xref: /freebsd/sys/dev/ath/if_ath.c (revision 0f2bd1e89db1a2f09268edea21e0ead329e092df)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 #include "opt_wlan.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/mbuf.h>
48 #include <sys/malloc.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/errno.h>
55 #include <sys/callout.h>
56 #include <sys/bus.h>
57 #include <sys/endian.h>
58 #include <sys/kthread.h>
59 #include <sys/taskqueue.h>
60 #include <sys/priv.h>
61 
62 #include <machine/bus.h>
63 
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_types.h>
68 #include <net/if_arp.h>
69 #include <net/ethernet.h>
70 #include <net/if_llc.h>
71 
72 #include <net80211/ieee80211_var.h>
73 #include <net80211/ieee80211_regdomain.h>
74 #ifdef IEEE80211_SUPPORT_SUPERG
75 #include <net80211/ieee80211_superg.h>
76 #endif
77 #ifdef IEEE80211_SUPPORT_TDMA
78 #include <net80211/ieee80211_tdma.h>
79 #endif
80 
81 #include <net/bpf.h>
82 
83 #ifdef INET
84 #include <netinet/in.h>
85 #include <netinet/if_ether.h>
86 #endif
87 
88 #include <dev/ath/if_athvar.h>
89 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
90 
91 #ifdef ATH_TX99_DIAG
92 #include <dev/ath/ath_tx99/ath_tx99.h>
93 #endif
94 
95 /*
96  * ATH_BCBUF determines the number of vap's that can transmit
97  * beacons and also (currently) the number of vap's that can
98  * have unique mac addresses/bssid.  When staggering beacons
99  * 4 is probably a good max as otherwise the beacons become
100  * very closely spaced and there is limited time for cab q traffic
101  * to go out.  You can burst beacons instead but that is not good
102  * for stations in power save and at some point you really want
103  * another radio (and channel).
104  *
105  * The limit on the number of mac addresses is tied to our use of
106  * the U/L bit and tracking addresses in a byte; it would be
107  * worthwhile to allow more for applications like proxy sta.
108  */
109 CTASSERT(ATH_BCBUF <= 8);
110 
111 /* unaligned little endian access */
112 #define LE_READ_2(p)							\
113 	((u_int16_t)							\
114 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
115 #define LE_READ_4(p)							\
116 	((u_int32_t)							\
117 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
118 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
119 
120 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
121 		    const char name[IFNAMSIZ], int unit, int opmode,
122 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
123 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
124 static void	ath_vap_delete(struct ieee80211vap *);
125 static void	ath_init(void *);
126 static void	ath_stop_locked(struct ifnet *);
127 static void	ath_stop(struct ifnet *);
128 static void	ath_start(struct ifnet *);
129 static int	ath_reset(struct ifnet *);
130 static int	ath_reset_vap(struct ieee80211vap *, u_long);
131 static int	ath_media_change(struct ifnet *);
132 static void	ath_watchdog(void *);
133 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
134 static void	ath_fatal_proc(void *, int);
135 static void	ath_bmiss_vap(struct ieee80211vap *);
136 static void	ath_bmiss_proc(void *, int);
137 static int	ath_keyset(struct ath_softc *, const struct ieee80211_key *,
138 			struct ieee80211_node *);
139 static int	ath_key_alloc(struct ieee80211vap *,
140 			struct ieee80211_key *,
141 			ieee80211_keyix *, ieee80211_keyix *);
142 static int	ath_key_delete(struct ieee80211vap *,
143 			const struct ieee80211_key *);
144 static int	ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
145 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
146 static void	ath_key_update_begin(struct ieee80211vap *);
147 static void	ath_key_update_end(struct ieee80211vap *);
148 static void	ath_update_mcast(struct ifnet *);
149 static void	ath_update_promisc(struct ifnet *);
150 static void	ath_mode_init(struct ath_softc *);
151 static void	ath_setslottime(struct ath_softc *);
152 static void	ath_updateslot(struct ifnet *);
153 static int	ath_beaconq_setup(struct ath_hal *);
154 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
155 static void	ath_beacon_update(struct ieee80211vap *, int item);
156 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
157 static void	ath_beacon_proc(void *, int);
158 static struct ath_buf *ath_beacon_generate(struct ath_softc *,
159 			struct ieee80211vap *);
160 static void	ath_bstuck_proc(void *, int);
161 static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
162 static void	ath_beacon_free(struct ath_softc *);
163 static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
164 static void	ath_descdma_cleanup(struct ath_softc *sc,
165 			struct ath_descdma *, ath_bufhead *);
166 static int	ath_desc_alloc(struct ath_softc *);
167 static void	ath_desc_free(struct ath_softc *);
168 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
169 			const uint8_t [IEEE80211_ADDR_LEN]);
170 static void	ath_node_free(struct ieee80211_node *);
171 static void	ath_node_getsignal(const struct ieee80211_node *,
172 			int8_t *, int8_t *);
173 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
174 static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
175 			int subtype, int rssi, int nf);
176 static void	ath_setdefantenna(struct ath_softc *, u_int);
177 static void	ath_rx_proc(void *, int);
178 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
179 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
180 static int	ath_tx_setup(struct ath_softc *, int, int);
181 static int	ath_wme_update(struct ieee80211com *);
182 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
183 static void	ath_tx_cleanup(struct ath_softc *);
184 static void	ath_freetx(struct mbuf *);
185 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
186 			     struct ath_buf *, struct mbuf *);
187 static void	ath_tx_proc_q0(void *, int);
188 static void	ath_tx_proc_q0123(void *, int);
189 static void	ath_tx_proc(void *, int);
190 static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
191 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
192 static void	ath_draintxq(struct ath_softc *);
193 static void	ath_stoprecv(struct ath_softc *);
194 static int	ath_startrecv(struct ath_softc *);
195 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
196 static void	ath_scan_start(struct ieee80211com *);
197 static void	ath_scan_end(struct ieee80211com *);
198 static void	ath_set_channel(struct ieee80211com *);
199 static void	ath_calibrate(void *);
200 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
201 static void	ath_setup_stationkey(struct ieee80211_node *);
202 static void	ath_newassoc(struct ieee80211_node *, int);
203 static int	ath_setregdomain(struct ieee80211com *,
204 		    struct ieee80211_regdomain *, int,
205 		    struct ieee80211_channel []);
206 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
207 		    struct ieee80211_channel []);
208 static int	ath_getchannels(struct ath_softc *);
209 static void	ath_led_event(struct ath_softc *, int);
210 
211 static int	ath_rate_setup(struct ath_softc *, u_int mode);
212 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
213 
214 static void	ath_sysctlattach(struct ath_softc *);
215 static int	ath_raw_xmit(struct ieee80211_node *,
216 			struct mbuf *, const struct ieee80211_bpf_params *);
217 static void	ath_announce(struct ath_softc *);
218 static void	ath_sysctl_stats_attach(struct ath_softc *sc);
219 
220 #ifdef IEEE80211_SUPPORT_TDMA
221 static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
222 		    u_int32_t bintval);
223 static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
224 		    const struct ieee80211_tdma_state *tdma);
225 static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
226 static void	ath_tdma_update(struct ieee80211_node *ni,
227 		    const struct ieee80211_tdma_param *tdma, int);
228 static void	ath_tdma_beacon_send(struct ath_softc *sc,
229 		    struct ieee80211vap *vap);
230 
231 static __inline void
232 ath_hal_setcca(struct ath_hal *ah, int ena)
233 {
234 	/*
235 	 * NB: fill me in; this is not provided by default because disabling
236 	 *     CCA in most locales violates regulatory.
237 	 */
238 }
239 
240 static __inline int
241 ath_hal_getcca(struct ath_hal *ah)
242 {
243 	u_int32_t diag;
244 	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
245 		return 1;
246 	return ((diag & 0x500000) == 0);
247 }
248 
249 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
250 #define	TDMA_LPF_LEN		6
251 #define	TDMA_DUMMY_MARKER	0x127
252 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
253 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
254 #define	TDMA_LPF(x, y, len) \
255     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
256 #define	TDMA_SAMPLE(x, y) do {					\
257 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
258 } while (0)
259 #define	TDMA_EP_RND(x,mul) \
260 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
261 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
262 #endif /* IEEE80211_SUPPORT_TDMA */
263 
264 SYSCTL_DECL(_hw_ath);
265 
266 /* XXX validate sysctl values */
267 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
268 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
269 	    0, "long chip calibration interval (secs)");
270 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
271 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
272 	    0, "short chip calibration interval (msecs)");
273 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
274 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
275 	    0, "reset chip calibration results (secs)");
276 
277 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
278 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
279 	    0, "rx buffers allocated");
280 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
281 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
282 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
283 	    0, "tx buffers allocated");
284 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
285 
286 static	int ath_bstuck_threshold = 4;		/* max missed beacons */
287 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
288 	    0, "max missed beacon xmits before chip reset");
289 
290 #ifdef ATH_DEBUG
291 enum {
292 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
293 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
294 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
295 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
296 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
297 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
298 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
299 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
300 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
301 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
302 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
303 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
304 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
305 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
306 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
307 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
308 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
309 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
310 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
311 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
312 	ATH_DEBUG_TDMA		= 0x00800000,	/* TDMA processing */
313 	ATH_DEBUG_TDMA_TIMER	= 0x01000000,	/* TDMA timer processing */
314 	ATH_DEBUG_REGDOMAIN	= 0x02000000,	/* regulatory processing */
315 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
316 	ATH_DEBUG_ANY		= 0xffffffff
317 };
318 static	int ath_debug = 0;
319 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
320 	    0, "control debugging printfs");
321 TUNABLE_INT("hw.ath.debug", &ath_debug);
322 
323 #define	IFF_DUMPPKTS(sc, m) \
324 	((sc->sc_debug & (m)) || \
325 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
326 #define	DPRINTF(sc, m, fmt, ...) do {				\
327 	if (sc->sc_debug & (m))					\
328 		device_printf(sc->sc_dev, fmt, __VA_ARGS__);		\
329 } while (0)
330 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
331 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
332 		ath_keyprint(sc, __func__, ix, hk, mac);	\
333 } while (0)
334 static	void ath_printrxbuf(struct ath_softc *, const struct ath_buf *bf,
335 	u_int ix, int);
336 static	void ath_printtxbuf(struct ath_softc *, const struct ath_buf *bf,
337 	u_int qnum, u_int ix, int done);
338 #else
339 #define	IFF_DUMPPKTS(sc, m) \
340 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
341 #define	DPRINTF(sc, m, fmt, ...) do {				\
342 	(void) sc;						\
343 } while (0)
344 #define	KEYPRINTF(sc, k, ix, mac) do {				\
345 	(void) sc;						\
346 } while (0)
347 #endif
348 
349 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
350 
351 int
352 ath_attach(u_int16_t devid, struct ath_softc *sc)
353 {
354 	struct ifnet *ifp;
355 	struct ieee80211com *ic;
356 	struct ath_hal *ah = NULL;
357 	HAL_STATUS status;
358 	int error = 0, i;
359 	u_int wmodes;
360 	uint8_t macaddr[IEEE80211_ADDR_LEN];
361 
362 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
363 
364 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
365 	if (ifp == NULL) {
366 		device_printf(sc->sc_dev, "can not if_alloc()\n");
367 		error = ENOSPC;
368 		goto bad;
369 	}
370 	ic = ifp->if_l2com;
371 
372 	/* set these up early for if_printf use */
373 	if_initname(ifp, device_get_name(sc->sc_dev),
374 		device_get_unit(sc->sc_dev));
375 
376 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
377 	if (ah == NULL) {
378 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
379 			status);
380 		error = ENXIO;
381 		goto bad;
382 	}
383 	sc->sc_ah = ah;
384 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
385 #ifdef	ATH_DEBUG
386 	sc->sc_debug = ath_debug;
387 #endif
388 
389 	/*
390 	 * Check if the MAC has multi-rate retry support.
391 	 * We do this by trying to setup a fake extended
392 	 * descriptor.  MAC's that don't have support will
393 	 * return false w/o doing anything.  MAC's that do
394 	 * support it will return true w/o doing anything.
395 	 */
396 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
397 
398 	/*
399 	 * Check if the device has hardware counters for PHY
400 	 * errors.  If so we need to enable the MIB interrupt
401 	 * so we can act on stat triggers.
402 	 */
403 	if (ath_hal_hwphycounters(ah))
404 		sc->sc_needmib = 1;
405 
406 	/*
407 	 * Get the hardware key cache size.
408 	 */
409 	sc->sc_keymax = ath_hal_keycachesize(ah);
410 	if (sc->sc_keymax > ATH_KEYMAX) {
411 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
412 			ATH_KEYMAX, sc->sc_keymax);
413 		sc->sc_keymax = ATH_KEYMAX;
414 	}
415 	/*
416 	 * Reset the key cache since some parts do not
417 	 * reset the contents on initial power up.
418 	 */
419 	for (i = 0; i < sc->sc_keymax; i++)
420 		ath_hal_keyreset(ah, i);
421 
422 	/*
423 	 * Collect the default channel list.
424 	 */
425 	error = ath_getchannels(sc);
426 	if (error != 0)
427 		goto bad;
428 
429 	/*
430 	 * Setup rate tables for all potential media types.
431 	 */
432 	ath_rate_setup(sc, IEEE80211_MODE_11A);
433 	ath_rate_setup(sc, IEEE80211_MODE_11B);
434 	ath_rate_setup(sc, IEEE80211_MODE_11G);
435 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
436 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
437 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
438 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
439 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
440 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
441 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
442 
443 	/* NB: setup here so ath_rate_update is happy */
444 	ath_setcurmode(sc, IEEE80211_MODE_11A);
445 
446 	/*
447 	 * Allocate tx+rx descriptors and populate the lists.
448 	 */
449 	error = ath_desc_alloc(sc);
450 	if (error != 0) {
451 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
452 		goto bad;
453 	}
454 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
455 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
456 
457 	ATH_TXBUF_LOCK_INIT(sc);
458 
459 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
460 		taskqueue_thread_enqueue, &sc->sc_tq);
461 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
462 		"%s taskq", ifp->if_xname);
463 
464 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
465 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
466 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
467 
468 	/*
469 	 * Allocate hardware transmit queues: one queue for
470 	 * beacon frames and one data queue for each QoS
471 	 * priority.  Note that the hal handles resetting
472 	 * these queues at the needed time.
473 	 *
474 	 * XXX PS-Poll
475 	 */
476 	sc->sc_bhalq = ath_beaconq_setup(ah);
477 	if (sc->sc_bhalq == (u_int) -1) {
478 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
479 		error = EIO;
480 		goto bad2;
481 	}
482 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
483 	if (sc->sc_cabq == NULL) {
484 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
485 		error = EIO;
486 		goto bad2;
487 	}
488 	/* NB: insure BK queue is the lowest priority h/w queue */
489 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
490 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
491 			ieee80211_wme_acnames[WME_AC_BK]);
492 		error = EIO;
493 		goto bad2;
494 	}
495 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
496 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
497 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
498 		/*
499 		 * Not enough hardware tx queues to properly do WME;
500 		 * just punt and assign them all to the same h/w queue.
501 		 * We could do a better job of this if, for example,
502 		 * we allocate queues when we switch from station to
503 		 * AP mode.
504 		 */
505 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
506 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
507 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
508 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
509 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
510 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
511 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
512 	}
513 
514 	/*
515 	 * Special case certain configurations.  Note the
516 	 * CAB queue is handled by these specially so don't
517 	 * include them when checking the txq setup mask.
518 	 */
519 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
520 	case 0x01:
521 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
522 		break;
523 	case 0x0f:
524 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
525 		break;
526 	default:
527 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
528 		break;
529 	}
530 
531 	/*
532 	 * Setup rate control.  Some rate control modules
533 	 * call back to change the anntena state so expose
534 	 * the necessary entry points.
535 	 * XXX maybe belongs in struct ath_ratectrl?
536 	 */
537 	sc->sc_setdefantenna = ath_setdefantenna;
538 	sc->sc_rc = ath_rate_attach(sc);
539 	if (sc->sc_rc == NULL) {
540 		error = EIO;
541 		goto bad2;
542 	}
543 
544 	sc->sc_blinking = 0;
545 	sc->sc_ledstate = 1;
546 	sc->sc_ledon = 0;			/* low true */
547 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
548 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
549 	/*
550 	 * Auto-enable soft led processing for IBM cards and for
551 	 * 5211 minipci cards.  Users can also manually enable/disable
552 	 * support with a sysctl.
553 	 */
554 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
555 	if (sc->sc_softled) {
556 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
557 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
558 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
559 	}
560 
561 	ifp->if_softc = sc;
562 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
563 	ifp->if_start = ath_start;
564 	ifp->if_ioctl = ath_ioctl;
565 	ifp->if_init = ath_init;
566 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
567 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
568 	IFQ_SET_READY(&ifp->if_snd);
569 
570 	ic->ic_ifp = ifp;
571 	/* XXX not right but it's not used anywhere important */
572 	ic->ic_phytype = IEEE80211_T_OFDM;
573 	ic->ic_opmode = IEEE80211_M_STA;
574 	ic->ic_caps =
575 		  IEEE80211_C_STA		/* station mode */
576 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
577 		| IEEE80211_C_HOSTAP		/* hostap mode */
578 		| IEEE80211_C_MONITOR		/* monitor mode */
579 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
580 		| IEEE80211_C_WDS		/* 4-address traffic works */
581 		| IEEE80211_C_MBSS		/* mesh point link mode */
582 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
583 		| IEEE80211_C_SHSLOT		/* short slot time supported */
584 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
585 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
586 		| IEEE80211_C_TXFRAG		/* handle tx frags */
587 		;
588 	/*
589 	 * Query the hal to figure out h/w crypto support.
590 	 */
591 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
592 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
593 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
594 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
595 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
596 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
597 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
598 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
599 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
600 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
601 		/*
602 		 * Check if h/w does the MIC and/or whether the
603 		 * separate key cache entries are required to
604 		 * handle both tx+rx MIC keys.
605 		 */
606 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
607 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
608 		/*
609 		 * If the h/w supports storing tx+rx MIC keys
610 		 * in one cache slot automatically enable use.
611 		 */
612 		if (ath_hal_hastkipsplit(ah) ||
613 		    !ath_hal_settkipsplit(ah, AH_FALSE))
614 			sc->sc_splitmic = 1;
615 		/*
616 		 * If the h/w can do TKIP MIC together with WME then
617 		 * we use it; otherwise we force the MIC to be done
618 		 * in software by the net80211 layer.
619 		 */
620 		if (ath_hal_haswmetkipmic(ah))
621 			sc->sc_wmetkipmic = 1;
622 	}
623 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
624 	/*
625 	 * Check for multicast key search support.
626 	 */
627 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
628 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
629 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
630 	}
631 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
632 	/*
633 	 * Mark key cache slots associated with global keys
634 	 * as in use.  If we knew TKIP was not to be used we
635 	 * could leave the +32, +64, and +32+64 slots free.
636 	 */
637 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
638 		setbit(sc->sc_keymap, i);
639 		setbit(sc->sc_keymap, i+64);
640 		if (sc->sc_splitmic) {
641 			setbit(sc->sc_keymap, i+32);
642 			setbit(sc->sc_keymap, i+32+64);
643 		}
644 	}
645 	/*
646 	 * TPC support can be done either with a global cap or
647 	 * per-packet support.  The latter is not available on
648 	 * all parts.  We're a bit pedantic here as all parts
649 	 * support a global cap.
650 	 */
651 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
652 		ic->ic_caps |= IEEE80211_C_TXPMGT;
653 
654 	/*
655 	 * Mark WME capability only if we have sufficient
656 	 * hardware queues to do proper priority scheduling.
657 	 */
658 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
659 		ic->ic_caps |= IEEE80211_C_WME;
660 	/*
661 	 * Check for misc other capabilities.
662 	 */
663 	if (ath_hal_hasbursting(ah))
664 		ic->ic_caps |= IEEE80211_C_BURST;
665 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
666 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
667 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
668 	if (ath_hal_hasfastframes(ah))
669 		ic->ic_caps |= IEEE80211_C_FF;
670 	wmodes = ath_hal_getwirelessmodes(ah);
671 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
672 		ic->ic_caps |= IEEE80211_C_TURBOP;
673 #ifdef IEEE80211_SUPPORT_TDMA
674 	if (ath_hal_macversion(ah) > 0x78) {
675 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
676 		ic->ic_tdma_update = ath_tdma_update;
677 	}
678 #endif
679 	/*
680 	 * Indicate we need the 802.11 header padded to a
681 	 * 32-bit boundary for 4-address and QoS frames.
682 	 */
683 	ic->ic_flags |= IEEE80211_F_DATAPAD;
684 
685 	/*
686 	 * Query the hal about antenna support.
687 	 */
688 	sc->sc_defant = ath_hal_getdefantenna(ah);
689 
690 	/*
691 	 * Not all chips have the VEOL support we want to
692 	 * use with IBSS beacons; check here for it.
693 	 */
694 	sc->sc_hasveol = ath_hal_hasveol(ah);
695 
696 	/* get mac address from hardware */
697 	ath_hal_getmac(ah, macaddr);
698 	if (sc->sc_hasbmask)
699 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
700 
701 	/* NB: used to size node table key mapping array */
702 	ic->ic_max_keyix = sc->sc_keymax;
703 	/* call MI attach routine. */
704 	ieee80211_ifattach(ic, macaddr);
705 	ic->ic_setregdomain = ath_setregdomain;
706 	ic->ic_getradiocaps = ath_getradiocaps;
707 	sc->sc_opmode = HAL_M_STA;
708 
709 	/* override default methods */
710 	ic->ic_newassoc = ath_newassoc;
711 	ic->ic_updateslot = ath_updateslot;
712 	ic->ic_wme.wme_update = ath_wme_update;
713 	ic->ic_vap_create = ath_vap_create;
714 	ic->ic_vap_delete = ath_vap_delete;
715 	ic->ic_raw_xmit = ath_raw_xmit;
716 	ic->ic_update_mcast = ath_update_mcast;
717 	ic->ic_update_promisc = ath_update_promisc;
718 	ic->ic_node_alloc = ath_node_alloc;
719 	sc->sc_node_free = ic->ic_node_free;
720 	ic->ic_node_free = ath_node_free;
721 	ic->ic_node_getsignal = ath_node_getsignal;
722 	ic->ic_scan_start = ath_scan_start;
723 	ic->ic_scan_end = ath_scan_end;
724 	ic->ic_set_channel = ath_set_channel;
725 
726 	ieee80211_radiotap_attach(ic,
727 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
728 		ATH_TX_RADIOTAP_PRESENT,
729 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
730 		ATH_RX_RADIOTAP_PRESENT);
731 
732 	/*
733 	 * Setup dynamic sysctl's now that country code and
734 	 * regdomain are available from the hal.
