xref: /freebsd/sys/dev/ath/if_ath.c (revision 195ebc7e9e4b129de810833791a19dfb4349d6a9)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 #include "opt_wlan.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/mbuf.h>
48 #include <sys/malloc.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/errno.h>
55 #include <sys/callout.h>
56 #include <sys/bus.h>
57 #include <sys/endian.h>
58 #include <sys/kthread.h>
59 #include <sys/taskqueue.h>
60 #include <sys/priv.h>
61 
62 #include <machine/bus.h>
63 
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_types.h>
68 #include <net/if_arp.h>
69 #include <net/ethernet.h>
70 #include <net/if_llc.h>
71 
72 #include <net80211/ieee80211_var.h>
73 #include <net80211/ieee80211_regdomain.h>
74 #ifdef IEEE80211_SUPPORT_SUPERG
75 #include <net80211/ieee80211_superg.h>
76 #endif
77 #ifdef IEEE80211_SUPPORT_TDMA
78 #include <net80211/ieee80211_tdma.h>
79 #endif
80 
81 #include <net/bpf.h>
82 
83 #ifdef INET
84 #include <netinet/in.h>
85 #include <netinet/if_ether.h>
86 #endif
87 
88 #include <dev/ath/if_athvar.h>
89 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
90 
91 #ifdef ATH_TX99_DIAG
92 #include <dev/ath/ath_tx99/ath_tx99.h>
93 #endif
94 
95 /*
96  * ATH_BCBUF determines the number of vap's that can transmit
97  * beacons and also (currently) the number of vap's that can
98  * have unique mac addresses/bssid.  When staggering beacons
99  * 4 is probably a good max as otherwise the beacons become
100  * very closely spaced and there is limited time for cab q traffic
101  * to go out.  You can burst beacons instead but that is not good
102  * for stations in power save and at some point you really want
103  * another radio (and channel).
104  *
105  * The limit on the number of mac addresses is tied to our use of
106  * the U/L bit and tracking addresses in a byte; it would be
107  * worthwhile to allow more for applications like proxy sta.
108  */
109 CTASSERT(ATH_BCBUF <= 8);
110 
111 /* unaligned little endian access */
112 #define LE_READ_2(p)							\
113 	((u_int16_t)							\
114 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
115 #define LE_READ_4(p)							\
116 	((u_int32_t)							\
117 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
118 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
119 
120 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
121 		    const char name[IFNAMSIZ], int unit, int opmode,
122 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
123 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
124 static void	ath_vap_delete(struct ieee80211vap *);
125 static void	ath_init(void *);
126 static void	ath_stop_locked(struct ifnet *);
127 static void	ath_stop(struct ifnet *);
128 static void	ath_start(struct ifnet *);
129 static int	ath_reset(struct ifnet *);
130 static int	ath_reset_vap(struct ieee80211vap *, u_long);
131 static int	ath_media_change(struct ifnet *);
132 static void	ath_watchdog(void *);
133 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
134 static void	ath_fatal_proc(void *, int);
135 static void	ath_bmiss_vap(struct ieee80211vap *);
136 static void	ath_bmiss_proc(void *, int);
137 static int	ath_keyset(struct ath_softc *, const struct ieee80211_key *,
138 			struct ieee80211_node *);
139 static int	ath_key_alloc(struct ieee80211vap *,
140 			struct ieee80211_key *,
141 			ieee80211_keyix *, ieee80211_keyix *);
142 static int	ath_key_delete(struct ieee80211vap *,
143 			const struct ieee80211_key *);
144 static int	ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
145 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
146 static void	ath_key_update_begin(struct ieee80211vap *);
147 static void	ath_key_update_end(struct ieee80211vap *);
148 static void	ath_update_mcast(struct ifnet *);
149 static void	ath_update_promisc(struct ifnet *);
150 static void	ath_mode_init(struct ath_softc *);
151 static void	ath_setslottime(struct ath_softc *);
152 static void	ath_updateslot(struct ifnet *);
153 static int	ath_beaconq_setup(struct ath_hal *);
154 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
155 static void	ath_beacon_update(struct ieee80211vap *, int item);
156 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
157 static void	ath_beacon_proc(void *, int);
158 static struct ath_buf *ath_beacon_generate(struct ath_softc *,
159 			struct ieee80211vap *);
160 static void	ath_bstuck_proc(void *, int);
161 static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
162 static void	ath_beacon_free(struct ath_softc *);
163 static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
164 static void	ath_descdma_cleanup(struct ath_softc *sc,
165 			struct ath_descdma *, ath_bufhead *);
166 static int	ath_desc_alloc(struct ath_softc *);
167 static void	ath_desc_free(struct ath_softc *);
168 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
169 			const uint8_t [IEEE80211_ADDR_LEN]);
170 static void	ath_node_free(struct ieee80211_node *);
171 static void	ath_node_getsignal(const struct ieee80211_node *,
172 			int8_t *, int8_t *);
173 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
174 static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
175 			int subtype, int rssi, int nf);
176 static void	ath_setdefantenna(struct ath_softc *, u_int);
177 static void	ath_rx_proc(void *, int);
178 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
179 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
180 static int	ath_tx_setup(struct ath_softc *, int, int);
181 static int	ath_wme_update(struct ieee80211com *);
182 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
183 static void	ath_tx_cleanup(struct ath_softc *);
184 static void	ath_freetx(struct mbuf *);
185 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
186 			     struct ath_buf *, struct mbuf *);
187 static void	ath_tx_proc_q0(void *, int);
188 static void	ath_tx_proc_q0123(void *, int);
189 static void	ath_tx_proc(void *, int);
190 static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
191 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
192 static void	ath_draintxq(struct ath_softc *);
193 static void	ath_stoprecv(struct ath_softc *);
194 static int	ath_startrecv(struct ath_softc *);
195 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
196 static void	ath_scan_start(struct ieee80211com *);
197 static void	ath_scan_end(struct ieee80211com *);
198 static void	ath_set_channel(struct ieee80211com *);
199 static void	ath_calibrate(void *);
200 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
201 static void	ath_setup_stationkey(struct ieee80211_node *);
202 static void	ath_newassoc(struct ieee80211_node *, int);
203 static int	ath_setregdomain(struct ieee80211com *,
204 		    struct ieee80211_regdomain *, int,
205 		    struct ieee80211_channel []);
206 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
207 		    struct ieee80211_channel []);
208 static int	ath_getchannels(struct ath_softc *);
209 static void	ath_led_event(struct ath_softc *, int);
210 
211 static int	ath_rate_setup(struct ath_softc *, u_int mode);
212 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
213 
214 static void	ath_sysctlattach(struct ath_softc *);
215 static int	ath_raw_xmit(struct ieee80211_node *,
216 			struct mbuf *, const struct ieee80211_bpf_params *);
217 static void	ath_announce(struct ath_softc *);
218 
219 #ifdef IEEE80211_SUPPORT_TDMA
220 static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
221 		    u_int32_t bintval);
222 static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
223 		    const struct ieee80211_tdma_state *tdma);
224 static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
225 static void	ath_tdma_update(struct ieee80211_node *ni,
226 		    const struct ieee80211_tdma_param *tdma, int);
227 static void	ath_tdma_beacon_send(struct ath_softc *sc,
228 		    struct ieee80211vap *vap);
229 
230 static __inline void
231 ath_hal_setcca(struct ath_hal *ah, int ena)
232 {
233 	/*
234 	 * NB: fill me in; this is not provided by default because disabling
235 	 *     CCA in most locales violates regulatory.
236 	 */
237 }
238 
239 static __inline int
240 ath_hal_getcca(struct ath_hal *ah)
241 {
242 	u_int32_t diag;
243 	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
244 		return 1;
245 	return ((diag & 0x500000) == 0);
246 }
247 
248 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
249 #define	TDMA_LPF_LEN		6
250 #define	TDMA_DUMMY_MARKER	0x127
251 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
252 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
253 #define	TDMA_LPF(x, y, len) \
254     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
255 #define	TDMA_SAMPLE(x, y) do {					\
256 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
257 } while (0)
258 #define	TDMA_EP_RND(x,mul) \
259 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
260 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
261 #endif /* IEEE80211_SUPPORT_TDMA */
262 
263 SYSCTL_DECL(_hw_ath);
264 
265 /* XXX validate sysctl values */
266 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
267 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
268 	    0, "long chip calibration interval (secs)");
269 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
270 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
271 	    0, "short chip calibration interval (msecs)");
272 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
273 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
274 	    0, "reset chip calibration results (secs)");
275 
276 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
277 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
278 	    0, "rx buffers allocated");
279 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
280 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
281 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
282 	    0, "tx buffers allocated");
283 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
284 
285 static	int ath_bstuck_threshold = 4;		/* max missed beacons */
286 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
287 	    0, "max missed beacon xmits before chip reset");
288 
289 #ifdef ATH_DEBUG
290 enum {
291 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
292 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
293 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
294 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
295 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
296 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
297 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
298 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
299 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
300 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
301 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
302 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
303 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
304 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
305 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
306 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
307 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
308 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
309 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
310 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
311 	ATH_DEBUG_TDMA		= 0x00800000,	/* TDMA processing */
312 	ATH_DEBUG_TDMA_TIMER	= 0x01000000,	/* TDMA timer processing */
313 	ATH_DEBUG_REGDOMAIN	= 0x02000000,	/* regulatory processing */
314 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
315 	ATH_DEBUG_ANY		= 0xffffffff
316 };
317 static	int ath_debug = 0;
318 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
319 	    0, "control debugging printfs");
320 TUNABLE_INT("hw.ath.debug", &ath_debug);
321 
322 #define	IFF_DUMPPKTS(sc, m) \
323 	((sc->sc_debug & (m)) || \
324 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
325 #define	DPRINTF(sc, m, fmt, ...) do {				\
326 	if (sc->sc_debug & (m))					\
327 		printf(fmt, __VA_ARGS__);			\
328 } while (0)
329 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
330 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
331 		ath_keyprint(sc, __func__, ix, hk, mac);	\
332 } while (0)
333 static	void ath_printrxbuf(struct ath_softc *, const struct ath_buf *bf,
334 	u_int ix, int);
335 static	void ath_printtxbuf(struct ath_softc *, const struct ath_buf *bf,
336 	u_int qnum, u_int ix, int done);
337 #else
338 #define	IFF_DUMPPKTS(sc, m) \
339 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
340 #define	DPRINTF(sc, m, fmt, ...) do {				\
341 	(void) sc;						\
342 } while (0)
343 #define	KEYPRINTF(sc, k, ix, mac) do {				\
344 	(void) sc;						\
345 } while (0)
346 #endif
347 
348 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
349 
350 int
351 ath_attach(u_int16_t devid, struct ath_softc *sc)
352 {
353 	struct ifnet *ifp;
354 	struct ieee80211com *ic;
355 	struct ath_hal *ah = NULL;
356 	HAL_STATUS status;
357 	int error = 0, i;
358 	u_int wmodes;
359 	uint8_t macaddr[IEEE80211_ADDR_LEN];
360 
361 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
362 
363 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
364 	if (ifp == NULL) {
365 		device_printf(sc->sc_dev, "can not if_alloc()\n");
366 		error = ENOSPC;
367 		goto bad;
368 	}
369 	ic = ifp->if_l2com;
370 
371 	/* set these up early for if_printf use */
372 	if_initname(ifp, device_get_name(sc->sc_dev),
373 		device_get_unit(sc->sc_dev));
374 
375 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
376 	if (ah == NULL) {
377 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
378 			status);
379 		error = ENXIO;
380 		goto bad;
381 	}
382 	sc->sc_ah = ah;
383 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
384 #ifdef	ATH_DEBUG
385 	sc->sc_debug = ath_debug;
386 #endif
387 
388 	/*
389 	 * Check if the MAC has multi-rate retry support.
390 	 * We do this by trying to setup a fake extended
391 	 * descriptor.  MAC's that don't have support will
392 	 * return false w/o doing anything.  MAC's that do
393 	 * support it will return true w/o doing anything.
394 	 */
395 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
396 
397 	/*
398 	 * Check if the device has hardware counters for PHY
399 	 * errors.  If so we need to enable the MIB interrupt
400 	 * so we can act on stat triggers.
401 	 */
402 	if (ath_hal_hwphycounters(ah))
403 		sc->sc_needmib = 1;
404 
405 	/*
406 	 * Get the hardware key cache size.
407 	 */
408 	sc->sc_keymax = ath_hal_keycachesize(ah);
409 	if (sc->sc_keymax > ATH_KEYMAX) {
410 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
411 			ATH_KEYMAX, sc->sc_keymax);
412 		sc->sc_keymax = ATH_KEYMAX;
413 	}
414 	/*
415 	 * Reset the key cache since some parts do not
416 	 * reset the contents on initial power up.
417 	 */
418 	for (i = 0; i < sc->sc_keymax; i++)
419 		ath_hal_keyreset(ah, i);
420 
421 	/*
422 	 * Collect the default channel list.
423 	 */
424 	error = ath_getchannels(sc);
425 	if (error != 0)
426 		goto bad;
427 
428 	/*
429 	 * Setup rate tables for all potential media types.
430 	 */
431 	ath_rate_setup(sc, IEEE80211_MODE_11A);
432 	ath_rate_setup(sc, IEEE80211_MODE_11B);
433 	ath_rate_setup(sc, IEEE80211_MODE_11G);
434 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
435 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
436 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
437 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
438 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
439 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
440 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
441 
442 	/* NB: setup here so ath_rate_update is happy */
443 	ath_setcurmode(sc, IEEE80211_MODE_11A);
444 
445 	/*
446 	 * Allocate tx+rx descriptors and populate the lists.
447 	 */
448 	error = ath_desc_alloc(sc);
449 	if (error != 0) {
450 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
451 		goto bad;
452 	}
453 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
454 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
455 
456 	ATH_TXBUF_LOCK_INIT(sc);
457 
458 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
459 		taskqueue_thread_enqueue, &sc->sc_tq);
460 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
461 		"%s taskq", ifp->if_xname);
462 
463 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
464 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
465 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
466 
467 	/*
468 	 * Allocate hardware transmit queues: one queue for
469 	 * beacon frames and one data queue for each QoS
470 	 * priority.  Note that the hal handles reseting
471 	 * these queues at the needed time.
472 	 *
473 	 * XXX PS-Poll
474 	 */
475 	sc->sc_bhalq = ath_beaconq_setup(ah);
476 	if (sc->sc_bhalq == (u_int) -1) {
477 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
478 		error = EIO;
479 		goto bad2;
480 	}
481 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
482 	if (sc->sc_cabq == NULL) {
483 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
484 		error = EIO;
485 		goto bad2;
486 	}
487 	/* NB: insure BK queue is the lowest priority h/w queue */
488 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
489 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
490 			ieee80211_wme_acnames[WME_AC_BK]);
491 		error = EIO;
492 		goto bad2;
493 	}
494 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
495 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
496 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
497 		/*
498 		 * Not enough hardware tx queues to properly do WME;
499 		 * just punt and assign them all to the same h/w queue.
500 		 * We could do a better job of this if, for example,
501 		 * we allocate queues when we switch from station to
502 		 * AP mode.
503 		 */
504 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
505 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
506 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
507 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
508 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
509 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
510 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
511 	}
512 
513 	/*
514 	 * Special case certain configurations.  Note the
515 	 * CAB queue is handled by these specially so don't
516 	 * include them when checking the txq setup mask.
517 	 */
518 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
519 	case 0x01:
520 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
521 		break;
522 	case 0x0f:
523 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
524 		break;
525 	default:
526 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
527 		break;
528 	}
529 
530 	/*
531 	 * Setup rate control.  Some rate control modules
532 	 * call back to change the anntena state so expose
533 	 * the necessary entry points.
534 	 * XXX maybe belongs in struct ath_ratectrl?
535 	 */
536 	sc->sc_setdefantenna = ath_setdefantenna;
537 	sc->sc_rc = ath_rate_attach(sc);
538 	if (sc->sc_rc == NULL) {
539 		error = EIO;
540 		goto bad2;
541 	}
542 
543 	sc->sc_blinking = 0;
544 	sc->sc_ledstate = 1;
545 	sc->sc_ledon = 0;			/* low true */
546 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
547 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
548 	/*
549 	 * Auto-enable soft led processing for IBM cards and for
550 	 * 5211 minipci cards.  Users can also manually enable/disable
551 	 * support with a sysctl.
552 	 */
553 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
554 	if (sc->sc_softled) {
555 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
556 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
557 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
558 	}
559 
560 	ifp->if_softc = sc;
561 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
562 	ifp->if_start = ath_start;
563 	ifp->if_watchdog = NULL;
564 	ifp->if_ioctl = ath_ioctl;
565 	ifp->if_init = ath_init;
566 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
567 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
568 	IFQ_SET_READY(&ifp->if_snd);
569 
570 	ic->ic_ifp = ifp;
571 	/* XXX not right but it's not used anywhere important */
572 	ic->ic_phytype = IEEE80211_T_OFDM;
573 	ic->ic_opmode = IEEE80211_M_STA;
574 	ic->ic_caps =
575 		  IEEE80211_C_STA		/* station mode */
576 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
577 		| IEEE80211_C_HOSTAP		/* hostap mode */
578 		| IEEE80211_C_MONITOR		/* monitor mode */
579 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
580 		| IEEE80211_C_WDS		/* 4-address traffic works */
581 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
582 		| IEEE80211_C_SHSLOT		/* short slot time supported */
583 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
584 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
585 		| IEEE80211_C_TXFRAG		/* handle tx frags */
586 		;
587 	/*
588 	 * Query the hal to figure out h/w crypto support.
589 	 */
590 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
591 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
592 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
593 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
594 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
595 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
596 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
597 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
598 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
599 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
600 		/*
601 		 * Check if h/w does the MIC and/or whether the
602 		 * separate key cache entries are required to
603 		 * handle both tx+rx MIC keys.
604 		 */
605 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
606 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
607 		/*
608 		 * If the h/w supports storing tx+rx MIC keys
609 		 * in one cache slot automatically enable use.
610 		 */
611 		if (ath_hal_hastkipsplit(ah) ||
612 		    !ath_hal_settkipsplit(ah, AH_FALSE))
613 			sc->sc_splitmic = 1;
614 		/*
615 		 * If the h/w can do TKIP MIC together with WME then
616 		 * we use it; otherwise we force the MIC to be done
617 		 * in software by the net80211 layer.
618 		 */
619 		if (ath_hal_haswmetkipmic(ah))
620 			sc->sc_wmetkipmic = 1;
621 	}
622 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
623 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
624 	/*
625 	 * Mark key cache slots associated with global keys
626 	 * as in use.  If we knew TKIP was not to be used we
627 	 * could leave the +32, +64, and +32+64 slots free.
628 	 */
629 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
630 		setbit(sc->sc_keymap, i);
631 		setbit(sc->sc_keymap, i+64);
632 		if (sc->sc_splitmic) {
633 			setbit(sc->sc_keymap, i+32);
634 			setbit(sc->sc_keymap, i+32+64);
635 		}
636 	}
637 	/*
638 	 * TPC support can be done either with a global cap or
639 	 * per-packet support.  The latter is not available on
640 	 * all parts.  We're a bit pedantic here as all parts
641 	 * support a global cap.
642 	 */
643 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
644 		ic->ic_caps |= IEEE80211_C_TXPMGT;
645 
646 	/*
647 	 * Mark WME capability only if we have sufficient
648 	 * hardware queues to do proper priority scheduling.
649 	 */
650 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
651 		ic->ic_caps |= IEEE80211_C_WME;
652 	/*
653 	 * Check for misc other capabilities.
654 	 */
655 	if (ath_hal_hasbursting(ah))
656 		ic->ic_caps |= IEEE80211_C_BURST;
657 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
658 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
659 	if (ath_hal_hasfastframes(ah))
660 		ic->ic_caps |= IEEE80211_C_FF;
661 	wmodes = ath_hal_getwirelessmodes(ah);
662 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
663 		ic->ic_caps |= IEEE80211_C_TURBOP;
664 #ifdef IEEE80211_SUPPORT_TDMA
665 	if (ath_hal_macversion(ah) > 0x78) {
666 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
667 		ic->ic_tdma_update = ath_tdma_update;
668 	}
669 #endif
670 	/*
671 	 * Indicate we need the 802.11 header padded to a
672 	 * 32-bit boundary for 4-address and QoS frames.
673 	 */
674 	ic->ic_flags |= IEEE80211_F_DATAPAD;
675 
676 	/*
677 	 * Query the hal about antenna support.
678 	 */
679 	sc->sc_defant = ath_hal_getdefantenna(ah);
680 
681 	/*
682 	 * Not all chips have the VEOL support we want to
683 	 * use with IBSS beacons; check here for it.
684 	 */
685 	sc->sc_hasveol = ath_hal_hasveol(ah);
686 
687 	/* get mac address from hardware */
688 	ath_hal_getmac(ah, macaddr);
689 	if (sc->sc_hasbmask)
690 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
691 
692 	/* NB: used to size node table key mapping array */
693 	ic->ic_max_keyix = sc->sc_keymax;
694 	/* call MI attach routine. */
695 	ieee80211_ifattach(ic, macaddr);
696 	ic->ic_setregdomain = ath_setregdomain;
697 	ic->ic_getradiocaps = ath_getradiocaps;
698 	sc->sc_opmode = HAL_M_STA;
699 
700 	/* override default methods */
701 	ic->ic_newassoc = ath_newassoc;
702 	ic->ic_updateslot = ath_updateslot;
703 	ic->ic_wme.wme_update = ath_wme_update;
704 	ic->ic_vap_create = ath_vap_create;
705 	ic->ic_vap_delete = ath_vap_delete;
706 	ic->ic_raw_xmit = ath_raw_xmit;
707 	ic->ic_update_mcast = ath_update_mcast;
708 	ic->ic_update_promisc = ath_update_promisc;
709 	ic->ic_node_alloc = ath_node_alloc;
710 	sc->sc_node_free = ic->ic_node_free;
711 	ic->ic_node_free = ath_node_free;
712 	ic->ic_node_getsignal = ath_node_getsignal;
713 	ic->ic_scan_start = ath_scan_start;
714 	ic->ic_scan_end = ath_scan_end;
715 	ic->ic_set_channel = ath_set_channel;
716 
717 	ieee80211_radiotap_attach(ic,
718 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
719 		ATH_TX_RADIOTAP_PRESENT,
720 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
721 		ATH_RX_RADIOTAP_PRESENT);
722 
723 	/*
724 	 * Setup dynamic sysctl's now that country code and
725 	 * regdomain are available from the hal.
726 	 */
727 	ath_sysctlattach(sc);
728 
729 	if (bootverbose)
730 		ieee80211_announce(ic);
731 	ath_announce(sc);
732 	return 0;
733 bad2:
734 	ath_tx_cleanup(sc);
735 	ath_desc_free(sc);
736 bad:
737 	if (ah)
738 		ath_hal_detach(ah);
739 	if (ifp != NULL)
740 		if_free(ifp);
741 	sc->sc_invalid = 1;
742 	return error;
743 }
744 
745 int
746 ath_detach(struct ath_softc *sc)
747 {
748 	struct ifnet *ifp = sc->sc_ifp;
749 
750 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
751 		__func__, ifp->if_flags);
752 
753 	/*
754 	 * NB: the order of these is important:
755 	 * o stop the chip so no more interrupts will fire
756 	 * o call the 802.11 layer before detaching the hal to
757 	 *   insure callbacks into the driver to delete global
758 	 *   key cache entries can be handled
759 	 * o free the taskqueue which drains any pending tasks
760 	 * o reclaim the tx queue data structures after calling
761 	 *   the 802.11 layer as we'll get called back to reclaim
762 	 *   node state and potentially want to use them
763 	 * o to cleanup the tx queues the hal is called, so detach
764 	 *   it last
765 	 * Other than that, it's straightforward...
766 	 */
767 	ath_stop(ifp);
768 	ieee80211_ifdetach(ifp->if_l2com);
769 	taskqueue_free(sc->sc_tq);
770 #ifdef ATH_TX99_DIAG
771 	if (sc->sc_tx99 != NULL)
772 		sc->sc_tx99->detach(sc->sc_tx99);
773 #endif
774 	ath_rate_detach(sc->sc_rc);
775 	ath_desc_free(sc);
776 	ath_tx_cleanup(sc);
777 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
778 	if_free(ifp);
779 
780 	return 0;
781 }
782 
783 /*
784  * MAC address handling for multiple BSS on the same radio.
785  * The first vap uses the MAC address from the EEPROM.  For
786  * subsequent vap's we set the U/L bit (bit 1) in the MAC
787  * address and use the next six bits as an index.
788  */
789 static void
790 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
791 {
792 	int i;
793 
794 	if (clone && sc->sc_hasbmask) {
795 		/* NB: we only do this if h/w supports multiple bssid */
796 		for (i = 0; i < 8; i++)
797 			if ((sc->sc_bssidmask & (1<<i)) == 0)
798 				break;
799 		if (i != 0)
800 			mac[0] |= (i << 2)|0x2;
801 	} else
802 		i = 0;
803 	sc->sc_bssidmask |= 1<<i;
804 	sc->sc_hwbssidmask[0] &= ~mac[0];
805 	if (i == 0)
806 		sc->sc_nbssid0++;
807 }
808 
809 static void
810 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
811 {
812 	int i = mac[0] >> 2;
813 	uint8_t mask;
814 
815 	if (i != 0 || --sc->sc_nbssid0 == 0) {
816 		sc->sc_bssidmask &= ~(1<<i);
817 		/* recalculate bssid mask from remaining addresses */
818 		mask = 0xff;
819 		for (i = 1; i < 8; i++)
820 			if (sc->sc_bssidmask & (1<<i))
821 				mask &= ~((i<<2)|0x2);
822 		sc->sc_hwbssidmask[0] |= mask;
823 	}
824 }
825 
826 /*
827  * Assign a beacon xmit slot.  We try to space out
828  * assignments so when beacons are staggered the
829  * traffic coming out of the cab q has maximal time
830  * to go out before the next beacon is scheduled.
831  */
832 static int
833 assign_bslot(struct ath_softc *sc)
834 {
835 	u_int slot, free;
836 
837 	free = 0;
838 	for (slot = 0; slot < ATH_BCBUF; slot++)
839 		if (sc->sc_bslot[slot] == NULL) {
840 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
841 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
842 				return slot;
843 			free = slot;
844 			/* NB: keep looking for a double slot */
845 		}
846 	return free;
847 }
848 
849 static struct ieee80211vap *
850 ath_vap_create(struct ieee80211com *ic,
851 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
852 	const uint8_t bssid[IEEE80211_ADDR_LEN],
853 	const uint8_t mac0[IEEE80211_ADDR_LEN])
854 {
855 	struct ath_softc *sc = ic->ic_ifp->if_softc;
856 	struct ath_vap *avp;
857 	struct ieee80211vap *vap;
858 	uint8_t mac[IEEE80211_ADDR_LEN];
859 	int ic_opmode, needbeacon, error;
860 
861 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
862 	    M_80211_VAP, M_WAITOK | M_ZERO);
863 	needbeacon = 0;
864 	IEEE80211_ADDR_COPY(mac, mac0);
865 
866 	ATH_LOCK(sc);
867 	ic_opmode = opmode;		/* default to opmode of new vap */
868 	switch (opmode) {
869 	case IEEE80211_M_STA:
870 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
871 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
872 			goto bad;
873 		}
874 		if (sc->sc_nvaps) {
875 			/*
876 			 * With multiple vaps we must fall back
877 			 * to s/w beacon miss handling.
878 			 */
879 			flags |= IEEE80211_CLONE_NOBEACONS;
880 		}
881 		if (flags & IEEE80211_CLONE_NOBEACONS) {
882 			/*
883 			 * Station mode w/o beacons are implemented w/ AP mode.
884 			 */
885 			ic_opmode = IEEE80211_M_HOSTAP;
886 		}
887 		break;
888 	case IEEE80211_M_IBSS:
889 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
890 			device_printf(sc->sc_dev,
891 			    "only 1 ibss vap supported\n");
892 			goto bad;
893 		}
894 		needbeacon = 1;
895 		break;
896 	case IEEE80211_M_AHDEMO:
897 #ifdef IEEE80211_SUPPORT_TDMA
898 		if (flags & IEEE80211_CLONE_TDMA) {
899 			if (sc->sc_nvaps != 0) {
900 				device_printf(sc->sc_dev,
901 				    "only 1 tdma vap supported\n");
902 				goto bad;
903 			}
904 			needbeacon = 1;
905 			flags |= IEEE80211_CLONE_NOBEACONS;
906 		}
907 		/* fall thru... */
908 #endif
909 	case IEEE80211_M_MONITOR:
910 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
911 			/*
912 			 * Adopt existing mode.  Adding a monitor or ahdemo
913 			 * vap to an existing configuration is of dubious
914 			 * value but should be ok.
915 			 */
916 			/* XXX not right for monitor mode */
917 			ic_opmode = ic->ic_opmode;
918 		}
919 		break;
920 	case IEEE80211_M_HOSTAP:
921 		needbeacon = 1;
922 		break;
923 	case IEEE80211_M_WDS:
924 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
925 			device_printf(sc->sc_dev,
926 			    "wds not supported in sta mode\n");
927 			goto bad;
928 		}
929 		/*
930 		 * Silently remove any request for a unique
931 		 * bssid; WDS vap's always share the local
932 		 * mac address.
933 		 */
934 		flags &= ~IEEE80211_CLONE_BSSID;
935 		if (sc->sc_nvaps == 0)
936 			ic_opmode = IEEE80211_M_HOSTAP;
937 		else
938 			ic_opmode = ic->ic_opmode;
939 		break;
940 	default:
941 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
942 		goto bad;
943 	}
944 	/*
945 	 * Check that a beacon buffer is available; the code below assumes it.
