1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_tx_edma.h> 113 #include <dev/ath/if_ath_beacon.h> 114 #include <dev/ath/if_athdfs.h> 115 116 #ifdef ATH_TX99_DIAG 117 #include <dev/ath/ath_tx99/ath_tx99.h> 118 #endif 119 120 #ifdef ATH_DEBUG_ALQ 121 #include <dev/ath/if_ath_alq.h> 122 #endif 123 124 /* 125 * Only enable this if you're working on PS-POLL support. 126 */ 127 #undef ATH_SW_PSQ 128 129 /* 130 * ATH_BCBUF determines the number of vap's that can transmit 131 * beacons and also (currently) the number of vap's that can 132 * have unique mac addresses/bssid. When staggering beacons 133 * 4 is probably a good max as otherwise the beacons become 134 * very closely spaced and there is limited time for cab q traffic 135 * to go out. You can burst beacons instead but that is not good 136 * for stations in power save and at some point you really want 137 * another radio (and channel). 138 * 139 * The limit on the number of mac addresses is tied to our use of 140 * the U/L bit and tracking addresses in a byte; it would be 141 * worthwhile to allow more for applications like proxy sta. 142 */ 143 CTASSERT(ATH_BCBUF <= 8); 144 145 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 146 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 147 const uint8_t [IEEE80211_ADDR_LEN], 148 const uint8_t [IEEE80211_ADDR_LEN]); 149 static void ath_vap_delete(struct ieee80211vap *); 150 static void ath_init(void *); 151 static void ath_stop_locked(struct ifnet *); 152 static void ath_stop(struct ifnet *); 153 static int ath_reset_vap(struct ieee80211vap *, u_long); 154 static void ath_start_queue(struct ifnet *ifp); 155 static int ath_media_change(struct ifnet *); 156 static void ath_watchdog(void *); 157 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 158 static void ath_fatal_proc(void *, int); 159 static void ath_bmiss_vap(struct ieee80211vap *); 160 static void ath_bmiss_proc(void *, int); 161 static void ath_key_update_begin(struct ieee80211vap *); 162 static void ath_key_update_end(struct ieee80211vap *); 163 static void ath_update_mcast(struct ifnet *); 164 static void ath_update_promisc(struct ifnet *); 165 static void ath_updateslot(struct ifnet *); 166 static void ath_bstuck_proc(void *, int); 167 static void ath_reset_proc(void *, int); 168 static int ath_desc_alloc(struct ath_softc *); 169 static void ath_desc_free(struct ath_softc *); 170 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 171 const uint8_t [IEEE80211_ADDR_LEN]); 172 static void ath_node_cleanup(struct ieee80211_node *); 173 static void ath_node_free(struct ieee80211_node *); 174 static void ath_node_getsignal(const struct ieee80211_node *, 175 int8_t *, int8_t *); 176 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 177 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 178 static int ath_tx_setup(struct ath_softc *, int, int); 179 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 180 static void ath_tx_cleanup(struct ath_softc *); 181 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 182 int dosched); 183 static void ath_tx_proc_q0(void *, int); 184 static void ath_tx_proc_q0123(void *, int); 185 static void ath_tx_proc(void *, int); 186 static void ath_txq_sched_tasklet(void *, int); 187 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 188 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 189 static void ath_scan_start(struct ieee80211com *); 190 static void ath_scan_end(struct ieee80211com *); 191 static void ath_set_channel(struct ieee80211com *); 192 #ifdef ATH_ENABLE_11N 193 static void ath_update_chw(struct ieee80211com *); 194 #endif /* ATH_ENABLE_11N */ 195 static void ath_calibrate(void *); 196 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 197 static void ath_setup_stationkey(struct ieee80211_node *); 198 static void ath_newassoc(struct ieee80211_node *, int); 199 static int ath_setregdomain(struct ieee80211com *, 200 struct ieee80211_regdomain *, int, 201 struct ieee80211_channel []); 202 static void ath_getradiocaps(struct ieee80211com *, int, int *, 203 struct ieee80211_channel []); 204 static int ath_getchannels(struct ath_softc *); 205 206 static int ath_rate_setup(struct ath_softc *, u_int mode); 207 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 208 209 static void ath_announce(struct ath_softc *); 210 211 static void ath_dfs_tasklet(void *, int); 212 static void ath_node_powersave(struct ieee80211_node *, int); 213 static int ath_node_set_tim(struct ieee80211_node *, int); 214 215 #ifdef IEEE80211_SUPPORT_TDMA 216 #include <dev/ath/if_ath_tdma.h> 217 #endif 218 219 SYSCTL_DECL(_hw_ath); 220 221 /* XXX validate sysctl values */ 222 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 223 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 224 0, "long chip calibration interval (secs)"); 225 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 226 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 227 0, "short chip calibration interval (msecs)"); 228 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 229 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 230 0, "reset chip calibration results (secs)"); 231 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 232 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 233 0, "ANI calibration (msecs)"); 234 235 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 236 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 237 0, "rx buffers allocated"); 238 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 239 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 240 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 241 0, "tx buffers allocated"); 242 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 243 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 244 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 245 0, "tx (mgmt) buffers allocated"); 246 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 247 248 int ath_bstuck_threshold = 4; /* max missed beacons */ 249 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 250 0, "max missed beacon xmits before chip reset"); 251 252 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 253 254 void 255 ath_legacy_attach_comp_func(struct ath_softc *sc) 256 { 257 258 /* 259 * Special case certain configurations. Note the 260 * CAB queue is handled by these specially so don't 261 * include them when checking the txq setup mask. 262 */ 263 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 264 case 0x01: 265 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 266 break; 267 case 0x0f: 268 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 269 break; 270 default: 271 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 272 break; 273 } 274 } 275 276 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 277 #define HAL_MODE_HT40 \ 278 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 279 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 280 int 281 ath_attach(u_int16_t devid, struct ath_softc *sc) 282 { 283 struct ifnet *ifp; 284 struct ieee80211com *ic; 285 struct ath_hal *ah = NULL; 286 HAL_STATUS status; 287 int error = 0, i; 288 u_int wmodes; 289 uint8_t macaddr[IEEE80211_ADDR_LEN]; 290 int rx_chainmask, tx_chainmask; 291 292 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 293 294 CURVNET_SET(vnet0); 295 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 296 if (ifp == NULL) { 297 device_printf(sc->sc_dev, "can not if_alloc()\n"); 298 error = ENOSPC; 299 CURVNET_RESTORE(); 300 goto bad; 301 } 302 ic = ifp->if_l2com; 303 304 /* set these up early for if_printf use */ 305 if_initname(ifp, device_get_name(sc->sc_dev), 306 device_get_unit(sc->sc_dev)); 307 CURVNET_RESTORE(); 308 309 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 310 sc->sc_eepromdata, &status); 311 if (ah == NULL) { 312 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 313 status); 314 error = ENXIO; 315 goto bad; 316 } 317 sc->sc_ah = ah; 318 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 319 #ifdef ATH_DEBUG 320 sc->sc_debug = ath_debug; 321 #endif 322 323 /* 324 * Setup the DMA/EDMA functions based on the current 325 * hardware support. 326 * 327 * This is required before the descriptors are allocated. 328 */ 329 if (ath_hal_hasedma(sc->sc_ah)) { 330 sc->sc_isedma = 1; 331 ath_recv_setup_edma(sc); 332 ath_xmit_setup_edma(sc); 333 } else { 334 ath_recv_setup_legacy(sc); 335 ath_xmit_setup_legacy(sc); 336 } 337 338 /* 339 * Check if the MAC has multi-rate retry support. 340 * We do this by trying to setup a fake extended 341 * descriptor. MAC's that don't have support will 342 * return false w/o doing anything. MAC's that do 343 * support it will return true w/o doing anything. 344 */ 345 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 346 347 /* 348 * Check if the device has hardware counters for PHY 349 * errors. If so we need to enable the MIB interrupt 350 * so we can act on stat triggers. 351 */ 352 if (ath_hal_hwphycounters(ah)) 353 sc->sc_needmib = 1; 354 355 /* 356 * Get the hardware key cache size. 357 */ 358 sc->sc_keymax = ath_hal_keycachesize(ah); 359 if (sc->sc_keymax > ATH_KEYMAX) { 360 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 361 ATH_KEYMAX, sc->sc_keymax); 362 sc->sc_keymax = ATH_KEYMAX; 363 } 364 /* 365 * Reset the key cache since some parts do not 366 * reset the contents on initial power up. 367 */ 368 for (i = 0; i < sc->sc_keymax; i++) 369 ath_hal_keyreset(ah, i); 370 371 /* 372 * Collect the default channel list. 373 */ 374 error = ath_getchannels(sc); 375 if (error != 0) 376 goto bad; 377 378 /* 379 * Setup rate tables for all potential media types. 380 */ 381 ath_rate_setup(sc, IEEE80211_MODE_11A); 382 ath_rate_setup(sc, IEEE80211_MODE_11B); 383 ath_rate_setup(sc, IEEE80211_MODE_11G); 384 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 385 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 386 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 387 ath_rate_setup(sc, IEEE80211_MODE_11NA); 388 ath_rate_setup(sc, IEEE80211_MODE_11NG); 389 ath_rate_setup(sc, IEEE80211_MODE_HALF); 390 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 391 392 /* NB: setup here so ath_rate_update is happy */ 393 ath_setcurmode(sc, IEEE80211_MODE_11A); 394 395 /* 396 * Allocate TX descriptors and populate the lists. 397 */ 398 error = ath_desc_alloc(sc); 399 if (error != 0) { 400 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 401 error); 402 goto bad; 403 } 404 error = ath_txdma_setup(sc); 405 if (error != 0) { 406 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 407 error); 408 goto bad; 409 } 410 411 /* 412 * Allocate RX descriptors and populate the lists. 413 */ 414 error = ath_rxdma_setup(sc); 415 if (error != 0) { 416 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 417 error); 418 goto bad; 419 } 420 421 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 422 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 423 424 ATH_TXBUF_LOCK_INIT(sc); 425 426 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 427 taskqueue_thread_enqueue, &sc->sc_tq); 428 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 429 "%s taskq", ifp->if_xname); 430 431 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 432 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 433 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 434 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 435 TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc); 436 TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc); 437 438 /* 439 * Allocate hardware transmit queues: one queue for 440 * beacon frames and one data queue for each QoS 441 * priority. Note that the hal handles resetting 442 * these queues at the needed time. 443 * 444 * XXX PS-Poll 445 */ 446 sc->sc_bhalq = ath_beaconq_setup(sc); 447 if (sc->sc_bhalq == (u_int) -1) { 448 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 449 error = EIO; 450 goto bad2; 451 } 452 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 453 if (sc->sc_cabq == NULL) { 454 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 455 error = EIO; 456 goto bad2; 457 } 458 /* NB: insure BK queue is the lowest priority h/w queue */ 459 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 460 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 461 ieee80211_wme_acnames[WME_AC_BK]); 462 error = EIO; 463 goto bad2; 464 } 465 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 466 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 467 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 468 /* 469 * Not enough hardware tx queues to properly do WME; 470 * just punt and assign them all to the same h/w queue. 471 * We could do a better job of this if, for example, 472 * we allocate queues when we switch from station to 473 * AP mode. 474 */ 475 if (sc->sc_ac2q[WME_AC_VI] != NULL) 476 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 477 if (sc->sc_ac2q[WME_AC_BE] != NULL) 478 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 479 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 480 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 481 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 482 } 483 484 /* 485 * Attach the TX completion function. 486 * 487 * The non-EDMA chips may have some special case optimisations; 488 * this method gives everyone a chance to attach cleanly. 489 */ 490 sc->sc_tx.xmit_attach_comp_func(sc); 491 492 /* 493 * Setup rate control. Some rate control modules 494 * call back to change the anntena state so expose 495 * the necessary entry points. 496 * XXX maybe belongs in struct ath_ratectrl? 497 */ 498 sc->sc_setdefantenna = ath_setdefantenna; 499 sc->sc_rc = ath_rate_attach(sc); 500 if (sc->sc_rc == NULL) { 501 error = EIO; 502 goto bad2; 503 } 504 505 /* Attach DFS module */ 506 if (! ath_dfs_attach(sc)) { 507 device_printf(sc->sc_dev, 508 "%s: unable to attach DFS\n", __func__); 509 error = EIO; 510 goto bad2; 511 } 512 513 /* Start DFS processing tasklet */ 514 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 515 516 /* Configure LED state */ 517 sc->sc_blinking = 0; 518 sc->sc_ledstate = 1; 519 sc->sc_ledon = 0; /* low true */ 520 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 521 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 522 523 /* 524 * Don't setup hardware-based blinking. 525 * 526 * Although some NICs may have this configured in the 527 * default reset register values, the user may wish 528 * to alter which pins have which function. 529 * 530 * The reference driver attaches the MAC network LED to GPIO1 and 531 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 532 * NIC has these reversed. 533 */ 534 sc->sc_hardled = (1 == 0); 535 sc->sc_led_net_pin = -1; 536 sc->sc_led_pwr_pin = -1; 537 /* 538 * Auto-enable soft led processing for IBM cards and for 539 * 5211 minipci cards. Users can also manually enable/disable 540 * support with a sysctl. 541 */ 542 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 543 ath_led_config(sc); 544 ath_hal_setledstate(ah, HAL_LED_INIT); 545 546 ifp->if_softc = sc; 547 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 548 ifp->if_start = ath_start_queue; 549 ifp->if_ioctl = ath_ioctl; 550 ifp->if_init = ath_init; 551 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 552 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 553 IFQ_SET_READY(&ifp->if_snd); 554 555 ic->ic_ifp = ifp; 556 /* XXX not right but it's not used anywhere important */ 557 ic->ic_phytype = IEEE80211_T_OFDM; 558 ic->ic_opmode = IEEE80211_M_STA; 559 ic->ic_caps = 560 IEEE80211_C_STA /* station mode */ 561 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 562 | IEEE80211_C_HOSTAP /* hostap mode */ 563 | IEEE80211_C_MONITOR /* monitor mode */ 564 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 565 | IEEE80211_C_WDS /* 4-address traffic works */ 566 | IEEE80211_C_MBSS /* mesh point link mode */ 567 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 568 | IEEE80211_C_SHSLOT /* short slot time supported */ 569 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 570 #ifndef ATH_ENABLE_11N 571 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 572 #endif 573 | IEEE80211_C_TXFRAG /* handle tx frags */ 574 #ifdef ATH_ENABLE_DFS 575 | IEEE80211_C_DFS /* Enable radar detection */ 576 #endif 577 ; 578 /* 579 * Query the hal to figure out h/w crypto support. 580 */ 581 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 582 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 583 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 584 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 585 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 586 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 587 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 588 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 589 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 590 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 591 /* 592 * Check if h/w does the MIC and/or whether the 593 * separate key cache entries are required to 594 * handle both tx+rx MIC keys. 595 */ 596 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 597 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 598 /* 599 * If the h/w supports storing tx+rx MIC keys 600 * in one cache slot automatically enable use. 601 */ 602 if (ath_hal_hastkipsplit(ah) || 603 !ath_hal_settkipsplit(ah, AH_FALSE)) 604 sc->sc_splitmic = 1; 605 /* 606 * If the h/w can do TKIP MIC together with WME then 607 * we use it; otherwise we force the MIC to be done 608 * in software by the net80211 layer. 609 */ 610 if (ath_hal_haswmetkipmic(ah)) 611 sc->sc_wmetkipmic = 1; 612 } 613 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 614 /* 615 * Check for multicast key search support. 616 */ 617 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 618 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 619 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 620 } 621 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 622 /* 623 * Mark key cache slots associated with global keys 624 * as in use. If we knew TKIP was not to be used we 625 * could leave the +32, +64, and +32+64 slots free. 626 */ 627 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 628 setbit(sc->sc_keymap, i); 629 setbit(sc->sc_keymap, i+64); 630 if (sc->sc_splitmic) { 631 setbit(sc->sc_keymap, i+32); 632 setbit(sc->sc_keymap, i+32+64); 633 } 634 } 635 /* 636 * TPC support can be done either with a global cap or 637 * per-packet support. The latter is not available on 638 * all parts. We're a bit pedantic here as all parts 639 * support a global cap. 640 */ 641 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 642 ic->ic_caps |= IEEE80211_C_TXPMGT; 643 644 /* 645 * Mark WME capability only if we have sufficient 646 * hardware queues to do proper priority scheduling. 647 */ 648 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 649 ic->ic_caps |= IEEE80211_C_WME; 650 /* 651 * Check for misc other capabilities. 652 */ 653 if (ath_hal_hasbursting(ah)) 654 ic->ic_caps |= IEEE80211_C_BURST; 655 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 656 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 657 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 658 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 659 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 660 if (ath_hal_hasfastframes(ah)) 661 ic->ic_caps |= IEEE80211_C_FF; 662 wmodes = ath_hal_getwirelessmodes(ah); 663 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 664 ic->ic_caps |= IEEE80211_C_TURBOP; 665 #ifdef IEEE80211_SUPPORT_TDMA 666 if (ath_hal_macversion(ah) > 0x78) { 667 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 668 ic->ic_tdma_update = ath_tdma_update; 669 } 670 #endif 671 672 /* 673 * TODO: enforce that at least this many frames are available 674 * in the txbuf list before allowing data frames (raw or 675 * otherwise) to be transmitted. 676 */ 677 sc->sc_txq_data_minfree = 10; 678 /* 679 * Leave this as default to maintain legacy behaviour. 680 * Shortening the cabq/mcastq may end up causing some 681 * undesirable behaviour. 682 */ 683 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 684 685 /* 686 * Allow the TX and RX chainmasks to be overridden by 687 * environment variables and/or device.hints. 688 * 689 * This must be done early - before the hardware is 690 * calibrated or before the 802.11n stream calculation 691 * is done. 692 */ 693 if (resource_int_value(device_get_name(sc->sc_dev), 694 device_get_unit(sc->sc_dev), "rx_chainmask", 695 &rx_chainmask) == 0) { 696 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 697 rx_chainmask); 698 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 699 } 700 if (resource_int_value(device_get_name(sc->sc_dev), 701 device_get_unit(sc->sc_dev), "tx_chainmask", 702 &tx_chainmask) == 0) { 703 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 704 tx_chainmask); 705 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 706 } 707 708 /* 709 * Disable MRR with protected frames by default. 