1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 */ 46 #include "opt_ah.h" 47 #include "opt_wlan.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/sysctl.h> 52 #include <sys/mbuf.h> 53 #include <sys/malloc.h> 54 #include <sys/lock.h> 55 #include <sys/mutex.h> 56 #include <sys/kernel.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/errno.h> 60 #include <sys/callout.h> 61 #include <sys/bus.h> 62 #include <sys/endian.h> 63 #include <sys/kthread.h> 64 #include <sys/taskqueue.h> 65 #include <sys/priv.h> 66 #include <sys/module.h> 67 #include <sys/ktr.h> 68 #include <sys/smp.h> /* for mp_ncpus */ 69 70 #include <machine/bus.h> 71 72 #include <net/if.h> 73 #include <net/if_dl.h> 74 #include <net/if_media.h> 75 #include <net/if_types.h> 76 #include <net/if_arp.h> 77 #include <net/ethernet.h> 78 #include <net/if_llc.h> 79 80 #include <net80211/ieee80211_var.h> 81 #include <net80211/ieee80211_regdomain.h> 82 #ifdef IEEE80211_SUPPORT_SUPERG 83 #include <net80211/ieee80211_superg.h> 84 #endif 85 #ifdef IEEE80211_SUPPORT_TDMA 86 #include <net80211/ieee80211_tdma.h> 87 #endif 88 89 #include <net/bpf.h> 90 91 #ifdef INET 92 #include <netinet/in.h> 93 #include <netinet/if_ether.h> 94 #endif 95 96 #include <dev/ath/if_athvar.h> 97 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 98 #include <dev/ath/ath_hal/ah_diagcodes.h> 99 100 #include <dev/ath/if_ath_debug.h> 101 #include <dev/ath/if_ath_misc.h> 102 #include <dev/ath/if_ath_tx.h> 103 #include <dev/ath/if_ath_sysctl.h> 104 #include <dev/ath/if_ath_keycache.h> 105 #include <dev/ath/if_athdfs.h> 106 107 #ifdef ATH_TX99_DIAG 108 #include <dev/ath/ath_tx99/ath_tx99.h> 109 #endif 110 111 #define ATH_KTR_INTR KTR_SPARE4 112 #define ATH_KTR_ERR KTR_SPARE3 113 114 /* 115 * ATH_BCBUF determines the number of vap's that can transmit 116 * beacons and also (currently) the number of vap's that can 117 * have unique mac addresses/bssid. When staggering beacons 118 * 4 is probably a good max as otherwise the beacons become 119 * very closely spaced and there is limited time for cab q traffic 120 * to go out. You can burst beacons instead but that is not good 121 * for stations in power save and at some point you really want 122 * another radio (and channel). 123 * 124 * The limit on the number of mac addresses is tied to our use of 125 * the U/L bit and tracking addresses in a byte; it would be 126 * worthwhile to allow more for applications like proxy sta. 127 */ 128 CTASSERT(ATH_BCBUF <= 8); 129 130 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 131 const char name[IFNAMSIZ], int unit, int opmode, 132 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 133 const uint8_t mac[IEEE80211_ADDR_LEN]); 134 static void ath_vap_delete(struct ieee80211vap *); 135 static void ath_init(void *); 136 static void ath_stop_locked(struct ifnet *); 137 static void ath_stop(struct ifnet *); 138 static void ath_start(struct ifnet *); 139 static int ath_reset_vap(struct ieee80211vap *, u_long); 140 static int ath_media_change(struct ifnet *); 141 static void ath_watchdog(void *); 142 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 143 static void ath_fatal_proc(void *, int); 144 static void ath_bmiss_vap(struct ieee80211vap *); 145 static void ath_bmiss_proc(void *, int); 146 static void ath_key_update_begin(struct ieee80211vap *); 147 static void ath_key_update_end(struct ieee80211vap *); 148 static void ath_update_mcast(struct ifnet *); 149 static void ath_update_promisc(struct ifnet *); 150 static void ath_mode_init(struct ath_softc *); 151 static void ath_setslottime(struct ath_softc *); 152 static void ath_updateslot(struct ifnet *); 153 static int ath_beaconq_setup(struct ath_hal *); 154 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 155 static void ath_beacon_update(struct ieee80211vap *, int item); 156 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 157 static void ath_beacon_proc(void *, int); 158 static struct ath_buf *ath_beacon_generate(struct ath_softc *, 159 struct ieee80211vap *); 160 static void ath_bstuck_proc(void *, int); 161 static void ath_beacon_return(struct ath_softc *, struct ath_buf *); 162 static void ath_beacon_free(struct ath_softc *); 163 static void ath_beacon_config(struct ath_softc *, struct ieee80211vap *); 164 static void ath_descdma_cleanup(struct ath_softc *sc, 165 struct ath_descdma *, ath_bufhead *); 166 static int ath_desc_alloc(struct ath_softc *); 167 static void ath_desc_free(struct ath_softc *); 168 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 169 const uint8_t [IEEE80211_ADDR_LEN]); 170 static void ath_node_cleanup(struct ieee80211_node *); 171 static void ath_node_free(struct ieee80211_node *); 172 static void ath_node_getsignal(const struct ieee80211_node *, 173 int8_t *, int8_t *); 174 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 175 static void ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 176 int subtype, int rssi, int nf); 177 static void ath_setdefantenna(struct ath_softc *, u_int); 178 static void ath_rx_proc(struct ath_softc *sc, int); 179 static void ath_rx_tasklet(void *, int); 180 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 181 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 182 static int ath_tx_setup(struct ath_softc *, int, int); 183 static int ath_wme_update(struct ieee80211com *); 184 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 185 static void ath_tx_cleanup(struct ath_softc *); 186 static void ath_tx_proc_q0(void *, int); 187 static void ath_tx_proc_q0123(void *, int); 188 static void ath_tx_proc(void *, int); 189 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 190 static void ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type); 191 static void ath_stoprecv(struct ath_softc *); 192 static int ath_startrecv(struct ath_softc *); 193 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 194 static void ath_scan_start(struct ieee80211com *); 195 static void ath_scan_end(struct ieee80211com *); 196 static void ath_set_channel(struct ieee80211com *); 197 static void ath_calibrate(void *); 198 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 199 static void ath_setup_stationkey(struct ieee80211_node *); 200 static void ath_newassoc(struct ieee80211_node *, int); 201 static int ath_setregdomain(struct ieee80211com *, 202 struct ieee80211_regdomain *, int, 203 struct ieee80211_channel []); 204 static void ath_getradiocaps(struct ieee80211com *, int, int *, 205 struct ieee80211_channel []); 206 static int ath_getchannels(struct ath_softc *); 207 static void ath_led_event(struct ath_softc *, int); 208 209 static int ath_rate_setup(struct ath_softc *, u_int mode); 210 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 211 212 static void ath_announce(struct ath_softc *); 213 214 static void ath_dfs_tasklet(void *, int); 215 216 #ifdef IEEE80211_SUPPORT_TDMA 217 static void ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, 218 u_int32_t bintval); 219 static void ath_tdma_bintvalsetup(struct ath_softc *sc, 220 const struct ieee80211_tdma_state *tdma); 221 static void ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap); 222 static void ath_tdma_update(struct ieee80211_node *ni, 223 const struct ieee80211_tdma_param *tdma, int); 224 static void ath_tdma_beacon_send(struct ath_softc *sc, 225 struct ieee80211vap *vap); 226 227 #define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */ 228 #define TDMA_LPF_LEN 6 229 #define TDMA_DUMMY_MARKER 0x127 230 #define TDMA_EP_MUL(x, mul) ((x) * (mul)) 231 #define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER)) 232 #define TDMA_LPF(x, y, len) \ 233 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y)) 234 #define TDMA_SAMPLE(x, y) do { \ 235 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \ 236 } while (0) 237 #define TDMA_EP_RND(x,mul) \ 238 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 239 #define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER) 240 #endif /* IEEE80211_SUPPORT_TDMA */ 241 242 SYSCTL_DECL(_hw_ath); 243 244 /* XXX validate sysctl values */ 245 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 246 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 247 0, "long chip calibration interval (secs)"); 248 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 249 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 250 0, "short chip calibration interval (msecs)"); 251 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 252 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 253 0, "reset chip calibration results (secs)"); 254 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 255 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 256 0, "ANI calibration (msecs)"); 257 258 static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 259 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 260 0, "rx buffers allocated"); 261 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 262 static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 263 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 264 0, "tx buffers allocated"); 265 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 266 267 static int ath_bstuck_threshold = 4; /* max missed beacons */ 268 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 269 0, "max missed beacon xmits before chip reset"); 270 271 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 272 273 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 274 #define HAL_MODE_HT40 \ 275 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 276 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 277 int 278 ath_attach(u_int16_t devid, struct ath_softc *sc) 279 { 280 struct ifnet *ifp; 281 struct ieee80211com *ic; 282 struct ath_hal *ah = NULL; 283 HAL_STATUS status; 284 int error = 0, i; 285 u_int wmodes; 286 uint8_t macaddr[IEEE80211_ADDR_LEN]; 287 288 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 289 290 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 291 if (ifp == NULL) { 292 device_printf(sc->sc_dev, "can not if_alloc()\n"); 293 error = ENOSPC; 294 goto bad; 295 } 296 ic = ifp->if_l2com; 297 298 /* set these up early for if_printf use */ 299 if_initname(ifp, device_get_name(sc->sc_dev), 300 device_get_unit(sc->sc_dev)); 301 302 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, sc->sc_eepromdata, &status); 303 if (ah == NULL) { 304 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 305 status); 306 error = ENXIO; 307 goto bad; 308 } 309 sc->sc_ah = ah; 310 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 311 #ifdef ATH_DEBUG 312 sc->sc_debug = ath_debug; 313 #endif 314 315 /* 316 * Check if the MAC has multi-rate retry support. 317 * We do this by trying to setup a fake extended 318 * descriptor. MAC's that don't have support will 319 * return false w/o doing anything. MAC's that do 320 * support it will return true w/o doing anything. 321 */ 322 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 323 324 /* 325 * Check if the device has hardware counters for PHY 326 * errors. If so we need to enable the MIB interrupt 327 * so we can act on stat triggers. 328 */ 329 if (ath_hal_hwphycounters(ah)) 330 sc->sc_needmib = 1; 331 332 /* 333 * Get the hardware key cache size. 334 */ 335 sc->sc_keymax = ath_hal_keycachesize(ah); 336 if (sc->sc_keymax > ATH_KEYMAX) { 337 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 338 ATH_KEYMAX, sc->sc_keymax); 339 sc->sc_keymax = ATH_KEYMAX; 340 } 341 /* 342 * Reset the key cache since some parts do not 343 * reset the contents on initial power up. 344 */ 345 for (i = 0; i < sc->sc_keymax; i++) 346 ath_hal_keyreset(ah, i); 347 348 /* 349 * Collect the default channel list. 350 */ 351 error = ath_getchannels(sc); 352 if (error != 0) 353 goto bad; 354 355 /* 356 * Setup rate tables for all potential media types. 357 */ 358 ath_rate_setup(sc, IEEE80211_MODE_11A); 359 ath_rate_setup(sc, IEEE80211_MODE_11B); 360 ath_rate_setup(sc, IEEE80211_MODE_11G); 361 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 362 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 363 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 364 ath_rate_setup(sc, IEEE80211_MODE_11NA); 365 ath_rate_setup(sc, IEEE80211_MODE_11NG); 366 ath_rate_setup(sc, IEEE80211_MODE_HALF); 367 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 368 369 /* NB: setup here so ath_rate_update is happy */ 370 ath_setcurmode(sc, IEEE80211_MODE_11A); 371 372 /* 373 * Allocate tx+rx descriptors and populate the lists. 374 */ 375 error = ath_desc_alloc(sc); 376 if (error != 0) { 377 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 378 goto bad; 379 } 380 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 381 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 382 383 ATH_TXBUF_LOCK_INIT(sc); 384 385 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 386 taskqueue_thread_enqueue, &sc->sc_tq); 387 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 388 "%s taskq", ifp->if_xname); 389 390 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc); 391 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 392 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 393 394 /* 395 * Allocate hardware transmit queues: one queue for 396 * beacon frames and one data queue for each QoS 397 * priority. Note that the hal handles resetting 398 * these queues at the needed time. 399 * 400 * XXX PS-Poll 401 */ 402 sc->sc_bhalq = ath_beaconq_setup(ah); 403 if (sc->sc_bhalq == (u_int) -1) { 404 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 405 error = EIO; 406 goto bad2; 407 } 408 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 409 if (sc->sc_cabq == NULL) { 410 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 411 error = EIO; 412 goto bad2; 413 } 414 /* NB: insure BK queue is the lowest priority h/w queue */ 415 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 416 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 417 ieee80211_wme_acnames[WME_AC_BK]); 418 error = EIO; 419 goto bad2; 420 } 421 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 422 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 423 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 424 /* 425 * Not enough hardware tx queues to properly do WME; 426 * just punt and assign them all to the same h/w queue. 427 * We could do a better job of this if, for example, 428 * we allocate queues when we switch from station to 429 * AP mode. 430 */ 431 if (sc->sc_ac2q[WME_AC_VI] != NULL) 432 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 433 if (sc->sc_ac2q[WME_AC_BE] != NULL) 434 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 435 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 436 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 437 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 438 } 439 440 /* 441 * Special case certain configurations. Note the 442 * CAB queue is handled by these specially so don't 443 * include them when checking the txq setup mask. 444 */ 445 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 446 case 0x01: 447 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 448 break; 449 case 0x0f: 450 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 451 break; 452 default: 453 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 454 break; 455 } 456 457 /* 458 * Setup rate control. Some rate control modules 459 * call back to change the anntena state so expose 460 * the necessary entry points. 461 * XXX maybe belongs in struct ath_ratectrl? 462 */ 463 sc->sc_setdefantenna = ath_setdefantenna; 464 sc->sc_rc = ath_rate_attach(sc); 465 if (sc->sc_rc == NULL) { 466 error = EIO; 467 goto bad2; 468 } 469 470 /* Attach DFS module */ 471 if (! ath_dfs_attach(sc)) { 472 device_printf(sc->sc_dev, "%s: unable to attach DFS\n", __func__); 473 error = EIO; 474 goto bad2; 475 } 476 477 /* Start DFS processing tasklet */ 478 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 479 480 sc->sc_blinking = 0; 481 sc->sc_ledstate = 1; 482 sc->sc_ledon = 0; /* low true */ 483 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 484 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 485 /* 486 * Auto-enable soft led processing for IBM cards and for 487 * 5211 minipci cards. Users can also manually enable/disable 488 * support with a sysctl. 489 */ 490 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 491 if (sc->sc_softled) { 492 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin, 493 HAL_GPIO_MUX_MAC_NETWORK_LED); 494 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 495 } 496 497 ifp->if_softc = sc; 498 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 499 ifp->if_start = ath_start; 500 ifp->if_ioctl = ath_ioctl; 501 ifp->if_init = ath_init; 502 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 503 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 504 IFQ_SET_READY(&ifp->if_snd); 505 506 ic->ic_ifp = ifp; 507 /* XXX not right but it's not used anywhere important */ 508 ic->ic_phytype = IEEE80211_T_OFDM; 509 ic->ic_opmode = IEEE80211_M_STA; 510 ic->ic_caps = 511 IEEE80211_C_STA /* station mode */ 512 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 513 | IEEE80211_C_HOSTAP /* hostap mode */ 514 | IEEE80211_C_MONITOR /* monitor mode */ 515 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 516 | IEEE80211_C_WDS /* 4-address traffic works */ 517 | IEEE80211_C_MBSS /* mesh point link mode */ 518 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 519 | IEEE80211_C_SHSLOT /* short slot time supported */ 520 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 521 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 522 | IEEE80211_C_TXFRAG /* handle tx frags */ 523 #ifdef ATH_ENABLE_DFS 524 | IEEE80211_C_DFS /* Enable DFS radar detection */ 525 #endif 526 ; 527 /* 528 * Query the hal to figure out h/w crypto support. 529 */ 530 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 531 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 532 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 533 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 534 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 535 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 536 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 537 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 538 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 539 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 540 /* 541 * Check if h/w does the MIC and/or whether the 542 * separate key cache entries are required to 543 * handle both tx+rx MIC keys. 544 */ 545 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 546 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 547 /* 548 * If the h/w supports storing tx+rx MIC keys 549 * in one cache slot automatically enable use. 550 */ 551 if (ath_hal_hastkipsplit(ah) || 552 !ath_hal_settkipsplit(ah, AH_FALSE)) 553 sc->sc_splitmic = 1; 554 /* 555 * If the h/w can do TKIP MIC together with WME then 556 * we use it; otherwise we force the MIC to be done 557 * in software by the net80211 layer. 558 */ 559 if (ath_hal_haswmetkipmic(ah)) 560 sc->sc_wmetkipmic = 1; 561 } 562 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 563 /* 564 * Check for multicast key search support. 565 */ 566 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 567 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 568 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 569 } 570 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 571 /* 572 * Mark key cache slots associated with global keys 573 * as in use. If we knew TKIP was not to be used we 574 * could leave the +32, +64, and +32+64 slots free. 575 */ 576 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 577 setbit(sc->sc_keymap, i); 578 setbit(sc->sc_keymap, i+64); 579 if (sc->sc_splitmic) { 580 setbit(sc->sc_keymap, i+32); 581 setbit(sc->sc_keymap, i+32+64); 582 } 583 } 584 /* 585 * TPC support can be done either with a global cap or 586 * per-packet support. The latter is not available on 587 * all parts. We're a bit pedantic here as all parts 588 * support a global cap. 589 */ 590 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 591 ic->ic_caps |= IEEE80211_C_TXPMGT; 592 593 /* 594 * Mark WME capability only if we have sufficient 595 * hardware queues to do proper priority scheduling. 596 */ 597 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 598 ic->ic_caps |= IEEE80211_C_WME; 599 /* 600 * Check for misc other capabilities. 601 */ 602 if (ath_hal_hasbursting(ah)) 603 ic->ic_caps |= IEEE80211_C_BURST; 604 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 605 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 606 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 607 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 608 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 609 if (ath_hal_hasfastframes(ah)) 610 ic->ic_caps |= IEEE80211_C_FF; 611 wmodes = ath_hal_getwirelessmodes(ah); 612 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 613 ic->ic_caps |= IEEE80211_C_TURBOP; 614 #ifdef IEEE80211_SUPPORT_TDMA 615 if (ath_hal_macversion(ah) > 0x78) { 616 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 617 ic->ic_tdma_update = ath_tdma_update; 618 } 619 #endif 620 621 /* 622 * The if_ath 11n support is completely not ready for normal use. 623 * Enabling this option will likely break everything and everything. 624 * Don't think of doing that unless you know what you're doing. 625 */ 626 627 #ifdef ATH_ENABLE_11N 628 /* 629 * Query HT capabilities 630 */ 631 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 632 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 633 int rxs, txs; 634 635 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 636 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 637 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 638 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 639 | IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */ 640 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 641 ; 642 643 /* 644 * Enable short-GI for HT20 only if the hardware 645 * advertises support. 646 * Notably, anything earlier than the AR9287 doesn't. 647 */ 648 if ((ath_hal_getcapability(ah, 649 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 650 (wmodes & HAL_MODE_HT20)) { 651 device_printf(sc->sc_dev, 652 "[HT] enabling short-GI in 20MHz mode\n"); 653 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 654 } 655 656 if (wmodes & HAL_MODE_HT40) 657 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 658 | IEEE80211_HTCAP_SHORTGI40; 659 660 /* 661 * rx/tx stream is not currently used anywhere; it needs to be taken 662 * into account when negotiating which MCS rates it'll receive and 663 * what MCS rates are available for TX. 664 */ 665 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &rxs); 666 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &txs); 667 668 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 669 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 670 671 ic->ic_txstream = txs; 672 ic->ic_rxstream = rxs; 673 674 device_printf(sc->sc_dev, "[HT] %d RX streams; %d TX streams\n", rxs, txs); 675 } 676 #endif 677 678 /* 679 * Check if the hardware requires PCI register serialisation. 680 * Some of the Owl based MACs require this. 681 */ 682 if (mp_ncpus > 1 && 683 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 684 0, NULL) == HAL_OK) { 685 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 686 device_printf(sc->sc_dev, "Enabling register serialisation\n"); 687 } 688 689 /* 690 * Indicate we need the 802.11 header padded to a 691 * 32-bit boundary for 4-address and QoS frames. 692 */ 693 ic->ic_flags |= IEEE80211_F_DATAPAD; 694 695 /* 696 * Query the hal about antenna support. 697 */ 698 sc->sc_defant = ath_hal_getdefantenna(ah); 699 700 /* 701 * Not all chips have the VEOL support we want to 702 * use with IBSS beacons; check here for it. 703 */ 704 sc->sc_hasveol = ath_hal_hasveol(ah); 705 706 /* get mac address from hardware */ 707 ath_hal_getmac(ah, macaddr); 708 if (sc->sc_hasbmask) 709 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 710 711 /* NB: used to size node table key mapping array */ 712 ic->ic_max_keyix = sc->sc_keymax; 713 /* call MI attach routine. */ 714 ieee80211_ifattach(ic, macaddr); 715 ic->ic_setregdomain = ath_setregdomain; 716 ic->ic_getradiocaps = ath_getradiocaps; 717 sc->sc_opmode = HAL_M_STA; 718 719 /* override default methods */ 720 ic->ic_newassoc = ath_newassoc; 721 ic->ic_updateslot = ath_updateslot; 722 ic->ic_wme.wme_update = ath_wme_update; 723 ic->ic_vap_create = ath_vap_create; 724 ic->ic_vap_delete = ath_vap_delete; 725 ic->ic_raw_xmit = ath_raw_xmit; 726 ic->ic_update_mcast = ath_update_mcast; 727 ic->ic_update_promisc = ath_update_promisc; 728 ic->ic_node_alloc = ath_node_alloc; 729 sc->sc_node_free = ic->ic_node_free; 730 ic->ic_node_free = ath_node_free; 731 sc->sc_node_cleanup = ic->ic_node_cleanup; 732 ic->ic_node_cleanup = ath_node_cleanup; 733 ic->ic_node_getsignal = ath_node_getsignal; 734 ic->ic_scan_start = ath_scan_start; 735 ic->ic_scan_end = ath_scan_end; 736 ic->ic_set_channel = ath_set_channel; 737 738 /* 802.11n specific - but just override anyway */ 739 sc->sc_addba_request = ic->ic_addba_request; 740 sc->sc_addba_response = ic->ic_addba_response; 741 sc->sc_addba_stop = ic->ic_addba_stop; 742 sc->sc_bar_response = ic->ic_bar_response; 743 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 744 745 ic->ic_addba_request = ath_addba_request; 746 ic->ic_addba_response = ath_addba_response; 747 ic->ic_addba_response_timeout = ath_addba_response_timeout; 748 ic->ic_addba_stop = ath_addba_stop; 749 ic->ic_bar_response = ath_bar_response; 750 751 ieee80211_radiotap_attach(ic, 752 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 753 ATH_TX_RADIOTAP_PRESENT, 754 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 755 ATH_RX_RADIOTAP_PRESENT); 756 757 /* 758 * Setup dynamic sysctl's now that country code and 759 * regdomain are available from the hal. 760 */ 761 ath_sysctlattach(sc); 762 ath_sysctl_stats_attach(sc); 763 ath_sysctl_hal_attach(sc); 764 765 if (bootverbose) 766 ieee80211_announce(ic); 767 ath_announce(sc); 768 return 0; 769 bad2: 770 ath_tx_cleanup(sc); 771 ath_desc_free(sc); 772 bad: 773 if (ah) 774 ath_hal_detach(ah); 775 if (ifp != NULL) 776 if_free(ifp); 777 sc->sc_invalid = 1; 778 return error; 779 } 780 781 int 782 ath_detach(struct ath_softc *sc) 783 { 784 struct ifnet *ifp = sc->sc_ifp; 785 786 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 787 __func__, ifp->if_flags); 788 789 /* 790 * NB: the order of these is important: 791 * o stop the chip so no more interrupts will fire 792 * o call the 802.11 layer before detaching the hal to 793 * insure callbacks into the driver to delete global 794 * key cache entries can be handled 795 * o free the taskqueue which drains any pending tasks 796 * o reclaim the tx queue data structures after calling 797 * the 802.11 layer as we'll get called back to reclaim 798 * node state and potentially want to use them 799 * o to cleanup the tx queues the hal is called, so detach 800 * it last 801 * Other than that, it's straightforward... 