946 	 */
947 	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
948 		device_printf(sc->sc_dev, "no beacon buffer available\n");
949 		goto bad;
950 	}
951 
952 	/* STA, AHDEMO? */
953 	if (opmode == IEEE80211_M_HOSTAP) {
954 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
955 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
956 	}
957 
958 	vap = &avp->av_vap;
959 	/* XXX can't hold mutex across if_alloc */
960 	ATH_UNLOCK(sc);
961 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
962 	    bssid, mac);
963 	ATH_LOCK(sc);
964 	if (error != 0) {
965 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
966 		    __func__, error);
967 		goto bad2;
968 	}
969 
970 	/* h/w crypto support */
971 	vap->iv_key_alloc = ath_key_alloc;
972 	vap->iv_key_delete = ath_key_delete;
973 	vap->iv_key_set = ath_key_set;
974 	vap->iv_key_update_begin = ath_key_update_begin;
975 	vap->iv_key_update_end = ath_key_update_end;
976 
977 	/* override various methods */
978 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
979 	vap->iv_recv_mgmt = ath_recv_mgmt;
980 	vap->iv_reset = ath_reset_vap;
981 	vap->iv_update_beacon = ath_beacon_update;
982 	avp->av_newstate = vap->iv_newstate;
983 	vap->iv_newstate = ath_newstate;
984 	avp->av_bmiss = vap->iv_bmiss;
985 	vap->iv_bmiss = ath_bmiss_vap;
986 
987 	avp->av_bslot = -1;
988 	if (needbeacon) {
989 		/*
990 		 * Allocate beacon state and setup the q for buffered
991 		 * multicast frames.  We know a beacon buffer is
992 		 * available because we checked above.
993 		 */
994 		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
995 		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
996 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
997 			/*
998 			 * Assign the vap to a beacon xmit slot.  As above
999 			 * this cannot fail to find a free one.
1000 			 */
1001 			avp->av_bslot = assign_bslot(sc);
1002 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1003 			    ("beacon slot %u not empty", avp->av_bslot));
1004 			sc->sc_bslot[avp->av_bslot] = vap;
1005 			sc->sc_nbcnvaps++;
1006 		}
1007 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1008 			/*
1009 			 * Multple vaps are to transmit beacons and we
1010 			 * have h/w support for TSF adjusting; enable
1011 			 * use of staggered beacons.
1012 			 */
1013 			sc->sc_stagbeacons = 1;
1014 		}
1015 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1016 	}
1017 
1018 	ic->ic_opmode = ic_opmode;
1019 	if (opmode != IEEE80211_M_WDS) {
1020 		sc->sc_nvaps++;
1021 		if (opmode == IEEE80211_M_STA)
1022 			sc->sc_nstavaps++;
1023 	}
1024 	switch (ic_opmode) {
1025 	case IEEE80211_M_IBSS:
1026 		sc->sc_opmode = HAL_M_IBSS;
1027 		break;
1028 	case IEEE80211_M_STA:
1029 		sc->sc_opmode = HAL_M_STA;
1030 		break;
1031 	case IEEE80211_M_AHDEMO:
1032 #ifdef IEEE80211_SUPPORT_TDMA
1033 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1034 			sc->sc_tdma = 1;
1035 			/* NB: disable tsf adjust */
1036 			sc->sc_stagbeacons = 0;
1037 		}
1038 		/*
1039 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1040 		 * just ap mode.
1041 		 */
1042 		/* fall thru... */
1043 #endif
1044 	case IEEE80211_M_HOSTAP:
1045 		sc->sc_opmode = HAL_M_HOSTAP;
1046 		break;
1047 	case IEEE80211_M_MONITOR:
1048 		sc->sc_opmode = HAL_M_MONITOR;
1049 		break;
1050 	default:
1051 		/* XXX should not happen */
1052 		break;
1053 	}
1054 	if (sc->sc_hastsfadd) {
1055 		/*
1056 		 * Configure whether or not TSF adjust should be done.
1057 		 */
1058 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1059 	}
1060 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1061 		/*
1062 		 * Enable s/w beacon miss handling.
1063 		 */
1064 		sc->sc_swbmiss = 1;
1065 	}
1066 	ATH_UNLOCK(sc);
1067 
1068 	/* complete setup */
1069 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1070 	return vap;
1071 bad2:
1072 	reclaim_address(sc, mac);
1073 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1074 bad:
1075 	free(avp, M_80211_VAP);
1076 	ATH_UNLOCK(sc);
1077 	return NULL;
1078 }
1079 
1080 static void
1081 ath_vap_delete(struct ieee80211vap *vap)
1082 {
1083 	struct ieee80211com *ic = vap->iv_ic;
1084 	struct ifnet *ifp = ic->ic_ifp;
1085 	struct ath_softc *sc = ifp->if_softc;
1086 	struct ath_hal *ah = sc->sc_ah;
1087 	struct ath_vap *avp = ATH_VAP(vap);
1088 
1089 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1090 		/*
1091 		 * Quiesce the hardware while we remove the vap.  In
1092 		 * particular we need to reclaim all references to
1093 		 * the vap state by any frames pending on the tx queues.
1094 		 */
1095 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1096 		ath_draintxq(sc);		/* stop xmit side */
1097 		ath_stoprecv(sc);		/* stop recv side */
1098 	}
1099 
1100 	ieee80211_vap_detach(vap);
1101 	ATH_LOCK(sc);
1102 	/*
1103 	 * Reclaim beacon state.  Note this must be done before
1104 	 * the vap instance is reclaimed as we may have a reference
1105 	 * to it in the buffer for the beacon frame.
1106 	 */
1107 	if (avp->av_bcbuf != NULL) {
1108 		if (avp->av_bslot != -1) {
1109 			sc->sc_bslot[avp->av_bslot] = NULL;
1110 			sc->sc_nbcnvaps--;
1111 		}
1112 		ath_beacon_return(sc, avp->av_bcbuf);
1113 		avp->av_bcbuf = NULL;
1114 		if (sc->sc_nbcnvaps == 0) {
1115 			sc->sc_stagbeacons = 0;
1116 			if (sc->sc_hastsfadd)
1117 				ath_hal_settsfadjust(sc->sc_ah, 0);
1118 		}
1119 		/*
1120 		 * Reclaim any pending mcast frames for the vap.
1121 		 */
1122 		ath_tx_draintxq(sc, &avp->av_mcastq);
1123 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1124 	}
1125 	/*
1126 	 * Update bookkeeping.
1127 	 */
1128 	if (vap->iv_opmode == IEEE80211_M_STA) {
1129 		sc->sc_nstavaps--;
1130 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1131 			sc->sc_swbmiss = 0;
1132 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
1133 		reclaim_address(sc, vap->iv_myaddr);
1134 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1135 	}
1136 	if (vap->iv_opmode != IEEE80211_M_WDS)
1137 		sc->sc_nvaps--;
1138 #ifdef IEEE80211_SUPPORT_TDMA
1139 	/* TDMA operation ceases when the last vap is destroyed */
1140 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1141 		sc->sc_tdma = 0;
1142 		sc->sc_swbmiss = 0;
1143 	}
1144 #endif
1145 	ATH_UNLOCK(sc);
1146 	free(avp, M_80211_VAP);
1147 
1148 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1149 		/*
1150 		 * Restart rx+tx machines if still running (RUNNING will
1151 		 * be reset if we just destroyed the last vap).
1152 		 */
1153 		if (ath_startrecv(sc) != 0)
1154 			if_printf(ifp, "%s: unable to restart recv logic\n",
1155 			    __func__);
1156 		if (sc->sc_beacons) {		/* restart beacons */
1157 #ifdef IEEE80211_SUPPORT_TDMA
1158 			if (sc->sc_tdma)
1159 				ath_tdma_config(sc, NULL);
1160 			else
1161 #endif
1162 				ath_beacon_config(sc, NULL);
1163 		}
1164 		ath_hal_intrset(ah, sc->sc_imask);
1165 	}
1166 }
1167 
1168 void
1169 ath_suspend(struct ath_softc *sc)
1170 {
1171 	struct ifnet *ifp = sc->sc_ifp;
1172 	struct ieee80211com *ic = ifp->if_l2com;
1173 
1174 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1175 		__func__, ifp->if_flags);
1176 
1177 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1178 	if (ic->ic_opmode == IEEE80211_M_STA)
1179 		ath_stop(ifp);
1180 	else
1181 		ieee80211_suspend_all(ic);
1182 	/*
1183 	 * NB: don't worry about putting the chip in low power
1184 	 * mode; pci will power off our socket on suspend and
1185 	 * cardbus detaches the device.
1186 	 */
1187 }
1188 
1189 /*
1190  * Reset the key cache since some parts do not reset the
1191  * contents on resume.  First we clear all entries, then
1192  * re-load keys that the 802.11 layer assumes are setup
1193  * in h/w.
1194  */
1195 static void
1196 ath_reset_keycache(struct ath_softc *sc)
1197 {
1198 	struct ifnet *ifp = sc->sc_ifp;
1199 	struct ieee80211com *ic = ifp->if_l2com;
1200 	struct ath_hal *ah = sc->sc_ah;
1201 	int i;
1202 
1203 	for (i = 0; i < sc->sc_keymax; i++)
1204 		ath_hal_keyreset(ah, i);
1205 	ieee80211_crypto_reload_keys(ic);
1206 }
1207 
1208 void
1209 ath_resume(struct ath_softc *sc)
1210 {
1211 	struct ifnet *ifp = sc->sc_ifp;
1212 	struct ieee80211com *ic = ifp->if_l2com;
1213 	struct ath_hal *ah = sc->sc_ah;
1214 	HAL_STATUS status;
1215 
1216 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1217 		__func__, ifp->if_flags);
1218 
1219 	/*
1220 	 * Must reset the chip before we reload the
1221 	 * keycache as we were powered down on suspend.
1222 	 */
1223 	ath_hal_reset(ah, sc->sc_opmode,
1224 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1225 	    AH_FALSE, &status);
1226 	ath_reset_keycache(sc);
1227 	if (sc->sc_resume_up) {
1228 		if (ic->ic_opmode == IEEE80211_M_STA) {
1229 			ath_init(sc);
1230 			ieee80211_beacon_miss(ic);
1231 		} else
1232 			ieee80211_resume_all(ic);
1233 	}
1234 	if (sc->sc_softled) {
1235 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1236 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1237 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1238 	}
1239 }
1240 
1241 void
1242 ath_shutdown(struct ath_softc *sc)
1243 {
1244 	struct ifnet *ifp = sc->sc_ifp;
1245 
1246 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1247 		__func__, ifp->if_flags);
1248 
1249 	ath_stop(ifp);
1250 	/* NB: no point powering down chip as we're about to reboot */
1251 }
1252 
1253 /*
1254  * Interrupt handler.  Most of the actual processing is deferred.
1255  */
1256 void
1257 ath_intr(void *arg)
1258 {
1259 	struct ath_softc *sc = arg;
1260 	struct ifnet *ifp = sc->sc_ifp;
1261 	struct ath_hal *ah = sc->sc_ah;
1262 	HAL_INT status;
1263 
1264 	if (sc->sc_invalid) {
1265 		/*
1266 		 * The hardware is not ready/present, don't touch anything.
1267 		 * Note this can happen early on if the IRQ is shared.
1268 		 */
1269 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1270 		return;
1271 	}
1272 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1273 		return;
1274 	if ((ifp->if_flags & IFF_UP) == 0 ||
1275 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1276 		HAL_INT status;
1277 
1278 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1279 			__func__, ifp->if_flags);
1280 		ath_hal_getisr(ah, &status);	/* clear ISR */
1281 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1282 		return;
1283 	}
1284 	/*
1285 	 * Figure out the reason(s) for the interrupt.  Note
1286 	 * that the hal returns a pseudo-ISR that may include
1287 	 * bits we haven't explicitly enabled so we mask the
1288 	 * value to insure we only process bits we requested.
1289 	 */
1290 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1291 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1292 	status &= sc->sc_imask;			/* discard unasked for bits */
1293 	if (status & HAL_INT_FATAL) {
1294 		sc->sc_stats.ast_hardware++;
1295 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1296 		ath_fatal_proc(sc, 0);
1297 	} else {
1298 		if (status & HAL_INT_SWBA) {
1299 			/*
1300 			 * Software beacon alert--time to send a beacon.
1301 			 * Handle beacon transmission directly; deferring
1302 			 * this is too slow to meet timing constraints
1303 			 * under load.
1304 			 */
1305 #ifdef IEEE80211_SUPPORT_TDMA
1306 			if (sc->sc_tdma) {
1307 				if (sc->sc_tdmaswba == 0) {
1308 					struct ieee80211com *ic = ifp->if_l2com;
1309 					struct ieee80211vap *vap =
1310 					    TAILQ_FIRST(&ic->ic_vaps);
1311 					ath_tdma_beacon_send(sc, vap);
1312 					sc->sc_tdmaswba =
1313 					    vap->iv_tdma->tdma_bintval;
1314 				} else
1315 					sc->sc_tdmaswba--;
1316 			} else
1317 #endif
1318 			{
1319 				ath_beacon_proc(sc, 0);
1320 #ifdef IEEE80211_SUPPORT_SUPERG
1321 				/*
1322 				 * Schedule the rx taskq in case there's no
1323 				 * traffic so any frames held on the staging
1324 				 * queue are aged and potentially flushed.
1325 				 */
1326 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1327 #endif
1328 			}
1329 		}
1330 		if (status & HAL_INT_RXEOL) {
1331 			/*
1332 			 * NB: the hardware should re-read the link when
1333 			 *     RXE bit is written, but it doesn't work at
1334 			 *     least on older hardware revs.
1335 			 */
1336 			sc->sc_stats.ast_rxeol++;
1337 			sc->sc_rxlink = NULL;
1338 		}
1339 		if (status & HAL_INT_TXURN) {
1340 			sc->sc_stats.ast_txurn++;
1341 			/* bump tx trigger level */
1342 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1343 		}
1344 		if (status & HAL_INT_RX)
1345 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1346 		if (status & HAL_INT_TX)
1347 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1348 		if (status & HAL_INT_BMISS) {
1349 			sc->sc_stats.ast_bmiss++;
1350 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1351 		}
1352 		if (status & HAL_INT_MIB) {
1353 			sc->sc_stats.ast_mib++;
1354 			/*
1355 			 * Disable interrupts until we service the MIB
1356 			 * interrupt; otherwise it will continue to fire.
1357 			 */
1358 			ath_hal_intrset(ah, 0);
1359 			/*
1360 			 * Let the hal handle the event.  We assume it will
1361 			 * clear whatever condition caused the interrupt.
1362 			 */
1363 			ath_hal_mibevent(ah, &sc->sc_halstats);
1364 			ath_hal_intrset(ah, sc->sc_imask);
1365 		}
1366 		if (status & HAL_INT_RXORN) {
1367 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1368 			sc->sc_stats.ast_rxorn++;
1369 		}
1370 	}
1371 }
1372 
1373 static void
1374 ath_fatal_proc(void *arg, int pending)
1375 {
1376 	struct ath_softc *sc = arg;
1377 	struct ifnet *ifp = sc->sc_ifp;
1378 	u_int32_t *state;
1379 	u_int32_t len;
1380 	void *sp;
1381 
1382 	if_printf(ifp, "hardware error; resetting\n");
1383 	/*
1384 	 * Fatal errors are unrecoverable.  Typically these
1385 	 * are caused by DMA errors.  Collect h/w state from
1386 	 * the hal so we can diagnose what's going on.
1387 	 */
1388 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1389 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1390 		state = sp;
1391 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1392 		    state[0], state[1] , state[2], state[3],
1393 		    state[4], state[5]);
1394 	}
1395 	ath_reset(ifp);
1396 }
1397 
1398 static void
1399 ath_bmiss_vap(struct ieee80211vap *vap)
1400 {
1401 	/*
1402 	 * Workaround phantom bmiss interrupts by sanity-checking
1403 	 * the time of our last rx'd frame.  If it is within the
1404 	 * beacon miss interval then ignore the interrupt.  If it's
1405 	 * truly a bmiss we'll get another interrupt soon and that'll
1406 	 * be dispatched up for processing.  Note this applies only
1407 	 * for h/w beacon miss events.
1408 	 */
1409 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1410 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1411 		struct ath_softc *sc = ifp->if_softc;
1412 		u_int64_t lastrx = sc->sc_lastrx;
1413 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1414 		u_int bmisstimeout =
1415 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1416 
1417 		DPRINTF(sc, ATH_DEBUG_BEACON,
1418 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1419 		    __func__, (unsigned long long) tsf,
1420 		    (unsigned long long)(tsf - lastrx),
1421 		    (unsigned long long) lastrx, bmisstimeout);
1422 
1423 		if (tsf - lastrx <= bmisstimeout) {
1424 			sc->sc_stats.ast_bmiss_phantom++;
1425 			return;
1426 		}
1427 	}
1428 	ATH_VAP(vap)->av_bmiss(vap);
1429 }
1430 
1431 static int
1432 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1433 {
1434 	uint32_t rsize;
1435 	void *sp;
1436 
1437 	if (!ath_hal_getdiagstate(ah, 32, &mask, sizeof(&mask), &sp, &rsize))
1438 		return 0;
1439 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1440 	*hangs = *(uint32_t *)sp;
1441 	return 1;
1442 }
1443 
1444 static void
1445 ath_bmiss_proc(void *arg, int pending)
1446 {
1447 	struct ath_softc *sc = arg;
1448 	struct ifnet *ifp = sc->sc_ifp;
1449 	uint32_t hangs;
1450 
1451 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1452 
1453 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1454 		if_printf(ifp, "bb hang detected (0x%x), reseting\n", hangs);
1455 		ath_reset(ifp);
1456 	} else
1457 		ieee80211_beacon_miss(ifp->if_l2com);
1458 }
1459 
1460 /*
1461  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1462  * calcs together with WME.  If necessary disable the crypto
1463  * hardware and mark the 802.11 state so keys will be setup
1464  * with the MIC work done in software.
1465  */
1466 static void
1467 ath_settkipmic(struct ath_softc *sc)
1468 {
1469 	struct ifnet *ifp = sc->sc_ifp;
1470 	struct ieee80211com *ic = ifp->if_l2com;
1471 
1472 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1473 		if (ic->ic_flags & IEEE80211_F_WME) {
1474 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1475 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1476 		} else {
1477 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1478 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1479 		}
1480 	}
1481 }
1482 
1483 static void
1484 ath_init(void *arg)
1485 {
1486 	struct ath_softc *sc = (struct ath_softc *) arg;
1487 	struct ifnet *ifp = sc->sc_ifp;
1488 	struct ieee80211com *ic = ifp->if_l2com;
1489 	struct ath_hal *ah = sc->sc_ah;
1490 	HAL_STATUS status;
1491 
1492 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1493 		__func__, ifp->if_flags);
1494 
1495 	ATH_LOCK(sc);
1496 	/*
1497 	 * Stop anything previously setup.  This is safe
1498 	 * whether this is the first time through or not.
1499 	 */
1500 	ath_stop_locked(ifp);
1501 
1502 	/*
1503 	 * The basic interface to setting the hardware in a good
1504 	 * state is ``reset''.  On return the hardware is known to
1505 	 * be powered up and with interrupts disabled.  This must
1506 	 * be followed by initialization of the appropriate bits
1507 	 * and then setup of the interrupt mask.
1508 	 */
1509 	ath_settkipmic(sc);
1510 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1511 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1512 			status);
1513 		ATH_UNLOCK(sc);
1514 		return;
1515 	}
1516 	ath_chan_change(sc, ic->ic_curchan);
1517 
1518 	/*
1519 	 * Likewise this is set during reset so update
1520 	 * state cached in the driver.
1521 	 */
1522 	sc->sc_diversity = ath_hal_getdiversity(ah);
1523 	sc->sc_lastlongcal = 0;
1524 	sc->sc_resetcal = 1;
1525 	sc->sc_lastcalreset = 0;
1526 
1527 	/*
1528 	 * Setup the hardware after reset: the key cache
1529 	 * is filled as needed and the receive engine is
1530 	 * set going.  Frame transmit is handled entirely
1531 	 * in the frame output path; there's nothing to do
1532 	 * here except setup the interrupt mask.
1533 	 */
1534 	if (ath_startrecv(sc) != 0) {
1535 		if_printf(ifp, "unable to start recv logic\n");
1536 		ATH_UNLOCK(sc);
1537 		return;
1538 	}
1539 
1540 	/*
1541 	 * Enable interrupts.
1542 	 */
1543 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1544 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1545 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1546 	/*
1547 	 * Enable MIB interrupts when there are hardware phy counters.
1548 	 * Note we only do this (at the moment) for station mode.
1549 	 */
1550 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1551 		sc->sc_imask |= HAL_INT_MIB;
1552 
1553 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1554 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1555 	ath_hal_intrset(ah, sc->sc_imask);
1556 
1557 	ATH_UNLOCK(sc);
1558 
1559 #ifdef ATH_TX99_DIAG
1560 	if (sc->sc_tx99 != NULL)
1561 		sc->sc_tx99->start(sc->sc_tx99);
1562 	else
1563 #endif
1564 	ieee80211_start_all(ic);		/* start all vap's */
1565 }
1566 
1567 static void
1568 ath_stop_locked(struct ifnet *ifp)
1569 {
1570 	struct ath_softc *sc = ifp->if_softc;
1571 	struct ath_hal *ah = sc->sc_ah;
1572 
1573 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1574 		__func__, sc->sc_invalid, ifp->if_flags);
1575 
1576 	ATH_LOCK_ASSERT(sc);
1577 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1578 		/*
1579 		 * Shutdown the hardware and driver:
1580 		 *    reset 802.11 state machine
1581 		 *    turn off timers
1582 		 *    disable interrupts
1583 		 *    turn off the radio
1584 		 *    clear transmit machinery
1585 		 *    clear receive machinery
1586 		 *    drain and release tx queues
1587 		 *    reclaim beacon resources
1588 		 *    power down hardware
1589 		 *
1590 		 * Note that some of this work is not possible if the
1591 		 * hardware is gone (invalid).
1592 		 */
1593 #ifdef ATH_TX99_DIAG
1594 		if (sc->sc_tx99 != NULL)
1595 			sc->sc_tx99->stop(sc->sc_tx99);
1596 #endif
1597 		callout_stop(&sc->sc_wd_ch);
1598 		sc->sc_wd_timer = 0;
1599 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1600 		if (!sc->sc_invalid) {
1601 			if (sc->sc_softled) {
1602 				callout_stop(&sc->sc_ledtimer);
1603 				ath_hal_gpioset(ah, sc->sc_ledpin,
1604 					!sc->sc_ledon);
1605 				sc->sc_blinking = 0;
1606 			}
1607 			ath_hal_intrset(ah, 0);
1608 		}
1609 		ath_draintxq(sc);
1610 		if (!sc->sc_invalid) {
1611 			ath_stoprecv(sc);
1612 			ath_hal_phydisable(ah);
1613 		} else
1614 			sc->sc_rxlink = NULL;
1615 		ath_beacon_free(sc);	/* XXX not needed */
1616 	}
1617 }
1618 
1619 static void
1620 ath_stop(struct ifnet *ifp)
1621 {
1622 	struct ath_softc *sc = ifp->if_softc;
1623 
1624 	ATH_LOCK(sc);
1625 	ath_stop_locked(ifp);
1626 	ATH_UNLOCK(sc);
1627 }
1628 
1629 /*
1630  * Reset the hardware w/o losing operational state.  This is
1631  * basically a more efficient way of doing ath_stop, ath_init,
1632  * followed by state transitions to the current 802.11
1633  * operational state.  Used to recover from various errors and
1634  * to reset or reload hardware state.
1635  */
1636 static int
1637 ath_reset(struct ifnet *ifp)
1638 {
1639 	struct ath_softc *sc = ifp->if_softc;
1640 	struct ieee80211com *ic = ifp->if_l2com;
1641 	struct ath_hal *ah = sc->sc_ah;
1642 	HAL_STATUS status;
1643 
1644 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1645 	ath_draintxq(sc);		/* stop xmit side */
1646 	ath_stoprecv(sc);		/* stop recv side */
1647 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1648 	/* NB: indicate channel change so we do a full reset */
1649 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1650 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1651 			__func__, status);
1652 	sc->sc_diversity = ath_hal_getdiversity(ah);
1653 	if (ath_startrecv(sc) != 0)	/* restart recv */
1654 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1655 	/*
1656 	 * We may be doing a reset in response to an ioctl
1657 	 * that changes the channel so update any state that
1658 	 * might change as a result.
1659 	 */
1660 	ath_chan_change(sc, ic->ic_curchan);
1661 	if (sc->sc_beacons) {		/* restart beacons */
1662 #ifdef IEEE80211_SUPPORT_TDMA
1663 		if (sc->sc_tdma)
1664 			ath_tdma_config(sc, NULL);
1665 		else
1666 #endif
1667 			ath_beacon_config(sc, NULL);
1668 	}
1669 	ath_hal_intrset(ah, sc->sc_imask);
1670 
1671 	ath_start(ifp);			/* restart xmit */
1672 	return 0;
1673 }
1674 
1675 static int
1676 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1677 {
1678 	struct ieee80211com *ic = vap->iv_ic;
1679 	struct ifnet *ifp = ic->ic_ifp;
1680 	struct ath_softc *sc = ifp->if_softc;
1681 	struct ath_hal *ah = sc->sc_ah;
1682 
1683 	switch (cmd) {
1684 	case IEEE80211_IOC_TXPOWER:
1685 		/*
1686 		 * If per-packet TPC is enabled, then we have nothing
1687 		 * to do; otherwise we need to force the global limit.
1688 		 * All this can happen directly; no need to reset.
1689 		 */
1690 		if (!ath_hal_gettpc(ah))
1691 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1692 		return 0;
1693 	}
1694 	return ath_reset(ifp);
1695 }
1696 
1697 static struct ath_buf *
1698 _ath_getbuf_locked(struct ath_softc *sc)
1699 {
1700 	struct ath_buf *bf;
1701 
1702 	ATH_TXBUF_LOCK_ASSERT(sc);
1703 
1704 	bf = STAILQ_FIRST(&sc->sc_txbuf);
1705 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
1706 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1707 	else
1708 		bf = NULL;
1709 	if (bf == NULL) {
1710 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
1711 		    STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
1712 			"out of xmit buffers" : "xmit buffer busy");
1713 	}
1714 	return bf;
1715 }
1716 
1717 static struct ath_buf *
1718 ath_getbuf(struct ath_softc *sc)
1719 {
1720 	struct ath_buf *bf;
1721 
1722 	ATH_TXBUF_LOCK(sc);
1723 	bf = _ath_getbuf_locked(sc);
1724 	if (bf == NULL) {
1725 		struct ifnet *ifp = sc->sc_ifp;
1726 
1727 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
1728 		sc->sc_stats.ast_tx_qstop++;
1729 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1730 	}
1731 	ATH_TXBUF_UNLOCK(sc);
1732 	return bf;
1733 }
1734 
1735 /*
1736  * Cleanup driver resources when we run out of buffers
1737  * while processing fragments; return the tx buffers
1738  * allocated and drop node references.
1739  */
1740 static void
1741 ath_txfrag_cleanup(struct ath_softc *sc,
1742 	ath_bufhead *frags, struct ieee80211_node *ni)
1743 {
1744 	struct ath_buf *bf, *next;
1745 
1746 	ATH_TXBUF_LOCK_ASSERT(sc);
1747 
1748 	STAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
1749 		/* NB: bf assumed clean */
1750 		STAILQ_REMOVE_HEAD(frags, bf_list);
1751 		STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1752 		ieee80211_node_decref(ni);
1753 	}
1754 }
1755 
1756 /*
1757  * Setup xmit of a fragmented frame.  Allocate a buffer
1758  * for each frag and bump the node reference count to
1759  * reflect the held reference to be setup by ath_tx_start.
1760  */
1761 static int
1762 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1763 	struct mbuf *m0, struct ieee80211_node *ni)
1764 {
1765 	struct mbuf *m;
1766 	struct ath_buf *bf;
1767 
1768 	ATH_TXBUF_LOCK(sc);
1769 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1770 		bf = _ath_getbuf_locked(sc);
1771 		if (bf == NULL) {	/* out of buffers, cleanup */
1772 			ath_txfrag_cleanup(sc, frags, ni);
1773 			break;
1774 		}
1775 		ieee80211_node_incref(ni);
1776 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1777 	}
1778 	ATH_TXBUF_UNLOCK(sc);
1779 
1780 	return !STAILQ_EMPTY(frags);
1781 }
1782 
1783 static void
1784 ath_start(struct ifnet *ifp)
1785 {
1786 	struct ath_softc *sc = ifp->if_softc;
1787 	struct ieee80211_node *ni;
1788 	struct ath_buf *bf;
1789 	struct mbuf *m, *next;
1790 	ath_bufhead frags;
1791 
1792 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1793 		return;
1794 	for (;;) {
1795 		/*
1796 		 * Grab a TX buffer and associated resources.
1797 		 */
1798 		bf = ath_getbuf(sc);
1799 		if (bf == NULL)
1800 			break;
1801 
1802 		IFQ_DEQUEUE(&ifp->if_snd, m);
1803 		if (m == NULL) {
1804 			ATH_TXBUF_LOCK(sc);
1805 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1806 			ATH_TXBUF_UNLOCK(sc);
1807 			break;
1808 		}
1809 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1810 		/*
1811 		 * Check for fragmentation.  If this frame
1812 		 * has been broken up verify we have enough
1813 		 * buffers to send all the fragments so all
1814 		 * go out or none...
1815 		 */
1816 		STAILQ_INIT(&frags);
1817 		if ((m->m_flags & M_FRAG) &&
1818 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
1819 			DPRINTF(sc, ATH_DEBUG_XMIT,
1820 			    "%s: out of txfrag buffers\n", __func__);
1821 			sc->sc_stats.ast_tx_nofrag++;
1822 			ifp->if_oerrors++;
1823 			ath_freetx(m);
1824 			goto bad;
1825 		}
1826 		ifp->if_opackets++;
1827 	nextfrag:
1828 		/*
1829 		 * Pass the frame to the h/w for transmission.
1830 		 * Fragmented frames have each frag chained together
1831 		 * with m_nextpkt.  We know there are sufficient ath_buf's
1832 		 * to send all the frags because of work done by
1833 		 * ath_txfrag_setup.  We leave m_nextpkt set while
1834 		 * calling ath_tx_start so it can use it to extend the
1835 		 * the tx duration to cover the subsequent frag and
1836 		 * so it can reclaim all the mbufs in case of an error;
1837 		 * ath_tx_start clears m_nextpkt once it commits to
1838 		 * handing the frame to the hardware.