710 * Only 802.11n series NICs can handle this. 711 */ 712 sc->sc_mrrprot = 0; /* XXX should be a capability */ 713 714 /* 715 * Query the enterprise mode information the HAL. 716 */ 717 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 718 &sc->sc_ent_cfg) == HAL_OK) 719 sc->sc_use_ent = 1; 720 721 #ifdef ATH_ENABLE_11N 722 /* 723 * Query HT capabilities 724 */ 725 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 726 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 727 int rxs, txs; 728 729 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 730 731 sc->sc_mrrprot = 1; /* XXX should be a capability */ 732 733 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 734 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 735 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 736 | IEEE80211_HTCAP_MAXAMSDU_3839 737 /* max A-MSDU length */ 738 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 739 ; 740 741 /* 742 * Enable short-GI for HT20 only if the hardware 743 * advertises support. 744 * Notably, anything earlier than the AR9287 doesn't. 745 */ 746 if ((ath_hal_getcapability(ah, 747 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 748 (wmodes & HAL_MODE_HT20)) { 749 device_printf(sc->sc_dev, 750 "[HT] enabling short-GI in 20MHz mode\n"); 751 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 752 } 753 754 if (wmodes & HAL_MODE_HT40) 755 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 756 | IEEE80211_HTCAP_SHORTGI40; 757 758 /* 759 * TX/RX streams need to be taken into account when 760 * negotiating which MCS rates it'll receive and 761 * what MCS rates are available for TX. 762 */ 763 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 764 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 765 766 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 767 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 768 769 ic->ic_txstream = txs; 770 ic->ic_rxstream = rxs; 771 772 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 773 &sc->sc_rts_aggr_limit); 774 if (sc->sc_rts_aggr_limit != (64 * 1024)) 775 device_printf(sc->sc_dev, 776 "[HT] RTS aggregates limited to %d KiB\n", 777 sc->sc_rts_aggr_limit / 1024); 778 779 device_printf(sc->sc_dev, 780 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 781 } 782 #endif 783 784 /* 785 * Initial aggregation settings. 786 */ 787 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 788 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 789 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 790 791 /* 792 * Check if the hardware requires PCI register serialisation. 793 * Some of the Owl based MACs require this. 794 */ 795 if (mp_ncpus > 1 && 796 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 797 0, NULL) == HAL_OK) { 798 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 799 device_printf(sc->sc_dev, 800 "Enabling register serialisation\n"); 801 } 802 803 /* 804 * Indicate we need the 802.11 header padded to a 805 * 32-bit boundary for 4-address and QoS frames. 806 */ 807 ic->ic_flags |= IEEE80211_F_DATAPAD; 808 809 /* 810 * Query the hal about antenna support. 811 */ 812 sc->sc_defant = ath_hal_getdefantenna(ah); 813 814 /* 815 * Not all chips have the VEOL support we want to 816 * use with IBSS beacons; check here for it. 817 */ 818 sc->sc_hasveol = ath_hal_hasveol(ah); 819 820 /* get mac address from hardware */ 821 ath_hal_getmac(ah, macaddr); 822 if (sc->sc_hasbmask) 823 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 824 825 /* NB: used to size node table key mapping array */ 826 ic->ic_max_keyix = sc->sc_keymax; 827 /* call MI attach routine. */ 828 ieee80211_ifattach(ic, macaddr); 829 ic->ic_setregdomain = ath_setregdomain; 830 ic->ic_getradiocaps = ath_getradiocaps; 831 sc->sc_opmode = HAL_M_STA; 832 833 /* override default methods */ 834 ic->ic_newassoc = ath_newassoc; 835 ic->ic_updateslot = ath_updateslot; 836 ic->ic_wme.wme_update = ath_wme_update; 837 ic->ic_vap_create = ath_vap_create; 838 ic->ic_vap_delete = ath_vap_delete; 839 ic->ic_raw_xmit = ath_raw_xmit; 840 ic->ic_update_mcast = ath_update_mcast; 841 ic->ic_update_promisc = ath_update_promisc; 842 ic->ic_node_alloc = ath_node_alloc; 843 sc->sc_node_free = ic->ic_node_free; 844 ic->ic_node_free = ath_node_free; 845 sc->sc_node_cleanup = ic->ic_node_cleanup; 846 ic->ic_node_cleanup = ath_node_cleanup; 847 ic->ic_node_getsignal = ath_node_getsignal; 848 ic->ic_scan_start = ath_scan_start; 849 ic->ic_scan_end = ath_scan_end; 850 ic->ic_set_channel = ath_set_channel; 851 #ifdef ATH_ENABLE_11N 852 /* 802.11n specific - but just override anyway */ 853 sc->sc_addba_request = ic->ic_addba_request; 854 sc->sc_addba_response = ic->ic_addba_response; 855 sc->sc_addba_stop = ic->ic_addba_stop; 856 sc->sc_bar_response = ic->ic_bar_response; 857 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 858 859 ic->ic_addba_request = ath_addba_request; 860 ic->ic_addba_response = ath_addba_response; 861 ic->ic_addba_response_timeout = ath_addba_response_timeout; 862 ic->ic_addba_stop = ath_addba_stop; 863 ic->ic_bar_response = ath_bar_response; 864 865 ic->ic_update_chw = ath_update_chw; 866 #endif /* ATH_ENABLE_11N */ 867 868 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 869 /* 870 * There's one vendor bitmap entry in the RX radiotap 871 * header; make sure that's taken into account. 872 */ 873 ieee80211_radiotap_attachv(ic, 874 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 875 ATH_TX_RADIOTAP_PRESENT, 876 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 877 ATH_RX_RADIOTAP_PRESENT); 878 #else 879 /* 880 * No vendor bitmap/extensions are present. 881 */ 882 ieee80211_radiotap_attach(ic, 883 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 884 ATH_TX_RADIOTAP_PRESENT, 885 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 886 ATH_RX_RADIOTAP_PRESENT); 887 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 888 889 /* 890 * Setup the ALQ logging if required 891 */ 892 #ifdef ATH_DEBUG_ALQ 893 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 894 if_ath_alq_setcfg(&sc->sc_alq, 895 sc->sc_ah->ah_macVersion, 896 sc->sc_ah->ah_macRev, 897 sc->sc_ah->ah_phyRev, 898 sc->sc_ah->ah_magic); 899 #endif 900 901 /* 902 * Setup dynamic sysctl's now that country code and 903 * regdomain are available from the hal. 904 */ 905 ath_sysctlattach(sc); 906 ath_sysctl_stats_attach(sc); 907 ath_sysctl_hal_attach(sc); 908 909 if (bootverbose) 910 ieee80211_announce(ic); 911 ath_announce(sc); 912 return 0; 913 bad2: 914 ath_tx_cleanup(sc); 915 ath_desc_free(sc); 916 ath_txdma_teardown(sc); 917 ath_rxdma_teardown(sc); 918 bad: 919 if (ah) 920 ath_hal_detach(ah); 921 922 /* 923 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE.. 924 */ 925 if (ifp != NULL && ifp->if_vnet) { 926 CURVNET_SET(ifp->if_vnet); 927 if_free(ifp); 928 CURVNET_RESTORE(); 929 } else if (ifp != NULL) 930 if_free(ifp); 931 sc->sc_invalid = 1; 932 return error; 933 } 934 935 int 936 ath_detach(struct ath_softc *sc) 937 { 938 struct ifnet *ifp = sc->sc_ifp; 939 940 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 941 __func__, ifp->if_flags); 942 943 /* 944 * NB: the order of these is important: 945 * o stop the chip so no more interrupts will fire 946 * o call the 802.11 layer before detaching the hal to 947 * insure callbacks into the driver to delete global 948 * key cache entries can be handled 949 * o free the taskqueue which drains any pending tasks 950 * o reclaim the tx queue data structures after calling 951 * the 802.11 layer as we'll get called back to reclaim 952 * node state and potentially want to use them 953 * o to cleanup the tx queues the hal is called, so detach 954 * it last 955 * Other than that, it's straightforward... 956 */ 957 ath_stop(ifp); 958 ieee80211_ifdetach(ifp->if_l2com); 959 taskqueue_free(sc->sc_tq); 960 #ifdef ATH_TX99_DIAG 961 if (sc->sc_tx99 != NULL) 962 sc->sc_tx99->detach(sc->sc_tx99); 963 #endif 964 ath_rate_detach(sc->sc_rc); 965 966 #ifdef ATH_DEBUG_ALQ 967 if_ath_alq_tidyup(&sc->sc_alq); 968 #endif 969 970 ath_dfs_detach(sc); 971 ath_desc_free(sc); 972 ath_txdma_teardown(sc); 973 ath_rxdma_teardown(sc); 974 ath_tx_cleanup(sc); 975 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 976 977 CURVNET_SET(ifp->if_vnet); 978 if_free(ifp); 979 CURVNET_RESTORE(); 980 981 return 0; 982 } 983 984 /* 985 * MAC address handling for multiple BSS on the same radio. 986 * The first vap uses the MAC address from the EEPROM. For 987 * subsequent vap's we set the U/L bit (bit 1) in the MAC 988 * address and use the next six bits as an index. 989 */ 990 static void 991 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 992 { 993 int i; 994 995 if (clone && sc->sc_hasbmask) { 996 /* NB: we only do this if h/w supports multiple bssid */ 997 for (i = 0; i < 8; i++) 998 if ((sc->sc_bssidmask & (1<<i)) == 0) 999 break; 1000 if (i != 0) 1001 mac[0] |= (i << 2)|0x2; 1002 } else 1003 i = 0; 1004 sc->sc_bssidmask |= 1<<i; 1005 sc->sc_hwbssidmask[0] &= ~mac[0]; 1006 if (i == 0) 1007 sc->sc_nbssid0++; 1008 } 1009 1010 static void 1011 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1012 { 1013 int i = mac[0] >> 2; 1014 uint8_t mask; 1015 1016 if (i != 0 || --sc->sc_nbssid0 == 0) { 1017 sc->sc_bssidmask &= ~(1<<i); 1018 /* recalculate bssid mask from remaining addresses */ 1019 mask = 0xff; 1020 for (i = 1; i < 8; i++) 1021 if (sc->sc_bssidmask & (1<<i)) 1022 mask &= ~((i<<2)|0x2); 1023 sc->sc_hwbssidmask[0] |= mask; 1024 } 1025 } 1026 1027 /* 1028 * Assign a beacon xmit slot. We try to space out 1029 * assignments so when beacons are staggered the 1030 * traffic coming out of the cab q has maximal time 1031 * to go out before the next beacon is scheduled. 1032 */ 1033 static int 1034 assign_bslot(struct ath_softc *sc) 1035 { 1036 u_int slot, free; 1037 1038 free = 0; 1039 for (slot = 0; slot < ATH_BCBUF; slot++) 1040 if (sc->sc_bslot[slot] == NULL) { 1041 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1042 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1043 return slot; 1044 free = slot; 1045 /* NB: keep looking for a double slot */ 1046 } 1047 return free; 1048 } 1049 1050 static struct ieee80211vap * 1051 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1052 enum ieee80211_opmode opmode, int flags, 1053 const uint8_t bssid[IEEE80211_ADDR_LEN], 1054 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1055 { 1056 struct ath_softc *sc = ic->ic_ifp->if_softc; 1057 struct ath_vap *avp; 1058 struct ieee80211vap *vap; 1059 uint8_t mac[IEEE80211_ADDR_LEN]; 1060 int needbeacon, error; 1061 enum ieee80211_opmode ic_opmode; 1062 1063 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1064 M_80211_VAP, M_WAITOK | M_ZERO); 1065 needbeacon = 0; 1066 IEEE80211_ADDR_COPY(mac, mac0); 1067 1068 ATH_LOCK(sc); 1069 ic_opmode = opmode; /* default to opmode of new vap */ 1070 switch (opmode) { 1071 case IEEE80211_M_STA: 1072 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1073 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1074 goto bad; 1075 } 1076 if (sc->sc_nvaps) { 1077 /* 1078 * With multiple vaps we must fall back 1079 * to s/w beacon miss handling. 1080 */ 1081 flags |= IEEE80211_CLONE_NOBEACONS; 1082 } 1083 if (flags & IEEE80211_CLONE_NOBEACONS) { 1084 /* 1085 * Station mode w/o beacons are implemented w/ AP mode. 1086 */ 1087 ic_opmode = IEEE80211_M_HOSTAP; 1088 } 1089 break; 1090 case IEEE80211_M_IBSS: 1091 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1092 device_printf(sc->sc_dev, 1093 "only 1 ibss vap supported\n"); 1094 goto bad; 1095 } 1096 needbeacon = 1; 1097 break; 1098 case IEEE80211_M_AHDEMO: 1099 #ifdef IEEE80211_SUPPORT_TDMA 1100 if (flags & IEEE80211_CLONE_TDMA) { 1101 if (sc->sc_nvaps != 0) { 1102 device_printf(sc->sc_dev, 1103 "only 1 tdma vap supported\n"); 1104 goto bad; 1105 } 1106 needbeacon = 1; 1107 flags |= IEEE80211_CLONE_NOBEACONS; 1108 } 1109 /* fall thru... */ 1110 #endif 1111 case IEEE80211_M_MONITOR: 1112 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1113 /* 1114 * Adopt existing mode. Adding a monitor or ahdemo 1115 * vap to an existing configuration is of dubious 1116 * value but should be ok. 1117 */ 1118 /* XXX not right for monitor mode */ 1119 ic_opmode = ic->ic_opmode; 1120 } 1121 break; 1122 case IEEE80211_M_HOSTAP: 1123 case IEEE80211_M_MBSS: 1124 needbeacon = 1; 1125 break; 1126 case IEEE80211_M_WDS: 1127 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1128 device_printf(sc->sc_dev, 1129 "wds not supported in sta mode\n"); 1130 goto bad; 1131 } 1132 /* 1133 * Silently remove any request for a unique 1134 * bssid; WDS vap's always share the local 1135 * mac address. 1136 */ 1137 flags &= ~IEEE80211_CLONE_BSSID; 1138 if (sc->sc_nvaps == 0) 1139 ic_opmode = IEEE80211_M_HOSTAP; 1140 else 1141 ic_opmode = ic->ic_opmode; 1142 break; 1143 default: 1144 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1145 goto bad; 1146 } 1147 /* 1148 * Check that a beacon buffer is available; the code below assumes it. 1149 */ 1150 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1151 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1152 goto bad; 1153 } 1154 1155 /* STA, AHDEMO? */ 1156 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1157 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1158 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1159 } 1160 1161 vap = &avp->av_vap; 1162 /* XXX can't hold mutex across if_alloc */ 1163 ATH_UNLOCK(sc); 1164 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1165 bssid, mac); 1166 ATH_LOCK(sc); 1167 if (error != 0) { 1168 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1169 __func__, error); 1170 goto bad2; 1171 } 1172 1173 /* h/w crypto support */ 1174 vap->iv_key_alloc = ath_key_alloc; 1175 vap->iv_key_delete = ath_key_delete; 1176 vap->iv_key_set = ath_key_set; 1177 vap->iv_key_update_begin = ath_key_update_begin; 1178 vap->iv_key_update_end = ath_key_update_end; 1179 1180 /* override various methods */ 1181 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1182 vap->iv_recv_mgmt = ath_recv_mgmt; 1183 vap->iv_reset = ath_reset_vap; 1184 vap->iv_update_beacon = ath_beacon_update; 1185 avp->av_newstate = vap->iv_newstate; 1186 vap->iv_newstate = ath_newstate; 1187 avp->av_bmiss = vap->iv_bmiss; 1188 vap->iv_bmiss = ath_bmiss_vap; 1189 1190 avp->av_node_ps = vap->iv_node_ps; 1191 vap->iv_node_ps = ath_node_powersave; 1192 1193 avp->av_set_tim = vap->iv_set_tim; 1194 vap->iv_set_tim = ath_node_set_tim; 1195 1196 /* Set default parameters */ 1197 1198 /* 1199 * Anything earlier than some AR9300 series MACs don't 1200 * support a smaller MPDU density. 1201 */ 1202 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1203 /* 1204 * All NICs can handle the maximum size, however 1205 * AR5416 based MACs can only TX aggregates w/ RTS 1206 * protection when the total aggregate size is <= 8k. 1207 * However, for now that's enforced by the TX path. 1208 */ 1209 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1210 1211 avp->av_bslot = -1; 1212 if (needbeacon) { 1213 /* 1214 * Allocate beacon state and setup the q for buffered 1215 * multicast frames. We know a beacon buffer is 1216 * available because we checked above. 1217 */ 1218 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1219 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1220 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1221 /* 1222 * Assign the vap to a beacon xmit slot. As above 1223 * this cannot fail to find a free one. 1224 */ 1225 avp->av_bslot = assign_bslot(sc); 1226 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1227 ("beacon slot %u not empty", avp->av_bslot)); 1228 sc->sc_bslot[avp->av_bslot] = vap; 1229 sc->sc_nbcnvaps++; 1230 } 1231 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1232 /* 1233 * Multple vaps are to transmit beacons and we 1234 * have h/w support for TSF adjusting; enable 1235 * use of staggered beacons. 1236 */ 1237 sc->sc_stagbeacons = 1; 1238 } 1239 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1240 } 1241 1242 ic->ic_opmode = ic_opmode; 1243 if (opmode != IEEE80211_M_WDS) { 1244 sc->sc_nvaps++; 1245 if (opmode == IEEE80211_M_STA) 1246 sc->sc_nstavaps++; 1247 if (opmode == IEEE80211_M_MBSS) 1248 sc->sc_nmeshvaps++; 1249 } 1250 switch (ic_opmode) { 1251 case IEEE80211_M_IBSS: 1252 sc->sc_opmode = HAL_M_IBSS; 1253 break; 1254 case IEEE80211_M_STA: 1255 sc->sc_opmode = HAL_M_STA; 1256 break; 1257 case IEEE80211_M_AHDEMO: 1258 #ifdef IEEE80211_SUPPORT_TDMA 1259 if (vap->iv_caps & IEEE80211_C_TDMA) { 1260 sc->sc_tdma = 1; 1261 /* NB: disable tsf adjust */ 1262 sc->sc_stagbeacons = 0; 1263 } 1264 /* 1265 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1266 * just ap mode. 1267 */ 1268 /* fall thru... */ 1269 #endif 1270 case IEEE80211_M_HOSTAP: 1271 case IEEE80211_M_MBSS: 1272 sc->sc_opmode = HAL_M_HOSTAP; 1273 break; 1274 case IEEE80211_M_MONITOR: 1275 sc->sc_opmode = HAL_M_MONITOR; 1276 break; 1277 default: 1278 /* XXX should not happen */ 1279 break; 1280 } 1281 if (sc->sc_hastsfadd) { 1282 /* 1283 * Configure whether or not TSF adjust should be done. 1284 */ 1285 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1286 } 1287 if (flags & IEEE80211_CLONE_NOBEACONS) { 1288 /* 1289 * Enable s/w beacon miss handling. 1290 */ 1291 sc->sc_swbmiss = 1; 1292 } 1293 ATH_UNLOCK(sc); 1294 1295 /* complete setup */ 1296 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1297 return vap; 1298 bad2: 1299 reclaim_address(sc, mac); 1300 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1301 bad: 1302 free(avp, M_80211_VAP); 1303 ATH_UNLOCK(sc); 1304 return NULL; 1305 } 1306 1307 static void 1308 ath_vap_delete(struct ieee80211vap *vap) 1309 { 1310 struct ieee80211com *ic = vap->iv_ic; 1311 struct ifnet *ifp = ic->ic_ifp; 1312 struct ath_softc *sc = ifp->if_softc; 1313 struct ath_hal *ah = sc->sc_ah; 1314 struct ath_vap *avp = ATH_VAP(vap); 1315 1316 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1317 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1318 /* 1319 * Quiesce the hardware while we remove the vap. In 1320 * particular we need to reclaim all references to 1321 * the vap state by any frames pending on the tx queues. 1322 */ 1323 ath_hal_intrset(ah, 0); /* disable interrupts */ 1324 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1325 /* XXX Do all frames from all vaps/nodes need draining here? */ 1326 ath_stoprecv(sc, 1); /* stop recv side */ 1327 } 1328 1329 ieee80211_vap_detach(vap); 1330 1331 /* 1332 * XXX Danger Will Robinson! Danger! 1333 * 1334 * Because ieee80211_vap_detach() can queue a frame (the station 1335 * diassociate message?) after we've drained the TXQ and 1336 * flushed the software TXQ, we will end up with a frame queued 1337 * to a node whose vap is about to be freed. 1338 * 1339 * To work around this, flush the hardware/software again. 1340 * This may be racy - the ath task may be running and the packet 1341 * may be being scheduled between sw->hw txq. Tsk. 1342 * 1343 * TODO: figure out why a new node gets allocated somewhere around 1344 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1345 * call!) 1346 */ 1347 1348 ath_draintxq(sc, ATH_RESET_DEFAULT); 1349 1350 ATH_LOCK(sc); 1351 /* 1352 * Reclaim beacon state. Note this must be done before 1353 * the vap instance is reclaimed as we may have a reference 1354 * to it in the buffer for the beacon frame. 1355 */ 1356 if (avp->av_bcbuf != NULL) { 1357 if (avp->av_bslot != -1) { 1358 sc->sc_bslot[avp->av_bslot] = NULL; 1359 sc->sc_nbcnvaps--; 1360 } 1361 ath_beacon_return(sc, avp->av_bcbuf); 1362 avp->av_bcbuf = NULL; 1363 if (sc->sc_nbcnvaps == 0) { 1364 sc->sc_stagbeacons = 0; 1365 if (sc->sc_hastsfadd) 1366 ath_hal_settsfadjust(sc->sc_ah, 0); 1367 } 1368 /* 1369 * Reclaim any pending mcast frames for the vap. 1370 */ 1371 ath_tx_draintxq(sc, &avp->av_mcastq); 1372 } 1373 /* 1374 * Update bookkeeping. 1375 */ 1376 if (vap->iv_opmode == IEEE80211_M_STA) { 1377 sc->sc_nstavaps--; 1378 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1379 sc->sc_swbmiss = 0; 1380 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1381 vap->iv_opmode == IEEE80211_M_MBSS) { 1382 reclaim_address(sc, vap->iv_myaddr); 1383 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1384 if (vap->iv_opmode == IEEE80211_M_MBSS) 1385 sc->sc_nmeshvaps--; 1386 } 1387 if (vap->iv_opmode != IEEE80211_M_WDS) 1388 sc->sc_nvaps--; 1389 #ifdef IEEE80211_SUPPORT_TDMA 1390 /* TDMA operation ceases when the last vap is destroyed */ 1391 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1392 sc->sc_tdma = 0; 1393 sc->sc_swbmiss = 0; 1394 } 1395 #endif 1396 free(avp, M_80211_VAP); 1397 1398 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1399 /* 1400 * Restart rx+tx machines if still running (RUNNING will 1401 * be reset if we just destroyed the last vap). 1402 */ 1403 if (ath_startrecv(sc) != 0) 1404 if_printf(ifp, "%s: unable to restart recv logic\n", 1405 __func__); 1406 if (sc->sc_beacons) { /* restart beacons */ 1407 #ifdef IEEE80211_SUPPORT_TDMA 1408 if (sc->sc_tdma) 1409 ath_tdma_config(sc, NULL); 1410 else 1411 #endif 1412 ath_beacon_config(sc, NULL); 1413 } 1414 ath_hal_intrset(ah, sc->sc_imask); 1415 } 1416 ATH_UNLOCK(sc); 1417 } 1418 1419 void 1420 ath_suspend(struct ath_softc *sc) 1421 { 1422 struct ifnet *ifp = sc->sc_ifp; 1423 struct ieee80211com *ic = ifp->if_l2com; 1424 1425 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1426 __func__, ifp->if_flags); 1427 1428 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1429 1430 ieee80211_suspend_all(ic); 1431 /* 1432 * NB: don't worry about putting the chip in low power 1433 * mode; pci will power off our socket on suspend and 1434 * CardBus detaches the device. 