate isn't found */
5568 		/* XXX beware of overlow */
5569 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5570 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5571 	}
5572 	sc->sc_currates = rt;
5573 	sc->sc_curmode = mode;
5574 	/*
5575 	 * All protection frames are transmited at 2Mb/s for
5576 	 * 11g, otherwise at 1Mb/s.
5577 	 */
5578 	if (mode == IEEE80211_MODE_11G)
5579 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5580 	else
5581 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5582 	/* NB: caller is responsible for resetting rate control state */
5583 #undef N
5584 }
5585 
5586 static void
5587 ath_watchdog(void *arg)
5588 {
5589 	struct ath_softc *sc = arg;
5590 	int do_reset = 0;
5591 
5592 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5593 		struct ifnet *ifp = sc->sc_ifp;
5594 		uint32_t hangs;
5595 
5596 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5597 		    hangs != 0) {
5598 			if_printf(ifp, "%s hang detected (0x%x)\n",
5599 			    hangs & 0xff ? "bb" : "mac", hangs);
5600 		} else
5601 			if_printf(ifp, "device timeout\n");
5602 		do_reset = 1;
5603 		ifp->if_oerrors++;
5604 		sc->sc_stats.ast_watchdog++;
5605 	}
5606 
5607 	/*
5608 	 * We can't hold the lock across the ath_reset() call.
5609 	 *
5610 	 * And since this routine can't hold a lock and sleep,
5611 	 * do the reset deferred.
5612 	 */
5613 	if (do_reset) {
5614 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5615 	}
5616 
5617 	callout_schedule(&sc->sc_wd_ch, hz);
5618 }
5619 
5620 /*
5621  * Fetch the rate control statistics for the given node.
5622  */
5623 static int
5624 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
5625 {
5626 	struct ath_node *an;
5627 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5628 	struct ieee80211_node *ni;
5629 	int error = 0;
5630 
5631 	/* Perform a lookup on the given node */
5632 	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
5633 	if (ni == NULL) {
5634 		error = EINVAL;
5635 		goto bad;
5636 	}
5637 
5638 	/* Lock the ath_node */
5639 	an = ATH_NODE(ni);
5640 	ATH_NODE_LOCK(an);
5641 
5642 	/* Fetch the rate control stats for this node */
5643 	error = ath_rate_fetch_node_stats(sc, an, rs);
5644 
5645 	/* No matter what happens here, just drop through */
5646 
5647 	/* Unlock the ath_node */
5648 	ATH_NODE_UNLOCK(an);
5649 
5650 	/* Unref the node */
5651 	ieee80211_node_decref(ni);
5652 
5653 bad:
5654 	return (error);
5655 }
5656 
5657 #ifdef ATH_DIAGAPI
5658 /*
5659  * Diagnostic interface to the HAL.  This is used by various
5660  * tools to do things like retrieve register contents for
5661  * debugging.  The mechanism is intentionally opaque so that
5662  * it can change frequently w/o concern for compatiblity.
5663  */
5664 static int
5665 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5666 {
5667 	struct ath_hal *ah = sc->sc_ah;
5668 	u_int id = ad->ad_id & ATH_DIAG_ID;
5669 	void *indata = NULL;
5670 	void *outdata = NULL;
5671 	u_int32_t insize = ad->ad_in_size;
5672 	u_int32_t outsize = ad->ad_out_size;
5673 	int error = 0;
5674 
5675 	if (ad->ad_id & ATH_DIAG_IN) {
5676 		/*
5677 		 * Copy in data.
5678 		 */
5679 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5680 		if (indata == NULL) {
5681 			error = ENOMEM;
5682 			goto bad;
5683 		}
5684 		error = copyin(ad->ad_in_data, indata, insize);
5685 		if (error)
5686 			goto bad;
5687 	}
5688 	if (ad->ad_id & ATH_DIAG_DYN) {
5689 		/*
5690 		 * Allocate a buffer for the results (otherwise the HAL
5691 		 * returns a pointer to a buffer where we can read the
5692 		 * results).  Note that we depend on the HAL leaving this
5693 		 * pointer for us to use below in reclaiming the buffer;
5694 		 * may want to be more defensive.
