1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_rx_edma.h> 113 #include <dev/ath/if_ath_tx_edma.h> 114 #include <dev/ath/if_ath_beacon.h> 115 #include <dev/ath/if_ath_btcoex.h> 116 #include <dev/ath/if_ath_spectral.h> 117 #include <dev/ath/if_ath_lna_div.h> 118 #include <dev/ath/if_athdfs.h> 119 #include <dev/ath/if_ath_ioctl.h> 120 #include <dev/ath/if_ath_descdma.h> 121 122 #ifdef ATH_TX99_DIAG 123 #include <dev/ath/ath_tx99/ath_tx99.h> 124 #endif 125 126 #ifdef ATH_DEBUG_ALQ 127 #include <dev/ath/if_ath_alq.h> 128 #endif 129 130 /* 131 * Only enable this if you're working on PS-POLL support. 132 */ 133 #define ATH_SW_PSQ 134 135 /* 136 * ATH_BCBUF determines the number of vap's that can transmit 137 * beacons and also (currently) the number of vap's that can 138 * have unique mac addresses/bssid. When staggering beacons 139 * 4 is probably a good max as otherwise the beacons become 140 * very closely spaced and there is limited time for cab q traffic 141 * to go out. You can burst beacons instead but that is not good 142 * for stations in power save and at some point you really want 143 * another radio (and channel). 144 * 145 * The limit on the number of mac addresses is tied to our use of 146 * the U/L bit and tracking addresses in a byte; it would be 147 * worthwhile to allow more for applications like proxy sta. 148 */ 149 CTASSERT(ATH_BCBUF <= 8); 150 151 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 152 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 153 const uint8_t [IEEE80211_ADDR_LEN], 154 const uint8_t [IEEE80211_ADDR_LEN]); 155 static void ath_vap_delete(struct ieee80211vap *); 156 static int ath_init(struct ath_softc *); 157 static void ath_stop(struct ath_softc *); 158 static int ath_reset_vap(struct ieee80211vap *, u_long); 159 static int ath_transmit(struct ieee80211com *, struct mbuf *); 160 static int ath_media_change(struct ifnet *); 161 static void ath_watchdog(void *); 162 static void ath_parent(struct ieee80211com *); 163 static void ath_fatal_proc(void *, int); 164 static void ath_bmiss_vap(struct ieee80211vap *); 165 static void ath_bmiss_proc(void *, int); 166 static void ath_key_update_begin(struct ieee80211vap *); 167 static void ath_key_update_end(struct ieee80211vap *); 168 static void ath_update_mcast_hw(struct ath_softc *); 169 static void ath_update_mcast(struct ieee80211com *); 170 static void ath_update_promisc(struct ieee80211com *); 171 static void ath_updateslot(struct ieee80211com *); 172 static void ath_bstuck_proc(void *, int); 173 static void ath_reset_proc(void *, int); 174 static int ath_desc_alloc(struct ath_softc *); 175 static void ath_desc_free(struct ath_softc *); 176 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 177 const uint8_t [IEEE80211_ADDR_LEN]); 178 static void ath_node_cleanup(struct ieee80211_node *); 179 static void ath_node_free(struct ieee80211_node *); 180 static void ath_node_getsignal(const struct ieee80211_node *, 181 int8_t *, int8_t *); 182 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 183 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 184 static int ath_tx_setup(struct ath_softc *, int, int); 185 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 186 static void ath_tx_cleanup(struct ath_softc *); 187 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 188 int dosched); 189 static void ath_tx_proc_q0(void *, int); 190 static void ath_tx_proc_q0123(void *, int); 191 static void ath_tx_proc(void *, int); 192 static void ath_txq_sched_tasklet(void *, int); 193 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 194 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 195 static void ath_scan_start(struct ieee80211com *); 196 static void ath_scan_end(struct ieee80211com *); 197 static void ath_set_channel(struct ieee80211com *); 198 #ifdef ATH_ENABLE_11N 199 static void ath_update_chw(struct ieee80211com *); 200 #endif /* ATH_ENABLE_11N */ 201 static void ath_calibrate(void *); 202 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 203 static void ath_setup_stationkey(struct ieee80211_node *); 204 static void ath_newassoc(struct ieee80211_node *, int); 205 static int ath_setregdomain(struct ieee80211com *, 206 struct ieee80211_regdomain *, int, 207 struct ieee80211_channel []); 208 static void ath_getradiocaps(struct ieee80211com *, int, int *, 209 struct ieee80211_channel []); 210 static int ath_getchannels(struct ath_softc *); 211 212 static int ath_rate_setup(struct ath_softc *, u_int mode); 213 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 214 215 static void ath_announce(struct ath_softc *); 216 217 static void ath_dfs_tasklet(void *, int); 218 static void ath_node_powersave(struct ieee80211_node *, int); 219 static int ath_node_set_tim(struct ieee80211_node *, int); 220 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 221 222 #ifdef IEEE80211_SUPPORT_TDMA 223 #include <dev/ath/if_ath_tdma.h> 224 #endif 225 226 SYSCTL_DECL(_hw_ath); 227 228 /* XXX validate sysctl values */ 229 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 230 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 231 0, "long chip calibration interval (secs)"); 232 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 233 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 234 0, "short chip calibration interval (msecs)"); 235 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 236 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 237 0, "reset chip calibration results (secs)"); 238 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 239 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 240 0, "ANI calibration (msecs)"); 241 242 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 243 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 244 0, "rx buffers allocated"); 245 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 246 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 247 0, "tx buffers allocated"); 248 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 249 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 250 0, "tx (mgmt) buffers allocated"); 251 252 int ath_bstuck_threshold = 4; /* max missed beacons */ 253 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 254 0, "max missed beacon xmits before chip reset"); 255 256 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 257 258 void 259 ath_legacy_attach_comp_func(struct ath_softc *sc) 260 { 261 262 /* 263 * Special case certain configurations. Note the 264 * CAB queue is handled by these specially so don't 265 * include them when checking the txq setup mask. 266 */ 267 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 268 case 0x01: 269 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 270 break; 271 case 0x0f: 272 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 273 break; 274 default: 275 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 276 break; 277 } 278 } 279 280 /* 281 * Set the target power mode. 282 * 283 * If this is called during a point in time where 284 * the hardware is being programmed elsewhere, it will 285 * simply store it away and update it when all current 286 * uses of the hardware are completed. 287 */ 288 void 289 _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line) 290 { 291 ATH_LOCK_ASSERT(sc); 292 293 sc->sc_target_powerstate = power_state; 294 295 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 296 __func__, 297 file, 298 line, 299 power_state, 300 sc->sc_powersave_refcnt); 301 302 if (sc->sc_powersave_refcnt == 0 && 303 power_state != sc->sc_cur_powerstate) { 304 sc->sc_cur_powerstate = power_state; 305 ath_hal_setpower(sc->sc_ah, power_state); 306 307 /* 308 * If the NIC is force-awake, then set the 309 * self-gen frame state appropriately. 310 * 311 * If the nic is in network sleep or full-sleep, 312 * we let the above call leave the self-gen 313 * state as "sleep". 314 */ 315 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 316 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 317 ath_hal_setselfgenpower(sc->sc_ah, 318 sc->sc_target_selfgen_state); 319 } 320 } 321 } 322 323 /* 324 * Set the current self-generated frames state. 325 * 326 * This is separate from the target power mode. The chip may be 327 * awake but the desired state is "sleep", so frames sent to the 328 * destination has PWRMGT=1 in the 802.11 header. The NIC also 329 * needs to know to set PWRMGT=1 in self-generated frames. 330 */ 331 void 332 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 333 { 334 335 ATH_LOCK_ASSERT(sc); 336 337 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 338 __func__, 339 file, 340 line, 341 power_state, 342 sc->sc_target_selfgen_state); 343 344 sc->sc_target_selfgen_state = power_state; 345 346 /* 347 * If the NIC is force-awake, then set the power state. 348 * Network-state and full-sleep will already transition it to 349 * mark self-gen frames as sleeping - and we can't 350 * guarantee the NIC is awake to program the self-gen frame 351 * setting anyway. 352 */ 353 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 354 ath_hal_setselfgenpower(sc->sc_ah, power_state); 355 } 356 } 357 358 /* 359 * Set the hardware power mode and take a reference. 360 * 361 * This doesn't update the target power mode in the driver; 362 * it just updates the hardware power state. 363 * 364 * XXX it should only ever force the hardware awake; it should 365 * never be called to set it asleep. 366 */ 367 void 368 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 369 { 370 ATH_LOCK_ASSERT(sc); 371 372 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 373 __func__, 374 file, 375 line, 376 power_state, 377 sc->sc_powersave_refcnt); 378 379 sc->sc_powersave_refcnt++; 380 381 if (power_state != sc->sc_cur_powerstate) { 382 ath_hal_setpower(sc->sc_ah, power_state); 383 sc->sc_cur_powerstate = power_state; 384 385 /* 386 * Adjust the self-gen powerstate if appropriate. 387 */ 388 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 389 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 390 ath_hal_setselfgenpower(sc->sc_ah, 391 sc->sc_target_selfgen_state); 392 } 393 394 } 395 } 396 397 /* 398 * Restore the power save mode to what it once was. 399 * 400 * This will decrement the reference counter and once it hits 401 * zero, it'll restore the powersave state. 402 */ 403 void 404 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 405 { 406 407 ATH_LOCK_ASSERT(sc); 408 409 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 410 __func__, 411 file, 412 line, 413 sc->sc_powersave_refcnt, 414 sc->sc_target_powerstate); 415 416 if (sc->sc_powersave_refcnt == 0) 417 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 418 else 419 sc->sc_powersave_refcnt--; 420 421 if (sc->sc_powersave_refcnt == 0 && 422 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 423 sc->sc_cur_powerstate = sc->sc_target_powerstate; 424 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 425 } 426 427 /* 428 * Adjust the self-gen powerstate if appropriate. 429 */ 430 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 431 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 432 ath_hal_setselfgenpower(sc->sc_ah, 433 sc->sc_target_selfgen_state); 434 } 435 436 } 437 438 /* 439 * Configure the initial HAL configuration values based on bus 440 * specific parameters. 441 * 442 * Some PCI IDs and other information may need tweaking. 443 * 444 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable 445 * if BT antenna diversity isn't enabled. 446 * 447 * So, let's also figure out how to enable BT diversity for AR9485. 448 */ 449 static void 450 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config) 451 { 452 /* XXX TODO: only for PCI devices? */ 453 454 if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) { 455 ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */ 456 ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE; 457 ah_config->ath_hal_min_gainidx = AH_TRUE; 458 ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88; 459 /* XXX low_rssi_thresh */ 460 /* XXX fast_div_bias */ 461 device_printf(sc->sc_dev, "configuring for %s\n", 462 (sc->sc_pci_devinfo & ATH_PCI_CUS198) ? 463 "CUS198" : "CUS230"); 464 } 465 466 if (sc->sc_pci_devinfo & ATH_PCI_CUS217) 467 device_printf(sc->sc_dev, "CUS217 card detected\n"); 468 469 if (sc->sc_pci_devinfo & ATH_PCI_CUS252) 470 device_printf(sc->sc_dev, "CUS252 card detected\n"); 471 472 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT) 473 device_printf(sc->sc_dev, "WB335 1-ANT card detected\n"); 474 475 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT) 476 device_printf(sc->sc_dev, "WB335 2-ANT card detected\n"); 477 478 if (sc->sc_pci_devinfo & ATH_PCI_KILLER) 479 device_printf(sc->sc_dev, "Killer Wireless card detected\n"); 480 481 #if 0 482 /* 483 * Some WB335 cards do not support antenna diversity. Since 484 * we use a hardcoded value for AR9565 instead of using the 485 * EEPROM/OTP data, remove the combining feature from 486 * the HW capabilities bitmap. 487 */ 488 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 489 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV)) 490 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB; 491 } 492 493 if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) { 494 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV; 495 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n"); 496 } 497 #endif 498 499 if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) { 500 ah_config->ath_hal_pcie_waen = 0x0040473b; 501 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n"); 502 } 503 504 #if 0 505 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) { 506 ah->config.no_pll_pwrsave = true; 507 device_printf(sc->sc_dev, "Disable PLL PowerSave\n"); 508 } 509 #endif 510 511 } 512 513 /* 514 * Attempt to fetch the MAC address from the kernel environment. 515 * 516 * Returns 0, macaddr in macaddr if successful; -1 otherwise. 517 */ 518 static int 519 ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr) 520 { 521 char devid_str[32]; 522 int local_mac = 0; 523 char *local_macstr; 524 525 /* 526 * Fetch from the kenv rather than using hints. 527 * 528 * Hints would be nice but the transition to dynamic 529 * hints/kenv doesn't happen early enough for this 530 * to work reliably (eg on anything embedded.) 531 */ 532 snprintf(devid_str, 32, "hint.%s.%d.macaddr", 533 device_get_name(sc->sc_dev), 534 device_get_unit(sc->sc_dev)); 535 536 if ((local_macstr = kern_getenv(devid_str)) != NULL) { 537 uint32_t tmpmac[ETHER_ADDR_LEN]; 538 int count; 539 int i; 540 541 /* Have a MAC address; should use it */ 542 device_printf(sc->sc_dev, 543 "Overriding MAC address from environment: '%s'\n", 544 local_macstr); 545 546 /* Extract out the MAC address */ 547 count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x", 548 &tmpmac[0], &tmpmac[1], 549 &tmpmac[2], &tmpmac[3], 550 &tmpmac[4], &tmpmac[5]); 551 if (count == 6) { 552 /* Valid! */ 553 local_mac = 1; 554 for (i = 0; i < ETHER_ADDR_LEN; i++) 555 macaddr[i] = tmpmac[i]; 556 } 557 /* Done! */ 558 freeenv(local_macstr); 559 local_macstr = NULL; 560 } 561 562 if (local_mac) 563 return (0); 564 return (-1); 565 } 566 567 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 568 #define HAL_MODE_HT40 \ 569 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 570 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 571 int 572 ath_attach(u_int16_t devid, struct ath_softc *sc) 573 { 574 struct ieee80211com *ic = &sc->sc_ic; 575 struct ath_hal *ah = NULL; 576 HAL_STATUS status; 577 int error = 0, i; 578 u_int wmodes; 579 int rx_chainmask, tx_chainmask; 580 HAL_OPS_CONFIG ah_config; 581 582 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 583 584 ic->ic_softc = sc; 585 ic->ic_name = device_get_nameunit(sc->sc_dev); 586 587 /* 588 * Configure the initial configuration data. 589 * 590 * This is stuff that may be needed early during attach 591 * rather than done via configuration calls later. 592 */ 593 bzero(&ah_config, sizeof(ah_config)); 594 ath_setup_hal_config(sc, &ah_config); 595 596 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 597 sc->sc_eepromdata, &ah_config, &status); 598 if (ah == NULL) { 599 device_printf(sc->sc_dev, 600 "unable to attach hardware; HAL status %u\n", status); 601 error = ENXIO; 602 goto bad; 603 } 604 sc->sc_ah = ah; 605 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 606 #ifdef ATH_DEBUG 607 sc->sc_debug = ath_debug; 608 #endif 609 610 /* 611 * Setup the DMA/EDMA functions based on the current 612 * hardware support. 613 * 614 * This is required before the descriptors are allocated. 615 */ 616 if (ath_hal_hasedma(sc->sc_ah)) { 617 sc->sc_isedma = 1; 618 ath_recv_setup_edma(sc); 619 ath_xmit_setup_edma(sc); 620 } else { 621 ath_recv_setup_legacy(sc); 622 ath_xmit_setup_legacy(sc); 623 } 624 625 if (ath_hal_hasmybeacon(sc->sc_ah)) { 626 sc->sc_do_mybeacon = 1; 627 } 628 629 /* 630 * Check if the MAC has multi-rate retry support. 631 * We do this by trying to setup a fake extended 632 * descriptor. MAC's that don't have support will 633 * return false w/o doing anything. MAC's that do 634 * support it will return true w/o doing anything. 635 */ 636 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 637 638 /* 639 * Check if the device has hardware counters for PHY 640 * errors. If so we need to enable the MIB interrupt 641 * so we can act on stat triggers. 642 */ 643 if (ath_hal_hwphycounters(ah)) 644 sc->sc_needmib = 1; 645 646 /* 647 * Get the hardware key cache size. 648 */ 649 sc->sc_keymax = ath_hal_keycachesize(ah); 650 if (sc->sc_keymax > ATH_KEYMAX) { 651 device_printf(sc->sc_dev, 652 "Warning, using only %u of %u key cache slots\n", 653 ATH_KEYMAX, sc->sc_keymax); 654 sc->sc_keymax = ATH_KEYMAX; 655 } 656 /* 657 * Reset the key cache since some parts do not 658 * reset the contents on initial power up. 659 */ 660 for (i = 0; i < sc->sc_keymax; i++) 661 ath_hal_keyreset(ah, i); 662 663 /* 664 * Collect the default channel list. 665 */ 666 error = ath_getchannels(sc); 667 if (error != 0) 668 goto bad; 669 670 /* 671 * Setup rate tables for all potential media types. 672 */ 673 ath_rate_setup(sc, IEEE80211_MODE_11A); 674 ath_rate_setup(sc, IEEE80211_MODE_11B); 675 ath_rate_setup(sc, IEEE80211_MODE_11G); 676 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 677 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 678 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 679 ath_rate_setup(sc, IEEE80211_MODE_11NA); 680 ath_rate_setup(sc, IEEE80211_MODE_11NG); 681 ath_rate_setup(sc, IEEE80211_MODE_HALF); 682 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 683 684 /* NB: setup here so ath_rate_update is happy */ 685 ath_setcurmode(sc, IEEE80211_MODE_11A); 686 687 /* 688 * Allocate TX descriptors and populate the lists. 689 */ 690 error = ath_desc_alloc(sc); 691 if (error != 0) { 692 device_printf(sc->sc_dev, 693 "failed to allocate TX descriptors: %d\n", error); 694 goto bad; 695 } 696 error = ath_txdma_setup(sc); 697 if (error != 0) { 698 device_printf(sc->sc_dev, 699 "failed to allocate TX descriptors: %d\n", error); 700 goto bad; 701 } 702 703 /* 704 * Allocate RX descriptors and populate the lists. 705 */ 706 error = ath_rxdma_setup(sc); 707 if (error != 0) { 708 device_printf(sc->sc_dev, 709 "failed to allocate RX descriptors: %d\n", error); 710 goto bad; 711 } 712 713 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 714 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 715 716 ATH_TXBUF_LOCK_INIT(sc); 717 718 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 719 taskqueue_thread_enqueue, &sc->sc_tq); 720 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 721 device_get_nameunit(sc->sc_dev)); 722 723 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 724 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 725 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 726 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 727 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 728 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 729 730 /* 731 * Allocate hardware transmit queues: one queue for 732 * beacon frames and one data queue for each QoS 733 * priority. Note that the hal handles resetting 734 * these queues at the needed time. 735 * 736 * XXX PS-Poll 737 */ 738 sc->sc_bhalq = ath_beaconq_setup(sc); 739 if (sc->sc_bhalq == (u_int) -1) { 740 device_printf(sc->sc_dev, 741 "unable to setup a beacon xmit queue!\n"); 742 error = EIO; 743 goto bad2; 744 } 745 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 746 if (sc->sc_cabq == NULL) { 747 device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n"); 748 error = EIO; 749 goto bad2; 750 } 751 /* NB: insure BK queue is the lowest priority h/w queue */ 752 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 753 device_printf(sc->sc_dev, 754 "unable to setup xmit queue for %s traffic!\n", 755 ieee80211_wme_acnames[WME_AC_BK]); 756 error = EIO; 757 goto bad2; 758 } 759 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 760 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 761 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 762 /* 763 * Not enough hardware tx queues to properly do WME; 764 * just punt and assign them all to the same h/w queue. 765 * We could do a better job of this if, for example, 766 * we allocate queues when we switch from station to 767 * AP mode. 768 */ 769 if (sc->sc_ac2q[WME_AC_VI] != NULL) 770 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 771 if (sc->sc_ac2q[WME_AC_BE] != NULL) 772 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 773 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 774 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 775 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 776 } 777 778 /* 779 * Attach the TX completion function. 780 * 781 * The non-EDMA chips may have some special case optimisations; 782 * this method gives everyone a chance to attach cleanly. 783 */ 784 sc->sc_tx.xmit_attach_comp_func(sc); 785 786 /* 787 * Setup rate control. Some rate control modules 788 * call back to change the anntena state so expose 789 * the necessary entry points. 790 * XXX maybe belongs in struct ath_ratectrl? 791 */ 792 sc->sc_setdefantenna = ath_setdefantenna; 793 sc->sc_rc = ath_rate_attach(sc); 794 if (sc->sc_rc == NULL) { 795 error = EIO; 796 goto bad2; 797 } 798 799 /* Attach DFS module */ 800 if (! ath_dfs_attach(sc)) { 801 device_printf(sc->sc_dev, 802 "%s: unable to attach DFS\n", __func__); 803 error = EIO; 804 goto bad2; 805 } 806 807 /* Attach spectral module */ 808 if (ath_spectral_attach(sc) < 0) { 809 device_printf(sc->sc_dev, 810 "%s: unable to attach spectral\n", __func__); 811 error = EIO; 812 goto bad2; 813 } 814 815 /* Attach bluetooth coexistence module */ 816 if (ath_btcoex_attach(sc) < 0) { 817 device_printf(sc->sc_dev, 818 "%s: unable to attach bluetooth coexistence\n", __func__); 819 error = EIO; 820 goto bad2; 821 } 822 823 /* Attach LNA diversity module */ 824 if (ath_lna_div_attach(sc) < 0) { 825 device_printf(sc->sc_dev, 826 "%s: unable to attach LNA diversity\n", __func__); 827 error = EIO; 828 goto bad2; 829 } 830 831 /* Start DFS processing tasklet */ 832 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 833 834 /* Configure LED state */ 835 sc->sc_blinking = 0; 836 sc->sc_ledstate = 1; 837 sc->sc_ledon = 0; /* low true */ 838 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 839 callout_init(&sc->sc_ledtimer, 1); 840 841 /* 842 * Don't setup hardware-based blinking. 843 * 844 * Although some NICs may have this configured in the 845 * default reset register values, the user may wish 846 * to alter which pins have which function. 847 * 848 * The reference driver attaches the MAC network LED to GPIO1 and 849 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 850 * NIC has these reversed. 851 */ 852 sc->sc_hardled = (1 == 0); 853 sc->sc_led_net_pin = -1; 854 sc->sc_led_pwr_pin = -1; 855 /* 856 * Auto-enable soft led processing for IBM cards and for 857 * 5211 minipci cards. Users can also manually enable/disable 858 * support with a sysctl. 