xref: /freebsd/sys/dev/ath/if_ath.c (revision 262e143bd46171a6415a5b28af260a5efa2a3db8)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  * 3. Neither the names of the above-listed copyright holders nor the names
16  *    of any contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * NO WARRANTY
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGES.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /*
41  * Driver for the Atheros Wireless LAN controller.
42  *
43  * This software is derived from work of Atsushi Onoe; his contribution
44  * is greatly appreciated.
45  */
46 
47 #include "opt_inet.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysctl.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/kernel.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/errno.h>
60 #include <sys/callout.h>
61 #include <sys/bus.h>
62 #include <sys/endian.h>
63 
64 #include <machine/bus.h>
65 
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_types.h>
70 #include <net/if_arp.h>
71 #include <net/ethernet.h>
72 #include <net/if_llc.h>
73 
74 #include <net80211/ieee80211_var.h>
75 
76 #include <net/bpf.h>
77 
78 #ifdef INET
79 #include <netinet/in.h>
80 #include <netinet/if_ether.h>
81 #endif
82 
83 #define	AR_DEBUG
84 #include <dev/ath/if_athvar.h>
85 #include <contrib/dev/ath/ah_desc.h>
86 #include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
87 
88 /* unaligned little endian access */
89 #define LE_READ_2(p)							\
90 	((u_int16_t)							\
91 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
92 #define LE_READ_4(p)							\
93 	((u_int32_t)							\
94 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
95 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
96 
97 enum {
98 	ATH_LED_TX,
99 	ATH_LED_RX,
100 	ATH_LED_POLL,
101 };
102 
103 static void	ath_init(void *);
104 static void	ath_stop_locked(struct ifnet *);
105 static void	ath_stop(struct ifnet *);
106 static void	ath_start(struct ifnet *);
107 static int	ath_reset(struct ifnet *);
108 static int	ath_media_change(struct ifnet *);
109 static void	ath_watchdog(struct ifnet *);
110 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
111 static void	ath_fatal_proc(void *, int);
112 static void	ath_rxorn_proc(void *, int);
113 static void	ath_bmiss_proc(void *, int);
114 static int	ath_key_alloc(struct ieee80211com *,
115 			const struct ieee80211_key *,
116 			ieee80211_keyix *, ieee80211_keyix *);
117 static int	ath_key_delete(struct ieee80211com *,
118 			const struct ieee80211_key *);
119 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
120 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
121 static void	ath_key_update_begin(struct ieee80211com *);
122 static void	ath_key_update_end(struct ieee80211com *);
123 static void	ath_mode_init(struct ath_softc *);
124 static void	ath_setslottime(struct ath_softc *);
125 static void	ath_updateslot(struct ifnet *);
126 static int	ath_beaconq_setup(struct ath_hal *);
127 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
128 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
129 static void	ath_beacon_proc(void *, int);
130 static void	ath_bstuck_proc(void *, int);
131 static void	ath_beacon_free(struct ath_softc *);
132 static void	ath_beacon_config(struct ath_softc *);
133 static void	ath_descdma_cleanup(struct ath_softc *sc,
134 			struct ath_descdma *, ath_bufhead *);
135 static int	ath_desc_alloc(struct ath_softc *);
136 static void	ath_desc_free(struct ath_softc *);
137 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
138 static void	ath_node_free(struct ieee80211_node *);
139 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
140 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
141 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
142 			struct ieee80211_node *ni,
143 			int subtype, int rssi, u_int32_t rstamp);
144 static void	ath_setdefantenna(struct ath_softc *, u_int);
145 static void	ath_rx_proc(void *, int);
146 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
147 static int	ath_tx_setup(struct ath_softc *, int, int);
148 static int	ath_wme_update(struct ieee80211com *);
149 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
150 static void	ath_tx_cleanup(struct ath_softc *);
151 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
152 			     struct ath_buf *, struct mbuf *);
153 static void	ath_tx_proc_q0(void *, int);
154 static void	ath_tx_proc_q0123(void *, int);
155 static void	ath_tx_proc(void *, int);
156 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
157 static void	ath_draintxq(struct ath_softc *);
158 static void	ath_stoprecv(struct ath_softc *);
159 static int	ath_startrecv(struct ath_softc *);
160 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
161 static void	ath_next_scan(void *);
162 static void	ath_calibrate(void *);
163 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
164 static void	ath_setup_stationkey(struct ieee80211_node *);
165 static void	ath_newassoc(struct ieee80211_node *, int);
166 static int	ath_getchannels(struct ath_softc *, u_int cc,
167 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
168 static void	ath_led_event(struct ath_softc *, int);
169 static void	ath_update_txpow(struct ath_softc *);
170 
171 static int	ath_rate_setup(struct ath_softc *, u_int mode);
172 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
173 
174 static void	ath_sysctlattach(struct ath_softc *);
175 static void	ath_bpfattach(struct ath_softc *);
176 static void	ath_announce(struct ath_softc *);
177 
178 SYSCTL_DECL(_hw_ath);
179 
180 /* XXX validate sysctl values */
181 static	int ath_dwelltime = 200;		/* 5 channels/second */
182 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
183 	    0, "channel dwell time (ms) for AP/station scanning");
184 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
185 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
186 	    0, "chip calibration interval (secs)");
187 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
188 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
189 	    0, "outdoor operation");
190 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
191 static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
192 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
193 	    0, "extended channel mode");
194 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
195 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
196 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
197 	    0, "country code");
198 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
199 static	int ath_regdomain = 0;			/* regulatory domain */
200 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
201 	    0, "regulatory domain");
202 
203 #ifdef AR_DEBUG
204 static	int ath_debug = 0;
205 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
206 	    0, "control debugging printfs");
207 TUNABLE_INT("hw.ath.debug", &ath_debug);
208 enum {
209 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
210 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
211 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
212 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
213 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
214 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
215 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
216 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
217 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
218 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
219 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
220 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
221 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
222 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
223 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
224 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
225 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
226 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
227 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
228 	ATH_DEBUG_ANY		= 0xffffffff
229 };
230 #define	IFF_DUMPPKTS(sc, m) \
231 	((sc->sc_debug & (m)) || \
232 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
233 #define	DPRINTF(sc, m, fmt, ...) do {				\
234 	if (sc->sc_debug & (m))					\
235 		printf(fmt, __VA_ARGS__);			\
236 } while (0)
237 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
238 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
239 		ath_keyprint(__func__, ix, hk, mac);		\
240 } while (0)
241 static	void ath_printrxbuf(struct ath_buf *bf, int);
242 static	void ath_printtxbuf(struct ath_buf *bf, int);
243 #else
244 #define	IFF_DUMPPKTS(sc, m) \
245 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
246 #define	DPRINTF(m, fmt, ...)
247 #define	KEYPRINTF(sc, k, ix, mac)
248 #endif
249 
250 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
251 
252 int
253 ath_attach(u_int16_t devid, struct ath_softc *sc)
254 {
255 	struct ifnet *ifp;
256 	struct ieee80211com *ic = &sc->sc_ic;
257 	struct ath_hal *ah = NULL;
258 	HAL_STATUS status;
259 	int error = 0, i;
260 
261 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
262 
263 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
264 	if (ifp == NULL) {
265 		device_printf(sc->sc_dev, "can not if_alloc()\n");
266 		error = ENOSPC;
267 		goto bad;
268 	}
269 
270 	/* set these up early for if_printf use */
271 	if_initname(ifp, device_get_name(sc->sc_dev),
272 		device_get_unit(sc->sc_dev));
273 
274 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
275 	if (ah == NULL) {
276 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
277 			status);
278 		error = ENXIO;
279 		goto bad;
280 	}
281 	if (ah->ah_abi != HAL_ABI_VERSION) {
282 		if_printf(ifp, "HAL ABI mismatch detected "
283 			"(HAL:0x%x != driver:0x%x)\n",
284 			ah->ah_abi, HAL_ABI_VERSION);
285 		error = ENXIO;
286 		goto bad;
287 	}
288 	sc->sc_ah = ah;
289 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
290 
291 	/*
292 	 * Check if the MAC has multi-rate retry support.
293 	 * We do this by trying to setup a fake extended
294 	 * descriptor.  MAC's that don't have support will
295 	 * return false w/o doing anything.  MAC's that do
296 	 * support it will return true w/o doing anything.
297 	 */
298 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
299 
300 	/*
301 	 * Check if the device has hardware counters for PHY
302 	 * errors.  If so we need to enable the MIB interrupt
303 	 * so we can act on stat triggers.
304 	 */
305 	if (ath_hal_hwphycounters(ah))
306 		sc->sc_needmib = 1;
307 
308 	/*
309 	 * Get the hardware key cache size.
310 	 */
311 	sc->sc_keymax = ath_hal_keycachesize(ah);
312 	if (sc->sc_keymax > ATH_KEYMAX) {
313 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
314 			ATH_KEYMAX, sc->sc_keymax);
315 		sc->sc_keymax = ATH_KEYMAX;
316 	}
317 	/*
318 	 * Reset the key cache since some parts do not
319 	 * reset the contents on initial power up.
320 	 */
321 	for (i = 0; i < sc->sc_keymax; i++)
322 		ath_hal_keyreset(ah, i);
323 	/*
324 	 * Mark key cache slots associated with global keys
325 	 * as in use.  If we knew TKIP was not to be used we
326 	 * could leave the +32, +64, and +32+64 slots free.
327 	 * XXX only for splitmic.
328 	 */
329 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
330 		setbit(sc->sc_keymap, i);
331 		setbit(sc->sc_keymap, i+32);
332 		setbit(sc->sc_keymap, i+64);
333 		setbit(sc->sc_keymap, i+32+64);
334 	}
335 
336 	/*
337 	 * Collect the channel list using the default country
338 	 * code and including outdoor channels.  The 802.11 layer
339 	 * is resposible for filtering this list based on settings
340 	 * like the phy mode.
341 	 */
342 	error = ath_getchannels(sc, ath_countrycode,
343 			ath_outdoor, ath_xchanmode);
344 	if (error != 0)
345 		goto bad;
346 
347 	/*
348 	 * Setup rate tables for all potential media types.
349 	 */
350 	ath_rate_setup(sc, IEEE80211_MODE_11A);
351 	ath_rate_setup(sc, IEEE80211_MODE_11B);
352 	ath_rate_setup(sc, IEEE80211_MODE_11G);
353 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
354 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
355 	/* NB: setup here so ath_rate_update is happy */
356 	ath_setcurmode(sc, IEEE80211_MODE_11A);
357 
358 	/*
359 	 * Allocate tx+rx descriptors and populate the lists.
360 	 */
361 	error = ath_desc_alloc(sc);
362 	if (error != 0) {
363 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
364 		goto bad;
365 	}
366 	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
367 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
368 
369 	ATH_TXBUF_LOCK_INIT(sc);
370 
371 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
372 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
373 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
374 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
375 	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
376 
377 	/*
378 	 * Allocate hardware transmit queues: one queue for
379 	 * beacon frames and one data queue for each QoS
380 	 * priority.  Note that the hal handles reseting
381 	 * these queues at the needed time.
382 	 *
383 	 * XXX PS-Poll
384 	 */
385 	sc->sc_bhalq = ath_beaconq_setup(ah);
386 	if (sc->sc_bhalq == (u_int) -1) {
387 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
388 		error = EIO;
389 		goto bad2;
390 	}
391 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
392 	if (sc->sc_cabq == NULL) {
393 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
394 		error = EIO;
395 		goto bad2;
396 	}
397 	/* NB: insure BK queue is the lowest priority h/w queue */
398 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
399 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
400 			ieee80211_wme_acnames[WME_AC_BK]);
401 		error = EIO;
402 		goto bad2;
403 	}
404 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
405 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
406 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
407 		/*
408 		 * Not enough hardware tx queues to properly do WME;
409 		 * just punt and assign them all to the same h/w queue.
410 		 * We could do a better job of this if, for example,
411 		 * we allocate queues when we switch from station to
412 		 * AP mode.
413 		 */
414 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
415 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
416 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
417 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
418 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
419 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
420 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
421 	}
422 
423 	/*
424 	 * Special case certain configurations.  Note the
425 	 * CAB queue is handled by these specially so don't
426 	 * include them when checking the txq setup mask.
427 	 */
428 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
429 	case 0x01:
430 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
431 		break;
432 	case 0x0f:
433 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
434 		break;
435 	default:
436 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
437 		break;
438 	}
439 
440 	/*
441 	 * Setup rate control.  Some rate control modules
442 	 * call back to change the anntena state so expose
443 	 * the necessary entry points.
444 	 * XXX maybe belongs in struct ath_ratectrl?
445 	 */
446 	sc->sc_setdefantenna = ath_setdefantenna;
447 	sc->sc_rc = ath_rate_attach(sc);
448 	if (sc->sc_rc == NULL) {
449 		error = EIO;
450 		goto bad2;
451 	}
452 
453 	sc->sc_blinking = 0;
454 	sc->sc_ledstate = 1;
455 	sc->sc_ledon = 0;			/* low true */
456 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
457 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
458 	/*
459 	 * Auto-enable soft led processing for IBM cards and for
460 	 * 5211 minipci cards.  Users can also manually enable/disable
461 	 * support with a sysctl.
462 	 */
463 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
464 	if (sc->sc_softled) {
465 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
466 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
467 	}
468 
469 	ifp->if_softc = sc;
470 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
471 	ifp->if_start = ath_start;
472 	ifp->if_watchdog = ath_watchdog;
473 	ifp->if_ioctl = ath_ioctl;
474 	ifp->if_init = ath_init;
475 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
476 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
477 	IFQ_SET_READY(&ifp->if_snd);
478 
479 	ic->ic_ifp = ifp;
480 	ic->ic_reset = ath_reset;
481 	ic->ic_newassoc = ath_newassoc;
482 	ic->ic_updateslot = ath_updateslot;
483 	ic->ic_wme.wme_update = ath_wme_update;
484 	/* XXX not right but it's not used anywhere important */
485 	ic->ic_phytype = IEEE80211_T_OFDM;
486 	ic->ic_opmode = IEEE80211_M_STA;
487 	ic->ic_caps =
488 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
489 		| IEEE80211_C_HOSTAP		/* hostap mode */
490 		| IEEE80211_C_MONITOR		/* monitor mode */
491 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
492 		| IEEE80211_C_SHSLOT		/* short slot time supported */
493 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
494 		;
495 	/*
496 	 * Query the hal to figure out h/w crypto support.
497 	 */
498 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
499 		ic->ic_caps |= IEEE80211_C_WEP;
500 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
501 		ic->ic_caps |= IEEE80211_C_AES;
502 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
503 		ic->ic_caps |= IEEE80211_C_AES_CCM;
504 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
505 		ic->ic_caps |= IEEE80211_C_CKIP;
506 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
507 		ic->ic_caps |= IEEE80211_C_TKIP;
508 		/*
509 		 * Check if h/w does the MIC and/or whether the
510 		 * separate key cache entries are required to
511 		 * handle both tx+rx MIC keys.
512 		 */
513 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
514 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
515 		if (ath_hal_tkipsplit(ah))
516 			sc->sc_splitmic = 1;
517 	}
518 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
519 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
520 	/*
521 	 * TPC support can be done either with a global cap or
522 	 * per-packet support.  The latter is not available on
523 	 * all parts.  We're a bit pedantic here as all parts
524 	 * support a global cap.
525 	 */
526 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
527 		ic->ic_caps |= IEEE80211_C_TXPMGT;
528 
529 	/*
530 	 * Mark WME capability only if we have sufficient
531 	 * hardware queues to do proper priority scheduling.
532 	 */
533 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
534 		ic->ic_caps |= IEEE80211_C_WME;
535 	/*
536 	 * Check for misc other capabilities.
537 	 */
538 	if (ath_hal_hasbursting(ah))
539 		ic->ic_caps |= IEEE80211_C_BURST;
540 
541 	/*
542 	 * Indicate we need the 802.11 header padded to a
543 	 * 32-bit boundary for 4-address and QoS frames.
544 	 */
545 	ic->ic_flags |= IEEE80211_F_DATAPAD;
546 
547 	/*
548 	 * Query the hal about antenna support.
549 	 */
550 	sc->sc_defant = ath_hal_getdefantenna(ah);
551 
552 	/*
553 	 * Not all chips have the VEOL support we want to
554 	 * use with IBSS beacons; check here for it.
555 	 */
556 	sc->sc_hasveol = ath_hal_hasveol(ah);
557 
558 	/* get mac address from hardware */
559 	ath_hal_getmac(ah, ic->ic_myaddr);
560 
561 	/* call MI attach routine. */
562 	ieee80211_ifattach(ic);
563 	/* override default methods */
564 	ic->ic_node_alloc = ath_node_alloc;
565 	sc->sc_node_free = ic->ic_node_free;
566 	ic->ic_node_free = ath_node_free;
567 	ic->ic_node_getrssi = ath_node_getrssi;
568 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
569 	ic->ic_recv_mgmt = ath_recv_mgmt;
570 	sc->sc_newstate = ic->ic_newstate;
571 	ic->ic_newstate = ath_newstate;
572 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
573 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
574 	ic->ic_crypto.cs_key_delete = ath_key_delete;
575 	ic->ic_crypto.cs_key_set = ath_key_set;
576 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
577 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
578 	/* complete initialization */
579 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
580 
581 	ath_bpfattach(sc);
582 	/*
583 	 * Setup dynamic sysctl's now that country code and
584 	 * regdomain are available from the hal.
585 	 */
586 	ath_sysctlattach(sc);
587 
588 	if (bootverbose)
589 		ieee80211_announce(ic);
590 	ath_announce(sc);
591 	return 0;
592 bad2:
593 	ath_tx_cleanup(sc);
594 	ath_desc_free(sc);
595 bad:
596 	if (ah)
597 		ath_hal_detach(ah);
598 	if (ifp != NULL)
599 		if_free(ifp);
600 	sc->sc_invalid = 1;
601 	return error;
602 }
603 
604 int
605 ath_detach(struct ath_softc *sc)
606 {
607 	struct ifnet *ifp = sc->sc_ifp;
608 
609 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
610 		__func__, ifp->if_flags);
611 
612 	ath_stop(ifp);
613 	bpfdetach(ifp);
614 	/*
615 	 * NB: the order of these is important:
616 	 * o call the 802.11 layer before detaching the hal to
617 	 *   insure callbacks into the driver to delete global
618 	 *   key cache entries can be handled
619 	 * o reclaim the tx queue data structures after calling
620 	 *   the 802.11 layer as we'll get called back to reclaim
621 	 *   node state and potentially want to use them
622 	 * o to cleanup the tx queues the hal is called, so detach
623 	 *   it last
624 	 * Other than that, it's straightforward...
625 	 */
626 	ieee80211_ifdetach(&sc->sc_ic);
627 	ath_rate_detach(sc->sc_rc);
628 	ath_desc_free(sc);
629 	ath_tx_cleanup(sc);
630 	ath_hal_detach(sc->sc_ah);
631 	if_free(ifp);
632 
633 	return 0;
634 }
635 
636 void
637 ath_suspend(struct ath_softc *sc)
638 {
639 	struct ifnet *ifp = sc->sc_ifp;
640 
641 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
642 		__func__, ifp->if_flags);
643 
644 	ath_stop(ifp);
645 }
646 
647 void
648 ath_resume(struct ath_softc *sc)
649 {
650 	struct ifnet *ifp = sc->sc_ifp;
651 
652 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
653 		__func__, ifp->if_flags);
654 
655 	if (ifp->if_flags & IFF_UP) {
656 		ath_init(sc);
657 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
658 			ath_start(ifp);
659 	}
660 	if (sc->sc_softled) {
661 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
662 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
663 	}
664 }
665 
666 void
667 ath_shutdown(struct ath_softc *sc)
668 {
669 	struct ifnet *ifp = sc->sc_ifp;
670 
671 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
672 		__func__, ifp->if_flags);
673 
674 	ath_stop(ifp);
675 }
676 
677 /*
678  * Interrupt handler.  Most of the actual processing is deferred.