1839 		 */
1840 		next = m->m_nextpkt;
1841 		if (ath_tx_start(sc, ni, bf, m)) {
1842 	bad:
1843 			ifp->if_oerrors++;
1844 	reclaim:
1845 			bf->bf_m = NULL;
1846 			bf->bf_node = NULL;
1847 			ATH_TXBUF_LOCK(sc);
1848 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1849 			ath_txfrag_cleanup(sc, &frags, ni);
1850 			ATH_TXBUF_UNLOCK(sc);
1851 			if (ni != NULL)
1852 				ieee80211_free_node(ni);
1853 			continue;
1854 		}
1855 		if (next != NULL) {
1856 			/*
1857 			 * Beware of state changing between frags.
1858 			 * XXX check sta power-save state?
1859 			 */
1860 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
1861 				DPRINTF(sc, ATH_DEBUG_XMIT,
1862 				    "%s: flush fragmented packet, state %s\n",
1863 				    __func__,
1864 				    ieee80211_state_name[ni->ni_vap->iv_state]);
1865 				ath_freetx(next);
1866 				goto reclaim;
1867 			}
1868 			m = next;
1869 			bf = STAILQ_FIRST(&frags);
1870 			KASSERT(bf != NULL, ("no buf for txfrag"));
1871 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1872 			goto nextfrag;
1873 		}
1874 
1875 		sc->sc_wd_timer = 5;
1876 	}
1877 }
1878 
1879 static int
1880 ath_media_change(struct ifnet *ifp)
1881 {
1882 	int error = ieee80211_media_change(ifp);
1883 	/* NB: only the fixed rate can change and that doesn't need a reset */
1884 	return (error == ENETRESET ? 0 : error);
1885 }
1886 
1887 #ifdef ATH_DEBUG
1888 static void
1889 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
1890 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1891 {
1892 	static const char *ciphers[] = {
1893 		"WEP",
1894 		"AES-OCB",
1895 		"AES-CCM",
1896 		"CKIP",
1897 		"TKIP",
1898 		"CLR",
1899 	};
1900 	int i, n;
1901 
1902 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1903 	for (i = 0, n = hk->kv_len; i < n; i++)
1904 		printf("%02x", hk->kv_val[i]);
1905 	printf(" mac %s", ether_sprintf(mac));
1906 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1907 		printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
1908 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1909 			printf("%02x", hk->kv_mic[i]);
1910 		if (!sc->sc_splitmic) {
1911 			printf(" txmic ");
1912 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
1913 				printf("%02x", hk->kv_txmic[i]);
1914 		}
1915 	}
1916 	printf("\n");
1917 }
1918 #endif
1919 
1920 /*
1921  * Set a TKIP key into the hardware.  This handles the
1922  * potential distribution of key state to multiple key
1923  * cache slots for TKIP.
1924  */
1925 static int
1926 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1927 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1928 {
1929 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1930 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1931 	struct ath_hal *ah = sc->sc_ah;
1932 
1933 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1934 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1935 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1936 		if (sc->sc_splitmic) {
1937 			/*
1938 			 * TX key goes at first index, RX key at the rx index.
1939 			 * The hal handles the MIC keys at index+64.
1940 			 */
1941 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1942 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1943 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1944 				return 0;
1945 
1946 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1947 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1948 			/* XXX delete tx key on failure? */
1949 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1950 		} else {
1951 			/*
1952 			 * Room for both TX+RX MIC keys in one key cache
1953 			 * slot, just set key at the first index; the hal
1954 			 * will handle the rest.
1955 			 */
1956 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1957 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1958 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1959 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1960 		}
1961 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1962 		if (sc->sc_splitmic) {
1963 			/*
1964 			 * NB: must pass MIC key in expected location when
1965 			 * the keycache only holds one MIC key per entry.
1966 			 */
1967 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1968 		} else
1969 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1970 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1971 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1972 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1973 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1974 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1975 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1976 	}
1977 	return 0;
1978 #undef IEEE80211_KEY_XR
1979 }
1980 
1981 /*
1982  * Set a net80211 key into the hardware.  This handles the
1983  * potential distribution of key state to multiple key
1984  * cache slots for TKIP with hardware MIC support.
1985  */
1986 static int
1987 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1988 	struct ieee80211_node *bss)
1989 {
1990 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1991 	static const u_int8_t ciphermap[] = {
1992 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1993 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1994 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1995 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1996 		(u_int8_t) -1,		/* 4 is not allocated */
1997 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1998 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1999 	};
2000 	struct ath_hal *ah = sc->sc_ah;
2001 	const struct ieee80211_cipher *cip = k->wk_cipher;
2002 	u_int8_t gmac[IEEE80211_ADDR_LEN];
2003 	const u_int8_t *mac;
2004 	HAL_KEYVAL hk;
2005 
2006 	memset(&hk, 0, sizeof(hk));
2007 	/*
2008 	 * Software crypto uses a "clear key" so non-crypto
2009 	 * state kept in the key cache are maintained and
2010 	 * so that rx frames have an entry to match.
2011 	 */
2012 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
2013 		KASSERT(cip->ic_cipher < N(ciphermap),
2014 			("invalid cipher type %u", cip->ic_cipher));
2015 		hk.kv_type = ciphermap[cip->ic_cipher];
2016 		hk.kv_len = k->wk_keylen;
2017 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
2018 	} else
2019 		hk.kv_type = HAL_CIPHER_CLR;
2020 
2021 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
2022 		/*
2023 		 * Group keys on hardware that supports multicast frame
2024 		 * key search use a mac that is the sender's address with
2025 		 * the high bit set instead of the app-specified address.
2026 		 */
2027 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
2028 		gmac[0] |= 0x80;
2029 		mac = gmac;
2030 	} else
2031 		mac = k->wk_macaddr;
2032 
2033 	if (hk.kv_type == HAL_CIPHER_TKIP &&
2034 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2035 		return ath_keyset_tkip(sc, k, &hk, mac);
2036 	} else {
2037 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
2038 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
2039 	}
2040 #undef N
2041 }
2042 
2043 /*
2044  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2045  * each key, one for decrypt/encrypt and the other for the MIC.
2046  */
2047 static u_int16_t
2048 key_alloc_2pair(struct ath_softc *sc,
2049 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2050 {
2051 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2052 	u_int i, keyix;
2053 
2054 	KASSERT(sc->sc_splitmic, ("key cache !split"));
2055 	/* XXX could optimize */
2056 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2057 		u_int8_t b = sc->sc_keymap[i];
2058 		if (b != 0xff) {
2059 			/*
2060 			 * One or more slots in this byte are free.
2061 			 */
2062 			keyix = i*NBBY;
2063 			while (b & 1) {
2064 		again:
2065 				keyix++;
2066 				b >>= 1;
2067 			}
2068 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
2069 			if (isset(sc->sc_keymap, keyix+32) ||
2070 			    isset(sc->sc_keymap, keyix+64) ||
2071 			    isset(sc->sc_keymap, keyix+32+64)) {
2072 				/* full pair unavailable */
2073 				/* XXX statistic */
2074 				if (keyix == (i+1)*NBBY) {
2075 					/* no slots were appropriate, advance */
2076 					continue;
2077 				}
2078 				goto again;
2079 			}
2080 			setbit(sc->sc_keymap, keyix);
2081 			setbit(sc->sc_keymap, keyix+64);
2082 			setbit(sc->sc_keymap, keyix+32);
2083 			setbit(sc->sc_keymap, keyix+32+64);
2084 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2085 				"%s: key pair %u,%u %u,%u\n",
2086 				__func__, keyix, keyix+64,
2087 				keyix+32, keyix+32+64);
2088 			*txkeyix = keyix;
2089 			*rxkeyix = keyix+32;
2090 			return 1;
2091 		}
2092 	}
2093 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2094 	return 0;
2095 #undef N
2096 }
2097 
2098 /*
2099  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2100  * each key, one for decrypt/encrypt and the other for the MIC.
2101  */
2102 static u_int16_t
2103 key_alloc_pair(struct ath_softc *sc,
2104 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2105 {
2106 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2107 	u_int i, keyix;
2108 
2109 	KASSERT(!sc->sc_splitmic, ("key cache split"));
2110 	/* XXX could optimize */
2111 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2112 		u_int8_t b = sc->sc_keymap[i];
2113 		if (b != 0xff) {
2114 			/*
2115 			 * One or more slots in this byte are free.
2116 			 */
2117 			keyix = i*NBBY;
2118 			while (b & 1) {
2119 		again:
2120 				keyix++;
2121 				b >>= 1;
2122 			}
2123 			if (isset(sc->sc_keymap, keyix+64)) {
2124 				/* full pair unavailable */
2125 				/* XXX statistic */
2126 				if (keyix == (i+1)*NBBY) {
2127 					/* no slots were appropriate, advance */
2128 					continue;
2129 				}
2130 				goto again;
2131 			}
2132 			setbit(sc->sc_keymap, keyix);
2133 			setbit(sc->sc_keymap, keyix+64);
2134 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2135 				"%s: key pair %u,%u\n",
2136 				__func__, keyix, keyix+64);
2137 			*txkeyix = *rxkeyix = keyix;
2138 			return 1;
2139 		}
2140 	}
2141 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2142 	return 0;
2143 #undef N
2144 }
2145 
2146 /*
2147  * Allocate a single key cache slot.
2148  */
2149 static int
2150 key_alloc_single(struct ath_softc *sc,
2151 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2152 {
2153 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2154 	u_int i, keyix;
2155 
2156 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2157 	for (i = 0; i < N(sc->sc_keymap); i++) {
2158 		u_int8_t b = sc->sc_keymap[i];
2159 		if (b != 0xff) {
2160 			/*
2161 			 * One or more slots are free.
2162 			 */
2163 			keyix = i*NBBY;
2164 			while (b & 1)
2165 				keyix++, b >>= 1;
2166 			setbit(sc->sc_keymap, keyix);
2167 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2168 				__func__, keyix);
2169 			*txkeyix = *rxkeyix = keyix;
2170 			return 1;
2171 		}
2172 	}
2173 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2174 	return 0;
2175 #undef N
2176 }
2177 
2178 /*
2179  * Allocate one or more key cache slots for a uniacst key.  The
2180  * key itself is needed only to identify the cipher.  For hardware
2181  * TKIP with split cipher+MIC keys we allocate two key cache slot
2182  * pairs so that we can setup separate TX and RX MIC keys.  Note
2183  * that the MIC key for a TKIP key at slot i is assumed by the
2184  * hardware to be at slot i+64.  This limits TKIP keys to the first
2185  * 64 entries.
2186  */
2187 static int
2188 ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2189 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2190 {
2191 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2192 
2193 	/*
2194 	 * Group key allocation must be handled specially for
2195 	 * parts that do not support multicast key cache search
2196 	 * functionality.  For those parts the key id must match
2197 	 * the h/w key index so lookups find the right key.  On
2198 	 * parts w/ the key search facility we install the sender's
2199 	 * mac address (with the high bit set) and let the hardware
2200 	 * find the key w/o using the key id.  This is preferred as
2201 	 * it permits us to support multiple users for adhoc and/or
2202 	 * multi-station operation.
2203 	 */
2204 	if (k->wk_keyix != IEEE80211_KEYIX_NONE ||	/* global key */
2205 	    ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey)) {
2206 		if (!(&vap->iv_nw_keys[0] <= k &&
2207 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2208 			/* should not happen */
2209 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2210 				"%s: bogus group key\n", __func__);
2211 			return 0;
2212 		}
2213 		/*
2214 		 * XXX we pre-allocate the global keys so
2215 		 * have no way to check if they've already been allocated.
2216 		 */
2217 		*keyix = *rxkeyix = k - vap->iv_nw_keys;
2218 		return 1;
2219 	}
2220 
2221 	/*
2222 	 * We allocate two pair for TKIP when using the h/w to do
2223 	 * the MIC.  For everything else, including software crypto,
2224 	 * we allocate a single entry.  Note that s/w crypto requires
2225 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
2226 	 * not support pass-through cache entries and we map all
2227 	 * those requests to slot 0.
2228 	 */
2229 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2230 		return key_alloc_single(sc, keyix, rxkeyix);
2231 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2232 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2233 		if (sc->sc_splitmic)
2234 			return key_alloc_2pair(sc, keyix, rxkeyix);
2235 		else
2236 			return key_alloc_pair(sc, keyix, rxkeyix);
2237 	} else {
2238 		return key_alloc_single(sc, keyix, rxkeyix);
2239 	}
2240 }
2241 
2242 /*
2243  * Delete an entry in the key cache allocated by ath_key_alloc.
2244  */
2245 static int
2246 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2247 {
2248 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2249 	struct ath_hal *ah = sc->sc_ah;
2250 	const struct ieee80211_cipher *cip = k->wk_cipher;
2251 	u_int keyix = k->wk_keyix;
2252 
2253 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2254 
2255 	ath_hal_keyreset(ah, keyix);
2256 	/*
2257 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
2258 	 */
2259 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2260 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2261 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
2262 	if (keyix >= IEEE80211_WEP_NKID) {
2263 		/*
2264 		 * Don't touch keymap entries for global keys so
2265 		 * they are never considered for dynamic allocation.
2266 		 */
2267 		clrbit(sc->sc_keymap, keyix);
2268 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2269 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2270 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
2271 			if (sc->sc_splitmic) {
2272 				/* +32 for RX key, +32+64 for RX key MIC */
2273 				clrbit(sc->sc_keymap, keyix+32);
2274 				clrbit(sc->sc_keymap, keyix+32+64);
2275 			}
2276 		}
2277 	}
2278 	return 1;
2279 }
2280 
2281 /*
2282  * Set the key cache contents for the specified key.  Key cache
2283  * slot(s) must already have been allocated by ath_key_alloc.
2284  */
2285 static int
2286 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
2287 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2288 {
2289 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2290 
2291 	return ath_keyset(sc, k, vap->iv_bss);
2292 }
2293 
2294 /*
2295  * Block/unblock tx+rx processing while a key change is done.
2296  * We assume the caller serializes key management operations
2297  * so we only need to worry about synchronization with other
2298  * uses that originate in the driver.
2299  */
2300 static void
2301 ath_key_update_begin(struct ieee80211vap *vap)
2302 {
2303 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2304 	struct ath_softc *sc = ifp->if_softc;
2305 
2306 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2307 	taskqueue_block(sc->sc_tq);
2308 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2309 }
2310 
2311 static void
2312 ath_key_update_end(struct ieee80211vap *vap)
2313 {
2314 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2315 	struct ath_softc *sc = ifp->if_softc;
2316 
2317 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2318 	IF_UNLOCK(&ifp->if_snd);
2319 	taskqueue_unblock(sc->sc_tq);
2320 }
2321 
2322 /*
2323  * Calculate the receive filter according to the
2324  * operating mode and state:
2325  *
2326  * o always accept unicast, broadcast, and multicast traffic
2327  * o accept PHY error frames when hardware doesn't have MIB support
2328  *   to count and we need them for ANI (sta mode only until recently)
2329  *   and we are not scanning (ANI is disabled)
2330  *   NB: older hal's add rx filter bits out of sight and we need to
2331  *	 blindly preserve them
2332  * o probe request frames are accepted only when operating in
2333  *   hostap, adhoc, or monitor modes
2334  * o enable promiscuous mode
2335  *   - when in monitor mode
2336  *   - if interface marked PROMISC (assumes bridge setting is filtered)
2337  * o accept beacons:
2338  *   - when operating in station mode for collecting rssi data when
2339  *     the station is otherwise quiet, or
2340  *   - when operating in adhoc mode so the 802.11 layer creates
2341  *     node table entries for peers,
2342  *   - when scanning
2343  *   - when doing s/w beacon miss (e.g. for ap+sta)
2344  *   - when operating in ap mode in 11g to detect overlapping bss that
2345  *     require protection
2346  * o accept control frames:
2347  *   - when in monitor mode
2348  * XXX BAR frames for 11n
2349  * XXX HT protection for 11n
2350  */
2351 static u_int32_t
2352 ath_calcrxfilter(struct ath_softc *sc)
2353 {
2354 	struct ifnet *ifp = sc->sc_ifp;
2355 	struct ieee80211com *ic = ifp->if_l2com;
2356 	u_int32_t rfilt;
2357 
2358 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2359 	if (!sc->sc_needmib && !sc->sc_scanning)
2360 		rfilt |= HAL_RX_FILTER_PHYERR;
2361 	if (ic->ic_opmode != IEEE80211_M_STA)
2362 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2363 	/* XXX ic->ic_monvaps != 0? */
2364 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2365 		rfilt |= HAL_RX_FILTER_PROM;
2366 	if (ic->ic_opmode == IEEE80211_M_STA ||
2367 	    ic->ic_opmode == IEEE80211_M_IBSS ||
2368 	    sc->sc_swbmiss || sc->sc_scanning)
2369 		rfilt |= HAL_RX_FILTER_BEACON;
2370 	/*
2371 	 * NB: We don't recalculate the rx filter when
2372 	 * ic_protmode changes; otherwise we could do
2373 	 * this only when ic_protmode != NONE.
2374 	 */
2375 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2376 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2377 		rfilt |= HAL_RX_FILTER_BEACON;
2378 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2379 		rfilt |= HAL_RX_FILTER_CONTROL;
2380 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2381 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2382 	return rfilt;
2383 }
2384 
2385 static void
2386 ath_update_promisc(struct ifnet *ifp)
2387 {
2388 	struct ath_softc *sc = ifp->if_softc;
2389 	u_int32_t rfilt;
2390 
2391 	/* configure rx filter */
2392 	rfilt = ath_calcrxfilter(sc);
2393 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2394 
2395 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2396 }
2397 
2398 static void
2399 ath_update_mcast(struct ifnet *ifp)
2400 {
2401 	struct ath_softc *sc = ifp->if_softc;
2402 	u_int32_t mfilt[2];
2403 
2404 	/* calculate and install multicast filter */
2405 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2406 		struct ifmultiaddr *ifma;
2407 		/*
2408 		 * Merge multicast addresses to form the hardware filter.
2409 		 */
2410 		mfilt[0] = mfilt[1] = 0;
2411 		IF_ADDR_LOCK(ifp);	/* XXX need some fiddling to remove? */
2412 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2413 			caddr_t dl;
2414 			u_int32_t val;
2415 			u_int8_t pos;
2416 
2417 			/* calculate XOR of eight 6bit values */
2418 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2419 			val = LE_READ_4(dl + 0);
2420 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2421 			val = LE_READ_4(dl + 3);
2422 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2423 			pos &= 0x3f;
2424 			mfilt[pos / 32] |= (1 << (pos % 32));
2425 		}
2426 		IF_ADDR_UNLOCK(ifp);
2427 	} else
2428 		mfilt[0] = mfilt[1] = ~0;
2429 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2430 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2431 		__func__, mfilt[0], mfilt[1]);
2432 }
2433 
2434 static void
2435 ath_mode_init(struct ath_softc *sc)
2436 {
2437 	struct ifnet *ifp = sc->sc_ifp;
2438 	struct ath_hal *ah = sc->sc_ah;
2439 	u_int32_t rfilt;
2440 
2441 	/* configure rx filter */
2442 	rfilt = ath_calcrxfilter(sc);
2443 	ath_hal_setrxfilter(ah, rfilt);
2444 
2445 	/* configure operational mode */
2446 	ath_hal_setopmode(ah);
2447 
2448 	/* handle any link-level address change */
2449 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2450 
2451 	/* calculate and install multicast filter */
2452 	ath_update_mcast(ifp);
2453 }
2454 
2455 /*
2456  * Set the slot time based on the current setting.
2457  */
2458 static void
2459 ath_setslottime(struct ath_softc *sc)
2460 {
2461 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2462 	struct ath_hal *ah = sc->sc_ah;
2463 	u_int usec;
2464 
2465 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2466 		usec = 13;
2467 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2468 		usec = 21;
2469 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2470 		/* honor short/long slot time only in 11g */
2471 		/* XXX shouldn't honor on pure g or turbo g channel */
2472 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2473 			usec = HAL_SLOT_TIME_9;
2474 		else
2475 			usec = HAL_SLOT_TIME_20;
2476 	} else
2477 		usec = HAL_SLOT_TIME_9;
2478 
2479 	DPRINTF(sc, ATH_DEBUG_RESET,
2480 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2481 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2482 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2483 
2484 	ath_hal_setslottime(ah, usec);
2485 	sc->sc_updateslot = OK;
2486 }
2487 
2488 /*
2489  * Callback from the 802.11 layer to update the
2490  * slot time based on the current setting.
2491  */
2492 static void
2493 ath_updateslot(struct ifnet *ifp)
2494 {
2495 	struct ath_softc *sc = ifp->if_softc;
2496 	struct ieee80211com *ic = ifp->if_l2com;
2497 
2498 	/*
2499 	 * When not coordinating the BSS, change the hardware
2500 	 * immediately.  For other operation we defer the change
2501 	 * until beacon updates have propagated to the stations.
2502 	 */
2503 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2504 		sc->sc_updateslot = UPDATE;
2505 	else
2506 		ath_setslottime(sc);
2507 }
2508 
2509 /*
2510  * Setup a h/w transmit queue for beacons.
2511  */
2512 static int
2513 ath_beaconq_setup(struct ath_hal *ah)
2514 {
2515 	HAL_TXQ_INFO qi;
2516 
2517 	memset(&qi, 0, sizeof(qi));
2518 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2519 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2520 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2521 	/* NB: for dynamic turbo, don't enable any other interrupts */
2522 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2523 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2524 }
2525 
2526 /*
2527  * Setup the transmit queue parameters for the beacon queue.
2528  */
2529 static int
2530 ath_beaconq_config(struct ath_softc *sc)
2531 {
2532 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2533 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2534 	struct ath_hal *ah = sc->sc_ah;
2535 	HAL_TXQ_INFO qi;
2536 
2537 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2538 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2539 		/*
2540 		 * Always burst out beacon and CAB traffic.
2541 		 */
2542 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2543 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2544 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2545 	} else {
2546 		struct wmeParams *wmep =
2547 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2548 		/*
2549 		 * Adhoc mode; important thing is to use 2x cwmin.
2550 		 */
2551 		qi.tqi_aifs = wmep->wmep_aifsn;
2552 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2553 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2554 	}
2555 
2556 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2557 		device_printf(sc->sc_dev, "unable to update parameters for "
2558 			"beacon hardware queue!\n");
2559 		return 0;
2560 	} else {
2561 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2562 		return 1;
2563 	}
2564 #undef ATH_EXPONENT_TO_VALUE
2565 }
2566 
2567 /*
2568  * Allocate and setup an initial beacon frame.
2569  */
2570 static int
2571 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2572 {
2573 	struct ieee80211vap *vap = ni->ni_vap;
2574 	struct ath_vap *avp = ATH_VAP(vap);
2575 	struct ath_buf *bf;
2576 	struct mbuf *m;
2577 	int error;
2578 
2579 	bf = avp->av_bcbuf;
2580 	if (bf->bf_m != NULL) {
2581 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2582 		m_freem(bf->bf_m);
2583 		bf->bf_m = NULL;
2584 	}
2585 	if (bf->bf_node != NULL) {
2586 		ieee80211_free_node(bf->bf_node);
2587 		bf->bf_node = NULL;
2588 	}
2589 
2590 	/*
2591 	 * NB: the beacon data buffer must be 32-bit aligned;
2592 	 * we assume the mbuf routines will return us something
2593 	 * with this alignment (perhaps should assert).
2594 	 */
2595 	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2596 	if (m == NULL) {
2597 		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2598 		sc->sc_stats.ast_be_nombuf++;
2599 		return ENOMEM;
2600 	}
2601 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2602 				     bf->bf_segs, &bf->bf_nseg,
2603 				     BUS_DMA_NOWAIT);
2604 	if (error != 0) {
2605 		device_printf(sc->sc_dev,
2606 		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2607 		    __func__, error);
2608 		m_freem(m);
2609 		return error;
2610 	}
2611 
2612 	/*
2613 	 * Calculate a TSF adjustment factor required for staggered
2614 	 * beacons.  Note that we assume the format of the beacon
2615 	 * frame leaves the tstamp field immediately following the
2616 	 * header.
2617 	 */
2618 	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2619 		uint64_t tsfadjust;
2620 		struct ieee80211_frame *wh;
2621 
2622 		/*
2623 		 * The beacon interval is in TU's; the TSF is in usecs.
2624 		 * We figure out how many TU's to add to align the timestamp
2625 		 * then convert to TSF units and handle byte swapping before
2626 		 * inserting it in the frame.  The hardware will then add this
2627 		 * each time a beacon frame is sent.  Note that we align vap's
2628 		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2629 		 * timestamp in one beacon interval while the others get a
2630 		 * timstamp aligned to the next interval.
2631 		 */
2632 		tsfadjust = ni->ni_intval *
2633 		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2634 		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2635 
2636 		DPRINTF(sc, ATH_DEBUG_BEACON,
2637 		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2638 		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2639 		    avp->av_bslot, ni->ni_intval,
2640 		    (long long unsigned) le64toh(tsfadjust));
2641 
2642 		wh = mtod(m, struct ieee80211_frame *);
2643 		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2644 	}
2645 	bf->bf_m = m;
2646 	bf->bf_node = ieee80211_ref_node(ni);
2647 
2648 	return 0;
2649 }
2650 
2651 /*
2652  * Setup the beacon frame for transmit.
2653  */
2654 static void
2655 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2656 {
2657 #define	USE_SHPREAMBLE(_ic) \
2658 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2659 		== IEEE80211_F_SHPREAMBLE)
2660 	struct ieee80211_node *ni = bf->bf_node;
2661 	struct ieee80211com *ic = ni->ni_ic;
2662 	struct mbuf *m = bf->bf_m;
2663 	struct ath_hal *ah = sc->sc_ah;
2664 	struct ath_desc *ds;
2665 	int flags, antenna;
2666 	const HAL_RATE_TABLE *rt;
2667 	u_int8_t rix, rate;
2668 
2669 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2670 		__func__, m, m->m_len);
2671 
2672 	/* setup descriptors */
2673 	ds = bf->bf_desc;
2674 
2675 	flags = HAL_TXDESC_NOACK;
2676 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2677 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2678 		flags |= HAL_TXDESC_VEOL;
2679 		/*
2680 		 * Let hardware handle antenna switching.
2681 		 */
2682 		antenna = sc->sc_txantenna;
2683 	} else {
2684 		ds->ds_link = 0;
2685 		/*
2686 		 * Switch antenna every 4 beacons.
2687 		 * XXX assumes two antenna
2688 		 */
2689 		if (sc->sc_txantenna != 0)
2690 			antenna = sc->sc_txantenna;
2691 		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2692 			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2693 		else
2694 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2695 	}
2696 
2697 	KASSERT(bf->bf_nseg == 1,
2698 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2699 	ds->ds_data = bf->bf_segs[0].ds_addr;
2700 	/*
2701 	 * Calculate rate code.
2702 	 * XXX everything at min xmit rate
2703 	 */
2704 	rix = 0;
2705 	rt = sc->sc_currates;
2706 	rate = rt->info[rix].rateCode;
2707 	if (USE_SHPREAMBLE(ic))
2708 		rate |= rt->info[rix].shortPreamble;
2709 	ath_hal_setuptxdesc(ah, ds
2710 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2711 		, sizeof(struct ieee80211_frame)/* header length */
2712 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2713 		, ni->ni_txpower		/* txpower XXX */
2714 		, rate, 1			/* series 0 rate/tries */
2715 		, HAL_TXKEYIX_INVALID		/* no encryption */
2716 		, antenna			/* antenna mode */
2717 		, flags				/* no ack, veol for beacons */
2718 		, 0				/* rts/cts rate */
2719 		, 0				/* rts/cts duration */
2720 	);
2721 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2722 	ath_hal_filltxdesc(ah, ds
2723 		, roundup(m->m_len, 4)		/* buffer length */
2724 		, AH_TRUE			/* first segment */
2725 		, AH_TRUE			/* last segment */
2726 		, ds				/* first descriptor */
2727 	);
2728 #if 0
2729 	ath_desc_swap(ds);
2730 #endif
2731 #undef USE_SHPREAMBLE
2732 }
2733 
2734 static void
2735 ath_beacon_update(struct ieee80211vap *vap, int item)
2736 {
2737 	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2738 
2739 	setbit(bo->bo_flags, item);
2740 }
2741 
2742 /*
2743  * Append the contents of src to dst; both queues
2744  * are assumed to be locked.
2745  */
2746 static void
2747 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2748 {
2749 	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2750 	dst->axq_link = src->axq_link;
2751 	src->axq_link = NULL;
2752 	dst->axq_depth += src->axq_depth;
2753 	src->axq_depth = 0;
2754 }
2755 
2756 /*
2757  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2758  * frame contents are done as needed and the slot time is
2759  * also adjusted based on current state.
2760  */
2761 static void
2762 ath_beacon_proc(void *arg, int pending)
2763 {
2764 	struct ath_softc *sc = arg;
2765 	struct ath_hal *ah = sc->sc_ah;
2766 	struct ieee80211vap *vap;
2767 	struct ath_buf *bf;
2768 	int slot, otherant;
2769 	uint32_t bfaddr;
2770 
2771 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2772 		__func__, pending);
2773 	/*
2774 	 * Check if the previous beacon has gone out.  If
2775 	 * not don't try to post another, skip this period
2776 	 * and wait for the next.  Missed beacons indicate
2777 	 * a problem and should not occur.  If we miss too
2778 	 * many consecutive beacons reset the device.
2779 	 */
2780 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2781 		sc->sc_bmisscount++;
2782 		DPRINTF(sc, ATH_DEBUG_BEACON,
2783 			"%s: missed %u consecutive beacons\n",
2784 			__func__, sc->sc_bmisscount);
2785 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2786 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2787 		return;
2788 	}
2789 	if (sc->sc_bmisscount != 0) {
2790 		DPRINTF(sc, ATH_DEBUG_BEACON,
2791 			"%s: resume beacon xmit after %u misses\n",
2792 			__func__, sc->sc_bmisscount);
2793 		sc->sc_bmisscount = 0;
2794 	}
2795 
2796 	if (sc->sc_stagbeacons) {			/* staggered beacons */
2797 		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2798 		uint32_t tsftu;
2799 
2800 		tsftu = ath_hal_gettsf32(ah) >> 10;
2801 		/* XXX lintval */
2802 		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2803 		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2804 		bfaddr = 0;
2805 		if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
2806 			bf = ath_beacon_generate(sc, vap);
2807 			if (bf != NULL)
2808 				bfaddr = bf->bf_daddr;
2809 		}
2810 	} else {					/* burst'd beacons */
2811 		uint32_t *bflink = &bfaddr;
2812 
2813 		for (slot = 0; slot < ATH_BCBUF; slot++) {
2814 			vap = sc->sc_bslot[slot];
2815 			if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
2816 				bf = ath_beacon_generate(sc, vap);
2817 				if (bf != NULL) {
2818 					*bflink = bf->bf_daddr;
2819 					bflink = &bf->bf_desc->ds_link;
2820 				}
2821 			}
2822 		}
2823 		*bflink = 0;				/* terminate list */
2824 	}
2825 
2826 	/*
2827 	 * Handle slot time change when a non-ERP station joins/leaves
2828 	 * an 11g network.  The 802.11 layer notifies us via callback,
2829 	 * we mark updateslot, then wait one beacon before effecting
2830 	 * the change.  This gives associated stations at least one
2831 	 * beacon interval to note the state change.