859 */ 860 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 861 ath_led_config(sc); 862 ath_hal_setledstate(ah, HAL_LED_INIT); 863 864 /* XXX not right but it's not used anywhere important */ 865 ic->ic_phytype = IEEE80211_T_OFDM; 866 ic->ic_opmode = IEEE80211_M_STA; 867 ic->ic_caps = 868 IEEE80211_C_STA /* station mode */ 869 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 870 | IEEE80211_C_HOSTAP /* hostap mode */ 871 | IEEE80211_C_MONITOR /* monitor mode */ 872 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 873 | IEEE80211_C_WDS /* 4-address traffic works */ 874 | IEEE80211_C_MBSS /* mesh point link mode */ 875 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 876 | IEEE80211_C_SHSLOT /* short slot time supported */ 877 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 878 #ifndef ATH_ENABLE_11N 879 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 880 #endif 881 | IEEE80211_C_TXFRAG /* handle tx frags */ 882 #ifdef ATH_ENABLE_DFS 883 | IEEE80211_C_DFS /* Enable radar detection */ 884 #endif 885 | IEEE80211_C_PMGT /* Station side power mgmt */ 886 | IEEE80211_C_SWSLEEP 887 ; 888 /* 889 * Query the hal to figure out h/w crypto support. 890 */ 891 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 892 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 893 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 894 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 895 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 896 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 897 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 898 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 899 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 900 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 901 /* 902 * Check if h/w does the MIC and/or whether the 903 * separate key cache entries are required to 904 * handle both tx+rx MIC keys. 905 */ 906 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 907 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 908 /* 909 * If the h/w supports storing tx+rx MIC keys 910 * in one cache slot automatically enable use. 911 */ 912 if (ath_hal_hastkipsplit(ah) || 913 !ath_hal_settkipsplit(ah, AH_FALSE)) 914 sc->sc_splitmic = 1; 915 /* 916 * If the h/w can do TKIP MIC together with WME then 917 * we use it; otherwise we force the MIC to be done 918 * in software by the net80211 layer. 919 */ 920 if (ath_hal_haswmetkipmic(ah)) 921 sc->sc_wmetkipmic = 1; 922 } 923 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 924 /* 925 * Check for multicast key search support. 926 */ 927 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 928 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 929 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 930 } 931 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 932 /* 933 * Mark key cache slots associated with global keys 934 * as in use. If we knew TKIP was not to be used we 935 * could leave the +32, +64, and +32+64 slots free. 936 */ 937 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 938 setbit(sc->sc_keymap, i); 939 setbit(sc->sc_keymap, i+64); 940 if (sc->sc_splitmic) { 941 setbit(sc->sc_keymap, i+32); 942 setbit(sc->sc_keymap, i+32+64); 943 } 944 } 945 /* 946 * TPC support can be done either with a global cap or 947 * per-packet support. The latter is not available on 948 * all parts. We're a bit pedantic here as all parts 949 * support a global cap. 950 */ 951 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 952 ic->ic_caps |= IEEE80211_C_TXPMGT; 953 954 /* 955 * Mark WME capability only if we have sufficient 956 * hardware queues to do proper priority scheduling. 957 */ 958 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 959 ic->ic_caps |= IEEE80211_C_WME; 960 /* 961 * Check for misc other capabilities. 962 */ 963 if (ath_hal_hasbursting(ah)) 964 ic->ic_caps |= IEEE80211_C_BURST; 965 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 966 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 967 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 968 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 969 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 970 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 971 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 972 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 973 974 if (ath_hal_hasfastframes(ah)) 975 ic->ic_caps |= IEEE80211_C_FF; 976 wmodes = ath_hal_getwirelessmodes(ah); 977 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 978 ic->ic_caps |= IEEE80211_C_TURBOP; 979 #ifdef IEEE80211_SUPPORT_TDMA 980 if (ath_hal_macversion(ah) > 0x78) { 981 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 982 ic->ic_tdma_update = ath_tdma_update; 983 } 984 #endif 985 986 /* 987 * TODO: enforce that at least this many frames are available 988 * in the txbuf list before allowing data frames (raw or 989 * otherwise) to be transmitted. 990 */ 991 sc->sc_txq_data_minfree = 10; 992 /* 993 * Leave this as default to maintain legacy behaviour. 994 * Shortening the cabq/mcastq may end up causing some 995 * undesirable behaviour. 996 */ 997 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 998 999 /* 1000 * How deep can the node software TX queue get whilst it's asleep. 1001 */ 1002 sc->sc_txq_node_psq_maxdepth = 16; 1003 1004 /* 1005 * Default the maximum queue depth for a given node 1006 * to 1/4'th the TX buffers, or 64, whichever 1007 * is larger. 1008 */ 1009 sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4); 1010 1011 /* Enable CABQ by default */ 1012 sc->sc_cabq_enable = 1; 1013 1014 /* 1015 * Allow the TX and RX chainmasks to be overridden by 1016 * environment variables and/or device.hints. 1017 * 1018 * This must be done early - before the hardware is 1019 * calibrated or before the 802.11n stream calculation 1020 * is done. 1021 */ 1022 if (resource_int_value(device_get_name(sc->sc_dev), 1023 device_get_unit(sc->sc_dev), "rx_chainmask", 1024 &rx_chainmask) == 0) { 1025 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 1026 rx_chainmask); 1027 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 1028 } 1029 if (resource_int_value(device_get_name(sc->sc_dev), 1030 device_get_unit(sc->sc_dev), "tx_chainmask", 1031 &tx_chainmask) == 0) { 1032 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 1033 tx_chainmask); 1034 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 1035 } 1036 1037 /* 1038 * Query the TX/RX chainmask configuration. 1039 * 1040 * This is only relevant for 11n devices. 1041 */ 1042 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 1043 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 1044 1045 /* 1046 * Disable MRR with protected frames by default. 1047 * Only 802.11n series NICs can handle this. 1048 */ 1049 sc->sc_mrrprot = 0; /* XXX should be a capability */ 1050 1051 /* 1052 * Query the enterprise mode information the HAL. 1053 */ 1054 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 1055 &sc->sc_ent_cfg) == HAL_OK) 1056 sc->sc_use_ent = 1; 1057 1058 #ifdef ATH_ENABLE_11N 1059 /* 1060 * Query HT capabilities 1061 */ 1062 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 1063 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 1064 uint32_t rxs, txs; 1065 1066 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 1067 1068 sc->sc_mrrprot = 1; /* XXX should be a capability */ 1069 1070 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 1071 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 1072 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 1073 | IEEE80211_HTCAP_MAXAMSDU_3839 1074 /* max A-MSDU length */ 1075 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 1076 ; 1077 1078 /* 1079 * Enable short-GI for HT20 only if the hardware 1080 * advertises support. 1081 * Notably, anything earlier than the AR9287 doesn't. 1082 */ 1083 if ((ath_hal_getcapability(ah, 1084 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 1085 (wmodes & HAL_MODE_HT20)) { 1086 device_printf(sc->sc_dev, 1087 "[HT] enabling short-GI in 20MHz mode\n"); 1088 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 1089 } 1090 1091 if (wmodes & HAL_MODE_HT40) 1092 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 1093 | IEEE80211_HTCAP_SHORTGI40; 1094 1095 /* 1096 * TX/RX streams need to be taken into account when 1097 * negotiating which MCS rates it'll receive and 1098 * what MCS rates are available for TX. 1099 */ 1100 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 1101 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 1102 ic->ic_txstream = txs; 1103 ic->ic_rxstream = rxs; 1104 1105 /* 1106 * Setup TX and RX STBC based on what the HAL allows and 1107 * the currently configured chainmask set. 1108 * Ie - don't enable STBC TX if only one chain is enabled. 1109 * STBC RX is fine on a single RX chain; it just won't 1110 * provide any real benefit. 1111 */ 1112 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 1113 NULL) == HAL_OK) { 1114 sc->sc_rx_stbc = 1; 1115 device_printf(sc->sc_dev, 1116 "[HT] 1 stream STBC receive enabled\n"); 1117 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1118 } 1119 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1120 NULL) == HAL_OK) { 1121 sc->sc_tx_stbc = 1; 1122 device_printf(sc->sc_dev, 1123 "[HT] 1 stream STBC transmit enabled\n"); 1124 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1125 } 1126 1127 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1128 &sc->sc_rts_aggr_limit); 1129 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1130 device_printf(sc->sc_dev, 1131 "[HT] RTS aggregates limited to %d KiB\n", 1132 sc->sc_rts_aggr_limit / 1024); 1133 1134 device_printf(sc->sc_dev, 1135 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1136 } 1137 #endif 1138 1139 /* 1140 * Initial aggregation settings. 1141 */ 1142 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1143 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1144 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1145 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1146 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1147 sc->sc_delim_min_pad = 0; 1148 1149 /* 1150 * Check if the hardware requires PCI register serialisation. 1151 * Some of the Owl based MACs require this. 1152 */ 1153 if (mp_ncpus > 1 && 1154 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1155 0, NULL) == HAL_OK) { 1156 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1157 device_printf(sc->sc_dev, 1158 "Enabling register serialisation\n"); 1159 } 1160 1161 /* 1162 * Initialise the deferred completed RX buffer list. 1163 */ 1164 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1165 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1166 1167 /* 1168 * Indicate we need the 802.11 header padded to a 1169 * 32-bit boundary for 4-address and QoS frames. 1170 */ 1171 ic->ic_flags |= IEEE80211_F_DATAPAD; 1172 1173 /* 1174 * Query the hal about antenna support. 1175 */ 1176 sc->sc_defant = ath_hal_getdefantenna(ah); 1177 1178 /* 1179 * Not all chips have the VEOL support we want to 1180 * use with IBSS beacons; check here for it. 1181 */ 1182 sc->sc_hasveol = ath_hal_hasveol(ah); 1183 1184 /* get mac address from kenv first, then hardware */ 1185 if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) { 1186 /* Tell the HAL now about the new MAC */ 1187 ath_hal_setmac(ah, ic->ic_macaddr); 1188 } else { 1189 ath_hal_getmac(ah, ic->ic_macaddr); 1190 } 1191 1192 if (sc->sc_hasbmask) 1193 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1194 1195 /* NB: used to size node table key mapping array */ 1196 ic->ic_max_keyix = sc->sc_keymax; 1197 /* call MI attach routine. */ 1198 ieee80211_ifattach(ic); 1199 ic->ic_setregdomain = ath_setregdomain; 1200 ic->ic_getradiocaps = ath_getradiocaps; 1201 sc->sc_opmode = HAL_M_STA; 1202 1203 /* override default methods */ 1204 ic->ic_ioctl = ath_ioctl; 1205 ic->ic_parent = ath_parent; 1206 ic->ic_transmit = ath_transmit; 1207 ic->ic_newassoc = ath_newassoc; 1208 ic->ic_updateslot = ath_updateslot; 1209 ic->ic_wme.wme_update = ath_wme_update; 1210 ic->ic_vap_create = ath_vap_create; 1211 ic->ic_vap_delete = ath_vap_delete; 1212 ic->ic_raw_xmit = ath_raw_xmit; 1213 ic->ic_update_mcast = ath_update_mcast; 1214 ic->ic_update_promisc = ath_update_promisc; 1215 ic->ic_node_alloc = ath_node_alloc; 1216 sc->sc_node_free = ic->ic_node_free; 1217 ic->ic_node_free = ath_node_free; 1218 sc->sc_node_cleanup = ic->ic_node_cleanup; 1219 ic->ic_node_cleanup = ath_node_cleanup; 1220 ic->ic_node_getsignal = ath_node_getsignal; 1221 ic->ic_scan_start = ath_scan_start; 1222 ic->ic_scan_end = ath_scan_end; 1223 ic->ic_set_channel = ath_set_channel; 1224 #ifdef ATH_ENABLE_11N 1225 /* 802.11n specific - but just override anyway */ 1226 sc->sc_addba_request = ic->ic_addba_request; 1227 sc->sc_addba_response = ic->ic_addba_response; 1228 sc->sc_addba_stop = ic->ic_addba_stop; 1229 sc->sc_bar_response = ic->ic_bar_response; 1230 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1231 1232 ic->ic_addba_request = ath_addba_request; 1233 ic->ic_addba_response = ath_addba_response; 1234 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1235 ic->ic_addba_stop = ath_addba_stop; 1236 ic->ic_bar_response = ath_bar_response; 1237 1238 ic->ic_update_chw = ath_update_chw; 1239 #endif /* ATH_ENABLE_11N */ 1240 1241 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1242 /* 1243 * There's one vendor bitmap entry in the RX radiotap 1244 * header; make sure that's taken into account. 1245 */ 1246 ieee80211_radiotap_attachv(ic, 1247 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1248 ATH_TX_RADIOTAP_PRESENT, 1249 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1250 ATH_RX_RADIOTAP_PRESENT); 1251 #else 1252 /* 1253 * No vendor bitmap/extensions are present. 1254 */ 1255 ieee80211_radiotap_attach(ic, 1256 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1257 ATH_TX_RADIOTAP_PRESENT, 1258 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1259 ATH_RX_RADIOTAP_PRESENT); 1260 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1261 1262 /* 1263 * Setup the ALQ logging if required 1264 */ 1265 #ifdef ATH_DEBUG_ALQ 1266 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1267 if_ath_alq_setcfg(&sc->sc_alq, 1268 sc->sc_ah->ah_macVersion, 1269 sc->sc_ah->ah_macRev, 1270 sc->sc_ah->ah_phyRev, 1271 sc->sc_ah->ah_magic); 1272 #endif 1273 1274 /* 1275 * Setup dynamic sysctl's now that country code and 1276 * regdomain are available from the hal. 1277 */ 1278 ath_sysctlattach(sc); 1279 ath_sysctl_stats_attach(sc); 1280 ath_sysctl_hal_attach(sc); 1281 1282 if (bootverbose) 1283 ieee80211_announce(ic); 1284 ath_announce(sc); 1285 1286 /* 1287 * Put it to sleep for now. 1288 */ 1289 ATH_LOCK(sc); 1290 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 1291 ATH_UNLOCK(sc); 1292 1293 return 0; 1294 bad2: 1295 ath_tx_cleanup(sc); 1296 ath_desc_free(sc); 1297 ath_txdma_teardown(sc); 1298 ath_rxdma_teardown(sc); 1299 bad: 1300 if (ah) 1301 ath_hal_detach(ah); 1302 sc->sc_invalid = 1; 1303 return error; 1304 } 1305 1306 int 1307 ath_detach(struct ath_softc *sc) 1308 { 1309 1310 /* 1311 * NB: the order of these is important: 1312 * o stop the chip so no more interrupts will fire 1313 * o call the 802.11 layer before detaching the hal to 1314 * insure callbacks into the driver to delete global 1315 * key cache entries can be handled 1316 * o free the taskqueue which drains any pending tasks 1317 * o reclaim the tx queue data structures after calling 1318 * the 802.11 layer as we'll get called back to reclaim 1319 * node state and potentially want to use them 1320 * o to cleanup the tx queues the hal is called, so detach 1321 * it last 1322 * Other than that, it's straightforward... 1323 */ 1324 1325 /* 1326 * XXX Wake the hardware up first. ath_stop() will still 1327 * wake it up first, but I'd rather do it here just to 1328 * ensure it's awake. 1329 */ 1330 ATH_LOCK(sc); 1331 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1332 ath_power_setpower(sc, HAL_PM_AWAKE); 1333 1334 /* 1335 * Stop things cleanly. 1336 */ 1337 ath_stop(sc); 1338 ATH_UNLOCK(sc); 1339 1340 ieee80211_ifdetach(&sc->sc_ic); 1341 taskqueue_free(sc->sc_tq); 1342 #ifdef ATH_TX99_DIAG 1343 if (sc->sc_tx99 != NULL) 1344 sc->sc_tx99->detach(sc->sc_tx99); 1345 #endif 1346 ath_rate_detach(sc->sc_rc); 1347 #ifdef ATH_DEBUG_ALQ 1348 if_ath_alq_tidyup(&sc->sc_alq); 1349 #endif 1350 ath_lna_div_detach(sc); 1351 ath_btcoex_detach(sc); 1352 ath_spectral_detach(sc); 1353 ath_dfs_detach(sc); 1354 ath_desc_free(sc); 1355 ath_txdma_teardown(sc); 1356 ath_rxdma_teardown(sc); 1357 ath_tx_cleanup(sc); 1358 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1359 1360 return 0; 1361 } 1362 1363 /* 1364 * MAC address handling for multiple BSS on the same radio. 1365 * The first vap uses the MAC address from the EEPROM. For 1366 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1367 * address and use the next six bits as an index. 1368 */ 1369 static void 1370 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1371 { 1372 int i; 1373 1374 if (clone && sc->sc_hasbmask) { 1375 /* NB: we only do this if h/w supports multiple bssid */ 1376 for (i = 0; i < 8; i++) 1377 if ((sc->sc_bssidmask & (1<<i)) == 0) 1378 break; 1379 if (i != 0) 1380 mac[0] |= (i << 2)|0x2; 1381 } else 1382 i = 0; 1383 sc->sc_bssidmask |= 1<<i; 1384 sc->sc_hwbssidmask[0] &= ~mac[0]; 1385 if (i == 0) 1386 sc->sc_nbssid0++; 1387 } 1388 1389 static void 1390 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1391 { 1392 int i = mac[0] >> 2; 1393 uint8_t mask; 1394 1395 if (i != 0 || --sc->sc_nbssid0 == 0) { 1396 sc->sc_bssidmask &= ~(1<<i); 1397 /* recalculate bssid mask from remaining addresses */ 1398 mask = 0xff; 1399 for (i = 1; i < 8; i++) 1400 if (sc->sc_bssidmask & (1<<i)) 1401 mask &= ~((i<<2)|0x2); 1402 sc->sc_hwbssidmask[0] |= mask; 1403 } 1404 } 1405 1406 /* 1407 * Assign a beacon xmit slot. We try to space out 1408 * assignments so when beacons are staggered the 1409 * traffic coming out of the cab q has maximal time 1410 * to go out before the next beacon is scheduled. 1411 */ 1412 static int 1413 assign_bslot(struct ath_softc *sc) 1414 { 1415 u_int slot, free; 1416 1417 free = 0; 1418 for (slot = 0; slot < ATH_BCBUF; slot++) 1419 if (sc->sc_bslot[slot] == NULL) { 1420 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1421 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1422 return slot; 1423 free = slot; 1424 /* NB: keep looking for a double slot */ 1425 } 1426 return free; 1427 } 1428 1429 static struct ieee80211vap * 1430 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1431 enum ieee80211_opmode opmode, int flags, 1432 const uint8_t bssid[IEEE80211_ADDR_LEN], 1433 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1434 { 1435 struct ath_softc *sc = ic->ic_softc; 1436 struct ath_vap *avp; 1437 struct ieee80211vap *vap; 1438 uint8_t mac[IEEE80211_ADDR_LEN]; 1439 int needbeacon, error; 1440 enum ieee80211_opmode ic_opmode; 1441 1442 avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1443 needbeacon = 0; 1444 IEEE80211_ADDR_COPY(mac, mac0); 1445 1446 ATH_LOCK(sc); 1447 ic_opmode = opmode; /* default to opmode of new vap */ 1448 switch (opmode) { 1449 case IEEE80211_M_STA: 1450 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1451 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1452 goto bad; 1453 } 1454 if (sc->sc_nvaps) { 1455 /* 1456 * With multiple vaps we must fall back 1457 * to s/w beacon miss handling. 1458 */ 1459 flags |= IEEE80211_CLONE_NOBEACONS; 1460 } 1461 if (flags & IEEE80211_CLONE_NOBEACONS) { 1462 /* 1463 * Station mode w/o beacons are implemented w/ AP mode. 1464 */ 1465 ic_opmode = IEEE80211_M_HOSTAP; 1466 } 1467 break; 1468 case IEEE80211_M_IBSS: 1469 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1470 device_printf(sc->sc_dev, 1471 "only 1 ibss vap supported\n"); 1472 goto bad; 1473 } 1474 needbeacon = 1; 1475 break; 1476 case IEEE80211_M_AHDEMO: 1477 #ifdef IEEE80211_SUPPORT_TDMA 1478 if (flags & IEEE80211_CLONE_TDMA) { 1479 if (sc->sc_nvaps != 0) { 1480 device_printf(sc->sc_dev, 1481 "only 1 tdma vap supported\n"); 1482 goto bad; 1483 } 1484 needbeacon = 1; 1485 flags |= IEEE80211_CLONE_NOBEACONS; 1486 } 1487 /* fall thru... */ 1488 #endif 1489 case IEEE80211_M_MONITOR: 1490 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1491 /* 1492 * Adopt existing mode. Adding a monitor or ahdemo 1493 * vap to an existing configuration is of dubious 1494 * value but should be ok. 1495 */ 1496 /* XXX not right for monitor mode */ 1497 ic_opmode = ic->ic_opmode; 1498 } 1499 break; 1500 case IEEE80211_M_HOSTAP: 1501 case IEEE80211_M_MBSS: 1502 needbeacon = 1; 1503 break; 1504 case IEEE80211_M_WDS: 1505 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1506 device_printf(sc->sc_dev, 1507 "wds not supported in sta mode\n"); 1508 goto bad; 1509 } 1510 /* 1511 * Silently remove any request for a unique 1512 * bssid; WDS vap's always share the local 1513 * mac address. 1514 */ 1515 flags &= ~IEEE80211_CLONE_BSSID; 1516 if (sc->sc_nvaps == 0) 1517 ic_opmode = IEEE80211_M_HOSTAP; 1518 else 1519 ic_opmode = ic->ic_opmode; 1520 break; 1521 default: 1522 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1523 goto bad; 1524 } 1525 /* 1526 * Check that a beacon buffer is available; the code below assumes it. 1527 */ 1528 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1529 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1530 goto bad; 1531 } 1532 1533 /* STA, AHDEMO? */ 1534 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1535 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1536 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1537 } 1538 1539 vap = &avp->av_vap; 1540 /* XXX can't hold mutex across if_alloc */ 1541 ATH_UNLOCK(sc); 1542 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1543 ATH_LOCK(sc); 1544 if (error != 0) { 1545 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1546 __func__, error); 1547 goto bad2; 1548 } 1549 1550 /* h/w crypto support */ 1551 vap->iv_key_alloc = ath_key_alloc; 1552 vap->iv_key_delete = ath_key_delete; 1553 vap->iv_key_set = ath_key_set; 1554 vap->iv_key_update_begin = ath_key_update_begin; 1555 vap->iv_key_update_end = ath_key_update_end; 1556 1557 /* override various methods */ 1558 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1559 vap->iv_recv_mgmt = ath_recv_mgmt; 1560 vap->iv_reset = ath_reset_vap; 1561 vap->iv_update_beacon = ath_beacon_update; 1562 avp->av_newstate = vap->iv_newstate; 1563 vap->iv_newstate = ath_newstate; 1564 avp->av_bmiss = vap->iv_bmiss; 1565 vap->iv_bmiss = ath_bmiss_vap; 1566 1567 avp->av_node_ps = vap->iv_node_ps; 1568 vap->iv_node_ps = ath_node_powersave; 1569 1570 avp->av_set_tim = vap->iv_set_tim; 1571 vap->iv_set_tim = ath_node_set_tim; 1572 1573 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1574 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1575 1576 /* Set default parameters */ 1577 1578 /* 1579 * Anything earlier than some AR9300 series MACs don't 1580 * support a smaller MPDU density. 1581 */ 1582 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1583 /* 1584 * All NICs can handle the maximum size, however 1585 * AR5416 based MACs can only TX aggregates w/ RTS 1586 * protection when the total aggregate size is <= 8k. 1587 * However, for now that's enforced by the TX path. 1588 */ 1589 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1590 1591 avp->av_bslot = -1; 1592 if (needbeacon) { 1593 /* 1594 * Allocate beacon state and setup the q for buffered 1595 * multicast frames. We know a beacon buffer is 1596 * available because we checked above. 1597 */ 1598 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1599 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1600 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1601 /* 1602 * Assign the vap to a beacon xmit slot. As above 1603 * this cannot fail to find a free one. 1604 */ 1605 avp->av_bslot = assign_bslot(sc); 1606 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1607 ("beacon slot %u not empty", avp->av_bslot)); 1608 sc->sc_bslot[avp->av_bslot] = vap; 1609 sc->sc_nbcnvaps++; 1610 } 1611 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1612 /* 1613 * Multple vaps are to transmit beacons and we 1614 * have h/w support for TSF adjusting; enable 1615 * use of staggered beacons. 