1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_tx_edma.h> 113 #include <dev/ath/if_ath_beacon.h> 114 #include <dev/ath/if_athdfs.h> 115 116 #ifdef ATH_TX99_DIAG 117 #include <dev/ath/ath_tx99/ath_tx99.h> 118 #endif 119 120 /* 121 * ATH_BCBUF determines the number of vap's that can transmit 122 * beacons and also (currently) the number of vap's that can 123 * have unique mac addresses/bssid. When staggering beacons 124 * 4 is probably a good max as otherwise the beacons become 125 * very closely spaced and there is limited time for cab q traffic 126 * to go out. You can burst beacons instead but that is not good 127 * for stations in power save and at some point you really want 128 * another radio (and channel). 129 * 130 * The limit on the number of mac addresses is tied to our use of 131 * the U/L bit and tracking addresses in a byte; it would be 132 * worthwhile to allow more for applications like proxy sta. 133 */ 134 CTASSERT(ATH_BCBUF <= 8); 135 136 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 137 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 138 const uint8_t [IEEE80211_ADDR_LEN], 139 const uint8_t [IEEE80211_ADDR_LEN]); 140 static void ath_vap_delete(struct ieee80211vap *); 141 static void ath_init(void *); 142 static void ath_stop_locked(struct ifnet *); 143 static void ath_stop(struct ifnet *); 144 static int ath_reset_vap(struct ieee80211vap *, u_long); 145 static void ath_start_queue(struct ifnet *ifp); 146 static int ath_media_change(struct ifnet *); 147 static void ath_watchdog(void *); 148 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 149 static void ath_fatal_proc(void *, int); 150 static void ath_bmiss_vap(struct ieee80211vap *); 151 static void ath_bmiss_proc(void *, int); 152 static void ath_key_update_begin(struct ieee80211vap *); 153 static void ath_key_update_end(struct ieee80211vap *); 154 static void ath_update_mcast(struct ifnet *); 155 static void ath_update_promisc(struct ifnet *); 156 static void ath_updateslot(struct ifnet *); 157 static void ath_bstuck_proc(void *, int); 158 static void ath_reset_proc(void *, int); 159 static int ath_desc_alloc(struct ath_softc *); 160 static void ath_desc_free(struct ath_softc *); 161 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 162 const uint8_t [IEEE80211_ADDR_LEN]); 163 static void ath_node_cleanup(struct ieee80211_node *); 164 static void ath_node_free(struct ieee80211_node *); 165 static void ath_node_getsignal(const struct ieee80211_node *, 166 int8_t *, int8_t *); 167 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 168 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 169 static int ath_tx_setup(struct ath_softc *, int, int); 170 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 171 static void ath_tx_cleanup(struct ath_softc *); 172 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 173 int dosched); 174 static void ath_tx_proc_q0(void *, int); 175 static void ath_tx_proc_q0123(void *, int); 176 static void ath_tx_proc(void *, int); 177 static void ath_txq_sched_tasklet(void *, int); 178 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 179 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 180 static void ath_scan_start(struct ieee80211com *); 181 static void ath_scan_end(struct ieee80211com *); 182 static void ath_set_channel(struct ieee80211com *); 183 #ifdef ATH_ENABLE_11N 184 static void ath_update_chw(struct ieee80211com *); 185 #endif /* ATH_ENABLE_11N */ 186 static void ath_calibrate(void *); 187 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 188 static void ath_setup_stationkey(struct ieee80211_node *); 189 static void ath_newassoc(struct ieee80211_node *, int); 190 static int ath_setregdomain(struct ieee80211com *, 191 struct ieee80211_regdomain *, int, 192 struct ieee80211_channel []); 193 static void ath_getradiocaps(struct ieee80211com *, int, int *, 194 struct ieee80211_channel []); 195 static int ath_getchannels(struct ath_softc *); 196 197 static int ath_rate_setup(struct ath_softc *, u_int mode); 198 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 199 200 static void ath_announce(struct ath_softc *); 201 202 static void ath_dfs_tasklet(void *, int); 203 static void ath_node_powersave(struct ieee80211_node *, int); 204 static int ath_node_set_tim(struct ieee80211_node *, int); 205 206 #ifdef IEEE80211_SUPPORT_TDMA 207 #include <dev/ath/if_ath_tdma.h> 208 #endif 209 210 SYSCTL_DECL(_hw_ath); 211 212 /* XXX validate sysctl values */ 213 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 214 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 215 0, "long chip calibration interval (secs)"); 216 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 217 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 218 0, "short chip calibration interval (msecs)"); 219 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 220 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 221 0, "reset chip calibration results (secs)"); 222 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 223 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 224 0, "ANI calibration (msecs)"); 225 226 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 227 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 228 0, "rx buffers allocated"); 229 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 230 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 231 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 232 0, "tx buffers allocated"); 233 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 234 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 235 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 236 0, "tx (mgmt) buffers allocated"); 237 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 238 239 int ath_bstuck_threshold = 4; /* max missed beacons */ 240 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 241 0, "max missed beacon xmits before chip reset"); 242 243 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 244 245 void 246 ath_legacy_attach_comp_func(struct ath_softc *sc) 247 { 248 249 /* 250 * Special case certain configurations. Note the 251 * CAB queue is handled by these specially so don't 252 * include them when checking the txq setup mask. 253 */ 254 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 255 case 0x01: 256 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 257 break; 258 case 0x0f: 259 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 260 break; 261 default: 262 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 263 break; 264 } 265 } 266 267 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 268 #define HAL_MODE_HT40 \ 269 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 270 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 271 int 272 ath_attach(u_int16_t devid, struct ath_softc *sc) 273 { 274 struct ifnet *ifp; 275 struct ieee80211com *ic; 276 struct ath_hal *ah = NULL; 277 HAL_STATUS status; 278 int error = 0, i; 279 u_int wmodes; 280 uint8_t macaddr[IEEE80211_ADDR_LEN]; 281 int rx_chainmask, tx_chainmask; 282 283 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 284 285 CURVNET_SET(vnet0); 286 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 287 if (ifp == NULL) { 288 device_printf(sc->sc_dev, "can not if_alloc()\n"); 289 error = ENOSPC; 290 goto bad; 291 } 292 ic = ifp->if_l2com; 293 294 /* set these up early for if_printf use */ 295 if_initname(ifp, device_get_name(sc->sc_dev), 296 device_get_unit(sc->sc_dev)); 297 CURVNET_RESTORE(); 298 299 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 300 sc->sc_eepromdata, &status); 301 if (ah == NULL) { 302 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 303 status); 304 error = ENXIO; 305 goto bad; 306 } 307 sc->sc_ah = ah; 308 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 309 #ifdef ATH_DEBUG 310 sc->sc_debug = ath_debug; 311 #endif 312 313 /* 314 * Setup the DMA/EDMA functions based on the current 315 * hardware support. 316 * 317 * This is required before the descriptors are allocated. 318 */ 319 if (ath_hal_hasedma(sc->sc_ah)) { 320 sc->sc_isedma = 1; 321 ath_recv_setup_edma(sc); 322 ath_xmit_setup_edma(sc); 323 } else { 324 ath_recv_setup_legacy(sc); 325 ath_xmit_setup_legacy(sc); 326 } 327 328 /* 329 * Check if the MAC has multi-rate retry support. 330 * We do this by trying to setup a fake extended 331 * descriptor. MAC's that don't have support will 332 * return false w/o doing anything. MAC's that do 333 * support it will return true w/o doing anything. 334 */ 335 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 336 337 /* 338 * Check if the device has hardware counters for PHY 339 * errors. If so we need to enable the MIB interrupt 340 * so we can act on stat triggers. 341 */ 342 if (ath_hal_hwphycounters(ah)) 343 sc->sc_needmib = 1; 344 345 /* 346 * Get the hardware key cache size. 347 */ 348 sc->sc_keymax = ath_hal_keycachesize(ah); 349 if (sc->sc_keymax > ATH_KEYMAX) { 350 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 351 ATH_KEYMAX, sc->sc_keymax); 352 sc->sc_keymax = ATH_KEYMAX; 353 } 354 /* 355 * Reset the key cache since some parts do not 356 * reset the contents on initial power up. 357 */ 358 for (i = 0; i < sc->sc_keymax; i++) 359 ath_hal_keyreset(ah, i); 360 361 /* 362 * Collect the default channel list. 363 */ 364 error = ath_getchannels(sc); 365 if (error != 0) 366 goto bad; 367 368 /* 369 * Setup rate tables for all potential media types. 370 */ 371 ath_rate_setup(sc, IEEE80211_MODE_11A); 372 ath_rate_setup(sc, IEEE80211_MODE_11B); 373 ath_rate_setup(sc, IEEE80211_MODE_11G); 374 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 375 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 376 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 377 ath_rate_setup(sc, IEEE80211_MODE_11NA); 378 ath_rate_setup(sc, IEEE80211_MODE_11NG); 379 ath_rate_setup(sc, IEEE80211_MODE_HALF); 380 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 381 382 /* NB: setup here so ath_rate_update is happy */ 383 ath_setcurmode(sc, IEEE80211_MODE_11A); 384 385 /* 386 * Allocate TX descriptors and populate the lists. 387 */ 388 error = ath_desc_alloc(sc); 389 if (error != 0) { 390 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 391 error); 392 goto bad; 393 } 394 error = ath_txdma_setup(sc); 395 if (error != 0) { 396 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 397 error); 398 goto bad; 399 } 400 401 /* 402 * Allocate RX descriptors and populate the lists. 403 */ 404 error = ath_rxdma_setup(sc); 405 if (error != 0) { 406 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 407 error); 408 goto bad; 409 } 410 411 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 412 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 413 414 ATH_TXBUF_LOCK_INIT(sc); 415 416 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 417 taskqueue_thread_enqueue, &sc->sc_tq); 418 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 419 "%s taskq", ifp->if_xname); 420 421 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 422 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 423 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 424 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 425 TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc); 426 TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc); 427 428 /* 429 * Allocate hardware transmit queues: one queue for 430 * beacon frames and one data queue for each QoS 431 * priority. Note that the hal handles resetting 432 * these queues at the needed time. 433 * 434 * XXX PS-Poll 435 */ 436 sc->sc_bhalq = ath_beaconq_setup(sc); 437 if (sc->sc_bhalq == (u_int) -1) { 438 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 439 error = EIO; 440 goto bad2; 441 } 442 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 443 if (sc->sc_cabq == NULL) { 444 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 445 error = EIO; 446 goto bad2; 447 } 448 /* NB: insure BK queue is the lowest priority h/w queue */ 449 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 450 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 451 ieee80211_wme_acnames[WME_AC_BK]); 452 error = EIO; 453 goto bad2; 454 } 455 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 456 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 457 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 458 /* 459 * Not enough hardware tx queues to properly do WME; 460 * just punt and assign them all to the same h/w queue. 461 * We could do a better job of this if, for example, 462 * we allocate queues when we switch from station to 463 * AP mode. 464 */ 465 if (sc->sc_ac2q[WME_AC_VI] != NULL) 466 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 467 if (sc->sc_ac2q[WME_AC_BE] != NULL) 468 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 469 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 470 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 471 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 472 } 473 474 /* 475 * Attach the TX completion function. 476 * 477 * The non-EDMA chips may have some special case optimisations; 478 * this method gives everyone a chance to attach cleanly. 479 */ 480 sc->sc_tx.xmit_attach_comp_func(sc); 481 482 /* 483 * Setup rate control. Some rate control modules 484 * call back to change the anntena state so expose 485 * the necessary entry points. 486 * XXX maybe belongs in struct ath_ratectrl? 487 */ 488 sc->sc_setdefantenna = ath_setdefantenna; 489 sc->sc_rc = ath_rate_attach(sc); 490 if (sc->sc_rc == NULL) { 491 error = EIO; 492 goto bad2; 493 } 494 495 /* Attach DFS module */ 496 if (! ath_dfs_attach(sc)) { 497 device_printf(sc->sc_dev, 498 "%s: unable to attach DFS\n", __func__); 499 error = EIO; 500 goto bad2; 501 } 502 503 /* Start DFS processing tasklet */ 504 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 505 506 /* Configure LED state */ 507 sc->sc_blinking = 0; 508 sc->sc_ledstate = 1; 509 sc->sc_ledon = 0; /* low true */ 510 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 511 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 512 513 /* 514 * Don't setup hardware-based blinking. 515 * 516 * Although some NICs may have this configured in the 517 * default reset register values, the user may wish 518 * to alter which pins have which function. 519 * 520 * The reference driver attaches the MAC network LED to GPIO1 and 521 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 522 * NIC has these reversed. 523 */ 524 sc->sc_hardled = (1 == 0); 525 sc->sc_led_net_pin = -1; 526 sc->sc_led_pwr_pin = -1; 527 /* 528 * Auto-enable soft led processing for IBM cards and for 529 * 5211 minipci cards. Users can also manually enable/disable 530 * support with a sysctl. 531 */ 532 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 533 ath_led_config(sc); 534 ath_hal_setledstate(ah, HAL_LED_INIT); 535 536 ifp->if_softc = sc; 537 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 538 ifp->if_start = ath_start_queue; 539 ifp->if_ioctl = ath_ioctl; 540 ifp->if_init = ath_init; 541 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 542 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 543 IFQ_SET_READY(&ifp->if_snd); 544 545 ic->ic_ifp = ifp; 546 /* XXX not right but it's not used anywhere important */ 547 ic->ic_phytype = IEEE80211_T_OFDM; 548 ic->ic_opmode = IEEE80211_M_STA; 549 ic->ic_caps = 550 IEEE80211_C_STA /* station mode */ 551 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 552 | IEEE80211_C_HOSTAP /* hostap mode */ 553 | IEEE80211_C_MONITOR /* monitor mode */ 554 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 555 | IEEE80211_C_WDS /* 4-address traffic works */ 556 | IEEE80211_C_MBSS /* mesh point link mode */ 557 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 558 | IEEE80211_C_SHSLOT /* short slot time supported */ 559 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 560 #ifndef ATH_ENABLE_11N 561 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 562 #endif 563 | IEEE80211_C_TXFRAG /* handle tx frags */ 564 #ifdef ATH_ENABLE_DFS 565 | IEEE80211_C_DFS /* Enable radar detection */ 566 #endif 567 ; 568 /* 569 * Query the hal to figure out h/w crypto support. 570 */ 571 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 572 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 573 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 574 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 575 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 576 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 577 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 578 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 579 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 580 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 581 /* 582 * Check if h/w does the MIC and/or whether the 583 * separate key cache entries are required to 584 * handle both tx+rx MIC keys. 585 */ 586 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 587 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 588 /* 589 * If the h/w supports storing tx+rx MIC keys 590 * in one cache slot automatically enable use. 591 */ 592 if (ath_hal_hastkipsplit(ah) || 593 !ath_hal_settkipsplit(ah, AH_FALSE)) 594 sc->sc_splitmic = 1; 595 /* 596 * If the h/w can do TKIP MIC together with WME then 597 * we use it; otherwise we force the MIC to be done 598 * in software by the net80211 layer. 599 */ 600 if (ath_hal_haswmetkipmic(ah)) 601 sc->sc_wmetkipmic = 1; 602 } 603 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 604 /* 605 * Check for multicast key search support. 606 */ 607 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 608 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 609 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 610 } 611 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 612 /* 613 * Mark key cache slots associated with global keys 614 * as in use. If we knew TKIP was not to be used we 615 * could leave the +32, +64, and +32+64 slots free. 616 */ 617 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 618 setbit(sc->sc_keymap, i); 619 setbit(sc->sc_keymap, i+64); 620 if (sc->sc_splitmic) { 621 setbit(sc->sc_keymap, i+32); 622 setbit(sc->sc_keymap, i+32+64); 623 } 624 } 625 /* 626 * TPC support can be done either with a global cap or 627 * per-packet support. The latter is not available on 628 * all parts. We're a bit pedantic here as all parts 629 * support a global cap. 630 */ 631 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 632 ic->ic_caps |= IEEE80211_C_TXPMGT; 633 634 /* 635 * Mark WME capability only if we have sufficient 636 * hardware queues to do proper priority scheduling. 637 */ 638 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 639 ic->ic_caps |= IEEE80211_C_WME; 640 /* 641 * Check for misc other capabilities. 642 */ 643 if (ath_hal_hasbursting(ah)) 644 ic->ic_caps |= IEEE80211_C_BURST; 645 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 646 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 647 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 648 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 649 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 650 if (ath_hal_hasfastframes(ah)) 651 ic->ic_caps |= IEEE80211_C_FF; 652 wmodes = ath_hal_getwirelessmodes(ah); 653 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 654 ic->ic_caps |= IEEE80211_C_TURBOP; 655 #ifdef IEEE80211_SUPPORT_TDMA 656 if (ath_hal_macversion(ah) > 0x78) { 657 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 658 ic->ic_tdma_update = ath_tdma_update; 659 } 660 #endif 661 662 /* 663 * TODO: enforce that at least this many frames are available 664 * in the txbuf list before allowing data frames (raw or 665 * otherwise) to be transmitted. 666 */ 667 sc->sc_txq_data_minfree = 10; 668 /* 669 * Leave this as default to maintain legacy behaviour. 670 * Shortening the cabq/mcastq may end up causing some 671 * undesirable behaviour. 672 */ 673 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 674 675 /* 676 * Allow the TX and RX chainmasks to be overridden by 677 * environment variables and/or device.hints. 678 * 679 * This must be done early - before the hardware is 680 * calibrated or before the 802.11n stream calculation 681 * is done. 682 */ 683 if (resource_int_value(device_get_name(sc->sc_dev), 684 device_get_unit(sc->sc_dev), "rx_chainmask", 685 &rx_chainmask) == 0) { 686 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 687 rx_chainmask); 688 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 689 } 690 if (resource_int_value(device_get_name(sc->sc_dev), 691 device_get_unit(sc->sc_dev), "tx_chainmask", 692 &tx_chainmask) == 0) { 693 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 694 tx_chainmask); 695 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 696 } 697 698 /* 699 * Disable MRR with protected frames by default. 