2832 	 */
2833 	/* XXX locking */
2834 	if (sc->sc_updateslot == UPDATE) {
2835 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2836 		sc->sc_slotupdate = slot;
2837 	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
2838 		ath_setslottime(sc);		/* commit change to h/w */
2839 
2840 	/*
2841 	 * Check recent per-antenna transmit statistics and flip
2842 	 * the default antenna if noticeably more frames went out
2843 	 * on the non-default antenna.
2844 	 * XXX assumes 2 anntenae
2845 	 */
2846 	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
2847 		otherant = sc->sc_defant & 1 ? 2 : 1;
2848 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2849 			ath_setdefantenna(sc, otherant);
2850 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2851 	}
2852 
2853 	if (bfaddr != 0) {
2854 		/*
2855 		 * Stop any current dma and put the new frame on the queue.
2856 		 * This should never fail since we check above that no frames
2857 		 * are still pending on the queue.
2858 		 */
2859 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2860 			DPRINTF(sc, ATH_DEBUG_ANY,
2861 				"%s: beacon queue %u did not stop?\n",
2862 				__func__, sc->sc_bhalq);
2863 		}
2864 		/* NB: cabq traffic should already be queued and primed */
2865 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
2866 		ath_hal_txstart(ah, sc->sc_bhalq);
2867 
2868 		sc->sc_stats.ast_be_xmit++;
2869 	}
2870 }
2871 
2872 static struct ath_buf *
2873 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
2874 {
2875 	struct ath_vap *avp = ATH_VAP(vap);
2876 	struct ath_txq *cabq = sc->sc_cabq;
2877 	struct ath_buf *bf;
2878 	struct mbuf *m;
2879 	int nmcastq, error;
2880 
2881 	KASSERT(vap->iv_state == IEEE80211_S_RUN,
2882 	    ("not running, state %d", vap->iv_state));
2883 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2884 
2885 	/*
2886 	 * Update dynamic beacon contents.  If this returns
2887 	 * non-zero then we need to remap the memory because
2888 	 * the beacon frame changed size (probably because
2889 	 * of the TIM bitmap).
2890 	 */
2891 	bf = avp->av_bcbuf;
2892 	m = bf->bf_m;
2893 	nmcastq = avp->av_mcastq.axq_depth;
2894 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
2895 		/* XXX too conservative? */
2896 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2897 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2898 					     bf->bf_segs, &bf->bf_nseg,
2899 					     BUS_DMA_NOWAIT);
2900 		if (error != 0) {
2901 			if_printf(vap->iv_ifp,
2902 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2903 			    __func__, error);
2904 			return NULL;
2905 		}
2906 	}
2907 	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
2908 		DPRINTF(sc, ATH_DEBUG_BEACON,
2909 		    "%s: cabq did not drain, mcastq %u cabq %u\n",
2910 		    __func__, nmcastq, cabq->axq_depth);
2911 		sc->sc_stats.ast_cabq_busy++;
2912 		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
2913 			/*
2914 			 * CABQ traffic from a previous vap is still pending.
2915 			 * We must drain the q before this beacon frame goes
2916 			 * out as otherwise this vap's stations will get cab
2917 			 * frames from a different vap.
2918 			 * XXX could be slow causing us to miss DBA
2919 			 */
2920 			ath_tx_draintxq(sc, cabq);
2921 		}
2922 	}
2923 	ath_beacon_setup(sc, bf);
2924 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2925 
2926 	/*
2927 	 * Enable the CAB queue before the beacon queue to
2928 	 * insure cab frames are triggered by this beacon.
2929 	 */
2930 	if (avp->av_boff.bo_tim[4] & 1) {
2931 		struct ath_hal *ah = sc->sc_ah;
2932 
2933 		/* NB: only at DTIM */
2934 		ATH_TXQ_LOCK(cabq);
2935 		ATH_TXQ_LOCK(&avp->av_mcastq);
2936 		if (nmcastq) {
2937 			struct ath_buf *bfm;
2938 
2939 			/*
2940 			 * Move frames from the s/w mcast q to the h/w cab q.
2941 			 * XXX MORE_DATA bit
2942 			 */
2943 			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
2944 			if (cabq->axq_link != NULL) {
2945 				*cabq->axq_link = bfm->bf_daddr;
2946 			} else
2947 				ath_hal_puttxbuf(ah, cabq->axq_qnum,
2948 					bfm->bf_daddr);
2949 			ath_txqmove(cabq, &avp->av_mcastq);
2950 
2951 			sc->sc_stats.ast_cabq_xmit += nmcastq;
2952 		}
2953 		/* NB: gated by beacon so safe to start here */
2954 		ath_hal_txstart(ah, cabq->axq_qnum);
2955 		ATH_TXQ_UNLOCK(cabq);
2956 		ATH_TXQ_UNLOCK(&avp->av_mcastq);
2957 	}
2958 	return bf;
2959 }
2960 
2961 static void
2962 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
2963 {
2964 	struct ath_vap *avp = ATH_VAP(vap);
2965 	struct ath_hal *ah = sc->sc_ah;
2966 	struct ath_buf *bf;
2967 	struct mbuf *m;
2968 	int error;
2969 
2970 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2971 
2972 	/*
2973 	 * Update dynamic beacon contents.  If this returns
2974 	 * non-zero then we need to remap the memory because
2975 	 * the beacon frame changed size (probably because
2976 	 * of the TIM bitmap).
2977 	 */
2978 	bf = avp->av_bcbuf;
2979 	m = bf->bf_m;
2980 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
2981 		/* XXX too conservative? */
2982 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2983 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2984 					     bf->bf_segs, &bf->bf_nseg,
2985 					     BUS_DMA_NOWAIT);
2986 		if (error != 0) {
2987 			if_printf(vap->iv_ifp,
2988 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2989 			    __func__, error);
2990 			return;
2991 		}
2992 	}
2993 	ath_beacon_setup(sc, bf);
2994 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2995 
2996 	/* NB: caller is known to have already stopped tx dma */
2997 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2998 	ath_hal_txstart(ah, sc->sc_bhalq);
2999 }
3000 
3001 /*
3002  * Reset the hardware after detecting beacons have stopped.
3003  */
3004 static void
3005 ath_bstuck_proc(void *arg, int pending)
3006 {
3007 	struct ath_softc *sc = arg;
3008 	struct ifnet *ifp = sc->sc_ifp;
3009 
3010 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3011 		sc->sc_bmisscount);
3012 	sc->sc_stats.ast_bstuck++;
3013 	ath_reset(ifp);
3014 }
3015 
3016 /*
3017  * Reclaim beacon resources and return buffer to the pool.
3018  */
3019 static void
3020 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3021 {
3022 
3023 	if (bf->bf_m != NULL) {
3024 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3025 		m_freem(bf->bf_m);
3026 		bf->bf_m = NULL;
3027 	}
3028 	if (bf->bf_node != NULL) {
3029 		ieee80211_free_node(bf->bf_node);
3030 		bf->bf_node = NULL;
3031 	}
3032 	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3033 }
3034 
3035 /*
3036  * Reclaim beacon resources.
3037  */
3038 static void
3039 ath_beacon_free(struct ath_softc *sc)
3040 {
3041 	struct ath_buf *bf;
3042 
3043 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3044 		if (bf->bf_m != NULL) {
3045 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3046 			m_freem(bf->bf_m);
3047 			bf->bf_m = NULL;
3048 		}
3049 		if (bf->bf_node != NULL) {
3050 			ieee80211_free_node(bf->bf_node);
3051 			bf->bf_node = NULL;
3052 		}
3053 	}
3054 }
3055 
3056 /*
3057  * Configure the beacon and sleep timers.
3058  *
3059  * When operating as an AP this resets the TSF and sets
3060  * up the hardware to notify us when we need to issue beacons.
3061  *
3062  * When operating in station mode this sets up the beacon
3063  * timers according to the timestamp of the last received
3064  * beacon and the current TSF, configures PCF and DTIM
3065  * handling, programs the sleep registers so the hardware
3066  * will wakeup in time to receive beacons, and configures
3067  * the beacon miss handling so we'll receive a BMISS
3068  * interrupt when we stop seeing beacons from the AP
3069  * we've associated with.
3070  */
3071 static void
3072 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3073 {
3074 #define	TSF_TO_TU(_h,_l) \
3075 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3076 #define	FUDGE	2
3077 	struct ath_hal *ah = sc->sc_ah;
3078 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3079 	struct ieee80211_node *ni;
3080 	u_int32_t nexttbtt, intval, tsftu;
3081 	u_int64_t tsf;
3082 
3083 	if (vap == NULL)
3084 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3085 	ni = vap->iv_bss;
3086 
3087 	/* extract tstamp from last beacon and convert to TU */
3088 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3089 			     LE_READ_4(ni->ni_tstamp.data));
3090 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3091 		/*
3092 		 * For multi-bss ap support beacons are either staggered
3093 		 * evenly over N slots or burst together.  For the former
3094 		 * arrange for the SWBA to be delivered for each slot.
3095 		 * Slots that are not occupied will generate nothing.
3096 		 */
3097 		/* NB: the beacon interval is kept internally in TU's */
3098 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3099 		if (sc->sc_stagbeacons)
3100 			intval /= ATH_BCBUF;
3101 	} else {
3102 		/* NB: the beacon interval is kept internally in TU's */
3103 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3104 	}
3105 	if (nexttbtt == 0)		/* e.g. for ap mode */
3106 		nexttbtt = intval;
3107 	else if (intval)		/* NB: can be 0 for monitor mode */
3108 		nexttbtt = roundup(nexttbtt, intval);
3109 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3110 		__func__, nexttbtt, intval, ni->ni_intval);
3111 	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3112 		HAL_BEACON_STATE bs;
3113 		int dtimperiod, dtimcount;
3114 		int cfpperiod, cfpcount;
3115 
3116 		/*
3117 		 * Setup dtim and cfp parameters according to
3118 		 * last beacon we received (which may be none).
3119 		 */
3120 		dtimperiod = ni->ni_dtim_period;
3121 		if (dtimperiod <= 0)		/* NB: 0 if not known */
3122 			dtimperiod = 1;
3123 		dtimcount = ni->ni_dtim_count;
3124 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3125 			dtimcount = 0;		/* XXX? */
3126 		cfpperiod = 1;			/* NB: no PCF support yet */
3127 		cfpcount = 0;
3128 		/*
3129 		 * Pull nexttbtt forward to reflect the current
3130 		 * TSF and calculate dtim+cfp state for the result.
3131 		 */
3132 		tsf = ath_hal_gettsf64(ah);
3133 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3134 		do {
3135 			nexttbtt += intval;
3136 			if (--dtimcount < 0) {
3137 				dtimcount = dtimperiod - 1;
3138 				if (--cfpcount < 0)
3139 					cfpcount = cfpperiod - 1;
3140 			}
3141 		} while (nexttbtt < tsftu);
3142 		memset(&bs, 0, sizeof(bs));
3143 		bs.bs_intval = intval;
3144 		bs.bs_nexttbtt = nexttbtt;
3145 		bs.bs_dtimperiod = dtimperiod*intval;
3146 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3147 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3148 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3149 		bs.bs_cfpmaxduration = 0;
3150 #if 0
3151 		/*
3152 		 * The 802.11 layer records the offset to the DTIM
3153 		 * bitmap while receiving beacons; use it here to
3154 		 * enable h/w detection of our AID being marked in
3155 		 * the bitmap vector (to indicate frames for us are
3156 		 * pending at the AP).
3157 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3158 		 * XXX enable based on h/w rev for newer chips
3159 		 */
3160 		bs.bs_timoffset = ni->ni_timoff;
3161 #endif
3162 		/*
3163 		 * Calculate the number of consecutive beacons to miss
3164 		 * before taking a BMISS interrupt.
3165 		 * Note that we clamp the result to at most 10 beacons.
3166 		 */
3167 		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3168 		if (bs.bs_bmissthreshold > 10)
3169 			bs.bs_bmissthreshold = 10;
3170 		else if (bs.bs_bmissthreshold <= 0)
3171 			bs.bs_bmissthreshold = 1;
3172 
3173 		/*
3174 		 * Calculate sleep duration.  The configuration is
3175 		 * given in ms.  We insure a multiple of the beacon
3176 		 * period is used.  Also, if the sleep duration is
3177 		 * greater than the DTIM period then it makes senses
3178 		 * to make it a multiple of that.
3179 		 *
3180 		 * XXX fixed at 100ms
3181 		 */
3182 		bs.bs_sleepduration =
3183 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3184 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3185 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3186 
3187 		DPRINTF(sc, ATH_DEBUG_BEACON,
3188 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3189 			, __func__
3190 			, tsf, tsftu
3191 			, bs.bs_intval
3192 			, bs.bs_nexttbtt
3193 			, bs.bs_dtimperiod
3194 			, bs.bs_nextdtim
3195 			, bs.bs_bmissthreshold
3196 			, bs.bs_sleepduration
3197 			, bs.bs_cfpperiod
3198 			, bs.bs_cfpmaxduration
3199 			, bs.bs_cfpnext
3200 			, bs.bs_timoffset
3201 		);
3202 		ath_hal_intrset(ah, 0);
3203 		ath_hal_beacontimers(ah, &bs);
3204 		sc->sc_imask |= HAL_INT_BMISS;
3205 		ath_hal_intrset(ah, sc->sc_imask);
3206 	} else {
3207 		ath_hal_intrset(ah, 0);
3208 		if (nexttbtt == intval)
3209 			intval |= HAL_BEACON_RESET_TSF;
3210 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3211 			/*
3212 			 * In IBSS mode enable the beacon timers but only
3213 			 * enable SWBA interrupts if we need to manually
3214 			 * prepare beacon frames.  Otherwise we use a
3215 			 * self-linked tx descriptor and let the hardware
3216 			 * deal with things.
3217 			 */
3218 			intval |= HAL_BEACON_ENA;
3219 			if (!sc->sc_hasveol)
3220 				sc->sc_imask |= HAL_INT_SWBA;
3221 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3222 				/*
3223 				 * Pull nexttbtt forward to reflect
3224 				 * the current TSF.
3225 				 */
3226 				tsf = ath_hal_gettsf64(ah);
3227 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3228 				do {
3229 					nexttbtt += intval;
3230 				} while (nexttbtt < tsftu);
3231 			}
3232 			ath_beaconq_config(sc);
3233 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3234 			/*
3235 			 * In AP mode we enable the beacon timers and
3236 			 * SWBA interrupts to prepare beacon frames.
3237 			 */
3238 			intval |= HAL_BEACON_ENA;
3239 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3240 			ath_beaconq_config(sc);
3241 		}
3242 		ath_hal_beaconinit(ah, nexttbtt, intval);
3243 		sc->sc_bmisscount = 0;
3244 		ath_hal_intrset(ah, sc->sc_imask);
3245 		/*
3246 		 * When using a self-linked beacon descriptor in
3247 		 * ibss mode load it once here.
3248 		 */
3249 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3250 			ath_beacon_start_adhoc(sc, vap);
3251 	}
3252 	sc->sc_syncbeacon = 0;
3253 #undef FUDGE
3254 #undef TSF_TO_TU
3255 }
3256 
3257 static void
3258 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3259 {
3260 	bus_addr_t *paddr = (bus_addr_t*) arg;
3261 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3262 	*paddr = segs->ds_addr;
3263 }
3264 
3265 static int
3266 ath_descdma_setup(struct ath_softc *sc,
3267 	struct ath_descdma *dd, ath_bufhead *head,
3268 	const char *name, int nbuf, int ndesc)
3269 {
3270 #define	DS2PHYS(_dd, _ds) \
3271 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3272 	struct ifnet *ifp = sc->sc_ifp;
3273 	struct ath_desc *ds;
3274 	struct ath_buf *bf;
3275 	int i, bsize, error;
3276 
3277 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3278 	    __func__, name, nbuf, ndesc);
3279 
3280 	dd->dd_name = name;
3281 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
3282 
3283 	/*
3284 	 * Setup DMA descriptor area.
3285 	 */
3286 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3287 		       PAGE_SIZE, 0,		/* alignment, bounds */
3288 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3289 		       BUS_SPACE_MAXADDR,	/* highaddr */
3290 		       NULL, NULL,		/* filter, filterarg */
3291 		       dd->dd_desc_len,		/* maxsize */
3292 		       1,			/* nsegments */
3293 		       dd->dd_desc_len,		/* maxsegsize */
3294 		       BUS_DMA_ALLOCNOW,	/* flags */
3295 		       NULL,			/* lockfunc */
3296 		       NULL,			/* lockarg */
3297 		       &dd->dd_dmat);
3298 	if (error != 0) {
3299 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3300 		return error;
3301 	}
3302 
3303 	/* allocate descriptors */
3304 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3305 	if (error != 0) {
3306 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3307 			"error %u\n", dd->dd_name, error);
3308 		goto fail0;
3309 	}
3310 
3311 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3312 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3313 				 &dd->dd_dmamap);
3314 	if (error != 0) {
3315 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3316 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3317 		goto fail1;
3318 	}
3319 
3320 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3321 				dd->dd_desc, dd->dd_desc_len,
3322 				ath_load_cb, &dd->dd_desc_paddr,
3323 				BUS_DMA_NOWAIT);
3324 	if (error != 0) {
3325 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3326 			dd->dd_name, error);
3327 		goto fail2;
3328 	}
3329 
3330 	ds = dd->dd_desc;
3331 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3332 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3333 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3334 
3335 	/* allocate rx buffers */
3336 	bsize = sizeof(struct ath_buf) * nbuf;
3337 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3338 	if (bf == NULL) {
3339 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3340 			dd->dd_name, bsize);
3341 		goto fail3;
3342 	}
3343 	dd->dd_bufptr = bf;
3344 
3345 	STAILQ_INIT(head);
3346 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3347 		bf->bf_desc = ds;
3348 		bf->bf_daddr = DS2PHYS(dd, ds);
3349 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3350 				&bf->bf_dmamap);
3351 		if (error != 0) {
3352 			if_printf(ifp, "unable to create dmamap for %s "
3353 				"buffer %u, error %u\n", dd->dd_name, i, error);
3354 			ath_descdma_cleanup(sc, dd, head);
3355 			return error;
3356 		}
3357 		STAILQ_INSERT_TAIL(head, bf, bf_list);
3358 	}
3359 	return 0;
3360 fail3:
3361 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3362 fail2:
3363 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3364 fail1:
3365 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3366 fail0:
3367 	bus_dma_tag_destroy(dd->dd_dmat);
3368 	memset(dd, 0, sizeof(*dd));
3369 	return error;
3370 #undef DS2PHYS
3371 }
3372 
3373 static void
3374 ath_descdma_cleanup(struct ath_softc *sc,
3375 	struct ath_descdma *dd, ath_bufhead *head)
3376 {
3377 	struct ath_buf *bf;
3378 	struct ieee80211_node *ni;
3379 
3380 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3381 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3382 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3383 	bus_dma_tag_destroy(dd->dd_dmat);
3384 
3385 	STAILQ_FOREACH(bf, head, bf_list) {
3386 		if (bf->bf_m) {
3387 			m_freem(bf->bf_m);
3388 			bf->bf_m = NULL;
3389 		}
3390 		if (bf->bf_dmamap != NULL) {
3391 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3392 			bf->bf_dmamap = NULL;
3393 		}
3394 		ni = bf->bf_node;
3395 		bf->bf_node = NULL;
3396 		if (ni != NULL) {
3397 			/*
3398 			 * Reclaim node reference.
3399 			 */
3400 			ieee80211_free_node(ni);
3401 		}
3402 	}
3403 
3404 	STAILQ_INIT(head);
3405 	free(dd->dd_bufptr, M_ATHDEV);
3406 	memset(dd, 0, sizeof(*dd));
3407 }
3408 
3409 static int
3410 ath_desc_alloc(struct ath_softc *sc)
3411 {
3412 	int error;
3413 
3414 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3415 			"rx", ath_rxbuf, 1);
3416 	if (error != 0)
3417 		return error;
3418 
3419 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3420 			"tx", ath_txbuf, ATH_TXDESC);
3421 	if (error != 0) {
3422 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3423 		return error;
3424 	}
3425 
3426 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3427 			"beacon", ATH_BCBUF, 1);
3428 	if (error != 0) {
3429 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3430 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3431 		return error;
3432 	}
3433 	return 0;
3434 }
3435 
3436 static void
3437 ath_desc_free(struct ath_softc *sc)
3438 {
3439 
3440 	if (sc->sc_bdma.dd_desc_len != 0)
3441 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3442 	if (sc->sc_txdma.dd_desc_len != 0)
3443 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3444 	if (sc->sc_rxdma.dd_desc_len != 0)
3445 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3446 }
3447 
3448 static struct ieee80211_node *
3449 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3450 {
3451 	struct ieee80211com *ic = vap->iv_ic;
3452 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3453 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3454 	struct ath_node *an;
3455 
3456 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3457 	if (an == NULL) {
3458 		/* XXX stat+msg */
3459 		return NULL;
3460 	}
3461 	ath_rate_node_init(sc, an);
3462 
3463 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3464 	return &an->an_node;
3465 }
3466 
3467 static void
3468 ath_node_free(struct ieee80211_node *ni)
3469 {
3470 	struct ieee80211com *ic = ni->ni_ic;
3471         struct ath_softc *sc = ic->ic_ifp->if_softc;
3472 
3473 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3474 
3475 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3476 	sc->sc_node_free(ni);
3477 }
3478 
3479 static void
3480 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3481 {
3482 	struct ieee80211com *ic = ni->ni_ic;
3483 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3484 	struct ath_hal *ah = sc->sc_ah;
3485 
3486 	*rssi = ic->ic_node_getrssi(ni);
3487 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3488 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3489 	else
3490 		*noise = -95;		/* nominally correct */
3491 }
3492 
3493 static int
3494 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3495 {
3496 	struct ath_hal *ah = sc->sc_ah;
3497 	int error;
3498 	struct mbuf *m;
3499 	struct ath_desc *ds;
3500 
3501 	m = bf->bf_m;
3502 	if (m == NULL) {
3503 		/*
3504 		 * NB: by assigning a page to the rx dma buffer we
3505 		 * implicitly satisfy the Atheros requirement that
3506 		 * this buffer be cache-line-aligned and sized to be
3507 		 * multiple of the cache line size.  Not doing this
3508 		 * causes weird stuff to happen (for the 5210 at least).
3509 		 */
3510 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3511 		if (m == NULL) {
3512 			DPRINTF(sc, ATH_DEBUG_ANY,
3513 				"%s: no mbuf/cluster\n", __func__);
3514 			sc->sc_stats.ast_rx_nombuf++;
3515 			return ENOMEM;
3516 		}
3517 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3518 
3519 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3520 					     bf->bf_dmamap, m,
3521 					     bf->bf_segs, &bf->bf_nseg,
3522 					     BUS_DMA_NOWAIT);
3523 		if (error != 0) {
3524 			DPRINTF(sc, ATH_DEBUG_ANY,
3525 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3526 			    __func__, error);
3527 			sc->sc_stats.ast_rx_busdma++;
3528 			m_freem(m);
3529 			return error;
3530 		}
3531 		KASSERT(bf->bf_nseg == 1,
3532 			("multi-segment packet; nseg %u", bf->bf_nseg));
3533 		bf->bf_m = m;
3534 	}
3535 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3536 
3537 	/*
3538 	 * Setup descriptors.  For receive we always terminate
3539 	 * the descriptor list with a self-linked entry so we'll
3540 	 * not get overrun under high load (as can happen with a
3541 	 * 5212 when ANI processing enables PHY error frames).
3542 	 *
3543 	 * To insure the last descriptor is self-linked we create
3544 	 * each descriptor as self-linked and add it to the end.  As
3545 	 * each additional descriptor is added the previous self-linked
3546 	 * entry is ``fixed'' naturally.  This should be safe even
3547 	 * if DMA is happening.  When processing RX interrupts we
3548 	 * never remove/process the last, self-linked, entry on the
3549 	 * descriptor list.  This insures the hardware always has
3550 	 * someplace to write a new frame.
3551 	 */
3552 	ds = bf->bf_desc;
3553 	ds->ds_link = bf->bf_daddr;	/* link to self */
3554 	ds->ds_data = bf->bf_segs[0].ds_addr;
3555 	ath_hal_setuprxdesc(ah, ds
3556 		, m->m_len		/* buffer size */
3557 		, 0
3558 	);
3559 
3560 	if (sc->sc_rxlink != NULL)
3561 		*sc->sc_rxlink = bf->bf_daddr;
3562 	sc->sc_rxlink = &ds->ds_link;
3563 	return 0;
3564 }
3565 
3566 /*
3567  * Extend 15-bit time stamp from rx descriptor to
3568  * a full 64-bit TSF using the specified TSF.
3569  */
3570 static __inline u_int64_t
3571 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3572 {
3573 	if ((tsf & 0x7fff) < rstamp)
3574 		tsf -= 0x8000;
3575 	return ((tsf &~ 0x7fff) | rstamp);
3576 }
3577 
3578 /*
3579  * Intercept management frames to collect beacon rssi data
3580  * and to do ibss merges.
3581  */
3582 static void
3583 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3584 	int subtype, int rssi, int nf)
3585 {
3586 	struct ieee80211vap *vap = ni->ni_vap;
3587 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3588 
3589 	/*
3590 	 * Call up first so subsequent work can use information
3591 	 * potentially stored in the node (e.g. for ibss merge).
3592 	 */
3593 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3594 	switch (subtype) {
3595 	case IEEE80211_FC0_SUBTYPE_BEACON:
3596 		/* update rssi statistics for use by the hal */
3597 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3598 		if (sc->sc_syncbeacon &&
3599 		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3600 			/*
3601 			 * Resync beacon timers using the tsf of the beacon
3602 			 * frame we just received.
3603 			 */
3604 			ath_beacon_config(sc, vap);
3605 		}
3606 		/* fall thru... */
3607 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3608 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3609 		    vap->iv_state == IEEE80211_S_RUN) {
3610 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3611 			u_int64_t tsf = ath_extend_tsf(rstamp,
3612 				ath_hal_gettsf64(sc->sc_ah));
3613 			/*
3614 			 * Handle ibss merge as needed; check the tsf on the
3615 			 * frame before attempting the merge.  The 802.11 spec
3616 			 * says the station should change it's bssid to match
3617 			 * the oldest station with the same ssid, where oldest
3618 			 * is determined by the tsf.  Note that hardware
3619 			 * reconfiguration happens through callback to
3620 			 * ath_newstate as the state machine will go from
3621 			 * RUN -> RUN when this happens.
3622 			 */
3623 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3624 				DPRINTF(sc, ATH_DEBUG_STATE,
3625 				    "ibss merge, rstamp %u tsf %ju "
3626 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3627 				    (uintmax_t)ni->ni_tstamp.tsf);
3628 				(void) ieee80211_ibss_merge(ni);
3629 			}
3630 		}
3631 		break;
3632 	}
3633 }
3634 
3635 /*
3636  * Set the default antenna.
3637  */
3638 static void
3639 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3640 {
3641 	struct ath_hal *ah = sc->sc_ah;
3642 
3643 	/* XXX block beacon interrupts */
3644 	ath_hal_setdefantenna(ah, antenna);
3645 	if (sc->sc_defant != antenna)
3646 		sc->sc_stats.ast_ant_defswitch++;
3647 	sc->sc_defant = antenna;
3648 	sc->sc_rxotherant = 0;
3649 }
3650 
3651 static void
3652 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3653 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3654 {
3655 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3656 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3657 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3658 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3659 	struct ath_softc *sc = ifp->if_softc;
3660 	const HAL_RATE_TABLE *rt;
3661 	uint8_t rix;
3662 
3663 	rt = sc->sc_currates;
3664 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3665 	rix = rt->rateCodeToIndex[rs->rs_rate];
3666 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3667 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3668 #ifdef AH_SUPPORT_AR5416
3669 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3670 	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3671 		struct ieee80211com *ic = ifp->if_l2com;
3672 
3673 		if ((rs->rs_flags & HAL_RX_2040) == 0)
3674 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3675 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3676 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3677 		else
3678 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3679 		if ((rs->rs_flags & HAL_RX_GI) == 0)
3680 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3681 	}
3682 #endif
3683 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
3684 	if (rs->rs_status & HAL_RXERR_CRC)
3685 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3686 	/* XXX propagate other error flags from descriptor */
3687 	sc->sc_rx_th.wr_antnoise = nf;
3688 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
3689 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3690 #undef CHAN_HT
3691 #undef CHAN_HT20
3692 #undef CHAN_HT40U
3693 #undef CHAN_HT40D
3694 }
3695 
3696 static void
3697 ath_handle_micerror(struct ieee80211com *ic,
3698 	struct ieee80211_frame *wh, int keyix)
3699 {
3700 	struct ieee80211_node *ni;
3701 
3702 	/* XXX recheck MIC to deal w/ chips that lie */
3703 	/* XXX discard MIC errors on !data frames */
3704 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3705 	if (ni != NULL) {
3706 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3707 		ieee80211_free_node(ni);
3708 	}
3709 }
3710 
3711 static void
3712 ath_rx_proc(void *arg, int npending)
3713 {
3714 #define	PA2DESC(_sc, _pa) \
3715 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3716 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3717 	struct ath_softc *sc = arg;
3718 	struct ath_buf *bf;
3719 	struct ifnet *ifp = sc->sc_ifp;
3720 	struct ieee80211com *ic = ifp->if_l2com;
3721 	struct ath_hal *ah = sc->sc_ah;
3722 	struct ath_desc *ds;
3723 	struct ath_rx_status *rs;
3724 	struct mbuf *m;
3725 	struct ieee80211_node *ni;
3726 	int len, type, ngood;
3727 	u_int phyerr;
3728 	HAL_STATUS status;
3729 	int16_t nf;
3730 	u_int64_t tsf;
3731 
3732 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3733 	ngood = 0;
3734 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
3735 	sc->sc_stats.ast_rx_noise = nf;
3736 	tsf = ath_hal_gettsf64(ah);
3737 	do {
3738 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3739 		if (bf == NULL) {		/* NB: shouldn't happen */
3740 			if_printf(ifp, "%s: no buffer!\n", __func__);
3741 			break;
3742 		}
3743 		m = bf->bf_m;
3744 		if (m == NULL) {		/* NB: shouldn't happen */
3745 			/*
3746 			 * If mbuf allocation failed previously there
3747 			 * will be no mbuf; try again to re-populate it.