1616 */ 1617 sc->sc_stagbeacons = 1; 1618 } 1619 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1620 } 1621 1622 ic->ic_opmode = ic_opmode; 1623 if (opmode != IEEE80211_M_WDS) { 1624 sc->sc_nvaps++; 1625 if (opmode == IEEE80211_M_STA) 1626 sc->sc_nstavaps++; 1627 if (opmode == IEEE80211_M_MBSS) 1628 sc->sc_nmeshvaps++; 1629 } 1630 switch (ic_opmode) { 1631 case IEEE80211_M_IBSS: 1632 sc->sc_opmode = HAL_M_IBSS; 1633 break; 1634 case IEEE80211_M_STA: 1635 sc->sc_opmode = HAL_M_STA; 1636 break; 1637 case IEEE80211_M_AHDEMO: 1638 #ifdef IEEE80211_SUPPORT_TDMA 1639 if (vap->iv_caps & IEEE80211_C_TDMA) { 1640 sc->sc_tdma = 1; 1641 /* NB: disable tsf adjust */ 1642 sc->sc_stagbeacons = 0; 1643 } 1644 /* 1645 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1646 * just ap mode. 1647 */ 1648 /* fall thru... */ 1649 #endif 1650 case IEEE80211_M_HOSTAP: 1651 case IEEE80211_M_MBSS: 1652 sc->sc_opmode = HAL_M_HOSTAP; 1653 break; 1654 case IEEE80211_M_MONITOR: 1655 sc->sc_opmode = HAL_M_MONITOR; 1656 break; 1657 default: 1658 /* XXX should not happen */ 1659 break; 1660 } 1661 if (sc->sc_hastsfadd) { 1662 /* 1663 * Configure whether or not TSF adjust should be done. 1664 */ 1665 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1666 } 1667 if (flags & IEEE80211_CLONE_NOBEACONS) { 1668 /* 1669 * Enable s/w beacon miss handling. 1670 */ 1671 sc->sc_swbmiss = 1; 1672 } 1673 ATH_UNLOCK(sc); 1674 1675 /* complete setup */ 1676 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status, 1677 mac); 1678 return vap; 1679 bad2: 1680 reclaim_address(sc, mac); 1681 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1682 bad: 1683 free(avp, M_80211_VAP); 1684 ATH_UNLOCK(sc); 1685 return NULL; 1686 } 1687 1688 static void 1689 ath_vap_delete(struct ieee80211vap *vap) 1690 { 1691 struct ieee80211com *ic = vap->iv_ic; 1692 struct ath_softc *sc = ic->ic_softc; 1693 struct ath_hal *ah = sc->sc_ah; 1694 struct ath_vap *avp = ATH_VAP(vap); 1695 1696 ATH_LOCK(sc); 1697 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1698 ATH_UNLOCK(sc); 1699 1700 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1701 if (sc->sc_running) { 1702 /* 1703 * Quiesce the hardware while we remove the vap. In 1704 * particular we need to reclaim all references to 1705 * the vap state by any frames pending on the tx queues. 1706 */ 1707 ath_hal_intrset(ah, 0); /* disable interrupts */ 1708 /* XXX Do all frames from all vaps/nodes need draining here? */ 1709 ath_stoprecv(sc, 1); /* stop recv side */ 1710 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1711 } 1712 1713 /* .. leave the hardware awake for now. */ 1714 1715 ieee80211_vap_detach(vap); 1716 1717 /* 1718 * XXX Danger Will Robinson! Danger! 1719 * 1720 * Because ieee80211_vap_detach() can queue a frame (the station 1721 * diassociate message?) after we've drained the TXQ and 1722 * flushed the software TXQ, we will end up with a frame queued 1723 * to a node whose vap is about to be freed. 1724 * 1725 * To work around this, flush the hardware/software again. 1726 * This may be racy - the ath task may be running and the packet 1727 * may be being scheduled between sw->hw txq. Tsk. 1728 * 1729 * TODO: figure out why a new node gets allocated somewhere around 1730 * here (after the ath_tx_swq() call; and after an ath_stop() 1731 * call!) 1732 */ 1733 1734 ath_draintxq(sc, ATH_RESET_DEFAULT); 1735 1736 ATH_LOCK(sc); 1737 /* 1738 * Reclaim beacon state. Note this must be done before 1739 * the vap instance is reclaimed as we may have a reference 1740 * to it in the buffer for the beacon frame. 1741 */ 1742 if (avp->av_bcbuf != NULL) { 1743 if (avp->av_bslot != -1) { 1744 sc->sc_bslot[avp->av_bslot] = NULL; 1745 sc->sc_nbcnvaps--; 1746 } 1747 ath_beacon_return(sc, avp->av_bcbuf); 1748 avp->av_bcbuf = NULL; 1749 if (sc->sc_nbcnvaps == 0) { 1750 sc->sc_stagbeacons = 0; 1751 if (sc->sc_hastsfadd) 1752 ath_hal_settsfadjust(sc->sc_ah, 0); 1753 } 1754 /* 1755 * Reclaim any pending mcast frames for the vap. 1756 */ 1757 ath_tx_draintxq(sc, &avp->av_mcastq); 1758 } 1759 /* 1760 * Update bookkeeping. 1761 */ 1762 if (vap->iv_opmode == IEEE80211_M_STA) { 1763 sc->sc_nstavaps--; 1764 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1765 sc->sc_swbmiss = 0; 1766 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1767 vap->iv_opmode == IEEE80211_M_MBSS) { 1768 reclaim_address(sc, vap->iv_myaddr); 1769 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1770 if (vap->iv_opmode == IEEE80211_M_MBSS) 1771 sc->sc_nmeshvaps--; 1772 } 1773 if (vap->iv_opmode != IEEE80211_M_WDS) 1774 sc->sc_nvaps--; 1775 #ifdef IEEE80211_SUPPORT_TDMA 1776 /* TDMA operation ceases when the last vap is destroyed */ 1777 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1778 sc->sc_tdma = 0; 1779 sc->sc_swbmiss = 0; 1780 } 1781 #endif 1782 free(avp, M_80211_VAP); 1783 1784 if (sc->sc_running) { 1785 /* 1786 * Restart rx+tx machines if still running (RUNNING will 1787 * be reset if we just destroyed the last vap). 1788 */ 1789 if (ath_startrecv(sc) != 0) 1790 device_printf(sc->sc_dev, 1791 "%s: unable to restart recv logic\n", __func__); 1792 if (sc->sc_beacons) { /* restart beacons */ 1793 #ifdef IEEE80211_SUPPORT_TDMA 1794 if (sc->sc_tdma) 1795 ath_tdma_config(sc, NULL); 1796 else 1797 #endif 1798 ath_beacon_config(sc, NULL); 1799 } 1800 ath_hal_intrset(ah, sc->sc_imask); 1801 } 1802 1803 /* Ok, let the hardware asleep. */ 1804 ath_power_restore_power_state(sc); 1805 ATH_UNLOCK(sc); 1806 } 1807 1808 void 1809 ath_suspend(struct ath_softc *sc) 1810 { 1811 struct ieee80211com *ic = &sc->sc_ic; 1812 1813 sc->sc_resume_up = ic->ic_nrunning != 0; 1814 1815 ieee80211_suspend_all(ic); 1816 /* 1817 * NB: don't worry about putting the chip in low power 1818 * mode; pci will power off our socket on suspend and 1819 * CardBus detaches the device. 1820 * 1821 * XXX TODO: well, that's great, except for non-cardbus 1822 * devices! 1823 */ 1824 1825 /* 1826 * XXX This doesn't wait until all pending taskqueue 1827 * items and parallel transmit/receive/other threads 1828 * are running! 1829 */ 1830 ath_hal_intrset(sc->sc_ah, 0); 1831 taskqueue_block(sc->sc_tq); 1832 1833 ATH_LOCK(sc); 1834 callout_stop(&sc->sc_cal_ch); 1835 ATH_UNLOCK(sc); 1836 1837 /* 1838 * XXX ensure sc_invalid is 1 1839 */ 1840 1841 /* Disable the PCIe PHY, complete with workarounds */ 1842 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1843 } 1844 1845 /* 1846 * Reset the key cache since some parts do not reset the 1847 * contents on resume. First we clear all entries, then 1848 * re-load keys that the 802.11 layer assumes are setup 1849 * in h/w. 1850 */ 1851 static void 1852 ath_reset_keycache(struct ath_softc *sc) 1853 { 1854 struct ieee80211com *ic = &sc->sc_ic; 1855 struct ath_hal *ah = sc->sc_ah; 1856 int i; 1857 1858 ATH_LOCK(sc); 1859 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1860 for (i = 0; i < sc->sc_keymax; i++) 1861 ath_hal_keyreset(ah, i); 1862 ath_power_restore_power_state(sc); 1863 ATH_UNLOCK(sc); 1864 ieee80211_crypto_reload_keys(ic); 1865 } 1866 1867 /* 1868 * Fetch the current chainmask configuration based on the current 1869 * operating channel and options. 1870 */ 1871 static void 1872 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1873 { 1874 1875 /* 1876 * Set TX chainmask to the currently configured chainmask; 1877 * the TX chainmask depends upon the current operating mode. 1878 */ 1879 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1880 if (IEEE80211_IS_CHAN_HT(chan)) { 1881 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1882 } else { 1883 sc->sc_cur_txchainmask = 1; 1884 } 1885 1886 DPRINTF(sc, ATH_DEBUG_RESET, 1887 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1888 __func__, 1889 sc->sc_cur_txchainmask, 1890 sc->sc_cur_rxchainmask); 1891 } 1892 1893 void 1894 ath_resume(struct ath_softc *sc) 1895 { 1896 struct ieee80211com *ic = &sc->sc_ic; 1897 struct ath_hal *ah = sc->sc_ah; 1898 HAL_STATUS status; 1899 1900 ath_hal_enablepcie(ah, 0, 0); 1901 1902 /* 1903 * Must reset the chip before we reload the 1904 * keycache as we were powered down on suspend. 1905 */ 1906 ath_update_chainmasks(sc, 1907 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1908 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1909 sc->sc_cur_rxchainmask); 1910 1911 /* Ensure we set the current power state to on */ 1912 ATH_LOCK(sc); 1913 ath_power_setselfgen(sc, HAL_PM_AWAKE); 1914 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1915 ath_power_setpower(sc, HAL_PM_AWAKE); 1916 ATH_UNLOCK(sc); 1917 1918 ath_hal_reset(ah, sc->sc_opmode, 1919 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1920 AH_FALSE, HAL_RESET_NORMAL, &status); 1921 ath_reset_keycache(sc); 1922 1923 ATH_RX_LOCK(sc); 1924 sc->sc_rx_stopped = 1; 1925 sc->sc_rx_resetted = 1; 1926 ATH_RX_UNLOCK(sc); 1927 1928 /* Let DFS at it in case it's a DFS channel */ 1929 ath_dfs_radar_enable(sc, ic->ic_curchan); 1930 1931 /* Let spectral at in case spectral is enabled */ 1932 ath_spectral_enable(sc, ic->ic_curchan); 1933 1934 /* 1935 * Let bluetooth coexistence at in case it's needed for this channel 1936 */ 1937 ath_btcoex_enable(sc, ic->ic_curchan); 1938 1939 /* 1940 * If we're doing TDMA, enforce the TXOP limitation for chips that 1941 * support it. 1942 */ 1943 if (sc->sc_hasenforcetxop && sc->sc_tdma) 1944 ath_hal_setenforcetxop(sc->sc_ah, 1); 1945 else 1946 ath_hal_setenforcetxop(sc->sc_ah, 0); 1947 1948 /* Restore the LED configuration */ 1949 ath_led_config(sc); 1950 ath_hal_setledstate(ah, HAL_LED_INIT); 1951 1952 if (sc->sc_resume_up) 1953 ieee80211_resume_all(ic); 1954 1955 ATH_LOCK(sc); 1956 ath_power_restore_power_state(sc); 1957 ATH_UNLOCK(sc); 1958 1959 /* XXX beacons ? */ 1960 } 1961 1962 void 1963 ath_shutdown(struct ath_softc *sc) 1964 { 1965 1966 ATH_LOCK(sc); 1967 ath_stop(sc); 1968 ATH_UNLOCK(sc); 1969 /* NB: no point powering down chip as we're about to reboot */ 1970 } 1971 1972 /* 1973 * Interrupt handler. Most of the actual processing is deferred. 1974 */ 1975 void 1976 ath_intr(void *arg) 1977 { 1978 struct ath_softc *sc = arg; 1979 struct ath_hal *ah = sc->sc_ah; 1980 HAL_INT status = 0; 1981 uint32_t txqs; 1982 1983 /* 1984 * If we're inside a reset path, just print a warning and 1985 * clear the ISR. The reset routine will finish it for us. 1986 */ 1987 ATH_PCU_LOCK(sc); 1988 if (sc->sc_inreset_cnt) { 1989 HAL_INT status; 1990 ath_hal_getisr(ah, &status); /* clear ISR */ 1991 ath_hal_intrset(ah, 0); /* disable further intr's */ 1992 DPRINTF(sc, ATH_DEBUG_ANY, 1993 "%s: in reset, ignoring: status=0x%x\n", 1994 __func__, status); 1995 ATH_PCU_UNLOCK(sc); 1996 return; 1997 } 1998 1999 if (sc->sc_invalid) { 2000 /* 2001 * The hardware is not ready/present, don't touch anything. 2002 * Note this can happen early on if the IRQ is shared. 2003 */ 2004 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 2005 ATH_PCU_UNLOCK(sc); 2006 return; 2007 } 2008 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 2009 ATH_PCU_UNLOCK(sc); 2010 return; 2011 } 2012 2013 ATH_LOCK(sc); 2014 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2015 ATH_UNLOCK(sc); 2016 2017 if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) { 2018 HAL_INT status; 2019 2020 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n", 2021 __func__, sc->sc_ic.ic_nrunning, sc->sc_running); 2022 ath_hal_getisr(ah, &status); /* clear ISR */ 2023 ath_hal_intrset(ah, 0); /* disable further intr's */ 2024 ATH_PCU_UNLOCK(sc); 2025 2026 ATH_LOCK(sc); 2027 ath_power_restore_power_state(sc); 2028 ATH_UNLOCK(sc); 2029 return; 2030 } 2031 2032 /* 2033 * Figure out the reason(s) for the interrupt. Note 2034 * that the hal returns a pseudo-ISR that may include 2035 * bits we haven't explicitly enabled so we mask the 2036 * value to insure we only process bits we requested. 2037 */ 2038 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 2039 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 2040 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 2041 #ifdef ATH_DEBUG_ALQ 2042 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 2043 ah->ah_syncstate); 2044 #endif /* ATH_DEBUG_ALQ */ 2045 #ifdef ATH_KTR_INTR_DEBUG 2046 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 2047 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 2048 ah->ah_intrstate[0], 2049 ah->ah_intrstate[1], 2050 ah->ah_intrstate[2], 2051 ah->ah_intrstate[3], 2052 ah->ah_intrstate[6]); 2053 #endif 2054 2055 /* Squirrel away SYNC interrupt debugging */ 2056 if (ah->ah_syncstate != 0) { 2057 int i; 2058 for (i = 0; i < 32; i++) 2059 if (ah->ah_syncstate & (i << i)) 2060 sc->sc_intr_stats.sync_intr[i]++; 2061 } 2062 2063 status &= sc->sc_imask; /* discard unasked for bits */ 2064 2065 /* Short-circuit un-handled interrupts */ 2066 if (status == 0x0) { 2067 ATH_PCU_UNLOCK(sc); 2068 2069 ATH_LOCK(sc); 2070 ath_power_restore_power_state(sc); 2071 ATH_UNLOCK(sc); 2072 2073 return; 2074 } 2075 2076 /* 2077 * Take a note that we're inside the interrupt handler, so 2078 * the reset routines know to wait. 2079 */ 2080 sc->sc_intr_cnt++; 2081 ATH_PCU_UNLOCK(sc); 2082 2083 /* 2084 * Handle the interrupt. We won't run concurrent with the reset 2085 * or channel change routines as they'll wait for sc_intr_cnt 2086 * to be 0 before continuing. 2087 */ 2088 if (status & HAL_INT_FATAL) { 2089 sc->sc_stats.ast_hardware++; 2090 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 2091 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 2092 } else { 2093 if (status & HAL_INT_SWBA) { 2094 /* 2095 * Software beacon alert--time to send a beacon. 2096 * Handle beacon transmission directly; deferring 2097 * this is too slow to meet timing constraints 2098 * under load. 2099 */ 2100 #ifdef IEEE80211_SUPPORT_TDMA 2101 if (sc->sc_tdma) { 2102 if (sc->sc_tdmaswba == 0) { 2103 struct ieee80211com *ic = &sc->sc_ic; 2104 struct ieee80211vap *vap = 2105 TAILQ_FIRST(&ic->ic_vaps); 2106 ath_tdma_beacon_send(sc, vap); 2107 sc->sc_tdmaswba = 2108 vap->iv_tdma->tdma_bintval; 2109 } else 2110 sc->sc_tdmaswba--; 2111 } else 2112 #endif 2113 { 2114 ath_beacon_proc(sc, 0); 2115 #ifdef IEEE80211_SUPPORT_SUPERG 2116 /* 2117 * Schedule the rx taskq in case there's no 2118 * traffic so any frames held on the staging 2119 * queue are aged and potentially flushed. 2120 */ 2121 sc->sc_rx.recv_sched(sc, 1); 2122 #endif 2123 } 2124 } 2125 if (status & HAL_INT_RXEOL) { 2126 int imask; 2127 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2128 if (! sc->sc_isedma) { 2129 ATH_PCU_LOCK(sc); 2130 /* 2131 * NB: the hardware should re-read the link when 2132 * RXE bit is written, but it doesn't work at 2133 * least on older hardware revs. 2134 */ 2135 sc->sc_stats.ast_rxeol++; 2136 /* 2137 * Disable RXEOL/RXORN - prevent an interrupt 2138 * storm until the PCU logic can be reset. 2139 * In case the interface is reset some other 2140 * way before "sc_kickpcu" is called, don't 2141 * modify sc_imask - that way if it is reset 2142 * by a call to ath_reset() somehow, the 2143 * interrupt mask will be correctly reprogrammed. 2144 */ 2145 imask = sc->sc_imask; 2146 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2147 ath_hal_intrset(ah, imask); 2148 /* 2149 * Only blank sc_rxlink if we've not yet kicked 2150 * the PCU. 2151 * 2152 * This isn't entirely correct - the correct solution 2153 * would be to have a PCU lock and engage that for 2154 * the duration of the PCU fiddling; which would include 2155 * running the RX process. Otherwise we could end up 2156 * messing up the RX descriptor chain and making the 2157 * RX desc list much shorter. 2158 */ 2159 if (! sc->sc_kickpcu) 2160 sc->sc_rxlink = NULL; 2161 sc->sc_kickpcu = 1; 2162 ATH_PCU_UNLOCK(sc); 2163 } 2164 /* 2165 * Enqueue an RX proc to handle whatever 2166 * is in the RX queue. 2167 * This will then kick the PCU if required. 2168 */ 2169 sc->sc_rx.recv_sched(sc, 1); 2170 } 2171 if (status & HAL_INT_TXURN) { 2172 sc->sc_stats.ast_txurn++; 2173 /* bump tx trigger level */ 2174 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2175 } 2176 /* 2177 * Handle both the legacy and RX EDMA interrupt bits. 2178 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2179 */ 2180 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2181 sc->sc_stats.ast_rx_intr++; 2182 sc->sc_rx.recv_sched(sc, 1); 2183 } 2184 if (status & HAL_INT_TX) { 2185 sc->sc_stats.ast_tx_intr++; 2186 /* 2187 * Grab all the currently set bits in the HAL txq bitmap 2188 * and blank them. This is the only place we should be 2189 * doing this. 2190 */ 2191 if (! sc->sc_isedma) { 2192 ATH_PCU_LOCK(sc); 2193 txqs = 0xffffffff; 2194 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2195 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2196 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2197 txqs, 2198 sc->sc_txq_active, 2199 sc->sc_txq_active | txqs); 2200 sc->sc_txq_active |= txqs; 2201 ATH_PCU_UNLOCK(sc); 2202 } 2203 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2204 } 2205 if (status & HAL_INT_BMISS) { 2206 sc->sc_stats.ast_bmiss++; 2207 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2208 } 2209 if (status & HAL_INT_GTT) 2210 sc->sc_stats.ast_tx_timeout++; 2211 if (status & HAL_INT_CST) 2212 sc->sc_stats.ast_tx_cst++; 2213 if (status & HAL_INT_MIB) { 2214 sc->sc_stats.ast_mib++; 2215 ATH_PCU_LOCK(sc); 2216 /* 2217 * Disable interrupts until we service the MIB 2218 * interrupt; otherwise it will continue to fire. 2219 */ 2220 ath_hal_intrset(ah, 0); 2221 /* 2222 * Let the hal handle the event. We assume it will 2223 * clear whatever condition caused the interrupt. 2224 */ 2225 ath_hal_mibevent(ah, &sc->sc_halstats); 2226 /* 2227 * Don't reset the interrupt if we've just 2228 * kicked the PCU, or we may get a nested 2229 * RXEOL before the rxproc has had a chance 2230 * to run. 2231 */ 2232 if (sc->sc_kickpcu == 0) 2233 ath_hal_intrset(ah, sc->sc_imask); 2234 ATH_PCU_UNLOCK(sc); 2235 } 2236 if (status & HAL_INT_RXORN) { 2237 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2238 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2239 sc->sc_stats.ast_rxorn++; 2240 } 2241 if (status & HAL_INT_TSFOOR) { 2242 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2243 sc->sc_syncbeacon = 1; 2244 } 2245 } 2246 ATH_PCU_LOCK(sc); 2247 sc->sc_intr_cnt--; 2248 ATH_PCU_UNLOCK(sc); 2249 2250 ATH_LOCK(sc); 2251 ath_power_restore_power_state(sc); 2252 ATH_UNLOCK(sc); 2253 } 2254 2255 static void 2256 ath_fatal_proc(void *arg, int pending) 2257 { 2258 struct ath_softc *sc = arg; 2259 u_int32_t *state; 2260 u_int32_t len; 2261 void *sp; 2262 2263 if (sc->sc_invalid) 2264 return; 2265 2266 device_printf(sc->sc_dev, "hardware error; resetting\n"); 2267 /* 2268 * Fatal errors are unrecoverable. Typically these 2269 * are caused by DMA errors. Collect h/w state from 2270 * the hal so we can diagnose what's going on. 2271 */ 2272 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2273 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2274 state = sp; 2275 device_printf(sc->sc_dev, 2276 "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0], 2277 state[1] , state[2], state[3], state[4], state[5]); 2278 } 2279 ath_reset(sc, ATH_RESET_NOLOSS); 2280 } 2281 2282 static void 2283 ath_bmiss_vap(struct ieee80211vap *vap) 2284 { 2285 struct ath_softc *sc = vap->iv_ic->ic_softc; 2286 2287 /* 2288 * Workaround phantom bmiss interrupts by sanity-checking 2289 * the time of our last rx'd frame. If it is within the 2290 * beacon miss interval then ignore the interrupt. If it's 2291 * truly a bmiss we'll get another interrupt soon and that'll 2292 * be dispatched up for processing. Note this applies only 2293 * for h/w beacon miss events. 2294 */ 2295 2296 /* 2297 * XXX TODO: Just read the TSF during the interrupt path; 2298 * that way we don't have to wake up again just to read it 2299 * again. 2300 */ 2301 ATH_LOCK(sc); 2302 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2303 ATH_UNLOCK(sc); 2304 2305 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2306 u_int64_t lastrx = sc->sc_lastrx; 2307 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2308 /* XXX should take a locked ref to iv_bss */ 2309 u_int bmisstimeout = 2310 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2311 2312 DPRINTF(sc, ATH_DEBUG_BEACON, 2313 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2314 __func__, (unsigned long long) tsf, 2315 (unsigned long long)(tsf - lastrx), 2316 (unsigned long long) lastrx, bmisstimeout); 2317 2318 if (tsf - lastrx <= bmisstimeout) { 2319 sc->sc_stats.ast_bmiss_phantom++; 2320 2321 ATH_LOCK(sc); 2322 ath_power_restore_power_state(sc); 2323 ATH_UNLOCK(sc); 2324 2325 return; 2326 } 2327 } 2328 2329 /* 2330 * There's no need to keep the hardware awake during the call 2331 * to av_bmiss(). 2332 */ 2333 ATH_LOCK(sc); 2334 ath_power_restore_power_state(sc); 2335 ATH_UNLOCK(sc); 2336 2337 /* 2338 * Attempt to force a beacon resync. 2339 */ 2340 sc->sc_syncbeacon = 1; 2341 2342 ATH_VAP(vap)->av_bmiss(vap); 2343 } 2344 2345 /* XXX this needs a force wakeup! */ 2346 int 2347 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2348 { 2349 uint32_t rsize; 2350 void *sp; 2351 2352 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2353 return 0; 2354 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2355 *hangs = *(uint32_t *)sp; 2356 return 1; 2357 } 2358 2359 static void 2360 ath_bmiss_proc(void *arg, int pending) 2361 { 2362 struct ath_softc *sc = arg; 2363 uint32_t hangs; 2364 2365 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2366 2367 ATH_LOCK(sc); 2368 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2369 ATH_UNLOCK(sc); 2370 2371 ath_beacon_miss(sc); 2372 2373 /* 2374 * Do a reset upon any becaon miss event. 2375 * 2376 * It may be a non-recognised RX clear hang which needs a reset 2377 * to clear. 2378 */ 2379 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2380 ath_reset(sc, ATH_RESET_NOLOSS); 2381 device_printf(sc->sc_dev, 2382 "bb hang detected (0x%x), resetting\n", hangs); 2383 } else { 2384 ath_reset(sc, ATH_RESET_NOLOSS); 2385 ieee80211_beacon_miss(&sc->sc_ic); 2386 } 2387 2388 /* Force a beacon resync, in case they've drifted */ 2389 sc->sc_syncbeacon = 1; 2390 2391 ATH_LOCK(sc); 2392 ath_power_restore_power_state(sc); 2393 ATH_UNLOCK(sc); 2394 } 2395 2396 /* 2397 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2398 * calcs together with WME. If necessary disable the crypto 2399 * hardware and mark the 802.11 state so keys will be setup 2400 * with the MIC work done in software. 2401 */ 2402 static void 2403 ath_settkipmic(struct ath_softc *sc) 2404 { 2405 struct ieee80211com *ic = &sc->sc_ic; 2406 2407 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2408 if (ic->ic_flags & IEEE80211_F_WME) { 2409 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2410 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2411 } else { 2412 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2413 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2414 } 2415 } 2416 } 2417 2418 static int 2419 ath_init(struct ath_softc *sc) 2420 { 2421 struct ieee80211com *ic = &sc->sc_ic; 2422 struct ath_hal *ah = sc->sc_ah; 2423 HAL_STATUS status; 2424 2425 ATH_LOCK_ASSERT(sc); 2426 2427 /* 2428 * Force the sleep state awake. 2429 */ 2430 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2431 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2432 ath_power_setpower(sc, HAL_PM_AWAKE); 2433 2434 /* 2435 * Stop anything previously setup. This is safe 2436 * whether this is the first time through or not. 2437 */ 2438 ath_stop(sc); 2439 2440 /* 2441 * The basic interface to setting the hardware in a good 2442 * state is ``reset''. On return the hardware is known to 2443 * be powered up and with interrupts disabled. This must 2444 * be followed by initialization of the appropriate bits 2445 * and then setup of the interrupt mask. 2446 */ 2447 ath_settkipmic(sc); 2448 ath_update_chainmasks(sc, ic->ic_curchan); 2449 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2450 sc->sc_cur_rxchainmask); 2451 2452 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, 2453 HAL_RESET_NORMAL, &status)) { 2454 device_printf(sc->sc_dev, 2455 "unable to reset hardware; hal status %u\n", status); 2456 return (ENODEV); 2457 } 2458 2459 ATH_RX_LOCK(sc); 2460 sc->sc_rx_stopped = 1; 2461 sc->sc_rx_resetted = 1; 2462 ATH_RX_UNLOCK(sc); 2463 2464 ath_chan_change(sc, ic->ic_curchan); 2465 2466 /* Let DFS at it in case it's a DFS channel */ 2467 ath_dfs_radar_enable(sc, ic->ic_curchan); 2468 2469 /* Let spectral at in case spectral is enabled */ 2470 ath_spectral_enable(sc, ic->ic_curchan); 2471 2472 /* 2473 * Let bluetooth coexistence at in case it's needed for this channel 2474 */ 2475 ath_btcoex_enable(sc, ic->ic_curchan); 2476 2477 /* 2478 * If we're doing TDMA, enforce the TXOP limitation for chips that 2479 * support it. 2480 */ 2481 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2482 ath_hal_setenforcetxop(sc->sc_ah, 1); 2483 else 2484 ath_hal_setenforcetxop(sc->sc_ah, 0); 2485 2486 /* 2487 * Likewise this is set during reset so update 2488 * state cached in the driver. 