5695 		 */
5696 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5697 		if (outdata == NULL) {
5698 			error = ENOMEM;
5699 			goto bad;
5700 		}
5701 	}
5702 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5703 		if (outsize < ad->ad_out_size)
5704 			ad->ad_out_size = outsize;
5705 		if (outdata != NULL)
5706 			error = copyout(outdata, ad->ad_out_data,
5707 					ad->ad_out_size);
5708 	} else {
5709 		error = EINVAL;
5710 	}
5711 bad:
5712 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5713 		free(indata, M_TEMP);
5714 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5715 		free(outdata, M_TEMP);
5716 	return error;
5717 }
5718 #endif /* ATH_DIAGAPI */
5719 
5720 static int
5721 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5722 {
5723 #define	IS_RUNNING(ifp) \
5724 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5725 	struct ath_softc *sc = ifp->if_softc;
5726 	struct ieee80211com *ic = ifp->if_l2com;
5727 	struct ifreq *ifr = (struct ifreq *)data;
5728 	const HAL_RATE_TABLE *rt;
5729 	int error = 0;
5730 
5731 	switch (cmd) {
5732 	case SIOCSIFFLAGS:
5733 		ATH_LOCK(sc);
5734 		if (IS_RUNNING(ifp)) {
5735 			/*
5736 			 * To avoid rescanning another access point,
5737 			 * do not call ath_init() here.  Instead,
5738 			 * only reflect promisc mode settings.
5739 			 */
5740 			ath_mode_init(sc);
5741 		} else if (ifp->if_flags & IFF_UP) {
5742 			/*
5743 			 * Beware of being called during attach/detach
5744 			 * to reset promiscuous mode.  In that case we
5745 			 * will still be marked UP but not RUNNING.
5746 			 * However trying to re-init the interface
5747 			 * is the wrong thing to do as we've already
5748 			 * torn down much of our state.  There's
5749 			 * probably a better way to deal with this.
5750 			 */
5751 			if (!sc->sc_invalid)
5752 				ath_init(sc);	/* XXX lose error */
5753 		} else {
5754 			ath_stop_locked(ifp);
5755 #ifdef notyet
5756 			/* XXX must wakeup in places like ath_vap_delete */
5757 			if (!sc->sc_invalid)
5758 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5759 #endif
5760 		}
5761 		ATH_UNLOCK(sc);
5762 		break;
5763 	case SIOCGIFMEDIA:
5764 	case SIOCSIFMEDIA:
5765 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5766 		break;
5767 	case SIOCGATHSTATS:
5768 		/* NB: embed these numbers to get a consistent view */
5769 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5770 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5771 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5772 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5773 #ifdef IEEE80211_SUPPORT_TDMA
5774 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
5775 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
5776 #endif
5777 		rt = sc->sc_currates;
5778 		sc->sc_stats.ast_tx_rate =
5779 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
5780 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
5781 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
5782 		return copyout(&sc->sc_stats,
5783 		    ifr->ifr_data, sizeof (sc->sc_stats));
5784 	case SIOCGATHAGSTATS:
5785 		return copyout(&sc->sc_aggr_stats,
5786 		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
5787 	case SIOCZATHSTATS:
5788 		error = priv_check(curthread, PRIV_DRIVER);
5789 		if (error == 0) {
5790 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
5791 			memset(&sc->sc_aggr_stats, 0,
5792 			    sizeof(sc->sc_aggr_stats));
5793 			memset(&sc->sc_intr_stats, 0,
5794 			    sizeof(sc->sc_intr_stats));
5795 		}
5796 		break;
5797 #ifdef ATH_DIAGAPI
5798 	case SIOCGATHDIAG:
5799 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5800 		break;
5801 	case SIOCGATHPHYERR:
5802 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
5803 		break;
5804 #endif
5805 	case SIOCGATHSPECTRAL:
5806 		error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
5807 		break;
5808 	case SIOCGATHNODERATESTATS:
5809 		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
5810 		break;
5811 	case SIOCGIFADDR:
5812 		error = ether_ioctl(ifp, cmd, data);
5813 		break;
5814 	default:
5815 		error = EINVAL;
5816 		break;
5817 	}
5818 	return error;
5819 #undef IS_RUNNING
5820 }
5821 
5822 /*
5823  * Announce various information on device/driver attach.