802 */ 803 ath_stop(ifp); 804 ieee80211_ifdetach(ifp->if_l2com); 805 taskqueue_free(sc->sc_tq); 806 #ifdef ATH_TX99_DIAG 807 if (sc->sc_tx99 != NULL) 808 sc->sc_tx99->detach(sc->sc_tx99); 809 #endif 810 ath_rate_detach(sc->sc_rc); 811 812 ath_dfs_detach(sc); 813 ath_desc_free(sc); 814 ath_tx_cleanup(sc); 815 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 816 if_free(ifp); 817 818 return 0; 819 } 820 821 /* 822 * MAC address handling for multiple BSS on the same radio. 823 * The first vap uses the MAC address from the EEPROM. For 824 * subsequent vap's we set the U/L bit (bit 1) in the MAC 825 * address and use the next six bits as an index. 826 */ 827 static void 828 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 829 { 830 int i; 831 832 if (clone && sc->sc_hasbmask) { 833 /* NB: we only do this if h/w supports multiple bssid */ 834 for (i = 0; i < 8; i++) 835 if ((sc->sc_bssidmask & (1<<i)) == 0) 836 break; 837 if (i != 0) 838 mac[0] |= (i << 2)|0x2; 839 } else 840 i = 0; 841 sc->sc_bssidmask |= 1<<i; 842 sc->sc_hwbssidmask[0] &= ~mac[0]; 843 if (i == 0) 844 sc->sc_nbssid0++; 845 } 846 847 static void 848 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 849 { 850 int i = mac[0] >> 2; 851 uint8_t mask; 852 853 if (i != 0 || --sc->sc_nbssid0 == 0) { 854 sc->sc_bssidmask &= ~(1<<i); 855 /* recalculate bssid mask from remaining addresses */ 856 mask = 0xff; 857 for (i = 1; i < 8; i++) 858 if (sc->sc_bssidmask & (1<<i)) 859 mask &= ~((i<<2)|0x2); 860 sc->sc_hwbssidmask[0] |= mask; 861 } 862 } 863 864 /* 865 * Assign a beacon xmit slot. We try to space out 866 * assignments so when beacons are staggered the 867 * traffic coming out of the cab q has maximal time 868 * to go out before the next beacon is scheduled. 869 */ 870 static int 871 assign_bslot(struct ath_softc *sc) 872 { 873 u_int slot, free; 874 875 free = 0; 876 for (slot = 0; slot < ATH_BCBUF; slot++) 877 if (sc->sc_bslot[slot] == NULL) { 878 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 879 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 880 return slot; 881 free = slot; 882 /* NB: keep looking for a double slot */ 883 } 884 return free; 885 } 886 887 static struct ieee80211vap * 888 ath_vap_create(struct ieee80211com *ic, 889 const char name[IFNAMSIZ], int unit, int opmode, int flags, 890 const uint8_t bssid[IEEE80211_ADDR_LEN], 891 const uint8_t mac0[IEEE80211_ADDR_LEN]) 892 { 893 struct ath_softc *sc = ic->ic_ifp->if_softc; 894 struct ath_vap *avp; 895 struct ieee80211vap *vap; 896 uint8_t mac[IEEE80211_ADDR_LEN]; 897 int ic_opmode, needbeacon, error; 898 899 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 900 M_80211_VAP, M_WAITOK | M_ZERO); 901 needbeacon = 0; 902 IEEE80211_ADDR_COPY(mac, mac0); 903 904 ATH_LOCK(sc); 905 ic_opmode = opmode; /* default to opmode of new vap */ 906 switch (opmode) { 907 case IEEE80211_M_STA: 908 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 909 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 910 goto bad; 911 } 912 if (sc->sc_nvaps) { 913 /* 914 * With multiple vaps we must fall back 915 * to s/w beacon miss handling. 916 */ 917 flags |= IEEE80211_CLONE_NOBEACONS; 918 } 919 if (flags & IEEE80211_CLONE_NOBEACONS) { 920 /* 921 * Station mode w/o beacons are implemented w/ AP mode. 922 */ 923 ic_opmode = IEEE80211_M_HOSTAP; 924 } 925 break; 926 case IEEE80211_M_IBSS: 927 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 928 device_printf(sc->sc_dev, 929 "only 1 ibss vap supported\n"); 930 goto bad; 931 } 932 needbeacon = 1; 933 break; 934 case IEEE80211_M_AHDEMO: 935 #ifdef IEEE80211_SUPPORT_TDMA 936 if (flags & IEEE80211_CLONE_TDMA) { 937 if (sc->sc_nvaps != 0) { 938 device_printf(sc->sc_dev, 939 "only 1 tdma vap supported\n"); 940 goto bad; 941 } 942 needbeacon = 1; 943 flags |= IEEE80211_CLONE_NOBEACONS; 944 } 945 /* fall thru... */ 946 #endif 947 case IEEE80211_M_MONITOR: 948 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 949 /* 950 * Adopt existing mode. Adding a monitor or ahdemo 951 * vap to an existing configuration is of dubious 952 * value but should be ok. 953 */ 954 /* XXX not right for monitor mode */ 955 ic_opmode = ic->ic_opmode; 956 } 957 break; 958 case IEEE80211_M_HOSTAP: 959 case IEEE80211_M_MBSS: 960 needbeacon = 1; 961 break; 962 case IEEE80211_M_WDS: 963 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 964 device_printf(sc->sc_dev, 965 "wds not supported in sta mode\n"); 966 goto bad; 967 } 968 /* 969 * Silently remove any request for a unique 970 * bssid; WDS vap's always share the local 971 * mac address. 972 */ 973 flags &= ~IEEE80211_CLONE_BSSID; 974 if (sc->sc_nvaps == 0) 975 ic_opmode = IEEE80211_M_HOSTAP; 976 else 977 ic_opmode = ic->ic_opmode; 978 break; 979 default: 980 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 981 goto bad; 982 } 983 /* 984 * Check that a beacon buffer is available; the code below assumes it. 985 */ 986 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 987 device_printf(sc->sc_dev, "no beacon buffer available\n"); 988 goto bad; 989 } 990 991 /* STA, AHDEMO? */ 992 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 993 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 994 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 995 } 996 997 vap = &avp->av_vap; 998 /* XXX can't hold mutex across if_alloc */ 999 ATH_UNLOCK(sc); 1000 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1001 bssid, mac); 1002 ATH_LOCK(sc); 1003 if (error != 0) { 1004 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1005 __func__, error); 1006 goto bad2; 1007 } 1008 1009 /* h/w crypto support */ 1010 vap->iv_key_alloc = ath_key_alloc; 1011 vap->iv_key_delete = ath_key_delete; 1012 vap->iv_key_set = ath_key_set; 1013 vap->iv_key_update_begin = ath_key_update_begin; 1014 vap->iv_key_update_end = ath_key_update_end; 1015 1016 /* override various methods */ 1017 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1018 vap->iv_recv_mgmt = ath_recv_mgmt; 1019 vap->iv_reset = ath_reset_vap; 1020 vap->iv_update_beacon = ath_beacon_update; 1021 avp->av_newstate = vap->iv_newstate; 1022 vap->iv_newstate = ath_newstate; 1023 avp->av_bmiss = vap->iv_bmiss; 1024 vap->iv_bmiss = ath_bmiss_vap; 1025 1026 /* Set default parameters */ 1027 1028 /* 1029 * Anything earlier than some AR9300 series MACs don't 1030 * support a smaller MPDU density. 1031 */ 1032 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1033 /* 1034 * All NICs can handle the maximum size, however 1035 * AR5416 based MACs can only TX aggregates w/ RTS 1036 * protection when the total aggregate size is <= 8k. 1037 * However, for now that's enforced by the TX path. 1038 */ 1039 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1040 1041 avp->av_bslot = -1; 1042 if (needbeacon) { 1043 /* 1044 * Allocate beacon state and setup the q for buffered 1045 * multicast frames. We know a beacon buffer is 1046 * available because we checked above. 1047 */ 1048 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1049 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1050 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1051 /* 1052 * Assign the vap to a beacon xmit slot. As above 1053 * this cannot fail to find a free one. 1054 */ 1055 avp->av_bslot = assign_bslot(sc); 1056 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1057 ("beacon slot %u not empty", avp->av_bslot)); 1058 sc->sc_bslot[avp->av_bslot] = vap; 1059 sc->sc_nbcnvaps++; 1060 } 1061 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1062 /* 1063 * Multple vaps are to transmit beacons and we 1064 * have h/w support for TSF adjusting; enable 1065 * use of staggered beacons. 1066 */ 1067 sc->sc_stagbeacons = 1; 1068 } 1069 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1070 } 1071 1072 ic->ic_opmode = ic_opmode; 1073 if (opmode != IEEE80211_M_WDS) { 1074 sc->sc_nvaps++; 1075 if (opmode == IEEE80211_M_STA) 1076 sc->sc_nstavaps++; 1077 if (opmode == IEEE80211_M_MBSS) 1078 sc->sc_nmeshvaps++; 1079 } 1080 switch (ic_opmode) { 1081 case IEEE80211_M_IBSS: 1082 sc->sc_opmode = HAL_M_IBSS; 1083 break; 1084 case IEEE80211_M_STA: 1085 sc->sc_opmode = HAL_M_STA; 1086 break; 1087 case IEEE80211_M_AHDEMO: 1088 #ifdef IEEE80211_SUPPORT_TDMA 1089 if (vap->iv_caps & IEEE80211_C_TDMA) { 1090 sc->sc_tdma = 1; 1091 /* NB: disable tsf adjust */ 1092 sc->sc_stagbeacons = 0; 1093 } 1094 /* 1095 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1096 * just ap mode. 1097 */ 1098 /* fall thru... */ 1099 #endif 1100 case IEEE80211_M_HOSTAP: 1101 case IEEE80211_M_MBSS: 1102 sc->sc_opmode = HAL_M_HOSTAP; 1103 break; 1104 case IEEE80211_M_MONITOR: 1105 sc->sc_opmode = HAL_M_MONITOR; 1106 break; 1107 default: 1108 /* XXX should not happen */ 1109 break; 1110 } 1111 if (sc->sc_hastsfadd) { 1112 /* 1113 * Configure whether or not TSF adjust should be done. 1114 */ 1115 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1116 } 1117 if (flags & IEEE80211_CLONE_NOBEACONS) { 1118 /* 1119 * Enable s/w beacon miss handling. 1120 */ 1121 sc->sc_swbmiss = 1; 1122 } 1123 ATH_UNLOCK(sc); 1124 1125 /* complete setup */ 1126 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1127 return vap; 1128 bad2: 1129 reclaim_address(sc, mac); 1130 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1131 bad: 1132 free(avp, M_80211_VAP); 1133 ATH_UNLOCK(sc); 1134 return NULL; 1135 } 1136 1137 static void 1138 ath_vap_delete(struct ieee80211vap *vap) 1139 { 1140 struct ieee80211com *ic = vap->iv_ic; 1141 struct ifnet *ifp = ic->ic_ifp; 1142 struct ath_softc *sc = ifp->if_softc; 1143 struct ath_hal *ah = sc->sc_ah; 1144 struct ath_vap *avp = ATH_VAP(vap); 1145 1146 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1147 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1148 /* 1149 * Quiesce the hardware while we remove the vap. In 1150 * particular we need to reclaim all references to 1151 * the vap state by any frames pending on the tx queues. 1152 */ 1153 ath_hal_intrset(ah, 0); /* disable interrupts */ 1154 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1155 /* XXX Do all frames from all vaps/nodes need draining here? */ 1156 ath_stoprecv(sc); /* stop recv side */ 1157 } 1158 1159 ieee80211_vap_detach(vap); 1160 1161 /* 1162 * XXX Danger Will Robinson! Danger! 1163 * 1164 * Because ieee80211_vap_detach() can queue a frame (the station 1165 * diassociate message?) after we've drained the TXQ and 1166 * flushed the software TXQ, we will end up with a frame queued 1167 * to a node whose vap is about to be freed. 1168 * 1169 * To work around this, flush the hardware/software again. 1170 * This may be racy - the ath task may be running and the packet 1171 * may be being scheduled between sw->hw txq. Tsk. 1172 * 1173 * TODO: figure out why a new node gets allocated somewhere around 1174 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1175 * call!) 1176 */ 1177 1178 ath_draintxq(sc, ATH_RESET_DEFAULT); 1179 1180 ATH_LOCK(sc); 1181 /* 1182 * Reclaim beacon state. Note this must be done before 1183 * the vap instance is reclaimed as we may have a reference 1184 * to it in the buffer for the beacon frame. 1185 */ 1186 if (avp->av_bcbuf != NULL) { 1187 if (avp->av_bslot != -1) { 1188 sc->sc_bslot[avp->av_bslot] = NULL; 1189 sc->sc_nbcnvaps--; 1190 } 1191 ath_beacon_return(sc, avp->av_bcbuf); 1192 avp->av_bcbuf = NULL; 1193 if (sc->sc_nbcnvaps == 0) { 1194 sc->sc_stagbeacons = 0; 1195 if (sc->sc_hastsfadd) 1196 ath_hal_settsfadjust(sc->sc_ah, 0); 1197 } 1198 /* 1199 * Reclaim any pending mcast frames for the vap. 1200 */ 1201 ath_tx_draintxq(sc, &avp->av_mcastq); 1202 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1203 } 1204 /* 1205 * Update bookkeeping. 1206 */ 1207 if (vap->iv_opmode == IEEE80211_M_STA) { 1208 sc->sc_nstavaps--; 1209 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1210 sc->sc_swbmiss = 0; 1211 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1212 vap->iv_opmode == IEEE80211_M_MBSS) { 1213 reclaim_address(sc, vap->iv_myaddr); 1214 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1215 if (vap->iv_opmode == IEEE80211_M_MBSS) 1216 sc->sc_nmeshvaps--; 1217 } 1218 if (vap->iv_opmode != IEEE80211_M_WDS) 1219 sc->sc_nvaps--; 1220 #ifdef IEEE80211_SUPPORT_TDMA 1221 /* TDMA operation ceases when the last vap is destroyed */ 1222 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1223 sc->sc_tdma = 0; 1224 sc->sc_swbmiss = 0; 1225 } 1226 #endif 1227 free(avp, M_80211_VAP); 1228 1229 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1230 /* 1231 * Restart rx+tx machines if still running (RUNNING will 1232 * be reset if we just destroyed the last vap). 1233 */ 1234 if (ath_startrecv(sc) != 0) 1235 if_printf(ifp, "%s: unable to restart recv logic\n", 1236 __func__); 1237 if (sc->sc_beacons) { /* restart beacons */ 1238 #ifdef IEEE80211_SUPPORT_TDMA 1239 if (sc->sc_tdma) 1240 ath_tdma_config(sc, NULL); 1241 else 1242 #endif 1243 ath_beacon_config(sc, NULL); 1244 } 1245 ath_hal_intrset(ah, sc->sc_imask); 1246 } 1247 ATH_UNLOCK(sc); 1248 } 1249 1250 void 1251 ath_suspend(struct ath_softc *sc) 1252 { 1253 struct ifnet *ifp = sc->sc_ifp; 1254 struct ieee80211com *ic = ifp->if_l2com; 1255 1256 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1257 __func__, ifp->if_flags); 1258 1259 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1260 if (ic->ic_opmode == IEEE80211_M_STA) 1261 ath_stop(ifp); 1262 else 1263 ieee80211_suspend_all(ic); 1264 /* 1265 * NB: don't worry about putting the chip in low power 1266 * mode; pci will power off our socket on suspend and 1267 * CardBus detaches the device. 1268 */ 1269 } 1270 1271 /* 1272 * Reset the key cache since some parts do not reset the 1273 * contents on resume. First we clear all entries, then 1274 * re-load keys that the 802.11 layer assumes are setup 1275 * in h/w. 1276 */ 1277 static void 1278 ath_reset_keycache(struct ath_softc *sc) 1279 { 1280 struct ifnet *ifp = sc->sc_ifp; 1281 struct ieee80211com *ic = ifp->if_l2com; 1282 struct ath_hal *ah = sc->sc_ah; 1283 int i; 1284 1285 for (i = 0; i < sc->sc_keymax; i++) 1286 ath_hal_keyreset(ah, i); 1287 ieee80211_crypto_reload_keys(ic); 1288 } 1289 1290 void 1291 ath_resume(struct ath_softc *sc) 1292 { 1293 struct ifnet *ifp = sc->sc_ifp; 1294 struct ieee80211com *ic = ifp->if_l2com; 1295 struct ath_hal *ah = sc->sc_ah; 1296 HAL_STATUS status; 1297 1298 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1299 __func__, ifp->if_flags); 1300 1301 /* 1302 * Must reset the chip before we reload the 1303 * keycache as we were powered down on suspend. 1304 */ 1305 ath_hal_reset(ah, sc->sc_opmode, 1306 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1307 AH_FALSE, &status); 1308 ath_reset_keycache(sc); 1309 1310 /* Let DFS at it in case it's a DFS channel */ 1311 ath_dfs_radar_enable(sc, ic->ic_curchan); 1312 1313 if (sc->sc_resume_up) { 1314 if (ic->ic_opmode == IEEE80211_M_STA) { 1315 ath_init(sc); 1316 /* 1317 * Program the beacon registers using the last rx'd 1318 * beacon frame and enable sync on the next beacon 1319 * we see. This should handle the case where we 1320 * wakeup and find the same AP and also the case where 1321 * we wakeup and need to roam. For the latter we 1322 * should get bmiss events that trigger a roam. 1323 */ 1324 ath_beacon_config(sc, NULL); 1325 sc->sc_syncbeacon = 1; 1326 } else 1327 ieee80211_resume_all(ic); 1328 } 1329 if (sc->sc_softled) { 1330 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin, 1331 HAL_GPIO_MUX_MAC_NETWORK_LED); 1332 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 1333 } 1334 1335 /* XXX beacons ? */ 1336 } 1337 1338 void 1339 ath_shutdown(struct ath_softc *sc) 1340 { 1341 struct ifnet *ifp = sc->sc_ifp; 1342 1343 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1344 __func__, ifp->if_flags); 1345 1346 ath_stop(ifp); 1347 /* NB: no point powering down chip as we're about to reboot */ 1348 } 1349 1350 /* 1351 * Interrupt handler. Most of the actual processing is deferred. 1352 */ 1353 void 1354 ath_intr(void *arg) 1355 { 1356 struct ath_softc *sc = arg; 1357 struct ifnet *ifp = sc->sc_ifp; 1358 struct ath_hal *ah = sc->sc_ah; 1359 HAL_INT status = 0; 1360 uint32_t txqs; 1361 1362 /* 1363 * If we're inside a reset path, just print a warning and 1364 * clear the ISR. The reset routine will finish it for us. 1365 */ 1366 ATH_PCU_LOCK(sc); 1367 if (sc->sc_inreset_cnt) { 1368 HAL_INT status; 1369 ath_hal_getisr(ah, &status); /* clear ISR */ 1370 ath_hal_intrset(ah, 0); /* disable further intr's */ 1371 DPRINTF(sc, ATH_DEBUG_ANY, 1372 "%s: in reset, ignoring: status=0x%x\n", 1373 __func__, status); 1374 ATH_PCU_UNLOCK(sc); 1375 return; 1376 } 1377 1378 if (sc->sc_invalid) { 1379 /* 1380 * The hardware is not ready/present, don't touch anything. 1381 * Note this can happen early on if the IRQ is shared. 1382 */ 1383 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1384 ATH_PCU_UNLOCK(sc); 1385 return; 1386 } 1387 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1388 ATH_PCU_UNLOCK(sc); 1389 return; 1390 } 1391 1392 if ((ifp->if_flags & IFF_UP) == 0 || 1393 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1394 HAL_INT status; 1395 1396 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1397 __func__, ifp->if_flags); 1398 ath_hal_getisr(ah, &status); /* clear ISR */ 1399 ath_hal_intrset(ah, 0); /* disable further intr's */ 1400 ATH_PCU_UNLOCK(sc); 1401 return; 1402 } 1403 1404 /* 1405 * Figure out the reason(s) for the interrupt. Note 1406 * that the hal returns a pseudo-ISR that may include 1407 * bits we haven't explicitly enabled so we mask the 1408 * value to insure we only process bits we requested. 1409 */ 1410 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1411 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1412 CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status); 1413 #ifdef ATH_KTR_INTR_DEBUG 1414 CTR5(ATH_KTR_INTR, 1415 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1416 ah->ah_intrstate[0], 1417 ah->ah_intrstate[1], 1418 ah->ah_intrstate[2], 1419 ah->ah_intrstate[3], 1420 ah->ah_intrstate[6]); 1421 #endif 1422 status &= sc->sc_imask; /* discard unasked for bits */ 1423 1424 /* Short-circuit un-handled interrupts */ 1425 if (status == 0x0) { 1426 ATH_PCU_UNLOCK(sc); 1427 return; 1428 } 1429 1430 /* 1431 * Take a note that we're inside the interrupt handler, so 1432 * the reset routines know to wait. 1433 */ 1434 sc->sc_intr_cnt++; 1435 ATH_PCU_UNLOCK(sc); 1436 1437 /* 1438 * Handle the interrupt. We won't run concurrent with the reset 1439 * or channel change routines as they'll wait for sc_intr_cnt 1440 * to be 0 before continuing. 1441 */ 1442 if (status & HAL_INT_FATAL) { 1443 sc->sc_stats.ast_hardware++; 1444 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1445 ath_fatal_proc(sc, 0); 1446 } else { 1447 if (status & HAL_INT_SWBA) { 1448 /* 1449 * Software beacon alert--time to send a beacon. 1450 * Handle beacon transmission directly; deferring 1451 * this is too slow to meet timing constraints 1452 * under load. 1453 */ 1454 #ifdef IEEE80211_SUPPORT_TDMA 1455 if (sc->sc_tdma) { 1456 if (sc->sc_tdmaswba == 0) { 1457 struct ieee80211com *ic = ifp->if_l2com; 1458 struct ieee80211vap *vap = 1459 TAILQ_FIRST(&ic->ic_vaps); 1460 ath_tdma_beacon_send(sc, vap); 1461 sc->sc_tdmaswba = 1462 vap->iv_tdma->tdma_bintval; 1463 } else 1464 sc->sc_tdmaswba--; 1465 } else 1466 #endif 1467 { 1468 ath_beacon_proc(sc, 0); 1469 #ifdef IEEE80211_SUPPORT_SUPERG 1470 /* 1471 * Schedule the rx taskq in case there's no 1472 * traffic so any frames held on the staging 1473 * queue are aged and potentially flushed. 1474 */ 1475 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1476 #endif 1477 } 1478 } 1479 if (status & HAL_INT_RXEOL) { 1480 int imask; 1481 CTR0(ATH_KTR_ERR, "ath_intr: RXEOL"); 1482 ATH_PCU_LOCK(sc); 1483 /* 1484 * NB: the hardware should re-read the link when 1485 * RXE bit is written, but it doesn't work at 1486 * least on older hardware revs. 1487 */ 1488 sc->sc_stats.ast_rxeol++; 1489 /* 1490 * Disable RXEOL/RXORN - prevent an interrupt 1491 * storm until the PCU logic can be reset. 1492 * In case the interface is reset some other 1493 * way before "sc_kickpcu" is called, don't 1494 * modify sc_imask - that way if it is reset 1495 * by a call to ath_reset() somehow, the 1496 * interrupt mask will be correctly reprogrammed. 1497 */ 1498 imask = sc->sc_imask; 1499 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1500 ath_hal_intrset(ah, imask); 1501 /* 1502 * Only blank sc_rxlink if we've not yet kicked 1503 * the PCU. 1504 * 1505 * This isn't entirely correct - the correct solution 1506 * would be to have a PCU lock and engage that for 1507 * the duration of the PCU fiddling; which would include 1508 * running the RX process. Otherwise we could end up 1509 * messing up the RX descriptor chain and making the 1510 * RX desc list much shorter. 1511 */ 1512 if (! sc->sc_kickpcu) 1513 sc->sc_rxlink = NULL; 1514 sc->sc_kickpcu = 1; 1515 /* 1516 * Enqueue an RX proc, to handled whatever 1517 * is in the RX queue. 1518 * This will then kick the PCU. 1519 */ 1520 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1521 ATH_PCU_UNLOCK(sc); 1522 } 1523 if (status & HAL_INT_TXURN) { 1524 sc->sc_stats.ast_txurn++; 1525 /* bump tx trigger level */ 1526 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1527 } 1528 if (status & HAL_INT_RX) { 1529 sc->sc_stats.ast_rx_intr++; 1530 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1531 } 1532 if (status & HAL_INT_TX) { 1533 sc->sc_stats.ast_tx_intr++; 1534 /* 1535 * Grab all the currently set bits in the HAL txq bitmap 1536 * and blank them. This is the only place we should be 1537 * doing this. 1538 */ 1539 ATH_PCU_LOCK(sc); 1540 txqs = 0xffffffff; 1541 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1542 sc->sc_txq_active |= txqs; 1543 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1544 ATH_PCU_UNLOCK(sc); 1545 } 1546 if (status & HAL_INT_BMISS) { 1547 sc->sc_stats.ast_bmiss++; 1548 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1549 } 1550 if (status & HAL_INT_GTT) 1551 sc->sc_stats.ast_tx_timeout++; 1552 if (status & HAL_INT_CST) 1553 sc->sc_stats.ast_tx_cst++; 1554 if (status & HAL_INT_MIB) { 1555 sc->sc_stats.ast_mib++; 1556 ATH_PCU_LOCK(sc); 1557 /* 1558 * Disable interrupts until we service the MIB 1559 * interrupt; otherwise it will continue to fire. 1560 */ 1561 ath_hal_intrset(ah, 0); 1562 /* 1563 * Let the hal handle the event. We assume it will 1564 * clear whatever condition caused the interrupt. 1565 */ 1566 ath_hal_mibevent(ah, &sc->sc_halstats); 1567 /* 1568 * Don't reset the interrupt if we've just 1569 * kicked the PCU, or we may get a nested 1570 * RXEOL before the rxproc has had a chance 1571 * to run. 1572 */ 1573 if (sc->sc_kickpcu == 0) 1574 ath_hal_intrset(ah, sc->sc_imask); 1575 ATH_PCU_UNLOCK(sc); 1576 } 1577 if (status & HAL_INT_RXORN) { 1578 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1579 CTR0(ATH_KTR_ERR, "ath_intr: RXORN"); 1580 sc->sc_stats.ast_rxorn++; 1581 } 1582 } 1583 ATH_PCU_LOCK(sc); 1584 sc->sc_intr_cnt--; 1585 ATH_PCU_UNLOCK(sc); 1586 } 1587 1588 static void 1589 ath_fatal_proc(void *arg, int pending) 1590 { 1591 struct ath_softc *sc = arg; 1592 struct ifnet *ifp = sc->sc_ifp; 1593 u_int32_t *state; 1594 u_int32_t len; 1595 void *sp; 1596 1597 if_printf(ifp, "hardware error; resetting\n"); 1598 /* 1599 * Fatal errors are unrecoverable. Typically these 1600 * are caused by DMA errors. Collect h/w state from 1601 * the hal so we can diagnose what's going on. 1602 */ 1603 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1604 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1605 state = sp; 1606 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1607 state[0], state[1] , state[2], state[3], 1608 state[4], state[5]); 1609 } 1610 ath_reset(ifp, ATH_RESET_NOLOSS); 1611 } 1612 1613 static void 1614 ath_bmiss_vap(struct ieee80211vap *vap) 1615 { 1616 /* 1617 * Workaround phantom bmiss interrupts by sanity-checking 1618 * the time of our last rx'd frame. If it is within the 1619 * beacon miss interval then ignore the interrupt. If it's 1620 * truly a bmiss we'll get another interrupt soon and that'll 1621 * be dispatched up for processing. Note this applies only 1622 * for h/w beacon miss events. 