1435 */ 1436 1437 /* 1438 * XXX ensure none of the taskqueues are running 1439 * XXX ensure sc_invalid is 1 1440 * XXX ensure the calibration callout is disabled 1441 */ 1442 1443 /* Disable the PCIe PHY, complete with workarounds */ 1444 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1445 } 1446 1447 /* 1448 * Reset the key cache since some parts do not reset the 1449 * contents on resume. First we clear all entries, then 1450 * re-load keys that the 802.11 layer assumes are setup 1451 * in h/w. 1452 */ 1453 static void 1454 ath_reset_keycache(struct ath_softc *sc) 1455 { 1456 struct ifnet *ifp = sc->sc_ifp; 1457 struct ieee80211com *ic = ifp->if_l2com; 1458 struct ath_hal *ah = sc->sc_ah; 1459 int i; 1460 1461 for (i = 0; i < sc->sc_keymax; i++) 1462 ath_hal_keyreset(ah, i); 1463 ieee80211_crypto_reload_keys(ic); 1464 } 1465 1466 void 1467 ath_resume(struct ath_softc *sc) 1468 { 1469 struct ifnet *ifp = sc->sc_ifp; 1470 struct ieee80211com *ic = ifp->if_l2com; 1471 struct ath_hal *ah = sc->sc_ah; 1472 HAL_STATUS status; 1473 1474 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1475 __func__, ifp->if_flags); 1476 1477 /* Re-enable PCIe, re-enable the PCIe bus */ 1478 ath_hal_enablepcie(ah, 0, 0); 1479 1480 /* 1481 * Must reset the chip before we reload the 1482 * keycache as we were powered down on suspend. 1483 */ 1484 ath_hal_reset(ah, sc->sc_opmode, 1485 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1486 AH_FALSE, &status); 1487 ath_reset_keycache(sc); 1488 1489 /* Let DFS at it in case it's a DFS channel */ 1490 ath_dfs_radar_enable(sc, ic->ic_curchan); 1491 1492 /* Restore the LED configuration */ 1493 ath_led_config(sc); 1494 ath_hal_setledstate(ah, HAL_LED_INIT); 1495 1496 if (sc->sc_resume_up) 1497 ieee80211_resume_all(ic); 1498 1499 /* XXX beacons ? */ 1500 } 1501 1502 void 1503 ath_shutdown(struct ath_softc *sc) 1504 { 1505 struct ifnet *ifp = sc->sc_ifp; 1506 1507 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1508 __func__, ifp->if_flags); 1509 1510 ath_stop(ifp); 1511 /* NB: no point powering down chip as we're about to reboot */ 1512 } 1513 1514 /* 1515 * Interrupt handler. Most of the actual processing is deferred. 1516 */ 1517 void 1518 ath_intr(void *arg) 1519 { 1520 struct ath_softc *sc = arg; 1521 struct ifnet *ifp = sc->sc_ifp; 1522 struct ath_hal *ah = sc->sc_ah; 1523 HAL_INT status = 0; 1524 uint32_t txqs; 1525 1526 /* 1527 * If we're inside a reset path, just print a warning and 1528 * clear the ISR. The reset routine will finish it for us. 1529 */ 1530 ATH_PCU_LOCK(sc); 1531 if (sc->sc_inreset_cnt) { 1532 HAL_INT status; 1533 ath_hal_getisr(ah, &status); /* clear ISR */ 1534 ath_hal_intrset(ah, 0); /* disable further intr's */ 1535 DPRINTF(sc, ATH_DEBUG_ANY, 1536 "%s: in reset, ignoring: status=0x%x\n", 1537 __func__, status); 1538 ATH_PCU_UNLOCK(sc); 1539 return; 1540 } 1541 1542 if (sc->sc_invalid) { 1543 /* 1544 * The hardware is not ready/present, don't touch anything. 1545 * Note this can happen early on if the IRQ is shared. 1546 */ 1547 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1548 ATH_PCU_UNLOCK(sc); 1549 return; 1550 } 1551 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1552 ATH_PCU_UNLOCK(sc); 1553 return; 1554 } 1555 1556 if ((ifp->if_flags & IFF_UP) == 0 || 1557 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1558 HAL_INT status; 1559 1560 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1561 __func__, ifp->if_flags); 1562 ath_hal_getisr(ah, &status); /* clear ISR */ 1563 ath_hal_intrset(ah, 0); /* disable further intr's */ 1564 ATH_PCU_UNLOCK(sc); 1565 return; 1566 } 1567 1568 /* 1569 * Figure out the reason(s) for the interrupt. Note 1570 * that the hal returns a pseudo-ISR that may include 1571 * bits we haven't explicitly enabled so we mask the 1572 * value to insure we only process bits we requested. 1573 */ 1574 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1575 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1576 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 1577 #ifdef ATH_KTR_INTR_DEBUG 1578 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 1579 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1580 ah->ah_intrstate[0], 1581 ah->ah_intrstate[1], 1582 ah->ah_intrstate[2], 1583 ah->ah_intrstate[3], 1584 ah->ah_intrstate[6]); 1585 #endif 1586 1587 /* Squirrel away SYNC interrupt debugging */ 1588 if (ah->ah_syncstate != 0) { 1589 int i; 1590 for (i = 0; i < 32; i++) 1591 if (ah->ah_syncstate & (i << i)) 1592 sc->sc_intr_stats.sync_intr[i]++; 1593 } 1594 1595 status &= sc->sc_imask; /* discard unasked for bits */ 1596 1597 /* Short-circuit un-handled interrupts */ 1598 if (status == 0x0) { 1599 ATH_PCU_UNLOCK(sc); 1600 return; 1601 } 1602 1603 /* 1604 * Take a note that we're inside the interrupt handler, so 1605 * the reset routines know to wait. 1606 */ 1607 sc->sc_intr_cnt++; 1608 ATH_PCU_UNLOCK(sc); 1609 1610 /* 1611 * Handle the interrupt. We won't run concurrent with the reset 1612 * or channel change routines as they'll wait for sc_intr_cnt 1613 * to be 0 before continuing. 1614 */ 1615 if (status & HAL_INT_FATAL) { 1616 sc->sc_stats.ast_hardware++; 1617 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1618 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1619 } else { 1620 if (status & HAL_INT_SWBA) { 1621 /* 1622 * Software beacon alert--time to send a beacon. 1623 * Handle beacon transmission directly; deferring 1624 * this is too slow to meet timing constraints 1625 * under load. 1626 */ 1627 #ifdef IEEE80211_SUPPORT_TDMA 1628 if (sc->sc_tdma) { 1629 if (sc->sc_tdmaswba == 0) { 1630 struct ieee80211com *ic = ifp->if_l2com; 1631 struct ieee80211vap *vap = 1632 TAILQ_FIRST(&ic->ic_vaps); 1633 ath_tdma_beacon_send(sc, vap); 1634 sc->sc_tdmaswba = 1635 vap->iv_tdma->tdma_bintval; 1636 } else 1637 sc->sc_tdmaswba--; 1638 } else 1639 #endif 1640 { 1641 ath_beacon_proc(sc, 0); 1642 #ifdef IEEE80211_SUPPORT_SUPERG 1643 /* 1644 * Schedule the rx taskq in case there's no 1645 * traffic so any frames held on the staging 1646 * queue are aged and potentially flushed. 1647 */ 1648 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1649 #endif 1650 } 1651 } 1652 if (status & HAL_INT_RXEOL) { 1653 int imask; 1654 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 1655 ATH_PCU_LOCK(sc); 1656 /* 1657 * NB: the hardware should re-read the link when 1658 * RXE bit is written, but it doesn't work at 1659 * least on older hardware revs. 1660 */ 1661 sc->sc_stats.ast_rxeol++; 1662 /* 1663 * Disable RXEOL/RXORN - prevent an interrupt 1664 * storm until the PCU logic can be reset. 1665 * In case the interface is reset some other 1666 * way before "sc_kickpcu" is called, don't 1667 * modify sc_imask - that way if it is reset 1668 * by a call to ath_reset() somehow, the 1669 * interrupt mask will be correctly reprogrammed. 1670 */ 1671 imask = sc->sc_imask; 1672 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1673 ath_hal_intrset(ah, imask); 1674 /* 1675 * Only blank sc_rxlink if we've not yet kicked 1676 * the PCU. 1677 * 1678 * This isn't entirely correct - the correct solution 1679 * would be to have a PCU lock and engage that for 1680 * the duration of the PCU fiddling; which would include 1681 * running the RX process. Otherwise we could end up 1682 * messing up the RX descriptor chain and making the 1683 * RX desc list much shorter. 1684 */ 1685 if (! sc->sc_kickpcu) 1686 sc->sc_rxlink = NULL; 1687 sc->sc_kickpcu = 1; 1688 /* 1689 * Enqueue an RX proc, to handled whatever 1690 * is in the RX queue. 1691 * This will then kick the PCU. 1692 */ 1693 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1694 ATH_PCU_UNLOCK(sc); 1695 } 1696 if (status & HAL_INT_TXURN) { 1697 sc->sc_stats.ast_txurn++; 1698 /* bump tx trigger level */ 1699 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1700 } 1701 /* 1702 * Handle both the legacy and RX EDMA interrupt bits. 1703 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1704 */ 1705 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1706 sc->sc_stats.ast_rx_intr++; 1707 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1708 } 1709 if (status & HAL_INT_TX) { 1710 sc->sc_stats.ast_tx_intr++; 1711 /* 1712 * Grab all the currently set bits in the HAL txq bitmap 1713 * and blank them. This is the only place we should be 1714 * doing this. 1715 */ 1716 if (! sc->sc_isedma) { 1717 ATH_PCU_LOCK(sc); 1718 txqs = 0xffffffff; 1719 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1720 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 1721 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 1722 txqs, 1723 sc->sc_txq_active, 1724 sc->sc_txq_active | txqs); 1725 sc->sc_txq_active |= txqs; 1726 ATH_PCU_UNLOCK(sc); 1727 } 1728 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1729 } 1730 if (status & HAL_INT_BMISS) { 1731 sc->sc_stats.ast_bmiss++; 1732 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1733 } 1734 if (status & HAL_INT_GTT) 1735 sc->sc_stats.ast_tx_timeout++; 1736 if (status & HAL_INT_CST) 1737 sc->sc_stats.ast_tx_cst++; 1738 if (status & HAL_INT_MIB) { 1739 sc->sc_stats.ast_mib++; 1740 ATH_PCU_LOCK(sc); 1741 /* 1742 * Disable interrupts until we service the MIB 1743 * interrupt; otherwise it will continue to fire. 1744 */ 1745 ath_hal_intrset(ah, 0); 1746 /* 1747 * Let the hal handle the event. We assume it will 1748 * clear whatever condition caused the interrupt. 1749 */ 1750 ath_hal_mibevent(ah, &sc->sc_halstats); 1751 /* 1752 * Don't reset the interrupt if we've just 1753 * kicked the PCU, or we may get a nested 1754 * RXEOL before the rxproc has had a chance 1755 * to run. 1756 */ 1757 if (sc->sc_kickpcu == 0) 1758 ath_hal_intrset(ah, sc->sc_imask); 1759 ATH_PCU_UNLOCK(sc); 1760 } 1761 if (status & HAL_INT_RXORN) { 1762 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1763 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 1764 sc->sc_stats.ast_rxorn++; 1765 } 1766 } 1767 ATH_PCU_LOCK(sc); 1768 sc->sc_intr_cnt--; 1769 ATH_PCU_UNLOCK(sc); 1770 } 1771 1772 static void 1773 ath_fatal_proc(void *arg, int pending) 1774 { 1775 struct ath_softc *sc = arg; 1776 struct ifnet *ifp = sc->sc_ifp; 1777 u_int32_t *state; 1778 u_int32_t len; 1779 void *sp; 1780 1781 if_printf(ifp, "hardware error; resetting\n"); 1782 /* 1783 * Fatal errors are unrecoverable. Typically these 1784 * are caused by DMA errors. Collect h/w state from 1785 * the hal so we can diagnose what's going on. 1786 */ 1787 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1788 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1789 state = sp; 1790 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1791 state[0], state[1] , state[2], state[3], 1792 state[4], state[5]); 1793 } 1794 ath_reset(ifp, ATH_RESET_NOLOSS); 1795 } 1796 1797 static void 1798 ath_bmiss_vap(struct ieee80211vap *vap) 1799 { 1800 /* 1801 * Workaround phantom bmiss interrupts by sanity-checking 1802 * the time of our last rx'd frame. If it is within the 1803 * beacon miss interval then ignore the interrupt. If it's 1804 * truly a bmiss we'll get another interrupt soon and that'll 1805 * be dispatched up for processing. Note this applies only 1806 * for h/w beacon miss events. 1807 */ 1808 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1809 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1810 struct ath_softc *sc = ifp->if_softc; 1811 u_int64_t lastrx = sc->sc_lastrx; 1812 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1813 /* XXX should take a locked ref to iv_bss */ 1814 u_int bmisstimeout = 1815 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1816 1817 DPRINTF(sc, ATH_DEBUG_BEACON, 1818 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1819 __func__, (unsigned long long) tsf, 1820 (unsigned long long)(tsf - lastrx), 1821 (unsigned long long) lastrx, bmisstimeout); 1822 1823 if (tsf - lastrx <= bmisstimeout) { 1824 sc->sc_stats.ast_bmiss_phantom++; 1825 return; 1826 } 1827 } 1828 ATH_VAP(vap)->av_bmiss(vap); 1829 } 1830 1831 static int 1832 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1833 { 1834 uint32_t rsize; 1835 void *sp; 1836 1837 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1838 return 0; 1839 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1840 *hangs = *(uint32_t *)sp; 1841 return 1; 1842 } 1843 1844 static void 1845 ath_bmiss_proc(void *arg, int pending) 1846 { 1847 struct ath_softc *sc = arg; 1848 struct ifnet *ifp = sc->sc_ifp; 1849 uint32_t hangs; 1850 1851 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1852 1853 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1854 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1855 ath_reset(ifp, ATH_RESET_NOLOSS); 1856 } else 1857 ieee80211_beacon_miss(ifp->if_l2com); 1858 } 1859 1860 /* 1861 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1862 * calcs together with WME. If necessary disable the crypto 1863 * hardware and mark the 802.11 state so keys will be setup 1864 * with the MIC work done in software. 1865 */ 1866 static void 1867 ath_settkipmic(struct ath_softc *sc) 1868 { 1869 struct ifnet *ifp = sc->sc_ifp; 1870 struct ieee80211com *ic = ifp->if_l2com; 1871 1872 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1873 if (ic->ic_flags & IEEE80211_F_WME) { 1874 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1875 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1876 } else { 1877 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1878 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1879 } 1880 } 1881 } 1882 1883 static void 1884 ath_init(void *arg) 1885 { 1886 struct ath_softc *sc = (struct ath_softc *) arg; 1887 struct ifnet *ifp = sc->sc_ifp; 1888 struct ieee80211com *ic = ifp->if_l2com; 1889 struct ath_hal *ah = sc->sc_ah; 1890 HAL_STATUS status; 1891 1892 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1893 __func__, ifp->if_flags); 1894 1895 ATH_LOCK(sc); 1896 /* 1897 * Stop anything previously setup. This is safe 1898 * whether this is the first time through or not. 1899 */ 1900 ath_stop_locked(ifp); 1901 1902 /* 1903 * The basic interface to setting the hardware in a good 1904 * state is ``reset''. On return the hardware is known to 1905 * be powered up and with interrupts disabled. This must 1906 * be followed by initialization of the appropriate bits 1907 * and then setup of the interrupt mask. 1908 */ 1909 ath_settkipmic(sc); 1910 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1911 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1912 status); 1913 ATH_UNLOCK(sc); 1914 return; 1915 } 1916 ath_chan_change(sc, ic->ic_curchan); 1917 1918 /* Let DFS at it in case it's a DFS channel */ 1919 ath_dfs_radar_enable(sc, ic->ic_curchan); 1920 1921 /* 1922 * Likewise this is set during reset so update 1923 * state cached in the driver. 1924 */ 1925 sc->sc_diversity = ath_hal_getdiversity(ah); 1926 sc->sc_lastlongcal = 0; 1927 sc->sc_resetcal = 1; 1928 sc->sc_lastcalreset = 0; 1929 sc->sc_lastani = 0; 1930 sc->sc_lastshortcal = 0; 1931 sc->sc_doresetcal = AH_FALSE; 1932 /* 1933 * Beacon timers were cleared here; give ath_newstate() 1934 * a hint that the beacon timers should be poked when 1935 * things transition to the RUN state. 1936 */ 1937 sc->sc_beacons = 0; 1938 1939 /* 1940 * Setup the hardware after reset: the key cache 1941 * is filled as needed and the receive engine is 1942 * set going. Frame transmit is handled entirely 1943 * in the frame output path; there's nothing to do 1944 * here except setup the interrupt mask. 1945 */ 1946 if (ath_startrecv(sc) != 0) { 1947 if_printf(ifp, "unable to start recv logic\n"); 1948 ATH_UNLOCK(sc); 1949 return; 1950 } 1951 1952 /* 1953 * Enable interrupts. 1954 */ 1955 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1956 | HAL_INT_RXEOL | HAL_INT_RXORN 1957 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1958 1959 /* 1960 * Enable RX EDMA bits. Note these overlap with 1961 * HAL_INT_RX and HAL_INT_RXDESC respectively. 1962 */ 1963 if (sc->sc_isedma) 1964 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 1965 1966 /* 1967 * Enable MIB interrupts when there are hardware phy counters. 1968 * Note we only do this (at the moment) for station mode. 1969 */ 1970 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1971 sc->sc_imask |= HAL_INT_MIB; 1972 1973 /* Enable global TX timeout and carrier sense timeout if available */ 1974 if (ath_hal_gtxto_supported(ah)) 1975 sc->sc_imask |= HAL_INT_GTT; 1976 1977 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1978 __func__, sc->sc_imask); 1979 1980 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1981 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1982 ath_hal_intrset(ah, sc->sc_imask); 1983 1984 ATH_UNLOCK(sc); 1985 1986 #ifdef ATH_TX99_DIAG 1987 if (sc->sc_tx99 != NULL) 1988 sc->sc_tx99->start(sc->sc_tx99); 1989 else 1990 #endif 1991 ieee80211_start_all(ic); /* start all vap's */ 1992 } 1993 1994 static void 1995 ath_stop_locked(struct ifnet *ifp) 1996 { 1997 struct ath_softc *sc = ifp->if_softc; 1998 struct ath_hal *ah = sc->sc_ah; 1999 2000 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 2001 __func__, sc->sc_invalid, ifp->if_flags); 2002 2003 ATH_LOCK_ASSERT(sc); 2004 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2005 /* 2006 * Shutdown the hardware and driver: 2007 * reset 802.11 state machine 2008 * turn off timers 2009 * disable interrupts 2010 * turn off the radio 2011 * clear transmit machinery 2012 * clear receive machinery 2013 * drain and release tx queues 2014 * reclaim beacon resources 2015 * power down hardware 2016 * 2017 * Note that some of this work is not possible if the 2018 * hardware is gone (invalid). 2019 */ 2020 #ifdef ATH_TX99_DIAG 2021 if (sc->sc_tx99 != NULL) 2022 sc->sc_tx99->stop(sc->sc_tx99); 2023 #endif 2024 callout_stop(&sc->sc_wd_ch); 2025 sc->sc_wd_timer = 0; 2026 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2027 if (!sc->sc_invalid) { 2028 if (sc->sc_softled) { 2029 callout_stop(&sc->sc_ledtimer); 2030 ath_hal_gpioset(ah, sc->sc_ledpin, 2031 !sc->sc_ledon); 2032 sc->sc_blinking = 0; 2033 } 2034 ath_hal_intrset(ah, 0); 2035 } 2036 ath_draintxq(sc, ATH_RESET_DEFAULT); 2037 if (!sc->sc_invalid) { 2038 ath_stoprecv(sc, 1); 2039 ath_hal_phydisable(ah); 2040 } else 2041 sc->sc_rxlink = NULL; 2042 ath_beacon_free(sc); /* XXX not needed */ 2043 } 2044 } 2045 2046 #define MAX_TXRX_ITERATIONS 1000 2047 static void 2048 ath_txrx_stop_locked(struct ath_softc *sc) 2049 { 2050 int i = MAX_TXRX_ITERATIONS; 2051 2052 ATH_UNLOCK_ASSERT(sc); 2053 ATH_PCU_LOCK_ASSERT(sc); 2054 2055 /* 2056 * Sleep until all the pending operations have completed. 2057 * 2058 * The caller must ensure that reset has been incremented 2059 * or the pending operations may continue being queued. 2060 */ 2061 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2062 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2063 if (i <= 0) 2064 break; 2065 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 2066 i--; 2067 } 2068 2069 if (i <= 0) 2070 device_printf(sc->sc_dev, 2071 "%s: didn't finish after %d iterations\n", 2072 __func__, MAX_TXRX_ITERATIONS); 2073 } 2074 #undef MAX_TXRX_ITERATIONS 2075 2076 #if 0 2077 static void 2078 ath_txrx_stop(struct ath_softc *sc) 2079 { 2080 ATH_UNLOCK_ASSERT(sc); 2081 ATH_PCU_UNLOCK_ASSERT(sc); 2082 2083 ATH_PCU_LOCK(sc); 2084 ath_txrx_stop_locked(sc); 2085 ATH_PCU_UNLOCK(sc); 2086 } 2087 #endif 2088 2089 static void 2090 ath_txrx_start(struct ath_softc *sc) 2091 { 2092 2093 taskqueue_unblock(sc->sc_tq); 2094 } 2095 2096 /* 2097 * Grab the reset lock, and wait around until noone else 2098 * is trying to do anything with it. 2099 * 2100 * This is totally horrible but we can't hold this lock for 2101 * long enough to do TX/RX or we end up with net80211/ip stack 2102 * LORs and eventual deadlock. 2103 * 2104 * "dowait" signals whether to spin, waiting for the reset 2105 * lock count to reach 0. This should (for now) only be used 2106 * during the reset path, as the rest of the code may not 2107 * be locking-reentrant enough to behave correctly. 2108 * 2109 * Another, cleaner way should be found to serialise all of 2110 * these operations. 2111 */ 2112 #define MAX_RESET_ITERATIONS 10 2113 static int 2114 ath_reset_grablock(struct ath_softc *sc, int dowait) 2115 { 2116 int w = 0; 2117 int i = MAX_RESET_ITERATIONS; 2118 2119 ATH_PCU_LOCK_ASSERT(sc); 2120 do { 2121 if (sc->sc_inreset_cnt == 0) { 2122 w = 1; 2123 break; 2124 } 2125 if (dowait == 0) { 2126 w = 0; 2127 break; 2128 } 2129 ATH_PCU_UNLOCK(sc); 2130 pause("ath_reset_grablock", 1); 2131 i--; 2132 ATH_PCU_LOCK(sc); 2133 } while (i > 0); 2134 2135 /* 2136 * We always increment the refcounter, regardless 2137 * of whether we succeeded to get it in an exclusive 2138 * way. 2139 */ 2140 sc->sc_inreset_cnt++; 2141 2142 if (i <= 0) 2143 device_printf(sc->sc_dev, 2144 "%s: didn't finish after %d iterations\n", 2145 __func__, MAX_RESET_ITERATIONS); 2146 2147 if (w == 0) 2148 device_printf(sc->sc_dev, 2149 "%s: warning, recursive reset path!\n", 2150 __func__); 2151 2152 return w; 2153 } 2154 #undef MAX_RESET_ITERATIONS 2155 2156 /* 2157 * XXX TODO: write ath_reset_releaselock 2158 */ 2159 2160 static void 2161 ath_stop(struct ifnet *ifp) 2162 { 2163 struct ath_softc *sc = ifp->if_softc; 2164 2165 ATH_LOCK(sc); 2166 ath_stop_locked(ifp); 2167 ATH_UNLOCK(sc); 2168 } 2169 2170 /* 2171 * Reset the hardware w/o losing operational state. This is 2172 * basically a more efficient way of doing ath_stop, ath_init, 2173 * followed by state transitions to the current 802.11 2174 * operational state. Used to recover from various errors and 2175 * to reset or reload hardware state. 