5824  */
5825 static void
5826 ath_announce(struct ath_softc *sc)
5827 {
5828 	struct ifnet *ifp = sc->sc_ifp;
5829 	struct ath_hal *ah = sc->sc_ah;
5830 
5831 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
5832 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
5833 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5834 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
5835 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
5836 	if (bootverbose) {
5837 		int i;
5838 		for (i = 0; i <= WME_AC_VO; i++) {
5839 			struct ath_txq *txq = sc->sc_ac2q[i];
5840 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5841 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5842 		}
5843 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5844 			sc->sc_cabq->axq_qnum);
5845 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5846 	}
5847 	if (ath_rxbuf != ATH_RXBUF)
5848 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5849 	if (ath_txbuf != ATH_TXBUF)
5850 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5851 	if (sc->sc_mcastkey && bootverbose)
5852 		if_printf(ifp, "using multicast key search\n");
5853 }
5854 
5855 static void
5856 ath_dfs_tasklet(void *p, int npending)
5857 {
5858 	struct ath_softc *sc = (struct ath_softc *) p;
5859 	struct ifnet *ifp = sc->sc_ifp;
5860 	struct ieee80211com *ic = ifp->if_l2com;
5861 
5862 	/*
5863 	 * If previous processing has found a radar event,
5864 	 * signal this to the net80211 layer to begin DFS
5865 	 * processing.
5866 	 */
5867 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
5868 		/* DFS event found, initiate channel change */
5869 		/*
5870 		 * XXX doesn't currently tell us whether the event
5871 		 * XXX was found in the primary or extension
5872 		 * XXX channel!
5873 		 */
5874 		IEEE80211_LOCK(ic);
5875 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
5876 		IEEE80211_UNLOCK(ic);
5877 	}
5878 }
5879 
5880 /*
5881  * Enable/disable power save.  This must be called with
5882  * no TX driver locks currently held, so it should only
5883  * be called from the RX path (which doesn't hold any
5884  * TX driver locks.)
5885  */
5886 static void
5887 ath_node_powersave(struct ieee80211_node *ni, int enable)
5888 {
5889 #ifdef	ATH_SW_PSQ
5890 	struct ath_node *an = ATH_NODE(ni);
5891 	struct ieee80211com *ic = ni->ni_ic;
5892 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5893 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5894 
5895 	ATH_NODE_UNLOCK_ASSERT(an);
5896 	/* XXX and no TXQ locks should be held here */
5897 
5898 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n",
5899 	    __func__, ni, enable);
5900 
5901 	/* Suspend or resume software queue handling */
5902 	if (enable)
5903 		ath_tx_node_sleep(sc, an);
5904 	else
5905 		ath_tx_node_wakeup(sc, an);
5906 
5907 	/* Update net80211 state */
5908 	avp->av_node_ps(ni, enable);
5909 #else
5910 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5911 
5912 	/* Update net80211 state */
5913 	avp->av_node_ps(ni, enable);
5914 #endif/* ATH_SW_PSQ */
5915 }
5916 
5917 /*
5918  * Notification from net80211 that the powersave queue state has
5919  * changed.
5920  *
5921  * Since the software queue also may have some frames:
5922  *
5923  * + if the node software queue has frames and the TID state
5924  *   is 0, we set the TIM;
5925  * + if the node and the stack are both empty, we clear the TIM bit.
5926  * + If the stack tries to set the bit, always set it.
5927  * + If the stack tries to clear the bit, only clear it if the
5928  *   software queue in question is also cleared.
5929  *
5930  * TODO: this is called during node teardown; so let's ensure this
5931  * is all correctly handled and that the TIM bit is cleared.
5932  * It may be that the node flush is called _AFTER_ the net80211
5933  * stack clears the TIM.
5934  *
5935  * Here is the racy part.  Since it's possible >1 concurrent,
5936  * overlapping TXes will appear complete with a TX completion in
5937  * another thread, it's possible that the concurrent TIM calls will
5938  * clash.  We can't hold the node lock here because setting the
5939  * TIM grabs the net80211 comlock and this may cause a LOR.