2489 */ 2490 sc->sc_diversity = ath_hal_getdiversity(ah); 2491 sc->sc_lastlongcal = ticks; 2492 sc->sc_resetcal = 1; 2493 sc->sc_lastcalreset = 0; 2494 sc->sc_lastani = ticks; 2495 sc->sc_lastshortcal = ticks; 2496 sc->sc_doresetcal = AH_FALSE; 2497 /* 2498 * Beacon timers were cleared here; give ath_newstate() 2499 * a hint that the beacon timers should be poked when 2500 * things transition to the RUN state. 2501 */ 2502 sc->sc_beacons = 0; 2503 2504 /* 2505 * Setup the hardware after reset: the key cache 2506 * is filled as needed and the receive engine is 2507 * set going. Frame transmit is handled entirely 2508 * in the frame output path; there's nothing to do 2509 * here except setup the interrupt mask. 2510 */ 2511 if (ath_startrecv(sc) != 0) { 2512 device_printf(sc->sc_dev, "unable to start recv logic\n"); 2513 ath_power_restore_power_state(sc); 2514 return (ENODEV); 2515 } 2516 2517 /* 2518 * Enable interrupts. 2519 */ 2520 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2521 | HAL_INT_RXORN | HAL_INT_TXURN 2522 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2523 2524 /* 2525 * Enable RX EDMA bits. Note these overlap with 2526 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2527 */ 2528 if (sc->sc_isedma) 2529 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2530 2531 /* 2532 * If we're an EDMA NIC, we don't care about RXEOL. 2533 * Writing a new descriptor in will simply restart 2534 * RX DMA. 2535 */ 2536 if (! sc->sc_isedma) 2537 sc->sc_imask |= HAL_INT_RXEOL; 2538 2539 /* 2540 * Enable MIB interrupts when there are hardware phy counters. 2541 * Note we only do this (at the moment) for station mode. 2542 */ 2543 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2544 sc->sc_imask |= HAL_INT_MIB; 2545 2546 /* 2547 * XXX add capability for this. 2548 * 2549 * If we're in STA mode (and maybe IBSS?) then register for 2550 * TSFOOR interrupts. 2551 */ 2552 if (ic->ic_opmode == IEEE80211_M_STA) 2553 sc->sc_imask |= HAL_INT_TSFOOR; 2554 2555 /* Enable global TX timeout and carrier sense timeout if available */ 2556 if (ath_hal_gtxto_supported(ah)) 2557 sc->sc_imask |= HAL_INT_GTT; 2558 2559 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2560 __func__, sc->sc_imask); 2561 2562 sc->sc_running = 1; 2563 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2564 ath_hal_intrset(ah, sc->sc_imask); 2565 2566 ath_power_restore_power_state(sc); 2567 2568 return (0); 2569 } 2570 2571 static void 2572 ath_stop(struct ath_softc *sc) 2573 { 2574 struct ath_hal *ah = sc->sc_ah; 2575 2576 ATH_LOCK_ASSERT(sc); 2577 2578 /* 2579 * Wake the hardware up before fiddling with it. 2580 */ 2581 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2582 2583 if (sc->sc_running) { 2584 /* 2585 * Shutdown the hardware and driver: 2586 * reset 802.11 state machine 2587 * turn off timers 2588 * disable interrupts 2589 * turn off the radio 2590 * clear transmit machinery 2591 * clear receive machinery 2592 * drain and release tx queues 2593 * reclaim beacon resources 2594 * power down hardware 2595 * 2596 * Note that some of this work is not possible if the 2597 * hardware is gone (invalid). 2598 */ 2599 #ifdef ATH_TX99_DIAG 2600 if (sc->sc_tx99 != NULL) 2601 sc->sc_tx99->stop(sc->sc_tx99); 2602 #endif 2603 callout_stop(&sc->sc_wd_ch); 2604 sc->sc_wd_timer = 0; 2605 sc->sc_running = 0; 2606 if (!sc->sc_invalid) { 2607 if (sc->sc_softled) { 2608 callout_stop(&sc->sc_ledtimer); 2609 ath_hal_gpioset(ah, sc->sc_ledpin, 2610 !sc->sc_ledon); 2611 sc->sc_blinking = 0; 2612 } 2613 ath_hal_intrset(ah, 0); 2614 } 2615 /* XXX we should stop RX regardless of whether it's valid */ 2616 if (!sc->sc_invalid) { 2617 ath_stoprecv(sc, 1); 2618 ath_hal_phydisable(ah); 2619 } else 2620 sc->sc_rxlink = NULL; 2621 ath_draintxq(sc, ATH_RESET_DEFAULT); 2622 ath_beacon_free(sc); /* XXX not needed */ 2623 } 2624 2625 /* And now, restore the current power state */ 2626 ath_power_restore_power_state(sc); 2627 } 2628 2629 /* 2630 * Wait until all pending TX/RX has completed. 2631 * 2632 * This waits until all existing transmit, receive and interrupts 2633 * have completed. It's assumed that the caller has first 2634 * grabbed the reset lock so it doesn't try to do overlapping 2635 * chip resets. 2636 */ 2637 #define MAX_TXRX_ITERATIONS 100 2638 static void 2639 ath_txrx_stop_locked(struct ath_softc *sc) 2640 { 2641 int i = MAX_TXRX_ITERATIONS; 2642 2643 ATH_UNLOCK_ASSERT(sc); 2644 ATH_PCU_LOCK_ASSERT(sc); 2645 2646 /* 2647 * Sleep until all the pending operations have completed. 2648 * 2649 * The caller must ensure that reset has been incremented 2650 * or the pending operations may continue being queued. 2651 */ 2652 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2653 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2654 if (i <= 0) 2655 break; 2656 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2657 msecs_to_ticks(10)); 2658 i--; 2659 } 2660 2661 if (i <= 0) 2662 device_printf(sc->sc_dev, 2663 "%s: didn't finish after %d iterations\n", 2664 __func__, MAX_TXRX_ITERATIONS); 2665 } 2666 #undef MAX_TXRX_ITERATIONS 2667 2668 #if 0 2669 static void 2670 ath_txrx_stop(struct ath_softc *sc) 2671 { 2672 ATH_UNLOCK_ASSERT(sc); 2673 ATH_PCU_UNLOCK_ASSERT(sc); 2674 2675 ATH_PCU_LOCK(sc); 2676 ath_txrx_stop_locked(sc); 2677 ATH_PCU_UNLOCK(sc); 2678 } 2679 #endif 2680 2681 static void 2682 ath_txrx_start(struct ath_softc *sc) 2683 { 2684 2685 taskqueue_unblock(sc->sc_tq); 2686 } 2687 2688 /* 2689 * Grab the reset lock, and wait around until noone else 2690 * is trying to do anything with it. 2691 * 2692 * This is totally horrible but we can't hold this lock for 2693 * long enough to do TX/RX or we end up with net80211/ip stack 2694 * LORs and eventual deadlock. 2695 * 2696 * "dowait" signals whether to spin, waiting for the reset 2697 * lock count to reach 0. This should (for now) only be used 2698 * during the reset path, as the rest of the code may not 2699 * be locking-reentrant enough to behave correctly. 2700 * 2701 * Another, cleaner way should be found to serialise all of 2702 * these operations. 2703 */ 2704 #define MAX_RESET_ITERATIONS 25 2705 static int 2706 ath_reset_grablock(struct ath_softc *sc, int dowait) 2707 { 2708 int w = 0; 2709 int i = MAX_RESET_ITERATIONS; 2710 2711 ATH_PCU_LOCK_ASSERT(sc); 2712 do { 2713 if (sc->sc_inreset_cnt == 0) { 2714 w = 1; 2715 break; 2716 } 2717 if (dowait == 0) { 2718 w = 0; 2719 break; 2720 } 2721 ATH_PCU_UNLOCK(sc); 2722 /* 2723 * 1 tick is likely not enough time for long calibrations 2724 * to complete. So we should wait quite a while. 2725 */ 2726 pause("ath_reset_grablock", msecs_to_ticks(100)); 2727 i--; 2728 ATH_PCU_LOCK(sc); 2729 } while (i > 0); 2730 2731 /* 2732 * We always increment the refcounter, regardless 2733 * of whether we succeeded to get it in an exclusive 2734 * way. 2735 */ 2736 sc->sc_inreset_cnt++; 2737 2738 if (i <= 0) 2739 device_printf(sc->sc_dev, 2740 "%s: didn't finish after %d iterations\n", 2741 __func__, MAX_RESET_ITERATIONS); 2742 2743 if (w == 0) 2744 device_printf(sc->sc_dev, 2745 "%s: warning, recursive reset path!\n", 2746 __func__); 2747 2748 return w; 2749 } 2750 #undef MAX_RESET_ITERATIONS 2751 2752 /* 2753 * Reset the hardware w/o losing operational state. This is 2754 * basically a more efficient way of doing ath_stop, ath_init, 2755 * followed by state transitions to the current 802.11 2756 * operational state. Used to recover from various errors and 2757 * to reset or reload hardware state. 2758 */ 2759 int 2760 ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 2761 { 2762 struct ieee80211com *ic = &sc->sc_ic; 2763 struct ath_hal *ah = sc->sc_ah; 2764 HAL_STATUS status; 2765 int i; 2766 2767 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2768 2769 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2770 ATH_PCU_UNLOCK_ASSERT(sc); 2771 ATH_UNLOCK_ASSERT(sc); 2772 2773 /* Try to (stop any further TX/RX from occuring */ 2774 taskqueue_block(sc->sc_tq); 2775 2776 /* 2777 * Wake the hardware up. 2778 */ 2779 ATH_LOCK(sc); 2780 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2781 ATH_UNLOCK(sc); 2782 2783 ATH_PCU_LOCK(sc); 2784 2785 /* 2786 * Grab the reset lock before TX/RX is stopped. 2787 * 2788 * This is needed to ensure that when the TX/RX actually does finish, 2789 * no further TX/RX/reset runs in parallel with this. 2790 */ 2791 if (ath_reset_grablock(sc, 1) == 0) { 2792 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2793 __func__); 2794 } 2795 2796 /* disable interrupts */ 2797 ath_hal_intrset(ah, 0); 2798 2799 /* 2800 * Now, ensure that any in progress TX/RX completes before we 2801 * continue. 2802 */ 2803 ath_txrx_stop_locked(sc); 2804 2805 ATH_PCU_UNLOCK(sc); 2806 2807 /* 2808 * Regardless of whether we're doing a no-loss flush or 2809 * not, stop the PCU and handle what's in the RX queue. 2810 * That way frames aren't dropped which shouldn't be. 2811 */ 2812 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2813 ath_rx_flush(sc); 2814 2815 /* 2816 * Should now wait for pending TX/RX to complete 2817 * and block future ones from occuring. This needs to be 2818 * done before the TX queue is drained. 2819 */ 2820 ath_draintxq(sc, reset_type); /* stop xmit side */ 2821 2822 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2823 /* NB: indicate channel change so we do a full reset */ 2824 ath_update_chainmasks(sc, ic->ic_curchan); 2825 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2826 sc->sc_cur_rxchainmask); 2827 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, 2828 HAL_RESET_NORMAL, &status)) 2829 device_printf(sc->sc_dev, 2830 "%s: unable to reset hardware; hal status %u\n", 2831 __func__, status); 2832 sc->sc_diversity = ath_hal_getdiversity(ah); 2833 2834 ATH_RX_LOCK(sc); 2835 sc->sc_rx_stopped = 1; 2836 sc->sc_rx_resetted = 1; 2837 ATH_RX_UNLOCK(sc); 2838 2839 /* Let DFS at it in case it's a DFS channel */ 2840 ath_dfs_radar_enable(sc, ic->ic_curchan); 2841 2842 /* Let spectral at in case spectral is enabled */ 2843 ath_spectral_enable(sc, ic->ic_curchan); 2844 2845 /* 2846 * Let bluetooth coexistence at in case it's needed for this channel 2847 */ 2848 ath_btcoex_enable(sc, ic->ic_curchan); 2849 2850 /* 2851 * If we're doing TDMA, enforce the TXOP limitation for chips that 2852 * support it. 2853 */ 2854 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2855 ath_hal_setenforcetxop(sc->sc_ah, 1); 2856 else 2857 ath_hal_setenforcetxop(sc->sc_ah, 0); 2858 2859 if (ath_startrecv(sc) != 0) /* restart recv */ 2860 device_printf(sc->sc_dev, 2861 "%s: unable to start recv logic\n", __func__); 2862 /* 2863 * We may be doing a reset in response to an ioctl 2864 * that changes the channel so update any state that 2865 * might change as a result. 2866 */ 2867 ath_chan_change(sc, ic->ic_curchan); 2868 if (sc->sc_beacons) { /* restart beacons */ 2869 #ifdef IEEE80211_SUPPORT_TDMA 2870 if (sc->sc_tdma) 2871 ath_tdma_config(sc, NULL); 2872 else 2873 #endif 2874 ath_beacon_config(sc, NULL); 2875 } 2876 2877 /* 2878 * Release the reset lock and re-enable interrupts here. 2879 * If an interrupt was being processed in ath_intr(), 2880 * it would disable interrupts at this point. So we have 2881 * to atomically enable interrupts and decrement the 2882 * reset counter - this way ath_intr() doesn't end up 2883 * disabling interrupts without a corresponding enable 2884 * in the rest or channel change path. 2885 * 2886 * Grab the TX reference in case we need to transmit. 2887 * That way a parallel transmit doesn't. 2888 */ 2889 ATH_PCU_LOCK(sc); 2890 sc->sc_inreset_cnt--; 2891 sc->sc_txstart_cnt++; 2892 /* XXX only do this if sc_inreset_cnt == 0? */ 2893 ath_hal_intrset(ah, sc->sc_imask); 2894 ATH_PCU_UNLOCK(sc); 2895 2896 /* 2897 * TX and RX can be started here. If it were started with 2898 * sc_inreset_cnt > 0, the TX and RX path would abort. 2899 * Thus if this is a nested call through the reset or 2900 * channel change code, TX completion will occur but 2901 * RX completion and ath_start / ath_tx_start will not 2902 * run. 2903 */ 2904 2905 /* Restart TX/RX as needed */ 2906 ath_txrx_start(sc); 2907 2908 /* XXX TODO: we need to hold the tx refcount here! */ 2909 2910 /* Restart TX completion and pending TX */ 2911 if (reset_type == ATH_RESET_NOLOSS) { 2912 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2913 if (ATH_TXQ_SETUP(sc, i)) { 2914 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2915 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2916 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2917 2918 ATH_TX_LOCK(sc); 2919 ath_txq_sched(sc, &sc->sc_txq[i]); 2920 ATH_TX_UNLOCK(sc); 2921 } 2922 } 2923 } 2924 2925 ATH_LOCK(sc); 2926 ath_power_restore_power_state(sc); 2927 ATH_UNLOCK(sc); 2928 2929 ATH_PCU_LOCK(sc); 2930 sc->sc_txstart_cnt--; 2931 ATH_PCU_UNLOCK(sc); 2932 2933 /* Handle any frames in the TX queue */ 2934 /* 2935 * XXX should this be done by the caller, rather than 2936 * ath_reset() ? 2937 */ 2938 ath_tx_kick(sc); /* restart xmit */ 2939 return 0; 2940 } 2941 2942 static int 2943 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2944 { 2945 struct ieee80211com *ic = vap->iv_ic; 2946 struct ath_softc *sc = ic->ic_softc; 2947 struct ath_hal *ah = sc->sc_ah; 2948 2949 switch (cmd) { 2950 case IEEE80211_IOC_TXPOWER: 2951 /* 2952 * If per-packet TPC is enabled, then we have nothing 2953 * to do; otherwise we need to force the global limit. 2954 * All this can happen directly; no need to reset. 2955 */ 2956 if (!ath_hal_gettpc(ah)) 2957 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2958 return 0; 2959 } 2960 /* XXX? Full or NOLOSS? */ 2961 return ath_reset(sc, ATH_RESET_FULL); 2962 } 2963 2964 struct ath_buf * 2965 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2966 { 2967 struct ath_buf *bf; 2968 2969 ATH_TXBUF_LOCK_ASSERT(sc); 2970 2971 if (btype == ATH_BUFTYPE_MGMT) 2972 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2973 else 2974 bf = TAILQ_FIRST(&sc->sc_txbuf); 2975 2976 if (bf == NULL) { 2977 sc->sc_stats.ast_tx_getnobuf++; 2978 } else { 2979 if (bf->bf_flags & ATH_BUF_BUSY) { 2980 sc->sc_stats.ast_tx_getbusybuf++; 2981 bf = NULL; 2982 } 2983 } 2984 2985 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2986 if (btype == ATH_BUFTYPE_MGMT) 2987 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2988 else { 2989 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2990 sc->sc_txbuf_cnt--; 2991 2992 /* 2993 * This shuldn't happen; however just to be 2994 * safe print a warning and fudge the txbuf 2995 * count. 2996 */ 2997 if (sc->sc_txbuf_cnt < 0) { 2998 device_printf(sc->sc_dev, 2999 "%s: sc_txbuf_cnt < 0?\n", 3000 __func__); 3001 sc->sc_txbuf_cnt = 0; 3002 } 3003 } 3004 } else 3005 bf = NULL; 3006 3007 if (bf == NULL) { 3008 /* XXX should check which list, mgmt or otherwise */ 3009 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 3010 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 3011 "out of xmit buffers" : "xmit buffer busy"); 3012 return NULL; 3013 } 3014 3015 /* XXX TODO: should do this at buffer list initialisation */ 3016 /* XXX (then, ensure the buffer has the right flag set) */ 3017 bf->bf_flags = 0; 3018 if (btype == ATH_BUFTYPE_MGMT) 3019 bf->bf_flags |= ATH_BUF_MGMT; 3020 else 3021 bf->bf_flags &= (~ATH_BUF_MGMT); 3022 3023 /* Valid bf here; clear some basic fields */ 3024 bf->bf_next = NULL; /* XXX just to be sure */ 3025 bf->bf_last = NULL; /* XXX again, just to be sure */ 3026 bf->bf_comp = NULL; /* XXX again, just to be sure */ 3027 bzero(&bf->bf_state, sizeof(bf->bf_state)); 3028 3029 /* 3030 * Track the descriptor ID only if doing EDMA 3031 */ 3032 if (sc->sc_isedma) { 3033 bf->bf_descid = sc->sc_txbuf_descid; 3034 sc->sc_txbuf_descid++; 3035 } 3036 3037 return bf; 3038 } 3039 3040 /* 3041 * When retrying a software frame, buffers marked ATH_BUF_BUSY 3042 * can't be thrown back on the queue as they could still be 3043 * in use by the hardware. 3044 * 3045 * This duplicates the buffer, or returns NULL. 3046 * 3047 * The descriptor is also copied but the link pointers and 3048 * the DMA segments aren't copied; this frame should thus 3049 * be again passed through the descriptor setup/chain routines 3050 * so the link is correct. 3051 * 3052 * The caller must free the buffer using ath_freebuf(). 3053 */ 3054 struct ath_buf * 3055 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 3056 { 3057 struct ath_buf *tbf; 3058 3059 tbf = ath_getbuf(sc, 3060 (bf->bf_flags & ATH_BUF_MGMT) ? 3061 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 3062 if (tbf == NULL) 3063 return NULL; /* XXX failure? Why? */ 3064 3065 /* Copy basics */ 3066 tbf->bf_next = NULL; 3067 tbf->bf_nseg = bf->bf_nseg; 3068 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 3069 tbf->bf_status = bf->bf_status; 3070 tbf->bf_m = bf->bf_m; 3071 tbf->bf_node = bf->bf_node; 3072 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 3073 /* will be setup by the chain/setup function */ 3074 tbf->bf_lastds = NULL; 3075 /* for now, last == self */ 3076 tbf->bf_last = tbf; 3077 tbf->bf_comp = bf->bf_comp; 3078 3079 /* NOTE: DMA segments will be setup by the setup/chain functions */ 3080 3081 /* The caller has to re-init the descriptor + links */ 3082 3083 /* 3084 * Free the DMA mapping here, before we NULL the mbuf. 3085 * We must only call bus_dmamap_unload() once per mbuf chain 3086 * or behaviour is undefined. 3087 */ 3088 if (bf->bf_m != NULL) { 3089 /* 3090 * XXX is this POSTWRITE call required? 3091 */ 3092 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3093 BUS_DMASYNC_POSTWRITE); 3094 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3095 } 3096 3097 bf->bf_m = NULL; 3098 bf->bf_node = NULL; 3099 3100 /* Copy state */ 3101 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3102 3103 return tbf; 3104 } 3105 3106 struct ath_buf * 3107 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3108 { 3109 struct ath_buf *bf; 3110 3111 ATH_TXBUF_LOCK(sc); 3112 bf = _ath_getbuf_locked(sc, btype); 3113 /* 3114 * If a mgmt buffer was requested but we're out of those, 3115 * try requesting a normal one. 3116 */ 3117 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3118 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3119 ATH_TXBUF_UNLOCK(sc); 3120 if (bf == NULL) { 3121 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3122 sc->sc_stats.ast_tx_qstop++; 3123 } 3124 return bf; 3125 } 3126 3127 /* 3128 * Transmit a single frame. 3129 * 3130 * net80211 will free the node reference if the transmit 3131 * fails, so don't free the node reference here. 3132 */ 3133 static int 3134 ath_transmit(struct ieee80211com *ic, struct mbuf *m) 3135 { 3136 struct ath_softc *sc = ic->ic_softc; 3137 struct ieee80211_node *ni; 3138 struct mbuf *next; 3139 struct ath_buf *bf; 3140 ath_bufhead frags; 3141 int retval = 0; 3142 3143 /* 3144 * Tell the reset path that we're currently transmitting. 3145 */ 3146 ATH_PCU_LOCK(sc); 3147 if (sc->sc_inreset_cnt > 0) { 3148 DPRINTF(sc, ATH_DEBUG_XMIT, 3149 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3150 ATH_PCU_UNLOCK(sc); 3151 sc->sc_stats.ast_tx_qstop++; 3152 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3153 return (ENOBUFS); /* XXX should be EINVAL or? */ 3154 } 3155 sc->sc_txstart_cnt++; 3156 ATH_PCU_UNLOCK(sc); 3157 3158 /* Wake the hardware up already */ 3159 ATH_LOCK(sc); 3160 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3161 ATH_UNLOCK(sc); 3162 3163 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3164 /* 3165 * Grab the TX lock - it's ok to do this here; we haven't 3166 * yet started transmitting. 3167 */ 3168 ATH_TX_LOCK(sc); 3169 3170 /* 3171 * Node reference, if there's one. 3172 */ 3173 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3174 3175 /* 3176 * Enforce how deep a node queue can get. 3177 * 3178 * XXX it would be nicer if we kept an mbuf queue per 3179 * node and only whacked them into ath_bufs when we 3180 * are ready to schedule some traffic from them. 3181 * .. that may come later. 3182 * 3183 * XXX we should also track the per-node hardware queue 3184 * depth so it is easy to limit the _SUM_ of the swq and 3185 * hwq frames. Since we only schedule two HWQ frames 3186 * at a time, this should be OK for now. 3187 */ 3188 if ((!(m->m_flags & M_EAPOL)) && 3189 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3190 sc->sc_stats.ast_tx_nodeq_overflow++; 3191 retval = ENOBUFS; 3192 goto finish; 3193 } 3194 3195 /* 3196 * Check how many TX buffers are available. 3197 * 3198 * If this is for non-EAPOL traffic, just leave some 3199 * space free in order for buffer cloning and raw 3200 * frame transmission to occur. 3201 * 3202 * If it's for EAPOL traffic, ignore this for now. 3203 * Management traffic will be sent via the raw transmit 3204 * method which bypasses this check. 3205 * 3206 * This is needed to ensure that EAPOL frames during 3207 * (re) keying have a chance to go out. 3208 * 3209 * See kern/138379 for more information. 3210 */ 3211 if ((!(m->m_flags & M_EAPOL)) && 3212 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3213 sc->sc_stats.ast_tx_nobuf++; 3214 retval = ENOBUFS; 3215 goto finish; 3216 } 3217 3218 /* 3219 * Grab a TX buffer and associated resources. 3220 * 3221 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3222 * That way even with temporary buffer exhaustion due to 3223 * the data path doesn't leave us without the ability 3224 * to transmit management frames. 3225 * 3226 * Otherwise allocate a normal buffer. 3227 */ 3228 if (m->m_flags & M_EAPOL) 3229 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3230 else 3231 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3232 3233 if (bf == NULL) { 3234 /* 3235 * If we failed to allocate a buffer, fail. 3236 * 3237 * We shouldn't fail normally, due to the check 3238 * above. 3239 */ 3240 sc->sc_stats.ast_tx_nobuf++; 3241 retval = ENOBUFS; 3242 goto finish; 3243 } 3244 3245 /* 3246 * At this point we have a buffer; so we need to free it 3247 * if we hit any error conditions. 3248 */ 3249 3250 /* 3251 * Check for fragmentation. If this frame 3252 * has been broken up verify we have enough 3253 * buffers to send all the fragments so all 3254 * go out or none... 3255 */ 3256 TAILQ_INIT(&frags); 3257 if ((m->m_flags & M_FRAG) && 3258 !ath_txfrag_setup(sc, &frags, m, ni)) { 3259 DPRINTF(sc, ATH_DEBUG_XMIT, 3260 "%s: out of txfrag buffers\n", __func__); 3261 sc->sc_stats.ast_tx_nofrag++; 3262 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3263 /* 3264 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes, 3265 * we shouldn't free it but return back. 3266 */ 3267 ieee80211_free_mbuf(m); 3268 m = NULL; 3269 goto bad; 3270 } 3271 3272 /* 3273 * At this point if we have any TX fragments, then we will 3274 * have bumped the node reference once for each of those. 3275 */ 3276 3277 /* 3278 * XXX Is there anything actually _enforcing_ that the 3279 * fragments are being transmitted in one hit, rather than 3280 * being interleaved with other transmissions on that 3281 * hardware queue? 3282 * 3283 * The ATH TX output lock is the only thing serialising this 3284 * right now. 3285 */ 3286 3287 /* 3288 * Calculate the "next fragment" length field in ath_buf 3289 * in order to let the transmit path know enough about 3290 * what to next write to the hardware. 3291 */ 3292 if (m->m_flags & M_FRAG) { 3293 struct ath_buf *fbf = bf; 3294 struct ath_buf *n_fbf = NULL; 3295 struct mbuf *fm = m->m_nextpkt; 3296 3297 /* 3298 * We need to walk the list of fragments and set 3299 * the next size to the following buffer. 3300 * However, the first buffer isn't in the frag 3301 * list, so we have to do some gymnastics here. 3302 */ 3303 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3304 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3305 fbf = n_fbf; 3306 fm = fm->m_nextpkt; 3307 } 3308 } 3309 3310 nextfrag: 3311 /* 3312 * Pass the frame to the h/w for transmission. 