700 * Only 802.11n series NICs can handle this. 701 */ 702 sc->sc_mrrprot = 0; /* XXX should be a capability */ 703 704 #ifdef ATH_ENABLE_11N 705 /* 706 * Query HT capabilities 707 */ 708 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 709 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 710 int rxs, txs; 711 712 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 713 714 sc->sc_mrrprot = 1; /* XXX should be a capability */ 715 716 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 717 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 718 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 719 | IEEE80211_HTCAP_MAXAMSDU_3839 720 /* max A-MSDU length */ 721 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 722 ; 723 724 /* 725 * Enable short-GI for HT20 only if the hardware 726 * advertises support. 727 * Notably, anything earlier than the AR9287 doesn't. 728 */ 729 if ((ath_hal_getcapability(ah, 730 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 731 (wmodes & HAL_MODE_HT20)) { 732 device_printf(sc->sc_dev, 733 "[HT] enabling short-GI in 20MHz mode\n"); 734 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 735 } 736 737 if (wmodes & HAL_MODE_HT40) 738 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 739 | IEEE80211_HTCAP_SHORTGI40; 740 741 /* 742 * TX/RX streams need to be taken into account when 743 * negotiating which MCS rates it'll receive and 744 * what MCS rates are available for TX. 745 */ 746 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 747 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 748 749 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 750 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 751 752 ic->ic_txstream = txs; 753 ic->ic_rxstream = rxs; 754 755 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 756 &sc->sc_rts_aggr_limit); 757 if (sc->sc_rts_aggr_limit != (64 * 1024)) 758 device_printf(sc->sc_dev, 759 "[HT] RTS aggregates limited to %d KiB\n", 760 sc->sc_rts_aggr_limit / 1024); 761 762 device_printf(sc->sc_dev, 763 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 764 } 765 #endif 766 767 /* 768 * Initial aggregation settings. 769 */ 770 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 771 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 772 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 773 774 /* 775 * Check if the hardware requires PCI register serialisation. 776 * Some of the Owl based MACs require this. 777 */ 778 if (mp_ncpus > 1 && 779 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 780 0, NULL) == HAL_OK) { 781 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 782 device_printf(sc->sc_dev, 783 "Enabling register serialisation\n"); 784 } 785 786 /* 787 * Indicate we need the 802.11 header padded to a 788 * 32-bit boundary for 4-address and QoS frames. 789 */ 790 ic->ic_flags |= IEEE80211_F_DATAPAD; 791 792 /* 793 * Query the hal about antenna support. 794 */ 795 sc->sc_defant = ath_hal_getdefantenna(ah); 796 797 /* 798 * Not all chips have the VEOL support we want to 799 * use with IBSS beacons; check here for it. 800 */ 801 sc->sc_hasveol = ath_hal_hasveol(ah); 802 803 /* get mac address from hardware */ 804 ath_hal_getmac(ah, macaddr); 805 if (sc->sc_hasbmask) 806 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 807 808 /* NB: used to size node table key mapping array */ 809 ic->ic_max_keyix = sc->sc_keymax; 810 /* call MI attach routine. */ 811 ieee80211_ifattach(ic, macaddr); 812 ic->ic_setregdomain = ath_setregdomain; 813 ic->ic_getradiocaps = ath_getradiocaps; 814 sc->sc_opmode = HAL_M_STA; 815 816 /* override default methods */ 817 ic->ic_newassoc = ath_newassoc; 818 ic->ic_updateslot = ath_updateslot; 819 ic->ic_wme.wme_update = ath_wme_update; 820 ic->ic_vap_create = ath_vap_create; 821 ic->ic_vap_delete = ath_vap_delete; 822 ic->ic_raw_xmit = ath_raw_xmit; 823 ic->ic_update_mcast = ath_update_mcast; 824 ic->ic_update_promisc = ath_update_promisc; 825 ic->ic_node_alloc = ath_node_alloc; 826 sc->sc_node_free = ic->ic_node_free; 827 ic->ic_node_free = ath_node_free; 828 sc->sc_node_cleanup = ic->ic_node_cleanup; 829 ic->ic_node_cleanup = ath_node_cleanup; 830 ic->ic_node_getsignal = ath_node_getsignal; 831 ic->ic_scan_start = ath_scan_start; 832 ic->ic_scan_end = ath_scan_end; 833 ic->ic_set_channel = ath_set_channel; 834 #ifdef ATH_ENABLE_11N 835 /* 802.11n specific - but just override anyway */ 836 sc->sc_addba_request = ic->ic_addba_request; 837 sc->sc_addba_response = ic->ic_addba_response; 838 sc->sc_addba_stop = ic->ic_addba_stop; 839 sc->sc_bar_response = ic->ic_bar_response; 840 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 841 842 ic->ic_addba_request = ath_addba_request; 843 ic->ic_addba_response = ath_addba_response; 844 ic->ic_addba_response_timeout = ath_addba_response_timeout; 845 ic->ic_addba_stop = ath_addba_stop; 846 ic->ic_bar_response = ath_bar_response; 847 848 ic->ic_update_chw = ath_update_chw; 849 #endif /* ATH_ENABLE_11N */ 850 851 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 852 /* 853 * There's one vendor bitmap entry in the RX radiotap 854 * header; make sure that's taken into account. 855 */ 856 ieee80211_radiotap_attachv(ic, 857 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 858 ATH_TX_RADIOTAP_PRESENT, 859 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 860 ATH_RX_RADIOTAP_PRESENT); 861 #else 862 /* 863 * No vendor bitmap/extensions are present. 864 */ 865 ieee80211_radiotap_attach(ic, 866 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 867 ATH_TX_RADIOTAP_PRESENT, 868 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 869 ATH_RX_RADIOTAP_PRESENT); 870 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 871 872 /* 873 * Setup dynamic sysctl's now that country code and 874 * regdomain are available from the hal. 875 */ 876 ath_sysctlattach(sc); 877 ath_sysctl_stats_attach(sc); 878 ath_sysctl_hal_attach(sc); 879 880 if (bootverbose) 881 ieee80211_announce(ic); 882 ath_announce(sc); 883 return 0; 884 bad2: 885 ath_tx_cleanup(sc); 886 ath_desc_free(sc); 887 ath_txdma_teardown(sc); 888 ath_rxdma_teardown(sc); 889 bad: 890 if (ah) 891 ath_hal_detach(ah); 892 if (ifp != NULL) { 893 CURVNET_SET(ifp->if_vnet); 894 if_free(ifp); 895 CURVNET_RESTORE(); 896 } 897 sc->sc_invalid = 1; 898 return error; 899 } 900 901 int 902 ath_detach(struct ath_softc *sc) 903 { 904 struct ifnet *ifp = sc->sc_ifp; 905 906 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 907 __func__, ifp->if_flags); 908 909 /* 910 * NB: the order of these is important: 911 * o stop the chip so no more interrupts will fire 912 * o call the 802.11 layer before detaching the hal to 913 * insure callbacks into the driver to delete global 914 * key cache entries can be handled 915 * o free the taskqueue which drains any pending tasks 916 * o reclaim the tx queue data structures after calling 917 * the 802.11 layer as we'll get called back to reclaim 918 * node state and potentially want to use them 919 * o to cleanup the tx queues the hal is called, so detach 920 * it last 921 * Other than that, it's straightforward... 922 */ 923 ath_stop(ifp); 924 ieee80211_ifdetach(ifp->if_l2com); 925 taskqueue_free(sc->sc_tq); 926 #ifdef ATH_TX99_DIAG 927 if (sc->sc_tx99 != NULL) 928 sc->sc_tx99->detach(sc->sc_tx99); 929 #endif 930 ath_rate_detach(sc->sc_rc); 931 932 ath_dfs_detach(sc); 933 ath_desc_free(sc); 934 ath_txdma_teardown(sc); 935 ath_rxdma_teardown(sc); 936 ath_tx_cleanup(sc); 937 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 938 939 CURVNET_SET(ifp->if_vnet); 940 if_free(ifp); 941 CURVNET_RESTORE(); 942 943 return 0; 944 } 945 946 /* 947 * MAC address handling for multiple BSS on the same radio. 948 * The first vap uses the MAC address from the EEPROM. For 949 * subsequent vap's we set the U/L bit (bit 1) in the MAC 950 * address and use the next six bits as an index. 951 */ 952 static void 953 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 954 { 955 int i; 956 957 if (clone && sc->sc_hasbmask) { 958 /* NB: we only do this if h/w supports multiple bssid */ 959 for (i = 0; i < 8; i++) 960 if ((sc->sc_bssidmask & (1<<i)) == 0) 961 break; 962 if (i != 0) 963 mac[0] |= (i << 2)|0x2; 964 } else 965 i = 0; 966 sc->sc_bssidmask |= 1<<i; 967 sc->sc_hwbssidmask[0] &= ~mac[0]; 968 if (i == 0) 969 sc->sc_nbssid0++; 970 } 971 972 static void 973 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 974 { 975 int i = mac[0] >> 2; 976 uint8_t mask; 977 978 if (i != 0 || --sc->sc_nbssid0 == 0) { 979 sc->sc_bssidmask &= ~(1<<i); 980 /* recalculate bssid mask from remaining addresses */ 981 mask = 0xff; 982 for (i = 1; i < 8; i++) 983 if (sc->sc_bssidmask & (1<<i)) 984 mask &= ~((i<<2)|0x2); 985 sc->sc_hwbssidmask[0] |= mask; 986 } 987 } 988 989 /* 990 * Assign a beacon xmit slot. We try to space out 991 * assignments so when beacons are staggered the 992 * traffic coming out of the cab q has maximal time 993 * to go out before the next beacon is scheduled. 994 */ 995 static int 996 assign_bslot(struct ath_softc *sc) 997 { 998 u_int slot, free; 999 1000 free = 0; 1001 for (slot = 0; slot < ATH_BCBUF; slot++) 1002 if (sc->sc_bslot[slot] == NULL) { 1003 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1004 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1005 return slot; 1006 free = slot; 1007 /* NB: keep looking for a double slot */ 1008 } 1009 return free; 1010 } 1011 1012 static struct ieee80211vap * 1013 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1014 enum ieee80211_opmode opmode, int flags, 1015 const uint8_t bssid[IEEE80211_ADDR_LEN], 1016 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1017 { 1018 struct ath_softc *sc = ic->ic_ifp->if_softc; 1019 struct ath_vap *avp; 1020 struct ieee80211vap *vap; 1021 uint8_t mac[IEEE80211_ADDR_LEN]; 1022 int needbeacon, error; 1023 enum ieee80211_opmode ic_opmode; 1024 1025 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1026 M_80211_VAP, M_WAITOK | M_ZERO); 1027 needbeacon = 0; 1028 IEEE80211_ADDR_COPY(mac, mac0); 1029 1030 ATH_LOCK(sc); 1031 ic_opmode = opmode; /* default to opmode of new vap */ 1032 switch (opmode) { 1033 case IEEE80211_M_STA: 1034 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1035 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1036 goto bad; 1037 } 1038 if (sc->sc_nvaps) { 1039 /* 1040 * With multiple vaps we must fall back 1041 * to s/w beacon miss handling. 1042 */ 1043 flags |= IEEE80211_CLONE_NOBEACONS; 1044 } 1045 if (flags & IEEE80211_CLONE_NOBEACONS) { 1046 /* 1047 * Station mode w/o beacons are implemented w/ AP mode. 1048 */ 1049 ic_opmode = IEEE80211_M_HOSTAP; 1050 } 1051 break; 1052 case IEEE80211_M_IBSS: 1053 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1054 device_printf(sc->sc_dev, 1055 "only 1 ibss vap supported\n"); 1056 goto bad; 1057 } 1058 needbeacon = 1; 1059 break; 1060 case IEEE80211_M_AHDEMO: 1061 #ifdef IEEE80211_SUPPORT_TDMA 1062 if (flags & IEEE80211_CLONE_TDMA) { 1063 if (sc->sc_nvaps != 0) { 1064 device_printf(sc->sc_dev, 1065 "only 1 tdma vap supported\n"); 1066 goto bad; 1067 } 1068 needbeacon = 1; 1069 flags |= IEEE80211_CLONE_NOBEACONS; 1070 } 1071 /* fall thru... */ 1072 #endif 1073 case IEEE80211_M_MONITOR: 1074 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1075 /* 1076 * Adopt existing mode. Adding a monitor or ahdemo 1077 * vap to an existing configuration is of dubious 1078 * value but should be ok. 1079 */ 1080 /* XXX not right for monitor mode */ 1081 ic_opmode = ic->ic_opmode; 1082 } 1083 break; 1084 case IEEE80211_M_HOSTAP: 1085 case IEEE80211_M_MBSS: 1086 needbeacon = 1; 1087 break; 1088 case IEEE80211_M_WDS: 1089 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1090 device_printf(sc->sc_dev, 1091 "wds not supported in sta mode\n"); 1092 goto bad; 1093 } 1094 /* 1095 * Silently remove any request for a unique 1096 * bssid; WDS vap's always share the local 1097 * mac address. 1098 */ 1099 flags &= ~IEEE80211_CLONE_BSSID; 1100 if (sc->sc_nvaps == 0) 1101 ic_opmode = IEEE80211_M_HOSTAP; 1102 else 1103 ic_opmode = ic->ic_opmode; 1104 break; 1105 default: 1106 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1107 goto bad; 1108 } 1109 /* 1110 * Check that a beacon buffer is available; the code below assumes it. 1111 */ 1112 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1113 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1114 goto bad; 1115 } 1116 1117 /* STA, AHDEMO? */ 1118 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1119 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1120 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1121 } 1122 1123 vap = &avp->av_vap; 1124 /* XXX can't hold mutex across if_alloc */ 1125 ATH_UNLOCK(sc); 1126 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1127 bssid, mac); 1128 ATH_LOCK(sc); 1129 if (error != 0) { 1130 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1131 __func__, error); 1132 goto bad2; 1133 } 1134 1135 /* h/w crypto support */ 1136 vap->iv_key_alloc = ath_key_alloc; 1137 vap->iv_key_delete = ath_key_delete; 1138 vap->iv_key_set = ath_key_set; 1139 vap->iv_key_update_begin = ath_key_update_begin; 1140 vap->iv_key_update_end = ath_key_update_end; 1141 1142 /* override various methods */ 1143 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1144 vap->iv_recv_mgmt = ath_recv_mgmt; 1145 vap->iv_reset = ath_reset_vap; 1146 vap->iv_update_beacon = ath_beacon_update; 1147 avp->av_newstate = vap->iv_newstate; 1148 vap->iv_newstate = ath_newstate; 1149 avp->av_bmiss = vap->iv_bmiss; 1150 vap->iv_bmiss = ath_bmiss_vap; 1151 1152 avp->av_node_ps = vap->iv_node_ps; 1153 vap->iv_node_ps = ath_node_powersave; 1154 1155 avp->av_set_tim = vap->iv_set_tim; 1156 vap->iv_set_tim = ath_node_set_tim; 1157 1158 /* Set default parameters */ 1159 1160 /* 1161 * Anything earlier than some AR9300 series MACs don't 1162 * support a smaller MPDU density. 1163 */ 1164 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1165 /* 1166 * All NICs can handle the maximum size, however 1167 * AR5416 based MACs can only TX aggregates w/ RTS 1168 * protection when the total aggregate size is <= 8k. 1169 * However, for now that's enforced by the TX path. 1170 */ 1171 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1172 1173 avp->av_bslot = -1; 1174 if (needbeacon) { 1175 /* 1176 * Allocate beacon state and setup the q for buffered 1177 * multicast frames. We know a beacon buffer is 1178 * available because we checked above. 1179 */ 1180 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1181 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1182 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1183 /* 1184 * Assign the vap to a beacon xmit slot. As above 1185 * this cannot fail to find a free one. 1186 */ 1187 avp->av_bslot = assign_bslot(sc); 1188 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1189 ("beacon slot %u not empty", avp->av_bslot)); 1190 sc->sc_bslot[avp->av_bslot] = vap; 1191 sc->sc_nbcnvaps++; 1192 } 1193 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1194 /* 1195 * Multple vaps are to transmit beacons and we 1196 * have h/w support for TSF adjusting; enable 1197 * use of staggered beacons. 1198 */ 1199 sc->sc_stagbeacons = 1; 1200 } 1201 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1202 } 1203 1204 ic->ic_opmode = ic_opmode; 1205 if (opmode != IEEE80211_M_WDS) { 1206 sc->sc_nvaps++; 1207 if (opmode == IEEE80211_M_STA) 1208 sc->sc_nstavaps++; 1209 if (opmode == IEEE80211_M_MBSS) 1210 sc->sc_nmeshvaps++; 1211 } 1212 switch (ic_opmode) { 1213 case IEEE80211_M_IBSS: 1214 sc->sc_opmode = HAL_M_IBSS; 1215 break; 1216 case IEEE80211_M_STA: 1217 sc->sc_opmode = HAL_M_STA; 1218 break; 1219 case IEEE80211_M_AHDEMO: 1220 #ifdef IEEE80211_SUPPORT_TDMA 1221 if (vap->iv_caps & IEEE80211_C_TDMA) { 1222 sc->sc_tdma = 1; 1223 /* NB: disable tsf adjust */ 1224 sc->sc_stagbeacons = 0; 1225 } 1226 /* 1227 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1228 * just ap mode. 1229 */ 1230 /* fall thru... */ 1231 #endif 1232 case IEEE80211_M_HOSTAP: 1233 case IEEE80211_M_MBSS: 1234 sc->sc_opmode = HAL_M_HOSTAP; 1235 break; 1236 case IEEE80211_M_MONITOR: 1237 sc->sc_opmode = HAL_M_MONITOR; 1238 break; 1239 default: 1240 /* XXX should not happen */ 1241 break; 1242 } 1243 if (sc->sc_hastsfadd) { 1244 /* 1245 * Configure whether or not TSF adjust should be done. 1246 */ 1247 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1248 } 1249 if (flags & IEEE80211_CLONE_NOBEACONS) { 1250 /* 1251 * Enable s/w beacon miss handling. 1252 */ 1253 sc->sc_swbmiss = 1; 1254 } 1255 ATH_UNLOCK(sc); 1256 1257 /* complete setup */ 1258 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1259 return vap; 1260 bad2: 1261 reclaim_address(sc, mac); 1262 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1263 bad: 1264 free(avp, M_80211_VAP); 1265 ATH_UNLOCK(sc); 1266 return NULL; 1267 } 1268 1269 static void 1270 ath_vap_delete(struct ieee80211vap *vap) 1271 { 1272 struct ieee80211com *ic = vap->iv_ic; 1273 struct ifnet *ifp = ic->ic_ifp; 1274 struct ath_softc *sc = ifp->if_softc; 1275 struct ath_hal *ah = sc->sc_ah; 1276 struct ath_vap *avp = ATH_VAP(vap); 1277 1278 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1279 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1280 /* 1281 * Quiesce the hardware while we remove the vap. In 1282 * particular we need to reclaim all references to 1283 * the vap state by any frames pending on the tx queues. 1284 */ 1285 ath_hal_intrset(ah, 0); /* disable interrupts */ 1286 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1287 /* XXX Do all frames from all vaps/nodes need draining here? */ 1288 ath_stoprecv(sc, 1); /* stop recv side */ 1289 } 1290 1291 ieee80211_vap_detach(vap); 1292 1293 /* 1294 * XXX Danger Will Robinson! Danger! 1295 * 1296 * Because ieee80211_vap_detach() can queue a frame (the station 1297 * diassociate message?) after we've drained the TXQ and 1298 * flushed the software TXQ, we will end up with a frame queued 1299 * to a node whose vap is about to be freed. 1300 * 1301 * To work around this, flush the hardware/software again. 1302 * This may be racy - the ath task may be running and the packet 1303 * may be being scheduled between sw->hw txq. Tsk. 1304 * 1305 * TODO: figure out why a new node gets allocated somewhere around 1306 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1307 * call!) 1308 */ 1309 1310 ath_draintxq(sc, ATH_RESET_DEFAULT); 1311 1312 ATH_LOCK(sc); 1313 /* 1314 * Reclaim beacon state. Note this must be done before 1315 * the vap instance is reclaimed as we may have a reference 1316 * to it in the buffer for the beacon frame. 1317 */ 1318 if (avp->av_bcbuf != NULL) { 1319 if (avp->av_bslot != -1) { 1320 sc->sc_bslot[avp->av_bslot] = NULL; 1321 sc->sc_nbcnvaps--; 1322 } 1323 ath_beacon_return(sc, avp->av_bcbuf); 1324 avp->av_bcbuf = NULL; 1325 if (sc->sc_nbcnvaps == 0) { 1326 sc->sc_stagbeacons = 0; 1327 if (sc->sc_hastsfadd) 1328 ath_hal_settsfadjust(sc->sc_ah, 0); 1329 } 1330 /* 1331 * Reclaim any pending mcast frames for the vap. 1332 */ 1333 ath_tx_draintxq(sc, &avp->av_mcastq); 1334 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1335 } 1336 /* 1337 * Update bookkeeping. 1338 */ 1339 if (vap->iv_opmode == IEEE80211_M_STA) { 1340 sc->sc_nstavaps--; 1341 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1342 sc->sc_swbmiss = 0; 1343 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1344 vap->iv_opmode == IEEE80211_M_MBSS) { 1345 reclaim_address(sc, vap->iv_myaddr); 1346 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1347 if (vap->iv_opmode == IEEE80211_M_MBSS) 1348 sc->sc_nmeshvaps--; 1349 } 1350 if (vap->iv_opmode != IEEE80211_M_WDS) 1351 sc->sc_nvaps--; 1352 #ifdef IEEE80211_SUPPORT_TDMA 1353 /* TDMA operation ceases when the last vap is destroyed */ 1354 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1355 sc->sc_tdma = 0; 1356 sc->sc_swbmiss = 0; 1357 } 1358 #endif 1359 free(avp, M_80211_VAP); 1360 1361 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1362 /* 1363 * Restart rx+tx machines if still running (RUNNING will 1364 * be reset if we just destroyed the last vap). 1365 */ 1366 if (ath_startrecv(sc) != 0) 1367 if_printf(ifp, "%s: unable to restart recv logic\n", 1368 __func__); 1369 if (sc->sc_beacons) { /* restart beacons */ 1370 #ifdef IEEE80211_SUPPORT_TDMA 1371 if (sc->sc_tdma) 1372 ath_tdma_config(sc, NULL); 1373 else 1374 #endif 1375 ath_beacon_config(sc, NULL); 1376 } 1377 ath_hal_intrset(ah, sc->sc_imask); 1378 } 1379 ATH_UNLOCK(sc); 1380 } 1381 1382 void 1383 ath_suspend(struct ath_softc *sc) 1384 { 1385 struct ifnet *ifp = sc->sc_ifp; 1386 struct ieee80211com *ic = ifp->if_l2com; 1387 1388 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1389 __func__, ifp->if_flags); 1390 1391 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1392 1393 ieee80211_suspend_all(ic); 1394 /* 1395 * NB: don't worry about putting the chip in low power 1396 * mode; pci will power off our socket on suspend and 1397 * CardBus detaches the device. 1398 */ 1399 1400 /* 1401 * XXX ensure none of the taskqueues are running 1402 * XXX ensure sc_invalid is 1 1403 * XXX ensure the calibration callout is disabled 1404 */ 1405 1406 /* Disable the PCIe PHY, complete with workarounds */ 1407 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1408 } 1409 1410 /* 1411 * Reset the key cache since some parts do not reset the 1412 * contents on resume. First we clear all entries, then 1413 * re-load keys that the 802.11 layer assumes are setup 1414 * in h/w. 1415 */ 1416 static void 1417 ath_reset_keycache(struct ath_softc *sc) 1418 { 1419 struct ifnet *ifp = sc->sc_ifp; 1420 struct ieee80211com *ic = ifp->if_l2com; 1421 struct ath_hal *ah = sc->sc_ah; 1422 int i; 1423 1424 for (i = 0; i < sc->sc_keymax; i++) 1425 ath_hal_keyreset(ah, i); 1426 ieee80211_crypto_reload_keys(ic); 1427 } 1428 1429 void 1430 ath_resume(struct ath_softc *sc) 1431 { 1432 struct ifnet *ifp = sc->sc_ifp; 1433 struct ieee80211com *ic = ifp->if_l2com; 1434 struct ath_hal *ah = sc->sc_ah; 1435 HAL_STATUS status; 1436 1437 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1438 __func__, ifp->if_flags); 1439 1440 /* Re-enable PCIe, re-enable the PCIe bus */ 1441 ath_hal_enablepcie(ah, 0, 0); 1442 1443 /* 1444 * Must reset the chip before we reload the 1445 * keycache as we were powered down on suspend. 