1623 */ 1624 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1625 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1626 struct ath_softc *sc = ifp->if_softc; 1627 u_int64_t lastrx = sc->sc_lastrx; 1628 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1629 u_int bmisstimeout = 1630 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1631 1632 DPRINTF(sc, ATH_DEBUG_BEACON, 1633 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1634 __func__, (unsigned long long) tsf, 1635 (unsigned long long)(tsf - lastrx), 1636 (unsigned long long) lastrx, bmisstimeout); 1637 1638 if (tsf - lastrx <= bmisstimeout) { 1639 sc->sc_stats.ast_bmiss_phantom++; 1640 return; 1641 } 1642 } 1643 ATH_VAP(vap)->av_bmiss(vap); 1644 } 1645 1646 static int 1647 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1648 { 1649 uint32_t rsize; 1650 void *sp; 1651 1652 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1653 return 0; 1654 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1655 *hangs = *(uint32_t *)sp; 1656 return 1; 1657 } 1658 1659 static void 1660 ath_bmiss_proc(void *arg, int pending) 1661 { 1662 struct ath_softc *sc = arg; 1663 struct ifnet *ifp = sc->sc_ifp; 1664 uint32_t hangs; 1665 1666 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1667 1668 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1669 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1670 ath_reset(ifp, ATH_RESET_NOLOSS); 1671 } else 1672 ieee80211_beacon_miss(ifp->if_l2com); 1673 } 1674 1675 /* 1676 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1677 * calcs together with WME. If necessary disable the crypto 1678 * hardware and mark the 802.11 state so keys will be setup 1679 * with the MIC work done in software. 1680 */ 1681 static void 1682 ath_settkipmic(struct ath_softc *sc) 1683 { 1684 struct ifnet *ifp = sc->sc_ifp; 1685 struct ieee80211com *ic = ifp->if_l2com; 1686 1687 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1688 if (ic->ic_flags & IEEE80211_F_WME) { 1689 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1690 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1691 } else { 1692 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1693 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1694 } 1695 } 1696 } 1697 1698 static void 1699 ath_init(void *arg) 1700 { 1701 struct ath_softc *sc = (struct ath_softc *) arg; 1702 struct ifnet *ifp = sc->sc_ifp; 1703 struct ieee80211com *ic = ifp->if_l2com; 1704 struct ath_hal *ah = sc->sc_ah; 1705 HAL_STATUS status; 1706 1707 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1708 __func__, ifp->if_flags); 1709 1710 ATH_LOCK(sc); 1711 /* 1712 * Stop anything previously setup. This is safe 1713 * whether this is the first time through or not. 1714 */ 1715 ath_stop_locked(ifp); 1716 1717 /* 1718 * The basic interface to setting the hardware in a good 1719 * state is ``reset''. On return the hardware is known to 1720 * be powered up and with interrupts disabled. This must 1721 * be followed by initialization of the appropriate bits 1722 * and then setup of the interrupt mask. 1723 */ 1724 ath_settkipmic(sc); 1725 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1726 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1727 status); 1728 ATH_UNLOCK(sc); 1729 return; 1730 } 1731 ath_chan_change(sc, ic->ic_curchan); 1732 1733 /* Let DFS at it in case it's a DFS channel */ 1734 ath_dfs_radar_enable(sc, ic->ic_curchan); 1735 1736 /* 1737 * Likewise this is set during reset so update 1738 * state cached in the driver. 1739 */ 1740 sc->sc_diversity = ath_hal_getdiversity(ah); 1741 sc->sc_lastlongcal = 0; 1742 sc->sc_resetcal = 1; 1743 sc->sc_lastcalreset = 0; 1744 sc->sc_lastani = 0; 1745 sc->sc_lastshortcal = 0; 1746 sc->sc_doresetcal = AH_FALSE; 1747 /* 1748 * Beacon timers were cleared here; give ath_newstate() 1749 * a hint that the beacon timers should be poked when 1750 * things transition to the RUN state. 1751 */ 1752 sc->sc_beacons = 0; 1753 1754 /* 1755 * Initial aggregation settings. 1756 */ 1757 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 1758 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1759 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1760 1761 /* 1762 * Setup the hardware after reset: the key cache 1763 * is filled as needed and the receive engine is 1764 * set going. Frame transmit is handled entirely 1765 * in the frame output path; there's nothing to do 1766 * here except setup the interrupt mask. 1767 */ 1768 if (ath_startrecv(sc) != 0) { 1769 if_printf(ifp, "unable to start recv logic\n"); 1770 ATH_UNLOCK(sc); 1771 return; 1772 } 1773 1774 /* 1775 * Enable interrupts. 1776 */ 1777 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1778 | HAL_INT_RXEOL | HAL_INT_RXORN 1779 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1780 /* 1781 * Enable MIB interrupts when there are hardware phy counters. 1782 * Note we only do this (at the moment) for station mode. 1783 */ 1784 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1785 sc->sc_imask |= HAL_INT_MIB; 1786 1787 /* Enable global TX timeout and carrier sense timeout if available */ 1788 if (ath_hal_gtxto_supported(ah)) 1789 sc->sc_imask |= HAL_INT_GTT; 1790 1791 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1792 __func__, sc->sc_imask); 1793 1794 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1795 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1796 ath_hal_intrset(ah, sc->sc_imask); 1797 1798 ATH_UNLOCK(sc); 1799 1800 #ifdef ATH_TX99_DIAG 1801 if (sc->sc_tx99 != NULL) 1802 sc->sc_tx99->start(sc->sc_tx99); 1803 else 1804 #endif 1805 ieee80211_start_all(ic); /* start all vap's */ 1806 } 1807 1808 static void 1809 ath_stop_locked(struct ifnet *ifp) 1810 { 1811 struct ath_softc *sc = ifp->if_softc; 1812 struct ath_hal *ah = sc->sc_ah; 1813 1814 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1815 __func__, sc->sc_invalid, ifp->if_flags); 1816 1817 ATH_LOCK_ASSERT(sc); 1818 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1819 /* 1820 * Shutdown the hardware and driver: 1821 * reset 802.11 state machine 1822 * turn off timers 1823 * disable interrupts 1824 * turn off the radio 1825 * clear transmit machinery 1826 * clear receive machinery 1827 * drain and release tx queues 1828 * reclaim beacon resources 1829 * power down hardware 1830 * 1831 * Note that some of this work is not possible if the 1832 * hardware is gone (invalid). 1833 */ 1834 #ifdef ATH_TX99_DIAG 1835 if (sc->sc_tx99 != NULL) 1836 sc->sc_tx99->stop(sc->sc_tx99); 1837 #endif 1838 callout_stop(&sc->sc_wd_ch); 1839 sc->sc_wd_timer = 0; 1840 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1841 if (!sc->sc_invalid) { 1842 if (sc->sc_softled) { 1843 callout_stop(&sc->sc_ledtimer); 1844 ath_hal_gpioset(ah, sc->sc_ledpin, 1845 !sc->sc_ledon); 1846 sc->sc_blinking = 0; 1847 } 1848 ath_hal_intrset(ah, 0); 1849 } 1850 ath_draintxq(sc, ATH_RESET_DEFAULT); 1851 if (!sc->sc_invalid) { 1852 ath_stoprecv(sc); 1853 ath_hal_phydisable(ah); 1854 } else 1855 sc->sc_rxlink = NULL; 1856 ath_beacon_free(sc); /* XXX not needed */ 1857 } 1858 } 1859 1860 #define MAX_TXRX_ITERATIONS 1000 1861 static void 1862 ath_txrx_stop(struct ath_softc *sc) 1863 { 1864 int i = MAX_TXRX_ITERATIONS; 1865 1866 ATH_UNLOCK_ASSERT(sc); 1867 1868 /* Stop any new TX/RX from occuring */ 1869 taskqueue_block(sc->sc_tq); 1870 1871 ATH_PCU_LOCK(sc); 1872 1873 /* 1874 * Sleep until all the pending operations have completed. 1875 * 1876 * The caller must ensure that reset has been incremented 1877 * or the pending operations may continue being queued. 1878 */ 1879 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 1880 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 1881 if (i <= 0) 1882 break; 1883 msleep(sc, &sc->sc_mtx, 0, "ath_txrx_stop", 1); 1884 i--; 1885 } 1886 ATH_PCU_UNLOCK(sc); 1887 1888 if (i <= 0) 1889 device_printf(sc->sc_dev, 1890 "%s: didn't finish after %d iterations\n", 1891 __func__, MAX_TXRX_ITERATIONS); 1892 } 1893 #undef MAX_TXRX_ITERATIONS 1894 1895 static void 1896 ath_txrx_start(struct ath_softc *sc) 1897 { 1898 1899 taskqueue_unblock(sc->sc_tq); 1900 } 1901 1902 static void 1903 ath_stop(struct ifnet *ifp) 1904 { 1905 struct ath_softc *sc = ifp->if_softc; 1906 1907 ATH_LOCK(sc); 1908 ath_stop_locked(ifp); 1909 ATH_UNLOCK(sc); 1910 } 1911 1912 /* 1913 * Reset the hardware w/o losing operational state. This is 1914 * basically a more efficient way of doing ath_stop, ath_init, 1915 * followed by state transitions to the current 802.11 1916 * operational state. Used to recover from various errors and 1917 * to reset or reload hardware state. 1918 */ 1919 int 1920 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 1921 { 1922 struct ath_softc *sc = ifp->if_softc; 1923 struct ieee80211com *ic = ifp->if_l2com; 1924 struct ath_hal *ah = sc->sc_ah; 1925 HAL_STATUS status; 1926 int i; 1927 1928 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1929 1930 /* XXX ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 1931 ATH_PCU_UNLOCK_ASSERT(sc); 1932 ATH_UNLOCK_ASSERT(sc); 1933 1934 ATH_PCU_LOCK(sc); 1935 /* XXX if we're already inside a reset, print out a big warning */ 1936 if (sc->sc_inreset_cnt > 0) { 1937 device_printf(sc->sc_dev, 1938 "%s: concurrent ath_reset()! Danger!\n", 1939 __func__); 1940 } 1941 sc->sc_inreset_cnt++; 1942 ath_hal_intrset(ah, 0); /* disable interrupts */ 1943 ATH_PCU_UNLOCK(sc); 1944 1945 /* 1946 * XXX should now wait for pending TX/RX to complete 1947 * and block future ones from occuring. 1948 */ 1949 ath_txrx_stop(sc); 1950 1951 ath_draintxq(sc, reset_type); /* stop xmit side */ 1952 1953 /* 1954 * Regardless of whether we're doing a no-loss flush or 1955 * not, stop the PCU and handle what's in the RX queue. 1956 * That way frames aren't dropped which shouldn't be. 1957 */ 1958 ath_hal_stoppcurecv(ah); 1959 ath_hal_setrxfilter(ah, 0); 1960 ath_rx_proc(sc, 0); 1961 1962 /* 1963 * If we're not doing a noloss reset, now call ath_stoprecv(). 1964 * This fully stops all of the RX machinery and flushes whatever 1965 * frames are in the RX ring buffer. Hopefully all completed 1966 * frames have been handled at this point. 1967 */ 1968 if (reset_type != ATH_RESET_NOLOSS) 1969 ath_stoprecv(sc); /* stop recv side */ 1970 1971 ath_settkipmic(sc); /* configure TKIP MIC handling */ 1972 /* NB: indicate channel change so we do a full reset */ 1973 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 1974 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1975 __func__, status); 1976 sc->sc_diversity = ath_hal_getdiversity(ah); 1977 1978 /* Let DFS at it in case it's a DFS channel */ 1979 ath_dfs_radar_enable(sc, ic->ic_curchan); 1980 1981 if (ath_startrecv(sc) != 0) /* restart recv */ 1982 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1983 /* 1984 * We may be doing a reset in response to an ioctl 1985 * that changes the channel so update any state that 1986 * might change as a result. 1987 */ 1988 ath_chan_change(sc, ic->ic_curchan); 1989 if (sc->sc_beacons) { /* restart beacons */ 1990 #ifdef IEEE80211_SUPPORT_TDMA 1991 if (sc->sc_tdma) 1992 ath_tdma_config(sc, NULL); 1993 else 1994 #endif 1995 ath_beacon_config(sc, NULL); 1996 } 1997 1998 /* 1999 * Release the reset lock and re-enable interrupts here. 2000 * If an interrupt was being processed in ath_intr(), 2001 * it would disable interrupts at this point. So we have 2002 * to atomically enable interrupts and decrement the 2003 * reset counter - this way ath_intr() doesn't end up 2004 * disabling interrupts without a corresponding enable 2005 * in the rest or channel change path. 2006 */ 2007 ATH_PCU_LOCK(sc); 2008 sc->sc_inreset_cnt--; 2009 /* XXX only do this if sc_inreset_cnt == 0? */ 2010 ath_hal_intrset(ah, sc->sc_imask); 2011 ATH_PCU_UNLOCK(sc); 2012 2013 /* 2014 * TX and RX can be started here. If it were started with 2015 * sc_inreset_cnt > 0, the TX and RX path would abort. 2016 * Thus if this is a nested call through the reset or 2017 * channel change code, TX completion will occur but 2018 * RX completion and ath_start / ath_tx_start will not 2019 * run. 2020 */ 2021 2022 /* Restart TX/RX as needed */ 2023 ath_txrx_start(sc); 2024 2025 /* XXX Restart TX completion and pending TX */ 2026 if (reset_type == ATH_RESET_NOLOSS) { 2027 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2028 if (ATH_TXQ_SETUP(sc, i)) { 2029 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2030 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2031 ath_txq_sched(sc, &sc->sc_txq[i]); 2032 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2033 } 2034 } 2035 } 2036 2037 /* 2038 * This may have been set during an ath_start() call which 2039 * set this once it detected a concurrent TX was going on. 2040 * So, clear it. 2041 */ 2042 /* XXX do this inside of IF_LOCK? */ 2043 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2044 2045 /* Handle any frames in the TX queue */ 2046 /* 2047 * XXX should this be done by the caller, rather than 2048 * ath_reset() ? 2049 */ 2050 ath_start(ifp); /* restart xmit */ 2051 return 0; 2052 } 2053 2054 static int 2055 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2056 { 2057 struct ieee80211com *ic = vap->iv_ic; 2058 struct ifnet *ifp = ic->ic_ifp; 2059 struct ath_softc *sc = ifp->if_softc; 2060 struct ath_hal *ah = sc->sc_ah; 2061 2062 switch (cmd) { 2063 case IEEE80211_IOC_TXPOWER: 2064 /* 2065 * If per-packet TPC is enabled, then we have nothing 2066 * to do; otherwise we need to force the global limit. 2067 * All this can happen directly; no need to reset. 2068 */ 2069 if (!ath_hal_gettpc(ah)) 2070 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2071 return 0; 2072 } 2073 /* XXX? Full or NOLOSS? */ 2074 return ath_reset(ifp, ATH_RESET_FULL); 2075 } 2076 2077 struct ath_buf * 2078 _ath_getbuf_locked(struct ath_softc *sc) 2079 { 2080 struct ath_buf *bf; 2081 2082 ATH_TXBUF_LOCK_ASSERT(sc); 2083 2084 bf = TAILQ_FIRST(&sc->sc_txbuf); 2085 if (bf == NULL) { 2086 sc->sc_stats.ast_tx_getnobuf++; 2087 } else { 2088 if (bf->bf_flags & ATH_BUF_BUSY) { 2089 sc->sc_stats.ast_tx_getbusybuf++; 2090 bf = NULL; 2091 } 2092 } 2093 2094 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) 2095 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2096 else 2097 bf = NULL; 2098 2099 if (bf == NULL) { 2100 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2101 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2102 "out of xmit buffers" : "xmit buffer busy"); 2103 return NULL; 2104 } 2105 2106 /* Valid bf here; clear some basic fields */ 2107 bf->bf_next = NULL; /* XXX just to be sure */ 2108 bf->bf_last = NULL; /* XXX again, just to be sure */ 2109 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2110 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2111 2112 return bf; 2113 } 2114 2115 /* 2116 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2117 * can't be thrown back on the queue as they could still be 2118 * in use by the hardware. 2119 * 2120 * This duplicates the buffer, or returns NULL. 2121 * 2122 * The descriptor is also copied but the link pointers and 2123 * the DMA segments aren't copied; this frame should thus 2124 * be again passed through the descriptor setup/chain routines 2125 * so the link is correct. 2126 * 2127 * The caller must free the buffer using ath_freebuf(). 2128 * 2129 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2130 * XXX in the TX pathway when retries are needed. 2131 * XXX Figure out how to keep some buffers free, or factor the 2132 * XXX number of busy buffers into the xmit path (ath_start()) 2133 * XXX so we don't over-commit. 2134 */ 2135 struct ath_buf * 2136 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2137 { 2138 struct ath_buf *tbf; 2139 2140 tbf = ath_getbuf(sc); 2141 if (tbf == NULL) 2142 return NULL; /* XXX failure? Why? */ 2143 2144 /* Copy basics */ 2145 tbf->bf_next = NULL; 2146 tbf->bf_nseg = bf->bf_nseg; 2147 tbf->bf_txflags = bf->bf_txflags; 2148 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2149 tbf->bf_status = bf->bf_status; 2150 tbf->bf_m = bf->bf_m; 2151 tbf->bf_node = bf->bf_node; 2152 /* will be setup by the chain/setup function */ 2153 tbf->bf_lastds = NULL; 2154 /* for now, last == self */ 2155 tbf->bf_last = tbf; 2156 tbf->bf_comp = bf->bf_comp; 2157 2158 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2159 2160 /* The caller has to re-init the descriptor + links */ 2161 2162 /* Copy state */ 2163 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2164 2165 return tbf; 2166 } 2167 2168 struct ath_buf * 2169 ath_getbuf(struct ath_softc *sc) 2170 { 2171 struct ath_buf *bf; 2172 2173 ATH_TXBUF_LOCK(sc); 2174 bf = _ath_getbuf_locked(sc); 2175 if (bf == NULL) { 2176 struct ifnet *ifp = sc->sc_ifp; 2177 2178 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2179 sc->sc_stats.ast_tx_qstop++; 2180 /* XXX do this inside of IF_LOCK? */ 2181 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2182 } 2183 ATH_TXBUF_UNLOCK(sc); 2184 return bf; 2185 } 2186 2187 static void 2188 ath_start(struct ifnet *ifp) 2189 { 2190 struct ath_softc *sc = ifp->if_softc; 2191 struct ieee80211_node *ni; 2192 struct ath_buf *bf; 2193 struct mbuf *m, *next; 2194 ath_bufhead frags; 2195 2196 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2197 return; 2198 2199 /* XXX is it ok to hold the ATH_LOCK here? */ 2200 ATH_PCU_LOCK(sc); 2201 if (sc->sc_inreset_cnt > 0) { 2202 device_printf(sc->sc_dev, 2203 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2204 /* XXX do this inside of IF_LOCK? */ 2205 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2206 ATH_PCU_UNLOCK(sc); 2207 return; 2208 } 2209 sc->sc_txstart_cnt++; 2210 ATH_PCU_UNLOCK(sc); 2211 2212 for (;;) { 2213 /* 2214 * Grab a TX buffer and associated resources. 2215 */ 2216 bf = ath_getbuf(sc); 2217 if (bf == NULL) 2218 break; 2219 2220 IFQ_DEQUEUE(&ifp->if_snd, m); 2221 if (m == NULL) { 2222 ATH_TXBUF_LOCK(sc); 2223 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2224 ATH_TXBUF_UNLOCK(sc); 2225 break; 2226 } 2227 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2228 /* 2229 * Check for fragmentation. If this frame 2230 * has been broken up verify we have enough 2231 * buffers to send all the fragments so all 2232 * go out or none... 2233 */ 2234 TAILQ_INIT(&frags); 2235 if ((m->m_flags & M_FRAG) && 2236 !ath_txfrag_setup(sc, &frags, m, ni)) { 2237 DPRINTF(sc, ATH_DEBUG_XMIT, 2238 "%s: out of txfrag buffers\n", __func__); 2239 sc->sc_stats.ast_tx_nofrag++; 2240 ifp->if_oerrors++; 2241 ath_freetx(m); 2242 goto bad; 2243 } 2244 ifp->if_opackets++; 2245 nextfrag: 2246 /* 2247 * Pass the frame to the h/w for transmission. 2248 * Fragmented frames have each frag chained together 2249 * with m_nextpkt. We know there are sufficient ath_buf's 2250 * to send all the frags because of work done by 2251 * ath_txfrag_setup. We leave m_nextpkt set while 2252 * calling ath_tx_start so it can use it to extend the 2253 * the tx duration to cover the subsequent frag and 2254 * so it can reclaim all the mbufs in case of an error; 2255 * ath_tx_start clears m_nextpkt once it commits to 2256 * handing the frame to the hardware. 2257 */ 2258 next = m->m_nextpkt; 2259 if (ath_tx_start(sc, ni, bf, m)) { 2260 bad: 2261 ifp->if_oerrors++; 2262 reclaim: 2263 bf->bf_m = NULL; 2264 bf->bf_node = NULL; 2265 ATH_TXBUF_LOCK(sc); 2266 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2267 ath_txfrag_cleanup(sc, &frags, ni); 2268 ATH_TXBUF_UNLOCK(sc); 2269 if (ni != NULL) 2270 ieee80211_free_node(ni); 2271 continue; 2272 } 2273 if (next != NULL) { 2274 /* 2275 * Beware of state changing between frags. 2276 * XXX check sta power-save state? 2277 */ 2278 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2279 DPRINTF(sc, ATH_DEBUG_XMIT, 2280 "%s: flush fragmented packet, state %s\n", 2281 __func__, 2282 ieee80211_state_name[ni->ni_vap->iv_state]); 2283 ath_freetx(next); 2284 goto reclaim; 2285 } 2286 m = next; 2287 bf = TAILQ_FIRST(&frags); 2288 KASSERT(bf != NULL, ("no buf for txfrag")); 2289 TAILQ_REMOVE(&frags, bf, bf_list); 2290 goto nextfrag; 2291 } 2292 2293 sc->sc_wd_timer = 5; 2294 } 2295 2296 ATH_PCU_LOCK(sc); 2297 sc->sc_txstart_cnt--; 2298 ATH_PCU_UNLOCK(sc); 2299 } 2300 2301 static int 2302 ath_media_change(struct ifnet *ifp) 2303 { 2304 int error = ieee80211_media_change(ifp); 2305 /* NB: only the fixed rate can change and that doesn't need a reset */ 2306 return (error == ENETRESET ? 0 : error); 2307 } 2308 2309 /* 2310 * Block/unblock tx+rx processing while a key change is done. 2311 * We assume the caller serializes key management operations 2312 * so we only need to worry about synchronization with other 2313 * uses that originate in the driver. 2314 */ 2315 static void 2316 ath_key_update_begin(struct ieee80211vap *vap) 2317 { 2318 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2319 struct ath_softc *sc = ifp->if_softc; 2320 2321 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2322 taskqueue_block(sc->sc_tq); 2323 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2324 } 2325 2326 static void 2327 ath_key_update_end(struct ieee80211vap *vap) 2328 { 2329 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2330 struct ath_softc *sc = ifp->if_softc; 2331 2332 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2333 IF_UNLOCK(&ifp->if_snd); 2334 taskqueue_unblock(sc->sc_tq); 2335 } 2336 2337 /* 2338 * Calculate the receive filter according to the 2339 * operating mode and state: 2340 * 2341 * o always accept unicast, broadcast, and multicast traffic 2342 * o accept PHY error frames when hardware doesn't have MIB support 2343 * to count and we need them for ANI (sta mode only until recently) 2344 * and we are not scanning (ANI is disabled) 2345 * NB: older hal's add rx filter bits out of sight and we need to 2346 * blindly preserve them 2347 * o probe request frames are accepted only when operating in 2348 * hostap, adhoc, mesh, or monitor modes 2349 * o enable promiscuous mode 2350 * - when in monitor mode 2351 * - if interface marked PROMISC (assumes bridge setting is filtered) 2352 * o accept beacons: 2353 * - when operating in station mode for collecting rssi data when 2354 * the station is otherwise quiet, or 2355 * - when operating in adhoc mode so the 802.11 layer creates 2356 * node table entries for peers, 2357 * - when scanning 2358 * - when doing s/w beacon miss (e.g. for ap+sta) 2359 * - when operating in ap mode in 11g to detect overlapping bss that 2360 * require protection 2361 * - when operating in mesh mode to detect neighbors 2362 * o accept control frames: 2363 * - when in monitor mode 2364 * XXX HT protection for 11n 2365 */ 2366 static u_int32_t 2367 ath_calcrxfilter(struct ath_softc *sc) 2368 { 2369 struct ifnet *ifp = sc->sc_ifp; 2370 struct ieee80211com *ic = ifp->if_l2com; 2371 u_int32_t rfilt; 2372 2373 rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 2374 if (!sc->sc_needmib && !sc->sc_scanning) 2375 rfilt |= HAL_RX_FILTER_PHYERR; 2376 if (ic->ic_opmode != IEEE80211_M_STA) 2377 rfilt |= HAL_RX_FILTER_PROBEREQ; 2378 /* XXX ic->ic_monvaps != 0? */ 2379 if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC)) 2380 rfilt |= HAL_RX_FILTER_PROM; 2381 if (ic->ic_opmode == IEEE80211_M_STA || 2382 ic->ic_opmode == IEEE80211_M_IBSS || 2383 sc->sc_swbmiss || sc->sc_scanning) 2384 rfilt |= HAL_RX_FILTER_BEACON; 2385 /* 2386 * NB: We don't recalculate the rx filter when 2387 * ic_protmode changes; otherwise we could do 2388 * this only when ic_protmode != NONE. 2389 */ 2390 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 2391 IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) 2392 rfilt |= HAL_RX_FILTER_BEACON; 2393 2394 /* 2395 * Enable hardware PS-POLL RX only for hostap mode; 2396 * STA mode sends PS-POLL frames but never 2397 * receives them. 2398 */ 2399 if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL, 2400 0, NULL) == HAL_OK && 2401 ic->ic_opmode == IEEE80211_M_HOSTAP) 2402 rfilt |= HAL_RX_FILTER_PSPOLL; 2403 2404 if (sc->sc_nmeshvaps) { 2405 rfilt |= HAL_RX_FILTER_BEACON; 2406 if (sc->sc_hasbmatch) 2407 rfilt |= HAL_RX_FILTER_BSSID; 2408 else 2409 rfilt |= HAL_RX_FILTER_PROM; 2410 } 2411 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2412 rfilt |= HAL_RX_FILTER_CONTROL; 2413 2414 /* 2415 * Enable RX of compressed BAR frames only when doing 2416 * 802.11n. Required for A-MPDU. 2417 */ 2418 if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) 2419 rfilt |= HAL_RX_FILTER_COMPBAR; 2420 2421 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n", 2422 __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags); 2423 return rfilt; 2424 } 2425 2426 static void 2427 ath_update_promisc(struct ifnet *ifp) 2428 { 2429 struct ath_softc *sc = ifp->if_softc; 2430 u_int32_t rfilt; 2431 2432 /* configure rx filter */ 2433 rfilt = ath_calcrxfilter(sc); 2434 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2435 2436 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2437 } 2438 2439 static void 2440 ath_update_mcast(struct ifnet *ifp) 2441 { 2442 struct ath_softc *sc = ifp->if_softc; 2443 u_int32_t mfilt[2]; 2444 2445 /* calculate and install multicast filter */ 2446 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2447 struct ifmultiaddr *ifma; 2448 /* 2449 * Merge multicast addresses to form the hardware filter. 2450 */ 2451 mfilt[0] = mfilt[1] = 0; 2452 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2453 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2454 caddr_t dl; 2455 u_int32_t val; 2456 u_int8_t pos; 2457 2458 /* calculate XOR of eight 6bit values */ 2459 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2460 val = LE_READ_4(dl + 0); 2461 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2462 val = LE_READ_4(dl + 3); 2463 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2464 pos &= 0x3f; 2465 mfilt[pos / 32] |= (1 << (pos % 32)); 2466 } 2467 if_maddr_runlock(ifp); 2468 } else 2469 mfilt[0] = mfilt[1] = ~0; 2470 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2471 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2472 __func__, mfilt[0], mfilt[1]); 2473 } 2474 2475 static void 2476 ath_mode_init(struct ath_softc *sc) 2477 { 2478 struct ifnet *ifp = sc->sc_ifp; 2479 struct ath_hal *ah = sc->sc_ah; 2480 u_int32_t rfilt; 2481 2482 /* configure rx filter */ 2483 rfilt = ath_calcrxfilter(sc); 2484 ath_hal_setrxfilter(ah, rfilt); 2485 2486 /* configure operational mode */ 2487 ath_hal_setopmode(ah); 2488 2489 /* handle any link-level address change */ 2490 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2491 2492 /* calculate and install multicast filter */ 2493 ath_update_mcast(ifp); 2494 } 2495 2496 /* 2497 * Set the slot time based on the current setting. 