679  */
680 void
681 ath_intr(void *arg)
682 {
683 	struct ath_softc *sc = arg;
684 	struct ifnet *ifp = sc->sc_ifp;
685 	struct ath_hal *ah = sc->sc_ah;
686 	HAL_INT status;
687 
688 	if (sc->sc_invalid) {
689 		/*
690 		 * The hardware is not ready/present, don't touch anything.
691 		 * Note this can happen early on if the IRQ is shared.
692 		 */
693 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
694 		return;
695 	}
696 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
697 		return;
698 	if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags &
699 	    IFF_DRV_RUNNING))) {
700 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
701 			__func__, ifp->if_flags);
702 		ath_hal_getisr(ah, &status);	/* clear ISR */
703 		ath_hal_intrset(ah, 0);		/* disable further intr's */
704 		return;
705 	}
706 	/*
707 	 * Figure out the reason(s) for the interrupt.  Note
708 	 * that the hal returns a pseudo-ISR that may include
709 	 * bits we haven't explicitly enabled so we mask the
710 	 * value to insure we only process bits we requested.
711 	 */
712 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
713 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
714 	status &= sc->sc_imask;			/* discard unasked for bits */
715 	if (status & HAL_INT_FATAL) {
716 		/*
717 		 * Fatal errors are unrecoverable.  Typically
718 		 * these are caused by DMA errors.  Unfortunately
719 		 * the exact reason is not (presently) returned
720 		 * by the hal.
721 		 */
722 		sc->sc_stats.ast_hardware++;
723 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
724 		taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
725 	} else if (status & HAL_INT_RXORN) {
726 		sc->sc_stats.ast_rxorn++;
727 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
728 		taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
729 	} else {
730 		if (status & HAL_INT_SWBA) {
731 			/*
732 			 * Software beacon alert--time to send a beacon.
733 			 * Handle beacon transmission directly; deferring
734 			 * this is too slow to meet timing constraints
735 			 * under load.
736 			 */
737 			ath_beacon_proc(sc, 0);
738 		}
739 		if (status & HAL_INT_RXEOL) {
740 			/*
741 			 * NB: the hardware should re-read the link when
742 			 *     RXE bit is written, but it doesn't work at
743 			 *     least on older hardware revs.
744 			 */
745 			sc->sc_stats.ast_rxeol++;
746 			sc->sc_rxlink = NULL;
747 		}
748 		if (status & HAL_INT_TXURN) {
749 			sc->sc_stats.ast_txurn++;
750 			/* bump tx trigger level */
751 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
752 		}
753 		if (status & HAL_INT_RX)
754 			taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
755 		if (status & HAL_INT_TX)
756 			taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
757 		if (status & HAL_INT_BMISS) {
758 			sc->sc_stats.ast_bmiss++;
759 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
760 		}
761 		if (status & HAL_INT_MIB) {
762 			sc->sc_stats.ast_mib++;
763 			/*
764 			 * Disable interrupts until we service the MIB
765 			 * interrupt; otherwise it will continue to fire.
766 			 */
767 			ath_hal_intrset(ah, 0);
768 			/*
769 			 * Let the hal handle the event.  We assume it will
770 			 * clear whatever condition caused the interrupt.
771 			 */
772 			ath_hal_mibevent(ah,
773 				&ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
774 			ath_hal_intrset(ah, sc->sc_imask);
775 		}
776 	}
777 }
778 
779 static void
780 ath_fatal_proc(void *arg, int pending)
781 {
782 	struct ath_softc *sc = arg;
783 	struct ifnet *ifp = sc->sc_ifp;
784 
785 	if_printf(ifp, "hardware error; resetting\n");
786 	ath_reset(ifp);
787 }
788 
789 static void
790 ath_rxorn_proc(void *arg, int pending)
791 {
792 	struct ath_softc *sc = arg;
793 	struct ifnet *ifp = sc->sc_ifp;
794 
795 	if_printf(ifp, "rx FIFO overrun; resetting\n");
796 	ath_reset(ifp);
797 }
798 
799 static void
800 ath_bmiss_proc(void *arg, int pending)
801 {
802 	struct ath_softc *sc = arg;
803 	struct ieee80211com *ic = &sc->sc_ic;
804 
805 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
806 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
807 		("unexpect operating mode %u", ic->ic_opmode));
808 	if (ic->ic_state == IEEE80211_S_RUN) {
809 		/*
810 		 * Rather than go directly to scan state, try to
811 		 * reassociate first.  If that fails then the state
812 		 * machine will drop us into scanning after timing
813 		 * out waiting for a probe response.
814 		 */
815 		NET_LOCK_GIANT();
816 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
817 		NET_UNLOCK_GIANT();
818 	}
819 }
820 
821 static u_int
822 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
823 {
824 #define	N(a)	(sizeof(a) / sizeof(a[0]))
825 	static const u_int modeflags[] = {
826 		0,			/* IEEE80211_MODE_AUTO */
827 		CHANNEL_A,		/* IEEE80211_MODE_11A */
828 		CHANNEL_B,		/* IEEE80211_MODE_11B */
829 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
830 		0,			/* IEEE80211_MODE_FH */
831 		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
832 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
833 	};
834 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
835 
836 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
837 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
838 	return modeflags[mode];
839 #undef N
840 }
841 
842 static void
843 ath_init(void *arg)
844 {
845 	struct ath_softc *sc = (struct ath_softc *) arg;
846 	struct ieee80211com *ic = &sc->sc_ic;
847 	struct ifnet *ifp = sc->sc_ifp;
848 	struct ath_hal *ah = sc->sc_ah;
849 	HAL_STATUS status;
850 
851 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
852 		__func__, ifp->if_flags);
853 
854 	ATH_LOCK(sc);
855 	/*
856 	 * Stop anything previously setup.  This is safe
857 	 * whether this is the first time through or not.
858 	 */
859 	ath_stop_locked(ifp);
860 
861 	/*
862 	 * The basic interface to setting the hardware in a good
863 	 * state is ``reset''.  On return the hardware is known to
864 	 * be powered up and with interrupts disabled.  This must
865 	 * be followed by initialization of the appropriate bits
866 	 * and then setup of the interrupt mask.
867 	 */
868 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
869 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
870 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
871 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
872 			status);
873 		goto done;
874 	}
875 
876 	/*
877 	 * This is needed only to setup initial state
878 	 * but it's best done after a reset.
879 	 */
880 	ath_update_txpow(sc);
881 	/*
882 	 * Likewise this is set during reset so update
883 	 * state cached in the driver.
884 	 */
885 	sc->sc_diversity = ath_hal_getdiversity(ah);
886 
887 	/*
888 	 * Setup the hardware after reset: the key cache
889 	 * is filled as needed and the receive engine is
890 	 * set going.  Frame transmit is handled entirely
891 	 * in the frame output path; there's nothing to do
892 	 * here except setup the interrupt mask.
893 	 */
894 	if (ath_startrecv(sc) != 0) {
895 		if_printf(ifp, "unable to start recv logic\n");
896 		goto done;
897 	}
898 
899 	/*
900 	 * Enable interrupts.
901 	 */
902 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
903 		  | HAL_INT_RXEOL | HAL_INT_RXORN
904 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
905 	/*
906 	 * Enable MIB interrupts when there are hardware phy counters.
907 	 * Note we only do this (at the moment) for station mode.
908 	 */
909 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
910 		sc->sc_imask |= HAL_INT_MIB;
911 	ath_hal_intrset(ah, sc->sc_imask);
912 
913 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
914 	ic->ic_state = IEEE80211_S_INIT;
915 
916 	/*
917 	 * The hardware should be ready to go now so it's safe
918 	 * to kick the 802.11 state machine as it's likely to
919 	 * immediately call back to us to send mgmt frames.
920 	 */
921 	ath_chan_change(sc, ic->ic_curchan);
922 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
923 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
924 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
925 	} else
926 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
927 done:
928 	ATH_UNLOCK(sc);
929 }
930 
931 static void
932 ath_stop_locked(struct ifnet *ifp)
933 {
934 	struct ath_softc *sc = ifp->if_softc;
935 	struct ieee80211com *ic = &sc->sc_ic;
936 	struct ath_hal *ah = sc->sc_ah;
937 
938 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
939 		__func__, sc->sc_invalid, ifp->if_flags);
940 
941 	ATH_LOCK_ASSERT(sc);
942 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
943 		/*
944 		 * Shutdown the hardware and driver:
945 		 *    reset 802.11 state machine
946 		 *    turn off timers
947 		 *    disable interrupts
948 		 *    turn off the radio
949 		 *    clear transmit machinery
950 		 *    clear receive machinery
951 		 *    drain and release tx queues
952 		 *    reclaim beacon resources
953 		 *    power down hardware
954 		 *
955 		 * Note that some of this work is not possible if the
956 		 * hardware is gone (invalid).
957 		 */
958 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
959 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
960 		ifp->if_timer = 0;
961 		if (!sc->sc_invalid) {
962 			if (sc->sc_softled) {
963 				callout_stop(&sc->sc_ledtimer);
964 				ath_hal_gpioset(ah, sc->sc_ledpin,
965 					!sc->sc_ledon);
966 				sc->sc_blinking = 0;
967 			}
968 			ath_hal_intrset(ah, 0);
969 		}
970 		ath_draintxq(sc);
971 		if (!sc->sc_invalid) {
972 			ath_stoprecv(sc);
973 			ath_hal_phydisable(ah);
974 		} else
975 			sc->sc_rxlink = NULL;
976 		IFQ_DRV_PURGE(&ifp->if_snd);
977 		ath_beacon_free(sc);
978 	}
979 }
980 
981 static void
982 ath_stop(struct ifnet *ifp)
983 {
984 	struct ath_softc *sc = ifp->if_softc;
985 
986 	ATH_LOCK(sc);
987 	ath_stop_locked(ifp);
988 	if (!sc->sc_invalid) {
989 		/*
990 		 * Set the chip in full sleep mode.  Note that we are
991 		 * careful to do this only when bringing the interface
992 		 * completely to a stop.  When the chip is in this state
993 		 * it must be carefully woken up or references to
994 		 * registers in the PCI clock domain may freeze the bus
995 		 * (and system).  This varies by chip and is mostly an
996 		 * issue with newer parts that go to sleep more quickly.
997 		 */
998 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
999 	}
1000 	ATH_UNLOCK(sc);
1001 }
1002 
1003 /*
1004  * Reset the hardware w/o losing operational state.  This is
1005  * basically a more efficient way of doing ath_stop, ath_init,
1006  * followed by state transitions to the current 802.11
1007  * operational state.  Used to recover from various errors and
1008  * to reset or reload hardware state.
1009  */
1010 static int
1011 ath_reset(struct ifnet *ifp)
1012 {
1013 	struct ath_softc *sc = ifp->if_softc;
1014 	struct ieee80211com *ic = &sc->sc_ic;
1015 	struct ath_hal *ah = sc->sc_ah;
1016 	struct ieee80211_channel *c;
1017 	HAL_STATUS status;
1018 
1019 	/*
1020 	 * Convert to a HAL channel description with the flags
1021 	 * constrained to reflect the current operating mode.
1022 	 */
1023 	c = ic->ic_curchan;
1024 	sc->sc_curchan.channel = c->ic_freq;
1025 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1026 
1027 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1028 	ath_draintxq(sc);		/* stop xmit side */
1029 	ath_stoprecv(sc);		/* stop recv side */
1030 	/* NB: indicate channel change so we do a full reset */
1031 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1032 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1033 			__func__, status);
1034 	ath_update_txpow(sc);		/* update tx power state */
1035 	sc->sc_diversity = ath_hal_getdiversity(ah);
1036 	if (ath_startrecv(sc) != 0)	/* restart recv */
1037 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1038 	/*
1039 	 * We may be doing a reset in response to an ioctl
1040 	 * that changes the channel so update any state that
1041 	 * might change as a result.
1042 	 */
1043 	ath_chan_change(sc, c);
1044 	if (ic->ic_state == IEEE80211_S_RUN)
1045 		ath_beacon_config(sc);	/* restart beacons */
1046 	ath_hal_intrset(ah, sc->sc_imask);
1047 
1048 	ath_start(ifp);			/* restart xmit */
1049 	return 0;
1050 }
1051 
1052 static void
1053 ath_start(struct ifnet *ifp)
1054 {
1055 	struct ath_softc *sc = ifp->if_softc;
1056 	struct ath_hal *ah = sc->sc_ah;
1057 	struct ieee80211com *ic = &sc->sc_ic;
1058 	struct ieee80211_node *ni;
1059 	struct ath_buf *bf;
1060 	struct mbuf *m;
1061 	struct ieee80211_frame *wh;
1062 	struct ether_header *eh;
1063 
1064 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1065 		return;
1066 	for (;;) {
1067 		/*
1068 		 * Grab a TX buffer and associated resources.
1069 		 */
1070 		ATH_TXBUF_LOCK(sc);
1071 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1072 		if (bf != NULL)
1073 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1074 		ATH_TXBUF_UNLOCK(sc);
1075 		if (bf == NULL) {
1076 			DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1077 				__func__);
1078 			sc->sc_stats.ast_tx_qstop++;
1079 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1080 			break;
1081 		}
1082 		/*
1083 		 * Poll the management queue for frames; they
1084 		 * have priority over normal data frames.
1085 		 */
1086 		IF_DEQUEUE(&ic->ic_mgtq, m);
1087 		if (m == NULL) {
1088 			/*
1089 			 * No data frames go out unless we're associated.
1090 			 */
1091 			if (ic->ic_state != IEEE80211_S_RUN) {
1092 				DPRINTF(sc, ATH_DEBUG_ANY,
1093 					"%s: ignore data packet, state %u\n",
1094 					__func__, ic->ic_state);
1095 				sc->sc_stats.ast_tx_discard++;
1096 				ATH_TXBUF_LOCK(sc);
1097 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1098 				ATH_TXBUF_UNLOCK(sc);
1099 				break;
1100 			}
1101 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1102 			if (m == NULL) {
1103 				ATH_TXBUF_LOCK(sc);
1104 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1105 				ATH_TXBUF_UNLOCK(sc);
1106 				break;
1107 			}
1108 			/*
1109 			 * Find the node for the destination so we can do
1110 			 * things like power save and fast frames aggregation.
1111 			 */
1112 			if (m->m_len < sizeof(struct ether_header) &&
1113 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1114 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1115 				ni = NULL;
1116 				goto bad;
1117 			}
1118 			eh = mtod(m, struct ether_header *);
1119 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1120 			if (ni == NULL) {
1121 				/* NB: ieee80211_find_txnode does stat+msg */
1122 				m_freem(m);
1123 				goto bad;
1124 			}
1125 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1126 			    (m->m_flags & M_PWR_SAV) == 0) {
1127 				/*
1128 				 * Station in power save mode; pass the frame
1129 				 * to the 802.11 layer and continue.  We'll get
1130 				 * the frame back when the time is right.
1131 				 */
1132 				ieee80211_pwrsave(ic, ni, m);
1133 				goto reclaim;
1134 			}
1135 			/* calculate priority so we can find the tx queue */
1136 			if (ieee80211_classify(ic, m, ni)) {
1137 				DPRINTF(sc, ATH_DEBUG_XMIT,
1138 					"%s: discard, classification failure\n",
1139 					__func__);
1140 				m_freem(m);
1141 				goto bad;
1142 			}
1143 			ifp->if_opackets++;
1144 			BPF_MTAP(ifp, m);
1145 			/*
1146 			 * Encapsulate the packet in prep for transmission.
1147 			 */
1148 			m = ieee80211_encap(ic, m, ni);
1149 			if (m == NULL) {
1150 				DPRINTF(sc, ATH_DEBUG_ANY,
1151 					"%s: encapsulation failure\n",
1152 					__func__);
1153 				sc->sc_stats.ast_tx_encap++;
1154 				goto bad;
1155 			}
1156 		} else {
1157 			/*
1158 			 * Hack!  The referenced node pointer is in the
1159 			 * rcvif field of the packet header.  This is
1160 			 * placed there by ieee80211_mgmt_output because
1161 			 * we need to hold the reference with the frame
1162 			 * and there's no other way (other than packet
1163 			 * tags which we consider too expensive to use)
1164 			 * to pass it along.
1165 			 */
1166 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1167 			m->m_pkthdr.rcvif = NULL;
1168 
1169 			wh = mtod(m, struct ieee80211_frame *);
1170 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1171 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1172 				/* fill time stamp */
1173 				u_int64_t tsf;
1174 				u_int32_t *tstamp;
1175 
1176 				tsf = ath_hal_gettsf64(ah);
1177 				/* XXX: adjust 100us delay to xmit */
1178 				tsf += 100;
1179 				tstamp = (u_int32_t *)&wh[1];
1180 				tstamp[0] = htole32(tsf & 0xffffffff);
1181 				tstamp[1] = htole32(tsf >> 32);
1182 			}
1183 			sc->sc_stats.ast_tx_mgmt++;
1184 		}
1185 
1186 		if (ath_tx_start(sc, ni, bf, m)) {
1187 	bad:
1188 			ifp->if_oerrors++;
1189 	reclaim:
1190 			ATH_TXBUF_LOCK(sc);
1191 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1192 			ATH_TXBUF_UNLOCK(sc);
1193 			if (ni != NULL)
1194 				ieee80211_free_node(ni);
1195 			continue;
1196 		}
1197 
1198 		sc->sc_tx_timer = 5;
1199 		ifp->if_timer = 1;
1200 	}
1201 }
1202 
1203 static int
1204 ath_media_change(struct ifnet *ifp)
1205 {
1206 #define	IS_UP(ifp) \
1207 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1208 	int error;
1209 
1210 	error = ieee80211_media_change(ifp);
1211 	if (error == ENETRESET) {
1212 		if (IS_UP(ifp))
1213 			ath_init(ifp->if_softc);	/* XXX lose error */
1214 		error = 0;
1215 	}
1216 	return error;
1217 #undef IS_UP
1218 }
1219 
1220 #ifdef AR_DEBUG
1221 static void
1222 ath_keyprint(const char *tag, u_int ix,
1223 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1224 {
1225 	static const char *ciphers[] = {
1226 		"WEP",
1227 		"AES-OCB",
1228 		"AES-CCM",
1229 		"CKIP",
1230 		"TKIP",
1231 		"CLR",
1232 	};
1233 	int i, n;
1234 
1235 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1236 	for (i = 0, n = hk->kv_len; i < n; i++)
1237 		printf("%02x", hk->kv_val[i]);
1238 	printf(" mac %s", ether_sprintf(mac));
1239 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1240 		printf(" mic ");
1241 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1242 			printf("%02x", hk->kv_mic[i]);
1243 	}
1244 	printf("\n");
1245 }
1246 #endif
1247 
1248 /*
1249  * Set a TKIP key into the hardware.  This handles the
1250  * potential distribution of key state to multiple key
1251  * cache slots for TKIP.
1252  */
1253 static int
1254 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1255 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1256 {
1257 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1258 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1259 	struct ath_hal *ah = sc->sc_ah;
1260 
1261 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1262 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1263 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1264 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1265 		/*
1266 		 * TX key goes at first index, RX key at the rx index.
1267 		 * The hal handles the MIC keys at index+64.
1268 		 */
1269 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1270 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1271 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1272 			return 0;
1273 
1274 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1275 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1276 		/* XXX delete tx key on failure? */
1277 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1278 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1279 		/*
1280 		 * TX/RX key goes at first index.
1281 		 * The hal handles the MIC keys are index+64.
1282 		 */
1283 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1284 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1285 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1286 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1287 	}
1288 	return 0;
1289 #undef IEEE80211_KEY_XR
1290 }
1291 
1292 /*
1293  * Set a net80211 key into the hardware.  This handles the
1294  * potential distribution of key state to multiple key
1295  * cache slots for TKIP with hardware MIC support.