1446 */ 1447 ath_hal_reset(ah, sc->sc_opmode, 1448 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1449 AH_FALSE, &status); 1450 ath_reset_keycache(sc); 1451 1452 /* Let DFS at it in case it's a DFS channel */ 1453 ath_dfs_radar_enable(sc, ic->ic_curchan); 1454 1455 /* Restore the LED configuration */ 1456 ath_led_config(sc); 1457 ath_hal_setledstate(ah, HAL_LED_INIT); 1458 1459 if (sc->sc_resume_up) 1460 ieee80211_resume_all(ic); 1461 1462 /* XXX beacons ? */ 1463 } 1464 1465 void 1466 ath_shutdown(struct ath_softc *sc) 1467 { 1468 struct ifnet *ifp = sc->sc_ifp; 1469 1470 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1471 __func__, ifp->if_flags); 1472 1473 ath_stop(ifp); 1474 /* NB: no point powering down chip as we're about to reboot */ 1475 } 1476 1477 /* 1478 * Interrupt handler. Most of the actual processing is deferred. 1479 */ 1480 void 1481 ath_intr(void *arg) 1482 { 1483 struct ath_softc *sc = arg; 1484 struct ifnet *ifp = sc->sc_ifp; 1485 struct ath_hal *ah = sc->sc_ah; 1486 HAL_INT status = 0; 1487 uint32_t txqs; 1488 1489 /* 1490 * If we're inside a reset path, just print a warning and 1491 * clear the ISR. The reset routine will finish it for us. 1492 */ 1493 ATH_PCU_LOCK(sc); 1494 if (sc->sc_inreset_cnt) { 1495 HAL_INT status; 1496 ath_hal_getisr(ah, &status); /* clear ISR */ 1497 ath_hal_intrset(ah, 0); /* disable further intr's */ 1498 DPRINTF(sc, ATH_DEBUG_ANY, 1499 "%s: in reset, ignoring: status=0x%x\n", 1500 __func__, status); 1501 ATH_PCU_UNLOCK(sc); 1502 return; 1503 } 1504 1505 if (sc->sc_invalid) { 1506 /* 1507 * The hardware is not ready/present, don't touch anything. 1508 * Note this can happen early on if the IRQ is shared. 1509 */ 1510 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1511 ATH_PCU_UNLOCK(sc); 1512 return; 1513 } 1514 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1515 ATH_PCU_UNLOCK(sc); 1516 return; 1517 } 1518 1519 if ((ifp->if_flags & IFF_UP) == 0 || 1520 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1521 HAL_INT status; 1522 1523 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1524 __func__, ifp->if_flags); 1525 ath_hal_getisr(ah, &status); /* clear ISR */ 1526 ath_hal_intrset(ah, 0); /* disable further intr's */ 1527 ATH_PCU_UNLOCK(sc); 1528 return; 1529 } 1530 1531 /* 1532 * Figure out the reason(s) for the interrupt. Note 1533 * that the hal returns a pseudo-ISR that may include 1534 * bits we haven't explicitly enabled so we mask the 1535 * value to insure we only process bits we requested. 1536 */ 1537 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1538 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1539 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 1540 #ifdef ATH_KTR_INTR_DEBUG 1541 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 1542 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1543 ah->ah_intrstate[0], 1544 ah->ah_intrstate[1], 1545 ah->ah_intrstate[2], 1546 ah->ah_intrstate[3], 1547 ah->ah_intrstate[6]); 1548 #endif 1549 1550 /* Squirrel away SYNC interrupt debugging */ 1551 if (ah->ah_syncstate != 0) { 1552 int i; 1553 for (i = 0; i < 32; i++) 1554 if (ah->ah_syncstate & (i << i)) 1555 sc->sc_intr_stats.sync_intr[i]++; 1556 } 1557 1558 status &= sc->sc_imask; /* discard unasked for bits */ 1559 1560 /* Short-circuit un-handled interrupts */ 1561 if (status == 0x0) { 1562 ATH_PCU_UNLOCK(sc); 1563 return; 1564 } 1565 1566 /* 1567 * Take a note that we're inside the interrupt handler, so 1568 * the reset routines know to wait. 1569 */ 1570 sc->sc_intr_cnt++; 1571 ATH_PCU_UNLOCK(sc); 1572 1573 /* 1574 * Handle the interrupt. We won't run concurrent with the reset 1575 * or channel change routines as they'll wait for sc_intr_cnt 1576 * to be 0 before continuing. 1577 */ 1578 if (status & HAL_INT_FATAL) { 1579 sc->sc_stats.ast_hardware++; 1580 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1581 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1582 } else { 1583 if (status & HAL_INT_SWBA) { 1584 /* 1585 * Software beacon alert--time to send a beacon. 1586 * Handle beacon transmission directly; deferring 1587 * this is too slow to meet timing constraints 1588 * under load. 1589 */ 1590 #ifdef IEEE80211_SUPPORT_TDMA 1591 if (sc->sc_tdma) { 1592 if (sc->sc_tdmaswba == 0) { 1593 struct ieee80211com *ic = ifp->if_l2com; 1594 struct ieee80211vap *vap = 1595 TAILQ_FIRST(&ic->ic_vaps); 1596 ath_tdma_beacon_send(sc, vap); 1597 sc->sc_tdmaswba = 1598 vap->iv_tdma->tdma_bintval; 1599 } else 1600 sc->sc_tdmaswba--; 1601 } else 1602 #endif 1603 { 1604 ath_beacon_proc(sc, 0); 1605 #ifdef IEEE80211_SUPPORT_SUPERG 1606 /* 1607 * Schedule the rx taskq in case there's no 1608 * traffic so any frames held on the staging 1609 * queue are aged and potentially flushed. 1610 */ 1611 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1612 #endif 1613 } 1614 } 1615 if (status & HAL_INT_RXEOL) { 1616 int imask; 1617 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 1618 ATH_PCU_LOCK(sc); 1619 /* 1620 * NB: the hardware should re-read the link when 1621 * RXE bit is written, but it doesn't work at 1622 * least on older hardware revs. 1623 */ 1624 sc->sc_stats.ast_rxeol++; 1625 /* 1626 * Disable RXEOL/RXORN - prevent an interrupt 1627 * storm until the PCU logic can be reset. 1628 * In case the interface is reset some other 1629 * way before "sc_kickpcu" is called, don't 1630 * modify sc_imask - that way if it is reset 1631 * by a call to ath_reset() somehow, the 1632 * interrupt mask will be correctly reprogrammed. 1633 */ 1634 imask = sc->sc_imask; 1635 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1636 ath_hal_intrset(ah, imask); 1637 /* 1638 * Only blank sc_rxlink if we've not yet kicked 1639 * the PCU. 1640 * 1641 * This isn't entirely correct - the correct solution 1642 * would be to have a PCU lock and engage that for 1643 * the duration of the PCU fiddling; which would include 1644 * running the RX process. Otherwise we could end up 1645 * messing up the RX descriptor chain and making the 1646 * RX desc list much shorter. 1647 */ 1648 if (! sc->sc_kickpcu) 1649 sc->sc_rxlink = NULL; 1650 sc->sc_kickpcu = 1; 1651 /* 1652 * Enqueue an RX proc, to handled whatever 1653 * is in the RX queue. 1654 * This will then kick the PCU. 1655 */ 1656 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1657 ATH_PCU_UNLOCK(sc); 1658 } 1659 if (status & HAL_INT_TXURN) { 1660 sc->sc_stats.ast_txurn++; 1661 /* bump tx trigger level */ 1662 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1663 } 1664 /* 1665 * Handle both the legacy and RX EDMA interrupt bits. 1666 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1667 */ 1668 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1669 sc->sc_stats.ast_rx_intr++; 1670 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1671 } 1672 if (status & HAL_INT_TX) { 1673 sc->sc_stats.ast_tx_intr++; 1674 /* 1675 * Grab all the currently set bits in the HAL txq bitmap 1676 * and blank them. This is the only place we should be 1677 * doing this. 1678 */ 1679 if (! sc->sc_isedma) { 1680 ATH_PCU_LOCK(sc); 1681 txqs = 0xffffffff; 1682 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1683 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 1684 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 1685 txqs, 1686 sc->sc_txq_active, 1687 sc->sc_txq_active | txqs); 1688 sc->sc_txq_active |= txqs; 1689 ATH_PCU_UNLOCK(sc); 1690 } 1691 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1692 } 1693 if (status & HAL_INT_BMISS) { 1694 sc->sc_stats.ast_bmiss++; 1695 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1696 } 1697 if (status & HAL_INT_GTT) 1698 sc->sc_stats.ast_tx_timeout++; 1699 if (status & HAL_INT_CST) 1700 sc->sc_stats.ast_tx_cst++; 1701 if (status & HAL_INT_MIB) { 1702 sc->sc_stats.ast_mib++; 1703 ATH_PCU_LOCK(sc); 1704 /* 1705 * Disable interrupts until we service the MIB 1706 * interrupt; otherwise it will continue to fire. 1707 */ 1708 ath_hal_intrset(ah, 0); 1709 /* 1710 * Let the hal handle the event. We assume it will 1711 * clear whatever condition caused the interrupt. 1712 */ 1713 ath_hal_mibevent(ah, &sc->sc_halstats); 1714 /* 1715 * Don't reset the interrupt if we've just 1716 * kicked the PCU, or we may get a nested 1717 * RXEOL before the rxproc has had a chance 1718 * to run. 1719 */ 1720 if (sc->sc_kickpcu == 0) 1721 ath_hal_intrset(ah, sc->sc_imask); 1722 ATH_PCU_UNLOCK(sc); 1723 } 1724 if (status & HAL_INT_RXORN) { 1725 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1726 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 1727 sc->sc_stats.ast_rxorn++; 1728 } 1729 } 1730 ATH_PCU_LOCK(sc); 1731 sc->sc_intr_cnt--; 1732 ATH_PCU_UNLOCK(sc); 1733 } 1734 1735 static void 1736 ath_fatal_proc(void *arg, int pending) 1737 { 1738 struct ath_softc *sc = arg; 1739 struct ifnet *ifp = sc->sc_ifp; 1740 u_int32_t *state; 1741 u_int32_t len; 1742 void *sp; 1743 1744 if_printf(ifp, "hardware error; resetting\n"); 1745 /* 1746 * Fatal errors are unrecoverable. Typically these 1747 * are caused by DMA errors. Collect h/w state from 1748 * the hal so we can diagnose what's going on. 1749 */ 1750 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1751 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1752 state = sp; 1753 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1754 state[0], state[1] , state[2], state[3], 1755 state[4], state[5]); 1756 } 1757 ath_reset(ifp, ATH_RESET_NOLOSS); 1758 } 1759 1760 static void 1761 ath_bmiss_vap(struct ieee80211vap *vap) 1762 { 1763 /* 1764 * Workaround phantom bmiss interrupts by sanity-checking 1765 * the time of our last rx'd frame. If it is within the 1766 * beacon miss interval then ignore the interrupt. If it's 1767 * truly a bmiss we'll get another interrupt soon and that'll 1768 * be dispatched up for processing. Note this applies only 1769 * for h/w beacon miss events. 1770 */ 1771 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1772 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1773 struct ath_softc *sc = ifp->if_softc; 1774 u_int64_t lastrx = sc->sc_lastrx; 1775 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1776 /* XXX should take a locked ref to iv_bss */ 1777 u_int bmisstimeout = 1778 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1779 1780 DPRINTF(sc, ATH_DEBUG_BEACON, 1781 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1782 __func__, (unsigned long long) tsf, 1783 (unsigned long long)(tsf - lastrx), 1784 (unsigned long long) lastrx, bmisstimeout); 1785 1786 if (tsf - lastrx <= bmisstimeout) { 1787 sc->sc_stats.ast_bmiss_phantom++; 1788 return; 1789 } 1790 } 1791 ATH_VAP(vap)->av_bmiss(vap); 1792 } 1793 1794 static int 1795 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1796 { 1797 uint32_t rsize; 1798 void *sp; 1799 1800 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1801 return 0; 1802 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1803 *hangs = *(uint32_t *)sp; 1804 return 1; 1805 } 1806 1807 static void 1808 ath_bmiss_proc(void *arg, int pending) 1809 { 1810 struct ath_softc *sc = arg; 1811 struct ifnet *ifp = sc->sc_ifp; 1812 uint32_t hangs; 1813 1814 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1815 1816 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1817 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1818 ath_reset(ifp, ATH_RESET_NOLOSS); 1819 } else 1820 ieee80211_beacon_miss(ifp->if_l2com); 1821 } 1822 1823 /* 1824 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1825 * calcs together with WME. If necessary disable the crypto 1826 * hardware and mark the 802.11 state so keys will be setup 1827 * with the MIC work done in software. 1828 */ 1829 static void 1830 ath_settkipmic(struct ath_softc *sc) 1831 { 1832 struct ifnet *ifp = sc->sc_ifp; 1833 struct ieee80211com *ic = ifp->if_l2com; 1834 1835 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1836 if (ic->ic_flags & IEEE80211_F_WME) { 1837 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1838 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1839 } else { 1840 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1841 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1842 } 1843 } 1844 } 1845 1846 static void 1847 ath_init(void *arg) 1848 { 1849 struct ath_softc *sc = (struct ath_softc *) arg; 1850 struct ifnet *ifp = sc->sc_ifp; 1851 struct ieee80211com *ic = ifp->if_l2com; 1852 struct ath_hal *ah = sc->sc_ah; 1853 HAL_STATUS status; 1854 1855 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1856 __func__, ifp->if_flags); 1857 1858 ATH_LOCK(sc); 1859 /* 1860 * Stop anything previously setup. This is safe 1861 * whether this is the first time through or not. 1862 */ 1863 ath_stop_locked(ifp); 1864 1865 /* 1866 * The basic interface to setting the hardware in a good 1867 * state is ``reset''. On return the hardware is known to 1868 * be powered up and with interrupts disabled. This must 1869 * be followed by initialization of the appropriate bits 1870 * and then setup of the interrupt mask. 1871 */ 1872 ath_settkipmic(sc); 1873 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1874 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1875 status); 1876 ATH_UNLOCK(sc); 1877 return; 1878 } 1879 ath_chan_change(sc, ic->ic_curchan); 1880 1881 /* Let DFS at it in case it's a DFS channel */ 1882 ath_dfs_radar_enable(sc, ic->ic_curchan); 1883 1884 /* 1885 * Likewise this is set during reset so update 1886 * state cached in the driver. 1887 */ 1888 sc->sc_diversity = ath_hal_getdiversity(ah); 1889 sc->sc_lastlongcal = 0; 1890 sc->sc_resetcal = 1; 1891 sc->sc_lastcalreset = 0; 1892 sc->sc_lastani = 0; 1893 sc->sc_lastshortcal = 0; 1894 sc->sc_doresetcal = AH_FALSE; 1895 /* 1896 * Beacon timers were cleared here; give ath_newstate() 1897 * a hint that the beacon timers should be poked when 1898 * things transition to the RUN state. 1899 */ 1900 sc->sc_beacons = 0; 1901 1902 /* 1903 * Setup the hardware after reset: the key cache 1904 * is filled as needed and the receive engine is 1905 * set going. Frame transmit is handled entirely 1906 * in the frame output path; there's nothing to do 1907 * here except setup the interrupt mask. 1908 */ 1909 if (ath_startrecv(sc) != 0) { 1910 if_printf(ifp, "unable to start recv logic\n"); 1911 ATH_UNLOCK(sc); 1912 return; 1913 } 1914 1915 /* 1916 * Enable interrupts. 1917 */ 1918 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1919 | HAL_INT_RXEOL | HAL_INT_RXORN 1920 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1921 1922 /* 1923 * Enable RX EDMA bits. Note these overlap with 1924 * HAL_INT_RX and HAL_INT_RXDESC respectively. 1925 */ 1926 if (sc->sc_isedma) 1927 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 1928 1929 /* 1930 * Enable MIB interrupts when there are hardware phy counters. 1931 * Note we only do this (at the moment) for station mode. 1932 */ 1933 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1934 sc->sc_imask |= HAL_INT_MIB; 1935 1936 /* Enable global TX timeout and carrier sense timeout if available */ 1937 if (ath_hal_gtxto_supported(ah)) 1938 sc->sc_imask |= HAL_INT_GTT; 1939 1940 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1941 __func__, sc->sc_imask); 1942 1943 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1944 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1945 ath_hal_intrset(ah, sc->sc_imask); 1946 1947 ATH_UNLOCK(sc); 1948 1949 #ifdef ATH_TX99_DIAG 1950 if (sc->sc_tx99 != NULL) 1951 sc->sc_tx99->start(sc->sc_tx99); 1952 else 1953 #endif 1954 ieee80211_start_all(ic); /* start all vap's */ 1955 } 1956 1957 static void 1958 ath_stop_locked(struct ifnet *ifp) 1959 { 1960 struct ath_softc *sc = ifp->if_softc; 1961 struct ath_hal *ah = sc->sc_ah; 1962 1963 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1964 __func__, sc->sc_invalid, ifp->if_flags); 1965 1966 ATH_LOCK_ASSERT(sc); 1967 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1968 /* 1969 * Shutdown the hardware and driver: 1970 * reset 802.11 state machine 1971 * turn off timers 1972 * disable interrupts 1973 * turn off the radio 1974 * clear transmit machinery 1975 * clear receive machinery 1976 * drain and release tx queues 1977 * reclaim beacon resources 1978 * power down hardware 1979 * 1980 * Note that some of this work is not possible if the 1981 * hardware is gone (invalid). 1982 */ 1983 #ifdef ATH_TX99_DIAG 1984 if (sc->sc_tx99 != NULL) 1985 sc->sc_tx99->stop(sc->sc_tx99); 1986 #endif 1987 callout_stop(&sc->sc_wd_ch); 1988 sc->sc_wd_timer = 0; 1989 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1990 if (!sc->sc_invalid) { 1991 if (sc->sc_softled) { 1992 callout_stop(&sc->sc_ledtimer); 1993 ath_hal_gpioset(ah, sc->sc_ledpin, 1994 !sc->sc_ledon); 1995 sc->sc_blinking = 0; 1996 } 1997 ath_hal_intrset(ah, 0); 1998 } 1999 ath_draintxq(sc, ATH_RESET_DEFAULT); 2000 if (!sc->sc_invalid) { 2001 ath_stoprecv(sc, 1); 2002 ath_hal_phydisable(ah); 2003 } else 2004 sc->sc_rxlink = NULL; 2005 ath_beacon_free(sc); /* XXX not needed */ 2006 } 2007 } 2008 2009 #define MAX_TXRX_ITERATIONS 1000 2010 static void 2011 ath_txrx_stop_locked(struct ath_softc *sc) 2012 { 2013 int i = MAX_TXRX_ITERATIONS; 2014 2015 ATH_UNLOCK_ASSERT(sc); 2016 ATH_PCU_LOCK_ASSERT(sc); 2017 2018 /* 2019 * Sleep until all the pending operations have completed. 2020 * 2021 * The caller must ensure that reset has been incremented 2022 * or the pending operations may continue being queued. 2023 */ 2024 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2025 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2026 if (i <= 0) 2027 break; 2028 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 2029 i--; 2030 } 2031 2032 if (i <= 0) 2033 device_printf(sc->sc_dev, 2034 "%s: didn't finish after %d iterations\n", 2035 __func__, MAX_TXRX_ITERATIONS); 2036 } 2037 #undef MAX_TXRX_ITERATIONS 2038 2039 #if 0 2040 static void 2041 ath_txrx_stop(struct ath_softc *sc) 2042 { 2043 ATH_UNLOCK_ASSERT(sc); 2044 ATH_PCU_UNLOCK_ASSERT(sc); 2045 2046 ATH_PCU_LOCK(sc); 2047 ath_txrx_stop_locked(sc); 2048 ATH_PCU_UNLOCK(sc); 2049 } 2050 #endif 2051 2052 static void 2053 ath_txrx_start(struct ath_softc *sc) 2054 { 2055 2056 taskqueue_unblock(sc->sc_tq); 2057 } 2058 2059 /* 2060 * Grab the reset lock, and wait around until noone else 2061 * is trying to do anything with it. 2062 * 2063 * This is totally horrible but we can't hold this lock for 2064 * long enough to do TX/RX or we end up with net80211/ip stack 2065 * LORs and eventual deadlock. 2066 * 2067 * "dowait" signals whether to spin, waiting for the reset 2068 * lock count to reach 0. This should (for now) only be used 2069 * during the reset path, as the rest of the code may not 2070 * be locking-reentrant enough to behave correctly. 2071 * 2072 * Another, cleaner way should be found to serialise all of 2073 * these operations. 2074 */ 2075 #define MAX_RESET_ITERATIONS 10 2076 static int 2077 ath_reset_grablock(struct ath_softc *sc, int dowait) 2078 { 2079 int w = 0; 2080 int i = MAX_RESET_ITERATIONS; 2081 2082 ATH_PCU_LOCK_ASSERT(sc); 2083 do { 2084 if (sc->sc_inreset_cnt == 0) { 2085 w = 1; 2086 break; 2087 } 2088 if (dowait == 0) { 2089 w = 0; 2090 break; 2091 } 2092 ATH_PCU_UNLOCK(sc); 2093 pause("ath_reset_grablock", 1); 2094 i--; 2095 ATH_PCU_LOCK(sc); 2096 } while (i > 0); 2097 2098 /* 2099 * We always increment the refcounter, regardless 2100 * of whether we succeeded to get it in an exclusive 2101 * way. 2102 */ 2103 sc->sc_inreset_cnt++; 2104 2105 if (i <= 0) 2106 device_printf(sc->sc_dev, 2107 "%s: didn't finish after %d iterations\n", 2108 __func__, MAX_RESET_ITERATIONS); 2109 2110 if (w == 0) 2111 device_printf(sc->sc_dev, 2112 "%s: warning, recursive reset path!\n", 2113 __func__); 2114 2115 return w; 2116 } 2117 #undef MAX_RESET_ITERATIONS 2118 2119 /* 2120 * XXX TODO: write ath_reset_releaselock 2121 */ 2122 2123 static void 2124 ath_stop(struct ifnet *ifp) 2125 { 2126 struct ath_softc *sc = ifp->if_softc; 2127 2128 ATH_LOCK(sc); 2129 ath_stop_locked(ifp); 2130 ATH_UNLOCK(sc); 2131 } 2132 2133 /* 2134 * Reset the hardware w/o losing operational state. This is 2135 * basically a more efficient way of doing ath_stop, ath_init, 2136 * followed by state transitions to the current 802.11 2137 * operational state. Used to recover from various errors and 2138 * to reset or reload hardware state. 