2498 */ 2499 static void 2500 ath_setslottime(struct ath_softc *sc) 2501 { 2502 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2503 struct ath_hal *ah = sc->sc_ah; 2504 u_int usec; 2505 2506 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2507 usec = 13; 2508 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2509 usec = 21; 2510 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2511 /* honor short/long slot time only in 11g */ 2512 /* XXX shouldn't honor on pure g or turbo g channel */ 2513 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2514 usec = HAL_SLOT_TIME_9; 2515 else 2516 usec = HAL_SLOT_TIME_20; 2517 } else 2518 usec = HAL_SLOT_TIME_9; 2519 2520 DPRINTF(sc, ATH_DEBUG_RESET, 2521 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2522 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2523 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2524 2525 ath_hal_setslottime(ah, usec); 2526 sc->sc_updateslot = OK; 2527 } 2528 2529 /* 2530 * Callback from the 802.11 layer to update the 2531 * slot time based on the current setting. 2532 */ 2533 static void 2534 ath_updateslot(struct ifnet *ifp) 2535 { 2536 struct ath_softc *sc = ifp->if_softc; 2537 struct ieee80211com *ic = ifp->if_l2com; 2538 2539 /* 2540 * When not coordinating the BSS, change the hardware 2541 * immediately. For other operation we defer the change 2542 * until beacon updates have propagated to the stations. 2543 */ 2544 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2545 ic->ic_opmode == IEEE80211_M_MBSS) 2546 sc->sc_updateslot = UPDATE; 2547 else 2548 ath_setslottime(sc); 2549 } 2550 2551 /* 2552 * Setup a h/w transmit queue for beacons. 2553 */ 2554 static int 2555 ath_beaconq_setup(struct ath_hal *ah) 2556 { 2557 HAL_TXQ_INFO qi; 2558 2559 memset(&qi, 0, sizeof(qi)); 2560 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2561 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2562 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2563 /* NB: for dynamic turbo, don't enable any other interrupts */ 2564 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2565 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2566 } 2567 2568 /* 2569 * Setup the transmit queue parameters for the beacon queue. 2570 */ 2571 static int 2572 ath_beaconq_config(struct ath_softc *sc) 2573 { 2574 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2575 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2576 struct ath_hal *ah = sc->sc_ah; 2577 HAL_TXQ_INFO qi; 2578 2579 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2580 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2581 ic->ic_opmode == IEEE80211_M_MBSS) { 2582 /* 2583 * Always burst out beacon and CAB traffic. 2584 */ 2585 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2586 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2587 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2588 } else { 2589 struct wmeParams *wmep = 2590 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2591 /* 2592 * Adhoc mode; important thing is to use 2x cwmin. 2593 */ 2594 qi.tqi_aifs = wmep->wmep_aifsn; 2595 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2596 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2597 } 2598 2599 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2600 device_printf(sc->sc_dev, "unable to update parameters for " 2601 "beacon hardware queue!\n"); 2602 return 0; 2603 } else { 2604 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2605 return 1; 2606 } 2607 #undef ATH_EXPONENT_TO_VALUE 2608 } 2609 2610 /* 2611 * Allocate and setup an initial beacon frame. 2612 */ 2613 static int 2614 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2615 { 2616 struct ieee80211vap *vap = ni->ni_vap; 2617 struct ath_vap *avp = ATH_VAP(vap); 2618 struct ath_buf *bf; 2619 struct mbuf *m; 2620 int error; 2621 2622 bf = avp->av_bcbuf; 2623 if (bf->bf_m != NULL) { 2624 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2625 m_freem(bf->bf_m); 2626 bf->bf_m = NULL; 2627 } 2628 if (bf->bf_node != NULL) { 2629 ieee80211_free_node(bf->bf_node); 2630 bf->bf_node = NULL; 2631 } 2632 2633 /* 2634 * NB: the beacon data buffer must be 32-bit aligned; 2635 * we assume the mbuf routines will return us something 2636 * with this alignment (perhaps should assert). 2637 */ 2638 m = ieee80211_beacon_alloc(ni, &avp->av_boff); 2639 if (m == NULL) { 2640 device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__); 2641 sc->sc_stats.ast_be_nombuf++; 2642 return ENOMEM; 2643 } 2644 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 2645 bf->bf_segs, &bf->bf_nseg, 2646 BUS_DMA_NOWAIT); 2647 if (error != 0) { 2648 device_printf(sc->sc_dev, 2649 "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n", 2650 __func__, error); 2651 m_freem(m); 2652 return error; 2653 } 2654 2655 /* 2656 * Calculate a TSF adjustment factor required for staggered 2657 * beacons. Note that we assume the format of the beacon 2658 * frame leaves the tstamp field immediately following the 2659 * header. 2660 */ 2661 if (sc->sc_stagbeacons && avp->av_bslot > 0) { 2662 uint64_t tsfadjust; 2663 struct ieee80211_frame *wh; 2664 2665 /* 2666 * The beacon interval is in TU's; the TSF is in usecs. 2667 * We figure out how many TU's to add to align the timestamp 2668 * then convert to TSF units and handle byte swapping before 2669 * inserting it in the frame. The hardware will then add this 2670 * each time a beacon frame is sent. Note that we align vap's 2671 * 1..N and leave vap 0 untouched. This means vap 0 has a 2672 * timestamp in one beacon interval while the others get a 2673 * timstamp aligned to the next interval. 2674 */ 2675 tsfadjust = ni->ni_intval * 2676 (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF; 2677 tsfadjust = htole64(tsfadjust << 10); /* TU -> TSF */ 2678 2679 DPRINTF(sc, ATH_DEBUG_BEACON, 2680 "%s: %s beacons bslot %d intval %u tsfadjust %llu\n", 2681 __func__, sc->sc_stagbeacons ? "stagger" : "burst", 2682 avp->av_bslot, ni->ni_intval, 2683 (long long unsigned) le64toh(tsfadjust)); 2684 2685 wh = mtod(m, struct ieee80211_frame *); 2686 memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust)); 2687 } 2688 bf->bf_m = m; 2689 bf->bf_node = ieee80211_ref_node(ni); 2690 2691 return 0; 2692 } 2693 2694 /* 2695 * Setup the beacon frame for transmit. 2696 */ 2697 static void 2698 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2699 { 2700 #define USE_SHPREAMBLE(_ic) \ 2701 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2702 == IEEE80211_F_SHPREAMBLE) 2703 struct ieee80211_node *ni = bf->bf_node; 2704 struct ieee80211com *ic = ni->ni_ic; 2705 struct mbuf *m = bf->bf_m; 2706 struct ath_hal *ah = sc->sc_ah; 2707 struct ath_desc *ds; 2708 int flags, antenna; 2709 const HAL_RATE_TABLE *rt; 2710 u_int8_t rix, rate; 2711 2712 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n", 2713 __func__, m, m->m_len); 2714 2715 /* setup descriptors */ 2716 ds = bf->bf_desc; 2717 bf->bf_last = bf; 2718 bf->bf_lastds = ds; 2719 2720 flags = HAL_TXDESC_NOACK; 2721 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2722 ds->ds_link = bf->bf_daddr; /* self-linked */ 2723 flags |= HAL_TXDESC_VEOL; 2724 /* 2725 * Let hardware handle antenna switching. 2726 */ 2727 antenna = sc->sc_txantenna; 2728 } else { 2729 ds->ds_link = 0; 2730 /* 2731 * Switch antenna every 4 beacons. 2732 * XXX assumes two antenna 2733 */ 2734 if (sc->sc_txantenna != 0) 2735 antenna = sc->sc_txantenna; 2736 else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0) 2737 antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1); 2738 else 2739 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2740 } 2741 2742 KASSERT(bf->bf_nseg == 1, 2743 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 2744 ds->ds_data = bf->bf_segs[0].ds_addr; 2745 /* 2746 * Calculate rate code. 2747 * XXX everything at min xmit rate 2748 */ 2749 rix = 0; 2750 rt = sc->sc_currates; 2751 rate = rt->info[rix].rateCode; 2752 if (USE_SHPREAMBLE(ic)) 2753 rate |= rt->info[rix].shortPreamble; 2754 ath_hal_setuptxdesc(ah, ds 2755 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2756 , sizeof(struct ieee80211_frame)/* header length */ 2757 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2758 , ni->ni_txpower /* txpower XXX */ 2759 , rate, 1 /* series 0 rate/tries */ 2760 , HAL_TXKEYIX_INVALID /* no encryption */ 2761 , antenna /* antenna mode */ 2762 , flags /* no ack, veol for beacons */ 2763 , 0 /* rts/cts rate */ 2764 , 0 /* rts/cts duration */ 2765 ); 2766 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2767 ath_hal_filltxdesc(ah, ds 2768 , roundup(m->m_len, 4) /* buffer length */ 2769 , AH_TRUE /* first segment */ 2770 , AH_TRUE /* last segment */ 2771 , ds /* first descriptor */ 2772 ); 2773 #if 0 2774 ath_desc_swap(ds); 2775 #endif 2776 #undef USE_SHPREAMBLE 2777 } 2778 2779 static void 2780 ath_beacon_update(struct ieee80211vap *vap, int item) 2781 { 2782 struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff; 2783 2784 setbit(bo->bo_flags, item); 2785 } 2786 2787 /* 2788 * Append the contents of src to dst; both queues 2789 * are assumed to be locked. 2790 */ 2791 static void 2792 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2793 { 2794 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2795 dst->axq_link = src->axq_link; 2796 src->axq_link = NULL; 2797 dst->axq_depth += src->axq_depth; 2798 dst->axq_aggr_depth += src->axq_aggr_depth; 2799 src->axq_depth = 0; 2800 src->axq_aggr_depth = 0; 2801 } 2802 2803 /* 2804 * Transmit a beacon frame at SWBA. Dynamic updates to the 2805 * frame contents are done as needed and the slot time is 2806 * also adjusted based on current state. 2807 */ 2808 static void 2809 ath_beacon_proc(void *arg, int pending) 2810 { 2811 struct ath_softc *sc = arg; 2812 struct ath_hal *ah = sc->sc_ah; 2813 struct ieee80211vap *vap; 2814 struct ath_buf *bf; 2815 int slot, otherant; 2816 uint32_t bfaddr; 2817 2818 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2819 __func__, pending); 2820 /* 2821 * Check if the previous beacon has gone out. If 2822 * not don't try to post another, skip this period 2823 * and wait for the next. Missed beacons indicate 2824 * a problem and should not occur. If we miss too 2825 * many consecutive beacons reset the device. 2826 */ 2827 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2828 sc->sc_bmisscount++; 2829 sc->sc_stats.ast_be_missed++; 2830 DPRINTF(sc, ATH_DEBUG_BEACON, 2831 "%s: missed %u consecutive beacons\n", 2832 __func__, sc->sc_bmisscount); 2833 if (sc->sc_bmisscount >= ath_bstuck_threshold) 2834 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 2835 return; 2836 } 2837 if (sc->sc_bmisscount != 0) { 2838 DPRINTF(sc, ATH_DEBUG_BEACON, 2839 "%s: resume beacon xmit after %u misses\n", 2840 __func__, sc->sc_bmisscount); 2841 sc->sc_bmisscount = 0; 2842 } 2843 2844 if (sc->sc_stagbeacons) { /* staggered beacons */ 2845 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2846 uint32_t tsftu; 2847 2848 tsftu = ath_hal_gettsf32(ah) >> 10; 2849 /* XXX lintval */ 2850 slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval; 2851 vap = sc->sc_bslot[(slot+1) % ATH_BCBUF]; 2852 bfaddr = 0; 2853 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 2854 bf = ath_beacon_generate(sc, vap); 2855 if (bf != NULL) 2856 bfaddr = bf->bf_daddr; 2857 } 2858 } else { /* burst'd beacons */ 2859 uint32_t *bflink = &bfaddr; 2860 2861 for (slot = 0; slot < ATH_BCBUF; slot++) { 2862 vap = sc->sc_bslot[slot]; 2863 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 2864 bf = ath_beacon_generate(sc, vap); 2865 if (bf != NULL) { 2866 *bflink = bf->bf_daddr; 2867 bflink = &bf->bf_desc->ds_link; 2868 } 2869 } 2870 } 2871 *bflink = 0; /* terminate list */ 2872 } 2873 2874 /* 2875 * Handle slot time change when a non-ERP station joins/leaves 2876 * an 11g network. The 802.11 layer notifies us via callback, 2877 * we mark updateslot, then wait one beacon before effecting 2878 * the change. This gives associated stations at least one 2879 * beacon interval to note the state change. 2880 */ 2881 /* XXX locking */ 2882 if (sc->sc_updateslot == UPDATE) { 2883 sc->sc_updateslot = COMMIT; /* commit next beacon */ 2884 sc->sc_slotupdate = slot; 2885 } else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot) 2886 ath_setslottime(sc); /* commit change to h/w */ 2887 2888 /* 2889 * Check recent per-antenna transmit statistics and flip 2890 * the default antenna if noticeably more frames went out 2891 * on the non-default antenna. 2892 * XXX assumes 2 anntenae 2893 */ 2894 if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) { 2895 otherant = sc->sc_defant & 1 ? 2 : 1; 2896 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 2897 ath_setdefantenna(sc, otherant); 2898 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 2899 } 2900 2901 if (bfaddr != 0) { 2902 /* 2903 * Stop any current dma and put the new frame on the queue. 2904 * This should never fail since we check above that no frames 2905 * are still pending on the queue. 2906 */ 2907 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 2908 DPRINTF(sc, ATH_DEBUG_ANY, 2909 "%s: beacon queue %u did not stop?\n", 2910 __func__, sc->sc_bhalq); 2911 } 2912 /* NB: cabq traffic should already be queued and primed */ 2913 ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr); 2914 ath_hal_txstart(ah, sc->sc_bhalq); 2915 2916 sc->sc_stats.ast_be_xmit++; 2917 } 2918 } 2919 2920 static struct ath_buf * 2921 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap) 2922 { 2923 struct ath_vap *avp = ATH_VAP(vap); 2924 struct ath_txq *cabq = sc->sc_cabq; 2925 struct ath_buf *bf; 2926 struct mbuf *m; 2927 int nmcastq, error; 2928 2929 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 2930 ("not running, state %d", vap->iv_state)); 2931 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 2932 2933 /* 2934 * Update dynamic beacon contents. If this returns 2935 * non-zero then we need to remap the memory because 2936 * the beacon frame changed size (probably because 2937 * of the TIM bitmap). 2938 */ 2939 bf = avp->av_bcbuf; 2940 m = bf->bf_m; 2941 nmcastq = avp->av_mcastq.axq_depth; 2942 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) { 2943 /* XXX too conservative? */ 2944 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2945 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 2946 bf->bf_segs, &bf->bf_nseg, 2947 BUS_DMA_NOWAIT); 2948 if (error != 0) { 2949 if_printf(vap->iv_ifp, 2950 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 2951 __func__, error); 2952 return NULL; 2953 } 2954 } 2955 if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) { 2956 DPRINTF(sc, ATH_DEBUG_BEACON, 2957 "%s: cabq did not drain, mcastq %u cabq %u\n", 2958 __func__, nmcastq, cabq->axq_depth); 2959 sc->sc_stats.ast_cabq_busy++; 2960 if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) { 2961 /* 2962 * CABQ traffic from a previous vap is still pending. 2963 * We must drain the q before this beacon frame goes 2964 * out as otherwise this vap's stations will get cab 2965 * frames from a different vap. 2966 * XXX could be slow causing us to miss DBA 2967 */ 2968 ath_tx_draintxq(sc, cabq); 2969 } 2970 } 2971 ath_beacon_setup(sc, bf); 2972 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 2973 2974 /* 2975 * Enable the CAB queue before the beacon queue to 2976 * insure cab frames are triggered by this beacon. 2977 */ 2978 if (avp->av_boff.bo_tim[4] & 1) { 2979 struct ath_hal *ah = sc->sc_ah; 2980 2981 /* NB: only at DTIM */ 2982 ATH_TXQ_LOCK(cabq); 2983 ATH_TXQ_LOCK(&avp->av_mcastq); 2984 if (nmcastq) { 2985 struct ath_buf *bfm; 2986 2987 /* 2988 * Move frames from the s/w mcast q to the h/w cab q. 2989 * XXX MORE_DATA bit 2990 */ 2991 bfm = TAILQ_FIRST(&avp->av_mcastq.axq_q); 2992 if (cabq->axq_link != NULL) { 2993 *cabq->axq_link = bfm->bf_daddr; 2994 } else 2995 ath_hal_puttxbuf(ah, cabq->axq_qnum, 2996 bfm->bf_daddr); 2997 ath_txqmove(cabq, &avp->av_mcastq); 2998 2999 sc->sc_stats.ast_cabq_xmit += nmcastq; 3000 } 3001 /* NB: gated by beacon so safe to start here */ 3002 if (! TAILQ_EMPTY(&(cabq->axq_q))) 3003 ath_hal_txstart(ah, cabq->axq_qnum); 3004 ATH_TXQ_UNLOCK(&avp->av_mcastq); 3005 ATH_TXQ_UNLOCK(cabq); 3006 } 3007 return bf; 3008 } 3009 3010 static void 3011 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap) 3012 { 3013 struct ath_vap *avp = ATH_VAP(vap); 3014 struct ath_hal *ah = sc->sc_ah; 3015 struct ath_buf *bf; 3016 struct mbuf *m; 3017 int error; 3018 3019 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3020 3021 /* 3022 * Update dynamic beacon contents. If this returns 3023 * non-zero then we need to remap the memory because 3024 * the beacon frame changed size (probably because 3025 * of the TIM bitmap). 3026 */ 3027 bf = avp->av_bcbuf; 3028 m = bf->bf_m; 3029 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) { 3030 /* XXX too conservative? */ 3031 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3032 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3033 bf->bf_segs, &bf->bf_nseg, 3034 BUS_DMA_NOWAIT); 3035 if (error != 0) { 3036 if_printf(vap->iv_ifp, 3037 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3038 __func__, error); 3039 return; 3040 } 3041 } 3042 ath_beacon_setup(sc, bf); 3043 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3044 3045 /* NB: caller is known to have already stopped tx dma */ 3046 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 3047 ath_hal_txstart(ah, sc->sc_bhalq); 3048 } 3049 3050 /* 3051 * Reset the hardware after detecting beacons have stopped. 3052 */ 3053 static void 3054 ath_bstuck_proc(void *arg, int pending) 3055 { 3056 struct ath_softc *sc = arg; 3057 struct ifnet *ifp = sc->sc_ifp; 3058 uint32_t hangs = 0; 3059 3060 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3061 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 3062 3063 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3064 sc->sc_bmisscount); 3065 sc->sc_stats.ast_bstuck++; 3066 /* 3067 * This assumes that there's no simultaneous channel mode change 3068 * occuring. 3069 */ 3070 ath_reset(ifp, ATH_RESET_NOLOSS); 3071 } 3072 3073 /* 3074 * Reclaim beacon resources and return buffer to the pool. 3075 */ 3076 static void 3077 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf) 3078 { 3079 3080 if (bf->bf_m != NULL) { 3081 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3082 m_freem(bf->bf_m); 3083 bf->bf_m = NULL; 3084 } 3085 if (bf->bf_node != NULL) { 3086 ieee80211_free_node(bf->bf_node); 3087 bf->bf_node = NULL; 3088 } 3089 TAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list); 3090 } 3091 3092 /* 3093 * Reclaim beacon resources. 3094 */ 3095 static void 3096 ath_beacon_free(struct ath_softc *sc) 3097 { 3098 struct ath_buf *bf; 3099 3100 TAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 3101 if (bf->bf_m != NULL) { 3102 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3103 m_freem(bf->bf_m); 3104 bf->bf_m = NULL; 3105 } 3106 if (bf->bf_node != NULL) { 3107 ieee80211_free_node(bf->bf_node); 3108 bf->bf_node = NULL; 3109 } 3110 } 3111 } 3112 3113 /* 3114 * Configure the beacon and sleep timers. 3115 * 3116 * When operating as an AP this resets the TSF and sets 3117 * up the hardware to notify us when we need to issue beacons. 3118 * 3119 * When operating in station mode this sets up the beacon 3120 * timers according to the timestamp of the last received 3121 * beacon and the current TSF, configures PCF and DTIM 3122 * handling, programs the sleep registers so the hardware 3123 * will wakeup in time to receive beacons, and configures 3124 * the beacon miss handling so we'll receive a BMISS 3125 * interrupt when we stop seeing beacons from the AP 3126 * we've associated with. 3127 */ 3128 static void 3129 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap) 3130 { 3131 #define TSF_TO_TU(_h,_l) \ 3132 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 3133 #define FUDGE 2 3134 struct ath_hal *ah = sc->sc_ah; 3135 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3136 struct ieee80211_node *ni; 3137 u_int32_t nexttbtt, intval, tsftu; 3138 u_int64_t tsf; 3139 3140 if (vap == NULL) 3141 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 3142 ni = vap->iv_bss; 3143 3144 /* extract tstamp from last beacon and convert to TU */ 3145 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 3146 LE_READ_4(ni->ni_tstamp.data)); 3147 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3148 ic->ic_opmode == IEEE80211_M_MBSS) { 3149 /* 3150 * For multi-bss ap/mesh support beacons are either staggered 3151 * evenly over N slots or burst together. For the former 3152 * arrange for the SWBA to be delivered for each slot. 3153 * Slots that are not occupied will generate nothing. 3154 */ 3155 /* NB: the beacon interval is kept internally in TU's */ 3156 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3157 if (sc->sc_stagbeacons) 3158 intval /= ATH_BCBUF; 3159 } else { 3160 /* NB: the beacon interval is kept internally in TU's */ 3161 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3162 } 3163 if (nexttbtt == 0) /* e.g. for ap mode */ 3164 nexttbtt = intval; 3165 else if (intval) /* NB: can be 0 for monitor mode */ 3166 nexttbtt = roundup(nexttbtt, intval); 3167 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 3168 __func__, nexttbtt, intval, ni->ni_intval); 3169 if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) { 3170 HAL_BEACON_STATE bs; 3171 int dtimperiod, dtimcount; 3172 int cfpperiod, cfpcount; 3173 3174 /* 3175 * Setup dtim and cfp parameters according to 3176 * last beacon we received (which may be none). 3177 */ 3178 dtimperiod = ni->ni_dtim_period; 3179 if (dtimperiod <= 0) /* NB: 0 if not known */ 3180 dtimperiod = 1; 3181 dtimcount = ni->ni_dtim_count; 3182 if (dtimcount >= dtimperiod) /* NB: sanity check */ 3183 dtimcount = 0; /* XXX? */ 3184 cfpperiod = 1; /* NB: no PCF support yet */ 3185 cfpcount = 0; 3186 /* 3187 * Pull nexttbtt forward to reflect the current 3188 * TSF and calculate dtim+cfp state for the result. 3189 */ 3190 tsf = ath_hal_gettsf64(ah); 3191 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3192 do { 3193 nexttbtt += intval; 3194 if (--dtimcount < 0) { 3195 dtimcount = dtimperiod - 1; 3196 if (--cfpcount < 0) 3197 cfpcount = cfpperiod - 1; 3198 } 3199 } while (nexttbtt < tsftu); 3200 memset(&bs, 0, sizeof(bs)); 3201 bs.bs_intval = intval; 3202 bs.bs_nexttbtt = nexttbtt; 3203 bs.bs_dtimperiod = dtimperiod*intval; 3204 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 3205 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 3206 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 3207 bs.bs_cfpmaxduration = 0; 3208 #if 0 3209 /* 3210 * The 802.11 layer records the offset to the DTIM 3211 * bitmap while receiving beacons; use it here to 3212 * enable h/w detection of our AID being marked in 3213 * the bitmap vector (to indicate frames for us are 3214 * pending at the AP). 3215 * XXX do DTIM handling in s/w to WAR old h/w bugs 3216 * XXX enable based on h/w rev for newer chips 3217 */ 3218 bs.bs_timoffset = ni->ni_timoff; 3219 #endif 3220 /* 3221 * Calculate the number of consecutive beacons to miss 3222 * before taking a BMISS interrupt. 3223 * Note that we clamp the result to at most 10 beacons. 3224 */ 3225 bs.bs_bmissthreshold = vap->iv_bmissthreshold; 3226 if (bs.bs_bmissthreshold > 10) 3227 bs.bs_bmissthreshold = 10; 3228 else if (bs.bs_bmissthreshold <= 0) 3229 bs.bs_bmissthreshold = 1; 3230 3231 /* 3232 * Calculate sleep duration. The configuration is 3233 * given in ms. We insure a multiple of the beacon 3234 * period is used. Also, if the sleep duration is 3235 * greater than the DTIM period then it makes senses 3236 * to make it a multiple of that. 3237 * 3238 * XXX fixed at 100ms 3239 */ 3240 bs.bs_sleepduration = 3241 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 3242 if (bs.bs_sleepduration > bs.bs_dtimperiod) 3243 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 3244 3245 DPRINTF(sc, ATH_DEBUG_BEACON, 3246 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 3247 , __func__ 3248 , tsf, tsftu 3249 , bs.bs_intval 3250 , bs.bs_nexttbtt 3251 , bs.bs_dtimperiod 3252 , bs.bs_nextdtim 3253 , bs.bs_bmissthreshold 3254 , bs.bs_sleepduration 3255 , bs.bs_cfpperiod 3256 , bs.bs_cfpmaxduration 3257 , bs.bs_cfpnext 3258 , bs.bs_timoffset 3259 ); 3260 ath_hal_intrset(ah, 0); 3261 ath_hal_beacontimers(ah, &bs); 3262 sc->sc_imask |= HAL_INT_BMISS; 3263 ath_hal_intrset(ah, sc->sc_imask); 3264 } else { 3265 ath_hal_intrset(ah, 0); 3266 if (nexttbtt == intval) 3267 intval |= HAL_BEACON_RESET_TSF; 3268 if (ic->ic_opmode == IEEE80211_M_IBSS) { 3269 /* 3270 * In IBSS mode enable the beacon timers but only 3271 * enable SWBA interrupts if we need to manually 3272 * prepare beacon frames. Otherwise we use a 3273 * self-linked tx descriptor and let the hardware 3274 * deal with things. 3275 */ 3276 intval |= HAL_BEACON_ENA; 3277 if (!sc->sc_hasveol) 3278 sc->sc_imask |= HAL_INT_SWBA; 3279 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 3280 /* 3281 * Pull nexttbtt forward to reflect 3282 * the current TSF. 3283 */ 3284 tsf = ath_hal_gettsf64(ah); 3285 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3286 do { 3287 nexttbtt += intval; 3288 } while (nexttbtt < tsftu); 3289 } 3290 ath_beaconq_config(sc); 3291 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3292 ic->ic_opmode == IEEE80211_M_MBSS) { 3293 /* 3294 * In AP/mesh mode we enable the beacon timers 3295 * and SWBA interrupts to prepare beacon frames. 