1296  */
1297 static int
1298 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1299 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1300 	struct ieee80211_node *bss)
1301 {
1302 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1303 	static const u_int8_t ciphermap[] = {
1304 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1305 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1306 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1307 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1308 		(u_int8_t) -1,		/* 4 is not allocated */
1309 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1310 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1311 	};
1312 	struct ath_hal *ah = sc->sc_ah;
1313 	const struct ieee80211_cipher *cip = k->wk_cipher;
1314 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1315 	const u_int8_t *mac;
1316 	HAL_KEYVAL hk;
1317 
1318 	memset(&hk, 0, sizeof(hk));
1319 	/*
1320 	 * Software crypto uses a "clear key" so non-crypto
1321 	 * state kept in the key cache are maintained and
1322 	 * so that rx frames have an entry to match.
1323 	 */
1324 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1325 		KASSERT(cip->ic_cipher < N(ciphermap),
1326 			("invalid cipher type %u", cip->ic_cipher));
1327 		hk.kv_type = ciphermap[cip->ic_cipher];
1328 		hk.kv_len = k->wk_keylen;
1329 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1330 	} else
1331 		hk.kv_type = HAL_CIPHER_CLR;
1332 
1333 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1334 		/*
1335 		 * Group keys on hardware that supports multicast frame
1336 		 * key search use a mac that is the sender's address with
1337 		 * the high bit set instead of the app-specified address.
1338 		 */
1339 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1340 		gmac[0] |= 0x80;
1341 		mac = gmac;
1342 	} else
1343 		mac = mac0;
1344 
1345 	if (hk.kv_type == HAL_CIPHER_TKIP &&
1346 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1347 	    sc->sc_splitmic) {
1348 		return ath_keyset_tkip(sc, k, &hk, mac);
1349 	} else {
1350 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1351 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1352 	}
1353 #undef N
1354 }
1355 
1356 /*
1357  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1358  * each key, one for decrypt/encrypt and the other for the MIC.
1359  */
1360 static u_int16_t
1361 key_alloc_2pair(struct ath_softc *sc,
1362 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1363 {
1364 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1365 	u_int i, keyix;
1366 
1367 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1368 	/* XXX could optimize */
1369 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1370 		u_int8_t b = sc->sc_keymap[i];
1371 		if (b != 0xff) {
1372 			/*
1373 			 * One or more slots in this byte are free.
1374 			 */
1375 			keyix = i*NBBY;
1376 			while (b & 1) {
1377 		again:
1378 				keyix++;
1379 				b >>= 1;
1380 			}
1381 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1382 			if (isset(sc->sc_keymap, keyix+32) ||
1383 			    isset(sc->sc_keymap, keyix+64) ||
1384 			    isset(sc->sc_keymap, keyix+32+64)) {
1385 				/* full pair unavailable */
1386 				/* XXX statistic */
1387 				if (keyix == (i+1)*NBBY) {
1388 					/* no slots were appropriate, advance */
1389 					continue;
1390 				}
1391 				goto again;
1392 			}
1393 			setbit(sc->sc_keymap, keyix);
1394 			setbit(sc->sc_keymap, keyix+64);
1395 			setbit(sc->sc_keymap, keyix+32);
1396 			setbit(sc->sc_keymap, keyix+32+64);
1397 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1398 				"%s: key pair %u,%u %u,%u\n",
1399 				__func__, keyix, keyix+64,
1400 				keyix+32, keyix+32+64);
1401 			*txkeyix = keyix;
1402 			*rxkeyix = keyix+32;
1403 			return 1;
1404 		}
1405 	}
1406 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1407 	return 0;
1408 #undef N
1409 }
1410 
1411 /*
1412  * Allocate a single key cache slot.
1413  */
1414 static int
1415 key_alloc_single(struct ath_softc *sc,
1416 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1417 {
1418 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1419 	u_int i, keyix;
1420 
1421 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1422 	for (i = 0; i < N(sc->sc_keymap); i++) {
1423 		u_int8_t b = sc->sc_keymap[i];
1424 		if (b != 0xff) {
1425 			/*
1426 			 * One or more slots are free.
1427 			 */
1428 			keyix = i*NBBY;
1429 			while (b & 1)
1430 				keyix++, b >>= 1;
1431 			setbit(sc->sc_keymap, keyix);
1432 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1433 				__func__, keyix);
1434 			*txkeyix = *rxkeyix = keyix;
1435 			return 1;
1436 		}
1437 	}
1438 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1439 	return 0;
1440 #undef N
1441 }
1442 
1443 /*
1444  * Allocate one or more key cache slots for a uniacst key.  The
1445  * key itself is needed only to identify the cipher.  For hardware
1446  * TKIP with split cipher+MIC keys we allocate two key cache slot
1447  * pairs so that we can setup separate TX and RX MIC keys.  Note
1448  * that the MIC key for a TKIP key at slot i is assumed by the
1449  * hardware to be at slot i+64.  This limits TKIP keys to the first
1450  * 64 entries.
1451  */
1452 static int
1453 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1454 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1455 {
1456 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1457 
1458 	/*
1459 	 * Group key allocation must be handled specially for
1460 	 * parts that do not support multicast key cache search
1461 	 * functionality.  For those parts the key id must match
1462 	 * the h/w key index so lookups find the right key.  On
1463 	 * parts w/ the key search facility we install the sender's
1464 	 * mac address (with the high bit set) and let the hardware
1465 	 * find the key w/o using the key id.  This is preferred as
1466 	 * it permits us to support multiple users for adhoc and/or
1467 	 * multi-station operation.
1468 	 */
1469 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1470 		if (!(&ic->ic_nw_keys[0] <= k &&
1471 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1472 			/* should not happen */
1473 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1474 				"%s: bogus group key\n", __func__);
1475 			return 0;
1476 		}
1477 		/*
1478 		 * XXX we pre-allocate the global keys so
1479 		 * have no way to check if they've already been allocated.
1480 		 */
1481 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1482 		return 1;
1483 	}
1484 
1485 	/*
1486 	 * We allocate two pair for TKIP when using the h/w to do
1487 	 * the MIC.  For everything else, including software crypto,
1488 	 * we allocate a single entry.  Note that s/w crypto requires
1489 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1490 	 * not support pass-through cache entries and we map all
1491 	 * those requests to slot 0.
1492 	 */
1493 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1494 		return key_alloc_single(sc, keyix, rxkeyix);
1495 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1496 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1497 		return key_alloc_2pair(sc, keyix, rxkeyix);
1498 	} else {
1499 		return key_alloc_single(sc, keyix, rxkeyix);
1500 	}
1501 }
1502 
1503 /*
1504  * Delete an entry in the key cache allocated by ath_key_alloc.
1505  */
1506 static int
1507 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1508 {
1509 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1510 	struct ath_hal *ah = sc->sc_ah;
1511 	const struct ieee80211_cipher *cip = k->wk_cipher;
1512 	u_int keyix = k->wk_keyix;
1513 
1514 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1515 
1516 	ath_hal_keyreset(ah, keyix);
1517 	/*
1518 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1519 	 */
1520 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1521 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1522 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1523 	if (keyix >= IEEE80211_WEP_NKID) {
1524 		/*
1525 		 * Don't touch keymap entries for global keys so
1526 		 * they are never considered for dynamic allocation.
1527 		 */
1528 		clrbit(sc->sc_keymap, keyix);
1529 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1530 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1531 		    sc->sc_splitmic) {
1532 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1533 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1534 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1535 		}
1536 	}
1537 	return 1;
1538 }
1539 
1540 /*
1541  * Set the key cache contents for the specified key.  Key cache
1542  * slot(s) must already have been allocated by ath_key_alloc.
1543  */
1544 static int
1545 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1546 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1547 {
1548 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1549 
1550 	return ath_keyset(sc, k, mac, ic->ic_bss);
1551 }
1552 
1553 /*
1554  * Block/unblock tx+rx processing while a key change is done.
1555  * We assume the caller serializes key management operations
1556  * so we only need to worry about synchronization with other
1557  * uses that originate in the driver.
1558  */
1559 static void
1560 ath_key_update_begin(struct ieee80211com *ic)
1561 {
1562 	struct ifnet *ifp = ic->ic_ifp;
1563 	struct ath_softc *sc = ifp->if_softc;
1564 
1565 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1566 #if 0
1567 	tasklet_disable(&sc->sc_rxtq);
1568 #endif
1569 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1570 }
1571 
1572 static void
1573 ath_key_update_end(struct ieee80211com *ic)
1574 {
1575 	struct ifnet *ifp = ic->ic_ifp;
1576 	struct ath_softc *sc = ifp->if_softc;
1577 
1578 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1579 	IF_UNLOCK(&ifp->if_snd);
1580 #if 0
1581 	tasklet_enable(&sc->sc_rxtq);
1582 #endif
1583 }
1584 
1585 /*
1586  * Calculate the receive filter according to the
1587  * operating mode and state:
1588  *
1589  * o always accept unicast, broadcast, and multicast traffic
1590  * o maintain current state of phy error reception (the hal
1591  *   may enable phy error frames for noise immunity work)
1592  * o probe request frames are accepted only when operating in
1593  *   hostap, adhoc, or monitor modes
1594  * o enable promiscuous mode according to the interface state
1595  * o accept beacons:
1596  *   - when operating in adhoc mode so the 802.11 layer creates
1597  *     node table entries for peers,
1598  *   - when operating in station mode for collecting rssi data when
1599  *     the station is otherwise quiet, or
1600  *   - when scanning
1601  */
1602 static u_int32_t
1603 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1604 {
1605 	struct ieee80211com *ic = &sc->sc_ic;
1606 	struct ath_hal *ah = sc->sc_ah;
1607 	struct ifnet *ifp = sc->sc_ifp;
1608 	u_int32_t rfilt;
1609 
1610 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1611 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1612 	if (ic->ic_opmode != IEEE80211_M_STA)
1613 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1614 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1615 	    (ifp->if_flags & IFF_PROMISC))
1616 		rfilt |= HAL_RX_FILTER_PROM;
1617 	if (ic->ic_opmode == IEEE80211_M_STA ||
1618 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1619 	    state == IEEE80211_S_SCAN)
1620 		rfilt |= HAL_RX_FILTER_BEACON;
1621 	return rfilt;
1622 }
1623 
1624 static void
1625 ath_mode_init(struct ath_softc *sc)
1626 {
1627 	struct ieee80211com *ic = &sc->sc_ic;
1628 	struct ath_hal *ah = sc->sc_ah;
1629 	struct ifnet *ifp = sc->sc_ifp;
1630 	u_int32_t rfilt, mfilt[2], val;
1631 	u_int8_t pos;
1632 	struct ifmultiaddr *ifma;
1633 
1634 	/* configure rx filter */
1635 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1636 	ath_hal_setrxfilter(ah, rfilt);
1637 
1638 	/* configure operational mode */
1639 	ath_hal_setopmode(ah);
1640 
1641 	/*
1642 	 * Handle any link-level address change.  Note that we only
1643 	 * need to force ic_myaddr; any other addresses are handled
1644 	 * as a byproduct of the ifnet code marking the interface
1645 	 * down then up.
1646 	 *
1647 	 * XXX should get from lladdr instead of arpcom but that's more work
1648 	 */
1649 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1650 	ath_hal_setmac(ah, ic->ic_myaddr);
1651 
1652 	/* calculate and install multicast filter */
1653 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1654 		mfilt[0] = mfilt[1] = 0;
1655 		IF_ADDR_LOCK(ifp);
1656 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1657 			caddr_t dl;
1658 
1659 			/* calculate XOR of eight 6bit values */
1660 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1661 			val = LE_READ_4(dl + 0);
1662 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1663 			val = LE_READ_4(dl + 3);
1664 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1665 			pos &= 0x3f;
1666 			mfilt[pos / 32] |= (1 << (pos % 32));
1667 		}
1668 		IF_ADDR_UNLOCK(ifp);
1669 	} else {
1670 		mfilt[0] = mfilt[1] = ~0;
1671 	}
1672 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1673 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1674 		__func__, rfilt, mfilt[0], mfilt[1]);
1675 }
1676 
1677 /*
1678  * Set the slot time based on the current setting.
1679  */
1680 static void
1681 ath_setslottime(struct ath_softc *sc)
1682 {
1683 	struct ieee80211com *ic = &sc->sc_ic;
1684 	struct ath_hal *ah = sc->sc_ah;
1685 
1686 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1687 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1688 	else
1689 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1690 	sc->sc_updateslot = OK;
1691 }
1692 
1693 /*
1694  * Callback from the 802.11 layer to update the
1695  * slot time based on the current setting.
1696  */
1697 static void
1698 ath_updateslot(struct ifnet *ifp)
1699 {
1700 	struct ath_softc *sc = ifp->if_softc;
1701 	struct ieee80211com *ic = &sc->sc_ic;
1702 
1703 	/*
1704 	 * When not coordinating the BSS, change the hardware
1705 	 * immediately.  For other operation we defer the change
1706 	 * until beacon updates have propagated to the stations.
1707 	 */
1708 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1709 		sc->sc_updateslot = UPDATE;
1710 	else
1711 		ath_setslottime(sc);
1712 }
1713 
1714 /*
1715  * Setup a h/w transmit queue for beacons.
1716  */
1717 static int
1718 ath_beaconq_setup(struct ath_hal *ah)
1719 {
1720 	HAL_TXQ_INFO qi;
1721 
1722 	memset(&qi, 0, sizeof(qi));
1723 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1724 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1725 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1726 	/* NB: for dynamic turbo, don't enable any other interrupts */
1727 	qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1728 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1729 }
1730 
1731 /*
1732  * Setup the transmit queue parameters for the beacon queue.
1733  */
1734 static int
1735 ath_beaconq_config(struct ath_softc *sc)
1736 {
1737 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
1738 	struct ieee80211com *ic = &sc->sc_ic;
1739 	struct ath_hal *ah = sc->sc_ah;
1740 	HAL_TXQ_INFO qi;
1741 
1742 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1743 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1744 		/*
1745 		 * Always burst out beacon and CAB traffic.
1746 		 */
1747 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1748 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1749 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1750 	} else {
1751 		struct wmeParams *wmep =
1752 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1753 		/*
1754 		 * Adhoc mode; important thing is to use 2x cwmin.
1755 		 */
1756 		qi.tqi_aifs = wmep->wmep_aifsn;
1757 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1758 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1759 	}
1760 
1761 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1762 		device_printf(sc->sc_dev, "unable to update parameters for "
1763 			"beacon hardware queue!\n");
1764 		return 0;
1765 	} else {
1766 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1767 		return 1;
1768 	}
1769 #undef ATH_EXPONENT_TO_VALUE
1770 }
1771 
1772 /*
1773  * Allocate and setup an initial beacon frame.
1774  */
1775 static int
1776 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1777 {
1778 	struct ieee80211com *ic = ni->ni_ic;
1779 	struct ath_buf *bf;
1780 	struct mbuf *m;
1781 	int error;
1782 
1783 	bf = STAILQ_FIRST(&sc->sc_bbuf);
1784 	if (bf == NULL) {
1785 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1786 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1787 		return ENOMEM;			/* XXX */
1788 	}
1789 	/*
1790 	 * NB: the beacon data buffer must be 32-bit aligned;
1791 	 * we assume the mbuf routines will return us something
1792 	 * with this alignment (perhaps should assert).
1793 	 */
1794 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1795 	if (m == NULL) {
1796 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1797 			__func__);
1798 		sc->sc_stats.ast_be_nombuf++;
1799 		return ENOMEM;
1800 	}
1801 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1802 				     bf->bf_segs, &bf->bf_nseg,
1803 				     BUS_DMA_NOWAIT);
1804 	if (error == 0) {
1805 		bf->bf_m = m;
1806 		bf->bf_node = ieee80211_ref_node(ni);
1807 	} else {
1808 		m_freem(m);
1809 	}
1810 	return error;
1811 }
1812 
1813 /*
1814  * Setup the beacon frame for transmit.
1815  */
1816 static void
1817 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1818 {
1819 #define	USE_SHPREAMBLE(_ic) \
1820 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1821 		== IEEE80211_F_SHPREAMBLE)
1822 	struct ieee80211_node *ni = bf->bf_node;
1823 	struct ieee80211com *ic = ni->ni_ic;
1824 	struct mbuf *m = bf->bf_m;
1825 	struct ath_hal *ah = sc->sc_ah;
1826 	struct ath_node *an = ATH_NODE(ni);
1827 	struct ath_desc *ds;
1828 	int flags, antenna;
1829 	u_int8_t rate;
1830 
1831 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1832 		__func__, m, m->m_len);
1833 
1834 	/* setup descriptors */
1835 	ds = bf->bf_desc;
1836 
1837 	flags = HAL_TXDESC_NOACK;
1838 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1839 		ds->ds_link = bf->bf_daddr;	/* self-linked */
1840 		flags |= HAL_TXDESC_VEOL;
1841 		/*
1842 		 * Let hardware handle antenna switching.
1843 		 */
1844 		antenna = sc->sc_txantenna;
1845 	} else {
1846 		ds->ds_link = 0;
1847 		/*
1848 		 * Switch antenna every 4 beacons.
1849 		 * XXX assumes two antenna
1850 		 */
1851 		antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1852 	}
1853 
1854 	KASSERT(bf->bf_nseg == 1,
1855 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1856 	ds->ds_data = bf->bf_segs[0].ds_addr;
1857 	/*
1858 	 * Calculate rate code.
1859 	 * XXX everything at min xmit rate
1860 	 */
1861 	if (USE_SHPREAMBLE(ic))
1862 		rate = an->an_tx_mgtratesp;
1863 	else
1864 		rate = an->an_tx_mgtrate;
1865 	ath_hal_setuptxdesc(ah, ds
1866 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
1867 		, sizeof(struct ieee80211_frame)/* header length */
1868 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1869 		, ni->ni_txpower		/* txpower XXX */
1870 		, rate, 1			/* series 0 rate/tries */
1871 		, HAL_TXKEYIX_INVALID		/* no encryption */
1872 		, antenna			/* antenna mode */
1873 		, flags				/* no ack, veol for beacons */
1874 		, 0				/* rts/cts rate */
1875 		, 0				/* rts/cts duration */
1876 	);
1877 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1878 	ath_hal_filltxdesc(ah, ds
1879 		, roundup(m->m_len, 4)		/* buffer length */
1880 		, AH_TRUE			/* first segment */
1881 		, AH_TRUE			/* last segment */
1882 		, ds				/* first descriptor */
1883 	);
1884 #undef USE_SHPREAMBLE
1885 }
1886 
1887 /*
1888  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1889  * frame contents are done as needed and the slot time is
1890  * also adjusted based on current state.
1891  */
1892 static void
1893 ath_beacon_proc(void *arg, int pending)
1894 {
1895 	struct ath_softc *sc = arg;
1896 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
1897 	struct ieee80211_node *ni = bf->bf_node;
1898 	struct ieee80211com *ic = ni->ni_ic;
1899 	struct ath_hal *ah = sc->sc_ah;
1900 	struct mbuf *m;
1901 	int ncabq, error, otherant;
1902 
1903 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
1904 		__func__, pending);
1905 
1906 	if (ic->ic_opmode == IEEE80211_M_STA ||
1907 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
1908 	    bf == NULL || bf->bf_m == NULL) {
1909 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
1910 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
1911 		return;
1912 	}
1913 	/*
1914 	 * Check if the previous beacon has gone out.  If
1915 	 * not don't don't try to post another, skip this
1916 	 * period and wait for the next.  Missed beacons
1917 	 * indicate a problem and should not occur.  If we
1918 	 * miss too many consecutive beacons reset the device.
