xref: /freebsd/sys/dev/ath/if_ath.c (revision 12f110aa1ad3c9d0ead55bf80f2f994b4b845ffb)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_llc.h>
82 
83 #include <net80211/ieee80211_var.h>
84 #include <net80211/ieee80211_regdomain.h>
85 #ifdef IEEE80211_SUPPORT_SUPERG
86 #include <net80211/ieee80211_superg.h>
87 #endif
88 #ifdef IEEE80211_SUPPORT_TDMA
89 #include <net80211/ieee80211_tdma.h>
90 #endif
91 
92 #include <net/bpf.h>
93 
94 #ifdef INET
95 #include <netinet/in.h>
96 #include <netinet/if_ether.h>
97 #endif
98 
99 #include <dev/ath/if_athvar.h>
100 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101 #include <dev/ath/ath_hal/ah_diagcodes.h>
102 
103 #include <dev/ath/if_ath_debug.h>
104 #include <dev/ath/if_ath_misc.h>
105 #include <dev/ath/if_ath_tsf.h>
106 #include <dev/ath/if_ath_tx.h>
107 #include <dev/ath/if_ath_sysctl.h>
108 #include <dev/ath/if_ath_led.h>
109 #include <dev/ath/if_ath_keycache.h>
110 #include <dev/ath/if_ath_rx.h>
111 #include <dev/ath/if_ath_rx_edma.h>
112 #include <dev/ath/if_ath_tx_edma.h>
113 #include <dev/ath/if_ath_beacon.h>
114 #include <dev/ath/if_athdfs.h>
115 
116 #ifdef ATH_TX99_DIAG
117 #include <dev/ath/ath_tx99/ath_tx99.h>
118 #endif
119 
120 #ifdef	ATH_DEBUG_ALQ
121 #include <dev/ath/if_ath_alq.h>
122 #endif
123 
124 /*
125  * Only enable this if you're working on PS-POLL support.
126  */
127 #undef	ATH_SW_PSQ
128 
129 /*
130  * ATH_BCBUF determines the number of vap's that can transmit
131  * beacons and also (currently) the number of vap's that can
132  * have unique mac addresses/bssid.  When staggering beacons
133  * 4 is probably a good max as otherwise the beacons become
134  * very closely spaced and there is limited time for cab q traffic
135  * to go out.  You can burst beacons instead but that is not good
136  * for stations in power save and at some point you really want
137  * another radio (and channel).
138  *
139  * The limit on the number of mac addresses is tied to our use of
140  * the U/L bit and tracking addresses in a byte; it would be
141  * worthwhile to allow more for applications like proxy sta.
142  */
143 CTASSERT(ATH_BCBUF <= 8);
144 
145 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
146 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
147 		    const uint8_t [IEEE80211_ADDR_LEN],
148 		    const uint8_t [IEEE80211_ADDR_LEN]);
149 static void	ath_vap_delete(struct ieee80211vap *);
150 static void	ath_init(void *);
151 static void	ath_stop_locked(struct ifnet *);
152 static void	ath_stop(struct ifnet *);
153 static int	ath_reset_vap(struct ieee80211vap *, u_long);
154 static void	ath_start_queue(struct ifnet *ifp);
155 static int	ath_media_change(struct ifnet *);
156 static void	ath_watchdog(void *);
157 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
158 static void	ath_fatal_proc(void *, int);
159 static void	ath_bmiss_vap(struct ieee80211vap *);
160 static void	ath_bmiss_proc(void *, int);
161 static void	ath_key_update_begin(struct ieee80211vap *);
162 static void	ath_key_update_end(struct ieee80211vap *);
163 static void	ath_update_mcast(struct ifnet *);
164 static void	ath_update_promisc(struct ifnet *);
165 static void	ath_updateslot(struct ifnet *);
166 static void	ath_bstuck_proc(void *, int);
167 static void	ath_reset_proc(void *, int);
168 static int	ath_desc_alloc(struct ath_softc *);
169 static void	ath_desc_free(struct ath_softc *);
170 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
171 			const uint8_t [IEEE80211_ADDR_LEN]);
172 static void	ath_node_cleanup(struct ieee80211_node *);
173 static void	ath_node_free(struct ieee80211_node *);
174 static void	ath_node_getsignal(const struct ieee80211_node *,
175 			int8_t *, int8_t *);
176 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
177 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
178 static int	ath_tx_setup(struct ath_softc *, int, int);
179 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
180 static void	ath_tx_cleanup(struct ath_softc *);
181 static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
182 		    int dosched);
183 static void	ath_tx_proc_q0(void *, int);
184 static void	ath_tx_proc_q0123(void *, int);
185 static void	ath_tx_proc(void *, int);
186 static void	ath_txq_sched_tasklet(void *, int);
187 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
188 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
189 static void	ath_scan_start(struct ieee80211com *);
190 static void	ath_scan_end(struct ieee80211com *);
191 static void	ath_set_channel(struct ieee80211com *);
192 #ifdef	ATH_ENABLE_11N
193 static void	ath_update_chw(struct ieee80211com *);
194 #endif	/* ATH_ENABLE_11N */
195 static void	ath_calibrate(void *);
196 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
197 static void	ath_setup_stationkey(struct ieee80211_node *);
198 static void	ath_newassoc(struct ieee80211_node *, int);
199 static int	ath_setregdomain(struct ieee80211com *,
200 		    struct ieee80211_regdomain *, int,
201 		    struct ieee80211_channel []);
202 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
203 		    struct ieee80211_channel []);
204 static int	ath_getchannels(struct ath_softc *);
205 
206 static int	ath_rate_setup(struct ath_softc *, u_int mode);
207 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
208 
209 static void	ath_announce(struct ath_softc *);
210 
211 static void	ath_dfs_tasklet(void *, int);
212 static void	ath_node_powersave(struct ieee80211_node *, int);
213 static int	ath_node_set_tim(struct ieee80211_node *, int);
214 
215 #ifdef IEEE80211_SUPPORT_TDMA
216 #include <dev/ath/if_ath_tdma.h>
217 #endif
218 
219 SYSCTL_DECL(_hw_ath);
220 
221 /* XXX validate sysctl values */
222 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
223 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
224 	    0, "long chip calibration interval (secs)");
225 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
226 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
227 	    0, "short chip calibration interval (msecs)");
228 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
229 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
230 	    0, "reset chip calibration results (secs)");
231 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
232 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
233 	    0, "ANI calibration (msecs)");
234 
235 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
236 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
237 	    0, "rx buffers allocated");
238 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
239 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
240 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
241 	    0, "tx buffers allocated");
242 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
243 int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
244 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
245 	    0, "tx (mgmt) buffers allocated");
246 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
247 
248 int ath_bstuck_threshold = 4;		/* max missed beacons */
249 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
250 	    0, "max missed beacon xmits before chip reset");
251 
252 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
253 
254 void
255 ath_legacy_attach_comp_func(struct ath_softc *sc)
256 {
257 
258 	/*
259 	 * Special case certain configurations.  Note the
260 	 * CAB queue is handled by these specially so don't
261 	 * include them when checking the txq setup mask.
262 	 */
263 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
264 	case 0x01:
265 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
266 		break;
267 	case 0x0f:
268 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
269 		break;
270 	default:
271 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
272 		break;
273 	}
274 }
275 
276 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
277 #define	HAL_MODE_HT40 \
278 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
279 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
280 int
281 ath_attach(u_int16_t devid, struct ath_softc *sc)
282 {
283 	struct ifnet *ifp;
284 	struct ieee80211com *ic;
285 	struct ath_hal *ah = NULL;
286 	HAL_STATUS status;
287 	int error = 0, i;
288 	u_int wmodes;
289 	uint8_t macaddr[IEEE80211_ADDR_LEN];
290 	int rx_chainmask, tx_chainmask;
291 
292 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
293 
294 	CURVNET_SET(vnet0);
295 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
296 	if (ifp == NULL) {
297 		device_printf(sc->sc_dev, "can not if_alloc()\n");
298 		error = ENOSPC;
299 		CURVNET_RESTORE();
300 		goto bad;
301 	}
302 	ic = ifp->if_l2com;
303 
304 	/* set these up early for if_printf use */
305 	if_initname(ifp, device_get_name(sc->sc_dev),
306 		device_get_unit(sc->sc_dev));
307 	CURVNET_RESTORE();
308 
309 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
310 	    sc->sc_eepromdata, &status);
311 	if (ah == NULL) {
312 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
313 			status);
314 		error = ENXIO;
315 		goto bad;
316 	}
317 	sc->sc_ah = ah;
318 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
319 #ifdef	ATH_DEBUG
320 	sc->sc_debug = ath_debug;
321 #endif
322 
323 	/*
324 	 * Setup the DMA/EDMA functions based on the current
325 	 * hardware support.
326 	 *
327 	 * This is required before the descriptors are allocated.
328 	 */
329 	if (ath_hal_hasedma(sc->sc_ah)) {
330 		sc->sc_isedma = 1;
331 		ath_recv_setup_edma(sc);
332 		ath_xmit_setup_edma(sc);
333 	} else {
334 		ath_recv_setup_legacy(sc);
335 		ath_xmit_setup_legacy(sc);
336 	}
337 
338 	/*
339 	 * Check if the MAC has multi-rate retry support.
340 	 * We do this by trying to setup a fake extended
341 	 * descriptor.  MAC's that don't have support will
342 	 * return false w/o doing anything.  MAC's that do
343 	 * support it will return true w/o doing anything.
344 	 */
345 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
346 
347 	/*
348 	 * Check if the device has hardware counters for PHY
349 	 * errors.  If so we need to enable the MIB interrupt
350 	 * so we can act on stat triggers.
351 	 */
352 	if (ath_hal_hwphycounters(ah))
353 		sc->sc_needmib = 1;
354 
355 	/*
356 	 * Get the hardware key cache size.
357 	 */
358 	sc->sc_keymax = ath_hal_keycachesize(ah);
359 	if (sc->sc_keymax > ATH_KEYMAX) {
360 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
361 			ATH_KEYMAX, sc->sc_keymax);
362 		sc->sc_keymax = ATH_KEYMAX;
363 	}
364 	/*
365 	 * Reset the key cache since some parts do not
366 	 * reset the contents on initial power up.
367 	 */
368 	for (i = 0; i < sc->sc_keymax; i++)
369 		ath_hal_keyreset(ah, i);
370 
371 	/*
372 	 * Collect the default channel list.
373 	 */
374 	error = ath_getchannels(sc);
375 	if (error != 0)
376 		goto bad;
377 
378 	/*
379 	 * Setup rate tables for all potential media types.
380 	 */
381 	ath_rate_setup(sc, IEEE80211_MODE_11A);
382 	ath_rate_setup(sc, IEEE80211_MODE_11B);
383 	ath_rate_setup(sc, IEEE80211_MODE_11G);
384 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
385 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
386 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
387 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
388 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
389 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
390 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
391 
392 	/* NB: setup here so ath_rate_update is happy */
393 	ath_setcurmode(sc, IEEE80211_MODE_11A);
394 
395 	/*
396 	 * Allocate TX descriptors and populate the lists.
397 	 */
398 	error = ath_desc_alloc(sc);
399 	if (error != 0) {
400 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
401 		    error);
402 		goto bad;
403 	}
404 	error = ath_txdma_setup(sc);
405 	if (error != 0) {
406 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
407 		    error);
408 		goto bad;
409 	}
410 
411 	/*
412 	 * Allocate RX descriptors and populate the lists.
413 	 */
414 	error = ath_rxdma_setup(sc);
415 	if (error != 0) {
416 		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
417 		    error);
418 		goto bad;
419 	}
420 
421 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
422 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
423 
424 	ATH_TXBUF_LOCK_INIT(sc);
425 
426 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
427 		taskqueue_thread_enqueue, &sc->sc_tq);
428 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
429 		"%s taskq", ifp->if_xname);
430 
431 	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
432 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
433 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
434 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
435 	TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc);
436 	TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc);
437 
438 	/*
439 	 * Allocate hardware transmit queues: one queue for
440 	 * beacon frames and one data queue for each QoS
441 	 * priority.  Note that the hal handles resetting
442 	 * these queues at the needed time.
443 	 *
444 	 * XXX PS-Poll
445 	 */
446 	sc->sc_bhalq = ath_beaconq_setup(sc);
447 	if (sc->sc_bhalq == (u_int) -1) {
448 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
449 		error = EIO;
450 		goto bad2;
451 	}
452 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
453 	if (sc->sc_cabq == NULL) {
454 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
455 		error = EIO;
456 		goto bad2;
457 	}
458 	/* NB: insure BK queue is the lowest priority h/w queue */
459 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
460 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
461 			ieee80211_wme_acnames[WME_AC_BK]);
462 		error = EIO;
463 		goto bad2;
464 	}
465 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
466 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
467 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
468 		/*
469 		 * Not enough hardware tx queues to properly do WME;
470 		 * just punt and assign them all to the same h/w queue.
471 		 * We could do a better job of this if, for example,
472 		 * we allocate queues when we switch from station to
473 		 * AP mode.
474 		 */
475 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
476 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
477 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
478 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
479 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
480 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
481 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
482 	}
483 
484 	/*
485 	 * Attach the TX completion function.
486 	 *
487 	 * The non-EDMA chips may have some special case optimisations;
488 	 * this method gives everyone a chance to attach cleanly.
489 	 */
490 	sc->sc_tx.xmit_attach_comp_func(sc);
491 
492 	/*
493 	 * Setup rate control.  Some rate control modules
494 	 * call back to change the anntena state so expose
495 	 * the necessary entry points.
496 	 * XXX maybe belongs in struct ath_ratectrl?
497 	 */
498 	sc->sc_setdefantenna = ath_setdefantenna;
499 	sc->sc_rc = ath_rate_attach(sc);
500 	if (sc->sc_rc == NULL) {
501 		error = EIO;
502 		goto bad2;
503 	}
504 
505 	/* Attach DFS module */
506 	if (! ath_dfs_attach(sc)) {
507 		device_printf(sc->sc_dev,
508 		    "%s: unable to attach DFS\n", __func__);
509 		error = EIO;
510 		goto bad2;
511 	}
512 
513 	/* Start DFS processing tasklet */
514 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
515 
516 	/* Configure LED state */
517 	sc->sc_blinking = 0;
518 	sc->sc_ledstate = 1;
519 	sc->sc_ledon = 0;			/* low true */
520 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
521 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
522 
523 	/*
524 	 * Don't setup hardware-based blinking.
525 	 *
526 	 * Although some NICs may have this configured in the
527 	 * default reset register values, the user may wish
528 	 * to alter which pins have which function.
529 	 *
530 	 * The reference driver attaches the MAC network LED to GPIO1 and
531 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
532 	 * NIC has these reversed.
533 	 */
534 	sc->sc_hardled = (1 == 0);
535 	sc->sc_led_net_pin = -1;
536 	sc->sc_led_pwr_pin = -1;
537 	/*
538 	 * Auto-enable soft led processing for IBM cards and for
539 	 * 5211 minipci cards.  Users can also manually enable/disable
540 	 * support with a sysctl.
541 	 */
542 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
543 	ath_led_config(sc);
544 	ath_hal_setledstate(ah, HAL_LED_INIT);
545 
546 	ifp->if_softc = sc;
547 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
548 	ifp->if_start = ath_start_queue;
549 	ifp->if_ioctl = ath_ioctl;
550 	ifp->if_init = ath_init;
551 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
552 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
553 	IFQ_SET_READY(&ifp->if_snd);
554 
555 	ic->ic_ifp = ifp;
556 	/* XXX not right but it's not used anywhere important */
557 	ic->ic_phytype = IEEE80211_T_OFDM;
558 	ic->ic_opmode = IEEE80211_M_STA;
559 	ic->ic_caps =
560 		  IEEE80211_C_STA		/* station mode */
561 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
562 		| IEEE80211_C_HOSTAP		/* hostap mode */
563 		| IEEE80211_C_MONITOR		/* monitor mode */
564 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
565 		| IEEE80211_C_WDS		/* 4-address traffic works */
566 		| IEEE80211_C_MBSS		/* mesh point link mode */
567 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
568 		| IEEE80211_C_SHSLOT		/* short slot time supported */
569 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
570 #ifndef	ATH_ENABLE_11N
571 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
572 #endif
573 		| IEEE80211_C_TXFRAG		/* handle tx frags */
574 #ifdef	ATH_ENABLE_DFS
575 		| IEEE80211_C_DFS		/* Enable radar detection */
576 #endif
577 		;
578 	/*
579 	 * Query the hal to figure out h/w crypto support.
580 	 */
581 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
582 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
583 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
584 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
585 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
586 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
587 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
588 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
589 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
590 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
591 		/*
592 		 * Check if h/w does the MIC and/or whether the
593 		 * separate key cache entries are required to
594 		 * handle both tx+rx MIC keys.
595 		 */
596 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
597 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
598 		/*
599 		 * If the h/w supports storing tx+rx MIC keys
600 		 * in one cache slot automatically enable use.
601 		 */
602 		if (ath_hal_hastkipsplit(ah) ||
603 		    !ath_hal_settkipsplit(ah, AH_FALSE))
604 			sc->sc_splitmic = 1;
605 		/*
606 		 * If the h/w can do TKIP MIC together with WME then
607 		 * we use it; otherwise we force the MIC to be done
608 		 * in software by the net80211 layer.
609 		 */
610 		if (ath_hal_haswmetkipmic(ah))
611 			sc->sc_wmetkipmic = 1;
612 	}
613 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
614 	/*
615 	 * Check for multicast key search support.
616 	 */
617 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
618 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
619 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
620 	}
621 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
622 	/*
623 	 * Mark key cache slots associated with global keys
624 	 * as in use.  If we knew TKIP was not to be used we
625 	 * could leave the +32, +64, and +32+64 slots free.
626 	 */
627 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
628 		setbit(sc->sc_keymap, i);
629 		setbit(sc->sc_keymap, i+64);
630 		if (sc->sc_splitmic) {
631 			setbit(sc->sc_keymap, i+32);
632 			setbit(sc->sc_keymap, i+32+64);
633 		}
634 	}
635 	/*
636 	 * TPC support can be done either with a global cap or
637 	 * per-packet support.  The latter is not available on
638 	 * all parts.  We're a bit pedantic here as all parts
639 	 * support a global cap.
640 	 */
641 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
642 		ic->ic_caps |= IEEE80211_C_TXPMGT;
643 
644 	/*
645 	 * Mark WME capability only if we have sufficient
646 	 * hardware queues to do proper priority scheduling.
647 	 */
648 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
649 		ic->ic_caps |= IEEE80211_C_WME;
650 	/*
651 	 * Check for misc other capabilities.
652 	 */
653 	if (ath_hal_hasbursting(ah))
654 		ic->ic_caps |= IEEE80211_C_BURST;
655 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
656 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
657 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
658 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
659 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
660 	if (ath_hal_hasfastframes(ah))
661 		ic->ic_caps |= IEEE80211_C_FF;
662 	wmodes = ath_hal_getwirelessmodes(ah);
663 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
664 		ic->ic_caps |= IEEE80211_C_TURBOP;
665 #ifdef IEEE80211_SUPPORT_TDMA
666 	if (ath_hal_macversion(ah) > 0x78) {
667 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
668 		ic->ic_tdma_update = ath_tdma_update;
669 	}
670 #endif
671 
672 	/*
673 	 * TODO: enforce that at least this many frames are available
674 	 * in the txbuf list before allowing data frames (raw or
675 	 * otherwise) to be transmitted.
676 	 */
677 	sc->sc_txq_data_minfree = 10;
678 	/*
679 	 * Leave this as default to maintain legacy behaviour.
680 	 * Shortening the cabq/mcastq may end up causing some
681 	 * undesirable behaviour.
682 	 */
683 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
684 
685 	/*
686 	 * Allow the TX and RX chainmasks to be overridden by
687 	 * environment variables and/or device.hints.
688 	 *
689 	 * This must be done early - before the hardware is
690 	 * calibrated or before the 802.11n stream calculation
691 	 * is done.
692 	 */
693 	if (resource_int_value(device_get_name(sc->sc_dev),
694 	    device_get_unit(sc->sc_dev), "rx_chainmask",
695 	    &rx_chainmask) == 0) {
696 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
697 		    rx_chainmask);
698 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
699 	}
700 	if (resource_int_value(device_get_name(sc->sc_dev),
701 	    device_get_unit(sc->sc_dev), "tx_chainmask",
702 	    &tx_chainmask) == 0) {
703 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
704 		    tx_chainmask);
705 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
706 	}
707 
708 	/*
709 	 * Disable MRR with protected frames by default.
710 	 * Only 802.11n series NICs can handle this.
711 	 */
712 	sc->sc_mrrprot = 0;	/* XXX should be a capability */
713 
714 	/*
715 	 * Query the enterprise mode information the HAL.
716 	 */
717 	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
718 	    &sc->sc_ent_cfg) == HAL_OK)
719 		sc->sc_use_ent = 1;
720 
721 #ifdef	ATH_ENABLE_11N
722 	/*
723 	 * Query HT capabilities
724 	 */
725 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
726 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
727 		int rxs, txs;
728 
729 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
730 
731 		sc->sc_mrrprot = 1;	/* XXX should be a capability */
732 
733 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
734 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
735 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
736 			    | IEEE80211_HTCAP_MAXAMSDU_3839
737 			    				/* max A-MSDU length */
738 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
739 			;
740 
741 		/*
742 		 * Enable short-GI for HT20 only if the hardware
743 		 * advertises support.
744 		 * Notably, anything earlier than the AR9287 doesn't.
745 		 */
746 		if ((ath_hal_getcapability(ah,
747 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
748 		    (wmodes & HAL_MODE_HT20)) {
749 			device_printf(sc->sc_dev,
750 			    "[HT] enabling short-GI in 20MHz mode\n");
751 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
752 		}
753 
754 		if (wmodes & HAL_MODE_HT40)
755 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
756 			    |  IEEE80211_HTCAP_SHORTGI40;
757 
758 		/*
759 		 * TX/RX streams need to be taken into account when
760 		 * negotiating which MCS rates it'll receive and
761 		 * what MCS rates are available for TX.
762 		 */
763 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
764 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
765 
766 		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
767 		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
768 
769 		ic->ic_txstream = txs;
770 		ic->ic_rxstream = rxs;
771 
772 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
773 		    &sc->sc_rts_aggr_limit);
774 		if (sc->sc_rts_aggr_limit != (64 * 1024))
775 			device_printf(sc->sc_dev,
776 			    "[HT] RTS aggregates limited to %d KiB\n",
777 			    sc->sc_rts_aggr_limit / 1024);
778 
779 		device_printf(sc->sc_dev,
780 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
781 	}
782 #endif
783 
784 	/*
785 	 * Initial aggregation settings.
786 	 */
787 	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
788 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
789 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
790 
791 	/*
792 	 * Check if the hardware requires PCI register serialisation.
793 	 * Some of the Owl based MACs require this.
794 	 */
795 	if (mp_ncpus > 1 &&
796 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
797 	     0, NULL) == HAL_OK) {
798 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
799 		device_printf(sc->sc_dev,
800 		    "Enabling register serialisation\n");
801 	}
802 
803 	/*
804 	 * Indicate we need the 802.11 header padded to a
805 	 * 32-bit boundary for 4-address and QoS frames.
806 	 */
807 	ic->ic_flags |= IEEE80211_F_DATAPAD;
808 
809 	/*
810 	 * Query the hal about antenna support.
811 	 */
812 	sc->sc_defant = ath_hal_getdefantenna(ah);
813 
814 	/*
815 	 * Not all chips have the VEOL support we want to
816 	 * use with IBSS beacons; check here for it.