3296 */ 3297 intval |= HAL_BEACON_ENA; 3298 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 3299 ath_beaconq_config(sc); 3300 } 3301 ath_hal_beaconinit(ah, nexttbtt, intval); 3302 sc->sc_bmisscount = 0; 3303 ath_hal_intrset(ah, sc->sc_imask); 3304 /* 3305 * When using a self-linked beacon descriptor in 3306 * ibss mode load it once here. 3307 */ 3308 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 3309 ath_beacon_start_adhoc(sc, vap); 3310 } 3311 sc->sc_syncbeacon = 0; 3312 #undef FUDGE 3313 #undef TSF_TO_TU 3314 } 3315 3316 static void 3317 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3318 { 3319 bus_addr_t *paddr = (bus_addr_t*) arg; 3320 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3321 *paddr = segs->ds_addr; 3322 } 3323 3324 static int 3325 ath_descdma_setup(struct ath_softc *sc, 3326 struct ath_descdma *dd, ath_bufhead *head, 3327 const char *name, int nbuf, int ndesc) 3328 { 3329 #define DS2PHYS(_dd, _ds) \ 3330 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3331 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3332 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3333 struct ifnet *ifp = sc->sc_ifp; 3334 uint8_t *ds; 3335 struct ath_buf *bf; 3336 int i, bsize, error; 3337 int desc_len; 3338 3339 desc_len = sizeof(struct ath_desc); 3340 3341 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 3342 __func__, name, nbuf, ndesc); 3343 3344 dd->dd_name = name; 3345 dd->dd_desc_len = desc_len * nbuf * ndesc; 3346 3347 /* 3348 * Merlin work-around: 3349 * Descriptors that cross the 4KB boundary can't be used. 3350 * Assume one skipped descriptor per 4KB page. 3351 */ 3352 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3353 int numdescpage = 4096 / (desc_len * ndesc); 3354 dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096; 3355 } 3356 3357 /* 3358 * Setup DMA descriptor area. 3359 */ 3360 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3361 PAGE_SIZE, 0, /* alignment, bounds */ 3362 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3363 BUS_SPACE_MAXADDR, /* highaddr */ 3364 NULL, NULL, /* filter, filterarg */ 3365 dd->dd_desc_len, /* maxsize */ 3366 1, /* nsegments */ 3367 dd->dd_desc_len, /* maxsegsize */ 3368 BUS_DMA_ALLOCNOW, /* flags */ 3369 NULL, /* lockfunc */ 3370 NULL, /* lockarg */ 3371 &dd->dd_dmat); 3372 if (error != 0) { 3373 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3374 return error; 3375 } 3376 3377 /* allocate descriptors */ 3378 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 3379 if (error != 0) { 3380 if_printf(ifp, "unable to create dmamap for %s descriptors, " 3381 "error %u\n", dd->dd_name, error); 3382 goto fail0; 3383 } 3384 3385 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3386 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3387 &dd->dd_dmamap); 3388 if (error != 0) { 3389 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3390 "error %u\n", nbuf * ndesc, dd->dd_name, error); 3391 goto fail1; 3392 } 3393 3394 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3395 dd->dd_desc, dd->dd_desc_len, 3396 ath_load_cb, &dd->dd_desc_paddr, 3397 BUS_DMA_NOWAIT); 3398 if (error != 0) { 3399 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3400 dd->dd_name, error); 3401 goto fail2; 3402 } 3403 3404 ds = (uint8_t *) dd->dd_desc; 3405 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3406 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 3407 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 3408 3409 /* allocate rx buffers */ 3410 bsize = sizeof(struct ath_buf) * nbuf; 3411 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3412 if (bf == NULL) { 3413 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3414 dd->dd_name, bsize); 3415 goto fail3; 3416 } 3417 dd->dd_bufptr = bf; 3418 3419 TAILQ_INIT(head); 3420 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) { 3421 bf->bf_desc = (struct ath_desc *) ds; 3422 bf->bf_daddr = DS2PHYS(dd, ds); 3423 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3424 /* 3425 * Merlin WAR: Skip descriptor addresses which 3426 * cause 4KB boundary crossing along any point 3427 * in the descriptor. 3428 */ 3429 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3430 desc_len * ndesc)) { 3431 /* Start at the next page */ 3432 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3433 bf->bf_desc = (struct ath_desc *) ds; 3434 bf->bf_daddr = DS2PHYS(dd, ds); 3435 } 3436 } 3437 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3438 &bf->bf_dmamap); 3439 if (error != 0) { 3440 if_printf(ifp, "unable to create dmamap for %s " 3441 "buffer %u, error %u\n", dd->dd_name, i, error); 3442 ath_descdma_cleanup(sc, dd, head); 3443 return error; 3444 } 3445 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3446 TAILQ_INSERT_TAIL(head, bf, bf_list); 3447 } 3448 return 0; 3449 fail3: 3450 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3451 fail2: 3452 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3453 fail1: 3454 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3455 fail0: 3456 bus_dma_tag_destroy(dd->dd_dmat); 3457 memset(dd, 0, sizeof(*dd)); 3458 return error; 3459 #undef DS2PHYS 3460 #undef ATH_DESC_4KB_BOUND_CHECK 3461 } 3462 3463 static void 3464 ath_descdma_cleanup(struct ath_softc *sc, 3465 struct ath_descdma *dd, ath_bufhead *head) 3466 { 3467 struct ath_buf *bf; 3468 struct ieee80211_node *ni; 3469 3470 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3471 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3472 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3473 bus_dma_tag_destroy(dd->dd_dmat); 3474 3475 TAILQ_FOREACH(bf, head, bf_list) { 3476 if (bf->bf_m) { 3477 m_freem(bf->bf_m); 3478 bf->bf_m = NULL; 3479 } 3480 if (bf->bf_dmamap != NULL) { 3481 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3482 bf->bf_dmamap = NULL; 3483 } 3484 ni = bf->bf_node; 3485 bf->bf_node = NULL; 3486 if (ni != NULL) { 3487 /* 3488 * Reclaim node reference. 3489 */ 3490 ieee80211_free_node(ni); 3491 } 3492 } 3493 3494 TAILQ_INIT(head); 3495 free(dd->dd_bufptr, M_ATHDEV); 3496 memset(dd, 0, sizeof(*dd)); 3497 } 3498 3499 static int 3500 ath_desc_alloc(struct ath_softc *sc) 3501 { 3502 int error; 3503 3504 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 3505 "rx", ath_rxbuf, 1); 3506 if (error != 0) 3507 return error; 3508 3509 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3510 "tx", ath_txbuf, ATH_TXDESC); 3511 if (error != 0) { 3512 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3513 return error; 3514 } 3515 3516 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3517 "beacon", ATH_BCBUF, 1); 3518 if (error != 0) { 3519 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3520 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3521 return error; 3522 } 3523 return 0; 3524 } 3525 3526 static void 3527 ath_desc_free(struct ath_softc *sc) 3528 { 3529 3530 if (sc->sc_bdma.dd_desc_len != 0) 3531 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3532 if (sc->sc_txdma.dd_desc_len != 0) 3533 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3534 if (sc->sc_rxdma.dd_desc_len != 0) 3535 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3536 } 3537 3538 static struct ieee80211_node * 3539 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3540 { 3541 struct ieee80211com *ic = vap->iv_ic; 3542 struct ath_softc *sc = ic->ic_ifp->if_softc; 3543 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3544 struct ath_node *an; 3545 3546 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3547 if (an == NULL) { 3548 /* XXX stat+msg */ 3549 return NULL; 3550 } 3551 ath_rate_node_init(sc, an); 3552 3553 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3554 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3555 device_get_nameunit(sc->sc_dev), an); 3556 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3557 3558 /* XXX setup ath_tid */ 3559 ath_tx_tid_init(sc, an); 3560 3561 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3562 return &an->an_node; 3563 } 3564 3565 static void 3566 ath_node_cleanup(struct ieee80211_node *ni) 3567 { 3568 struct ieee80211com *ic = ni->ni_ic; 3569 struct ath_softc *sc = ic->ic_ifp->if_softc; 3570 3571 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3572 ath_tx_node_flush(sc, ATH_NODE(ni)); 3573 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3574 sc->sc_node_cleanup(ni); 3575 } 3576 3577 static void 3578 ath_node_free(struct ieee80211_node *ni) 3579 { 3580 struct ieee80211com *ic = ni->ni_ic; 3581 struct ath_softc *sc = ic->ic_ifp->if_softc; 3582 3583 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3584 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3585 sc->sc_node_free(ni); 3586 } 3587 3588 static void 3589 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3590 { 3591 struct ieee80211com *ic = ni->ni_ic; 3592 struct ath_softc *sc = ic->ic_ifp->if_softc; 3593 struct ath_hal *ah = sc->sc_ah; 3594 3595 *rssi = ic->ic_node_getrssi(ni); 3596 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3597 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3598 else 3599 *noise = -95; /* nominally correct */ 3600 } 3601 3602 static int 3603 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 3604 { 3605 struct ath_hal *ah = sc->sc_ah; 3606 int error; 3607 struct mbuf *m; 3608 struct ath_desc *ds; 3609 3610 m = bf->bf_m; 3611 if (m == NULL) { 3612 /* 3613 * NB: by assigning a page to the rx dma buffer we 3614 * implicitly satisfy the Atheros requirement that 3615 * this buffer be cache-line-aligned and sized to be 3616 * multiple of the cache line size. Not doing this 3617 * causes weird stuff to happen (for the 5210 at least). 3618 */ 3619 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 3620 if (m == NULL) { 3621 DPRINTF(sc, ATH_DEBUG_ANY, 3622 "%s: no mbuf/cluster\n", __func__); 3623 sc->sc_stats.ast_rx_nombuf++; 3624 return ENOMEM; 3625 } 3626 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 3627 3628 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, 3629 bf->bf_dmamap, m, 3630 bf->bf_segs, &bf->bf_nseg, 3631 BUS_DMA_NOWAIT); 3632 if (error != 0) { 3633 DPRINTF(sc, ATH_DEBUG_ANY, 3634 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n", 3635 __func__, error); 3636 sc->sc_stats.ast_rx_busdma++; 3637 m_freem(m); 3638 return error; 3639 } 3640 KASSERT(bf->bf_nseg == 1, 3641 ("multi-segment packet; nseg %u", bf->bf_nseg)); 3642 bf->bf_m = m; 3643 } 3644 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 3645 3646 /* 3647 * Setup descriptors. For receive we always terminate 3648 * the descriptor list with a self-linked entry so we'll 3649 * not get overrun under high load (as can happen with a 3650 * 5212 when ANI processing enables PHY error frames). 3651 * 3652 * To insure the last descriptor is self-linked we create 3653 * each descriptor as self-linked and add it to the end. As 3654 * each additional descriptor is added the previous self-linked 3655 * entry is ``fixed'' naturally. This should be safe even 3656 * if DMA is happening. When processing RX interrupts we 3657 * never remove/process the last, self-linked, entry on the 3658 * descriptor list. This insures the hardware always has 3659 * someplace to write a new frame. 3660 */ 3661 /* 3662 * 11N: we can no longer afford to self link the last descriptor. 3663 * MAC acknowledges BA status as long as it copies frames to host 3664 * buffer (or rx fifo). This can incorrectly acknowledge packets 3665 * to a sender if last desc is self-linked. 3666 */ 3667 ds = bf->bf_desc; 3668 if (sc->sc_rxslink) 3669 ds->ds_link = bf->bf_daddr; /* link to self */ 3670 else 3671 ds->ds_link = 0; /* terminate the list */ 3672 ds->ds_data = bf->bf_segs[0].ds_addr; 3673 ath_hal_setuprxdesc(ah, ds 3674 , m->m_len /* buffer size */ 3675 , 0 3676 ); 3677 3678 if (sc->sc_rxlink != NULL) 3679 *sc->sc_rxlink = bf->bf_daddr; 3680 sc->sc_rxlink = &ds->ds_link; 3681 return 0; 3682 } 3683 3684 /* 3685 * Extend 15-bit time stamp from rx descriptor to 3686 * a full 64-bit TSF using the specified TSF. 3687 */ 3688 static __inline u_int64_t 3689 ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf) 3690 { 3691 if ((tsf & 0x7fff) < rstamp) 3692 tsf -= 0x8000; 3693 3694 return ((tsf &~ 0x7fff) | rstamp); 3695 } 3696 3697 /* 3698 * Extend 32-bit time stamp from rx descriptor to 3699 * a full 64-bit TSF using the specified TSF. 3700 */ 3701 static __inline u_int64_t 3702 ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf) 3703 { 3704 u_int32_t tsf_low = tsf & 0xffffffff; 3705 u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp; 3706 3707 if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000)) 3708 tsf64 -= 0x100000000ULL; 3709 3710 if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000)) 3711 tsf64 += 0x100000000ULL; 3712 3713 return tsf64; 3714 } 3715 3716 /* 3717 * Extend the TSF from the RX descriptor to a full 64 bit TSF. 3718 * Earlier hardware versions only wrote the low 15 bits of the 3719 * TSF into the RX descriptor; later versions (AR5416 and up) 3720 * include the 32 bit TSF value. 3721 */ 3722 static __inline u_int64_t 3723 ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf) 3724 { 3725 if (sc->sc_rxtsf32) 3726 return ath_extend_tsf32(rstamp, tsf); 3727 else 3728 return ath_extend_tsf15(rstamp, tsf); 3729 } 3730 3731 /* 3732 * Intercept management frames to collect beacon rssi data 3733 * and to do ibss merges. 3734 */ 3735 static void 3736 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 3737 int subtype, int rssi, int nf) 3738 { 3739 struct ieee80211vap *vap = ni->ni_vap; 3740 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 3741 3742 /* 3743 * Call up first so subsequent work can use information 3744 * potentially stored in the node (e.g. for ibss merge). 3745 */ 3746 ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf); 3747 switch (subtype) { 3748 case IEEE80211_FC0_SUBTYPE_BEACON: 3749 /* update rssi statistics for use by the hal */ 3750 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 3751 if (sc->sc_syncbeacon && 3752 ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) { 3753 /* 3754 * Resync beacon timers using the tsf of the beacon 3755 * frame we just received. 3756 */ 3757 ath_beacon_config(sc, vap); 3758 } 3759 /* fall thru... */ 3760 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 3761 if (vap->iv_opmode == IEEE80211_M_IBSS && 3762 vap->iv_state == IEEE80211_S_RUN) { 3763 uint32_t rstamp = sc->sc_lastrs->rs_tstamp; 3764 uint64_t tsf = ath_extend_tsf(sc, rstamp, 3765 ath_hal_gettsf64(sc->sc_ah)); 3766 /* 3767 * Handle ibss merge as needed; check the tsf on the 3768 * frame before attempting the merge. The 802.11 spec 3769 * says the station should change it's bssid to match 3770 * the oldest station with the same ssid, where oldest 3771 * is determined by the tsf. Note that hardware 3772 * reconfiguration happens through callback to 3773 * ath_newstate as the state machine will go from 3774 * RUN -> RUN when this happens. 3775 */ 3776 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 3777 DPRINTF(sc, ATH_DEBUG_STATE, 3778 "ibss merge, rstamp %u tsf %ju " 3779 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 3780 (uintmax_t)ni->ni_tstamp.tsf); 3781 (void) ieee80211_ibss_merge(ni); 3782 } 3783 } 3784 break; 3785 } 3786 } 3787 3788 /* 3789 * Set the default antenna. 3790 */ 3791 static void 3792 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3793 { 3794 struct ath_hal *ah = sc->sc_ah; 3795 3796 /* XXX block beacon interrupts */ 3797 ath_hal_setdefantenna(ah, antenna); 3798 if (sc->sc_defant != antenna) 3799 sc->sc_stats.ast_ant_defswitch++; 3800 sc->sc_defant = antenna; 3801 sc->sc_rxotherant = 0; 3802 } 3803 3804 static void 3805 ath_rx_tap(struct ifnet *ifp, struct mbuf *m, 3806 const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf) 3807 { 3808 #define CHAN_HT20 htole32(IEEE80211_CHAN_HT20) 3809 #define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U) 3810 #define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D) 3811 #define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D) 3812 struct ath_softc *sc = ifp->if_softc; 3813 const HAL_RATE_TABLE *rt; 3814 uint8_t rix; 3815 3816 rt = sc->sc_currates; 3817 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3818 rix = rt->rateCodeToIndex[rs->rs_rate]; 3819 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 3820 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 3821 #ifdef AH_SUPPORT_AR5416 3822 sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT; 3823 if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */ 3824 struct ieee80211com *ic = ifp->if_l2com; 3825 3826 if ((rs->rs_flags & HAL_RX_2040) == 0) 3827 sc->sc_rx_th.wr_chan_flags |= CHAN_HT20; 3828 else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan)) 3829 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U; 3830 else 3831 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D; 3832 if ((rs->rs_flags & HAL_RX_GI) == 0) 3833 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; 3834 } 3835 #endif 3836 sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf)); 3837 if (rs->rs_status & HAL_RXERR_CRC) 3838 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 3839 /* XXX propagate other error flags from descriptor */ 3840 sc->sc_rx_th.wr_antnoise = nf; 3841 sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi; 3842 sc->sc_rx_th.wr_antenna = rs->rs_antenna; 3843 #undef CHAN_HT 3844 #undef CHAN_HT20 3845 #undef CHAN_HT40U 3846 #undef CHAN_HT40D 3847 } 3848 3849 static void 3850 ath_handle_micerror(struct ieee80211com *ic, 3851 struct ieee80211_frame *wh, int keyix) 3852 { 3853 struct ieee80211_node *ni; 3854 3855 /* XXX recheck MIC to deal w/ chips that lie */ 3856 /* XXX discard MIC errors on !data frames */ 3857 ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh); 3858 if (ni != NULL) { 3859 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix); 3860 ieee80211_free_node(ni); 3861 } 3862 } 3863 3864 /* 3865 * Only run the RX proc if it's not already running. 3866 * Since this may get run as part of the reset/flush path, 3867 * the task can't clash with an existing, running tasklet. 3868 */ 3869 static void 3870 ath_rx_tasklet(void *arg, int npending) 3871 { 3872 struct ath_softc *sc = arg; 3873 3874 CTR1(ATH_KTR_INTR, "ath_rx_proc: pending=%d", npending); 3875 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 3876 ATH_PCU_LOCK(sc); 3877 if (sc->sc_inreset_cnt > 0) { 3878 device_printf(sc->sc_dev, 3879 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 3880 ATH_PCU_UNLOCK(sc); 3881 return; 3882 } 3883 ATH_PCU_UNLOCK(sc); 3884 ath_rx_proc(sc, 1); 3885 } 3886 3887 static void 3888 ath_rx_proc(struct ath_softc *sc, int resched) 3889 { 3890 #define PA2DESC(_sc, _pa) \ 3891 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 3892 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 3893 struct ath_buf *bf; 3894 struct ifnet *ifp = sc->sc_ifp; 3895 struct ieee80211com *ic = ifp->if_l2com; 3896 struct ath_hal *ah = sc->sc_ah; 3897 struct ath_desc *ds; 3898 struct ath_rx_status *rs; 3899 struct mbuf *m; 3900 struct ieee80211_node *ni; 3901 int len, type, ngood; 3902 HAL_STATUS status; 3903 int16_t nf; 3904 u_int64_t tsf; 3905 int npkts = 0; 3906 3907 /* XXX we must not hold the ATH_LOCK here */ 3908 ATH_UNLOCK_ASSERT(sc); 3909 ATH_PCU_UNLOCK_ASSERT(sc); 3910 3911 ATH_PCU_LOCK(sc); 3912 sc->sc_rxproc_cnt++; 3913 ATH_PCU_UNLOCK(sc); 3914 3915 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__); 3916 ngood = 0; 3917 nf = ath_hal_getchannoise(ah, sc->sc_curchan); 3918 sc->sc_stats.ast_rx_noise = nf; 3919 tsf = ath_hal_gettsf64(ah); 3920 do { 3921 bf = TAILQ_FIRST(&sc->sc_rxbuf); 3922 if (sc->sc_rxslink && bf == NULL) { /* NB: shouldn't happen */ 3923 if_printf(ifp, "%s: no buffer!\n", __func__); 3924 break; 3925 } else if (bf == NULL) { 3926 /* 3927 * End of List: 3928 * this can happen for non-self-linked RX chains 3929 */ 3930 sc->sc_stats.ast_rx_hitqueueend++; 3931 break; 3932 } 3933 m = bf->bf_m; 3934 if (m == NULL) { /* NB: shouldn't happen */ 3935 /* 3936 * If mbuf allocation failed previously there 3937 * will be no mbuf; try again to re-populate it. 3938 */ 3939 /* XXX make debug msg */ 3940 if_printf(ifp, "%s: no mbuf!\n", __func__); 3941 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 3942 goto rx_next; 3943 } 3944 ds = bf->bf_desc; 3945 if (ds->ds_link == bf->bf_daddr) { 3946 /* NB: never process the self-linked entry at the end */ 3947 sc->sc_stats.ast_rx_hitqueueend++; 3948 break; 3949 } 3950 /* XXX sync descriptor memory */ 3951 /* 3952 * Must provide the virtual address of the current 3953 * descriptor, the physical address, and the virtual 3954 * address of the next descriptor in the h/w chain. 3955 * This allows the HAL to look ahead to see if the 3956 * hardware is done with a descriptor by checking the 3957 * done bit in the following descriptor and the address 3958 * of the current descriptor the DMA engine is working 3959 * on. All this is necessary because of our use of 3960 * a self-linked list to avoid rx overruns. 3961 */ 3962 rs = &bf->bf_status.ds_rxstat; 3963 status = ath_hal_rxprocdesc(ah, ds, 3964 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 3965 #ifdef ATH_DEBUG 3966 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 3967 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 3968 #endif 3969 if (status == HAL_EINPROGRESS) 3970 break; 3971 3972 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 3973 npkts++; 3974 3975 /* These aren't specifically errors */ 3976 if (rs->rs_flags & HAL_RX_GI) 3977 sc->sc_stats.ast_rx_halfgi++; 3978 if (rs->rs_flags & HAL_RX_2040) 3979 sc->sc_stats.ast_rx_2040++; 3980 if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE) 3981 sc->sc_stats.ast_rx_pre_crc_err++; 3982 if (rs->rs_flags & HAL_RX_DELIM_CRC_POST) 3983 sc->sc_stats.ast_rx_post_crc_err++; 3984 if (rs->rs_flags & HAL_RX_DECRYPT_BUSY) 3985 sc->sc_stats.ast_rx_decrypt_busy_err++; 3986 if (rs->rs_flags & HAL_RX_HI_RX_CHAIN) 3987 sc->sc_stats.ast_rx_hi_rx_chain++; 3988 3989 if (rs->rs_status != 0) { 3990 if (rs->rs_status & HAL_RXERR_CRC) 3991 sc->sc_stats.ast_rx_crcerr++; 3992 if (rs->rs_status & HAL_RXERR_FIFO) 3993 sc->sc_stats.ast_rx_fifoerr++; 3994 if (rs->rs_status & HAL_RXERR_PHY) { 3995 sc->sc_stats.ast_rx_phyerr++; 3996 /* Process DFS radar events */ 3997 if ((rs->rs_phyerr == HAL_PHYERR_RADAR) || 3998 (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) { 3999 /* Since we're touching the frame data, sync it */ 4000 bus_dmamap_sync(sc->sc_dmat, 4001 bf->bf_dmamap, 4002 BUS_DMASYNC_POSTREAD); 4003 /* Now pass it to the radar processing code */ 4004 ath_dfs_process_phy_err(sc, mtod(m, char *), tsf, rs); 4005 } 4006 4007 /* Be suitably paranoid about receiving phy errors out of the stats array bounds */ 4008 if (rs->rs_phyerr < 64) 4009 sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++; 4010 goto rx_error; /* NB: don't count in ierrors */ 4011 } 4012 if (rs->rs_status & HAL_RXERR_DECRYPT) { 4013 /* 4014 * Decrypt error. If the error occurred 4015 * because there was no hardware key, then 4016 * let the frame through so the upper layers 4017 * can process it. This is necessary for 5210 4018 * parts which have no way to setup a ``clear'' 4019 * key cache entry. 4020 * 4021 * XXX do key cache faulting 4022 */ 4023 if (rs->rs_keyix == HAL_RXKEYIX_INVALID) 4024 goto rx_accept; 4025 sc->sc_stats.ast_rx_badcrypt++; 4026 } 4027 if (rs->rs_status & HAL_RXERR_MIC) { 4028 sc->sc_stats.ast_rx_badmic++; 4029 /* 4030 * Do minimal work required to hand off 4031 * the 802.11 header for notification. 4032 */ 4033 /* XXX frag's and qos frames */ 4034 len = rs->rs_datalen; 4035 if (len >= sizeof (struct ieee80211_frame)) { 4036 bus_dmamap_sync(sc->sc_dmat, 4037 bf->bf_dmamap, 4038 BUS_DMASYNC_POSTREAD); 4039 ath_handle_micerror(ic, 4040 mtod(m, struct ieee80211_frame *), 4041 sc->sc_splitmic ? 4042 rs->rs_keyix-32 : rs->rs_keyix); 4043 } 4044 } 4045 ifp->if_ierrors++; 4046 rx_error: 4047 /* 4048 * Cleanup any pending partial frame. 4049 */ 4050 if (sc->sc_rxpending != NULL) { 4051 m_freem(sc->sc_rxpending); 4052 sc->sc_rxpending = NULL; 4053 } 4054 /* 4055 * When a tap is present pass error frames 4056 * that have been requested. By default we 4057 * pass decrypt+mic errors but others may be 4058 * interesting (e.g. crc). 4059 */ 4060 if (ieee80211_radiotap_active(ic) && 4061 (rs->rs_status & sc->sc_monpass)) { 4062 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4063 BUS_DMASYNC_POSTREAD); 4064 /* NB: bpf needs the mbuf length setup */ 4065 len = rs->rs_datalen; 4066 m->m_pkthdr.len = m->m_len = len; 4067 bf->bf_m = NULL; 4068 ath_rx_tap(ifp, m, rs, tsf, nf); 4069 ieee80211_radiotap_rx_all(ic, m); 4070 m_freem(m); 4071 } 4072 /* XXX pass MIC errors up for s/w reclaculation */ 4073 goto rx_next; 4074 } 4075 rx_accept: 4076 /* 4077 * Sync and unmap the frame. At this point we're 4078 * committed to passing the mbuf somewhere so clear 4079 * bf_m; this means a new mbuf must be allocated 4080 * when the rx descriptor is setup again to receive 4081 * another frame. 4082 */ 4083 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4084 BUS_DMASYNC_POSTREAD); 4085 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4086 bf->bf_m = NULL; 4087 4088 len = rs->rs_datalen; 4089 m->m_len = len; 4090 4091 if (rs->rs_more) { 4092 /* 4093 * Frame spans multiple descriptors; save 4094 * it for the next completed descriptor, it 4095 * will be used to construct a jumbogram. 4096 */ 4097 if (sc->sc_rxpending != NULL) { 4098 /* NB: max frame size is currently 2 clusters */ 4099 sc->sc_stats.ast_rx_toobig++; 4100 m_freem(sc->sc_rxpending); 4101 } 4102 m->m_pkthdr.rcvif = ifp; 4103 m->m_pkthdr.len = len; 4104 sc->sc_rxpending = m; 4105 goto rx_next; 4106 } else if (sc->sc_rxpending != NULL) { 4107 /* 4108 * This is the second part of a jumbogram, 4109 * chain it to the first mbuf, adjust the 4110 * frame length, and clear the rxpending state. 4111 */ 4112 sc->sc_rxpending->m_next = m; 4113 sc->sc_rxpending->m_pkthdr.len += len; 4114 m = sc->sc_rxpending; 4115 sc->sc_rxpending = NULL; 4116 } else { 4117 /* 4118 * Normal single-descriptor receive; setup 4119 * the rcvif and packet length. 