2176 */ 2177 int 2178 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2179 { 2180 struct ath_softc *sc = ifp->if_softc; 2181 struct ieee80211com *ic = ifp->if_l2com; 2182 struct ath_hal *ah = sc->sc_ah; 2183 HAL_STATUS status; 2184 int i; 2185 2186 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2187 2188 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2189 ATH_PCU_UNLOCK_ASSERT(sc); 2190 ATH_UNLOCK_ASSERT(sc); 2191 2192 /* Try to (stop any further TX/RX from occuring */ 2193 taskqueue_block(sc->sc_tq); 2194 2195 ATH_PCU_LOCK(sc); 2196 ath_hal_intrset(ah, 0); /* disable interrupts */ 2197 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2198 if (ath_reset_grablock(sc, 1) == 0) { 2199 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2200 __func__); 2201 } 2202 ATH_PCU_UNLOCK(sc); 2203 2204 /* 2205 * Should now wait for pending TX/RX to complete 2206 * and block future ones from occuring. This needs to be 2207 * done before the TX queue is drained. 2208 */ 2209 ath_draintxq(sc, reset_type); /* stop xmit side */ 2210 2211 /* 2212 * Regardless of whether we're doing a no-loss flush or 2213 * not, stop the PCU and handle what's in the RX queue. 2214 * That way frames aren't dropped which shouldn't be. 2215 */ 2216 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2217 ath_rx_flush(sc); 2218 2219 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2220 /* NB: indicate channel change so we do a full reset */ 2221 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2222 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2223 __func__, status); 2224 sc->sc_diversity = ath_hal_getdiversity(ah); 2225 2226 /* Let DFS at it in case it's a DFS channel */ 2227 ath_dfs_radar_enable(sc, ic->ic_curchan); 2228 2229 if (ath_startrecv(sc) != 0) /* restart recv */ 2230 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2231 /* 2232 * We may be doing a reset in response to an ioctl 2233 * that changes the channel so update any state that 2234 * might change as a result. 2235 */ 2236 ath_chan_change(sc, ic->ic_curchan); 2237 if (sc->sc_beacons) { /* restart beacons */ 2238 #ifdef IEEE80211_SUPPORT_TDMA 2239 if (sc->sc_tdma) 2240 ath_tdma_config(sc, NULL); 2241 else 2242 #endif 2243 ath_beacon_config(sc, NULL); 2244 } 2245 2246 /* 2247 * Release the reset lock and re-enable interrupts here. 2248 * If an interrupt was being processed in ath_intr(), 2249 * it would disable interrupts at this point. So we have 2250 * to atomically enable interrupts and decrement the 2251 * reset counter - this way ath_intr() doesn't end up 2252 * disabling interrupts without a corresponding enable 2253 * in the rest or channel change path. 2254 */ 2255 ATH_PCU_LOCK(sc); 2256 sc->sc_inreset_cnt--; 2257 /* XXX only do this if sc_inreset_cnt == 0? */ 2258 ath_hal_intrset(ah, sc->sc_imask); 2259 ATH_PCU_UNLOCK(sc); 2260 2261 /* 2262 * TX and RX can be started here. If it were started with 2263 * sc_inreset_cnt > 0, the TX and RX path would abort. 2264 * Thus if this is a nested call through the reset or 2265 * channel change code, TX completion will occur but 2266 * RX completion and ath_start / ath_tx_start will not 2267 * run. 2268 */ 2269 2270 /* Restart TX/RX as needed */ 2271 ath_txrx_start(sc); 2272 2273 /* Restart TX completion and pending TX */ 2274 if (reset_type == ATH_RESET_NOLOSS) { 2275 ATH_TX_LOCK(sc); 2276 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2277 if (ATH_TXQ_SETUP(sc, i)) { 2278 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2279 ath_txq_sched(sc, &sc->sc_txq[i]); 2280 } 2281 } 2282 ATH_TX_UNLOCK(sc); 2283 } 2284 2285 /* 2286 * This may have been set during an ath_start() call which 2287 * set this once it detected a concurrent TX was going on. 2288 * So, clear it. 2289 */ 2290 IF_LOCK(&ifp->if_snd); 2291 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2292 IF_UNLOCK(&ifp->if_snd); 2293 2294 /* Handle any frames in the TX queue */ 2295 /* 2296 * XXX should this be done by the caller, rather than 2297 * ath_reset() ? 2298 */ 2299 ath_tx_kick(sc); /* restart xmit */ 2300 return 0; 2301 } 2302 2303 static int 2304 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2305 { 2306 struct ieee80211com *ic = vap->iv_ic; 2307 struct ifnet *ifp = ic->ic_ifp; 2308 struct ath_softc *sc = ifp->if_softc; 2309 struct ath_hal *ah = sc->sc_ah; 2310 2311 switch (cmd) { 2312 case IEEE80211_IOC_TXPOWER: 2313 /* 2314 * If per-packet TPC is enabled, then we have nothing 2315 * to do; otherwise we need to force the global limit. 2316 * All this can happen directly; no need to reset. 2317 */ 2318 if (!ath_hal_gettpc(ah)) 2319 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2320 return 0; 2321 } 2322 /* XXX? Full or NOLOSS? */ 2323 return ath_reset(ifp, ATH_RESET_FULL); 2324 } 2325 2326 struct ath_buf * 2327 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2328 { 2329 struct ath_buf *bf; 2330 2331 ATH_TXBUF_LOCK_ASSERT(sc); 2332 2333 if (btype == ATH_BUFTYPE_MGMT) 2334 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2335 else 2336 bf = TAILQ_FIRST(&sc->sc_txbuf); 2337 2338 if (bf == NULL) { 2339 sc->sc_stats.ast_tx_getnobuf++; 2340 } else { 2341 if (bf->bf_flags & ATH_BUF_BUSY) { 2342 sc->sc_stats.ast_tx_getbusybuf++; 2343 bf = NULL; 2344 } 2345 } 2346 2347 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2348 if (btype == ATH_BUFTYPE_MGMT) 2349 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2350 else { 2351 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2352 sc->sc_txbuf_cnt--; 2353 2354 /* 2355 * This shuldn't happen; however just to be 2356 * safe print a warning and fudge the txbuf 2357 * count. 2358 */ 2359 if (sc->sc_txbuf_cnt < 0) { 2360 device_printf(sc->sc_dev, 2361 "%s: sc_txbuf_cnt < 0?\n", 2362 __func__); 2363 sc->sc_txbuf_cnt = 0; 2364 } 2365 } 2366 } else 2367 bf = NULL; 2368 2369 if (bf == NULL) { 2370 /* XXX should check which list, mgmt or otherwise */ 2371 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2372 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2373 "out of xmit buffers" : "xmit buffer busy"); 2374 return NULL; 2375 } 2376 2377 /* XXX TODO: should do this at buffer list initialisation */ 2378 /* XXX (then, ensure the buffer has the right flag set) */ 2379 if (btype == ATH_BUFTYPE_MGMT) 2380 bf->bf_flags |= ATH_BUF_MGMT; 2381 else 2382 bf->bf_flags &= (~ATH_BUF_MGMT); 2383 2384 /* Valid bf here; clear some basic fields */ 2385 bf->bf_next = NULL; /* XXX just to be sure */ 2386 bf->bf_last = NULL; /* XXX again, just to be sure */ 2387 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2388 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2389 2390 /* 2391 * Track the descriptor ID only if doing EDMA 2392 */ 2393 if (sc->sc_isedma) { 2394 bf->bf_descid = sc->sc_txbuf_descid; 2395 sc->sc_txbuf_descid++; 2396 } 2397 2398 return bf; 2399 } 2400 2401 /* 2402 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2403 * can't be thrown back on the queue as they could still be 2404 * in use by the hardware. 2405 * 2406 * This duplicates the buffer, or returns NULL. 2407 * 2408 * The descriptor is also copied but the link pointers and 2409 * the DMA segments aren't copied; this frame should thus 2410 * be again passed through the descriptor setup/chain routines 2411 * so the link is correct. 2412 * 2413 * The caller must free the buffer using ath_freebuf(). 2414 * 2415 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2416 * XXX in the TX pathway when retries are needed. 2417 * XXX Figure out how to keep some buffers free, or factor the 2418 * XXX number of busy buffers into the xmit path (ath_start()) 2419 * XXX so we don't over-commit. 2420 */ 2421 struct ath_buf * 2422 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2423 { 2424 struct ath_buf *tbf; 2425 2426 tbf = ath_getbuf(sc, 2427 (bf->bf_flags & ATH_BUF_MGMT) ? 2428 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2429 if (tbf == NULL) 2430 return NULL; /* XXX failure? Why? */ 2431 2432 /* Copy basics */ 2433 tbf->bf_next = NULL; 2434 tbf->bf_nseg = bf->bf_nseg; 2435 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2436 tbf->bf_status = bf->bf_status; 2437 tbf->bf_m = bf->bf_m; 2438 tbf->bf_node = bf->bf_node; 2439 /* will be setup by the chain/setup function */ 2440 tbf->bf_lastds = NULL; 2441 /* for now, last == self */ 2442 tbf->bf_last = tbf; 2443 tbf->bf_comp = bf->bf_comp; 2444 2445 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2446 2447 /* The caller has to re-init the descriptor + links */ 2448 2449 /* Copy state */ 2450 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2451 2452 return tbf; 2453 } 2454 2455 struct ath_buf * 2456 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2457 { 2458 struct ath_buf *bf; 2459 2460 ATH_TXBUF_LOCK(sc); 2461 bf = _ath_getbuf_locked(sc, btype); 2462 /* 2463 * If a mgmt buffer was requested but we're out of those, 2464 * try requesting a normal one. 2465 */ 2466 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2467 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2468 ATH_TXBUF_UNLOCK(sc); 2469 if (bf == NULL) { 2470 struct ifnet *ifp = sc->sc_ifp; 2471 2472 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2473 sc->sc_stats.ast_tx_qstop++; 2474 IF_LOCK(&ifp->if_snd); 2475 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2476 IF_UNLOCK(&ifp->if_snd); 2477 } 2478 return bf; 2479 } 2480 2481 static void 2482 ath_start_queue(struct ifnet *ifp) 2483 { 2484 struct ath_softc *sc = ifp->if_softc; 2485 2486 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start"); 2487 ath_tx_kick(sc); 2488 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished"); 2489 } 2490 2491 void 2492 ath_start_task(void *arg, int npending) 2493 { 2494 struct ath_softc *sc = (struct ath_softc *) arg; 2495 struct ifnet *ifp = sc->sc_ifp; 2496 2497 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start"); 2498 2499 /* XXX is it ok to hold the ATH_LOCK here? */ 2500 ATH_PCU_LOCK(sc); 2501 if (sc->sc_inreset_cnt > 0) { 2502 device_printf(sc->sc_dev, 2503 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2504 ATH_PCU_UNLOCK(sc); 2505 IF_LOCK(&ifp->if_snd); 2506 sc->sc_stats.ast_tx_qstop++; 2507 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2508 IF_UNLOCK(&ifp->if_snd); 2509 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 2510 return; 2511 } 2512 sc->sc_txstart_cnt++; 2513 ATH_PCU_UNLOCK(sc); 2514 2515 ATH_TX_LOCK(sc); 2516 ath_start(sc->sc_ifp); 2517 ATH_TX_UNLOCK(sc); 2518 2519 ATH_PCU_LOCK(sc); 2520 sc->sc_txstart_cnt--; 2521 ATH_PCU_UNLOCK(sc); 2522 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished"); 2523 } 2524 2525 void 2526 ath_start(struct ifnet *ifp) 2527 { 2528 struct ath_softc *sc = ifp->if_softc; 2529 struct ieee80211_node *ni; 2530 struct ath_buf *bf; 2531 struct mbuf *m, *next; 2532 ath_bufhead frags; 2533 int npkts = 0; 2534 2535 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2536 return; 2537 2538 ATH_TX_LOCK_ASSERT(sc); 2539 2540 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called"); 2541 2542 for (;;) { 2543 ATH_TXBUF_LOCK(sc); 2544 if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) { 2545 /* XXX increment counter? */ 2546 ATH_TXBUF_UNLOCK(sc); 2547 IF_LOCK(&ifp->if_snd); 2548 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2549 IF_UNLOCK(&ifp->if_snd); 2550 break; 2551 } 2552 ATH_TXBUF_UNLOCK(sc); 2553 2554 /* 2555 * Grab a TX buffer and associated resources. 2556 */ 2557 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2558 if (bf == NULL) 2559 break; 2560 2561 IFQ_DEQUEUE(&ifp->if_snd, m); 2562 if (m == NULL) { 2563 ATH_TXBUF_LOCK(sc); 2564 ath_returnbuf_head(sc, bf); 2565 ATH_TXBUF_UNLOCK(sc); 2566 break; 2567 } 2568 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2569 npkts ++; 2570 /* 2571 * Check for fragmentation. If this frame 2572 * has been broken up verify we have enough 2573 * buffers to send all the fragments so all 2574 * go out or none... 2575 */ 2576 TAILQ_INIT(&frags); 2577 if ((m->m_flags & M_FRAG) && 2578 !ath_txfrag_setup(sc, &frags, m, ni)) { 2579 DPRINTF(sc, ATH_DEBUG_XMIT, 2580 "%s: out of txfrag buffers\n", __func__); 2581 sc->sc_stats.ast_tx_nofrag++; 2582 ifp->if_oerrors++; 2583 ath_freetx(m); 2584 goto bad; 2585 } 2586 ifp->if_opackets++; 2587 nextfrag: 2588 /* 2589 * Pass the frame to the h/w for transmission. 2590 * Fragmented frames have each frag chained together 2591 * with m_nextpkt. We know there are sufficient ath_buf's 2592 * to send all the frags because of work done by 2593 * ath_txfrag_setup. We leave m_nextpkt set while 2594 * calling ath_tx_start so it can use it to extend the 2595 * the tx duration to cover the subsequent frag and 2596 * so it can reclaim all the mbufs in case of an error; 2597 * ath_tx_start clears m_nextpkt once it commits to 2598 * handing the frame to the hardware. 2599 */ 2600 next = m->m_nextpkt; 2601 if (ath_tx_start(sc, ni, bf, m)) { 2602 bad: 2603 ifp->if_oerrors++; 2604 reclaim: 2605 bf->bf_m = NULL; 2606 bf->bf_node = NULL; 2607 ATH_TXBUF_LOCK(sc); 2608 ath_returnbuf_head(sc, bf); 2609 ath_txfrag_cleanup(sc, &frags, ni); 2610 ATH_TXBUF_UNLOCK(sc); 2611 /* 2612 * XXX todo, free the node outside of 2613 * the TX lock context! 2614 */ 2615 if (ni != NULL) 2616 ieee80211_free_node(ni); 2617 continue; 2618 } 2619 2620 /* 2621 * Check here if the node is in power save state. 2622 */ 2623 ath_tx_update_tim(sc, ni, 1); 2624 2625 if (next != NULL) { 2626 /* 2627 * Beware of state changing between frags. 2628 * XXX check sta power-save state? 2629 */ 2630 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2631 DPRINTF(sc, ATH_DEBUG_XMIT, 2632 "%s: flush fragmented packet, state %s\n", 2633 __func__, 2634 ieee80211_state_name[ni->ni_vap->iv_state]); 2635 ath_freetx(next); 2636 goto reclaim; 2637 } 2638 m = next; 2639 bf = TAILQ_FIRST(&frags); 2640 KASSERT(bf != NULL, ("no buf for txfrag")); 2641 TAILQ_REMOVE(&frags, bf, bf_list); 2642 goto nextfrag; 2643 } 2644 2645 sc->sc_wd_timer = 5; 2646 } 2647 ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts); 2648 } 2649 2650 static int 2651 ath_media_change(struct ifnet *ifp) 2652 { 2653 int error = ieee80211_media_change(ifp); 2654 /* NB: only the fixed rate can change and that doesn't need a reset */ 2655 return (error == ENETRESET ? 0 : error); 2656 } 2657 2658 /* 2659 * Block/unblock tx+rx processing while a key change is done. 2660 * We assume the caller serializes key management operations 2661 * so we only need to worry about synchronization with other 2662 * uses that originate in the driver. 2663 */ 2664 static void 2665 ath_key_update_begin(struct ieee80211vap *vap) 2666 { 2667 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2668 struct ath_softc *sc = ifp->if_softc; 2669 2670 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2671 taskqueue_block(sc->sc_tq); 2672 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2673 } 2674 2675 static void 2676 ath_key_update_end(struct ieee80211vap *vap) 2677 { 2678 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2679 struct ath_softc *sc = ifp->if_softc; 2680 2681 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2682 IF_UNLOCK(&ifp->if_snd); 2683 taskqueue_unblock(sc->sc_tq); 2684 } 2685 2686 static void 2687 ath_update_promisc(struct ifnet *ifp) 2688 { 2689 struct ath_softc *sc = ifp->if_softc; 2690 u_int32_t rfilt; 2691 2692 /* configure rx filter */ 2693 rfilt = ath_calcrxfilter(sc); 2694 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2695 2696 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2697 } 2698 2699 static void 2700 ath_update_mcast(struct ifnet *ifp) 2701 { 2702 struct ath_softc *sc = ifp->if_softc; 2703 u_int32_t mfilt[2]; 2704 2705 /* calculate and install multicast filter */ 2706 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2707 struct ifmultiaddr *ifma; 2708 /* 2709 * Merge multicast addresses to form the hardware filter. 2710 */ 2711 mfilt[0] = mfilt[1] = 0; 2712 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2713 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2714 caddr_t dl; 2715 u_int32_t val; 2716 u_int8_t pos; 2717 2718 /* calculate XOR of eight 6bit values */ 2719 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2720 val = LE_READ_4(dl + 0); 2721 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2722 val = LE_READ_4(dl + 3); 2723 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2724 pos &= 0x3f; 2725 mfilt[pos / 32] |= (1 << (pos % 32)); 2726 } 2727 if_maddr_runlock(ifp); 2728 } else 2729 mfilt[0] = mfilt[1] = ~0; 2730 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2731 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2732 __func__, mfilt[0], mfilt[1]); 2733 } 2734 2735 void 2736 ath_mode_init(struct ath_softc *sc) 2737 { 2738 struct ifnet *ifp = sc->sc_ifp; 2739 struct ath_hal *ah = sc->sc_ah; 2740 u_int32_t rfilt; 2741 2742 /* configure rx filter */ 2743 rfilt = ath_calcrxfilter(sc); 2744 ath_hal_setrxfilter(ah, rfilt); 2745 2746 /* configure operational mode */ 2747 ath_hal_setopmode(ah); 2748 2749 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 2750 "%s: ah=%p, ifp=%p, if_addr=%p\n", 2751 __func__, 2752 ah, 2753 ifp, 2754 (ifp == NULL) ? NULL : ifp->if_addr); 2755 2756 /* handle any link-level address change */ 2757 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2758 2759 /* calculate and install multicast filter */ 2760 ath_update_mcast(ifp); 2761 } 2762 2763 /* 2764 * Set the slot time based on the current setting. 2765 */ 2766 void 2767 ath_setslottime(struct ath_softc *sc) 2768 { 2769 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2770 struct ath_hal *ah = sc->sc_ah; 2771 u_int usec; 2772 2773 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2774 usec = 13; 2775 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2776 usec = 21; 2777 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2778 /* honor short/long slot time only in 11g */ 2779 /* XXX shouldn't honor on pure g or turbo g channel */ 2780 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2781 usec = HAL_SLOT_TIME_9; 2782 else 2783 usec = HAL_SLOT_TIME_20; 2784 } else 2785 usec = HAL_SLOT_TIME_9; 2786 2787 DPRINTF(sc, ATH_DEBUG_RESET, 2788 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2789 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2790 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2791 2792 ath_hal_setslottime(ah, usec); 2793 sc->sc_updateslot = OK; 2794 } 2795 2796 /* 2797 * Callback from the 802.11 layer to update the 2798 * slot time based on the current setting. 2799 */ 2800 static void 2801 ath_updateslot(struct ifnet *ifp) 2802 { 2803 struct ath_softc *sc = ifp->if_softc; 2804 struct ieee80211com *ic = ifp->if_l2com; 2805 2806 /* 2807 * When not coordinating the BSS, change the hardware 2808 * immediately. For other operation we defer the change 2809 * until beacon updates have propagated to the stations. 2810 */ 2811 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2812 ic->ic_opmode == IEEE80211_M_MBSS) 2813 sc->sc_updateslot = UPDATE; 2814 else 2815 ath_setslottime(sc); 2816 } 2817 2818 /* 2819 * Append the contents of src to dst; both queues 2820 * are assumed to be locked. 2821 */ 2822 void 2823 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2824 { 2825 2826 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2827 dst->axq_link = src->axq_link; 2828 src->axq_link = NULL; 2829 dst->axq_depth += src->axq_depth; 2830 dst->axq_aggr_depth += src->axq_aggr_depth; 2831 src->axq_depth = 0; 2832 src->axq_aggr_depth = 0; 2833 } 2834 2835 /* 2836 * Reset the hardware, with no loss. 2837 * 2838 * This can't be used for a general case reset. 2839 */ 2840 static void 2841 ath_reset_proc(void *arg, int pending) 2842 { 2843 struct ath_softc *sc = arg; 2844 struct ifnet *ifp = sc->sc_ifp; 2845 2846 #if 0 2847 if_printf(ifp, "%s: resetting\n", __func__); 2848 #endif 2849 ath_reset(ifp, ATH_RESET_NOLOSS); 2850 } 2851 2852 /* 2853 * Reset the hardware after detecting beacons have stopped. 2854 */ 2855 static void 2856 ath_bstuck_proc(void *arg, int pending) 2857 { 2858 struct ath_softc *sc = arg; 2859 struct ifnet *ifp = sc->sc_ifp; 2860 uint32_t hangs = 0; 2861 2862 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2863 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2864 2865 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2866 sc->sc_bmisscount); 2867 sc->sc_stats.ast_bstuck++; 2868 /* 2869 * This assumes that there's no simultaneous channel mode change 2870 * occuring. 2871 */ 2872 ath_reset(ifp, ATH_RESET_NOLOSS); 2873 } 2874 2875 static void 2876 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2877 { 2878 bus_addr_t *paddr = (bus_addr_t*) arg; 2879 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2880 *paddr = segs->ds_addr; 2881 } 2882 2883 /* 2884 * Allocate the descriptors and appropriate DMA tag/setup. 2885 * 2886 * For some situations (eg EDMA TX completion), there isn't a requirement 2887 * for the ath_buf entries to be allocated. 