817 	 */
818 	sc->sc_hasveol = ath_hal_hasveol(ah);
819 
820 	/* get mac address from hardware */
821 	ath_hal_getmac(ah, macaddr);
822 	if (sc->sc_hasbmask)
823 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
824 
825 	/* NB: used to size node table key mapping array */
826 	ic->ic_max_keyix = sc->sc_keymax;
827 	/* call MI attach routine. */
828 	ieee80211_ifattach(ic, macaddr);
829 	ic->ic_setregdomain = ath_setregdomain;
830 	ic->ic_getradiocaps = ath_getradiocaps;
831 	sc->sc_opmode = HAL_M_STA;
832 
833 	/* override default methods */
834 	ic->ic_newassoc = ath_newassoc;
835 	ic->ic_updateslot = ath_updateslot;
836 	ic->ic_wme.wme_update = ath_wme_update;
837 	ic->ic_vap_create = ath_vap_create;
838 	ic->ic_vap_delete = ath_vap_delete;
839 	ic->ic_raw_xmit = ath_raw_xmit;
840 	ic->ic_update_mcast = ath_update_mcast;
841 	ic->ic_update_promisc = ath_update_promisc;
842 	ic->ic_node_alloc = ath_node_alloc;
843 	sc->sc_node_free = ic->ic_node_free;
844 	ic->ic_node_free = ath_node_free;
845 	sc->sc_node_cleanup = ic->ic_node_cleanup;
846 	ic->ic_node_cleanup = ath_node_cleanup;
847 	ic->ic_node_getsignal = ath_node_getsignal;
848 	ic->ic_scan_start = ath_scan_start;
849 	ic->ic_scan_end = ath_scan_end;
850 	ic->ic_set_channel = ath_set_channel;
851 #ifdef	ATH_ENABLE_11N
852 	/* 802.11n specific - but just override anyway */
853 	sc->sc_addba_request = ic->ic_addba_request;
854 	sc->sc_addba_response = ic->ic_addba_response;
855 	sc->sc_addba_stop = ic->ic_addba_stop;
856 	sc->sc_bar_response = ic->ic_bar_response;
857 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
858 
859 	ic->ic_addba_request = ath_addba_request;
860 	ic->ic_addba_response = ath_addba_response;
861 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
862 	ic->ic_addba_stop = ath_addba_stop;
863 	ic->ic_bar_response = ath_bar_response;
864 
865 	ic->ic_update_chw = ath_update_chw;
866 #endif	/* ATH_ENABLE_11N */
867 
868 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
869 	/*
870 	 * There's one vendor bitmap entry in the RX radiotap
871 	 * header; make sure that's taken into account.
872 	 */
873 	ieee80211_radiotap_attachv(ic,
874 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
875 		ATH_TX_RADIOTAP_PRESENT,
876 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
877 		ATH_RX_RADIOTAP_PRESENT);
878 #else
879 	/*
880 	 * No vendor bitmap/extensions are present.
881 	 */
882 	ieee80211_radiotap_attach(ic,
883 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
884 		ATH_TX_RADIOTAP_PRESENT,
885 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
886 		ATH_RX_RADIOTAP_PRESENT);
887 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
888 
889 	/*
890 	 * Setup the ALQ logging if required
891 	 */
892 #ifdef	ATH_DEBUG_ALQ
893 	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
894 	if_ath_alq_setcfg(&sc->sc_alq,
895 	    sc->sc_ah->ah_macVersion,
896 	    sc->sc_ah->ah_macRev,
897 	    sc->sc_ah->ah_phyRev,
898 	    sc->sc_ah->ah_magic);
899 #endif
900 
901 	/*
902 	 * Setup dynamic sysctl's now that country code and
903 	 * regdomain are available from the hal.
904 	 */
905 	ath_sysctlattach(sc);
906 	ath_sysctl_stats_attach(sc);
907 	ath_sysctl_hal_attach(sc);
908 
909 	if (bootverbose)
910 		ieee80211_announce(ic);
911 	ath_announce(sc);
912 	return 0;
913 bad2:
914 	ath_tx_cleanup(sc);
915 	ath_desc_free(sc);
916 	ath_txdma_teardown(sc);
917 	ath_rxdma_teardown(sc);
918 bad:
919 	if (ah)
920 		ath_hal_detach(ah);
921 
922 	/*
923 	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
924 	 */
925 	if (ifp != NULL && ifp->if_vnet) {
926 		CURVNET_SET(ifp->if_vnet);
927 		if_free(ifp);
928 		CURVNET_RESTORE();
929 	} else if (ifp != NULL)
930 		if_free(ifp);
931 	sc->sc_invalid = 1;
932 	return error;
933 }
934 
935 int
936 ath_detach(struct ath_softc *sc)
937 {
938 	struct ifnet *ifp = sc->sc_ifp;
939 
940 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
941 		__func__, ifp->if_flags);
942 
943 	/*
944 	 * NB: the order of these is important:
945 	 * o stop the chip so no more interrupts will fire
946 	 * o call the 802.11 layer before detaching the hal to
947 	 *   insure callbacks into the driver to delete global
948 	 *   key cache entries can be handled
949 	 * o free the taskqueue which drains any pending tasks
950 	 * o reclaim the tx queue data structures after calling
951 	 *   the 802.11 layer as we'll get called back to reclaim
952 	 *   node state and potentially want to use them
953 	 * o to cleanup the tx queues the hal is called, so detach
954 	 *   it last
955 	 * Other than that, it's straightforward...
956 	 */
957 	ath_stop(ifp);
958 	ieee80211_ifdetach(ifp->if_l2com);
959 	taskqueue_free(sc->sc_tq);
960 #ifdef ATH_TX99_DIAG
961 	if (sc->sc_tx99 != NULL)
962 		sc->sc_tx99->detach(sc->sc_tx99);
963 #endif
964 	ath_rate_detach(sc->sc_rc);
965 
966 #ifdef	ATH_DEBUG_ALQ
967 	if_ath_alq_tidyup(&sc->sc_alq);
968 #endif
969 
970 	ath_dfs_detach(sc);
971 	ath_desc_free(sc);
972 	ath_txdma_teardown(sc);
973 	ath_rxdma_teardown(sc);
974 	ath_tx_cleanup(sc);
975 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
976 
977 	CURVNET_SET(ifp->if_vnet);
978 	if_free(ifp);
979 	CURVNET_RESTORE();
980 
981 	return 0;
982 }
983 
984 /*
985  * MAC address handling for multiple BSS on the same radio.
986  * The first vap uses the MAC address from the EEPROM.  For
987  * subsequent vap's we set the U/L bit (bit 1) in the MAC
988  * address and use the next six bits as an index.
989  */
990 static void
991 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
992 {
993 	int i;
994 
995 	if (clone && sc->sc_hasbmask) {
996 		/* NB: we only do this if h/w supports multiple bssid */
997 		for (i = 0; i < 8; i++)
998 			if ((sc->sc_bssidmask & (1<<i)) == 0)
999 				break;
1000 		if (i != 0)
1001 			mac[0] |= (i << 2)|0x2;
1002 	} else
1003 		i = 0;
1004 	sc->sc_bssidmask |= 1<<i;
1005 	sc->sc_hwbssidmask[0] &= ~mac[0];
1006 	if (i == 0)
1007 		sc->sc_nbssid0++;
1008 }
1009 
1010 static void
1011 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1012 {
1013 	int i = mac[0] >> 2;
1014 	uint8_t mask;
1015 
1016 	if (i != 0 || --sc->sc_nbssid0 == 0) {
1017 		sc->sc_bssidmask &= ~(1<<i);
1018 		/* recalculate bssid mask from remaining addresses */
1019 		mask = 0xff;
1020 		for (i = 1; i < 8; i++)
1021 			if (sc->sc_bssidmask & (1<<i))
1022 				mask &= ~((i<<2)|0x2);
1023 		sc->sc_hwbssidmask[0] |= mask;
1024 	}
1025 }
1026 
1027 /*
1028  * Assign a beacon xmit slot.  We try to space out
1029  * assignments so when beacons are staggered the
1030  * traffic coming out of the cab q has maximal time
1031  * to go out before the next beacon is scheduled.
1032  */
1033 static int
1034 assign_bslot(struct ath_softc *sc)
1035 {
1036 	u_int slot, free;
1037 
1038 	free = 0;
1039 	for (slot = 0; slot < ATH_BCBUF; slot++)
1040 		if (sc->sc_bslot[slot] == NULL) {
1041 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1042 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1043 				return slot;
1044 			free = slot;
1045 			/* NB: keep looking for a double slot */
1046 		}
1047 	return free;
1048 }
1049 
1050 static struct ieee80211vap *
1051 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1052     enum ieee80211_opmode opmode, int flags,
1053     const uint8_t bssid[IEEE80211_ADDR_LEN],
1054     const uint8_t mac0[IEEE80211_ADDR_LEN])
1055 {
1056 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1057 	struct ath_vap *avp;
1058 	struct ieee80211vap *vap;
1059 	uint8_t mac[IEEE80211_ADDR_LEN];
1060 	int needbeacon, error;
1061 	enum ieee80211_opmode ic_opmode;
1062 
1063 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1064 	    M_80211_VAP, M_WAITOK | M_ZERO);
1065 	needbeacon = 0;
1066 	IEEE80211_ADDR_COPY(mac, mac0);
1067 
1068 	ATH_LOCK(sc);
1069 	ic_opmode = opmode;		/* default to opmode of new vap */
1070 	switch (opmode) {
1071 	case IEEE80211_M_STA:
1072 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1073 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1074 			goto bad;
1075 		}
1076 		if (sc->sc_nvaps) {
1077 			/*
1078 			 * With multiple vaps we must fall back
1079 			 * to s/w beacon miss handling.
1080 			 */
1081 			flags |= IEEE80211_CLONE_NOBEACONS;
1082 		}
1083 		if (flags & IEEE80211_CLONE_NOBEACONS) {
1084 			/*
1085 			 * Station mode w/o beacons are implemented w/ AP mode.
1086 			 */
1087 			ic_opmode = IEEE80211_M_HOSTAP;
1088 		}
1089 		break;
1090 	case IEEE80211_M_IBSS:
1091 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1092 			device_printf(sc->sc_dev,
1093 			    "only 1 ibss vap supported\n");
1094 			goto bad;
1095 		}
1096 		needbeacon = 1;
1097 		break;
1098 	case IEEE80211_M_AHDEMO:
1099 #ifdef IEEE80211_SUPPORT_TDMA
1100 		if (flags & IEEE80211_CLONE_TDMA) {
1101 			if (sc->sc_nvaps != 0) {
1102 				device_printf(sc->sc_dev,
1103 				    "only 1 tdma vap supported\n");
1104 				goto bad;
1105 			}
1106 			needbeacon = 1;
1107 			flags |= IEEE80211_CLONE_NOBEACONS;
1108 		}
1109 		/* fall thru... */
1110 #endif
1111 	case IEEE80211_M_MONITOR:
1112 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1113 			/*
1114 			 * Adopt existing mode.  Adding a monitor or ahdemo
1115 			 * vap to an existing configuration is of dubious
1116 			 * value but should be ok.
1117 			 */
1118 			/* XXX not right for monitor mode */
1119 			ic_opmode = ic->ic_opmode;
1120 		}
1121 		break;
1122 	case IEEE80211_M_HOSTAP:
1123 	case IEEE80211_M_MBSS:
1124 		needbeacon = 1;
1125 		break;
1126 	case IEEE80211_M_WDS:
1127 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1128 			device_printf(sc->sc_dev,
1129 			    "wds not supported in sta mode\n");
1130 			goto bad;
1131 		}
1132 		/*
1133 		 * Silently remove any request for a unique
1134 		 * bssid; WDS vap's always share the local
1135 		 * mac address.
1136 		 */
1137 		flags &= ~IEEE80211_CLONE_BSSID;
1138 		if (sc->sc_nvaps == 0)
1139 			ic_opmode = IEEE80211_M_HOSTAP;
1140 		else
1141 			ic_opmode = ic->ic_opmode;
1142 		break;
1143 	default:
1144 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1145 		goto bad;
1146 	}
1147 	/*
1148 	 * Check that a beacon buffer is available; the code below assumes it.
1149 	 */
1150 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1151 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1152 		goto bad;
1153 	}
1154 
1155 	/* STA, AHDEMO? */
1156 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1157 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1158 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1159 	}
1160 
1161 	vap = &avp->av_vap;
1162 	/* XXX can't hold mutex across if_alloc */
1163 	ATH_UNLOCK(sc);
1164 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1165 	    bssid, mac);
1166 	ATH_LOCK(sc);
1167 	if (error != 0) {
1168 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1169 		    __func__, error);
1170 		goto bad2;
1171 	}
1172 
1173 	/* h/w crypto support */
1174 	vap->iv_key_alloc = ath_key_alloc;
1175 	vap->iv_key_delete = ath_key_delete;
1176 	vap->iv_key_set = ath_key_set;
1177 	vap->iv_key_update_begin = ath_key_update_begin;
1178 	vap->iv_key_update_end = ath_key_update_end;
1179 
1180 	/* override various methods */
1181 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1182 	vap->iv_recv_mgmt = ath_recv_mgmt;
1183 	vap->iv_reset = ath_reset_vap;
1184 	vap->iv_update_beacon = ath_beacon_update;
1185 	avp->av_newstate = vap->iv_newstate;
1186 	vap->iv_newstate = ath_newstate;
1187 	avp->av_bmiss = vap->iv_bmiss;
1188 	vap->iv_bmiss = ath_bmiss_vap;
1189 
1190 	avp->av_node_ps = vap->iv_node_ps;
1191 	vap->iv_node_ps = ath_node_powersave;
1192 
1193 	avp->av_set_tim = vap->iv_set_tim;
1194 	vap->iv_set_tim = ath_node_set_tim;
1195 
1196 	/* Set default parameters */
1197 
1198 	/*
1199 	 * Anything earlier than some AR9300 series MACs don't
1200 	 * support a smaller MPDU density.
1201 	 */
1202 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1203 	/*
1204 	 * All NICs can handle the maximum size, however
1205 	 * AR5416 based MACs can only TX aggregates w/ RTS
1206 	 * protection when the total aggregate size is <= 8k.
1207 	 * However, for now that's enforced by the TX path.
1208 	 */
1209 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1210 
1211 	avp->av_bslot = -1;
1212 	if (needbeacon) {
1213 		/*
1214 		 * Allocate beacon state and setup the q for buffered
1215 		 * multicast frames.  We know a beacon buffer is
1216 		 * available because we checked above.
1217 		 */
1218 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1219 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1220 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1221 			/*
1222 			 * Assign the vap to a beacon xmit slot.  As above
1223 			 * this cannot fail to find a free one.
1224 			 */
1225 			avp->av_bslot = assign_bslot(sc);
1226 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1227 			    ("beacon slot %u not empty", avp->av_bslot));
1228 			sc->sc_bslot[avp->av_bslot] = vap;
1229 			sc->sc_nbcnvaps++;
1230 		}
1231 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1232 			/*
1233 			 * Multple vaps are to transmit beacons and we
1234 			 * have h/w support for TSF adjusting; enable
1235 			 * use of staggered beacons.
1236 			 */
1237 			sc->sc_stagbeacons = 1;
1238 		}
1239 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1240 	}
1241 
1242 	ic->ic_opmode = ic_opmode;
1243 	if (opmode != IEEE80211_M_WDS) {
1244 		sc->sc_nvaps++;
1245 		if (opmode == IEEE80211_M_STA)
1246 			sc->sc_nstavaps++;
1247 		if (opmode == IEEE80211_M_MBSS)
1248 			sc->sc_nmeshvaps++;
1249 	}
1250 	switch (ic_opmode) {
1251 	case IEEE80211_M_IBSS:
1252 		sc->sc_opmode = HAL_M_IBSS;
1253 		break;
1254 	case IEEE80211_M_STA:
1255 		sc->sc_opmode = HAL_M_STA;
1256 		break;
1257 	case IEEE80211_M_AHDEMO:
1258 #ifdef IEEE80211_SUPPORT_TDMA
1259 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1260 			sc->sc_tdma = 1;
1261 			/* NB: disable tsf adjust */
1262 			sc->sc_stagbeacons = 0;
1263 		}
1264 		/*
1265 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1266 		 * just ap mode.
1267 		 */
1268 		/* fall thru... */
1269 #endif
1270 	case IEEE80211_M_HOSTAP:
1271 	case IEEE80211_M_MBSS:
1272 		sc->sc_opmode = HAL_M_HOSTAP;
1273 		break;
1274 	case IEEE80211_M_MONITOR:
1275 		sc->sc_opmode = HAL_M_MONITOR;
1276 		break;
1277 	default:
1278 		/* XXX should not happen */
1279 		break;
1280 	}
1281 	if (sc->sc_hastsfadd) {
1282 		/*
1283 		 * Configure whether or not TSF adjust should be done.
1284 		 */
1285 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1286 	}
1287 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1288 		/*
1289 		 * Enable s/w beacon miss handling.
1290 		 */
1291 		sc->sc_swbmiss = 1;
1292 	}
1293 	ATH_UNLOCK(sc);
1294 
1295 	/* complete setup */
1296 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1297 	return vap;
1298 bad2:
1299 	reclaim_address(sc, mac);
1300 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1301 bad:
1302 	free(avp, M_80211_VAP);
1303 	ATH_UNLOCK(sc);
1304 	return NULL;
1305 }
1306 
1307 static void
1308 ath_vap_delete(struct ieee80211vap *vap)
1309 {
1310 	struct ieee80211com *ic = vap->iv_ic;
1311 	struct ifnet *ifp = ic->ic_ifp;
1312 	struct ath_softc *sc = ifp->if_softc;
1313 	struct ath_hal *ah = sc->sc_ah;
1314 	struct ath_vap *avp = ATH_VAP(vap);
1315 
1316 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1317 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1318 		/*
1319 		 * Quiesce the hardware while we remove the vap.  In
1320 		 * particular we need to reclaim all references to
1321 		 * the vap state by any frames pending on the tx queues.
1322 		 */
1323 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1324 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1325 		/* XXX Do all frames from all vaps/nodes need draining here? */
1326 		ath_stoprecv(sc, 1);		/* stop recv side */
1327 	}
1328 
1329 	ieee80211_vap_detach(vap);
1330 
1331 	/*
1332 	 * XXX Danger Will Robinson! Danger!
1333 	 *
1334 	 * Because ieee80211_vap_detach() can queue a frame (the station
1335 	 * diassociate message?) after we've drained the TXQ and
1336 	 * flushed the software TXQ, we will end up with a frame queued
1337 	 * to a node whose vap is about to be freed.
1338 	 *
1339 	 * To work around this, flush the hardware/software again.
1340 	 * This may be racy - the ath task may be running and the packet
1341 	 * may be being scheduled between sw->hw txq. Tsk.
1342 	 *
1343 	 * TODO: figure out why a new node gets allocated somewhere around
1344 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1345 	 * call!)
1346 	 */
1347 
1348 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1349 
1350 	ATH_LOCK(sc);
1351 	/*
1352 	 * Reclaim beacon state.  Note this must be done before
1353 	 * the vap instance is reclaimed as we may have a reference
1354 	 * to it in the buffer for the beacon frame.
1355 	 */
1356 	if (avp->av_bcbuf != NULL) {
1357 		if (avp->av_bslot != -1) {
1358 			sc->sc_bslot[avp->av_bslot] = NULL;
1359 			sc->sc_nbcnvaps--;
1360 		}
1361 		ath_beacon_return(sc, avp->av_bcbuf);
1362 		avp->av_bcbuf = NULL;
1363 		if (sc->sc_nbcnvaps == 0) {
1364 			sc->sc_stagbeacons = 0;
1365 			if (sc->sc_hastsfadd)
1366 				ath_hal_settsfadjust(sc->sc_ah, 0);
1367 		}
1368 		/*
1369 		 * Reclaim any pending mcast frames for the vap.
1370 		 */
1371 		ath_tx_draintxq(sc, &avp->av_mcastq);
1372 	}
1373 	/*
1374 	 * Update bookkeeping.
1375 	 */
1376 	if (vap->iv_opmode == IEEE80211_M_STA) {
1377 		sc->sc_nstavaps--;
1378 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1379 			sc->sc_swbmiss = 0;
1380 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1381 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1382 		reclaim_address(sc, vap->iv_myaddr);
1383 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1384 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1385 			sc->sc_nmeshvaps--;
1386 	}
1387 	if (vap->iv_opmode != IEEE80211_M_WDS)
1388 		sc->sc_nvaps--;
1389 #ifdef IEEE80211_SUPPORT_TDMA
1390 	/* TDMA operation ceases when the last vap is destroyed */
1391 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1392 		sc->sc_tdma = 0;
1393 		sc->sc_swbmiss = 0;
1394 	}
1395 #endif
1396 	free(avp, M_80211_VAP);
1397 
1398 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1399 		/*
1400 		 * Restart rx+tx machines if still running (RUNNING will
1401 		 * be reset if we just destroyed the last vap).
1402 		 */
1403 		if (ath_startrecv(sc) != 0)
1404 			if_printf(ifp, "%s: unable to restart recv logic\n",
1405 			    __func__);
1406 		if (sc->sc_beacons) {		/* restart beacons */
1407 #ifdef IEEE80211_SUPPORT_TDMA
1408 			if (sc->sc_tdma)
1409 				ath_tdma_config(sc, NULL);
1410 			else
1411 #endif
1412 				ath_beacon_config(sc, NULL);
1413 		}
1414 		ath_hal_intrset(ah, sc->sc_imask);
1415 	}
1416 	ATH_UNLOCK(sc);
1417 }
1418 
1419 void
1420 ath_suspend(struct ath_softc *sc)
1421 {
1422 	struct ifnet *ifp = sc->sc_ifp;
1423 	struct ieee80211com *ic = ifp->if_l2com;
1424 
1425 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1426 		__func__, ifp->if_flags);
1427 
1428 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1429 
1430 	ieee80211_suspend_all(ic);
1431 	/*
1432 	 * NB: don't worry about putting the chip in low power
1433 	 * mode; pci will power off our socket on suspend and
1434 	 * CardBus detaches the device.
1435 	 */
1436 
1437 	/*
1438 	 * XXX ensure none of the taskqueues are running
1439 	 * XXX ensure sc_invalid is 1
1440 	 * XXX ensure the calibration callout is disabled
1441 	 */
1442 
1443 	/* Disable the PCIe PHY, complete with workarounds */
1444 	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1445 }
1446 
1447 /*
1448  * Reset the key cache since some parts do not reset the
1449  * contents on resume.  First we clear all entries, then
1450  * re-load keys that the 802.11 layer assumes are setup
1451  * in h/w.
1452  */
1453 static void
1454 ath_reset_keycache(struct ath_softc *sc)
1455 {
1456 	struct ifnet *ifp = sc->sc_ifp;
1457 	struct ieee80211com *ic = ifp->if_l2com;
1458 	struct ath_hal *ah = sc->sc_ah;
1459 	int i;
1460 
1461 	for (i = 0; i < sc->sc_keymax; i++)
1462 		ath_hal_keyreset(ah, i);
1463 	ieee80211_crypto_reload_keys(ic);
1464 }
1465 
1466 void
1467 ath_resume(struct ath_softc *sc)
1468 {
1469 	struct ifnet *ifp = sc->sc_ifp;
1470 	struct ieee80211com *ic = ifp->if_l2com;
1471 	struct ath_hal *ah = sc->sc_ah;
1472 	HAL_STATUS status;
1473 
1474 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1475 		__func__, ifp->if_flags);
1476 
1477 	/* Re-enable PCIe, re-enable the PCIe bus */
1478 	ath_hal_enablepcie(ah, 0, 0);
1479 
1480 	/*
1481 	 * Must reset the chip before we reload the
1482 	 * keycache as we were powered down on suspend.