735 	 */
736 	ath_sysctlattach(sc);
737 	ath_sysctl_stats_attach(sc);
738 
739 	if (bootverbose)
740 		ieee80211_announce(ic);
741 	ath_announce(sc);
742 	return 0;
743 bad2:
744 	ath_tx_cleanup(sc);
745 	ath_desc_free(sc);
746 bad:
747 	if (ah)
748 		ath_hal_detach(ah);
749 	if (ifp != NULL)
750 		if_free(ifp);
751 	sc->sc_invalid = 1;
752 	return error;
753 }
754 
755 int
756 ath_detach(struct ath_softc *sc)
757 {
758 	struct ifnet *ifp = sc->sc_ifp;
759 
760 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
761 		__func__, ifp->if_flags);
762 
763 	/*
764 	 * NB: the order of these is important:
765 	 * o stop the chip so no more interrupts will fire
766 	 * o call the 802.11 layer before detaching the hal to
767 	 *   insure callbacks into the driver to delete global
768 	 *   key cache entries can be handled
769 	 * o free the taskqueue which drains any pending tasks
770 	 * o reclaim the tx queue data structures after calling
771 	 *   the 802.11 layer as we'll get called back to reclaim
772 	 *   node state and potentially want to use them
773 	 * o to cleanup the tx queues the hal is called, so detach
774 	 *   it last
775 	 * Other than that, it's straightforward...
776 	 */
777 	ath_stop(ifp);
778 	ieee80211_ifdetach(ifp->if_l2com);
779 	taskqueue_free(sc->sc_tq);
780 #ifdef ATH_TX99_DIAG
781 	if (sc->sc_tx99 != NULL)
782 		sc->sc_tx99->detach(sc->sc_tx99);
783 #endif
784 	ath_rate_detach(sc->sc_rc);
785 	ath_desc_free(sc);
786 	ath_tx_cleanup(sc);
787 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
788 	if_free(ifp);
789 
790 	return 0;
791 }
792 
793 /*
794  * MAC address handling for multiple BSS on the same radio.
795  * The first vap uses the MAC address from the EEPROM.  For
796  * subsequent vap's we set the U/L bit (bit 1) in the MAC
797  * address and use the next six bits as an index.
798  */
799 static void
800 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
801 {
802 	int i;
803 
804 	if (clone && sc->sc_hasbmask) {
805 		/* NB: we only do this if h/w supports multiple bssid */
806 		for (i = 0; i < 8; i++)
807 			if ((sc->sc_bssidmask & (1<<i)) == 0)
808 				break;
809 		if (i != 0)
810 			mac[0] |= (i << 2)|0x2;
811 	} else
812 		i = 0;
813 	sc->sc_bssidmask |= 1<<i;
814 	sc->sc_hwbssidmask[0] &= ~mac[0];
815 	if (i == 0)
816 		sc->sc_nbssid0++;
817 }
818 
819 static void
820 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
821 {
822 	int i = mac[0] >> 2;
823 	uint8_t mask;
824 
825 	if (i != 0 || --sc->sc_nbssid0 == 0) {
826 		sc->sc_bssidmask &= ~(1<<i);
827 		/* recalculate bssid mask from remaining addresses */
828 		mask = 0xff;
829 		for (i = 1; i < 8; i++)
830 			if (sc->sc_bssidmask & (1<<i))
831 				mask &= ~((i<<2)|0x2);
832 		sc->sc_hwbssidmask[0] |= mask;
833 	}
834 }
835 
836 /*
837  * Assign a beacon xmit slot.  We try to space out
838  * assignments so when beacons are staggered the
839  * traffic coming out of the cab q has maximal time
840  * to go out before the next beacon is scheduled.
841  */
842 static int
843 assign_bslot(struct ath_softc *sc)
844 {
845 	u_int slot, free;
846 
847 	free = 0;
848 	for (slot = 0; slot < ATH_BCBUF; slot++)
849 		if (sc->sc_bslot[slot] == NULL) {
850 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
851 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
852 				return slot;
853 			free = slot;
854 			/* NB: keep looking for a double slot */
855 		}
856 	return free;
857 }
858 
859 static struct ieee80211vap *
860 ath_vap_create(struct ieee80211com *ic,
861 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
862 	const uint8_t bssid[IEEE80211_ADDR_LEN],
863 	const uint8_t mac0[IEEE80211_ADDR_LEN])
864 {
865 	struct ath_softc *sc = ic->ic_ifp->if_softc;
866 	struct ath_vap *avp;
867 	struct ieee80211vap *vap;
868 	uint8_t mac[IEEE80211_ADDR_LEN];
869 	int ic_opmode, needbeacon, error;
870 
871 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
872 	    M_80211_VAP, M_WAITOK | M_ZERO);
873 	needbeacon = 0;
874 	IEEE80211_ADDR_COPY(mac, mac0);
875 
876 	ATH_LOCK(sc);
877 	ic_opmode = opmode;		/* default to opmode of new vap */
878 	switch (opmode) {
879 	case IEEE80211_M_STA:
880 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
881 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
882 			goto bad;
883 		}
884 		if (sc->sc_nvaps) {
885 			/*
886 			 * With multiple vaps we must fall back
887 			 * to s/w beacon miss handling.
888 			 */
889 			flags |= IEEE80211_CLONE_NOBEACONS;
890 		}
891 		if (flags & IEEE80211_CLONE_NOBEACONS) {
892 			/*
893 			 * Station mode w/o beacons are implemented w/ AP mode.
894 			 */
895 			ic_opmode = IEEE80211_M_HOSTAP;
896 		}
897 		break;
898 	case IEEE80211_M_IBSS:
899 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
900 			device_printf(sc->sc_dev,
901 			    "only 1 ibss vap supported\n");
902 			goto bad;
903 		}
904 		needbeacon = 1;
905 		break;
906 	case IEEE80211_M_AHDEMO:
907 #ifdef IEEE80211_SUPPORT_TDMA
908 		if (flags & IEEE80211_CLONE_TDMA) {
909 			if (sc->sc_nvaps != 0) {
910 				device_printf(sc->sc_dev,
911 				    "only 1 tdma vap supported\n");
912 				goto bad;
913 			}
914 			needbeacon = 1;
915 			flags |= IEEE80211_CLONE_NOBEACONS;
916 		}
917 		/* fall thru... */
918 #endif
919 	case IEEE80211_M_MONITOR:
920 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
921 			/*
922 			 * Adopt existing mode.  Adding a monitor or ahdemo
923 			 * vap to an existing configuration is of dubious
924 			 * value but should be ok.
925 			 */
926 			/* XXX not right for monitor mode */
927 			ic_opmode = ic->ic_opmode;
928 		}
929 		break;
930 	case IEEE80211_M_HOSTAP:
931 	case IEEE80211_M_MBSS:
932 		needbeacon = 1;
933 		break;
934 	case IEEE80211_M_WDS:
935 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
936 			device_printf(sc->sc_dev,
937 			    "wds not supported in sta mode\n");
938 			goto bad;
939 		}
940 		/*
941 		 * Silently remove any request for a unique
942 		 * bssid; WDS vap's always share the local
943 		 * mac address.
944 		 */
945 		flags &= ~IEEE80211_CLONE_BSSID;
946 		if (sc->sc_nvaps == 0)
947 			ic_opmode = IEEE80211_M_HOSTAP;
948 		else
949 			ic_opmode = ic->ic_opmode;
950 		break;
951 	default:
952 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
953 		goto bad;
954 	}
955 	/*
956 	 * Check that a beacon buffer is available; the code below assumes it.
957 	 */
958 	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
959 		device_printf(sc->sc_dev, "no beacon buffer available\n");
960 		goto bad;
961 	}
962 
963 	/* STA, AHDEMO? */
964 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
965 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
966 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
967 	}
968 
969 	vap = &avp->av_vap;
970 	/* XXX can't hold mutex across if_alloc */
971 	ATH_UNLOCK(sc);
972 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
973 	    bssid, mac);
974 	ATH_LOCK(sc);
975 	if (error != 0) {
976 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
977 		    __func__, error);
978 		goto bad2;
979 	}
980 
981 	/* h/w crypto support */
982 	vap->iv_key_alloc = ath_key_alloc;
983 	vap->iv_key_delete = ath_key_delete;
984 	vap->iv_key_set = ath_key_set;
985 	vap->iv_key_update_begin = ath_key_update_begin;
986 	vap->iv_key_update_end = ath_key_update_end;
987 
988 	/* override various methods */
989 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
990 	vap->iv_recv_mgmt = ath_recv_mgmt;
991 	vap->iv_reset = ath_reset_vap;
992 	vap->iv_update_beacon = ath_beacon_update;
993 	avp->av_newstate = vap->iv_newstate;
994 	vap->iv_newstate = ath_newstate;
995 	avp->av_bmiss = vap->iv_bmiss;
996 	vap->iv_bmiss = ath_bmiss_vap;
997 
998 	avp->av_bslot = -1;
999 	if (needbeacon) {
1000 		/*
1001 		 * Allocate beacon state and setup the q for buffered
1002 		 * multicast frames.  We know a beacon buffer is
1003 		 * available because we checked above.
1004 		 */
1005 		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
1006 		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
1007 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1008 			/*
1009 			 * Assign the vap to a beacon xmit slot.  As above
1010 			 * this cannot fail to find a free one.
1011 			 */
1012 			avp->av_bslot = assign_bslot(sc);
1013 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1014 			    ("beacon slot %u not empty", avp->av_bslot));
1015 			sc->sc_bslot[avp->av_bslot] = vap;
1016 			sc->sc_nbcnvaps++;
1017 		}
1018 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1019 			/*
1020 			 * Multple vaps are to transmit beacons and we
1021 			 * have h/w support for TSF adjusting; enable
1022 			 * use of staggered beacons.
1023 			 */
1024 			sc->sc_stagbeacons = 1;
1025 		}
1026 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1027 	}
1028 
1029 	ic->ic_opmode = ic_opmode;
1030 	if (opmode != IEEE80211_M_WDS) {
1031 		sc->sc_nvaps++;
1032 		if (opmode == IEEE80211_M_STA)
1033 			sc->sc_nstavaps++;
1034 		if (opmode == IEEE80211_M_MBSS)
1035 			sc->sc_nmeshvaps++;
1036 	}
1037 	switch (ic_opmode) {
1038 	case IEEE80211_M_IBSS:
1039 		sc->sc_opmode = HAL_M_IBSS;
1040 		break;
1041 	case IEEE80211_M_STA:
1042 		sc->sc_opmode = HAL_M_STA;
1043 		break;
1044 	case IEEE80211_M_AHDEMO:
1045 #ifdef IEEE80211_SUPPORT_TDMA
1046 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1047 			sc->sc_tdma = 1;
1048 			/* NB: disable tsf adjust */
1049 			sc->sc_stagbeacons = 0;
1050 		}
1051 		/*
1052 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1053 		 * just ap mode.
1054 		 */
1055 		/* fall thru... */
1056 #endif
1057 	case IEEE80211_M_HOSTAP:
1058 	case IEEE80211_M_MBSS:
1059 		sc->sc_opmode = HAL_M_HOSTAP;
1060 		break;
1061 	case IEEE80211_M_MONITOR:
1062 		sc->sc_opmode = HAL_M_MONITOR;
1063 		break;
1064 	default:
1065 		/* XXX should not happen */
1066 		break;
1067 	}
1068 	if (sc->sc_hastsfadd) {
1069 		/*
1070 		 * Configure whether or not TSF adjust should be done.
1071 		 */
1072 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1073 	}
1074 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1075 		/*
1076 		 * Enable s/w beacon miss handling.
1077 		 */
1078 		sc->sc_swbmiss = 1;
1079 	}
1080 	ATH_UNLOCK(sc);
1081 
1082 	/* complete setup */
1083 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1084 	return vap;
1085 bad2:
1086 	reclaim_address(sc, mac);
1087 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1088 bad:
1089 	free(avp, M_80211_VAP);
1090 	ATH_UNLOCK(sc);
1091 	return NULL;
1092 }
1093 
1094 static void
1095 ath_vap_delete(struct ieee80211vap *vap)
1096 {
1097 	struct ieee80211com *ic = vap->iv_ic;
1098 	struct ifnet *ifp = ic->ic_ifp;
1099 	struct ath_softc *sc = ifp->if_softc;
1100 	struct ath_hal *ah = sc->sc_ah;
1101 	struct ath_vap *avp = ATH_VAP(vap);
1102 
1103 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1104 		/*
1105 		 * Quiesce the hardware while we remove the vap.  In
1106 		 * particular we need to reclaim all references to
1107 		 * the vap state by any frames pending on the tx queues.
1108 		 */
1109 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1110 		ath_draintxq(sc);		/* stop xmit side */
1111 		ath_stoprecv(sc);		/* stop recv side */
1112 	}
1113 
1114 	ieee80211_vap_detach(vap);
1115 	ATH_LOCK(sc);
1116 	/*
1117 	 * Reclaim beacon state.  Note this must be done before
1118 	 * the vap instance is reclaimed as we may have a reference
1119 	 * to it in the buffer for the beacon frame.
1120 	 */
1121 	if (avp->av_bcbuf != NULL) {
1122 		if (avp->av_bslot != -1) {
1123 			sc->sc_bslot[avp->av_bslot] = NULL;
1124 			sc->sc_nbcnvaps--;
1125 		}
1126 		ath_beacon_return(sc, avp->av_bcbuf);
1127 		avp->av_bcbuf = NULL;
1128 		if (sc->sc_nbcnvaps == 0) {
1129 			sc->sc_stagbeacons = 0;
1130 			if (sc->sc_hastsfadd)
1131 				ath_hal_settsfadjust(sc->sc_ah, 0);
1132 		}
1133 		/*
1134 		 * Reclaim any pending mcast frames for the vap.
1135 		 */
1136 		ath_tx_draintxq(sc, &avp->av_mcastq);
1137 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1138 	}
1139 	/*
1140 	 * Update bookkeeping.
1141 	 */
1142 	if (vap->iv_opmode == IEEE80211_M_STA) {
1143 		sc->sc_nstavaps--;
1144 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1145 			sc->sc_swbmiss = 0;
1146 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1147 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1148 		reclaim_address(sc, vap->iv_myaddr);
1149 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1150 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1151 			sc->sc_nmeshvaps--;
1152 	}
1153 	if (vap->iv_opmode != IEEE80211_M_WDS)
1154 		sc->sc_nvaps--;
1155 #ifdef IEEE80211_SUPPORT_TDMA
1156 	/* TDMA operation ceases when the last vap is destroyed */
1157 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1158 		sc->sc_tdma = 0;
1159 		sc->sc_swbmiss = 0;
1160 	}
1161 #endif
1162 	ATH_UNLOCK(sc);
1163 	free(avp, M_80211_VAP);
1164 
1165 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1166 		/*
1167 		 * Restart rx+tx machines if still running (RUNNING will
1168 		 * be reset if we just destroyed the last vap).
1169 		 */
1170 		if (ath_startrecv(sc) != 0)
1171 			if_printf(ifp, "%s: unable to restart recv logic\n",
1172 			    __func__);
1173 		if (sc->sc_beacons) {		/* restart beacons */
1174 #ifdef IEEE80211_SUPPORT_TDMA
1175 			if (sc->sc_tdma)
1176 				ath_tdma_config(sc, NULL);
1177 			else
1178 #endif
1179 				ath_beacon_config(sc, NULL);
1180 		}
1181 		ath_hal_intrset(ah, sc->sc_imask);
1182 	}
1183 }
1184 
1185 void
1186 ath_suspend(struct ath_softc *sc)
1187 {
1188 	struct ifnet *ifp = sc->sc_ifp;
1189 	struct ieee80211com *ic = ifp->if_l2com;
1190 
1191 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1192 		__func__, ifp->if_flags);
1193 
1194 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1195 	if (ic->ic_opmode == IEEE80211_M_STA)
1196 		ath_stop(ifp);
1197 	else
1198 		ieee80211_suspend_all(ic);
1199 	/*
1200 	 * NB: don't worry about putting the chip in low power
1201 	 * mode; pci will power off our socket on suspend and
1202 	 * CardBus detaches the device.
1203 	 */
1204 }
1205 
1206 /*
1207  * Reset the key cache since some parts do not reset the
1208  * contents on resume.  First we clear all entries, then
1209  * re-load keys that the 802.11 layer assumes are setup
1210  * in h/w.
1211  */
1212 static void
1213 ath_reset_keycache(struct ath_softc *sc)
1214 {
1215 	struct ifnet *ifp = sc->sc_ifp;
1216 	struct ieee80211com *ic = ifp->if_l2com;
1217 	struct ath_hal *ah = sc->sc_ah;
1218 	int i;
1219 
1220 	for (i = 0; i < sc->sc_keymax; i++)
1221 		ath_hal_keyreset(ah, i);
1222 	ieee80211_crypto_reload_keys(ic);
1223 }
1224 
1225 void
1226 ath_resume(struct ath_softc *sc)
1227 {
1228 	struct ifnet *ifp = sc->sc_ifp;
1229 	struct ieee80211com *ic = ifp->if_l2com;
1230 	struct ath_hal *ah = sc->sc_ah;
1231 	HAL_STATUS status;
1232 
1233 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1234 		__func__, ifp->if_flags);
1235 
1236 	/*
1237 	 * Must reset the chip before we reload the
1238 	 * keycache as we were powered down on suspend.
1239 	 */
1240 	ath_hal_reset(ah, sc->sc_opmode,
1241 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1242 	    AH_FALSE, &status);
1243 	ath_reset_keycache(sc);
1244 	if (sc->sc_resume_up) {
1245 		if (ic->ic_opmode == IEEE80211_M_STA) {
1246 			ath_init(sc);
1247 			/*
1248 			 * Program the beacon registers using the last rx'd
1249 			 * beacon frame and enable sync on the next beacon
1250 			 * we see.  This should handle the case where we
1251 			 * wakeup and find the same AP and also the case where
1252 			 * we wakeup and need to roam.  For the latter we
1253 			 * should get bmiss events that trigger a roam.
1254 			 */
1255 			ath_beacon_config(sc, NULL);
1256 			sc->sc_syncbeacon = 1;
1257 		} else
1258 			ieee80211_resume_all(ic);
1259 	}
1260 	if (sc->sc_softled) {
1261 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1262 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1263 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1264 	}
1265 }
1266 
1267 void
1268 ath_shutdown(struct ath_softc *sc)
1269 {
1270 	struct ifnet *ifp = sc->sc_ifp;
1271 
1272 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1273 		__func__, ifp->if_flags);
1274 
1275 	ath_stop(ifp);
1276 	/* NB: no point powering down chip as we're about to reboot */
1277 }
1278 
1279 /*
1280  * Interrupt handler.  Most of the actual processing is deferred.
1281  */
1282 void
1283 ath_intr(void *arg)
1284 {
1285 	struct ath_softc *sc = arg;
1286 	struct ifnet *ifp = sc->sc_ifp;
1287 	struct ath_hal *ah = sc->sc_ah;
1288 	HAL_INT status;
1289 
1290 	if (sc->sc_invalid) {
1291 		/*
1292 		 * The hardware is not ready/present, don't touch anything.
1293 		 * Note this can happen early on if the IRQ is shared.
1294 		 */
1295 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1296 		return;
1297 	}
1298 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1299 		return;
1300 	if ((ifp->if_flags & IFF_UP) == 0 ||
1301 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1302 		HAL_INT status;
1303 
1304 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1305 			__func__, ifp->if_flags);
1306 		ath_hal_getisr(ah, &status);	/* clear ISR */
1307 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1308 		return;
1309 	}
1310 	/*
1311 	 * Figure out the reason(s) for the interrupt.  Note
1312 	 * that the hal returns a pseudo-ISR that may include
1313 	 * bits we haven't explicitly enabled so we mask the
1314 	 * value to insure we only process bits we requested.
1315 	 */
1316 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1317 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1318 	status &= sc->sc_imask;			/* discard unasked for bits */
1319 	if (status & HAL_INT_FATAL) {
1320 		sc->sc_stats.ast_hardware++;
1321 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1322 		ath_fatal_proc(sc, 0);
1323 	} else {
1324 		if (status & HAL_INT_SWBA) {
1325 			/*
1326 			 * Software beacon alert--time to send a beacon.
1327 			 * Handle beacon transmission directly; deferring
1328 			 * this is too slow to meet timing constraints
1329 			 * under load.
1330 			 */
1331 #ifdef IEEE80211_SUPPORT_TDMA
1332 			if (sc->sc_tdma) {
1333 				if (sc->sc_tdmaswba == 0) {
1334 					struct ieee80211com *ic = ifp->if_l2com;
1335 					struct ieee80211vap *vap =
1336 					    TAILQ_FIRST(&ic->ic_vaps);
1337 					ath_tdma_beacon_send(sc, vap);
1338 					sc->sc_tdmaswba =
1339 					    vap->iv_tdma->tdma_bintval;
1340 				} else
1341 					sc->sc_tdmaswba--;
1342 			} else
1343 #endif
1344 			{
1345 				ath_beacon_proc(sc, 0);
1346 #ifdef IEEE80211_SUPPORT_SUPERG
1347 				/*
1348 				 * Schedule the rx taskq in case there's no
1349 				 * traffic so any frames held on the staging
1350 				 * queue are aged and potentially flushed.
1351 				 */
1352 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1353 #endif
1354 			}
1355 		}
1356 		if (status & HAL_INT_RXEOL) {
1357 			/*
1358 			 * NB: the hardware should re-read the link when
1359 			 *     RXE bit is written, but it doesn't work at
1360 			 *     least on older hardware revs.
1361 			 */
1362 			sc->sc_stats.ast_rxeol++;
1363 			sc->sc_rxlink = NULL;
1364 		}
1365 		if (status & HAL_INT_TXURN) {
1366 			sc->sc_stats.ast_txurn++;
1367 			/* bump tx trigger level */
1368 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1369 		}
1370 		if (status & HAL_INT_RX)
1371 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1372 		if (status & HAL_INT_TX)
1373 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1374 		if (status & HAL_INT_BMISS) {
1375 			sc->sc_stats.ast_bmiss++;
1376 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1377 		}
1378 		if (status & HAL_INT_MIB) {
1379 			sc->sc_stats.ast_mib++;
1380 			/*
1381 			 * Disable interrupts until we service the MIB
1382 			 * interrupt; otherwise it will continue to fire.