4120 */ 4121 m->m_pkthdr.rcvif = ifp; 4122 m->m_pkthdr.len = len; 4123 } 4124 4125 ifp->if_ipackets++; 4126 sc->sc_stats.ast_ant_rx[rs->rs_antenna]++; 4127 4128 /* 4129 * Populate the rx status block. When there are bpf 4130 * listeners we do the additional work to provide 4131 * complete status. Otherwise we fill in only the 4132 * material required by ieee80211_input. Note that 4133 * noise setting is filled in above. 4134 */ 4135 if (ieee80211_radiotap_active(ic)) 4136 ath_rx_tap(ifp, m, rs, tsf, nf); 4137 4138 /* 4139 * From this point on we assume the frame is at least 4140 * as large as ieee80211_frame_min; verify that. 4141 */ 4142 if (len < IEEE80211_MIN_LEN) { 4143 if (!ieee80211_radiotap_active(ic)) { 4144 DPRINTF(sc, ATH_DEBUG_RECV, 4145 "%s: short packet %d\n", __func__, len); 4146 sc->sc_stats.ast_rx_tooshort++; 4147 } else { 4148 /* NB: in particular this captures ack's */ 4149 ieee80211_radiotap_rx_all(ic, m); 4150 } 4151 m_freem(m); 4152 goto rx_next; 4153 } 4154 4155 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 4156 const HAL_RATE_TABLE *rt = sc->sc_currates; 4157 uint8_t rix = rt->rateCodeToIndex[rs->rs_rate]; 4158 4159 ieee80211_dump_pkt(ic, mtod(m, caddr_t), len, 4160 sc->sc_hwmap[rix].ieeerate, rs->rs_rssi); 4161 } 4162 4163 m_adj(m, -IEEE80211_CRC_LEN); 4164 4165 /* 4166 * Locate the node for sender, track state, and then 4167 * pass the (referenced) node up to the 802.11 layer 4168 * for its use. 4169 */ 4170 ni = ieee80211_find_rxnode_withkey(ic, 4171 mtod(m, const struct ieee80211_frame_min *), 4172 rs->rs_keyix == HAL_RXKEYIX_INVALID ? 4173 IEEE80211_KEYIX_NONE : rs->rs_keyix); 4174 sc->sc_lastrs = rs; 4175 4176 if (rs->rs_isaggr) 4177 sc->sc_stats.ast_rx_agg++; 4178 4179 if (ni != NULL) { 4180 /* 4181 * Only punt packets for ampdu reorder processing for 4182 * 11n nodes; net80211 enforces that M_AMPDU is only 4183 * set for 11n nodes. 4184 */ 4185 if (ni->ni_flags & IEEE80211_NODE_HT) 4186 m->m_flags |= M_AMPDU; 4187 4188 /* 4189 * Sending station is known, dispatch directly. 4190 */ 4191 type = ieee80211_input(ni, m, rs->rs_rssi, nf); 4192 ieee80211_free_node(ni); 4193 /* 4194 * Arrange to update the last rx timestamp only for 4195 * frames from our ap when operating in station mode. 4196 * This assumes the rx key is always setup when 4197 * associated. 4198 */ 4199 if (ic->ic_opmode == IEEE80211_M_STA && 4200 rs->rs_keyix != HAL_RXKEYIX_INVALID) 4201 ngood++; 4202 } else { 4203 type = ieee80211_input_all(ic, m, rs->rs_rssi, nf); 4204 } 4205 /* 4206 * Track rx rssi and do any rx antenna management. 4207 */ 4208 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi); 4209 if (sc->sc_diversity) { 4210 /* 4211 * When using fast diversity, change the default rx 4212 * antenna if diversity chooses the other antenna 3 4213 * times in a row. 4214 */ 4215 if (sc->sc_defant != rs->rs_antenna) { 4216 if (++sc->sc_rxotherant >= 3) 4217 ath_setdefantenna(sc, rs->rs_antenna); 4218 } else 4219 sc->sc_rxotherant = 0; 4220 } 4221 4222 /* Newer school diversity - kite specific for now */ 4223 /* XXX perhaps migrate the normal diversity code to this? */ 4224 if ((ah)->ah_rxAntCombDiversity) 4225 (*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz); 4226 4227 if (sc->sc_softled) { 4228 /* 4229 * Blink for any data frame. Otherwise do a 4230 * heartbeat-style blink when idle. The latter 4231 * is mainly for station mode where we depend on 4232 * periodic beacon frames to trigger the poll event. 4233 */ 4234 if (type == IEEE80211_FC0_TYPE_DATA) { 4235 const HAL_RATE_TABLE *rt = sc->sc_currates; 4236 ath_led_event(sc, 4237 rt->rateCodeToIndex[rs->rs_rate]); 4238 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 4239 ath_led_event(sc, 0); 4240 } 4241 rx_next: 4242 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 4243 } while (ath_rxbuf_init(sc, bf) == 0); 4244 4245 /* rx signal state monitoring */ 4246 ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan); 4247 if (ngood) 4248 sc->sc_lastrx = tsf; 4249 4250 CTR2(ATH_KTR_INTR, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood); 4251 /* Queue DFS tasklet if needed */ 4252 if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan)) 4253 taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask); 4254 4255 /* 4256 * Now that all the RX frames were handled that 4257 * need to be handled, kick the PCU if there's 4258 * been an RXEOL condition. 4259 */ 4260 ATH_PCU_LOCK(sc); 4261 if (resched && sc->sc_kickpcu) { 4262 CTR0(ATH_KTR_ERR, "ath_rx_proc: kickpcu"); 4263 device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n", 4264 __func__, npkts); 4265 4266 /* XXX rxslink? */ 4267 /* 4268 * XXX can we hold the PCU lock here? 4269 * Are there any net80211 buffer calls involved? 4270 */ 4271 bf = TAILQ_FIRST(&sc->sc_rxbuf); 4272 ath_hal_putrxbuf(ah, bf->bf_daddr); 4273 ath_hal_rxena(ah); /* enable recv descriptors */ 4274 ath_mode_init(sc); /* set filters, etc. */ 4275 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4276 4277 ath_hal_intrset(ah, sc->sc_imask); 4278 sc->sc_kickpcu = 0; 4279 } 4280 ATH_PCU_UNLOCK(sc); 4281 4282 /* XXX check this inside of IF_LOCK? */ 4283 if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) { 4284 #ifdef IEEE80211_SUPPORT_SUPERG 4285 ieee80211_ff_age_all(ic, 100); 4286 #endif 4287 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 4288 ath_start(ifp); 4289 } 4290 #undef PA2DESC 4291 4292 ATH_PCU_LOCK(sc); 4293 sc->sc_rxproc_cnt--; 4294 ATH_PCU_UNLOCK(sc); 4295 } 4296 4297 static void 4298 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4299 { 4300 txq->axq_qnum = qnum; 4301 txq->axq_ac = 0; 4302 txq->axq_depth = 0; 4303 txq->axq_aggr_depth = 0; 4304 txq->axq_intrcnt = 0; 4305 txq->axq_link = NULL; 4306 txq->axq_softc = sc; 4307 TAILQ_INIT(&txq->axq_q); 4308 TAILQ_INIT(&txq->axq_tidq); 4309 ATH_TXQ_LOCK_INIT(sc, txq); 4310 } 4311 4312 /* 4313 * Setup a h/w transmit queue. 4314 */ 4315 static struct ath_txq * 4316 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4317 { 4318 #define N(a) (sizeof(a)/sizeof(a[0])) 4319 struct ath_hal *ah = sc->sc_ah; 4320 HAL_TXQ_INFO qi; 4321 int qnum; 4322 4323 memset(&qi, 0, sizeof(qi)); 4324 qi.tqi_subtype = subtype; 4325 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4326 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4327 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4328 /* 4329 * Enable interrupts only for EOL and DESC conditions. 4330 * We mark tx descriptors to receive a DESC interrupt 4331 * when a tx queue gets deep; otherwise waiting for the 4332 * EOL to reap descriptors. Note that this is done to 4333 * reduce interrupt load and this only defers reaping 4334 * descriptors, never transmitting frames. Aside from 4335 * reducing interrupts this also permits more concurrency. 4336 * The only potential downside is if the tx queue backs 4337 * up in which case the top half of the kernel may backup 4338 * due to a lack of tx descriptors. 4339 */ 4340 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 4341 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4342 if (qnum == -1) { 4343 /* 4344 * NB: don't print a message, this happens 4345 * normally on parts with too few tx queues 4346 */ 4347 return NULL; 4348 } 4349 if (qnum >= N(sc->sc_txq)) { 4350 device_printf(sc->sc_dev, 4351 "hal qnum %u out of range, max %zu!\n", 4352 qnum, N(sc->sc_txq)); 4353 ath_hal_releasetxqueue(ah, qnum); 4354 return NULL; 4355 } 4356 if (!ATH_TXQ_SETUP(sc, qnum)) { 4357 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4358 sc->sc_txqsetup |= 1<<qnum; 4359 } 4360 return &sc->sc_txq[qnum]; 4361 #undef N 4362 } 4363 4364 /* 4365 * Setup a hardware data transmit queue for the specified 4366 * access control. The hal may not support all requested 4367 * queues in which case it will return a reference to a 4368 * previously setup queue. We record the mapping from ac's 4369 * to h/w queues for use by ath_tx_start and also track 4370 * the set of h/w queues being used to optimize work in the 4371 * transmit interrupt handler and related routines. 4372 */ 4373 static int 4374 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4375 { 4376 #define N(a) (sizeof(a)/sizeof(a[0])) 4377 struct ath_txq *txq; 4378 4379 if (ac >= N(sc->sc_ac2q)) { 4380 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4381 ac, N(sc->sc_ac2q)); 4382 return 0; 4383 } 4384 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4385 if (txq != NULL) { 4386 txq->axq_ac = ac; 4387 sc->sc_ac2q[ac] = txq; 4388 return 1; 4389 } else 4390 return 0; 4391 #undef N 4392 } 4393 4394 /* 4395 * Update WME parameters for a transmit queue. 4396 */ 4397 static int 4398 ath_txq_update(struct ath_softc *sc, int ac) 4399 { 4400 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4401 #define ATH_TXOP_TO_US(v) (v<<5) 4402 struct ifnet *ifp = sc->sc_ifp; 4403 struct ieee80211com *ic = ifp->if_l2com; 4404 struct ath_txq *txq = sc->sc_ac2q[ac]; 4405 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4406 struct ath_hal *ah = sc->sc_ah; 4407 HAL_TXQ_INFO qi; 4408 4409 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4410 #ifdef IEEE80211_SUPPORT_TDMA 4411 if (sc->sc_tdma) { 4412 /* 4413 * AIFS is zero so there's no pre-transmit wait. The 4414 * burst time defines the slot duration and is configured 4415 * through net80211. The QCU is setup to not do post-xmit 4416 * back off, lockout all lower-priority QCU's, and fire 4417 * off the DMA beacon alert timer which is setup based 4418 * on the slot configuration. 4419 */ 4420 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4421 | HAL_TXQ_TXERRINT_ENABLE 4422 | HAL_TXQ_TXURNINT_ENABLE 4423 | HAL_TXQ_TXEOLINT_ENABLE 4424 | HAL_TXQ_DBA_GATED 4425 | HAL_TXQ_BACKOFF_DISABLE 4426 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4427 ; 4428 qi.tqi_aifs = 0; 4429 /* XXX +dbaprep? */ 4430 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4431 qi.tqi_burstTime = qi.tqi_readyTime; 4432 } else { 4433 #endif 4434 /* 4435 * XXX shouldn't this just use the default flags 4436 * used in the previous queue setup? 4437 */ 4438 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4439 | HAL_TXQ_TXERRINT_ENABLE 4440 | HAL_TXQ_TXDESCINT_ENABLE 4441 | HAL_TXQ_TXURNINT_ENABLE 4442 | HAL_TXQ_TXEOLINT_ENABLE 4443 ; 4444 qi.tqi_aifs = wmep->wmep_aifsn; 4445 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4446 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4447 qi.tqi_readyTime = 0; 4448 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 4449 #ifdef IEEE80211_SUPPORT_TDMA 4450 } 4451 #endif 4452 4453 DPRINTF(sc, ATH_DEBUG_RESET, 4454 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4455 __func__, txq->axq_qnum, qi.tqi_qflags, 4456 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4457 4458 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4459 if_printf(ifp, "unable to update hardware queue " 4460 "parameters for %s traffic!\n", 4461 ieee80211_wme_acnames[ac]); 4462 return 0; 4463 } else { 4464 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4465 return 1; 4466 } 4467 #undef ATH_TXOP_TO_US 4468 #undef ATH_EXPONENT_TO_VALUE 4469 } 4470 4471 /* 4472 * Callback from the 802.11 layer to update WME parameters. 4473 */ 4474 static int 4475 ath_wme_update(struct ieee80211com *ic) 4476 { 4477 struct ath_softc *sc = ic->ic_ifp->if_softc; 4478 4479 return !ath_txq_update(sc, WME_AC_BE) || 4480 !ath_txq_update(sc, WME_AC_BK) || 4481 !ath_txq_update(sc, WME_AC_VI) || 4482 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4483 } 4484 4485 /* 4486 * Reclaim resources for a setup queue. 4487 */ 4488 static void 4489 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4490 { 4491 4492 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4493 ATH_TXQ_LOCK_DESTROY(txq); 4494 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4495 } 4496 4497 /* 4498 * Reclaim all tx queue resources. 4499 */ 4500 static void 4501 ath_tx_cleanup(struct ath_softc *sc) 4502 { 4503 int i; 4504 4505 ATH_TXBUF_LOCK_DESTROY(sc); 4506 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4507 if (ATH_TXQ_SETUP(sc, i)) 4508 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4509 } 4510 4511 /* 4512 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4513 * using the current rates in sc_rixmap. 4514 */ 4515 int 4516 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4517 { 4518 int rix = sc->sc_rixmap[rate]; 4519 /* NB: return lowest rix for invalid rate */ 4520 return (rix == 0xff ? 0 : rix); 4521 } 4522 4523 static void 4524 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4525 struct ath_buf *bf) 4526 { 4527 struct ieee80211_node *ni = bf->bf_node; 4528 struct ifnet *ifp = sc->sc_ifp; 4529 struct ieee80211com *ic = ifp->if_l2com; 4530 int sr, lr, pri; 4531 4532 if (ts->ts_status == 0) { 4533 u_int8_t txant = ts->ts_antenna; 4534 sc->sc_stats.ast_ant_tx[txant]++; 4535 sc->sc_ant_tx[txant]++; 4536 if (ts->ts_finaltsi != 0) 4537 sc->sc_stats.ast_tx_altrate++; 4538 pri = M_WME_GETAC(bf->bf_m); 4539 if (pri >= WME_AC_VO) 4540 ic->ic_wme.wme_hipri_traffic++; 4541 if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) 4542 ni->ni_inact = ni->ni_inact_reload; 4543 } else { 4544 if (ts->ts_status & HAL_TXERR_XRETRY) 4545 sc->sc_stats.ast_tx_xretries++; 4546 if (ts->ts_status & HAL_TXERR_FIFO) 4547 sc->sc_stats.ast_tx_fifoerr++; 4548 if (ts->ts_status & HAL_TXERR_FILT) 4549 sc->sc_stats.ast_tx_filtered++; 4550 if (ts->ts_status & HAL_TXERR_XTXOP) 4551 sc->sc_stats.ast_tx_xtxop++; 4552 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4553 sc->sc_stats.ast_tx_timerexpired++; 4554 4555 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 4556 sc->sc_stats.ast_tx_data_underrun++; 4557 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 4558 sc->sc_stats.ast_tx_delim_underrun++; 4559 4560 if (bf->bf_m->m_flags & M_FF) 4561 sc->sc_stats.ast_ff_txerr++; 4562 } 4563 /* XXX when is this valid? */ 4564 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 4565 sc->sc_stats.ast_tx_desccfgerr++; 4566 4567 sr = ts->ts_shortretry; 4568 lr = ts->ts_longretry; 4569 sc->sc_stats.ast_tx_shortretry += sr; 4570 sc->sc_stats.ast_tx_longretry += lr; 4571 4572 } 4573 4574 /* 4575 * The default completion. If fail is 1, this means 4576 * "please don't retry the frame, and just return -1 status 4577 * to the net80211 stack. 4578 */ 4579 void 4580 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4581 { 4582 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4583 int st; 4584 4585 if (fail == 1) 4586 st = -1; 4587 else 4588 st = ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) ? 4589 ts->ts_status : HAL_TXERR_XRETRY; 4590 4591 if (bf->bf_state.bfs_dobaw) 4592 device_printf(sc->sc_dev, 4593 "%s: dobaw should've been cleared!\n", __func__); 4594 if (bf->bf_next != NULL) 4595 device_printf(sc->sc_dev, 4596 "%s: bf_next not NULL!\n", __func__); 4597 4598 /* 4599 * Do any tx complete callback. Note this must 4600 * be done before releasing the node reference. 4601 * This will free the mbuf, release the net80211 4602 * node and recycle the ath_buf. 4603 */ 4604 ath_tx_freebuf(sc, bf, st); 4605 } 4606 4607 /* 4608 * Update rate control with the given completion status. 4609 */ 4610 void 4611 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4612 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4613 int nframes, int nbad) 4614 { 4615 struct ath_node *an; 4616 4617 /* Only for unicast frames */ 4618 if (ni == NULL) 4619 return; 4620 4621 an = ATH_NODE(ni); 4622 4623 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4624 ATH_NODE_LOCK(an); 4625 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4626 ATH_NODE_UNLOCK(an); 4627 } 4628 } 4629 4630 /* 4631 * Update the busy status of the last frame on the free list. 4632 * When doing TDMA, the busy flag tracks whether the hardware 4633 * currently points to this buffer or not, and thus gated DMA 4634 * may restart by re-reading the last descriptor in this 4635 * buffer. 4636 * 4637 * This should be called in the completion function once one 4638 * of the buffers has been used. 4639 */ 4640 static void 4641 ath_tx_update_busy(struct ath_softc *sc) 4642 { 4643 struct ath_buf *last; 4644 4645 /* 4646 * Since the last frame may still be marked 4647 * as ATH_BUF_BUSY, unmark it here before 4648 * finishing the frame processing. 4649 * Since we've completed a frame (aggregate 4650 * or otherwise), the hardware has moved on 4651 * and is no longer referencing the previous 4652 * descriptor. 4653 */ 4654 ATH_TXBUF_LOCK_ASSERT(sc); 4655 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4656 if (last != NULL) 4657 last->bf_flags &= ~ATH_BUF_BUSY; 4658 } 4659 4660 4661 /* 4662 * Process completed xmit descriptors from the specified queue. 4663 * Kick the packet scheduler if needed. This can occur from this 4664 * particular task. 4665 */ 4666 static int 4667 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4668 { 4669 struct ath_hal *ah = sc->sc_ah; 4670 struct ath_buf *bf; 4671 struct ath_desc *ds; 4672 struct ath_tx_status *ts; 4673 struct ieee80211_node *ni; 4674 struct ath_node *an; 4675 int nacked; 4676 HAL_STATUS status; 4677 4678 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4679 __func__, txq->axq_qnum, 4680 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4681 txq->axq_link); 4682 nacked = 0; 4683 for (;;) { 4684 ATH_TXQ_LOCK(txq); 4685 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4686 bf = TAILQ_FIRST(&txq->axq_q); 4687 if (bf == NULL) { 4688 ATH_TXQ_UNLOCK(txq); 4689 break; 4690 } 4691 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4692 ts = &bf->bf_status.ds_txstat; 4693 status = ath_hal_txprocdesc(ah, ds, ts); 4694 #ifdef ATH_DEBUG 4695 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4696 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4697 status == HAL_OK); 4698 #endif 4699 if (status == HAL_EINPROGRESS) { 4700 ATH_TXQ_UNLOCK(txq); 4701 break; 4702 } 4703 ATH_TXQ_REMOVE(txq, bf, bf_list); 4704 #ifdef IEEE80211_SUPPORT_TDMA 4705 if (txq->axq_depth > 0) { 4706 /* 4707 * More frames follow. Mark the buffer busy 4708 * so it's not re-used while the hardware may 4709 * still re-read the link field in the descriptor. 4710 * 4711 * Use the last buffer in an aggregate as that 4712 * is where the hardware may be - intermediate 4713 * descriptors won't be "busy". 4714 */ 4715 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4716 } else 4717 #else 4718 if (txq->axq_depth == 0) 4719 #endif 4720 txq->axq_link = NULL; 4721 if (bf->bf_state.bfs_aggr) 4722 txq->axq_aggr_depth--; 4723 4724 ni = bf->bf_node; 4725 /* 4726 * If unicast frame was ack'd update RSSI, 4727 * including the last rx time used to 4728 * workaround phantom bmiss interrupts. 4729 */ 4730 if (ni != NULL && ts->ts_status == 0 && 4731 ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)) { 4732 nacked++; 4733 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4734 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4735 ts->ts_rssi); 4736 } 4737 ATH_TXQ_UNLOCK(txq); 4738 4739 /* If unicast frame, update general statistics */ 4740 if (ni != NULL) { 4741 an = ATH_NODE(ni); 4742 /* update statistics */ 4743 ath_tx_update_stats(sc, ts, bf); 4744 } 4745 4746 /* 4747 * Call the completion handler. 4748 * The completion handler is responsible for 4749 * calling the rate control code. 4750 * 4751 * Frames with no completion handler get the 4752 * rate control code called here. 4753 */ 4754 if (bf->bf_comp == NULL) { 4755 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4756 (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) { 4757 /* 4758 * XXX assume this isn't an aggregate 4759 * frame. 4760 */ 4761 ath_tx_update_ratectrl(sc, ni, 4762 bf->bf_state.bfs_rc, ts, 4763 bf->bf_state.bfs_pktlen, 1, 4764 (ts->ts_status == 0 ? 0 : 1)); 4765 } 4766 ath_tx_default_comp(sc, bf, 0); 4767 } else 4768 bf->bf_comp(sc, bf, 0); 4769 } 4770 #ifdef IEEE80211_SUPPORT_SUPERG 4771 /* 4772 * Flush fast-frame staging queue when traffic slows. 4773 */ 4774 if (txq->axq_depth <= 1) 4775 ieee80211_ff_flush(ic, txq->axq_ac); 4776 #endif 4777 4778 /* Kick the TXQ scheduler */ 4779 if (dosched) { 4780 ATH_TXQ_LOCK(txq); 4781 ath_txq_sched(sc, txq); 4782 ATH_TXQ_UNLOCK(txq); 4783 } 4784 4785 return nacked; 4786 } 4787 4788 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4789 4790 /* 4791 * Deferred processing of transmit interrupt; special-cased 4792 * for a single hardware transmit queue (e.g. 5210 and 5211). 4793 */ 4794 static void 4795 ath_tx_proc_q0(void *arg, int npending) 4796 { 4797 struct ath_softc *sc = arg; 4798 struct ifnet *ifp = sc->sc_ifp; 4799 uint32_t txqs; 4800 4801 ATH_PCU_LOCK(sc); 4802 sc->sc_txproc_cnt++; 4803 txqs = sc->sc_txq_active; 4804 sc->sc_txq_active &= ~txqs; 4805 ATH_PCU_UNLOCK(sc); 4806 4807 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4808 /* XXX why is lastrx updated in tx code? */ 4809 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4810 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4811 ath_tx_processq(sc, sc->sc_cabq, 1); 4812 /* XXX check this inside of IF_LOCK? */ 4813 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4814 sc->sc_wd_timer = 0; 4815 4816 if (sc->sc_softled) 4817 ath_led_event(sc, sc->sc_txrix); 4818 4819 ATH_PCU_LOCK(sc); 4820 sc->sc_txproc_cnt--; 4821 ATH_PCU_UNLOCK(sc); 4822 4823 ath_start(ifp); 4824 } 4825 4826 /* 4827 * Deferred processing of transmit interrupt; special-cased 4828 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4829 */ 4830 static void 4831 ath_tx_proc_q0123(void *arg, int npending) 4832 { 4833 struct ath_softc *sc = arg; 4834 struct ifnet *ifp = sc->sc_ifp; 4835 int nacked; 4836 uint32_t txqs; 4837 4838 ATH_PCU_LOCK(sc); 4839 sc->sc_txproc_cnt++; 4840 txqs = sc->sc_txq_active; 4841 sc->sc_txq_active &= ~txqs; 4842 ATH_PCU_UNLOCK(sc); 4843 4844 /* 4845 * Process each active queue. 4846 */ 4847 nacked = 0; 4848 if (TXQACTIVE(txqs, 0)) 4849 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4850 if (TXQACTIVE(txqs, 1)) 4851 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4852 if (TXQACTIVE(txqs, 2)) 4853 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4854 if (TXQACTIVE(txqs, 3)) 4855 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4856 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4857 ath_tx_processq(sc, sc->sc_cabq, 1); 4858 if (nacked) 4859 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4860 4861 /* XXX check this inside of IF_LOCK? */ 4862 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4863 sc->sc_wd_timer = 0; 4864 4865 if (sc->sc_softled) 4866 ath_led_event(sc, sc->sc_txrix); 4867 4868 ATH_PCU_LOCK(sc); 4869 sc->sc_txproc_cnt--; 4870 ATH_PCU_UNLOCK(sc); 4871 4872 ath_start(ifp); 4873 } 4874 4875 /* 4876 * Deferred processing of transmit interrupt. 4877 */ 4878 static void 4879 ath_tx_proc(void *arg, int npending) 4880 { 4881 struct ath_softc *sc = arg; 4882 struct ifnet *ifp = sc->sc_ifp; 4883 int i, nacked; 4884 uint32_t txqs; 4885 4886 ATH_PCU_LOCK(sc); 4887 sc->sc_txproc_cnt++; 4888 txqs = sc->sc_txq_active; 4889 sc->sc_txq_active &= ~txqs; 4890 ATH_PCU_UNLOCK(sc); 4891 4892 /* 4893 * Process each active queue. 4894 */ 4895 nacked = 0; 4896 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4897 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4898 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4899 if (nacked) 4900 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4901 4902 /* XXX check this inside of IF_LOCK? */ 4903 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4904 sc->sc_wd_timer = 0; 4905 4906 if (sc->sc_softled) 4907 ath_led_event(sc, sc->sc_txrix); 4908 4909 ATH_PCU_LOCK(sc); 4910 sc->sc_txproc_cnt--; 4911 ATH_PCU_UNLOCK(sc); 4912 4913 ath_start(ifp); 4914 } 4915 #undef TXQACTIVE 4916 4917 /* 4918 * Return a buffer to the pool and update the 'busy' flag on the 4919 * previous 'tail' entry. 4920 * 4921 * This _must_ only be called when the buffer is involved in a completed 4922 * TX. The logic is that if it was part of an active TX, the previous 4923 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4924 * for restart (eg for TDMA.) 4925 * 4926 * The caller must free the mbuf and recycle the node reference. 4927 */ 4928 void 4929 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4930 { 4931 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4932 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 4933 4934 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4935 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4936 4937 ATH_TXBUF_LOCK(sc); 4938 ath_tx_update_busy(sc); 4939 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4940 ATH_TXBUF_UNLOCK(sc); 4941 } 4942 4943 /* 4944 * This is currently used by ath_tx_draintxq() and 4945 * ath_tx_tid_free_pkts(). 4946 * 4947 * It recycles a single ath_buf. 4948 */ 4949 void 4950 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4951 { 4952 struct ieee80211_node *ni = bf->bf_node; 4953 struct mbuf *m0 = bf->bf_m; 4954 4955 bf->bf_node = NULL; 4956 bf->bf_m = NULL; 4957 4958 /* Free the buffer, it's not needed any longer */ 4959 ath_freebuf(sc, bf); 4960 4961 if (ni != NULL) { 4962 /* 4963 * Do any callback and reclaim the node reference. 