2888 */ 2889 int 2890 ath_descdma_alloc_desc(struct ath_softc *sc, 2891 struct ath_descdma *dd, ath_bufhead *head, 2892 const char *name, int ds_size, int ndesc) 2893 { 2894 #define DS2PHYS(_dd, _ds) \ 2895 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2896 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2897 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2898 struct ifnet *ifp = sc->sc_ifp; 2899 int error; 2900 2901 dd->dd_descsize = ds_size; 2902 2903 DPRINTF(sc, ATH_DEBUG_RESET, 2904 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 2905 __func__, name, ndesc, dd->dd_descsize); 2906 2907 dd->dd_name = name; 2908 dd->dd_desc_len = dd->dd_descsize * ndesc; 2909 2910 /* 2911 * Merlin work-around: 2912 * Descriptors that cross the 4KB boundary can't be used. 2913 * Assume one skipped descriptor per 4KB page. 2914 */ 2915 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2916 int numpages = dd->dd_desc_len / 4096; 2917 dd->dd_desc_len += ds_size * numpages; 2918 } 2919 2920 /* 2921 * Setup DMA descriptor area. 2922 */ 2923 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 2924 PAGE_SIZE, 0, /* alignment, bounds */ 2925 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2926 BUS_SPACE_MAXADDR, /* highaddr */ 2927 NULL, NULL, /* filter, filterarg */ 2928 dd->dd_desc_len, /* maxsize */ 2929 1, /* nsegments */ 2930 dd->dd_desc_len, /* maxsegsize */ 2931 BUS_DMA_ALLOCNOW, /* flags */ 2932 NULL, /* lockfunc */ 2933 NULL, /* lockarg */ 2934 &dd->dd_dmat); 2935 if (error != 0) { 2936 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 2937 return error; 2938 } 2939 2940 /* allocate descriptors */ 2941 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 2942 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 2943 &dd->dd_dmamap); 2944 if (error != 0) { 2945 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2946 "error %u\n", ndesc, dd->dd_name, error); 2947 goto fail1; 2948 } 2949 2950 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 2951 dd->dd_desc, dd->dd_desc_len, 2952 ath_load_cb, &dd->dd_desc_paddr, 2953 BUS_DMA_NOWAIT); 2954 if (error != 0) { 2955 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2956 dd->dd_name, error); 2957 goto fail2; 2958 } 2959 2960 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2961 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 2962 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 2963 /*XXX*/ (u_long) dd->dd_desc_len); 2964 2965 return (0); 2966 2967 fail2: 2968 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2969 fail1: 2970 bus_dma_tag_destroy(dd->dd_dmat); 2971 memset(dd, 0, sizeof(*dd)); 2972 return error; 2973 #undef DS2PHYS 2974 #undef ATH_DESC_4KB_BOUND_CHECK 2975 } 2976 2977 int 2978 ath_descdma_setup(struct ath_softc *sc, 2979 struct ath_descdma *dd, ath_bufhead *head, 2980 const char *name, int ds_size, int nbuf, int ndesc) 2981 { 2982 #define DS2PHYS(_dd, _ds) \ 2983 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2984 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2985 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2986 struct ifnet *ifp = sc->sc_ifp; 2987 uint8_t *ds; 2988 struct ath_buf *bf; 2989 int i, bsize, error; 2990 2991 /* Allocate descriptors */ 2992 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 2993 nbuf * ndesc); 2994 2995 /* Assume any errors during allocation were dealt with */ 2996 if (error != 0) { 2997 return (error); 2998 } 2999 3000 ds = (uint8_t *) dd->dd_desc; 3001 3002 /* allocate rx buffers */ 3003 bsize = sizeof(struct ath_buf) * nbuf; 3004 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3005 if (bf == NULL) { 3006 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3007 dd->dd_name, bsize); 3008 goto fail3; 3009 } 3010 dd->dd_bufptr = bf; 3011 3012 TAILQ_INIT(head); 3013 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 3014 bf->bf_desc = (struct ath_desc *) ds; 3015 bf->bf_daddr = DS2PHYS(dd, ds); 3016 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3017 /* 3018 * Merlin WAR: Skip descriptor addresses which 3019 * cause 4KB boundary crossing along any point 3020 * in the descriptor. 3021 */ 3022 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3023 dd->dd_descsize)) { 3024 /* Start at the next page */ 3025 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3026 bf->bf_desc = (struct ath_desc *) ds; 3027 bf->bf_daddr = DS2PHYS(dd, ds); 3028 } 3029 } 3030 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3031 &bf->bf_dmamap); 3032 if (error != 0) { 3033 if_printf(ifp, "unable to create dmamap for %s " 3034 "buffer %u, error %u\n", dd->dd_name, i, error); 3035 ath_descdma_cleanup(sc, dd, head); 3036 return error; 3037 } 3038 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3039 TAILQ_INSERT_TAIL(head, bf, bf_list); 3040 } 3041 3042 /* 3043 * XXX TODO: ensure that ds doesn't overflow the descriptor 3044 * allocation otherwise weird stuff will occur and crash your 3045 * machine. 3046 */ 3047 return 0; 3048 /* XXX this should likely just call ath_descdma_cleanup() */ 3049 fail3: 3050 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3051 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3052 bus_dma_tag_destroy(dd->dd_dmat); 3053 memset(dd, 0, sizeof(*dd)); 3054 return error; 3055 #undef DS2PHYS 3056 #undef ATH_DESC_4KB_BOUND_CHECK 3057 } 3058 3059 /* 3060 * Allocate ath_buf entries but no descriptor contents. 3061 * 3062 * This is for RX EDMA where the descriptors are the header part of 3063 * the RX buffer. 3064 */ 3065 int 3066 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3067 struct ath_descdma *dd, ath_bufhead *head, 3068 const char *name, int nbuf, int rx_status_len) 3069 { 3070 struct ifnet *ifp = sc->sc_ifp; 3071 struct ath_buf *bf; 3072 int i, bsize, error; 3073 3074 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3075 __func__, name, nbuf); 3076 3077 dd->dd_name = name; 3078 /* 3079 * This is (mostly) purely for show. We're not allocating any actual 3080 * descriptors here as EDMA RX has the descriptor be part 3081 * of the RX buffer. 3082 * 3083 * However, dd_desc_len is used by ath_descdma_free() to determine 3084 * whether we have already freed this DMA mapping. 3085 */ 3086 dd->dd_desc_len = rx_status_len * nbuf; 3087 dd->dd_descsize = rx_status_len; 3088 3089 /* allocate rx buffers */ 3090 bsize = sizeof(struct ath_buf) * nbuf; 3091 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3092 if (bf == NULL) { 3093 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3094 dd->dd_name, bsize); 3095 error = ENOMEM; 3096 goto fail3; 3097 } 3098 dd->dd_bufptr = bf; 3099 3100 TAILQ_INIT(head); 3101 for (i = 0; i < nbuf; i++, bf++) { 3102 bf->bf_desc = NULL; 3103 bf->bf_daddr = 0; 3104 bf->bf_lastds = NULL; /* Just an initial value */ 3105 3106 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3107 &bf->bf_dmamap); 3108 if (error != 0) { 3109 if_printf(ifp, "unable to create dmamap for %s " 3110 "buffer %u, error %u\n", dd->dd_name, i, error); 3111 ath_descdma_cleanup(sc, dd, head); 3112 return error; 3113 } 3114 TAILQ_INSERT_TAIL(head, bf, bf_list); 3115 } 3116 return 0; 3117 fail3: 3118 memset(dd, 0, sizeof(*dd)); 3119 return error; 3120 } 3121 3122 void 3123 ath_descdma_cleanup(struct ath_softc *sc, 3124 struct ath_descdma *dd, ath_bufhead *head) 3125 { 3126 struct ath_buf *bf; 3127 struct ieee80211_node *ni; 3128 3129 if (dd->dd_dmamap != 0) { 3130 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3131 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3132 bus_dma_tag_destroy(dd->dd_dmat); 3133 } 3134 3135 if (head != NULL) { 3136 TAILQ_FOREACH(bf, head, bf_list) { 3137 if (bf->bf_m) { 3138 m_freem(bf->bf_m); 3139 bf->bf_m = NULL; 3140 } 3141 if (bf->bf_dmamap != NULL) { 3142 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3143 bf->bf_dmamap = NULL; 3144 } 3145 ni = bf->bf_node; 3146 bf->bf_node = NULL; 3147 if (ni != NULL) { 3148 /* 3149 * Reclaim node reference. 3150 */ 3151 ieee80211_free_node(ni); 3152 } 3153 } 3154 } 3155 3156 if (head != NULL) 3157 TAILQ_INIT(head); 3158 3159 if (dd->dd_bufptr != NULL) 3160 free(dd->dd_bufptr, M_ATHDEV); 3161 memset(dd, 0, sizeof(*dd)); 3162 } 3163 3164 static int 3165 ath_desc_alloc(struct ath_softc *sc) 3166 { 3167 int error; 3168 3169 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3170 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC); 3171 if (error != 0) { 3172 return error; 3173 } 3174 sc->sc_txbuf_cnt = ath_txbuf; 3175 3176 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3177 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3178 ATH_TXDESC); 3179 if (error != 0) { 3180 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3181 return error; 3182 } 3183 3184 /* 3185 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3186 * flag doesn't have to be set in ath_getbuf_locked(). 3187 */ 3188 3189 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3190 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3191 if (error != 0) { 3192 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3193 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3194 &sc->sc_txbuf_mgmt); 3195 return error; 3196 } 3197 return 0; 3198 } 3199 3200 static void 3201 ath_desc_free(struct ath_softc *sc) 3202 { 3203 3204 if (sc->sc_bdma.dd_desc_len != 0) 3205 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3206 if (sc->sc_txdma.dd_desc_len != 0) 3207 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3208 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3209 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3210 &sc->sc_txbuf_mgmt); 3211 } 3212 3213 static struct ieee80211_node * 3214 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3215 { 3216 struct ieee80211com *ic = vap->iv_ic; 3217 struct ath_softc *sc = ic->ic_ifp->if_softc; 3218 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3219 struct ath_node *an; 3220 3221 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3222 if (an == NULL) { 3223 /* XXX stat+msg */ 3224 return NULL; 3225 } 3226 ath_rate_node_init(sc, an); 3227 3228 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3229 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3230 device_get_nameunit(sc->sc_dev), an); 3231 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3232 3233 /* XXX setup ath_tid */ 3234 ath_tx_tid_init(sc, an); 3235 3236 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3237 return &an->an_node; 3238 } 3239 3240 static void 3241 ath_node_cleanup(struct ieee80211_node *ni) 3242 { 3243 struct ieee80211com *ic = ni->ni_ic; 3244 struct ath_softc *sc = ic->ic_ifp->if_softc; 3245 3246 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3247 ath_tx_node_flush(sc, ATH_NODE(ni)); 3248 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3249 sc->sc_node_cleanup(ni); 3250 } 3251 3252 static void 3253 ath_node_free(struct ieee80211_node *ni) 3254 { 3255 struct ieee80211com *ic = ni->ni_ic; 3256 struct ath_softc *sc = ic->ic_ifp->if_softc; 3257 3258 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3259 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3260 sc->sc_node_free(ni); 3261 } 3262 3263 static void 3264 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3265 { 3266 struct ieee80211com *ic = ni->ni_ic; 3267 struct ath_softc *sc = ic->ic_ifp->if_softc; 3268 struct ath_hal *ah = sc->sc_ah; 3269 3270 *rssi = ic->ic_node_getrssi(ni); 3271 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3272 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3273 else 3274 *noise = -95; /* nominally correct */ 3275 } 3276 3277 /* 3278 * Set the default antenna. 3279 */ 3280 void 3281 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3282 { 3283 struct ath_hal *ah = sc->sc_ah; 3284 3285 /* XXX block beacon interrupts */ 3286 ath_hal_setdefantenna(ah, antenna); 3287 if (sc->sc_defant != antenna) 3288 sc->sc_stats.ast_ant_defswitch++; 3289 sc->sc_defant = antenna; 3290 sc->sc_rxotherant = 0; 3291 } 3292 3293 static void 3294 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3295 { 3296 txq->axq_qnum = qnum; 3297 txq->axq_ac = 0; 3298 txq->axq_depth = 0; 3299 txq->axq_aggr_depth = 0; 3300 txq->axq_intrcnt = 0; 3301 txq->axq_link = NULL; 3302 txq->axq_softc = sc; 3303 TAILQ_INIT(&txq->axq_q); 3304 TAILQ_INIT(&txq->axq_tidq); 3305 } 3306 3307 /* 3308 * Setup a h/w transmit queue. 3309 */ 3310 static struct ath_txq * 3311 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3312 { 3313 #define N(a) (sizeof(a)/sizeof(a[0])) 3314 struct ath_hal *ah = sc->sc_ah; 3315 HAL_TXQ_INFO qi; 3316 int qnum; 3317 3318 memset(&qi, 0, sizeof(qi)); 3319 qi.tqi_subtype = subtype; 3320 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3321 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3322 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3323 /* 3324 * Enable interrupts only for EOL and DESC conditions. 3325 * We mark tx descriptors to receive a DESC interrupt 3326 * when a tx queue gets deep; otherwise waiting for the 3327 * EOL to reap descriptors. Note that this is done to 3328 * reduce interrupt load and this only defers reaping 3329 * descriptors, never transmitting frames. Aside from 3330 * reducing interrupts this also permits more concurrency. 3331 * The only potential downside is if the tx queue backs 3332 * up in which case the top half of the kernel may backup 3333 * due to a lack of tx descriptors. 3334 */ 3335 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3336 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3337 if (qnum == -1) { 3338 /* 3339 * NB: don't print a message, this happens 3340 * normally on parts with too few tx queues 3341 */ 3342 return NULL; 3343 } 3344 if (qnum >= N(sc->sc_txq)) { 3345 device_printf(sc->sc_dev, 3346 "hal qnum %u out of range, max %zu!\n", 3347 qnum, N(sc->sc_txq)); 3348 ath_hal_releasetxqueue(ah, qnum); 3349 return NULL; 3350 } 3351 if (!ATH_TXQ_SETUP(sc, qnum)) { 3352 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3353 sc->sc_txqsetup |= 1<<qnum; 3354 } 3355 return &sc->sc_txq[qnum]; 3356 #undef N 3357 } 3358 3359 /* 3360 * Setup a hardware data transmit queue for the specified 3361 * access control. The hal may not support all requested 3362 * queues in which case it will return a reference to a 3363 * previously setup queue. We record the mapping from ac's 3364 * to h/w queues for use by ath_tx_start and also track 3365 * the set of h/w queues being used to optimize work in the 3366 * transmit interrupt handler and related routines. 3367 */ 3368 static int 3369 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3370 { 3371 #define N(a) (sizeof(a)/sizeof(a[0])) 3372 struct ath_txq *txq; 3373 3374 if (ac >= N(sc->sc_ac2q)) { 3375 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3376 ac, N(sc->sc_ac2q)); 3377 return 0; 3378 } 3379 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3380 if (txq != NULL) { 3381 txq->axq_ac = ac; 3382 sc->sc_ac2q[ac] = txq; 3383 return 1; 3384 } else 3385 return 0; 3386 #undef N 3387 } 3388 3389 /* 3390 * Update WME parameters for a transmit queue. 3391 */ 3392 static int 3393 ath_txq_update(struct ath_softc *sc, int ac) 3394 { 3395 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3396 #define ATH_TXOP_TO_US(v) (v<<5) 3397 struct ifnet *ifp = sc->sc_ifp; 3398 struct ieee80211com *ic = ifp->if_l2com; 3399 struct ath_txq *txq = sc->sc_ac2q[ac]; 3400 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3401 struct ath_hal *ah = sc->sc_ah; 3402 HAL_TXQ_INFO qi; 3403 3404 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3405 #ifdef IEEE80211_SUPPORT_TDMA 3406 if (sc->sc_tdma) { 3407 /* 3408 * AIFS is zero so there's no pre-transmit wait. The 3409 * burst time defines the slot duration and is configured 3410 * through net80211. The QCU is setup to not do post-xmit 3411 * back off, lockout all lower-priority QCU's, and fire 3412 * off the DMA beacon alert timer which is setup based 3413 * on the slot configuration. 3414 */ 3415 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3416 | HAL_TXQ_TXERRINT_ENABLE 3417 | HAL_TXQ_TXURNINT_ENABLE 3418 | HAL_TXQ_TXEOLINT_ENABLE 3419 | HAL_TXQ_DBA_GATED 3420 | HAL_TXQ_BACKOFF_DISABLE 3421 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3422 ; 3423 qi.tqi_aifs = 0; 3424 /* XXX +dbaprep? */ 3425 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3426 qi.tqi_burstTime = qi.tqi_readyTime; 3427 } else { 3428 #endif 3429 /* 3430 * XXX shouldn't this just use the default flags 3431 * used in the previous queue setup? 3432 */ 3433 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3434 | HAL_TXQ_TXERRINT_ENABLE 3435 | HAL_TXQ_TXDESCINT_ENABLE 3436 | HAL_TXQ_TXURNINT_ENABLE 3437 | HAL_TXQ_TXEOLINT_ENABLE 3438 ; 3439 qi.tqi_aifs = wmep->wmep_aifsn; 3440 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3441 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3442 qi.tqi_readyTime = 0; 3443 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3444 #ifdef IEEE80211_SUPPORT_TDMA 3445 } 3446 #endif 3447 3448 DPRINTF(sc, ATH_DEBUG_RESET, 3449 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3450 __func__, txq->axq_qnum, qi.tqi_qflags, 3451 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3452 3453 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3454 if_printf(ifp, "unable to update hardware queue " 3455 "parameters for %s traffic!\n", 3456 ieee80211_wme_acnames[ac]); 3457 return 0; 3458 } else { 3459 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3460 return 1; 3461 } 3462 #undef ATH_TXOP_TO_US 3463 #undef ATH_EXPONENT_TO_VALUE 3464 } 3465 3466 /* 3467 * Callback from the 802.11 layer to update WME parameters. 3468 */ 3469 int 3470 ath_wme_update(struct ieee80211com *ic) 3471 { 3472 struct ath_softc *sc = ic->ic_ifp->if_softc; 3473 3474 return !ath_txq_update(sc, WME_AC_BE) || 3475 !ath_txq_update(sc, WME_AC_BK) || 3476 !ath_txq_update(sc, WME_AC_VI) || 3477 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3478 } 3479 3480 /* 3481 * Reclaim resources for a setup queue. 3482 */ 3483 static void 3484 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3485 { 3486 3487 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3488 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3489 } 3490 3491 /* 3492 * Reclaim all tx queue resources. 3493 */ 3494 static void 3495 ath_tx_cleanup(struct ath_softc *sc) 3496 { 3497 int i; 3498 3499 ATH_TXBUF_LOCK_DESTROY(sc); 3500 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3501 if (ATH_TXQ_SETUP(sc, i)) 3502 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3503 } 3504 3505 /* 3506 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3507 * using the current rates in sc_rixmap. 3508 */ 3509 int 3510 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3511 { 3512 int rix = sc->sc_rixmap[rate]; 3513 /* NB: return lowest rix for invalid rate */ 3514 return (rix == 0xff ? 0 : rix); 3515 } 3516 3517 static void 3518 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3519 struct ath_buf *bf) 3520 { 3521 struct ieee80211_node *ni = bf->bf_node; 3522 struct ifnet *ifp = sc->sc_ifp; 3523 struct ieee80211com *ic = ifp->if_l2com; 3524 int sr, lr, pri; 3525 3526 if (ts->ts_status == 0) { 3527 u_int8_t txant = ts->ts_antenna; 3528 sc->sc_stats.ast_ant_tx[txant]++; 3529 sc->sc_ant_tx[txant]++; 3530 if (ts->ts_finaltsi != 0) 3531 sc->sc_stats.ast_tx_altrate++; 3532 pri = M_WME_GETAC(bf->bf_m); 3533 if (pri >= WME_AC_VO) 3534 ic->ic_wme.wme_hipri_traffic++; 3535 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3536 ni->ni_inact = ni->ni_inact_reload; 3537 } else { 3538 if (ts->ts_status & HAL_TXERR_XRETRY) 3539 sc->sc_stats.ast_tx_xretries++; 3540 if (ts->ts_status & HAL_TXERR_FIFO) 3541 sc->sc_stats.ast_tx_fifoerr++; 3542 if (ts->ts_status & HAL_TXERR_FILT) 3543 sc->sc_stats.ast_tx_filtered++; 3544 if (ts->ts_status & HAL_TXERR_XTXOP) 3545 sc->sc_stats.ast_tx_xtxop++; 3546 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3547 sc->sc_stats.ast_tx_timerexpired++; 3548 3549 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 3550 sc->sc_stats.ast_tx_data_underrun++; 3551 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 3552 sc->sc_stats.ast_tx_delim_underrun++; 3553 3554 if (bf->bf_m->m_flags & M_FF) 3555 sc->sc_stats.ast_ff_txerr++; 3556 } 3557 /* XXX when is this valid? */ 3558 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 3559 sc->sc_stats.ast_tx_desccfgerr++; 3560 3561 sr = ts->ts_shortretry; 3562 lr = ts->ts_longretry; 3563 sc->sc_stats.ast_tx_shortretry += sr; 3564 sc->sc_stats.ast_tx_longretry += lr; 3565 3566 } 3567 3568 /* 3569 * The default completion. If fail is 1, this means 3570 * "please don't retry the frame, and just return -1 status 3571 * to the net80211 stack. 3572 */ 3573 void 3574 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3575 { 3576 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3577 int st; 3578 3579 if (fail == 1) 3580 st = -1; 3581 else 3582 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3583 ts->ts_status : HAL_TXERR_XRETRY; 3584 3585 if (bf->bf_state.bfs_dobaw) 3586 device_printf(sc->sc_dev, 3587 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3588 __func__, 3589 bf, 3590 SEQNO(bf->bf_state.bfs_seqno)); 3591 if (bf->bf_next != NULL) 3592 device_printf(sc->sc_dev, 3593 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3594 __func__, 3595 bf, 3596 SEQNO(bf->bf_state.bfs_seqno)); 3597 3598 /* 3599 * Check if the node software queue is empty; if so 3600 * then clear the TIM. 3601 * 3602 * This needs to be done before the buffer is freed as 3603 * otherwise the node reference will have been released 3604 * and the node may not actually exist any longer. 3605 * 3606 * XXX I don't like this belonging here, but it's cleaner 3607 * to do it here right now then all the other places 3608 * where ath_tx_default_comp() is called. 3609 * 3610 * XXX TODO: during drain, ensure that the callback is 3611 * being called so we get a chance to update the TIM. 3612 */ 3613 if (bf->bf_node) 3614 ath_tx_update_tim(sc, bf->bf_node, 0); 3615 3616 /* 3617 * Do any tx complete callback. Note this must 3618 * be done before releasing the node reference. 