2139 */ 2140 int 2141 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2142 { 2143 struct ath_softc *sc = ifp->if_softc; 2144 struct ieee80211com *ic = ifp->if_l2com; 2145 struct ath_hal *ah = sc->sc_ah; 2146 HAL_STATUS status; 2147 int i; 2148 2149 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2150 2151 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2152 ATH_PCU_UNLOCK_ASSERT(sc); 2153 ATH_UNLOCK_ASSERT(sc); 2154 2155 /* Try to (stop any further TX/RX from occuring */ 2156 taskqueue_block(sc->sc_tq); 2157 2158 ATH_PCU_LOCK(sc); 2159 ath_hal_intrset(ah, 0); /* disable interrupts */ 2160 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2161 if (ath_reset_grablock(sc, 1) == 0) { 2162 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2163 __func__); 2164 } 2165 ATH_PCU_UNLOCK(sc); 2166 2167 /* 2168 * Should now wait for pending TX/RX to complete 2169 * and block future ones from occuring. This needs to be 2170 * done before the TX queue is drained. 2171 */ 2172 ath_draintxq(sc, reset_type); /* stop xmit side */ 2173 2174 /* 2175 * Regardless of whether we're doing a no-loss flush or 2176 * not, stop the PCU and handle what's in the RX queue. 2177 * That way frames aren't dropped which shouldn't be. 2178 */ 2179 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2180 ath_rx_flush(sc); 2181 2182 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2183 /* NB: indicate channel change so we do a full reset */ 2184 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2185 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2186 __func__, status); 2187 sc->sc_diversity = ath_hal_getdiversity(ah); 2188 2189 /* Let DFS at it in case it's a DFS channel */ 2190 ath_dfs_radar_enable(sc, ic->ic_curchan); 2191 2192 if (ath_startrecv(sc) != 0) /* restart recv */ 2193 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2194 /* 2195 * We may be doing a reset in response to an ioctl 2196 * that changes the channel so update any state that 2197 * might change as a result. 2198 */ 2199 ath_chan_change(sc, ic->ic_curchan); 2200 if (sc->sc_beacons) { /* restart beacons */ 2201 #ifdef IEEE80211_SUPPORT_TDMA 2202 if (sc->sc_tdma) 2203 ath_tdma_config(sc, NULL); 2204 else 2205 #endif 2206 ath_beacon_config(sc, NULL); 2207 } 2208 2209 /* 2210 * Release the reset lock and re-enable interrupts here. 2211 * If an interrupt was being processed in ath_intr(), 2212 * it would disable interrupts at this point. So we have 2213 * to atomically enable interrupts and decrement the 2214 * reset counter - this way ath_intr() doesn't end up 2215 * disabling interrupts without a corresponding enable 2216 * in the rest or channel change path. 2217 */ 2218 ATH_PCU_LOCK(sc); 2219 sc->sc_inreset_cnt--; 2220 /* XXX only do this if sc_inreset_cnt == 0? */ 2221 ath_hal_intrset(ah, sc->sc_imask); 2222 ATH_PCU_UNLOCK(sc); 2223 2224 /* 2225 * TX and RX can be started here. If it were started with 2226 * sc_inreset_cnt > 0, the TX and RX path would abort. 2227 * Thus if this is a nested call through the reset or 2228 * channel change code, TX completion will occur but 2229 * RX completion and ath_start / ath_tx_start will not 2230 * run. 2231 */ 2232 2233 /* Restart TX/RX as needed */ 2234 ath_txrx_start(sc); 2235 2236 /* XXX Restart TX completion and pending TX */ 2237 if (reset_type == ATH_RESET_NOLOSS) { 2238 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2239 if (ATH_TXQ_SETUP(sc, i)) { 2240 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2241 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2242 ath_txq_sched(sc, &sc->sc_txq[i]); 2243 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2244 } 2245 } 2246 } 2247 2248 /* 2249 * This may have been set during an ath_start() call which 2250 * set this once it detected a concurrent TX was going on. 2251 * So, clear it. 2252 */ 2253 IF_LOCK(&ifp->if_snd); 2254 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2255 IF_UNLOCK(&ifp->if_snd); 2256 2257 /* Handle any frames in the TX queue */ 2258 /* 2259 * XXX should this be done by the caller, rather than 2260 * ath_reset() ? 2261 */ 2262 ath_tx_kick(sc); /* restart xmit */ 2263 return 0; 2264 } 2265 2266 static int 2267 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2268 { 2269 struct ieee80211com *ic = vap->iv_ic; 2270 struct ifnet *ifp = ic->ic_ifp; 2271 struct ath_softc *sc = ifp->if_softc; 2272 struct ath_hal *ah = sc->sc_ah; 2273 2274 switch (cmd) { 2275 case IEEE80211_IOC_TXPOWER: 2276 /* 2277 * If per-packet TPC is enabled, then we have nothing 2278 * to do; otherwise we need to force the global limit. 2279 * All this can happen directly; no need to reset. 2280 */ 2281 if (!ath_hal_gettpc(ah)) 2282 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2283 return 0; 2284 } 2285 /* XXX? Full or NOLOSS? */ 2286 return ath_reset(ifp, ATH_RESET_FULL); 2287 } 2288 2289 struct ath_buf * 2290 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2291 { 2292 struct ath_buf *bf; 2293 2294 ATH_TXBUF_LOCK_ASSERT(sc); 2295 2296 if (btype == ATH_BUFTYPE_MGMT) 2297 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2298 else 2299 bf = TAILQ_FIRST(&sc->sc_txbuf); 2300 2301 if (bf == NULL) { 2302 sc->sc_stats.ast_tx_getnobuf++; 2303 } else { 2304 if (bf->bf_flags & ATH_BUF_BUSY) { 2305 sc->sc_stats.ast_tx_getbusybuf++; 2306 bf = NULL; 2307 } 2308 } 2309 2310 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2311 if (btype == ATH_BUFTYPE_MGMT) 2312 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2313 else { 2314 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2315 sc->sc_txbuf_cnt--; 2316 2317 /* 2318 * This shuldn't happen; however just to be 2319 * safe print a warning and fudge the txbuf 2320 * count. 2321 */ 2322 if (sc->sc_txbuf_cnt < 0) { 2323 device_printf(sc->sc_dev, 2324 "%s: sc_txbuf_cnt < 0?\n", 2325 __func__); 2326 sc->sc_txbuf_cnt = 0; 2327 } 2328 } 2329 } else 2330 bf = NULL; 2331 2332 if (bf == NULL) { 2333 /* XXX should check which list, mgmt or otherwise */ 2334 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2335 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2336 "out of xmit buffers" : "xmit buffer busy"); 2337 return NULL; 2338 } 2339 2340 /* XXX TODO: should do this at buffer list initialisation */ 2341 /* XXX (then, ensure the buffer has the right flag set) */ 2342 if (btype == ATH_BUFTYPE_MGMT) 2343 bf->bf_flags |= ATH_BUF_MGMT; 2344 else 2345 bf->bf_flags &= (~ATH_BUF_MGMT); 2346 2347 /* Valid bf here; clear some basic fields */ 2348 bf->bf_next = NULL; /* XXX just to be sure */ 2349 bf->bf_last = NULL; /* XXX again, just to be sure */ 2350 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2351 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2352 2353 /* 2354 * Track the descriptor ID only if doing EDMA 2355 */ 2356 if (sc->sc_isedma) { 2357 bf->bf_descid = sc->sc_txbuf_descid; 2358 sc->sc_txbuf_descid++; 2359 } 2360 2361 return bf; 2362 } 2363 2364 /* 2365 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2366 * can't be thrown back on the queue as they could still be 2367 * in use by the hardware. 2368 * 2369 * This duplicates the buffer, or returns NULL. 2370 * 2371 * The descriptor is also copied but the link pointers and 2372 * the DMA segments aren't copied; this frame should thus 2373 * be again passed through the descriptor setup/chain routines 2374 * so the link is correct. 2375 * 2376 * The caller must free the buffer using ath_freebuf(). 2377 * 2378 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2379 * XXX in the TX pathway when retries are needed. 2380 * XXX Figure out how to keep some buffers free, or factor the 2381 * XXX number of busy buffers into the xmit path (ath_start()) 2382 * XXX so we don't over-commit. 2383 */ 2384 struct ath_buf * 2385 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2386 { 2387 struct ath_buf *tbf; 2388 2389 tbf = ath_getbuf(sc, 2390 (bf->bf_flags & ATH_BUF_MGMT) ? 2391 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2392 if (tbf == NULL) 2393 return NULL; /* XXX failure? Why? */ 2394 2395 /* Copy basics */ 2396 tbf->bf_next = NULL; 2397 tbf->bf_nseg = bf->bf_nseg; 2398 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2399 tbf->bf_status = bf->bf_status; 2400 tbf->bf_m = bf->bf_m; 2401 tbf->bf_node = bf->bf_node; 2402 /* will be setup by the chain/setup function */ 2403 tbf->bf_lastds = NULL; 2404 /* for now, last == self */ 2405 tbf->bf_last = tbf; 2406 tbf->bf_comp = bf->bf_comp; 2407 2408 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2409 2410 /* The caller has to re-init the descriptor + links */ 2411 2412 /* Copy state */ 2413 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2414 2415 return tbf; 2416 } 2417 2418 struct ath_buf * 2419 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2420 { 2421 struct ath_buf *bf; 2422 2423 ATH_TXBUF_LOCK(sc); 2424 bf = _ath_getbuf_locked(sc, btype); 2425 /* 2426 * If a mgmt buffer was requested but we're out of those, 2427 * try requesting a normal one. 2428 */ 2429 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2430 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2431 ATH_TXBUF_UNLOCK(sc); 2432 if (bf == NULL) { 2433 struct ifnet *ifp = sc->sc_ifp; 2434 2435 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2436 sc->sc_stats.ast_tx_qstop++; 2437 IF_LOCK(&ifp->if_snd); 2438 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2439 IF_UNLOCK(&ifp->if_snd); 2440 } 2441 return bf; 2442 } 2443 2444 static void 2445 ath_start_queue(struct ifnet *ifp) 2446 { 2447 struct ath_softc *sc = ifp->if_softc; 2448 2449 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start"); 2450 ath_tx_kick(sc); 2451 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished"); 2452 } 2453 2454 void 2455 ath_start_task(void *arg, int npending) 2456 { 2457 struct ath_softc *sc = (struct ath_softc *) arg; 2458 struct ifnet *ifp = sc->sc_ifp; 2459 2460 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start"); 2461 2462 /* XXX is it ok to hold the ATH_LOCK here? */ 2463 ATH_PCU_LOCK(sc); 2464 if (sc->sc_inreset_cnt > 0) { 2465 device_printf(sc->sc_dev, 2466 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2467 ATH_PCU_UNLOCK(sc); 2468 IF_LOCK(&ifp->if_snd); 2469 sc->sc_stats.ast_tx_qstop++; 2470 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2471 IF_UNLOCK(&ifp->if_snd); 2472 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 2473 return; 2474 } 2475 sc->sc_txstart_cnt++; 2476 ATH_PCU_UNLOCK(sc); 2477 2478 ath_start(sc->sc_ifp); 2479 2480 ATH_PCU_LOCK(sc); 2481 sc->sc_txstart_cnt--; 2482 ATH_PCU_UNLOCK(sc); 2483 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished"); 2484 } 2485 2486 void 2487 ath_start(struct ifnet *ifp) 2488 { 2489 struct ath_softc *sc = ifp->if_softc; 2490 struct ieee80211_node *ni; 2491 struct ath_buf *bf; 2492 struct mbuf *m, *next; 2493 ath_bufhead frags; 2494 int npkts = 0; 2495 2496 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2497 return; 2498 2499 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called"); 2500 2501 for (;;) { 2502 ATH_TXBUF_LOCK(sc); 2503 if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) { 2504 /* XXX increment counter? */ 2505 ATH_TXBUF_UNLOCK(sc); 2506 IF_LOCK(&ifp->if_snd); 2507 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2508 IF_UNLOCK(&ifp->if_snd); 2509 break; 2510 } 2511 ATH_TXBUF_UNLOCK(sc); 2512 2513 /* 2514 * Grab a TX buffer and associated resources. 2515 */ 2516 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2517 if (bf == NULL) 2518 break; 2519 2520 IFQ_DEQUEUE(&ifp->if_snd, m); 2521 if (m == NULL) { 2522 ATH_TXBUF_LOCK(sc); 2523 ath_returnbuf_head(sc, bf); 2524 ATH_TXBUF_UNLOCK(sc); 2525 break; 2526 } 2527 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2528 npkts ++; 2529 /* 2530 * Check for fragmentation. If this frame 2531 * has been broken up verify we have enough 2532 * buffers to send all the fragments so all 2533 * go out or none... 2534 */ 2535 TAILQ_INIT(&frags); 2536 if ((m->m_flags & M_FRAG) && 2537 !ath_txfrag_setup(sc, &frags, m, ni)) { 2538 DPRINTF(sc, ATH_DEBUG_XMIT, 2539 "%s: out of txfrag buffers\n", __func__); 2540 sc->sc_stats.ast_tx_nofrag++; 2541 ifp->if_oerrors++; 2542 ath_freetx(m); 2543 goto bad; 2544 } 2545 ifp->if_opackets++; 2546 nextfrag: 2547 /* 2548 * Pass the frame to the h/w for transmission. 2549 * Fragmented frames have each frag chained together 2550 * with m_nextpkt. We know there are sufficient ath_buf's 2551 * to send all the frags because of work done by 2552 * ath_txfrag_setup. We leave m_nextpkt set while 2553 * calling ath_tx_start so it can use it to extend the 2554 * the tx duration to cover the subsequent frag and 2555 * so it can reclaim all the mbufs in case of an error; 2556 * ath_tx_start clears m_nextpkt once it commits to 2557 * handing the frame to the hardware. 2558 */ 2559 next = m->m_nextpkt; 2560 if (ath_tx_start(sc, ni, bf, m)) { 2561 bad: 2562 ifp->if_oerrors++; 2563 reclaim: 2564 bf->bf_m = NULL; 2565 bf->bf_node = NULL; 2566 ATH_TXBUF_LOCK(sc); 2567 ath_returnbuf_head(sc, bf); 2568 ath_txfrag_cleanup(sc, &frags, ni); 2569 ATH_TXBUF_UNLOCK(sc); 2570 if (ni != NULL) 2571 ieee80211_free_node(ni); 2572 continue; 2573 } 2574 2575 /* 2576 * Check here if the node is in power save state. 2577 */ 2578 ath_tx_update_tim(sc, ni, 1); 2579 2580 if (next != NULL) { 2581 /* 2582 * Beware of state changing between frags. 2583 * XXX check sta power-save state? 2584 */ 2585 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2586 DPRINTF(sc, ATH_DEBUG_XMIT, 2587 "%s: flush fragmented packet, state %s\n", 2588 __func__, 2589 ieee80211_state_name[ni->ni_vap->iv_state]); 2590 ath_freetx(next); 2591 goto reclaim; 2592 } 2593 m = next; 2594 bf = TAILQ_FIRST(&frags); 2595 KASSERT(bf != NULL, ("no buf for txfrag")); 2596 TAILQ_REMOVE(&frags, bf, bf_list); 2597 goto nextfrag; 2598 } 2599 2600 sc->sc_wd_timer = 5; 2601 } 2602 ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts); 2603 } 2604 2605 static int 2606 ath_media_change(struct ifnet *ifp) 2607 { 2608 int error = ieee80211_media_change(ifp); 2609 /* NB: only the fixed rate can change and that doesn't need a reset */ 2610 return (error == ENETRESET ? 0 : error); 2611 } 2612 2613 /* 2614 * Block/unblock tx+rx processing while a key change is done. 2615 * We assume the caller serializes key management operations 2616 * so we only need to worry about synchronization with other 2617 * uses that originate in the driver. 2618 */ 2619 static void 2620 ath_key_update_begin(struct ieee80211vap *vap) 2621 { 2622 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2623 struct ath_softc *sc = ifp->if_softc; 2624 2625 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2626 taskqueue_block(sc->sc_tq); 2627 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2628 } 2629 2630 static void 2631 ath_key_update_end(struct ieee80211vap *vap) 2632 { 2633 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2634 struct ath_softc *sc = ifp->if_softc; 2635 2636 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2637 IF_UNLOCK(&ifp->if_snd); 2638 taskqueue_unblock(sc->sc_tq); 2639 } 2640 2641 static void 2642 ath_update_promisc(struct ifnet *ifp) 2643 { 2644 struct ath_softc *sc = ifp->if_softc; 2645 u_int32_t rfilt; 2646 2647 /* configure rx filter */ 2648 rfilt = ath_calcrxfilter(sc); 2649 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2650 2651 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2652 } 2653 2654 static void 2655 ath_update_mcast(struct ifnet *ifp) 2656 { 2657 struct ath_softc *sc = ifp->if_softc; 2658 u_int32_t mfilt[2]; 2659 2660 /* calculate and install multicast filter */ 2661 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2662 struct ifmultiaddr *ifma; 2663 /* 2664 * Merge multicast addresses to form the hardware filter. 2665 */ 2666 mfilt[0] = mfilt[1] = 0; 2667 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2668 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2669 caddr_t dl; 2670 u_int32_t val; 2671 u_int8_t pos; 2672 2673 /* calculate XOR of eight 6bit values */ 2674 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2675 val = LE_READ_4(dl + 0); 2676 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2677 val = LE_READ_4(dl + 3); 2678 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2679 pos &= 0x3f; 2680 mfilt[pos / 32] |= (1 << (pos % 32)); 2681 } 2682 if_maddr_runlock(ifp); 2683 } else 2684 mfilt[0] = mfilt[1] = ~0; 2685 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2686 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2687 __func__, mfilt[0], mfilt[1]); 2688 } 2689 2690 void 2691 ath_mode_init(struct ath_softc *sc) 2692 { 2693 struct ifnet *ifp = sc->sc_ifp; 2694 struct ath_hal *ah = sc->sc_ah; 2695 u_int32_t rfilt; 2696 2697 /* configure rx filter */ 2698 rfilt = ath_calcrxfilter(sc); 2699 ath_hal_setrxfilter(ah, rfilt); 2700 2701 /* configure operational mode */ 2702 ath_hal_setopmode(ah); 2703 2704 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 2705 "%s: ah=%p, ifp=%p, if_addr=%p\n", 2706 __func__, 2707 ah, 2708 ifp, 2709 (ifp == NULL) ? NULL : ifp->if_addr); 2710 2711 /* handle any link-level address change */ 2712 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2713 2714 /* calculate and install multicast filter */ 2715 ath_update_mcast(ifp); 2716 } 2717 2718 /* 2719 * Set the slot time based on the current setting. 2720 */ 2721 void 2722 ath_setslottime(struct ath_softc *sc) 2723 { 2724 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2725 struct ath_hal *ah = sc->sc_ah; 2726 u_int usec; 2727 2728 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2729 usec = 13; 2730 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2731 usec = 21; 2732 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2733 /* honor short/long slot time only in 11g */ 2734 /* XXX shouldn't honor on pure g or turbo g channel */ 2735 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2736 usec = HAL_SLOT_TIME_9; 2737 else 2738 usec = HAL_SLOT_TIME_20; 2739 } else 2740 usec = HAL_SLOT_TIME_9; 2741 2742 DPRINTF(sc, ATH_DEBUG_RESET, 2743 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2744 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2745 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2746 2747 ath_hal_setslottime(ah, usec); 2748 sc->sc_updateslot = OK; 2749 } 2750 2751 /* 2752 * Callback from the 802.11 layer to update the 2753 * slot time based on the current setting. 2754 */ 2755 static void 2756 ath_updateslot(struct ifnet *ifp) 2757 { 2758 struct ath_softc *sc = ifp->if_softc; 2759 struct ieee80211com *ic = ifp->if_l2com; 2760 2761 /* 2762 * When not coordinating the BSS, change the hardware 2763 * immediately. For other operation we defer the change 2764 * until beacon updates have propagated to the stations. 2765 */ 2766 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2767 ic->ic_opmode == IEEE80211_M_MBSS) 2768 sc->sc_updateslot = UPDATE; 2769 else 2770 ath_setslottime(sc); 2771 } 2772 2773 /* 2774 * Append the contents of src to dst; both queues 2775 * are assumed to be locked. 2776 */ 2777 void 2778 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2779 { 2780 2781 ATH_TXQ_LOCK_ASSERT(dst); 2782 ATH_TXQ_LOCK_ASSERT(src); 2783 2784 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2785 dst->axq_link = src->axq_link; 2786 src->axq_link = NULL; 2787 dst->axq_depth += src->axq_depth; 2788 dst->axq_aggr_depth += src->axq_aggr_depth; 2789 src->axq_depth = 0; 2790 src->axq_aggr_depth = 0; 2791 } 2792 2793 /* 2794 * Reset the hardware, with no loss. 2795 * 2796 * This can't be used for a general case reset. 2797 */ 2798 static void 2799 ath_reset_proc(void *arg, int pending) 2800 { 2801 struct ath_softc *sc = arg; 2802 struct ifnet *ifp = sc->sc_ifp; 2803 2804 #if 0 2805 if_printf(ifp, "%s: resetting\n", __func__); 2806 #endif 2807 ath_reset(ifp, ATH_RESET_NOLOSS); 2808 } 2809 2810 /* 2811 * Reset the hardware after detecting beacons have stopped. 2812 */ 2813 static void 2814 ath_bstuck_proc(void *arg, int pending) 2815 { 2816 struct ath_softc *sc = arg; 2817 struct ifnet *ifp = sc->sc_ifp; 2818 uint32_t hangs = 0; 2819 2820 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2821 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2822 2823 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2824 sc->sc_bmisscount); 2825 sc->sc_stats.ast_bstuck++; 2826 /* 2827 * This assumes that there's no simultaneous channel mode change 2828 * occuring. 2829 */ 2830 ath_reset(ifp, ATH_RESET_NOLOSS); 2831 } 2832 2833 static void 2834 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2835 { 2836 bus_addr_t *paddr = (bus_addr_t*) arg; 2837 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2838 *paddr = segs->ds_addr; 2839 } 2840 2841 /* 2842 * Allocate the descriptors and appropriate DMA tag/setup. 2843 * 2844 * For some situations (eg EDMA TX completion), there isn't a requirement 2845 * for the ath_buf entries to be allocated. 