3313 * Fragmented frames have each frag chained together 3314 * with m_nextpkt. We know there are sufficient ath_buf's 3315 * to send all the frags because of work done by 3316 * ath_txfrag_setup. We leave m_nextpkt set while 3317 * calling ath_tx_start so it can use it to extend the 3318 * the tx duration to cover the subsequent frag and 3319 * so it can reclaim all the mbufs in case of an error; 3320 * ath_tx_start clears m_nextpkt once it commits to 3321 * handing the frame to the hardware. 3322 * 3323 * Note: if this fails, then the mbufs are freed but 3324 * not the node reference. 3325 * 3326 * So, we now have to free the node reference ourselves here 3327 * and return OK up to the stack. 3328 */ 3329 next = m->m_nextpkt; 3330 if (ath_tx_start(sc, ni, bf, m)) { 3331 bad: 3332 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3333 reclaim: 3334 bf->bf_m = NULL; 3335 bf->bf_node = NULL; 3336 ATH_TXBUF_LOCK(sc); 3337 ath_returnbuf_head(sc, bf); 3338 /* 3339 * Free the rest of the node references and 3340 * buffers for the fragment list. 3341 */ 3342 ath_txfrag_cleanup(sc, &frags, ni); 3343 ATH_TXBUF_UNLOCK(sc); 3344 3345 /* 3346 * XXX: And free the node/return OK; ath_tx_start() may have 3347 * modified the buffer. We currently have no way to 3348 * signify that the mbuf was freed but there was an error. 3349 */ 3350 ieee80211_free_node(ni); 3351 retval = 0; 3352 goto finish; 3353 } 3354 3355 /* 3356 * Check here if the node is in power save state. 3357 */ 3358 ath_tx_update_tim(sc, ni, 1); 3359 3360 if (next != NULL) { 3361 /* 3362 * Beware of state changing between frags. 3363 * XXX check sta power-save state? 3364 */ 3365 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3366 DPRINTF(sc, ATH_DEBUG_XMIT, 3367 "%s: flush fragmented packet, state %s\n", 3368 __func__, 3369 ieee80211_state_name[ni->ni_vap->iv_state]); 3370 /* XXX dmamap */ 3371 ieee80211_free_mbuf(next); 3372 goto reclaim; 3373 } 3374 m = next; 3375 bf = TAILQ_FIRST(&frags); 3376 KASSERT(bf != NULL, ("no buf for txfrag")); 3377 TAILQ_REMOVE(&frags, bf, bf_list); 3378 goto nextfrag; 3379 } 3380 3381 /* 3382 * Bump watchdog timer. 3383 */ 3384 sc->sc_wd_timer = 5; 3385 3386 finish: 3387 ATH_TX_UNLOCK(sc); 3388 3389 /* 3390 * Finished transmitting! 3391 */ 3392 ATH_PCU_LOCK(sc); 3393 sc->sc_txstart_cnt--; 3394 ATH_PCU_UNLOCK(sc); 3395 3396 /* Sleep the hardware if required */ 3397 ATH_LOCK(sc); 3398 ath_power_restore_power_state(sc); 3399 ATH_UNLOCK(sc); 3400 3401 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3402 3403 return (retval); 3404 } 3405 3406 static int 3407 ath_media_change(struct ifnet *ifp) 3408 { 3409 int error = ieee80211_media_change(ifp); 3410 /* NB: only the fixed rate can change and that doesn't need a reset */ 3411 return (error == ENETRESET ? 0 : error); 3412 } 3413 3414 /* 3415 * Block/unblock tx+rx processing while a key change is done. 3416 * We assume the caller serializes key management operations 3417 * so we only need to worry about synchronization with other 3418 * uses that originate in the driver. 3419 */ 3420 static void 3421 ath_key_update_begin(struct ieee80211vap *vap) 3422 { 3423 struct ath_softc *sc = vap->iv_ic->ic_softc; 3424 3425 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3426 taskqueue_block(sc->sc_tq); 3427 } 3428 3429 static void 3430 ath_key_update_end(struct ieee80211vap *vap) 3431 { 3432 struct ath_softc *sc = vap->iv_ic->ic_softc; 3433 3434 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3435 taskqueue_unblock(sc->sc_tq); 3436 } 3437 3438 static void 3439 ath_update_promisc(struct ieee80211com *ic) 3440 { 3441 struct ath_softc *sc = ic->ic_softc; 3442 u_int32_t rfilt; 3443 3444 /* configure rx filter */ 3445 ATH_LOCK(sc); 3446 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3447 rfilt = ath_calcrxfilter(sc); 3448 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3449 ath_power_restore_power_state(sc); 3450 ATH_UNLOCK(sc); 3451 3452 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3453 } 3454 3455 /* 3456 * Driver-internal mcast update call. 3457 * 3458 * Assumes the hardware is already awake. 3459 */ 3460 static void 3461 ath_update_mcast_hw(struct ath_softc *sc) 3462 { 3463 struct ieee80211com *ic = &sc->sc_ic; 3464 u_int32_t mfilt[2]; 3465 3466 /* calculate and install multicast filter */ 3467 if (ic->ic_allmulti == 0) { 3468 struct ieee80211vap *vap; 3469 struct ifnet *ifp; 3470 struct ifmultiaddr *ifma; 3471 3472 /* 3473 * Merge multicast addresses to form the hardware filter. 3474 */ 3475 mfilt[0] = mfilt[1] = 0; 3476 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 3477 ifp = vap->iv_ifp; 3478 if_maddr_rlock(ifp); 3479 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3480 caddr_t dl; 3481 uint32_t val; 3482 uint8_t pos; 3483 3484 /* calculate XOR of eight 6bit values */ 3485 dl = LLADDR((struct sockaddr_dl *) 3486 ifma->ifma_addr); 3487 val = LE_READ_4(dl + 0); 3488 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ 3489 val; 3490 val = LE_READ_4(dl + 3); 3491 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ 3492 val; 3493 pos &= 0x3f; 3494 mfilt[pos / 32] |= (1 << (pos % 32)); 3495 } 3496 if_maddr_runlock(ifp); 3497 } 3498 } else 3499 mfilt[0] = mfilt[1] = ~0; 3500 3501 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3502 3503 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3504 __func__, mfilt[0], mfilt[1]); 3505 } 3506 3507 /* 3508 * Called from the net80211 layer - force the hardware 3509 * awake before operating. 3510 */ 3511 static void 3512 ath_update_mcast(struct ieee80211com *ic) 3513 { 3514 struct ath_softc *sc = ic->ic_softc; 3515 3516 ATH_LOCK(sc); 3517 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3518 ATH_UNLOCK(sc); 3519 3520 ath_update_mcast_hw(sc); 3521 3522 ATH_LOCK(sc); 3523 ath_power_restore_power_state(sc); 3524 ATH_UNLOCK(sc); 3525 } 3526 3527 void 3528 ath_mode_init(struct ath_softc *sc) 3529 { 3530 struct ieee80211com *ic = &sc->sc_ic; 3531 struct ath_hal *ah = sc->sc_ah; 3532 u_int32_t rfilt; 3533 3534 /* configure rx filter */ 3535 rfilt = ath_calcrxfilter(sc); 3536 ath_hal_setrxfilter(ah, rfilt); 3537 3538 /* configure operational mode */ 3539 ath_hal_setopmode(ah); 3540 3541 /* handle any link-level address change */ 3542 ath_hal_setmac(ah, ic->ic_macaddr); 3543 3544 /* calculate and install multicast filter */ 3545 ath_update_mcast_hw(sc); 3546 } 3547 3548 /* 3549 * Set the slot time based on the current setting. 3550 */ 3551 void 3552 ath_setslottime(struct ath_softc *sc) 3553 { 3554 struct ieee80211com *ic = &sc->sc_ic; 3555 struct ath_hal *ah = sc->sc_ah; 3556 u_int usec; 3557 3558 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3559 usec = 13; 3560 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3561 usec = 21; 3562 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3563 /* honor short/long slot time only in 11g */ 3564 /* XXX shouldn't honor on pure g or turbo g channel */ 3565 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3566 usec = HAL_SLOT_TIME_9; 3567 else 3568 usec = HAL_SLOT_TIME_20; 3569 } else 3570 usec = HAL_SLOT_TIME_9; 3571 3572 DPRINTF(sc, ATH_DEBUG_RESET, 3573 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3574 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3575 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3576 3577 /* Wake up the hardware first before updating the slot time */ 3578 ATH_LOCK(sc); 3579 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3580 ath_hal_setslottime(ah, usec); 3581 ath_power_restore_power_state(sc); 3582 sc->sc_updateslot = OK; 3583 ATH_UNLOCK(sc); 3584 } 3585 3586 /* 3587 * Callback from the 802.11 layer to update the 3588 * slot time based on the current setting. 3589 */ 3590 static void 3591 ath_updateslot(struct ieee80211com *ic) 3592 { 3593 struct ath_softc *sc = ic->ic_softc; 3594 3595 /* 3596 * When not coordinating the BSS, change the hardware 3597 * immediately. For other operation we defer the change 3598 * until beacon updates have propagated to the stations. 3599 * 3600 * XXX sc_updateslot isn't changed behind a lock? 3601 */ 3602 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3603 ic->ic_opmode == IEEE80211_M_MBSS) 3604 sc->sc_updateslot = UPDATE; 3605 else 3606 ath_setslottime(sc); 3607 } 3608 3609 /* 3610 * Append the contents of src to dst; both queues 3611 * are assumed to be locked. 3612 */ 3613 void 3614 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3615 { 3616 3617 ATH_TXQ_LOCK_ASSERT(src); 3618 ATH_TXQ_LOCK_ASSERT(dst); 3619 3620 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3621 dst->axq_link = src->axq_link; 3622 src->axq_link = NULL; 3623 dst->axq_depth += src->axq_depth; 3624 dst->axq_aggr_depth += src->axq_aggr_depth; 3625 src->axq_depth = 0; 3626 src->axq_aggr_depth = 0; 3627 } 3628 3629 /* 3630 * Reset the hardware, with no loss. 3631 * 3632 * This can't be used for a general case reset. 3633 */ 3634 static void 3635 ath_reset_proc(void *arg, int pending) 3636 { 3637 struct ath_softc *sc = arg; 3638 3639 #if 0 3640 device_printf(sc->sc_dev, "%s: resetting\n", __func__); 3641 #endif 3642 ath_reset(sc, ATH_RESET_NOLOSS); 3643 } 3644 3645 /* 3646 * Reset the hardware after detecting beacons have stopped. 3647 */ 3648 static void 3649 ath_bstuck_proc(void *arg, int pending) 3650 { 3651 struct ath_softc *sc = arg; 3652 uint32_t hangs = 0; 3653 3654 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3655 device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs); 3656 3657 #ifdef ATH_DEBUG_ALQ 3658 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3659 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3660 #endif 3661 3662 device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n", 3663 sc->sc_bmisscount); 3664 sc->sc_stats.ast_bstuck++; 3665 /* 3666 * This assumes that there's no simultaneous channel mode change 3667 * occuring. 3668 */ 3669 ath_reset(sc, ATH_RESET_NOLOSS); 3670 } 3671 3672 static int 3673 ath_desc_alloc(struct ath_softc *sc) 3674 { 3675 int error; 3676 3677 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3678 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3679 if (error != 0) { 3680 return error; 3681 } 3682 sc->sc_txbuf_cnt = ath_txbuf; 3683 3684 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3685 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3686 ATH_TXDESC); 3687 if (error != 0) { 3688 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3689 return error; 3690 } 3691 3692 /* 3693 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3694 * flag doesn't have to be set in ath_getbuf_locked(). 3695 */ 3696 3697 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3698 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3699 if (error != 0) { 3700 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3701 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3702 &sc->sc_txbuf_mgmt); 3703 return error; 3704 } 3705 return 0; 3706 } 3707 3708 static void 3709 ath_desc_free(struct ath_softc *sc) 3710 { 3711 3712 if (sc->sc_bdma.dd_desc_len != 0) 3713 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3714 if (sc->sc_txdma.dd_desc_len != 0) 3715 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3716 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3717 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3718 &sc->sc_txbuf_mgmt); 3719 } 3720 3721 static struct ieee80211_node * 3722 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3723 { 3724 struct ieee80211com *ic = vap->iv_ic; 3725 struct ath_softc *sc = ic->ic_softc; 3726 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3727 struct ath_node *an; 3728 3729 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3730 if (an == NULL) { 3731 /* XXX stat+msg */ 3732 return NULL; 3733 } 3734 ath_rate_node_init(sc, an); 3735 3736 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3737 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3738 device_get_nameunit(sc->sc_dev), an); 3739 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3740 3741 /* XXX setup ath_tid */ 3742 ath_tx_tid_init(sc, an); 3743 3744 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 3745 return &an->an_node; 3746 } 3747 3748 static void 3749 ath_node_cleanup(struct ieee80211_node *ni) 3750 { 3751 struct ieee80211com *ic = ni->ni_ic; 3752 struct ath_softc *sc = ic->ic_softc; 3753 3754 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3755 ni->ni_macaddr, ":", ATH_NODE(ni)); 3756 3757 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3758 ath_tx_node_flush(sc, ATH_NODE(ni)); 3759 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3760 sc->sc_node_cleanup(ni); 3761 } 3762 3763 static void 3764 ath_node_free(struct ieee80211_node *ni) 3765 { 3766 struct ieee80211com *ic = ni->ni_ic; 3767 struct ath_softc *sc = ic->ic_softc; 3768 3769 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3770 ni->ni_macaddr, ":", ATH_NODE(ni)); 3771 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3772 sc->sc_node_free(ni); 3773 } 3774 3775 static void 3776 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3777 { 3778 struct ieee80211com *ic = ni->ni_ic; 3779 struct ath_softc *sc = ic->ic_softc; 3780 struct ath_hal *ah = sc->sc_ah; 3781 3782 *rssi = ic->ic_node_getrssi(ni); 3783 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3784 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3785 else 3786 *noise = -95; /* nominally correct */ 3787 } 3788 3789 /* 3790 * Set the default antenna. 3791 */ 3792 void 3793 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3794 { 3795 struct ath_hal *ah = sc->sc_ah; 3796 3797 /* XXX block beacon interrupts */ 3798 ath_hal_setdefantenna(ah, antenna); 3799 if (sc->sc_defant != antenna) 3800 sc->sc_stats.ast_ant_defswitch++; 3801 sc->sc_defant = antenna; 3802 sc->sc_rxotherant = 0; 3803 } 3804 3805 static void 3806 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3807 { 3808 txq->axq_qnum = qnum; 3809 txq->axq_ac = 0; 3810 txq->axq_depth = 0; 3811 txq->axq_aggr_depth = 0; 3812 txq->axq_intrcnt = 0; 3813 txq->axq_link = NULL; 3814 txq->axq_softc = sc; 3815 TAILQ_INIT(&txq->axq_q); 3816 TAILQ_INIT(&txq->axq_tidq); 3817 TAILQ_INIT(&txq->fifo.axq_q); 3818 ATH_TXQ_LOCK_INIT(sc, txq); 3819 } 3820 3821 /* 3822 * Setup a h/w transmit queue. 3823 */ 3824 static struct ath_txq * 3825 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3826 { 3827 struct ath_hal *ah = sc->sc_ah; 3828 HAL_TXQ_INFO qi; 3829 int qnum; 3830 3831 memset(&qi, 0, sizeof(qi)); 3832 qi.tqi_subtype = subtype; 3833 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3834 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3835 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3836 /* 3837 * Enable interrupts only for EOL and DESC conditions. 3838 * We mark tx descriptors to receive a DESC interrupt 3839 * when a tx queue gets deep; otherwise waiting for the 3840 * EOL to reap descriptors. Note that this is done to 3841 * reduce interrupt load and this only defers reaping 3842 * descriptors, never transmitting frames. Aside from 3843 * reducing interrupts this also permits more concurrency. 3844 * The only potential downside is if the tx queue backs 3845 * up in which case the top half of the kernel may backup 3846 * due to a lack of tx descriptors. 3847 */ 3848 if (sc->sc_isedma) 3849 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3850 HAL_TXQ_TXOKINT_ENABLE; 3851 else 3852 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3853 HAL_TXQ_TXDESCINT_ENABLE; 3854 3855 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3856 if (qnum == -1) { 3857 /* 3858 * NB: don't print a message, this happens 3859 * normally on parts with too few tx queues 3860 */ 3861 return NULL; 3862 } 3863 if (qnum >= nitems(sc->sc_txq)) { 3864 device_printf(sc->sc_dev, 3865 "hal qnum %u out of range, max %zu!\n", 3866 qnum, nitems(sc->sc_txq)); 3867 ath_hal_releasetxqueue(ah, qnum); 3868 return NULL; 3869 } 3870 if (!ATH_TXQ_SETUP(sc, qnum)) { 3871 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3872 sc->sc_txqsetup |= 1<<qnum; 3873 } 3874 return &sc->sc_txq[qnum]; 3875 } 3876 3877 /* 3878 * Setup a hardware data transmit queue for the specified 3879 * access control. The hal may not support all requested 3880 * queues in which case it will return a reference to a 3881 * previously setup queue. We record the mapping from ac's 3882 * to h/w queues for use by ath_tx_start and also track 3883 * the set of h/w queues being used to optimize work in the 3884 * transmit interrupt handler and related routines. 3885 */ 3886 static int 3887 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3888 { 3889 struct ath_txq *txq; 3890 3891 if (ac >= nitems(sc->sc_ac2q)) { 3892 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3893 ac, nitems(sc->sc_ac2q)); 3894 return 0; 3895 } 3896 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3897 if (txq != NULL) { 3898 txq->axq_ac = ac; 3899 sc->sc_ac2q[ac] = txq; 3900 return 1; 3901 } else 3902 return 0; 3903 } 3904 3905 /* 3906 * Update WME parameters for a transmit queue. 3907 */ 3908 static int 3909 ath_txq_update(struct ath_softc *sc, int ac) 3910 { 3911 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3912 struct ieee80211com *ic = &sc->sc_ic; 3913 struct ath_txq *txq = sc->sc_ac2q[ac]; 3914 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3915 struct ath_hal *ah = sc->sc_ah; 3916 HAL_TXQ_INFO qi; 3917 3918 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3919 #ifdef IEEE80211_SUPPORT_TDMA 3920 if (sc->sc_tdma) { 3921 /* 3922 * AIFS is zero so there's no pre-transmit wait. The 3923 * burst time defines the slot duration and is configured 3924 * through net80211. The QCU is setup to not do post-xmit 3925 * back off, lockout all lower-priority QCU's, and fire 3926 * off the DMA beacon alert timer which is setup based 3927 * on the slot configuration. 3928 */ 3929 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3930 | HAL_TXQ_TXERRINT_ENABLE 3931 | HAL_TXQ_TXURNINT_ENABLE 3932 | HAL_TXQ_TXEOLINT_ENABLE 3933 | HAL_TXQ_DBA_GATED 3934 | HAL_TXQ_BACKOFF_DISABLE 3935 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3936 ; 3937 qi.tqi_aifs = 0; 3938 /* XXX +dbaprep? */ 3939 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3940 qi.tqi_burstTime = qi.tqi_readyTime; 3941 } else { 3942 #endif 3943 /* 3944 * XXX shouldn't this just use the default flags 3945 * used in the previous queue setup? 3946 */ 3947 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3948 | HAL_TXQ_TXERRINT_ENABLE 3949 | HAL_TXQ_TXDESCINT_ENABLE 3950 | HAL_TXQ_TXURNINT_ENABLE 3951 | HAL_TXQ_TXEOLINT_ENABLE 3952 ; 3953 qi.tqi_aifs = wmep->wmep_aifsn; 3954 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3955 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3956 qi.tqi_readyTime = 0; 3957 qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit); 3958 #ifdef IEEE80211_SUPPORT_TDMA 3959 } 3960 #endif 3961 3962 DPRINTF(sc, ATH_DEBUG_RESET, 3963 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3964 __func__, txq->axq_qnum, qi.tqi_qflags, 3965 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3966 3967 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3968 device_printf(sc->sc_dev, "unable to update hardware queue " 3969 "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]); 3970 return 0; 3971 } else { 3972 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3973 return 1; 3974 } 3975 #undef ATH_EXPONENT_TO_VALUE 3976 } 3977 3978 /* 3979 * Callback from the 802.11 layer to update WME parameters. 3980 */ 3981 int 3982 ath_wme_update(struct ieee80211com *ic) 3983 { 3984 struct ath_softc *sc = ic->ic_softc; 3985 3986 return !ath_txq_update(sc, WME_AC_BE) || 3987 !ath_txq_update(sc, WME_AC_BK) || 3988 !ath_txq_update(sc, WME_AC_VI) || 3989 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3990 } 3991 3992 /* 3993 * Reclaim resources for a setup queue. 3994 */ 3995 static void 3996 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3997 { 3998 3999 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4000 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4001 ATH_TXQ_LOCK_DESTROY(txq); 4002 } 4003 4004 /* 4005 * Reclaim all tx queue resources. 4006 */ 4007 static void 4008 ath_tx_cleanup(struct ath_softc *sc) 4009 { 4010 int i; 4011 4012 ATH_TXBUF_LOCK_DESTROY(sc); 4013 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4014 if (ATH_TXQ_SETUP(sc, i)) 4015 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4016 } 4017 4018 /* 4019 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4020 * using the current rates in sc_rixmap. 4021 */ 4022 int 4023 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4024 { 4025 int rix = sc->sc_rixmap[rate]; 4026 /* NB: return lowest rix for invalid rate */ 4027 return (rix == 0xff ? 0 : rix); 4028 } 4029 4030 static void 4031 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4032 struct ath_buf *bf) 4033 { 4034 struct ieee80211_node *ni = bf->bf_node; 4035 struct ieee80211com *ic = &sc->sc_ic; 4036 int sr, lr, pri; 4037 4038 if (ts->ts_status == 0) { 4039 u_int8_t txant = ts->ts_antenna; 4040 sc->sc_stats.ast_ant_tx[txant]++; 4041 sc->sc_ant_tx[txant]++; 4042 if (ts->ts_finaltsi != 0) 4043 sc->sc_stats.ast_tx_altrate++; 4044 pri = M_WME_GETAC(bf->bf_m); 4045 if (pri >= WME_AC_VO) 4046 ic->ic_wme.wme_hipri_traffic++; 4047 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4048 ni->ni_inact = ni->ni_inact_reload; 4049 } else { 4050 if (ts->ts_status & HAL_TXERR_XRETRY) 4051 sc->sc_stats.ast_tx_xretries++; 4052 if (ts->ts_status & HAL_TXERR_FIFO) 4053 sc->sc_stats.ast_tx_fifoerr++; 4054 if (ts->ts_status & HAL_TXERR_FILT) 4055 sc->sc_stats.ast_tx_filtered++; 4056 if (ts->ts_status & HAL_TXERR_XTXOP) 4057 sc->sc_stats.ast_tx_xtxop++; 4058 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4059 sc->sc_stats.ast_tx_timerexpired++; 4060 4061 if (bf->bf_m->m_flags & M_FF) 4062 sc->sc_stats.ast_ff_txerr++; 4063 } 4064 /* XXX when is this valid? */ 4065 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4066 sc->sc_stats.ast_tx_desccfgerr++; 4067 /* 4068 * This can be valid for successful frame transmission! 4069 * If there's a TX FIFO underrun during aggregate transmission, 4070 * the MAC will pad the rest of the aggregate with delimiters. 4071 * If a BA is returned, the frame is marked as "OK" and it's up 4072 * to the TX completion code to notice which frames weren't 4073 * successfully transmitted. 4074 */ 4075 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4076 sc->sc_stats.ast_tx_data_underrun++; 4077 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4078 sc->sc_stats.ast_tx_delim_underrun++; 4079 4080 sr = ts->ts_shortretry; 4081 lr = ts->ts_longretry; 4082 sc->sc_stats.ast_tx_shortretry += sr; 4083 sc->sc_stats.ast_tx_longretry += lr; 4084 4085 } 4086 4087 /* 4088 * The default completion. If fail is 1, this means 4089 * "please don't retry the frame, and just return -1 status 4090 * to the net80211 stack. 4091 */ 4092 void 4093 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4094 { 4095 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4096 int st; 4097 4098 if (fail == 1) 4099 st = -1; 4100 else 4101 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4102 ts->ts_status : HAL_TXERR_XRETRY; 4103 4104 #if 0 4105 if (bf->bf_state.bfs_dobaw) 4106 device_printf(sc->sc_dev, 4107 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4108 __func__, 4109 bf, 4110 SEQNO(bf->bf_state.bfs_seqno)); 4111 #endif 4112 if (bf->bf_next != NULL) 4113 device_printf(sc->sc_dev, 4114 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4115 __func__, 4116 bf, 4117 SEQNO(bf->bf_state.bfs_seqno)); 4118 4119 /* 4120 * Check if the node software queue is empty; if so 4121 * then clear the TIM. 4122 * 4123 * This needs to be done before the buffer is freed as 4124 * otherwise the node reference will have been released 4125 * and the node may not actually exist any longer. 4126 * 4127 * XXX I don't like this belonging here, but it's cleaner 4128 * to do it here right now then all the other places 4129 * where ath_tx_default_comp() is called. 4130 * 4131 * XXX TODO: during drain, ensure that the callback is 4132 * being called so we get a chance to update the TIM. 4133 */ 4134 if (bf->bf_node) { 4135 ATH_TX_LOCK(sc); 4136 ath_tx_update_tim(sc, bf->bf_node, 0); 4137 ATH_TX_UNLOCK(sc); 4138 } 4139 4140 /* 4141 * Do any tx complete callback. Note this must 4142 * be done before releasing the node reference. 