1483 	 */
1484 	ath_hal_reset(ah, sc->sc_opmode,
1485 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1486 	    AH_FALSE, &status);
1487 	ath_reset_keycache(sc);
1488 
1489 	/* Let DFS at it in case it's a DFS channel */
1490 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1491 
1492 	/* Restore the LED configuration */
1493 	ath_led_config(sc);
1494 	ath_hal_setledstate(ah, HAL_LED_INIT);
1495 
1496 	if (sc->sc_resume_up)
1497 		ieee80211_resume_all(ic);
1498 
1499 	/* XXX beacons ? */
1500 }
1501 
1502 void
1503 ath_shutdown(struct ath_softc *sc)
1504 {
1505 	struct ifnet *ifp = sc->sc_ifp;
1506 
1507 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1508 		__func__, ifp->if_flags);
1509 
1510 	ath_stop(ifp);
1511 	/* NB: no point powering down chip as we're about to reboot */
1512 }
1513 
1514 /*
1515  * Interrupt handler.  Most of the actual processing is deferred.
1516  */
1517 void
1518 ath_intr(void *arg)
1519 {
1520 	struct ath_softc *sc = arg;
1521 	struct ifnet *ifp = sc->sc_ifp;
1522 	struct ath_hal *ah = sc->sc_ah;
1523 	HAL_INT status = 0;
1524 	uint32_t txqs;
1525 
1526 	/*
1527 	 * If we're inside a reset path, just print a warning and
1528 	 * clear the ISR. The reset routine will finish it for us.
1529 	 */
1530 	ATH_PCU_LOCK(sc);
1531 	if (sc->sc_inreset_cnt) {
1532 		HAL_INT status;
1533 		ath_hal_getisr(ah, &status);	/* clear ISR */
1534 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1535 		DPRINTF(sc, ATH_DEBUG_ANY,
1536 		    "%s: in reset, ignoring: status=0x%x\n",
1537 		    __func__, status);
1538 		ATH_PCU_UNLOCK(sc);
1539 		return;
1540 	}
1541 
1542 	if (sc->sc_invalid) {
1543 		/*
1544 		 * The hardware is not ready/present, don't touch anything.
1545 		 * Note this can happen early on if the IRQ is shared.
1546 		 */
1547 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1548 		ATH_PCU_UNLOCK(sc);
1549 		return;
1550 	}
1551 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1552 		ATH_PCU_UNLOCK(sc);
1553 		return;
1554 	}
1555 
1556 	if ((ifp->if_flags & IFF_UP) == 0 ||
1557 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1558 		HAL_INT status;
1559 
1560 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1561 			__func__, ifp->if_flags);
1562 		ath_hal_getisr(ah, &status);	/* clear ISR */
1563 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1564 		ATH_PCU_UNLOCK(sc);
1565 		return;
1566 	}
1567 
1568 	/*
1569 	 * Figure out the reason(s) for the interrupt.  Note
1570 	 * that the hal returns a pseudo-ISR that may include
1571 	 * bits we haven't explicitly enabled so we mask the
1572 	 * value to insure we only process bits we requested.
1573 	 */
1574 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1575 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1576 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
1577 #ifdef	ATH_KTR_INTR_DEBUG
1578 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
1579 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1580 	    ah->ah_intrstate[0],
1581 	    ah->ah_intrstate[1],
1582 	    ah->ah_intrstate[2],
1583 	    ah->ah_intrstate[3],
1584 	    ah->ah_intrstate[6]);
1585 #endif
1586 
1587 	/* Squirrel away SYNC interrupt debugging */
1588 	if (ah->ah_syncstate != 0) {
1589 		int i;
1590 		for (i = 0; i < 32; i++)
1591 			if (ah->ah_syncstate & (i << i))
1592 				sc->sc_intr_stats.sync_intr[i]++;
1593 	}
1594 
1595 	status &= sc->sc_imask;			/* discard unasked for bits */
1596 
1597 	/* Short-circuit un-handled interrupts */
1598 	if (status == 0x0) {
1599 		ATH_PCU_UNLOCK(sc);
1600 		return;
1601 	}
1602 
1603 	/*
1604 	 * Take a note that we're inside the interrupt handler, so
1605 	 * the reset routines know to wait.
1606 	 */
1607 	sc->sc_intr_cnt++;
1608 	ATH_PCU_UNLOCK(sc);
1609 
1610 	/*
1611 	 * Handle the interrupt. We won't run concurrent with the reset
1612 	 * or channel change routines as they'll wait for sc_intr_cnt
1613 	 * to be 0 before continuing.
1614 	 */
1615 	if (status & HAL_INT_FATAL) {
1616 		sc->sc_stats.ast_hardware++;
1617 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1618 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1619 	} else {
1620 		if (status & HAL_INT_SWBA) {
1621 			/*
1622 			 * Software beacon alert--time to send a beacon.
1623 			 * Handle beacon transmission directly; deferring
1624 			 * this is too slow to meet timing constraints
1625 			 * under load.
1626 			 */
1627 #ifdef IEEE80211_SUPPORT_TDMA
1628 			if (sc->sc_tdma) {
1629 				if (sc->sc_tdmaswba == 0) {
1630 					struct ieee80211com *ic = ifp->if_l2com;
1631 					struct ieee80211vap *vap =
1632 					    TAILQ_FIRST(&ic->ic_vaps);
1633 					ath_tdma_beacon_send(sc, vap);
1634 					sc->sc_tdmaswba =
1635 					    vap->iv_tdma->tdma_bintval;
1636 				} else
1637 					sc->sc_tdmaswba--;
1638 			} else
1639 #endif
1640 			{
1641 				ath_beacon_proc(sc, 0);
1642 #ifdef IEEE80211_SUPPORT_SUPERG
1643 				/*
1644 				 * Schedule the rx taskq in case there's no
1645 				 * traffic so any frames held on the staging
1646 				 * queue are aged and potentially flushed.
1647 				 */
1648 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1649 #endif
1650 			}
1651 		}
1652 		if (status & HAL_INT_RXEOL) {
1653 			int imask;
1654 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
1655 			ATH_PCU_LOCK(sc);
1656 			/*
1657 			 * NB: the hardware should re-read the link when
1658 			 *     RXE bit is written, but it doesn't work at
1659 			 *     least on older hardware revs.
1660 			 */
1661 			sc->sc_stats.ast_rxeol++;
1662 			/*
1663 			 * Disable RXEOL/RXORN - prevent an interrupt
1664 			 * storm until the PCU logic can be reset.
1665 			 * In case the interface is reset some other
1666 			 * way before "sc_kickpcu" is called, don't
1667 			 * modify sc_imask - that way if it is reset
1668 			 * by a call to ath_reset() somehow, the
1669 			 * interrupt mask will be correctly reprogrammed.
1670 			 */
1671 			imask = sc->sc_imask;
1672 			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1673 			ath_hal_intrset(ah, imask);
1674 			/*
1675 			 * Only blank sc_rxlink if we've not yet kicked
1676 			 * the PCU.
1677 			 *
1678 			 * This isn't entirely correct - the correct solution
1679 			 * would be to have a PCU lock and engage that for
1680 			 * the duration of the PCU fiddling; which would include
1681 			 * running the RX process. Otherwise we could end up
1682 			 * messing up the RX descriptor chain and making the
1683 			 * RX desc list much shorter.
1684 			 */
1685 			if (! sc->sc_kickpcu)
1686 				sc->sc_rxlink = NULL;
1687 			sc->sc_kickpcu = 1;
1688 			/*
1689 			 * Enqueue an RX proc, to handled whatever
1690 			 * is in the RX queue.
1691 			 * This will then kick the PCU.
1692 			 */
1693 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1694 			ATH_PCU_UNLOCK(sc);
1695 		}
1696 		if (status & HAL_INT_TXURN) {
1697 			sc->sc_stats.ast_txurn++;
1698 			/* bump tx trigger level */
1699 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1700 		}
1701 		/*
1702 		 * Handle both the legacy and RX EDMA interrupt bits.
1703 		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
1704 		 */
1705 		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
1706 			sc->sc_stats.ast_rx_intr++;
1707 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1708 		}
1709 		if (status & HAL_INT_TX) {
1710 			sc->sc_stats.ast_tx_intr++;
1711 			/*
1712 			 * Grab all the currently set bits in the HAL txq bitmap
1713 			 * and blank them. This is the only place we should be
1714 			 * doing this.
1715 			 */
1716 			if (! sc->sc_isedma) {
1717 				ATH_PCU_LOCK(sc);
1718 				txqs = 0xffffffff;
1719 				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1720 				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
1721 				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
1722 				    txqs,
1723 				    sc->sc_txq_active,
1724 				    sc->sc_txq_active | txqs);
1725 				sc->sc_txq_active |= txqs;
1726 				ATH_PCU_UNLOCK(sc);
1727 			}
1728 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1729 		}
1730 		if (status & HAL_INT_BMISS) {
1731 			sc->sc_stats.ast_bmiss++;
1732 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1733 		}
1734 		if (status & HAL_INT_GTT)
1735 			sc->sc_stats.ast_tx_timeout++;
1736 		if (status & HAL_INT_CST)
1737 			sc->sc_stats.ast_tx_cst++;
1738 		if (status & HAL_INT_MIB) {
1739 			sc->sc_stats.ast_mib++;
1740 			ATH_PCU_LOCK(sc);
1741 			/*
1742 			 * Disable interrupts until we service the MIB
1743 			 * interrupt; otherwise it will continue to fire.
1744 			 */
1745 			ath_hal_intrset(ah, 0);
1746 			/*
1747 			 * Let the hal handle the event.  We assume it will
1748 			 * clear whatever condition caused the interrupt.
1749 			 */
1750 			ath_hal_mibevent(ah, &sc->sc_halstats);
1751 			/*
1752 			 * Don't reset the interrupt if we've just
1753 			 * kicked the PCU, or we may get a nested
1754 			 * RXEOL before the rxproc has had a chance
1755 			 * to run.
1756 			 */
1757 			if (sc->sc_kickpcu == 0)
1758 				ath_hal_intrset(ah, sc->sc_imask);
1759 			ATH_PCU_UNLOCK(sc);
1760 		}
1761 		if (status & HAL_INT_RXORN) {
1762 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1763 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
1764 			sc->sc_stats.ast_rxorn++;
1765 		}
1766 	}
1767 	ATH_PCU_LOCK(sc);
1768 	sc->sc_intr_cnt--;
1769 	ATH_PCU_UNLOCK(sc);
1770 }
1771 
1772 static void
1773 ath_fatal_proc(void *arg, int pending)
1774 {
1775 	struct ath_softc *sc = arg;
1776 	struct ifnet *ifp = sc->sc_ifp;
1777 	u_int32_t *state;
1778 	u_int32_t len;
1779 	void *sp;
1780 
1781 	if_printf(ifp, "hardware error; resetting\n");
1782 	/*
1783 	 * Fatal errors are unrecoverable.  Typically these
1784 	 * are caused by DMA errors.  Collect h/w state from
1785 	 * the hal so we can diagnose what's going on.
1786 	 */
1787 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1788 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1789 		state = sp;
1790 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1791 		    state[0], state[1] , state[2], state[3],
1792 		    state[4], state[5]);
1793 	}
1794 	ath_reset(ifp, ATH_RESET_NOLOSS);
1795 }
1796 
1797 static void
1798 ath_bmiss_vap(struct ieee80211vap *vap)
1799 {
1800 	/*
1801 	 * Workaround phantom bmiss interrupts by sanity-checking
1802 	 * the time of our last rx'd frame.  If it is within the
1803 	 * beacon miss interval then ignore the interrupt.  If it's
1804 	 * truly a bmiss we'll get another interrupt soon and that'll
1805 	 * be dispatched up for processing.  Note this applies only
1806 	 * for h/w beacon miss events.
1807 	 */
1808 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1809 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1810 		struct ath_softc *sc = ifp->if_softc;
1811 		u_int64_t lastrx = sc->sc_lastrx;
1812 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1813 		/* XXX should take a locked ref to iv_bss */
1814 		u_int bmisstimeout =
1815 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1816 
1817 		DPRINTF(sc, ATH_DEBUG_BEACON,
1818 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1819 		    __func__, (unsigned long long) tsf,
1820 		    (unsigned long long)(tsf - lastrx),
1821 		    (unsigned long long) lastrx, bmisstimeout);
1822 
1823 		if (tsf - lastrx <= bmisstimeout) {
1824 			sc->sc_stats.ast_bmiss_phantom++;
1825 			return;
1826 		}
1827 	}
1828 	ATH_VAP(vap)->av_bmiss(vap);
1829 }
1830 
1831 static int
1832 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1833 {
1834 	uint32_t rsize;
1835 	void *sp;
1836 
1837 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1838 		return 0;
1839 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1840 	*hangs = *(uint32_t *)sp;
1841 	return 1;
1842 }
1843 
1844 static void
1845 ath_bmiss_proc(void *arg, int pending)
1846 {
1847 	struct ath_softc *sc = arg;
1848 	struct ifnet *ifp = sc->sc_ifp;
1849 	uint32_t hangs;
1850 
1851 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1852 
1853 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1854 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1855 		ath_reset(ifp, ATH_RESET_NOLOSS);
1856 	} else
1857 		ieee80211_beacon_miss(ifp->if_l2com);
1858 }
1859 
1860 /*
1861  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1862  * calcs together with WME.  If necessary disable the crypto
1863  * hardware and mark the 802.11 state so keys will be setup
1864  * with the MIC work done in software.
1865  */
1866 static void
1867 ath_settkipmic(struct ath_softc *sc)
1868 {
1869 	struct ifnet *ifp = sc->sc_ifp;
1870 	struct ieee80211com *ic = ifp->if_l2com;
1871 
1872 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1873 		if (ic->ic_flags & IEEE80211_F_WME) {
1874 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1875 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1876 		} else {
1877 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1878 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1879 		}
1880 	}
1881 }
1882 
1883 static void
1884 ath_init(void *arg)
1885 {
1886 	struct ath_softc *sc = (struct ath_softc *) arg;
1887 	struct ifnet *ifp = sc->sc_ifp;
1888 	struct ieee80211com *ic = ifp->if_l2com;
1889 	struct ath_hal *ah = sc->sc_ah;
1890 	HAL_STATUS status;
1891 
1892 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1893 		__func__, ifp->if_flags);
1894 
1895 	ATH_LOCK(sc);
1896 	/*
1897 	 * Stop anything previously setup.  This is safe
1898 	 * whether this is the first time through or not.
1899 	 */
1900 	ath_stop_locked(ifp);
1901 
1902 	/*
1903 	 * The basic interface to setting the hardware in a good
1904 	 * state is ``reset''.  On return the hardware is known to
1905 	 * be powered up and with interrupts disabled.  This must
1906 	 * be followed by initialization of the appropriate bits
1907 	 * and then setup of the interrupt mask.
1908 	 */
1909 	ath_settkipmic(sc);
1910 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1911 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1912 			status);
1913 		ATH_UNLOCK(sc);
1914 		return;
1915 	}
1916 	ath_chan_change(sc, ic->ic_curchan);
1917 
1918 	/* Let DFS at it in case it's a DFS channel */
1919 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1920 
1921 	/*
1922 	 * Likewise this is set during reset so update
1923 	 * state cached in the driver.
1924 	 */
1925 	sc->sc_diversity = ath_hal_getdiversity(ah);
1926 	sc->sc_lastlongcal = 0;
1927 	sc->sc_resetcal = 1;
1928 	sc->sc_lastcalreset = 0;
1929 	sc->sc_lastani = 0;
1930 	sc->sc_lastshortcal = 0;
1931 	sc->sc_doresetcal = AH_FALSE;
1932 	/*
1933 	 * Beacon timers were cleared here; give ath_newstate()
1934 	 * a hint that the beacon timers should be poked when
1935 	 * things transition to the RUN state.
1936 	 */
1937 	sc->sc_beacons = 0;
1938 
1939 	/*
1940 	 * Setup the hardware after reset: the key cache
1941 	 * is filled as needed and the receive engine is
1942 	 * set going.  Frame transmit is handled entirely
1943 	 * in the frame output path; there's nothing to do
1944 	 * here except setup the interrupt mask.
1945 	 */
1946 	if (ath_startrecv(sc) != 0) {
1947 		if_printf(ifp, "unable to start recv logic\n");
1948 		ATH_UNLOCK(sc);
1949 		return;
1950 	}
1951 
1952 	/*
1953 	 * Enable interrupts.
1954 	 */
1955 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1956 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1957 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1958 
1959 	/*
1960 	 * Enable RX EDMA bits.  Note these overlap with
1961 	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
1962 	 */
1963 	if (sc->sc_isedma)
1964 		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
1965 
1966 	/*
1967 	 * Enable MIB interrupts when there are hardware phy counters.
1968 	 * Note we only do this (at the moment) for station mode.
1969 	 */
1970 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1971 		sc->sc_imask |= HAL_INT_MIB;
1972 
1973 	/* Enable global TX timeout and carrier sense timeout if available */
1974 	if (ath_hal_gtxto_supported(ah))
1975 		sc->sc_imask |= HAL_INT_GTT;
1976 
1977 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1978 		__func__, sc->sc_imask);
1979 
1980 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1981 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1982 	ath_hal_intrset(ah, sc->sc_imask);
1983 
1984 	ATH_UNLOCK(sc);
1985 
1986 #ifdef ATH_TX99_DIAG
1987 	if (sc->sc_tx99 != NULL)
1988 		sc->sc_tx99->start(sc->sc_tx99);
1989 	else
1990 #endif
1991 	ieee80211_start_all(ic);		/* start all vap's */
1992 }
1993 
1994 static void
1995 ath_stop_locked(struct ifnet *ifp)
1996 {
1997 	struct ath_softc *sc = ifp->if_softc;
1998 	struct ath_hal *ah = sc->sc_ah;
1999 
2000 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2001 		__func__, sc->sc_invalid, ifp->if_flags);
2002 
2003 	ATH_LOCK_ASSERT(sc);
2004 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2005 		/*
2006 		 * Shutdown the hardware and driver:
2007 		 *    reset 802.11 state machine
2008 		 *    turn off timers
2009 		 *    disable interrupts
2010 		 *    turn off the radio
2011 		 *    clear transmit machinery
2012 		 *    clear receive machinery
2013 		 *    drain and release tx queues
2014 		 *    reclaim beacon resources
2015 		 *    power down hardware
2016 		 *
2017 		 * Note that some of this work is not possible if the
2018 		 * hardware is gone (invalid).
2019 		 */
2020 #ifdef ATH_TX99_DIAG
2021 		if (sc->sc_tx99 != NULL)
2022 			sc->sc_tx99->stop(sc->sc_tx99);
2023 #endif
2024 		callout_stop(&sc->sc_wd_ch);
2025 		sc->sc_wd_timer = 0;
2026 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2027 		if (!sc->sc_invalid) {
2028 			if (sc->sc_softled) {
2029 				callout_stop(&sc->sc_ledtimer);
2030 				ath_hal_gpioset(ah, sc->sc_ledpin,
2031 					!sc->sc_ledon);
2032 				sc->sc_blinking = 0;
2033 			}
2034 			ath_hal_intrset(ah, 0);
2035 		}
2036 		ath_draintxq(sc, ATH_RESET_DEFAULT);
2037 		if (!sc->sc_invalid) {
2038 			ath_stoprecv(sc, 1);
2039 			ath_hal_phydisable(ah);
2040 		} else
2041 			sc->sc_rxlink = NULL;
2042 		ath_beacon_free(sc);	/* XXX not needed */
2043 	}
2044 }
2045 
2046 #define	MAX_TXRX_ITERATIONS	1000
2047 static void
2048 ath_txrx_stop_locked(struct ath_softc *sc)
2049 {
2050 	int i = MAX_TXRX_ITERATIONS;
2051 
2052 	ATH_UNLOCK_ASSERT(sc);
2053 	ATH_PCU_LOCK_ASSERT(sc);
2054 
2055 	/*
2056 	 * Sleep until all the pending operations have completed.
2057 	 *
2058 	 * The caller must ensure that reset has been incremented
2059 	 * or the pending operations may continue being queued.
2060 	 */
2061 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2062 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2063 		if (i <= 0)
2064 			break;
2065 		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
2066 		i--;
2067 	}
2068 
2069 	if (i <= 0)
2070 		device_printf(sc->sc_dev,
2071 		    "%s: didn't finish after %d iterations\n",
2072 		    __func__, MAX_TXRX_ITERATIONS);
2073 }
2074 #undef	MAX_TXRX_ITERATIONS
2075 
2076 #if 0
2077 static void
2078 ath_txrx_stop(struct ath_softc *sc)
2079 {
2080 	ATH_UNLOCK_ASSERT(sc);
2081 	ATH_PCU_UNLOCK_ASSERT(sc);
2082 
2083 	ATH_PCU_LOCK(sc);
2084 	ath_txrx_stop_locked(sc);
2085 	ATH_PCU_UNLOCK(sc);
2086 }
2087 #endif
2088 
2089 static void
2090 ath_txrx_start(struct ath_softc *sc)
2091 {
2092 
2093 	taskqueue_unblock(sc->sc_tq);
2094 }
2095 
2096 /*
2097  * Grab the reset lock, and wait around until noone else
2098  * is trying to do anything with it.
2099  *
2100  * This is totally horrible but we can't hold this lock for
2101  * long enough to do TX/RX or we end up with net80211/ip stack
2102  * LORs and eventual deadlock.
2103  *
2104  * "dowait" signals whether to spin, waiting for the reset
2105  * lock count to reach 0. This should (for now) only be used
2106  * during the reset path, as the rest of the code may not
2107  * be locking-reentrant enough to behave correctly.
2108  *
2109  * Another, cleaner way should be found to serialise all of
2110  * these operations.
2111  */
2112 #define	MAX_RESET_ITERATIONS	10
2113 static int
2114 ath_reset_grablock(struct ath_softc *sc, int dowait)
2115 {
2116 	int w = 0;
2117 	int i = MAX_RESET_ITERATIONS;
2118 
2119 	ATH_PCU_LOCK_ASSERT(sc);
2120 	do {
2121 		if (sc->sc_inreset_cnt == 0) {
2122 			w = 1;
2123 			break;
2124 		}
2125 		if (dowait == 0) {
2126 			w = 0;
2127 			break;
2128 		}
2129 		ATH_PCU_UNLOCK(sc);
2130 		pause("ath_reset_grablock", 1);
2131 		i--;
2132 		ATH_PCU_LOCK(sc);
2133 	} while (i > 0);
2134 
2135 	/*
2136 	 * We always increment the refcounter, regardless
2137 	 * of whether we succeeded to get it in an exclusive
2138 	 * way.
2139 	 */
2140 	sc->sc_inreset_cnt++;
2141 
2142 	if (i <= 0)
2143 		device_printf(sc->sc_dev,
2144 		    "%s: didn't finish after %d iterations\n",
2145 		    __func__, MAX_RESET_ITERATIONS);
2146 
2147 	if (w == 0)
2148 		device_printf(sc->sc_dev,
2149 		    "%s: warning, recursive reset path!\n",
2150 		    __func__);
2151 
2152 	return w;
2153 }
2154 #undef MAX_RESET_ITERATIONS
2155 
2156 /*
2157  * XXX TODO: write ath_reset_releaselock
2158  */
2159 
2160 static void
2161 ath_stop(struct ifnet *ifp)
2162 {
2163 	struct ath_softc *sc = ifp->if_softc;
2164 
2165 	ATH_LOCK(sc);
2166 	ath_stop_locked(ifp);
2167 	ATH_UNLOCK(sc);
2168 }
2169 
2170 /*
2171  * Reset the hardware w/o losing operational state.  This is
2172  * basically a more efficient way of doing ath_stop, ath_init,
2173  * followed by state transitions to the current 802.11
2174  * operational state.  Used to recover from various errors and
2175  * to reset or reload hardware state.