1383 			 */
1384 			ath_hal_intrset(ah, 0);
1385 			/*
1386 			 * Let the hal handle the event.  We assume it will
1387 			 * clear whatever condition caused the interrupt.
1388 			 */
1389 			ath_hal_mibevent(ah, &sc->sc_halstats);
1390 			ath_hal_intrset(ah, sc->sc_imask);
1391 		}
1392 		if (status & HAL_INT_RXORN) {
1393 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1394 			sc->sc_stats.ast_rxorn++;
1395 		}
1396 	}
1397 }
1398 
1399 static void
1400 ath_fatal_proc(void *arg, int pending)
1401 {
1402 	struct ath_softc *sc = arg;
1403 	struct ifnet *ifp = sc->sc_ifp;
1404 	u_int32_t *state;
1405 	u_int32_t len;
1406 	void *sp;
1407 
1408 	if_printf(ifp, "hardware error; resetting\n");
1409 	/*
1410 	 * Fatal errors are unrecoverable.  Typically these
1411 	 * are caused by DMA errors.  Collect h/w state from
1412 	 * the hal so we can diagnose what's going on.
1413 	 */
1414 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1415 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1416 		state = sp;
1417 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1418 		    state[0], state[1] , state[2], state[3],
1419 		    state[4], state[5]);
1420 	}
1421 	ath_reset(ifp);
1422 }
1423 
1424 static void
1425 ath_bmiss_vap(struct ieee80211vap *vap)
1426 {
1427 	/*
1428 	 * Workaround phantom bmiss interrupts by sanity-checking
1429 	 * the time of our last rx'd frame.  If it is within the
1430 	 * beacon miss interval then ignore the interrupt.  If it's
1431 	 * truly a bmiss we'll get another interrupt soon and that'll
1432 	 * be dispatched up for processing.  Note this applies only
1433 	 * for h/w beacon miss events.
1434 	 */
1435 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1436 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1437 		struct ath_softc *sc = ifp->if_softc;
1438 		u_int64_t lastrx = sc->sc_lastrx;
1439 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1440 		u_int bmisstimeout =
1441 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1442 
1443 		DPRINTF(sc, ATH_DEBUG_BEACON,
1444 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1445 		    __func__, (unsigned long long) tsf,
1446 		    (unsigned long long)(tsf - lastrx),
1447 		    (unsigned long long) lastrx, bmisstimeout);
1448 
1449 		if (tsf - lastrx <= bmisstimeout) {
1450 			sc->sc_stats.ast_bmiss_phantom++;
1451 			return;
1452 		}
1453 	}
1454 	ATH_VAP(vap)->av_bmiss(vap);
1455 }
1456 
1457 static int
1458 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1459 {
1460 	uint32_t rsize;
1461 	void *sp;
1462 
1463 	if (!ath_hal_getdiagstate(ah, 32, &mask, sizeof(mask), &sp, &rsize))
1464 		return 0;
1465 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1466 	*hangs = *(uint32_t *)sp;
1467 	return 1;
1468 }
1469 
1470 static void
1471 ath_bmiss_proc(void *arg, int pending)
1472 {
1473 	struct ath_softc *sc = arg;
1474 	struct ifnet *ifp = sc->sc_ifp;
1475 	uint32_t hangs;
1476 
1477 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1478 
1479 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1480 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1481 		ath_reset(ifp);
1482 	} else
1483 		ieee80211_beacon_miss(ifp->if_l2com);
1484 }
1485 
1486 /*
1487  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1488  * calcs together with WME.  If necessary disable the crypto
1489  * hardware and mark the 802.11 state so keys will be setup
1490  * with the MIC work done in software.
1491  */
1492 static void
1493 ath_settkipmic(struct ath_softc *sc)
1494 {
1495 	struct ifnet *ifp = sc->sc_ifp;
1496 	struct ieee80211com *ic = ifp->if_l2com;
1497 
1498 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1499 		if (ic->ic_flags & IEEE80211_F_WME) {
1500 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1501 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1502 		} else {
1503 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1504 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1505 		}
1506 	}
1507 }
1508 
1509 static void
1510 ath_init(void *arg)
1511 {
1512 	struct ath_softc *sc = (struct ath_softc *) arg;
1513 	struct ifnet *ifp = sc->sc_ifp;
1514 	struct ieee80211com *ic = ifp->if_l2com;
1515 	struct ath_hal *ah = sc->sc_ah;
1516 	HAL_STATUS status;
1517 
1518 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1519 		__func__, ifp->if_flags);
1520 
1521 	ATH_LOCK(sc);
1522 	/*
1523 	 * Stop anything previously setup.  This is safe
1524 	 * whether this is the first time through or not.
1525 	 */
1526 	ath_stop_locked(ifp);
1527 
1528 	/*
1529 	 * The basic interface to setting the hardware in a good
1530 	 * state is ``reset''.  On return the hardware is known to
1531 	 * be powered up and with interrupts disabled.  This must
1532 	 * be followed by initialization of the appropriate bits
1533 	 * and then setup of the interrupt mask.
1534 	 */
1535 	ath_settkipmic(sc);
1536 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1537 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1538 			status);
1539 		ATH_UNLOCK(sc);
1540 		return;
1541 	}
1542 	ath_chan_change(sc, ic->ic_curchan);
1543 
1544 	/*
1545 	 * Likewise this is set during reset so update
1546 	 * state cached in the driver.
1547 	 */
1548 	sc->sc_diversity = ath_hal_getdiversity(ah);
1549 	sc->sc_lastlongcal = 0;
1550 	sc->sc_resetcal = 1;
1551 	sc->sc_lastcalreset = 0;
1552 
1553 	/*
1554 	 * Setup the hardware after reset: the key cache
1555 	 * is filled as needed and the receive engine is
1556 	 * set going.  Frame transmit is handled entirely
1557 	 * in the frame output path; there's nothing to do
1558 	 * here except setup the interrupt mask.
1559 	 */
1560 	if (ath_startrecv(sc) != 0) {
1561 		if_printf(ifp, "unable to start recv logic\n");
1562 		ATH_UNLOCK(sc);
1563 		return;
1564 	}
1565 
1566 	/*
1567 	 * Enable interrupts.
1568 	 */
1569 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1570 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1571 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1572 	/*
1573 	 * Enable MIB interrupts when there are hardware phy counters.
1574 	 * Note we only do this (at the moment) for station mode.
1575 	 */
1576 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1577 		sc->sc_imask |= HAL_INT_MIB;
1578 
1579 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1580 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1581 	ath_hal_intrset(ah, sc->sc_imask);
1582 
1583 	ATH_UNLOCK(sc);
1584 
1585 #ifdef ATH_TX99_DIAG
1586 	if (sc->sc_tx99 != NULL)
1587 		sc->sc_tx99->start(sc->sc_tx99);
1588 	else
1589 #endif
1590 	ieee80211_start_all(ic);		/* start all vap's */
1591 }
1592 
1593 static void
1594 ath_stop_locked(struct ifnet *ifp)
1595 {
1596 	struct ath_softc *sc = ifp->if_softc;
1597 	struct ath_hal *ah = sc->sc_ah;
1598 
1599 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1600 		__func__, sc->sc_invalid, ifp->if_flags);
1601 
1602 	ATH_LOCK_ASSERT(sc);
1603 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1604 		/*
1605 		 * Shutdown the hardware and driver:
1606 		 *    reset 802.11 state machine
1607 		 *    turn off timers
1608 		 *    disable interrupts
1609 		 *    turn off the radio
1610 		 *    clear transmit machinery
1611 		 *    clear receive machinery
1612 		 *    drain and release tx queues
1613 		 *    reclaim beacon resources
1614 		 *    power down hardware
1615 		 *
1616 		 * Note that some of this work is not possible if the
1617 		 * hardware is gone (invalid).
1618 		 */
1619 #ifdef ATH_TX99_DIAG
1620 		if (sc->sc_tx99 != NULL)
1621 			sc->sc_tx99->stop(sc->sc_tx99);
1622 #endif
1623 		callout_stop(&sc->sc_wd_ch);
1624 		sc->sc_wd_timer = 0;
1625 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1626 		if (!sc->sc_invalid) {
1627 			if (sc->sc_softled) {
1628 				callout_stop(&sc->sc_ledtimer);
1629 				ath_hal_gpioset(ah, sc->sc_ledpin,
1630 					!sc->sc_ledon);
1631 				sc->sc_blinking = 0;
1632 			}
1633 			ath_hal_intrset(ah, 0);
1634 		}
1635 		ath_draintxq(sc);
1636 		if (!sc->sc_invalid) {
1637 			ath_stoprecv(sc);
1638 			ath_hal_phydisable(ah);
1639 		} else
1640 			sc->sc_rxlink = NULL;
1641 		ath_beacon_free(sc);	/* XXX not needed */
1642 	}
1643 }
1644 
1645 static void
1646 ath_stop(struct ifnet *ifp)
1647 {
1648 	struct ath_softc *sc = ifp->if_softc;
1649 
1650 	ATH_LOCK(sc);
1651 	ath_stop_locked(ifp);
1652 	ATH_UNLOCK(sc);
1653 }
1654 
1655 /*
1656  * Reset the hardware w/o losing operational state.  This is
1657  * basically a more efficient way of doing ath_stop, ath_init,
1658  * followed by state transitions to the current 802.11
1659  * operational state.  Used to recover from various errors and
1660  * to reset or reload hardware state.
1661  */
1662 static int
1663 ath_reset(struct ifnet *ifp)
1664 {
1665 	struct ath_softc *sc = ifp->if_softc;
1666 	struct ieee80211com *ic = ifp->if_l2com;
1667 	struct ath_hal *ah = sc->sc_ah;
1668 	HAL_STATUS status;
1669 
1670 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1671 	ath_draintxq(sc);		/* stop xmit side */
1672 	ath_stoprecv(sc);		/* stop recv side */
1673 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1674 	/* NB: indicate channel change so we do a full reset */
1675 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1676 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1677 			__func__, status);
1678 	sc->sc_diversity = ath_hal_getdiversity(ah);
1679 	if (ath_startrecv(sc) != 0)	/* restart recv */
1680 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1681 	/*
1682 	 * We may be doing a reset in response to an ioctl
1683 	 * that changes the channel so update any state that
1684 	 * might change as a result.
1685 	 */
1686 	ath_chan_change(sc, ic->ic_curchan);
1687 	if (sc->sc_beacons) {		/* restart beacons */
1688 #ifdef IEEE80211_SUPPORT_TDMA
1689 		if (sc->sc_tdma)
1690 			ath_tdma_config(sc, NULL);
1691 		else
1692 #endif
1693 			ath_beacon_config(sc, NULL);
1694 	}
1695 	ath_hal_intrset(ah, sc->sc_imask);
1696 
1697 	ath_start(ifp);			/* restart xmit */
1698 	return 0;
1699 }
1700 
1701 static int
1702 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1703 {
1704 	struct ieee80211com *ic = vap->iv_ic;
1705 	struct ifnet *ifp = ic->ic_ifp;
1706 	struct ath_softc *sc = ifp->if_softc;
1707 	struct ath_hal *ah = sc->sc_ah;
1708 
1709 	switch (cmd) {
1710 	case IEEE80211_IOC_TXPOWER:
1711 		/*
1712 		 * If per-packet TPC is enabled, then we have nothing
1713 		 * to do; otherwise we need to force the global limit.
1714 		 * All this can happen directly; no need to reset.
1715 		 */
1716 		if (!ath_hal_gettpc(ah))
1717 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1718 		return 0;
1719 	}
1720 	return ath_reset(ifp);
1721 }
1722 
1723 static struct ath_buf *
1724 _ath_getbuf_locked(struct ath_softc *sc)
1725 {
1726 	struct ath_buf *bf;
1727 
1728 	ATH_TXBUF_LOCK_ASSERT(sc);
1729 
1730 	bf = STAILQ_FIRST(&sc->sc_txbuf);
1731 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
1732 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1733 	else
1734 		bf = NULL;
1735 	if (bf == NULL) {
1736 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
1737 		    STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
1738 			"out of xmit buffers" : "xmit buffer busy");
1739 	}
1740 	return bf;
1741 }
1742 
1743 static struct ath_buf *
1744 ath_getbuf(struct ath_softc *sc)
1745 {
1746 	struct ath_buf *bf;
1747 
1748 	ATH_TXBUF_LOCK(sc);
1749 	bf = _ath_getbuf_locked(sc);
1750 	if (bf == NULL) {
1751 		struct ifnet *ifp = sc->sc_ifp;
1752 
1753 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
1754 		sc->sc_stats.ast_tx_qstop++;
1755 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1756 	}
1757 	ATH_TXBUF_UNLOCK(sc);
1758 	return bf;
1759 }
1760 
1761 /*
1762  * Cleanup driver resources when we run out of buffers
1763  * while processing fragments; return the tx buffers
1764  * allocated and drop node references.
1765  */
1766 static void
1767 ath_txfrag_cleanup(struct ath_softc *sc,
1768 	ath_bufhead *frags, struct ieee80211_node *ni)
1769 {
1770 	struct ath_buf *bf, *next;
1771 
1772 	ATH_TXBUF_LOCK_ASSERT(sc);
1773 
1774 	STAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
1775 		/* NB: bf assumed clean */
1776 		STAILQ_REMOVE_HEAD(frags, bf_list);
1777 		STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1778 		ieee80211_node_decref(ni);
1779 	}
1780 }
1781 
1782 /*
1783  * Setup xmit of a fragmented frame.  Allocate a buffer
1784  * for each frag and bump the node reference count to
1785  * reflect the held reference to be setup by ath_tx_start.
1786  */
1787 static int
1788 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1789 	struct mbuf *m0, struct ieee80211_node *ni)
1790 {
1791 	struct mbuf *m;
1792 	struct ath_buf *bf;
1793 
1794 	ATH_TXBUF_LOCK(sc);
1795 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1796 		bf = _ath_getbuf_locked(sc);
1797 		if (bf == NULL) {	/* out of buffers, cleanup */
1798 			ath_txfrag_cleanup(sc, frags, ni);
1799 			break;
1800 		}
1801 		ieee80211_node_incref(ni);
1802 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1803 	}
1804 	ATH_TXBUF_UNLOCK(sc);
1805 
1806 	return !STAILQ_EMPTY(frags);
1807 }
1808 
1809 static void
1810 ath_start(struct ifnet *ifp)
1811 {
1812 	struct ath_softc *sc = ifp->if_softc;
1813 	struct ieee80211_node *ni;
1814 	struct ath_buf *bf;
1815 	struct mbuf *m, *next;
1816 	ath_bufhead frags;
1817 
1818 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1819 		return;
1820 	for (;;) {
1821 		/*
1822 		 * Grab a TX buffer and associated resources.
1823 		 */
1824 		bf = ath_getbuf(sc);
1825 		if (bf == NULL)
1826 			break;
1827 
1828 		IFQ_DEQUEUE(&ifp->if_snd, m);
1829 		if (m == NULL) {
1830 			ATH_TXBUF_LOCK(sc);
1831 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1832 			ATH_TXBUF_UNLOCK(sc);
1833 			break;
1834 		}
1835 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1836 		/*
1837 		 * Check for fragmentation.  If this frame
1838 		 * has been broken up verify we have enough
1839 		 * buffers to send all the fragments so all
1840 		 * go out or none...
1841 		 */
1842 		STAILQ_INIT(&frags);
1843 		if ((m->m_flags & M_FRAG) &&
1844 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
1845 			DPRINTF(sc, ATH_DEBUG_XMIT,
1846 			    "%s: out of txfrag buffers\n", __func__);
1847 			sc->sc_stats.ast_tx_nofrag++;
1848 			ifp->if_oerrors++;
1849 			ath_freetx(m);
1850 			goto bad;
1851 		}
1852 		ifp->if_opackets++;
1853 	nextfrag:
1854 		/*
1855 		 * Pass the frame to the h/w for transmission.
1856 		 * Fragmented frames have each frag chained together
1857 		 * with m_nextpkt.  We know there are sufficient ath_buf's
1858 		 * to send all the frags because of work done by
1859 		 * ath_txfrag_setup.  We leave m_nextpkt set while
1860 		 * calling ath_tx_start so it can use it to extend the
1861 		 * the tx duration to cover the subsequent frag and
1862 		 * so it can reclaim all the mbufs in case of an error;
1863 		 * ath_tx_start clears m_nextpkt once it commits to
1864 		 * handing the frame to the hardware.
1865 		 */
1866 		next = m->m_nextpkt;
1867 		if (ath_tx_start(sc, ni, bf, m)) {
1868 	bad:
1869 			ifp->if_oerrors++;
1870 	reclaim:
1871 			bf->bf_m = NULL;
1872 			bf->bf_node = NULL;
1873 			ATH_TXBUF_LOCK(sc);
1874 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1875 			ath_txfrag_cleanup(sc, &frags, ni);
1876 			ATH_TXBUF_UNLOCK(sc);
1877 			if (ni != NULL)
1878 				ieee80211_free_node(ni);
1879 			continue;
1880 		}
1881 		if (next != NULL) {
1882 			/*
1883 			 * Beware of state changing between frags.
1884 			 * XXX check sta power-save state?
1885 			 */
1886 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
1887 				DPRINTF(sc, ATH_DEBUG_XMIT,
1888 				    "%s: flush fragmented packet, state %s\n",
1889 				    __func__,
1890 				    ieee80211_state_name[ni->ni_vap->iv_state]);
1891 				ath_freetx(next);
1892 				goto reclaim;
1893 			}
1894 			m = next;
1895 			bf = STAILQ_FIRST(&frags);
1896 			KASSERT(bf != NULL, ("no buf for txfrag"));
1897 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1898 			goto nextfrag;
1899 		}
1900 
1901 		sc->sc_wd_timer = 5;
1902 	}
1903 }
1904 
1905 static int
1906 ath_media_change(struct ifnet *ifp)
1907 {
1908 	int error = ieee80211_media_change(ifp);
1909 	/* NB: only the fixed rate can change and that doesn't need a reset */
1910 	return (error == ENETRESET ? 0 : error);
1911 }
1912 
1913 #ifdef ATH_DEBUG
1914 static void
1915 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
1916 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1917 {
1918 	static const char *ciphers[] = {
1919 		"WEP",
1920 		"AES-OCB",
1921 		"AES-CCM",
1922 		"CKIP",
1923 		"TKIP",
1924 		"CLR",
1925 	};
1926 	int i, n;
1927 
1928 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1929 	for (i = 0, n = hk->kv_len; i < n; i++)
1930 		printf("%02x", hk->kv_val[i]);
1931 	printf(" mac %s", ether_sprintf(mac));
1932 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1933 		printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
1934 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1935 			printf("%02x", hk->kv_mic[i]);
1936 		if (!sc->sc_splitmic) {
1937 			printf(" txmic ");
1938 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
1939 				printf("%02x", hk->kv_txmic[i]);
1940 		}
1941 	}
1942 	printf("\n");
1943 }
1944 #endif
1945 
1946 /*
1947  * Set a TKIP key into the hardware.  This handles the
1948  * potential distribution of key state to multiple key
1949  * cache slots for TKIP.
1950  */
1951 static int
1952 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1953 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1954 {
1955 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1956 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1957 	struct ath_hal *ah = sc->sc_ah;
1958 
1959 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1960 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1961 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1962 		if (sc->sc_splitmic) {
1963 			/*
1964 			 * TX key goes at first index, RX key at the rx index.
1965 			 * The hal handles the MIC keys at index+64.
1966 			 */
1967 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1968 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1969 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1970 				return 0;
1971 
1972 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1973 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1974 			/* XXX delete tx key on failure? */
1975 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1976 		} else {
1977 			/*
1978 			 * Room for both TX+RX MIC keys in one key cache
1979 			 * slot, just set key at the first index; the hal
1980 			 * will handle the rest.
1981 			 */
1982 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1983 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1984 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1985 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1986 		}
1987 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1988 		if (sc->sc_splitmic) {
1989 			/*
1990 			 * NB: must pass MIC key in expected location when
1991 			 * the keycache only holds one MIC key per entry.
1992 			 */
1993 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1994 		} else
1995 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1996 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1997 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1998 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1999 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2000 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
2001 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2002 	}
2003 	return 0;
2004 #undef IEEE80211_KEY_XR
2005 }
2006 
2007 /*
2008  * Set a net80211 key into the hardware.  This handles the
2009  * potential distribution of key state to multiple key
2010  * cache slots for TKIP with hardware MIC support.
2011  */
2012 static int
2013 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
2014 	struct ieee80211_node *bss)
2015 {
2016 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2017 	static const u_int8_t ciphermap[] = {
2018 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
2019 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
2020 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
2021 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
2022 		(u_int8_t) -1,		/* 4 is not allocated */
2023 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
2024 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
2025 	};
2026 	struct ath_hal *ah = sc->sc_ah;
2027 	const struct ieee80211_cipher *cip = k->wk_cipher;
2028 	u_int8_t gmac[IEEE80211_ADDR_LEN];
2029 	const u_int8_t *mac;
2030 	HAL_KEYVAL hk;
2031 
2032 	memset(&hk, 0, sizeof(hk));
2033 	/*
2034 	 * Software crypto uses a "clear key" so non-crypto
2035 	 * state kept in the key cache are maintained and
2036 	 * so that rx frames have an entry to match.
2037 	 */
2038 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
2039 		KASSERT(cip->ic_cipher < N(ciphermap),
2040 			("invalid cipher type %u", cip->ic_cipher));
2041 		hk.kv_type = ciphermap[cip->ic_cipher];
2042 		hk.kv_len = k->wk_keylen;
2043 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
2044 	} else
2045 		hk.kv_type = HAL_CIPHER_CLR;
2046 
2047 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
2048 		/*
2049 		 * Group keys on hardware that supports multicast frame
2050 		 * key search use a MAC that is the sender's address with
2051 		 * the high bit set instead of the app-specified address.
2052 		 */
2053 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
2054 		gmac[0] |= 0x80;
2055 		mac = gmac;
2056 	} else
2057 		mac = k->wk_macaddr;
2058 
2059 	if (hk.kv_type == HAL_CIPHER_TKIP &&
2060 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2061 		return ath_keyset_tkip(sc, k, &hk, mac);
2062 	} else {
2063 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
2064 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
2065 	}
2066 #undef N
2067 }
2068 
2069 /*
2070  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2071  * each key, one for decrypt/encrypt and the other for the MIC.