1919 	 */
1920 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
1921 		sc->sc_bmisscount++;
1922 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1923 			"%s: missed %u consecutive beacons\n",
1924 			__func__, sc->sc_bmisscount);
1925 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
1926 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask);
1927 		return;
1928 	}
1929 	if (sc->sc_bmisscount != 0) {
1930 		DPRINTF(sc, ATH_DEBUG_BEACON,
1931 			"%s: resume beacon xmit after %u misses\n",
1932 			__func__, sc->sc_bmisscount);
1933 		sc->sc_bmisscount = 0;
1934 	}
1935 
1936 	/*
1937 	 * Update dynamic beacon contents.  If this returns
1938 	 * non-zero then we need to remap the memory because
1939 	 * the beacon frame changed size (probably because
1940 	 * of the TIM bitmap).
1941 	 */
1942 	m = bf->bf_m;
1943 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
1944 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
1945 		/* XXX too conservative? */
1946 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1947 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1948 					     bf->bf_segs, &bf->bf_nseg,
1949 					     BUS_DMA_NOWAIT);
1950 		if (error != 0) {
1951 			if_printf(ic->ic_ifp,
1952 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
1953 			    __func__, error);
1954 			return;
1955 		}
1956 	}
1957 
1958 	/*
1959 	 * Handle slot time change when a non-ERP station joins/leaves
1960 	 * an 11g network.  The 802.11 layer notifies us via callback,
1961 	 * we mark updateslot, then wait one beacon before effecting
1962 	 * the change.  This gives associated stations at least one
1963 	 * beacon interval to note the state change.
1964 	 */
1965 	/* XXX locking */
1966 	if (sc->sc_updateslot == UPDATE)
1967 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
1968 	else if (sc->sc_updateslot == COMMIT)
1969 		ath_setslottime(sc);		/* commit change to h/w */
1970 
1971 	/*
1972 	 * Check recent per-antenna transmit statistics and flip
1973 	 * the default antenna if noticeably more frames went out
1974 	 * on the non-default antenna.
1975 	 * XXX assumes 2 anntenae
1976 	 */
1977 	otherant = sc->sc_defant & 1 ? 2 : 1;
1978 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
1979 		ath_setdefantenna(sc, otherant);
1980 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
1981 
1982 	/*
1983 	 * Construct tx descriptor.
1984 	 */
1985 	ath_beacon_setup(sc, bf);
1986 
1987 	/*
1988 	 * Stop any current dma and put the new frame on the queue.
1989 	 * This should never fail since we check above that no frames
1990 	 * are still pending on the queue.
1991 	 */
1992 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1993 		DPRINTF(sc, ATH_DEBUG_ANY,
1994 			"%s: beacon queue %u did not stop?\n",
1995 			__func__, sc->sc_bhalq);
1996 	}
1997 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1998 
1999 	/*
2000 	 * Enable the CAB queue before the beacon queue to
2001 	 * insure cab frames are triggered by this beacon.
2002 	 */
2003 	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
2004 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2005 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2006 	ath_hal_txstart(ah, sc->sc_bhalq);
2007 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2008 		"%s: TXDP[%u] = %p (%p)\n", __func__,
2009 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2010 
2011 	sc->sc_stats.ast_be_xmit++;
2012 }
2013 
2014 /*
2015  * Reset the hardware after detecting beacons have stopped.
2016  */
2017 static void
2018 ath_bstuck_proc(void *arg, int pending)
2019 {
2020 	struct ath_softc *sc = arg;
2021 	struct ifnet *ifp = sc->sc_ifp;
2022 
2023 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2024 		sc->sc_bmisscount);
2025 	ath_reset(ifp);
2026 }
2027 
2028 /*
2029  * Reclaim beacon resources.
2030  */
2031 static void
2032 ath_beacon_free(struct ath_softc *sc)
2033 {
2034 	struct ath_buf *bf;
2035 
2036 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2037 		if (bf->bf_m != NULL) {
2038 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2039 			m_freem(bf->bf_m);
2040 			bf->bf_m = NULL;
2041 		}
2042 		if (bf->bf_node != NULL) {
2043 			ieee80211_free_node(bf->bf_node);
2044 			bf->bf_node = NULL;
2045 		}
2046 	}
2047 }
2048 
2049 /*
2050  * Configure the beacon and sleep timers.
2051  *
2052  * When operating as an AP this resets the TSF and sets
2053  * up the hardware to notify us when we need to issue beacons.
2054  *
2055  * When operating in station mode this sets up the beacon
2056  * timers according to the timestamp of the last received
2057  * beacon and the current TSF, configures PCF and DTIM
2058  * handling, programs the sleep registers so the hardware
2059  * will wakeup in time to receive beacons, and configures
2060  * the beacon miss handling so we'll receive a BMISS
2061  * interrupt when we stop seeing beacons from the AP
2062  * we've associated with.
2063  */
2064 static void
2065 ath_beacon_config(struct ath_softc *sc)
2066 {
2067 #define	TSF_TO_TU(_h,_l)	(((_h) << 22) | ((_l) >> 10))
2068 	struct ath_hal *ah = sc->sc_ah;
2069 	struct ieee80211com *ic = &sc->sc_ic;
2070 	struct ieee80211_node *ni = ic->ic_bss;
2071 	u_int32_t nexttbtt, intval;
2072 
2073 	/* extract tstamp from last beacon and convert to TU */
2074 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2075 			     LE_READ_4(ni->ni_tstamp.data));
2076 	/* NB: the beacon interval is kept internally in TU's */
2077 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2078 	if (nexttbtt == 0)		/* e.g. for ap mode */
2079 		nexttbtt = intval;
2080 	else if (intval)		/* NB: can be 0 for monitor mode */
2081 		nexttbtt = roundup(nexttbtt, intval);
2082 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2083 		__func__, nexttbtt, intval, ni->ni_intval);
2084 	if (ic->ic_opmode == IEEE80211_M_STA) {
2085 		HAL_BEACON_STATE bs;
2086 		u_int64_t tsf;
2087 		u_int32_t tsftu;
2088 		int dtimperiod, dtimcount;
2089 		int cfpperiod, cfpcount;
2090 
2091 		/*
2092 		 * Setup dtim and cfp parameters according to
2093 		 * last beacon we received (which may be none).
2094 		 */
2095 		dtimperiod = ni->ni_dtim_period;
2096 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2097 			dtimperiod = 1;
2098 		dtimcount = ni->ni_dtim_count;
2099 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2100 			dtimcount = 0;		/* XXX? */
2101 		cfpperiod = 1;			/* NB: no PCF support yet */
2102 		cfpcount = 0;
2103 #define	FUDGE	2
2104 		/*
2105 		 * Pull nexttbtt forward to reflect the current
2106 		 * TSF and calculate dtim+cfp state for the result.
2107 		 */
2108 		tsf = ath_hal_gettsf64(ah);
2109 		tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE;
2110 		do {
2111 			nexttbtt += intval;
2112 			if (--dtimcount < 0) {
2113 				dtimcount = dtimperiod - 1;
2114 				if (--cfpcount < 0)
2115 					cfpcount = cfpperiod - 1;
2116 			}
2117 		} while (nexttbtt < tsftu);
2118 #undef FUDGE
2119 		memset(&bs, 0, sizeof(bs));
2120 		bs.bs_intval = intval;
2121 		bs.bs_nexttbtt = nexttbtt;
2122 		bs.bs_dtimperiod = dtimperiod*intval;
2123 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2124 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2125 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2126 		bs.bs_cfpmaxduration = 0;
2127 #if 0
2128 		/*
2129 		 * The 802.11 layer records the offset to the DTIM
2130 		 * bitmap while receiving beacons; use it here to
2131 		 * enable h/w detection of our AID being marked in
2132 		 * the bitmap vector (to indicate frames for us are
2133 		 * pending at the AP).
2134 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2135 		 * XXX enable based on h/w rev for newer chips
2136 		 */
2137 		bs.bs_timoffset = ni->ni_timoff;
2138 #endif
2139 		/*
2140 		 * Calculate the number of consecutive beacons to miss
2141 		 * before taking a BMISS interrupt.  The configuration
2142 		 * is specified in ms, so we need to convert that to
2143 		 * TU's and then calculate based on the beacon interval.
2144 		 * Note that we clamp the result to at most 10 beacons.
2145 		 */
2146 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2147 		if (bs.bs_bmissthreshold > 10)
2148 			bs.bs_bmissthreshold = 10;
2149 		else if (bs.bs_bmissthreshold <= 0)
2150 			bs.bs_bmissthreshold = 1;
2151 
2152 		/*
2153 		 * Calculate sleep duration.  The configuration is
2154 		 * given in ms.  We insure a multiple of the beacon
2155 		 * period is used.  Also, if the sleep duration is
2156 		 * greater than the DTIM period then it makes senses
2157 		 * to make it a multiple of that.
2158 		 *
2159 		 * XXX fixed at 100ms
2160 		 */
2161 		bs.bs_sleepduration =
2162 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2163 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2164 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2165 
2166 		DPRINTF(sc, ATH_DEBUG_BEACON,
2167 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2168 			, __func__
2169 			, tsf, tsftu
2170 			, bs.bs_intval
2171 			, bs.bs_nexttbtt
2172 			, bs.bs_dtimperiod
2173 			, bs.bs_nextdtim
2174 			, bs.bs_bmissthreshold
2175 			, bs.bs_sleepduration
2176 			, bs.bs_cfpperiod
2177 			, bs.bs_cfpmaxduration
2178 			, bs.bs_cfpnext
2179 			, bs.bs_timoffset
2180 		);
2181 		ath_hal_intrset(ah, 0);
2182 		ath_hal_beacontimers(ah, &bs);
2183 		sc->sc_imask |= HAL_INT_BMISS;
2184 		ath_hal_intrset(ah, sc->sc_imask);
2185 	} else {
2186 		ath_hal_intrset(ah, 0);
2187 		if (nexttbtt == intval)
2188 			intval |= HAL_BEACON_RESET_TSF;
2189 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2190 			/*
2191 			 * In IBSS mode enable the beacon timers but only
2192 			 * enable SWBA interrupts if we need to manually
2193 			 * prepare beacon frames.  Otherwise we use a
2194 			 * self-linked tx descriptor and let the hardware
2195 			 * deal with things.
2196 			 */
2197 			intval |= HAL_BEACON_ENA;
2198 			if (!sc->sc_hasveol)
2199 				sc->sc_imask |= HAL_INT_SWBA;
2200 			ath_beaconq_config(sc);
2201 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2202 			/*
2203 			 * In AP mode we enable the beacon timers and
2204 			 * SWBA interrupts to prepare beacon frames.
2205 			 */
2206 			intval |= HAL_BEACON_ENA;
2207 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2208 			ath_beaconq_config(sc);
2209 		}
2210 		ath_hal_beaconinit(ah, nexttbtt, intval);
2211 		sc->sc_bmisscount = 0;
2212 		ath_hal_intrset(ah, sc->sc_imask);
2213 		/*
2214 		 * When using a self-linked beacon descriptor in
2215 		 * ibss mode load it once here.
2216 		 */
2217 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2218 			ath_beacon_proc(sc, 0);
2219 	}
2220 #undef TSF_TO_TU
2221 }
2222 
2223 static void
2224 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2225 {
2226 	bus_addr_t *paddr = (bus_addr_t*) arg;
2227 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2228 	*paddr = segs->ds_addr;
2229 }
2230 
2231 static int
2232 ath_descdma_setup(struct ath_softc *sc,
2233 	struct ath_descdma *dd, ath_bufhead *head,
2234 	const char *name, int nbuf, int ndesc)
2235 {
2236 #define	DS2PHYS(_dd, _ds) \
2237 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2238 	struct ifnet *ifp = sc->sc_ifp;
2239 	struct ath_desc *ds;
2240 	struct ath_buf *bf;
2241 	int i, bsize, error;
2242 
2243 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2244 	    __func__, name, nbuf, ndesc);
2245 
2246 	dd->dd_name = name;
2247 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2248 
2249 	/*
2250 	 * Setup DMA descriptor area.
2251 	 */
2252 	error = bus_dma_tag_create(NULL,	/* parent */
2253 		       PAGE_SIZE, 0,		/* alignment, bounds */
2254 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2255 		       BUS_SPACE_MAXADDR,	/* highaddr */
2256 		       NULL, NULL,		/* filter, filterarg */
2257 		       dd->dd_desc_len,		/* maxsize */
2258 		       1,			/* nsegments */
2259 		       BUS_SPACE_MAXADDR,	/* maxsegsize */
2260 		       BUS_DMA_ALLOCNOW,	/* flags */
2261 		       NULL,			/* lockfunc */
2262 		       NULL,			/* lockarg */
2263 		       &dd->dd_dmat);
2264 	if (error != 0) {
2265 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2266 		return error;
2267 	}
2268 
2269 	/* allocate descriptors */
2270 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2271 	if (error != 0) {
2272 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2273 			"error %u\n", dd->dd_name, error);
2274 		goto fail0;
2275 	}
2276 
2277 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2278 				 BUS_DMA_NOWAIT, &dd->dd_dmamap);
2279 	if (error != 0) {
2280 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2281 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2282 		goto fail1;
2283 	}
2284 
2285 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2286 				dd->dd_desc, dd->dd_desc_len,
2287 				ath_load_cb, &dd->dd_desc_paddr,
2288 				BUS_DMA_NOWAIT);
2289 	if (error != 0) {
2290 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2291 			dd->dd_name, error);
2292 		goto fail2;
2293 	}
2294 
2295 	ds = dd->dd_desc;
2296 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2297 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2298 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2299 
2300 	/* allocate rx buffers */
2301 	bsize = sizeof(struct ath_buf) * nbuf;
2302 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2303 	if (bf == NULL) {
2304 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2305 			dd->dd_name, bsize);
2306 		goto fail3;
2307 	}
2308 	dd->dd_bufptr = bf;
2309 
2310 	STAILQ_INIT(head);
2311 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2312 		bf->bf_desc = ds;
2313 		bf->bf_daddr = DS2PHYS(dd, ds);
2314 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2315 				&bf->bf_dmamap);
2316 		if (error != 0) {
2317 			if_printf(ifp, "unable to create dmamap for %s "
2318 				"buffer %u, error %u\n", dd->dd_name, i, error);
2319 			ath_descdma_cleanup(sc, dd, head);
2320 			return error;
2321 		}
2322 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2323 	}
2324 	return 0;
2325 fail3:
2326 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2327 fail2:
2328 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2329 fail1:
2330 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2331 fail0:
2332 	bus_dma_tag_destroy(dd->dd_dmat);
2333 	memset(dd, 0, sizeof(*dd));
2334 	return error;
2335 #undef DS2PHYS
2336 }
2337 
2338 static void
2339 ath_descdma_cleanup(struct ath_softc *sc,
2340 	struct ath_descdma *dd, ath_bufhead *head)
2341 {
2342 	struct ath_buf *bf;
2343 	struct ieee80211_node *ni;
2344 
2345 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2346 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2347 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2348 	bus_dma_tag_destroy(dd->dd_dmat);
2349 
2350 	STAILQ_FOREACH(bf, head, bf_list) {
2351 		if (bf->bf_m) {
2352 			m_freem(bf->bf_m);
2353 			bf->bf_m = NULL;
2354 		}
2355 		if (bf->bf_dmamap != NULL) {
2356 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2357 			bf->bf_dmamap = NULL;
2358 		}
2359 		ni = bf->bf_node;
2360 		bf->bf_node = NULL;
2361 		if (ni != NULL) {
2362 			/*
2363 			 * Reclaim node reference.
2364 			 */
2365 			ieee80211_free_node(ni);
2366 		}
2367 	}
2368 
2369 	STAILQ_INIT(head);
2370 	free(dd->dd_bufptr, M_ATHDEV);
2371 	memset(dd, 0, sizeof(*dd));
2372 }
2373 
2374 static int
2375 ath_desc_alloc(struct ath_softc *sc)
2376 {
2377 	int error;
2378 
2379 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2380 			"rx", ATH_RXBUF, 1);
2381 	if (error != 0)
2382 		return error;
2383 
2384 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2385 			"tx", ATH_TXBUF, ATH_TXDESC);
2386 	if (error != 0) {
2387 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2388 		return error;
2389 	}
2390 
2391 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2392 			"beacon", 1, 1);
2393 	if (error != 0) {
2394 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2395 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2396 		return error;
2397 	}
2398 	return 0;
2399 }
2400 
2401 static void
2402 ath_desc_free(struct ath_softc *sc)
2403 {
2404 
2405 	if (sc->sc_bdma.dd_desc_len != 0)
2406 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2407 	if (sc->sc_txdma.dd_desc_len != 0)
2408 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2409 	if (sc->sc_rxdma.dd_desc_len != 0)
2410 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2411 }
2412 
2413 static struct ieee80211_node *
2414 ath_node_alloc(struct ieee80211_node_table *nt)
2415 {
2416 	struct ieee80211com *ic = nt->nt_ic;
2417 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2418 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2419 	struct ath_node *an;
2420 
2421 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2422 	if (an == NULL) {
2423 		/* XXX stat+msg */
2424 		return NULL;
2425 	}
2426 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2427 	an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2428 	an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2429 	an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2430 	ath_rate_node_init(sc, an);
2431 
2432 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2433 	return &an->an_node;
2434 }
2435 
2436 static void
2437 ath_node_free(struct ieee80211_node *ni)
2438 {
2439 	struct ieee80211com *ic = ni->ni_ic;
2440         struct ath_softc *sc = ic->ic_ifp->if_softc;
2441 
2442 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2443 
2444 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2445 	sc->sc_node_free(ni);
2446 }
2447 
2448 static u_int8_t
2449 ath_node_getrssi(const struct ieee80211_node *ni)
2450 {
2451 #define	HAL_EP_RND(x, mul) \
2452 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2453 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2454 	int32_t rssi;
2455 
2456 	/*
2457 	 * When only one frame is received there will be no state in
2458 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2459 	 */
2460 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2461 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2462 	else
2463 		rssi = ni->ni_rssi;
2464 	/* NB: theoretically we shouldn't need this, but be paranoid */
2465 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2466 #undef HAL_EP_RND
2467 }
2468 
2469 static int
2470 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2471 {
2472 	struct ath_hal *ah = sc->sc_ah;
2473 	int error;
2474 	struct mbuf *m;
2475 	struct ath_desc *ds;
2476 
2477 	m = bf->bf_m;
2478 	if (m == NULL) {
2479 		/*
2480 		 * NB: by assigning a page to the rx dma buffer we
2481 		 * implicitly satisfy the Atheros requirement that
2482 		 * this buffer be cache-line-aligned and sized to be
2483 		 * multiple of the cache line size.  Not doing this
2484 		 * causes weird stuff to happen (for the 5210 at least).
2485 		 */
2486 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2487 		if (m == NULL) {
2488 			DPRINTF(sc, ATH_DEBUG_ANY,
2489 				"%s: no mbuf/cluster\n", __func__);
2490 			sc->sc_stats.ast_rx_nombuf++;
2491 			return ENOMEM;
2492 		}
2493 		bf->bf_m = m;
2494 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2495 
2496 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
2497 					     bf->bf_dmamap, m,
2498 					     bf->bf_segs, &bf->bf_nseg,
2499 					     BUS_DMA_NOWAIT);
2500 		if (error != 0) {
2501 			DPRINTF(sc, ATH_DEBUG_ANY,
2502 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
2503 			    __func__, error);
2504 			sc->sc_stats.ast_rx_busdma++;
2505 			return error;
2506 		}
2507 		KASSERT(bf->bf_nseg == 1,
2508 			("multi-segment packet; nseg %u", bf->bf_nseg));
2509 	}
2510 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2511 
2512 	/*
2513 	 * Setup descriptors.  For receive we always terminate
2514 	 * the descriptor list with a self-linked entry so we'll
2515 	 * not get overrun under high load (as can happen with a
2516 	 * 5212 when ANI processing enables PHY error frames).
2517 	 *
2518 	 * To insure the last descriptor is self-linked we create
2519 	 * each descriptor as self-linked and add it to the end.  As
2520 	 * each additional descriptor is added the previous self-linked
2521 	 * entry is ``fixed'' naturally.  This should be safe even
2522 	 * if DMA is happening.  When processing RX interrupts we
2523 	 * never remove/process the last, self-linked, entry on the
2524 	 * descriptor list.  This insures the hardware always has
2525 	 * someplace to write a new frame.