2176  */
2177 int
2178 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2179 {
2180 	struct ath_softc *sc = ifp->if_softc;
2181 	struct ieee80211com *ic = ifp->if_l2com;
2182 	struct ath_hal *ah = sc->sc_ah;
2183 	HAL_STATUS status;
2184 	int i;
2185 
2186 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2187 
2188 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2189 	ATH_PCU_UNLOCK_ASSERT(sc);
2190 	ATH_UNLOCK_ASSERT(sc);
2191 
2192 	/* Try to (stop any further TX/RX from occuring */
2193 	taskqueue_block(sc->sc_tq);
2194 
2195 	ATH_PCU_LOCK(sc);
2196 	ath_hal_intrset(ah, 0);		/* disable interrupts */
2197 	ath_txrx_stop_locked(sc);	/* Ensure TX/RX is stopped */
2198 	if (ath_reset_grablock(sc, 1) == 0) {
2199 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2200 		    __func__);
2201 	}
2202 	ATH_PCU_UNLOCK(sc);
2203 
2204 	/*
2205 	 * Should now wait for pending TX/RX to complete
2206 	 * and block future ones from occuring. This needs to be
2207 	 * done before the TX queue is drained.
2208 	 */
2209 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2210 
2211 	/*
2212 	 * Regardless of whether we're doing a no-loss flush or
2213 	 * not, stop the PCU and handle what's in the RX queue.
2214 	 * That way frames aren't dropped which shouldn't be.
2215 	 */
2216 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2217 	ath_rx_flush(sc);
2218 
2219 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2220 	/* NB: indicate channel change so we do a full reset */
2221 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2222 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2223 			__func__, status);
2224 	sc->sc_diversity = ath_hal_getdiversity(ah);
2225 
2226 	/* Let DFS at it in case it's a DFS channel */
2227 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2228 
2229 	if (ath_startrecv(sc) != 0)	/* restart recv */
2230 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2231 	/*
2232 	 * We may be doing a reset in response to an ioctl
2233 	 * that changes the channel so update any state that
2234 	 * might change as a result.
2235 	 */
2236 	ath_chan_change(sc, ic->ic_curchan);
2237 	if (sc->sc_beacons) {		/* restart beacons */
2238 #ifdef IEEE80211_SUPPORT_TDMA
2239 		if (sc->sc_tdma)
2240 			ath_tdma_config(sc, NULL);
2241 		else
2242 #endif
2243 			ath_beacon_config(sc, NULL);
2244 	}
2245 
2246 	/*
2247 	 * Release the reset lock and re-enable interrupts here.
2248 	 * If an interrupt was being processed in ath_intr(),
2249 	 * it would disable interrupts at this point. So we have
2250 	 * to atomically enable interrupts and decrement the
2251 	 * reset counter - this way ath_intr() doesn't end up
2252 	 * disabling interrupts without a corresponding enable
2253 	 * in the rest or channel change path.
2254 	 */
2255 	ATH_PCU_LOCK(sc);
2256 	sc->sc_inreset_cnt--;
2257 	/* XXX only do this if sc_inreset_cnt == 0? */
2258 	ath_hal_intrset(ah, sc->sc_imask);
2259 	ATH_PCU_UNLOCK(sc);
2260 
2261 	/*
2262 	 * TX and RX can be started here. If it were started with
2263 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2264 	 * Thus if this is a nested call through the reset or
2265 	 * channel change code, TX completion will occur but
2266 	 * RX completion and ath_start / ath_tx_start will not
2267 	 * run.
2268 	 */
2269 
2270 	/* Restart TX/RX as needed */
2271 	ath_txrx_start(sc);
2272 
2273 	/* Restart TX completion and pending TX */
2274 	if (reset_type == ATH_RESET_NOLOSS) {
2275 		ATH_TX_LOCK(sc);
2276 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2277 			if (ATH_TXQ_SETUP(sc, i)) {
2278 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2279 				ath_txq_sched(sc, &sc->sc_txq[i]);
2280 			}
2281 		}
2282 		ATH_TX_UNLOCK(sc);
2283 	}
2284 
2285 	/*
2286 	 * This may have been set during an ath_start() call which
2287 	 * set this once it detected a concurrent TX was going on.
2288 	 * So, clear it.
2289 	 */
2290 	IF_LOCK(&ifp->if_snd);
2291 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2292 	IF_UNLOCK(&ifp->if_snd);
2293 
2294 	/* Handle any frames in the TX queue */
2295 	/*
2296 	 * XXX should this be done by the caller, rather than
2297 	 * ath_reset() ?
2298 	 */
2299 	ath_tx_kick(sc);		/* restart xmit */
2300 	return 0;
2301 }
2302 
2303 static int
2304 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2305 {
2306 	struct ieee80211com *ic = vap->iv_ic;
2307 	struct ifnet *ifp = ic->ic_ifp;
2308 	struct ath_softc *sc = ifp->if_softc;
2309 	struct ath_hal *ah = sc->sc_ah;
2310 
2311 	switch (cmd) {
2312 	case IEEE80211_IOC_TXPOWER:
2313 		/*
2314 		 * If per-packet TPC is enabled, then we have nothing
2315 		 * to do; otherwise we need to force the global limit.
2316 		 * All this can happen directly; no need to reset.
2317 		 */
2318 		if (!ath_hal_gettpc(ah))
2319 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2320 		return 0;
2321 	}
2322 	/* XXX? Full or NOLOSS? */
2323 	return ath_reset(ifp, ATH_RESET_FULL);
2324 }
2325 
2326 struct ath_buf *
2327 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2328 {
2329 	struct ath_buf *bf;
2330 
2331 	ATH_TXBUF_LOCK_ASSERT(sc);
2332 
2333 	if (btype == ATH_BUFTYPE_MGMT)
2334 		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2335 	else
2336 		bf = TAILQ_FIRST(&sc->sc_txbuf);
2337 
2338 	if (bf == NULL) {
2339 		sc->sc_stats.ast_tx_getnobuf++;
2340 	} else {
2341 		if (bf->bf_flags & ATH_BUF_BUSY) {
2342 			sc->sc_stats.ast_tx_getbusybuf++;
2343 			bf = NULL;
2344 		}
2345 	}
2346 
2347 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2348 		if (btype == ATH_BUFTYPE_MGMT)
2349 			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2350 		else {
2351 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2352 			sc->sc_txbuf_cnt--;
2353 
2354 			/*
2355 			 * This shuldn't happen; however just to be
2356 			 * safe print a warning and fudge the txbuf
2357 			 * count.
2358 			 */
2359 			if (sc->sc_txbuf_cnt < 0) {
2360 				device_printf(sc->sc_dev,
2361 				    "%s: sc_txbuf_cnt < 0?\n",
2362 				    __func__);
2363 				sc->sc_txbuf_cnt = 0;
2364 			}
2365 		}
2366 	} else
2367 		bf = NULL;
2368 
2369 	if (bf == NULL) {
2370 		/* XXX should check which list, mgmt or otherwise */
2371 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2372 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2373 			"out of xmit buffers" : "xmit buffer busy");
2374 		return NULL;
2375 	}
2376 
2377 	/* XXX TODO: should do this at buffer list initialisation */
2378 	/* XXX (then, ensure the buffer has the right flag set) */
2379 	if (btype == ATH_BUFTYPE_MGMT)
2380 		bf->bf_flags |= ATH_BUF_MGMT;
2381 	else
2382 		bf->bf_flags &= (~ATH_BUF_MGMT);
2383 
2384 	/* Valid bf here; clear some basic fields */
2385 	bf->bf_next = NULL;	/* XXX just to be sure */
2386 	bf->bf_last = NULL;	/* XXX again, just to be sure */
2387 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2388 	bzero(&bf->bf_state, sizeof(bf->bf_state));
2389 
2390 	/*
2391 	 * Track the descriptor ID only if doing EDMA
2392 	 */
2393 	if (sc->sc_isedma) {
2394 		bf->bf_descid = sc->sc_txbuf_descid;
2395 		sc->sc_txbuf_descid++;
2396 	}
2397 
2398 	return bf;
2399 }
2400 
2401 /*
2402  * When retrying a software frame, buffers marked ATH_BUF_BUSY
2403  * can't be thrown back on the queue as they could still be
2404  * in use by the hardware.
2405  *
2406  * This duplicates the buffer, or returns NULL.
2407  *
2408  * The descriptor is also copied but the link pointers and
2409  * the DMA segments aren't copied; this frame should thus
2410  * be again passed through the descriptor setup/chain routines
2411  * so the link is correct.
2412  *
2413  * The caller must free the buffer using ath_freebuf().
2414  *
2415  * XXX TODO: this call shouldn't fail as it'll cause packet loss
2416  * XXX in the TX pathway when retries are needed.
2417  * XXX Figure out how to keep some buffers free, or factor the
2418  * XXX number of busy buffers into the xmit path (ath_start())
2419  * XXX so we don't over-commit.
2420  */
2421 struct ath_buf *
2422 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
2423 {
2424 	struct ath_buf *tbf;
2425 
2426 	tbf = ath_getbuf(sc,
2427 	    (bf->bf_flags & ATH_BUF_MGMT) ?
2428 	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2429 	if (tbf == NULL)
2430 		return NULL;	/* XXX failure? Why? */
2431 
2432 	/* Copy basics */
2433 	tbf->bf_next = NULL;
2434 	tbf->bf_nseg = bf->bf_nseg;
2435 	tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
2436 	tbf->bf_status = bf->bf_status;
2437 	tbf->bf_m = bf->bf_m;
2438 	tbf->bf_node = bf->bf_node;
2439 	/* will be setup by the chain/setup function */
2440 	tbf->bf_lastds = NULL;
2441 	/* for now, last == self */
2442 	tbf->bf_last = tbf;
2443 	tbf->bf_comp = bf->bf_comp;
2444 
2445 	/* NOTE: DMA segments will be setup by the setup/chain functions */
2446 
2447 	/* The caller has to re-init the descriptor + links */
2448 
2449 	/* Copy state */
2450 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2451 
2452 	return tbf;
2453 }
2454 
2455 struct ath_buf *
2456 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
2457 {
2458 	struct ath_buf *bf;
2459 
2460 	ATH_TXBUF_LOCK(sc);
2461 	bf = _ath_getbuf_locked(sc, btype);
2462 	/*
2463 	 * If a mgmt buffer was requested but we're out of those,
2464 	 * try requesting a normal one.
2465 	 */
2466 	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
2467 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
2468 	ATH_TXBUF_UNLOCK(sc);
2469 	if (bf == NULL) {
2470 		struct ifnet *ifp = sc->sc_ifp;
2471 
2472 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2473 		sc->sc_stats.ast_tx_qstop++;
2474 		IF_LOCK(&ifp->if_snd);
2475 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2476 		IF_UNLOCK(&ifp->if_snd);
2477 	}
2478 	return bf;
2479 }
2480 
2481 static void
2482 ath_start_queue(struct ifnet *ifp)
2483 {
2484 	struct ath_softc *sc = ifp->if_softc;
2485 
2486 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start");
2487 	ath_tx_kick(sc);
2488 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished");
2489 }
2490 
2491 void
2492 ath_start_task(void *arg, int npending)
2493 {
2494 	struct ath_softc *sc = (struct ath_softc *) arg;
2495 	struct ifnet *ifp = sc->sc_ifp;
2496 
2497 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start");
2498 
2499 	/* XXX is it ok to hold the ATH_LOCK here? */
2500 	ATH_PCU_LOCK(sc);
2501 	if (sc->sc_inreset_cnt > 0) {
2502 		device_printf(sc->sc_dev,
2503 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2504 		ATH_PCU_UNLOCK(sc);
2505 		IF_LOCK(&ifp->if_snd);
2506 		sc->sc_stats.ast_tx_qstop++;
2507 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2508 		IF_UNLOCK(&ifp->if_snd);
2509 		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
2510 		return;
2511 	}
2512 	sc->sc_txstart_cnt++;
2513 	ATH_PCU_UNLOCK(sc);
2514 
2515 	ATH_TX_LOCK(sc);
2516 	ath_start(sc->sc_ifp);
2517 	ATH_TX_UNLOCK(sc);
2518 
2519 	ATH_PCU_LOCK(sc);
2520 	sc->sc_txstart_cnt--;
2521 	ATH_PCU_UNLOCK(sc);
2522 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished");
2523 }
2524 
2525 void
2526 ath_start(struct ifnet *ifp)
2527 {
2528 	struct ath_softc *sc = ifp->if_softc;
2529 	struct ieee80211_node *ni;
2530 	struct ath_buf *bf;
2531 	struct mbuf *m, *next;
2532 	ath_bufhead frags;
2533 	int npkts = 0;
2534 
2535 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2536 		return;
2537 
2538 	ATH_TX_LOCK_ASSERT(sc);
2539 
2540 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called");
2541 
2542 	for (;;) {
2543 		ATH_TXBUF_LOCK(sc);
2544 		if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) {
2545 			/* XXX increment counter? */
2546 			ATH_TXBUF_UNLOCK(sc);
2547 			IF_LOCK(&ifp->if_snd);
2548 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2549 			IF_UNLOCK(&ifp->if_snd);
2550 			break;
2551 		}
2552 		ATH_TXBUF_UNLOCK(sc);
2553 
2554 		/*
2555 		 * Grab a TX buffer and associated resources.
2556 		 */
2557 		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
2558 		if (bf == NULL)
2559 			break;
2560 
2561 		IFQ_DEQUEUE(&ifp->if_snd, m);
2562 		if (m == NULL) {
2563 			ATH_TXBUF_LOCK(sc);
2564 			ath_returnbuf_head(sc, bf);
2565 			ATH_TXBUF_UNLOCK(sc);
2566 			break;
2567 		}
2568 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2569 		npkts ++;
2570 		/*
2571 		 * Check for fragmentation.  If this frame
2572 		 * has been broken up verify we have enough
2573 		 * buffers to send all the fragments so all
2574 		 * go out or none...
2575 		 */
2576 		TAILQ_INIT(&frags);
2577 		if ((m->m_flags & M_FRAG) &&
2578 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2579 			DPRINTF(sc, ATH_DEBUG_XMIT,
2580 			    "%s: out of txfrag buffers\n", __func__);
2581 			sc->sc_stats.ast_tx_nofrag++;
2582 			ifp->if_oerrors++;
2583 			ath_freetx(m);
2584 			goto bad;
2585 		}
2586 		ifp->if_opackets++;
2587 	nextfrag:
2588 		/*
2589 		 * Pass the frame to the h/w for transmission.
2590 		 * Fragmented frames have each frag chained together
2591 		 * with m_nextpkt.  We know there are sufficient ath_buf's
2592 		 * to send all the frags because of work done by
2593 		 * ath_txfrag_setup.  We leave m_nextpkt set while
2594 		 * calling ath_tx_start so it can use it to extend the
2595 		 * the tx duration to cover the subsequent frag and
2596 		 * so it can reclaim all the mbufs in case of an error;
2597 		 * ath_tx_start clears m_nextpkt once it commits to
2598 		 * handing the frame to the hardware.
2599 		 */
2600 		next = m->m_nextpkt;
2601 		if (ath_tx_start(sc, ni, bf, m)) {
2602 	bad:
2603 			ifp->if_oerrors++;
2604 	reclaim:
2605 			bf->bf_m = NULL;
2606 			bf->bf_node = NULL;
2607 			ATH_TXBUF_LOCK(sc);
2608 			ath_returnbuf_head(sc, bf);
2609 			ath_txfrag_cleanup(sc, &frags, ni);
2610 			ATH_TXBUF_UNLOCK(sc);
2611 			/*
2612 			 * XXX todo, free the node outside of
2613 			 * the TX lock context!
2614 			 */
2615 			if (ni != NULL)
2616 				ieee80211_free_node(ni);
2617 			continue;
2618 		}
2619 
2620 		/*
2621 		 * Check here if the node is in power save state.
2622 		 */
2623 		ath_tx_update_tim(sc, ni, 1);
2624 
2625 		if (next != NULL) {
2626 			/*
2627 			 * Beware of state changing between frags.
2628 			 * XXX check sta power-save state?
2629 			 */
2630 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2631 				DPRINTF(sc, ATH_DEBUG_XMIT,
2632 				    "%s: flush fragmented packet, state %s\n",
2633 				    __func__,
2634 				    ieee80211_state_name[ni->ni_vap->iv_state]);
2635 				ath_freetx(next);
2636 				goto reclaim;
2637 			}
2638 			m = next;
2639 			bf = TAILQ_FIRST(&frags);
2640 			KASSERT(bf != NULL, ("no buf for txfrag"));
2641 			TAILQ_REMOVE(&frags, bf, bf_list);
2642 			goto nextfrag;
2643 		}
2644 
2645 		sc->sc_wd_timer = 5;
2646 	}
2647 	ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts);
2648 }
2649 
2650 static int
2651 ath_media_change(struct ifnet *ifp)
2652 {
2653 	int error = ieee80211_media_change(ifp);
2654 	/* NB: only the fixed rate can change and that doesn't need a reset */
2655 	return (error == ENETRESET ? 0 : error);
2656 }
2657 
2658 /*
2659  * Block/unblock tx+rx processing while a key change is done.
2660  * We assume the caller serializes key management operations
2661  * so we only need to worry about synchronization with other
2662  * uses that originate in the driver.
2663  */
2664 static void
2665 ath_key_update_begin(struct ieee80211vap *vap)
2666 {
2667 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2668 	struct ath_softc *sc = ifp->if_softc;
2669 
2670 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2671 	taskqueue_block(sc->sc_tq);
2672 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2673 }
2674 
2675 static void
2676 ath_key_update_end(struct ieee80211vap *vap)
2677 {
2678 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2679 	struct ath_softc *sc = ifp->if_softc;
2680 
2681 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2682 	IF_UNLOCK(&ifp->if_snd);
2683 	taskqueue_unblock(sc->sc_tq);
2684 }
2685 
2686 static void
2687 ath_update_promisc(struct ifnet *ifp)
2688 {
2689 	struct ath_softc *sc = ifp->if_softc;
2690 	u_int32_t rfilt;
2691 
2692 	/* configure rx filter */
2693 	rfilt = ath_calcrxfilter(sc);
2694 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2695 
2696 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2697 }
2698 
2699 static void
2700 ath_update_mcast(struct ifnet *ifp)
2701 {
2702 	struct ath_softc *sc = ifp->if_softc;
2703 	u_int32_t mfilt[2];
2704 
2705 	/* calculate and install multicast filter */
2706 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2707 		struct ifmultiaddr *ifma;
2708 		/*
2709 		 * Merge multicast addresses to form the hardware filter.
2710 		 */
2711 		mfilt[0] = mfilt[1] = 0;
2712 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2713 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2714 			caddr_t dl;
2715 			u_int32_t val;
2716 			u_int8_t pos;
2717 
2718 			/* calculate XOR of eight 6bit values */
2719 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2720 			val = LE_READ_4(dl + 0);
2721 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2722 			val = LE_READ_4(dl + 3);
2723 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2724 			pos &= 0x3f;
2725 			mfilt[pos / 32] |= (1 << (pos % 32));
2726 		}
2727 		if_maddr_runlock(ifp);
2728 	} else
2729 		mfilt[0] = mfilt[1] = ~0;
2730 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2731 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2732 		__func__, mfilt[0], mfilt[1]);
2733 }
2734 
2735 void
2736 ath_mode_init(struct ath_softc *sc)
2737 {
2738 	struct ifnet *ifp = sc->sc_ifp;
2739 	struct ath_hal *ah = sc->sc_ah;
2740 	u_int32_t rfilt;
2741 
2742 	/* configure rx filter */
2743 	rfilt = ath_calcrxfilter(sc);
2744 	ath_hal_setrxfilter(ah, rfilt);
2745 
2746 	/* configure operational mode */
2747 	ath_hal_setopmode(ah);
2748 
2749 	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
2750 	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
2751 	    __func__,
2752 	    ah,
2753 	    ifp,
2754 	    (ifp == NULL) ? NULL : ifp->if_addr);
2755 
2756 	/* handle any link-level address change */
2757 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2758 
2759 	/* calculate and install multicast filter */
2760 	ath_update_mcast(ifp);
2761 }
2762 
2763 /*
2764  * Set the slot time based on the current setting.
2765  */
2766 void
2767 ath_setslottime(struct ath_softc *sc)
2768 {
2769 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2770 	struct ath_hal *ah = sc->sc_ah;
2771 	u_int usec;
2772 
2773 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2774 		usec = 13;
2775 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2776 		usec = 21;
2777 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2778 		/* honor short/long slot time only in 11g */
2779 		/* XXX shouldn't honor on pure g or turbo g channel */
2780 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2781 			usec = HAL_SLOT_TIME_9;
2782 		else
2783 			usec = HAL_SLOT_TIME_20;
2784 	} else
2785 		usec = HAL_SLOT_TIME_9;
2786 
2787 	DPRINTF(sc, ATH_DEBUG_RESET,
2788 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2789 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2790 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2791 
2792 	ath_hal_setslottime(ah, usec);
2793 	sc->sc_updateslot = OK;
2794 }
2795 
2796 /*
2797  * Callback from the 802.11 layer to update the
2798  * slot time based on the current setting.
2799  */
2800 static void
2801 ath_updateslot(struct ifnet *ifp)
2802 {
2803 	struct ath_softc *sc = ifp->if_softc;
2804 	struct ieee80211com *ic = ifp->if_l2com;
2805 
2806 	/*
2807 	 * When not coordinating the BSS, change the hardware
2808 	 * immediately.  For other operation we defer the change
2809 	 * until beacon updates have propagated to the stations.
2810 	 */
2811 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2812 	    ic->ic_opmode == IEEE80211_M_MBSS)
2813 		sc->sc_updateslot = UPDATE;
2814 	else
2815 		ath_setslottime(sc);
2816 }
2817 
2818 /*
2819  * Append the contents of src to dst; both queues
2820  * are assumed to be locked.
2821  */
2822 void
2823 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2824 {
2825 
2826 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2827 	dst->axq_link = src->axq_link;
2828 	src->axq_link = NULL;
2829 	dst->axq_depth += src->axq_depth;
2830 	dst->axq_aggr_depth += src->axq_aggr_depth;
2831 	src->axq_depth = 0;
2832 	src->axq_aggr_depth = 0;
2833 }
2834 
2835 /*
2836  * Reset the hardware, with no loss.
2837  *
2838  * This can't be used for a general case reset.
2839  */
2840 static void
2841 ath_reset_proc(void *arg, int pending)
2842 {
2843 	struct ath_softc *sc = arg;
2844 	struct ifnet *ifp = sc->sc_ifp;
2845 
2846 #if 0
2847 	if_printf(ifp, "%s: resetting\n", __func__);
2848 #endif
2849 	ath_reset(ifp, ATH_RESET_NOLOSS);
2850 }
2851 
2852 /*
2853  * Reset the hardware after detecting beacons have stopped.
2854  */
2855 static void
2856 ath_bstuck_proc(void *arg, int pending)
2857 {
2858 	struct ath_softc *sc = arg;
2859 	struct ifnet *ifp = sc->sc_ifp;
2860 	uint32_t hangs = 0;
2861 
2862 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
2863 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
2864 
2865 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2866 		sc->sc_bmisscount);
2867 	sc->sc_stats.ast_bstuck++;
2868 	/*
2869 	 * This assumes that there's no simultaneous channel mode change
2870 	 * occuring.