2072  */
2073 static u_int16_t
2074 key_alloc_2pair(struct ath_softc *sc,
2075 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2076 {
2077 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2078 	u_int i, keyix;
2079 
2080 	KASSERT(sc->sc_splitmic, ("key cache !split"));
2081 	/* XXX could optimize */
2082 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2083 		u_int8_t b = sc->sc_keymap[i];
2084 		if (b != 0xff) {
2085 			/*
2086 			 * One or more slots in this byte are free.
2087 			 */
2088 			keyix = i*NBBY;
2089 			while (b & 1) {
2090 		again:
2091 				keyix++;
2092 				b >>= 1;
2093 			}
2094 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
2095 			if (isset(sc->sc_keymap, keyix+32) ||
2096 			    isset(sc->sc_keymap, keyix+64) ||
2097 			    isset(sc->sc_keymap, keyix+32+64)) {
2098 				/* full pair unavailable */
2099 				/* XXX statistic */
2100 				if (keyix == (i+1)*NBBY) {
2101 					/* no slots were appropriate, advance */
2102 					continue;
2103 				}
2104 				goto again;
2105 			}
2106 			setbit(sc->sc_keymap, keyix);
2107 			setbit(sc->sc_keymap, keyix+64);
2108 			setbit(sc->sc_keymap, keyix+32);
2109 			setbit(sc->sc_keymap, keyix+32+64);
2110 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2111 				"%s: key pair %u,%u %u,%u\n",
2112 				__func__, keyix, keyix+64,
2113 				keyix+32, keyix+32+64);
2114 			*txkeyix = keyix;
2115 			*rxkeyix = keyix+32;
2116 			return 1;
2117 		}
2118 	}
2119 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2120 	return 0;
2121 #undef N
2122 }
2123 
2124 /*
2125  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2126  * each key, one for decrypt/encrypt and the other for the MIC.
2127  */
2128 static u_int16_t
2129 key_alloc_pair(struct ath_softc *sc,
2130 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2131 {
2132 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2133 	u_int i, keyix;
2134 
2135 	KASSERT(!sc->sc_splitmic, ("key cache split"));
2136 	/* XXX could optimize */
2137 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2138 		u_int8_t b = sc->sc_keymap[i];
2139 		if (b != 0xff) {
2140 			/*
2141 			 * One or more slots in this byte are free.
2142 			 */
2143 			keyix = i*NBBY;
2144 			while (b & 1) {
2145 		again:
2146 				keyix++;
2147 				b >>= 1;
2148 			}
2149 			if (isset(sc->sc_keymap, keyix+64)) {
2150 				/* full pair unavailable */
2151 				/* XXX statistic */
2152 				if (keyix == (i+1)*NBBY) {
2153 					/* no slots were appropriate, advance */
2154 					continue;
2155 				}
2156 				goto again;
2157 			}
2158 			setbit(sc->sc_keymap, keyix);
2159 			setbit(sc->sc_keymap, keyix+64);
2160 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2161 				"%s: key pair %u,%u\n",
2162 				__func__, keyix, keyix+64);
2163 			*txkeyix = *rxkeyix = keyix;
2164 			return 1;
2165 		}
2166 	}
2167 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2168 	return 0;
2169 #undef N
2170 }
2171 
2172 /*
2173  * Allocate a single key cache slot.
2174  */
2175 static int
2176 key_alloc_single(struct ath_softc *sc,
2177 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2178 {
2179 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2180 	u_int i, keyix;
2181 
2182 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2183 	for (i = 0; i < N(sc->sc_keymap); i++) {
2184 		u_int8_t b = sc->sc_keymap[i];
2185 		if (b != 0xff) {
2186 			/*
2187 			 * One or more slots are free.
2188 			 */
2189 			keyix = i*NBBY;
2190 			while (b & 1)
2191 				keyix++, b >>= 1;
2192 			setbit(sc->sc_keymap, keyix);
2193 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2194 				__func__, keyix);
2195 			*txkeyix = *rxkeyix = keyix;
2196 			return 1;
2197 		}
2198 	}
2199 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2200 	return 0;
2201 #undef N
2202 }
2203 
2204 /*
2205  * Allocate one or more key cache slots for a uniacst key.  The
2206  * key itself is needed only to identify the cipher.  For hardware
2207  * TKIP with split cipher+MIC keys we allocate two key cache slot
2208  * pairs so that we can setup separate TX and RX MIC keys.  Note
2209  * that the MIC key for a TKIP key at slot i is assumed by the
2210  * hardware to be at slot i+64.  This limits TKIP keys to the first
2211  * 64 entries.
2212  */
2213 static int
2214 ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2215 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2216 {
2217 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2218 
2219 	/*
2220 	 * Group key allocation must be handled specially for
2221 	 * parts that do not support multicast key cache search
2222 	 * functionality.  For those parts the key id must match
2223 	 * the h/w key index so lookups find the right key.  On
2224 	 * parts w/ the key search facility we install the sender's
2225 	 * mac address (with the high bit set) and let the hardware
2226 	 * find the key w/o using the key id.  This is preferred as
2227 	 * it permits us to support multiple users for adhoc and/or
2228 	 * multi-station operation.
2229 	 */
2230 	if (k->wk_keyix != IEEE80211_KEYIX_NONE) {
2231 		/*
2232 		 * Only global keys should have key index assigned.
2233 		 */
2234 		if (!(&vap->iv_nw_keys[0] <= k &&
2235 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2236 			/* should not happen */
2237 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2238 				"%s: bogus group key\n", __func__);
2239 			return 0;
2240 		}
2241 		if (vap->iv_opmode != IEEE80211_M_HOSTAP ||
2242 		    !(k->wk_flags & IEEE80211_KEY_GROUP) ||
2243 		    !sc->sc_mcastkey) {
2244 			/*
2245 			 * XXX we pre-allocate the global keys so
2246 			 * have no way to check if they've already
2247 			 * been allocated.
2248 			 */
2249 			*keyix = *rxkeyix = k - vap->iv_nw_keys;
2250 			return 1;
2251 		}
2252 		/*
2253 		 * Group key and device supports multicast key search.
2254 		 */
2255 		k->wk_keyix = IEEE80211_KEYIX_NONE;
2256 	}
2257 
2258 	/*
2259 	 * We allocate two pair for TKIP when using the h/w to do
2260 	 * the MIC.  For everything else, including software crypto,
2261 	 * we allocate a single entry.  Note that s/w crypto requires
2262 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
2263 	 * not support pass-through cache entries and we map all
2264 	 * those requests to slot 0.
2265 	 */
2266 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2267 		return key_alloc_single(sc, keyix, rxkeyix);
2268 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2269 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2270 		if (sc->sc_splitmic)
2271 			return key_alloc_2pair(sc, keyix, rxkeyix);
2272 		else
2273 			return key_alloc_pair(sc, keyix, rxkeyix);
2274 	} else {
2275 		return key_alloc_single(sc, keyix, rxkeyix);
2276 	}
2277 }
2278 
2279 /*
2280  * Delete an entry in the key cache allocated by ath_key_alloc.
2281  */
2282 static int
2283 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2284 {
2285 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2286 	struct ath_hal *ah = sc->sc_ah;
2287 	const struct ieee80211_cipher *cip = k->wk_cipher;
2288 	u_int keyix = k->wk_keyix;
2289 
2290 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2291 
2292 	ath_hal_keyreset(ah, keyix);
2293 	/*
2294 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
2295 	 */
2296 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2297 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2298 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
2299 	if (keyix >= IEEE80211_WEP_NKID) {
2300 		/*
2301 		 * Don't touch keymap entries for global keys so
2302 		 * they are never considered for dynamic allocation.
2303 		 */
2304 		clrbit(sc->sc_keymap, keyix);
2305 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2306 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2307 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
2308 			if (sc->sc_splitmic) {
2309 				/* +32 for RX key, +32+64 for RX key MIC */
2310 				clrbit(sc->sc_keymap, keyix+32);
2311 				clrbit(sc->sc_keymap, keyix+32+64);
2312 			}
2313 		}
2314 	}
2315 	return 1;
2316 }
2317 
2318 /*
2319  * Set the key cache contents for the specified key.  Key cache
2320  * slot(s) must already have been allocated by ath_key_alloc.
2321  */
2322 static int
2323 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
2324 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2325 {
2326 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2327 
2328 	return ath_keyset(sc, k, vap->iv_bss);
2329 }
2330 
2331 /*
2332  * Block/unblock tx+rx processing while a key change is done.
2333  * We assume the caller serializes key management operations
2334  * so we only need to worry about synchronization with other
2335  * uses that originate in the driver.
2336  */
2337 static void
2338 ath_key_update_begin(struct ieee80211vap *vap)
2339 {
2340 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2341 	struct ath_softc *sc = ifp->if_softc;
2342 
2343 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2344 	taskqueue_block(sc->sc_tq);
2345 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2346 }
2347 
2348 static void
2349 ath_key_update_end(struct ieee80211vap *vap)
2350 {
2351 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2352 	struct ath_softc *sc = ifp->if_softc;
2353 
2354 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2355 	IF_UNLOCK(&ifp->if_snd);
2356 	taskqueue_unblock(sc->sc_tq);
2357 }
2358 
2359 /*
2360  * Calculate the receive filter according to the
2361  * operating mode and state:
2362  *
2363  * o always accept unicast, broadcast, and multicast traffic
2364  * o accept PHY error frames when hardware doesn't have MIB support
2365  *   to count and we need them for ANI (sta mode only until recently)
2366  *   and we are not scanning (ANI is disabled)
2367  *   NB: older hal's add rx filter bits out of sight and we need to
2368  *	 blindly preserve them
2369  * o probe request frames are accepted only when operating in
2370  *   hostap, adhoc, mesh, or monitor modes
2371  * o enable promiscuous mode
2372  *   - when in monitor mode
2373  *   - if interface marked PROMISC (assumes bridge setting is filtered)
2374  * o accept beacons:
2375  *   - when operating in station mode for collecting rssi data when
2376  *     the station is otherwise quiet, or
2377  *   - when operating in adhoc mode so the 802.11 layer creates
2378  *     node table entries for peers,
2379  *   - when scanning
2380  *   - when doing s/w beacon miss (e.g. for ap+sta)
2381  *   - when operating in ap mode in 11g to detect overlapping bss that
2382  *     require protection
2383  *   - when operating in mesh mode to detect neighbors
2384  * o accept control frames:
2385  *   - when in monitor mode
2386  * XXX BAR frames for 11n
2387  * XXX HT protection for 11n
2388  */
2389 static u_int32_t
2390 ath_calcrxfilter(struct ath_softc *sc)
2391 {
2392 	struct ifnet *ifp = sc->sc_ifp;
2393 	struct ieee80211com *ic = ifp->if_l2com;
2394 	u_int32_t rfilt;
2395 
2396 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2397 	if (!sc->sc_needmib && !sc->sc_scanning)
2398 		rfilt |= HAL_RX_FILTER_PHYERR;
2399 	if (ic->ic_opmode != IEEE80211_M_STA)
2400 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2401 	/* XXX ic->ic_monvaps != 0? */
2402 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2403 		rfilt |= HAL_RX_FILTER_PROM;
2404 	if (ic->ic_opmode == IEEE80211_M_STA ||
2405 	    ic->ic_opmode == IEEE80211_M_IBSS ||
2406 	    sc->sc_swbmiss || sc->sc_scanning)
2407 		rfilt |= HAL_RX_FILTER_BEACON;
2408 	/*
2409 	 * NB: We don't recalculate the rx filter when
2410 	 * ic_protmode changes; otherwise we could do
2411 	 * this only when ic_protmode != NONE.
2412 	 */
2413 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2414 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2415 		rfilt |= HAL_RX_FILTER_BEACON;
2416 	if (sc->sc_nmeshvaps) {
2417 		rfilt |= HAL_RX_FILTER_BEACON;
2418 		if (sc->sc_hasbmatch)
2419 			rfilt |= HAL_RX_FILTER_BSSID;
2420 		else
2421 			rfilt |= HAL_RX_FILTER_PROM;
2422 	}
2423 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2424 		rfilt |= HAL_RX_FILTER_CONTROL;
2425 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2426 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2427 	return rfilt;
2428 }
2429 
2430 static void
2431 ath_update_promisc(struct ifnet *ifp)
2432 {
2433 	struct ath_softc *sc = ifp->if_softc;
2434 	u_int32_t rfilt;
2435 
2436 	/* configure rx filter */
2437 	rfilt = ath_calcrxfilter(sc);
2438 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2439 
2440 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2441 }
2442 
2443 static void
2444 ath_update_mcast(struct ifnet *ifp)
2445 {
2446 	struct ath_softc *sc = ifp->if_softc;
2447 	u_int32_t mfilt[2];
2448 
2449 	/* calculate and install multicast filter */
2450 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2451 		struct ifmultiaddr *ifma;
2452 		/*
2453 		 * Merge multicast addresses to form the hardware filter.
2454 		 */
2455 		mfilt[0] = mfilt[1] = 0;
2456 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2457 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2458 			caddr_t dl;
2459 			u_int32_t val;
2460 			u_int8_t pos;
2461 
2462 			/* calculate XOR of eight 6bit values */
2463 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2464 			val = LE_READ_4(dl + 0);
2465 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2466 			val = LE_READ_4(dl + 3);
2467 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2468 			pos &= 0x3f;
2469 			mfilt[pos / 32] |= (1 << (pos % 32));
2470 		}
2471 		if_maddr_runlock(ifp);
2472 	} else
2473 		mfilt[0] = mfilt[1] = ~0;
2474 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2475 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2476 		__func__, mfilt[0], mfilt[1]);
2477 }
2478 
2479 static void
2480 ath_mode_init(struct ath_softc *sc)
2481 {
2482 	struct ifnet *ifp = sc->sc_ifp;
2483 	struct ath_hal *ah = sc->sc_ah;
2484 	u_int32_t rfilt;
2485 
2486 	/* configure rx filter */
2487 	rfilt = ath_calcrxfilter(sc);
2488 	ath_hal_setrxfilter(ah, rfilt);
2489 
2490 	/* configure operational mode */
2491 	ath_hal_setopmode(ah);
2492 
2493 	/* handle any link-level address change */
2494 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2495 
2496 	/* calculate and install multicast filter */
2497 	ath_update_mcast(ifp);
2498 }
2499 
2500 /*
2501  * Set the slot time based on the current setting.
2502  */
2503 static void
2504 ath_setslottime(struct ath_softc *sc)
2505 {
2506 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2507 	struct ath_hal *ah = sc->sc_ah;
2508 	u_int usec;
2509 
2510 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2511 		usec = 13;
2512 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2513 		usec = 21;
2514 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2515 		/* honor short/long slot time only in 11g */
2516 		/* XXX shouldn't honor on pure g or turbo g channel */
2517 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2518 			usec = HAL_SLOT_TIME_9;
2519 		else
2520 			usec = HAL_SLOT_TIME_20;
2521 	} else
2522 		usec = HAL_SLOT_TIME_9;
2523 
2524 	DPRINTF(sc, ATH_DEBUG_RESET,
2525 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2526 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2527 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2528 
2529 	ath_hal_setslottime(ah, usec);
2530 	sc->sc_updateslot = OK;
2531 }
2532 
2533 /*
2534  * Callback from the 802.11 layer to update the
2535  * slot time based on the current setting.
2536  */
2537 static void
2538 ath_updateslot(struct ifnet *ifp)
2539 {
2540 	struct ath_softc *sc = ifp->if_softc;
2541 	struct ieee80211com *ic = ifp->if_l2com;
2542 
2543 	/*
2544 	 * When not coordinating the BSS, change the hardware
2545 	 * immediately.  For other operation we defer the change
2546 	 * until beacon updates have propagated to the stations.
2547 	 */
2548 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2549 	    ic->ic_opmode == IEEE80211_M_MBSS)
2550 		sc->sc_updateslot = UPDATE;
2551 	else
2552 		ath_setslottime(sc);
2553 }
2554 
2555 /*
2556  * Setup a h/w transmit queue for beacons.
2557  */
2558 static int
2559 ath_beaconq_setup(struct ath_hal *ah)
2560 {
2561 	HAL_TXQ_INFO qi;
2562 
2563 	memset(&qi, 0, sizeof(qi));
2564 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2565 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2566 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2567 	/* NB: for dynamic turbo, don't enable any other interrupts */
2568 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2569 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2570 }
2571 
2572 /*
2573  * Setup the transmit queue parameters for the beacon queue.
2574  */
2575 static int
2576 ath_beaconq_config(struct ath_softc *sc)
2577 {
2578 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2579 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2580 	struct ath_hal *ah = sc->sc_ah;
2581 	HAL_TXQ_INFO qi;
2582 
2583 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2584 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2585 	    ic->ic_opmode == IEEE80211_M_MBSS) {
2586 		/*
2587 		 * Always burst out beacon and CAB traffic.
2588 		 */
2589 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2590 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2591 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2592 	} else {
2593 		struct wmeParams *wmep =
2594 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2595 		/*
2596 		 * Adhoc mode; important thing is to use 2x cwmin.
2597 		 */
2598 		qi.tqi_aifs = wmep->wmep_aifsn;
2599 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2600 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2601 	}
2602 
2603 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2604 		device_printf(sc->sc_dev, "unable to update parameters for "
2605 			"beacon hardware queue!\n");
2606 		return 0;
2607 	} else {
2608 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2609 		return 1;
2610 	}
2611 #undef ATH_EXPONENT_TO_VALUE
2612 }
2613 
2614 /*
2615  * Allocate and setup an initial beacon frame.
2616  */
2617 static int
2618 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2619 {
2620 	struct ieee80211vap *vap = ni->ni_vap;
2621 	struct ath_vap *avp = ATH_VAP(vap);
2622 	struct ath_buf *bf;
2623 	struct mbuf *m;
2624 	int error;
2625 
2626 	bf = avp->av_bcbuf;
2627 	if (bf->bf_m != NULL) {
2628 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2629 		m_freem(bf->bf_m);
2630 		bf->bf_m = NULL;
2631 	}
2632 	if (bf->bf_node != NULL) {
2633 		ieee80211_free_node(bf->bf_node);
2634 		bf->bf_node = NULL;
2635 	}
2636 
2637 	/*
2638 	 * NB: the beacon data buffer must be 32-bit aligned;
2639 	 * we assume the mbuf routines will return us something
2640 	 * with this alignment (perhaps should assert).
2641 	 */
2642 	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2643 	if (m == NULL) {
2644 		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2645 		sc->sc_stats.ast_be_nombuf++;
2646 		return ENOMEM;
2647 	}
2648 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2649 				     bf->bf_segs, &bf->bf_nseg,
2650 				     BUS_DMA_NOWAIT);
2651 	if (error != 0) {
2652 		device_printf(sc->sc_dev,
2653 		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2654 		    __func__, error);
2655 		m_freem(m);
2656 		return error;
2657 	}
2658 
2659 	/*
2660 	 * Calculate a TSF adjustment factor required for staggered
2661 	 * beacons.  Note that we assume the format of the beacon
2662 	 * frame leaves the tstamp field immediately following the
2663 	 * header.
2664 	 */
2665 	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2666 		uint64_t tsfadjust;
2667 		struct ieee80211_frame *wh;
2668 
2669 		/*
2670 		 * The beacon interval is in TU's; the TSF is in usecs.
2671 		 * We figure out how many TU's to add to align the timestamp
2672 		 * then convert to TSF units and handle byte swapping before
2673 		 * inserting it in the frame.  The hardware will then add this
2674 		 * each time a beacon frame is sent.  Note that we align vap's
2675 		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2676 		 * timestamp in one beacon interval while the others get a
2677 		 * timstamp aligned to the next interval.
2678 		 */
2679 		tsfadjust = ni->ni_intval *
2680 		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2681 		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2682 
2683 		DPRINTF(sc, ATH_DEBUG_BEACON,
2684 		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2685 		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2686 		    avp->av_bslot, ni->ni_intval,
2687 		    (long long unsigned) le64toh(tsfadjust));
2688 
2689 		wh = mtod(m, struct ieee80211_frame *);
2690 		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2691 	}
2692 	bf->bf_m = m;
2693 	bf->bf_node = ieee80211_ref_node(ni);
2694 
2695 	return 0;
2696 }
2697 
2698 /*
2699  * Setup the beacon frame for transmit.
2700  */
2701 static void
2702 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2703 {
2704 #define	USE_SHPREAMBLE(_ic) \
2705 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2706 		== IEEE80211_F_SHPREAMBLE)
2707 	struct ieee80211_node *ni = bf->bf_node;
2708 	struct ieee80211com *ic = ni->ni_ic;
2709 	struct mbuf *m = bf->bf_m;
2710 	struct ath_hal *ah = sc->sc_ah;
2711 	struct ath_desc *ds;
2712 	int flags, antenna;
2713 	const HAL_RATE_TABLE *rt;
2714 	u_int8_t rix, rate;
2715 
2716 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2717 		__func__, m, m->m_len);
2718 
2719 	/* setup descriptors */
2720 	ds = bf->bf_desc;
2721 
2722 	flags = HAL_TXDESC_NOACK;
2723 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2724 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2725 		flags |= HAL_TXDESC_VEOL;
2726 		/*
2727 		 * Let hardware handle antenna switching.
2728 		 */
2729 		antenna = sc->sc_txantenna;
2730 	} else {
2731 		ds->ds_link = 0;
2732 		/*
2733 		 * Switch antenna every 4 beacons.
2734 		 * XXX assumes two antenna
2735 		 */
2736 		if (sc->sc_txantenna != 0)
2737 			antenna = sc->sc_txantenna;
2738 		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2739 			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2740 		else
2741 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2742 	}
2743 
2744 	KASSERT(bf->bf_nseg == 1,
2745 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2746 	ds->ds_data = bf->bf_segs[0].ds_addr;
2747 	/*
2748 	 * Calculate rate code.
2749 	 * XXX everything at min xmit rate
2750 	 */
2751 	rix = 0;
2752 	rt = sc->sc_currates;
2753 	rate = rt->info[rix].rateCode;
2754 	if (USE_SHPREAMBLE(ic))
2755 		rate |= rt->info[rix].shortPreamble;
2756 	ath_hal_setuptxdesc(ah, ds
2757 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2758 		, sizeof(struct ieee80211_frame)/* header length */
2759 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2760 		, ni->ni_txpower		/* txpower XXX */
2761 		, rate, 1			/* series 0 rate/tries */
2762 		, HAL_TXKEYIX_INVALID		/* no encryption */
2763 		, antenna			/* antenna mode */
2764 		, flags				/* no ack, veol for beacons */
2765 		, 0				/* rts/cts rate */
2766 		, 0				/* rts/cts duration */
2767 	);
2768 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2769 	ath_hal_filltxdesc(ah, ds
2770 		, roundup(m->m_len, 4)		/* buffer length */
2771 		, AH_TRUE			/* first segment */
2772 		, AH_TRUE			/* last segment */
2773 		, ds				/* first descriptor */
2774 	);
2775 #if 0
2776 	ath_desc_swap(ds);
2777 #endif
2778 #undef USE_SHPREAMBLE
2779 }
2780 
2781 static void
2782 ath_beacon_update(struct ieee80211vap *vap, int item)
2783 {
2784 	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2785 
2786 	setbit(bo->bo_flags, item);
2787 }
2788 
2789 /*
2790  * Append the contents of src to dst; both queues
2791  * are assumed to be locked.