3748 			 */
3749 			/* XXX make debug msg */
3750 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3751 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3752 			goto rx_next;
3753 		}
3754 		ds = bf->bf_desc;
3755 		if (ds->ds_link == bf->bf_daddr) {
3756 			/* NB: never process the self-linked entry at the end */
3757 			break;
3758 		}
3759 		/* XXX sync descriptor memory */
3760 		/*
3761 		 * Must provide the virtual address of the current
3762 		 * descriptor, the physical address, and the virtual
3763 		 * address of the next descriptor in the h/w chain.
3764 		 * This allows the HAL to look ahead to see if the
3765 		 * hardware is done with a descriptor by checking the
3766 		 * done bit in the following descriptor and the address
3767 		 * of the current descriptor the DMA engine is working
3768 		 * on.  All this is necessary because of our use of
3769 		 * a self-linked list to avoid rx overruns.
3770 		 */
3771 		rs = &bf->bf_status.ds_rxstat;
3772 		status = ath_hal_rxprocdesc(ah, ds,
3773 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3774 #ifdef ATH_DEBUG
3775 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3776 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
3777 #endif
3778 		if (status == HAL_EINPROGRESS)
3779 			break;
3780 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3781 		if (rs->rs_status != 0) {
3782 			if (rs->rs_status & HAL_RXERR_CRC)
3783 				sc->sc_stats.ast_rx_crcerr++;
3784 			if (rs->rs_status & HAL_RXERR_FIFO)
3785 				sc->sc_stats.ast_rx_fifoerr++;
3786 			if (rs->rs_status & HAL_RXERR_PHY) {
3787 				sc->sc_stats.ast_rx_phyerr++;
3788 				phyerr = rs->rs_phyerr & 0x1f;
3789 				sc->sc_stats.ast_rx_phy[phyerr]++;
3790 				goto rx_error;	/* NB: don't count in ierrors */
3791 			}
3792 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3793 				/*
3794 				 * Decrypt error.  If the error occurred
3795 				 * because there was no hardware key, then
3796 				 * let the frame through so the upper layers
3797 				 * can process it.  This is necessary for 5210
3798 				 * parts which have no way to setup a ``clear''
3799 				 * key cache entry.
3800 				 *
3801 				 * XXX do key cache faulting
3802 				 */
3803 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3804 					goto rx_accept;
3805 				sc->sc_stats.ast_rx_badcrypt++;
3806 			}
3807 			if (rs->rs_status & HAL_RXERR_MIC) {
3808 				sc->sc_stats.ast_rx_badmic++;
3809 				/*
3810 				 * Do minimal work required to hand off
3811 				 * the 802.11 header for notification.
3812 				 */
3813 				/* XXX frag's and qos frames */
3814 				len = rs->rs_datalen;
3815 				if (len >= sizeof (struct ieee80211_frame)) {
3816 					bus_dmamap_sync(sc->sc_dmat,
3817 					    bf->bf_dmamap,
3818 					    BUS_DMASYNC_POSTREAD);
3819 					ath_handle_micerror(ic,
3820 					    mtod(m, struct ieee80211_frame *),
3821 					    sc->sc_splitmic ?
3822 						rs->rs_keyix-32 : rs->rs_keyix);
3823 				}
3824 			}
3825 			ifp->if_ierrors++;
3826 rx_error:
3827 			/*
3828 			 * Cleanup any pending partial frame.
3829 			 */
3830 			if (sc->sc_rxpending != NULL) {
3831 				m_freem(sc->sc_rxpending);
3832 				sc->sc_rxpending = NULL;
3833 			}
3834 			/*
3835 			 * When a tap is present pass error frames
3836 			 * that have been requested.  By default we
3837 			 * pass decrypt+mic errors but others may be
3838 			 * interesting (e.g. crc).
3839 			 */
3840 			if (ieee80211_radiotap_active(ic) &&
3841 			    (rs->rs_status & sc->sc_monpass)) {
3842 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3843 				    BUS_DMASYNC_POSTREAD);
3844 				/* NB: bpf needs the mbuf length setup */
3845 				len = rs->rs_datalen;
3846 				m->m_pkthdr.len = m->m_len = len;
3847 				ath_rx_tap(ifp, m, rs, tsf, nf);
3848 				ieee80211_radiotap_rx_all(ic, m);
3849 			}
3850 			/* XXX pass MIC errors up for s/w reclaculation */
3851 			goto rx_next;
3852 		}
3853 rx_accept:
3854 		/*
3855 		 * Sync and unmap the frame.  At this point we're
3856 		 * committed to passing the mbuf somewhere so clear
3857 		 * bf_m; this means a new mbuf must be allocated
3858 		 * when the rx descriptor is setup again to receive
3859 		 * another frame.
3860 		 */
3861 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3862 		    BUS_DMASYNC_POSTREAD);
3863 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3864 		bf->bf_m = NULL;
3865 
3866 		len = rs->rs_datalen;
3867 		m->m_len = len;
3868 
3869 		if (rs->rs_more) {
3870 			/*
3871 			 * Frame spans multiple descriptors; save
3872 			 * it for the next completed descriptor, it
3873 			 * will be used to construct a jumbogram.
3874 			 */
3875 			if (sc->sc_rxpending != NULL) {
3876 				/* NB: max frame size is currently 2 clusters */
3877 				sc->sc_stats.ast_rx_toobig++;
3878 				m_freem(sc->sc_rxpending);
3879 			}
3880 			m->m_pkthdr.rcvif = ifp;
3881 			m->m_pkthdr.len = len;
3882 			sc->sc_rxpending = m;
3883 			goto rx_next;
3884 		} else if (sc->sc_rxpending != NULL) {
3885 			/*
3886 			 * This is the second part of a jumbogram,
3887 			 * chain it to the first mbuf, adjust the
3888 			 * frame length, and clear the rxpending state.
3889 			 */
3890 			sc->sc_rxpending->m_next = m;
3891 			sc->sc_rxpending->m_pkthdr.len += len;
3892 			m = sc->sc_rxpending;
3893 			sc->sc_rxpending = NULL;
3894 		} else {
3895 			/*
3896 			 * Normal single-descriptor receive; setup
3897 			 * the rcvif and packet length.
3898 			 */
3899 			m->m_pkthdr.rcvif = ifp;
3900 			m->m_pkthdr.len = len;
3901 		}
3902 
3903 		ifp->if_ipackets++;
3904 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
3905 
3906 		/*
3907 		 * Populate the rx status block.  When there are bpf
3908 		 * listeners we do the additional work to provide
3909 		 * complete status.  Otherwise we fill in only the
3910 		 * material required by ieee80211_input.  Note that
3911 		 * noise setting is filled in above.
3912 		 */
3913 		if (ieee80211_radiotap_active(ic))
3914 			ath_rx_tap(ifp, m, rs, tsf, nf);
3915 
3916 		/*
3917 		 * From this point on we assume the frame is at least
3918 		 * as large as ieee80211_frame_min; verify that.
3919 		 */
3920 		if (len < IEEE80211_MIN_LEN) {
3921 			if (!ieee80211_radiotap_active(ic)) {
3922 				DPRINTF(sc, ATH_DEBUG_RECV,
3923 				    "%s: short packet %d\n", __func__, len);
3924 				sc->sc_stats.ast_rx_tooshort++;
3925 			} else {
3926 				/* NB: in particular this captures ack's */
3927 				ieee80211_radiotap_rx_all(ic, m);
3928 			}
3929 			m_freem(m);
3930 			goto rx_next;
3931 		}
3932 
3933 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3934 			const HAL_RATE_TABLE *rt = sc->sc_currates;
3935 			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
3936 
3937 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
3938 			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
3939 		}
3940 
3941 		m_adj(m, -IEEE80211_CRC_LEN);
3942 
3943 		/*
3944 		 * Locate the node for sender, track state, and then
3945 		 * pass the (referenced) node up to the 802.11 layer
3946 		 * for its use.
3947 		 */
3948 		ni = ieee80211_find_rxnode_withkey(ic,
3949 			mtod(m, const struct ieee80211_frame_min *),
3950 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
3951 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
3952 		if (ni != NULL) {
3953 			/*
3954 			 * Sending station is known, dispatch directly.
3955 			 */
3956 			sc->sc_lastrs = rs;
3957 			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
3958 			ieee80211_free_node(ni);
3959 			/*
3960 			 * Arrange to update the last rx timestamp only for
3961 			 * frames from our ap when operating in station mode.
3962 			 * This assumes the rx key is always setup when
3963 			 * associated.
3964 			 */
3965 			if (ic->ic_opmode == IEEE80211_M_STA &&
3966 			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
3967 				ngood++;
3968 		} else {
3969 			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
3970 		}
3971 		/*
3972 		 * Track rx rssi and do any rx antenna management.
3973 		 */
3974 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
3975 		if (sc->sc_diversity) {
3976 			/*
3977 			 * When using fast diversity, change the default rx
3978 			 * antenna if diversity chooses the other antenna 3
3979 			 * times in a row.
3980 			 */
3981 			if (sc->sc_defant != rs->rs_antenna) {
3982 				if (++sc->sc_rxotherant >= 3)
3983 					ath_setdefantenna(sc, rs->rs_antenna);
3984 			} else
3985 				sc->sc_rxotherant = 0;
3986 		}
3987 		if (sc->sc_softled) {
3988 			/*
3989 			 * Blink for any data frame.  Otherwise do a
3990 			 * heartbeat-style blink when idle.  The latter
3991 			 * is mainly for station mode where we depend on
3992 			 * periodic beacon frames to trigger the poll event.
3993 			 */
3994 			if (type == IEEE80211_FC0_TYPE_DATA) {
3995 				const HAL_RATE_TABLE *rt = sc->sc_currates;
3996 				ath_led_event(sc,
3997 				    rt->rateCodeToIndex[rs->rs_rate]);
3998 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3999 				ath_led_event(sc, 0);
4000 		}
4001 rx_next:
4002 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4003 	} while (ath_rxbuf_init(sc, bf) == 0);
4004 
4005 	/* rx signal state monitoring */
4006 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4007 	if (ngood)
4008 		sc->sc_lastrx = tsf;
4009 
4010 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
4011 #ifdef IEEE80211_SUPPORT_SUPERG
4012 		ieee80211_ff_age_all(ic, 100);
4013 #endif
4014 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
4015 			ath_start(ifp);
4016 	}
4017 #undef PA2DESC
4018 }
4019 
4020 static void
4021 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4022 {
4023 	txq->axq_qnum = qnum;
4024 	txq->axq_ac = 0;
4025 	txq->axq_depth = 0;
4026 	txq->axq_intrcnt = 0;
4027 	txq->axq_link = NULL;
4028 	STAILQ_INIT(&txq->axq_q);
4029 	ATH_TXQ_LOCK_INIT(sc, txq);
4030 }
4031 
4032 /*
4033  * Setup a h/w transmit queue.
4034  */
4035 static struct ath_txq *
4036 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4037 {
4038 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4039 	struct ath_hal *ah = sc->sc_ah;
4040 	HAL_TXQ_INFO qi;
4041 	int qnum;
4042 
4043 	memset(&qi, 0, sizeof(qi));
4044 	qi.tqi_subtype = subtype;
4045 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4046 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4047 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4048 	/*
4049 	 * Enable interrupts only for EOL and DESC conditions.
4050 	 * We mark tx descriptors to receive a DESC interrupt
4051 	 * when a tx queue gets deep; otherwise waiting for the
4052 	 * EOL to reap descriptors.  Note that this is done to
4053 	 * reduce interrupt load and this only defers reaping
4054 	 * descriptors, never transmitting frames.  Aside from
4055 	 * reducing interrupts this also permits more concurrency.
4056 	 * The only potential downside is if the tx queue backs
4057 	 * up in which case the top half of the kernel may backup
4058 	 * due to a lack of tx descriptors.
4059 	 */
4060 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4061 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4062 	if (qnum == -1) {
4063 		/*
4064 		 * NB: don't print a message, this happens
4065 		 * normally on parts with too few tx queues
4066 		 */
4067 		return NULL;
4068 	}
4069 	if (qnum >= N(sc->sc_txq)) {
4070 		device_printf(sc->sc_dev,
4071 			"hal qnum %u out of range, max %zu!\n",
4072 			qnum, N(sc->sc_txq));
4073 		ath_hal_releasetxqueue(ah, qnum);
4074 		return NULL;
4075 	}
4076 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4077 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4078 		sc->sc_txqsetup |= 1<<qnum;
4079 	}
4080 	return &sc->sc_txq[qnum];
4081 #undef N
4082 }
4083 
4084 /*
4085  * Setup a hardware data transmit queue for the specified
4086  * access control.  The hal may not support all requested
4087  * queues in which case it will return a reference to a
4088  * previously setup queue.  We record the mapping from ac's
4089  * to h/w queues for use by ath_tx_start and also track
4090  * the set of h/w queues being used to optimize work in the
4091  * transmit interrupt handler and related routines.
4092  */
4093 static int
4094 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4095 {
4096 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4097 	struct ath_txq *txq;
4098 
4099 	if (ac >= N(sc->sc_ac2q)) {
4100 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4101 			ac, N(sc->sc_ac2q));
4102 		return 0;
4103 	}
4104 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4105 	if (txq != NULL) {
4106 		txq->axq_ac = ac;
4107 		sc->sc_ac2q[ac] = txq;
4108 		return 1;
4109 	} else
4110 		return 0;
4111 #undef N
4112 }
4113 
4114 /*
4115  * Update WME parameters for a transmit queue.
4116  */
4117 static int
4118 ath_txq_update(struct ath_softc *sc, int ac)
4119 {
4120 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4121 #define	ATH_TXOP_TO_US(v)		(v<<5)
4122 	struct ifnet *ifp = sc->sc_ifp;
4123 	struct ieee80211com *ic = ifp->if_l2com;
4124 	struct ath_txq *txq = sc->sc_ac2q[ac];
4125 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4126 	struct ath_hal *ah = sc->sc_ah;
4127 	HAL_TXQ_INFO qi;
4128 
4129 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4130 #ifdef IEEE80211_SUPPORT_TDMA
4131 	if (sc->sc_tdma) {
4132 		/*
4133 		 * AIFS is zero so there's no pre-transmit wait.  The
4134 		 * burst time defines the slot duration and is configured
4135 		 * through net80211.  The QCU is setup to not do post-xmit
4136 		 * back off, lockout all lower-priority QCU's, and fire
4137 		 * off the DMA beacon alert timer which is setup based
4138 		 * on the slot configuration.
4139 		 */
4140 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4141 			      | HAL_TXQ_TXERRINT_ENABLE
4142 			      | HAL_TXQ_TXURNINT_ENABLE
4143 			      | HAL_TXQ_TXEOLINT_ENABLE
4144 			      | HAL_TXQ_DBA_GATED
4145 			      | HAL_TXQ_BACKOFF_DISABLE
4146 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4147 			      ;
4148 		qi.tqi_aifs = 0;
4149 		/* XXX +dbaprep? */
4150 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4151 		qi.tqi_burstTime = qi.tqi_readyTime;
4152 	} else {
4153 #endif
4154 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4155 			      | HAL_TXQ_TXERRINT_ENABLE
4156 			      | HAL_TXQ_TXDESCINT_ENABLE
4157 			      | HAL_TXQ_TXURNINT_ENABLE
4158 			      ;
4159 		qi.tqi_aifs = wmep->wmep_aifsn;
4160 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4161 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4162 		qi.tqi_readyTime = 0;
4163 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4164 #ifdef IEEE80211_SUPPORT_TDMA
4165 	}
4166 #endif
4167 
4168 	DPRINTF(sc, ATH_DEBUG_RESET,
4169 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4170 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4171 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4172 
4173 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4174 		if_printf(ifp, "unable to update hardware queue "
4175 			"parameters for %s traffic!\n",
4176 			ieee80211_wme_acnames[ac]);
4177 		return 0;
4178 	} else {
4179 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4180 		return 1;
4181 	}
4182 #undef ATH_TXOP_TO_US
4183 #undef ATH_EXPONENT_TO_VALUE
4184 }
4185 
4186 /*
4187  * Callback from the 802.11 layer to update WME parameters.
4188  */
4189 static int
4190 ath_wme_update(struct ieee80211com *ic)
4191 {
4192 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4193 
4194 	return !ath_txq_update(sc, WME_AC_BE) ||
4195 	    !ath_txq_update(sc, WME_AC_BK) ||
4196 	    !ath_txq_update(sc, WME_AC_VI) ||
4197 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4198 }
4199 
4200 /*
4201  * Reclaim resources for a setup queue.
4202  */
4203 static void
4204 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4205 {
4206 
4207 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4208 	ATH_TXQ_LOCK_DESTROY(txq);
4209 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4210 }
4211 
4212 /*
4213  * Reclaim all tx queue resources.
4214  */
4215 static void
4216 ath_tx_cleanup(struct ath_softc *sc)
4217 {
4218 	int i;
4219 
4220 	ATH_TXBUF_LOCK_DESTROY(sc);
4221 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4222 		if (ATH_TXQ_SETUP(sc, i))
4223 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4224 }
4225 
4226 /*
4227  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4228  * using the current rates in sc_rixmap.
4229  */
4230 static __inline int
4231 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4232 {
4233 	int rix = sc->sc_rixmap[rate];
4234 	/* NB: return lowest rix for invalid rate */
4235 	return (rix == 0xff ? 0 : rix);
4236 }
4237 
4238 /*
4239  * Reclaim mbuf resources.  For fragmented frames we
4240  * need to claim each frag chained with m_nextpkt.
4241  */
4242 static void
4243 ath_freetx(struct mbuf *m)
4244 {
4245 	struct mbuf *next;
4246 
4247 	do {
4248 		next = m->m_nextpkt;
4249 		m->m_nextpkt = NULL;
4250 		m_freem(m);
4251 	} while ((m = next) != NULL);
4252 }
4253 
4254 static int
4255 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
4256 {
4257 	struct mbuf *m;
4258 	int error;
4259 
4260 	/*
4261 	 * Load the DMA map so any coalescing is done.  This
4262 	 * also calculates the number of descriptors we need.
4263 	 */
4264 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4265 				     bf->bf_segs, &bf->bf_nseg,
4266 				     BUS_DMA_NOWAIT);
4267 	if (error == EFBIG) {
4268 		/* XXX packet requires too many descriptors */
4269 		bf->bf_nseg = ATH_TXDESC+1;
4270 	} else if (error != 0) {
4271 		sc->sc_stats.ast_tx_busdma++;
4272 		ath_freetx(m0);
4273 		return error;
4274 	}
4275 	/*
4276 	 * Discard null packets and check for packets that
4277 	 * require too many TX descriptors.  We try to convert
4278 	 * the latter to a cluster.
4279 	 */
4280 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
4281 		sc->sc_stats.ast_tx_linear++;
4282 		m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
4283 		if (m == NULL) {
4284 			ath_freetx(m0);
4285 			sc->sc_stats.ast_tx_nombuf++;
4286 			return ENOMEM;
4287 		}
4288 		m0 = m;
4289 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4290 					     bf->bf_segs, &bf->bf_nseg,
4291 					     BUS_DMA_NOWAIT);
4292 		if (error != 0) {
4293 			sc->sc_stats.ast_tx_busdma++;
4294 			ath_freetx(m0);
4295 			return error;
4296 		}
4297 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
4298 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
4299 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
4300 		sc->sc_stats.ast_tx_nodata++;
4301 		ath_freetx(m0);
4302 		return EIO;
4303 	}
4304 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
4305 		__func__, m0, m0->m_pkthdr.len);
4306 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
4307 	bf->bf_m = m0;
4308 
4309 	return 0;
4310 }
4311 
4312 static void
4313 ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
4314 {
4315 	struct ath_hal *ah = sc->sc_ah;
4316 	struct ath_desc *ds, *ds0;
4317 	int i;
4318 
4319 	/*
4320 	 * Fillin the remainder of the descriptor info.
4321 	 */
4322 	ds0 = ds = bf->bf_desc;
4323 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4324 		ds->ds_data = bf->bf_segs[i].ds_addr;
4325 		if (i == bf->bf_nseg - 1)
4326 			ds->ds_link = 0;
4327 		else
4328 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4329 		ath_hal_filltxdesc(ah, ds
4330 			, bf->bf_segs[i].ds_len	/* segment length */
4331 			, i == 0		/* first segment */
4332 			, i == bf->bf_nseg - 1	/* last segment */
4333 			, ds0			/* first descriptor */
4334 		);
4335 		DPRINTF(sc, ATH_DEBUG_XMIT,
4336 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4337 			__func__, i, ds->ds_link, ds->ds_data,
4338 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4339 	}
4340 	/*
4341 	 * Insert the frame on the outbound list and pass it on
4342 	 * to the hardware.  Multicast frames buffered for power
4343 	 * save stations and transmit from the CAB queue are stored
4344 	 * on a s/w only queue and loaded on to the CAB queue in
4345 	 * the SWBA handler since frames only go out on DTIM and
4346 	 * to avoid possible races.
4347 	 */
4348 	ATH_TXQ_LOCK(txq);
4349 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
4350 	     ("busy status 0x%x", bf->bf_flags));
4351 	if (txq->axq_qnum != ATH_TXQ_SWQ) {
4352 #ifdef IEEE80211_SUPPORT_TDMA
4353 		int qbusy;
4354 
4355 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4356 		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
4357 		if (txq->axq_link == NULL) {
4358 			/*
4359 			 * Be careful writing the address to TXDP.  If
4360 			 * the tx q is enabled then this write will be
4361 			 * ignored.  Normally this is not an issue but
4362 			 * when tdma is in use and the q is beacon gated
4363 			 * this race can occur.  If the q is busy then
4364 			 * defer the work to later--either when another
4365 			 * packet comes along or when we prepare a beacon
4366 			 * frame at SWBA.
4367 			 */
4368 			if (!qbusy) {
4369 				ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4370 				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4371 				DPRINTF(sc, ATH_DEBUG_XMIT,
4372 				    "%s: TXDP[%u] = %p (%p) depth %d\n",
4373 				    __func__, txq->axq_qnum,
4374 				    (caddr_t)bf->bf_daddr, bf->bf_desc,
4375 				    txq->axq_depth);
4376 			} else {
4377 				txq->axq_flags |= ATH_TXQ_PUTPENDING;
4378 				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4379 				    "%s: Q%u busy, defer enable\n", __func__,
4380 				    txq->axq_qnum);
4381 			}
4382 		} else {
4383 			*txq->axq_link = bf->bf_daddr;
4384 			DPRINTF(sc, ATH_DEBUG_XMIT,
4385 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4386 			    txq->axq_qnum, txq->axq_link,
4387 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4388 			if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
4389 				/*
4390 				 * The q was busy when we previously tried
4391 				 * to write the address of the first buffer
4392 				 * in the chain.  Since it's not busy now
4393 				 * handle this chore.  We are certain the
4394 				 * buffer at the front is the right one since
4395 				 * axq_link is NULL only when the buffer list
4396 				 * is/was empty.
4397 				 */
4398 				ath_hal_puttxbuf(ah, txq->axq_qnum,
4399 					STAILQ_FIRST(&txq->axq_q)->bf_daddr);
4400 				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4401 				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4402 				    "%s: Q%u restarted\n", __func__,
4403 				    txq->axq_qnum);
4404 			}
4405 		}
4406 #else
4407 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4408 		if (txq->axq_link == NULL) {
4409 			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4410 			DPRINTF(sc, ATH_DEBUG_XMIT,
4411 			    "%s: TXDP[%u] = %p (%p) depth %d\n",
4412 			    __func__, txq->axq_qnum,
4413 			    (caddr_t)bf->bf_daddr, bf->bf_desc,
4414 			    txq->axq_depth);
4415 		} else {
4416 			*txq->axq_link = bf->bf_daddr;
4417 			DPRINTF(sc, ATH_DEBUG_XMIT,
4418 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4419 			    txq->axq_qnum, txq->axq_link,
4420 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4421 		}
4422 #endif /* IEEE80211_SUPPORT_TDMA */
4423 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4424 		ath_hal_txstart(ah, txq->axq_qnum);
4425 	} else {
4426 		if (txq->axq_link != NULL) {
4427 			struct ath_buf *last = ATH_TXQ_LAST(txq);
4428 			struct ieee80211_frame *wh;
4429 
4430 			/* mark previous frame */
4431 			wh = mtod(last->bf_m, struct ieee80211_frame *);
4432 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
4433 			bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
4434 			    BUS_DMASYNC_PREWRITE);
4435 
4436 			/* link descriptor */
4437 			*txq->axq_link = bf->bf_daddr;
4438 		}
4439 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4440 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4441 	}
4442 	ATH_TXQ_UNLOCK(txq);
4443 }
4444 
4445 static int
4446 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
4447     struct mbuf *m0)
4448 {
4449 	struct ieee80211vap *vap = ni->ni_vap;
4450 	struct ath_vap *avp = ATH_VAP(vap);
4451 	struct ath_hal *ah = sc->sc_ah;
4452 	struct ifnet *ifp = sc->sc_ifp;
4453 	struct ieee80211com *ic = ifp->if_l2com;
4454 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
4455 	int error, iswep, ismcast, isfrag, ismrr;
4456 	int keyix, hdrlen, pktlen, try0;
4457 	u_int8_t rix, txrate, ctsrate;
4458 	u_int8_t cix = 0xff;		/* NB: silence compiler */
4459 	struct ath_desc *ds;
4460 	struct ath_txq *txq;
4461 	struct ieee80211_frame *wh;
4462 	u_int subtype, flags, ctsduration;
4463 	HAL_PKT_TYPE atype;
4464 	const HAL_RATE_TABLE *rt;
4465 	HAL_BOOL shortPreamble;
4466 	struct ath_node *an;
4467 	u_int pri;
4468 
4469 	wh = mtod(m0, struct ieee80211_frame *);
4470 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
4471 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
4472 	isfrag = m0->m_flags & M_FRAG;
4473 	hdrlen = ieee80211_anyhdrsize(wh);
4474 	/*
4475 	 * Packet length must not include any
4476 	 * pad bytes; deduct them here.
4477 	 */
4478 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
4479 
4480 	if (iswep) {
4481 		const struct ieee80211_cipher *cip;
4482 		struct ieee80211_key *k;
4483 
4484 		/*
4485 		 * Construct the 802.11 header+trailer for an encrypted
4486 		 * frame. The only reason this can fail is because of an
4487 		 * unknown or unsupported cipher/key type.
4488 		 */
4489 		k = ieee80211_crypto_encap(ni, m0);
4490 		if (k == NULL) {
4491 			/*
4492 			 * This can happen when the key is yanked after the
4493 			 * frame was queued.  Just discard the frame; the
4494 			 * 802.11 layer counts failures and provides
4495 			 * debugging/diagnostics.
4496 			 */
4497 			ath_freetx(m0);
4498 			return EIO;
4499 		}
4500 		/*
4501 		 * Adjust the packet + header lengths for the crypto
4502 		 * additions and calculate the h/w key index.  When
4503 		 * a s/w mic is done the frame will have had any mic
4504 		 * added to it prior to entry so m0->m_pkthdr.len will
4505 		 * account for it. Otherwise we need to add it to the
4506 		 * packet length.
4507 		 */
4508 		cip = k->wk_cipher;
4509 		hdrlen += cip->ic_header;
4510 		pktlen += cip->ic_header + cip->ic_trailer;
4511 		/* NB: frags always have any TKIP MIC done in s/w */
4512 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
4513 			pktlen += cip->ic_miclen;
4514 		keyix = k->wk_keyix;
4515 
4516 		/* packet header may have moved, reset our local pointer */
4517 		wh = mtod(m0, struct ieee80211_frame *);
4518 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
4519 		/*
4520 		 * Use station key cache slot, if assigned.
4521 		 */
4522 		keyix = ni->ni_ucastkey.wk_keyix;
4523 		if (keyix == IEEE80211_KEYIX_NONE)
4524 			keyix = HAL_TXKEYIX_INVALID;
4525 	} else
4526 		keyix = HAL_TXKEYIX_INVALID;
4527 
4528 	pktlen += IEEE80211_CRC_LEN;
4529 
4530 	/*
4531 	 * Load the DMA map so any coalescing is done.  This
4532 	 * also calculates the number of descriptors we need.
4533 	 */
4534 	error = ath_tx_dmasetup(sc, bf, m0);
4535 	if (error != 0)
4536 		return error;
4537 	bf->bf_node = ni;			/* NB: held reference */
4538 	m0 = bf->bf_m;				/* NB: may have changed */
4539 	wh = mtod(m0, struct ieee80211_frame *);
4540 
4541 	/* setup descriptors */
4542 	ds = bf->bf_desc;
4543 	rt = sc->sc_currates;
4544 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4545 
4546 	/*
4547 	 * NB: the 802.11 layer marks whether or not we should
4548 	 * use short preamble based on the current mode and
4549 	 * negotiated parameters.
4550 	 */
4551 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
4552 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
4553 		shortPreamble = AH_TRUE;
4554 		sc->sc_stats.ast_tx_shortpre++;
4555 	} else {
4556 		shortPreamble = AH_FALSE;
4557 	}
4558 
4559 	an = ATH_NODE(ni);
4560 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
4561 	ismrr = 0;				/* default no multi-rate retry*/
4562 	pri = M_WME_GETAC(m0);			/* honor classification */
4563 	/* XXX use txparams instead of fixed values */
4564 	/*
4565 	 * Calculate Atheros packet type from IEEE80211 packet header,
4566 	 * setup for rate calculations, and select h/w transmit queue.