2871 	 */
2872 	ath_reset(ifp, ATH_RESET_NOLOSS);
2873 }
2874 
2875 static void
2876 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2877 {
2878 	bus_addr_t *paddr = (bus_addr_t*) arg;
2879 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2880 	*paddr = segs->ds_addr;
2881 }
2882 
2883 /*
2884  * Allocate the descriptors and appropriate DMA tag/setup.
2885  *
2886  * For some situations (eg EDMA TX completion), there isn't a requirement
2887  * for the ath_buf entries to be allocated.
2888  */
2889 int
2890 ath_descdma_alloc_desc(struct ath_softc *sc,
2891 	struct ath_descdma *dd, ath_bufhead *head,
2892 	const char *name, int ds_size, int ndesc)
2893 {
2894 #define	DS2PHYS(_dd, _ds) \
2895 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2896 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
2897 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
2898 	struct ifnet *ifp = sc->sc_ifp;
2899 	int error;
2900 
2901 	dd->dd_descsize = ds_size;
2902 
2903 	DPRINTF(sc, ATH_DEBUG_RESET,
2904 	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
2905 	    __func__, name, ndesc, dd->dd_descsize);
2906 
2907 	dd->dd_name = name;
2908 	dd->dd_desc_len = dd->dd_descsize * ndesc;
2909 
2910 	/*
2911 	 * Merlin work-around:
2912 	 * Descriptors that cross the 4KB boundary can't be used.
2913 	 * Assume one skipped descriptor per 4KB page.
2914 	 */
2915 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
2916 		int numpages = dd->dd_desc_len / 4096;
2917 		dd->dd_desc_len += ds_size * numpages;
2918 	}
2919 
2920 	/*
2921 	 * Setup DMA descriptor area.
2922 	 */
2923 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2924 		       PAGE_SIZE, 0,		/* alignment, bounds */
2925 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2926 		       BUS_SPACE_MAXADDR,	/* highaddr */
2927 		       NULL, NULL,		/* filter, filterarg */
2928 		       dd->dd_desc_len,		/* maxsize */
2929 		       1,			/* nsegments */
2930 		       dd->dd_desc_len,		/* maxsegsize */
2931 		       BUS_DMA_ALLOCNOW,	/* flags */
2932 		       NULL,			/* lockfunc */
2933 		       NULL,			/* lockarg */
2934 		       &dd->dd_dmat);
2935 	if (error != 0) {
2936 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2937 		return error;
2938 	}
2939 
2940 	/* allocate descriptors */
2941 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2942 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2943 				 &dd->dd_dmamap);
2944 	if (error != 0) {
2945 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2946 			"error %u\n", ndesc, dd->dd_name, error);
2947 		goto fail1;
2948 	}
2949 
2950 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2951 				dd->dd_desc, dd->dd_desc_len,
2952 				ath_load_cb, &dd->dd_desc_paddr,
2953 				BUS_DMA_NOWAIT);
2954 	if (error != 0) {
2955 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2956 			dd->dd_name, error);
2957 		goto fail2;
2958 	}
2959 
2960 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2961 	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
2962 	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
2963 	    /*XXX*/ (u_long) dd->dd_desc_len);
2964 
2965 	return (0);
2966 
2967 fail2:
2968 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2969 fail1:
2970 	bus_dma_tag_destroy(dd->dd_dmat);
2971 	memset(dd, 0, sizeof(*dd));
2972 	return error;
2973 #undef DS2PHYS
2974 #undef ATH_DESC_4KB_BOUND_CHECK
2975 }
2976 
2977 int
2978 ath_descdma_setup(struct ath_softc *sc,
2979 	struct ath_descdma *dd, ath_bufhead *head,
2980 	const char *name, int ds_size, int nbuf, int ndesc)
2981 {
2982 #define	DS2PHYS(_dd, _ds) \
2983 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2984 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
2985 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
2986 	struct ifnet *ifp = sc->sc_ifp;
2987 	uint8_t *ds;
2988 	struct ath_buf *bf;
2989 	int i, bsize, error;
2990 
2991 	/* Allocate descriptors */
2992 	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
2993 	    nbuf * ndesc);
2994 
2995 	/* Assume any errors during allocation were dealt with */
2996 	if (error != 0) {
2997 		return (error);
2998 	}
2999 
3000 	ds = (uint8_t *) dd->dd_desc;
3001 
3002 	/* allocate rx buffers */
3003 	bsize = sizeof(struct ath_buf) * nbuf;
3004 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3005 	if (bf == NULL) {
3006 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3007 			dd->dd_name, bsize);
3008 		goto fail3;
3009 	}
3010 	dd->dd_bufptr = bf;
3011 
3012 	TAILQ_INIT(head);
3013 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3014 		bf->bf_desc = (struct ath_desc *) ds;
3015 		bf->bf_daddr = DS2PHYS(dd, ds);
3016 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3017 			/*
3018 			 * Merlin WAR: Skip descriptor addresses which
3019 			 * cause 4KB boundary crossing along any point
3020 			 * in the descriptor.
3021 			 */
3022 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3023 			     dd->dd_descsize)) {
3024 				/* Start at the next page */
3025 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3026 				bf->bf_desc = (struct ath_desc *) ds;
3027 				bf->bf_daddr = DS2PHYS(dd, ds);
3028 			}
3029 		}
3030 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3031 				&bf->bf_dmamap);
3032 		if (error != 0) {
3033 			if_printf(ifp, "unable to create dmamap for %s "
3034 				"buffer %u, error %u\n", dd->dd_name, i, error);
3035 			ath_descdma_cleanup(sc, dd, head);
3036 			return error;
3037 		}
3038 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3039 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3040 	}
3041 
3042 	/*
3043 	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3044 	 * allocation otherwise weird stuff will occur and crash your
3045 	 * machine.
3046 	 */
3047 	return 0;
3048 	/* XXX this should likely just call ath_descdma_cleanup() */
3049 fail3:
3050 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3051 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3052 	bus_dma_tag_destroy(dd->dd_dmat);
3053 	memset(dd, 0, sizeof(*dd));
3054 	return error;
3055 #undef DS2PHYS
3056 #undef ATH_DESC_4KB_BOUND_CHECK
3057 }
3058 
3059 /*
3060  * Allocate ath_buf entries but no descriptor contents.
3061  *
3062  * This is for RX EDMA where the descriptors are the header part of
3063  * the RX buffer.
3064  */
3065 int
3066 ath_descdma_setup_rx_edma(struct ath_softc *sc,
3067 	struct ath_descdma *dd, ath_bufhead *head,
3068 	const char *name, int nbuf, int rx_status_len)
3069 {
3070 	struct ifnet *ifp = sc->sc_ifp;
3071 	struct ath_buf *bf;
3072 	int i, bsize, error;
3073 
3074 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3075 	    __func__, name, nbuf);
3076 
3077 	dd->dd_name = name;
3078 	/*
3079 	 * This is (mostly) purely for show.  We're not allocating any actual
3080 	 * descriptors here as EDMA RX has the descriptor be part
3081 	 * of the RX buffer.
3082 	 *
3083 	 * However, dd_desc_len is used by ath_descdma_free() to determine
3084 	 * whether we have already freed this DMA mapping.
3085 	 */
3086 	dd->dd_desc_len = rx_status_len * nbuf;
3087 	dd->dd_descsize = rx_status_len;
3088 
3089 	/* allocate rx buffers */
3090 	bsize = sizeof(struct ath_buf) * nbuf;
3091 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3092 	if (bf == NULL) {
3093 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3094 			dd->dd_name, bsize);
3095 		error = ENOMEM;
3096 		goto fail3;
3097 	}
3098 	dd->dd_bufptr = bf;
3099 
3100 	TAILQ_INIT(head);
3101 	for (i = 0; i < nbuf; i++, bf++) {
3102 		bf->bf_desc = NULL;
3103 		bf->bf_daddr = 0;
3104 		bf->bf_lastds = NULL;	/* Just an initial value */
3105 
3106 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3107 				&bf->bf_dmamap);
3108 		if (error != 0) {
3109 			if_printf(ifp, "unable to create dmamap for %s "
3110 				"buffer %u, error %u\n", dd->dd_name, i, error);
3111 			ath_descdma_cleanup(sc, dd, head);
3112 			return error;
3113 		}
3114 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3115 	}
3116 	return 0;
3117 fail3:
3118 	memset(dd, 0, sizeof(*dd));
3119 	return error;
3120 }
3121 
3122 void
3123 ath_descdma_cleanup(struct ath_softc *sc,
3124 	struct ath_descdma *dd, ath_bufhead *head)
3125 {
3126 	struct ath_buf *bf;
3127 	struct ieee80211_node *ni;
3128 
3129 	if (dd->dd_dmamap != 0) {
3130 		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3131 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3132 		bus_dma_tag_destroy(dd->dd_dmat);
3133 	}
3134 
3135 	if (head != NULL) {
3136 		TAILQ_FOREACH(bf, head, bf_list) {
3137 			if (bf->bf_m) {
3138 				m_freem(bf->bf_m);
3139 				bf->bf_m = NULL;
3140 			}
3141 			if (bf->bf_dmamap != NULL) {
3142 				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3143 				bf->bf_dmamap = NULL;
3144 			}
3145 			ni = bf->bf_node;
3146 			bf->bf_node = NULL;
3147 			if (ni != NULL) {
3148 				/*
3149 				 * Reclaim node reference.
3150 				 */
3151 				ieee80211_free_node(ni);
3152 			}
3153 		}
3154 	}
3155 
3156 	if (head != NULL)
3157 		TAILQ_INIT(head);
3158 
3159 	if (dd->dd_bufptr != NULL)
3160 		free(dd->dd_bufptr, M_ATHDEV);
3161 	memset(dd, 0, sizeof(*dd));
3162 }
3163 
3164 static int
3165 ath_desc_alloc(struct ath_softc *sc)
3166 {
3167 	int error;
3168 
3169 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3170 		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC);
3171 	if (error != 0) {
3172 		return error;
3173 	}
3174 	sc->sc_txbuf_cnt = ath_txbuf;
3175 
3176 	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3177 		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3178 		    ATH_TXDESC);
3179 	if (error != 0) {
3180 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3181 		return error;
3182 	}
3183 
3184 	/*
3185 	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3186 	 * flag doesn't have to be set in ath_getbuf_locked().
3187 	 */
3188 
3189 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3190 			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3191 	if (error != 0) {
3192 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3193 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3194 		    &sc->sc_txbuf_mgmt);
3195 		return error;
3196 	}
3197 	return 0;
3198 }
3199 
3200 static void
3201 ath_desc_free(struct ath_softc *sc)
3202 {
3203 
3204 	if (sc->sc_bdma.dd_desc_len != 0)
3205 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3206 	if (sc->sc_txdma.dd_desc_len != 0)
3207 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3208 	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3209 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3210 		    &sc->sc_txbuf_mgmt);
3211 }
3212 
3213 static struct ieee80211_node *
3214 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3215 {
3216 	struct ieee80211com *ic = vap->iv_ic;
3217 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3218 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3219 	struct ath_node *an;
3220 
3221 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3222 	if (an == NULL) {
3223 		/* XXX stat+msg */
3224 		return NULL;
3225 	}
3226 	ath_rate_node_init(sc, an);
3227 
3228 	/* Setup the mutex - there's no associd yet so set the name to NULL */
3229 	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3230 	    device_get_nameunit(sc->sc_dev), an);
3231 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3232 
3233 	/* XXX setup ath_tid */
3234 	ath_tx_tid_init(sc, an);
3235 
3236 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3237 	return &an->an_node;
3238 }
3239 
3240 static void
3241 ath_node_cleanup(struct ieee80211_node *ni)
3242 {
3243 	struct ieee80211com *ic = ni->ni_ic;
3244 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3245 
3246 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3247 	ath_tx_node_flush(sc, ATH_NODE(ni));
3248 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3249 	sc->sc_node_cleanup(ni);
3250 }
3251 
3252 static void
3253 ath_node_free(struct ieee80211_node *ni)
3254 {
3255 	struct ieee80211com *ic = ni->ni_ic;
3256 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3257 
3258 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3259 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3260 	sc->sc_node_free(ni);
3261 }
3262 
3263 static void
3264 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3265 {
3266 	struct ieee80211com *ic = ni->ni_ic;
3267 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3268 	struct ath_hal *ah = sc->sc_ah;
3269 
3270 	*rssi = ic->ic_node_getrssi(ni);
3271 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3272 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3273 	else
3274 		*noise = -95;		/* nominally correct */
3275 }
3276 
3277 /*
3278  * Set the default antenna.
3279  */
3280 void
3281 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3282 {
3283 	struct ath_hal *ah = sc->sc_ah;
3284 
3285 	/* XXX block beacon interrupts */
3286 	ath_hal_setdefantenna(ah, antenna);
3287 	if (sc->sc_defant != antenna)
3288 		sc->sc_stats.ast_ant_defswitch++;
3289 	sc->sc_defant = antenna;
3290 	sc->sc_rxotherant = 0;
3291 }
3292 
3293 static void
3294 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3295 {
3296 	txq->axq_qnum = qnum;
3297 	txq->axq_ac = 0;
3298 	txq->axq_depth = 0;
3299 	txq->axq_aggr_depth = 0;
3300 	txq->axq_intrcnt = 0;
3301 	txq->axq_link = NULL;
3302 	txq->axq_softc = sc;
3303 	TAILQ_INIT(&txq->axq_q);
3304 	TAILQ_INIT(&txq->axq_tidq);
3305 }
3306 
3307 /*
3308  * Setup a h/w transmit queue.
3309  */
3310 static struct ath_txq *
3311 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3312 {
3313 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3314 	struct ath_hal *ah = sc->sc_ah;
3315 	HAL_TXQ_INFO qi;
3316 	int qnum;
3317 
3318 	memset(&qi, 0, sizeof(qi));
3319 	qi.tqi_subtype = subtype;
3320 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3321 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3322 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3323 	/*
3324 	 * Enable interrupts only for EOL and DESC conditions.
3325 	 * We mark tx descriptors to receive a DESC interrupt
3326 	 * when a tx queue gets deep; otherwise waiting for the
3327 	 * EOL to reap descriptors.  Note that this is done to
3328 	 * reduce interrupt load and this only defers reaping
3329 	 * descriptors, never transmitting frames.  Aside from
3330 	 * reducing interrupts this also permits more concurrency.
3331 	 * The only potential downside is if the tx queue backs
3332 	 * up in which case the top half of the kernel may backup
3333 	 * due to a lack of tx descriptors.
3334 	 */
3335 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3336 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3337 	if (qnum == -1) {
3338 		/*
3339 		 * NB: don't print a message, this happens
3340 		 * normally on parts with too few tx queues
3341 		 */
3342 		return NULL;
3343 	}
3344 	if (qnum >= N(sc->sc_txq)) {
3345 		device_printf(sc->sc_dev,
3346 			"hal qnum %u out of range, max %zu!\n",
3347 			qnum, N(sc->sc_txq));
3348 		ath_hal_releasetxqueue(ah, qnum);
3349 		return NULL;
3350 	}
3351 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3352 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3353 		sc->sc_txqsetup |= 1<<qnum;
3354 	}
3355 	return &sc->sc_txq[qnum];
3356 #undef N
3357 }
3358 
3359 /*
3360  * Setup a hardware data transmit queue for the specified
3361  * access control.  The hal may not support all requested
3362  * queues in which case it will return a reference to a
3363  * previously setup queue.  We record the mapping from ac's
3364  * to h/w queues for use by ath_tx_start and also track
3365  * the set of h/w queues being used to optimize work in the
3366  * transmit interrupt handler and related routines.
3367  */
3368 static int
3369 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3370 {
3371 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3372 	struct ath_txq *txq;
3373 
3374 	if (ac >= N(sc->sc_ac2q)) {
3375 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3376 			ac, N(sc->sc_ac2q));
3377 		return 0;
3378 	}
3379 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3380 	if (txq != NULL) {
3381 		txq->axq_ac = ac;
3382 		sc->sc_ac2q[ac] = txq;
3383 		return 1;
3384 	} else
3385 		return 0;
3386 #undef N
3387 }
3388 
3389 /*
3390  * Update WME parameters for a transmit queue.
3391  */
3392 static int
3393 ath_txq_update(struct ath_softc *sc, int ac)
3394 {
3395 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3396 #define	ATH_TXOP_TO_US(v)		(v<<5)
3397 	struct ifnet *ifp = sc->sc_ifp;
3398 	struct ieee80211com *ic = ifp->if_l2com;
3399 	struct ath_txq *txq = sc->sc_ac2q[ac];
3400 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3401 	struct ath_hal *ah = sc->sc_ah;
3402 	HAL_TXQ_INFO qi;
3403 
3404 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3405 #ifdef IEEE80211_SUPPORT_TDMA
3406 	if (sc->sc_tdma) {
3407 		/*
3408 		 * AIFS is zero so there's no pre-transmit wait.  The
3409 		 * burst time defines the slot duration and is configured
3410 		 * through net80211.  The QCU is setup to not do post-xmit
3411 		 * back off, lockout all lower-priority QCU's, and fire
3412 		 * off the DMA beacon alert timer which is setup based
3413 		 * on the slot configuration.
3414 		 */
3415 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3416 			      | HAL_TXQ_TXERRINT_ENABLE
3417 			      | HAL_TXQ_TXURNINT_ENABLE
3418 			      | HAL_TXQ_TXEOLINT_ENABLE
3419 			      | HAL_TXQ_DBA_GATED
3420 			      | HAL_TXQ_BACKOFF_DISABLE
3421 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3422 			      ;
3423 		qi.tqi_aifs = 0;
3424 		/* XXX +dbaprep? */
3425 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3426 		qi.tqi_burstTime = qi.tqi_readyTime;
3427 	} else {
3428 #endif
3429 		/*
3430 		 * XXX shouldn't this just use the default flags
3431 		 * used in the previous queue setup?
3432 		 */
3433 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3434 			      | HAL_TXQ_TXERRINT_ENABLE
3435 			      | HAL_TXQ_TXDESCINT_ENABLE
3436 			      | HAL_TXQ_TXURNINT_ENABLE
3437 			      | HAL_TXQ_TXEOLINT_ENABLE
3438 			      ;
3439 		qi.tqi_aifs = wmep->wmep_aifsn;
3440 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3441 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3442 		qi.tqi_readyTime = 0;
3443 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3444 #ifdef IEEE80211_SUPPORT_TDMA
3445 	}
3446 #endif
3447 
3448 	DPRINTF(sc, ATH_DEBUG_RESET,
3449 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3450 	    __func__, txq->axq_qnum, qi.tqi_qflags,
3451 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3452 
3453 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3454 		if_printf(ifp, "unable to update hardware queue "
3455 			"parameters for %s traffic!\n",
3456 			ieee80211_wme_acnames[ac]);
3457 		return 0;
3458 	} else {
3459 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3460 		return 1;
3461 	}
3462 #undef ATH_TXOP_TO_US
3463 #undef ATH_EXPONENT_TO_VALUE
3464 }
3465 
3466 /*
3467  * Callback from the 802.11 layer to update WME parameters.
3468  */
3469 int
3470 ath_wme_update(struct ieee80211com *ic)
3471 {
3472 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3473 
3474 	return !ath_txq_update(sc, WME_AC_BE) ||
3475 	    !ath_txq_update(sc, WME_AC_BK) ||
3476 	    !ath_txq_update(sc, WME_AC_VI) ||
3477 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3478 }
3479 
3480 /*
3481  * Reclaim resources for a setup queue.
3482  */
3483 static void
3484 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3485 {
3486 
3487 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3488 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3489 }
3490 
3491 /*
3492  * Reclaim all tx queue resources.
3493  */
3494 static void
3495 ath_tx_cleanup(struct ath_softc *sc)
3496 {
3497 	int i;
3498 
3499 	ATH_TXBUF_LOCK_DESTROY(sc);
3500 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3501 		if (ATH_TXQ_SETUP(sc, i))
3502 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3503 }
3504 
3505 /*
3506  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3507  * using the current rates in sc_rixmap.
3508  */
3509 int
3510 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3511 {
3512 	int rix = sc->sc_rixmap[rate];
3513 	/* NB: return lowest rix for invalid rate */
3514 	return (rix == 0xff ? 0 : rix);
3515 }
3516 
3517 static void
3518 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3519     struct ath_buf *bf)
3520 {
3521 	struct ieee80211_node *ni = bf->bf_node;
3522 	struct ifnet *ifp = sc->sc_ifp;
3523 	struct ieee80211com *ic = ifp->if_l2com;
3524 	int sr, lr, pri;
3525 
3526 	if (ts->ts_status == 0) {
3527 		u_int8_t txant = ts->ts_antenna;
3528 		sc->sc_stats.ast_ant_tx[txant]++;
3529 		sc->sc_ant_tx[txant]++;
3530 		if (ts->ts_finaltsi != 0)
3531 			sc->sc_stats.ast_tx_altrate++;
3532 		pri = M_WME_GETAC(bf->bf_m);
3533 		if (pri >= WME_AC_VO)
3534 			ic->ic_wme.wme_hipri_traffic++;
3535 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3536 			ni->ni_inact = ni->ni_inact_reload;
3537 	} else {
3538 		if (ts->ts_status & HAL_TXERR_XRETRY)
3539 			sc->sc_stats.ast_tx_xretries++;
3540 		if (ts->ts_status & HAL_TXERR_FIFO)
3541 			sc->sc_stats.ast_tx_fifoerr++;
3542 		if (ts->ts_status & HAL_TXERR_FILT)
3543 			sc->sc_stats.ast_tx_filtered++;
3544 		if (ts->ts_status & HAL_TXERR_XTXOP)
3545 			sc->sc_stats.ast_tx_xtxop++;
3546 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3547 			sc->sc_stats.ast_tx_timerexpired++;
3548 
3549 		if (ts->ts_status & HAL_TX_DATA_UNDERRUN)
3550 			sc->sc_stats.ast_tx_data_underrun++;
3551 		if (ts->ts_status & HAL_TX_DELIM_UNDERRUN)
3552 			sc->sc_stats.ast_tx_delim_underrun++;
3553 
3554 		if (bf->bf_m->m_flags & M_FF)
3555 			sc->sc_stats.ast_ff_txerr++;
3556 	}
3557 	/* XXX when is this valid? */
3558 	if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
3559 		sc->sc_stats.ast_tx_desccfgerr++;
3560 
3561 	sr = ts->ts_shortretry;
3562 	lr = ts->ts_longretry;
3563 	sc->sc_stats.ast_tx_shortretry += sr;
3564 	sc->sc_stats.ast_tx_longretry += lr;
3565 
3566 }
3567 
3568 /*
3569  * The default completion. If fail is 1, this means
3570  * "please don't retry the frame, and just return -1 status
3571  * to the net80211 stack.
3572  */
3573 void
3574 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3575 {
3576 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3577 	int st;
3578 
3579 	if (fail == 1)
3580 		st = -1;
3581 	else
3582 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
3583 		    ts->ts_status : HAL_TXERR_XRETRY;
3584 
3585 	if (bf->bf_state.bfs_dobaw)
3586 		device_printf(sc->sc_dev,
3587 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
3588 		    __func__,
3589 		    bf,
3590 		    SEQNO(bf->bf_state.bfs_seqno));
3591 	if (bf->bf_next != NULL)
3592 		device_printf(sc->sc_dev,
3593 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
3594 		    __func__,
3595 		    bf,
3596 		    SEQNO(bf->bf_state.bfs_seqno));
3597 
3598 	/*
3599 	 * Check if the node software queue is empty; if so
3600 	 * then clear the TIM.
3601 	 *
3602 	 * This needs to be done before the buffer is freed as
3603 	 * otherwise the node reference will have been released
3604 	 * and the node may not actually exist any longer.