3619 * This will free the mbuf, release the net80211 3620 * node and recycle the ath_buf. 3621 */ 3622 ath_tx_freebuf(sc, bf, st); 3623 } 3624 3625 /* 3626 * Update rate control with the given completion status. 3627 */ 3628 void 3629 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3630 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3631 int nframes, int nbad) 3632 { 3633 struct ath_node *an; 3634 3635 /* Only for unicast frames */ 3636 if (ni == NULL) 3637 return; 3638 3639 an = ATH_NODE(ni); 3640 ATH_NODE_UNLOCK_ASSERT(an); 3641 3642 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3643 ATH_NODE_LOCK(an); 3644 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3645 ATH_NODE_UNLOCK(an); 3646 } 3647 } 3648 3649 /* 3650 * Update the busy status of the last frame on the free list. 3651 * When doing TDMA, the busy flag tracks whether the hardware 3652 * currently points to this buffer or not, and thus gated DMA 3653 * may restart by re-reading the last descriptor in this 3654 * buffer. 3655 * 3656 * This should be called in the completion function once one 3657 * of the buffers has been used. 3658 */ 3659 static void 3660 ath_tx_update_busy(struct ath_softc *sc) 3661 { 3662 struct ath_buf *last; 3663 3664 /* 3665 * Since the last frame may still be marked 3666 * as ATH_BUF_BUSY, unmark it here before 3667 * finishing the frame processing. 3668 * Since we've completed a frame (aggregate 3669 * or otherwise), the hardware has moved on 3670 * and is no longer referencing the previous 3671 * descriptor. 3672 */ 3673 ATH_TXBUF_LOCK_ASSERT(sc); 3674 last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 3675 if (last != NULL) 3676 last->bf_flags &= ~ATH_BUF_BUSY; 3677 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3678 if (last != NULL) 3679 last->bf_flags &= ~ATH_BUF_BUSY; 3680 } 3681 3682 /* 3683 * Process the completion of the given buffer. 3684 * 3685 * This calls the rate control update and then the buffer completion. 3686 * This will either free the buffer or requeue it. In any case, the 3687 * bf pointer should be treated as invalid after this function is called. 3688 */ 3689 void 3690 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 3691 struct ath_tx_status *ts, struct ath_buf *bf) 3692 { 3693 struct ieee80211_node *ni = bf->bf_node; 3694 struct ath_node *an = NULL; 3695 3696 ATH_TX_UNLOCK_ASSERT(sc); 3697 3698 /* If unicast frame, update general statistics */ 3699 if (ni != NULL) { 3700 an = ATH_NODE(ni); 3701 /* update statistics */ 3702 ath_tx_update_stats(sc, ts, bf); 3703 } 3704 3705 /* 3706 * Call the completion handler. 3707 * The completion handler is responsible for 3708 * calling the rate control code. 3709 * 3710 * Frames with no completion handler get the 3711 * rate control code called here. 3712 */ 3713 if (bf->bf_comp == NULL) { 3714 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3715 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3716 /* 3717 * XXX assume this isn't an aggregate 3718 * frame. 3719 */ 3720 ath_tx_update_ratectrl(sc, ni, 3721 bf->bf_state.bfs_rc, ts, 3722 bf->bf_state.bfs_pktlen, 1, 3723 (ts->ts_status == 0 ? 0 : 1)); 3724 } 3725 ath_tx_default_comp(sc, bf, 0); 3726 } else 3727 bf->bf_comp(sc, bf, 0); 3728 } 3729 3730 3731 3732 /* 3733 * Process completed xmit descriptors from the specified queue. 3734 * Kick the packet scheduler if needed. This can occur from this 3735 * particular task. 3736 */ 3737 static int 3738 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3739 { 3740 struct ath_hal *ah = sc->sc_ah; 3741 struct ath_buf *bf; 3742 struct ath_desc *ds; 3743 struct ath_tx_status *ts; 3744 struct ieee80211_node *ni; 3745 #ifdef IEEE80211_SUPPORT_SUPERG 3746 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3747 #endif /* IEEE80211_SUPPORT_SUPERG */ 3748 int nacked; 3749 HAL_STATUS status; 3750 3751 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3752 __func__, txq->axq_qnum, 3753 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3754 txq->axq_link); 3755 3756 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 3757 "ath_tx_processq: txq=%u head %p link %p depth %p", 3758 txq->axq_qnum, 3759 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3760 txq->axq_link, 3761 txq->axq_depth); 3762 3763 nacked = 0; 3764 for (;;) { 3765 ATH_TX_LOCK(sc); 3766 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3767 bf = TAILQ_FIRST(&txq->axq_q); 3768 if (bf == NULL) { 3769 ATH_TX_UNLOCK(sc); 3770 break; 3771 } 3772 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3773 ts = &bf->bf_status.ds_txstat; 3774 3775 status = ath_hal_txprocdesc(ah, ds, ts); 3776 #ifdef ATH_DEBUG 3777 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3778 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3779 status == HAL_OK); 3780 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 3781 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3782 status == HAL_OK); 3783 #endif 3784 #ifdef ATH_DEBUG_ALQ 3785 if (if_ath_alq_checkdebug(&sc->sc_alq, 3786 ATH_ALQ_EDMA_TXSTATUS)) { 3787 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 3788 sc->sc_tx_statuslen, 3789 (char *) ds); 3790 } 3791 #endif 3792 3793 if (status == HAL_EINPROGRESS) { 3794 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 3795 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 3796 txq->axq_qnum, bf, ds); 3797 ATH_TX_UNLOCK(sc); 3798 break; 3799 } 3800 ATH_TXQ_REMOVE(txq, bf, bf_list); 3801 #ifdef IEEE80211_SUPPORT_TDMA 3802 if (txq->axq_depth > 0) { 3803 /* 3804 * More frames follow. Mark the buffer busy 3805 * so it's not re-used while the hardware may 3806 * still re-read the link field in the descriptor. 3807 * 3808 * Use the last buffer in an aggregate as that 3809 * is where the hardware may be - intermediate 3810 * descriptors won't be "busy". 3811 */ 3812 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3813 } else 3814 #else 3815 if (txq->axq_depth == 0) 3816 #endif 3817 txq->axq_link = NULL; 3818 if (bf->bf_state.bfs_aggr) 3819 txq->axq_aggr_depth--; 3820 3821 ni = bf->bf_node; 3822 3823 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 3824 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 3825 txq->axq_qnum, bf, ds, ni, ts->ts_status); 3826 /* 3827 * If unicast frame was ack'd update RSSI, 3828 * including the last rx time used to 3829 * workaround phantom bmiss interrupts. 3830 */ 3831 if (ni != NULL && ts->ts_status == 0 && 3832 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3833 nacked++; 3834 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3835 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3836 ts->ts_rssi); 3837 } 3838 ATH_TX_UNLOCK(sc); 3839 3840 /* 3841 * Update statistics and call completion 3842 */ 3843 ath_tx_process_buf_completion(sc, txq, ts, bf); 3844 3845 /* XXX at this point, bf and ni may be totally invalid */ 3846 } 3847 #ifdef IEEE80211_SUPPORT_SUPERG 3848 /* 3849 * Flush fast-frame staging queue when traffic slows. 3850 */ 3851 if (txq->axq_depth <= 1) 3852 ieee80211_ff_flush(ic, txq->axq_ac); 3853 #endif 3854 3855 /* Kick the TXQ scheduler */ 3856 if (dosched) { 3857 ATH_TX_LOCK(sc); 3858 ath_txq_sched(sc, txq); 3859 ATH_TX_UNLOCK(sc); 3860 } 3861 3862 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3863 "ath_tx_processq: txq=%u: done", 3864 txq->axq_qnum); 3865 3866 return nacked; 3867 } 3868 3869 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3870 3871 /* 3872 * Deferred processing of transmit interrupt; special-cased 3873 * for a single hardware transmit queue (e.g. 5210 and 5211). 3874 */ 3875 static void 3876 ath_tx_proc_q0(void *arg, int npending) 3877 { 3878 struct ath_softc *sc = arg; 3879 struct ifnet *ifp = sc->sc_ifp; 3880 uint32_t txqs; 3881 3882 ATH_PCU_LOCK(sc); 3883 sc->sc_txproc_cnt++; 3884 txqs = sc->sc_txq_active; 3885 sc->sc_txq_active &= ~txqs; 3886 ATH_PCU_UNLOCK(sc); 3887 3888 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3889 "ath_tx_proc_q0: txqs=0x%08x", txqs); 3890 3891 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 3892 /* XXX why is lastrx updated in tx code? */ 3893 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3894 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3895 ath_tx_processq(sc, sc->sc_cabq, 1); 3896 IF_LOCK(&ifp->if_snd); 3897 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3898 IF_UNLOCK(&ifp->if_snd); 3899 sc->sc_wd_timer = 0; 3900 3901 if (sc->sc_softled) 3902 ath_led_event(sc, sc->sc_txrix); 3903 3904 ATH_PCU_LOCK(sc); 3905 sc->sc_txproc_cnt--; 3906 ATH_PCU_UNLOCK(sc); 3907 3908 ath_tx_kick(sc); 3909 } 3910 3911 /* 3912 * Deferred processing of transmit interrupt; special-cased 3913 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3914 */ 3915 static void 3916 ath_tx_proc_q0123(void *arg, int npending) 3917 { 3918 struct ath_softc *sc = arg; 3919 struct ifnet *ifp = sc->sc_ifp; 3920 int nacked; 3921 uint32_t txqs; 3922 3923 ATH_PCU_LOCK(sc); 3924 sc->sc_txproc_cnt++; 3925 txqs = sc->sc_txq_active; 3926 sc->sc_txq_active &= ~txqs; 3927 ATH_PCU_UNLOCK(sc); 3928 3929 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3930 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 3931 3932 /* 3933 * Process each active queue. 3934 */ 3935 nacked = 0; 3936 if (TXQACTIVE(txqs, 0)) 3937 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 3938 if (TXQACTIVE(txqs, 1)) 3939 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 3940 if (TXQACTIVE(txqs, 2)) 3941 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 3942 if (TXQACTIVE(txqs, 3)) 3943 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 3944 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3945 ath_tx_processq(sc, sc->sc_cabq, 1); 3946 if (nacked) 3947 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3948 3949 IF_LOCK(&ifp->if_snd); 3950 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3951 IF_UNLOCK(&ifp->if_snd); 3952 sc->sc_wd_timer = 0; 3953 3954 if (sc->sc_softled) 3955 ath_led_event(sc, sc->sc_txrix); 3956 3957 ATH_PCU_LOCK(sc); 3958 sc->sc_txproc_cnt--; 3959 ATH_PCU_UNLOCK(sc); 3960 3961 ath_tx_kick(sc); 3962 } 3963 3964 /* 3965 * Deferred processing of transmit interrupt. 3966 */ 3967 static void 3968 ath_tx_proc(void *arg, int npending) 3969 { 3970 struct ath_softc *sc = arg; 3971 struct ifnet *ifp = sc->sc_ifp; 3972 int i, nacked; 3973 uint32_t txqs; 3974 3975 ATH_PCU_LOCK(sc); 3976 sc->sc_txproc_cnt++; 3977 txqs = sc->sc_txq_active; 3978 sc->sc_txq_active &= ~txqs; 3979 ATH_PCU_UNLOCK(sc); 3980 3981 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 3982 3983 /* 3984 * Process each active queue. 3985 */ 3986 nacked = 0; 3987 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3988 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 3989 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 3990 if (nacked) 3991 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3992 3993 /* XXX check this inside of IF_LOCK? */ 3994 IF_LOCK(&ifp->if_snd); 3995 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3996 IF_UNLOCK(&ifp->if_snd); 3997 sc->sc_wd_timer = 0; 3998 3999 if (sc->sc_softled) 4000 ath_led_event(sc, sc->sc_txrix); 4001 4002 ATH_PCU_LOCK(sc); 4003 sc->sc_txproc_cnt--; 4004 ATH_PCU_UNLOCK(sc); 4005 4006 ath_tx_kick(sc); 4007 } 4008 #undef TXQACTIVE 4009 4010 /* 4011 * Deferred processing of TXQ rescheduling. 4012 */ 4013 static void 4014 ath_txq_sched_tasklet(void *arg, int npending) 4015 { 4016 struct ath_softc *sc = arg; 4017 int i; 4018 4019 /* XXX is skipping ok? */ 4020 ATH_PCU_LOCK(sc); 4021 #if 0 4022 if (sc->sc_inreset_cnt > 0) { 4023 device_printf(sc->sc_dev, 4024 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4025 ATH_PCU_UNLOCK(sc); 4026 return; 4027 } 4028 #endif 4029 sc->sc_txproc_cnt++; 4030 ATH_PCU_UNLOCK(sc); 4031 4032 ATH_TX_LOCK(sc); 4033 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4034 if (ATH_TXQ_SETUP(sc, i)) { 4035 ath_txq_sched(sc, &sc->sc_txq[i]); 4036 } 4037 } 4038 ATH_TX_UNLOCK(sc); 4039 4040 ATH_PCU_LOCK(sc); 4041 sc->sc_txproc_cnt--; 4042 ATH_PCU_UNLOCK(sc); 4043 } 4044 4045 void 4046 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4047 { 4048 4049 ATH_TXBUF_LOCK_ASSERT(sc); 4050 4051 if (bf->bf_flags & ATH_BUF_MGMT) 4052 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4053 else { 4054 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4055 sc->sc_txbuf_cnt++; 4056 if (sc->sc_txbuf_cnt > ath_txbuf) { 4057 device_printf(sc->sc_dev, 4058 "%s: sc_txbuf_cnt > %d?\n", 4059 __func__, 4060 ath_txbuf); 4061 sc->sc_txbuf_cnt = ath_txbuf; 4062 } 4063 } 4064 } 4065 4066 void 4067 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4068 { 4069 4070 ATH_TXBUF_LOCK_ASSERT(sc); 4071 4072 if (bf->bf_flags & ATH_BUF_MGMT) 4073 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4074 else { 4075 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4076 sc->sc_txbuf_cnt++; 4077 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4078 device_printf(sc->sc_dev, 4079 "%s: sc_txbuf_cnt > %d?\n", 4080 __func__, 4081 ATH_TXBUF); 4082 sc->sc_txbuf_cnt = ATH_TXBUF; 4083 } 4084 } 4085 } 4086 4087 /* 4088 * Return a buffer to the pool and update the 'busy' flag on the 4089 * previous 'tail' entry. 4090 * 4091 * This _must_ only be called when the buffer is involved in a completed 4092 * TX. The logic is that if it was part of an active TX, the previous 4093 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4094 * for restart (eg for TDMA.) 4095 * 4096 * The caller must free the mbuf and recycle the node reference. 4097 */ 4098 void 4099 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4100 { 4101 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4102 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 4103 4104 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4105 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4106 4107 ATH_TXBUF_LOCK(sc); 4108 ath_tx_update_busy(sc); 4109 ath_returnbuf_tail(sc, bf); 4110 ATH_TXBUF_UNLOCK(sc); 4111 } 4112 4113 /* 4114 * This is currently used by ath_tx_draintxq() and 4115 * ath_tx_tid_free_pkts(). 4116 * 4117 * It recycles a single ath_buf. 4118 */ 4119 void 4120 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4121 { 4122 struct ieee80211_node *ni = bf->bf_node; 4123 struct mbuf *m0 = bf->bf_m; 4124 4125 bf->bf_node = NULL; 4126 bf->bf_m = NULL; 4127 4128 /* Free the buffer, it's not needed any longer */ 4129 ath_freebuf(sc, bf); 4130 4131 if (ni != NULL) { 4132 /* 4133 * Do any callback and reclaim the node reference. 4134 */ 4135 if (m0->m_flags & M_TXCB) 4136 ieee80211_process_callback(ni, m0, status); 4137 ieee80211_free_node(ni); 4138 } 4139 m_freem(m0); 4140 4141 /* 4142 * XXX the buffer used to be freed -after-, but the DMA map was 4143 * freed where ath_freebuf() now is. I've no idea what this 4144 * will do. 4145 */ 4146 } 4147 4148 void 4149 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4150 { 4151 #ifdef ATH_DEBUG 4152 struct ath_hal *ah = sc->sc_ah; 4153 #endif 4154 struct ath_buf *bf; 4155 u_int ix; 4156 4157 /* 4158 * NB: this assumes output has been stopped and 4159 * we do not need to block ath_tx_proc 4160 */ 4161 ATH_TXBUF_LOCK(sc); 4162 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4163 if (bf != NULL) 4164 bf->bf_flags &= ~ATH_BUF_BUSY; 4165 bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 4166 if (bf != NULL) 4167 bf->bf_flags &= ~ATH_BUF_BUSY; 4168 ATH_TXBUF_UNLOCK(sc); 4169 4170 for (ix = 0;; ix++) { 4171 ATH_TX_LOCK(sc); 4172 bf = TAILQ_FIRST(&txq->axq_q); 4173 if (bf == NULL) { 4174 txq->axq_link = NULL; 4175 /* 4176 * There's currently no flag that indicates 4177 * a buffer is on the FIFO. So until that 4178 * occurs, just clear the FIFO counter here. 4179 * 4180 * Yes, this means that if something in parallel 4181 * is pushing things onto this TXQ and pushing 4182 * _that_ into the hardware, things will get 4183 * very fruity very quickly. 4184 */ 4185 txq->axq_fifo_depth = 0; 4186 ATH_TX_UNLOCK(sc); 4187 break; 4188 } 4189 ATH_TXQ_REMOVE(txq, bf, bf_list); 4190 if (bf->bf_state.bfs_aggr) 4191 txq->axq_aggr_depth--; 4192 #ifdef ATH_DEBUG 4193 if (sc->sc_debug & ATH_DEBUG_RESET) { 4194 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4195 int status = 0; 4196 4197 /* 4198 * EDMA operation has a TX completion FIFO 4199 * separate from the TX descriptor, so this 4200 * method of checking the "completion" status 4201 * is wrong. 4202 */ 4203 if (! sc->sc_isedma) { 4204 status = (ath_hal_txprocdesc(ah, 4205 bf->bf_lastds, 4206 &bf->bf_status.ds_txstat) == HAL_OK); 4207 } 4208 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4209 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4210 bf->bf_m->m_len, 0, -1); 4211 } 4212 #endif /* ATH_DEBUG */ 4213 /* 4214 * Since we're now doing magic in the completion 4215 * functions, we -must- call it for aggregation 4216 * destinations or BAW tracking will get upset. 4217 */ 4218 /* 4219 * Clear ATH_BUF_BUSY; the completion handler 4220 * will free the buffer. 4221 */ 4222 ATH_TX_UNLOCK(sc); 4223 bf->bf_flags &= ~ATH_BUF_BUSY; 4224 if (bf->bf_comp) 4225 bf->bf_comp(sc, bf, 1); 4226 else 4227 ath_tx_default_comp(sc, bf, 1); 4228 } 4229 4230 /* 4231 * Drain software queued frames which are on 4232 * active TIDs. 4233 */ 4234 ath_tx_txq_drain(sc, txq); 4235 } 4236 4237 static void 4238 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4239 { 4240 struct ath_hal *ah = sc->sc_ah; 4241 4242 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4243 __func__, txq->axq_qnum, 4244 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4245 txq->axq_link); 4246 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4247 } 4248 4249 int 4250 ath_stoptxdma(struct ath_softc *sc) 4251 { 4252 struct ath_hal *ah = sc->sc_ah; 4253 int i; 4254 4255 /* XXX return value */ 4256 if (sc->sc_invalid) 4257 return 0; 4258 4259 if (!sc->sc_invalid) { 4260 /* don't touch the hardware if marked invalid */ 4261 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4262 __func__, sc->sc_bhalq, 4263 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4264 NULL); 4265 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4266 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4267 if (ATH_TXQ_SETUP(sc, i)) 4268 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4269 } 4270 4271 return 1; 4272 } 4273 4274 /* 4275 * Drain the transmit queues and reclaim resources. 4276 */ 4277 void 4278 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4279 { 4280 #ifdef ATH_DEBUG 4281 struct ath_hal *ah = sc->sc_ah; 4282 #endif 4283 struct ifnet *ifp = sc->sc_ifp; 4284 int i; 4285 4286 (void) ath_stoptxdma(sc); 4287 4288 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4289 /* 4290 * XXX TODO: should we just handle the completed TX frames 4291 * here, whether or not the reset is a full one or not? 4292 */ 4293 if (ATH_TXQ_SETUP(sc, i)) { 4294 if (reset_type == ATH_RESET_NOLOSS) 4295 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4296 else 4297 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4298 } 4299 } 4300 #ifdef ATH_DEBUG 4301 if (sc->sc_debug & ATH_DEBUG_RESET) { 4302 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 4303 if (bf != NULL && bf->bf_m != NULL) { 4304 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4305 ath_hal_txprocdesc(ah, bf->bf_lastds, 4306 &bf->bf_status.ds_txstat) == HAL_OK); 4307 ieee80211_dump_pkt(ifp->if_l2com, 4308 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4309 0, -1); 4310 } 4311 } 4312 #endif /* ATH_DEBUG */ 4313 IF_LOCK(&ifp->if_snd); 4314 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4315 IF_UNLOCK(&ifp->if_snd); 4316 sc->sc_wd_timer = 0; 4317 } 4318 4319 /* 4320 * Update internal state after a channel change. 4321 */ 4322 static void 4323 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4324 { 4325 enum ieee80211_phymode mode; 4326 4327 /* 4328 * Change channels and update the h/w rate map 4329 * if we're switching; e.g. 11a to 11b/g. 4330 */ 4331 mode = ieee80211_chan2mode(chan); 4332 if (mode != sc->sc_curmode) 4333 ath_setcurmode(sc, mode); 4334 sc->sc_curchan = chan; 4335 } 4336 4337 /* 4338 * Set/change channels. If the channel is really being changed, 4339 * it's done by resetting the chip. To accomplish this we must 4340 * first cleanup any pending DMA, then restart stuff after a la 4341 * ath_init. 4342 */ 4343 static int 4344 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4345 { 4346 struct ifnet *ifp = sc->sc_ifp; 4347 struct ieee80211com *ic = ifp->if_l2com; 4348 struct ath_hal *ah = sc->sc_ah; 4349 int ret = 0; 4350 4351 /* Treat this as an interface reset */ 4352 ATH_PCU_UNLOCK_ASSERT(sc); 4353 ATH_UNLOCK_ASSERT(sc); 4354 4355 /* (Try to) stop TX/RX from occuring */ 4356 taskqueue_block(sc->sc_tq); 4357 4358 ATH_PCU_LOCK(sc); 4359 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4360 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4361 if (ath_reset_grablock(sc, 1) == 0) { 4362 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4363 __func__); 4364 } 4365 ATH_PCU_UNLOCK(sc); 4366 4367 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4368 __func__, ieee80211_chan2ieee(ic, chan), 4369 chan->ic_freq, chan->ic_flags); 4370 if (chan != sc->sc_curchan) { 4371 HAL_STATUS status; 4372 /* 4373 * To switch channels clear any pending DMA operations; 4374 * wait long enough for the RX fifo to drain, reset the 4375 * hardware at the new frequency, and then re-enable 4376 * the relevant bits of the h/w. 4377 */ 4378 #if 0 4379 ath_hal_intrset(ah, 0); /* disable interrupts */ 4380 #endif 4381 ath_stoprecv(sc, 1); /* turn off frame recv */ 4382 /* 4383 * First, handle completed TX/RX frames. 