4143 * This will free the mbuf, release the net80211 4144 * node and recycle the ath_buf. 4145 */ 4146 ath_tx_freebuf(sc, bf, st); 4147 } 4148 4149 /* 4150 * Update rate control with the given completion status. 4151 */ 4152 void 4153 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4154 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4155 int nframes, int nbad) 4156 { 4157 struct ath_node *an; 4158 4159 /* Only for unicast frames */ 4160 if (ni == NULL) 4161 return; 4162 4163 an = ATH_NODE(ni); 4164 ATH_NODE_UNLOCK_ASSERT(an); 4165 4166 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4167 ATH_NODE_LOCK(an); 4168 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4169 ATH_NODE_UNLOCK(an); 4170 } 4171 } 4172 4173 /* 4174 * Process the completion of the given buffer. 4175 * 4176 * This calls the rate control update and then the buffer completion. 4177 * This will either free the buffer or requeue it. In any case, the 4178 * bf pointer should be treated as invalid after this function is called. 4179 */ 4180 void 4181 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4182 struct ath_tx_status *ts, struct ath_buf *bf) 4183 { 4184 struct ieee80211_node *ni = bf->bf_node; 4185 4186 ATH_TX_UNLOCK_ASSERT(sc); 4187 ATH_TXQ_UNLOCK_ASSERT(txq); 4188 4189 /* If unicast frame, update general statistics */ 4190 if (ni != NULL) { 4191 /* update statistics */ 4192 ath_tx_update_stats(sc, ts, bf); 4193 } 4194 4195 /* 4196 * Call the completion handler. 4197 * The completion handler is responsible for 4198 * calling the rate control code. 4199 * 4200 * Frames with no completion handler get the 4201 * rate control code called here. 4202 */ 4203 if (bf->bf_comp == NULL) { 4204 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4205 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4206 /* 4207 * XXX assume this isn't an aggregate 4208 * frame. 4209 */ 4210 ath_tx_update_ratectrl(sc, ni, 4211 bf->bf_state.bfs_rc, ts, 4212 bf->bf_state.bfs_pktlen, 1, 4213 (ts->ts_status == 0 ? 0 : 1)); 4214 } 4215 ath_tx_default_comp(sc, bf, 0); 4216 } else 4217 bf->bf_comp(sc, bf, 0); 4218 } 4219 4220 4221 4222 /* 4223 * Process completed xmit descriptors from the specified queue. 4224 * Kick the packet scheduler if needed. This can occur from this 4225 * particular task. 4226 */ 4227 static int 4228 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4229 { 4230 struct ath_hal *ah = sc->sc_ah; 4231 struct ath_buf *bf; 4232 struct ath_desc *ds; 4233 struct ath_tx_status *ts; 4234 struct ieee80211_node *ni; 4235 #ifdef IEEE80211_SUPPORT_SUPERG 4236 struct ieee80211com *ic = &sc->sc_ic; 4237 #endif /* IEEE80211_SUPPORT_SUPERG */ 4238 int nacked; 4239 HAL_STATUS status; 4240 4241 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4242 __func__, txq->axq_qnum, 4243 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4244 txq->axq_link); 4245 4246 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4247 "ath_tx_processq: txq=%u head %p link %p depth %p", 4248 txq->axq_qnum, 4249 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4250 txq->axq_link, 4251 txq->axq_depth); 4252 4253 nacked = 0; 4254 for (;;) { 4255 ATH_TXQ_LOCK(txq); 4256 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4257 bf = TAILQ_FIRST(&txq->axq_q); 4258 if (bf == NULL) { 4259 ATH_TXQ_UNLOCK(txq); 4260 break; 4261 } 4262 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4263 ts = &bf->bf_status.ds_txstat; 4264 4265 status = ath_hal_txprocdesc(ah, ds, ts); 4266 #ifdef ATH_DEBUG 4267 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4268 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4269 status == HAL_OK); 4270 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4271 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4272 status == HAL_OK); 4273 #endif 4274 #ifdef ATH_DEBUG_ALQ 4275 if (if_ath_alq_checkdebug(&sc->sc_alq, 4276 ATH_ALQ_EDMA_TXSTATUS)) { 4277 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4278 sc->sc_tx_statuslen, 4279 (char *) ds); 4280 } 4281 #endif 4282 4283 if (status == HAL_EINPROGRESS) { 4284 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4285 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4286 txq->axq_qnum, bf, ds); 4287 ATH_TXQ_UNLOCK(txq); 4288 break; 4289 } 4290 ATH_TXQ_REMOVE(txq, bf, bf_list); 4291 4292 /* 4293 * Sanity check. 4294 */ 4295 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4296 device_printf(sc->sc_dev, 4297 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4298 __func__, 4299 txq->axq_qnum, 4300 bf, 4301 bf->bf_state.bfs_tx_queue); 4302 } 4303 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4304 device_printf(sc->sc_dev, 4305 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4306 __func__, 4307 txq->axq_qnum, 4308 bf->bf_last, 4309 bf->bf_last->bf_state.bfs_tx_queue); 4310 } 4311 4312 #if 0 4313 if (txq->axq_depth > 0) { 4314 /* 4315 * More frames follow. Mark the buffer busy 4316 * so it's not re-used while the hardware may 4317 * still re-read the link field in the descriptor. 4318 * 4319 * Use the last buffer in an aggregate as that 4320 * is where the hardware may be - intermediate 4321 * descriptors won't be "busy". 4322 */ 4323 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4324 } else 4325 txq->axq_link = NULL; 4326 #else 4327 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4328 #endif 4329 if (bf->bf_state.bfs_aggr) 4330 txq->axq_aggr_depth--; 4331 4332 ni = bf->bf_node; 4333 4334 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4335 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4336 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4337 /* 4338 * If unicast frame was ack'd update RSSI, 4339 * including the last rx time used to 4340 * workaround phantom bmiss interrupts. 4341 */ 4342 if (ni != NULL && ts->ts_status == 0 && 4343 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4344 nacked++; 4345 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4346 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4347 ts->ts_rssi); 4348 } 4349 ATH_TXQ_UNLOCK(txq); 4350 4351 /* 4352 * Update statistics and call completion 4353 */ 4354 ath_tx_process_buf_completion(sc, txq, ts, bf); 4355 4356 /* XXX at this point, bf and ni may be totally invalid */ 4357 } 4358 #ifdef IEEE80211_SUPPORT_SUPERG 4359 /* 4360 * Flush fast-frame staging queue when traffic slows. 4361 */ 4362 if (txq->axq_depth <= 1) 4363 ieee80211_ff_flush(ic, txq->axq_ac); 4364 #endif 4365 4366 /* Kick the software TXQ scheduler */ 4367 if (dosched) { 4368 ATH_TX_LOCK(sc); 4369 ath_txq_sched(sc, txq); 4370 ATH_TX_UNLOCK(sc); 4371 } 4372 4373 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4374 "ath_tx_processq: txq=%u: done", 4375 txq->axq_qnum); 4376 4377 return nacked; 4378 } 4379 4380 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4381 4382 /* 4383 * Deferred processing of transmit interrupt; special-cased 4384 * for a single hardware transmit queue (e.g. 5210 and 5211). 4385 */ 4386 static void 4387 ath_tx_proc_q0(void *arg, int npending) 4388 { 4389 struct ath_softc *sc = arg; 4390 uint32_t txqs; 4391 4392 ATH_PCU_LOCK(sc); 4393 sc->sc_txproc_cnt++; 4394 txqs = sc->sc_txq_active; 4395 sc->sc_txq_active &= ~txqs; 4396 ATH_PCU_UNLOCK(sc); 4397 4398 ATH_LOCK(sc); 4399 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4400 ATH_UNLOCK(sc); 4401 4402 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4403 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4404 4405 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4406 /* XXX why is lastrx updated in tx code? */ 4407 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4408 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4409 ath_tx_processq(sc, sc->sc_cabq, 1); 4410 sc->sc_wd_timer = 0; 4411 4412 if (sc->sc_softled) 4413 ath_led_event(sc, sc->sc_txrix); 4414 4415 ATH_PCU_LOCK(sc); 4416 sc->sc_txproc_cnt--; 4417 ATH_PCU_UNLOCK(sc); 4418 4419 ATH_LOCK(sc); 4420 ath_power_restore_power_state(sc); 4421 ATH_UNLOCK(sc); 4422 4423 ath_tx_kick(sc); 4424 } 4425 4426 /* 4427 * Deferred processing of transmit interrupt; special-cased 4428 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4429 */ 4430 static void 4431 ath_tx_proc_q0123(void *arg, int npending) 4432 { 4433 struct ath_softc *sc = arg; 4434 int nacked; 4435 uint32_t txqs; 4436 4437 ATH_PCU_LOCK(sc); 4438 sc->sc_txproc_cnt++; 4439 txqs = sc->sc_txq_active; 4440 sc->sc_txq_active &= ~txqs; 4441 ATH_PCU_UNLOCK(sc); 4442 4443 ATH_LOCK(sc); 4444 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4445 ATH_UNLOCK(sc); 4446 4447 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4448 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4449 4450 /* 4451 * Process each active queue. 4452 */ 4453 nacked = 0; 4454 if (TXQACTIVE(txqs, 0)) 4455 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4456 if (TXQACTIVE(txqs, 1)) 4457 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4458 if (TXQACTIVE(txqs, 2)) 4459 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4460 if (TXQACTIVE(txqs, 3)) 4461 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4462 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4463 ath_tx_processq(sc, sc->sc_cabq, 1); 4464 if (nacked) 4465 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4466 4467 sc->sc_wd_timer = 0; 4468 4469 if (sc->sc_softled) 4470 ath_led_event(sc, sc->sc_txrix); 4471 4472 ATH_PCU_LOCK(sc); 4473 sc->sc_txproc_cnt--; 4474 ATH_PCU_UNLOCK(sc); 4475 4476 ATH_LOCK(sc); 4477 ath_power_restore_power_state(sc); 4478 ATH_UNLOCK(sc); 4479 4480 ath_tx_kick(sc); 4481 } 4482 4483 /* 4484 * Deferred processing of transmit interrupt. 4485 */ 4486 static void 4487 ath_tx_proc(void *arg, int npending) 4488 { 4489 struct ath_softc *sc = arg; 4490 int i, nacked; 4491 uint32_t txqs; 4492 4493 ATH_PCU_LOCK(sc); 4494 sc->sc_txproc_cnt++; 4495 txqs = sc->sc_txq_active; 4496 sc->sc_txq_active &= ~txqs; 4497 ATH_PCU_UNLOCK(sc); 4498 4499 ATH_LOCK(sc); 4500 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4501 ATH_UNLOCK(sc); 4502 4503 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4504 4505 /* 4506 * Process each active queue. 4507 */ 4508 nacked = 0; 4509 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4510 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4511 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4512 if (nacked) 4513 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4514 4515 sc->sc_wd_timer = 0; 4516 4517 if (sc->sc_softled) 4518 ath_led_event(sc, sc->sc_txrix); 4519 4520 ATH_PCU_LOCK(sc); 4521 sc->sc_txproc_cnt--; 4522 ATH_PCU_UNLOCK(sc); 4523 4524 ATH_LOCK(sc); 4525 ath_power_restore_power_state(sc); 4526 ATH_UNLOCK(sc); 4527 4528 ath_tx_kick(sc); 4529 } 4530 #undef TXQACTIVE 4531 4532 /* 4533 * Deferred processing of TXQ rescheduling. 4534 */ 4535 static void 4536 ath_txq_sched_tasklet(void *arg, int npending) 4537 { 4538 struct ath_softc *sc = arg; 4539 int i; 4540 4541 /* XXX is skipping ok? */ 4542 ATH_PCU_LOCK(sc); 4543 #if 0 4544 if (sc->sc_inreset_cnt > 0) { 4545 device_printf(sc->sc_dev, 4546 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4547 ATH_PCU_UNLOCK(sc); 4548 return; 4549 } 4550 #endif 4551 sc->sc_txproc_cnt++; 4552 ATH_PCU_UNLOCK(sc); 4553 4554 ATH_LOCK(sc); 4555 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4556 ATH_UNLOCK(sc); 4557 4558 ATH_TX_LOCK(sc); 4559 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4560 if (ATH_TXQ_SETUP(sc, i)) { 4561 ath_txq_sched(sc, &sc->sc_txq[i]); 4562 } 4563 } 4564 ATH_TX_UNLOCK(sc); 4565 4566 ATH_LOCK(sc); 4567 ath_power_restore_power_state(sc); 4568 ATH_UNLOCK(sc); 4569 4570 ATH_PCU_LOCK(sc); 4571 sc->sc_txproc_cnt--; 4572 ATH_PCU_UNLOCK(sc); 4573 } 4574 4575 void 4576 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4577 { 4578 4579 ATH_TXBUF_LOCK_ASSERT(sc); 4580 4581 if (bf->bf_flags & ATH_BUF_MGMT) 4582 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4583 else { 4584 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4585 sc->sc_txbuf_cnt++; 4586 if (sc->sc_txbuf_cnt > ath_txbuf) { 4587 device_printf(sc->sc_dev, 4588 "%s: sc_txbuf_cnt > %d?\n", 4589 __func__, 4590 ath_txbuf); 4591 sc->sc_txbuf_cnt = ath_txbuf; 4592 } 4593 } 4594 } 4595 4596 void 4597 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4598 { 4599 4600 ATH_TXBUF_LOCK_ASSERT(sc); 4601 4602 if (bf->bf_flags & ATH_BUF_MGMT) 4603 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4604 else { 4605 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4606 sc->sc_txbuf_cnt++; 4607 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4608 device_printf(sc->sc_dev, 4609 "%s: sc_txbuf_cnt > %d?\n", 4610 __func__, 4611 ATH_TXBUF); 4612 sc->sc_txbuf_cnt = ATH_TXBUF; 4613 } 4614 } 4615 } 4616 4617 /* 4618 * Free the holding buffer if it exists 4619 */ 4620 void 4621 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4622 { 4623 ATH_TXBUF_UNLOCK_ASSERT(sc); 4624 ATH_TXQ_LOCK_ASSERT(txq); 4625 4626 if (txq->axq_holdingbf == NULL) 4627 return; 4628 4629 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4630 4631 ATH_TXBUF_LOCK(sc); 4632 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4633 ATH_TXBUF_UNLOCK(sc); 4634 4635 txq->axq_holdingbf = NULL; 4636 } 4637 4638 /* 4639 * Add this buffer to the holding queue, freeing the previous 4640 * one if it exists. 4641 */ 4642 static void 4643 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4644 { 4645 struct ath_txq *txq; 4646 4647 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4648 4649 ATH_TXBUF_UNLOCK_ASSERT(sc); 4650 ATH_TXQ_LOCK_ASSERT(txq); 4651 4652 /* XXX assert ATH_BUF_BUSY is set */ 4653 4654 /* XXX assert the tx queue is under the max number */ 4655 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4656 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4657 __func__, 4658 bf, 4659 bf->bf_state.bfs_tx_queue); 4660 bf->bf_flags &= ~ATH_BUF_BUSY; 4661 ath_returnbuf_tail(sc, bf); 4662 return; 4663 } 4664 ath_txq_freeholdingbuf(sc, txq); 4665 txq->axq_holdingbf = bf; 4666 } 4667 4668 /* 4669 * Return a buffer to the pool and update the 'busy' flag on the 4670 * previous 'tail' entry. 4671 * 4672 * This _must_ only be called when the buffer is involved in a completed 4673 * TX. The logic is that if it was part of an active TX, the previous 4674 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4675 * for restart (eg for TDMA.) 4676 * 4677 * The caller must free the mbuf and recycle the node reference. 4678 * 4679 * XXX This method of handling busy / holding buffers is insanely stupid. 4680 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4681 * be much nicer if buffers in the processq() methods would instead be 4682 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4683 * exactly what hardware queue they came from in the first place. 4684 */ 4685 void 4686 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4687 { 4688 struct ath_txq *txq; 4689 4690 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4691 4692 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4693 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4694 4695 /* 4696 * If this buffer is busy, push it onto the holding queue. 4697 */ 4698 if (bf->bf_flags & ATH_BUF_BUSY) { 4699 ATH_TXQ_LOCK(txq); 4700 ath_txq_addholdingbuf(sc, bf); 4701 ATH_TXQ_UNLOCK(txq); 4702 return; 4703 } 4704 4705 /* 4706 * Not a busy buffer, so free normally 4707 */ 4708 ATH_TXBUF_LOCK(sc); 4709 ath_returnbuf_tail(sc, bf); 4710 ATH_TXBUF_UNLOCK(sc); 4711 } 4712 4713 /* 4714 * This is currently used by ath_tx_draintxq() and 4715 * ath_tx_tid_free_pkts(). 4716 * 4717 * It recycles a single ath_buf. 4718 */ 4719 void 4720 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4721 { 4722 struct ieee80211_node *ni = bf->bf_node; 4723 struct mbuf *m0 = bf->bf_m; 4724 4725 /* 4726 * Make sure that we only sync/unload if there's an mbuf. 4727 * If not (eg we cloned a buffer), the unload will have already 4728 * occured. 4729 */ 4730 if (bf->bf_m != NULL) { 4731 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4732 BUS_DMASYNC_POSTWRITE); 4733 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4734 } 4735 4736 bf->bf_node = NULL; 4737 bf->bf_m = NULL; 4738 4739 /* Free the buffer, it's not needed any longer */ 4740 ath_freebuf(sc, bf); 4741 4742 /* Pass the buffer back to net80211 - completing it */ 4743 ieee80211_tx_complete(ni, m0, status); 4744 } 4745 4746 static struct ath_buf * 4747 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4748 { 4749 struct ath_buf *bf; 4750 4751 ATH_TXQ_LOCK_ASSERT(txq); 4752 4753 /* 4754 * Drain the FIFO queue first, then if it's 4755 * empty, move to the normal frame queue. 4756 */ 4757 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4758 if (bf != NULL) { 4759 /* 4760 * Is it the last buffer in this set? 4761 * Decrement the FIFO counter. 4762 */ 4763 if (bf->bf_flags & ATH_BUF_FIFOEND) { 4764 if (txq->axq_fifo_depth == 0) { 4765 device_printf(sc->sc_dev, 4766 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 4767 __func__, 4768 txq->axq_qnum, 4769 txq->fifo.axq_depth); 4770 } else 4771 txq->axq_fifo_depth--; 4772 } 4773 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 4774 return (bf); 4775 } 4776 4777 /* 4778 * Debugging! 4779 */ 4780 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 4781 device_printf(sc->sc_dev, 4782 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 4783 __func__, 4784 txq->axq_qnum, 4785 txq->axq_fifo_depth, 4786 txq->fifo.axq_depth); 4787 } 4788 4789 /* 4790 * Now drain the pending queue. 4791 */ 4792 bf = TAILQ_FIRST(&txq->axq_q); 4793 if (bf == NULL) { 4794 txq->axq_link = NULL; 4795 return (NULL); 4796 } 4797 ATH_TXQ_REMOVE(txq, bf, bf_list); 4798 return (bf); 4799 } 4800 4801 void 4802 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4803 { 4804 #ifdef ATH_DEBUG 4805 struct ath_hal *ah = sc->sc_ah; 4806 #endif 4807 struct ath_buf *bf; 4808 u_int ix; 4809 4810 /* 4811 * NB: this assumes output has been stopped and 4812 * we do not need to block ath_tx_proc 4813 */ 4814 for (ix = 0;; ix++) { 4815 ATH_TXQ_LOCK(txq); 4816 bf = ath_tx_draintxq_get_one(sc, txq); 4817 if (bf == NULL) { 4818 ATH_TXQ_UNLOCK(txq); 4819 break; 4820 } 4821 if (bf->bf_state.bfs_aggr) 4822 txq->axq_aggr_depth--; 4823 #ifdef ATH_DEBUG 4824 if (sc->sc_debug & ATH_DEBUG_RESET) { 4825 struct ieee80211com *ic = &sc->sc_ic; 4826 int status = 0; 4827 4828 /* 4829 * EDMA operation has a TX completion FIFO 4830 * separate from the TX descriptor, so this 4831 * method of checking the "completion" status 4832 * is wrong. 4833 */ 4834 if (! sc->sc_isedma) { 4835 status = (ath_hal_txprocdesc(ah, 4836 bf->bf_lastds, 4837 &bf->bf_status.ds_txstat) == HAL_OK); 4838 } 4839 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4840 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4841 bf->bf_m->m_len, 0, -1); 4842 } 4843 #endif /* ATH_DEBUG */ 4844 /* 4845 * Since we're now doing magic in the completion 4846 * functions, we -must- call it for aggregation 4847 * destinations or BAW tracking will get upset. 4848 */ 4849 /* 4850 * Clear ATH_BUF_BUSY; the completion handler 4851 * will free the buffer. 4852 */ 4853 ATH_TXQ_UNLOCK(txq); 4854 bf->bf_flags &= ~ATH_BUF_BUSY; 4855 if (bf->bf_comp) 4856 bf->bf_comp(sc, bf, 1); 4857 else 4858 ath_tx_default_comp(sc, bf, 1); 4859 } 4860 4861 /* 4862 * Free the holding buffer if it exists 4863 */ 4864 ATH_TXQ_LOCK(txq); 4865 ath_txq_freeholdingbuf(sc, txq); 4866 ATH_TXQ_UNLOCK(txq); 4867 4868 /* 4869 * Drain software queued frames which are on 4870 * active TIDs. 4871 */ 4872 ath_tx_txq_drain(sc, txq); 4873 } 4874 4875 static void 4876 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4877 { 4878 struct ath_hal *ah = sc->sc_ah; 4879 4880 ATH_TXQ_LOCK_ASSERT(txq); 4881 4882 DPRINTF(sc, ATH_DEBUG_RESET, 4883 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 4884 "link %p, holdingbf=%p\n", 4885 __func__, 4886 txq->axq_qnum, 4887 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4888 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 4889 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 4890 txq->axq_flags, 4891 txq->axq_link, 4892 txq->axq_holdingbf); 4893 4894 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4895 /* We've stopped TX DMA, so mark this as stopped. */ 4896 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 4897 4898 #ifdef ATH_DEBUG 4899 if ((sc->sc_debug & ATH_DEBUG_RESET) 4900 && (txq->axq_holdingbf != NULL)) { 4901 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 4902 } 4903 #endif 4904 } 4905 4906 int 4907 ath_stoptxdma(struct ath_softc *sc) 4908 { 4909 struct ath_hal *ah = sc->sc_ah; 4910 int i; 4911 4912 /* XXX return value */ 4913 if (sc->sc_invalid) 4914 return 0; 4915 4916 if (!sc->sc_invalid) { 4917 /* don't touch the hardware if marked invalid */ 4918 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4919 __func__, sc->sc_bhalq, 4920 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4921 NULL); 4922 4923 /* stop the beacon queue */ 4924 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4925 4926 /* Stop the data queues */ 4927 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4928 if (ATH_TXQ_SETUP(sc, i)) { 4929 ATH_TXQ_LOCK(&sc->sc_txq[i]); 4930 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4931 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 4932 } 4933 } 4934 } 4935 4936 return 1; 4937 } 4938 4939 #ifdef ATH_DEBUG 4940 void 4941 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 4942 { 4943 struct ath_hal *ah = sc->sc_ah; 4944 struct ath_buf *bf; 4945 int i = 0; 4946 4947 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 4948 return; 4949 4950 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 4951 __func__, txq->axq_qnum); 4952 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 4953 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 4954 ath_hal_txprocdesc(ah, bf->bf_lastds, 4955 &bf->bf_status.ds_txstat) == HAL_OK); 4956 i++; 4957 } 4958 device_printf(sc->sc_dev, "%s: Q%d: end\n", 4959 __func__, txq->axq_qnum); 4960 } 4961 #endif /* ATH_DEBUG */ 4962 4963 /* 4964 * Drain the transmit queues and reclaim resources. 4965 */ 4966 void 4967 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4968 { 4969 struct ath_hal *ah = sc->sc_ah; 4970 struct ath_buf *bf_last; 4971 int i; 4972 4973 (void) ath_stoptxdma(sc); 4974 4975 /* 4976 * Dump the queue contents 4977 */ 4978 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4979 /* 4980 * XXX TODO: should we just handle the completed TX frames 4981 * here, whether or not the reset is a full one or not? 4982 */ 4983 if (ATH_TXQ_SETUP(sc, i)) { 4984 #ifdef ATH_DEBUG 4985 if (sc->sc_debug & ATH_DEBUG_RESET) 4986 ath_tx_dump(sc, &sc->sc_txq[i]); 4987 #endif /* ATH_DEBUG */ 4988 if (reset_type == ATH_RESET_NOLOSS) { 4989 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4990 ATH_TXQ_LOCK(&sc->sc_txq[i]); 4991 /* 4992 * Free the holding buffer; DMA is now 4993 * stopped. 4994 */ 4995 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 4996 /* 4997 * Setup the link pointer to be the 4998 * _last_ buffer/descriptor in the list. 4999 * If there's nothing in the list, set it 5000 * to NULL. 5001 */ 5002 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5003 axq_q_s); 5004 if (bf_last != NULL) { 5005 ath_hal_gettxdesclinkptr(ah, 5006 bf_last->bf_lastds, 5007 &sc->sc_txq[i].axq_link); 5008 } else { 5009 sc->sc_txq[i].axq_link = NULL; 5010 } 5011 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5012 } else 5013 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5014 } 5015 } 5016 #ifdef ATH_DEBUG 5017 if (sc->sc_debug & ATH_DEBUG_RESET) { 5018 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5019 if (bf != NULL && bf->bf_m != NULL) { 5020 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5021 ath_hal_txprocdesc(ah, bf->bf_lastds, 5022 &bf->bf_status.ds_txstat) == HAL_OK); 5023 ieee80211_dump_pkt(&sc->sc_ic, 5024 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5025 0, -1); 5026 } 5027 } 5028 #endif /* ATH_DEBUG */ 5029 sc->sc_wd_timer = 0; 5030 } 5031 5032 /* 5033 * Update internal state after a channel change. 