2526 	 */
2527 	ds = bf->bf_desc;
2528 	ds->ds_link = bf->bf_daddr;	/* link to self */
2529 	ds->ds_data = bf->bf_segs[0].ds_addr;
2530 	ath_hal_setuprxdesc(ah, ds
2531 		, m->m_len		/* buffer size */
2532 		, 0
2533 	);
2534 
2535 	if (sc->sc_rxlink != NULL)
2536 		*sc->sc_rxlink = bf->bf_daddr;
2537 	sc->sc_rxlink = &ds->ds_link;
2538 	return 0;
2539 }
2540 
2541 /*
2542  * Extend 15-bit time stamp from rx descriptor to
2543  * a full 64-bit TSF using the current h/w TSF.
2544  */
2545 static __inline u_int64_t
2546 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
2547 {
2548 	u_int64_t tsf;
2549 
2550 	tsf = ath_hal_gettsf64(ah);
2551 	if ((tsf & 0x7fff) < rstamp)
2552 		tsf -= 0x8000;
2553 	return ((tsf &~ 0x7fff) | rstamp);
2554 }
2555 
2556 /*
2557  * Intercept management frames to collect beacon rssi data
2558  * and to do ibss merges.
2559  */
2560 static void
2561 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2562 	struct ieee80211_node *ni,
2563 	int subtype, int rssi, u_int32_t rstamp)
2564 {
2565 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2566 
2567 	/*
2568 	 * Call up first so subsequent work can use information
2569 	 * potentially stored in the node (e.g. for ibss merge).
2570 	 */
2571 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2572 	switch (subtype) {
2573 	case IEEE80211_FC0_SUBTYPE_BEACON:
2574 		/* update rssi statistics for use by the hal */
2575 		ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2576 		/* fall thru... */
2577 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2578 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2579 		    ic->ic_state == IEEE80211_S_RUN) {
2580 			u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp);
2581 			/*
2582 			 * Handle ibss merge as needed; check the tsf on the
2583 			 * frame before attempting the merge.  The 802.11 spec
2584 			 * says the station should change it's bssid to match
2585 			 * the oldest station with the same ssid, where oldest
2586 			 * is determined by the tsf.  Note that hardware
2587 			 * reconfiguration happens through callback to
2588 			 * ath_newstate as the state machine will go from
2589 			 * RUN -> RUN when this happens.
2590 			 */
2591 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2592 				DPRINTF(sc, ATH_DEBUG_STATE,
2593 				    "ibss merge, rstamp %u tsf %ju "
2594 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2595 				    (uintmax_t)ni->ni_tstamp.tsf);
2596 				(void) ieee80211_ibss_merge(ni);
2597 			}
2598 		}
2599 		break;
2600 	}
2601 }
2602 
2603 /*
2604  * Set the default antenna.
2605  */
2606 static void
2607 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2608 {
2609 	struct ath_hal *ah = sc->sc_ah;
2610 
2611 	/* XXX block beacon interrupts */
2612 	ath_hal_setdefantenna(ah, antenna);
2613 	if (sc->sc_defant != antenna)
2614 		sc->sc_stats.ast_ant_defswitch++;
2615 	sc->sc_defant = antenna;
2616 	sc->sc_rxotherant = 0;
2617 }
2618 
2619 static void
2620 ath_rx_proc(void *arg, int npending)
2621 {
2622 #define	PA2DESC(_sc, _pa) \
2623 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2624 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2625 	struct ath_softc *sc = arg;
2626 	struct ath_buf *bf;
2627 	struct ieee80211com *ic = &sc->sc_ic;
2628 	struct ifnet *ifp = sc->sc_ifp;
2629 	struct ath_hal *ah = sc->sc_ah;
2630 	struct ath_desc *ds;
2631 	struct mbuf *m;
2632 	struct ieee80211_node *ni;
2633 	struct ath_node *an;
2634 	int len, type;
2635 	u_int phyerr;
2636 	HAL_STATUS status;
2637 
2638 	NET_LOCK_GIANT();		/* XXX */
2639 
2640 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2641 	do {
2642 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2643 		if (bf == NULL) {		/* NB: shouldn't happen */
2644 			if_printf(ifp, "%s: no buffer!\n", __func__);
2645 			break;
2646 		}
2647 		ds = bf->bf_desc;
2648 		if (ds->ds_link == bf->bf_daddr) {
2649 			/* NB: never process the self-linked entry at the end */
2650 			break;
2651 		}
2652 		m = bf->bf_m;
2653 		if (m == NULL) {		/* NB: shouldn't happen */
2654 			if_printf(ifp, "%s: no mbuf!\n", __func__);
2655 			continue;
2656 		}
2657 		/* XXX sync descriptor memory */
2658 		/*
2659 		 * Must provide the virtual address of the current
2660 		 * descriptor, the physical address, and the virtual
2661 		 * address of the next descriptor in the h/w chain.
2662 		 * This allows the HAL to look ahead to see if the
2663 		 * hardware is done with a descriptor by checking the
2664 		 * done bit in the following descriptor and the address
2665 		 * of the current descriptor the DMA engine is working
2666 		 * on.  All this is necessary because of our use of
2667 		 * a self-linked list to avoid rx overruns.
2668 		 */
2669 		status = ath_hal_rxprocdesc(ah, ds,
2670 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2671 #ifdef AR_DEBUG
2672 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2673 			ath_printrxbuf(bf, status == HAL_OK);
2674 #endif
2675 		if (status == HAL_EINPROGRESS)
2676 			break;
2677 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2678 		if (ds->ds_rxstat.rs_more) {
2679 			/*
2680 			 * Frame spans multiple descriptors; this
2681 			 * cannot happen yet as we don't support
2682 			 * jumbograms.  If not in monitor mode,
2683 			 * discard the frame.
2684 			 */
2685 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2686 				sc->sc_stats.ast_rx_toobig++;
2687 				goto rx_next;
2688 			}
2689 			/* fall thru for monitor mode handling... */
2690 		} else if (ds->ds_rxstat.rs_status != 0) {
2691 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2692 				sc->sc_stats.ast_rx_crcerr++;
2693 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2694 				sc->sc_stats.ast_rx_fifoerr++;
2695 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2696 				sc->sc_stats.ast_rx_phyerr++;
2697 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2698 				sc->sc_stats.ast_rx_phy[phyerr]++;
2699 				goto rx_next;
2700 			}
2701 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2702 				/*
2703 				 * Decrypt error.  If the error occurred
2704 				 * because there was no hardware key, then
2705 				 * let the frame through so the upper layers
2706 				 * can process it.  This is necessary for 5210
2707 				 * parts which have no way to setup a ``clear''
2708 				 * key cache entry.
2709 				 *
2710 				 * XXX do key cache faulting
2711 				 */
2712 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2713 					goto rx_accept;
2714 				sc->sc_stats.ast_rx_badcrypt++;
2715 			}
2716 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2717 				sc->sc_stats.ast_rx_badmic++;
2718 				/*
2719 				 * Do minimal work required to hand off
2720 				 * the 802.11 header for notifcation.
2721 				 */
2722 				/* XXX frag's and qos frames */
2723 				len = ds->ds_rxstat.rs_datalen;
2724 				if (len >= sizeof (struct ieee80211_frame)) {
2725 					bus_dmamap_sync(sc->sc_dmat,
2726 					    bf->bf_dmamap,
2727 					    BUS_DMASYNC_POSTREAD);
2728 					ieee80211_notify_michael_failure(ic,
2729 					    mtod(m, struct ieee80211_frame *),
2730 					    sc->sc_splitmic ?
2731 					        ds->ds_rxstat.rs_keyix-32 :
2732 					        ds->ds_rxstat.rs_keyix
2733 					);
2734 				}
2735 			}
2736 			ifp->if_ierrors++;
2737 			/*
2738 			 * Reject error frames, we normally don't want
2739 			 * to see them in monitor mode (in monitor mode
2740 			 * allow through packets that have crypto problems).
2741 			 */
2742 			if ((ds->ds_rxstat.rs_status &~
2743 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2744 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2745 				goto rx_next;
2746 		}
2747 rx_accept:
2748 		/*
2749 		 * Sync and unmap the frame.  At this point we're
2750 		 * committed to passing the mbuf somewhere so clear
2751 		 * bf_m; this means a new sk_buff must be allocated
2752 		 * when the rx descriptor is setup again to receive
2753 		 * another frame.
2754 		 */
2755 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2756 		    BUS_DMASYNC_POSTREAD);
2757 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2758 		bf->bf_m = NULL;
2759 
2760 		m->m_pkthdr.rcvif = ifp;
2761 		len = ds->ds_rxstat.rs_datalen;
2762 		m->m_pkthdr.len = m->m_len = len;
2763 
2764 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2765 
2766 		if (sc->sc_drvbpf) {
2767 			u_int8_t rix;
2768 
2769 			/*
2770 			 * Discard anything shorter than an ack or cts.
2771 			 */
2772 			if (len < IEEE80211_ACK_LEN) {
2773 				DPRINTF(sc, ATH_DEBUG_RECV,
2774 					"%s: runt packet %d\n",
2775 					__func__, len);
2776 				sc->sc_stats.ast_rx_tooshort++;
2777 				m_freem(m);
2778 				goto rx_next;
2779 			}
2780 			rix = ds->ds_rxstat.rs_rate;
2781 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2782 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2783 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2784 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2785 			/* XXX TSF */
2786 
2787 			bpf_mtap2(sc->sc_drvbpf,
2788 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
2789 		}
2790 
2791 		/*
2792 		 * From this point on we assume the frame is at least
2793 		 * as large as ieee80211_frame_min; verify that.
2794 		 */
2795 		if (len < IEEE80211_MIN_LEN) {
2796 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2797 				__func__, len);
2798 			sc->sc_stats.ast_rx_tooshort++;
2799 			m_freem(m);
2800 			goto rx_next;
2801 		}
2802 
2803 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2804 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
2805 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2806 				   ds->ds_rxstat.rs_rssi);
2807 		}
2808 
2809 		m_adj(m, -IEEE80211_CRC_LEN);
2810 
2811 		/*
2812 		 * Locate the node for sender, track state, and then
2813 		 * pass the (referenced) node up to the 802.11 layer
2814 		 * for its use.
2815 		 */
2816 		ni = ieee80211_find_rxnode_withkey(ic,
2817 			mtod(m, const struct ieee80211_frame_min *),
2818 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
2819 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
2820 		/*
2821 		 * Track rx rssi and do any rx antenna management.
2822 		 */
2823 		an = ATH_NODE(ni);
2824 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2825 		/*
2826 		 * Send frame up for processing.
2827 		 */
2828 		type = ieee80211_input(ic, m, ni,
2829 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2830 		ieee80211_free_node(ni);
2831 		if (sc->sc_diversity) {
2832 			/*
2833 			 * When using fast diversity, change the default rx
2834 			 * antenna if diversity chooses the other antenna 3
2835 			 * times in a row.
2836 			 */
2837 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2838 				if (++sc->sc_rxotherant >= 3)
2839 					ath_setdefantenna(sc,
2840 						ds->ds_rxstat.rs_antenna);
2841 			} else
2842 				sc->sc_rxotherant = 0;
2843 		}
2844 		if (sc->sc_softled) {
2845 			/*
2846 			 * Blink for any data frame.  Otherwise do a
2847 			 * heartbeat-style blink when idle.  The latter
2848 			 * is mainly for station mode where we depend on
2849 			 * periodic beacon frames to trigger the poll event.
2850 			 */
2851 			if (type == IEEE80211_FC0_TYPE_DATA) {
2852 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
2853 				ath_led_event(sc, ATH_LED_RX);
2854 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
2855 				ath_led_event(sc, ATH_LED_POLL);
2856 		}
2857 rx_next:
2858 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2859 	} while (ath_rxbuf_init(sc, bf) == 0);
2860 
2861 	/* rx signal state monitoring */
2862 	ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
2863 
2864 	NET_UNLOCK_GIANT();		/* XXX */
2865 #undef PA2DESC
2866 }
2867 
2868 /*
2869  * Setup a h/w transmit queue.
2870  */
2871 static struct ath_txq *
2872 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2873 {
2874 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2875 	struct ath_hal *ah = sc->sc_ah;
2876 	HAL_TXQ_INFO qi;
2877 	int qnum;
2878 
2879 	memset(&qi, 0, sizeof(qi));
2880 	qi.tqi_subtype = subtype;
2881 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2882 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2883 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2884 	/*
2885 	 * Enable interrupts only for EOL and DESC conditions.
2886 	 * We mark tx descriptors to receive a DESC interrupt
2887 	 * when a tx queue gets deep; otherwise waiting for the
2888 	 * EOL to reap descriptors.  Note that this is done to
2889 	 * reduce interrupt load and this only defers reaping
2890 	 * descriptors, never transmitting frames.  Aside from
2891 	 * reducing interrupts this also permits more concurrency.
2892 	 * The only potential downside is if the tx queue backs
2893 	 * up in which case the top half of the kernel may backup
2894 	 * due to a lack of tx descriptors.
2895 	 */
2896 	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
2897 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
2898 	if (qnum == -1) {
2899 		/*
2900 		 * NB: don't print a message, this happens
2901 		 * normally on parts with too few tx queues
2902 		 */
2903 		return NULL;
2904 	}
2905 	if (qnum >= N(sc->sc_txq)) {
2906 		device_printf(sc->sc_dev,
2907 			"hal qnum %u out of range, max %zu!\n",
2908 			qnum, N(sc->sc_txq));
2909 		ath_hal_releasetxqueue(ah, qnum);
2910 		return NULL;
2911 	}
2912 	if (!ATH_TXQ_SETUP(sc, qnum)) {
2913 		struct ath_txq *txq = &sc->sc_txq[qnum];
2914 
2915 		txq->axq_qnum = qnum;
2916 		txq->axq_depth = 0;
2917 		txq->axq_intrcnt = 0;
2918 		txq->axq_link = NULL;
2919 		STAILQ_INIT(&txq->axq_q);
2920 		ATH_TXQ_LOCK_INIT(sc, txq);
2921 		sc->sc_txqsetup |= 1<<qnum;
2922 	}
2923 	return &sc->sc_txq[qnum];
2924 #undef N
2925 }
2926 
2927 /*
2928  * Setup a hardware data transmit queue for the specified
2929  * access control.  The hal may not support all requested
2930  * queues in which case it will return a reference to a
2931  * previously setup queue.  We record the mapping from ac's
2932  * to h/w queues for use by ath_tx_start and also track
2933  * the set of h/w queues being used to optimize work in the
2934  * transmit interrupt handler and related routines.
2935  */
2936 static int
2937 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
2938 {
2939 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2940 	struct ath_txq *txq;
2941 
2942 	if (ac >= N(sc->sc_ac2q)) {
2943 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2944 			ac, N(sc->sc_ac2q));
2945 		return 0;
2946 	}
2947 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
2948 	if (txq != NULL) {
2949 		sc->sc_ac2q[ac] = txq;
2950 		return 1;
2951 	} else
2952 		return 0;
2953 #undef N
2954 }
2955 
2956 /*
2957  * Update WME parameters for a transmit queue.
2958  */
2959 static int
2960 ath_txq_update(struct ath_softc *sc, int ac)
2961 {
2962 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
2963 #define	ATH_TXOP_TO_US(v)		(v<<5)
2964 	struct ieee80211com *ic = &sc->sc_ic;
2965 	struct ath_txq *txq = sc->sc_ac2q[ac];
2966 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2967 	struct ath_hal *ah = sc->sc_ah;
2968 	HAL_TXQ_INFO qi;
2969 
2970 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
2971 	qi.tqi_aifs = wmep->wmep_aifsn;
2972 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2973 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2974 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
2975 
2976 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
2977 		device_printf(sc->sc_dev, "unable to update hardware queue "
2978 			"parameters for %s traffic!\n",
2979 			ieee80211_wme_acnames[ac]);
2980 		return 0;
2981 	} else {
2982 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
2983 		return 1;
2984 	}
2985 #undef ATH_TXOP_TO_US
2986 #undef ATH_EXPONENT_TO_VALUE
2987 }
2988 
2989 /*
2990  * Callback from the 802.11 layer to update WME parameters.
2991  */
2992 static int
2993 ath_wme_update(struct ieee80211com *ic)
2994 {
2995 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2996 
2997 	return !ath_txq_update(sc, WME_AC_BE) ||
2998 	    !ath_txq_update(sc, WME_AC_BK) ||
2999 	    !ath_txq_update(sc, WME_AC_VI) ||
3000 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3001 }
3002 
3003 /*
3004  * Reclaim resources for a setup queue.
3005  */
3006 static void
3007 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3008 {
3009 
3010 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3011 	ATH_TXQ_LOCK_DESTROY(txq);
3012 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3013 }
3014 
3015 /*
3016  * Reclaim all tx queue resources.
3017  */
3018 static void
3019 ath_tx_cleanup(struct ath_softc *sc)
3020 {
3021 	int i;
3022 
3023 	ATH_TXBUF_LOCK_DESTROY(sc);
3024 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3025 		if (ATH_TXQ_SETUP(sc, i))
3026 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3027 }
3028 
3029 /*
3030  * Defragment an mbuf chain, returning at most maxfrags separate
3031  * mbufs+clusters.  If this is not possible NULL is returned and
3032  * the original mbuf chain is left in it's present (potentially
3033  * modified) state.  We use two techniques: collapsing consecutive
3034  * mbufs and replacing consecutive mbufs by a cluster.
3035  */
3036 static struct mbuf *
3037 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3038 {
3039 	struct mbuf *m, *n, *n2, **prev;
3040 	u_int curfrags;
3041 
3042 	/*
3043 	 * Calculate the current number of frags.
3044 	 */
3045 	curfrags = 0;
3046 	for (m = m0; m != NULL; m = m->m_next)
3047 		curfrags++;
3048 	/*
3049 	 * First, try to collapse mbufs.  Note that we always collapse
3050 	 * towards the front so we don't need to deal with moving the
3051 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3052 	 * less data than the following.
3053 	 */
3054 	m = m0;
3055 again:
3056 	for (;;) {
3057 		n = m->m_next;
3058 		if (n == NULL)
3059 			break;
3060 		if ((m->m_flags & M_RDONLY) == 0 &&
3061 		    n->m_len < M_TRAILINGSPACE(m)) {
3062 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3063 				n->m_len);
3064 			m->m_len += n->m_len;
3065 			m->m_next = n->m_next;
3066 			m_free(n);
3067 			if (--curfrags <= maxfrags)
3068 				return m0;
3069 		} else
3070 			m = n;
3071 	}
3072 	KASSERT(maxfrags > 1,
3073 		("maxfrags %u, but normal collapse failed", maxfrags));
3074 	/*
3075 	 * Collapse consecutive mbufs to a cluster.
3076 	 */
3077 	prev = &m0->m_next;		/* NB: not the first mbuf */
3078 	while ((n = *prev) != NULL) {
3079 		if ((n2 = n->m_next) != NULL &&
3080 		    n->m_len + n2->m_len < MCLBYTES) {
3081 			m = m_getcl(how, MT_DATA, 0);
3082 			if (m == NULL)
3083 				goto bad;
3084 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3085 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3086 				n2->m_len);
3087 			m->m_len = n->m_len + n2->m_len;
3088 			m->m_next = n2->m_next;
3089 			*prev = m;
3090 			m_free(n);
3091 			m_free(n2);
3092 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3093 				return m0;
3094 			/*
3095 			 * Still not there, try the normal collapse
3096 			 * again before we allocate another cluster.
3097 			 */
3098 			goto again;
3099 		}
3100 		prev = &n->m_next;
3101 	}
3102 	/*
3103 	 * No place where we can collapse to a cluster; punt.