4384 */ 4385 ath_rx_flush(sc); 4386 ath_draintxq(sc, ATH_RESET_NOLOSS); 4387 /* 4388 * Next, flush the non-scheduled frames. 4389 */ 4390 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4391 4392 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4393 if_printf(ifp, "%s: unable to reset " 4394 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4395 __func__, ieee80211_chan2ieee(ic, chan), 4396 chan->ic_freq, chan->ic_flags, status); 4397 ret = EIO; 4398 goto finish; 4399 } 4400 sc->sc_diversity = ath_hal_getdiversity(ah); 4401 4402 /* Let DFS at it in case it's a DFS channel */ 4403 ath_dfs_radar_enable(sc, chan); 4404 4405 /* 4406 * Re-enable rx framework. 4407 */ 4408 if (ath_startrecv(sc) != 0) { 4409 if_printf(ifp, "%s: unable to restart recv logic\n", 4410 __func__); 4411 ret = EIO; 4412 goto finish; 4413 } 4414 4415 /* 4416 * Change channels and update the h/w rate map 4417 * if we're switching; e.g. 11a to 11b/g. 4418 */ 4419 ath_chan_change(sc, chan); 4420 4421 /* 4422 * Reset clears the beacon timers; reset them 4423 * here if needed. 4424 */ 4425 if (sc->sc_beacons) { /* restart beacons */ 4426 #ifdef IEEE80211_SUPPORT_TDMA 4427 if (sc->sc_tdma) 4428 ath_tdma_config(sc, NULL); 4429 else 4430 #endif 4431 ath_beacon_config(sc, NULL); 4432 } 4433 4434 /* 4435 * Re-enable interrupts. 4436 */ 4437 #if 0 4438 ath_hal_intrset(ah, sc->sc_imask); 4439 #endif 4440 } 4441 4442 finish: 4443 ATH_PCU_LOCK(sc); 4444 sc->sc_inreset_cnt--; 4445 /* XXX only do this if sc_inreset_cnt == 0? */ 4446 ath_hal_intrset(ah, sc->sc_imask); 4447 ATH_PCU_UNLOCK(sc); 4448 4449 IF_LOCK(&ifp->if_snd); 4450 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4451 IF_UNLOCK(&ifp->if_snd); 4452 ath_txrx_start(sc); 4453 /* XXX ath_start? */ 4454 4455 return ret; 4456 } 4457 4458 /* 4459 * Periodically recalibrate the PHY to account 4460 * for temperature/environment changes. 4461 */ 4462 static void 4463 ath_calibrate(void *arg) 4464 { 4465 struct ath_softc *sc = arg; 4466 struct ath_hal *ah = sc->sc_ah; 4467 struct ifnet *ifp = sc->sc_ifp; 4468 struct ieee80211com *ic = ifp->if_l2com; 4469 HAL_BOOL longCal, isCalDone = AH_TRUE; 4470 HAL_BOOL aniCal, shortCal = AH_FALSE; 4471 int nextcal; 4472 4473 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4474 goto restart; 4475 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4476 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4477 if (sc->sc_doresetcal) 4478 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4479 4480 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4481 if (aniCal) { 4482 sc->sc_stats.ast_ani_cal++; 4483 sc->sc_lastani = ticks; 4484 ath_hal_ani_poll(ah, sc->sc_curchan); 4485 } 4486 4487 if (longCal) { 4488 sc->sc_stats.ast_per_cal++; 4489 sc->sc_lastlongcal = ticks; 4490 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4491 /* 4492 * Rfgain is out of bounds, reset the chip 4493 * to load new gain values. 4494 */ 4495 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4496 "%s: rfgain change\n", __func__); 4497 sc->sc_stats.ast_per_rfgain++; 4498 sc->sc_resetcal = 0; 4499 sc->sc_doresetcal = AH_TRUE; 4500 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4501 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4502 return; 4503 } 4504 /* 4505 * If this long cal is after an idle period, then 4506 * reset the data collection state so we start fresh. 4507 */ 4508 if (sc->sc_resetcal) { 4509 (void) ath_hal_calreset(ah, sc->sc_curchan); 4510 sc->sc_lastcalreset = ticks; 4511 sc->sc_lastshortcal = ticks; 4512 sc->sc_resetcal = 0; 4513 sc->sc_doresetcal = AH_TRUE; 4514 } 4515 } 4516 4517 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4518 if (shortCal || longCal) { 4519 isCalDone = AH_FALSE; 4520 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4521 if (longCal) { 4522 /* 4523 * Calibrate noise floor data again in case of change. 4524 */ 4525 ath_hal_process_noisefloor(ah); 4526 } 4527 } else { 4528 DPRINTF(sc, ATH_DEBUG_ANY, 4529 "%s: calibration of channel %u failed\n", 4530 __func__, sc->sc_curchan->ic_freq); 4531 sc->sc_stats.ast_per_calfail++; 4532 } 4533 if (shortCal) 4534 sc->sc_lastshortcal = ticks; 4535 } 4536 if (!isCalDone) { 4537 restart: 4538 /* 4539 * Use a shorter interval to potentially collect multiple 4540 * data samples required to complete calibration. Once 4541 * we're told the work is done we drop back to a longer 4542 * interval between requests. We're more aggressive doing 4543 * work when operating as an AP to improve operation right 4544 * after startup. 4545 */ 4546 sc->sc_lastshortcal = ticks; 4547 nextcal = ath_shortcalinterval*hz/1000; 4548 if (sc->sc_opmode != HAL_M_HOSTAP) 4549 nextcal *= 10; 4550 sc->sc_doresetcal = AH_TRUE; 4551 } else { 4552 /* nextcal should be the shortest time for next event */ 4553 nextcal = ath_longcalinterval*hz; 4554 if (sc->sc_lastcalreset == 0) 4555 sc->sc_lastcalreset = sc->sc_lastlongcal; 4556 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4557 sc->sc_resetcal = 1; /* setup reset next trip */ 4558 sc->sc_doresetcal = AH_FALSE; 4559 } 4560 /* ANI calibration may occur more often than short/long/resetcal */ 4561 if (ath_anicalinterval > 0) 4562 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4563 4564 if (nextcal != 0) { 4565 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4566 __func__, nextcal, isCalDone ? "" : "!"); 4567 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4568 } else { 4569 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4570 __func__); 4571 /* NB: don't rearm timer */ 4572 } 4573 } 4574 4575 static void 4576 ath_scan_start(struct ieee80211com *ic) 4577 { 4578 struct ifnet *ifp = ic->ic_ifp; 4579 struct ath_softc *sc = ifp->if_softc; 4580 struct ath_hal *ah = sc->sc_ah; 4581 u_int32_t rfilt; 4582 4583 /* XXX calibration timer? */ 4584 4585 ATH_LOCK(sc); 4586 sc->sc_scanning = 1; 4587 sc->sc_syncbeacon = 0; 4588 rfilt = ath_calcrxfilter(sc); 4589 ATH_UNLOCK(sc); 4590 4591 ATH_PCU_LOCK(sc); 4592 ath_hal_setrxfilter(ah, rfilt); 4593 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4594 ATH_PCU_UNLOCK(sc); 4595 4596 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4597 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4598 } 4599 4600 static void 4601 ath_scan_end(struct ieee80211com *ic) 4602 { 4603 struct ifnet *ifp = ic->ic_ifp; 4604 struct ath_softc *sc = ifp->if_softc; 4605 struct ath_hal *ah = sc->sc_ah; 4606 u_int32_t rfilt; 4607 4608 ATH_LOCK(sc); 4609 sc->sc_scanning = 0; 4610 rfilt = ath_calcrxfilter(sc); 4611 ATH_UNLOCK(sc); 4612 4613 ATH_PCU_LOCK(sc); 4614 ath_hal_setrxfilter(ah, rfilt); 4615 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4616 4617 ath_hal_process_noisefloor(ah); 4618 ATH_PCU_UNLOCK(sc); 4619 4620 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4621 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4622 sc->sc_curaid); 4623 } 4624 4625 #ifdef ATH_ENABLE_11N 4626 /* 4627 * For now, just do a channel change. 4628 * 4629 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4630 * control state and resetting the hardware without dropping frames out 4631 * of the queue. 4632 * 4633 * The unfortunate trouble here is making absolutely sure that the 4634 * channel width change has propagated enough so the hardware 4635 * absolutely isn't handed bogus frames for it's current operating 4636 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4637 * does occur in parallel, we need to make certain we've blocked 4638 * any further ongoing TX (and RX, that can cause raw TX) 4639 * before we do this. 4640 */ 4641 static void 4642 ath_update_chw(struct ieee80211com *ic) 4643 { 4644 struct ifnet *ifp = ic->ic_ifp; 4645 struct ath_softc *sc = ifp->if_softc; 4646 4647 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4648 ath_set_channel(ic); 4649 } 4650 #endif /* ATH_ENABLE_11N */ 4651 4652 static void 4653 ath_set_channel(struct ieee80211com *ic) 4654 { 4655 struct ifnet *ifp = ic->ic_ifp; 4656 struct ath_softc *sc = ifp->if_softc; 4657 4658 (void) ath_chan_set(sc, ic->ic_curchan); 4659 /* 4660 * If we are returning to our bss channel then mark state 4661 * so the next recv'd beacon's tsf will be used to sync the 4662 * beacon timers. Note that since we only hear beacons in 4663 * sta/ibss mode this has no effect in other operating modes. 4664 */ 4665 ATH_LOCK(sc); 4666 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4667 sc->sc_syncbeacon = 1; 4668 ATH_UNLOCK(sc); 4669 } 4670 4671 /* 4672 * Walk the vap list and check if there any vap's in RUN state. 4673 */ 4674 static int 4675 ath_isanyrunningvaps(struct ieee80211vap *this) 4676 { 4677 struct ieee80211com *ic = this->iv_ic; 4678 struct ieee80211vap *vap; 4679 4680 IEEE80211_LOCK_ASSERT(ic); 4681 4682 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4683 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4684 return 1; 4685 } 4686 return 0; 4687 } 4688 4689 static int 4690 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4691 { 4692 struct ieee80211com *ic = vap->iv_ic; 4693 struct ath_softc *sc = ic->ic_ifp->if_softc; 4694 struct ath_vap *avp = ATH_VAP(vap); 4695 struct ath_hal *ah = sc->sc_ah; 4696 struct ieee80211_node *ni = NULL; 4697 int i, error, stamode; 4698 u_int32_t rfilt; 4699 int csa_run_transition = 0; 4700 static const HAL_LED_STATE leds[] = { 4701 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4702 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4703 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4704 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4705 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4706 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4707 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4708 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4709 }; 4710 4711 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4712 ieee80211_state_name[vap->iv_state], 4713 ieee80211_state_name[nstate]); 4714 4715 /* 4716 * net80211 _should_ have the comlock asserted at this point. 4717 * There are some comments around the calls to vap->iv_newstate 4718 * which indicate that it (newstate) may end up dropping the 4719 * lock. This and the subsequent lock assert check after newstate 4720 * are an attempt to catch these and figure out how/why. 4721 */ 4722 IEEE80211_LOCK_ASSERT(ic); 4723 4724 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4725 csa_run_transition = 1; 4726 4727 callout_drain(&sc->sc_cal_ch); 4728 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4729 4730 if (nstate == IEEE80211_S_SCAN) { 4731 /* 4732 * Scanning: turn off beacon miss and don't beacon. 4733 * Mark beacon state so when we reach RUN state we'll 4734 * [re]setup beacons. Unblock the task q thread so 4735 * deferred interrupt processing is done. 4736 */ 4737 ath_hal_intrset(ah, 4738 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4739 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4740 sc->sc_beacons = 0; 4741 taskqueue_unblock(sc->sc_tq); 4742 } 4743 4744 ni = ieee80211_ref_node(vap->iv_bss); 4745 rfilt = ath_calcrxfilter(sc); 4746 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4747 vap->iv_opmode == IEEE80211_M_AHDEMO || 4748 vap->iv_opmode == IEEE80211_M_IBSS); 4749 if (stamode && nstate == IEEE80211_S_RUN) { 4750 sc->sc_curaid = ni->ni_associd; 4751 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4752 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4753 } 4754 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4755 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4756 ath_hal_setrxfilter(ah, rfilt); 4757 4758 /* XXX is this to restore keycache on resume? */ 4759 if (vap->iv_opmode != IEEE80211_M_STA && 4760 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4761 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4762 if (ath_hal_keyisvalid(ah, i)) 4763 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4764 } 4765 4766 /* 4767 * Invoke the parent method to do net80211 work. 4768 */ 4769 error = avp->av_newstate(vap, nstate, arg); 4770 if (error != 0) 4771 goto bad; 4772 4773 /* 4774 * See above: ensure av_newstate() doesn't drop the lock 4775 * on us. 4776 */ 4777 IEEE80211_LOCK_ASSERT(ic); 4778 4779 if (nstate == IEEE80211_S_RUN) { 4780 /* NB: collect bss node again, it may have changed */ 4781 ieee80211_free_node(ni); 4782 ni = ieee80211_ref_node(vap->iv_bss); 4783 4784 DPRINTF(sc, ATH_DEBUG_STATE, 4785 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 4786 "capinfo 0x%04x chan %d\n", __func__, 4787 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 4788 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 4789 4790 switch (vap->iv_opmode) { 4791 #ifdef IEEE80211_SUPPORT_TDMA 4792 case IEEE80211_M_AHDEMO: 4793 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 4794 break; 4795 /* fall thru... */ 4796 #endif 4797 case IEEE80211_M_HOSTAP: 4798 case IEEE80211_M_IBSS: 4799 case IEEE80211_M_MBSS: 4800 /* 4801 * Allocate and setup the beacon frame. 4802 * 4803 * Stop any previous beacon DMA. This may be 4804 * necessary, for example, when an ibss merge 4805 * causes reconfiguration; there will be a state 4806 * transition from RUN->RUN that means we may 4807 * be called with beacon transmission active. 4808 */ 4809 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4810 4811 error = ath_beacon_alloc(sc, ni); 4812 if (error != 0) 4813 goto bad; 4814 /* 4815 * If joining an adhoc network defer beacon timer 4816 * configuration to the next beacon frame so we 4817 * have a current TSF to use. Otherwise we're 4818 * starting an ibss/bss so there's no need to delay; 4819 * if this is the first vap moving to RUN state, then 4820 * beacon state needs to be [re]configured. 4821 */ 4822 if (vap->iv_opmode == IEEE80211_M_IBSS && 4823 ni->ni_tstamp.tsf != 0) { 4824 sc->sc_syncbeacon = 1; 4825 } else if (!sc->sc_beacons) { 4826 #ifdef IEEE80211_SUPPORT_TDMA 4827 if (vap->iv_caps & IEEE80211_C_TDMA) 4828 ath_tdma_config(sc, vap); 4829 else 4830 #endif 4831 ath_beacon_config(sc, vap); 4832 sc->sc_beacons = 1; 4833 } 4834 break; 4835 case IEEE80211_M_STA: 4836 /* 4837 * Defer beacon timer configuration to the next 4838 * beacon frame so we have a current TSF to use 4839 * (any TSF collected when scanning is likely old). 4840 * However if it's due to a CSA -> RUN transition, 4841 * force a beacon update so we pick up a lack of 4842 * beacons from an AP in CAC and thus force a 4843 * scan. 4844 */ 4845 sc->sc_syncbeacon = 1; 4846 if (csa_run_transition) 4847 ath_beacon_config(sc, vap); 4848 break; 4849 case IEEE80211_M_MONITOR: 4850 /* 4851 * Monitor mode vaps have only INIT->RUN and RUN->RUN 4852 * transitions so we must re-enable interrupts here to 4853 * handle the case of a single monitor mode vap. 4854 */ 4855 ath_hal_intrset(ah, sc->sc_imask); 4856 break; 4857 case IEEE80211_M_WDS: 4858 break; 4859 default: 4860 break; 4861 } 4862 /* 4863 * Let the hal process statistics collected during a 4864 * scan so it can provide calibrated noise floor data. 4865 */ 4866 ath_hal_process_noisefloor(ah); 4867 /* 4868 * Reset rssi stats; maybe not the best place... 4869 */ 4870 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4871 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4872 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4873 /* 4874 * Finally, start any timers and the task q thread 4875 * (in case we didn't go through SCAN state). 4876 */ 4877 if (ath_longcalinterval != 0) { 4878 /* start periodic recalibration timer */ 4879 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4880 } else { 4881 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4882 "%s: calibration disabled\n", __func__); 4883 } 4884 taskqueue_unblock(sc->sc_tq); 4885 } else if (nstate == IEEE80211_S_INIT) { 4886 /* 4887 * If there are no vaps left in RUN state then 4888 * shutdown host/driver operation: 4889 * o disable interrupts 4890 * o disable the task queue thread 4891 * o mark beacon processing as stopped 4892 */ 4893 if (!ath_isanyrunningvaps(vap)) { 4894 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4895 /* disable interrupts */ 4896 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4897 taskqueue_block(sc->sc_tq); 4898 sc->sc_beacons = 0; 4899 } 4900 #ifdef IEEE80211_SUPPORT_TDMA 4901 ath_hal_setcca(ah, AH_TRUE); 4902 #endif 4903 } 4904 bad: 4905 ieee80211_free_node(ni); 4906 return error; 4907 } 4908 4909 /* 4910 * Allocate a key cache slot to the station so we can 4911 * setup a mapping from key index to node. The key cache 4912 * slot is needed for managing antenna state and for 4913 * compression when stations do not use crypto. We do 4914 * it uniliaterally here; if crypto is employed this slot 4915 * will be reassigned. 4916 */ 4917 static void 4918 ath_setup_stationkey(struct ieee80211_node *ni) 4919 { 4920 struct ieee80211vap *vap = ni->ni_vap; 4921 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4922 ieee80211_keyix keyix, rxkeyix; 4923 4924 /* XXX should take a locked ref to vap->iv_bss */ 4925 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4926 /* 4927 * Key cache is full; we'll fall back to doing 4928 * the more expensive lookup in software. Note 4929 * this also means no h/w compression. 4930 */ 4931 /* XXX msg+statistic */ 4932 } else { 4933 /* XXX locking? */ 4934 ni->ni_ucastkey.wk_keyix = keyix; 4935 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4936 /* NB: must mark device key to get called back on delete */ 4937 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 4938 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 4939 /* NB: this will create a pass-thru key entry */ 4940 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 4941 } 4942 } 4943 4944 /* 4945 * Setup driver-specific state for a newly associated node. 4946 * Note that we're called also on a re-associate, the isnew 4947 * param tells us if this is the first time or not. 4948 */ 4949 static void 4950 ath_newassoc(struct ieee80211_node *ni, int isnew) 4951 { 4952 struct ath_node *an = ATH_NODE(ni); 4953 struct ieee80211vap *vap = ni->ni_vap; 4954 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4955 const struct ieee80211_txparam *tp = ni->ni_txparms; 4956 4957 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 4958 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 4959 4960 ath_rate_newassoc(sc, an, isnew); 4961 if (isnew && 4962 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 4963 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4964 ath_setup_stationkey(ni); 4965 } 4966 4967 static int 4968 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 4969 int nchans, struct ieee80211_channel chans[]) 4970 { 4971 struct ath_softc *sc = ic->ic_ifp->if_softc; 4972 struct ath_hal *ah = sc->sc_ah; 4973 HAL_STATUS status; 4974 4975 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4976 "%s: rd %u cc %u location %c%s\n", 4977 __func__, reg->regdomain, reg->country, reg->location, 4978 reg->ecm ? " ecm" : ""); 4979 4980 status = ath_hal_set_channels(ah, chans, nchans, 4981 reg->country, reg->regdomain); 4982 if (status != HAL_OK) { 4983 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 4984 __func__, status); 4985 return EINVAL; /* XXX */ 4986 } 4987 4988 return 0; 4989 } 4990 4991 static void 4992 ath_getradiocaps(struct ieee80211com *ic, 4993 int maxchans, int *nchans, struct ieee80211_channel chans[]) 4994 { 4995 struct ath_softc *sc = ic->ic_ifp->if_softc; 4996 struct ath_hal *ah = sc->sc_ah; 4997 4998 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 4999 __func__, SKU_DEBUG, CTRY_DEFAULT); 5000 5001 /* XXX check return */ 5002 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5003 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5004 5005 } 5006 5007 static int 5008 ath_getchannels(struct ath_softc *sc) 5009 { 5010 struct ifnet *ifp = sc->sc_ifp; 5011 struct ieee80211com *ic = ifp->if_l2com; 5012 struct ath_hal *ah = sc->sc_ah; 5013 HAL_STATUS status; 5014 5015 /* 5016 * Collect channel set based on EEPROM contents. 