5940  * The solution is either to totally serialise _everything_ at
5941  * this point (ie, all TX, completion and any reset/flush go into
5942  * one taskqueue) or a new "ath TIM lock" needs to be created that
5943  * just wraps the driver state change and this call to avp->av_set_tim().
5944  *
5945  * The same race exists in the net80211 power save queue handling
5946  * as well.  Since multiple transmitting threads may queue frames
5947  * into the driver, as well as ps-poll and the driver transmitting
5948  * frames (and thus clearing the psq), it's quite possible that
5949  * a packet entering the PSQ and a ps-poll being handled will
5950  * race, causing the TIM to be cleared and not re-set.
5951  */
5952 static int
5953 ath_node_set_tim(struct ieee80211_node *ni, int enable)
5954 {
5955 #ifdef	ATH_SW_PSQ
5956 	struct ieee80211com *ic = ni->ni_ic;
5957 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5958 	struct ath_node *an = ATH_NODE(ni);
5959 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5960 	int changed = 0;
5961 
5962 	ATH_NODE_UNLOCK_ASSERT(an);
5963 
5964 	/*
5965 	 * For now, just track and then update the TIM.
5966 	 */
5967 	ATH_NODE_LOCK(an);
5968 	an->an_stack_psq = enable;
5969 
5970 	/*
5971 	 * This will get called for all operating modes,
5972 	 * even if avp->av_set_tim is unset.
5973 	 * It's currently set for hostap/ibss modes; but
5974 	 * the same infrastructure is used for both STA
5975 	 * and AP/IBSS node power save.
5976 	 */
5977 	if (avp->av_set_tim == NULL) {
5978 		ATH_NODE_UNLOCK(an);
5979 		return (0);
5980 	}
5981 
5982 	/*
5983 	 * If setting the bit, always set it here.
5984 	 * If clearing the bit, only clear it if the
5985 	 * software queue is also empty.
5986 	 *
5987 	 * If the node has left power save, just clear the TIM
5988 	 * bit regardless of the state of the power save queue.
5989 	 *
5990 	 * XXX TODO: although atomics are used, it's quite possible
5991 	 * that a race will occur between this and setting/clearing
5992 	 * in another thread.  TX completion will occur always in
5993 	 * one thread, however setting/clearing the TIM bit can come
5994 	 * from a variety of different process contexts!
5995 	 */
5996 	if (enable && an->an_tim_set == 1) {
5997 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5998 		    "%s: an=%p, enable=%d, tim_set=1, ignoring\n",
5999 		    __func__, an, enable);
6000 		ATH_NODE_UNLOCK(an);
6001 	} else if (enable) {
6002 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6003 		    "%s: an=%p, enable=%d, enabling TIM\n",
6004 		    __func__, an, enable);
6005 		an->an_tim_set = 1;
6006 		ATH_NODE_UNLOCK(an);
6007 		changed = avp->av_set_tim(ni, enable);
6008 	} else if (atomic_load_acq_int(&an->an_swq_depth) == 0) {
6009 		/* disable */
6010 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6011 		    "%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n",
6012 		    __func__, an, enable);
6013 		an->an_tim_set = 0;
6014 		ATH_NODE_UNLOCK(an);
6015 		changed = avp->av_set_tim(ni, enable);
6016 	} else if (! an->an_is_powersave) {
6017 		/*
6018 		 * disable regardless; the node isn't in powersave now
6019 		 */
6020 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6021 		    "%s: an=%p, enable=%d, an_pwrsave=0, disabling\n",
6022 		    __func__, an, enable);
6023 		an->an_tim_set = 0;
6024 		ATH_NODE_UNLOCK(an);
6025 		changed = avp->av_set_tim(ni, enable);
6026 	} else {
6027 		/*
6028 		 * psq disable, node is currently in powersave, node
6029 		 * software queue isn't empty, so don't clear the TIM bit
6030 		 * for now.