4567 	 */
4568 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
4569 	case IEEE80211_FC0_TYPE_MGT:
4570 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4571 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
4572 			atype = HAL_PKT_TYPE_BEACON;
4573 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4574 			atype = HAL_PKT_TYPE_PROBE_RESP;
4575 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
4576 			atype = HAL_PKT_TYPE_ATIM;
4577 		else
4578 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
4579 		rix = an->an_mgmtrix;
4580 		txrate = rt->info[rix].rateCode;
4581 		if (shortPreamble)
4582 			txrate |= rt->info[rix].shortPreamble;
4583 		try0 = ATH_TXMGTTRY;
4584 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4585 		break;
4586 	case IEEE80211_FC0_TYPE_CTL:
4587 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
4588 		rix = an->an_mgmtrix;
4589 		txrate = rt->info[rix].rateCode;
4590 		if (shortPreamble)
4591 			txrate |= rt->info[rix].shortPreamble;
4592 		try0 = ATH_TXMGTTRY;
4593 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4594 		break;
4595 	case IEEE80211_FC0_TYPE_DATA:
4596 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
4597 		/*
4598 		 * Data frames: multicast frames go out at a fixed rate,
4599 		 * EAPOL frames use the mgmt frame rate; otherwise consult
4600 		 * the rate control module for the rate to use.
4601 		 */
4602 		if (ismcast) {
4603 			rix = an->an_mcastrix;
4604 			txrate = rt->info[rix].rateCode;
4605 			if (shortPreamble)
4606 				txrate |= rt->info[rix].shortPreamble;
4607 			try0 = 1;
4608 		} else if (m0->m_flags & M_EAPOL) {
4609 			/* XXX? maybe always use long preamble? */
4610 			rix = an->an_mgmtrix;
4611 			txrate = rt->info[rix].rateCode;
4612 			if (shortPreamble)
4613 				txrate |= rt->info[rix].shortPreamble;
4614 			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
4615 		} else {
4616 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
4617 				&rix, &try0, &txrate);
4618 			sc->sc_txrix = rix;		/* for LED blinking */
4619 			sc->sc_lastdatarix = rix;	/* for fast frames */
4620 			if (try0 != ATH_TXMAXTRY)
4621 				ismrr = 1;
4622 		}
4623 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
4624 			flags |= HAL_TXDESC_NOACK;
4625 		break;
4626 	default:
4627 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
4628 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
4629 		/* XXX statistic */
4630 		ath_freetx(m0);
4631 		return EIO;
4632 	}
4633 	txq = sc->sc_ac2q[pri];
4634 
4635 	/*
4636 	 * When servicing one or more stations in power-save mode
4637 	 * (or) if there is some mcast data waiting on the mcast
4638 	 * queue (to prevent out of order delivery) multicast
4639 	 * frames must be buffered until after the beacon.
4640 	 */
4641 	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
4642 		txq = &avp->av_mcastq;
4643 
4644 	/*
4645 	 * Calculate miscellaneous flags.
4646 	 */
4647 	if (ismcast) {
4648 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
4649 	} else if (pktlen > vap->iv_rtsthreshold &&
4650 	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
4651 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
4652 		cix = rt->info[rix].controlRate;
4653 		sc->sc_stats.ast_tx_rts++;
4654 	}
4655 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
4656 		sc->sc_stats.ast_tx_noack++;
4657 #ifdef IEEE80211_SUPPORT_TDMA
4658 	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
4659 		DPRINTF(sc, ATH_DEBUG_TDMA,
4660 		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
4661 		sc->sc_stats.ast_tdma_ack++;
4662 		ath_freetx(m0);
4663 		return EIO;
4664 	}
4665 #endif
4666 
4667 	/*
4668 	 * If 802.11g protection is enabled, determine whether
4669 	 * to use RTS/CTS or just CTS.  Note that this is only
4670 	 * done for OFDM unicast frames.
4671 	 */
4672 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
4673 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
4674 	    (flags & HAL_TXDESC_NOACK) == 0) {
4675 		/* XXX fragments must use CCK rates w/ protection */
4676 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4677 			flags |= HAL_TXDESC_RTSENA;
4678 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4679 			flags |= HAL_TXDESC_CTSENA;
4680 		if (isfrag) {
4681 			/*
4682 			 * For frags it would be desirable to use the
4683 			 * highest CCK rate for RTS/CTS.  But stations
4684 			 * farther away may detect it at a lower CCK rate
4685 			 * so use the configured protection rate instead
4686 			 * (for now).
4687 			 */
4688 			cix = rt->info[sc->sc_protrix].controlRate;
4689 		} else
4690 			cix = rt->info[sc->sc_protrix].controlRate;
4691 		sc->sc_stats.ast_tx_protect++;
4692 	}
4693 
4694 	/*
4695 	 * Calculate duration.  This logically belongs in the 802.11
4696 	 * layer but it lacks sufficient information to calculate it.
4697 	 */
4698 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
4699 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
4700 		u_int16_t dur;
4701 		if (shortPreamble)
4702 			dur = rt->info[rix].spAckDuration;
4703 		else
4704 			dur = rt->info[rix].lpAckDuration;
4705 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
4706 			dur += dur;		/* additional SIFS+ACK */
4707 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
4708 			/*
4709 			 * Include the size of next fragment so NAV is
4710 			 * updated properly.  The last fragment uses only
4711 			 * the ACK duration
4712 			 */
4713 			dur += ath_hal_computetxtime(ah, rt,
4714 					m0->m_nextpkt->m_pkthdr.len,
4715 					rix, shortPreamble);
4716 		}
4717 		if (isfrag) {
4718 			/*
4719 			 * Force hardware to use computed duration for next
4720 			 * fragment by disabling multi-rate retry which updates
4721 			 * duration based on the multi-rate duration table.
4722 			 */
4723 			ismrr = 0;
4724 			try0 = ATH_TXMGTTRY;	/* XXX? */
4725 		}
4726 		*(u_int16_t *)wh->i_dur = htole16(dur);
4727 	}
4728 
4729 	/*
4730 	 * Calculate RTS/CTS rate and duration if needed.
4731 	 */
4732 	ctsduration = 0;
4733 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
4734 		/*
4735 		 * CTS transmit rate is derived from the transmit rate
4736 		 * by looking in the h/w rate table.  We must also factor
4737 		 * in whether or not a short preamble is to be used.
4738 		 */
4739 		/* NB: cix is set above where RTS/CTS is enabled */
4740 		KASSERT(cix != 0xff, ("cix not setup"));
4741 		ctsrate = rt->info[cix].rateCode;
4742 		/*
4743 		 * Compute the transmit duration based on the frame
4744 		 * size and the size of an ACK frame.  We call into the
4745 		 * HAL to do the computation since it depends on the
4746 		 * characteristics of the actual PHY being used.
4747 		 *
4748 		 * NB: CTS is assumed the same size as an ACK so we can
4749 		 *     use the precalculated ACK durations.
4750 		 */
4751 		if (shortPreamble) {
4752 			ctsrate |= rt->info[cix].shortPreamble;
4753 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4754 				ctsduration += rt->info[cix].spAckDuration;
4755 			ctsduration += ath_hal_computetxtime(ah,
4756 				rt, pktlen, rix, AH_TRUE);
4757 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4758 				ctsduration += rt->info[rix].spAckDuration;
4759 		} else {
4760 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4761 				ctsduration += rt->info[cix].lpAckDuration;
4762 			ctsduration += ath_hal_computetxtime(ah,
4763 				rt, pktlen, rix, AH_FALSE);
4764 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4765 				ctsduration += rt->info[rix].lpAckDuration;
4766 		}
4767 		/*
4768 		 * Must disable multi-rate retry when using RTS/CTS.
4769 		 */
4770 		ismrr = 0;
4771 		try0 = ATH_TXMGTTRY;		/* XXX */
4772 	} else
4773 		ctsrate = 0;
4774 
4775 	/*
4776 	 * At this point we are committed to sending the frame
4777 	 * and we don't need to look at m_nextpkt; clear it in
4778 	 * case this frame is part of frag chain.
4779 	 */
4780 	m0->m_nextpkt = NULL;
4781 
4782 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
4783 		ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
4784 		    sc->sc_hwmap[rix].ieeerate, -1);
4785 
4786 	if (ieee80211_radiotap_active_vap(vap)) {
4787 		u_int64_t tsf = ath_hal_gettsf64(ah);
4788 
4789 		sc->sc_tx_th.wt_tsf = htole64(tsf);
4790 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
4791 		if (iswep)
4792 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4793 		if (isfrag)
4794 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
4795 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
4796 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
4797 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
4798 
4799 		ieee80211_radiotap_tx(vap, m0);
4800 	}
4801 
4802 	/*
4803 	 * Determine if a tx interrupt should be generated for
4804 	 * this descriptor.  We take a tx interrupt to reap
4805 	 * descriptors when the h/w hits an EOL condition or
4806 	 * when the descriptor is specifically marked to generate
4807 	 * an interrupt.  We periodically mark descriptors in this
4808 	 * way to insure timely replenishing of the supply needed
4809 	 * for sending frames.  Defering interrupts reduces system
4810 	 * load and potentially allows more concurrent work to be
4811 	 * done but if done to aggressively can cause senders to
4812 	 * backup.
4813 	 *
4814 	 * NB: use >= to deal with sc_txintrperiod changing
4815 	 *     dynamically through sysctl.
4816 	 */
4817 	if (flags & HAL_TXDESC_INTREQ) {
4818 		txq->axq_intrcnt = 0;
4819 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4820 		flags |= HAL_TXDESC_INTREQ;
4821 		txq->axq_intrcnt = 0;
4822 	}
4823 
4824 	/*
4825 	 * Formulate first tx descriptor with tx controls.
4826 	 */
4827 	/* XXX check return value? */
4828 	ath_hal_setuptxdesc(ah, ds
4829 		, pktlen		/* packet length */
4830 		, hdrlen		/* header length */
4831 		, atype			/* Atheros packet type */
4832 		, ni->ni_txpower	/* txpower */
4833 		, txrate, try0		/* series 0 rate/tries */
4834 		, keyix			/* key cache index */
4835 		, sc->sc_txantenna	/* antenna mode */
4836 		, flags			/* flags */
4837 		, ctsrate		/* rts/cts rate */
4838 		, ctsduration		/* rts/cts duration */
4839 	);
4840 	bf->bf_txflags = flags;
4841 	/*
4842 	 * Setup the multi-rate retry state only when we're
4843 	 * going to use it.  This assumes ath_hal_setuptxdesc
4844 	 * initializes the descriptors (so we don't have to)
4845 	 * when the hardware supports multi-rate retry and
4846 	 * we don't use it.
4847 	 */
4848 	if (ismrr)
4849 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4850 
4851 	ath_tx_handoff(sc, txq, bf);
4852 	return 0;
4853 }
4854 
4855 /*
4856  * Process completed xmit descriptors from the specified queue.
4857  */
4858 static int
4859 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4860 {
4861 	struct ath_hal *ah = sc->sc_ah;
4862 	struct ifnet *ifp = sc->sc_ifp;
4863 	struct ieee80211com *ic = ifp->if_l2com;
4864 	struct ath_buf *bf, *last;
4865 	struct ath_desc *ds, *ds0;
4866 	struct ath_tx_status *ts;
4867 	struct ieee80211_node *ni;
4868 	struct ath_node *an;
4869 	int sr, lr, pri, nacked;
4870 	HAL_STATUS status;
4871 
4872 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4873 		__func__, txq->axq_qnum,
4874 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4875 		txq->axq_link);
4876 	nacked = 0;
4877 	for (;;) {
4878 		ATH_TXQ_LOCK(txq);
4879 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4880 		bf = STAILQ_FIRST(&txq->axq_q);
4881 		if (bf == NULL) {
4882 			ATH_TXQ_UNLOCK(txq);
4883 			break;
4884 		}
4885 		ds0 = &bf->bf_desc[0];
4886 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4887 		ts = &bf->bf_status.ds_txstat;
4888 		status = ath_hal_txprocdesc(ah, ds, ts);
4889 #ifdef ATH_DEBUG
4890 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4891 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4892 			    status == HAL_OK);
4893 #endif
4894 		if (status == HAL_EINPROGRESS) {
4895 			ATH_TXQ_UNLOCK(txq);
4896 			break;
4897 		}
4898 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4899 #ifdef IEEE80211_SUPPORT_TDMA
4900 		if (txq->axq_depth > 0) {
4901 			/*
4902 			 * More frames follow.  Mark the buffer busy
4903 			 * so it's not re-used while the hardware may
4904 			 * still re-read the link field in the descriptor.
4905 			 */
4906 			bf->bf_flags |= ATH_BUF_BUSY;
4907 		} else
4908 #else
4909 		if (txq->axq_depth == 0)
4910 #endif
4911 			txq->axq_link = NULL;
4912 		ATH_TXQ_UNLOCK(txq);
4913 
4914 		ni = bf->bf_node;
4915 		if (ni != NULL) {
4916 			an = ATH_NODE(ni);
4917 			if (ts->ts_status == 0) {
4918 				u_int8_t txant = ts->ts_antenna;
4919 				sc->sc_stats.ast_ant_tx[txant]++;
4920 				sc->sc_ant_tx[txant]++;
4921 				if (ts->ts_rate & HAL_TXSTAT_ALTRATE)
4922 					sc->sc_stats.ast_tx_altrate++;
4923 				pri = M_WME_GETAC(bf->bf_m);
4924 				if (pri >= WME_AC_VO)
4925 					ic->ic_wme.wme_hipri_traffic++;
4926 				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
4927 					ni->ni_inact = ni->ni_inact_reload;
4928 			} else {
4929 				if (ts->ts_status & HAL_TXERR_XRETRY)
4930 					sc->sc_stats.ast_tx_xretries++;
4931 				if (ts->ts_status & HAL_TXERR_FIFO)
4932 					sc->sc_stats.ast_tx_fifoerr++;
4933 				if (ts->ts_status & HAL_TXERR_FILT)
4934 					sc->sc_stats.ast_tx_filtered++;
4935 				if (bf->bf_m->m_flags & M_FF)
4936 					sc->sc_stats.ast_ff_txerr++;
4937 			}
4938 			sr = ts->ts_shortretry;
4939 			lr = ts->ts_longretry;
4940 			sc->sc_stats.ast_tx_shortretry += sr;
4941 			sc->sc_stats.ast_tx_longretry += lr;
4942 			/*
4943 			 * Hand the descriptor to the rate control algorithm.
4944 			 */
4945 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4946 			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
4947 				/*
4948 				 * If frame was ack'd update statistics,
4949 				 * including the last rx time used to
4950 				 * workaround phantom bmiss interrupts.
4951 				 */
4952 				if (ts->ts_status == 0) {
4953 					nacked++;
4954 					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4955 					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4956 						ts->ts_rssi);
4957 				}
4958 				ath_rate_tx_complete(sc, an, bf);
4959 			}
4960 			/*
4961 			 * Do any tx complete callback.  Note this must
4962 			 * be done before releasing the node reference.
4963 			 */
4964 			if (bf->bf_m->m_flags & M_TXCB)
4965 				ieee80211_process_callback(ni, bf->bf_m,
4966 				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
4967 				        ts->ts_status : HAL_TXERR_XRETRY);
4968 			ieee80211_free_node(ni);
4969 		}
4970 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4971 		    BUS_DMASYNC_POSTWRITE);
4972 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4973 
4974 		m_freem(bf->bf_m);
4975 		bf->bf_m = NULL;
4976 		bf->bf_node = NULL;
4977 
4978 		ATH_TXBUF_LOCK(sc);
4979 		last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
4980 		if (last != NULL)
4981 			last->bf_flags &= ~ATH_BUF_BUSY;
4982 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4983 		ATH_TXBUF_UNLOCK(sc);
4984 	}
4985 #ifdef IEEE80211_SUPPORT_SUPERG
4986 	/*
4987 	 * Flush fast-frame staging queue when traffic slows.
4988 	 */
4989 	if (txq->axq_depth <= 1)
4990 		ieee80211_ff_flush(ic, txq->axq_ac);
4991 #endif
4992 	return nacked;
4993 }
4994 
4995 static __inline int
4996 txqactive(struct ath_hal *ah, int qnum)
4997 {
4998 	u_int32_t txqs = 1<<qnum;
4999 	ath_hal_gettxintrtxqs(ah, &txqs);
5000 	return (txqs & (1<<qnum));
5001 }
5002 
5003 /*
5004  * Deferred processing of transmit interrupt; special-cased
5005  * for a single hardware transmit queue (e.g. 5210 and 5211).
5006  */
5007 static void
5008 ath_tx_proc_q0(void *arg, int npending)
5009 {
5010 	struct ath_softc *sc = arg;
5011 	struct ifnet *ifp = sc->sc_ifp;
5012 
5013 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
5014 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5015 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5016 		ath_tx_processq(sc, sc->sc_cabq);
5017 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5018 	sc->sc_wd_timer = 0;
5019 
5020 	if (sc->sc_softled)
5021 		ath_led_event(sc, sc->sc_txrix);
5022 
5023 	ath_start(ifp);
5024 }
5025 
5026 /*
5027  * Deferred processing of transmit interrupt; special-cased
5028  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5029  */
5030 static void
5031 ath_tx_proc_q0123(void *arg, int npending)
5032 {
5033 	struct ath_softc *sc = arg;
5034 	struct ifnet *ifp = sc->sc_ifp;
5035 	int nacked;
5036 
5037 	/*
5038 	 * Process each active queue.
5039 	 */
5040 	nacked = 0;
5041 	if (txqactive(sc->sc_ah, 0))
5042 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
5043 	if (txqactive(sc->sc_ah, 1))
5044 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
5045 	if (txqactive(sc->sc_ah, 2))
5046 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
5047 	if (txqactive(sc->sc_ah, 3))
5048 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
5049 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5050 		ath_tx_processq(sc, sc->sc_cabq);
5051 	if (nacked)
5052 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5053 
5054 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5055 	sc->sc_wd_timer = 0;
5056 
5057 	if (sc->sc_softled)
5058 		ath_led_event(sc, sc->sc_txrix);
5059 
5060 	ath_start(ifp);
5061 }
5062 
5063 /*
5064  * Deferred processing of transmit interrupt.
5065  */
5066 static void
5067 ath_tx_proc(void *arg, int npending)
5068 {
5069 	struct ath_softc *sc = arg;
5070 	struct ifnet *ifp = sc->sc_ifp;
5071 	int i, nacked;
5072 
5073 	/*
5074 	 * Process each active queue.
5075 	 */
5076 	nacked = 0;
5077 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5078 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
5079 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
5080 	if (nacked)
5081 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5082 
5083 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5084 	sc->sc_wd_timer = 0;
5085 
5086 	if (sc->sc_softled)
5087 		ath_led_event(sc, sc->sc_txrix);
5088 
5089 	ath_start(ifp);
5090 }
5091 
5092 static void
5093 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5094 {
5095 #ifdef ATH_DEBUG
5096 	struct ath_hal *ah = sc->sc_ah;
5097 #endif
5098 	struct ieee80211_node *ni;
5099 	struct ath_buf *bf;
5100 	u_int ix;
5101 
5102 	/*
5103 	 * NB: this assumes output has been stopped and
5104 	 *     we do not need to block ath_tx_proc
5105 	 */
5106 	ATH_TXBUF_LOCK(sc);
5107 	bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5108 	if (bf != NULL)
5109 		bf->bf_flags &= ~ATH_BUF_BUSY;
5110 	ATH_TXBUF_UNLOCK(sc);
5111 	for (ix = 0;; ix++) {
5112 		ATH_TXQ_LOCK(txq);
5113 		bf = STAILQ_FIRST(&txq->axq_q);
5114 		if (bf == NULL) {
5115 			txq->axq_link = NULL;
5116 			ATH_TXQ_UNLOCK(txq);
5117 			break;
5118 		}
5119 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5120 		ATH_TXQ_UNLOCK(txq);
5121 #ifdef ATH_DEBUG
5122 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5123 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5124 
5125 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5126 				ath_hal_txprocdesc(ah, bf->bf_desc,
5127 				    &bf->bf_status.ds_txstat) == HAL_OK);
5128 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5129 			    bf->bf_m->m_len, 0, -1);
5130 		}
5131 #endif /* ATH_DEBUG */
5132 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5133 		ni = bf->bf_node;
5134 		bf->bf_node = NULL;
5135 		if (ni != NULL) {
5136 			/*
5137 			 * Do any callback and reclaim the node reference.
5138 			 */
5139 			if (bf->bf_m->m_flags & M_TXCB)
5140 				ieee80211_process_callback(ni, bf->bf_m, -1);
5141 			ieee80211_free_node(ni);
5142 		}
5143 		m_freem(bf->bf_m);
5144 		bf->bf_m = NULL;
5145 		bf->bf_flags &= ~ATH_BUF_BUSY;
5146 
5147 		ATH_TXBUF_LOCK(sc);
5148 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5149 		ATH_TXBUF_UNLOCK(sc);
5150 	}
5151 }
5152 
5153 static void
5154 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5155 {
5156 	struct ath_hal *ah = sc->sc_ah;
5157 
5158 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5159 	    __func__, txq->axq_qnum,
5160 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5161 	    txq->axq_link);
5162 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5163 }
5164 
5165 /*
5166  * Drain the transmit queues and reclaim resources.
5167  */
5168 static void
5169 ath_draintxq(struct ath_softc *sc)
5170 {
5171 	struct ath_hal *ah = sc->sc_ah;
5172 	struct ifnet *ifp = sc->sc_ifp;
5173 	int i;
5174 
5175 	/* XXX return value */
5176 	if (!sc->sc_invalid) {
5177 		/* don't touch the hardware if marked invalid */
5178 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5179 		    __func__, sc->sc_bhalq,
5180 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5181 		    NULL);
5182 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5183 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5184 			if (ATH_TXQ_SETUP(sc, i))
5185 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5186 	}
5187 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5188 		if (ATH_TXQ_SETUP(sc, i))
5189 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
5190 #ifdef ATH_DEBUG
5191 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5192 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
5193 		if (bf != NULL && bf->bf_m != NULL) {
5194 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5195 				ath_hal_txprocdesc(ah, bf->bf_desc,
5196 				    &bf->bf_status.ds_txstat) == HAL_OK);
5197 			ieee80211_dump_pkt(ifp->if_l2com,
5198 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5199 			    0, -1);
5200 		}
5201 	}
5202 #endif /* ATH_DEBUG */
5203 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5204 	sc->sc_wd_timer = 0;
5205 }
5206 
5207 /*
5208  * Disable the receive h/w in preparation for a reset.
5209  */
5210 static void
5211 ath_stoprecv(struct ath_softc *sc)
5212 {
5213 #define	PA2DESC(_sc, _pa) \
5214 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5215 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5216 	struct ath_hal *ah = sc->sc_ah;
5217 
5218 	ath_hal_stoppcurecv(ah);	/* disable PCU */
5219 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5220 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5221 	DELAY(3000);			/* 3ms is long enough for 1 frame */
5222 #ifdef ATH_DEBUG
5223 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5224 		struct ath_buf *bf;
5225 		u_int ix;
5226 
5227 		printf("%s: rx queue %p, link %p\n", __func__,
5228 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5229 		ix = 0;
5230 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5231 			struct ath_desc *ds = bf->bf_desc;
5232 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5233 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5234 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5235 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5236 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5237 			ix++;
5238 		}
5239 	}
5240 #endif
5241 	if (sc->sc_rxpending != NULL) {
5242 		m_freem(sc->sc_rxpending);
5243 		sc->sc_rxpending = NULL;
5244 	}
5245 	sc->sc_rxlink = NULL;		/* just in case */
5246 #undef PA2DESC
5247 }
5248 
5249 /*
5250  * Enable the receive h/w following a reset.
5251  */
5252 static int
5253 ath_startrecv(struct ath_softc *sc)
5254 {
5255 	struct ath_hal *ah = sc->sc_ah;
5256 	struct ath_buf *bf;
5257 
5258 	sc->sc_rxlink = NULL;
5259 	sc->sc_rxpending = NULL;
5260 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5261 		int error = ath_rxbuf_init(sc, bf);
5262 		if (error != 0) {
5263 			DPRINTF(sc, ATH_DEBUG_RECV,
5264 				"%s: ath_rxbuf_init failed %d\n",
5265 				__func__, error);
5266 			return error;
5267 		}
5268 	}
5269 
5270 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
5271 	ath_hal_putrxbuf(ah, bf->bf_daddr);
5272 	ath_hal_rxena(ah);		/* enable recv descriptors */
5273 	ath_mode_init(sc);		/* set filters, etc. */
5274 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5275 	return 0;
5276 }
5277 
5278 /*
5279  * Update internal state after a channel change.
5280  */
5281 static void
5282 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5283 {
5284 	enum ieee80211_phymode mode;
5285 
5286 	/*
5287 	 * Change channels and update the h/w rate map
5288 	 * if we're switching; e.g. 11a to 11b/g.
5289 	 */
5290 	mode = ieee80211_chan2mode(chan);
5291 	if (mode != sc->sc_curmode)
5292 		ath_setcurmode(sc, mode);
5293 	sc->sc_curchan = chan;
5294 }
5295 
5296 /*
5297  * Set/change channels.  If the channel is really being changed,
5298  * it's done by reseting the chip.  To accomplish this we must
5299  * first cleanup any pending DMA, then restart stuff after a la
5300  * ath_init.
5301  */
5302 static int
5303 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5304 {
5305 	struct ifnet *ifp = sc->sc_ifp;
5306 	struct ieee80211com *ic = ifp->if_l2com;
5307 	struct ath_hal *ah = sc->sc_ah;
5308 
5309 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5310 	    __func__, ieee80211_chan2ieee(ic, chan),
5311 	    chan->ic_freq, chan->ic_flags);
5312 	if (chan != sc->sc_curchan) {
5313 		HAL_STATUS status;
5314 		/*
5315 		 * To switch channels clear any pending DMA operations;
5316 		 * wait long enough for the RX fifo to drain, reset the
5317 		 * hardware at the new frequency, and then re-enable
5318 		 * the relevant bits of the h/w.
5319 		 */
5320 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5321 		ath_draintxq(sc);		/* clear pending tx frames */
5322 		ath_stoprecv(sc);		/* turn off frame recv */
5323 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5324 			if_printf(ifp, "%s: unable to reset "
5325 			    "channel %u (%u Mhz, flags 0x%x), hal status %u\n",
5326 			    __func__, ieee80211_chan2ieee(ic, chan),
5327 			    chan->ic_freq, chan->ic_flags, status);
5328 			return EIO;
5329 		}
5330 		sc->sc_diversity = ath_hal_getdiversity(ah);
5331 
5332 		/*
5333 		 * Re-enable rx framework.
5334 		 */
5335 		if (ath_startrecv(sc) != 0) {
5336 			if_printf(ifp, "%s: unable to restart recv logic\n",
5337 			    __func__);
5338 			return EIO;
5339 		}
5340 
5341 		/*
5342 		 * Change channels and update the h/w rate map
5343 		 * if we're switching; e.g. 11a to 11b/g.
5344 		 */
5345 		ath_chan_change(sc, chan);
5346 
5347 		/*
5348 		 * Re-enable interrupts.
5349 		 */
5350 		ath_hal_intrset(ah, sc->sc_imask);
5351 	}
5352 	return 0;
5353 }
5354 
5355 /*
5356  * Periodically recalibrate the PHY to account
5357  * for temperature/environment changes.
5358  */
5359 static void
5360 ath_calibrate(void *arg)
5361 {
5362 	struct ath_softc *sc = arg;
5363 	struct ath_hal *ah = sc->sc_ah;
5364 	struct ifnet *ifp = sc->sc_ifp;
5365 	struct ieee80211com *ic = ifp->if_l2com;
5366 	HAL_BOOL longCal, isCalDone;
5367 	int nextcal;
5368 
5369 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5370 		goto restart;
5371 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5372 	if (longCal) {
5373 		sc->sc_stats.ast_per_cal++;
5374 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5375 			/*
5376 			 * Rfgain is out of bounds, reset the chip
5377 			 * to load new gain values.
5378 			 */
5379 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5380 				"%s: rfgain change\n", __func__);
5381 			sc->sc_stats.ast_per_rfgain++;
5382 			ath_reset(ifp);
5383 		}
5384 		/*
5385 		 * If this long cal is after an idle period, then
5386 		 * reset the data collection state so we start fresh.
5387 		 */
5388 		if (sc->sc_resetcal) {
5389 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5390 			sc->sc_lastcalreset = ticks;
5391 			sc->sc_resetcal = 0;
5392 		}
5393 	}
5394 	if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5395 		if (longCal) {
5396 			/*
5397 			 * Calibrate noise floor data again in case of change.
5398 			 */
5399 			ath_hal_process_noisefloor(ah);
5400 		}
5401 	} else {
5402 		DPRINTF(sc, ATH_DEBUG_ANY,
5403 			"%s: calibration of channel %u failed\n",
5404 			__func__, sc->sc_curchan->ic_freq);
5405 		sc->sc_stats.ast_per_calfail++;
5406 	}
5407 	if (!isCalDone) {
5408 restart:
5409 		/*
5410 		 * Use a shorter interval to potentially collect multiple
5411 		 * data samples required to complete calibration.  Once
5412 		 * we're told the work is done we drop back to a longer
5413 		 * interval between requests.  We're more aggressive doing
5414 		 * work when operating as an AP to improve operation right
5415 		 * after startup.