5017 */ 5018 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5019 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5020 if (status != HAL_OK) { 5021 if_printf(ifp, "%s: unable to collect channel list from hal, " 5022 "status %d\n", __func__, status); 5023 return EINVAL; 5024 } 5025 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5026 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5027 /* XXX map Atheros sku's to net80211 SKU's */ 5028 /* XXX net80211 types too small */ 5029 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5030 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5031 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5032 ic->ic_regdomain.isocc[1] = ' '; 5033 5034 ic->ic_regdomain.ecm = 1; 5035 ic->ic_regdomain.location = 'I'; 5036 5037 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5038 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5039 __func__, sc->sc_eerd, sc->sc_eecc, 5040 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5041 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5042 return 0; 5043 } 5044 5045 static int 5046 ath_rate_setup(struct ath_softc *sc, u_int mode) 5047 { 5048 struct ath_hal *ah = sc->sc_ah; 5049 const HAL_RATE_TABLE *rt; 5050 5051 switch (mode) { 5052 case IEEE80211_MODE_11A: 5053 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5054 break; 5055 case IEEE80211_MODE_HALF: 5056 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5057 break; 5058 case IEEE80211_MODE_QUARTER: 5059 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5060 break; 5061 case IEEE80211_MODE_11B: 5062 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5063 break; 5064 case IEEE80211_MODE_11G: 5065 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5066 break; 5067 case IEEE80211_MODE_TURBO_A: 5068 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5069 break; 5070 case IEEE80211_MODE_TURBO_G: 5071 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5072 break; 5073 case IEEE80211_MODE_STURBO_A: 5074 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5075 break; 5076 case IEEE80211_MODE_11NA: 5077 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 5078 break; 5079 case IEEE80211_MODE_11NG: 5080 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 5081 break; 5082 default: 5083 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5084 __func__, mode); 5085 return 0; 5086 } 5087 sc->sc_rates[mode] = rt; 5088 return (rt != NULL); 5089 } 5090 5091 static void 5092 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5093 { 5094 #define N(a) (sizeof(a)/sizeof(a[0])) 5095 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5096 static const struct { 5097 u_int rate; /* tx/rx 802.11 rate */ 5098 u_int16_t timeOn; /* LED on time (ms) */ 5099 u_int16_t timeOff; /* LED off time (ms) */ 5100 } blinkrates[] = { 5101 { 108, 40, 10 }, 5102 { 96, 44, 11 }, 5103 { 72, 50, 13 }, 5104 { 48, 57, 14 }, 5105 { 36, 67, 16 }, 5106 { 24, 80, 20 }, 5107 { 22, 100, 25 }, 5108 { 18, 133, 34 }, 5109 { 12, 160, 40 }, 5110 { 10, 200, 50 }, 5111 { 6, 240, 58 }, 5112 { 4, 267, 66 }, 5113 { 2, 400, 100 }, 5114 { 0, 500, 130 }, 5115 /* XXX half/quarter rates */ 5116 }; 5117 const HAL_RATE_TABLE *rt; 5118 int i, j; 5119 5120 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5121 rt = sc->sc_rates[mode]; 5122 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5123 for (i = 0; i < rt->rateCount; i++) { 5124 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5125 if (rt->info[i].phy != IEEE80211_T_HT) 5126 sc->sc_rixmap[ieeerate] = i; 5127 else 5128 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 5129 } 5130 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5131 for (i = 0; i < N(sc->sc_hwmap); i++) { 5132 if (i >= rt->rateCount) { 5133 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5134 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5135 continue; 5136 } 5137 sc->sc_hwmap[i].ieeerate = 5138 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5139 if (rt->info[i].phy == IEEE80211_T_HT) 5140 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 5141 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5142 if (rt->info[i].shortPreamble || 5143 rt->info[i].phy == IEEE80211_T_OFDM) 5144 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5145 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 5146 for (j = 0; j < N(blinkrates)-1; j++) 5147 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5148 break; 5149 /* NB: this uses the last entry if the rate isn't found */ 5150 /* XXX beware of overlow */ 5151 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5152 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5153 } 5154 sc->sc_currates = rt; 5155 sc->sc_curmode = mode; 5156 /* 5157 * All protection frames are transmited at 2Mb/s for 5158 * 11g, otherwise at 1Mb/s. 5159 */ 5160 if (mode == IEEE80211_MODE_11G) 5161 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 5162 else 5163 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 5164 /* NB: caller is responsible for resetting rate control state */ 5165 #undef N 5166 } 5167 5168 static void 5169 ath_watchdog(void *arg) 5170 { 5171 struct ath_softc *sc = arg; 5172 int do_reset = 0; 5173 5174 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 5175 struct ifnet *ifp = sc->sc_ifp; 5176 uint32_t hangs; 5177 5178 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 5179 hangs != 0) { 5180 if_printf(ifp, "%s hang detected (0x%x)\n", 5181 hangs & 0xff ? "bb" : "mac", hangs); 5182 } else 5183 if_printf(ifp, "device timeout\n"); 5184 do_reset = 1; 5185 ifp->if_oerrors++; 5186 sc->sc_stats.ast_watchdog++; 5187 } 5188 5189 /* 5190 * We can't hold the lock across the ath_reset() call. 5191 * 5192 * And since this routine can't hold a lock and sleep, 5193 * do the reset deferred. 5194 */ 5195 if (do_reset) { 5196 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5197 } 5198 5199 callout_schedule(&sc->sc_wd_ch, hz); 5200 } 5201 5202 /* 5203 * Fetch the rate control statistics for the given node. 5204 */ 5205 static int 5206 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 5207 { 5208 struct ath_node *an; 5209 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5210 struct ieee80211_node *ni; 5211 int error = 0; 5212 5213 /* Perform a lookup on the given node */ 5214 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 5215 if (ni == NULL) { 5216 error = EINVAL; 5217 goto bad; 5218 } 5219 5220 /* Lock the ath_node */ 5221 an = ATH_NODE(ni); 5222 ATH_NODE_LOCK(an); 5223 5224 /* Fetch the rate control stats for this node */ 5225 error = ath_rate_fetch_node_stats(sc, an, rs); 5226 5227 /* No matter what happens here, just drop through */ 5228 5229 /* Unlock the ath_node */ 5230 ATH_NODE_UNLOCK(an); 5231 5232 /* Unref the node */ 5233 ieee80211_node_decref(ni); 5234 5235 bad: 5236 return (error); 5237 } 5238 5239 #ifdef ATH_DIAGAPI 5240 /* 5241 * Diagnostic interface to the HAL. This is used by various 5242 * tools to do things like retrieve register contents for 5243 * debugging. The mechanism is intentionally opaque so that 5244 * it can change frequently w/o concern for compatiblity. 5245 */ 5246 static int 5247 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5248 { 5249 struct ath_hal *ah = sc->sc_ah; 5250 u_int id = ad->ad_id & ATH_DIAG_ID; 5251 void *indata = NULL; 5252 void *outdata = NULL; 5253 u_int32_t insize = ad->ad_in_size; 5254 u_int32_t outsize = ad->ad_out_size; 5255 int error = 0; 5256 5257 if (ad->ad_id & ATH_DIAG_IN) { 5258 /* 5259 * Copy in data. 5260 */ 5261 indata = malloc(insize, M_TEMP, M_NOWAIT); 5262 if (indata == NULL) { 5263 error = ENOMEM; 5264 goto bad; 5265 } 5266 error = copyin(ad->ad_in_data, indata, insize); 5267 if (error) 5268 goto bad; 5269 } 5270 if (ad->ad_id & ATH_DIAG_DYN) { 5271 /* 5272 * Allocate a buffer for the results (otherwise the HAL 5273 * returns a pointer to a buffer where we can read the 5274 * results). Note that we depend on the HAL leaving this 5275 * pointer for us to use below in reclaiming the buffer; 5276 * may want to be more defensive. 5277 */ 5278 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5279 if (outdata == NULL) { 5280 error = ENOMEM; 5281 goto bad; 5282 } 5283 } 5284 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5285 if (outsize < ad->ad_out_size) 5286 ad->ad_out_size = outsize; 5287 if (outdata != NULL) 5288 error = copyout(outdata, ad->ad_out_data, 5289 ad->ad_out_size); 5290 } else { 5291 error = EINVAL; 5292 } 5293 bad: 5294 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5295 free(indata, M_TEMP); 5296 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5297 free(outdata, M_TEMP); 5298 return error; 5299 } 5300 #endif /* ATH_DIAGAPI */ 5301 5302 static int 5303 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5304 { 5305 #define IS_RUNNING(ifp) \ 5306 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5307 struct ath_softc *sc = ifp->if_softc; 5308 struct ieee80211com *ic = ifp->if_l2com; 5309 struct ifreq *ifr = (struct ifreq *)data; 5310 const HAL_RATE_TABLE *rt; 5311 int error = 0; 5312 5313 switch (cmd) { 5314 case SIOCSIFFLAGS: 5315 ATH_LOCK(sc); 5316 if (IS_RUNNING(ifp)) { 5317 /* 5318 * To avoid rescanning another access point, 5319 * do not call ath_init() here. Instead, 5320 * only reflect promisc mode settings. 5321 */ 5322 ath_mode_init(sc); 5323 } else if (ifp->if_flags & IFF_UP) { 5324 /* 5325 * Beware of being called during attach/detach 5326 * to reset promiscuous mode. In that case we 5327 * will still be marked UP but not RUNNING. 5328 * However trying to re-init the interface 5329 * is the wrong thing to do as we've already 5330 * torn down much of our state. There's 5331 * probably a better way to deal with this. 5332 */ 5333 if (!sc->sc_invalid) 5334 ath_init(sc); /* XXX lose error */ 5335 } else { 5336 ath_stop_locked(ifp); 5337 #ifdef notyet 5338 /* XXX must wakeup in places like ath_vap_delete */ 5339 if (!sc->sc_invalid) 5340 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5341 #endif 5342 } 5343 ATH_UNLOCK(sc); 5344 break; 5345 case SIOCGIFMEDIA: 5346 case SIOCSIFMEDIA: 5347 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5348 break; 5349 case SIOCGATHSTATS: 5350 /* NB: embed these numbers to get a consistent view */ 5351 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5352 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5353 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5354 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5355 #ifdef IEEE80211_SUPPORT_TDMA 5356 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5357 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5358 #endif 5359 rt = sc->sc_currates; 5360 sc->sc_stats.ast_tx_rate = 5361 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5362 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 5363 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 5364 return copyout(&sc->sc_stats, 5365 ifr->ifr_data, sizeof (sc->sc_stats)); 5366 case SIOCGATHAGSTATS: 5367 return copyout(&sc->sc_aggr_stats, 5368 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 5369 case SIOCZATHSTATS: 5370 error = priv_check(curthread, PRIV_DRIVER); 5371 if (error == 0) { 5372 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 5373 memset(&sc->sc_aggr_stats, 0, 5374 sizeof(sc->sc_aggr_stats)); 5375 memset(&sc->sc_intr_stats, 0, 5376 sizeof(sc->sc_intr_stats)); 5377 } 5378 break; 5379 #ifdef ATH_DIAGAPI 5380 case SIOCGATHDIAG: 5381 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5382 break; 5383 case SIOCGATHPHYERR: 5384 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5385 break; 5386 #endif 5387 case SIOCGATHNODERATESTATS: 5388 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 5389 break; 5390 case SIOCGIFADDR: 5391 error = ether_ioctl(ifp, cmd, data); 5392 break; 5393 default: 5394 error = EINVAL; 5395 break; 5396 } 5397 return error; 5398 #undef IS_RUNNING 5399 } 5400 5401 /* 5402 * Announce various information on device/driver attach. 5403 */ 5404 static void 5405 ath_announce(struct ath_softc *sc) 5406 { 5407 struct ifnet *ifp = sc->sc_ifp; 5408 struct ath_hal *ah = sc->sc_ah; 5409 5410 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5411 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5412 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5413 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5414 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5415 if (bootverbose) { 5416 int i; 5417 for (i = 0; i <= WME_AC_VO; i++) { 5418 struct ath_txq *txq = sc->sc_ac2q[i]; 5419 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5420 txq->axq_qnum, ieee80211_wme_acnames[i]); 5421 } 5422 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5423 sc->sc_cabq->axq_qnum); 5424 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5425 } 5426 if (ath_rxbuf != ATH_RXBUF) 5427 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5428 if (ath_txbuf != ATH_TXBUF) 5429 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5430 if (sc->sc_mcastkey && bootverbose) 5431 if_printf(ifp, "using multicast key search\n"); 5432 } 5433 5434 static void 5435 ath_dfs_tasklet(void *p, int npending) 5436 { 5437 struct ath_softc *sc = (struct ath_softc *) p; 5438 struct ifnet *ifp = sc->sc_ifp; 5439 struct ieee80211com *ic = ifp->if_l2com; 5440 5441 /* 5442 * If previous processing has found a radar event, 5443 * signal this to the net80211 layer to begin DFS 5444 * processing. 5445 */ 5446 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 5447 /* DFS event found, initiate channel change */ 5448 /* 5449 * XXX doesn't currently tell us whether the event 5450 * XXX was found in the primary or extension 5451 * XXX channel! 5452 */ 5453 IEEE80211_LOCK(ic); 5454 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 5455 IEEE80211_UNLOCK(ic); 5456 } 5457 } 5458 5459 /* 5460 * Enable/disable power save. This must be called with 5461 * no TX driver locks currently held, so it should only 5462 * be called from the RX path (which doesn't hold any 5463 * TX driver locks.) 5464 */ 5465 static void 5466 ath_node_powersave(struct ieee80211_node *ni, int enable) 5467 { 5468 #ifdef ATH_SW_PSQ 5469 struct ath_node *an = ATH_NODE(ni); 5470 struct ieee80211com *ic = ni->ni_ic; 5471 struct ath_softc *sc = ic->ic_ifp->if_softc; 5472 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5473 5474 ATH_NODE_UNLOCK_ASSERT(an); 5475 /* XXX and no TXQ locks should be held here */ 5476 5477 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n", 5478 __func__, ni, enable); 5479 5480 /* Suspend or resume software queue handling */ 5481 if (enable) 5482 ath_tx_node_sleep(sc, an); 5483 else 5484 ath_tx_node_wakeup(sc, an); 5485 5486 /* Update net80211 state */ 5487 avp->av_node_ps(ni, enable); 5488 #else 5489 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5490 5491 /* Update net80211 state */ 5492 avp->av_node_ps(ni, enable); 5493 #endif/* ATH_SW_PSQ */ 5494 } 5495 5496 /* 5497 * Notification from net80211 that the powersave queue state has 5498 * changed. 5499 * 5500 * Since the software queue also may have some frames: 5501 * 5502 * + if the node software queue has frames and the TID state 5503 * is 0, we set the TIM; 5504 * + if the node and the stack are both empty, we clear the TIM bit. 5505 * + If the stack tries to set the bit, always set it. 5506 * + If the stack tries to clear the bit, only clear it if the 5507 * software queue in question is also cleared. 5508 * 5509 * TODO: this is called during node teardown; so let's ensure this 5510 * is all correctly handled and that the TIM bit is cleared. 5511 * It may be that the node flush is called _AFTER_ the net80211 5512 * stack clears the TIM. 5513 * 5514 * Here is the racy part. Since it's possible >1 concurrent, 5515 * overlapping TXes will appear complete with a TX completion in 5516 * another thread, it's possible that the concurrent TIM calls will 5517 * clash. We can't hold the node lock here because setting the 5518 * TIM grabs the net80211 comlock and this may cause a LOR. 5519 * The solution is either to totally serialise _everything_ at 5520 * this point (ie, all TX, completion and any reset/flush go into 5521 * one taskqueue) or a new "ath TIM lock" needs to be created that 5522 * just wraps the driver state change and this call to avp->av_set_tim(). 5523 * 5524 * The same race exists in the net80211 power save queue handling 5525 * as well. Since multiple transmitting threads may queue frames 5526 * into the driver, as well as ps-poll and the driver transmitting 5527 * frames (and thus clearing the psq), it's quite possible that 5528 * a packet entering the PSQ and a ps-poll being handled will 5529 * race, causing the TIM to be cleared and not re-set. 5530 */ 5531 static int 5532 ath_node_set_tim(struct ieee80211_node *ni, int enable) 5533 { 5534 #ifdef ATH_SW_PSQ 5535 struct ieee80211com *ic = ni->ni_ic; 5536 struct ath_softc *sc = ic->ic_ifp->if_softc; 5537 struct ath_node *an = ATH_NODE(ni); 5538 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5539 int changed = 0; 5540 5541 ATH_NODE_UNLOCK_ASSERT(an); 5542 5543 /* 5544 * For now, just track and then update the TIM. 5545 */ 5546 ATH_NODE_LOCK(an); 5547 an->an_stack_psq = enable; 5548 5549 /* 5550 * This will get called for all operating modes, 5551 * even if avp->av_set_tim is unset. 5552 * It's currently set for hostap/ibss modes; but 5553 * the same infrastructure is used for both STA 5554 * and AP/IBSS node power save. 5555 */ 5556 if (avp->av_set_tim == NULL) { 5557 ATH_NODE_UNLOCK(an); 5558 return (0); 5559 } 5560 5561 /* 5562 * If setting the bit, always set it here. 5563 * If clearing the bit, only clear it if the 5564 * software queue is also empty. 5565 * 5566 * If the node has left power save, just clear the TIM 5567 * bit regardless of the state of the power save queue. 5568 * 5569 * XXX TODO: although atomics are used, it's quite possible 5570 * that a race will occur between this and setting/clearing 5571 * in another thread. TX completion will occur always in 5572 * one thread, however setting/clearing the TIM bit can come 5573 * from a variety of different process contexts! 5574 */ 5575 if (enable && an->an_tim_set == 1) { 5576 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5577 "%s: an=%p, enable=%d, tim_set=1, ignoring\n", 5578 __func__, an, enable); 5579 ATH_NODE_UNLOCK(an); 5580 } else if (enable) { 5581 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5582 "%s: an=%p, enable=%d, enabling TIM\n", 5583 __func__, an, enable); 5584 an->an_tim_set = 1; 5585 ATH_NODE_UNLOCK(an); 5586 changed = avp->av_set_tim(ni, enable); 5587 } else if (atomic_load_acq_int(&an->an_swq_depth) == 0) { 5588 /* disable */ 5589 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5590 "%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n", 5591 __func__, an, enable); 5592 an->an_tim_set = 0; 5593 ATH_NODE_UNLOCK(an); 5594 changed = avp->av_set_tim(ni, enable); 5595 } else if (! an->an_is_powersave) { 5596 /* 5597 * disable regardless; the node isn't in powersave now 5598 */ 5599 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5600 "%s: an=%p, enable=%d, an_pwrsave=0, disabling\n", 5601 __func__, an, enable); 5602 an->an_tim_set = 0; 5603 ATH_NODE_UNLOCK(an); 5604 changed = avp->av_set_tim(ni, enable); 5605 } else { 5606 /* 5607 * psq disable, node is currently in powersave, node 5608 * software queue isn't empty, so don't clear the TIM bit 5609 * for now. 5610 */ 5611 ATH_NODE_UNLOCK(an); 5612 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5613 "%s: enable=%d, an_swq_depth > 0, ignoring\n", 5614 __func__, enable); 5615 changed = 0; 5616 } 5617 5618 return (changed); 5619 #else 5620 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5621 5622 /* 5623 * Some operating omdes don't set av_set_tim(), so don't 5624 * update it here. 5625 */ 5626 if (avp->av_set_tim == NULL) 5627 return (0); 5628 5629 return (avp->av_set_tim(ni, enable)); 5630 #endif /* ATH_SW_PSQ */ 5631 } 5632 5633 /* 5634 * Set or update the TIM from the software queue. 5635 * 5636 * Check the software queue depth before attempting to do lock 5637 * anything; that avoids trying to obtain the lock. Then, 5638 * re-check afterwards to ensure nothing has changed in the 5639 * meantime. 5640 * 5641 * set: This is designed to be called from the TX path, after 5642 * a frame has been queued; to see if the swq > 0. 5643 * 5644 * clear: This is designed to be called from the buffer completion point 5645 * (right now it's ath_tx_default_comp()) where the state of 5646 * a software queue has changed. 5647 * 5648 * It makes sense to place it at buffer free / completion rather 5649 * than after each software queue operation, as there's no real 5650 * point in churning the TIM bit as the last frames in the software 5651 * queue are transmitted. If they fail and we retry them, we'd 5652 * just be setting the TIM bit again anyway. 5653 */ 5654 void 5655 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 5656 int enable) 5657 { 5658 #ifdef ATH_SW_PSQ 5659 struct ath_node *an; 5660 struct ath_vap *avp; 5661 5662 /* Don't do this for broadcast/etc frames */ 5663 if (ni == NULL) 5664 return; 5665 5666 an = ATH_NODE(ni); 5667 avp = ATH_VAP(ni->ni_vap); 5668 5669 /* 5670 * And for operating modes without the TIM handler set, let's 5671 * just skip those. 5672 */ 5673 if (avp->av_set_tim == NULL) 5674 return; 5675 5676 ATH_NODE_UNLOCK_ASSERT(an); 5677 5678 if (enable) { 5679 /* 5680 * Don't bother grabbing the lock unless the queue is not 5681 * empty. 5682 */ 5683 if (atomic_load_acq_int(&an->an_swq_depth) == 0) 5684 return; 5685 5686 ATH_NODE_LOCK(an); 5687 if (an->an_is_powersave && 5688 an->an_tim_set == 0 && 5689 atomic_load_acq_int(&an->an_swq_depth) != 0) { 5690 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5691 "%s: an=%p, swq_depth>0, tim_set=0, set!\n", 5692 __func__, an); 5693 an->an_tim_set = 1; 5694 ATH_NODE_UNLOCK(an); 5695 (void) avp->av_set_tim(ni, 1); 5696 } else { 5697 ATH_NODE_UNLOCK(an); 5698 } 5699 } else { 5700 /* 5701 * Don't bother grabbing the lock unless the queue is empty. 5702 */ 5703 if (atomic_load_acq_int(&an->an_swq_depth) != 0) 5704 return; 5705 5706 ATH_NODE_LOCK(an); 5707 if (an->an_is_powersave && 5708 an->an_stack_psq == 0 && 5709 an->an_tim_set == 1 && 5710 atomic_load_acq_int(&an->an_swq_depth) == 0) { 5711 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5712 "%s: an=%p, swq_depth=0, tim_set=1, psq_set=0," 5713 " clear!\n", 5714 __func__, an); 5715 an->an_tim_set = 0; 5716 ATH_NODE_UNLOCK(an); 5717 (void) avp->av_set_tim(ni, 0); 5718 } else { 5719 ATH_NODE_UNLOCK(an); 5720 } 5721 } 5722 #else 5723 return; 5724 #endif /* ATH_SW_PSQ */ 5725 } 5726 5727 MODULE_VERSION(if_ath, 1); 5728 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 5729 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 5730 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 5731 #endif 5732