3605 	 *
3606 	 * XXX I don't like this belonging here, but it's cleaner
3607 	 * to do it here right now then all the other places
3608 	 * where ath_tx_default_comp() is called.
3609 	 *
3610 	 * XXX TODO: during drain, ensure that the callback is
3611 	 * being called so we get a chance to update the TIM.
3612 	 */
3613 	if (bf->bf_node)
3614 		ath_tx_update_tim(sc, bf->bf_node, 0);
3615 
3616 	/*
3617 	 * Do any tx complete callback.  Note this must
3618 	 * be done before releasing the node reference.
3619 	 * This will free the mbuf, release the net80211
3620 	 * node and recycle the ath_buf.
3621 	 */
3622 	ath_tx_freebuf(sc, bf, st);
3623 }
3624 
3625 /*
3626  * Update rate control with the given completion status.
3627  */
3628 void
3629 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
3630     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
3631     int nframes, int nbad)
3632 {
3633 	struct ath_node *an;
3634 
3635 	/* Only for unicast frames */
3636 	if (ni == NULL)
3637 		return;
3638 
3639 	an = ATH_NODE(ni);
3640 	ATH_NODE_UNLOCK_ASSERT(an);
3641 
3642 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
3643 		ATH_NODE_LOCK(an);
3644 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
3645 		ATH_NODE_UNLOCK(an);
3646 	}
3647 }
3648 
3649 /*
3650  * Update the busy status of the last frame on the free list.
3651  * When doing TDMA, the busy flag tracks whether the hardware
3652  * currently points to this buffer or not, and thus gated DMA
3653  * may restart by re-reading the last descriptor in this
3654  * buffer.
3655  *
3656  * This should be called in the completion function once one
3657  * of the buffers has been used.
3658  */
3659 static void
3660 ath_tx_update_busy(struct ath_softc *sc)
3661 {
3662 	struct ath_buf *last;
3663 
3664 	/*
3665 	 * Since the last frame may still be marked
3666 	 * as ATH_BUF_BUSY, unmark it here before
3667 	 * finishing the frame processing.
3668 	 * Since we've completed a frame (aggregate
3669 	 * or otherwise), the hardware has moved on
3670 	 * and is no longer referencing the previous
3671 	 * descriptor.
3672 	 */
3673 	ATH_TXBUF_LOCK_ASSERT(sc);
3674 	last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
3675 	if (last != NULL)
3676 		last->bf_flags &= ~ATH_BUF_BUSY;
3677 	last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
3678 	if (last != NULL)
3679 		last->bf_flags &= ~ATH_BUF_BUSY;
3680 }
3681 
3682 /*
3683  * Process the completion of the given buffer.
3684  *
3685  * This calls the rate control update and then the buffer completion.
3686  * This will either free the buffer or requeue it.  In any case, the
3687  * bf pointer should be treated as invalid after this function is called.
3688  */
3689 void
3690 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
3691     struct ath_tx_status *ts, struct ath_buf *bf)
3692 {
3693 	struct ieee80211_node *ni = bf->bf_node;
3694 	struct ath_node *an = NULL;
3695 
3696 	ATH_TX_UNLOCK_ASSERT(sc);
3697 
3698 	/* If unicast frame, update general statistics */
3699 	if (ni != NULL) {
3700 		an = ATH_NODE(ni);
3701 		/* update statistics */
3702 		ath_tx_update_stats(sc, ts, bf);
3703 	}
3704 
3705 	/*
3706 	 * Call the completion handler.
3707 	 * The completion handler is responsible for
3708 	 * calling the rate control code.
3709 	 *
3710 	 * Frames with no completion handler get the
3711 	 * rate control code called here.
3712 	 */
3713 	if (bf->bf_comp == NULL) {
3714 		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
3715 		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
3716 			/*
3717 			 * XXX assume this isn't an aggregate
3718 			 * frame.
3719 			 */
3720 			ath_tx_update_ratectrl(sc, ni,
3721 			     bf->bf_state.bfs_rc, ts,
3722 			    bf->bf_state.bfs_pktlen, 1,
3723 			    (ts->ts_status == 0 ? 0 : 1));
3724 		}
3725 		ath_tx_default_comp(sc, bf, 0);
3726 	} else
3727 		bf->bf_comp(sc, bf, 0);
3728 }
3729 
3730 
3731 
3732 /*
3733  * Process completed xmit descriptors from the specified queue.
3734  * Kick the packet scheduler if needed. This can occur from this
3735  * particular task.
3736  */
3737 static int
3738 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
3739 {
3740 	struct ath_hal *ah = sc->sc_ah;
3741 	struct ath_buf *bf;
3742 	struct ath_desc *ds;
3743 	struct ath_tx_status *ts;
3744 	struct ieee80211_node *ni;
3745 #ifdef	IEEE80211_SUPPORT_SUPERG
3746 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3747 #endif	/* IEEE80211_SUPPORT_SUPERG */
3748 	int nacked;
3749 	HAL_STATUS status;
3750 
3751 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3752 		__func__, txq->axq_qnum,
3753 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3754 		txq->axq_link);
3755 
3756 	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
3757 	    "ath_tx_processq: txq=%u head %p link %p depth %p",
3758 	    txq->axq_qnum,
3759 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3760 	    txq->axq_link,
3761 	    txq->axq_depth);
3762 
3763 	nacked = 0;
3764 	for (;;) {
3765 		ATH_TX_LOCK(sc);
3766 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3767 		bf = TAILQ_FIRST(&txq->axq_q);
3768 		if (bf == NULL) {
3769 			ATH_TX_UNLOCK(sc);
3770 			break;
3771 		}
3772 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
3773 		ts = &bf->bf_status.ds_txstat;
3774 
3775 		status = ath_hal_txprocdesc(ah, ds, ts);
3776 #ifdef ATH_DEBUG
3777 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3778 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3779 			    status == HAL_OK);
3780 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
3781 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3782 			    status == HAL_OK);
3783 #endif
3784 #ifdef	ATH_DEBUG_ALQ
3785 		if (if_ath_alq_checkdebug(&sc->sc_alq,
3786 		    ATH_ALQ_EDMA_TXSTATUS)) {
3787 			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
3788 			sc->sc_tx_statuslen,
3789 			(char *) ds);
3790 		}
3791 #endif
3792 
3793 		if (status == HAL_EINPROGRESS) {
3794 			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
3795 			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
3796 			    txq->axq_qnum, bf, ds);
3797 			ATH_TX_UNLOCK(sc);
3798 			break;
3799 		}
3800 		ATH_TXQ_REMOVE(txq, bf, bf_list);
3801 #ifdef IEEE80211_SUPPORT_TDMA
3802 		if (txq->axq_depth > 0) {
3803 			/*
3804 			 * More frames follow.  Mark the buffer busy
3805 			 * so it's not re-used while the hardware may
3806 			 * still re-read the link field in the descriptor.
3807 			 *
3808 			 * Use the last buffer in an aggregate as that
3809 			 * is where the hardware may be - intermediate
3810 			 * descriptors won't be "busy".
3811 			 */
3812 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
3813 		} else
3814 #else
3815 		if (txq->axq_depth == 0)
3816 #endif
3817 			txq->axq_link = NULL;
3818 		if (bf->bf_state.bfs_aggr)
3819 			txq->axq_aggr_depth--;
3820 
3821 		ni = bf->bf_node;
3822 
3823 		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
3824 		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
3825 		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
3826 		/*
3827 		 * If unicast frame was ack'd update RSSI,
3828 		 * including the last rx time used to
3829 		 * workaround phantom bmiss interrupts.
3830 		 */
3831 		if (ni != NULL && ts->ts_status == 0 &&
3832 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
3833 			nacked++;
3834 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
3835 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3836 				ts->ts_rssi);
3837 		}
3838 		ATH_TX_UNLOCK(sc);
3839 
3840 		/*
3841 		 * Update statistics and call completion
3842 		 */
3843 		ath_tx_process_buf_completion(sc, txq, ts, bf);
3844 
3845 		/* XXX at this point, bf and ni may be totally invalid */
3846 	}
3847 #ifdef IEEE80211_SUPPORT_SUPERG
3848 	/*
3849 	 * Flush fast-frame staging queue when traffic slows.
3850 	 */
3851 	if (txq->axq_depth <= 1)
3852 		ieee80211_ff_flush(ic, txq->axq_ac);
3853 #endif
3854 
3855 	/* Kick the TXQ scheduler */
3856 	if (dosched) {
3857 		ATH_TX_LOCK(sc);
3858 		ath_txq_sched(sc, txq);
3859 		ATH_TX_UNLOCK(sc);
3860 	}
3861 
3862 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3863 	    "ath_tx_processq: txq=%u: done",
3864 	    txq->axq_qnum);
3865 
3866 	return nacked;
3867 }
3868 
3869 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
3870 
3871 /*
3872  * Deferred processing of transmit interrupt; special-cased
3873  * for a single hardware transmit queue (e.g. 5210 and 5211).
3874  */
3875 static void
3876 ath_tx_proc_q0(void *arg, int npending)
3877 {
3878 	struct ath_softc *sc = arg;
3879 	struct ifnet *ifp = sc->sc_ifp;
3880 	uint32_t txqs;
3881 
3882 	ATH_PCU_LOCK(sc);
3883 	sc->sc_txproc_cnt++;
3884 	txqs = sc->sc_txq_active;
3885 	sc->sc_txq_active &= ~txqs;
3886 	ATH_PCU_UNLOCK(sc);
3887 
3888 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3889 	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
3890 
3891 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
3892 		/* XXX why is lastrx updated in tx code? */
3893 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3894 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3895 		ath_tx_processq(sc, sc->sc_cabq, 1);
3896 	IF_LOCK(&ifp->if_snd);
3897 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3898 	IF_UNLOCK(&ifp->if_snd);
3899 	sc->sc_wd_timer = 0;
3900 
3901 	if (sc->sc_softled)
3902 		ath_led_event(sc, sc->sc_txrix);
3903 
3904 	ATH_PCU_LOCK(sc);
3905 	sc->sc_txproc_cnt--;
3906 	ATH_PCU_UNLOCK(sc);
3907 
3908 	ath_tx_kick(sc);
3909 }
3910 
3911 /*
3912  * Deferred processing of transmit interrupt; special-cased
3913  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3914  */
3915 static void
3916 ath_tx_proc_q0123(void *arg, int npending)
3917 {
3918 	struct ath_softc *sc = arg;
3919 	struct ifnet *ifp = sc->sc_ifp;
3920 	int nacked;
3921 	uint32_t txqs;
3922 
3923 	ATH_PCU_LOCK(sc);
3924 	sc->sc_txproc_cnt++;
3925 	txqs = sc->sc_txq_active;
3926 	sc->sc_txq_active &= ~txqs;
3927 	ATH_PCU_UNLOCK(sc);
3928 
3929 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3930 	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
3931 
3932 	/*
3933 	 * Process each active queue.
3934 	 */
3935 	nacked = 0;
3936 	if (TXQACTIVE(txqs, 0))
3937 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
3938 	if (TXQACTIVE(txqs, 1))
3939 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
3940 	if (TXQACTIVE(txqs, 2))
3941 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
3942 	if (TXQACTIVE(txqs, 3))
3943 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
3944 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3945 		ath_tx_processq(sc, sc->sc_cabq, 1);
3946 	if (nacked)
3947 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3948 
3949 	IF_LOCK(&ifp->if_snd);
3950 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3951 	IF_UNLOCK(&ifp->if_snd);
3952 	sc->sc_wd_timer = 0;
3953 
3954 	if (sc->sc_softled)
3955 		ath_led_event(sc, sc->sc_txrix);
3956 
3957 	ATH_PCU_LOCK(sc);
3958 	sc->sc_txproc_cnt--;
3959 	ATH_PCU_UNLOCK(sc);
3960 
3961 	ath_tx_kick(sc);
3962 }
3963 
3964 /*
3965  * Deferred processing of transmit interrupt.
3966  */
3967 static void
3968 ath_tx_proc(void *arg, int npending)
3969 {
3970 	struct ath_softc *sc = arg;
3971 	struct ifnet *ifp = sc->sc_ifp;
3972 	int i, nacked;
3973 	uint32_t txqs;
3974 
3975 	ATH_PCU_LOCK(sc);
3976 	sc->sc_txproc_cnt++;
3977 	txqs = sc->sc_txq_active;
3978 	sc->sc_txq_active &= ~txqs;
3979 	ATH_PCU_UNLOCK(sc);
3980 
3981 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
3982 
3983 	/*
3984 	 * Process each active queue.
3985 	 */
3986 	nacked = 0;
3987 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3988 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
3989 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
3990 	if (nacked)
3991 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3992 
3993 	/* XXX check this inside of IF_LOCK? */
3994 	IF_LOCK(&ifp->if_snd);
3995 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3996 	IF_UNLOCK(&ifp->if_snd);
3997 	sc->sc_wd_timer = 0;
3998 
3999 	if (sc->sc_softled)
4000 		ath_led_event(sc, sc->sc_txrix);
4001 
4002 	ATH_PCU_LOCK(sc);
4003 	sc->sc_txproc_cnt--;
4004 	ATH_PCU_UNLOCK(sc);
4005 
4006 	ath_tx_kick(sc);
4007 }
4008 #undef	TXQACTIVE
4009 
4010 /*
4011  * Deferred processing of TXQ rescheduling.
4012  */
4013 static void
4014 ath_txq_sched_tasklet(void *arg, int npending)
4015 {
4016 	struct ath_softc *sc = arg;
4017 	int i;
4018 
4019 	/* XXX is skipping ok? */
4020 	ATH_PCU_LOCK(sc);
4021 #if 0
4022 	if (sc->sc_inreset_cnt > 0) {
4023 		device_printf(sc->sc_dev,
4024 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4025 		ATH_PCU_UNLOCK(sc);
4026 		return;
4027 	}
4028 #endif
4029 	sc->sc_txproc_cnt++;
4030 	ATH_PCU_UNLOCK(sc);
4031 
4032 	ATH_TX_LOCK(sc);
4033 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4034 		if (ATH_TXQ_SETUP(sc, i)) {
4035 			ath_txq_sched(sc, &sc->sc_txq[i]);
4036 		}
4037 	}
4038 	ATH_TX_UNLOCK(sc);
4039 
4040 	ATH_PCU_LOCK(sc);
4041 	sc->sc_txproc_cnt--;
4042 	ATH_PCU_UNLOCK(sc);
4043 }
4044 
4045 void
4046 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4047 {
4048 
4049 	ATH_TXBUF_LOCK_ASSERT(sc);
4050 
4051 	if (bf->bf_flags & ATH_BUF_MGMT)
4052 		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4053 	else {
4054 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4055 		sc->sc_txbuf_cnt++;
4056 		if (sc->sc_txbuf_cnt > ath_txbuf) {
4057 			device_printf(sc->sc_dev,
4058 			    "%s: sc_txbuf_cnt > %d?\n",
4059 			    __func__,
4060 			    ath_txbuf);
4061 			sc->sc_txbuf_cnt = ath_txbuf;
4062 		}
4063 	}
4064 }
4065 
4066 void
4067 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4068 {
4069 
4070 	ATH_TXBUF_LOCK_ASSERT(sc);
4071 
4072 	if (bf->bf_flags & ATH_BUF_MGMT)
4073 		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4074 	else {
4075 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4076 		sc->sc_txbuf_cnt++;
4077 		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4078 			device_printf(sc->sc_dev,
4079 			    "%s: sc_txbuf_cnt > %d?\n",
4080 			    __func__,
4081 			    ATH_TXBUF);
4082 			sc->sc_txbuf_cnt = ATH_TXBUF;
4083 		}
4084 	}
4085 }
4086 
4087 /*
4088  * Return a buffer to the pool and update the 'busy' flag on the
4089  * previous 'tail' entry.
4090  *
4091  * This _must_ only be called when the buffer is involved in a completed
4092  * TX. The logic is that if it was part of an active TX, the previous
4093  * buffer on the list is now not involved in a halted TX DMA queue, waiting
4094  * for restart (eg for TDMA.)
4095  *
4096  * The caller must free the mbuf and recycle the node reference.
4097  */
4098 void
4099 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4100 {
4101 	bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4102 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
4103 
4104 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4105 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4106 
4107 	ATH_TXBUF_LOCK(sc);
4108 	ath_tx_update_busy(sc);
4109 	ath_returnbuf_tail(sc, bf);
4110 	ATH_TXBUF_UNLOCK(sc);
4111 }
4112 
4113 /*
4114  * This is currently used by ath_tx_draintxq() and
4115  * ath_tx_tid_free_pkts().
4116  *
4117  * It recycles a single ath_buf.
4118  */
4119 void
4120 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4121 {
4122 	struct ieee80211_node *ni = bf->bf_node;
4123 	struct mbuf *m0 = bf->bf_m;
4124 
4125 	bf->bf_node = NULL;
4126 	bf->bf_m = NULL;
4127 
4128 	/* Free the buffer, it's not needed any longer */
4129 	ath_freebuf(sc, bf);
4130 
4131 	if (ni != NULL) {
4132 		/*
4133 		 * Do any callback and reclaim the node reference.
4134 		 */
4135 		if (m0->m_flags & M_TXCB)
4136 			ieee80211_process_callback(ni, m0, status);
4137 		ieee80211_free_node(ni);
4138 	}
4139 	m_freem(m0);
4140 
4141 	/*
4142 	 * XXX the buffer used to be freed -after-, but the DMA map was
4143 	 * freed where ath_freebuf() now is. I've no idea what this
4144 	 * will do.
4145 	 */
4146 }
4147 
4148 void
4149 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4150 {
4151 #ifdef ATH_DEBUG
4152 	struct ath_hal *ah = sc->sc_ah;
4153 #endif
4154 	struct ath_buf *bf;
4155 	u_int ix;
4156 
4157 	/*
4158 	 * NB: this assumes output has been stopped and
4159 	 *     we do not need to block ath_tx_proc
4160 	 */
4161 	ATH_TXBUF_LOCK(sc);
4162 	bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
4163 	if (bf != NULL)
4164 		bf->bf_flags &= ~ATH_BUF_BUSY;
4165 	bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
4166 	if (bf != NULL)
4167 		bf->bf_flags &= ~ATH_BUF_BUSY;
4168 	ATH_TXBUF_UNLOCK(sc);
4169 
4170 	for (ix = 0;; ix++) {
4171 		ATH_TX_LOCK(sc);
4172 		bf = TAILQ_FIRST(&txq->axq_q);
4173 		if (bf == NULL) {
4174 			txq->axq_link = NULL;
4175 			/*
4176 			 * There's currently no flag that indicates
4177 			 * a buffer is on the FIFO.  So until that
4178 			 * occurs, just clear the FIFO counter here.
4179 			 *
4180 			 * Yes, this means that if something in parallel
4181 			 * is pushing things onto this TXQ and pushing
4182 			 * _that_ into the hardware, things will get
4183 			 * very fruity very quickly.
4184 			 */
4185 			txq->axq_fifo_depth = 0;
4186 			ATH_TX_UNLOCK(sc);
4187 			break;
4188 		}
4189 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4190 		if (bf->bf_state.bfs_aggr)
4191 			txq->axq_aggr_depth--;
4192 #ifdef ATH_DEBUG
4193 		if (sc->sc_debug & ATH_DEBUG_RESET) {
4194 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4195 			int status = 0;
4196 
4197 			/*
4198 			 * EDMA operation has a TX completion FIFO
4199 			 * separate from the TX descriptor, so this
4200 			 * method of checking the "completion" status
4201 			 * is wrong.
4202 			 */
4203 			if (! sc->sc_isedma) {
4204 				status = (ath_hal_txprocdesc(ah,
4205 				    bf->bf_lastds,
4206 				    &bf->bf_status.ds_txstat) == HAL_OK);
4207 			}
4208 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
4209 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4210 			    bf->bf_m->m_len, 0, -1);
4211 		}
4212 #endif /* ATH_DEBUG */
4213 		/*
4214 		 * Since we're now doing magic in the completion
4215 		 * functions, we -must- call it for aggregation
4216 		 * destinations or BAW tracking will get upset.
4217 		 */
4218 		/*
4219 		 * Clear ATH_BUF_BUSY; the completion handler
4220 		 * will free the buffer.
4221 		 */
4222 		ATH_TX_UNLOCK(sc);
4223 		bf->bf_flags &= ~ATH_BUF_BUSY;
4224 		if (bf->bf_comp)
4225 			bf->bf_comp(sc, bf, 1);
4226 		else
4227 			ath_tx_default_comp(sc, bf, 1);
4228 	}
4229 
4230 	/*
4231 	 * Drain software queued frames which are on
4232 	 * active TIDs.
4233 	 */
4234 	ath_tx_txq_drain(sc, txq);
4235 }
4236 
4237 static void
4238 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4239 {
4240 	struct ath_hal *ah = sc->sc_ah;
4241 
4242 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4243 	    __func__, txq->axq_qnum,
4244 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4245 	    txq->axq_link);
4246 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4247 }
4248 
4249 int
4250 ath_stoptxdma(struct ath_softc *sc)
4251 {
4252 	struct ath_hal *ah = sc->sc_ah;
4253 	int i;
4254 
4255 	/* XXX return value */
4256 	if (sc->sc_invalid)
4257 		return 0;
4258 
4259 	if (!sc->sc_invalid) {
4260 		/* don't touch the hardware if marked invalid */
4261 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4262 		    __func__, sc->sc_bhalq,
4263 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4264 		    NULL);
4265 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4266 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4267 			if (ATH_TXQ_SETUP(sc, i))
4268 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4269 	}
4270 
4271 	return 1;
4272 }
4273 
4274 /*
4275  * Drain the transmit queues and reclaim resources.
4276  */
4277 void
4278 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
4279 {
4280 #ifdef	ATH_DEBUG
4281 	struct ath_hal *ah = sc->sc_ah;
4282 #endif
4283 	struct ifnet *ifp = sc->sc_ifp;
4284 	int i;
4285 
4286 	(void) ath_stoptxdma(sc);
4287 
4288 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4289 		/*
4290 		 * XXX TODO: should we just handle the completed TX frames
4291 		 * here, whether or not the reset is a full one or not?
4292 		 */
4293 		if (ATH_TXQ_SETUP(sc, i)) {
4294 			if (reset_type == ATH_RESET_NOLOSS)
4295 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
4296 			else
4297 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
4298 		}
4299 	}
4300 #ifdef ATH_DEBUG
4301 	if (sc->sc_debug & ATH_DEBUG_RESET) {
4302 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
4303 		if (bf != NULL && bf->bf_m != NULL) {
4304 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4305 				ath_hal_txprocdesc(ah, bf->bf_lastds,
4306 				    &bf->bf_status.ds_txstat) == HAL_OK);
4307 			ieee80211_dump_pkt(ifp->if_l2com,
4308 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4309 			    0, -1);
4310 		}
4311 	}
4312 #endif /* ATH_DEBUG */
4313 	IF_LOCK(&ifp->if_snd);
4314 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4315 	IF_UNLOCK(&ifp->if_snd);
4316 	sc->sc_wd_timer = 0;
4317 }
4318 
4319 /*
4320  * Update internal state after a channel change.
4321  */
4322 static void
4323 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4324 {
4325 	enum ieee80211_phymode mode;
4326 
4327 	/*
4328 	 * Change channels and update the h/w rate map
4329 	 * if we're switching; e.g. 11a to 11b/g.