4964 */ 4965 if (m0->m_flags & M_TXCB) 4966 ieee80211_process_callback(ni, m0, status); 4967 ieee80211_free_node(ni); 4968 } 4969 m_freem(m0); 4970 4971 /* 4972 * XXX the buffer used to be freed -after-, but the DMA map was 4973 * freed where ath_freebuf() now is. I've no idea what this 4974 * will do. 4975 */ 4976 } 4977 4978 void 4979 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4980 { 4981 #ifdef ATH_DEBUG 4982 struct ath_hal *ah = sc->sc_ah; 4983 #endif 4984 struct ath_buf *bf; 4985 u_int ix; 4986 4987 /* 4988 * NB: this assumes output has been stopped and 4989 * we do not need to block ath_tx_proc 4990 */ 4991 ATH_TXBUF_LOCK(sc); 4992 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4993 if (bf != NULL) 4994 bf->bf_flags &= ~ATH_BUF_BUSY; 4995 ATH_TXBUF_UNLOCK(sc); 4996 4997 for (ix = 0;; ix++) { 4998 ATH_TXQ_LOCK(txq); 4999 bf = TAILQ_FIRST(&txq->axq_q); 5000 if (bf == NULL) { 5001 txq->axq_link = NULL; 5002 ATH_TXQ_UNLOCK(txq); 5003 break; 5004 } 5005 ATH_TXQ_REMOVE(txq, bf, bf_list); 5006 if (bf->bf_state.bfs_aggr) 5007 txq->axq_aggr_depth--; 5008 #ifdef ATH_DEBUG 5009 if (sc->sc_debug & ATH_DEBUG_RESET) { 5010 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5011 5012 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, 5013 ath_hal_txprocdesc(ah, bf->bf_lastds, 5014 &bf->bf_status.ds_txstat) == HAL_OK); 5015 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5016 bf->bf_m->m_len, 0, -1); 5017 } 5018 #endif /* ATH_DEBUG */ 5019 /* 5020 * Since we're now doing magic in the completion 5021 * functions, we -must- call it for aggregation 5022 * destinations or BAW tracking will get upset. 5023 */ 5024 /* 5025 * Clear ATH_BUF_BUSY; the completion handler 5026 * will free the buffer. 5027 */ 5028 ATH_TXQ_UNLOCK(txq); 5029 bf->bf_flags &= ~ATH_BUF_BUSY; 5030 if (bf->bf_comp) 5031 bf->bf_comp(sc, bf, 1); 5032 else 5033 ath_tx_default_comp(sc, bf, 1); 5034 } 5035 5036 /* 5037 * Drain software queued frames which are on 5038 * active TIDs. 5039 */ 5040 ath_tx_txq_drain(sc, txq); 5041 } 5042 5043 static void 5044 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5045 { 5046 struct ath_hal *ah = sc->sc_ah; 5047 5048 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5049 __func__, txq->axq_qnum, 5050 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5051 txq->axq_link); 5052 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5053 } 5054 5055 static int 5056 ath_stoptxdma(struct ath_softc *sc) 5057 { 5058 struct ath_hal *ah = sc->sc_ah; 5059 int i; 5060 5061 /* XXX return value */ 5062 if (sc->sc_invalid) 5063 return 0; 5064 5065 if (!sc->sc_invalid) { 5066 /* don't touch the hardware if marked invalid */ 5067 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5068 __func__, sc->sc_bhalq, 5069 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5070 NULL); 5071 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5072 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5073 if (ATH_TXQ_SETUP(sc, i)) 5074 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5075 } 5076 5077 return 1; 5078 } 5079 5080 /* 5081 * Drain the transmit queues and reclaim resources. 5082 */ 5083 static void 5084 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5085 { 5086 #ifdef ATH_DEBUG 5087 struct ath_hal *ah = sc->sc_ah; 5088 #endif 5089 struct ifnet *ifp = sc->sc_ifp; 5090 int i; 5091 5092 (void) ath_stoptxdma(sc); 5093 5094 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5095 /* 5096 * XXX TODO: should we just handle the completed TX frames 5097 * here, whether or not the reset is a full one or not? 5098 */ 5099 if (ATH_TXQ_SETUP(sc, i)) { 5100 if (reset_type == ATH_RESET_NOLOSS) 5101 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5102 else 5103 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5104 } 5105 } 5106 #ifdef ATH_DEBUG 5107 if (sc->sc_debug & ATH_DEBUG_RESET) { 5108 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5109 if (bf != NULL && bf->bf_m != NULL) { 5110 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5111 ath_hal_txprocdesc(ah, bf->bf_lastds, 5112 &bf->bf_status.ds_txstat) == HAL_OK); 5113 ieee80211_dump_pkt(ifp->if_l2com, 5114 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5115 0, -1); 5116 } 5117 } 5118 #endif /* ATH_DEBUG */ 5119 /* XXX check this inside of IF_LOCK? */ 5120 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5121 sc->sc_wd_timer = 0; 5122 } 5123 5124 /* 5125 * Disable the receive h/w in preparation for a reset. 5126 */ 5127 static void 5128 ath_stoprecv(struct ath_softc *sc) 5129 { 5130 #define PA2DESC(_sc, _pa) \ 5131 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 5132 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 5133 struct ath_hal *ah = sc->sc_ah; 5134 5135 ath_hal_stoppcurecv(ah); /* disable PCU */ 5136 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 5137 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 5138 DELAY(3000); /* 3ms is long enough for 1 frame */ 5139 #ifdef ATH_DEBUG 5140 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 5141 struct ath_buf *bf; 5142 u_int ix; 5143 5144 printf("%s: rx queue %p, link %p\n", __func__, 5145 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 5146 ix = 0; 5147 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5148 struct ath_desc *ds = bf->bf_desc; 5149 struct ath_rx_status *rs = &bf->bf_status.ds_rxstat; 5150 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 5151 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 5152 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 5153 ath_printrxbuf(sc, bf, ix, status == HAL_OK); 5154 ix++; 5155 } 5156 } 5157 #endif 5158 if (sc->sc_rxpending != NULL) { 5159 m_freem(sc->sc_rxpending); 5160 sc->sc_rxpending = NULL; 5161 } 5162 sc->sc_rxlink = NULL; /* just in case */ 5163 #undef PA2DESC 5164 } 5165 5166 /* 5167 * Enable the receive h/w following a reset. 5168 */ 5169 static int 5170 ath_startrecv(struct ath_softc *sc) 5171 { 5172 struct ath_hal *ah = sc->sc_ah; 5173 struct ath_buf *bf; 5174 5175 sc->sc_rxlink = NULL; 5176 sc->sc_rxpending = NULL; 5177 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5178 int error = ath_rxbuf_init(sc, bf); 5179 if (error != 0) { 5180 DPRINTF(sc, ATH_DEBUG_RECV, 5181 "%s: ath_rxbuf_init failed %d\n", 5182 __func__, error); 5183 return error; 5184 } 5185 } 5186 5187 bf = TAILQ_FIRST(&sc->sc_rxbuf); 5188 ath_hal_putrxbuf(ah, bf->bf_daddr); 5189 ath_hal_rxena(ah); /* enable recv descriptors */ 5190 ath_mode_init(sc); /* set filters, etc. */ 5191 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 5192 return 0; 5193 } 5194 5195 /* 5196 * Update internal state after a channel change. 5197 */ 5198 static void 5199 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5200 { 5201 enum ieee80211_phymode mode; 5202 5203 /* 5204 * Change channels and update the h/w rate map 5205 * if we're switching; e.g. 11a to 11b/g. 5206 */ 5207 mode = ieee80211_chan2mode(chan); 5208 if (mode != sc->sc_curmode) 5209 ath_setcurmode(sc, mode); 5210 sc->sc_curchan = chan; 5211 } 5212 5213 /* 5214 * Set/change channels. If the channel is really being changed, 5215 * it's done by resetting the chip. To accomplish this we must 5216 * first cleanup any pending DMA, then restart stuff after a la 5217 * ath_init. 5218 */ 5219 static int 5220 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5221 { 5222 struct ifnet *ifp = sc->sc_ifp; 5223 struct ieee80211com *ic = ifp->if_l2com; 5224 struct ath_hal *ah = sc->sc_ah; 5225 int ret = 0; 5226 int dointr = 0; 5227 5228 /* Treat this as an interface reset */ 5229 ATH_PCU_LOCK(sc); 5230 if (sc->sc_inreset_cnt > 0) 5231 device_printf(sc->sc_dev, "%s: danger! concurrent reset!\n", 5232 __func__); 5233 sc->sc_inreset_cnt++; 5234 if (chan != sc->sc_curchan) { 5235 dointr = 1; 5236 /* XXX only do this if inreset_cnt is 1? */ 5237 ath_hal_intrset(ah, 0); 5238 } 5239 ATH_PCU_UNLOCK(sc); 5240 ath_txrx_stop(sc); 5241 5242 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5243 __func__, ieee80211_chan2ieee(ic, chan), 5244 chan->ic_freq, chan->ic_flags); 5245 if (chan != sc->sc_curchan) { 5246 HAL_STATUS status; 5247 /* 5248 * To switch channels clear any pending DMA operations; 5249 * wait long enough for the RX fifo to drain, reset the 5250 * hardware at the new frequency, and then re-enable 5251 * the relevant bits of the h/w. 5252 */ 5253 #if 0 5254 ath_hal_intrset(ah, 0); /* disable interrupts */ 5255 #endif 5256 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5257 ath_stoprecv(sc); /* turn off frame recv */ 5258 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 5259 if_printf(ifp, "%s: unable to reset " 5260 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5261 __func__, ieee80211_chan2ieee(ic, chan), 5262 chan->ic_freq, chan->ic_flags, status); 5263 ret = EIO; 5264 goto finish; 5265 } 5266 sc->sc_diversity = ath_hal_getdiversity(ah); 5267 5268 /* Let DFS at it in case it's a DFS channel */ 5269 ath_dfs_radar_enable(sc, ic->ic_curchan); 5270 5271 /* 5272 * Re-enable rx framework. 5273 */ 5274 if (ath_startrecv(sc) != 0) { 5275 if_printf(ifp, "%s: unable to restart recv logic\n", 5276 __func__); 5277 ret = EIO; 5278 goto finish; 5279 } 5280 5281 /* 5282 * Change channels and update the h/w rate map 5283 * if we're switching; e.g. 11a to 11b/g. 5284 */ 5285 ath_chan_change(sc, chan); 5286 5287 /* 5288 * Reset clears the beacon timers; reset them 5289 * here if needed. 5290 */ 5291 if (sc->sc_beacons) { /* restart beacons */ 5292 #ifdef IEEE80211_SUPPORT_TDMA 5293 if (sc->sc_tdma) 5294 ath_tdma_config(sc, NULL); 5295 else 5296 #endif 5297 ath_beacon_config(sc, NULL); 5298 } 5299 5300 #if 0 5301 /* 5302 * Re-enable interrupts. 5303 */ 5304 ath_hal_intrset(ah, sc->sc_imask); 5305 #endif 5306 } 5307 5308 finish: 5309 ATH_PCU_LOCK(sc); 5310 sc->sc_inreset_cnt--; 5311 /* XXX only do this if sc_inreset_cnt == 0? */ 5312 if (dointr) 5313 ath_hal_intrset(ah, sc->sc_imask); 5314 ATH_PCU_UNLOCK(sc); 5315 5316 /* XXX do this inside of IF_LOCK? */ 5317 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5318 ath_txrx_start(sc); 5319 /* XXX ath_start? */ 5320 5321 return ret; 5322 } 5323 5324 /* 5325 * Periodically recalibrate the PHY to account 5326 * for temperature/environment changes. 5327 */ 5328 static void 5329 ath_calibrate(void *arg) 5330 { 5331 struct ath_softc *sc = arg; 5332 struct ath_hal *ah = sc->sc_ah; 5333 struct ifnet *ifp = sc->sc_ifp; 5334 struct ieee80211com *ic = ifp->if_l2com; 5335 HAL_BOOL longCal, isCalDone; 5336 HAL_BOOL aniCal, shortCal = AH_FALSE; 5337 int nextcal; 5338 5339 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5340 goto restart; 5341 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5342 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5343 if (sc->sc_doresetcal) 5344 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5345 5346 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5347 if (aniCal) { 5348 sc->sc_stats.ast_ani_cal++; 5349 sc->sc_lastani = ticks; 5350 ath_hal_ani_poll(ah, sc->sc_curchan); 5351 } 5352 5353 if (longCal) { 5354 sc->sc_stats.ast_per_cal++; 5355 sc->sc_lastlongcal = ticks; 5356 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5357 /* 5358 * Rfgain is out of bounds, reset the chip 5359 * to load new gain values. 5360 */ 5361 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5362 "%s: rfgain change\n", __func__); 5363 sc->sc_stats.ast_per_rfgain++; 5364 /* 5365 * Drop lock - we can't hold it across the 5366 * ath_reset() call. Instead, we'll drop 5367 * out here, do a reset, then reschedule 5368 * the callout. 5369 */ 5370 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5371 sc->sc_resetcal = 0; 5372 sc->sc_doresetcal = AH_TRUE; 5373 ATH_UNLOCK(sc); 5374 ath_reset(ifp, ATH_RESET_NOLOSS); 5375 return; 5376 } 5377 /* 5378 * If this long cal is after an idle period, then 5379 * reset the data collection state so we start fresh. 5380 */ 5381 if (sc->sc_resetcal) { 5382 (void) ath_hal_calreset(ah, sc->sc_curchan); 5383 sc->sc_lastcalreset = ticks; 5384 sc->sc_lastshortcal = ticks; 5385 sc->sc_resetcal = 0; 5386 sc->sc_doresetcal = AH_TRUE; 5387 } 5388 } 5389 5390 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5391 if (shortCal || longCal) { 5392 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5393 if (longCal) { 5394 /* 5395 * Calibrate noise floor data again in case of change. 5396 */ 5397 ath_hal_process_noisefloor(ah); 5398 } 5399 } else { 5400 DPRINTF(sc, ATH_DEBUG_ANY, 5401 "%s: calibration of channel %u failed\n", 5402 __func__, sc->sc_curchan->ic_freq); 5403 sc->sc_stats.ast_per_calfail++; 5404 } 5405 if (shortCal) 5406 sc->sc_lastshortcal = ticks; 5407 } 5408 if (!isCalDone) { 5409 restart: 5410 /* 5411 * Use a shorter interval to potentially collect multiple 5412 * data samples required to complete calibration. Once 5413 * we're told the work is done we drop back to a longer 5414 * interval between requests. We're more aggressive doing 5415 * work when operating as an AP to improve operation right 5416 * after startup. 5417 */ 5418 sc->sc_lastshortcal = ticks; 5419 nextcal = ath_shortcalinterval*hz/1000; 5420 if (sc->sc_opmode != HAL_M_HOSTAP) 5421 nextcal *= 10; 5422 sc->sc_doresetcal = AH_TRUE; 5423 } else { 5424 /* nextcal should be the shortest time for next event */ 5425 nextcal = ath_longcalinterval*hz; 5426 if (sc->sc_lastcalreset == 0) 5427 sc->sc_lastcalreset = sc->sc_lastlongcal; 5428 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5429 sc->sc_resetcal = 1; /* setup reset next trip */ 5430 sc->sc_doresetcal = AH_FALSE; 5431 } 5432 /* ANI calibration may occur more often than short/long/resetcal */ 5433 if (ath_anicalinterval > 0) 5434 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5435 5436 if (nextcal != 0) { 5437 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5438 __func__, nextcal, isCalDone ? "" : "!"); 5439 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5440 } else { 5441 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5442 __func__); 5443 /* NB: don't rearm timer */ 5444 } 5445 } 5446 5447 static void 5448 ath_scan_start(struct ieee80211com *ic) 5449 { 5450 struct ifnet *ifp = ic->ic_ifp; 5451 struct ath_softc *sc = ifp->if_softc; 5452 struct ath_hal *ah = sc->sc_ah; 5453 u_int32_t rfilt; 5454 5455 /* XXX calibration timer? */ 5456 5457 sc->sc_scanning = 1; 5458 sc->sc_syncbeacon = 0; 5459 rfilt = ath_calcrxfilter(sc); 5460 ath_hal_setrxfilter(ah, rfilt); 5461 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5462 5463 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5464 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5465 } 5466 5467 static void 5468 ath_scan_end(struct ieee80211com *ic) 5469 { 5470 struct ifnet *ifp = ic->ic_ifp; 5471 struct ath_softc *sc = ifp->if_softc; 5472 struct ath_hal *ah = sc->sc_ah; 5473 u_int32_t rfilt; 5474 5475 sc->sc_scanning = 0; 5476 rfilt = ath_calcrxfilter(sc); 5477 ath_hal_setrxfilter(ah, rfilt); 5478 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5479 5480 ath_hal_process_noisefloor(ah); 5481 5482 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5483 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5484 sc->sc_curaid); 5485 } 5486 5487 static void 5488 ath_set_channel(struct ieee80211com *ic) 5489 { 5490 struct ifnet *ifp = ic->ic_ifp; 5491 struct ath_softc *sc = ifp->if_softc; 5492 5493 (void) ath_chan_set(sc, ic->ic_curchan); 5494 /* 5495 * If we are returning to our bss channel then mark state 5496 * so the next recv'd beacon's tsf will be used to sync the 5497 * beacon timers. Note that since we only hear beacons in 5498 * sta/ibss mode this has no effect in other operating modes. 5499 */ 5500 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5501 sc->sc_syncbeacon = 1; 5502 } 5503 5504 /* 5505 * Walk the vap list and check if there any vap's in RUN state. 5506 */ 5507 static int 5508 ath_isanyrunningvaps(struct ieee80211vap *this) 5509 { 5510 struct ieee80211com *ic = this->iv_ic; 5511 struct ieee80211vap *vap; 5512 5513 IEEE80211_LOCK_ASSERT(ic); 5514 5515 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5516 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5517 return 1; 5518 } 5519 return 0; 5520 } 5521 5522 static int 5523 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5524 { 5525 struct ieee80211com *ic = vap->iv_ic; 5526 struct ath_softc *sc = ic->ic_ifp->if_softc; 5527 struct ath_vap *avp = ATH_VAP(vap); 5528 struct ath_hal *ah = sc->sc_ah; 5529 struct ieee80211_node *ni = NULL; 5530 int i, error, stamode; 5531 u_int32_t rfilt; 5532 int csa_run_transition = 0; 5533 static const HAL_LED_STATE leds[] = { 5534 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5535 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5536 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5537 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5538 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5539 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5540 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5541 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5542 }; 5543 5544 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5545 ieee80211_state_name[vap->iv_state], 5546 ieee80211_state_name[nstate]); 5547 5548 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5549 csa_run_transition = 1; 5550 5551 callout_drain(&sc->sc_cal_ch); 5552 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5553 5554 if (nstate == IEEE80211_S_SCAN) { 5555 /* 5556 * Scanning: turn off beacon miss and don't beacon. 5557 * Mark beacon state so when we reach RUN state we'll 5558 * [re]setup beacons. Unblock the task q thread so 5559 * deferred interrupt processing is done. 5560 */ 5561 ath_hal_intrset(ah, 5562 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5563 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5564 sc->sc_beacons = 0; 5565 taskqueue_unblock(sc->sc_tq); 5566 } 5567 5568 ni = vap->iv_bss; 5569 rfilt = ath_calcrxfilter(sc); 5570 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5571 vap->iv_opmode == IEEE80211_M_AHDEMO || 5572 vap->iv_opmode == IEEE80211_M_IBSS); 5573 if (stamode && nstate == IEEE80211_S_RUN) { 5574 sc->sc_curaid = ni->ni_associd; 5575 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5576 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5577 } 5578 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5579 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5580 ath_hal_setrxfilter(ah, rfilt); 5581 5582 /* XXX is this to restore keycache on resume? */ 5583 if (vap->iv_opmode != IEEE80211_M_STA && 5584 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5585 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5586 if (ath_hal_keyisvalid(ah, i)) 5587 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5588 } 5589 5590 /* 5591 * Invoke the parent method to do net80211 work. 5592 */ 5593 error = avp->av_newstate(vap, nstate, arg); 5594 if (error != 0) 5595 goto bad; 5596 5597 if (nstate == IEEE80211_S_RUN) { 5598 /* NB: collect bss node again, it may have changed */ 5599 ni = vap->iv_bss; 5600 5601 DPRINTF(sc, ATH_DEBUG_STATE, 5602 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5603 "capinfo 0x%04x chan %d\n", __func__, 5604 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5605 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5606 5607 switch (vap->iv_opmode) { 5608 #ifdef IEEE80211_SUPPORT_TDMA 5609 case IEEE80211_M_AHDEMO: 5610 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5611 break; 5612 /* fall thru... */ 5613 #endif 5614 case IEEE80211_M_HOSTAP: 5615 case IEEE80211_M_IBSS: 5616 case IEEE80211_M_MBSS: 5617 /* 5618 * Allocate and setup the beacon frame. 5619 * 5620 * Stop any previous beacon DMA. This may be 5621 * necessary, for example, when an ibss merge 5622 * causes reconfiguration; there will be a state 5623 * transition from RUN->RUN that means we may 5624 * be called with beacon transmission active. 5625 */ 5626 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5627 5628 error = ath_beacon_alloc(sc, ni); 5629 if (error != 0) 5630 goto bad; 5631 /* 5632 * If joining an adhoc network defer beacon timer 5633 * configuration to the next beacon frame so we 5634 * have a current TSF to use. Otherwise we're 5635 * starting an ibss/bss so there's no need to delay; 5636 * if this is the first vap moving to RUN state, then 5637 * beacon state needs to be [re]configured. 5638 */ 5639 if (vap->iv_opmode == IEEE80211_M_IBSS && 5640 ni->ni_tstamp.tsf != 0) { 5641 sc->sc_syncbeacon = 1; 5642 } else if (!sc->sc_beacons) { 5643 #ifdef IEEE80211_SUPPORT_TDMA 5644 if (vap->iv_caps & IEEE80211_C_TDMA) 5645 ath_tdma_config(sc, vap); 5646 else 5647 #endif 5648 ath_beacon_config(sc, vap); 5649 sc->sc_beacons = 1; 5650 } 5651 break; 5652 case IEEE80211_M_STA: 5653 /* 5654 * Defer beacon timer configuration to the next 5655 * beacon frame so we have a current TSF to use 5656 * (any TSF collected when scanning is likely old). 5657 * However if it's due to a CSA -> RUN transition, 5658 * force a beacon update so we pick up a lack of 5659 * beacons from an AP in CAC and thus force a 5660 * scan. 5661 */ 5662 sc->sc_syncbeacon = 1; 5663 if (csa_run_transition) 5664 ath_beacon_config(sc, vap); 5665 break; 5666 case IEEE80211_M_MONITOR: 5667 /* 5668 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5669 * transitions so we must re-enable interrupts here to 5670 * handle the case of a single monitor mode vap. 5671 */ 5672 ath_hal_intrset(ah, sc->sc_imask); 5673 break; 5674 case IEEE80211_M_WDS: 5675 break; 5676 default: 5677 break; 5678 } 5679 /* 5680 * Let the hal process statistics collected during a 5681 * scan so it can provide calibrated noise floor data. 5682 */ 5683 ath_hal_process_noisefloor(ah); 5684 /* 5685 * Reset rssi stats; maybe not the best place... 5686 */ 5687 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5688 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5689 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5690 /* 5691 * Finally, start any timers and the task q thread 5692 * (in case we didn't go through SCAN state). 5693 */ 5694 if (ath_longcalinterval != 0) { 5695 /* start periodic recalibration timer */ 5696 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5697 } else { 5698 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5699 "%s: calibration disabled\n", __func__); 5700 } 5701 taskqueue_unblock(sc->sc_tq); 5702 } else if (nstate == IEEE80211_S_INIT) { 5703 /* 5704 * If there are no vaps left in RUN state then 5705 * shutdown host/driver operation: 5706 * o disable interrupts 5707 * o disable the task queue thread 5708 * o mark beacon processing as stopped 5709 */ 5710 if (!ath_isanyrunningvaps(vap)) { 5711 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5712 /* disable interrupts */ 5713 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5714 taskqueue_block(sc->sc_tq); 5715 sc->sc_beacons = 0; 5716 } 5717 #ifdef IEEE80211_SUPPORT_TDMA 5718 ath_hal_setcca(ah, AH_TRUE); 5719 #endif 5720 } 5721 bad: 5722 return error; 5723 } 5724 5725 /* 5726 * Allocate a key cache slot to the station so we can 5727 * setup a mapping from key index to node. The key cache 5728 * slot is needed for managing antenna state and for 5729 * compression when stations do not use crypto. We do 5730 * it uniliaterally here; if crypto is employed this slot 5731 * will be reassigned. 5732 */ 5733 static void 5734 ath_setup_stationkey(struct ieee80211_node *ni) 5735 { 5736 struct ieee80211vap *vap = ni->ni_vap; 5737 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5738 ieee80211_keyix keyix, rxkeyix; 5739 5740 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5741 /* 5742 * Key cache is full; we'll fall back to doing 5743 * the more expensive lookup in software. Note 5744 * this also means no h/w compression. 5745 */ 5746 /* XXX msg+statistic */ 5747 } else { 5748 /* XXX locking? */ 5749 ni->ni_ucastkey.wk_keyix = keyix; 5750 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5751 /* NB: must mark device key to get called back on delete */ 5752 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5753 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5754 /* NB: this will create a pass-thru key entry */ 5755 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5756 } 5757 } 5758 5759 /* 5760 * Setup driver-specific state for a newly associated node. 5761 * Note that we're called also on a re-associate, the isnew 5762 * param tells us if this is the first time or not. 5763 */ 5764 static void 5765 ath_newassoc(struct ieee80211_node *ni, int isnew) 5766 { 5767 struct ath_node *an = ATH_NODE(ni); 5768 struct ieee80211vap *vap = ni->ni_vap; 5769 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5770 const struct ieee80211_txparam *tp = ni->ni_txparms; 5771 5772 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5773 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5774 5775 ath_rate_newassoc(sc, an, isnew); 5776 if (isnew && 5777 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5778 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5779 ath_setup_stationkey(ni); 5780 } 5781 5782 static int 5783 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5784 int nchans, struct ieee80211_channel chans[]) 5785 { 5786 struct ath_softc *sc = ic->ic_ifp->if_softc; 5787 struct ath_hal *ah = sc->sc_ah; 5788 HAL_STATUS status; 5789 5790 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5791 "%s: rd %u cc %u location %c%s\n", 5792 __func__, reg->regdomain, reg->country, reg->location, 5793 reg->ecm ? " ecm" : ""); 5794 5795 status = ath_hal_set_channels(ah, chans, nchans, 5796 reg->country, reg->regdomain); 5797 if (status != HAL_OK) { 5798 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5799 __func__, status); 5800 return EINVAL; /* XXX */ 5801 } 5802 5803 return 0; 5804 } 5805 5806 static void 5807 ath_getradiocaps(struct ieee80211com *ic, 5808 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5809 { 5810 struct ath_softc *sc = ic->ic_ifp->if_softc; 5811 struct ath_hal *ah = sc->sc_ah; 5812 5813 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5814 __func__, SKU_DEBUG, CTRY_DEFAULT); 5815 5816 /* XXX check return */ 5817 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5818 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5819 5820 } 5821 5822 static int 5823 ath_getchannels(struct ath_softc *sc) 5824 { 5825 struct ifnet *ifp = sc->sc_ifp; 5826 struct ieee80211com *ic = ifp->if_l2com; 5827 struct ath_hal *ah = sc->sc_ah; 5828 HAL_STATUS status; 5829 5830 /* 5831 * Collect channel set based on EEPROM contents. 