2792  */
2793 static void
2794 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2795 {
2796 	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2797 	dst->axq_link = src->axq_link;
2798 	src->axq_link = NULL;
2799 	dst->axq_depth += src->axq_depth;
2800 	src->axq_depth = 0;
2801 }
2802 
2803 /*
2804  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2805  * frame contents are done as needed and the slot time is
2806  * also adjusted based on current state.
2807  */
2808 static void
2809 ath_beacon_proc(void *arg, int pending)
2810 {
2811 	struct ath_softc *sc = arg;
2812 	struct ath_hal *ah = sc->sc_ah;
2813 	struct ieee80211vap *vap;
2814 	struct ath_buf *bf;
2815 	int slot, otherant;
2816 	uint32_t bfaddr;
2817 
2818 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2819 		__func__, pending);
2820 	/*
2821 	 * Check if the previous beacon has gone out.  If
2822 	 * not don't try to post another, skip this period
2823 	 * and wait for the next.  Missed beacons indicate
2824 	 * a problem and should not occur.  If we miss too
2825 	 * many consecutive beacons reset the device.
2826 	 */
2827 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2828 		sc->sc_bmisscount++;
2829 		sc->sc_stats.ast_be_missed++;
2830 		DPRINTF(sc, ATH_DEBUG_BEACON,
2831 			"%s: missed %u consecutive beacons\n",
2832 			__func__, sc->sc_bmisscount);
2833 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2834 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2835 		return;
2836 	}
2837 	if (sc->sc_bmisscount != 0) {
2838 		DPRINTF(sc, ATH_DEBUG_BEACON,
2839 			"%s: resume beacon xmit after %u misses\n",
2840 			__func__, sc->sc_bmisscount);
2841 		sc->sc_bmisscount = 0;
2842 	}
2843 
2844 	if (sc->sc_stagbeacons) {			/* staggered beacons */
2845 		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2846 		uint32_t tsftu;
2847 
2848 		tsftu = ath_hal_gettsf32(ah) >> 10;
2849 		/* XXX lintval */
2850 		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2851 		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2852 		bfaddr = 0;
2853 		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2854 			bf = ath_beacon_generate(sc, vap);
2855 			if (bf != NULL)
2856 				bfaddr = bf->bf_daddr;
2857 		}
2858 	} else {					/* burst'd beacons */
2859 		uint32_t *bflink = &bfaddr;
2860 
2861 		for (slot = 0; slot < ATH_BCBUF; slot++) {
2862 			vap = sc->sc_bslot[slot];
2863 			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2864 				bf = ath_beacon_generate(sc, vap);
2865 				if (bf != NULL) {
2866 					*bflink = bf->bf_daddr;
2867 					bflink = &bf->bf_desc->ds_link;
2868 				}
2869 			}
2870 		}
2871 		*bflink = 0;				/* terminate list */
2872 	}
2873 
2874 	/*
2875 	 * Handle slot time change when a non-ERP station joins/leaves
2876 	 * an 11g network.  The 802.11 layer notifies us via callback,
2877 	 * we mark updateslot, then wait one beacon before effecting
2878 	 * the change.  This gives associated stations at least one
2879 	 * beacon interval to note the state change.
2880 	 */
2881 	/* XXX locking */
2882 	if (sc->sc_updateslot == UPDATE) {
2883 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2884 		sc->sc_slotupdate = slot;
2885 	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
2886 		ath_setslottime(sc);		/* commit change to h/w */
2887 
2888 	/*
2889 	 * Check recent per-antenna transmit statistics and flip
2890 	 * the default antenna if noticeably more frames went out
2891 	 * on the non-default antenna.
2892 	 * XXX assumes 2 anntenae
2893 	 */
2894 	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
2895 		otherant = sc->sc_defant & 1 ? 2 : 1;
2896 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2897 			ath_setdefantenna(sc, otherant);
2898 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2899 	}
2900 
2901 	if (bfaddr != 0) {
2902 		/*
2903 		 * Stop any current dma and put the new frame on the queue.
2904 		 * This should never fail since we check above that no frames
2905 		 * are still pending on the queue.
2906 		 */
2907 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2908 			DPRINTF(sc, ATH_DEBUG_ANY,
2909 				"%s: beacon queue %u did not stop?\n",
2910 				__func__, sc->sc_bhalq);
2911 		}
2912 		/* NB: cabq traffic should already be queued and primed */
2913 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
2914 		ath_hal_txstart(ah, sc->sc_bhalq);
2915 
2916 		sc->sc_stats.ast_be_xmit++;
2917 	}
2918 }
2919 
2920 static struct ath_buf *
2921 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
2922 {
2923 	struct ath_vap *avp = ATH_VAP(vap);
2924 	struct ath_txq *cabq = sc->sc_cabq;
2925 	struct ath_buf *bf;
2926 	struct mbuf *m;
2927 	int nmcastq, error;
2928 
2929 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2930 	    ("not running, state %d", vap->iv_state));
2931 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2932 
2933 	/*
2934 	 * Update dynamic beacon contents.  If this returns
2935 	 * non-zero then we need to remap the memory because
2936 	 * the beacon frame changed size (probably because
2937 	 * of the TIM bitmap).
2938 	 */
2939 	bf = avp->av_bcbuf;
2940 	m = bf->bf_m;
2941 	nmcastq = avp->av_mcastq.axq_depth;
2942 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
2943 		/* XXX too conservative? */
2944 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2945 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2946 					     bf->bf_segs, &bf->bf_nseg,
2947 					     BUS_DMA_NOWAIT);
2948 		if (error != 0) {
2949 			if_printf(vap->iv_ifp,
2950 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2951 			    __func__, error);
2952 			return NULL;
2953 		}
2954 	}
2955 	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
2956 		DPRINTF(sc, ATH_DEBUG_BEACON,
2957 		    "%s: cabq did not drain, mcastq %u cabq %u\n",
2958 		    __func__, nmcastq, cabq->axq_depth);
2959 		sc->sc_stats.ast_cabq_busy++;
2960 		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
2961 			/*
2962 			 * CABQ traffic from a previous vap is still pending.
2963 			 * We must drain the q before this beacon frame goes
2964 			 * out as otherwise this vap's stations will get cab
2965 			 * frames from a different vap.
2966 			 * XXX could be slow causing us to miss DBA
2967 			 */
2968 			ath_tx_draintxq(sc, cabq);
2969 		}
2970 	}
2971 	ath_beacon_setup(sc, bf);
2972 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2973 
2974 	/*
2975 	 * Enable the CAB queue before the beacon queue to
2976 	 * insure cab frames are triggered by this beacon.
2977 	 */
2978 	if (avp->av_boff.bo_tim[4] & 1) {
2979 		struct ath_hal *ah = sc->sc_ah;
2980 
2981 		/* NB: only at DTIM */
2982 		ATH_TXQ_LOCK(cabq);
2983 		ATH_TXQ_LOCK(&avp->av_mcastq);
2984 		if (nmcastq) {
2985 			struct ath_buf *bfm;
2986 
2987 			/*
2988 			 * Move frames from the s/w mcast q to the h/w cab q.
2989 			 * XXX MORE_DATA bit
2990 			 */
2991 			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
2992 			if (cabq->axq_link != NULL) {
2993 				*cabq->axq_link = bfm->bf_daddr;
2994 			} else
2995 				ath_hal_puttxbuf(ah, cabq->axq_qnum,
2996 					bfm->bf_daddr);
2997 			ath_txqmove(cabq, &avp->av_mcastq);
2998 
2999 			sc->sc_stats.ast_cabq_xmit += nmcastq;
3000 		}
3001 		/* NB: gated by beacon so safe to start here */
3002 		ath_hal_txstart(ah, cabq->axq_qnum);
3003 		ATH_TXQ_UNLOCK(cabq);
3004 		ATH_TXQ_UNLOCK(&avp->av_mcastq);
3005 	}
3006 	return bf;
3007 }
3008 
3009 static void
3010 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3011 {
3012 	struct ath_vap *avp = ATH_VAP(vap);
3013 	struct ath_hal *ah = sc->sc_ah;
3014 	struct ath_buf *bf;
3015 	struct mbuf *m;
3016 	int error;
3017 
3018 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3019 
3020 	/*
3021 	 * Update dynamic beacon contents.  If this returns
3022 	 * non-zero then we need to remap the memory because
3023 	 * the beacon frame changed size (probably because
3024 	 * of the TIM bitmap).
3025 	 */
3026 	bf = avp->av_bcbuf;
3027 	m = bf->bf_m;
3028 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3029 		/* XXX too conservative? */
3030 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3031 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3032 					     bf->bf_segs, &bf->bf_nseg,
3033 					     BUS_DMA_NOWAIT);
3034 		if (error != 0) {
3035 			if_printf(vap->iv_ifp,
3036 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3037 			    __func__, error);
3038 			return;
3039 		}
3040 	}
3041 	ath_beacon_setup(sc, bf);
3042 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3043 
3044 	/* NB: caller is known to have already stopped tx dma */
3045 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3046 	ath_hal_txstart(ah, sc->sc_bhalq);
3047 }
3048 
3049 /*
3050  * Reset the hardware after detecting beacons have stopped.
3051  */
3052 static void
3053 ath_bstuck_proc(void *arg, int pending)
3054 {
3055 	struct ath_softc *sc = arg;
3056 	struct ifnet *ifp = sc->sc_ifp;
3057 
3058 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3059 		sc->sc_bmisscount);
3060 	sc->sc_stats.ast_bstuck++;
3061 	ath_reset(ifp);
3062 }
3063 
3064 /*
3065  * Reclaim beacon resources and return buffer to the pool.
3066  */
3067 static void
3068 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3069 {
3070 
3071 	if (bf->bf_m != NULL) {
3072 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3073 		m_freem(bf->bf_m);
3074 		bf->bf_m = NULL;
3075 	}
3076 	if (bf->bf_node != NULL) {
3077 		ieee80211_free_node(bf->bf_node);
3078 		bf->bf_node = NULL;
3079 	}
3080 	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3081 }
3082 
3083 /*
3084  * Reclaim beacon resources.
3085  */
3086 static void
3087 ath_beacon_free(struct ath_softc *sc)
3088 {
3089 	struct ath_buf *bf;
3090 
3091 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3092 		if (bf->bf_m != NULL) {
3093 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3094 			m_freem(bf->bf_m);
3095 			bf->bf_m = NULL;
3096 		}
3097 		if (bf->bf_node != NULL) {
3098 			ieee80211_free_node(bf->bf_node);
3099 			bf->bf_node = NULL;
3100 		}
3101 	}
3102 }
3103 
3104 /*
3105  * Configure the beacon and sleep timers.
3106  *
3107  * When operating as an AP this resets the TSF and sets
3108  * up the hardware to notify us when we need to issue beacons.
3109  *
3110  * When operating in station mode this sets up the beacon
3111  * timers according to the timestamp of the last received
3112  * beacon and the current TSF, configures PCF and DTIM
3113  * handling, programs the sleep registers so the hardware
3114  * will wakeup in time to receive beacons, and configures
3115  * the beacon miss handling so we'll receive a BMISS
3116  * interrupt when we stop seeing beacons from the AP
3117  * we've associated with.
3118  */
3119 static void
3120 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3121 {
3122 #define	TSF_TO_TU(_h,_l) \
3123 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3124 #define	FUDGE	2
3125 	struct ath_hal *ah = sc->sc_ah;
3126 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3127 	struct ieee80211_node *ni;
3128 	u_int32_t nexttbtt, intval, tsftu;
3129 	u_int64_t tsf;
3130 
3131 	if (vap == NULL)
3132 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3133 	ni = vap->iv_bss;
3134 
3135 	/* extract tstamp from last beacon and convert to TU */
3136 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3137 			     LE_READ_4(ni->ni_tstamp.data));
3138 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3139 	    ic->ic_opmode == IEEE80211_M_MBSS) {
3140 		/*
3141 		 * For multi-bss ap/mesh support beacons are either staggered
3142 		 * evenly over N slots or burst together.  For the former
3143 		 * arrange for the SWBA to be delivered for each slot.
3144 		 * Slots that are not occupied will generate nothing.
3145 		 */
3146 		/* NB: the beacon interval is kept internally in TU's */
3147 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3148 		if (sc->sc_stagbeacons)
3149 			intval /= ATH_BCBUF;
3150 	} else {
3151 		/* NB: the beacon interval is kept internally in TU's */
3152 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3153 	}
3154 	if (nexttbtt == 0)		/* e.g. for ap mode */
3155 		nexttbtt = intval;
3156 	else if (intval)		/* NB: can be 0 for monitor mode */
3157 		nexttbtt = roundup(nexttbtt, intval);
3158 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3159 		__func__, nexttbtt, intval, ni->ni_intval);
3160 	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3161 		HAL_BEACON_STATE bs;
3162 		int dtimperiod, dtimcount;
3163 		int cfpperiod, cfpcount;
3164 
3165 		/*
3166 		 * Setup dtim and cfp parameters according to
3167 		 * last beacon we received (which may be none).
3168 		 */
3169 		dtimperiod = ni->ni_dtim_period;
3170 		if (dtimperiod <= 0)		/* NB: 0 if not known */
3171 			dtimperiod = 1;
3172 		dtimcount = ni->ni_dtim_count;
3173 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3174 			dtimcount = 0;		/* XXX? */
3175 		cfpperiod = 1;			/* NB: no PCF support yet */
3176 		cfpcount = 0;
3177 		/*
3178 		 * Pull nexttbtt forward to reflect the current
3179 		 * TSF and calculate dtim+cfp state for the result.
3180 		 */
3181 		tsf = ath_hal_gettsf64(ah);
3182 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3183 		do {
3184 			nexttbtt += intval;
3185 			if (--dtimcount < 0) {
3186 				dtimcount = dtimperiod - 1;
3187 				if (--cfpcount < 0)
3188 					cfpcount = cfpperiod - 1;
3189 			}
3190 		} while (nexttbtt < tsftu);
3191 		memset(&bs, 0, sizeof(bs));
3192 		bs.bs_intval = intval;
3193 		bs.bs_nexttbtt = nexttbtt;
3194 		bs.bs_dtimperiod = dtimperiod*intval;
3195 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3196 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3197 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3198 		bs.bs_cfpmaxduration = 0;
3199 #if 0
3200 		/*
3201 		 * The 802.11 layer records the offset to the DTIM
3202 		 * bitmap while receiving beacons; use it here to
3203 		 * enable h/w detection of our AID being marked in
3204 		 * the bitmap vector (to indicate frames for us are
3205 		 * pending at the AP).
3206 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3207 		 * XXX enable based on h/w rev for newer chips
3208 		 */
3209 		bs.bs_timoffset = ni->ni_timoff;
3210 #endif
3211 		/*
3212 		 * Calculate the number of consecutive beacons to miss
3213 		 * before taking a BMISS interrupt.
3214 		 * Note that we clamp the result to at most 10 beacons.
3215 		 */
3216 		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3217 		if (bs.bs_bmissthreshold > 10)
3218 			bs.bs_bmissthreshold = 10;
3219 		else if (bs.bs_bmissthreshold <= 0)
3220 			bs.bs_bmissthreshold = 1;
3221 
3222 		/*
3223 		 * Calculate sleep duration.  The configuration is
3224 		 * given in ms.  We insure a multiple of the beacon
3225 		 * period is used.  Also, if the sleep duration is
3226 		 * greater than the DTIM period then it makes senses
3227 		 * to make it a multiple of that.
3228 		 *
3229 		 * XXX fixed at 100ms
3230 		 */
3231 		bs.bs_sleepduration =
3232 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3233 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3234 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3235 
3236 		DPRINTF(sc, ATH_DEBUG_BEACON,
3237 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3238 			, __func__
3239 			, tsf, tsftu
3240 			, bs.bs_intval
3241 			, bs.bs_nexttbtt
3242 			, bs.bs_dtimperiod
3243 			, bs.bs_nextdtim
3244 			, bs.bs_bmissthreshold
3245 			, bs.bs_sleepduration
3246 			, bs.bs_cfpperiod
3247 			, bs.bs_cfpmaxduration
3248 			, bs.bs_cfpnext
3249 			, bs.bs_timoffset
3250 		);
3251 		ath_hal_intrset(ah, 0);
3252 		ath_hal_beacontimers(ah, &bs);
3253 		sc->sc_imask |= HAL_INT_BMISS;
3254 		ath_hal_intrset(ah, sc->sc_imask);
3255 	} else {
3256 		ath_hal_intrset(ah, 0);
3257 		if (nexttbtt == intval)
3258 			intval |= HAL_BEACON_RESET_TSF;
3259 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3260 			/*
3261 			 * In IBSS mode enable the beacon timers but only
3262 			 * enable SWBA interrupts if we need to manually
3263 			 * prepare beacon frames.  Otherwise we use a
3264 			 * self-linked tx descriptor and let the hardware
3265 			 * deal with things.
3266 			 */
3267 			intval |= HAL_BEACON_ENA;
3268 			if (!sc->sc_hasveol)
3269 				sc->sc_imask |= HAL_INT_SWBA;
3270 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3271 				/*
3272 				 * Pull nexttbtt forward to reflect
3273 				 * the current TSF.
3274 				 */
3275 				tsf = ath_hal_gettsf64(ah);
3276 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3277 				do {
3278 					nexttbtt += intval;
3279 				} while (nexttbtt < tsftu);
3280 			}
3281 			ath_beaconq_config(sc);
3282 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3283 		    ic->ic_opmode == IEEE80211_M_MBSS) {
3284 			/*
3285 			 * In AP/mesh mode we enable the beacon timers
3286 			 * and SWBA interrupts to prepare beacon frames.
3287 			 */
3288 			intval |= HAL_BEACON_ENA;
3289 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3290 			ath_beaconq_config(sc);
3291 		}
3292 		ath_hal_beaconinit(ah, nexttbtt, intval);
3293 		sc->sc_bmisscount = 0;
3294 		ath_hal_intrset(ah, sc->sc_imask);
3295 		/*
3296 		 * When using a self-linked beacon descriptor in
3297 		 * ibss mode load it once here.
3298 		 */
3299 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3300 			ath_beacon_start_adhoc(sc, vap);
3301 	}
3302 	sc->sc_syncbeacon = 0;
3303 #undef FUDGE
3304 #undef TSF_TO_TU
3305 }
3306 
3307 static void
3308 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3309 {
3310 	bus_addr_t *paddr = (bus_addr_t*) arg;
3311 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3312 	*paddr = segs->ds_addr;
3313 }
3314 
3315 static int
3316 ath_descdma_setup(struct ath_softc *sc,
3317 	struct ath_descdma *dd, ath_bufhead *head,
3318 	const char *name, int nbuf, int ndesc)
3319 {
3320 #define	DS2PHYS(_dd, _ds) \
3321 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3322 	struct ifnet *ifp = sc->sc_ifp;
3323 	struct ath_desc *ds;
3324 	struct ath_buf *bf;
3325 	int i, bsize, error;
3326 
3327 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3328 	    __func__, name, nbuf, ndesc);
3329 
3330 	dd->dd_name = name;
3331 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
3332 
3333 	/*
3334 	 * Setup DMA descriptor area.
3335 	 */
3336 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3337 		       PAGE_SIZE, 0,		/* alignment, bounds */
3338 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3339 		       BUS_SPACE_MAXADDR,	/* highaddr */
3340 		       NULL, NULL,		/* filter, filterarg */
3341 		       dd->dd_desc_len,		/* maxsize */
3342 		       1,			/* nsegments */
3343 		       dd->dd_desc_len,		/* maxsegsize */
3344 		       BUS_DMA_ALLOCNOW,	/* flags */
3345 		       NULL,			/* lockfunc */
3346 		       NULL,			/* lockarg */
3347 		       &dd->dd_dmat);
3348 	if (error != 0) {
3349 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3350 		return error;
3351 	}
3352 
3353 	/* allocate descriptors */
3354 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3355 	if (error != 0) {
3356 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3357 			"error %u\n", dd->dd_name, error);
3358 		goto fail0;
3359 	}
3360 
3361 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3362 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3363 				 &dd->dd_dmamap);
3364 	if (error != 0) {
3365 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3366 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3367 		goto fail1;
3368 	}
3369 
3370 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3371 				dd->dd_desc, dd->dd_desc_len,
3372 				ath_load_cb, &dd->dd_desc_paddr,
3373 				BUS_DMA_NOWAIT);
3374 	if (error != 0) {
3375 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3376 			dd->dd_name, error);
3377 		goto fail2;
3378 	}
3379 
3380 	ds = dd->dd_desc;
3381 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3382 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3383 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3384 
3385 	/* allocate rx buffers */
3386 	bsize = sizeof(struct ath_buf) * nbuf;
3387 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3388 	if (bf == NULL) {
3389 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3390 			dd->dd_name, bsize);
3391 		goto fail3;
3392 	}
3393 	dd->dd_bufptr = bf;
3394 
3395 	STAILQ_INIT(head);
3396 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3397 		bf->bf_desc = ds;
3398 		bf->bf_daddr = DS2PHYS(dd, ds);
3399 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3400 				&bf->bf_dmamap);
3401 		if (error != 0) {
3402 			if_printf(ifp, "unable to create dmamap for %s "
3403 				"buffer %u, error %u\n", dd->dd_name, i, error);
3404 			ath_descdma_cleanup(sc, dd, head);
3405 			return error;
3406 		}
3407 		STAILQ_INSERT_TAIL(head, bf, bf_list);
3408 	}
3409 	return 0;
3410 fail3:
3411 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3412 fail2:
3413 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3414 fail1:
3415 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3416 fail0:
3417 	bus_dma_tag_destroy(dd->dd_dmat);
3418 	memset(dd, 0, sizeof(*dd));
3419 	return error;
3420 #undef DS2PHYS
3421 }
3422 
3423 static void
3424 ath_descdma_cleanup(struct ath_softc *sc,
3425 	struct ath_descdma *dd, ath_bufhead *head)
3426 {
3427 	struct ath_buf *bf;
3428 	struct ieee80211_node *ni;
3429 
3430 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3431 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3432 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3433 	bus_dma_tag_destroy(dd->dd_dmat);
3434 
3435 	STAILQ_FOREACH(bf, head, bf_list) {
3436 		if (bf->bf_m) {
3437 			m_freem(bf->bf_m);
3438 			bf->bf_m = NULL;
3439 		}
3440 		if (bf->bf_dmamap != NULL) {
3441 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3442 			bf->bf_dmamap = NULL;
3443 		}
3444 		ni = bf->bf_node;
3445 		bf->bf_node = NULL;
3446 		if (ni != NULL) {
3447 			/*
3448 			 * Reclaim node reference.