5034 */ 5035 static void 5036 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5037 { 5038 enum ieee80211_phymode mode; 5039 5040 /* 5041 * Change channels and update the h/w rate map 5042 * if we're switching; e.g. 11a to 11b/g. 5043 */ 5044 mode = ieee80211_chan2mode(chan); 5045 if (mode != sc->sc_curmode) 5046 ath_setcurmode(sc, mode); 5047 sc->sc_curchan = chan; 5048 } 5049 5050 /* 5051 * Set/change channels. If the channel is really being changed, 5052 * it's done by resetting the chip. To accomplish this we must 5053 * first cleanup any pending DMA, then restart stuff after a la 5054 * ath_init. 5055 */ 5056 static int 5057 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5058 { 5059 struct ieee80211com *ic = &sc->sc_ic; 5060 struct ath_hal *ah = sc->sc_ah; 5061 int ret = 0; 5062 5063 /* Treat this as an interface reset */ 5064 ATH_PCU_UNLOCK_ASSERT(sc); 5065 ATH_UNLOCK_ASSERT(sc); 5066 5067 /* (Try to) stop TX/RX from occuring */ 5068 taskqueue_block(sc->sc_tq); 5069 5070 ATH_PCU_LOCK(sc); 5071 5072 /* Disable interrupts */ 5073 ath_hal_intrset(ah, 0); 5074 5075 /* Stop new RX/TX/interrupt completion */ 5076 if (ath_reset_grablock(sc, 1) == 0) { 5077 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5078 __func__); 5079 } 5080 5081 /* Stop pending RX/TX completion */ 5082 ath_txrx_stop_locked(sc); 5083 5084 ATH_PCU_UNLOCK(sc); 5085 5086 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5087 __func__, ieee80211_chan2ieee(ic, chan), 5088 chan->ic_freq, chan->ic_flags); 5089 if (chan != sc->sc_curchan) { 5090 HAL_STATUS status; 5091 /* 5092 * To switch channels clear any pending DMA operations; 5093 * wait long enough for the RX fifo to drain, reset the 5094 * hardware at the new frequency, and then re-enable 5095 * the relevant bits of the h/w. 5096 */ 5097 #if 0 5098 ath_hal_intrset(ah, 0); /* disable interrupts */ 5099 #endif 5100 ath_stoprecv(sc, 1); /* turn off frame recv */ 5101 /* 5102 * First, handle completed TX/RX frames. 5103 */ 5104 ath_rx_flush(sc); 5105 ath_draintxq(sc, ATH_RESET_NOLOSS); 5106 /* 5107 * Next, flush the non-scheduled frames. 5108 */ 5109 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5110 5111 ath_update_chainmasks(sc, chan); 5112 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5113 sc->sc_cur_rxchainmask); 5114 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, 5115 HAL_RESET_NORMAL, &status)) { 5116 device_printf(sc->sc_dev, "%s: unable to reset " 5117 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5118 __func__, ieee80211_chan2ieee(ic, chan), 5119 chan->ic_freq, chan->ic_flags, status); 5120 ret = EIO; 5121 goto finish; 5122 } 5123 sc->sc_diversity = ath_hal_getdiversity(ah); 5124 5125 ATH_RX_LOCK(sc); 5126 sc->sc_rx_stopped = 1; 5127 sc->sc_rx_resetted = 1; 5128 ATH_RX_UNLOCK(sc); 5129 5130 /* Let DFS at it in case it's a DFS channel */ 5131 ath_dfs_radar_enable(sc, chan); 5132 5133 /* Let spectral at in case spectral is enabled */ 5134 ath_spectral_enable(sc, chan); 5135 5136 /* 5137 * Let bluetooth coexistence at in case it's needed for this 5138 * channel 5139 */ 5140 ath_btcoex_enable(sc, ic->ic_curchan); 5141 5142 /* 5143 * If we're doing TDMA, enforce the TXOP limitation for chips 5144 * that support it. 5145 */ 5146 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5147 ath_hal_setenforcetxop(sc->sc_ah, 1); 5148 else 5149 ath_hal_setenforcetxop(sc->sc_ah, 0); 5150 5151 /* 5152 * Re-enable rx framework. 5153 */ 5154 if (ath_startrecv(sc) != 0) { 5155 device_printf(sc->sc_dev, 5156 "%s: unable to restart recv logic\n", __func__); 5157 ret = EIO; 5158 goto finish; 5159 } 5160 5161 /* 5162 * Change channels and update the h/w rate map 5163 * if we're switching; e.g. 11a to 11b/g. 5164 */ 5165 ath_chan_change(sc, chan); 5166 5167 /* 5168 * Reset clears the beacon timers; reset them 5169 * here if needed. 5170 */ 5171 if (sc->sc_beacons) { /* restart beacons */ 5172 #ifdef IEEE80211_SUPPORT_TDMA 5173 if (sc->sc_tdma) 5174 ath_tdma_config(sc, NULL); 5175 else 5176 #endif 5177 ath_beacon_config(sc, NULL); 5178 } 5179 5180 /* 5181 * Re-enable interrupts. 5182 */ 5183 #if 0 5184 ath_hal_intrset(ah, sc->sc_imask); 5185 #endif 5186 } 5187 5188 finish: 5189 ATH_PCU_LOCK(sc); 5190 sc->sc_inreset_cnt--; 5191 /* XXX only do this if sc_inreset_cnt == 0? */ 5192 ath_hal_intrset(ah, sc->sc_imask); 5193 ATH_PCU_UNLOCK(sc); 5194 5195 ath_txrx_start(sc); 5196 /* XXX ath_start? */ 5197 5198 return ret; 5199 } 5200 5201 /* 5202 * Periodically recalibrate the PHY to account 5203 * for temperature/environment changes. 5204 */ 5205 static void 5206 ath_calibrate(void *arg) 5207 { 5208 struct ath_softc *sc = arg; 5209 struct ath_hal *ah = sc->sc_ah; 5210 struct ieee80211com *ic = &sc->sc_ic; 5211 HAL_BOOL longCal, isCalDone = AH_TRUE; 5212 HAL_BOOL aniCal, shortCal = AH_FALSE; 5213 int nextcal; 5214 5215 ATH_LOCK_ASSERT(sc); 5216 5217 /* 5218 * Force the hardware awake for ANI work. 5219 */ 5220 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5221 5222 /* Skip trying to do this if we're in reset */ 5223 if (sc->sc_inreset_cnt) 5224 goto restart; 5225 5226 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5227 goto restart; 5228 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5229 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5230 if (sc->sc_doresetcal) 5231 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5232 5233 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5234 if (aniCal) { 5235 sc->sc_stats.ast_ani_cal++; 5236 sc->sc_lastani = ticks; 5237 ath_hal_ani_poll(ah, sc->sc_curchan); 5238 } 5239 5240 if (longCal) { 5241 sc->sc_stats.ast_per_cal++; 5242 sc->sc_lastlongcal = ticks; 5243 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5244 /* 5245 * Rfgain is out of bounds, reset the chip 5246 * to load new gain values. 5247 */ 5248 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5249 "%s: rfgain change\n", __func__); 5250 sc->sc_stats.ast_per_rfgain++; 5251 sc->sc_resetcal = 0; 5252 sc->sc_doresetcal = AH_TRUE; 5253 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5254 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5255 ath_power_restore_power_state(sc); 5256 return; 5257 } 5258 /* 5259 * If this long cal is after an idle period, then 5260 * reset the data collection state so we start fresh. 5261 */ 5262 if (sc->sc_resetcal) { 5263 (void) ath_hal_calreset(ah, sc->sc_curchan); 5264 sc->sc_lastcalreset = ticks; 5265 sc->sc_lastshortcal = ticks; 5266 sc->sc_resetcal = 0; 5267 sc->sc_doresetcal = AH_TRUE; 5268 } 5269 } 5270 5271 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5272 if (shortCal || longCal) { 5273 isCalDone = AH_FALSE; 5274 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5275 if (longCal) { 5276 /* 5277 * Calibrate noise floor data again in case of change. 5278 */ 5279 ath_hal_process_noisefloor(ah); 5280 } 5281 } else { 5282 DPRINTF(sc, ATH_DEBUG_ANY, 5283 "%s: calibration of channel %u failed\n", 5284 __func__, sc->sc_curchan->ic_freq); 5285 sc->sc_stats.ast_per_calfail++; 5286 } 5287 if (shortCal) 5288 sc->sc_lastshortcal = ticks; 5289 } 5290 if (!isCalDone) { 5291 restart: 5292 /* 5293 * Use a shorter interval to potentially collect multiple 5294 * data samples required to complete calibration. Once 5295 * we're told the work is done we drop back to a longer 5296 * interval between requests. We're more aggressive doing 5297 * work when operating as an AP to improve operation right 5298 * after startup. 5299 */ 5300 sc->sc_lastshortcal = ticks; 5301 nextcal = ath_shortcalinterval*hz/1000; 5302 if (sc->sc_opmode != HAL_M_HOSTAP) 5303 nextcal *= 10; 5304 sc->sc_doresetcal = AH_TRUE; 5305 } else { 5306 /* nextcal should be the shortest time for next event */ 5307 nextcal = ath_longcalinterval*hz; 5308 if (sc->sc_lastcalreset == 0) 5309 sc->sc_lastcalreset = sc->sc_lastlongcal; 5310 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5311 sc->sc_resetcal = 1; /* setup reset next trip */ 5312 sc->sc_doresetcal = AH_FALSE; 5313 } 5314 /* ANI calibration may occur more often than short/long/resetcal */ 5315 if (ath_anicalinterval > 0) 5316 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5317 5318 if (nextcal != 0) { 5319 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5320 __func__, nextcal, isCalDone ? "" : "!"); 5321 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5322 } else { 5323 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5324 __func__); 5325 /* NB: don't rearm timer */ 5326 } 5327 /* 5328 * Restore power state now that we're done. 5329 */ 5330 ath_power_restore_power_state(sc); 5331 } 5332 5333 static void 5334 ath_scan_start(struct ieee80211com *ic) 5335 { 5336 struct ath_softc *sc = ic->ic_softc; 5337 struct ath_hal *ah = sc->sc_ah; 5338 u_int32_t rfilt; 5339 5340 /* XXX calibration timer? */ 5341 /* XXXGL: is constant ieee80211broadcastaddr a correct choice? */ 5342 5343 ATH_LOCK(sc); 5344 sc->sc_scanning = 1; 5345 sc->sc_syncbeacon = 0; 5346 rfilt = ath_calcrxfilter(sc); 5347 ATH_UNLOCK(sc); 5348 5349 ATH_PCU_LOCK(sc); 5350 ath_hal_setrxfilter(ah, rfilt); 5351 ath_hal_setassocid(ah, ieee80211broadcastaddr, 0); 5352 ATH_PCU_UNLOCK(sc); 5353 5354 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5355 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr)); 5356 } 5357 5358 static void 5359 ath_scan_end(struct ieee80211com *ic) 5360 { 5361 struct ath_softc *sc = ic->ic_softc; 5362 struct ath_hal *ah = sc->sc_ah; 5363 u_int32_t rfilt; 5364 5365 ATH_LOCK(sc); 5366 sc->sc_scanning = 0; 5367 rfilt = ath_calcrxfilter(sc); 5368 ATH_UNLOCK(sc); 5369 5370 ATH_PCU_LOCK(sc); 5371 ath_hal_setrxfilter(ah, rfilt); 5372 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5373 5374 ath_hal_process_noisefloor(ah); 5375 ATH_PCU_UNLOCK(sc); 5376 5377 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5378 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5379 sc->sc_curaid); 5380 } 5381 5382 #ifdef ATH_ENABLE_11N 5383 /* 5384 * For now, just do a channel change. 5385 * 5386 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5387 * control state and resetting the hardware without dropping frames out 5388 * of the queue. 5389 * 5390 * The unfortunate trouble here is making absolutely sure that the 5391 * channel width change has propagated enough so the hardware 5392 * absolutely isn't handed bogus frames for it's current operating 5393 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5394 * does occur in parallel, we need to make certain we've blocked 5395 * any further ongoing TX (and RX, that can cause raw TX) 5396 * before we do this. 5397 */ 5398 static void 5399 ath_update_chw(struct ieee80211com *ic) 5400 { 5401 struct ath_softc *sc = ic->ic_softc; 5402 5403 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5404 ath_set_channel(ic); 5405 } 5406 #endif /* ATH_ENABLE_11N */ 5407 5408 static void 5409 ath_set_channel(struct ieee80211com *ic) 5410 { 5411 struct ath_softc *sc = ic->ic_softc; 5412 5413 ATH_LOCK(sc); 5414 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5415 ATH_UNLOCK(sc); 5416 5417 (void) ath_chan_set(sc, ic->ic_curchan); 5418 /* 5419 * If we are returning to our bss channel then mark state 5420 * so the next recv'd beacon's tsf will be used to sync the 5421 * beacon timers. Note that since we only hear beacons in 5422 * sta/ibss mode this has no effect in other operating modes. 5423 */ 5424 ATH_LOCK(sc); 5425 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5426 sc->sc_syncbeacon = 1; 5427 ath_power_restore_power_state(sc); 5428 ATH_UNLOCK(sc); 5429 } 5430 5431 /* 5432 * Walk the vap list and check if there any vap's in RUN state. 5433 */ 5434 static int 5435 ath_isanyrunningvaps(struct ieee80211vap *this) 5436 { 5437 struct ieee80211com *ic = this->iv_ic; 5438 struct ieee80211vap *vap; 5439 5440 IEEE80211_LOCK_ASSERT(ic); 5441 5442 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5443 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5444 return 1; 5445 } 5446 return 0; 5447 } 5448 5449 static int 5450 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5451 { 5452 struct ieee80211com *ic = vap->iv_ic; 5453 struct ath_softc *sc = ic->ic_softc; 5454 struct ath_vap *avp = ATH_VAP(vap); 5455 struct ath_hal *ah = sc->sc_ah; 5456 struct ieee80211_node *ni = NULL; 5457 int i, error, stamode; 5458 u_int32_t rfilt; 5459 int csa_run_transition = 0; 5460 enum ieee80211_state ostate = vap->iv_state; 5461 5462 static const HAL_LED_STATE leds[] = { 5463 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5464 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5465 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5466 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5467 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5468 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5469 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5470 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5471 }; 5472 5473 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5474 ieee80211_state_name[ostate], 5475 ieee80211_state_name[nstate]); 5476 5477 /* 5478 * net80211 _should_ have the comlock asserted at this point. 5479 * There are some comments around the calls to vap->iv_newstate 5480 * which indicate that it (newstate) may end up dropping the 5481 * lock. This and the subsequent lock assert check after newstate 5482 * are an attempt to catch these and figure out how/why. 5483 */ 5484 IEEE80211_LOCK_ASSERT(ic); 5485 5486 /* Before we touch the hardware - wake it up */ 5487 ATH_LOCK(sc); 5488 /* 5489 * If the NIC is in anything other than SLEEP state, 5490 * we need to ensure that self-generated frames are 5491 * set for PWRMGT=0. Otherwise we may end up with 5492 * strange situations. 5493 * 5494 * XXX TODO: is this actually the case? :-) 5495 */ 5496 if (nstate != IEEE80211_S_SLEEP) 5497 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5498 5499 /* 5500 * Now, wake the thing up. 5501 */ 5502 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5503 5504 /* 5505 * And stop the calibration callout whilst we have 5506 * ATH_LOCK held. 5507 */ 5508 callout_stop(&sc->sc_cal_ch); 5509 ATH_UNLOCK(sc); 5510 5511 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5512 csa_run_transition = 1; 5513 5514 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5515 5516 if (nstate == IEEE80211_S_SCAN) { 5517 /* 5518 * Scanning: turn off beacon miss and don't beacon. 5519 * Mark beacon state so when we reach RUN state we'll 5520 * [re]setup beacons. Unblock the task q thread so 5521 * deferred interrupt processing is done. 5522 */ 5523 5524 /* Ensure we stay awake during scan */ 5525 ATH_LOCK(sc); 5526 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5527 ath_power_setpower(sc, HAL_PM_AWAKE); 5528 ATH_UNLOCK(sc); 5529 5530 ath_hal_intrset(ah, 5531 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5532 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5533 sc->sc_beacons = 0; 5534 taskqueue_unblock(sc->sc_tq); 5535 } 5536 5537 ni = ieee80211_ref_node(vap->iv_bss); 5538 rfilt = ath_calcrxfilter(sc); 5539 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5540 vap->iv_opmode == IEEE80211_M_AHDEMO || 5541 vap->iv_opmode == IEEE80211_M_IBSS); 5542 5543 /* 5544 * XXX Dont need to do this (and others) if we've transitioned 5545 * from SLEEP->RUN. 5546 */ 5547 if (stamode && nstate == IEEE80211_S_RUN) { 5548 sc->sc_curaid = ni->ni_associd; 5549 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5550 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5551 } 5552 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5553 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5554 ath_hal_setrxfilter(ah, rfilt); 5555 5556 /* XXX is this to restore keycache on resume? */ 5557 if (vap->iv_opmode != IEEE80211_M_STA && 5558 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5559 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5560 if (ath_hal_keyisvalid(ah, i)) 5561 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5562 } 5563 5564 /* 5565 * Invoke the parent method to do net80211 work. 5566 */ 5567 error = avp->av_newstate(vap, nstate, arg); 5568 if (error != 0) 5569 goto bad; 5570 5571 /* 5572 * See above: ensure av_newstate() doesn't drop the lock 5573 * on us. 5574 */ 5575 IEEE80211_LOCK_ASSERT(ic); 5576 5577 if (nstate == IEEE80211_S_RUN) { 5578 /* NB: collect bss node again, it may have changed */ 5579 ieee80211_free_node(ni); 5580 ni = ieee80211_ref_node(vap->iv_bss); 5581 5582 DPRINTF(sc, ATH_DEBUG_STATE, 5583 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5584 "capinfo 0x%04x chan %d\n", __func__, 5585 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5586 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5587 5588 switch (vap->iv_opmode) { 5589 #ifdef IEEE80211_SUPPORT_TDMA 5590 case IEEE80211_M_AHDEMO: 5591 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5592 break; 5593 /* fall thru... */ 5594 #endif 5595 case IEEE80211_M_HOSTAP: 5596 case IEEE80211_M_IBSS: 5597 case IEEE80211_M_MBSS: 5598 /* 5599 * Allocate and setup the beacon frame. 5600 * 5601 * Stop any previous beacon DMA. This may be 5602 * necessary, for example, when an ibss merge 5603 * causes reconfiguration; there will be a state 5604 * transition from RUN->RUN that means we may 5605 * be called with beacon transmission active. 5606 */ 5607 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5608 5609 error = ath_beacon_alloc(sc, ni); 5610 if (error != 0) 5611 goto bad; 5612 /* 5613 * If joining an adhoc network defer beacon timer 5614 * configuration to the next beacon frame so we 5615 * have a current TSF to use. Otherwise we're 5616 * starting an ibss/bss so there's no need to delay; 5617 * if this is the first vap moving to RUN state, then 5618 * beacon state needs to be [re]configured. 5619 */ 5620 if (vap->iv_opmode == IEEE80211_M_IBSS && 5621 ni->ni_tstamp.tsf != 0) { 5622 sc->sc_syncbeacon = 1; 5623 } else if (!sc->sc_beacons) { 5624 #ifdef IEEE80211_SUPPORT_TDMA 5625 if (vap->iv_caps & IEEE80211_C_TDMA) 5626 ath_tdma_config(sc, vap); 5627 else 5628 #endif 5629 ath_beacon_config(sc, vap); 5630 sc->sc_beacons = 1; 5631 } 5632 break; 5633 case IEEE80211_M_STA: 5634 /* 5635 * Defer beacon timer configuration to the next 5636 * beacon frame so we have a current TSF to use 5637 * (any TSF collected when scanning is likely old). 5638 * However if it's due to a CSA -> RUN transition, 5639 * force a beacon update so we pick up a lack of 5640 * beacons from an AP in CAC and thus force a 5641 * scan. 5642 * 5643 * And, there's also corner cases here where 5644 * after a scan, the AP may have disappeared. 5645 * In that case, we may not receive an actual 5646 * beacon to update the beacon timer and thus we 5647 * won't get notified of the missing beacons. 5648 */ 5649 if (ostate != IEEE80211_S_RUN && 5650 ostate != IEEE80211_S_SLEEP) { 5651 DPRINTF(sc, ATH_DEBUG_BEACON, 5652 "%s: STA; syncbeacon=1\n", __func__); 5653 sc->sc_syncbeacon = 1; 5654 5655 if (csa_run_transition) 5656 ath_beacon_config(sc, vap); 5657 5658 /* 5659 * PR: kern/175227 5660 * 5661 * Reconfigure beacons during reset; as otherwise 5662 * we won't get the beacon timers reprogrammed 5663 * after a reset and thus we won't pick up a 5664 * beacon miss interrupt. 5665 * 5666 * Hopefully we'll see a beacon before the BMISS 5667 * timer fires (too often), leading to a STA 5668 * disassociation. 5669 */ 5670 sc->sc_beacons = 1; 5671 } 5672 break; 5673 case IEEE80211_M_MONITOR: 5674 /* 5675 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5676 * transitions so we must re-enable interrupts here to 5677 * handle the case of a single monitor mode vap. 5678 */ 5679 ath_hal_intrset(ah, sc->sc_imask); 5680 break; 5681 case IEEE80211_M_WDS: 5682 break; 5683 default: 5684 break; 5685 } 5686 /* 5687 * Let the hal process statistics collected during a 5688 * scan so it can provide calibrated noise floor data. 5689 */ 5690 ath_hal_process_noisefloor(ah); 5691 /* 5692 * Reset rssi stats; maybe not the best place... 5693 */ 5694 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5695 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5696 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5697 5698 /* 5699 * Force awake for RUN mode. 5700 */ 5701 ATH_LOCK(sc); 5702 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5703 ath_power_setpower(sc, HAL_PM_AWAKE); 5704 5705 /* 5706 * Finally, start any timers and the task q thread 5707 * (in case we didn't go through SCAN state). 5708 */ 5709 if (ath_longcalinterval != 0) { 5710 /* start periodic recalibration timer */ 5711 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5712 } else { 5713 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5714 "%s: calibration disabled\n", __func__); 5715 } 5716 ATH_UNLOCK(sc); 5717 5718 taskqueue_unblock(sc->sc_tq); 5719 } else if (nstate == IEEE80211_S_INIT) { 5720 /* 5721 * If there are no vaps left in RUN state then 5722 * shutdown host/driver operation: 5723 * o disable interrupts 5724 * o disable the task queue thread 5725 * o mark beacon processing as stopped 5726 */ 5727 if (!ath_isanyrunningvaps(vap)) { 5728 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5729 /* disable interrupts */ 5730 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5731 taskqueue_block(sc->sc_tq); 5732 sc->sc_beacons = 0; 5733 } 5734 #ifdef IEEE80211_SUPPORT_TDMA 5735 ath_hal_setcca(ah, AH_TRUE); 5736 #endif 5737 } else if (nstate == IEEE80211_S_SLEEP) { 5738 /* We're going to sleep, so transition appropriately */ 5739 /* For now, only do this if we're a single STA vap */ 5740 if (sc->sc_nvaps == 1 && 5741 vap->iv_opmode == IEEE80211_M_STA) { 5742 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 5743 ATH_LOCK(sc); 5744 /* 5745 * Always at least set the self-generated 5746 * frame config to set PWRMGT=1. 5747 */ 5748 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 5749 5750 /* 5751 * If we're not syncing beacons, transition 5752 * to NETWORK_SLEEP. 5753 * 5754 * We stay awake if syncbeacon > 0 in case 5755 * we need to listen for some beacons otherwise 5756 * our beacon timer config may be wrong. 5757 */ 5758 if (sc->sc_syncbeacon == 0) { 5759 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP); 5760 } 5761 ATH_UNLOCK(sc); 5762 } 5763 } 5764 bad: 5765 ieee80211_free_node(ni); 5766 5767 /* 5768 * Restore the power state - either to what it was, or 5769 * to network_sleep if it's alright. 5770 */ 5771 ATH_LOCK(sc); 5772 ath_power_restore_power_state(sc); 5773 ATH_UNLOCK(sc); 5774 return error; 5775 } 5776 5777 /* 5778 * Allocate a key cache slot to the station so we can 5779 * setup a mapping from key index to node. The key cache 5780 * slot is needed for managing antenna state and for 5781 * compression when stations do not use crypto. We do 5782 * it uniliaterally here; if crypto is employed this slot 5783 * will be reassigned. 5784 */ 5785 static void 5786 ath_setup_stationkey(struct ieee80211_node *ni) 5787 { 5788 struct ieee80211vap *vap = ni->ni_vap; 5789 struct ath_softc *sc = vap->iv_ic->ic_softc; 5790 ieee80211_keyix keyix, rxkeyix; 5791 5792 /* XXX should take a locked ref to vap->iv_bss */ 5793 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5794 /* 5795 * Key cache is full; we'll fall back to doing 5796 * the more expensive lookup in software. Note 5797 * this also means no h/w compression. 5798 */ 5799 /* XXX msg+statistic */ 5800 } else { 5801 /* XXX locking? */ 5802 ni->ni_ucastkey.wk_keyix = keyix; 5803 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5804 /* NB: must mark device key to get called back on delete */ 5805 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5806 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5807 /* NB: this will create a pass-thru key entry */ 5808 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5809 } 5810 } 5811 5812 /* 5813 * Setup driver-specific state for a newly associated node. 5814 * Note that we're called also on a re-associate, the isnew 5815 * param tells us if this is the first time or not. 5816 */ 5817 static void 5818 ath_newassoc(struct ieee80211_node *ni, int isnew) 5819 { 5820 struct ath_node *an = ATH_NODE(ni); 5821 struct ieee80211vap *vap = ni->ni_vap; 5822 struct ath_softc *sc = vap->iv_ic->ic_softc; 5823 const struct ieee80211_txparam *tp = ni->ni_txparms; 5824 5825 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5826 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5827 5828 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 5829 __func__, 5830 ni->ni_macaddr, 5831 ":", 5832 isnew, 5833 an->an_is_powersave); 5834 5835 ATH_NODE_LOCK(an); 5836 ath_rate_newassoc(sc, an, isnew); 5837 ATH_NODE_UNLOCK(an); 5838 5839 if (isnew && 5840 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5841 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5842 ath_setup_stationkey(ni); 5843 5844 /* 5845 * If we're reassociating, make sure that any paused queues 5846 * get unpaused. 