5832 */ 5833 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5834 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5835 if (status != HAL_OK) { 5836 if_printf(ifp, "%s: unable to collect channel list from hal, " 5837 "status %d\n", __func__, status); 5838 return EINVAL; 5839 } 5840 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5841 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5842 /* XXX map Atheros sku's to net80211 SKU's */ 5843 /* XXX net80211 types too small */ 5844 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5845 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5846 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5847 ic->ic_regdomain.isocc[1] = ' '; 5848 5849 ic->ic_regdomain.ecm = 1; 5850 ic->ic_regdomain.location = 'I'; 5851 5852 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5853 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5854 __func__, sc->sc_eerd, sc->sc_eecc, 5855 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5856 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5857 return 0; 5858 } 5859 5860 static void 5861 ath_led_done(void *arg) 5862 { 5863 struct ath_softc *sc = arg; 5864 5865 sc->sc_blinking = 0; 5866 } 5867 5868 /* 5869 * Turn the LED off: flip the pin and then set a timer so no 5870 * update will happen for the specified duration. 5871 */ 5872 static void 5873 ath_led_off(void *arg) 5874 { 5875 struct ath_softc *sc = arg; 5876 5877 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 5878 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 5879 } 5880 5881 /* 5882 * Blink the LED according to the specified on/off times. 5883 */ 5884 static void 5885 ath_led_blink(struct ath_softc *sc, int on, int off) 5886 { 5887 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 5888 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 5889 sc->sc_blinking = 1; 5890 sc->sc_ledoff = off; 5891 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 5892 } 5893 5894 static void 5895 ath_led_event(struct ath_softc *sc, int rix) 5896 { 5897 sc->sc_ledevent = ticks; /* time of last event */ 5898 if (sc->sc_blinking) /* don't interrupt active blink */ 5899 return; 5900 ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff); 5901 } 5902 5903 static int 5904 ath_rate_setup(struct ath_softc *sc, u_int mode) 5905 { 5906 struct ath_hal *ah = sc->sc_ah; 5907 const HAL_RATE_TABLE *rt; 5908 5909 switch (mode) { 5910 case IEEE80211_MODE_11A: 5911 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5912 break; 5913 case IEEE80211_MODE_HALF: 5914 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5915 break; 5916 case IEEE80211_MODE_QUARTER: 5917 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5918 break; 5919 case IEEE80211_MODE_11B: 5920 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5921 break; 5922 case IEEE80211_MODE_11G: 5923 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5924 break; 5925 case IEEE80211_MODE_TURBO_A: 5926 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5927 break; 5928 case IEEE80211_MODE_TURBO_G: 5929 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5930 break; 5931 case IEEE80211_MODE_STURBO_A: 5932 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5933 break; 5934 case IEEE80211_MODE_11NA: 5935 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 5936 break; 5937 case IEEE80211_MODE_11NG: 5938 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 5939 break; 5940 default: 5941 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5942 __func__, mode); 5943 return 0; 5944 } 5945 sc->sc_rates[mode] = rt; 5946 return (rt != NULL); 5947 } 5948 5949 static void 5950 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5951 { 5952 #define N(a) (sizeof(a)/sizeof(a[0])) 5953 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5954 static const struct { 5955 u_int rate; /* tx/rx 802.11 rate */ 5956 u_int16_t timeOn; /* LED on time (ms) */ 5957 u_int16_t timeOff; /* LED off time (ms) */ 5958 } blinkrates[] = { 5959 { 108, 40, 10 }, 5960 { 96, 44, 11 }, 5961 { 72, 50, 13 }, 5962 { 48, 57, 14 }, 5963 { 36, 67, 16 }, 5964 { 24, 80, 20 }, 5965 { 22, 100, 25 }, 5966 { 18, 133, 34 }, 5967 { 12, 160, 40 }, 5968 { 10, 200, 50 }, 5969 { 6, 240, 58 }, 5970 { 4, 267, 66 }, 5971 { 2, 400, 100 }, 5972 { 0, 500, 130 }, 5973 /* XXX half/quarter rates */ 5974 }; 5975 const HAL_RATE_TABLE *rt; 5976 int i, j; 5977 5978 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5979 rt = sc->sc_rates[mode]; 5980 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5981 for (i = 0; i < rt->rateCount; i++) { 5982 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5983 if (rt->info[i].phy != IEEE80211_T_HT) 5984 sc->sc_rixmap[ieeerate] = i; 5985 else 5986 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 5987 } 5988 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5989 for (i = 0; i < N(sc->sc_hwmap); i++) { 5990 if (i >= rt->rateCount) { 5991 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5992 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5993 continue; 5994 } 5995 sc->sc_hwmap[i].ieeerate = 5996 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5997 if (rt->info[i].phy == IEEE80211_T_HT) 5998 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 5999 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6000 if (rt->info[i].shortPreamble || 6001 rt->info[i].phy == IEEE80211_T_OFDM) 6002 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6003 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6004 for (j = 0; j < N(blinkrates)-1; j++) 6005 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6006 break; 6007 /* NB: this uses the last entry if the rate isn't found */ 6008 /* XXX beware of overlow */ 6009 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6010 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6011 } 6012 sc->sc_currates = rt; 6013 sc->sc_curmode = mode; 6014 /* 6015 * All protection frames are transmited at 2Mb/s for 6016 * 11g, otherwise at 1Mb/s. 6017 */ 6018 if (mode == IEEE80211_MODE_11G) 6019 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6020 else 6021 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6022 /* NB: caller is responsible for resetting rate control state */ 6023 #undef N 6024 } 6025 6026 static void 6027 ath_watchdog(void *arg) 6028 { 6029 struct ath_softc *sc = arg; 6030 int do_reset = 0; 6031 6032 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6033 struct ifnet *ifp = sc->sc_ifp; 6034 uint32_t hangs; 6035 6036 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6037 hangs != 0) { 6038 if_printf(ifp, "%s hang detected (0x%x)\n", 6039 hangs & 0xff ? "bb" : "mac", hangs); 6040 } else 6041 if_printf(ifp, "device timeout\n"); 6042 do_reset = 1; 6043 ifp->if_oerrors++; 6044 sc->sc_stats.ast_watchdog++; 6045 } 6046 6047 /* 6048 * We can't hold the lock across the ath_reset() call. 6049 */ 6050 if (do_reset) { 6051 ATH_UNLOCK(sc); 6052 ath_reset(sc->sc_ifp, ATH_RESET_NOLOSS); 6053 ATH_LOCK(sc); 6054 } 6055 6056 callout_schedule(&sc->sc_wd_ch, hz); 6057 } 6058 6059 #ifdef ATH_DIAGAPI 6060 /* 6061 * Diagnostic interface to the HAL. This is used by various 6062 * tools to do things like retrieve register contents for 6063 * debugging. The mechanism is intentionally opaque so that 6064 * it can change frequently w/o concern for compatiblity. 6065 */ 6066 static int 6067 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6068 { 6069 struct ath_hal *ah = sc->sc_ah; 6070 u_int id = ad->ad_id & ATH_DIAG_ID; 6071 void *indata = NULL; 6072 void *outdata = NULL; 6073 u_int32_t insize = ad->ad_in_size; 6074 u_int32_t outsize = ad->ad_out_size; 6075 int error = 0; 6076 6077 if (ad->ad_id & ATH_DIAG_IN) { 6078 /* 6079 * Copy in data. 6080 */ 6081 indata = malloc(insize, M_TEMP, M_NOWAIT); 6082 if (indata == NULL) { 6083 error = ENOMEM; 6084 goto bad; 6085 } 6086 error = copyin(ad->ad_in_data, indata, insize); 6087 if (error) 6088 goto bad; 6089 } 6090 if (ad->ad_id & ATH_DIAG_DYN) { 6091 /* 6092 * Allocate a buffer for the results (otherwise the HAL 6093 * returns a pointer to a buffer where we can read the 6094 * results). Note that we depend on the HAL leaving this 6095 * pointer for us to use below in reclaiming the buffer; 6096 * may want to be more defensive. 6097 */ 6098 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6099 if (outdata == NULL) { 6100 error = ENOMEM; 6101 goto bad; 6102 } 6103 } 6104 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6105 if (outsize < ad->ad_out_size) 6106 ad->ad_out_size = outsize; 6107 if (outdata != NULL) 6108 error = copyout(outdata, ad->ad_out_data, 6109 ad->ad_out_size); 6110 } else { 6111 error = EINVAL; 6112 } 6113 bad: 6114 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6115 free(indata, M_TEMP); 6116 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6117 free(outdata, M_TEMP); 6118 return error; 6119 } 6120 #endif /* ATH_DIAGAPI */ 6121 6122 static int 6123 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 6124 { 6125 #define IS_RUNNING(ifp) \ 6126 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 6127 struct ath_softc *sc = ifp->if_softc; 6128 struct ieee80211com *ic = ifp->if_l2com; 6129 struct ifreq *ifr = (struct ifreq *)data; 6130 const HAL_RATE_TABLE *rt; 6131 int error = 0; 6132 6133 switch (cmd) { 6134 case SIOCSIFFLAGS: 6135 ATH_LOCK(sc); 6136 if (IS_RUNNING(ifp)) { 6137 /* 6138 * To avoid rescanning another access point, 6139 * do not call ath_init() here. Instead, 6140 * only reflect promisc mode settings. 6141 */ 6142 ath_mode_init(sc); 6143 } else if (ifp->if_flags & IFF_UP) { 6144 /* 6145 * Beware of being called during attach/detach 6146 * to reset promiscuous mode. In that case we 6147 * will still be marked UP but not RUNNING. 6148 * However trying to re-init the interface 6149 * is the wrong thing to do as we've already 6150 * torn down much of our state. There's 6151 * probably a better way to deal with this. 6152 */ 6153 if (!sc->sc_invalid) 6154 ath_init(sc); /* XXX lose error */ 6155 } else { 6156 ath_stop_locked(ifp); 6157 #ifdef notyet 6158 /* XXX must wakeup in places like ath_vap_delete */ 6159 if (!sc->sc_invalid) 6160 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 6161 #endif 6162 } 6163 ATH_UNLOCK(sc); 6164 break; 6165 case SIOCGIFMEDIA: 6166 case SIOCSIFMEDIA: 6167 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 6168 break; 6169 case SIOCGATHSTATS: 6170 /* NB: embed these numbers to get a consistent view */ 6171 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 6172 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 6173 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 6174 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 6175 #ifdef IEEE80211_SUPPORT_TDMA 6176 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 6177 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 6178 #endif 6179 rt = sc->sc_currates; 6180 sc->sc_stats.ast_tx_rate = 6181 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 6182 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 6183 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 6184 return copyout(&sc->sc_stats, 6185 ifr->ifr_data, sizeof (sc->sc_stats)); 6186 case SIOCZATHSTATS: 6187 error = priv_check(curthread, PRIV_DRIVER); 6188 if (error == 0) 6189 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6190 break; 6191 #ifdef ATH_DIAGAPI 6192 case SIOCGATHDIAG: 6193 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 6194 break; 6195 case SIOCGATHPHYERR: 6196 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 6197 break; 6198 #endif 6199 case SIOCGIFADDR: 6200 error = ether_ioctl(ifp, cmd, data); 6201 break; 6202 default: 6203 error = EINVAL; 6204 break; 6205 } 6206 return error; 6207 #undef IS_RUNNING 6208 } 6209 6210 /* 6211 * Announce various information on device/driver attach. 6212 */ 6213 static void 6214 ath_announce(struct ath_softc *sc) 6215 { 6216 struct ifnet *ifp = sc->sc_ifp; 6217 struct ath_hal *ah = sc->sc_ah; 6218 6219 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 6220 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6221 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6222 if (bootverbose) { 6223 int i; 6224 for (i = 0; i <= WME_AC_VO; i++) { 6225 struct ath_txq *txq = sc->sc_ac2q[i]; 6226 if_printf(ifp, "Use hw queue %u for %s traffic\n", 6227 txq->axq_qnum, ieee80211_wme_acnames[i]); 6228 } 6229 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 6230 sc->sc_cabq->axq_qnum); 6231 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 6232 } 6233 if (ath_rxbuf != ATH_RXBUF) 6234 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 6235 if (ath_txbuf != ATH_TXBUF) 6236 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 6237 if (sc->sc_mcastkey && bootverbose) 6238 if_printf(ifp, "using multicast key search\n"); 6239 } 6240 6241 #ifdef IEEE80211_SUPPORT_TDMA 6242 static void 6243 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval) 6244 { 6245 struct ath_hal *ah = sc->sc_ah; 6246 HAL_BEACON_TIMERS bt; 6247 6248 bt.bt_intval = bintval | HAL_BEACON_ENA; 6249 bt.bt_nexttbtt = nexttbtt; 6250 bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep; 6251 bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep; 6252 bt.bt_nextatim = nexttbtt+1; 6253 /* Enables TBTT, DBA, SWBA timers by default */ 6254 bt.bt_flags = 0; 6255 ath_hal_beaconsettimers(ah, &bt); 6256 } 6257 6258 /* 6259 * Calculate the beacon interval. This is periodic in the 6260 * superframe for the bss. We assume each station is configured 6261 * identically wrt transmit rate so the guard time we calculate 6262 * above will be the same on all stations. Note we need to 6263 * factor in the xmit time because the hardware will schedule 6264 * a frame for transmit if the start of the frame is within 6265 * the burst time. When we get hardware that properly kills 6266 * frames in the PCU we can reduce/eliminate the guard time. 6267 * 6268 * Roundup to 1024 is so we have 1 TU buffer in the guard time 6269 * to deal with the granularity of the nexttbtt timer. 11n MAC's 6270 * with 1us timer granularity should allow us to reduce/eliminate 6271 * this. 6272 */ 6273 static void 6274 ath_tdma_bintvalsetup(struct ath_softc *sc, 6275 const struct ieee80211_tdma_state *tdma) 6276 { 6277 /* copy from vap state (XXX check all vaps have same value?) */ 6278 sc->sc_tdmaslotlen = tdma->tdma_slotlen; 6279 6280 sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) * 6281 tdma->tdma_slotcnt, 1024); 6282 sc->sc_tdmabintval >>= 10; /* TSF -> TU */ 6283 if (sc->sc_tdmabintval & 1) 6284 sc->sc_tdmabintval++; 6285 6286 if (tdma->tdma_slot == 0) { 6287 /* 6288 * Only slot 0 beacons; other slots respond. 6289 */ 6290 sc->sc_imask |= HAL_INT_SWBA; 6291 sc->sc_tdmaswba = 0; /* beacon immediately */ 6292 } else { 6293 /* XXX all vaps must be slot 0 or slot !0 */ 6294 sc->sc_imask &= ~HAL_INT_SWBA; 6295 } 6296 } 6297 6298 /* 6299 * Max 802.11 overhead. This assumes no 4-address frames and 6300 * the encapsulation done by ieee80211_encap (llc). We also 6301 * include potential crypto overhead. 6302 */ 6303 #define IEEE80211_MAXOVERHEAD \ 6304 (sizeof(struct ieee80211_qosframe) \ 6305 + sizeof(struct llc) \ 6306 + IEEE80211_ADDR_LEN \ 6307 + IEEE80211_WEP_IVLEN \ 6308 + IEEE80211_WEP_KIDLEN \ 6309 + IEEE80211_WEP_CRCLEN \ 6310 + IEEE80211_WEP_MICLEN \ 6311 + IEEE80211_CRC_LEN) 6312 6313 /* 6314 * Setup initially for tdma operation. Start the beacon 6315 * timers and enable SWBA if we are slot 0. Otherwise 6316 * we wait for slot 0 to arrive so we can sync up before 6317 * starting to transmit. 6318 */ 6319 static void 6320 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap) 6321 { 6322 struct ath_hal *ah = sc->sc_ah; 6323 struct ifnet *ifp = sc->sc_ifp; 6324 struct ieee80211com *ic = ifp->if_l2com; 6325 const struct ieee80211_txparam *tp; 6326 const struct ieee80211_tdma_state *tdma = NULL; 6327 int rix; 6328 6329 if (vap == NULL) { 6330 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 6331 if (vap == NULL) { 6332 if_printf(ifp, "%s: no vaps?\n", __func__); 6333 return; 6334 } 6335 } 6336 tp = vap->iv_bss->ni_txparms; 6337 /* 6338 * Calculate the guard time for each slot. This is the 6339 * time to send a maximal-size frame according to the 6340 * fixed/lowest transmit rate. Note that the interface 6341 * mtu does not include the 802.11 overhead so we must 6342 * tack that on (ath_hal_computetxtime includes the 6343 * preamble and plcp in it's calculation). 6344 */ 6345 tdma = vap->iv_tdma; 6346 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 6347 rix = ath_tx_findrix(sc, tp->ucastrate); 6348 else 6349 rix = ath_tx_findrix(sc, tp->mcastrate); 6350 /* XXX short preamble assumed */ 6351 sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates, 6352 ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE); 6353 6354 ath_hal_intrset(ah, 0); 6355 6356 ath_beaconq_config(sc); /* setup h/w beacon q */ 6357 if (sc->sc_setcca) 6358 ath_hal_setcca(ah, AH_FALSE); /* disable CCA */ 6359 ath_tdma_bintvalsetup(sc, tdma); /* calculate beacon interval */ 6360 ath_tdma_settimers(sc, sc->sc_tdmabintval, 6361 sc->sc_tdmabintval | HAL_BEACON_RESET_TSF); 6362 sc->sc_syncbeacon = 0; 6363 6364 sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER; 6365 sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER; 6366 6367 ath_hal_intrset(ah, sc->sc_imask); 6368 6369 DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u " 6370 "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__, 6371 tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt, 6372 tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval, 6373 sc->sc_tdmadbaprep); 6374 } 6375 6376 /* 6377 * Update tdma operation. Called from the 802.11 layer 6378 * when a beacon is received from the TDMA station operating 6379 * in the slot immediately preceding us in the bss. Use 6380 * the rx timestamp for the beacon frame to update our 6381 * beacon timers so we follow their schedule. Note that 6382 * by using the rx timestamp we implicitly include the 6383 * propagation delay in our schedule. 6384 */ 6385 static void 6386 ath_tdma_update(struct ieee80211_node *ni, 6387 const struct ieee80211_tdma_param *tdma, int changed) 6388 { 6389 #define TSF_TO_TU(_h,_l) \ 6390 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 6391 #define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10) 6392 struct ieee80211vap *vap = ni->ni_vap; 6393 struct ieee80211com *ic = ni->ni_ic; 6394 struct ath_softc *sc = ic->ic_ifp->if_softc; 6395 struct ath_hal *ah = sc->sc_ah; 6396 const HAL_RATE_TABLE *rt = sc->sc_currates; 6397 u_int64_t tsf, rstamp, nextslot, nexttbtt; 6398 u_int32_t txtime, nextslottu; 6399 int32_t tudelta, tsfdelta; 6400 const struct ath_rx_status *rs; 6401 int rix; 6402 6403 sc->sc_stats.ast_tdma_update++; 6404 6405 /* 6406 * Check for and adopt configuration changes. 6407 */ 6408 if (changed != 0) { 6409 const struct ieee80211_tdma_state *ts = vap->iv_tdma; 6410 6411 ath_tdma_bintvalsetup(sc, ts); 6412 if (changed & TDMA_UPDATE_SLOTLEN) 6413 ath_wme_update(ic); 6414 6415 DPRINTF(sc, ATH_DEBUG_TDMA, 6416 "%s: adopt slot %u slotcnt %u slotlen %u us " 6417 "bintval %u TU\n", __func__, 6418 ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen, 6419 sc->sc_tdmabintval); 6420 6421 /* XXX right? */ 6422 ath_hal_intrset(ah, sc->sc_imask); 6423 /* NB: beacon timers programmed below */ 6424 } 6425 6426 /* extend rx timestamp to 64 bits */ 6427 rs = sc->sc_lastrs; 6428 tsf = ath_hal_gettsf64(ah); 6429 rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf); 6430 /* 6431 * The rx timestamp is set by the hardware on completing 6432 * reception (at the point where the rx descriptor is DMA'd 6433 * to the host). To find the start of our next slot we 6434 * must adjust this time by the time required to send 6435 * the packet just received. 6436 */ 6437 rix = rt->rateCodeToIndex[rs->rs_rate]; 6438 txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix, 6439 rt->info[rix].shortPreamble); 6440 /* NB: << 9 is to cvt to TU and /2 */ 6441 nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9); 6442 nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD; 6443 6444 /* 6445 * Retrieve the hardware NextTBTT in usecs 6446 * and calculate the difference between what the 6447 * other station thinks and what we have programmed. This 6448 * lets us figure how to adjust our timers to match. The 6449 * adjustments are done by pulling the TSF forward and possibly 6450 * rewriting the beacon timers. 6451 */ 6452 nexttbtt = ath_hal_getnexttbtt(ah); 6453 tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt); 6454 6455 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6456 "tsfdelta %d avg +%d/-%d\n", tsfdelta, 6457 TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam)); 6458 6459 if (tsfdelta < 0) { 6460 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6461 TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta); 6462 tsfdelta = -tsfdelta % 1024; 6463 nextslottu++; 6464 } else if (tsfdelta > 0) { 6465 TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta); 6466 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6467 tsfdelta = 1024 - (tsfdelta % 1024); 6468 nextslottu++; 6469 } else { 6470 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6471 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6472 } 6473 tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt); 6474 6475 /* 6476 * Copy sender's timetstamp into tdma ie so they can 6477 * calculate roundtrip time. We submit a beacon frame 6478 * below after any timer adjustment. The frame goes out 6479 * at the next TBTT so the sender can calculate the 6480 * roundtrip by inspecting the tdma ie in our beacon frame. 6481 * 6482 * NB: This tstamp is subtlely preserved when 6483 * IEEE80211_BEACON_TDMA is marked (e.g. when the 6484 * slot position changes) because ieee80211_add_tdma 6485 * skips over the data. 6486 */ 6487 memcpy(ATH_VAP(vap)->av_boff.bo_tdma + 6488 __offsetof(struct ieee80211_tdma_param, tdma_tstamp), 6489 &ni->ni_tstamp.data, 8); 6490 #if 0 6491 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6492 "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n", 6493 (unsigned long long) tsf, (unsigned long long) nextslot, 6494 (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta); 6495 #endif 6496 /* 6497 * Adjust the beacon timers only when pulling them forward 6498 * or when going back by less than the beacon interval. 6499 * Negative jumps larger than the beacon interval seem to 6500 * cause the timers to stop and generally cause instability. 6501 * This basically filters out jumps due to missed beacons. 6502 */ 6503 if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) { 6504 ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval); 6505 sc->sc_stats.ast_tdma_timers++; 6506 } 6507 if (tsfdelta > 0) { 6508 ath_hal_adjusttsf(ah, tsfdelta); 6509 sc->sc_stats.ast_tdma_tsf++; 6510 } 6511 ath_tdma_beacon_send(sc, vap); /* prepare response */ 6512 #undef TU_TO_TSF 6513 #undef TSF_TO_TU 6514 } 6515 6516 /* 6517 * Transmit a beacon frame at SWBA. Dynamic updates 6518 * to the frame contents are done as needed. 6519 */ 6520 static void 6521 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap) 6522 { 6523 struct ath_hal *ah = sc->sc_ah; 6524 struct ath_buf *bf; 6525 int otherant; 6526 6527 /* 6528 * Check if the previous beacon has gone out. If 6529 * not don't try to post another, skip this period 6530 * and wait for the next. Missed beacons indicate 6531 * a problem and should not occur. If we miss too 6532 * many consecutive beacons reset the device. 6533 */ 6534 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 6535 sc->sc_bmisscount++; 6536 DPRINTF(sc, ATH_DEBUG_BEACON, 6537 "%s: missed %u consecutive beacons\n", 6538 __func__, sc->sc_bmisscount); 6539 if (sc->sc_bmisscount >= ath_bstuck_threshold) 6540 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 6541 return; 6542 } 6543 if (sc->sc_bmisscount != 0) { 6544 DPRINTF(sc, ATH_DEBUG_BEACON, 6545 "%s: resume beacon xmit after %u misses\n", 6546 __func__, sc->sc_bmisscount); 6547 sc->sc_bmisscount = 0; 6548 } 6549 6550 /* 6551 * Check recent per-antenna transmit statistics and flip 6552 * the default antenna if noticeably more frames went out 6553 * on the non-default antenna. 6554 * XXX assumes 2 anntenae 6555 */ 6556 if (!sc->sc_diversity) { 6557 otherant = sc->sc_defant & 1 ? 2 : 1; 6558 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 6559 ath_setdefantenna(sc, otherant); 6560 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 6561 } 6562 6563 bf = ath_beacon_generate(sc, vap); 6564 if (bf != NULL) { 6565 /* 6566 * Stop any current dma and put the new frame on the queue. 6567 * This should never fail since we check above that no frames 6568 * are still pending on the queue. 6569 */ 6570 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 6571 DPRINTF(sc, ATH_DEBUG_ANY, 6572 "%s: beacon queue %u did not stop?\n", 6573 __func__, sc->sc_bhalq); 6574 /* NB: the HAL still stops DMA, so proceed */ 6575 } 6576 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 6577 ath_hal_txstart(ah, sc->sc_bhalq); 6578 6579 sc->sc_stats.ast_be_xmit++; /* XXX per-vap? */ 6580 6581 /* 6582 * Record local TSF for our last send for use 6583 * in arbitrating slot collisions. 6584 */ 6585 vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah); 6586 } 6587 } 6588 #endif /* IEEE80211_SUPPORT_TDMA */ 6589 6590 static void 6591 ath_dfs_tasklet(void *p, int npending) 6592 { 6593 struct ath_softc *sc = (struct ath_softc *) p; 6594 struct ifnet *ifp = sc->sc_ifp; 6595 struct ieee80211com *ic = ifp->if_l2com; 6596 6597 /* 6598 * If previous processing has found a radar event, 6599 * signal this to the net80211 layer to begin DFS 6600 * processing. 6601 */ 6602 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6603 /* DFS event found, initiate channel change */ 6604 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6605 } 6606 } 6607 6608 MODULE_VERSION(if_ath, 1); 6609 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6610