5416 		 */
5417 		nextcal = (1000*ath_shortcalinterval)/hz;
5418 		if (sc->sc_opmode != HAL_M_HOSTAP)
5419 			nextcal *= 10;
5420 	} else {
5421 		nextcal = ath_longcalinterval*hz;
5422 		sc->sc_lastlongcal = ticks;
5423 		if (sc->sc_lastcalreset == 0)
5424 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5425 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5426 			sc->sc_resetcal = 1;	/* setup reset next trip */
5427 	}
5428 
5429 	if (nextcal != 0) {
5430 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5431 		    __func__, nextcal, isCalDone ? "" : "!");
5432 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5433 	} else {
5434 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5435 		    __func__);
5436 		/* NB: don't rearm timer */
5437 	}
5438 }
5439 
5440 static void
5441 ath_scan_start(struct ieee80211com *ic)
5442 {
5443 	struct ifnet *ifp = ic->ic_ifp;
5444 	struct ath_softc *sc = ifp->if_softc;
5445 	struct ath_hal *ah = sc->sc_ah;
5446 	u_int32_t rfilt;
5447 
5448 	/* XXX calibration timer? */
5449 
5450 	sc->sc_scanning = 1;
5451 	sc->sc_syncbeacon = 0;
5452 	rfilt = ath_calcrxfilter(sc);
5453 	ath_hal_setrxfilter(ah, rfilt);
5454 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5455 
5456 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5457 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5458 }
5459 
5460 static void
5461 ath_scan_end(struct ieee80211com *ic)
5462 {
5463 	struct ifnet *ifp = ic->ic_ifp;
5464 	struct ath_softc *sc = ifp->if_softc;
5465 	struct ath_hal *ah = sc->sc_ah;
5466 	u_int32_t rfilt;
5467 
5468 	sc->sc_scanning = 0;
5469 	rfilt = ath_calcrxfilter(sc);
5470 	ath_hal_setrxfilter(ah, rfilt);
5471 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5472 
5473 	ath_hal_process_noisefloor(ah);
5474 
5475 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5476 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5477 		 sc->sc_curaid);
5478 }
5479 
5480 static void
5481 ath_set_channel(struct ieee80211com *ic)
5482 {
5483 	struct ifnet *ifp = ic->ic_ifp;
5484 	struct ath_softc *sc = ifp->if_softc;
5485 
5486 	(void) ath_chan_set(sc, ic->ic_curchan);
5487 	/*
5488 	 * If we are returning to our bss channel then mark state
5489 	 * so the next recv'd beacon's tsf will be used to sync the
5490 	 * beacon timers.  Note that since we only hear beacons in
5491 	 * sta/ibss mode this has no effect in other operating modes.
5492 	 */
5493 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5494 		sc->sc_syncbeacon = 1;
5495 }
5496 
5497 /*
5498  * Walk the vap list and check if there any vap's in RUN state.
5499  */
5500 static int
5501 ath_isanyrunningvaps(struct ieee80211vap *this)
5502 {
5503 	struct ieee80211com *ic = this->iv_ic;
5504 	struct ieee80211vap *vap;
5505 
5506 	IEEE80211_LOCK_ASSERT(ic);
5507 
5508 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5509 		if (vap != this && vap->iv_state == IEEE80211_S_RUN)
5510 			return 1;
5511 	}
5512 	return 0;
5513 }
5514 
5515 static int
5516 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5517 {
5518 	struct ieee80211com *ic = vap->iv_ic;
5519 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5520 	struct ath_vap *avp = ATH_VAP(vap);
5521 	struct ath_hal *ah = sc->sc_ah;
5522 	struct ieee80211_node *ni = NULL;
5523 	int i, error, stamode;
5524 	u_int32_t rfilt;
5525 	static const HAL_LED_STATE leds[] = {
5526 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5527 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5528 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5529 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5530 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5531 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5532 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5533 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5534 	};
5535 
5536 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5537 		ieee80211_state_name[vap->iv_state],
5538 		ieee80211_state_name[nstate]);
5539 
5540 	callout_drain(&sc->sc_cal_ch);
5541 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5542 
5543 	if (nstate == IEEE80211_S_SCAN) {
5544 		/*
5545 		 * Scanning: turn off beacon miss and don't beacon.
5546 		 * Mark beacon state so when we reach RUN state we'll
5547 		 * [re]setup beacons.  Unblock the task q thread so
5548 		 * deferred interrupt processing is done.
5549 		 */
5550 		ath_hal_intrset(ah,
5551 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5552 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5553 		sc->sc_beacons = 0;
5554 		taskqueue_unblock(sc->sc_tq);
5555 	}
5556 
5557 	ni = vap->iv_bss;
5558 	rfilt = ath_calcrxfilter(sc);
5559 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5560 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5561 		   vap->iv_opmode == IEEE80211_M_IBSS);
5562 	if (stamode && nstate == IEEE80211_S_RUN) {
5563 		sc->sc_curaid = ni->ni_associd;
5564 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5565 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5566 	}
5567 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5568 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5569 	ath_hal_setrxfilter(ah, rfilt);
5570 
5571 	/* XXX is this to restore keycache on resume? */
5572 	if (vap->iv_opmode != IEEE80211_M_STA &&
5573 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5574 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5575 			if (ath_hal_keyisvalid(ah, i))
5576 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5577 	}
5578 
5579 	/*
5580 	 * Invoke the parent method to do net80211 work.
5581 	 */
5582 	error = avp->av_newstate(vap, nstate, arg);
5583 	if (error != 0)
5584 		goto bad;
5585 
5586 	if (nstate == IEEE80211_S_RUN) {
5587 		/* NB: collect bss node again, it may have changed */
5588 		ni = vap->iv_bss;
5589 
5590 		DPRINTF(sc, ATH_DEBUG_STATE,
5591 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5592 		    "capinfo 0x%04x chan %d\n", __func__,
5593 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5594 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5595 
5596 		switch (vap->iv_opmode) {
5597 #ifdef IEEE80211_SUPPORT_TDMA
5598 		case IEEE80211_M_AHDEMO:
5599 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5600 				break;
5601 			/* fall thru... */
5602 #endif
5603 		case IEEE80211_M_HOSTAP:
5604 		case IEEE80211_M_IBSS:
5605 			/*
5606 			 * Allocate and setup the beacon frame.
5607 			 *
5608 			 * Stop any previous beacon DMA.  This may be
5609 			 * necessary, for example, when an ibss merge
5610 			 * causes reconfiguration; there will be a state
5611 			 * transition from RUN->RUN that means we may
5612 			 * be called with beacon transmission active.
5613 			 */
5614 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5615 
5616 			error = ath_beacon_alloc(sc, ni);
5617 			if (error != 0)
5618 				goto bad;
5619 			/*
5620 			 * If joining an adhoc network defer beacon timer
5621 			 * configuration to the next beacon frame so we
5622 			 * have a current TSF to use.  Otherwise we're
5623 			 * starting an ibss/bss so there's no need to delay;
5624 			 * if this is the first vap moving to RUN state, then
5625 			 * beacon state needs to be [re]configured.
5626 			 */
5627 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5628 			    ni->ni_tstamp.tsf != 0) {
5629 				sc->sc_syncbeacon = 1;
5630 			} else if (!sc->sc_beacons) {
5631 #ifdef IEEE80211_SUPPORT_TDMA
5632 				if (vap->iv_caps & IEEE80211_C_TDMA)
5633 					ath_tdma_config(sc, vap);
5634 				else
5635 #endif
5636 					ath_beacon_config(sc, vap);
5637 				sc->sc_beacons = 1;
5638 			}
5639 			break;
5640 		case IEEE80211_M_STA:
5641 			/*
5642 			 * Defer beacon timer configuration to the next
5643 			 * beacon frame so we have a current TSF to use
5644 			 * (any TSF collected when scanning is likely old).
5645 			 */
5646 			sc->sc_syncbeacon = 1;
5647 			break;
5648 		case IEEE80211_M_MONITOR:
5649 			/*
5650 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5651 			 * transitions so we must re-enable interrupts here to
5652 			 * handle the case of a single monitor mode vap.
5653 			 */
5654 			ath_hal_intrset(ah, sc->sc_imask);
5655 			break;
5656 		case IEEE80211_M_WDS:
5657 			break;
5658 		default:
5659 			break;
5660 		}
5661 		/*
5662 		 * Let the hal process statistics collected during a
5663 		 * scan so it can provide calibrated noise floor data.
5664 		 */
5665 		ath_hal_process_noisefloor(ah);
5666 		/*
5667 		 * Reset rssi stats; maybe not the best place...
5668 		 */
5669 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5670 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5671 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5672 		/*
5673 		 * Finally, start any timers and the task q thread
5674 		 * (in case we didn't go through SCAN state).
5675 		 */
5676 		if (ath_longcalinterval != 0) {
5677 			/* start periodic recalibration timer */
5678 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5679 		} else {
5680 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5681 			    "%s: calibration disabled\n", __func__);
5682 		}
5683 		taskqueue_unblock(sc->sc_tq);
5684 	} else if (nstate == IEEE80211_S_INIT) {
5685 		/*
5686 		 * If there are no vaps left in RUN state then
5687 		 * shutdown host/driver operation:
5688 		 * o disable interrupts
5689 		 * o disable the task queue thread
5690 		 * o mark beacon processing as stopped
5691 		 */
5692 		if (!ath_isanyrunningvaps(vap)) {
5693 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5694 			/* disable interrupts  */
5695 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5696 			taskqueue_block(sc->sc_tq);
5697 			sc->sc_beacons = 0;
5698 		}
5699 #ifdef IEEE80211_SUPPORT_TDMA
5700 		ath_hal_setcca(ah, AH_TRUE);
5701 #endif
5702 	}
5703 bad:
5704 	return error;
5705 }
5706 
5707 /*
5708  * Allocate a key cache slot to the station so we can
5709  * setup a mapping from key index to node. The key cache
5710  * slot is needed for managing antenna state and for
5711  * compression when stations do not use crypto.  We do
5712  * it uniliaterally here; if crypto is employed this slot
5713  * will be reassigned.
5714  */
5715 static void
5716 ath_setup_stationkey(struct ieee80211_node *ni)
5717 {
5718 	struct ieee80211vap *vap = ni->ni_vap;
5719 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5720 	ieee80211_keyix keyix, rxkeyix;
5721 
5722 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5723 		/*
5724 		 * Key cache is full; we'll fall back to doing
5725 		 * the more expensive lookup in software.  Note
5726 		 * this also means no h/w compression.
5727 		 */
5728 		/* XXX msg+statistic */
5729 	} else {
5730 		/* XXX locking? */
5731 		ni->ni_ucastkey.wk_keyix = keyix;
5732 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5733 		/* NB: must mark device key to get called back on delete */
5734 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5735 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5736 		/* NB: this will create a pass-thru key entry */
5737 		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
5738 	}
5739 }
5740 
5741 /*
5742  * Setup driver-specific state for a newly associated node.
5743  * Note that we're called also on a re-associate, the isnew
5744  * param tells us if this is the first time or not.
5745  */
5746 static void
5747 ath_newassoc(struct ieee80211_node *ni, int isnew)
5748 {
5749 	struct ath_node *an = ATH_NODE(ni);
5750 	struct ieee80211vap *vap = ni->ni_vap;
5751 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5752 	const struct ieee80211_txparam *tp = ni->ni_txparms;
5753 
5754 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5755 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5756 
5757 	ath_rate_newassoc(sc, an, isnew);
5758 	if (isnew &&
5759 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5760 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5761 		ath_setup_stationkey(ni);
5762 }
5763 
5764 static int
5765 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5766 	int nchans, struct ieee80211_channel chans[])
5767 {
5768 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5769 	struct ath_hal *ah = sc->sc_ah;
5770 	HAL_STATUS status;
5771 
5772 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5773 	    "%s: rd %u cc %u location %c%s\n",
5774 	    __func__, reg->regdomain, reg->country, reg->location,
5775 	    reg->ecm ? " ecm" : "");
5776 
5777 	status = ath_hal_set_channels(ah, chans, nchans,
5778 	    reg->country, reg->regdomain);
5779 	if (status != HAL_OK) {
5780 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5781 		    __func__, status);
5782 		return EINVAL;		/* XXX */
5783 	}
5784 	return 0;
5785 }
5786 
5787 static void
5788 ath_getradiocaps(struct ieee80211com *ic,
5789 	int maxchans, int *nchans, struct ieee80211_channel chans[])
5790 {
5791 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5792 	struct ath_hal *ah = sc->sc_ah;
5793 
5794 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5795 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5796 
5797 	/* XXX check return */
5798 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5799 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5800 
5801 }
5802 
5803 static int
5804 ath_getchannels(struct ath_softc *sc)
5805 {
5806 	struct ifnet *ifp = sc->sc_ifp;
5807 	struct ieee80211com *ic = ifp->if_l2com;
5808 	struct ath_hal *ah = sc->sc_ah;
5809 	HAL_STATUS status;
5810 
5811 	/*
5812 	 * Collect channel set based on EEPROM contents.
5813 	 */
5814 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5815 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5816 	if (status != HAL_OK) {
5817 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5818 		    "status %d\n", __func__, status);
5819 		return EINVAL;
5820 	}
5821 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5822 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5823 	/* XXX map Atheros sku's to net80211 SKU's */
5824 	/* XXX net80211 types too small */
5825 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5826 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5827 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5828 	ic->ic_regdomain.isocc[1] = ' ';
5829 
5830 	ic->ic_regdomain.ecm = 1;
5831 	ic->ic_regdomain.location = 'I';
5832 
5833 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5834 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5835 	    __func__, sc->sc_eerd, sc->sc_eecc,
5836 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5837 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5838 	return 0;
5839 }
5840 
5841 static void
5842 ath_led_done(void *arg)
5843 {
5844 	struct ath_softc *sc = arg;
5845 
5846 	sc->sc_blinking = 0;
5847 }
5848 
5849 /*
5850  * Turn the LED off: flip the pin and then set a timer so no
5851  * update will happen for the specified duration.
5852  */
5853 static void
5854 ath_led_off(void *arg)
5855 {
5856 	struct ath_softc *sc = arg;
5857 
5858 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5859 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
5860 }
5861 
5862 /*
5863  * Blink the LED according to the specified on/off times.
5864  */
5865 static void
5866 ath_led_blink(struct ath_softc *sc, int on, int off)
5867 {
5868 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5869 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5870 	sc->sc_blinking = 1;
5871 	sc->sc_ledoff = off;
5872 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5873 }
5874 
5875 static void
5876 ath_led_event(struct ath_softc *sc, int rix)
5877 {
5878 	sc->sc_ledevent = ticks;	/* time of last event */
5879 	if (sc->sc_blinking)		/* don't interrupt active blink */
5880 		return;
5881 	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
5882 }
5883 
5884 static int
5885 ath_rate_setup(struct ath_softc *sc, u_int mode)
5886 {
5887 	struct ath_hal *ah = sc->sc_ah;
5888 	const HAL_RATE_TABLE *rt;
5889 
5890 	switch (mode) {
5891 	case IEEE80211_MODE_11A:
5892 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5893 		break;
5894 	case IEEE80211_MODE_HALF:
5895 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5896 		break;
5897 	case IEEE80211_MODE_QUARTER:
5898 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5899 		break;
5900 	case IEEE80211_MODE_11B:
5901 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5902 		break;
5903 	case IEEE80211_MODE_11G:
5904 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5905 		break;
5906 	case IEEE80211_MODE_TURBO_A:
5907 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5908 		break;
5909 	case IEEE80211_MODE_TURBO_G:
5910 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5911 		break;
5912 	case IEEE80211_MODE_STURBO_A:
5913 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5914 		break;
5915 	case IEEE80211_MODE_11NA:
5916 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5917 		break;
5918 	case IEEE80211_MODE_11NG:
5919 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5920 		break;
5921 	default:
5922 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5923 			__func__, mode);
5924 		return 0;
5925 	}
5926 	sc->sc_rates[mode] = rt;
5927 	return (rt != NULL);
5928 }
5929 
5930 static void
5931 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5932 {
5933 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5934 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5935 	static const struct {
5936 		u_int		rate;		/* tx/rx 802.11 rate */
5937 		u_int16_t	timeOn;		/* LED on time (ms) */
5938 		u_int16_t	timeOff;	/* LED off time (ms) */
5939 	} blinkrates[] = {
5940 		{ 108,  40,  10 },
5941 		{  96,  44,  11 },
5942 		{  72,  50,  13 },
5943 		{  48,  57,  14 },
5944 		{  36,  67,  16 },
5945 		{  24,  80,  20 },
5946 		{  22, 100,  25 },
5947 		{  18, 133,  34 },
5948 		{  12, 160,  40 },
5949 		{  10, 200,  50 },
5950 		{   6, 240,  58 },
5951 		{   4, 267,  66 },
5952 		{   2, 400, 100 },
5953 		{   0, 500, 130 },
5954 		/* XXX half/quarter rates */
5955 	};
5956 	const HAL_RATE_TABLE *rt;
5957 	int i, j;
5958 
5959 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5960 	rt = sc->sc_rates[mode];
5961 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5962 	for (i = 0; i < rt->rateCount; i++) {
5963 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5964 		if (rt->info[i].phy != IEEE80211_T_HT)
5965 			sc->sc_rixmap[ieeerate] = i;
5966 		else
5967 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5968 	}
5969 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5970 	for (i = 0; i < N(sc->sc_hwmap); i++) {
5971 		if (i >= rt->rateCount) {
5972 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5973 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5974 			continue;
5975 		}
5976 		sc->sc_hwmap[i].ieeerate =
5977 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5978 		if (rt->info[i].phy == IEEE80211_T_HT)
5979 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5980 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5981 		if (rt->info[i].shortPreamble ||
5982 		    rt->info[i].phy == IEEE80211_T_OFDM)
5983 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5984 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5985 		for (j = 0; j < N(blinkrates)-1; j++)
5986 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5987 				break;
5988 		/* NB: this uses the last entry if the rate isn't found */
5989 		/* XXX beware of overlow */
5990 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5991 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5992 	}
5993 	sc->sc_currates = rt;
5994 	sc->sc_curmode = mode;
5995 	/*
5996 	 * All protection frames are transmited at 2Mb/s for
5997 	 * 11g, otherwise at 1Mb/s.
5998 	 */
5999 	if (mode == IEEE80211_MODE_11G)
6000 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6001 	else
6002 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6003 	/* NB: caller is responsible for reseting rate control state */
6004 #undef N
6005 }
6006 
6007 #ifdef ATH_DEBUG
6008 static void
6009 ath_printrxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6010 	u_int ix, int done)
6011 {
6012 	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
6013 	struct ath_hal *ah = sc->sc_ah;
6014 	const struct ath_desc *ds;
6015 	int i;
6016 
6017 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6018 		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
6019 		       "      %08x %08x %08x %08x\n",
6020 		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
6021 		    ds->ds_link, ds->ds_data,
6022 		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
6023 		    ds->ds_ctl0, ds->ds_ctl1,
6024 		    ds->ds_hw[0], ds->ds_hw[1]);
6025 		if (ah->ah_magic == 0x20065416) {
6026 			printf("        %08x %08x %08x %08x %08x %08x %08x\n",
6027 			    ds->ds_hw[2], ds->ds_hw[3], ds->ds_hw[4],
6028 			    ds->ds_hw[5], ds->ds_hw[6], ds->ds_hw[7],
6029 			    ds->ds_hw[8]);
6030 		}
6031 	}
6032 }
6033 
6034 static void
6035 ath_printtxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6036 	u_int qnum, u_int ix, int done)
6037 {
6038 	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
6039 	struct ath_hal *ah = sc->sc_ah;
6040 	const struct ath_desc *ds;
6041 	int i;
6042 
6043 	printf("Q%u[%3u]", qnum, ix);
6044 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6045 		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
6046 		       "        %08x %08x %08x %08x %08x %08x\n",
6047 		    ds, (const struct ath_desc *)bf->bf_daddr + i,
6048 		    ds->ds_link, ds->ds_data, bf->bf_txflags,
6049 		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
6050 		    ds->ds_ctl0, ds->ds_ctl1,
6051 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
6052 		if (ah->ah_magic == 0x20065416) {
6053 			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6054 			    ds->ds_hw[4], ds->ds_hw[5], ds->ds_hw[6],
6055 			    ds->ds_hw[7], ds->ds_hw[8], ds->ds_hw[9],
6056 			    ds->ds_hw[10],ds->ds_hw[11]);
6057 			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6058 			    ds->ds_hw[12],ds->ds_hw[13],ds->ds_hw[14],
6059 			    ds->ds_hw[15],ds->ds_hw[16],ds->ds_hw[17],
6060 			    ds->ds_hw[18], ds->ds_hw[19]);
6061 		}
6062 	}
6063 }
6064 #endif /* ATH_DEBUG */
6065 
6066 static void
6067 ath_watchdog(void *arg)
6068 {
6069 	struct ath_softc *sc = arg;
6070 
6071 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6072 		struct ifnet *ifp = sc->sc_ifp;
6073 		uint32_t hangs;
6074 
6075 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6076 		    hangs != 0) {
6077 			if_printf(ifp, "%s hang detected (0x%x)\n",
6078 			    hangs & 0xff ? "bb" : "mac", hangs);
6079 		} else
6080 			if_printf(ifp, "device timeout\n");
6081 		ath_reset(ifp);
6082 		ifp->if_oerrors++;
6083 		sc->sc_stats.ast_watchdog++;
6084 	}
6085 	callout_schedule(&sc->sc_wd_ch, hz);
6086 }
6087 
6088 #ifdef ATH_DIAGAPI
6089 /*
6090  * Diagnostic interface to the HAL.  This is used by various
6091  * tools to do things like retrieve register contents for
6092  * debugging.  The mechanism is intentionally opaque so that
6093  * it can change frequently w/o concern for compatiblity.
6094  */
6095 static int
6096 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6097 {
6098 	struct ath_hal *ah = sc->sc_ah;
6099 	u_int id = ad->ad_id & ATH_DIAG_ID;
6100 	void *indata = NULL;
6101 	void *outdata = NULL;
6102 	u_int32_t insize = ad->ad_in_size;
6103 	u_int32_t outsize = ad->ad_out_size;
6104 	int error = 0;
6105 
6106 	if (ad->ad_id & ATH_DIAG_IN) {
6107 		/*
6108 		 * Copy in data.
6109 		 */
6110 		indata = malloc(insize, M_TEMP, M_NOWAIT);
6111 		if (indata == NULL) {
6112 			error = ENOMEM;
6113 			goto bad;
6114 		}
6115 		error = copyin(ad->ad_in_data, indata, insize);
6116 		if (error)
6117 			goto bad;
6118 	}
6119 	if (ad->ad_id & ATH_DIAG_DYN) {
6120 		/*
6121 		 * Allocate a buffer for the results (otherwise the HAL
6122 		 * returns a pointer to a buffer where we can read the
6123 		 * results).  Note that we depend on the HAL leaving this
6124 		 * pointer for us to use below in reclaiming the buffer;
6125 		 * may want to be more defensive.
6126 		 */
6127 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6128 		if (outdata == NULL) {
6129 			error = ENOMEM;
6130 			goto bad;
6131 		}
6132 	}
6133 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6134 		if (outsize < ad->ad_out_size)
6135 			ad->ad_out_size = outsize;
6136 		if (outdata != NULL)
6137 			error = copyout(outdata, ad->ad_out_data,
6138 					ad->ad_out_size);
6139 	} else {
6140 		error = EINVAL;
6141 	}
6142 bad:
6143 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6144 		free(indata, M_TEMP);
6145 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6146 		free(outdata, M_TEMP);
6147 	return error;
6148 }
6149 #endif /* ATH_DIAGAPI */
6150 
6151 static int
6152 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6153 {
6154 #define	IS_RUNNING(ifp) \
6155 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6156 	struct ath_softc *sc = ifp->if_softc;
6157 	struct ieee80211com *ic = ifp->if_l2com;
6158 	struct ifreq *ifr = (struct ifreq *)data;
6159 	const HAL_RATE_TABLE *rt;
6160 	int error = 0;
6161 
6162 	switch (cmd) {
6163 	case SIOCSIFFLAGS:
6164 		ATH_LOCK(sc);
6165 		if (IS_RUNNING(ifp)) {
6166 			/*
6167 			 * To avoid rescanning another access point,
6168 			 * do not call ath_init() here.  Instead,
6169 			 * only reflect promisc mode settings.
6170 			 */
6171 			ath_mode_init(sc);
6172 		} else if (ifp->if_flags & IFF_UP) {
6173 			/*
6174 			 * Beware of being called during attach/detach
6175 			 * to reset promiscuous mode.  In that case we
6176 			 * will still be marked UP but not RUNNING.
6177 			 * However trying to re-init the interface
6178 			 * is the wrong thing to do as we've already
6179 			 * torn down much of our state.  There's
6180 			 * probably a better way to deal with this.
6181 			 */
6182 			if (!sc->sc_invalid)
6183 				ath_init(sc);	/* XXX lose error */
6184 		} else {
6185 			ath_stop_locked(ifp);
6186 #ifdef notyet
6187 			/* XXX must wakeup in places like ath_vap_delete */
6188 			if (!sc->sc_invalid)
6189 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6190 #endif
6191 		}
6192 		ATH_UNLOCK(sc);
6193 		break;
6194 	case SIOCGIFMEDIA:
6195 	case SIOCSIFMEDIA:
6196 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6197 		break;
6198 	case SIOCGATHSTATS:
6199 		/* NB: embed these numbers to get a consistent view */
6200 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6201 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6202 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6203 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6204 #ifdef IEEE80211_SUPPORT_TDMA
6205 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6206 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6207 #endif
6208 		rt = sc->sc_currates;
6209 		/* XXX HT rates */
6210 		sc->sc_stats.ast_tx_rate =
6211 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6212 		return copyout(&sc->sc_stats,
6213 		    ifr->ifr_data, sizeof (sc->sc_stats));
6214 	case SIOCZATHSTATS:
6215 		error = priv_check(curthread, PRIV_DRIVER);
6216 		if (error == 0)
6217 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6218 		break;
6219 #ifdef ATH_DIAGAPI
6220 	case SIOCGATHDIAG:
6221 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6222 		break;
6223 #endif
6224 	case SIOCGIFADDR:
6225 		error = ether_ioctl(ifp, cmd, data);
6226 		break;
6227 	default:
6228 		error = EINVAL;
6229 		break;
6230 	}
6231 	return error;
6232 #undef IS_RUNNING
6233 }
6234 
6235 static int
6236 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
6237 {
6238 	struct ath_softc *sc = arg1;
6239 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
6240 	int error;
6241 
6242 	error = sysctl_handle_int(oidp, &slottime, 0, req);
6243 	if (error || !req->newptr)
6244 		return error;
6245 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
6246 }
6247 
6248 static int
6249 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
6250 {
6251 	struct ath_softc *sc = arg1;
6252 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
6253 	int error;
6254 
6255 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
6256 	if (error || !req->newptr)
6257 		return error;
6258 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
6259 }
6260 
6261 static int
6262 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
6263 {
6264 	struct ath_softc *sc = arg1;
6265 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
6266 	int error;
6267 
6268 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
6269 	if (error || !req->newptr)
6270 		return error;
6271 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
6272 }
6273 
6274 static int
6275 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
6276 {
6277 	struct ath_softc *sc = arg1;
6278 	int softled = sc->sc_softled;
6279 	int error;
6280 
6281 	error = sysctl_handle_int(oidp, &softled, 0, req);
6282 	if (error || !req->newptr)
6283 		return error;
6284 	softled = (softled != 0);
6285 	if (softled != sc->sc_softled) {
6286 		if (softled) {
6287 			/* NB: handle any sc_ledpin change */
6288 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6289 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6290 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6291 				!sc->sc_ledon);
6292 		}
6293 		sc->sc_softled = softled;
6294 	}
6295 	return 0;
6296 }
6297 
6298 static int
6299 ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
6300 {
6301 	struct ath_softc *sc = arg1;
6302 	int ledpin = sc->sc_ledpin;
6303 	int error;
6304 
6305 	error = sysctl_handle_int(oidp, &ledpin, 0, req);
6306 	if (error || !req->newptr)
6307 		return error;
6308 	if (ledpin != sc->sc_ledpin) {
6309 		sc->sc_ledpin = ledpin;
6310 		if (sc->sc_softled) {
6311 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6312 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6313 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6314 				!sc->sc_ledon);
6315 		}
6316 	}
6317 	return 0;
6318 }
6319 
6320 static int
6321 ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
6322 {
6323 	struct ath_softc *sc = arg1;
6324 	u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah);
6325 	int error;
6326 
6327 	error = sysctl_handle_int(oidp, &txantenna, 0, req);
6328 	if (!error && req->newptr) {
6329 		/* XXX assumes 2 antenna ports */
6330 		if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B)
6331 			return EINVAL;
6332 		ath_hal_setantennaswitch(sc->sc_ah, txantenna);
6333 		/*
6334 		 * NB: with the switch locked this isn't meaningful,
6335 		 *     but set it anyway so things like radiotap get
6336 		 *     consistent info in their data.