2846 */ 2847 int 2848 ath_descdma_alloc_desc(struct ath_softc *sc, 2849 struct ath_descdma *dd, ath_bufhead *head, 2850 const char *name, int ds_size, int ndesc) 2851 { 2852 #define DS2PHYS(_dd, _ds) \ 2853 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2854 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2855 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2856 struct ifnet *ifp = sc->sc_ifp; 2857 int error; 2858 2859 dd->dd_descsize = ds_size; 2860 2861 DPRINTF(sc, ATH_DEBUG_RESET, 2862 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 2863 __func__, name, ndesc, dd->dd_descsize); 2864 2865 dd->dd_name = name; 2866 dd->dd_desc_len = dd->dd_descsize * ndesc; 2867 2868 /* 2869 * Merlin work-around: 2870 * Descriptors that cross the 4KB boundary can't be used. 2871 * Assume one skipped descriptor per 4KB page. 2872 */ 2873 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2874 int numpages = dd->dd_desc_len / 4096; 2875 dd->dd_desc_len += ds_size * numpages; 2876 } 2877 2878 /* 2879 * Setup DMA descriptor area. 2880 */ 2881 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 2882 PAGE_SIZE, 0, /* alignment, bounds */ 2883 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2884 BUS_SPACE_MAXADDR, /* highaddr */ 2885 NULL, NULL, /* filter, filterarg */ 2886 dd->dd_desc_len, /* maxsize */ 2887 1, /* nsegments */ 2888 dd->dd_desc_len, /* maxsegsize */ 2889 BUS_DMA_ALLOCNOW, /* flags */ 2890 NULL, /* lockfunc */ 2891 NULL, /* lockarg */ 2892 &dd->dd_dmat); 2893 if (error != 0) { 2894 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 2895 return error; 2896 } 2897 2898 /* allocate descriptors */ 2899 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 2900 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 2901 &dd->dd_dmamap); 2902 if (error != 0) { 2903 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2904 "error %u\n", ndesc, dd->dd_name, error); 2905 goto fail1; 2906 } 2907 2908 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 2909 dd->dd_desc, dd->dd_desc_len, 2910 ath_load_cb, &dd->dd_desc_paddr, 2911 BUS_DMA_NOWAIT); 2912 if (error != 0) { 2913 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2914 dd->dd_name, error); 2915 goto fail2; 2916 } 2917 2918 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2919 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 2920 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 2921 /*XXX*/ (u_long) dd->dd_desc_len); 2922 2923 return (0); 2924 2925 fail2: 2926 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2927 fail1: 2928 bus_dma_tag_destroy(dd->dd_dmat); 2929 memset(dd, 0, sizeof(*dd)); 2930 return error; 2931 #undef DS2PHYS 2932 #undef ATH_DESC_4KB_BOUND_CHECK 2933 } 2934 2935 int 2936 ath_descdma_setup(struct ath_softc *sc, 2937 struct ath_descdma *dd, ath_bufhead *head, 2938 const char *name, int ds_size, int nbuf, int ndesc) 2939 { 2940 #define DS2PHYS(_dd, _ds) \ 2941 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2942 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2943 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2944 struct ifnet *ifp = sc->sc_ifp; 2945 uint8_t *ds; 2946 struct ath_buf *bf; 2947 int i, bsize, error; 2948 2949 /* Allocate descriptors */ 2950 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 2951 nbuf * ndesc); 2952 2953 /* Assume any errors during allocation were dealt with */ 2954 if (error != 0) { 2955 return (error); 2956 } 2957 2958 ds = (uint8_t *) dd->dd_desc; 2959 2960 /* allocate rx buffers */ 2961 bsize = sizeof(struct ath_buf) * nbuf; 2962 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2963 if (bf == NULL) { 2964 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2965 dd->dd_name, bsize); 2966 goto fail3; 2967 } 2968 dd->dd_bufptr = bf; 2969 2970 TAILQ_INIT(head); 2971 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 2972 bf->bf_desc = (struct ath_desc *) ds; 2973 bf->bf_daddr = DS2PHYS(dd, ds); 2974 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2975 /* 2976 * Merlin WAR: Skip descriptor addresses which 2977 * cause 4KB boundary crossing along any point 2978 * in the descriptor. 2979 */ 2980 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 2981 dd->dd_descsize)) { 2982 /* Start at the next page */ 2983 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 2984 bf->bf_desc = (struct ath_desc *) ds; 2985 bf->bf_daddr = DS2PHYS(dd, ds); 2986 } 2987 } 2988 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 2989 &bf->bf_dmamap); 2990 if (error != 0) { 2991 if_printf(ifp, "unable to create dmamap for %s " 2992 "buffer %u, error %u\n", dd->dd_name, i, error); 2993 ath_descdma_cleanup(sc, dd, head); 2994 return error; 2995 } 2996 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 2997 TAILQ_INSERT_TAIL(head, bf, bf_list); 2998 } 2999 3000 /* 3001 * XXX TODO: ensure that ds doesn't overflow the descriptor 3002 * allocation otherwise weird stuff will occur and crash your 3003 * machine. 3004 */ 3005 return 0; 3006 /* XXX this should likely just call ath_descdma_cleanup() */ 3007 fail3: 3008 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3009 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3010 bus_dma_tag_destroy(dd->dd_dmat); 3011 memset(dd, 0, sizeof(*dd)); 3012 return error; 3013 #undef DS2PHYS 3014 #undef ATH_DESC_4KB_BOUND_CHECK 3015 } 3016 3017 /* 3018 * Allocate ath_buf entries but no descriptor contents. 3019 * 3020 * This is for RX EDMA where the descriptors are the header part of 3021 * the RX buffer. 3022 */ 3023 int 3024 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3025 struct ath_descdma *dd, ath_bufhead *head, 3026 const char *name, int nbuf, int rx_status_len) 3027 { 3028 struct ifnet *ifp = sc->sc_ifp; 3029 struct ath_buf *bf; 3030 int i, bsize, error; 3031 3032 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3033 __func__, name, nbuf); 3034 3035 dd->dd_name = name; 3036 /* 3037 * This is (mostly) purely for show. We're not allocating any actual 3038 * descriptors here as EDMA RX has the descriptor be part 3039 * of the RX buffer. 3040 * 3041 * However, dd_desc_len is used by ath_descdma_free() to determine 3042 * whether we have already freed this DMA mapping. 3043 */ 3044 dd->dd_desc_len = rx_status_len * nbuf; 3045 dd->dd_descsize = rx_status_len; 3046 3047 /* allocate rx buffers */ 3048 bsize = sizeof(struct ath_buf) * nbuf; 3049 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3050 if (bf == NULL) { 3051 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3052 dd->dd_name, bsize); 3053 error = ENOMEM; 3054 goto fail3; 3055 } 3056 dd->dd_bufptr = bf; 3057 3058 TAILQ_INIT(head); 3059 for (i = 0; i < nbuf; i++, bf++) { 3060 bf->bf_desc = NULL; 3061 bf->bf_daddr = 0; 3062 bf->bf_lastds = NULL; /* Just an initial value */ 3063 3064 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3065 &bf->bf_dmamap); 3066 if (error != 0) { 3067 if_printf(ifp, "unable to create dmamap for %s " 3068 "buffer %u, error %u\n", dd->dd_name, i, error); 3069 ath_descdma_cleanup(sc, dd, head); 3070 return error; 3071 } 3072 TAILQ_INSERT_TAIL(head, bf, bf_list); 3073 } 3074 return 0; 3075 fail3: 3076 memset(dd, 0, sizeof(*dd)); 3077 return error; 3078 } 3079 3080 void 3081 ath_descdma_cleanup(struct ath_softc *sc, 3082 struct ath_descdma *dd, ath_bufhead *head) 3083 { 3084 struct ath_buf *bf; 3085 struct ieee80211_node *ni; 3086 3087 if (dd->dd_dmamap != 0) { 3088 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3089 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3090 bus_dma_tag_destroy(dd->dd_dmat); 3091 } 3092 3093 if (head != NULL) { 3094 TAILQ_FOREACH(bf, head, bf_list) { 3095 if (bf->bf_m) { 3096 m_freem(bf->bf_m); 3097 bf->bf_m = NULL; 3098 } 3099 if (bf->bf_dmamap != NULL) { 3100 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3101 bf->bf_dmamap = NULL; 3102 } 3103 ni = bf->bf_node; 3104 bf->bf_node = NULL; 3105 if (ni != NULL) { 3106 /* 3107 * Reclaim node reference. 3108 */ 3109 ieee80211_free_node(ni); 3110 } 3111 } 3112 } 3113 3114 if (head != NULL) 3115 TAILQ_INIT(head); 3116 3117 if (dd->dd_bufptr != NULL) 3118 free(dd->dd_bufptr, M_ATHDEV); 3119 memset(dd, 0, sizeof(*dd)); 3120 } 3121 3122 static int 3123 ath_desc_alloc(struct ath_softc *sc) 3124 { 3125 int error; 3126 3127 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3128 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC); 3129 if (error != 0) { 3130 return error; 3131 } 3132 sc->sc_txbuf_cnt = ath_txbuf; 3133 3134 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3135 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3136 ATH_TXDESC); 3137 if (error != 0) { 3138 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3139 return error; 3140 } 3141 3142 /* 3143 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3144 * flag doesn't have to be set in ath_getbuf_locked(). 3145 */ 3146 3147 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3148 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3149 if (error != 0) { 3150 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3151 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3152 &sc->sc_txbuf_mgmt); 3153 return error; 3154 } 3155 return 0; 3156 } 3157 3158 static void 3159 ath_desc_free(struct ath_softc *sc) 3160 { 3161 3162 if (sc->sc_bdma.dd_desc_len != 0) 3163 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3164 if (sc->sc_txdma.dd_desc_len != 0) 3165 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3166 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3167 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3168 &sc->sc_txbuf_mgmt); 3169 } 3170 3171 static struct ieee80211_node * 3172 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3173 { 3174 struct ieee80211com *ic = vap->iv_ic; 3175 struct ath_softc *sc = ic->ic_ifp->if_softc; 3176 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3177 struct ath_node *an; 3178 3179 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3180 if (an == NULL) { 3181 /* XXX stat+msg */ 3182 return NULL; 3183 } 3184 ath_rate_node_init(sc, an); 3185 3186 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3187 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3188 device_get_nameunit(sc->sc_dev), an); 3189 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3190 3191 /* XXX setup ath_tid */ 3192 ath_tx_tid_init(sc, an); 3193 3194 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3195 return &an->an_node; 3196 } 3197 3198 static void 3199 ath_node_cleanup(struct ieee80211_node *ni) 3200 { 3201 struct ieee80211com *ic = ni->ni_ic; 3202 struct ath_softc *sc = ic->ic_ifp->if_softc; 3203 3204 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3205 ath_tx_node_flush(sc, ATH_NODE(ni)); 3206 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3207 sc->sc_node_cleanup(ni); 3208 } 3209 3210 static void 3211 ath_node_free(struct ieee80211_node *ni) 3212 { 3213 struct ieee80211com *ic = ni->ni_ic; 3214 struct ath_softc *sc = ic->ic_ifp->if_softc; 3215 3216 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3217 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3218 sc->sc_node_free(ni); 3219 } 3220 3221 static void 3222 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3223 { 3224 struct ieee80211com *ic = ni->ni_ic; 3225 struct ath_softc *sc = ic->ic_ifp->if_softc; 3226 struct ath_hal *ah = sc->sc_ah; 3227 3228 *rssi = ic->ic_node_getrssi(ni); 3229 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3230 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3231 else 3232 *noise = -95; /* nominally correct */ 3233 } 3234 3235 /* 3236 * Set the default antenna. 3237 */ 3238 void 3239 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3240 { 3241 struct ath_hal *ah = sc->sc_ah; 3242 3243 /* XXX block beacon interrupts */ 3244 ath_hal_setdefantenna(ah, antenna); 3245 if (sc->sc_defant != antenna) 3246 sc->sc_stats.ast_ant_defswitch++; 3247 sc->sc_defant = antenna; 3248 sc->sc_rxotherant = 0; 3249 } 3250 3251 static void 3252 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3253 { 3254 txq->axq_qnum = qnum; 3255 txq->axq_ac = 0; 3256 txq->axq_depth = 0; 3257 txq->axq_aggr_depth = 0; 3258 txq->axq_intrcnt = 0; 3259 txq->axq_link = NULL; 3260 txq->axq_softc = sc; 3261 TAILQ_INIT(&txq->axq_q); 3262 TAILQ_INIT(&txq->axq_tidq); 3263 ATH_TXQ_LOCK_INIT(sc, txq); 3264 } 3265 3266 /* 3267 * Setup a h/w transmit queue. 3268 */ 3269 static struct ath_txq * 3270 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3271 { 3272 #define N(a) (sizeof(a)/sizeof(a[0])) 3273 struct ath_hal *ah = sc->sc_ah; 3274 HAL_TXQ_INFO qi; 3275 int qnum; 3276 3277 memset(&qi, 0, sizeof(qi)); 3278 qi.tqi_subtype = subtype; 3279 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3280 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3281 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3282 /* 3283 * Enable interrupts only for EOL and DESC conditions. 3284 * We mark tx descriptors to receive a DESC interrupt 3285 * when a tx queue gets deep; otherwise waiting for the 3286 * EOL to reap descriptors. Note that this is done to 3287 * reduce interrupt load and this only defers reaping 3288 * descriptors, never transmitting frames. Aside from 3289 * reducing interrupts this also permits more concurrency. 3290 * The only potential downside is if the tx queue backs 3291 * up in which case the top half of the kernel may backup 3292 * due to a lack of tx descriptors. 3293 */ 3294 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3295 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3296 if (qnum == -1) { 3297 /* 3298 * NB: don't print a message, this happens 3299 * normally on parts with too few tx queues 3300 */ 3301 return NULL; 3302 } 3303 if (qnum >= N(sc->sc_txq)) { 3304 device_printf(sc->sc_dev, 3305 "hal qnum %u out of range, max %zu!\n", 3306 qnum, N(sc->sc_txq)); 3307 ath_hal_releasetxqueue(ah, qnum); 3308 return NULL; 3309 } 3310 if (!ATH_TXQ_SETUP(sc, qnum)) { 3311 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3312 sc->sc_txqsetup |= 1<<qnum; 3313 } 3314 return &sc->sc_txq[qnum]; 3315 #undef N 3316 } 3317 3318 /* 3319 * Setup a hardware data transmit queue for the specified 3320 * access control. The hal may not support all requested 3321 * queues in which case it will return a reference to a 3322 * previously setup queue. We record the mapping from ac's 3323 * to h/w queues for use by ath_tx_start and also track 3324 * the set of h/w queues being used to optimize work in the 3325 * transmit interrupt handler and related routines. 3326 */ 3327 static int 3328 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3329 { 3330 #define N(a) (sizeof(a)/sizeof(a[0])) 3331 struct ath_txq *txq; 3332 3333 if (ac >= N(sc->sc_ac2q)) { 3334 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3335 ac, N(sc->sc_ac2q)); 3336 return 0; 3337 } 3338 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3339 if (txq != NULL) { 3340 txq->axq_ac = ac; 3341 sc->sc_ac2q[ac] = txq; 3342 return 1; 3343 } else 3344 return 0; 3345 #undef N 3346 } 3347 3348 /* 3349 * Update WME parameters for a transmit queue. 3350 */ 3351 static int 3352 ath_txq_update(struct ath_softc *sc, int ac) 3353 { 3354 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3355 #define ATH_TXOP_TO_US(v) (v<<5) 3356 struct ifnet *ifp = sc->sc_ifp; 3357 struct ieee80211com *ic = ifp->if_l2com; 3358 struct ath_txq *txq = sc->sc_ac2q[ac]; 3359 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3360 struct ath_hal *ah = sc->sc_ah; 3361 HAL_TXQ_INFO qi; 3362 3363 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3364 #ifdef IEEE80211_SUPPORT_TDMA 3365 if (sc->sc_tdma) { 3366 /* 3367 * AIFS is zero so there's no pre-transmit wait. The 3368 * burst time defines the slot duration and is configured 3369 * through net80211. The QCU is setup to not do post-xmit 3370 * back off, lockout all lower-priority QCU's, and fire 3371 * off the DMA beacon alert timer which is setup based 3372 * on the slot configuration. 3373 */ 3374 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3375 | HAL_TXQ_TXERRINT_ENABLE 3376 | HAL_TXQ_TXURNINT_ENABLE 3377 | HAL_TXQ_TXEOLINT_ENABLE 3378 | HAL_TXQ_DBA_GATED 3379 | HAL_TXQ_BACKOFF_DISABLE 3380 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3381 ; 3382 qi.tqi_aifs = 0; 3383 /* XXX +dbaprep? */ 3384 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3385 qi.tqi_burstTime = qi.tqi_readyTime; 3386 } else { 3387 #endif 3388 /* 3389 * XXX shouldn't this just use the default flags 3390 * used in the previous queue setup? 3391 */ 3392 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3393 | HAL_TXQ_TXERRINT_ENABLE 3394 | HAL_TXQ_TXDESCINT_ENABLE 3395 | HAL_TXQ_TXURNINT_ENABLE 3396 | HAL_TXQ_TXEOLINT_ENABLE 3397 ; 3398 qi.tqi_aifs = wmep->wmep_aifsn; 3399 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3400 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3401 qi.tqi_readyTime = 0; 3402 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3403 #ifdef IEEE80211_SUPPORT_TDMA 3404 } 3405 #endif 3406 3407 DPRINTF(sc, ATH_DEBUG_RESET, 3408 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3409 __func__, txq->axq_qnum, qi.tqi_qflags, 3410 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3411 3412 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3413 if_printf(ifp, "unable to update hardware queue " 3414 "parameters for %s traffic!\n", 3415 ieee80211_wme_acnames[ac]); 3416 return 0; 3417 } else { 3418 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3419 return 1; 3420 } 3421 #undef ATH_TXOP_TO_US 3422 #undef ATH_EXPONENT_TO_VALUE 3423 } 3424 3425 /* 3426 * Callback from the 802.11 layer to update WME parameters. 3427 */ 3428 int 3429 ath_wme_update(struct ieee80211com *ic) 3430 { 3431 struct ath_softc *sc = ic->ic_ifp->if_softc; 3432 3433 return !ath_txq_update(sc, WME_AC_BE) || 3434 !ath_txq_update(sc, WME_AC_BK) || 3435 !ath_txq_update(sc, WME_AC_VI) || 3436 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3437 } 3438 3439 /* 3440 * Reclaim resources for a setup queue. 3441 */ 3442 static void 3443 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3444 { 3445 3446 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3447 ATH_TXQ_LOCK_DESTROY(txq); 3448 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3449 } 3450 3451 /* 3452 * Reclaim all tx queue resources. 3453 */ 3454 static void 3455 ath_tx_cleanup(struct ath_softc *sc) 3456 { 3457 int i; 3458 3459 ATH_TXBUF_LOCK_DESTROY(sc); 3460 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3461 if (ATH_TXQ_SETUP(sc, i)) 3462 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3463 } 3464 3465 /* 3466 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3467 * using the current rates in sc_rixmap. 3468 */ 3469 int 3470 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3471 { 3472 int rix = sc->sc_rixmap[rate]; 3473 /* NB: return lowest rix for invalid rate */ 3474 return (rix == 0xff ? 0 : rix); 3475 } 3476 3477 static void 3478 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3479 struct ath_buf *bf) 3480 { 3481 struct ieee80211_node *ni = bf->bf_node; 3482 struct ifnet *ifp = sc->sc_ifp; 3483 struct ieee80211com *ic = ifp->if_l2com; 3484 int sr, lr, pri; 3485 3486 if (ts->ts_status == 0) { 3487 u_int8_t txant = ts->ts_antenna; 3488 sc->sc_stats.ast_ant_tx[txant]++; 3489 sc->sc_ant_tx[txant]++; 3490 if (ts->ts_finaltsi != 0) 3491 sc->sc_stats.ast_tx_altrate++; 3492 pri = M_WME_GETAC(bf->bf_m); 3493 if (pri >= WME_AC_VO) 3494 ic->ic_wme.wme_hipri_traffic++; 3495 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3496 ni->ni_inact = ni->ni_inact_reload; 3497 } else { 3498 if (ts->ts_status & HAL_TXERR_XRETRY) 3499 sc->sc_stats.ast_tx_xretries++; 3500 if (ts->ts_status & HAL_TXERR_FIFO) 3501 sc->sc_stats.ast_tx_fifoerr++; 3502 if (ts->ts_status & HAL_TXERR_FILT) 3503 sc->sc_stats.ast_tx_filtered++; 3504 if (ts->ts_status & HAL_TXERR_XTXOP) 3505 sc->sc_stats.ast_tx_xtxop++; 3506 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3507 sc->sc_stats.ast_tx_timerexpired++; 3508 3509 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 3510 sc->sc_stats.ast_tx_data_underrun++; 3511 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 3512 sc->sc_stats.ast_tx_delim_underrun++; 3513 3514 if (bf->bf_m->m_flags & M_FF) 3515 sc->sc_stats.ast_ff_txerr++; 3516 } 3517 /* XXX when is this valid? */ 3518 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 3519 sc->sc_stats.ast_tx_desccfgerr++; 3520 3521 sr = ts->ts_shortretry; 3522 lr = ts->ts_longretry; 3523 sc->sc_stats.ast_tx_shortretry += sr; 3524 sc->sc_stats.ast_tx_longretry += lr; 3525 3526 } 3527 3528 /* 3529 * The default completion. If fail is 1, this means 3530 * "please don't retry the frame, and just return -1 status 3531 * to the net80211 stack. 3532 */ 3533 void 3534 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3535 { 3536 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3537 int st; 3538 3539 if (fail == 1) 3540 st = -1; 3541 else 3542 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3543 ts->ts_status : HAL_TXERR_XRETRY; 3544 3545 if (bf->bf_state.bfs_dobaw) 3546 device_printf(sc->sc_dev, 3547 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3548 __func__, 3549 bf, 3550 SEQNO(bf->bf_state.bfs_seqno)); 3551 if (bf->bf_next != NULL) 3552 device_printf(sc->sc_dev, 3553 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3554 __func__, 3555 bf, 3556 SEQNO(bf->bf_state.bfs_seqno)); 3557 3558 /* 3559 * Check if the node software queue is empty; if so 3560 * then clear the TIM. 3561 * 3562 * This needs to be done before the buffer is freed as 3563 * otherwise the node reference will have been released 3564 * and the node may not actually exist any longer. 3565 * 3566 * XXX I don't like this belonging here, but it's cleaner 3567 * to do it here right now then all the other places 3568 * where ath_tx_default_comp() is called. 3569 * 3570 * XXX TODO: during drain, ensure that the callback is 3571 * being called so we get a chance to update the TIM. 3572 */ 3573 if (bf->bf_node) 3574 ath_tx_update_tim(sc, bf->bf_node, 0); 3575 3576 /* 3577 * Do any tx complete callback. Note this must 3578 * be done before releasing the node reference. 