5847 * 5848 * Now, we may hvae frames in the hardware queue for this node. 5849 * So if we are reassociating and there are frames in the queue, 5850 * we need to go through the cleanup path to ensure that they're 5851 * marked as non-aggregate. 5852 */ 5853 if (! isnew) { 5854 DPRINTF(sc, ATH_DEBUG_NODE, 5855 "%s: %6D: reassoc; is_powersave=%d\n", 5856 __func__, 5857 ni->ni_macaddr, 5858 ":", 5859 an->an_is_powersave); 5860 5861 /* XXX for now, we can't hold the lock across assoc */ 5862 ath_tx_node_reassoc(sc, an); 5863 5864 /* XXX for now, we can't hold the lock across wakeup */ 5865 if (an->an_is_powersave) 5866 ath_tx_node_wakeup(sc, an); 5867 } 5868 } 5869 5870 static int 5871 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5872 int nchans, struct ieee80211_channel chans[]) 5873 { 5874 struct ath_softc *sc = ic->ic_softc; 5875 struct ath_hal *ah = sc->sc_ah; 5876 HAL_STATUS status; 5877 5878 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5879 "%s: rd %u cc %u location %c%s\n", 5880 __func__, reg->regdomain, reg->country, reg->location, 5881 reg->ecm ? " ecm" : ""); 5882 5883 status = ath_hal_set_channels(ah, chans, nchans, 5884 reg->country, reg->regdomain); 5885 if (status != HAL_OK) { 5886 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5887 __func__, status); 5888 return EINVAL; /* XXX */ 5889 } 5890 5891 return 0; 5892 } 5893 5894 static void 5895 ath_getradiocaps(struct ieee80211com *ic, 5896 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5897 { 5898 struct ath_softc *sc = ic->ic_softc; 5899 struct ath_hal *ah = sc->sc_ah; 5900 5901 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5902 __func__, SKU_DEBUG, CTRY_DEFAULT); 5903 5904 /* XXX check return */ 5905 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5906 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5907 5908 } 5909 5910 static int 5911 ath_getchannels(struct ath_softc *sc) 5912 { 5913 struct ieee80211com *ic = &sc->sc_ic; 5914 struct ath_hal *ah = sc->sc_ah; 5915 HAL_STATUS status; 5916 5917 /* 5918 * Collect channel set based on EEPROM contents. 5919 */ 5920 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5921 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5922 if (status != HAL_OK) { 5923 device_printf(sc->sc_dev, 5924 "%s: unable to collect channel list from hal, status %d\n", 5925 __func__, status); 5926 return EINVAL; 5927 } 5928 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5929 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5930 /* XXX map Atheros sku's to net80211 SKU's */ 5931 /* XXX net80211 types too small */ 5932 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5933 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5934 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5935 ic->ic_regdomain.isocc[1] = ' '; 5936 5937 ic->ic_regdomain.ecm = 1; 5938 ic->ic_regdomain.location = 'I'; 5939 5940 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5941 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5942 __func__, sc->sc_eerd, sc->sc_eecc, 5943 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5944 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5945 return 0; 5946 } 5947 5948 static int 5949 ath_rate_setup(struct ath_softc *sc, u_int mode) 5950 { 5951 struct ath_hal *ah = sc->sc_ah; 5952 const HAL_RATE_TABLE *rt; 5953 5954 switch (mode) { 5955 case IEEE80211_MODE_11A: 5956 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5957 break; 5958 case IEEE80211_MODE_HALF: 5959 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5960 break; 5961 case IEEE80211_MODE_QUARTER: 5962 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5963 break; 5964 case IEEE80211_MODE_11B: 5965 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5966 break; 5967 case IEEE80211_MODE_11G: 5968 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5969 break; 5970 case IEEE80211_MODE_TURBO_A: 5971 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5972 break; 5973 case IEEE80211_MODE_TURBO_G: 5974 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5975 break; 5976 case IEEE80211_MODE_STURBO_A: 5977 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5978 break; 5979 case IEEE80211_MODE_11NA: 5980 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 5981 break; 5982 case IEEE80211_MODE_11NG: 5983 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 5984 break; 5985 default: 5986 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5987 __func__, mode); 5988 return 0; 5989 } 5990 sc->sc_rates[mode] = rt; 5991 return (rt != NULL); 5992 } 5993 5994 static void 5995 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5996 { 5997 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5998 static const struct { 5999 u_int rate; /* tx/rx 802.11 rate */ 6000 u_int16_t timeOn; /* LED on time (ms) */ 6001 u_int16_t timeOff; /* LED off time (ms) */ 6002 } blinkrates[] = { 6003 { 108, 40, 10 }, 6004 { 96, 44, 11 }, 6005 { 72, 50, 13 }, 6006 { 48, 57, 14 }, 6007 { 36, 67, 16 }, 6008 { 24, 80, 20 }, 6009 { 22, 100, 25 }, 6010 { 18, 133, 34 }, 6011 { 12, 160, 40 }, 6012 { 10, 200, 50 }, 6013 { 6, 240, 58 }, 6014 { 4, 267, 66 }, 6015 { 2, 400, 100 }, 6016 { 0, 500, 130 }, 6017 /* XXX half/quarter rates */ 6018 }; 6019 const HAL_RATE_TABLE *rt; 6020 int i, j; 6021 6022 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6023 rt = sc->sc_rates[mode]; 6024 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6025 for (i = 0; i < rt->rateCount; i++) { 6026 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6027 if (rt->info[i].phy != IEEE80211_T_HT) 6028 sc->sc_rixmap[ieeerate] = i; 6029 else 6030 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6031 } 6032 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6033 for (i = 0; i < nitems(sc->sc_hwmap); i++) { 6034 if (i >= rt->rateCount) { 6035 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6036 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6037 continue; 6038 } 6039 sc->sc_hwmap[i].ieeerate = 6040 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6041 if (rt->info[i].phy == IEEE80211_T_HT) 6042 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6043 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6044 if (rt->info[i].shortPreamble || 6045 rt->info[i].phy == IEEE80211_T_OFDM) 6046 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6047 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6048 for (j = 0; j < nitems(blinkrates)-1; j++) 6049 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6050 break; 6051 /* NB: this uses the last entry if the rate isn't found */ 6052 /* XXX beware of overlow */ 6053 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6054 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6055 } 6056 sc->sc_currates = rt; 6057 sc->sc_curmode = mode; 6058 /* 6059 * All protection frames are transmited at 2Mb/s for 6060 * 11g, otherwise at 1Mb/s. 6061 */ 6062 if (mode == IEEE80211_MODE_11G) 6063 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6064 else 6065 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6066 /* NB: caller is responsible for resetting rate control state */ 6067 } 6068 6069 static void 6070 ath_watchdog(void *arg) 6071 { 6072 struct ath_softc *sc = arg; 6073 struct ieee80211com *ic = &sc->sc_ic; 6074 int do_reset = 0; 6075 6076 ATH_LOCK_ASSERT(sc); 6077 6078 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6079 uint32_t hangs; 6080 6081 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6082 6083 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6084 hangs != 0) { 6085 device_printf(sc->sc_dev, "%s hang detected (0x%x)\n", 6086 hangs & 0xff ? "bb" : "mac", hangs); 6087 } else 6088 device_printf(sc->sc_dev, "device timeout\n"); 6089 do_reset = 1; 6090 counter_u64_add(ic->ic_oerrors, 1); 6091 sc->sc_stats.ast_watchdog++; 6092 6093 ath_power_restore_power_state(sc); 6094 } 6095 6096 /* 6097 * We can't hold the lock across the ath_reset() call. 6098 * 6099 * And since this routine can't hold a lock and sleep, 6100 * do the reset deferred. 6101 */ 6102 if (do_reset) { 6103 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6104 } 6105 6106 callout_schedule(&sc->sc_wd_ch, hz); 6107 } 6108 6109 static void 6110 ath_parent(struct ieee80211com *ic) 6111 { 6112 struct ath_softc *sc = ic->ic_softc; 6113 int error = EDOOFUS; 6114 6115 ATH_LOCK(sc); 6116 if (ic->ic_nrunning > 0) { 6117 /* 6118 * To avoid rescanning another access point, 6119 * do not call ath_init() here. Instead, 6120 * only reflect promisc mode settings. 6121 */ 6122 if (sc->sc_running) { 6123 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6124 ath_mode_init(sc); 6125 ath_power_restore_power_state(sc); 6126 } else if (!sc->sc_invalid) { 6127 /* 6128 * Beware of being called during attach/detach 6129 * to reset promiscuous mode. In that case we 6130 * will still be marked UP but not RUNNING. 6131 * However trying to re-init the interface 6132 * is the wrong thing to do as we've already 6133 * torn down much of our state. There's 6134 * probably a better way to deal with this. 6135 */ 6136 error = ath_init(sc); 6137 } 6138 } else { 6139 ath_stop(sc); 6140 if (!sc->sc_invalid) 6141 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 6142 } 6143 ATH_UNLOCK(sc); 6144 6145 if (error == 0) { 6146 #ifdef ATH_TX99_DIAG 6147 if (sc->sc_tx99 != NULL) 6148 sc->sc_tx99->start(sc->sc_tx99); 6149 else 6150 #endif 6151 ieee80211_start_all(ic); 6152 } 6153 } 6154 6155 /* 6156 * Announce various information on device/driver attach. 6157 */ 6158 static void 6159 ath_announce(struct ath_softc *sc) 6160 { 6161 struct ath_hal *ah = sc->sc_ah; 6162 6163 device_printf(sc->sc_dev, "AR%s mac %d.%d RF%s phy %d.%d\n", 6164 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6165 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6166 device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6167 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6168 if (bootverbose) { 6169 int i; 6170 for (i = 0; i <= WME_AC_VO; i++) { 6171 struct ath_txq *txq = sc->sc_ac2q[i]; 6172 device_printf(sc->sc_dev, 6173 "Use hw queue %u for %s traffic\n", 6174 txq->axq_qnum, ieee80211_wme_acnames[i]); 6175 } 6176 device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n", 6177 sc->sc_cabq->axq_qnum); 6178 device_printf(sc->sc_dev, "Use hw queue %u for beacons\n", 6179 sc->sc_bhalq); 6180 } 6181 if (ath_rxbuf != ATH_RXBUF) 6182 device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf); 6183 if (ath_txbuf != ATH_TXBUF) 6184 device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf); 6185 if (sc->sc_mcastkey && bootverbose) 6186 device_printf(sc->sc_dev, "using multicast key search\n"); 6187 } 6188 6189 static void 6190 ath_dfs_tasklet(void *p, int npending) 6191 { 6192 struct ath_softc *sc = (struct ath_softc *) p; 6193 struct ieee80211com *ic = &sc->sc_ic; 6194 6195 /* 6196 * If previous processing has found a radar event, 6197 * signal this to the net80211 layer to begin DFS 6198 * processing. 6199 */ 6200 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6201 /* DFS event found, initiate channel change */ 6202 /* 6203 * XXX doesn't currently tell us whether the event 6204 * XXX was found in the primary or extension 6205 * XXX channel! 6206 */ 6207 IEEE80211_LOCK(ic); 6208 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6209 IEEE80211_UNLOCK(ic); 6210 } 6211 } 6212 6213 /* 6214 * Enable/disable power save. This must be called with 6215 * no TX driver locks currently held, so it should only 6216 * be called from the RX path (which doesn't hold any 6217 * TX driver locks.) 6218 */ 6219 static void 6220 ath_node_powersave(struct ieee80211_node *ni, int enable) 6221 { 6222 #ifdef ATH_SW_PSQ 6223 struct ath_node *an = ATH_NODE(ni); 6224 struct ieee80211com *ic = ni->ni_ic; 6225 struct ath_softc *sc = ic->ic_softc; 6226 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6227 6228 /* XXX and no TXQ locks should be held here */ 6229 6230 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6231 __func__, 6232 ni->ni_macaddr, 6233 ":", 6234 !! enable); 6235 6236 /* Suspend or resume software queue handling */ 6237 if (enable) 6238 ath_tx_node_sleep(sc, an); 6239 else 6240 ath_tx_node_wakeup(sc, an); 6241 6242 /* Update net80211 state */ 6243 avp->av_node_ps(ni, enable); 6244 #else 6245 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6246 6247 /* Update net80211 state */ 6248 avp->av_node_ps(ni, enable); 6249 #endif/* ATH_SW_PSQ */ 6250 } 6251 6252 /* 6253 * Notification from net80211 that the powersave queue state has 6254 * changed. 6255 * 6256 * Since the software queue also may have some frames: 6257 * 6258 * + if the node software queue has frames and the TID state 6259 * is 0, we set the TIM; 6260 * + if the node and the stack are both empty, we clear the TIM bit. 6261 * + If the stack tries to set the bit, always set it. 6262 * + If the stack tries to clear the bit, only clear it if the 6263 * software queue in question is also cleared. 6264 * 6265 * TODO: this is called during node teardown; so let's ensure this 6266 * is all correctly handled and that the TIM bit is cleared. 6267 * It may be that the node flush is called _AFTER_ the net80211 6268 * stack clears the TIM. 6269 * 6270 * Here is the racy part. Since it's possible >1 concurrent, 6271 * overlapping TXes will appear complete with a TX completion in 6272 * another thread, it's possible that the concurrent TIM calls will 6273 * clash. We can't hold the node lock here because setting the 6274 * TIM grabs the net80211 comlock and this may cause a LOR. 6275 * The solution is either to totally serialise _everything_ at 6276 * this point (ie, all TX, completion and any reset/flush go into 6277 * one taskqueue) or a new "ath TIM lock" needs to be created that 6278 * just wraps the driver state change and this call to avp->av_set_tim(). 6279 * 6280 * The same race exists in the net80211 power save queue handling 6281 * as well. Since multiple transmitting threads may queue frames 6282 * into the driver, as well as ps-poll and the driver transmitting 6283 * frames (and thus clearing the psq), it's quite possible that 6284 * a packet entering the PSQ and a ps-poll being handled will 6285 * race, causing the TIM to be cleared and not re-set. 6286 */ 6287 static int 6288 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6289 { 6290 #ifdef ATH_SW_PSQ 6291 struct ieee80211com *ic = ni->ni_ic; 6292 struct ath_softc *sc = ic->ic_softc; 6293 struct ath_node *an = ATH_NODE(ni); 6294 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6295 int changed = 0; 6296 6297 ATH_TX_LOCK(sc); 6298 an->an_stack_psq = enable; 6299 6300 /* 6301 * This will get called for all operating modes, 6302 * even if avp->av_set_tim is unset. 6303 * It's currently set for hostap/ibss modes; but 6304 * the same infrastructure is used for both STA 6305 * and AP/IBSS node power save. 6306 */ 6307 if (avp->av_set_tim == NULL) { 6308 ATH_TX_UNLOCK(sc); 6309 return (0); 6310 } 6311 6312 /* 6313 * If setting the bit, always set it here. 6314 * If clearing the bit, only clear it if the 6315 * software queue is also empty. 6316 * 6317 * If the node has left power save, just clear the TIM 6318 * bit regardless of the state of the power save queue. 6319 * 6320 * XXX TODO: although atomics are used, it's quite possible 6321 * that a race will occur between this and setting/clearing 6322 * in another thread. TX completion will occur always in 6323 * one thread, however setting/clearing the TIM bit can come 6324 * from a variety of different process contexts! 6325 */ 6326 if (enable && an->an_tim_set == 1) { 6327 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6328 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6329 __func__, 6330 ni->ni_macaddr, 6331 ":", 6332 enable); 6333 ATH_TX_UNLOCK(sc); 6334 } else if (enable) { 6335 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6336 "%s: %6D: enable=%d, enabling TIM\n", 6337 __func__, 6338 ni->ni_macaddr, 6339 ":", 6340 enable); 6341 an->an_tim_set = 1; 6342 ATH_TX_UNLOCK(sc); 6343 changed = avp->av_set_tim(ni, enable); 6344 } else if (an->an_swq_depth == 0) { 6345 /* disable */ 6346 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6347 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6348 __func__, 6349 ni->ni_macaddr, 6350 ":", 6351 enable); 6352 an->an_tim_set = 0; 6353 ATH_TX_UNLOCK(sc); 6354 changed = avp->av_set_tim(ni, enable); 6355 } else if (! an->an_is_powersave) { 6356 /* 6357 * disable regardless; the node isn't in powersave now 6358 */ 6359 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6360 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6361 __func__, 6362 ni->ni_macaddr, 6363 ":", 6364 enable); 6365 an->an_tim_set = 0; 6366 ATH_TX_UNLOCK(sc); 6367 changed = avp->av_set_tim(ni, enable); 6368 } else { 6369 /* 6370 * psq disable, node is currently in powersave, node 6371 * software queue isn't empty, so don't clear the TIM bit 6372 * for now. 6373 */ 6374 ATH_TX_UNLOCK(sc); 6375 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6376 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6377 __func__, 6378 ni->ni_macaddr, 6379 ":", 6380 enable); 6381 changed = 0; 6382 } 6383 6384 return (changed); 6385 #else 6386 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6387 6388 /* 6389 * Some operating modes don't set av_set_tim(), so don't 6390 * update it here. 6391 */ 6392 if (avp->av_set_tim == NULL) 6393 return (0); 6394 6395 return (avp->av_set_tim(ni, enable)); 6396 #endif /* ATH_SW_PSQ */ 6397 } 6398 6399 /* 6400 * Set or update the TIM from the software queue. 6401 * 6402 * Check the software queue depth before attempting to do lock 6403 * anything; that avoids trying to obtain the lock. Then, 6404 * re-check afterwards to ensure nothing has changed in the 6405 * meantime. 6406 * 6407 * set: This is designed to be called from the TX path, after 6408 * a frame has been queued; to see if the swq > 0. 6409 * 6410 * clear: This is designed to be called from the buffer completion point 6411 * (right now it's ath_tx_default_comp()) where the state of 6412 * a software queue has changed. 6413 * 6414 * It makes sense to place it at buffer free / completion rather 6415 * than after each software queue operation, as there's no real 6416 * point in churning the TIM bit as the last frames in the software 6417 * queue are transmitted. If they fail and we retry them, we'd 6418 * just be setting the TIM bit again anyway. 6419 */ 6420 void 6421 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6422 int enable) 6423 { 6424 #ifdef ATH_SW_PSQ 6425 struct ath_node *an; 6426 struct ath_vap *avp; 6427 6428 /* Don't do this for broadcast/etc frames */ 6429 if (ni == NULL) 6430 return; 6431 6432 an = ATH_NODE(ni); 6433 avp = ATH_VAP(ni->ni_vap); 6434 6435 /* 6436 * And for operating modes without the TIM handler set, let's 6437 * just skip those. 6438 */ 6439 if (avp->av_set_tim == NULL) 6440 return; 6441 6442 ATH_TX_LOCK_ASSERT(sc); 6443 6444 if (enable) { 6445 if (an->an_is_powersave && 6446 an->an_tim_set == 0 && 6447 an->an_swq_depth != 0) { 6448 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6449 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6450 __func__, 6451 ni->ni_macaddr, 6452 ":"); 6453 an->an_tim_set = 1; 6454 (void) avp->av_set_tim(ni, 1); 6455 } 6456 } else { 6457 /* 6458 * Don't bother grabbing the lock unless the queue is empty. 6459 */ 6460 if (an->an_swq_depth != 0) 6461 return; 6462 6463 if (an->an_is_powersave && 6464 an->an_stack_psq == 0 && 6465 an->an_tim_set == 1 && 6466 an->an_swq_depth == 0) { 6467 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6468 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6469 " clear!\n", 6470 __func__, 6471 ni->ni_macaddr, 6472 ":"); 6473 an->an_tim_set = 0; 6474 (void) avp->av_set_tim(ni, 0); 6475 } 6476 } 6477 #else 6478 return; 6479 #endif /* ATH_SW_PSQ */ 6480 } 6481 6482 /* 6483 * Received a ps-poll frame from net80211. 6484 * 6485 * Here we get a chance to serve out a software-queued frame ourselves 6486 * before we punt it to net80211 to transmit us one itself - either 6487 * because there's traffic in the net80211 psq, or a NULL frame to 6488 * indicate there's nothing else. 6489 */ 6490 static void 6491 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6492 { 6493 #ifdef ATH_SW_PSQ 6494 struct ath_node *an; 6495 struct ath_vap *avp; 6496 struct ieee80211com *ic = ni->ni_ic; 6497 struct ath_softc *sc = ic->ic_softc; 6498 int tid; 6499 6500 /* Just paranoia */ 6501 if (ni == NULL) 6502 return; 6503 6504 /* 6505 * Unassociated (temporary node) station. 6506 */ 6507 if (ni->ni_associd == 0) 6508 return; 6509 6510 /* 6511 * We do have an active node, so let's begin looking into it. 6512 */ 6513 an = ATH_NODE(ni); 6514 avp = ATH_VAP(ni->ni_vap); 6515 6516 /* 6517 * For now, we just call the original ps-poll method. 6518 * Once we're ready to flip this on: 6519 * 6520 * + Set leak to 1, as no matter what we're going to have 6521 * to send a frame; 6522 * + Check the software queue and if there's something in it, 6523 * schedule the highest TID thas has traffic from this node. 6524 * Then make sure we schedule the software scheduler to 6525 * run so it picks up said frame. 6526 * 6527 * That way whatever happens, we'll at least send _a_ frame 6528 * to the given node. 6529 * 6530 * Again, yes, it's crappy QoS if the node has multiple 6531 * TIDs worth of traffic - but let's get it working first 6532 * before we optimise it. 6533 * 6534 * Also yes, there's definitely latency here - we're not 6535 * direct dispatching to the hardware in this path (and 6536 * we're likely being called from the packet receive path, 6537 * so going back into TX may be a little hairy!) but again 6538 * I'd like to get this working first before optimising 6539 * turn-around time. 6540 */ 6541 6542 ATH_TX_LOCK(sc); 6543 6544 /* 6545 * Legacy - we're called and the node isn't asleep. 6546 * Immediately punt. 6547 */ 6548 if (! an->an_is_powersave) { 6549 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6550 "%s: %6D: not in powersave?\n", 6551 __func__, 6552 ni->ni_macaddr, 6553 ":"); 6554 ATH_TX_UNLOCK(sc); 6555 avp->av_recv_pspoll(ni, m); 6556 return; 6557 } 6558 6559 /* 6560 * We're in powersave. 6561 * 6562 * Leak a frame. 6563 */ 6564 an->an_leak_count = 1; 6565 6566 /* 6567 * Now, if there's no frames in the node, just punt to 6568 * recv_pspoll. 6569 * 6570 * Don't bother checking if the TIM bit is set, we really 6571 * only care if there are any frames here! 6572 */ 6573 if (an->an_swq_depth == 0) { 6574 ATH_TX_UNLOCK(sc); 6575 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6576 "%s: %6D: SWQ empty; punting to net80211\n", 6577 __func__, 6578 ni->ni_macaddr, 6579 ":"); 6580 avp->av_recv_pspoll(ni, m); 6581 return; 6582 } 6583 6584 /* 6585 * Ok, let's schedule the highest TID that has traffic 6586 * and then schedule something. 6587 */ 6588 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 6589 struct ath_tid *atid = &an->an_tid[tid]; 6590 /* 6591 * No frames? Skip. 6592 */ 6593 if (atid->axq_depth == 0) 6594 continue; 6595 ath_tx_tid_sched(sc, atid); 6596 /* 6597 * XXX we could do a direct call to the TXQ 6598 * scheduler code here to optimise latency 6599 * at the expense of a REALLY deep callstack. 6600 */ 6601 ATH_TX_UNLOCK(sc); 6602 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 6603 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6604 "%s: %6D: leaking frame to TID %d\n", 6605 __func__, 6606 ni->ni_macaddr, 6607 ":", 6608 tid); 6609 return; 6610 } 6611 6612 ATH_TX_UNLOCK(sc); 6613 6614 /* 6615 * XXX nothing in the TIDs at this point? Eek. 6616 */ 6617 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6618 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 6619 __func__, 6620 ni->ni_macaddr, 6621 ":"); 6622 avp->av_recv_pspoll(ni, m); 6623 #else 6624 avp->av_recv_pspoll(ni, m); 6625 #endif /* ATH_SW_PSQ */ 6626 } 6627 6628 MODULE_VERSION(if_ath, 1); 6629 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6630 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ) 6631 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 6632 #endif 6633