3449 			 */
3450 			ieee80211_free_node(ni);
3451 		}
3452 	}
3453 
3454 	STAILQ_INIT(head);
3455 	free(dd->dd_bufptr, M_ATHDEV);
3456 	memset(dd, 0, sizeof(*dd));
3457 }
3458 
3459 static int
3460 ath_desc_alloc(struct ath_softc *sc)
3461 {
3462 	int error;
3463 
3464 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3465 			"rx", ath_rxbuf, 1);
3466 	if (error != 0)
3467 		return error;
3468 
3469 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3470 			"tx", ath_txbuf, ATH_TXDESC);
3471 	if (error != 0) {
3472 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3473 		return error;
3474 	}
3475 
3476 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3477 			"beacon", ATH_BCBUF, 1);
3478 	if (error != 0) {
3479 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3480 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3481 		return error;
3482 	}
3483 	return 0;
3484 }
3485 
3486 static void
3487 ath_desc_free(struct ath_softc *sc)
3488 {
3489 
3490 	if (sc->sc_bdma.dd_desc_len != 0)
3491 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3492 	if (sc->sc_txdma.dd_desc_len != 0)
3493 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3494 	if (sc->sc_rxdma.dd_desc_len != 0)
3495 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3496 }
3497 
3498 static struct ieee80211_node *
3499 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3500 {
3501 	struct ieee80211com *ic = vap->iv_ic;
3502 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3503 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3504 	struct ath_node *an;
3505 
3506 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3507 	if (an == NULL) {
3508 		/* XXX stat+msg */
3509 		return NULL;
3510 	}
3511 	ath_rate_node_init(sc, an);
3512 
3513 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3514 	return &an->an_node;
3515 }
3516 
3517 static void
3518 ath_node_free(struct ieee80211_node *ni)
3519 {
3520 	struct ieee80211com *ic = ni->ni_ic;
3521         struct ath_softc *sc = ic->ic_ifp->if_softc;
3522 
3523 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3524 
3525 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3526 	sc->sc_node_free(ni);
3527 }
3528 
3529 static void
3530 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3531 {
3532 	struct ieee80211com *ic = ni->ni_ic;
3533 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3534 	struct ath_hal *ah = sc->sc_ah;
3535 
3536 	*rssi = ic->ic_node_getrssi(ni);
3537 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3538 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3539 	else
3540 		*noise = -95;		/* nominally correct */
3541 }
3542 
3543 static int
3544 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3545 {
3546 	struct ath_hal *ah = sc->sc_ah;
3547 	int error;
3548 	struct mbuf *m;
3549 	struct ath_desc *ds;
3550 
3551 	m = bf->bf_m;
3552 	if (m == NULL) {
3553 		/*
3554 		 * NB: by assigning a page to the rx dma buffer we
3555 		 * implicitly satisfy the Atheros requirement that
3556 		 * this buffer be cache-line-aligned and sized to be
3557 		 * multiple of the cache line size.  Not doing this
3558 		 * causes weird stuff to happen (for the 5210 at least).
3559 		 */
3560 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3561 		if (m == NULL) {
3562 			DPRINTF(sc, ATH_DEBUG_ANY,
3563 				"%s: no mbuf/cluster\n", __func__);
3564 			sc->sc_stats.ast_rx_nombuf++;
3565 			return ENOMEM;
3566 		}
3567 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3568 
3569 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3570 					     bf->bf_dmamap, m,
3571 					     bf->bf_segs, &bf->bf_nseg,
3572 					     BUS_DMA_NOWAIT);
3573 		if (error != 0) {
3574 			DPRINTF(sc, ATH_DEBUG_ANY,
3575 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3576 			    __func__, error);
3577 			sc->sc_stats.ast_rx_busdma++;
3578 			m_freem(m);
3579 			return error;
3580 		}
3581 		KASSERT(bf->bf_nseg == 1,
3582 			("multi-segment packet; nseg %u", bf->bf_nseg));
3583 		bf->bf_m = m;
3584 	}
3585 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3586 
3587 	/*
3588 	 * Setup descriptors.  For receive we always terminate
3589 	 * the descriptor list with a self-linked entry so we'll
3590 	 * not get overrun under high load (as can happen with a
3591 	 * 5212 when ANI processing enables PHY error frames).
3592 	 *
3593 	 * To insure the last descriptor is self-linked we create
3594 	 * each descriptor as self-linked and add it to the end.  As
3595 	 * each additional descriptor is added the previous self-linked
3596 	 * entry is ``fixed'' naturally.  This should be safe even
3597 	 * if DMA is happening.  When processing RX interrupts we
3598 	 * never remove/process the last, self-linked, entry on the
3599 	 * descriptor list.  This insures the hardware always has
3600 	 * someplace to write a new frame.
3601 	 */
3602 	ds = bf->bf_desc;
3603 	ds->ds_link = bf->bf_daddr;	/* link to self */
3604 	ds->ds_data = bf->bf_segs[0].ds_addr;
3605 	ath_hal_setuprxdesc(ah, ds
3606 		, m->m_len		/* buffer size */
3607 		, 0
3608 	);
3609 
3610 	if (sc->sc_rxlink != NULL)
3611 		*sc->sc_rxlink = bf->bf_daddr;
3612 	sc->sc_rxlink = &ds->ds_link;
3613 	return 0;
3614 }
3615 
3616 /*
3617  * Extend 15-bit time stamp from rx descriptor to
3618  * a full 64-bit TSF using the specified TSF.
3619  */
3620 static __inline u_int64_t
3621 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3622 {
3623 	if ((tsf & 0x7fff) < rstamp)
3624 		tsf -= 0x8000;
3625 	return ((tsf &~ 0x7fff) | rstamp);
3626 }
3627 
3628 /*
3629  * Intercept management frames to collect beacon rssi data
3630  * and to do ibss merges.
3631  */
3632 static void
3633 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3634 	int subtype, int rssi, int nf)
3635 {
3636 	struct ieee80211vap *vap = ni->ni_vap;
3637 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3638 
3639 	/*
3640 	 * Call up first so subsequent work can use information
3641 	 * potentially stored in the node (e.g. for ibss merge).
3642 	 */
3643 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3644 	switch (subtype) {
3645 	case IEEE80211_FC0_SUBTYPE_BEACON:
3646 		/* update rssi statistics for use by the hal */
3647 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3648 		if (sc->sc_syncbeacon &&
3649 		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3650 			/*
3651 			 * Resync beacon timers using the tsf of the beacon
3652 			 * frame we just received.
3653 			 */
3654 			ath_beacon_config(sc, vap);
3655 		}
3656 		/* fall thru... */
3657 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3658 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3659 		    vap->iv_state == IEEE80211_S_RUN) {
3660 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3661 			uint64_t tsf = ath_extend_tsf(rstamp,
3662 				ath_hal_gettsf64(sc->sc_ah));
3663 			/*
3664 			 * Handle ibss merge as needed; check the tsf on the
3665 			 * frame before attempting the merge.  The 802.11 spec
3666 			 * says the station should change it's bssid to match
3667 			 * the oldest station with the same ssid, where oldest
3668 			 * is determined by the tsf.  Note that hardware
3669 			 * reconfiguration happens through callback to
3670 			 * ath_newstate as the state machine will go from
3671 			 * RUN -> RUN when this happens.
3672 			 */
3673 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3674 				DPRINTF(sc, ATH_DEBUG_STATE,
3675 				    "ibss merge, rstamp %u tsf %ju "
3676 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3677 				    (uintmax_t)ni->ni_tstamp.tsf);
3678 				(void) ieee80211_ibss_merge(ni);
3679 			}
3680 		}
3681 		break;
3682 	}
3683 }
3684 
3685 /*
3686  * Set the default antenna.
3687  */
3688 static void
3689 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3690 {
3691 	struct ath_hal *ah = sc->sc_ah;
3692 
3693 	/* XXX block beacon interrupts */
3694 	ath_hal_setdefantenna(ah, antenna);
3695 	if (sc->sc_defant != antenna)
3696 		sc->sc_stats.ast_ant_defswitch++;
3697 	sc->sc_defant = antenna;
3698 	sc->sc_rxotherant = 0;
3699 }
3700 
3701 static void
3702 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3703 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3704 {
3705 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3706 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3707 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3708 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3709 	struct ath_softc *sc = ifp->if_softc;
3710 	const HAL_RATE_TABLE *rt;
3711 	uint8_t rix;
3712 
3713 	rt = sc->sc_currates;
3714 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3715 	rix = rt->rateCodeToIndex[rs->rs_rate];
3716 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3717 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3718 #ifdef AH_SUPPORT_AR5416
3719 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3720 	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3721 		struct ieee80211com *ic = ifp->if_l2com;
3722 
3723 		if ((rs->rs_flags & HAL_RX_2040) == 0)
3724 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3725 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3726 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3727 		else
3728 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3729 		if ((rs->rs_flags & HAL_RX_GI) == 0)
3730 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3731 	}
3732 #endif
3733 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
3734 	if (rs->rs_status & HAL_RXERR_CRC)
3735 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3736 	/* XXX propagate other error flags from descriptor */
3737 	sc->sc_rx_th.wr_antnoise = nf;
3738 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
3739 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3740 #undef CHAN_HT
3741 #undef CHAN_HT20
3742 #undef CHAN_HT40U
3743 #undef CHAN_HT40D
3744 }
3745 
3746 static void
3747 ath_handle_micerror(struct ieee80211com *ic,
3748 	struct ieee80211_frame *wh, int keyix)
3749 {
3750 	struct ieee80211_node *ni;
3751 
3752 	/* XXX recheck MIC to deal w/ chips that lie */
3753 	/* XXX discard MIC errors on !data frames */
3754 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3755 	if (ni != NULL) {
3756 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3757 		ieee80211_free_node(ni);
3758 	}
3759 }
3760 
3761 static void
3762 ath_rx_proc(void *arg, int npending)
3763 {
3764 #define	PA2DESC(_sc, _pa) \
3765 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3766 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3767 	struct ath_softc *sc = arg;
3768 	struct ath_buf *bf;
3769 	struct ifnet *ifp = sc->sc_ifp;
3770 	struct ieee80211com *ic = ifp->if_l2com;
3771 	struct ath_hal *ah = sc->sc_ah;
3772 	struct ath_desc *ds;
3773 	struct ath_rx_status *rs;
3774 	struct mbuf *m;
3775 	struct ieee80211_node *ni;
3776 	int len, type, ngood;
3777 	u_int phyerr;
3778 	HAL_STATUS status;
3779 	int16_t nf;
3780 	u_int64_t tsf;
3781 
3782 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3783 	ngood = 0;
3784 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
3785 	sc->sc_stats.ast_rx_noise = nf;
3786 	tsf = ath_hal_gettsf64(ah);
3787 	do {
3788 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3789 		if (bf == NULL) {		/* NB: shouldn't happen */
3790 			if_printf(ifp, "%s: no buffer!\n", __func__);
3791 			break;
3792 		}
3793 		m = bf->bf_m;
3794 		if (m == NULL) {		/* NB: shouldn't happen */
3795 			/*
3796 			 * If mbuf allocation failed previously there
3797 			 * will be no mbuf; try again to re-populate it.
3798 			 */
3799 			/* XXX make debug msg */
3800 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3801 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3802 			goto rx_next;
3803 		}
3804 		ds = bf->bf_desc;
3805 		if (ds->ds_link == bf->bf_daddr) {
3806 			/* NB: never process the self-linked entry at the end */
3807 			break;
3808 		}
3809 		/* XXX sync descriptor memory */
3810 		/*
3811 		 * Must provide the virtual address of the current
3812 		 * descriptor, the physical address, and the virtual
3813 		 * address of the next descriptor in the h/w chain.
3814 		 * This allows the HAL to look ahead to see if the
3815 		 * hardware is done with a descriptor by checking the
3816 		 * done bit in the following descriptor and the address
3817 		 * of the current descriptor the DMA engine is working
3818 		 * on.  All this is necessary because of our use of
3819 		 * a self-linked list to avoid rx overruns.
3820 		 */
3821 		rs = &bf->bf_status.ds_rxstat;
3822 		status = ath_hal_rxprocdesc(ah, ds,
3823 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3824 #ifdef ATH_DEBUG
3825 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3826 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
3827 #endif
3828 		if (status == HAL_EINPROGRESS)
3829 			break;
3830 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3831 		if (rs->rs_status != 0) {
3832 			if (rs->rs_status & HAL_RXERR_CRC)
3833 				sc->sc_stats.ast_rx_crcerr++;
3834 			if (rs->rs_status & HAL_RXERR_FIFO)
3835 				sc->sc_stats.ast_rx_fifoerr++;
3836 			if (rs->rs_status & HAL_RXERR_PHY) {
3837 				sc->sc_stats.ast_rx_phyerr++;
3838 				phyerr = rs->rs_phyerr & 0x1f;
3839 				sc->sc_stats.ast_rx_phy[phyerr]++;
3840 				goto rx_error;	/* NB: don't count in ierrors */
3841 			}
3842 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3843 				/*
3844 				 * Decrypt error.  If the error occurred
3845 				 * because there was no hardware key, then
3846 				 * let the frame through so the upper layers
3847 				 * can process it.  This is necessary for 5210
3848 				 * parts which have no way to setup a ``clear''
3849 				 * key cache entry.
3850 				 *
3851 				 * XXX do key cache faulting
3852 				 */
3853 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3854 					goto rx_accept;
3855 				sc->sc_stats.ast_rx_badcrypt++;
3856 			}
3857 			if (rs->rs_status & HAL_RXERR_MIC) {
3858 				sc->sc_stats.ast_rx_badmic++;
3859 				/*
3860 				 * Do minimal work required to hand off
3861 				 * the 802.11 header for notification.
3862 				 */
3863 				/* XXX frag's and qos frames */
3864 				len = rs->rs_datalen;
3865 				if (len >= sizeof (struct ieee80211_frame)) {
3866 					bus_dmamap_sync(sc->sc_dmat,
3867 					    bf->bf_dmamap,
3868 					    BUS_DMASYNC_POSTREAD);
3869 					ath_handle_micerror(ic,
3870 					    mtod(m, struct ieee80211_frame *),
3871 					    sc->sc_splitmic ?
3872 						rs->rs_keyix-32 : rs->rs_keyix);
3873 				}
3874 			}
3875 			ifp->if_ierrors++;
3876 rx_error:
3877 			/*
3878 			 * Cleanup any pending partial frame.
3879 			 */
3880 			if (sc->sc_rxpending != NULL) {
3881 				m_freem(sc->sc_rxpending);
3882 				sc->sc_rxpending = NULL;
3883 			}
3884 			/*
3885 			 * When a tap is present pass error frames
3886 			 * that have been requested.  By default we
3887 			 * pass decrypt+mic errors but others may be
3888 			 * interesting (e.g. crc).
3889 			 */
3890 			if (ieee80211_radiotap_active(ic) &&
3891 			    (rs->rs_status & sc->sc_monpass)) {
3892 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3893 				    BUS_DMASYNC_POSTREAD);
3894 				/* NB: bpf needs the mbuf length setup */
3895 				len = rs->rs_datalen;
3896 				m->m_pkthdr.len = m->m_len = len;
3897 				ath_rx_tap(ifp, m, rs, tsf, nf);
3898 				ieee80211_radiotap_rx_all(ic, m);
3899 			}
3900 			/* XXX pass MIC errors up for s/w reclaculation */
3901 			goto rx_next;
3902 		}
3903 rx_accept:
3904 		/*
3905 		 * Sync and unmap the frame.  At this point we're
3906 		 * committed to passing the mbuf somewhere so clear
3907 		 * bf_m; this means a new mbuf must be allocated
3908 		 * when the rx descriptor is setup again to receive
3909 		 * another frame.
3910 		 */
3911 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3912 		    BUS_DMASYNC_POSTREAD);
3913 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3914 		bf->bf_m = NULL;
3915 
3916 		len = rs->rs_datalen;
3917 		m->m_len = len;
3918 
3919 		if (rs->rs_more) {
3920 			/*
3921 			 * Frame spans multiple descriptors; save
3922 			 * it for the next completed descriptor, it
3923 			 * will be used to construct a jumbogram.
3924 			 */
3925 			if (sc->sc_rxpending != NULL) {
3926 				/* NB: max frame size is currently 2 clusters */
3927 				sc->sc_stats.ast_rx_toobig++;
3928 				m_freem(sc->sc_rxpending);
3929 			}
3930 			m->m_pkthdr.rcvif = ifp;
3931 			m->m_pkthdr.len = len;
3932 			sc->sc_rxpending = m;
3933 			goto rx_next;
3934 		} else if (sc->sc_rxpending != NULL) {
3935 			/*
3936 			 * This is the second part of a jumbogram,
3937 			 * chain it to the first mbuf, adjust the
3938 			 * frame length, and clear the rxpending state.
3939 			 */
3940 			sc->sc_rxpending->m_next = m;
3941 			sc->sc_rxpending->m_pkthdr.len += len;
3942 			m = sc->sc_rxpending;
3943 			sc->sc_rxpending = NULL;
3944 		} else {
3945 			/*
3946 			 * Normal single-descriptor receive; setup
3947 			 * the rcvif and packet length.
3948 			 */
3949 			m->m_pkthdr.rcvif = ifp;
3950 			m->m_pkthdr.len = len;
3951 		}
3952 
3953 		ifp->if_ipackets++;
3954 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
3955 
3956 		/*
3957 		 * Populate the rx status block.  When there are bpf
3958 		 * listeners we do the additional work to provide
3959 		 * complete status.  Otherwise we fill in only the
3960 		 * material required by ieee80211_input.  Note that
3961 		 * noise setting is filled in above.
3962 		 */
3963 		if (ieee80211_radiotap_active(ic))
3964 			ath_rx_tap(ifp, m, rs, tsf, nf);
3965 
3966 		/*
3967 		 * From this point on we assume the frame is at least
3968 		 * as large as ieee80211_frame_min; verify that.
3969 		 */
3970 		if (len < IEEE80211_MIN_LEN) {
3971 			if (!ieee80211_radiotap_active(ic)) {
3972 				DPRINTF(sc, ATH_DEBUG_RECV,
3973 				    "%s: short packet %d\n", __func__, len);
3974 				sc->sc_stats.ast_rx_tooshort++;
3975 			} else {
3976 				/* NB: in particular this captures ack's */
3977 				ieee80211_radiotap_rx_all(ic, m);
3978 			}
3979 			m_freem(m);
3980 			goto rx_next;
3981 		}
3982 
3983 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3984 			const HAL_RATE_TABLE *rt = sc->sc_currates;
3985 			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
3986 
3987 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
3988 			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
3989 		}
3990 
3991 		m_adj(m, -IEEE80211_CRC_LEN);
3992 
3993 		/*
3994 		 * Locate the node for sender, track state, and then
3995 		 * pass the (referenced) node up to the 802.11 layer
3996 		 * for its use.
3997 		 */
3998 		ni = ieee80211_find_rxnode_withkey(ic,
3999 			mtod(m, const struct ieee80211_frame_min *),
4000 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
4001 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4002 		sc->sc_lastrs = rs;
4003 		if (ni != NULL) {
4004 			/*
4005 			 * Sending station is known, dispatch directly.
4006 			 */
4007 			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
4008 			ieee80211_free_node(ni);
4009 			/*
4010 			 * Arrange to update the last rx timestamp only for
4011 			 * frames from our ap when operating in station mode.
4012 			 * This assumes the rx key is always setup when
4013 			 * associated.
4014 			 */
4015 			if (ic->ic_opmode == IEEE80211_M_STA &&
4016 			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4017 				ngood++;
4018 		} else {
4019 			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
4020 		}
4021 		/*
4022 		 * Track rx rssi and do any rx antenna management.
4023 		 */
4024 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4025 		if (sc->sc_diversity) {
4026 			/*
4027 			 * When using fast diversity, change the default rx
4028 			 * antenna if diversity chooses the other antenna 3
4029 			 * times in a row.
4030 			 */
4031 			if (sc->sc_defant != rs->rs_antenna) {
4032 				if (++sc->sc_rxotherant >= 3)
4033 					ath_setdefantenna(sc, rs->rs_antenna);
4034 			} else
4035 				sc->sc_rxotherant = 0;
4036 		}
4037 		if (sc->sc_softled) {
4038 			/*
4039 			 * Blink for any data frame.  Otherwise do a
4040 			 * heartbeat-style blink when idle.  The latter
4041 			 * is mainly for station mode where we depend on
4042 			 * periodic beacon frames to trigger the poll event.
4043 			 */
4044 			if (type == IEEE80211_FC0_TYPE_DATA) {
4045 				const HAL_RATE_TABLE *rt = sc->sc_currates;
4046 				ath_led_event(sc,
4047 				    rt->rateCodeToIndex[rs->rs_rate]);
4048 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4049 				ath_led_event(sc, 0);
4050 		}
4051 rx_next:
4052 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4053 	} while (ath_rxbuf_init(sc, bf) == 0);
4054 
4055 	/* rx signal state monitoring */
4056 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4057 	if (ngood)
4058 		sc->sc_lastrx = tsf;
4059 
4060 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
4061 #ifdef IEEE80211_SUPPORT_SUPERG
4062 		ieee80211_ff_age_all(ic, 100);
4063 #endif
4064 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
4065 			ath_start(ifp);
4066 	}
4067 #undef PA2DESC
4068 }
4069 
4070 static void
4071 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4072 {
4073 	txq->axq_qnum = qnum;
4074 	txq->axq_ac = 0;
4075 	txq->axq_depth = 0;
4076 	txq->axq_intrcnt = 0;
4077 	txq->axq_link = NULL;
4078 	STAILQ_INIT(&txq->axq_q);
4079 	ATH_TXQ_LOCK_INIT(sc, txq);
4080 }
4081 
4082 /*
4083  * Setup a h/w transmit queue.