3104 	 * This can occur if, for example, you request 2 frags
3105 	 * but the packet requires that both be clusters (we
3106 	 * never reallocate the first mbuf to avoid moving the
3107 	 * packet header).
3108 	 */
3109 bad:
3110 	return NULL;
3111 }
3112 
3113 static int
3114 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3115     struct mbuf *m0)
3116 {
3117 	struct ieee80211com *ic = &sc->sc_ic;
3118 	struct ath_hal *ah = sc->sc_ah;
3119 	struct ifnet *ifp = sc->sc_ifp;
3120 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3121 	int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
3122 	u_int8_t rix, txrate, ctsrate;
3123 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3124 	struct ath_desc *ds, *ds0;
3125 	struct ath_txq *txq;
3126 	struct ieee80211_frame *wh;
3127 	u_int subtype, flags, ctsduration;
3128 	HAL_PKT_TYPE atype;
3129 	const HAL_RATE_TABLE *rt;
3130 	HAL_BOOL shortPreamble;
3131 	struct ath_node *an;
3132 	struct mbuf *m;
3133 	u_int pri;
3134 
3135 	wh = mtod(m0, struct ieee80211_frame *);
3136 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3137 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3138 	hdrlen = ieee80211_anyhdrsize(wh);
3139 	/*
3140 	 * Packet length must not include any
3141 	 * pad bytes; deduct them here.
3142 	 */
3143 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3144 
3145 	if (iswep) {
3146 		const struct ieee80211_cipher *cip;
3147 		struct ieee80211_key *k;
3148 
3149 		/*
3150 		 * Construct the 802.11 header+trailer for an encrypted
3151 		 * frame. The only reason this can fail is because of an
3152 		 * unknown or unsupported cipher/key type.
3153 		 */
3154 		k = ieee80211_crypto_encap(ic, ni, m0);
3155 		if (k == NULL) {
3156 			/*
3157 			 * This can happen when the key is yanked after the
3158 			 * frame was queued.  Just discard the frame; the
3159 			 * 802.11 layer counts failures and provides
3160 			 * debugging/diagnostics.
3161 			 */
3162 			m_freem(m0);
3163 			return EIO;
3164 		}
3165 		/*
3166 		 * Adjust the packet + header lengths for the crypto
3167 		 * additions and calculate the h/w key index.  When
3168 		 * a s/w mic is done the frame will have had any mic
3169 		 * added to it prior to entry so skb->len above will
3170 		 * account for it. Otherwise we need to add it to the
3171 		 * packet length.
3172 		 */
3173 		cip = k->wk_cipher;
3174 		hdrlen += cip->ic_header;
3175 		pktlen += cip->ic_header + cip->ic_trailer;
3176 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3177 			pktlen += cip->ic_miclen;
3178 		keyix = k->wk_keyix;
3179 
3180 		/* packet header may have moved, reset our local pointer */
3181 		wh = mtod(m0, struct ieee80211_frame *);
3182 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3183 		/*
3184 		 * Use station key cache slot, if assigned.
3185 		 */
3186 		keyix = ni->ni_ucastkey.wk_keyix;
3187 		if (keyix == IEEE80211_KEYIX_NONE)
3188 			keyix = HAL_TXKEYIX_INVALID;
3189 	} else
3190 		keyix = HAL_TXKEYIX_INVALID;
3191 
3192 	pktlen += IEEE80211_CRC_LEN;
3193 
3194 	/*
3195 	 * Load the DMA map so any coalescing is done.  This
3196 	 * also calculates the number of descriptors we need.
3197 	 */
3198 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3199 				     bf->bf_segs, &bf->bf_nseg,
3200 				     BUS_DMA_NOWAIT);
3201 	if (error == EFBIG) {
3202 		/* XXX packet requires too many descriptors */
3203 		bf->bf_nseg = ATH_TXDESC+1;
3204 	} else if (error != 0) {
3205 		sc->sc_stats.ast_tx_busdma++;
3206 		m_freem(m0);
3207 		return error;
3208 	}
3209 	/*
3210 	 * Discard null packets and check for packets that
3211 	 * require too many TX descriptors.  We try to convert
3212 	 * the latter to a cluster.
3213 	 */
3214 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
3215 		sc->sc_stats.ast_tx_linear++;
3216 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3217 		if (m == NULL) {
3218 			m_freem(m0);
3219 			sc->sc_stats.ast_tx_nombuf++;
3220 			return ENOMEM;
3221 		}
3222 		m0 = m;
3223 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3224 					     bf->bf_segs, &bf->bf_nseg,
3225 					     BUS_DMA_NOWAIT);
3226 		if (error != 0) {
3227 			sc->sc_stats.ast_tx_busdma++;
3228 			m_freem(m0);
3229 			return error;
3230 		}
3231 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3232 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3233 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3234 		sc->sc_stats.ast_tx_nodata++;
3235 		m_freem(m0);
3236 		return EIO;
3237 	}
3238 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3239 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3240 	bf->bf_m = m0;
3241 	bf->bf_node = ni;			/* NB: held reference */
3242 
3243 	/* setup descriptors */
3244 	ds = bf->bf_desc;
3245 	rt = sc->sc_currates;
3246 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3247 
3248 	/*
3249 	 * NB: the 802.11 layer marks whether or not we should
3250 	 * use short preamble based on the current mode and
3251 	 * negotiated parameters.
3252 	 */
3253 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3254 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3255 		shortPreamble = AH_TRUE;
3256 		sc->sc_stats.ast_tx_shortpre++;
3257 	} else {
3258 		shortPreamble = AH_FALSE;
3259 	}
3260 
3261 	an = ATH_NODE(ni);
3262 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3263 	/*
3264 	 * Calculate Atheros packet type from IEEE80211 packet header,
3265 	 * setup for rate calculations, and select h/w transmit queue.
3266 	 */
3267 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3268 	case IEEE80211_FC0_TYPE_MGT:
3269 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3270 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3271 			atype = HAL_PKT_TYPE_BEACON;
3272 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3273 			atype = HAL_PKT_TYPE_PROBE_RESP;
3274 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3275 			atype = HAL_PKT_TYPE_ATIM;
3276 		else
3277 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3278 		rix = 0;			/* XXX lowest rate */
3279 		try0 = ATH_TXMAXTRY;
3280 		if (shortPreamble)
3281 			txrate = an->an_tx_mgtratesp;
3282 		else
3283 			txrate = an->an_tx_mgtrate;
3284 		/* NB: force all management frames to highest queue */
3285 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3286 			/* NB: force all management frames to highest queue */
3287 			pri = WME_AC_VO;
3288 		} else
3289 			pri = WME_AC_BE;
3290 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3291 		break;
3292 	case IEEE80211_FC0_TYPE_CTL:
3293 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3294 		rix = 0;			/* XXX lowest rate */
3295 		try0 = ATH_TXMAXTRY;
3296 		if (shortPreamble)
3297 			txrate = an->an_tx_mgtratesp;
3298 		else
3299 			txrate = an->an_tx_mgtrate;
3300 		/* NB: force all ctl frames to highest queue */
3301 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3302 			/* NB: force all ctl frames to highest queue */
3303 			pri = WME_AC_VO;
3304 		} else
3305 			pri = WME_AC_BE;
3306 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3307 		break;
3308 	case IEEE80211_FC0_TYPE_DATA:
3309 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3310 		/*
3311 		 * Data frames; consult the rate control module.
3312 		 */
3313 		ath_rate_findrate(sc, an, shortPreamble, pktlen,
3314 			&rix, &try0, &txrate);
3315 		sc->sc_txrate = txrate;			/* for LED blinking */
3316 		/*
3317 		 * Default all non-QoS traffic to the background queue.
3318 		 */
3319 		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3320 			pri = M_WME_GETAC(m0);
3321 			if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3322 				flags |= HAL_TXDESC_NOACK;
3323 				sc->sc_stats.ast_tx_noack++;
3324 			}
3325 		} else
3326 			pri = WME_AC_BE;
3327 		break;
3328 	default:
3329 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3330 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3331 		/* XXX statistic */
3332 		m_freem(m0);
3333 		return EIO;
3334 	}
3335 	txq = sc->sc_ac2q[pri];
3336 
3337 	/*
3338 	 * When servicing one or more stations in power-save mode
3339 	 * multicast frames must be buffered until after the beacon.
3340 	 * We use the CAB queue for that.
3341 	 */
3342 	if (ismcast && ic->ic_ps_sta) {
3343 		txq = sc->sc_cabq;
3344 		/* XXX? more bit in 802.11 frame header */
3345 	}
3346 
3347 	/*
3348 	 * Calculate miscellaneous flags.
3349 	 */
3350 	if (ismcast) {
3351 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3352 		sc->sc_stats.ast_tx_noack++;
3353 	} else if (pktlen > ic->ic_rtsthreshold) {
3354 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3355 		cix = rt->info[rix].controlRate;
3356 		sc->sc_stats.ast_tx_rts++;
3357 	}
3358 
3359 	/*
3360 	 * If 802.11g protection is enabled, determine whether
3361 	 * to use RTS/CTS or just CTS.  Note that this is only
3362 	 * done for OFDM unicast frames.
3363 	 */
3364 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3365 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3366 	    (flags & HAL_TXDESC_NOACK) == 0) {
3367 		/* XXX fragments must use CCK rates w/ protection */
3368 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3369 			flags |= HAL_TXDESC_RTSENA;
3370 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3371 			flags |= HAL_TXDESC_CTSENA;
3372 		cix = rt->info[sc->sc_protrix].controlRate;
3373 		sc->sc_stats.ast_tx_protect++;
3374 	}
3375 
3376 	/*
3377 	 * Calculate duration.  This logically belongs in the 802.11
3378 	 * layer but it lacks sufficient information to calculate it.
3379 	 */
3380 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3381 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3382 		u_int16_t dur;
3383 		/*
3384 		 * XXX not right with fragmentation.
3385 		 */
3386 		if (shortPreamble)
3387 			dur = rt->info[rix].spAckDuration;
3388 		else
3389 			dur = rt->info[rix].lpAckDuration;
3390 		*(u_int16_t *)wh->i_dur = htole16(dur);
3391 	}
3392 
3393 	/*
3394 	 * Calculate RTS/CTS rate and duration if needed.
3395 	 */
3396 	ctsduration = 0;
3397 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3398 		/*
3399 		 * CTS transmit rate is derived from the transmit rate
3400 		 * by looking in the h/w rate table.  We must also factor
3401 		 * in whether or not a short preamble is to be used.
3402 		 */
3403 		/* NB: cix is set above where RTS/CTS is enabled */
3404 		KASSERT(cix != 0xff, ("cix not setup"));
3405 		ctsrate = rt->info[cix].rateCode;
3406 		/*
3407 		 * Compute the transmit duration based on the frame
3408 		 * size and the size of an ACK frame.  We call into the
3409 		 * HAL to do the computation since it depends on the
3410 		 * characteristics of the actual PHY being used.
3411 		 *
3412 		 * NB: CTS is assumed the same size as an ACK so we can
3413 		 *     use the precalculated ACK durations.
3414 		 */
3415 		if (shortPreamble) {
3416 			ctsrate |= rt->info[cix].shortPreamble;
3417 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3418 				ctsduration += rt->info[cix].spAckDuration;
3419 			ctsduration += ath_hal_computetxtime(ah,
3420 				rt, pktlen, rix, AH_TRUE);
3421 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3422 				ctsduration += rt->info[rix].spAckDuration;
3423 		} else {
3424 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3425 				ctsduration += rt->info[cix].lpAckDuration;
3426 			ctsduration += ath_hal_computetxtime(ah,
3427 				rt, pktlen, rix, AH_FALSE);
3428 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3429 				ctsduration += rt->info[rix].lpAckDuration;
3430 		}
3431 		/*
3432 		 * Must disable multi-rate retry when using RTS/CTS.
3433 		 */
3434 		try0 = ATH_TXMAXTRY;
3435 	} else
3436 		ctsrate = 0;
3437 
3438 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3439 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3440 			sc->sc_hwmap[txrate].ieeerate, -1);
3441 
3442 	if (ic->ic_rawbpf)
3443 		bpf_mtap(ic->ic_rawbpf, m0);
3444 	if (sc->sc_drvbpf) {
3445 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3446 		if (iswep)
3447 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3448 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3449 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3450 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3451 
3452 		bpf_mtap2(sc->sc_drvbpf,
3453 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3454 	}
3455 
3456 	/*
3457 	 * Determine if a tx interrupt should be generated for
3458 	 * this descriptor.  We take a tx interrupt to reap
3459 	 * descriptors when the h/w hits an EOL condition or
3460 	 * when the descriptor is specifically marked to generate
3461 	 * an interrupt.  We periodically mark descriptors in this
3462 	 * way to insure timely replenishing of the supply needed
3463 	 * for sending frames.  Defering interrupts reduces system
3464 	 * load and potentially allows more concurrent work to be
3465 	 * done but if done to aggressively can cause senders to
3466 	 * backup.
3467 	 *
3468 	 * NB: use >= to deal with sc_txintrperiod changing
3469 	 *     dynamically through sysctl.
3470 	 */
3471 	if (flags & HAL_TXDESC_INTREQ) {
3472 		txq->axq_intrcnt = 0;
3473 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3474 		flags |= HAL_TXDESC_INTREQ;
3475 		txq->axq_intrcnt = 0;
3476 	}
3477 
3478 	/*
3479 	 * Formulate first tx descriptor with tx controls.
3480 	 */
3481 	/* XXX check return value? */
3482 	ath_hal_setuptxdesc(ah, ds
3483 		, pktlen		/* packet length */
3484 		, hdrlen		/* header length */
3485 		, atype			/* Atheros packet type */
3486 		, ni->ni_txpower	/* txpower */
3487 		, txrate, try0		/* series 0 rate/tries */
3488 		, keyix			/* key cache index */
3489 		, sc->sc_txantenna	/* antenna mode */
3490 		, flags			/* flags */
3491 		, ctsrate		/* rts/cts rate */
3492 		, ctsduration		/* rts/cts duration */
3493 	);
3494 	bf->bf_flags = flags;
3495 	/*
3496 	 * Setup the multi-rate retry state only when we're
3497 	 * going to use it.  This assumes ath_hal_setuptxdesc
3498 	 * initializes the descriptors (so we don't have to)
3499 	 * when the hardware supports multi-rate retry and
3500 	 * we don't use it.
3501 	 */
3502 	if (try0 != ATH_TXMAXTRY)
3503 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3504 
3505 	/*
3506 	 * Fillin the remainder of the descriptor info.
3507 	 */
3508 	ds0 = ds;
3509 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3510 		ds->ds_data = bf->bf_segs[i].ds_addr;
3511 		if (i == bf->bf_nseg - 1)
3512 			ds->ds_link = 0;
3513 		else
3514 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3515 		ath_hal_filltxdesc(ah, ds
3516 			, bf->bf_segs[i].ds_len	/* segment length */
3517 			, i == 0		/* first segment */
3518 			, i == bf->bf_nseg - 1	/* last segment */
3519 			, ds0			/* first descriptor */
3520 		);
3521 		DPRINTF(sc, ATH_DEBUG_XMIT,
3522 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3523 			__func__, i, ds->ds_link, ds->ds_data,
3524 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3525 	}
3526 	/*
3527 	 * Insert the frame on the outbound list and
3528 	 * pass it on to the hardware.
3529 	 */
3530 	ATH_TXQ_LOCK(txq);
3531 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3532 	if (txq->axq_link == NULL) {
3533 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3534 		DPRINTF(sc, ATH_DEBUG_XMIT,
3535 			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3536 			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3537 			txq->axq_depth);
3538 	} else {
3539 		*txq->axq_link = bf->bf_daddr;
3540 		DPRINTF(sc, ATH_DEBUG_XMIT,
3541 			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3542 			txq->axq_qnum, txq->axq_link,
3543 			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3544 	}
3545 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3546 	/*
3547 	 * The CAB queue is started from the SWBA handler since
3548 	 * frames only go out on DTIM and to avoid possible races.
3549 	 */
3550 	if (txq != sc->sc_cabq)
3551 		ath_hal_txstart(ah, txq->axq_qnum);
3552 	ATH_TXQ_UNLOCK(txq);
3553 
3554 	return 0;
3555 }
3556 
3557 /*
3558  * Process completed xmit descriptors from the specified queue.
3559  */
3560 static void
3561 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3562 {
3563 	struct ath_hal *ah = sc->sc_ah;
3564 	struct ieee80211com *ic = &sc->sc_ic;
3565 	struct ath_buf *bf;
3566 	struct ath_desc *ds, *ds0;
3567 	struct ieee80211_node *ni;
3568 	struct ath_node *an;
3569 	int sr, lr, pri;
3570 	HAL_STATUS status;
3571 
3572 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3573 		__func__, txq->axq_qnum,
3574 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3575 		txq->axq_link);
3576 	for (;;) {
3577 		ATH_TXQ_LOCK(txq);
3578 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3579 		bf = STAILQ_FIRST(&txq->axq_q);
3580 		if (bf == NULL) {
3581 			txq->axq_link = NULL;
3582 			ATH_TXQ_UNLOCK(txq);
3583 			break;
3584 		}
3585 		ds0 = &bf->bf_desc[0];
3586 		ds = &bf->bf_desc[bf->bf_nseg - 1];
3587 		status = ath_hal_txprocdesc(ah, ds);
3588 #ifdef AR_DEBUG
3589 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3590 			ath_printtxbuf(bf, status == HAL_OK);
3591 #endif
3592 		if (status == HAL_EINPROGRESS) {
3593 			ATH_TXQ_UNLOCK(txq);
3594 			break;
3595 		}
3596 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3597 		ATH_TXQ_UNLOCK(txq);
3598 
3599 		ni = bf->bf_node;
3600 		if (ni != NULL) {
3601 			an = ATH_NODE(ni);
3602 			if (ds->ds_txstat.ts_status == 0) {
3603 				u_int8_t txant = ds->ds_txstat.ts_antenna;
3604 				sc->sc_stats.ast_ant_tx[txant]++;
3605 				sc->sc_ant_tx[txant]++;
3606 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3607 					sc->sc_stats.ast_tx_altrate++;
3608 				sc->sc_stats.ast_tx_rssi =
3609 					ds->ds_txstat.ts_rssi;
3610 				ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3611 					ds->ds_txstat.ts_rssi);
3612 				pri = M_WME_GETAC(bf->bf_m);
3613 				if (pri >= WME_AC_VO)
3614 					ic->ic_wme.wme_hipri_traffic++;
3615 				ni->ni_inact = ni->ni_inact_reload;
3616 			} else {
3617 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3618 					sc->sc_stats.ast_tx_xretries++;
3619 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3620 					sc->sc_stats.ast_tx_fifoerr++;
3621 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3622 					sc->sc_stats.ast_tx_filtered++;
3623 			}
3624 			sr = ds->ds_txstat.ts_shortretry;
3625 			lr = ds->ds_txstat.ts_longretry;
3626 			sc->sc_stats.ast_tx_shortretry += sr;
3627 			sc->sc_stats.ast_tx_longretry += lr;
3628 			/*
3629 			 * Hand the descriptor to the rate control algorithm.
3630 			 */
3631 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3632 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0)
3633 				ath_rate_tx_complete(sc, an, ds, ds0);
3634 			/*
3635 			 * Reclaim reference to node.
3636 			 *
3637 			 * NB: the node may be reclaimed here if, for example
3638 			 *     this is a DEAUTH message that was sent and the
3639 			 *     node was timed out due to inactivity.
3640 			 */
3641 			ieee80211_free_node(ni);
3642 		}
3643 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3644 		    BUS_DMASYNC_POSTWRITE);
3645 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3646 		m_freem(bf->bf_m);
3647 		bf->bf_m = NULL;
3648 		bf->bf_node = NULL;
3649 
3650 		ATH_TXBUF_LOCK(sc);
3651 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3652 		ATH_TXBUF_UNLOCK(sc);
3653 	}
3654 }
3655 
3656 /*
3657  * Deferred processing of transmit interrupt; special-cased
3658  * for a single hardware transmit queue (e.g. 5210 and 5211).