6031 		 */
6032 		ATH_NODE_UNLOCK(an);
6033 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6034 		    "%s: enable=%d, an_swq_depth > 0, ignoring\n",
6035 		    __func__, enable);
6036 		changed = 0;
6037 	}
6038 
6039 	return (changed);
6040 #else
6041 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6042 
6043 	/*
6044 	 * Some operating modes don't set av_set_tim(), so don't
6045 	 * update it here.
6046 	 */
6047 	if (avp->av_set_tim == NULL)
6048 		return (0);
6049 
6050 	return (avp->av_set_tim(ni, enable));
6051 #endif /* ATH_SW_PSQ */
6052 }
6053 
6054 /*
6055  * Set or update the TIM from the software queue.
6056  *
6057  * Check the software queue depth before attempting to do lock
6058  * anything; that avoids trying to obtain the lock.  Then,
6059  * re-check afterwards to ensure nothing has changed in the
6060  * meantime.
6061  *
6062  * set:   This is designed to be called from the TX path, after
6063  *        a frame has been queued; to see if the swq > 0.
6064  *
6065  * clear: This is designed to be called from the buffer completion point
6066  *        (right now it's ath_tx_default_comp()) where the state of
6067  *        a software queue has changed.
6068  *
6069  * It makes sense to place it at buffer free / completion rather
6070  * than after each software queue operation, as there's no real
6071  * point in churning the TIM bit as the last frames in the software
6072  * queue are transmitted.  If they fail and we retry them, we'd
6073  * just be setting the TIM bit again anyway.
6074  */
6075 void
6076 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
6077      int enable)
6078 {
6079 #ifdef	ATH_SW_PSQ
6080 	struct ath_node *an;
6081 	struct ath_vap *avp;
6082 
6083 	/* Don't do this for broadcast/etc frames */
6084 	if (ni == NULL)
6085 		return;
6086 
6087 	an = ATH_NODE(ni);
6088 	avp = ATH_VAP(ni->ni_vap);
6089 
6090 	/*
6091 	 * And for operating modes without the TIM handler set, let's
6092 	 * just skip those.
6093 	 */
6094 	if (avp->av_set_tim == NULL)
6095 		return;
6096 
6097 	ATH_NODE_UNLOCK_ASSERT(an);
6098 
6099 	if (enable) {
6100 		/*
6101 		 * Don't bother grabbing the lock unless the queue is not
6102 		 * empty.
6103 		 */
6104 		if (atomic_load_acq_int(&an->an_swq_depth) == 0)
6105 			return;
6106 
6107 		ATH_NODE_LOCK(an);
6108 		if (an->an_is_powersave &&
6109 		    an->an_tim_set == 0 &&
6110 		    atomic_load_acq_int(&an->an_swq_depth) != 0) {
6111 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6112 			    "%s: an=%p, swq_depth>0, tim_set=0, set!\n",
6113 			    __func__, an);
6114 			an->an_tim_set = 1;
6115 			ATH_NODE_UNLOCK(an);
6116 			(void) avp->av_set_tim(ni, 1);
6117 		} else {
6118 			ATH_NODE_UNLOCK(an);
6119 		}
6120 	} else {
6121 		/*
6122 		 * Don't bother grabbing the lock unless the queue is empty.
6123 		 */
6124 		if (atomic_load_acq_int(&an->an_swq_depth) != 0)
6125 			return;
6126 
6127 		ATH_NODE_LOCK(an);
6128 		if (an->an_is_powersave &&
6129 		    an->an_stack_psq == 0 &&
6130 		    an->an_tim_set == 1 &&
6131 		    atomic_load_acq_int(&an->an_swq_depth) == 0) {
6132 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6133 			    "%s: an=%p, swq_depth=0, tim_set=1, psq_set=0,"
6134 			    " clear!\n",
6135 			    __func__, an);
6136 			an->an_tim_set = 0;
6137 			ATH_NODE_UNLOCK(an);
6138 			(void) avp->av_set_tim(ni, 0);
6139 		} else {
6140 			ATH_NODE_UNLOCK(an);
6141 		}
6142 	}
6143 #else
6144 	return;
6145 #endif	/* ATH_SW_PSQ */
6146 }
6147 
6148 MODULE_VERSION(if_ath, 1);
6149 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
6150 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
6151 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
6152 #endif
6153