4084  */
4085 static struct ath_txq *
4086 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4087 {
4088 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4089 	struct ath_hal *ah = sc->sc_ah;
4090 	HAL_TXQ_INFO qi;
4091 	int qnum;
4092 
4093 	memset(&qi, 0, sizeof(qi));
4094 	qi.tqi_subtype = subtype;
4095 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4096 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4097 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4098 	/*
4099 	 * Enable interrupts only for EOL and DESC conditions.
4100 	 * We mark tx descriptors to receive a DESC interrupt
4101 	 * when a tx queue gets deep; otherwise waiting for the
4102 	 * EOL to reap descriptors.  Note that this is done to
4103 	 * reduce interrupt load and this only defers reaping
4104 	 * descriptors, never transmitting frames.  Aside from
4105 	 * reducing interrupts this also permits more concurrency.
4106 	 * The only potential downside is if the tx queue backs
4107 	 * up in which case the top half of the kernel may backup
4108 	 * due to a lack of tx descriptors.
4109 	 */
4110 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4111 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4112 	if (qnum == -1) {
4113 		/*
4114 		 * NB: don't print a message, this happens
4115 		 * normally on parts with too few tx queues
4116 		 */
4117 		return NULL;
4118 	}
4119 	if (qnum >= N(sc->sc_txq)) {
4120 		device_printf(sc->sc_dev,
4121 			"hal qnum %u out of range, max %zu!\n",
4122 			qnum, N(sc->sc_txq));
4123 		ath_hal_releasetxqueue(ah, qnum);
4124 		return NULL;
4125 	}
4126 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4127 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4128 		sc->sc_txqsetup |= 1<<qnum;
4129 	}
4130 	return &sc->sc_txq[qnum];
4131 #undef N
4132 }
4133 
4134 /*
4135  * Setup a hardware data transmit queue for the specified
4136  * access control.  The hal may not support all requested
4137  * queues in which case it will return a reference to a
4138  * previously setup queue.  We record the mapping from ac's
4139  * to h/w queues for use by ath_tx_start and also track
4140  * the set of h/w queues being used to optimize work in the
4141  * transmit interrupt handler and related routines.
4142  */
4143 static int
4144 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4145 {
4146 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4147 	struct ath_txq *txq;
4148 
4149 	if (ac >= N(sc->sc_ac2q)) {
4150 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4151 			ac, N(sc->sc_ac2q));
4152 		return 0;
4153 	}
4154 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4155 	if (txq != NULL) {
4156 		txq->axq_ac = ac;
4157 		sc->sc_ac2q[ac] = txq;
4158 		return 1;
4159 	} else
4160 		return 0;
4161 #undef N
4162 }
4163 
4164 /*
4165  * Update WME parameters for a transmit queue.
4166  */
4167 static int
4168 ath_txq_update(struct ath_softc *sc, int ac)
4169 {
4170 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4171 #define	ATH_TXOP_TO_US(v)		(v<<5)
4172 	struct ifnet *ifp = sc->sc_ifp;
4173 	struct ieee80211com *ic = ifp->if_l2com;
4174 	struct ath_txq *txq = sc->sc_ac2q[ac];
4175 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4176 	struct ath_hal *ah = sc->sc_ah;
4177 	HAL_TXQ_INFO qi;
4178 
4179 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4180 #ifdef IEEE80211_SUPPORT_TDMA
4181 	if (sc->sc_tdma) {
4182 		/*
4183 		 * AIFS is zero so there's no pre-transmit wait.  The
4184 		 * burst time defines the slot duration and is configured
4185 		 * through net80211.  The QCU is setup to not do post-xmit
4186 		 * back off, lockout all lower-priority QCU's, and fire
4187 		 * off the DMA beacon alert timer which is setup based
4188 		 * on the slot configuration.
4189 		 */
4190 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4191 			      | HAL_TXQ_TXERRINT_ENABLE
4192 			      | HAL_TXQ_TXURNINT_ENABLE
4193 			      | HAL_TXQ_TXEOLINT_ENABLE
4194 			      | HAL_TXQ_DBA_GATED
4195 			      | HAL_TXQ_BACKOFF_DISABLE
4196 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4197 			      ;
4198 		qi.tqi_aifs = 0;
4199 		/* XXX +dbaprep? */
4200 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4201 		qi.tqi_burstTime = qi.tqi_readyTime;
4202 	} else {
4203 #endif
4204 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4205 			      | HAL_TXQ_TXERRINT_ENABLE
4206 			      | HAL_TXQ_TXDESCINT_ENABLE
4207 			      | HAL_TXQ_TXURNINT_ENABLE
4208 			      ;
4209 		qi.tqi_aifs = wmep->wmep_aifsn;
4210 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4211 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4212 		qi.tqi_readyTime = 0;
4213 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4214 #ifdef IEEE80211_SUPPORT_TDMA
4215 	}
4216 #endif
4217 
4218 	DPRINTF(sc, ATH_DEBUG_RESET,
4219 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4220 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4221 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4222 
4223 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4224 		if_printf(ifp, "unable to update hardware queue "
4225 			"parameters for %s traffic!\n",
4226 			ieee80211_wme_acnames[ac]);
4227 		return 0;
4228 	} else {
4229 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4230 		return 1;
4231 	}
4232 #undef ATH_TXOP_TO_US
4233 #undef ATH_EXPONENT_TO_VALUE
4234 }
4235 
4236 /*
4237  * Callback from the 802.11 layer to update WME parameters.
4238  */
4239 static int
4240 ath_wme_update(struct ieee80211com *ic)
4241 {
4242 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4243 
4244 	return !ath_txq_update(sc, WME_AC_BE) ||
4245 	    !ath_txq_update(sc, WME_AC_BK) ||
4246 	    !ath_txq_update(sc, WME_AC_VI) ||
4247 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4248 }
4249 
4250 /*
4251  * Reclaim resources for a setup queue.
4252  */
4253 static void
4254 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4255 {
4256 
4257 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4258 	ATH_TXQ_LOCK_DESTROY(txq);
4259 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4260 }
4261 
4262 /*
4263  * Reclaim all tx queue resources.
4264  */
4265 static void
4266 ath_tx_cleanup(struct ath_softc *sc)
4267 {
4268 	int i;
4269 
4270 	ATH_TXBUF_LOCK_DESTROY(sc);
4271 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4272 		if (ATH_TXQ_SETUP(sc, i))
4273 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4274 }
4275 
4276 /*
4277  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4278  * using the current rates in sc_rixmap.
4279  */
4280 static __inline int
4281 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4282 {
4283 	int rix = sc->sc_rixmap[rate];
4284 	/* NB: return lowest rix for invalid rate */
4285 	return (rix == 0xff ? 0 : rix);
4286 }
4287 
4288 /*
4289  * Reclaim mbuf resources.  For fragmented frames we
4290  * need to claim each frag chained with m_nextpkt.
4291  */
4292 static void
4293 ath_freetx(struct mbuf *m)
4294 {
4295 	struct mbuf *next;
4296 
4297 	do {
4298 		next = m->m_nextpkt;
4299 		m->m_nextpkt = NULL;
4300 		m_freem(m);
4301 	} while ((m = next) != NULL);
4302 }
4303 
4304 static int
4305 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
4306 {
4307 	struct mbuf *m;
4308 	int error;
4309 
4310 	/*
4311 	 * Load the DMA map so any coalescing is done.  This
4312 	 * also calculates the number of descriptors we need.
4313 	 */
4314 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4315 				     bf->bf_segs, &bf->bf_nseg,
4316 				     BUS_DMA_NOWAIT);
4317 	if (error == EFBIG) {
4318 		/* XXX packet requires too many descriptors */
4319 		bf->bf_nseg = ATH_TXDESC+1;
4320 	} else if (error != 0) {
4321 		sc->sc_stats.ast_tx_busdma++;
4322 		ath_freetx(m0);
4323 		return error;
4324 	}
4325 	/*
4326 	 * Discard null packets and check for packets that
4327 	 * require too many TX descriptors.  We try to convert
4328 	 * the latter to a cluster.
4329 	 */
4330 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
4331 		sc->sc_stats.ast_tx_linear++;
4332 		m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
4333 		if (m == NULL) {
4334 			ath_freetx(m0);
4335 			sc->sc_stats.ast_tx_nombuf++;
4336 			return ENOMEM;
4337 		}
4338 		m0 = m;
4339 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4340 					     bf->bf_segs, &bf->bf_nseg,
4341 					     BUS_DMA_NOWAIT);
4342 		if (error != 0) {
4343 			sc->sc_stats.ast_tx_busdma++;
4344 			ath_freetx(m0);
4345 			return error;
4346 		}
4347 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
4348 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
4349 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
4350 		sc->sc_stats.ast_tx_nodata++;
4351 		ath_freetx(m0);
4352 		return EIO;
4353 	}
4354 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
4355 		__func__, m0, m0->m_pkthdr.len);
4356 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
4357 	bf->bf_m = m0;
4358 
4359 	return 0;
4360 }
4361 
4362 static void
4363 ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
4364 {
4365 	struct ath_hal *ah = sc->sc_ah;
4366 	struct ath_desc *ds, *ds0;
4367 	int i;
4368 
4369 	/*
4370 	 * Fillin the remainder of the descriptor info.
4371 	 */
4372 	ds0 = ds = bf->bf_desc;
4373 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4374 		ds->ds_data = bf->bf_segs[i].ds_addr;
4375 		if (i == bf->bf_nseg - 1)
4376 			ds->ds_link = 0;
4377 		else
4378 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4379 		ath_hal_filltxdesc(ah, ds
4380 			, bf->bf_segs[i].ds_len	/* segment length */
4381 			, i == 0		/* first segment */
4382 			, i == bf->bf_nseg - 1	/* last segment */
4383 			, ds0			/* first descriptor */
4384 		);
4385 		DPRINTF(sc, ATH_DEBUG_XMIT,
4386 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4387 			__func__, i, ds->ds_link, ds->ds_data,
4388 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4389 	}
4390 	/*
4391 	 * Insert the frame on the outbound list and pass it on
4392 	 * to the hardware.  Multicast frames buffered for power
4393 	 * save stations and transmit from the CAB queue are stored
4394 	 * on a s/w only queue and loaded on to the CAB queue in
4395 	 * the SWBA handler since frames only go out on DTIM and
4396 	 * to avoid possible races.
4397 	 */
4398 	ATH_TXQ_LOCK(txq);
4399 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
4400 	     ("busy status 0x%x", bf->bf_flags));
4401 	if (txq->axq_qnum != ATH_TXQ_SWQ) {
4402 #ifdef IEEE80211_SUPPORT_TDMA
4403 		int qbusy;
4404 
4405 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4406 		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
4407 		if (txq->axq_link == NULL) {
4408 			/*
4409 			 * Be careful writing the address to TXDP.  If
4410 			 * the tx q is enabled then this write will be
4411 			 * ignored.  Normally this is not an issue but
4412 			 * when tdma is in use and the q is beacon gated
4413 			 * this race can occur.  If the q is busy then
4414 			 * defer the work to later--either when another
4415 			 * packet comes along or when we prepare a beacon
4416 			 * frame at SWBA.
4417 			 */
4418 			if (!qbusy) {
4419 				ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4420 				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4421 				DPRINTF(sc, ATH_DEBUG_XMIT,
4422 				    "%s: TXDP[%u] = %p (%p) depth %d\n",
4423 				    __func__, txq->axq_qnum,
4424 				    (caddr_t)bf->bf_daddr, bf->bf_desc,
4425 				    txq->axq_depth);
4426 			} else {
4427 				txq->axq_flags |= ATH_TXQ_PUTPENDING;
4428 				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4429 				    "%s: Q%u busy, defer enable\n", __func__,
4430 				    txq->axq_qnum);
4431 			}
4432 		} else {
4433 			*txq->axq_link = bf->bf_daddr;
4434 			DPRINTF(sc, ATH_DEBUG_XMIT,
4435 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4436 			    txq->axq_qnum, txq->axq_link,
4437 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4438 			if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
4439 				/*
4440 				 * The q was busy when we previously tried
4441 				 * to write the address of the first buffer
4442 				 * in the chain.  Since it's not busy now
4443 				 * handle this chore.  We are certain the
4444 				 * buffer at the front is the right one since
4445 				 * axq_link is NULL only when the buffer list
4446 				 * is/was empty.
4447 				 */
4448 				ath_hal_puttxbuf(ah, txq->axq_qnum,
4449 					STAILQ_FIRST(&txq->axq_q)->bf_daddr);
4450 				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4451 				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4452 				    "%s: Q%u restarted\n", __func__,
4453 				    txq->axq_qnum);
4454 			}
4455 		}
4456 #else
4457 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4458 		if (txq->axq_link == NULL) {
4459 			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4460 			DPRINTF(sc, ATH_DEBUG_XMIT,
4461 			    "%s: TXDP[%u] = %p (%p) depth %d\n",
4462 			    __func__, txq->axq_qnum,
4463 			    (caddr_t)bf->bf_daddr, bf->bf_desc,
4464 			    txq->axq_depth);
4465 		} else {
4466 			*txq->axq_link = bf->bf_daddr;
4467 			DPRINTF(sc, ATH_DEBUG_XMIT,
4468 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4469 			    txq->axq_qnum, txq->axq_link,
4470 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4471 		}
4472 #endif /* IEEE80211_SUPPORT_TDMA */
4473 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4474 		ath_hal_txstart(ah, txq->axq_qnum);
4475 	} else {
4476 		if (txq->axq_link != NULL) {
4477 			struct ath_buf *last = ATH_TXQ_LAST(txq);
4478 			struct ieee80211_frame *wh;
4479 
4480 			/* mark previous frame */
4481 			wh = mtod(last->bf_m, struct ieee80211_frame *);
4482 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
4483 			bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
4484 			    BUS_DMASYNC_PREWRITE);
4485 
4486 			/* link descriptor */
4487 			*txq->axq_link = bf->bf_daddr;
4488 		}
4489 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4490 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4491 	}
4492 	ATH_TXQ_UNLOCK(txq);
4493 }
4494 
4495 static int
4496 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
4497     struct mbuf *m0)
4498 {
4499 	struct ieee80211vap *vap = ni->ni_vap;
4500 	struct ath_vap *avp = ATH_VAP(vap);
4501 	struct ath_hal *ah = sc->sc_ah;
4502 	struct ifnet *ifp = sc->sc_ifp;
4503 	struct ieee80211com *ic = ifp->if_l2com;
4504 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
4505 	int error, iswep, ismcast, isfrag, ismrr;
4506 	int keyix, hdrlen, pktlen, try0;
4507 	u_int8_t rix, txrate, ctsrate;
4508 	u_int8_t cix = 0xff;		/* NB: silence compiler */
4509 	struct ath_desc *ds;
4510 	struct ath_txq *txq;
4511 	struct ieee80211_frame *wh;
4512 	u_int subtype, flags, ctsduration;
4513 	HAL_PKT_TYPE atype;
4514 	const HAL_RATE_TABLE *rt;
4515 	HAL_BOOL shortPreamble;
4516 	struct ath_node *an;
4517 	u_int pri;
4518 
4519 	wh = mtod(m0, struct ieee80211_frame *);
4520 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
4521 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
4522 	isfrag = m0->m_flags & M_FRAG;
4523 	hdrlen = ieee80211_anyhdrsize(wh);
4524 	/*
4525 	 * Packet length must not include any
4526 	 * pad bytes; deduct them here.
4527 	 */
4528 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
4529 
4530 	if (iswep) {
4531 		const struct ieee80211_cipher *cip;
4532 		struct ieee80211_key *k;
4533 
4534 		/*
4535 		 * Construct the 802.11 header+trailer for an encrypted
4536 		 * frame. The only reason this can fail is because of an
4537 		 * unknown or unsupported cipher/key type.
4538 		 */
4539 		k = ieee80211_crypto_encap(ni, m0);
4540 		if (k == NULL) {
4541 			/*
4542 			 * This can happen when the key is yanked after the
4543 			 * frame was queued.  Just discard the frame; the
4544 			 * 802.11 layer counts failures and provides
4545 			 * debugging/diagnostics.
4546 			 */
4547 			ath_freetx(m0);
4548 			return EIO;
4549 		}
4550 		/*
4551 		 * Adjust the packet + header lengths for the crypto
4552 		 * additions and calculate the h/w key index.  When
4553 		 * a s/w mic is done the frame will have had any mic
4554 		 * added to it prior to entry so m0->m_pkthdr.len will
4555 		 * account for it. Otherwise we need to add it to the
4556 		 * packet length.
4557 		 */
4558 		cip = k->wk_cipher;
4559 		hdrlen += cip->ic_header;
4560 		pktlen += cip->ic_header + cip->ic_trailer;
4561 		/* NB: frags always have any TKIP MIC done in s/w */
4562 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
4563 			pktlen += cip->ic_miclen;
4564 		keyix = k->wk_keyix;
4565 
4566 		/* packet header may have moved, reset our local pointer */
4567 		wh = mtod(m0, struct ieee80211_frame *);
4568 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
4569 		/*
4570 		 * Use station key cache slot, if assigned.
4571 		 */
4572 		keyix = ni->ni_ucastkey.wk_keyix;
4573 		if (keyix == IEEE80211_KEYIX_NONE)
4574 			keyix = HAL_TXKEYIX_INVALID;
4575 	} else
4576 		keyix = HAL_TXKEYIX_INVALID;
4577 
4578 	pktlen += IEEE80211_CRC_LEN;
4579 
4580 	/*
4581 	 * Load the DMA map so any coalescing is done.  This
4582 	 * also calculates the number of descriptors we need.
4583 	 */
4584 	error = ath_tx_dmasetup(sc, bf, m0);
4585 	if (error != 0)
4586 		return error;
4587 	bf->bf_node = ni;			/* NB: held reference */
4588 	m0 = bf->bf_m;				/* NB: may have changed */
4589 	wh = mtod(m0, struct ieee80211_frame *);
4590 
4591 	/* setup descriptors */
4592 	ds = bf->bf_desc;
4593 	rt = sc->sc_currates;
4594 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4595 
4596 	/*
4597 	 * NB: the 802.11 layer marks whether or not we should
4598 	 * use short preamble based on the current mode and
4599 	 * negotiated parameters.
4600 	 */
4601 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
4602 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
4603 		shortPreamble = AH_TRUE;
4604 		sc->sc_stats.ast_tx_shortpre++;
4605 	} else {
4606 		shortPreamble = AH_FALSE;
4607 	}
4608 
4609 	an = ATH_NODE(ni);
4610 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
4611 	ismrr = 0;				/* default no multi-rate retry*/
4612 	pri = M_WME_GETAC(m0);			/* honor classification */
4613 	/* XXX use txparams instead of fixed values */
4614 	/*
4615 	 * Calculate Atheros packet type from IEEE80211 packet header,
4616 	 * setup for rate calculations, and select h/w transmit queue.
4617 	 */
4618 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
4619 	case IEEE80211_FC0_TYPE_MGT:
4620 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4621 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
4622 			atype = HAL_PKT_TYPE_BEACON;
4623 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4624 			atype = HAL_PKT_TYPE_PROBE_RESP;
4625 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
4626 			atype = HAL_PKT_TYPE_ATIM;
4627 		else
4628 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
4629 		rix = an->an_mgmtrix;
4630 		txrate = rt->info[rix].rateCode;
4631 		if (shortPreamble)
4632 			txrate |= rt->info[rix].shortPreamble;
4633 		try0 = ATH_TXMGTTRY;
4634 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4635 		break;
4636 	case IEEE80211_FC0_TYPE_CTL:
4637 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
4638 		rix = an->an_mgmtrix;
4639 		txrate = rt->info[rix].rateCode;
4640 		if (shortPreamble)
4641 			txrate |= rt->info[rix].shortPreamble;
4642 		try0 = ATH_TXMGTTRY;
4643 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4644 		break;
4645 	case IEEE80211_FC0_TYPE_DATA:
4646 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
4647 		/*
4648 		 * Data frames: multicast frames go out at a fixed rate,
4649 		 * EAPOL frames use the mgmt frame rate; otherwise consult
4650 		 * the rate control module for the rate to use.
4651 		 */
4652 		if (ismcast) {
4653 			rix = an->an_mcastrix;
4654 			txrate = rt->info[rix].rateCode;
4655 			if (shortPreamble)
4656 				txrate |= rt->info[rix].shortPreamble;
4657 			try0 = 1;
4658 		} else if (m0->m_flags & M_EAPOL) {
4659 			/* XXX? maybe always use long preamble? */
4660 			rix = an->an_mgmtrix;
4661 			txrate = rt->info[rix].rateCode;
4662 			if (shortPreamble)
4663 				txrate |= rt->info[rix].shortPreamble;
4664 			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
4665 		} else {
4666 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
4667 				&rix, &try0, &txrate);
4668 			sc->sc_txrix = rix;		/* for LED blinking */
4669 			sc->sc_lastdatarix = rix;	/* for fast frames */
4670 			if (try0 != ATH_TXMAXTRY)
4671 				ismrr = 1;
4672 		}
4673 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
4674 			flags |= HAL_TXDESC_NOACK;
4675 		break;
4676 	default:
4677 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
4678 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
4679 		/* XXX statistic */
4680 		ath_freetx(m0);
4681 		return EIO;
4682 	}
4683 	txq = sc->sc_ac2q[pri];
4684 
4685 	/*
4686 	 * When servicing one or more stations in power-save mode
4687 	 * (or) if there is some mcast data waiting on the mcast
4688 	 * queue (to prevent out of order delivery) multicast
4689 	 * frames must be buffered until after the beacon.
4690 	 */
4691 	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
4692 		txq = &avp->av_mcastq;
4693 
4694 	/*
4695 	 * Calculate miscellaneous flags.
4696 	 */
4697 	if (ismcast) {
4698 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
4699 	} else if (pktlen > vap->iv_rtsthreshold &&
4700 	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
4701 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
4702 		cix = rt->info[rix].controlRate;
4703 		sc->sc_stats.ast_tx_rts++;
4704 	}
4705 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
4706 		sc->sc_stats.ast_tx_noack++;
4707 #ifdef IEEE80211_SUPPORT_TDMA
4708 	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
4709 		DPRINTF(sc, ATH_DEBUG_TDMA,
4710 		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
4711 		sc->sc_stats.ast_tdma_ack++;
4712 		ath_freetx(m0);
4713 		return EIO;
4714 	}
4715 #endif
4716 
4717 	/*
4718 	 * If 802.11g protection is enabled, determine whether
4719 	 * to use RTS/CTS or just CTS.  Note that this is only
4720 	 * done for OFDM unicast frames.