4330 	 */
4331 	mode = ieee80211_chan2mode(chan);
4332 	if (mode != sc->sc_curmode)
4333 		ath_setcurmode(sc, mode);
4334 	sc->sc_curchan = chan;
4335 }
4336 
4337 /*
4338  * Set/change channels.  If the channel is really being changed,
4339  * it's done by resetting the chip.  To accomplish this we must
4340  * first cleanup any pending DMA, then restart stuff after a la
4341  * ath_init.
4342  */
4343 static int
4344 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4345 {
4346 	struct ifnet *ifp = sc->sc_ifp;
4347 	struct ieee80211com *ic = ifp->if_l2com;
4348 	struct ath_hal *ah = sc->sc_ah;
4349 	int ret = 0;
4350 
4351 	/* Treat this as an interface reset */
4352 	ATH_PCU_UNLOCK_ASSERT(sc);
4353 	ATH_UNLOCK_ASSERT(sc);
4354 
4355 	/* (Try to) stop TX/RX from occuring */
4356 	taskqueue_block(sc->sc_tq);
4357 
4358 	ATH_PCU_LOCK(sc);
4359 	ath_hal_intrset(ah, 0);		/* Stop new RX/TX completion */
4360 	ath_txrx_stop_locked(sc);	/* Stop pending RX/TX completion */
4361 	if (ath_reset_grablock(sc, 1) == 0) {
4362 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
4363 		    __func__);
4364 	}
4365 	ATH_PCU_UNLOCK(sc);
4366 
4367 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4368 	    __func__, ieee80211_chan2ieee(ic, chan),
4369 	    chan->ic_freq, chan->ic_flags);
4370 	if (chan != sc->sc_curchan) {
4371 		HAL_STATUS status;
4372 		/*
4373 		 * To switch channels clear any pending DMA operations;
4374 		 * wait long enough for the RX fifo to drain, reset the
4375 		 * hardware at the new frequency, and then re-enable
4376 		 * the relevant bits of the h/w.
4377 		 */
4378 #if 0
4379 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4380 #endif
4381 		ath_stoprecv(sc, 1);		/* turn off frame recv */
4382 		/*
4383 		 * First, handle completed TX/RX frames.
4384 		 */
4385 		ath_rx_flush(sc);
4386 		ath_draintxq(sc, ATH_RESET_NOLOSS);
4387 		/*
4388 		 * Next, flush the non-scheduled frames.
4389 		 */
4390 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
4391 
4392 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4393 			if_printf(ifp, "%s: unable to reset "
4394 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4395 			    __func__, ieee80211_chan2ieee(ic, chan),
4396 			    chan->ic_freq, chan->ic_flags, status);
4397 			ret = EIO;
4398 			goto finish;
4399 		}
4400 		sc->sc_diversity = ath_hal_getdiversity(ah);
4401 
4402 		/* Let DFS at it in case it's a DFS channel */
4403 		ath_dfs_radar_enable(sc, chan);
4404 
4405 		/*
4406 		 * Re-enable rx framework.
4407 		 */
4408 		if (ath_startrecv(sc) != 0) {
4409 			if_printf(ifp, "%s: unable to restart recv logic\n",
4410 			    __func__);
4411 			ret = EIO;
4412 			goto finish;
4413 		}
4414 
4415 		/*
4416 		 * Change channels and update the h/w rate map
4417 		 * if we're switching; e.g. 11a to 11b/g.
4418 		 */
4419 		ath_chan_change(sc, chan);
4420 
4421 		/*
4422 		 * Reset clears the beacon timers; reset them
4423 		 * here if needed.
4424 		 */
4425 		if (sc->sc_beacons) {		/* restart beacons */
4426 #ifdef IEEE80211_SUPPORT_TDMA
4427 			if (sc->sc_tdma)
4428 				ath_tdma_config(sc, NULL);
4429 			else
4430 #endif
4431 			ath_beacon_config(sc, NULL);
4432 		}
4433 
4434 		/*
4435 		 * Re-enable interrupts.
4436 		 */
4437 #if 0
4438 		ath_hal_intrset(ah, sc->sc_imask);
4439 #endif
4440 	}
4441 
4442 finish:
4443 	ATH_PCU_LOCK(sc);
4444 	sc->sc_inreset_cnt--;
4445 	/* XXX only do this if sc_inreset_cnt == 0? */
4446 	ath_hal_intrset(ah, sc->sc_imask);
4447 	ATH_PCU_UNLOCK(sc);
4448 
4449 	IF_LOCK(&ifp->if_snd);
4450 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4451 	IF_UNLOCK(&ifp->if_snd);
4452 	ath_txrx_start(sc);
4453 	/* XXX ath_start? */
4454 
4455 	return ret;
4456 }
4457 
4458 /*
4459  * Periodically recalibrate the PHY to account
4460  * for temperature/environment changes.
4461  */
4462 static void
4463 ath_calibrate(void *arg)
4464 {
4465 	struct ath_softc *sc = arg;
4466 	struct ath_hal *ah = sc->sc_ah;
4467 	struct ifnet *ifp = sc->sc_ifp;
4468 	struct ieee80211com *ic = ifp->if_l2com;
4469 	HAL_BOOL longCal, isCalDone = AH_TRUE;
4470 	HAL_BOOL aniCal, shortCal = AH_FALSE;
4471 	int nextcal;
4472 
4473 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4474 		goto restart;
4475 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4476 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4477 	if (sc->sc_doresetcal)
4478 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4479 
4480 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4481 	if (aniCal) {
4482 		sc->sc_stats.ast_ani_cal++;
4483 		sc->sc_lastani = ticks;
4484 		ath_hal_ani_poll(ah, sc->sc_curchan);
4485 	}
4486 
4487 	if (longCal) {
4488 		sc->sc_stats.ast_per_cal++;
4489 		sc->sc_lastlongcal = ticks;
4490 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4491 			/*
4492 			 * Rfgain is out of bounds, reset the chip
4493 			 * to load new gain values.
4494 			 */
4495 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4496 				"%s: rfgain change\n", __func__);
4497 			sc->sc_stats.ast_per_rfgain++;
4498 			sc->sc_resetcal = 0;
4499 			sc->sc_doresetcal = AH_TRUE;
4500 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4501 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4502 			return;
4503 		}
4504 		/*
4505 		 * If this long cal is after an idle period, then
4506 		 * reset the data collection state so we start fresh.
4507 		 */
4508 		if (sc->sc_resetcal) {
4509 			(void) ath_hal_calreset(ah, sc->sc_curchan);
4510 			sc->sc_lastcalreset = ticks;
4511 			sc->sc_lastshortcal = ticks;
4512 			sc->sc_resetcal = 0;
4513 			sc->sc_doresetcal = AH_TRUE;
4514 		}
4515 	}
4516 
4517 	/* Only call if we're doing a short/long cal, not for ANI calibration */
4518 	if (shortCal || longCal) {
4519 		isCalDone = AH_FALSE;
4520 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4521 			if (longCal) {
4522 				/*
4523 				 * Calibrate noise floor data again in case of change.
4524 				 */
4525 				ath_hal_process_noisefloor(ah);
4526 			}
4527 		} else {
4528 			DPRINTF(sc, ATH_DEBUG_ANY,
4529 				"%s: calibration of channel %u failed\n",
4530 				__func__, sc->sc_curchan->ic_freq);
4531 			sc->sc_stats.ast_per_calfail++;
4532 		}
4533 		if (shortCal)
4534 			sc->sc_lastshortcal = ticks;
4535 	}
4536 	if (!isCalDone) {
4537 restart:
4538 		/*
4539 		 * Use a shorter interval to potentially collect multiple
4540 		 * data samples required to complete calibration.  Once
4541 		 * we're told the work is done we drop back to a longer
4542 		 * interval between requests.  We're more aggressive doing
4543 		 * work when operating as an AP to improve operation right
4544 		 * after startup.
4545 		 */
4546 		sc->sc_lastshortcal = ticks;
4547 		nextcal = ath_shortcalinterval*hz/1000;
4548 		if (sc->sc_opmode != HAL_M_HOSTAP)
4549 			nextcal *= 10;
4550 		sc->sc_doresetcal = AH_TRUE;
4551 	} else {
4552 		/* nextcal should be the shortest time for next event */
4553 		nextcal = ath_longcalinterval*hz;
4554 		if (sc->sc_lastcalreset == 0)
4555 			sc->sc_lastcalreset = sc->sc_lastlongcal;
4556 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4557 			sc->sc_resetcal = 1;	/* setup reset next trip */
4558 		sc->sc_doresetcal = AH_FALSE;
4559 	}
4560 	/* ANI calibration may occur more often than short/long/resetcal */
4561 	if (ath_anicalinterval > 0)
4562 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4563 
4564 	if (nextcal != 0) {
4565 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4566 		    __func__, nextcal, isCalDone ? "" : "!");
4567 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4568 	} else {
4569 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4570 		    __func__);
4571 		/* NB: don't rearm timer */
4572 	}
4573 }
4574 
4575 static void
4576 ath_scan_start(struct ieee80211com *ic)
4577 {
4578 	struct ifnet *ifp = ic->ic_ifp;
4579 	struct ath_softc *sc = ifp->if_softc;
4580 	struct ath_hal *ah = sc->sc_ah;
4581 	u_int32_t rfilt;
4582 
4583 	/* XXX calibration timer? */
4584 
4585 	ATH_LOCK(sc);
4586 	sc->sc_scanning = 1;
4587 	sc->sc_syncbeacon = 0;
4588 	rfilt = ath_calcrxfilter(sc);
4589 	ATH_UNLOCK(sc);
4590 
4591 	ATH_PCU_LOCK(sc);
4592 	ath_hal_setrxfilter(ah, rfilt);
4593 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4594 	ATH_PCU_UNLOCK(sc);
4595 
4596 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4597 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4598 }
4599 
4600 static void
4601 ath_scan_end(struct ieee80211com *ic)
4602 {
4603 	struct ifnet *ifp = ic->ic_ifp;
4604 	struct ath_softc *sc = ifp->if_softc;
4605 	struct ath_hal *ah = sc->sc_ah;
4606 	u_int32_t rfilt;
4607 
4608 	ATH_LOCK(sc);
4609 	sc->sc_scanning = 0;
4610 	rfilt = ath_calcrxfilter(sc);
4611 	ATH_UNLOCK(sc);
4612 
4613 	ATH_PCU_LOCK(sc);
4614 	ath_hal_setrxfilter(ah, rfilt);
4615 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4616 
4617 	ath_hal_process_noisefloor(ah);
4618 	ATH_PCU_UNLOCK(sc);
4619 
4620 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4621 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4622 		 sc->sc_curaid);
4623 }
4624 
4625 #ifdef	ATH_ENABLE_11N
4626 /*
4627  * For now, just do a channel change.
4628  *
4629  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
4630  * control state and resetting the hardware without dropping frames out
4631  * of the queue.
4632  *
4633  * The unfortunate trouble here is making absolutely sure that the
4634  * channel width change has propagated enough so the hardware
4635  * absolutely isn't handed bogus frames for it's current operating
4636  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
4637  * does occur in parallel, we need to make certain we've blocked
4638  * any further ongoing TX (and RX, that can cause raw TX)
4639  * before we do this.
4640  */
4641 static void
4642 ath_update_chw(struct ieee80211com *ic)
4643 {
4644 	struct ifnet *ifp = ic->ic_ifp;
4645 	struct ath_softc *sc = ifp->if_softc;
4646 
4647 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
4648 	ath_set_channel(ic);
4649 }
4650 #endif	/* ATH_ENABLE_11N */
4651 
4652 static void
4653 ath_set_channel(struct ieee80211com *ic)
4654 {
4655 	struct ifnet *ifp = ic->ic_ifp;
4656 	struct ath_softc *sc = ifp->if_softc;
4657 
4658 	(void) ath_chan_set(sc, ic->ic_curchan);
4659 	/*
4660 	 * If we are returning to our bss channel then mark state
4661 	 * so the next recv'd beacon's tsf will be used to sync the
4662 	 * beacon timers.  Note that since we only hear beacons in
4663 	 * sta/ibss mode this has no effect in other operating modes.
4664 	 */
4665 	ATH_LOCK(sc);
4666 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4667 		sc->sc_syncbeacon = 1;
4668 	ATH_UNLOCK(sc);
4669 }
4670 
4671 /*
4672  * Walk the vap list and check if there any vap's in RUN state.
4673  */
4674 static int
4675 ath_isanyrunningvaps(struct ieee80211vap *this)
4676 {
4677 	struct ieee80211com *ic = this->iv_ic;
4678 	struct ieee80211vap *vap;
4679 
4680 	IEEE80211_LOCK_ASSERT(ic);
4681 
4682 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4683 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4684 			return 1;
4685 	}
4686 	return 0;
4687 }
4688 
4689 static int
4690 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4691 {
4692 	struct ieee80211com *ic = vap->iv_ic;
4693 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4694 	struct ath_vap *avp = ATH_VAP(vap);
4695 	struct ath_hal *ah = sc->sc_ah;
4696 	struct ieee80211_node *ni = NULL;
4697 	int i, error, stamode;
4698 	u_int32_t rfilt;
4699 	int csa_run_transition = 0;
4700 	static const HAL_LED_STATE leds[] = {
4701 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4702 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4703 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4704 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4705 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4706 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4707 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4708 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4709 	};
4710 
4711 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4712 		ieee80211_state_name[vap->iv_state],
4713 		ieee80211_state_name[nstate]);
4714 
4715 	/*
4716 	 * net80211 _should_ have the comlock asserted at this point.
4717 	 * There are some comments around the calls to vap->iv_newstate
4718 	 * which indicate that it (newstate) may end up dropping the
4719 	 * lock.  This and the subsequent lock assert check after newstate
4720 	 * are an attempt to catch these and figure out how/why.
4721 	 */
4722 	IEEE80211_LOCK_ASSERT(ic);
4723 
4724 	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
4725 		csa_run_transition = 1;
4726 
4727 	callout_drain(&sc->sc_cal_ch);
4728 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4729 
4730 	if (nstate == IEEE80211_S_SCAN) {
4731 		/*
4732 		 * Scanning: turn off beacon miss and don't beacon.
4733 		 * Mark beacon state so when we reach RUN state we'll
4734 		 * [re]setup beacons.  Unblock the task q thread so
4735 		 * deferred interrupt processing is done.
4736 		 */
4737 		ath_hal_intrset(ah,
4738 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4739 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4740 		sc->sc_beacons = 0;
4741 		taskqueue_unblock(sc->sc_tq);
4742 	}
4743 
4744 	ni = ieee80211_ref_node(vap->iv_bss);
4745 	rfilt = ath_calcrxfilter(sc);
4746 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4747 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4748 		   vap->iv_opmode == IEEE80211_M_IBSS);
4749 	if (stamode && nstate == IEEE80211_S_RUN) {
4750 		sc->sc_curaid = ni->ni_associd;
4751 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
4752 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4753 	}
4754 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4755 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
4756 	ath_hal_setrxfilter(ah, rfilt);
4757 
4758 	/* XXX is this to restore keycache on resume? */
4759 	if (vap->iv_opmode != IEEE80211_M_STA &&
4760 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
4761 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4762 			if (ath_hal_keyisvalid(ah, i))
4763 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
4764 	}
4765 
4766 	/*
4767 	 * Invoke the parent method to do net80211 work.
4768 	 */
4769 	error = avp->av_newstate(vap, nstate, arg);
4770 	if (error != 0)
4771 		goto bad;
4772 
4773 	/*
4774 	 * See above: ensure av_newstate() doesn't drop the lock
4775 	 * on us.
4776 	 */
4777 	IEEE80211_LOCK_ASSERT(ic);
4778 
4779 	if (nstate == IEEE80211_S_RUN) {
4780 		/* NB: collect bss node again, it may have changed */
4781 		ieee80211_free_node(ni);
4782 		ni = ieee80211_ref_node(vap->iv_bss);
4783 
4784 		DPRINTF(sc, ATH_DEBUG_STATE,
4785 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4786 		    "capinfo 0x%04x chan %d\n", __func__,
4787 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
4788 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
4789 
4790 		switch (vap->iv_opmode) {
4791 #ifdef IEEE80211_SUPPORT_TDMA
4792 		case IEEE80211_M_AHDEMO:
4793 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
4794 				break;
4795 			/* fall thru... */
4796 #endif
4797 		case IEEE80211_M_HOSTAP:
4798 		case IEEE80211_M_IBSS:
4799 		case IEEE80211_M_MBSS:
4800 			/*
4801 			 * Allocate and setup the beacon frame.
4802 			 *
4803 			 * Stop any previous beacon DMA.  This may be
4804 			 * necessary, for example, when an ibss merge
4805 			 * causes reconfiguration; there will be a state
4806 			 * transition from RUN->RUN that means we may
4807 			 * be called with beacon transmission active.
4808 			 */
4809 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4810 
4811 			error = ath_beacon_alloc(sc, ni);
4812 			if (error != 0)
4813 				goto bad;
4814 			/*
4815 			 * If joining an adhoc network defer beacon timer
4816 			 * configuration to the next beacon frame so we
4817 			 * have a current TSF to use.  Otherwise we're
4818 			 * starting an ibss/bss so there's no need to delay;
4819 			 * if this is the first vap moving to RUN state, then
4820 			 * beacon state needs to be [re]configured.
4821 			 */
4822 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
4823 			    ni->ni_tstamp.tsf != 0) {
4824 				sc->sc_syncbeacon = 1;
4825 			} else if (!sc->sc_beacons) {
4826 #ifdef IEEE80211_SUPPORT_TDMA
4827 				if (vap->iv_caps & IEEE80211_C_TDMA)
4828 					ath_tdma_config(sc, vap);
4829 				else
4830 #endif
4831 					ath_beacon_config(sc, vap);
4832 				sc->sc_beacons = 1;
4833 			}
4834 			break;
4835 		case IEEE80211_M_STA:
4836 			/*
4837 			 * Defer beacon timer configuration to the next
4838 			 * beacon frame so we have a current TSF to use
4839 			 * (any TSF collected when scanning is likely old).
4840 			 * However if it's due to a CSA -> RUN transition,
4841 			 * force a beacon update so we pick up a lack of
4842 			 * beacons from an AP in CAC and thus force a
4843 			 * scan.
4844 			 */
4845 			sc->sc_syncbeacon = 1;
4846 			if (csa_run_transition)
4847 				ath_beacon_config(sc, vap);
4848 			break;
4849 		case IEEE80211_M_MONITOR:
4850 			/*
4851 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
4852 			 * transitions so we must re-enable interrupts here to
4853 			 * handle the case of a single monitor mode vap.
4854 			 */
4855 			ath_hal_intrset(ah, sc->sc_imask);
4856 			break;
4857 		case IEEE80211_M_WDS:
4858 			break;
4859 		default:
4860 			break;
4861 		}
4862 		/*
4863 		 * Let the hal process statistics collected during a
4864 		 * scan so it can provide calibrated noise floor data.
4865 		 */
4866 		ath_hal_process_noisefloor(ah);
4867 		/*
4868 		 * Reset rssi stats; maybe not the best place...
4869 		 */
4870 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4871 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4872 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4873 		/*
4874 		 * Finally, start any timers and the task q thread
4875 		 * (in case we didn't go through SCAN state).
4876 		 */
4877 		if (ath_longcalinterval != 0) {
4878 			/* start periodic recalibration timer */
4879 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4880 		} else {
4881 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4882 			    "%s: calibration disabled\n", __func__);
4883 		}
4884 		taskqueue_unblock(sc->sc_tq);
4885 	} else if (nstate == IEEE80211_S_INIT) {
4886 		/*
4887 		 * If there are no vaps left in RUN state then
4888 		 * shutdown host/driver operation:
4889 		 * o disable interrupts
4890 		 * o disable the task queue thread
4891 		 * o mark beacon processing as stopped
4892 		 */
4893 		if (!ath_isanyrunningvaps(vap)) {
4894 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4895 			/* disable interrupts  */
4896 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4897 			taskqueue_block(sc->sc_tq);
4898 			sc->sc_beacons = 0;
4899 		}
4900 #ifdef IEEE80211_SUPPORT_TDMA
4901 		ath_hal_setcca(ah, AH_TRUE);
4902 #endif
4903 	}
4904 bad:
4905 	ieee80211_free_node(ni);
4906 	return error;
4907 }
4908 
4909 /*
4910  * Allocate a key cache slot to the station so we can
4911  * setup a mapping from key index to node. The key cache
4912  * slot is needed for managing antenna state and for
4913  * compression when stations do not use crypto.  We do
4914  * it uniliaterally here; if crypto is employed this slot
4915  * will be reassigned.
4916  */
4917 static void
4918 ath_setup_stationkey(struct ieee80211_node *ni)
4919 {
4920 	struct ieee80211vap *vap = ni->ni_vap;
4921 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4922 	ieee80211_keyix keyix, rxkeyix;
4923 
4924 	/* XXX should take a locked ref to vap->iv_bss */
4925 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4926 		/*
4927 		 * Key cache is full; we'll fall back to doing
4928 		 * the more expensive lookup in software.  Note
4929 		 * this also means no h/w compression.
4930 		 */
4931 		/* XXX msg+statistic */
4932 	} else {
4933 		/* XXX locking? */
4934 		ni->ni_ucastkey.wk_keyix = keyix;
4935 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4936 		/* NB: must mark device key to get called back on delete */
4937 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
4938 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
4939 		/* NB: this will create a pass-thru key entry */
4940 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
4941 	}
4942 }
4943 
4944 /*
4945  * Setup driver-specific state for a newly associated node.
4946  * Note that we're called also on a re-associate, the isnew
4947  * param tells us if this is the first time or not.
4948  */
4949 static void
4950 ath_newassoc(struct ieee80211_node *ni, int isnew)
4951 {
4952 	struct ath_node *an = ATH_NODE(ni);
4953 	struct ieee80211vap *vap = ni->ni_vap;
4954 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4955 	const struct ieee80211_txparam *tp = ni->ni_txparms;
4956 
4957 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
4958 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
4959 
4960 	ath_rate_newassoc(sc, an, isnew);
4961 	if (isnew &&
4962 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
4963 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4964 		ath_setup_stationkey(ni);
4965 }
4966 
4967 static int
4968 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
4969 	int nchans, struct ieee80211_channel chans[])
4970 {
4971 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4972 	struct ath_hal *ah = sc->sc_ah;
4973 	HAL_STATUS status;
4974 
4975 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4976 	    "%s: rd %u cc %u location %c%s\n",
4977 	    __func__, reg->regdomain, reg->country, reg->location,
4978 	    reg->ecm ? " ecm" : "");
4979 
4980 	status = ath_hal_set_channels(ah, chans, nchans,
4981 	    reg->country, reg->regdomain);
4982 	if (status != HAL_OK) {
4983 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
4984 		    __func__, status);
4985 		return EINVAL;		/* XXX */
4986 	}
4987 
4988 	return 0;
4989 }
4990 
4991 static void
4992 ath_getradiocaps(struct ieee80211com *ic,
4993 	int maxchans, int *nchans, struct ieee80211_channel chans[])
4994 {
4995 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4996 	struct ath_hal *ah = sc->sc_ah;
4997 
4998 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
4999 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5000 
5001 	/* XXX check return */
5002 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5003 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5004 
5005 }
5006 
5007 static int
5008 ath_getchannels(struct ath_softc *sc)
5009 {
5010 	struct ifnet *ifp = sc->sc_ifp;
5011 	struct ieee80211com *ic = ifp->if_l2com;
5012 	struct ath_hal *ah = sc->sc_ah;
5013 	HAL_STATUS status;
5014 
5015 	/*
5016 	 * Collect channel set based on EEPROM contents.