3579 * This will free the mbuf, release the net80211 3580 * node and recycle the ath_buf. 3581 */ 3582 ath_tx_freebuf(sc, bf, st); 3583 } 3584 3585 /* 3586 * Update rate control with the given completion status. 3587 */ 3588 void 3589 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3590 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3591 int nframes, int nbad) 3592 { 3593 struct ath_node *an; 3594 3595 /* Only for unicast frames */ 3596 if (ni == NULL) 3597 return; 3598 3599 an = ATH_NODE(ni); 3600 ATH_NODE_UNLOCK_ASSERT(an); 3601 3602 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3603 ATH_NODE_LOCK(an); 3604 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3605 ATH_NODE_UNLOCK(an); 3606 } 3607 } 3608 3609 /* 3610 * Update the busy status of the last frame on the free list. 3611 * When doing TDMA, the busy flag tracks whether the hardware 3612 * currently points to this buffer or not, and thus gated DMA 3613 * may restart by re-reading the last descriptor in this 3614 * buffer. 3615 * 3616 * This should be called in the completion function once one 3617 * of the buffers has been used. 3618 */ 3619 static void 3620 ath_tx_update_busy(struct ath_softc *sc) 3621 { 3622 struct ath_buf *last; 3623 3624 /* 3625 * Since the last frame may still be marked 3626 * as ATH_BUF_BUSY, unmark it here before 3627 * finishing the frame processing. 3628 * Since we've completed a frame (aggregate 3629 * or otherwise), the hardware has moved on 3630 * and is no longer referencing the previous 3631 * descriptor. 3632 */ 3633 ATH_TXBUF_LOCK_ASSERT(sc); 3634 last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 3635 if (last != NULL) 3636 last->bf_flags &= ~ATH_BUF_BUSY; 3637 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3638 if (last != NULL) 3639 last->bf_flags &= ~ATH_BUF_BUSY; 3640 } 3641 3642 /* 3643 * Process the completion of the given buffer. 3644 * 3645 * This calls the rate control update and then the buffer completion. 3646 * This will either free the buffer or requeue it. In any case, the 3647 * bf pointer should be treated as invalid after this function is called. 3648 */ 3649 void 3650 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 3651 struct ath_tx_status *ts, struct ath_buf *bf) 3652 { 3653 struct ieee80211_node *ni = bf->bf_node; 3654 struct ath_node *an = NULL; 3655 3656 ATH_TXQ_UNLOCK_ASSERT(txq); 3657 3658 /* If unicast frame, update general statistics */ 3659 if (ni != NULL) { 3660 an = ATH_NODE(ni); 3661 /* update statistics */ 3662 ath_tx_update_stats(sc, ts, bf); 3663 } 3664 3665 /* 3666 * Call the completion handler. 3667 * The completion handler is responsible for 3668 * calling the rate control code. 3669 * 3670 * Frames with no completion handler get the 3671 * rate control code called here. 3672 */ 3673 if (bf->bf_comp == NULL) { 3674 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3675 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3676 /* 3677 * XXX assume this isn't an aggregate 3678 * frame. 3679 */ 3680 ath_tx_update_ratectrl(sc, ni, 3681 bf->bf_state.bfs_rc, ts, 3682 bf->bf_state.bfs_pktlen, 1, 3683 (ts->ts_status == 0 ? 0 : 1)); 3684 } 3685 ath_tx_default_comp(sc, bf, 0); 3686 } else 3687 bf->bf_comp(sc, bf, 0); 3688 } 3689 3690 3691 3692 /* 3693 * Process completed xmit descriptors from the specified queue. 3694 * Kick the packet scheduler if needed. This can occur from this 3695 * particular task. 3696 */ 3697 static int 3698 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3699 { 3700 struct ath_hal *ah = sc->sc_ah; 3701 struct ath_buf *bf; 3702 struct ath_desc *ds; 3703 struct ath_tx_status *ts; 3704 struct ieee80211_node *ni; 3705 #ifdef IEEE80211_SUPPORT_SUPERG 3706 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3707 #endif /* IEEE80211_SUPPORT_SUPERG */ 3708 int nacked; 3709 HAL_STATUS status; 3710 3711 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3712 __func__, txq->axq_qnum, 3713 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3714 txq->axq_link); 3715 3716 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 3717 "ath_tx_processq: txq=%u head %p link %p depth %p", 3718 txq->axq_qnum, 3719 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3720 txq->axq_link, 3721 txq->axq_depth); 3722 3723 nacked = 0; 3724 for (;;) { 3725 ATH_TXQ_LOCK(txq); 3726 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3727 bf = TAILQ_FIRST(&txq->axq_q); 3728 if (bf == NULL) { 3729 ATH_TXQ_UNLOCK(txq); 3730 break; 3731 } 3732 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3733 ts = &bf->bf_status.ds_txstat; 3734 3735 status = ath_hal_txprocdesc(ah, ds, ts); 3736 #ifdef ATH_DEBUG 3737 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3738 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3739 status == HAL_OK); 3740 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 3741 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3742 status == HAL_OK); 3743 #endif 3744 3745 if (status == HAL_EINPROGRESS) { 3746 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 3747 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 3748 txq->axq_qnum, bf, ds); 3749 ATH_TXQ_UNLOCK(txq); 3750 break; 3751 } 3752 ATH_TXQ_REMOVE(txq, bf, bf_list); 3753 #ifdef IEEE80211_SUPPORT_TDMA 3754 if (txq->axq_depth > 0) { 3755 /* 3756 * More frames follow. Mark the buffer busy 3757 * so it's not re-used while the hardware may 3758 * still re-read the link field in the descriptor. 3759 * 3760 * Use the last buffer in an aggregate as that 3761 * is where the hardware may be - intermediate 3762 * descriptors won't be "busy". 3763 */ 3764 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3765 } else 3766 #else 3767 if (txq->axq_depth == 0) 3768 #endif 3769 txq->axq_link = NULL; 3770 if (bf->bf_state.bfs_aggr) 3771 txq->axq_aggr_depth--; 3772 3773 ni = bf->bf_node; 3774 3775 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 3776 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 3777 txq->axq_qnum, bf, ds, ni, ts->ts_status); 3778 /* 3779 * If unicast frame was ack'd update RSSI, 3780 * including the last rx time used to 3781 * workaround phantom bmiss interrupts. 3782 */ 3783 if (ni != NULL && ts->ts_status == 0 && 3784 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3785 nacked++; 3786 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3787 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3788 ts->ts_rssi); 3789 } 3790 ATH_TXQ_UNLOCK(txq); 3791 3792 /* 3793 * Update statistics and call completion 3794 */ 3795 ath_tx_process_buf_completion(sc, txq, ts, bf); 3796 3797 /* XXX at this point, bf and ni may be totally invalid */ 3798 } 3799 #ifdef IEEE80211_SUPPORT_SUPERG 3800 /* 3801 * Flush fast-frame staging queue when traffic slows. 3802 */ 3803 if (txq->axq_depth <= 1) 3804 ieee80211_ff_flush(ic, txq->axq_ac); 3805 #endif 3806 3807 /* Kick the TXQ scheduler */ 3808 if (dosched) { 3809 ATH_TXQ_LOCK(txq); 3810 ath_txq_sched(sc, txq); 3811 ATH_TXQ_UNLOCK(txq); 3812 } 3813 3814 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3815 "ath_tx_processq: txq=%u: done", 3816 txq->axq_qnum); 3817 3818 return nacked; 3819 } 3820 3821 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3822 3823 /* 3824 * Deferred processing of transmit interrupt; special-cased 3825 * for a single hardware transmit queue (e.g. 5210 and 5211). 3826 */ 3827 static void 3828 ath_tx_proc_q0(void *arg, int npending) 3829 { 3830 struct ath_softc *sc = arg; 3831 struct ifnet *ifp = sc->sc_ifp; 3832 uint32_t txqs; 3833 3834 ATH_PCU_LOCK(sc); 3835 sc->sc_txproc_cnt++; 3836 txqs = sc->sc_txq_active; 3837 sc->sc_txq_active &= ~txqs; 3838 ATH_PCU_UNLOCK(sc); 3839 3840 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3841 "ath_tx_proc_q0: txqs=0x%08x", txqs); 3842 3843 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 3844 /* XXX why is lastrx updated in tx code? */ 3845 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3846 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3847 ath_tx_processq(sc, sc->sc_cabq, 1); 3848 IF_LOCK(&ifp->if_snd); 3849 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3850 IF_UNLOCK(&ifp->if_snd); 3851 sc->sc_wd_timer = 0; 3852 3853 if (sc->sc_softled) 3854 ath_led_event(sc, sc->sc_txrix); 3855 3856 ATH_PCU_LOCK(sc); 3857 sc->sc_txproc_cnt--; 3858 ATH_PCU_UNLOCK(sc); 3859 3860 ath_tx_kick(sc); 3861 } 3862 3863 /* 3864 * Deferred processing of transmit interrupt; special-cased 3865 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3866 */ 3867 static void 3868 ath_tx_proc_q0123(void *arg, int npending) 3869 { 3870 struct ath_softc *sc = arg; 3871 struct ifnet *ifp = sc->sc_ifp; 3872 int nacked; 3873 uint32_t txqs; 3874 3875 ATH_PCU_LOCK(sc); 3876 sc->sc_txproc_cnt++; 3877 txqs = sc->sc_txq_active; 3878 sc->sc_txq_active &= ~txqs; 3879 ATH_PCU_UNLOCK(sc); 3880 3881 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3882 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 3883 3884 /* 3885 * Process each active queue. 3886 */ 3887 nacked = 0; 3888 if (TXQACTIVE(txqs, 0)) 3889 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 3890 if (TXQACTIVE(txqs, 1)) 3891 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 3892 if (TXQACTIVE(txqs, 2)) 3893 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 3894 if (TXQACTIVE(txqs, 3)) 3895 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 3896 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3897 ath_tx_processq(sc, sc->sc_cabq, 1); 3898 if (nacked) 3899 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3900 3901 IF_LOCK(&ifp->if_snd); 3902 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3903 IF_UNLOCK(&ifp->if_snd); 3904 sc->sc_wd_timer = 0; 3905 3906 if (sc->sc_softled) 3907 ath_led_event(sc, sc->sc_txrix); 3908 3909 ATH_PCU_LOCK(sc); 3910 sc->sc_txproc_cnt--; 3911 ATH_PCU_UNLOCK(sc); 3912 3913 ath_tx_kick(sc); 3914 } 3915 3916 /* 3917 * Deferred processing of transmit interrupt. 3918 */ 3919 static void 3920 ath_tx_proc(void *arg, int npending) 3921 { 3922 struct ath_softc *sc = arg; 3923 struct ifnet *ifp = sc->sc_ifp; 3924 int i, nacked; 3925 uint32_t txqs; 3926 3927 ATH_PCU_LOCK(sc); 3928 sc->sc_txproc_cnt++; 3929 txqs = sc->sc_txq_active; 3930 sc->sc_txq_active &= ~txqs; 3931 ATH_PCU_UNLOCK(sc); 3932 3933 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 3934 3935 /* 3936 * Process each active queue. 3937 */ 3938 nacked = 0; 3939 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3940 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 3941 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 3942 if (nacked) 3943 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3944 3945 /* XXX check this inside of IF_LOCK? */ 3946 IF_LOCK(&ifp->if_snd); 3947 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3948 IF_UNLOCK(&ifp->if_snd); 3949 sc->sc_wd_timer = 0; 3950 3951 if (sc->sc_softled) 3952 ath_led_event(sc, sc->sc_txrix); 3953 3954 ATH_PCU_LOCK(sc); 3955 sc->sc_txproc_cnt--; 3956 ATH_PCU_UNLOCK(sc); 3957 3958 ath_tx_kick(sc); 3959 } 3960 #undef TXQACTIVE 3961 3962 /* 3963 * Deferred processing of TXQ rescheduling. 3964 */ 3965 static void 3966 ath_txq_sched_tasklet(void *arg, int npending) 3967 { 3968 struct ath_softc *sc = arg; 3969 int i; 3970 3971 /* XXX is skipping ok? */ 3972 ATH_PCU_LOCK(sc); 3973 #if 0 3974 if (sc->sc_inreset_cnt > 0) { 3975 device_printf(sc->sc_dev, 3976 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 3977 ATH_PCU_UNLOCK(sc); 3978 return; 3979 } 3980 #endif 3981 sc->sc_txproc_cnt++; 3982 ATH_PCU_UNLOCK(sc); 3983 3984 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3985 if (ATH_TXQ_SETUP(sc, i)) { 3986 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3987 ath_txq_sched(sc, &sc->sc_txq[i]); 3988 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3989 } 3990 } 3991 3992 ATH_PCU_LOCK(sc); 3993 sc->sc_txproc_cnt--; 3994 ATH_PCU_UNLOCK(sc); 3995 } 3996 3997 void 3998 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 3999 { 4000 4001 ATH_TXBUF_LOCK_ASSERT(sc); 4002 4003 if (bf->bf_flags & ATH_BUF_MGMT) 4004 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4005 else { 4006 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4007 sc->sc_txbuf_cnt++; 4008 if (sc->sc_txbuf_cnt > ath_txbuf) { 4009 device_printf(sc->sc_dev, 4010 "%s: sc_txbuf_cnt > %d?\n", 4011 __func__, 4012 ath_txbuf); 4013 sc->sc_txbuf_cnt = ath_txbuf; 4014 } 4015 } 4016 } 4017 4018 void 4019 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4020 { 4021 4022 ATH_TXBUF_LOCK_ASSERT(sc); 4023 4024 if (bf->bf_flags & ATH_BUF_MGMT) 4025 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4026 else { 4027 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4028 sc->sc_txbuf_cnt++; 4029 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4030 device_printf(sc->sc_dev, 4031 "%s: sc_txbuf_cnt > %d?\n", 4032 __func__, 4033 ATH_TXBUF); 4034 sc->sc_txbuf_cnt = ATH_TXBUF; 4035 } 4036 } 4037 } 4038 4039 /* 4040 * Return a buffer to the pool and update the 'busy' flag on the 4041 * previous 'tail' entry. 4042 * 4043 * This _must_ only be called when the buffer is involved in a completed 4044 * TX. The logic is that if it was part of an active TX, the previous 4045 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4046 * for restart (eg for TDMA.) 4047 * 4048 * The caller must free the mbuf and recycle the node reference. 4049 */ 4050 void 4051 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4052 { 4053 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4054 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 4055 4056 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4057 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4058 4059 ATH_TXBUF_LOCK(sc); 4060 ath_tx_update_busy(sc); 4061 ath_returnbuf_tail(sc, bf); 4062 ATH_TXBUF_UNLOCK(sc); 4063 } 4064 4065 /* 4066 * This is currently used by ath_tx_draintxq() and 4067 * ath_tx_tid_free_pkts(). 4068 * 4069 * It recycles a single ath_buf. 4070 */ 4071 void 4072 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4073 { 4074 struct ieee80211_node *ni = bf->bf_node; 4075 struct mbuf *m0 = bf->bf_m; 4076 4077 bf->bf_node = NULL; 4078 bf->bf_m = NULL; 4079 4080 /* Free the buffer, it's not needed any longer */ 4081 ath_freebuf(sc, bf); 4082 4083 if (ni != NULL) { 4084 /* 4085 * Do any callback and reclaim the node reference. 4086 */ 4087 if (m0->m_flags & M_TXCB) 4088 ieee80211_process_callback(ni, m0, status); 4089 ieee80211_free_node(ni); 4090 } 4091 m_freem(m0); 4092 4093 /* 4094 * XXX the buffer used to be freed -after-, but the DMA map was 4095 * freed where ath_freebuf() now is. I've no idea what this 4096 * will do. 4097 */ 4098 } 4099 4100 void 4101 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4102 { 4103 #ifdef ATH_DEBUG 4104 struct ath_hal *ah = sc->sc_ah; 4105 #endif 4106 struct ath_buf *bf; 4107 u_int ix; 4108 4109 /* 4110 * NB: this assumes output has been stopped and 4111 * we do not need to block ath_tx_proc 4112 */ 4113 ATH_TXBUF_LOCK(sc); 4114 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4115 if (bf != NULL) 4116 bf->bf_flags &= ~ATH_BUF_BUSY; 4117 bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 4118 if (bf != NULL) 4119 bf->bf_flags &= ~ATH_BUF_BUSY; 4120 ATH_TXBUF_UNLOCK(sc); 4121 4122 for (ix = 0;; ix++) { 4123 ATH_TXQ_LOCK(txq); 4124 bf = TAILQ_FIRST(&txq->axq_q); 4125 if (bf == NULL) { 4126 txq->axq_link = NULL; 4127 /* 4128 * There's currently no flag that indicates 4129 * a buffer is on the FIFO. So until that 4130 * occurs, just clear the FIFO counter here. 4131 * 4132 * Yes, this means that if something in parallel 4133 * is pushing things onto this TXQ and pushing 4134 * _that_ into the hardware, things will get 4135 * very fruity very quickly. 4136 */ 4137 txq->axq_fifo_depth = 0; 4138 ATH_TXQ_UNLOCK(txq); 4139 break; 4140 } 4141 ATH_TXQ_REMOVE(txq, bf, bf_list); 4142 if (bf->bf_state.bfs_aggr) 4143 txq->axq_aggr_depth--; 4144 #ifdef ATH_DEBUG 4145 if (sc->sc_debug & ATH_DEBUG_RESET) { 4146 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4147 int status = 0; 4148 4149 /* 4150 * EDMA operation has a TX completion FIFO 4151 * separate from the TX descriptor, so this 4152 * method of checking the "completion" status 4153 * is wrong. 4154 */ 4155 if (! sc->sc_isedma) { 4156 status = (ath_hal_txprocdesc(ah, 4157 bf->bf_lastds, 4158 &bf->bf_status.ds_txstat) == HAL_OK); 4159 } 4160 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4161 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4162 bf->bf_m->m_len, 0, -1); 4163 } 4164 #endif /* ATH_DEBUG */ 4165 /* 4166 * Since we're now doing magic in the completion 4167 * functions, we -must- call it for aggregation 4168 * destinations or BAW tracking will get upset. 4169 */ 4170 /* 4171 * Clear ATH_BUF_BUSY; the completion handler 4172 * will free the buffer. 4173 */ 4174 ATH_TXQ_UNLOCK(txq); 4175 bf->bf_flags &= ~ATH_BUF_BUSY; 4176 if (bf->bf_comp) 4177 bf->bf_comp(sc, bf, 1); 4178 else 4179 ath_tx_default_comp(sc, bf, 1); 4180 } 4181 4182 /* 4183 * Drain software queued frames which are on 4184 * active TIDs. 4185 */ 4186 ath_tx_txq_drain(sc, txq); 4187 } 4188 4189 static void 4190 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4191 { 4192 struct ath_hal *ah = sc->sc_ah; 4193 4194 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4195 __func__, txq->axq_qnum, 4196 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4197 txq->axq_link); 4198 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4199 } 4200 4201 int 4202 ath_stoptxdma(struct ath_softc *sc) 4203 { 4204 struct ath_hal *ah = sc->sc_ah; 4205 int i; 4206 4207 /* XXX return value */ 4208 if (sc->sc_invalid) 4209 return 0; 4210 4211 if (!sc->sc_invalid) { 4212 /* don't touch the hardware if marked invalid */ 4213 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4214 __func__, sc->sc_bhalq, 4215 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4216 NULL); 4217 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4218 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4219 if (ATH_TXQ_SETUP(sc, i)) 4220 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4221 } 4222 4223 return 1; 4224 } 4225 4226 /* 4227 * Drain the transmit queues and reclaim resources. 4228 */ 4229 void 4230 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4231 { 4232 #ifdef ATH_DEBUG 4233 struct ath_hal *ah = sc->sc_ah; 4234 #endif 4235 struct ifnet *ifp = sc->sc_ifp; 4236 int i; 4237 4238 (void) ath_stoptxdma(sc); 4239 4240 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4241 /* 4242 * XXX TODO: should we just handle the completed TX frames 4243 * here, whether or not the reset is a full one or not? 4244 */ 4245 if (ATH_TXQ_SETUP(sc, i)) { 4246 if (reset_type == ATH_RESET_NOLOSS) 4247 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4248 else 4249 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4250 } 4251 } 4252 #ifdef ATH_DEBUG 4253 if (sc->sc_debug & ATH_DEBUG_RESET) { 4254 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 4255 if (bf != NULL && bf->bf_m != NULL) { 4256 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4257 ath_hal_txprocdesc(ah, bf->bf_lastds, 4258 &bf->bf_status.ds_txstat) == HAL_OK); 4259 ieee80211_dump_pkt(ifp->if_l2com, 4260 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4261 0, -1); 4262 } 4263 } 4264 #endif /* ATH_DEBUG */ 4265 IF_LOCK(&ifp->if_snd); 4266 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4267 IF_UNLOCK(&ifp->if_snd); 4268 sc->sc_wd_timer = 0; 4269 } 4270 4271 /* 4272 * Update internal state after a channel change. 4273 */ 4274 static void 4275 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4276 { 4277 enum ieee80211_phymode mode; 4278 4279 /* 4280 * Change channels and update the h/w rate map 4281 * if we're switching; e.g. 11a to 11b/g. 4282 */ 4283 mode = ieee80211_chan2mode(chan); 4284 if (mode != sc->sc_curmode) 4285 ath_setcurmode(sc, mode); 4286 sc->sc_curchan = chan; 4287 } 4288 4289 /* 4290 * Set/change channels. If the channel is really being changed, 4291 * it's done by resetting the chip. To accomplish this we must 4292 * first cleanup any pending DMA, then restart stuff after a la 4293 * ath_init. 4294 */ 4295 static int 4296 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4297 { 4298 struct ifnet *ifp = sc->sc_ifp; 4299 struct ieee80211com *ic = ifp->if_l2com; 4300 struct ath_hal *ah = sc->sc_ah; 4301 int ret = 0; 4302 4303 /* Treat this as an interface reset */ 4304 ATH_PCU_UNLOCK_ASSERT(sc); 4305 ATH_UNLOCK_ASSERT(sc); 4306 4307 /* (Try to) stop TX/RX from occuring */ 4308 taskqueue_block(sc->sc_tq); 4309 4310 ATH_PCU_LOCK(sc); 4311 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4312 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4313 if (ath_reset_grablock(sc, 1) == 0) { 4314 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4315 __func__); 4316 } 4317 ATH_PCU_UNLOCK(sc); 4318 4319 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4320 __func__, ieee80211_chan2ieee(ic, chan), 4321 chan->ic_freq, chan->ic_flags); 4322 if (chan != sc->sc_curchan) { 4323 HAL_STATUS status; 4324 /* 4325 * To switch channels clear any pending DMA operations; 4326 * wait long enough for the RX fifo to drain, reset the 4327 * hardware at the new frequency, and then re-enable 4328 * the relevant bits of the h/w. 4329 */ 4330 #if 0 4331 ath_hal_intrset(ah, 0); /* disable interrupts */ 4332 #endif 4333 ath_stoprecv(sc, 1); /* turn off frame recv */ 4334 /* 4335 * First, handle completed TX/RX frames. 