6337 		 */
6338 		sc->sc_txantenna = txantenna;
6339 	}
6340 	return error;
6341 }
6342 
6343 static int
6344 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
6345 {
6346 	struct ath_softc *sc = arg1;
6347 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
6348 	int error;
6349 
6350 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
6351 	if (!error && req->newptr)
6352 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
6353 	return error;
6354 }
6355 
6356 static int
6357 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
6358 {
6359 	struct ath_softc *sc = arg1;
6360 	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
6361 	int error;
6362 
6363 	error = sysctl_handle_int(oidp, &diversity, 0, req);
6364 	if (error || !req->newptr)
6365 		return error;
6366 	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
6367 		return EINVAL;
6368 	sc->sc_diversity = diversity;
6369 	return 0;
6370 }
6371 
6372 static int
6373 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
6374 {
6375 	struct ath_softc *sc = arg1;
6376 	u_int32_t diag;
6377 	int error;
6378 
6379 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
6380 		return EINVAL;
6381 	error = sysctl_handle_int(oidp, &diag, 0, req);
6382 	if (error || !req->newptr)
6383 		return error;
6384 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
6385 }
6386 
6387 static int
6388 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
6389 {
6390 	struct ath_softc *sc = arg1;
6391 	struct ifnet *ifp = sc->sc_ifp;
6392 	u_int32_t scale;
6393 	int error;
6394 
6395 	(void) ath_hal_gettpscale(sc->sc_ah, &scale);
6396 	error = sysctl_handle_int(oidp, &scale, 0, req);
6397 	if (error || !req->newptr)
6398 		return error;
6399 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL :
6400 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6401 }
6402 
6403 static int
6404 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
6405 {
6406 	struct ath_softc *sc = arg1;
6407 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
6408 	int error;
6409 
6410 	error = sysctl_handle_int(oidp, &tpc, 0, req);
6411 	if (error || !req->newptr)
6412 		return error;
6413 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
6414 }
6415 
6416 static int
6417 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
6418 {
6419 	struct ath_softc *sc = arg1;
6420 	struct ifnet *ifp = sc->sc_ifp;
6421 	struct ath_hal *ah = sc->sc_ah;
6422 	u_int rfkill = ath_hal_getrfkill(ah);
6423 	int error;
6424 
6425 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
6426 	if (error || !req->newptr)
6427 		return error;
6428 	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
6429 		return 0;
6430 	if (!ath_hal_setrfkill(ah, rfkill))
6431 		return EINVAL;
6432 	return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6433 }
6434 
6435 static int
6436 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
6437 {
6438 	struct ath_softc *sc = arg1;
6439 	u_int rfsilent;
6440 	int error;
6441 
6442 	(void) ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
6443 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
6444 	if (error || !req->newptr)
6445 		return error;
6446 	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
6447 		return EINVAL;
6448 	sc->sc_rfsilentpin = rfsilent & 0x1c;
6449 	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
6450 	return 0;
6451 }
6452 
6453 static int
6454 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
6455 {
6456 	struct ath_softc *sc = arg1;
6457 	u_int32_t tpack;
6458 	int error;
6459 
6460 	(void) ath_hal_gettpack(sc->sc_ah, &tpack);
6461 	error = sysctl_handle_int(oidp, &tpack, 0, req);
6462 	if (error || !req->newptr)
6463 		return error;
6464 	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
6465 }
6466 
6467 static int
6468 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
6469 {
6470 	struct ath_softc *sc = arg1;
6471 	u_int32_t tpcts;
6472 	int error;
6473 
6474 	(void) ath_hal_gettpcts(sc->sc_ah, &tpcts);
6475 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
6476 	if (error || !req->newptr)
6477 		return error;
6478 	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
6479 }
6480 
6481 static int
6482 ath_sysctl_intmit(SYSCTL_HANDLER_ARGS)
6483 {
6484 	struct ath_softc *sc = arg1;
6485 	int intmit, error;
6486 
6487 	intmit = ath_hal_getintmit(sc->sc_ah);
6488 	error = sysctl_handle_int(oidp, &intmit, 0, req);
6489 	if (error || !req->newptr)
6490 		return error;
6491 	return !ath_hal_setintmit(sc->sc_ah, intmit) ? EINVAL : 0;
6492 }
6493 
6494 #ifdef IEEE80211_SUPPORT_TDMA
6495 static int
6496 ath_sysctl_setcca(SYSCTL_HANDLER_ARGS)
6497 {
6498 	struct ath_softc *sc = arg1;
6499 	int setcca, error;
6500 
6501 	setcca = sc->sc_setcca;
6502 	error = sysctl_handle_int(oidp, &setcca, 0, req);
6503 	if (error || !req->newptr)
6504 		return error;
6505 	sc->sc_setcca = (setcca != 0);
6506 	return 0;
6507 }
6508 #endif /* IEEE80211_SUPPORT_TDMA */
6509 
6510 static void
6511 ath_sysctlattach(struct ath_softc *sc)
6512 {
6513 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
6514 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
6515 	struct ath_hal *ah = sc->sc_ah;
6516 
6517 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6518 		"countrycode", CTLFLAG_RD, &sc->sc_eecc, 0,
6519 		"EEPROM country code");
6520 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6521 		"regdomain", CTLFLAG_RD, &sc->sc_eerd, 0,
6522 		"EEPROM regdomain code");
6523 #ifdef	ATH_DEBUG
6524 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6525 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
6526 		"control debugging printfs");
6527 #endif
6528 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6529 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6530 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
6531 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6532 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6533 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
6534 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6535 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6536 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
6537 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6538 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6539 		ath_sysctl_softled, "I", "enable/disable software LED support");
6540 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6541 		"ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6542 		ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
6543 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6544 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
6545 		"setting to turn LED on");
6546 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6547 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
6548 		"idle time for inactivity LED (ticks)");
6549 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6550 		"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6551 		ath_sysctl_txantenna, "I", "antenna switch");
6552 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6553 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6554 		ath_sysctl_rxantenna, "I", "default/rx antenna");
6555 	if (ath_hal_hasdiversity(ah))
6556 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6557 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6558 			ath_sysctl_diversity, "I", "antenna diversity");
6559 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
6560 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6561 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
6562 		"tx descriptor batching");
6563 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6564 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6565 		ath_sysctl_diag, "I", "h/w diagnostic control");
6566 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6567 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6568 		ath_sysctl_tpscale, "I", "tx power scaling");
6569 	if (ath_hal_hastpc(ah)) {
6570 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6571 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6572 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
6573 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6574 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6575 			ath_sysctl_tpack, "I", "tx power for ack frames");
6576 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6577 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6578 			ath_sysctl_tpcts, "I", "tx power for cts frames");
6579 	}
6580 	if (ath_hal_hasrfsilent(ah)) {
6581 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6582 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6583 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
6584 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6585 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6586 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
6587 	}
6588 	if (ath_hal_hasintmit(ah)) {
6589 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6590 			"intmit", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6591 			ath_sysctl_intmit, "I", "interference mitigation");
6592 	}
6593 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
6594 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6595 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
6596 		"mask of error frames to pass when monitoring");
6597 #ifdef IEEE80211_SUPPORT_TDMA
6598 	if (ath_hal_macversion(ah) > 0x78) {
6599 		sc->sc_tdmadbaprep = 2;
6600 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6601 			"dbaprep", CTLFLAG_RW, &sc->sc_tdmadbaprep, 0,
6602 			"TDMA DBA preparation time");
6603 		sc->sc_tdmaswbaprep = 10;
6604 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6605 			"swbaprep", CTLFLAG_RW, &sc->sc_tdmaswbaprep, 0,
6606 			"TDMA SWBA preparation time");
6607 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6608 			"guardtime", CTLFLAG_RW, &sc->sc_tdmaguard, 0,
6609 			"TDMA slot guard time");
6610 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6611 			"superframe", CTLFLAG_RD, &sc->sc_tdmabintval, 0,
6612 			"TDMA calculated super frame");
6613 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6614 			"setcca", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6615 			ath_sysctl_setcca, "I", "enable CCA control");
6616 	}
6617 #endif
6618 }
6619 
6620 static int
6621 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
6622 	struct ath_buf *bf, struct mbuf *m0,
6623 	const struct ieee80211_bpf_params *params)
6624 {
6625 	struct ifnet *ifp = sc->sc_ifp;
6626 	struct ieee80211com *ic = ifp->if_l2com;
6627 	struct ath_hal *ah = sc->sc_ah;
6628 	struct ieee80211vap *vap = ni->ni_vap;
6629 	int error, ismcast, ismrr;
6630 	int keyix, hdrlen, pktlen, try0, txantenna;
6631 	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
6632 	struct ieee80211_frame *wh;
6633 	u_int flags, ctsduration;
6634 	HAL_PKT_TYPE atype;
6635 	const HAL_RATE_TABLE *rt;
6636 	struct ath_desc *ds;
6637 	u_int pri;
6638 
6639 	wh = mtod(m0, struct ieee80211_frame *);
6640 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
6641 	hdrlen = ieee80211_anyhdrsize(wh);
6642 	/*
6643 	 * Packet length must not include any
6644 	 * pad bytes; deduct them here.
6645 	 */
6646 	/* XXX honor IEEE80211_BPF_DATAPAD */
6647 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
6648 
6649 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
6650 		const struct ieee80211_cipher *cip;
6651 		struct ieee80211_key *k;
6652 
6653 		/*
6654 		 * Construct the 802.11 header+trailer for an encrypted
6655 		 * frame. The only reason this can fail is because of an
6656 		 * unknown or unsupported cipher/key type.
6657 		 */
6658 		k = ieee80211_crypto_encap(ni, m0);
6659 		if (k == NULL) {
6660 			/*
6661 			 * This can happen when the key is yanked after the
6662 			 * frame was queued.  Just discard the frame; the
6663 			 * 802.11 layer counts failures and provides
6664 			 * debugging/diagnostics.
6665 			 */
6666 			ath_freetx(m0);
6667 			return EIO;
6668 		}
6669 		/*
6670 		 * Adjust the packet + header lengths for the crypto
6671 		 * additions and calculate the h/w key index.  When
6672 		 * a s/w mic is done the frame will have had any mic
6673 		 * added to it prior to entry so m0->m_pkthdr.len will
6674 		 * account for it. Otherwise we need to add it to the
6675 		 * packet length.
6676 		 */
6677 		cip = k->wk_cipher;
6678 		hdrlen += cip->ic_header;
6679 		pktlen += cip->ic_header + cip->ic_trailer;
6680 		/* NB: frags always have any TKIP MIC done in s/w */
6681 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
6682 			pktlen += cip->ic_miclen;
6683 		keyix = k->wk_keyix;
6684 
6685 		/* packet header may have moved, reset our local pointer */
6686 		wh = mtod(m0, struct ieee80211_frame *);
6687 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
6688 		/*
6689 		 * Use station key cache slot, if assigned.
6690 		 */
6691 		keyix = ni->ni_ucastkey.wk_keyix;
6692 		if (keyix == IEEE80211_KEYIX_NONE)
6693 			keyix = HAL_TXKEYIX_INVALID;
6694 	} else
6695 		keyix = HAL_TXKEYIX_INVALID;
6696 
6697 	error = ath_tx_dmasetup(sc, bf, m0);
6698 	if (error != 0)
6699 		return error;
6700 	m0 = bf->bf_m;				/* NB: may have changed */
6701 	wh = mtod(m0, struct ieee80211_frame *);
6702 	bf->bf_node = ni;			/* NB: held reference */
6703 
6704 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
6705 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
6706 	if (params->ibp_flags & IEEE80211_BPF_RTS)
6707 		flags |= HAL_TXDESC_RTSENA;
6708 	else if (params->ibp_flags & IEEE80211_BPF_CTS)
6709 		flags |= HAL_TXDESC_CTSENA;
6710 	/* XXX leave ismcast to injector? */
6711 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
6712 		flags |= HAL_TXDESC_NOACK;
6713 
6714 	rt = sc->sc_currates;
6715 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
6716 	rix = ath_tx_findrix(sc, params->ibp_rate0);
6717 	txrate = rt->info[rix].rateCode;
6718 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6719 		txrate |= rt->info[rix].shortPreamble;
6720 	sc->sc_txrix = rix;
6721 	try0 = params->ibp_try0;
6722 	ismrr = (params->ibp_try1 != 0);
6723 	txantenna = params->ibp_pri >> 2;
6724 	if (txantenna == 0)			/* XXX? */
6725 		txantenna = sc->sc_txantenna;
6726 	ctsduration = 0;
6727 	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
6728 		cix = ath_tx_findrix(sc, params->ibp_ctsrate);
6729 		ctsrate = rt->info[cix].rateCode;
6730 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
6731 			ctsrate |= rt->info[cix].shortPreamble;
6732 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6733 				ctsduration += rt->info[cix].spAckDuration;
6734 			ctsduration += ath_hal_computetxtime(ah,
6735 				rt, pktlen, rix, AH_TRUE);
6736 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6737 				ctsduration += rt->info[rix].spAckDuration;
6738 		} else {
6739 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6740 				ctsduration += rt->info[cix].lpAckDuration;
6741 			ctsduration += ath_hal_computetxtime(ah,
6742 				rt, pktlen, rix, AH_FALSE);
6743 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6744 				ctsduration += rt->info[rix].lpAckDuration;
6745 		}
6746 		ismrr = 0;			/* XXX */
6747 	} else
6748 		ctsrate = 0;
6749 	pri = params->ibp_pri & 3;
6750 	/*
6751 	 * NB: we mark all packets as type PSPOLL so the h/w won't
6752 	 * set the sequence number, duration, etc.
6753 	 */
6754 	atype = HAL_PKT_TYPE_PSPOLL;
6755 
6756 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
6757 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
6758 		    sc->sc_hwmap[rix].ieeerate, -1);
6759 
6760 	if (ieee80211_radiotap_active_vap(vap)) {
6761 		u_int64_t tsf = ath_hal_gettsf64(ah);
6762 
6763 		sc->sc_tx_th.wt_tsf = htole64(tsf);
6764 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
6765 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
6766 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
6767 		if (m0->m_flags & M_FRAG)
6768 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
6769 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
6770 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
6771 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
6772 
6773 		ieee80211_radiotap_tx(vap, m0);
6774 	}
6775 
6776 	/*
6777 	 * Formulate first tx descriptor with tx controls.
6778 	 */
6779 	ds = bf->bf_desc;
6780 	/* XXX check return value? */
6781 	ath_hal_setuptxdesc(ah, ds
6782 		, pktlen		/* packet length */
6783 		, hdrlen		/* header length */
6784 		, atype			/* Atheros packet type */
6785 		, params->ibp_power	/* txpower */
6786 		, txrate, try0		/* series 0 rate/tries */
6787 		, keyix			/* key cache index */
6788 		, txantenna		/* antenna mode */
6789 		, flags			/* flags */
6790 		, ctsrate		/* rts/cts rate */
6791 		, ctsduration		/* rts/cts duration */
6792 	);
6793 	bf->bf_txflags = flags;
6794 
6795 	if (ismrr) {
6796 		rix = ath_tx_findrix(sc, params->ibp_rate1);
6797 		rate1 = rt->info[rix].rateCode;
6798 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6799 			rate1 |= rt->info[rix].shortPreamble;
6800 		if (params->ibp_try2) {
6801 			rix = ath_tx_findrix(sc, params->ibp_rate2);
6802 			rate2 = rt->info[rix].rateCode;
6803 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6804 				rate2 |= rt->info[rix].shortPreamble;
6805 		} else
6806 			rate2 = 0;
6807 		if (params->ibp_try3) {
6808 			rix = ath_tx_findrix(sc, params->ibp_rate3);
6809 			rate3 = rt->info[rix].rateCode;
6810 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6811 				rate3 |= rt->info[rix].shortPreamble;
6812 		} else
6813 			rate3 = 0;
6814 		ath_hal_setupxtxdesc(ah, ds
6815 			, rate1, params->ibp_try1	/* series 1 */
6816 			, rate2, params->ibp_try2	/* series 2 */
6817 			, rate3, params->ibp_try3	/* series 3 */
6818 		);
6819 	}
6820 
6821 	/* NB: no buffered multicast in power save support */
6822 	ath_tx_handoff(sc, sc->sc_ac2q[pri], bf);
6823 	return 0;
6824 }
6825 
6826 static int
6827 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
6828 	const struct ieee80211_bpf_params *params)
6829 {
6830 	struct ieee80211com *ic = ni->ni_ic;
6831 	struct ifnet *ifp = ic->ic_ifp;
6832 	struct ath_softc *sc = ifp->if_softc;
6833 	struct ath_buf *bf;
6834 	int error;
6835 
6836 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
6837 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
6838 		    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ?
6839 			"!running" : "invalid");
6840 		m_freem(m);
6841 		error = ENETDOWN;
6842 		goto bad;
6843 	}
6844 	/*
6845 	 * Grab a TX buffer and associated resources.
6846 	 */
6847 	bf = ath_getbuf(sc);
6848 	if (bf == NULL) {
6849 		sc->sc_stats.ast_tx_nobuf++;
6850 		m_freem(m);
6851 		error = ENOBUFS;
6852 		goto bad;
6853 	}
6854 
6855 	if (params == NULL) {
6856 		/*
6857 		 * Legacy path; interpret frame contents to decide
6858 		 * precisely how to send the frame.
6859 		 */
6860 		if (ath_tx_start(sc, ni, bf, m)) {
6861 			error = EIO;		/* XXX */
6862 			goto bad2;
6863 		}
6864 	} else {
6865 		/*
6866 		 * Caller supplied explicit parameters to use in
6867 		 * sending the frame.
6868 		 */
6869 		if (ath_tx_raw_start(sc, ni, bf, m, params)) {
6870 			error = EIO;		/* XXX */
6871 			goto bad2;
6872 		}
6873 	}
6874 	sc->sc_wd_timer = 5;
6875 	ifp->if_opackets++;
6876 	sc->sc_stats.ast_tx_raw++;
6877 
6878 	return 0;
6879 bad2:
6880 	ATH_TXBUF_LOCK(sc);
6881 	STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
6882 	ATH_TXBUF_UNLOCK(sc);
6883 bad:
6884 	ifp->if_oerrors++;
6885 	sc->sc_stats.ast_tx_raw_fail++;
6886 	ieee80211_free_node(ni);
6887 	return error;
6888 }
6889 
6890 /*
6891  * Announce various information on device/driver attach.
6892  */
6893 static void
6894 ath_announce(struct ath_softc *sc)
6895 {
6896 	struct ifnet *ifp = sc->sc_ifp;
6897 	struct ath_hal *ah = sc->sc_ah;
6898 
6899 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6900 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6901 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6902 	if (bootverbose) {
6903 		int i;
6904 		for (i = 0; i <= WME_AC_VO; i++) {
6905 			struct ath_txq *txq = sc->sc_ac2q[i];
6906 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6907 				txq->axq_qnum, ieee80211_wme_acnames[i]);
6908 		}
6909 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6910 			sc->sc_cabq->axq_qnum);
6911 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6912 	}
6913 	if (ath_rxbuf != ATH_RXBUF)
6914 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6915 	if (ath_txbuf != ATH_TXBUF)
6916 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6917 }
6918 
6919 #ifdef IEEE80211_SUPPORT_TDMA
6920 static __inline uint32_t
6921 ath_hal_getnexttbtt(struct ath_hal *ah)
6922 {
6923 #define	AR_TIMER0	0x8028
6924 	return OS_REG_READ(ah, AR_TIMER0);
6925 }
6926 
6927 static __inline void
6928 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
6929 {
6930 	/* XXX handle wrap/overflow */
6931 	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
6932 }
6933 
6934 static void
6935 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
6936 {
6937 	struct ath_hal *ah = sc->sc_ah;
6938 	HAL_BEACON_TIMERS bt;
6939 
6940 	bt.bt_intval = bintval | HAL_BEACON_ENA;
6941 	bt.bt_nexttbtt = nexttbtt;
6942 	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
6943 	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
6944 	bt.bt_nextatim = nexttbtt+1;
6945 	ath_hal_beaconsettimers(ah, &bt);
6946 }
6947 
6948 /*
6949  * Calculate the beacon interval.  This is periodic in the
6950  * superframe for the bss.  We assume each station is configured
6951  * identically wrt transmit rate so the guard time we calculate
6952  * above will be the same on all stations.  Note we need to
6953  * factor in the xmit time because the hardware will schedule
6954  * a frame for transmit if the start of the frame is within
6955  * the burst time.  When we get hardware that properly kills
6956  * frames in the PCU we can reduce/eliminate the guard time.
6957  *
6958  * Roundup to 1024 is so we have 1 TU buffer in the guard time
6959  * to deal with the granularity of the nexttbtt timer.  11n MAC's
6960  * with 1us timer granularity should allow us to reduce/eliminate
6961  * this.
6962  */
6963 static void
6964 ath_tdma_bintvalsetup(struct ath_softc *sc,
6965 	const struct ieee80211_tdma_state *tdma)
6966 {
6967 	/* copy from vap state (XXX check all vaps have same value?) */
6968 	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
6969 
6970 	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
6971 		tdma->tdma_slotcnt, 1024);
6972 	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
6973 	if (sc->sc_tdmabintval & 1)
6974 		sc->sc_tdmabintval++;
6975 
6976 	if (tdma->tdma_slot == 0) {
6977 		/*
6978 		 * Only slot 0 beacons; other slots respond.
6979 		 */
6980 		sc->sc_imask |= HAL_INT_SWBA;
6981 		sc->sc_tdmaswba = 0;		/* beacon immediately */
6982 	} else {
6983 		/* XXX all vaps must be slot 0 or slot !0 */
6984 		sc->sc_imask &= ~HAL_INT_SWBA;
6985 	}
6986 }
6987 
6988 /*
6989  * Max 802.11 overhead.  This assumes no 4-address frames and
6990  * the encapsulation done by ieee80211_encap (llc).  We also
6991  * include potential crypto overhead.
6992  */
6993 #define	IEEE80211_MAXOVERHEAD \
6994 	(sizeof(struct ieee80211_qosframe) \
6995 	 + sizeof(struct llc) \
6996 	 + IEEE80211_ADDR_LEN \
6997 	 + IEEE80211_WEP_IVLEN \
6998 	 + IEEE80211_WEP_KIDLEN \
6999 	 + IEEE80211_WEP_CRCLEN \
7000 	 + IEEE80211_WEP_MICLEN \
7001 	 + IEEE80211_CRC_LEN)
7002 
7003 /*
7004  * Setup initially for tdma operation.  Start the beacon
7005  * timers and enable SWBA if we are slot 0.  Otherwise
7006  * we wait for slot 0 to arrive so we can sync up before
7007  * starting to transmit.
7008  */
7009 static void
7010 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
7011 {
7012 	struct ath_hal *ah = sc->sc_ah;
7013 	struct ifnet *ifp = sc->sc_ifp;
7014 	struct ieee80211com *ic = ifp->if_l2com;
7015 	const struct ieee80211_txparam *tp;
7016 	const struct ieee80211_tdma_state *tdma = NULL;
7017 	int rix;
7018 
7019 	if (vap == NULL) {
7020 		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
7021 		if (vap == NULL) {
7022 			if_printf(ifp, "%s: no vaps?\n", __func__);
7023 			return;
7024 		}
7025 	}
7026 	tp = vap->iv_bss->ni_txparms;
7027 	/*
7028 	 * Calculate the guard time for each slot.  This is the
7029 	 * time to send a maximal-size frame according to the
7030 	 * fixed/lowest transmit rate.  Note that the interface
7031 	 * mtu does not include the 802.11 overhead so we must
7032 	 * tack that on (ath_hal_computetxtime includes the
7033 	 * preamble and plcp in it's calculation).
7034 	 */
7035 	tdma = vap->iv_tdma;
7036 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
7037 		rix = ath_tx_findrix(sc, tp->ucastrate);
7038 	else
7039 		rix = ath_tx_findrix(sc, tp->mcastrate);
7040 	/* XXX short preamble assumed */
7041 	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
7042 		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
7043 
7044 	ath_hal_intrset(ah, 0);
7045 
7046 	ath_beaconq_config(sc);			/* setup h/w beacon q */
7047 	if (sc->sc_setcca)
7048 		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
7049 	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
7050 	ath_tdma_settimers(sc, sc->sc_tdmabintval,
7051 		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
7052 	sc->sc_syncbeacon = 0;
7053 
7054 	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
7055 	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
7056 
7057 	ath_hal_intrset(ah, sc->sc_imask);
7058 
7059 	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
7060 	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
7061 	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
7062 	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
7063 	    sc->sc_tdmadbaprep);
7064 }
7065 
7066 /*
7067  * Update tdma operation.  Called from the 802.11 layer
7068  * when a beacon is received from the TDMA station operating
7069  * in the slot immediately preceding us in the bss.  Use
7070  * the rx timestamp for the beacon frame to update our
7071  * beacon timers so we follow their schedule.  Note that
7072  * by using the rx timestamp we implicitly include the
7073  * propagation delay in our schedule.
7074  */
7075 static void
7076 ath_tdma_update(struct ieee80211_node *ni,
7077 	const struct ieee80211_tdma_param *tdma, int changed)
7078 {
7079 #define	TSF_TO_TU(_h,_l) \
7080 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
7081 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
7082 	struct ieee80211vap *vap = ni->ni_vap;
7083 	struct ieee80211com *ic = ni->ni_ic;
7084 	struct ath_softc *sc = ic->ic_ifp->if_softc;
7085 	struct ath_hal *ah = sc->sc_ah;
7086 	const HAL_RATE_TABLE *rt = sc->sc_currates;
7087 	u_int64_t tsf, rstamp, nextslot;
7088 	u_int32_t txtime, nextslottu, timer0;
7089 	int32_t tudelta, tsfdelta;
7090 	const struct ath_rx_status *rs;
7091 	int rix;
7092 
7093 	sc->sc_stats.ast_tdma_update++;
7094 
7095 	/*
7096 	 * Check for and adopt configuration changes.
7097 	 */
7098 	if (changed != 0) {
7099 		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
7100 
7101 		ath_tdma_bintvalsetup(sc, ts);
7102 		if (changed & TDMA_UPDATE_SLOTLEN)
7103 			ath_wme_update(ic);
7104 
7105 		DPRINTF(sc, ATH_DEBUG_TDMA,
7106 		    "%s: adopt slot %u slotcnt %u slotlen %u us "
7107 		    "bintval %u TU\n", __func__,
7108 		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
7109 		    sc->sc_tdmabintval);
7110 
7111 		/* XXX right? */
7112 		ath_hal_intrset(ah, sc->sc_imask);
7113 		/* NB: beacon timers programmed below */
7114 	}
7115 
7116 	/* extend rx timestamp to 64 bits */
7117 	rs = sc->sc_lastrs;
7118 	tsf = ath_hal_gettsf64(ah);
7119 	rstamp = ath_extend_tsf(rs->rs_tstamp, tsf);
7120 	/*
7121 	 * The rx timestamp is set by the hardware on completing
7122 	 * reception (at the point where the rx descriptor is DMA'd
7123 	 * to the host).  To find the start of our next slot we
7124 	 * must adjust this time by the time required to send
7125 	 * the packet just received.
7126 	 */
7127 	rix = rt->rateCodeToIndex[rs->rs_rate];
7128 	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
7129 	    rt->info[rix].shortPreamble);
7130 	/* NB: << 9 is to cvt to TU and /2 */
7131 	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
7132 	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
7133 
7134 	/*
7135 	 * TIMER0 is the h/w's idea of NextTBTT (in TU's).  Convert
7136 	 * to usecs and calculate the difference between what the
7137 	 * other station thinks and what we have programmed.  This
7138 	 * lets us figure how to adjust our timers to match.  The
7139 	 * adjustments are done by pulling the TSF forward and possibly
7140 	 * rewriting the beacon timers.
7141 	 */
7142 	timer0 = ath_hal_getnexttbtt(ah);
7143 	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0));
7144 
7145 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7146 	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
7147 	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
7148 
7149 	if (tsfdelta < 0) {
7150 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7151 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
7152 		tsfdelta = -tsfdelta % 1024;
7153 		nextslottu++;
7154 	} else if (tsfdelta > 0) {
7155 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
7156 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7157 		tsfdelta = 1024 - (tsfdelta % 1024);
7158 		nextslottu++;
7159 	} else {
7160 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7161 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7162 	}
7163 	tudelta = nextslottu - timer0;
7164 
7165 	/*
7166 	 * Copy sender's timetstamp into tdma ie so they can
7167 	 * calculate roundtrip time.  We submit a beacon frame
7168 	 * below after any timer adjustment.  The frame goes out
7169 	 * at the next TBTT so the sender can calculate the
7170 	 * roundtrip by inspecting the tdma ie in our beacon frame.
7171 	 *
7172 	 * NB: This tstamp is subtlely preserved when
7173 	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
7174 	 *     slot position changes) because ieee80211_add_tdma
7175 	 *     skips over the data.
7176 	 */
7177 	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
7178 		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
7179 		&ni->ni_tstamp.data, 8);
7180 #if 0
7181 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7182 	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n",
7183 	    (unsigned long long) tsf, (unsigned long long) nextslot,
7184 	    (int)(nextslot - tsf), tsfdelta,
7185 	    nextslottu, timer0, tudelta);
7186 #endif
7187 	/*
7188 	 * Adjust the beacon timers only when pulling them forward
7189 	 * or when going back by less than the beacon interval.
7190 	 * Negative jumps larger than the beacon interval seem to
7191 	 * cause the timers to stop and generally cause instability.
7192 	 * This basically filters out jumps due to missed beacons.
7193 	 */
7194 	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
7195 		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
7196 		sc->sc_stats.ast_tdma_timers++;
7197 	}
7198 	if (tsfdelta > 0) {
7199 		ath_hal_adjusttsf(ah, tsfdelta);
7200 		sc->sc_stats.ast_tdma_tsf++;
7201 	}
7202 	ath_tdma_beacon_send(sc, vap);		/* prepare response */
7203 #undef TU_TO_TSF
7204 #undef TSF_TO_TU
7205 }
7206 
7207 /*
7208  * Transmit a beacon frame at SWBA.  Dynamic updates
7209  * to the frame contents are done as needed.
7210  */
7211 static void
7212 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
7213 {
7214 	struct ath_hal *ah = sc->sc_ah;
7215 	struct ath_buf *bf;
7216 	int otherant;
7217 
7218 	/*
7219 	 * Check if the previous beacon has gone out.  If
7220 	 * not don't try to post another, skip this period
7221 	 * and wait for the next.  Missed beacons indicate
7222 	 * a problem and should not occur.  If we miss too
7223 	 * many consecutive beacons reset the device.
7224 	 */
7225 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
7226 		sc->sc_bmisscount++;
7227 		DPRINTF(sc, ATH_DEBUG_BEACON,
7228 			"%s: missed %u consecutive beacons\n",
7229 			__func__, sc->sc_bmisscount);
7230 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
7231 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
7232 		return;
7233 	}
7234 	if (sc->sc_bmisscount != 0) {
7235 		DPRINTF(sc, ATH_DEBUG_BEACON,
7236 			"%s: resume beacon xmit after %u misses\n",
7237 			__func__, sc->sc_bmisscount);
7238 		sc->sc_bmisscount = 0;
7239 	}
7240 
7241 	/*
7242 	 * Check recent per-antenna transmit statistics and flip
7243 	 * the default antenna if noticeably more frames went out
7244 	 * on the non-default antenna.
7245 	 * XXX assumes 2 anntenae
7246 	 */
7247 	if (!sc->sc_diversity) {
7248 		otherant = sc->sc_defant & 1 ? 2 : 1;
7249 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
7250 			ath_setdefantenna(sc, otherant);
7251 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
7252 	}
7253 
7254 	bf = ath_beacon_generate(sc, vap);
7255 	if (bf != NULL) {
7256 		/*
7257 		 * Stop any current dma and put the new frame on the queue.
7258 		 * This should never fail since we check above that no frames
7259 		 * are still pending on the queue.
7260 		 */
7261 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
7262 			DPRINTF(sc, ATH_DEBUG_ANY,
7263 				"%s: beacon queue %u did not stop?\n",
7264 				__func__, sc->sc_bhalq);
7265 			/* NB: the HAL still stops DMA, so proceed */
7266 		}
7267 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
7268 		ath_hal_txstart(ah, sc->sc_bhalq);
7269 
7270 		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
7271 
7272 		/*
7273 		 * Record local TSF for our last send for use
7274 		 * in arbitrating slot collisions.
7275 		 */
7276 		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
7277 	}
7278 }
7279 #endif /* IEEE80211_SUPPORT_TDMA */
7280