3659  */
3660 static void
3661 ath_tx_proc_q0(void *arg, int npending)
3662 {
3663 	struct ath_softc *sc = arg;
3664 	struct ifnet *ifp = sc->sc_ifp;
3665 
3666 	ath_tx_processq(sc, &sc->sc_txq[0]);
3667 	ath_tx_processq(sc, sc->sc_cabq);
3668 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3669 	sc->sc_tx_timer = 0;
3670 
3671 	if (sc->sc_softled)
3672 		ath_led_event(sc, ATH_LED_TX);
3673 
3674 	ath_start(ifp);
3675 }
3676 
3677 /*
3678  * Deferred processing of transmit interrupt; special-cased
3679  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3680  */
3681 static void
3682 ath_tx_proc_q0123(void *arg, int npending)
3683 {
3684 	struct ath_softc *sc = arg;
3685 	struct ifnet *ifp = sc->sc_ifp;
3686 
3687 	/*
3688 	 * Process each active queue.
3689 	 */
3690 	ath_tx_processq(sc, &sc->sc_txq[0]);
3691 	ath_tx_processq(sc, &sc->sc_txq[1]);
3692 	ath_tx_processq(sc, &sc->sc_txq[2]);
3693 	ath_tx_processq(sc, &sc->sc_txq[3]);
3694 	ath_tx_processq(sc, sc->sc_cabq);
3695 
3696 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3697 	sc->sc_tx_timer = 0;
3698 
3699 	if (sc->sc_softled)
3700 		ath_led_event(sc, ATH_LED_TX);
3701 
3702 	ath_start(ifp);
3703 }
3704 
3705 /*
3706  * Deferred processing of transmit interrupt.
3707  */
3708 static void
3709 ath_tx_proc(void *arg, int npending)
3710 {
3711 	struct ath_softc *sc = arg;
3712 	struct ifnet *ifp = sc->sc_ifp;
3713 	int i;
3714 
3715 	/*
3716 	 * Process each active queue.
3717 	 */
3718 	/* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3719 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3720 		if (ATH_TXQ_SETUP(sc, i))
3721 			ath_tx_processq(sc, &sc->sc_txq[i]);
3722 
3723 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3724 	sc->sc_tx_timer = 0;
3725 
3726 	if (sc->sc_softled)
3727 		ath_led_event(sc, ATH_LED_TX);
3728 
3729 	ath_start(ifp);
3730 }
3731 
3732 static void
3733 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3734 {
3735 	struct ath_hal *ah = sc->sc_ah;
3736 	struct ieee80211_node *ni;
3737 	struct ath_buf *bf;
3738 
3739 	/*
3740 	 * NB: this assumes output has been stopped and
3741 	 *     we do not need to block ath_tx_tasklet
3742 	 */
3743 	for (;;) {
3744 		ATH_TXQ_LOCK(txq);
3745 		bf = STAILQ_FIRST(&txq->axq_q);
3746 		if (bf == NULL) {
3747 			txq->axq_link = NULL;
3748 			ATH_TXQ_UNLOCK(txq);
3749 			break;
3750 		}
3751 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3752 		ATH_TXQ_UNLOCK(txq);
3753 #ifdef AR_DEBUG
3754 		if (sc->sc_debug & ATH_DEBUG_RESET)
3755 			ath_printtxbuf(bf,
3756 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3757 #endif /* AR_DEBUG */
3758 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3759 		m_freem(bf->bf_m);
3760 		bf->bf_m = NULL;
3761 		ni = bf->bf_node;
3762 		bf->bf_node = NULL;
3763 		if (ni != NULL) {
3764 			/*
3765 			 * Reclaim node reference.
3766 			 */
3767 			ieee80211_free_node(ni);
3768 		}
3769 		ATH_TXBUF_LOCK(sc);
3770 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3771 		ATH_TXBUF_UNLOCK(sc);
3772 	}
3773 }
3774 
3775 static void
3776 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3777 {
3778 	struct ath_hal *ah = sc->sc_ah;
3779 
3780 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3781 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3782 	    __func__, txq->axq_qnum,
3783 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3784 	    txq->axq_link);
3785 }
3786 
3787 /*
3788  * Drain the transmit queues and reclaim resources.
3789  */
3790 static void
3791 ath_draintxq(struct ath_softc *sc)
3792 {
3793 	struct ath_hal *ah = sc->sc_ah;
3794 	struct ifnet *ifp = sc->sc_ifp;
3795 	int i;
3796 
3797 	/* XXX return value */
3798 	if (!sc->sc_invalid) {
3799 		/* don't touch the hardware if marked invalid */
3800 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3801 		DPRINTF(sc, ATH_DEBUG_RESET,
3802 		    "%s: beacon queue %p\n", __func__,
3803 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
3804 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3805 			if (ATH_TXQ_SETUP(sc, i))
3806 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
3807 	}
3808 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3809 		if (ATH_TXQ_SETUP(sc, i))
3810 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
3811 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3812 	sc->sc_tx_timer = 0;
3813 }
3814 
3815 /*
3816  * Disable the receive h/w in preparation for a reset.
3817  */
3818 static void
3819 ath_stoprecv(struct ath_softc *sc)
3820 {
3821 #define	PA2DESC(_sc, _pa) \
3822 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3823 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3824 	struct ath_hal *ah = sc->sc_ah;
3825 
3826 	ath_hal_stoppcurecv(ah);	/* disable PCU */
3827 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
3828 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
3829 	DELAY(3000);			/* 3ms is long enough for 1 frame */
3830 #ifdef AR_DEBUG
3831 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
3832 		struct ath_buf *bf;
3833 
3834 		printf("%s: rx queue %p, link %p\n", __func__,
3835 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3836 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3837 			struct ath_desc *ds = bf->bf_desc;
3838 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
3839 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3840 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
3841 				ath_printrxbuf(bf, status == HAL_OK);
3842 		}
3843 	}
3844 #endif
3845 	sc->sc_rxlink = NULL;		/* just in case */
3846 #undef PA2DESC
3847 }
3848 
3849 /*
3850  * Enable the receive h/w following a reset.
3851  */
3852 static int
3853 ath_startrecv(struct ath_softc *sc)
3854 {
3855 	struct ath_hal *ah = sc->sc_ah;
3856 	struct ath_buf *bf;
3857 
3858 	sc->sc_rxlink = NULL;
3859 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3860 		int error = ath_rxbuf_init(sc, bf);
3861 		if (error != 0) {
3862 			DPRINTF(sc, ATH_DEBUG_RECV,
3863 				"%s: ath_rxbuf_init failed %d\n",
3864 				__func__, error);
3865 			return error;
3866 		}
3867 	}
3868 
3869 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
3870 	ath_hal_putrxbuf(ah, bf->bf_daddr);
3871 	ath_hal_rxena(ah);		/* enable recv descriptors */
3872 	ath_mode_init(sc);		/* set filters, etc. */
3873 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
3874 	return 0;
3875 }
3876 
3877 /*
3878  * Update internal state after a channel change.
3879  */
3880 static void
3881 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3882 {
3883 	struct ieee80211com *ic = &sc->sc_ic;
3884 	enum ieee80211_phymode mode;
3885 	u_int16_t flags;
3886 
3887 	/*
3888 	 * Change channels and update the h/w rate map
3889 	 * if we're switching; e.g. 11a to 11b/g.
3890 	 */
3891 	mode = ieee80211_chan2mode(ic, chan);
3892 	if (mode != sc->sc_curmode)
3893 		ath_setcurmode(sc, mode);
3894 	/*
3895 	 * Update BPF state.  NB: ethereal et. al. don't handle
3896 	 * merged flags well so pick a unique mode for their use.
3897 	 */
3898 	if (IEEE80211_IS_CHAN_A(chan))
3899 		flags = IEEE80211_CHAN_A;
3900 	/* XXX 11g schizophrenia */
3901 	else if (IEEE80211_IS_CHAN_G(chan) ||
3902 	    IEEE80211_IS_CHAN_PUREG(chan))
3903 		flags = IEEE80211_CHAN_G;
3904 	else
3905 		flags = IEEE80211_CHAN_B;
3906 	if (IEEE80211_IS_CHAN_T(chan))
3907 		flags |= IEEE80211_CHAN_TURBO;
3908 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3909 		htole16(chan->ic_freq);
3910 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3911 		htole16(flags);
3912 }
3913 
3914 /*
3915  * Set/change channels.  If the channel is really being changed,
3916  * it's done by reseting the chip.  To accomplish this we must
3917  * first cleanup any pending DMA, then restart stuff after a la
3918  * ath_init.
3919  */
3920 static int
3921 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3922 {
3923 	struct ath_hal *ah = sc->sc_ah;
3924 	struct ieee80211com *ic = &sc->sc_ic;
3925 	HAL_CHANNEL hchan;
3926 
3927 	/*
3928 	 * Convert to a HAL channel description with
3929 	 * the flags constrained to reflect the current
3930 	 * operating mode.
3931 	 */
3932 	hchan.channel = chan->ic_freq;
3933 	hchan.channelFlags = ath_chan2flags(ic, chan);
3934 
3935 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
3936 	    __func__,
3937 	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
3938 		sc->sc_curchan.channelFlags),
3939 	    	sc->sc_curchan.channel,
3940 	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
3941 	if (hchan.channel != sc->sc_curchan.channel ||
3942 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
3943 		HAL_STATUS status;
3944 
3945 		/*
3946 		 * To switch channels clear any pending DMA operations;
3947 		 * wait long enough for the RX fifo to drain, reset the
3948 		 * hardware at the new frequency, and then re-enable
3949 		 * the relevant bits of the h/w.
3950 		 */
3951 		ath_hal_intrset(ah, 0);		/* disable interrupts */
3952 		ath_draintxq(sc);		/* clear pending tx frames */
3953 		ath_stoprecv(sc);		/* turn off frame recv */
3954 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
3955 			if_printf(ic->ic_ifp, "ath_chan_set: unable to reset "
3956 				"channel %u (%u Mhz)\n",
3957 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
3958 			return EIO;
3959 		}
3960 		sc->sc_curchan = hchan;
3961 		ath_update_txpow(sc);		/* update tx power state */
3962 		sc->sc_diversity = ath_hal_getdiversity(ah);
3963 
3964 		/*
3965 		 * Re-enable rx framework.
3966 		 */
3967 		if (ath_startrecv(sc) != 0) {
3968 			if_printf(ic->ic_ifp,
3969 				"ath_chan_set: unable to restart recv logic\n");
3970 			return EIO;
3971 		}
3972 
3973 		/*
3974 		 * Change channels and update the h/w rate map
3975 		 * if we're switching; e.g. 11a to 11b/g.
3976 		 */
3977 		ic->ic_ibss_chan = chan;
3978 		ath_chan_change(sc, chan);
3979 
3980 		/*
3981 		 * Re-enable interrupts.
3982 		 */
3983 		ath_hal_intrset(ah, sc->sc_imask);
3984 	}
3985 	return 0;
3986 }
3987 
3988 static void
3989 ath_next_scan(void *arg)
3990 {
3991 	struct ath_softc *sc = arg;
3992 	struct ieee80211com *ic = &sc->sc_ic;
3993 
3994 	if (ic->ic_state == IEEE80211_S_SCAN)
3995 		ieee80211_next_scan(ic);
3996 }
3997 
3998 /*
3999  * Periodically recalibrate the PHY to account
4000  * for temperature/environment changes.
4001  */
4002 static void
4003 ath_calibrate(void *arg)
4004 {
4005 	struct ath_softc *sc = arg;
4006 	struct ath_hal *ah = sc->sc_ah;
4007 
4008 	sc->sc_stats.ast_per_cal++;
4009 
4010 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
4011 		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
4012 
4013 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4014 		/*
4015 		 * Rfgain is out of bounds, reset the chip
4016 		 * to load new gain values.
4017 		 */
4018 		sc->sc_stats.ast_per_rfgain++;
4019 		ath_reset(sc->sc_ifp);
4020 	}
4021 	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
4022 		DPRINTF(sc, ATH_DEBUG_ANY,
4023 			"%s: calibration of channel %u failed\n",
4024 			__func__, sc->sc_curchan.channel);
4025 		sc->sc_stats.ast_per_calfail++;
4026 	}
4027 	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
4028 }
4029 
4030 static int
4031 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4032 {
4033 	struct ifnet *ifp = ic->ic_ifp;
4034 	struct ath_softc *sc = ifp->if_softc;
4035 	struct ath_hal *ah = sc->sc_ah;
4036 	struct ieee80211_node *ni;
4037 	int i, error;
4038 	const u_int8_t *bssid;
4039 	u_int32_t rfilt;
4040 	static const HAL_LED_STATE leds[] = {
4041 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4042 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4043 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4044 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4045 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4046 	};
4047 
4048 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4049 		ieee80211_state_name[ic->ic_state],
4050 		ieee80211_state_name[nstate]);
4051 
4052 	callout_stop(&sc->sc_scan_ch);
4053 	callout_stop(&sc->sc_cal_ch);
4054 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4055 
4056 	if (nstate == IEEE80211_S_INIT) {
4057 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4058 		/*
4059 		 * NB: disable interrupts so we don't rx frames.
4060 		 */
4061 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4062 		/*
4063 		 * Notify the rate control algorithm.
4064 		 */
4065 		ath_rate_newstate(sc, nstate);
4066 		goto done;
4067 	}
4068 	ni = ic->ic_bss;
4069 	error = ath_chan_set(sc, ic->ic_curchan);
4070 	if (error != 0)
4071 		goto bad;
4072 	rfilt = ath_calcrxfilter(sc, nstate);
4073 	if (nstate == IEEE80211_S_SCAN)
4074 		bssid = ifp->if_broadcastaddr;
4075 	else
4076 		bssid = ni->ni_bssid;
4077 	ath_hal_setrxfilter(ah, rfilt);
4078 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4079 		 __func__, rfilt, ether_sprintf(bssid));
4080 
4081 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4082 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4083 	else
4084 		ath_hal_setassocid(ah, bssid, 0);
4085 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4086 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4087 			if (ath_hal_keyisvalid(ah, i))
4088 				ath_hal_keysetmac(ah, i, bssid);
4089 	}
4090 
4091 	/*
4092 	 * Notify the rate control algorithm so rates
4093 	 * are setup should ath_beacon_alloc be called.
4094 	 */
4095 	ath_rate_newstate(sc, nstate);
4096 
4097 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4098 		/* nothing to do */;
4099 	} else if (nstate == IEEE80211_S_RUN) {
4100 		DPRINTF(sc, ATH_DEBUG_STATE,
4101 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4102 			"capinfo=0x%04x chan=%d\n"
4103 			 , __func__
4104 			 , ic->ic_flags
4105 			 , ni->ni_intval
4106 			 , ether_sprintf(ni->ni_bssid)
4107 			 , ni->ni_capinfo
4108 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4109 
4110 		switch (ic->ic_opmode) {
4111 		case IEEE80211_M_HOSTAP:
4112 		case IEEE80211_M_IBSS:
4113 			/*
4114 			 * Allocate and setup the beacon frame.
4115 			 *
4116 			 * Stop any previous beacon DMA.  This may be
4117 			 * necessary, for example, when an ibss merge
4118 			 * causes reconfiguration; there will be a state
4119 			 * transition from RUN->RUN that means we may
4120 			 * be called with beacon transmission active.
4121 			 */
4122 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4123 			ath_beacon_free(sc);
4124 			error = ath_beacon_alloc(sc, ni);
4125 			if (error != 0)
4126 				goto bad;
4127 			break;
4128 		case IEEE80211_M_STA:
4129 			/*
4130 			 * Allocate a key cache slot to the station.
4131 			 */
4132 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4133 			    sc->sc_hasclrkey &&
4134 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4135 				ath_setup_stationkey(ni);
4136 			break;
4137 		default:
4138 			break;
4139 		}
4140 
4141 		/*
4142 		 * Configure the beacon and sleep timers.
4143 		 */
4144 		ath_beacon_config(sc);
4145 	} else {
4146 		ath_hal_intrset(ah,
4147 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4148 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4149 	}
4150 done:
4151 	/*
4152 	 * Invoke the parent method to complete the work.
4153 	 */
4154 	error = sc->sc_newstate(ic, nstate, arg);
4155 	/*
4156 	 * Finally, start any timers.
4157 	 */
4158 	if (nstate == IEEE80211_S_RUN) {
4159 		/* start periodic recalibration timer */
4160 		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4161 			ath_calibrate, sc);
4162 	} else if (nstate == IEEE80211_S_SCAN) {
4163 		/* start ap/neighbor scan timer */
4164 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4165 			ath_next_scan, sc);
4166 	}
4167 bad:
4168 	return error;
4169 }
4170 
4171 /*
4172  * Allocate a key cache slot to the station so we can
4173  * setup a mapping from key index to node. The key cache
4174  * slot is needed for managing antenna state and for
4175  * compression when stations do not use crypto.  We do
4176  * it uniliaterally here; if crypto is employed this slot
4177  * will be reassigned.
4178  */
4179 static void
4180 ath_setup_stationkey(struct ieee80211_node *ni)
4181 {
4182 	struct ieee80211com *ic = ni->ni_ic;
4183 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4184 	ieee80211_keyix keyix, rxkeyix;
4185 
4186 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4187 		/*
4188 		 * Key cache is full; we'll fall back to doing
4189 		 * the more expensive lookup in software.  Note
4190 		 * this also means no h/w compression.
4191 		 */
4192 		/* XXX msg+statistic */
4193 	} else {
4194 		/* XXX locking? */
4195 		ni->ni_ucastkey.wk_keyix = keyix;
4196 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4197 		/* NB: this will create a pass-thru key entry */
4198 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4199 	}
4200 }
4201 
4202 /*
4203  * Setup driver-specific state for a newly associated node.
4204  * Note that we're called also on a re-associate, the isnew
4205  * param tells us if this is the first time or not.
4206  */
4207 static void
4208 ath_newassoc(struct ieee80211_node *ni, int isnew)
4209 {
4210 	struct ieee80211com *ic = ni->ni_ic;
4211 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4212 
4213 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4214 	if (isnew &&
4215 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4216 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4217 		    ("new assoc with a unicast key already setup (keyix %u)",
4218 		    ni->ni_ucastkey.wk_keyix));
4219 		ath_setup_stationkey(ni);
4220 	}
4221 }
4222 
4223 static int
4224 ath_getchannels(struct ath_softc *sc, u_int cc,
4225 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4226 {
4227 	struct ieee80211com *ic = &sc->sc_ic;
4228 	struct ifnet *ifp = sc->sc_ifp;
4229 	struct ath_hal *ah = sc->sc_ah;
4230 	HAL_CHANNEL *chans;
4231 	int i, ix, nchan;
4232 
4233 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4234 			M_TEMP, M_NOWAIT);
4235 	if (chans == NULL) {
4236 		if_printf(ifp, "unable to allocate channel table\n");
4237 		return ENOMEM;
4238 	}
4239 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4240 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4241 		u_int32_t rd;
4242 
4243 		ath_hal_getregdomain(ah, &rd);
4244 		if_printf(ifp, "unable to collect channel list from hal; "
4245 			"regdomain likely %u country code %u\n", rd, cc);
4246 		free(chans, M_TEMP);
4247 		return EINVAL;
4248 	}
4249 
4250 	/*
4251 	 * Convert HAL channels to ieee80211 ones and insert
4252 	 * them in the table according to their channel number.