4336 */ 4337 ath_rx_flush(sc); 4338 ath_draintxq(sc, ATH_RESET_NOLOSS); 4339 /* 4340 * Next, flush the non-scheduled frames. 4341 */ 4342 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4343 4344 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4345 if_printf(ifp, "%s: unable to reset " 4346 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4347 __func__, ieee80211_chan2ieee(ic, chan), 4348 chan->ic_freq, chan->ic_flags, status); 4349 ret = EIO; 4350 goto finish; 4351 } 4352 sc->sc_diversity = ath_hal_getdiversity(ah); 4353 4354 /* Let DFS at it in case it's a DFS channel */ 4355 ath_dfs_radar_enable(sc, chan); 4356 4357 /* 4358 * Re-enable rx framework. 4359 */ 4360 if (ath_startrecv(sc) != 0) { 4361 if_printf(ifp, "%s: unable to restart recv logic\n", 4362 __func__); 4363 ret = EIO; 4364 goto finish; 4365 } 4366 4367 /* 4368 * Change channels and update the h/w rate map 4369 * if we're switching; e.g. 11a to 11b/g. 4370 */ 4371 ath_chan_change(sc, chan); 4372 4373 /* 4374 * Reset clears the beacon timers; reset them 4375 * here if needed. 4376 */ 4377 if (sc->sc_beacons) { /* restart beacons */ 4378 #ifdef IEEE80211_SUPPORT_TDMA 4379 if (sc->sc_tdma) 4380 ath_tdma_config(sc, NULL); 4381 else 4382 #endif 4383 ath_beacon_config(sc, NULL); 4384 } 4385 4386 /* 4387 * Re-enable interrupts. 4388 */ 4389 #if 0 4390 ath_hal_intrset(ah, sc->sc_imask); 4391 #endif 4392 } 4393 4394 finish: 4395 ATH_PCU_LOCK(sc); 4396 sc->sc_inreset_cnt--; 4397 /* XXX only do this if sc_inreset_cnt == 0? */ 4398 ath_hal_intrset(ah, sc->sc_imask); 4399 ATH_PCU_UNLOCK(sc); 4400 4401 IF_LOCK(&ifp->if_snd); 4402 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4403 IF_UNLOCK(&ifp->if_snd); 4404 ath_txrx_start(sc); 4405 /* XXX ath_start? */ 4406 4407 return ret; 4408 } 4409 4410 /* 4411 * Periodically recalibrate the PHY to account 4412 * for temperature/environment changes. 4413 */ 4414 static void 4415 ath_calibrate(void *arg) 4416 { 4417 struct ath_softc *sc = arg; 4418 struct ath_hal *ah = sc->sc_ah; 4419 struct ifnet *ifp = sc->sc_ifp; 4420 struct ieee80211com *ic = ifp->if_l2com; 4421 HAL_BOOL longCal, isCalDone = AH_TRUE; 4422 HAL_BOOL aniCal, shortCal = AH_FALSE; 4423 int nextcal; 4424 4425 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4426 goto restart; 4427 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4428 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4429 if (sc->sc_doresetcal) 4430 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4431 4432 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4433 if (aniCal) { 4434 sc->sc_stats.ast_ani_cal++; 4435 sc->sc_lastani = ticks; 4436 ath_hal_ani_poll(ah, sc->sc_curchan); 4437 } 4438 4439 if (longCal) { 4440 sc->sc_stats.ast_per_cal++; 4441 sc->sc_lastlongcal = ticks; 4442 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4443 /* 4444 * Rfgain is out of bounds, reset the chip 4445 * to load new gain values. 4446 */ 4447 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4448 "%s: rfgain change\n", __func__); 4449 sc->sc_stats.ast_per_rfgain++; 4450 sc->sc_resetcal = 0; 4451 sc->sc_doresetcal = AH_TRUE; 4452 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4453 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4454 return; 4455 } 4456 /* 4457 * If this long cal is after an idle period, then 4458 * reset the data collection state so we start fresh. 4459 */ 4460 if (sc->sc_resetcal) { 4461 (void) ath_hal_calreset(ah, sc->sc_curchan); 4462 sc->sc_lastcalreset = ticks; 4463 sc->sc_lastshortcal = ticks; 4464 sc->sc_resetcal = 0; 4465 sc->sc_doresetcal = AH_TRUE; 4466 } 4467 } 4468 4469 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4470 if (shortCal || longCal) { 4471 isCalDone = AH_FALSE; 4472 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4473 if (longCal) { 4474 /* 4475 * Calibrate noise floor data again in case of change. 4476 */ 4477 ath_hal_process_noisefloor(ah); 4478 } 4479 } else { 4480 DPRINTF(sc, ATH_DEBUG_ANY, 4481 "%s: calibration of channel %u failed\n", 4482 __func__, sc->sc_curchan->ic_freq); 4483 sc->sc_stats.ast_per_calfail++; 4484 } 4485 if (shortCal) 4486 sc->sc_lastshortcal = ticks; 4487 } 4488 if (!isCalDone) { 4489 restart: 4490 /* 4491 * Use a shorter interval to potentially collect multiple 4492 * data samples required to complete calibration. Once 4493 * we're told the work is done we drop back to a longer 4494 * interval between requests. We're more aggressive doing 4495 * work when operating as an AP to improve operation right 4496 * after startup. 4497 */ 4498 sc->sc_lastshortcal = ticks; 4499 nextcal = ath_shortcalinterval*hz/1000; 4500 if (sc->sc_opmode != HAL_M_HOSTAP) 4501 nextcal *= 10; 4502 sc->sc_doresetcal = AH_TRUE; 4503 } else { 4504 /* nextcal should be the shortest time for next event */ 4505 nextcal = ath_longcalinterval*hz; 4506 if (sc->sc_lastcalreset == 0) 4507 sc->sc_lastcalreset = sc->sc_lastlongcal; 4508 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4509 sc->sc_resetcal = 1; /* setup reset next trip */ 4510 sc->sc_doresetcal = AH_FALSE; 4511 } 4512 /* ANI calibration may occur more often than short/long/resetcal */ 4513 if (ath_anicalinterval > 0) 4514 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4515 4516 if (nextcal != 0) { 4517 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4518 __func__, nextcal, isCalDone ? "" : "!"); 4519 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4520 } else { 4521 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4522 __func__); 4523 /* NB: don't rearm timer */ 4524 } 4525 } 4526 4527 static void 4528 ath_scan_start(struct ieee80211com *ic) 4529 { 4530 struct ifnet *ifp = ic->ic_ifp; 4531 struct ath_softc *sc = ifp->if_softc; 4532 struct ath_hal *ah = sc->sc_ah; 4533 u_int32_t rfilt; 4534 4535 /* XXX calibration timer? */ 4536 4537 ATH_LOCK(sc); 4538 sc->sc_scanning = 1; 4539 sc->sc_syncbeacon = 0; 4540 rfilt = ath_calcrxfilter(sc); 4541 ATH_UNLOCK(sc); 4542 4543 ATH_PCU_LOCK(sc); 4544 ath_hal_setrxfilter(ah, rfilt); 4545 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4546 ATH_PCU_UNLOCK(sc); 4547 4548 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4549 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4550 } 4551 4552 static void 4553 ath_scan_end(struct ieee80211com *ic) 4554 { 4555 struct ifnet *ifp = ic->ic_ifp; 4556 struct ath_softc *sc = ifp->if_softc; 4557 struct ath_hal *ah = sc->sc_ah; 4558 u_int32_t rfilt; 4559 4560 ATH_LOCK(sc); 4561 sc->sc_scanning = 0; 4562 rfilt = ath_calcrxfilter(sc); 4563 ATH_UNLOCK(sc); 4564 4565 ATH_PCU_LOCK(sc); 4566 ath_hal_setrxfilter(ah, rfilt); 4567 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4568 4569 ath_hal_process_noisefloor(ah); 4570 ATH_PCU_UNLOCK(sc); 4571 4572 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4573 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4574 sc->sc_curaid); 4575 } 4576 4577 #ifdef ATH_ENABLE_11N 4578 /* 4579 * For now, just do a channel change. 4580 * 4581 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4582 * control state and resetting the hardware without dropping frames out 4583 * of the queue. 4584 * 4585 * The unfortunate trouble here is making absolutely sure that the 4586 * channel width change has propagated enough so the hardware 4587 * absolutely isn't handed bogus frames for it's current operating 4588 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4589 * does occur in parallel, we need to make certain we've blocked 4590 * any further ongoing TX (and RX, that can cause raw TX) 4591 * before we do this. 4592 */ 4593 static void 4594 ath_update_chw(struct ieee80211com *ic) 4595 { 4596 struct ifnet *ifp = ic->ic_ifp; 4597 struct ath_softc *sc = ifp->if_softc; 4598 4599 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4600 ath_set_channel(ic); 4601 } 4602 #endif /* ATH_ENABLE_11N */ 4603 4604 static void 4605 ath_set_channel(struct ieee80211com *ic) 4606 { 4607 struct ifnet *ifp = ic->ic_ifp; 4608 struct ath_softc *sc = ifp->if_softc; 4609 4610 (void) ath_chan_set(sc, ic->ic_curchan); 4611 /* 4612 * If we are returning to our bss channel then mark state 4613 * so the next recv'd beacon's tsf will be used to sync the 4614 * beacon timers. Note that since we only hear beacons in 4615 * sta/ibss mode this has no effect in other operating modes. 4616 */ 4617 ATH_LOCK(sc); 4618 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4619 sc->sc_syncbeacon = 1; 4620 ATH_UNLOCK(sc); 4621 } 4622 4623 /* 4624 * Walk the vap list and check if there any vap's in RUN state. 4625 */ 4626 static int 4627 ath_isanyrunningvaps(struct ieee80211vap *this) 4628 { 4629 struct ieee80211com *ic = this->iv_ic; 4630 struct ieee80211vap *vap; 4631 4632 IEEE80211_LOCK_ASSERT(ic); 4633 4634 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4635 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4636 return 1; 4637 } 4638 return 0; 4639 } 4640 4641 static int 4642 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4643 { 4644 struct ieee80211com *ic = vap->iv_ic; 4645 struct ath_softc *sc = ic->ic_ifp->if_softc; 4646 struct ath_vap *avp = ATH_VAP(vap); 4647 struct ath_hal *ah = sc->sc_ah; 4648 struct ieee80211_node *ni = NULL; 4649 int i, error, stamode; 4650 u_int32_t rfilt; 4651 int csa_run_transition = 0; 4652 static const HAL_LED_STATE leds[] = { 4653 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4654 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4655 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4656 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4657 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4658 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4659 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4660 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4661 }; 4662 4663 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4664 ieee80211_state_name[vap->iv_state], 4665 ieee80211_state_name[nstate]); 4666 4667 /* 4668 * net80211 _should_ have the comlock asserted at this point. 4669 * There are some comments around the calls to vap->iv_newstate 4670 * which indicate that it (newstate) may end up dropping the 4671 * lock. This and the subsequent lock assert check after newstate 4672 * are an attempt to catch these and figure out how/why. 4673 */ 4674 IEEE80211_LOCK_ASSERT(ic); 4675 4676 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4677 csa_run_transition = 1; 4678 4679 callout_drain(&sc->sc_cal_ch); 4680 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4681 4682 if (nstate == IEEE80211_S_SCAN) { 4683 /* 4684 * Scanning: turn off beacon miss and don't beacon. 4685 * Mark beacon state so when we reach RUN state we'll 4686 * [re]setup beacons. Unblock the task q thread so 4687 * deferred interrupt processing is done. 4688 */ 4689 ath_hal_intrset(ah, 4690 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4691 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4692 sc->sc_beacons = 0; 4693 taskqueue_unblock(sc->sc_tq); 4694 } 4695 4696 ni = ieee80211_ref_node(vap->iv_bss); 4697 rfilt = ath_calcrxfilter(sc); 4698 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4699 vap->iv_opmode == IEEE80211_M_AHDEMO || 4700 vap->iv_opmode == IEEE80211_M_IBSS); 4701 if (stamode && nstate == IEEE80211_S_RUN) { 4702 sc->sc_curaid = ni->ni_associd; 4703 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4704 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4705 } 4706 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4707 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4708 ath_hal_setrxfilter(ah, rfilt); 4709 4710 /* XXX is this to restore keycache on resume? */ 4711 if (vap->iv_opmode != IEEE80211_M_STA && 4712 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4713 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4714 if (ath_hal_keyisvalid(ah, i)) 4715 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4716 } 4717 4718 /* 4719 * Invoke the parent method to do net80211 work. 4720 */ 4721 error = avp->av_newstate(vap, nstate, arg); 4722 if (error != 0) 4723 goto bad; 4724 4725 /* 4726 * See above: ensure av_newstate() doesn't drop the lock 4727 * on us. 4728 */ 4729 IEEE80211_LOCK_ASSERT(ic); 4730 4731 if (nstate == IEEE80211_S_RUN) { 4732 /* NB: collect bss node again, it may have changed */ 4733 ieee80211_free_node(ni); 4734 ni = ieee80211_ref_node(vap->iv_bss); 4735 4736 DPRINTF(sc, ATH_DEBUG_STATE, 4737 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 4738 "capinfo 0x%04x chan %d\n", __func__, 4739 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 4740 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 4741 4742 switch (vap->iv_opmode) { 4743 #ifdef IEEE80211_SUPPORT_TDMA 4744 case IEEE80211_M_AHDEMO: 4745 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 4746 break; 4747 /* fall thru... */ 4748 #endif 4749 case IEEE80211_M_HOSTAP: 4750 case IEEE80211_M_IBSS: 4751 case IEEE80211_M_MBSS: 4752 /* 4753 * Allocate and setup the beacon frame. 4754 * 4755 * Stop any previous beacon DMA. This may be 4756 * necessary, for example, when an ibss merge 4757 * causes reconfiguration; there will be a state 4758 * transition from RUN->RUN that means we may 4759 * be called with beacon transmission active. 4760 */ 4761 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4762 4763 error = ath_beacon_alloc(sc, ni); 4764 if (error != 0) 4765 goto bad; 4766 /* 4767 * If joining an adhoc network defer beacon timer 4768 * configuration to the next beacon frame so we 4769 * have a current TSF to use. Otherwise we're 4770 * starting an ibss/bss so there's no need to delay; 4771 * if this is the first vap moving to RUN state, then 4772 * beacon state needs to be [re]configured. 4773 */ 4774 if (vap->iv_opmode == IEEE80211_M_IBSS && 4775 ni->ni_tstamp.tsf != 0) { 4776 sc->sc_syncbeacon = 1; 4777 } else if (!sc->sc_beacons) { 4778 #ifdef IEEE80211_SUPPORT_TDMA 4779 if (vap->iv_caps & IEEE80211_C_TDMA) 4780 ath_tdma_config(sc, vap); 4781 else 4782 #endif 4783 ath_beacon_config(sc, vap); 4784 sc->sc_beacons = 1; 4785 } 4786 break; 4787 case IEEE80211_M_STA: 4788 /* 4789 * Defer beacon timer configuration to the next 4790 * beacon frame so we have a current TSF to use 4791 * (any TSF collected when scanning is likely old). 4792 * However if it's due to a CSA -> RUN transition, 4793 * force a beacon update so we pick up a lack of 4794 * beacons from an AP in CAC and thus force a 4795 * scan. 4796 */ 4797 sc->sc_syncbeacon = 1; 4798 if (csa_run_transition) 4799 ath_beacon_config(sc, vap); 4800 break; 4801 case IEEE80211_M_MONITOR: 4802 /* 4803 * Monitor mode vaps have only INIT->RUN and RUN->RUN 4804 * transitions so we must re-enable interrupts here to 4805 * handle the case of a single monitor mode vap. 4806 */ 4807 ath_hal_intrset(ah, sc->sc_imask); 4808 break; 4809 case IEEE80211_M_WDS: 4810 break; 4811 default: 4812 break; 4813 } 4814 /* 4815 * Let the hal process statistics collected during a 4816 * scan so it can provide calibrated noise floor data. 4817 */ 4818 ath_hal_process_noisefloor(ah); 4819 /* 4820 * Reset rssi stats; maybe not the best place... 4821 */ 4822 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4823 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4824 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4825 /* 4826 * Finally, start any timers and the task q thread 4827 * (in case we didn't go through SCAN state). 4828 */ 4829 if (ath_longcalinterval != 0) { 4830 /* start periodic recalibration timer */ 4831 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4832 } else { 4833 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4834 "%s: calibration disabled\n", __func__); 4835 } 4836 taskqueue_unblock(sc->sc_tq); 4837 } else if (nstate == IEEE80211_S_INIT) { 4838 /* 4839 * If there are no vaps left in RUN state then 4840 * shutdown host/driver operation: 4841 * o disable interrupts 4842 * o disable the task queue thread 4843 * o mark beacon processing as stopped 4844 */ 4845 if (!ath_isanyrunningvaps(vap)) { 4846 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4847 /* disable interrupts */ 4848 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4849 taskqueue_block(sc->sc_tq); 4850 sc->sc_beacons = 0; 4851 } 4852 #ifdef IEEE80211_SUPPORT_TDMA 4853 ath_hal_setcca(ah, AH_TRUE); 4854 #endif 4855 } 4856 bad: 4857 ieee80211_free_node(ni); 4858 return error; 4859 } 4860 4861 /* 4862 * Allocate a key cache slot to the station so we can 4863 * setup a mapping from key index to node. The key cache 4864 * slot is needed for managing antenna state and for 4865 * compression when stations do not use crypto. We do 4866 * it uniliaterally here; if crypto is employed this slot 4867 * will be reassigned. 4868 */ 4869 static void 4870 ath_setup_stationkey(struct ieee80211_node *ni) 4871 { 4872 struct ieee80211vap *vap = ni->ni_vap; 4873 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4874 ieee80211_keyix keyix, rxkeyix; 4875 4876 /* XXX should take a locked ref to vap->iv_bss */ 4877 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4878 /* 4879 * Key cache is full; we'll fall back to doing 4880 * the more expensive lookup in software. Note 4881 * this also means no h/w compression. 4882 */ 4883 /* XXX msg+statistic */ 4884 } else { 4885 /* XXX locking? */ 4886 ni->ni_ucastkey.wk_keyix = keyix; 4887 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4888 /* NB: must mark device key to get called back on delete */ 4889 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 4890 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 4891 /* NB: this will create a pass-thru key entry */ 4892 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 4893 } 4894 } 4895 4896 /* 4897 * Setup driver-specific state for a newly associated node. 4898 * Note that we're called also on a re-associate, the isnew 4899 * param tells us if this is the first time or not. 4900 */ 4901 static void 4902 ath_newassoc(struct ieee80211_node *ni, int isnew) 4903 { 4904 struct ath_node *an = ATH_NODE(ni); 4905 struct ieee80211vap *vap = ni->ni_vap; 4906 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4907 const struct ieee80211_txparam *tp = ni->ni_txparms; 4908 4909 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 4910 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 4911 4912 ath_rate_newassoc(sc, an, isnew); 4913 if (isnew && 4914 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 4915 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4916 ath_setup_stationkey(ni); 4917 } 4918 4919 static int 4920 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 4921 int nchans, struct ieee80211_channel chans[]) 4922 { 4923 struct ath_softc *sc = ic->ic_ifp->if_softc; 4924 struct ath_hal *ah = sc->sc_ah; 4925 HAL_STATUS status; 4926 4927 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4928 "%s: rd %u cc %u location %c%s\n", 4929 __func__, reg->regdomain, reg->country, reg->location, 4930 reg->ecm ? " ecm" : ""); 4931 4932 status = ath_hal_set_channels(ah, chans, nchans, 4933 reg->country, reg->regdomain); 4934 if (status != HAL_OK) { 4935 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 4936 __func__, status); 4937 return EINVAL; /* XXX */ 4938 } 4939 4940 return 0; 4941 } 4942 4943 static void 4944 ath_getradiocaps(struct ieee80211com *ic, 4945 int maxchans, int *nchans, struct ieee80211_channel chans[]) 4946 { 4947 struct ath_softc *sc = ic->ic_ifp->if_softc; 4948 struct ath_hal *ah = sc->sc_ah; 4949 4950 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 4951 __func__, SKU_DEBUG, CTRY_DEFAULT); 4952 4953 /* XXX check return */ 4954 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 4955 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 4956 4957 } 4958 4959 static int 4960 ath_getchannels(struct ath_softc *sc) 4961 { 4962 struct ifnet *ifp = sc->sc_ifp; 4963 struct ieee80211com *ic = ifp->if_l2com; 4964 struct ath_hal *ah = sc->sc_ah; 4965 HAL_STATUS status; 4966 4967 /* 4968 * Collect channel set based on EEPROM contents. 