5017 	 */
5018 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5019 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5020 	if (status != HAL_OK) {
5021 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5022 		    "status %d\n", __func__, status);
5023 		return EINVAL;
5024 	}
5025 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5026 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5027 	/* XXX map Atheros sku's to net80211 SKU's */
5028 	/* XXX net80211 types too small */
5029 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5030 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5031 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5032 	ic->ic_regdomain.isocc[1] = ' ';
5033 
5034 	ic->ic_regdomain.ecm = 1;
5035 	ic->ic_regdomain.location = 'I';
5036 
5037 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5038 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5039 	    __func__, sc->sc_eerd, sc->sc_eecc,
5040 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5041 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5042 	return 0;
5043 }
5044 
5045 static int
5046 ath_rate_setup(struct ath_softc *sc, u_int mode)
5047 {
5048 	struct ath_hal *ah = sc->sc_ah;
5049 	const HAL_RATE_TABLE *rt;
5050 
5051 	switch (mode) {
5052 	case IEEE80211_MODE_11A:
5053 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5054 		break;
5055 	case IEEE80211_MODE_HALF:
5056 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5057 		break;
5058 	case IEEE80211_MODE_QUARTER:
5059 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5060 		break;
5061 	case IEEE80211_MODE_11B:
5062 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5063 		break;
5064 	case IEEE80211_MODE_11G:
5065 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5066 		break;
5067 	case IEEE80211_MODE_TURBO_A:
5068 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5069 		break;
5070 	case IEEE80211_MODE_TURBO_G:
5071 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5072 		break;
5073 	case IEEE80211_MODE_STURBO_A:
5074 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5075 		break;
5076 	case IEEE80211_MODE_11NA:
5077 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5078 		break;
5079 	case IEEE80211_MODE_11NG:
5080 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5081 		break;
5082 	default:
5083 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5084 			__func__, mode);
5085 		return 0;
5086 	}
5087 	sc->sc_rates[mode] = rt;
5088 	return (rt != NULL);
5089 }
5090 
5091 static void
5092 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5093 {
5094 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5095 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5096 	static const struct {
5097 		u_int		rate;		/* tx/rx 802.11 rate */
5098 		u_int16_t	timeOn;		/* LED on time (ms) */
5099 		u_int16_t	timeOff;	/* LED off time (ms) */
5100 	} blinkrates[] = {
5101 		{ 108,  40,  10 },
5102 		{  96,  44,  11 },
5103 		{  72,  50,  13 },
5104 		{  48,  57,  14 },
5105 		{  36,  67,  16 },
5106 		{  24,  80,  20 },
5107 		{  22, 100,  25 },
5108 		{  18, 133,  34 },
5109 		{  12, 160,  40 },
5110 		{  10, 200,  50 },
5111 		{   6, 240,  58 },
5112 		{   4, 267,  66 },
5113 		{   2, 400, 100 },
5114 		{   0, 500, 130 },
5115 		/* XXX half/quarter rates */
5116 	};
5117 	const HAL_RATE_TABLE *rt;
5118 	int i, j;
5119 
5120 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5121 	rt = sc->sc_rates[mode];
5122 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5123 	for (i = 0; i < rt->rateCount; i++) {
5124 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5125 		if (rt->info[i].phy != IEEE80211_T_HT)
5126 			sc->sc_rixmap[ieeerate] = i;
5127 		else
5128 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5129 	}
5130 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5131 	for (i = 0; i < N(sc->sc_hwmap); i++) {
5132 		if (i >= rt->rateCount) {
5133 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5134 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5135 			continue;
5136 		}
5137 		sc->sc_hwmap[i].ieeerate =
5138 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5139 		if (rt->info[i].phy == IEEE80211_T_HT)
5140 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5141 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5142 		if (rt->info[i].shortPreamble ||
5143 		    rt->info[i].phy == IEEE80211_T_OFDM)
5144 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5145 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5146 		for (j = 0; j < N(blinkrates)-1; j++)
5147 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5148 				break;
5149 		/* NB: this uses the last entry if the rate isn't found */
5150 		/* XXX beware of overlow */
5151 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5152 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5153 	}
5154 	sc->sc_currates = rt;
5155 	sc->sc_curmode = mode;
5156 	/*
5157 	 * All protection frames are transmited at 2Mb/s for
5158 	 * 11g, otherwise at 1Mb/s.
5159 	 */
5160 	if (mode == IEEE80211_MODE_11G)
5161 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5162 	else
5163 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5164 	/* NB: caller is responsible for resetting rate control state */
5165 #undef N
5166 }
5167 
5168 static void
5169 ath_watchdog(void *arg)
5170 {
5171 	struct ath_softc *sc = arg;
5172 	int do_reset = 0;
5173 
5174 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5175 		struct ifnet *ifp = sc->sc_ifp;
5176 		uint32_t hangs;
5177 
5178 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5179 		    hangs != 0) {
5180 			if_printf(ifp, "%s hang detected (0x%x)\n",
5181 			    hangs & 0xff ? "bb" : "mac", hangs);
5182 		} else
5183 			if_printf(ifp, "device timeout\n");
5184 		do_reset = 1;
5185 		ifp->if_oerrors++;
5186 		sc->sc_stats.ast_watchdog++;
5187 	}
5188 
5189 	/*
5190 	 * We can't hold the lock across the ath_reset() call.
5191 	 *
5192 	 * And since this routine can't hold a lock and sleep,
5193 	 * do the reset deferred.
5194 	 */
5195 	if (do_reset) {
5196 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5197 	}
5198 
5199 	callout_schedule(&sc->sc_wd_ch, hz);
5200 }
5201 
5202 /*
5203  * Fetch the rate control statistics for the given node.
5204  */
5205 static int
5206 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
5207 {
5208 	struct ath_node *an;
5209 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5210 	struct ieee80211_node *ni;
5211 	int error = 0;
5212 
5213 	/* Perform a lookup on the given node */
5214 	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
5215 	if (ni == NULL) {
5216 		error = EINVAL;
5217 		goto bad;
5218 	}
5219 
5220 	/* Lock the ath_node */
5221 	an = ATH_NODE(ni);
5222 	ATH_NODE_LOCK(an);
5223 
5224 	/* Fetch the rate control stats for this node */
5225 	error = ath_rate_fetch_node_stats(sc, an, rs);
5226 
5227 	/* No matter what happens here, just drop through */
5228 
5229 	/* Unlock the ath_node */
5230 	ATH_NODE_UNLOCK(an);
5231 
5232 	/* Unref the node */
5233 	ieee80211_node_decref(ni);
5234 
5235 bad:
5236 	return (error);
5237 }
5238 
5239 #ifdef ATH_DIAGAPI
5240 /*
5241  * Diagnostic interface to the HAL.  This is used by various
5242  * tools to do things like retrieve register contents for
5243  * debugging.  The mechanism is intentionally opaque so that
5244  * it can change frequently w/o concern for compatiblity.
5245  */
5246 static int
5247 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5248 {
5249 	struct ath_hal *ah = sc->sc_ah;
5250 	u_int id = ad->ad_id & ATH_DIAG_ID;
5251 	void *indata = NULL;
5252 	void *outdata = NULL;
5253 	u_int32_t insize = ad->ad_in_size;
5254 	u_int32_t outsize = ad->ad_out_size;
5255 	int error = 0;
5256 
5257 	if (ad->ad_id & ATH_DIAG_IN) {
5258 		/*
5259 		 * Copy in data.
5260 		 */
5261 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5262 		if (indata == NULL) {
5263 			error = ENOMEM;
5264 			goto bad;
5265 		}
5266 		error = copyin(ad->ad_in_data, indata, insize);
5267 		if (error)
5268 			goto bad;
5269 	}
5270 	if (ad->ad_id & ATH_DIAG_DYN) {
5271 		/*
5272 		 * Allocate a buffer for the results (otherwise the HAL
5273 		 * returns a pointer to a buffer where we can read the
5274 		 * results).  Note that we depend on the HAL leaving this
5275 		 * pointer for us to use below in reclaiming the buffer;
5276 		 * may want to be more defensive.
5277 		 */
5278 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5279 		if (outdata == NULL) {
5280 			error = ENOMEM;
5281 			goto bad;
5282 		}
5283 	}
5284 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5285 		if (outsize < ad->ad_out_size)
5286 			ad->ad_out_size = outsize;
5287 		if (outdata != NULL)
5288 			error = copyout(outdata, ad->ad_out_data,
5289 					ad->ad_out_size);
5290 	} else {
5291 		error = EINVAL;
5292 	}
5293 bad:
5294 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5295 		free(indata, M_TEMP);
5296 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5297 		free(outdata, M_TEMP);
5298 	return error;
5299 }
5300 #endif /* ATH_DIAGAPI */
5301 
5302 static int
5303 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5304 {
5305 #define	IS_RUNNING(ifp) \
5306 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5307 	struct ath_softc *sc = ifp->if_softc;
5308 	struct ieee80211com *ic = ifp->if_l2com;
5309 	struct ifreq *ifr = (struct ifreq *)data;
5310 	const HAL_RATE_TABLE *rt;
5311 	int error = 0;
5312 
5313 	switch (cmd) {
5314 	case SIOCSIFFLAGS:
5315 		ATH_LOCK(sc);
5316 		if (IS_RUNNING(ifp)) {
5317 			/*
5318 			 * To avoid rescanning another access point,
5319 			 * do not call ath_init() here.  Instead,
5320 			 * only reflect promisc mode settings.
5321 			 */
5322 			ath_mode_init(sc);
5323 		} else if (ifp->if_flags & IFF_UP) {
5324 			/*
5325 			 * Beware of being called during attach/detach
5326 			 * to reset promiscuous mode.  In that case we
5327 			 * will still be marked UP but not RUNNING.
5328 			 * However trying to re-init the interface
5329 			 * is the wrong thing to do as we've already
5330 			 * torn down much of our state.  There's
5331 			 * probably a better way to deal with this.
5332 			 */
5333 			if (!sc->sc_invalid)
5334 				ath_init(sc);	/* XXX lose error */
5335 		} else {
5336 			ath_stop_locked(ifp);
5337 #ifdef notyet
5338 			/* XXX must wakeup in places like ath_vap_delete */
5339 			if (!sc->sc_invalid)
5340 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5341 #endif
5342 		}
5343 		ATH_UNLOCK(sc);
5344 		break;
5345 	case SIOCGIFMEDIA:
5346 	case SIOCSIFMEDIA:
5347 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5348 		break;
5349 	case SIOCGATHSTATS:
5350 		/* NB: embed these numbers to get a consistent view */
5351 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5352 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5353 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5354 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5355 #ifdef IEEE80211_SUPPORT_TDMA
5356 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
5357 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
5358 #endif
5359 		rt = sc->sc_currates;
5360 		sc->sc_stats.ast_tx_rate =
5361 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
5362 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
5363 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
5364 		return copyout(&sc->sc_stats,
5365 		    ifr->ifr_data, sizeof (sc->sc_stats));
5366 	case SIOCGATHAGSTATS:
5367 		return copyout(&sc->sc_aggr_stats,
5368 		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
5369 	case SIOCZATHSTATS:
5370 		error = priv_check(curthread, PRIV_DRIVER);
5371 		if (error == 0) {
5372 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
5373 			memset(&sc->sc_aggr_stats, 0,
5374 			    sizeof(sc->sc_aggr_stats));
5375 			memset(&sc->sc_intr_stats, 0,
5376 			    sizeof(sc->sc_intr_stats));
5377 		}
5378 		break;
5379 #ifdef ATH_DIAGAPI
5380 	case SIOCGATHDIAG:
5381 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5382 		break;
5383 	case SIOCGATHPHYERR:
5384 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
5385 		break;
5386 #endif
5387 	case SIOCGATHNODERATESTATS:
5388 		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
5389 		break;
5390 	case SIOCGIFADDR:
5391 		error = ether_ioctl(ifp, cmd, data);
5392 		break;
5393 	default:
5394 		error = EINVAL;
5395 		break;
5396 	}
5397 	return error;
5398 #undef IS_RUNNING
5399 }
5400 
5401 /*
5402  * Announce various information on device/driver attach.
5403  */
5404 static void
5405 ath_announce(struct ath_softc *sc)
5406 {
5407 	struct ifnet *ifp = sc->sc_ifp;
5408 	struct ath_hal *ah = sc->sc_ah;
5409 
5410 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
5411 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
5412 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5413 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
5414 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
5415 	if (bootverbose) {
5416 		int i;
5417 		for (i = 0; i <= WME_AC_VO; i++) {
5418 			struct ath_txq *txq = sc->sc_ac2q[i];
5419 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5420 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5421 		}
5422 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5423 			sc->sc_cabq->axq_qnum);
5424 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5425 	}
5426 	if (ath_rxbuf != ATH_RXBUF)
5427 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5428 	if (ath_txbuf != ATH_TXBUF)
5429 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5430 	if (sc->sc_mcastkey && bootverbose)
5431 		if_printf(ifp, "using multicast key search\n");
5432 }
5433 
5434 static void
5435 ath_dfs_tasklet(void *p, int npending)
5436 {
5437 	struct ath_softc *sc = (struct ath_softc *) p;
5438 	struct ifnet *ifp = sc->sc_ifp;
5439 	struct ieee80211com *ic = ifp->if_l2com;
5440 
5441 	/*
5442 	 * If previous processing has found a radar event,
5443 	 * signal this to the net80211 layer to begin DFS
5444 	 * processing.
5445 	 */
5446 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
5447 		/* DFS event found, initiate channel change */
5448 		/*
5449 		 * XXX doesn't currently tell us whether the event
5450 		 * XXX was found in the primary or extension
5451 		 * XXX channel!
5452 		 */
5453 		IEEE80211_LOCK(ic);
5454 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
5455 		IEEE80211_UNLOCK(ic);
5456 	}
5457 }
5458 
5459 /*
5460  * Enable/disable power save.  This must be called with
5461  * no TX driver locks currently held, so it should only
5462  * be called from the RX path (which doesn't hold any
5463  * TX driver locks.)
5464  */
5465 static void
5466 ath_node_powersave(struct ieee80211_node *ni, int enable)
5467 {
5468 #ifdef	ATH_SW_PSQ
5469 	struct ath_node *an = ATH_NODE(ni);
5470 	struct ieee80211com *ic = ni->ni_ic;
5471 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5472 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5473 
5474 	ATH_NODE_UNLOCK_ASSERT(an);
5475 	/* XXX and no TXQ locks should be held here */
5476 
5477 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n",
5478 	    __func__, ni, enable);
5479 
5480 	/* Suspend or resume software queue handling */
5481 	if (enable)
5482 		ath_tx_node_sleep(sc, an);
5483 	else
5484 		ath_tx_node_wakeup(sc, an);
5485 
5486 	/* Update net80211 state */
5487 	avp->av_node_ps(ni, enable);
5488 #else
5489 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5490 
5491 	/* Update net80211 state */
5492 	avp->av_node_ps(ni, enable);
5493 #endif/* ATH_SW_PSQ */
5494 }
5495 
5496 /*
5497  * Notification from net80211 that the powersave queue state has
5498  * changed.
5499  *
5500  * Since the software queue also may have some frames:
5501  *
5502  * + if the node software queue has frames and the TID state
5503  *   is 0, we set the TIM;
5504  * + if the node and the stack are both empty, we clear the TIM bit.
5505  * + If the stack tries to set the bit, always set it.
5506  * + If the stack tries to clear the bit, only clear it if the
5507  *   software queue in question is also cleared.
5508  *
5509  * TODO: this is called during node teardown; so let's ensure this
5510  * is all correctly handled and that the TIM bit is cleared.
5511  * It may be that the node flush is called _AFTER_ the net80211
5512  * stack clears the TIM.
5513  *
5514  * Here is the racy part.  Since it's possible >1 concurrent,
5515  * overlapping TXes will appear complete with a TX completion in
5516  * another thread, it's possible that the concurrent TIM calls will
5517  * clash.  We can't hold the node lock here because setting the
5518  * TIM grabs the net80211 comlock and this may cause a LOR.
5519  * The solution is either to totally serialise _everything_ at
5520  * this point (ie, all TX, completion and any reset/flush go into
5521  * one taskqueue) or a new "ath TIM lock" needs to be created that
5522  * just wraps the driver state change and this call to avp->av_set_tim().
5523  *
5524  * The same race exists in the net80211 power save queue handling
5525  * as well.  Since multiple transmitting threads may queue frames
5526  * into the driver, as well as ps-poll and the driver transmitting
5527  * frames (and thus clearing the psq), it's quite possible that
5528  * a packet entering the PSQ and a ps-poll being handled will
5529  * race, causing the TIM to be cleared and not re-set.
5530  */
5531 static int
5532 ath_node_set_tim(struct ieee80211_node *ni, int enable)
5533 {
5534 #ifdef	ATH_SW_PSQ
5535 	struct ieee80211com *ic = ni->ni_ic;
5536 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5537 	struct ath_node *an = ATH_NODE(ni);
5538 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5539 	int changed = 0;
5540 
5541 	ATH_NODE_UNLOCK_ASSERT(an);
5542 
5543 	/*
5544 	 * For now, just track and then update the TIM.
5545 	 */
5546 	ATH_NODE_LOCK(an);
5547 	an->an_stack_psq = enable;
5548 
5549 	/*
5550 	 * This will get called for all operating modes,
5551 	 * even if avp->av_set_tim is unset.
5552 	 * It's currently set for hostap/ibss modes; but
5553 	 * the same infrastructure is used for both STA
5554 	 * and AP/IBSS node power save.
5555 	 */
5556 	if (avp->av_set_tim == NULL) {
5557 		ATH_NODE_UNLOCK(an);
5558 		return (0);
5559 	}
5560 
5561 	/*
5562 	 * If setting the bit, always set it here.
5563 	 * If clearing the bit, only clear it if the
5564 	 * software queue is also empty.
5565 	 *
5566 	 * If the node has left power save, just clear the TIM
5567 	 * bit regardless of the state of the power save queue.
5568 	 *
5569 	 * XXX TODO: although atomics are used, it's quite possible
5570 	 * that a race will occur between this and setting/clearing
5571 	 * in another thread.  TX completion will occur always in
5572 	 * one thread, however setting/clearing the TIM bit can come
5573 	 * from a variety of different process contexts!
5574 	 */
5575 	if (enable && an->an_tim_set == 1) {
5576 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5577 		    "%s: an=%p, enable=%d, tim_set=1, ignoring\n",
5578 		    __func__, an, enable);
5579 		ATH_NODE_UNLOCK(an);
5580 	} else if (enable) {
5581 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5582 		    "%s: an=%p, enable=%d, enabling TIM\n",
5583 		    __func__, an, enable);
5584 		an->an_tim_set = 1;
5585 		ATH_NODE_UNLOCK(an);
5586 		changed = avp->av_set_tim(ni, enable);
5587 	} else if (atomic_load_acq_int(&an->an_swq_depth) == 0) {
5588 		/* disable */
5589 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5590 		    "%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n",
5591 		    __func__, an, enable);
5592 		an->an_tim_set = 0;
5593 		ATH_NODE_UNLOCK(an);
5594 		changed = avp->av_set_tim(ni, enable);
5595 	} else if (! an->an_is_powersave) {
5596 		/*
5597 		 * disable regardless; the node isn't in powersave now
5598 		 */
5599 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5600 		    "%s: an=%p, enable=%d, an_pwrsave=0, disabling\n",
5601 		    __func__, an, enable);
5602 		an->an_tim_set = 0;
5603 		ATH_NODE_UNLOCK(an);
5604 		changed = avp->av_set_tim(ni, enable);
5605 	} else {
5606 		/*
5607 		 * psq disable, node is currently in powersave, node
5608 		 * software queue isn't empty, so don't clear the TIM bit
5609 		 * for now.
5610 		 */
5611 		ATH_NODE_UNLOCK(an);
5612 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5613 		    "%s: enable=%d, an_swq_depth > 0, ignoring\n",
5614 		    __func__, enable);
5615 		changed = 0;
5616 	}
5617 
5618 	return (changed);
5619 #else
5620 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5621 
5622 	/*
5623 	 * Some operating omdes don't set av_set_tim(), so don't
5624 	 * update it here.
5625 	 */
5626 	if (avp->av_set_tim == NULL)
5627 		return (0);
5628 
5629 	return (avp->av_set_tim(ni, enable));
5630 #endif /* ATH_SW_PSQ */
5631 }
5632 
5633 /*
5634  * Set or update the TIM from the software queue.
5635  *
5636  * Check the software queue depth before attempting to do lock
5637  * anything; that avoids trying to obtain the lock.  Then,
5638  * re-check afterwards to ensure nothing has changed in the
5639  * meantime.
5640  *
5641  * set:   This is designed to be called from the TX path, after
5642  *        a frame has been queued; to see if the swq > 0.
5643  *
5644  * clear: This is designed to be called from the buffer completion point
5645  *        (right now it's ath_tx_default_comp()) where the state of
5646  *        a software queue has changed.
5647  *
5648  * It makes sense to place it at buffer free / completion rather
5649  * than after each software queue operation, as there's no real
5650  * point in churning the TIM bit as the last frames in the software
5651  * queue are transmitted.  If they fail and we retry them, we'd
5652  * just be setting the TIM bit again anyway.
5653  */
5654 void
5655 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
5656      int enable)
5657 {
5658 #ifdef	ATH_SW_PSQ
5659 	struct ath_node *an;
5660 	struct ath_vap *avp;
5661 
5662 	/* Don't do this for broadcast/etc frames */
5663 	if (ni == NULL)
5664 		return;
5665 
5666 	an = ATH_NODE(ni);
5667 	avp = ATH_VAP(ni->ni_vap);
5668 
5669 	/*
5670 	 * And for operating modes without the TIM handler set, let's
5671 	 * just skip those.
5672 	 */
5673 	if (avp->av_set_tim == NULL)
5674 		return;
5675 
5676 	ATH_NODE_UNLOCK_ASSERT(an);
5677 
5678 	if (enable) {
5679 		/*
5680 		 * Don't bother grabbing the lock unless the queue is not
5681 		 * empty.
5682 		 */
5683 		if (atomic_load_acq_int(&an->an_swq_depth) == 0)
5684 			return;
5685 
5686 		ATH_NODE_LOCK(an);
5687 		if (an->an_is_powersave &&
5688 		    an->an_tim_set == 0 &&
5689 		    atomic_load_acq_int(&an->an_swq_depth) != 0) {
5690 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5691 			    "%s: an=%p, swq_depth>0, tim_set=0, set!\n",
5692 			    __func__, an);
5693 			an->an_tim_set = 1;
5694 			ATH_NODE_UNLOCK(an);
5695 			(void) avp->av_set_tim(ni, 1);
5696 		} else {
5697 			ATH_NODE_UNLOCK(an);
5698 		}
5699 	} else {
5700 		/*
5701 		 * Don't bother grabbing the lock unless the queue is empty.
5702 		 */
5703 		if (atomic_load_acq_int(&an->an_swq_depth) != 0)
5704 			return;
5705 
5706 		ATH_NODE_LOCK(an);
5707 		if (an->an_is_powersave &&
5708 		    an->an_stack_psq == 0 &&
5709 		    an->an_tim_set == 1 &&
5710 		    atomic_load_acq_int(&an->an_swq_depth) == 0) {
5711 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5712 			    "%s: an=%p, swq_depth=0, tim_set=1, psq_set=0,"
5713 			    " clear!\n",
5714 			    __func__, an);
5715 			an->an_tim_set = 0;
5716 			ATH_NODE_UNLOCK(an);
5717 			(void) avp->av_set_tim(ni, 0);
5718 		} else {
5719 			ATH_NODE_UNLOCK(an);
5720 		}
5721 	}
5722 #else
5723 	return;
5724 #endif	/* ATH_SW_PSQ */
5725 }
5726 
5727 MODULE_VERSION(if_ath, 1);
5728 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
5729 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
5730 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
5731 #endif
5732