4253 	 */
4254 	for (i = 0; i < nchan; i++) {
4255 		HAL_CHANNEL *c = &chans[i];
4256 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4257 		if (ix > IEEE80211_CHAN_MAX) {
4258 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4259 				ix, c->channel, c->channelFlags);
4260 			continue;
4261 		}
4262 		/* NB: flags are known to be compatible */
4263 		if (ic->ic_channels[ix].ic_freq == 0) {
4264 			ic->ic_channels[ix].ic_freq = c->channel;
4265 			ic->ic_channels[ix].ic_flags = c->channelFlags;
4266 		} else {
4267 			/* channels overlap; e.g. 11g and 11b */
4268 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
4269 		}
4270 	}
4271 	free(chans, M_TEMP);
4272 	return 0;
4273 }
4274 
4275 static void
4276 ath_led_done(void *arg)
4277 {
4278 	struct ath_softc *sc = arg;
4279 
4280 	sc->sc_blinking = 0;
4281 }
4282 
4283 /*
4284  * Turn the LED off: flip the pin and then set a timer so no
4285  * update will happen for the specified duration.
4286  */
4287 static void
4288 ath_led_off(void *arg)
4289 {
4290 	struct ath_softc *sc = arg;
4291 
4292 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4293 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4294 }
4295 
4296 /*
4297  * Blink the LED according to the specified on/off times.
4298  */
4299 static void
4300 ath_led_blink(struct ath_softc *sc, int on, int off)
4301 {
4302 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4303 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4304 	sc->sc_blinking = 1;
4305 	sc->sc_ledoff = off;
4306 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4307 }
4308 
4309 static void
4310 ath_led_event(struct ath_softc *sc, int event)
4311 {
4312 
4313 	sc->sc_ledevent = ticks;	/* time of last event */
4314 	if (sc->sc_blinking)		/* don't interrupt active blink */
4315 		return;
4316 	switch (event) {
4317 	case ATH_LED_POLL:
4318 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4319 			sc->sc_hwmap[0].ledoff);
4320 		break;
4321 	case ATH_LED_TX:
4322 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4323 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4324 		break;
4325 	case ATH_LED_RX:
4326 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4327 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4328 		break;
4329 	}
4330 }
4331 
4332 static void
4333 ath_update_txpow(struct ath_softc *sc)
4334 {
4335 	struct ieee80211com *ic = &sc->sc_ic;
4336 	struct ath_hal *ah = sc->sc_ah;
4337 	u_int32_t txpow;
4338 
4339 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4340 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4341 		/* read back in case value is clamped */
4342 		ath_hal_gettxpowlimit(ah, &txpow);
4343 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4344 	}
4345 	/*
4346 	 * Fetch max tx power level for status requests.
4347 	 */
4348 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4349 	ic->ic_bss->ni_txpower = txpow;
4350 }
4351 
4352 static int
4353 ath_rate_setup(struct ath_softc *sc, u_int mode)
4354 {
4355 	struct ath_hal *ah = sc->sc_ah;
4356 	struct ieee80211com *ic = &sc->sc_ic;
4357 	const HAL_RATE_TABLE *rt;
4358 	struct ieee80211_rateset *rs;
4359 	int i, maxrates;
4360 
4361 	switch (mode) {
4362 	case IEEE80211_MODE_11A:
4363 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4364 		break;
4365 	case IEEE80211_MODE_11B:
4366 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4367 		break;
4368 	case IEEE80211_MODE_11G:
4369 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4370 		break;
4371 	case IEEE80211_MODE_TURBO_A:
4372 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4373 		break;
4374 	case IEEE80211_MODE_TURBO_G:
4375 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4376 		break;
4377 	default:
4378 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4379 			__func__, mode);
4380 		return 0;
4381 	}
4382 	rt = sc->sc_rates[mode];
4383 	if (rt == NULL)
4384 		return 0;
4385 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4386 		DPRINTF(sc, ATH_DEBUG_ANY,
4387 			"%s: rate table too small (%u > %u)\n",
4388 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4389 		maxrates = IEEE80211_RATE_MAXSIZE;
4390 	} else
4391 		maxrates = rt->rateCount;
4392 	rs = &ic->ic_sup_rates[mode];
4393 	for (i = 0; i < maxrates; i++)
4394 		rs->rs_rates[i] = rt->info[i].dot11Rate;
4395 	rs->rs_nrates = maxrates;
4396 	return 1;
4397 }
4398 
4399 static void
4400 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4401 {
4402 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4403 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4404 	static const struct {
4405 		u_int		rate;		/* tx/rx 802.11 rate */
4406 		u_int16_t	timeOn;		/* LED on time (ms) */
4407 		u_int16_t	timeOff;	/* LED off time (ms) */
4408 	} blinkrates[] = {
4409 		{ 108,  40,  10 },
4410 		{  96,  44,  11 },
4411 		{  72,  50,  13 },
4412 		{  48,  57,  14 },
4413 		{  36,  67,  16 },
4414 		{  24,  80,  20 },
4415 		{  22, 100,  25 },
4416 		{  18, 133,  34 },
4417 		{  12, 160,  40 },
4418 		{  10, 200,  50 },
4419 		{   6, 240,  58 },
4420 		{   4, 267,  66 },
4421 		{   2, 400, 100 },
4422 		{   0, 500, 130 },
4423 	};
4424 	const HAL_RATE_TABLE *rt;
4425 	int i, j;
4426 
4427 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4428 	rt = sc->sc_rates[mode];
4429 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4430 	for (i = 0; i < rt->rateCount; i++)
4431 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4432 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4433 	for (i = 0; i < 32; i++) {
4434 		u_int8_t ix = rt->rateCodeToIndex[i];
4435 		if (ix == 0xff) {
4436 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4437 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4438 			continue;
4439 		}
4440 		sc->sc_hwmap[i].ieeerate =
4441 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4442 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4443 		if (rt->info[ix].shortPreamble ||
4444 		    rt->info[ix].phy == IEEE80211_T_OFDM)
4445 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4446 		/* NB: receive frames include FCS */
4447 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4448 			IEEE80211_RADIOTAP_F_FCS;
4449 		/* setup blink rate table to avoid per-packet lookup */
4450 		for (j = 0; j < N(blinkrates)-1; j++)
4451 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4452 				break;
4453 		/* NB: this uses the last entry if the rate isn't found */
4454 		/* XXX beware of overlow */
4455 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4456 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4457 	}
4458 	sc->sc_currates = rt;
4459 	sc->sc_curmode = mode;
4460 	/*
4461 	 * All protection frames are transmited at 2Mb/s for
4462 	 * 11g, otherwise at 1Mb/s.
4463 	 * XXX select protection rate index from rate table.
4464 	 */
4465 	sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4466 	/* NB: caller is responsible for reseting rate control state */
4467 #undef N
4468 }
4469 
4470 #ifdef AR_DEBUG
4471 static void
4472 ath_printrxbuf(struct ath_buf *bf, int done)
4473 {
4474 	struct ath_desc *ds;
4475 	int i;
4476 
4477 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4478 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4479 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4480 		    ds->ds_link, ds->ds_data,
4481 		    ds->ds_ctl0, ds->ds_ctl1,
4482 		    ds->ds_hw[0], ds->ds_hw[1],
4483 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4484 	}
4485 }
4486 
4487 static void
4488 ath_printtxbuf(struct ath_buf *bf, int done)
4489 {
4490 	struct ath_desc *ds;
4491 	int i;
4492 
4493 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4494 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4495 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4496 		    ds->ds_link, ds->ds_data,
4497 		    ds->ds_ctl0, ds->ds_ctl1,
4498 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4499 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4500 	}
4501 }
4502 #endif /* AR_DEBUG */
4503 
4504 static void
4505 ath_watchdog(struct ifnet *ifp)
4506 {
4507 	struct ath_softc *sc = ifp->if_softc;
4508 	struct ieee80211com *ic = &sc->sc_ic;
4509 
4510 	ifp->if_timer = 0;
4511 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
4512 		return;
4513 	if (sc->sc_tx_timer) {
4514 		if (--sc->sc_tx_timer == 0) {
4515 			if_printf(ifp, "device timeout\n");
4516 			ath_reset(ifp);
4517 			ifp->if_oerrors++;
4518 			sc->sc_stats.ast_watchdog++;
4519 		} else
4520 			ifp->if_timer = 1;
4521 	}
4522 	ieee80211_watchdog(ic);
4523 }
4524 
4525 /*
4526  * Diagnostic interface to the HAL.  This is used by various
4527  * tools to do things like retrieve register contents for
4528  * debugging.  The mechanism is intentionally opaque so that
4529  * it can change frequently w/o concern for compatiblity.
4530  */
4531 static int
4532 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4533 {
4534 	struct ath_hal *ah = sc->sc_ah;
4535 	u_int id = ad->ad_id & ATH_DIAG_ID;
4536 	void *indata = NULL;
4537 	void *outdata = NULL;
4538 	u_int32_t insize = ad->ad_in_size;
4539 	u_int32_t outsize = ad->ad_out_size;
4540 	int error = 0;
4541 
4542 	if (ad->ad_id & ATH_DIAG_IN) {
4543 		/*
4544 		 * Copy in data.
4545 		 */
4546 		indata = malloc(insize, M_TEMP, M_NOWAIT);
4547 		if (indata == NULL) {
4548 			error = ENOMEM;
4549 			goto bad;
4550 		}
4551 		error = copyin(ad->ad_in_data, indata, insize);
4552 		if (error)
4553 			goto bad;
4554 	}
4555 	if (ad->ad_id & ATH_DIAG_DYN) {
4556 		/*
4557 		 * Allocate a buffer for the results (otherwise the HAL
4558 		 * returns a pointer to a buffer where we can read the
4559 		 * results).  Note that we depend on the HAL leaving this
4560 		 * pointer for us to use below in reclaiming the buffer;
4561 		 * may want to be more defensive.
4562 		 */
4563 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4564 		if (outdata == NULL) {
4565 			error = ENOMEM;
4566 			goto bad;
4567 		}
4568 	}
4569 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4570 		if (outsize < ad->ad_out_size)
4571 			ad->ad_out_size = outsize;
4572 		if (outdata != NULL)
4573 			error = copyout(outdata, ad->ad_out_data,
4574 					ad->ad_out_size);
4575 	} else {
4576 		error = EINVAL;
4577 	}
4578 bad:
4579 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4580 		free(indata, M_TEMP);
4581 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4582 		free(outdata, M_TEMP);
4583 	return error;
4584 }
4585 
4586 static int
4587 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4588 {
4589 #define	IS_RUNNING(ifp) \
4590 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
4591 	struct ath_softc *sc = ifp->if_softc;
4592 	struct ieee80211com *ic = &sc->sc_ic;
4593 	struct ifreq *ifr = (struct ifreq *)data;
4594 	int error = 0;
4595 
4596 	ATH_LOCK(sc);
4597 	switch (cmd) {
4598 	case SIOCSIFFLAGS:
4599 		if (IS_RUNNING(ifp)) {
4600 			/*
4601 			 * To avoid rescanning another access point,
4602 			 * do not call ath_init() here.  Instead,
4603 			 * only reflect promisc mode settings.
4604 			 */
4605 			ath_mode_init(sc);
4606 		} else if (ifp->if_flags & IFF_UP) {
4607 			/*
4608 			 * Beware of being called during attach/detach
4609 			 * to reset promiscuous mode.  In that case we
4610 			 * will still be marked UP but not RUNNING.
4611 			 * However trying to re-init the interface
4612 			 * is the wrong thing to do as we've already
4613 			 * torn down much of our state.  There's
4614 			 * probably a better way to deal with this.
4615 			 */
4616 			if (!sc->sc_invalid && ic->ic_bss != NULL)
4617 				ath_init(sc);	/* XXX lose error */
4618 		} else
4619 			ath_stop_locked(ifp);
4620 		break;
4621 	case SIOCADDMULTI:
4622 	case SIOCDELMULTI:
4623 		/*
4624 		 * The upper layer has already installed/removed
4625 		 * the multicast address(es), just recalculate the
4626 		 * multicast filter for the card.
4627 		 */
4628 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4629 			ath_mode_init(sc);
4630 		break;
4631 	case SIOCGATHSTATS:
4632 		/* NB: embed these numbers to get a consistent view */
4633 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4634 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4635 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4636 		ATH_UNLOCK(sc);
4637 		/*
4638 		 * NB: Drop the softc lock in case of a page fault;
4639 		 * we'll accept any potential inconsisentcy in the
4640 		 * statistics.  The alternative is to copy the data
4641 		 * to a local structure.
4642 		 */
4643 		return copyout(&sc->sc_stats,
4644 				ifr->ifr_data, sizeof (sc->sc_stats));
4645 	case SIOCGATHDIAG:
4646 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4647 		break;
4648 	default:
4649 		error = ieee80211_ioctl(ic, cmd, data);
4650 		if (error == ENETRESET) {
4651 			if (IS_RUNNING(ifp) &&
4652 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4653 				ath_init(sc);	/* XXX lose error */
4654 			error = 0;
4655 		}
4656 		if (error == ERESTART)
4657 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4658 		break;
4659 	}
4660 	ATH_UNLOCK(sc);
4661 	return error;
4662 #undef IS_RUNNING
4663 }
4664 
4665 static int
4666 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
4667 {
4668 	struct ath_softc *sc = arg1;
4669 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
4670 	int error;
4671 
4672 	error = sysctl_handle_int(oidp, &slottime, 0, req);
4673 	if (error || !req->newptr)
4674 		return error;
4675 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
4676 }
4677 
4678 static int
4679 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
4680 {
4681 	struct ath_softc *sc = arg1;
4682 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
4683 	int error;
4684 
4685 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
4686 	if (error || !req->newptr)
4687 		return error;
4688 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
4689 }
4690 
4691 static int
4692 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
4693 {
4694 	struct ath_softc *sc = arg1;
4695 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
4696 	int error;
4697 
4698 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
4699 	if (error || !req->newptr)
4700 		return error;
4701 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
4702 }
4703 
4704 static int
4705 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
4706 {
4707 	struct ath_softc *sc = arg1;
4708 	int softled = sc->sc_softled;
4709 	int error;
4710 
4711 	error = sysctl_handle_int(oidp, &softled, 0, req);
4712 	if (error || !req->newptr)
4713 		return error;
4714 	softled = (softled != 0);
4715 	if (softled != sc->sc_softled) {
4716 		if (softled) {
4717 			/* NB: handle any sc_ledpin change */
4718 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
4719 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
4720 				!sc->sc_ledon);
4721 		}
4722 		sc->sc_softled = softled;
4723 	}
4724 	return 0;
4725 }
4726 
4727 static int
4728 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
4729 {
4730 	struct ath_softc *sc = arg1;
4731 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
4732 	int error;
4733 
4734 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
4735 	if (!error && req->newptr)
4736 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
4737 	return error;
4738 }
4739 
4740 static int
4741 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
4742 {
4743 	struct ath_softc *sc = arg1;
4744 	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
4745 	int error;
4746 
4747 	error = sysctl_handle_int(oidp, &diversity, 0, req);
4748 	if (error || !req->newptr)
4749 		return error;
4750 	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
4751 		return EINVAL;
4752 	sc->sc_diversity = diversity;
4753 	return 0;
4754 }
4755 
4756 static int
4757 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
4758 {
4759 	struct ath_softc *sc = arg1;
4760 	u_int32_t diag;
4761 	int error;
4762 
4763 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
4764 		return EINVAL;
4765 	error = sysctl_handle_int(oidp, &diag, 0, req);
4766 	if (error || !req->newptr)
4767 		return error;
4768 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
4769 }
4770 
4771 static int
4772 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
4773 {
4774 	struct ath_softc *sc = arg1;
4775 	struct ifnet *ifp = sc->sc_ifp;
4776 	u_int32_t scale;
4777 	int error;
4778 
4779 	ath_hal_gettpscale(sc->sc_ah, &scale);
4780 	error = sysctl_handle_int(oidp, &scale, 0, req);
4781 	if (error || !req->newptr)
4782 		return error;
4783 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
4784 }
4785 
4786 static int
4787 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
4788 {
4789 	struct ath_softc *sc = arg1;
4790 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
4791 	int error;
4792 
4793 	error = sysctl_handle_int(oidp, &tpc, 0, req);
4794 	if (error || !req->newptr)
4795 		return error;
4796 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
4797 }
4798 
4799 static void
4800 ath_sysctlattach(struct ath_softc *sc)
4801 {
4802 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4803 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4804 	struct ath_hal *ah = sc->sc_ah;
4805 
4806 	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
4807 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4808 		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
4809 		"EEPROM country code");
4810 	ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain);
4811 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4812 		"regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0,
4813 		"EEPROM regdomain code");
4814 	sc->sc_debug = ath_debug;
4815 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4816 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
4817 		"control debugging printfs");
4818 
4819 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4820 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4821 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
4822 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4823 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4824 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
4825 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4826 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4827 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
4828 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4829 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4830 		ath_sysctl_softled, "I", "enable/disable software LED support");
4831 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4832 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
4833 		"GPIO pin connected to LED");
4834 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4835 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
4836 		"setting to turn LED on");
4837 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4838 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
4839 		"idle time for inactivity LED (ticks)");
4840 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4841 		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
4842 		"tx antenna (0=auto)");
4843 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4844 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4845 		ath_sysctl_rxantenna, "I", "default/rx antenna");
4846 	if (ath_hal_hasdiversity(ah))
4847 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4848 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4849 			ath_sysctl_diversity, "I", "antenna diversity");
4850 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
4851 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4852 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
4853 		"tx descriptor batching");
4854 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4855 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4856 		ath_sysctl_diag, "I", "h/w diagnostic control");
4857 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4858 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4859 		ath_sysctl_tpscale, "I", "tx power scaling");
4860 	if (ath_hal_hastpc(ah))
4861 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4862 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4863 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
4864 }
4865 
4866 static void
4867 ath_bpfattach(struct ath_softc *sc)
4868 {
4869 	struct ifnet *ifp = sc->sc_ifp;
4870 
4871 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4872 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4873 		&sc->sc_drvbpf);
4874 	/*
4875 	 * Initialize constant fields.
4876 	 * XXX make header lengths a multiple of 32-bits so subsequent
4877 	 *     headers are properly aligned; this is a kludge to keep
4878 	 *     certain applications happy.
4879 	 *
4880 	 * NB: the channel is setup each time we transition to the
4881 	 *     RUN state to avoid filling it in for each frame.
4882 	 */
4883 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4884 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4885 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4886 
4887 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4888 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4889 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4890 }
4891 
4892 /*
4893  * Announce various information on device/driver attach.
4894  */
4895 static void
4896 ath_announce(struct ath_softc *sc)
4897 {
4898 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
4899 	struct ifnet *ifp = sc->sc_ifp;
4900 	struct ath_hal *ah = sc->sc_ah;
4901 	u_int modes, cc;
4902 
4903 	if_printf(ifp, "mac %d.%d phy %d.%d",
4904 		ah->ah_macVersion, ah->ah_macRev,
4905 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4906 	/*
4907 	 * Print radio revision(s).  We check the wireless modes
4908 	 * to avoid falsely printing revs for inoperable parts.
4909 	 * Dual-band radio revs are returned in the 5Ghz rev number.
4910 	 */
4911 	ath_hal_getcountrycode(ah, &cc);
4912 	modes = ath_hal_getwirelessmodes(ah, cc);
4913 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4914 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4915 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4916 				ah->ah_analog5GhzRev >> 4,
4917 				ah->ah_analog5GhzRev & 0xf,
4918 				ah->ah_analog2GhzRev >> 4,
4919 				ah->ah_analog2GhzRev & 0xf);
4920 		else
4921 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4922 				ah->ah_analog5GhzRev & 0xf);
4923 	} else
4924 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4925 			ah->ah_analog5GhzRev & 0xf);
4926 	printf("\n");
4927 	if (bootverbose) {
4928 		int i;
4929 		for (i = 0; i <= WME_AC_VO; i++) {
4930 			struct ath_txq *txq = sc->sc_ac2q[i];
4931 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
4932 				txq->axq_qnum, ieee80211_wme_acnames[i]);
4933 		}
4934 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4935 			sc->sc_cabq->axq_qnum);
4936 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4937 	}
4938 #undef HAL_MODE_DUALBAND
4939 }
4940