4969 */ 4970 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 4971 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 4972 if (status != HAL_OK) { 4973 if_printf(ifp, "%s: unable to collect channel list from hal, " 4974 "status %d\n", __func__, status); 4975 return EINVAL; 4976 } 4977 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 4978 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 4979 /* XXX map Atheros sku's to net80211 SKU's */ 4980 /* XXX net80211 types too small */ 4981 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 4982 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 4983 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 4984 ic->ic_regdomain.isocc[1] = ' '; 4985 4986 ic->ic_regdomain.ecm = 1; 4987 ic->ic_regdomain.location = 'I'; 4988 4989 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4990 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 4991 __func__, sc->sc_eerd, sc->sc_eecc, 4992 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 4993 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 4994 return 0; 4995 } 4996 4997 static int 4998 ath_rate_setup(struct ath_softc *sc, u_int mode) 4999 { 5000 struct ath_hal *ah = sc->sc_ah; 5001 const HAL_RATE_TABLE *rt; 5002 5003 switch (mode) { 5004 case IEEE80211_MODE_11A: 5005 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5006 break; 5007 case IEEE80211_MODE_HALF: 5008 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5009 break; 5010 case IEEE80211_MODE_QUARTER: 5011 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5012 break; 5013 case IEEE80211_MODE_11B: 5014 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5015 break; 5016 case IEEE80211_MODE_11G: 5017 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5018 break; 5019 case IEEE80211_MODE_TURBO_A: 5020 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5021 break; 5022 case IEEE80211_MODE_TURBO_G: 5023 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5024 break; 5025 case IEEE80211_MODE_STURBO_A: 5026 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5027 break; 5028 case IEEE80211_MODE_11NA: 5029 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 5030 break; 5031 case IEEE80211_MODE_11NG: 5032 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 5033 break; 5034 default: 5035 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5036 __func__, mode); 5037 return 0; 5038 } 5039 sc->sc_rates[mode] = rt; 5040 return (rt != NULL); 5041 } 5042 5043 static void 5044 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5045 { 5046 #define N(a) (sizeof(a)/sizeof(a[0])) 5047 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5048 static const struct { 5049 u_int rate; /* tx/rx 802.11 rate */ 5050 u_int16_t timeOn; /* LED on time (ms) */ 5051 u_int16_t timeOff; /* LED off time (ms) */ 5052 } blinkrates[] = { 5053 { 108, 40, 10 }, 5054 { 96, 44, 11 }, 5055 { 72, 50, 13 }, 5056 { 48, 57, 14 }, 5057 { 36, 67, 16 }, 5058 { 24, 80, 20 }, 5059 { 22, 100, 25 }, 5060 { 18, 133, 34 }, 5061 { 12, 160, 40 }, 5062 { 10, 200, 50 }, 5063 { 6, 240, 58 }, 5064 { 4, 267, 66 }, 5065 { 2, 400, 100 }, 5066 { 0, 500, 130 }, 5067 /* XXX half/quarter rates */ 5068 }; 5069 const HAL_RATE_TABLE *rt; 5070 int i, j; 5071 5072 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5073 rt = sc->sc_rates[mode]; 5074 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5075 for (i = 0; i < rt->rateCount; i++) { 5076 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5077 if (rt->info[i].phy != IEEE80211_T_HT) 5078 sc->sc_rixmap[ieeerate] = i; 5079 else 5080 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 5081 } 5082 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5083 for (i = 0; i < N(sc->sc_hwmap); i++) { 5084 if (i >= rt->rateCount) { 5085 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5086 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5087 continue; 5088 } 5089 sc->sc_hwmap[i].ieeerate = 5090 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5091 if (rt->info[i].phy == IEEE80211_T_HT) 5092 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 5093 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5094 if (rt->info[i].shortPreamble || 5095 rt->info[i].phy == IEEE80211_T_OFDM) 5096 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5097 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 5098 for (j = 0; j < N(blinkrates)-1; j++) 5099 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5100 break; 5101 /* NB: this uses the last entry if the rate isn't found */ 5102 /* XXX beware of overlow */ 5103 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5104 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5105 } 5106 sc->sc_currates = rt; 5107 sc->sc_curmode = mode; 5108 /* 5109 * All protection frames are transmited at 2Mb/s for 5110 * 11g, otherwise at 1Mb/s. 5111 */ 5112 if (mode == IEEE80211_MODE_11G) 5113 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 5114 else 5115 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 5116 /* NB: caller is responsible for resetting rate control state */ 5117 #undef N 5118 } 5119 5120 static void 5121 ath_watchdog(void *arg) 5122 { 5123 struct ath_softc *sc = arg; 5124 int do_reset = 0; 5125 5126 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 5127 struct ifnet *ifp = sc->sc_ifp; 5128 uint32_t hangs; 5129 5130 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 5131 hangs != 0) { 5132 if_printf(ifp, "%s hang detected (0x%x)\n", 5133 hangs & 0xff ? "bb" : "mac", hangs); 5134 } else 5135 if_printf(ifp, "device timeout\n"); 5136 do_reset = 1; 5137 ifp->if_oerrors++; 5138 sc->sc_stats.ast_watchdog++; 5139 } 5140 5141 /* 5142 * We can't hold the lock across the ath_reset() call. 5143 * 5144 * And since this routine can't hold a lock and sleep, 5145 * do the reset deferred. 5146 */ 5147 if (do_reset) { 5148 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5149 } 5150 5151 callout_schedule(&sc->sc_wd_ch, hz); 5152 } 5153 5154 /* 5155 * Fetch the rate control statistics for the given node. 5156 */ 5157 static int 5158 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 5159 { 5160 struct ath_node *an; 5161 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5162 struct ieee80211_node *ni; 5163 int error = 0; 5164 5165 /* Perform a lookup on the given node */ 5166 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 5167 if (ni == NULL) { 5168 error = EINVAL; 5169 goto bad; 5170 } 5171 5172 /* Lock the ath_node */ 5173 an = ATH_NODE(ni); 5174 ATH_NODE_LOCK(an); 5175 5176 /* Fetch the rate control stats for this node */ 5177 error = ath_rate_fetch_node_stats(sc, an, rs); 5178 5179 /* No matter what happens here, just drop through */ 5180 5181 /* Unlock the ath_node */ 5182 ATH_NODE_UNLOCK(an); 5183 5184 /* Unref the node */ 5185 ieee80211_node_decref(ni); 5186 5187 bad: 5188 return (error); 5189 } 5190 5191 #ifdef ATH_DIAGAPI 5192 /* 5193 * Diagnostic interface to the HAL. This is used by various 5194 * tools to do things like retrieve register contents for 5195 * debugging. The mechanism is intentionally opaque so that 5196 * it can change frequently w/o concern for compatiblity. 5197 */ 5198 static int 5199 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5200 { 5201 struct ath_hal *ah = sc->sc_ah; 5202 u_int id = ad->ad_id & ATH_DIAG_ID; 5203 void *indata = NULL; 5204 void *outdata = NULL; 5205 u_int32_t insize = ad->ad_in_size; 5206 u_int32_t outsize = ad->ad_out_size; 5207 int error = 0; 5208 5209 if (ad->ad_id & ATH_DIAG_IN) { 5210 /* 5211 * Copy in data. 5212 */ 5213 indata = malloc(insize, M_TEMP, M_NOWAIT); 5214 if (indata == NULL) { 5215 error = ENOMEM; 5216 goto bad; 5217 } 5218 error = copyin(ad->ad_in_data, indata, insize); 5219 if (error) 5220 goto bad; 5221 } 5222 if (ad->ad_id & ATH_DIAG_DYN) { 5223 /* 5224 * Allocate a buffer for the results (otherwise the HAL 5225 * returns a pointer to a buffer where we can read the 5226 * results). Note that we depend on the HAL leaving this 5227 * pointer for us to use below in reclaiming the buffer; 5228 * may want to be more defensive. 5229 */ 5230 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5231 if (outdata == NULL) { 5232 error = ENOMEM; 5233 goto bad; 5234 } 5235 } 5236 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5237 if (outsize < ad->ad_out_size) 5238 ad->ad_out_size = outsize; 5239 if (outdata != NULL) 5240 error = copyout(outdata, ad->ad_out_data, 5241 ad->ad_out_size); 5242 } else { 5243 error = EINVAL; 5244 } 5245 bad: 5246 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5247 free(indata, M_TEMP); 5248 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5249 free(outdata, M_TEMP); 5250 return error; 5251 } 5252 #endif /* ATH_DIAGAPI */ 5253 5254 static int 5255 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5256 { 5257 #define IS_RUNNING(ifp) \ 5258 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5259 struct ath_softc *sc = ifp->if_softc; 5260 struct ieee80211com *ic = ifp->if_l2com; 5261 struct ifreq *ifr = (struct ifreq *)data; 5262 const HAL_RATE_TABLE *rt; 5263 int error = 0; 5264 5265 switch (cmd) { 5266 case SIOCSIFFLAGS: 5267 ATH_LOCK(sc); 5268 if (IS_RUNNING(ifp)) { 5269 /* 5270 * To avoid rescanning another access point, 5271 * do not call ath_init() here. Instead, 5272 * only reflect promisc mode settings. 5273 */ 5274 ath_mode_init(sc); 5275 } else if (ifp->if_flags & IFF_UP) { 5276 /* 5277 * Beware of being called during attach/detach 5278 * to reset promiscuous mode. In that case we 5279 * will still be marked UP but not RUNNING. 5280 * However trying to re-init the interface 5281 * is the wrong thing to do as we've already 5282 * torn down much of our state. There's 5283 * probably a better way to deal with this. 5284 */ 5285 if (!sc->sc_invalid) 5286 ath_init(sc); /* XXX lose error */ 5287 } else { 5288 ath_stop_locked(ifp); 5289 #ifdef notyet 5290 /* XXX must wakeup in places like ath_vap_delete */ 5291 if (!sc->sc_invalid) 5292 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5293 #endif 5294 } 5295 ATH_UNLOCK(sc); 5296 break; 5297 case SIOCGIFMEDIA: 5298 case SIOCSIFMEDIA: 5299 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5300 break; 5301 case SIOCGATHSTATS: 5302 /* NB: embed these numbers to get a consistent view */ 5303 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5304 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5305 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5306 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5307 #ifdef IEEE80211_SUPPORT_TDMA 5308 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5309 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5310 #endif 5311 rt = sc->sc_currates; 5312 sc->sc_stats.ast_tx_rate = 5313 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5314 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 5315 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 5316 return copyout(&sc->sc_stats, 5317 ifr->ifr_data, sizeof (sc->sc_stats)); 5318 case SIOCGATHAGSTATS: 5319 return copyout(&sc->sc_aggr_stats, 5320 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 5321 case SIOCZATHSTATS: 5322 error = priv_check(curthread, PRIV_DRIVER); 5323 if (error == 0) { 5324 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 5325 memset(&sc->sc_aggr_stats, 0, 5326 sizeof(sc->sc_aggr_stats)); 5327 memset(&sc->sc_intr_stats, 0, 5328 sizeof(sc->sc_intr_stats)); 5329 } 5330 break; 5331 #ifdef ATH_DIAGAPI 5332 case SIOCGATHDIAG: 5333 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5334 break; 5335 case SIOCGATHPHYERR: 5336 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5337 break; 5338 #endif 5339 case SIOCGATHNODERATESTATS: 5340 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 5341 break; 5342 case SIOCGIFADDR: 5343 error = ether_ioctl(ifp, cmd, data); 5344 break; 5345 default: 5346 error = EINVAL; 5347 break; 5348 } 5349 return error; 5350 #undef IS_RUNNING 5351 } 5352 5353 /* 5354 * Announce various information on device/driver attach. 5355 */ 5356 static void 5357 ath_announce(struct ath_softc *sc) 5358 { 5359 struct ifnet *ifp = sc->sc_ifp; 5360 struct ath_hal *ah = sc->sc_ah; 5361 5362 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5363 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5364 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5365 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5366 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5367 if (bootverbose) { 5368 int i; 5369 for (i = 0; i <= WME_AC_VO; i++) { 5370 struct ath_txq *txq = sc->sc_ac2q[i]; 5371 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5372 txq->axq_qnum, ieee80211_wme_acnames[i]); 5373 } 5374 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5375 sc->sc_cabq->axq_qnum); 5376 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5377 } 5378 if (ath_rxbuf != ATH_RXBUF) 5379 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5380 if (ath_txbuf != ATH_TXBUF) 5381 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5382 if (sc->sc_mcastkey && bootverbose) 5383 if_printf(ifp, "using multicast key search\n"); 5384 } 5385 5386 static void 5387 ath_dfs_tasklet(void *p, int npending) 5388 { 5389 struct ath_softc *sc = (struct ath_softc *) p; 5390 struct ifnet *ifp = sc->sc_ifp; 5391 struct ieee80211com *ic = ifp->if_l2com; 5392 5393 /* 5394 * If previous processing has found a radar event, 5395 * signal this to the net80211 layer to begin DFS 5396 * processing. 5397 */ 5398 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 5399 /* DFS event found, initiate channel change */ 5400 /* 5401 * XXX doesn't currently tell us whether the event 5402 * XXX was found in the primary or extension 5403 * XXX channel! 5404 */ 5405 IEEE80211_LOCK(ic); 5406 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 5407 IEEE80211_UNLOCK(ic); 5408 } 5409 } 5410 5411 /* 5412 * Enable/disable power save. This must be called with 5413 * no TX driver locks currently held, so it should only 5414 * be called from the RX path (which doesn't hold any 5415 * TX driver locks.) 5416 */ 5417 static void 5418 ath_node_powersave(struct ieee80211_node *ni, int enable) 5419 { 5420 struct ath_node *an = ATH_NODE(ni); 5421 struct ieee80211com *ic = ni->ni_ic; 5422 struct ath_softc *sc = ic->ic_ifp->if_softc; 5423 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5424 5425 ATH_NODE_UNLOCK_ASSERT(an); 5426 /* XXX and no TXQ locks should be held here */ 5427 5428 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n", 5429 __func__, ni, enable); 5430 5431 /* Suspend or resume software queue handling */ 5432 if (enable) 5433 ath_tx_node_sleep(sc, an); 5434 else 5435 ath_tx_node_wakeup(sc, an); 5436 5437 /* Update net80211 state */ 5438 avp->av_node_ps(ni, enable); 5439 } 5440 5441 /* 5442 * Notification from net80211 that the powersave queue state has 5443 * changed. 5444 * 5445 * Since the software queue also may have some frames: 5446 * 5447 * + if the node software queue has frames and the TID state 5448 * is 0, we set the TIM; 5449 * + if the node and the stack are both empty, we clear the TIM bit. 5450 * + If the stack tries to set the bit, always set it. 5451 * + If the stack tries to clear the bit, only clear it if the 5452 * software queue in question is also cleared. 5453 * 5454 * TODO: this is called during node teardown; so let's ensure this 5455 * is all correctly handled and that the TIM bit is cleared. 5456 * It may be that the node flush is called _AFTER_ the net80211 5457 * stack clears the TIM. 5458 * 5459 * Here is the racy part. Since it's possible >1 concurrent, 5460 * overlapping TXes will appear complete with a TX completion in 5461 * another thread, it's possible that the concurrent TIM calls will 5462 * clash. We can't hold the node lock here because setting the 5463 * TIM grabs the net80211 comlock and this may cause a LOR. 5464 * The solution is either to totally serialise _everything_ at 5465 * this point (ie, all TX, completion and any reset/flush go into 5466 * one taskqueue) or a new "ath TIM lock" needs to be created that 5467 * just wraps the driver state change and this call to avp->av_set_tim(). 5468 * 5469 * The same race exists in the net80211 power save queue handling 5470 * as well. Since multiple transmitting threads may queue frames 5471 * into the driver, as well as ps-poll and the driver transmitting 5472 * frames (and thus clearing the psq), it's quite possible that 5473 * a packet entering the PSQ and a ps-poll being handled will 5474 * race, causing the TIM to be cleared and not re-set. 5475 */ 5476 static int 5477 ath_node_set_tim(struct ieee80211_node *ni, int enable) 5478 { 5479 struct ieee80211com *ic = ni->ni_ic; 5480 struct ath_softc *sc = ic->ic_ifp->if_softc; 5481 struct ath_node *an = ATH_NODE(ni); 5482 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5483 int changed = 0; 5484 5485 ATH_NODE_UNLOCK_ASSERT(an); 5486 5487 /* 5488 * For now, just track and then update the TIM. 5489 */ 5490 ATH_NODE_LOCK(an); 5491 an->an_stack_psq = enable; 5492 5493 /* 5494 * This will get called for all operating modes, 5495 * even if avp->av_set_tim is unset. 5496 * It's currently set for hostap/ibss modes; but 5497 * the same infrastructure is used for both STA 5498 * and AP/IBSS node power save. 5499 */ 5500 if (avp->av_set_tim == NULL) { 5501 ATH_NODE_UNLOCK(an); 5502 return (0); 5503 } 5504 5505 /* 5506 * If setting the bit, always set it here. 5507 * If clearing the bit, only clear it if the 5508 * software queue is also empty. 5509 * 5510 * If the node has left power save, just clear the TIM 5511 * bit regardless of the state of the power save queue. 5512 * 5513 * XXX TODO: although atomics are used, it's quite possible 5514 * that a race will occur between this and setting/clearing 5515 * in another thread. TX completion will occur always in 5516 * one thread, however setting/clearing the TIM bit can come 5517 * from a variety of different process contexts! 5518 */ 5519 if (enable && an->an_tim_set == 1) { 5520 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5521 "%s: an=%p, enable=%d, tim_set=1, ignoring\n", 5522 __func__, an, enable); 5523 ATH_NODE_UNLOCK(an); 5524 } else if (enable) { 5525 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5526 "%s: an=%p, enable=%d, enabling TIM\n", 5527 __func__, an, enable); 5528 an->an_tim_set = 1; 5529 ATH_NODE_UNLOCK(an); 5530 changed = avp->av_set_tim(ni, enable); 5531 } else if (atomic_load_acq_int(&an->an_swq_depth) == 0) { 5532 /* disable */ 5533 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5534 "%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n", 5535 __func__, an, enable); 5536 an->an_tim_set = 0; 5537 ATH_NODE_UNLOCK(an); 5538 changed = avp->av_set_tim(ni, enable); 5539 } else if (! an->an_is_powersave) { 5540 /* 5541 * disable regardless; the node isn't in powersave now 5542 */ 5543 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5544 "%s: an=%p, enable=%d, an_pwrsave=0, disabling\n", 5545 __func__, an, enable); 5546 an->an_tim_set = 0; 5547 ATH_NODE_UNLOCK(an); 5548 changed = avp->av_set_tim(ni, enable); 5549 } else { 5550 /* 5551 * psq disable, node is currently in powersave, node 5552 * software queue isn't empty, so don't clear the TIM bit 5553 * for now. 5554 */ 5555 ATH_NODE_UNLOCK(an); 5556 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5557 "%s: enable=%d, an_swq_depth > 0, ignoring\n", 5558 __func__, enable); 5559 changed = 0; 5560 } 5561 5562 return (changed); 5563 } 5564 5565 /* 5566 * Set or update the TIM from the software queue. 5567 * 5568 * Check the software queue depth before attempting to do lock 5569 * anything; that avoids trying to obtain the lock. Then, 5570 * re-check afterwards to ensure nothing has changed in the 5571 * meantime. 5572 * 5573 * set: This is designed to be called from the TX path, after 5574 * a frame has been queued; to see if the swq > 0. 5575 * 5576 * clear: This is designed to be called from the buffer completion point 5577 * (right now it's ath_tx_default_comp()) where the state of 5578 * a software queue has changed. 5579 * 5580 * It makes sense to place it at buffer free / completion rather 5581 * than after each software queue operation, as there's no real 5582 * point in churning the TIM bit as the last frames in the software 5583 * queue are transmitted. If they fail and we retry them, we'd 5584 * just be setting the TIM bit again anyway. 5585 */ 5586 void 5587 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 5588 int enable) 5589 { 5590 struct ath_node *an; 5591 struct ath_vap *avp; 5592 5593 /* Don't do this for broadcast/etc frames */ 5594 if (ni == NULL) 5595 return; 5596 5597 an = ATH_NODE(ni); 5598 avp = ATH_VAP(ni->ni_vap); 5599 5600 /* 5601 * And for operating modes without the TIM handler set, let's 5602 * just skip those. 5603 */ 5604 if (avp->av_set_tim == NULL) 5605 return; 5606 5607 ATH_NODE_UNLOCK_ASSERT(an); 5608 5609 if (enable) { 5610 /* 5611 * Don't bother grabbing the lock unless the queue is not 5612 * empty. 5613 */ 5614 if (atomic_load_acq_int(&an->an_swq_depth) == 0) 5615 return; 5616 5617 ATH_NODE_LOCK(an); 5618 if (an->an_is_powersave && 5619 an->an_tim_set == 0 && 5620 atomic_load_acq_int(&an->an_swq_depth) != 0) { 5621 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5622 "%s: an=%p, swq_depth>0, tim_set=0, set!\n", 5623 __func__, an); 5624 an->an_tim_set = 1; 5625 ATH_NODE_UNLOCK(an); 5626 (void) avp->av_set_tim(ni, 1); 5627 } else { 5628 ATH_NODE_UNLOCK(an); 5629 } 5630 } else { 5631 /* 5632 * Don't bother grabbing the lock unless the queue is empty. 5633 */ 5634 if (atomic_load_acq_int(&an->an_swq_depth) != 0) 5635 return; 5636 5637 ATH_NODE_LOCK(an); 5638 if (an->an_is_powersave && 5639 an->an_stack_psq == 0 && 5640 an->an_tim_set == 1 && 5641 atomic_load_acq_int(&an->an_swq_depth) == 0) { 5642 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5643 "%s: an=%p, swq_depth=0, tim_set=1, psq_set=0," 5644 " clear!\n", 5645 __func__, an); 5646 an->an_tim_set = 0; 5647 ATH_NODE_UNLOCK(an); 5648 (void) avp->av_set_tim(ni, 0); 5649 } else { 5650 ATH_NODE_UNLOCK(an); 5651 } 5652 } 5653 } 5654 5655 MODULE_VERSION(if_ath, 1); 5656 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 5657 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 5658 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 5659 #endif 5660