4721 	 */
4722 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
4723 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
4724 	    (flags & HAL_TXDESC_NOACK) == 0) {
4725 		/* XXX fragments must use CCK rates w/ protection */
4726 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4727 			flags |= HAL_TXDESC_RTSENA;
4728 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4729 			flags |= HAL_TXDESC_CTSENA;
4730 		if (isfrag) {
4731 			/*
4732 			 * For frags it would be desirable to use the
4733 			 * highest CCK rate for RTS/CTS.  But stations
4734 			 * farther away may detect it at a lower CCK rate
4735 			 * so use the configured protection rate instead
4736 			 * (for now).
4737 			 */
4738 			cix = rt->info[sc->sc_protrix].controlRate;
4739 		} else
4740 			cix = rt->info[sc->sc_protrix].controlRate;
4741 		sc->sc_stats.ast_tx_protect++;
4742 	}
4743 
4744 	/*
4745 	 * Calculate duration.  This logically belongs in the 802.11
4746 	 * layer but it lacks sufficient information to calculate it.
4747 	 */
4748 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
4749 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
4750 		u_int16_t dur;
4751 		if (shortPreamble)
4752 			dur = rt->info[rix].spAckDuration;
4753 		else
4754 			dur = rt->info[rix].lpAckDuration;
4755 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
4756 			dur += dur;		/* additional SIFS+ACK */
4757 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
4758 			/*
4759 			 * Include the size of next fragment so NAV is
4760 			 * updated properly.  The last fragment uses only
4761 			 * the ACK duration
4762 			 */
4763 			dur += ath_hal_computetxtime(ah, rt,
4764 					m0->m_nextpkt->m_pkthdr.len,
4765 					rix, shortPreamble);
4766 		}
4767 		if (isfrag) {
4768 			/*
4769 			 * Force hardware to use computed duration for next
4770 			 * fragment by disabling multi-rate retry which updates
4771 			 * duration based on the multi-rate duration table.
4772 			 */
4773 			ismrr = 0;
4774 			try0 = ATH_TXMGTTRY;	/* XXX? */
4775 		}
4776 		*(u_int16_t *)wh->i_dur = htole16(dur);
4777 	}
4778 
4779 	/*
4780 	 * Calculate RTS/CTS rate and duration if needed.
4781 	 */
4782 	ctsduration = 0;
4783 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
4784 		/*
4785 		 * CTS transmit rate is derived from the transmit rate
4786 		 * by looking in the h/w rate table.  We must also factor
4787 		 * in whether or not a short preamble is to be used.
4788 		 */
4789 		/* NB: cix is set above where RTS/CTS is enabled */
4790 		KASSERT(cix != 0xff, ("cix not setup"));
4791 		ctsrate = rt->info[cix].rateCode;
4792 		/*
4793 		 * Compute the transmit duration based on the frame
4794 		 * size and the size of an ACK frame.  We call into the
4795 		 * HAL to do the computation since it depends on the
4796 		 * characteristics of the actual PHY being used.
4797 		 *
4798 		 * NB: CTS is assumed the same size as an ACK so we can
4799 		 *     use the precalculated ACK durations.
4800 		 */
4801 		if (shortPreamble) {
4802 			ctsrate |= rt->info[cix].shortPreamble;
4803 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4804 				ctsduration += rt->info[cix].spAckDuration;
4805 			ctsduration += ath_hal_computetxtime(ah,
4806 				rt, pktlen, rix, AH_TRUE);
4807 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4808 				ctsduration += rt->info[rix].spAckDuration;
4809 		} else {
4810 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4811 				ctsduration += rt->info[cix].lpAckDuration;
4812 			ctsduration += ath_hal_computetxtime(ah,
4813 				rt, pktlen, rix, AH_FALSE);
4814 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4815 				ctsduration += rt->info[rix].lpAckDuration;
4816 		}
4817 		/*
4818 		 * Must disable multi-rate retry when using RTS/CTS.
4819 		 */
4820 		ismrr = 0;
4821 		try0 = ATH_TXMGTTRY;		/* XXX */
4822 	} else
4823 		ctsrate = 0;
4824 
4825 	/*
4826 	 * At this point we are committed to sending the frame
4827 	 * and we don't need to look at m_nextpkt; clear it in
4828 	 * case this frame is part of frag chain.
4829 	 */
4830 	m0->m_nextpkt = NULL;
4831 
4832 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
4833 		ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
4834 		    sc->sc_hwmap[rix].ieeerate, -1);
4835 
4836 	if (ieee80211_radiotap_active_vap(vap)) {
4837 		u_int64_t tsf = ath_hal_gettsf64(ah);
4838 
4839 		sc->sc_tx_th.wt_tsf = htole64(tsf);
4840 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
4841 		if (iswep)
4842 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4843 		if (isfrag)
4844 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
4845 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
4846 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
4847 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
4848 
4849 		ieee80211_radiotap_tx(vap, m0);
4850 	}
4851 
4852 	/*
4853 	 * Determine if a tx interrupt should be generated for
4854 	 * this descriptor.  We take a tx interrupt to reap
4855 	 * descriptors when the h/w hits an EOL condition or
4856 	 * when the descriptor is specifically marked to generate
4857 	 * an interrupt.  We periodically mark descriptors in this
4858 	 * way to insure timely replenishing of the supply needed
4859 	 * for sending frames.  Defering interrupts reduces system
4860 	 * load and potentially allows more concurrent work to be
4861 	 * done but if done to aggressively can cause senders to
4862 	 * backup.
4863 	 *
4864 	 * NB: use >= to deal with sc_txintrperiod changing
4865 	 *     dynamically through sysctl.
4866 	 */
4867 	if (flags & HAL_TXDESC_INTREQ) {
4868 		txq->axq_intrcnt = 0;
4869 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4870 		flags |= HAL_TXDESC_INTREQ;
4871 		txq->axq_intrcnt = 0;
4872 	}
4873 
4874 	/*
4875 	 * Formulate first tx descriptor with tx controls.
4876 	 */
4877 	/* XXX check return value? */
4878 	ath_hal_setuptxdesc(ah, ds
4879 		, pktlen		/* packet length */
4880 		, hdrlen		/* header length */
4881 		, atype			/* Atheros packet type */
4882 		, ni->ni_txpower	/* txpower */
4883 		, txrate, try0		/* series 0 rate/tries */
4884 		, keyix			/* key cache index */
4885 		, sc->sc_txantenna	/* antenna mode */
4886 		, flags			/* flags */
4887 		, ctsrate		/* rts/cts rate */
4888 		, ctsduration		/* rts/cts duration */
4889 	);
4890 	bf->bf_txflags = flags;
4891 	/*
4892 	 * Setup the multi-rate retry state only when we're
4893 	 * going to use it.  This assumes ath_hal_setuptxdesc
4894 	 * initializes the descriptors (so we don't have to)
4895 	 * when the hardware supports multi-rate retry and
4896 	 * we don't use it.
4897 	 */
4898 	if (ismrr)
4899 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4900 
4901 	ath_tx_handoff(sc, txq, bf);
4902 	return 0;
4903 }
4904 
4905 /*
4906  * Process completed xmit descriptors from the specified queue.
4907  */
4908 static int
4909 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4910 {
4911 	struct ath_hal *ah = sc->sc_ah;
4912 	struct ifnet *ifp = sc->sc_ifp;
4913 	struct ieee80211com *ic = ifp->if_l2com;
4914 	struct ath_buf *bf, *last;
4915 	struct ath_desc *ds, *ds0;
4916 	struct ath_tx_status *ts;
4917 	struct ieee80211_node *ni;
4918 	struct ath_node *an;
4919 	int sr, lr, pri, nacked;
4920 	HAL_STATUS status;
4921 
4922 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4923 		__func__, txq->axq_qnum,
4924 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4925 		txq->axq_link);
4926 	nacked = 0;
4927 	for (;;) {
4928 		ATH_TXQ_LOCK(txq);
4929 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4930 		bf = STAILQ_FIRST(&txq->axq_q);
4931 		if (bf == NULL) {
4932 			ATH_TXQ_UNLOCK(txq);
4933 			break;
4934 		}
4935 		ds0 = &bf->bf_desc[0];
4936 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4937 		ts = &bf->bf_status.ds_txstat;
4938 		status = ath_hal_txprocdesc(ah, ds, ts);
4939 #ifdef ATH_DEBUG
4940 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4941 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4942 			    status == HAL_OK);
4943 #endif
4944 		if (status == HAL_EINPROGRESS) {
4945 			ATH_TXQ_UNLOCK(txq);
4946 			break;
4947 		}
4948 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4949 #ifdef IEEE80211_SUPPORT_TDMA
4950 		if (txq->axq_depth > 0) {
4951 			/*
4952 			 * More frames follow.  Mark the buffer busy
4953 			 * so it's not re-used while the hardware may
4954 			 * still re-read the link field in the descriptor.
4955 			 */
4956 			bf->bf_flags |= ATH_BUF_BUSY;
4957 		} else
4958 #else
4959 		if (txq->axq_depth == 0)
4960 #endif
4961 			txq->axq_link = NULL;
4962 		ATH_TXQ_UNLOCK(txq);
4963 
4964 		ni = bf->bf_node;
4965 		if (ni != NULL) {
4966 			an = ATH_NODE(ni);
4967 			if (ts->ts_status == 0) {
4968 				u_int8_t txant = ts->ts_antenna;
4969 				sc->sc_stats.ast_ant_tx[txant]++;
4970 				sc->sc_ant_tx[txant]++;
4971 				if (ts->ts_finaltsi != 0)
4972 					sc->sc_stats.ast_tx_altrate++;
4973 				pri = M_WME_GETAC(bf->bf_m);
4974 				if (pri >= WME_AC_VO)
4975 					ic->ic_wme.wme_hipri_traffic++;
4976 				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
4977 					ni->ni_inact = ni->ni_inact_reload;
4978 			} else {
4979 				if (ts->ts_status & HAL_TXERR_XRETRY)
4980 					sc->sc_stats.ast_tx_xretries++;
4981 				if (ts->ts_status & HAL_TXERR_FIFO)
4982 					sc->sc_stats.ast_tx_fifoerr++;
4983 				if (ts->ts_status & HAL_TXERR_FILT)
4984 					sc->sc_stats.ast_tx_filtered++;
4985 				if (bf->bf_m->m_flags & M_FF)
4986 					sc->sc_stats.ast_ff_txerr++;
4987 			}
4988 			sr = ts->ts_shortretry;
4989 			lr = ts->ts_longretry;
4990 			sc->sc_stats.ast_tx_shortretry += sr;
4991 			sc->sc_stats.ast_tx_longretry += lr;
4992 			/*
4993 			 * Hand the descriptor to the rate control algorithm.
4994 			 */
4995 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4996 			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
4997 				/*
4998 				 * If frame was ack'd update statistics,
4999 				 * including the last rx time used to
5000 				 * workaround phantom bmiss interrupts.
5001 				 */
5002 				if (ts->ts_status == 0) {
5003 					nacked++;
5004 					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
5005 					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
5006 						ts->ts_rssi);
5007 				}
5008 				ath_rate_tx_complete(sc, an, bf);
5009 			}
5010 			/*
5011 			 * Do any tx complete callback.  Note this must
5012 			 * be done before releasing the node reference.
5013 			 */
5014 			if (bf->bf_m->m_flags & M_TXCB)
5015 				ieee80211_process_callback(ni, bf->bf_m,
5016 				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
5017 				        ts->ts_status : HAL_TXERR_XRETRY);
5018 			ieee80211_free_node(ni);
5019 		}
5020 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5021 		    BUS_DMASYNC_POSTWRITE);
5022 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5023 
5024 		m_freem(bf->bf_m);
5025 		bf->bf_m = NULL;
5026 		bf->bf_node = NULL;
5027 
5028 		ATH_TXBUF_LOCK(sc);
5029 		last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5030 		if (last != NULL)
5031 			last->bf_flags &= ~ATH_BUF_BUSY;
5032 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5033 		ATH_TXBUF_UNLOCK(sc);
5034 	}
5035 #ifdef IEEE80211_SUPPORT_SUPERG
5036 	/*
5037 	 * Flush fast-frame staging queue when traffic slows.
5038 	 */
5039 	if (txq->axq_depth <= 1)
5040 		ieee80211_ff_flush(ic, txq->axq_ac);
5041 #endif
5042 	return nacked;
5043 }
5044 
5045 static __inline int
5046 txqactive(struct ath_hal *ah, int qnum)
5047 {
5048 	u_int32_t txqs = 1<<qnum;
5049 	ath_hal_gettxintrtxqs(ah, &txqs);
5050 	return (txqs & (1<<qnum));
5051 }
5052 
5053 /*
5054  * Deferred processing of transmit interrupt; special-cased
5055  * for a single hardware transmit queue (e.g. 5210 and 5211).
5056  */
5057 static void
5058 ath_tx_proc_q0(void *arg, int npending)
5059 {
5060 	struct ath_softc *sc = arg;
5061 	struct ifnet *ifp = sc->sc_ifp;
5062 
5063 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
5064 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5065 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5066 		ath_tx_processq(sc, sc->sc_cabq);
5067 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5068 	sc->sc_wd_timer = 0;
5069 
5070 	if (sc->sc_softled)
5071 		ath_led_event(sc, sc->sc_txrix);
5072 
5073 	ath_start(ifp);
5074 }
5075 
5076 /*
5077  * Deferred processing of transmit interrupt; special-cased
5078  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5079  */
5080 static void
5081 ath_tx_proc_q0123(void *arg, int npending)
5082 {
5083 	struct ath_softc *sc = arg;
5084 	struct ifnet *ifp = sc->sc_ifp;
5085 	int nacked;
5086 
5087 	/*
5088 	 * Process each active queue.
5089 	 */
5090 	nacked = 0;
5091 	if (txqactive(sc->sc_ah, 0))
5092 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
5093 	if (txqactive(sc->sc_ah, 1))
5094 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
5095 	if (txqactive(sc->sc_ah, 2))
5096 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
5097 	if (txqactive(sc->sc_ah, 3))
5098 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
5099 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5100 		ath_tx_processq(sc, sc->sc_cabq);
5101 	if (nacked)
5102 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5103 
5104 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5105 	sc->sc_wd_timer = 0;
5106 
5107 	if (sc->sc_softled)
5108 		ath_led_event(sc, sc->sc_txrix);
5109 
5110 	ath_start(ifp);
5111 }
5112 
5113 /*
5114  * Deferred processing of transmit interrupt.
5115  */
5116 static void
5117 ath_tx_proc(void *arg, int npending)
5118 {
5119 	struct ath_softc *sc = arg;
5120 	struct ifnet *ifp = sc->sc_ifp;
5121 	int i, nacked;
5122 
5123 	/*
5124 	 * Process each active queue.
5125 	 */
5126 	nacked = 0;
5127 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5128 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
5129 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
5130 	if (nacked)
5131 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5132 
5133 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5134 	sc->sc_wd_timer = 0;
5135 
5136 	if (sc->sc_softled)
5137 		ath_led_event(sc, sc->sc_txrix);
5138 
5139 	ath_start(ifp);
5140 }
5141 
5142 static void
5143 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5144 {
5145 #ifdef ATH_DEBUG
5146 	struct ath_hal *ah = sc->sc_ah;
5147 #endif
5148 	struct ieee80211_node *ni;
5149 	struct ath_buf *bf;
5150 	u_int ix;
5151 
5152 	/*
5153 	 * NB: this assumes output has been stopped and
5154 	 *     we do not need to block ath_tx_proc
5155 	 */
5156 	ATH_TXBUF_LOCK(sc);
5157 	bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5158 	if (bf != NULL)
5159 		bf->bf_flags &= ~ATH_BUF_BUSY;
5160 	ATH_TXBUF_UNLOCK(sc);
5161 	for (ix = 0;; ix++) {
5162 		ATH_TXQ_LOCK(txq);
5163 		bf = STAILQ_FIRST(&txq->axq_q);
5164 		if (bf == NULL) {
5165 			txq->axq_link = NULL;
5166 			ATH_TXQ_UNLOCK(txq);
5167 			break;
5168 		}
5169 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5170 		ATH_TXQ_UNLOCK(txq);
5171 #ifdef ATH_DEBUG
5172 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5173 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5174 
5175 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5176 				ath_hal_txprocdesc(ah, bf->bf_desc,
5177 				    &bf->bf_status.ds_txstat) == HAL_OK);
5178 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5179 			    bf->bf_m->m_len, 0, -1);
5180 		}
5181 #endif /* ATH_DEBUG */
5182 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5183 		ni = bf->bf_node;
5184 		bf->bf_node = NULL;
5185 		if (ni != NULL) {
5186 			/*
5187 			 * Do any callback and reclaim the node reference.
5188 			 */
5189 			if (bf->bf_m->m_flags & M_TXCB)
5190 				ieee80211_process_callback(ni, bf->bf_m, -1);
5191 			ieee80211_free_node(ni);
5192 		}
5193 		m_freem(bf->bf_m);
5194 		bf->bf_m = NULL;
5195 		bf->bf_flags &= ~ATH_BUF_BUSY;
5196 
5197 		ATH_TXBUF_LOCK(sc);
5198 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5199 		ATH_TXBUF_UNLOCK(sc);
5200 	}
5201 }
5202 
5203 static void
5204 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5205 {
5206 	struct ath_hal *ah = sc->sc_ah;
5207 
5208 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5209 	    __func__, txq->axq_qnum,
5210 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5211 	    txq->axq_link);
5212 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5213 }
5214 
5215 /*
5216  * Drain the transmit queues and reclaim resources.
5217  */
5218 static void
5219 ath_draintxq(struct ath_softc *sc)
5220 {
5221 	struct ath_hal *ah = sc->sc_ah;
5222 	struct ifnet *ifp = sc->sc_ifp;
5223 	int i;
5224 
5225 	/* XXX return value */
5226 	if (!sc->sc_invalid) {
5227 		/* don't touch the hardware if marked invalid */
5228 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5229 		    __func__, sc->sc_bhalq,
5230 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5231 		    NULL);
5232 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5233 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5234 			if (ATH_TXQ_SETUP(sc, i))
5235 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5236 	}
5237 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5238 		if (ATH_TXQ_SETUP(sc, i))
5239 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
5240 #ifdef ATH_DEBUG
5241 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5242 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
5243 		if (bf != NULL && bf->bf_m != NULL) {
5244 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5245 				ath_hal_txprocdesc(ah, bf->bf_desc,
5246 				    &bf->bf_status.ds_txstat) == HAL_OK);
5247 			ieee80211_dump_pkt(ifp->if_l2com,
5248 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5249 			    0, -1);
5250 		}
5251 	}
5252 #endif /* ATH_DEBUG */
5253 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5254 	sc->sc_wd_timer = 0;
5255 }
5256 
5257 /*
5258  * Disable the receive h/w in preparation for a reset.
5259  */
5260 static void
5261 ath_stoprecv(struct ath_softc *sc)
5262 {
5263 #define	PA2DESC(_sc, _pa) \
5264 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5265 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5266 	struct ath_hal *ah = sc->sc_ah;
5267 
5268 	ath_hal_stoppcurecv(ah);	/* disable PCU */
5269 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5270 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5271 	DELAY(3000);			/* 3ms is long enough for 1 frame */
5272 #ifdef ATH_DEBUG
5273 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5274 		struct ath_buf *bf;
5275 		u_int ix;
5276 
5277 		printf("%s: rx queue %p, link %p\n", __func__,
5278 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5279 		ix = 0;
5280 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5281 			struct ath_desc *ds = bf->bf_desc;
5282 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5283 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5284 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5285 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5286 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5287 			ix++;
5288 		}
5289 	}
5290 #endif
5291 	if (sc->sc_rxpending != NULL) {
5292 		m_freem(sc->sc_rxpending);
5293 		sc->sc_rxpending = NULL;
5294 	}
5295 	sc->sc_rxlink = NULL;		/* just in case */
5296 #undef PA2DESC
5297 }
5298 
5299 /*
5300  * Enable the receive h/w following a reset.
5301  */
5302 static int
5303 ath_startrecv(struct ath_softc *sc)
5304 {
5305 	struct ath_hal *ah = sc->sc_ah;
5306 	struct ath_buf *bf;
5307 
5308 	sc->sc_rxlink = NULL;
5309 	sc->sc_rxpending = NULL;
5310 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5311 		int error = ath_rxbuf_init(sc, bf);
5312 		if (error != 0) {
5313 			DPRINTF(sc, ATH_DEBUG_RECV,
5314 				"%s: ath_rxbuf_init failed %d\n",
5315 				__func__, error);
5316 			return error;
5317 		}
5318 	}
5319 
5320 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
5321 	ath_hal_putrxbuf(ah, bf->bf_daddr);
5322 	ath_hal_rxena(ah);		/* enable recv descriptors */
5323 	ath_mode_init(sc);		/* set filters, etc. */
5324 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5325 	return 0;
5326 }
5327 
5328 /*
5329  * Update internal state after a channel change.
5330  */
5331 static void
5332 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5333 {
5334 	enum ieee80211_phymode mode;
5335 
5336 	/*
5337 	 * Change channels and update the h/w rate map
5338 	 * if we're switching; e.g. 11a to 11b/g.
5339 	 */
5340 	mode = ieee80211_chan2mode(chan);
5341 	if (mode != sc->sc_curmode)
5342 		ath_setcurmode(sc, mode);
5343 	sc->sc_curchan = chan;
5344 }
5345 
5346 /*
5347  * Set/change channels.  If the channel is really being changed,
5348  * it's done by resetting the chip.  To accomplish this we must
5349  * first cleanup any pending DMA, then restart stuff after a la
5350  * ath_init.
5351  */
5352 static int
5353 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5354 {
5355 	struct ifnet *ifp = sc->sc_ifp;
5356 	struct ieee80211com *ic = ifp->if_l2com;
5357 	struct ath_hal *ah = sc->sc_ah;
5358 
5359 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5360 	    __func__, ieee80211_chan2ieee(ic, chan),
5361 	    chan->ic_freq, chan->ic_flags);
5362 	if (chan != sc->sc_curchan) {
5363 		HAL_STATUS status;
5364 		/*
5365 		 * To switch channels clear any pending DMA operations;
5366 		 * wait long enough for the RX fifo to drain, reset the
5367 		 * hardware at the new frequency, and then re-enable
5368 		 * the relevant bits of the h/w.
5369 		 */
5370 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5371 		ath_draintxq(sc);		/* clear pending tx frames */
5372 		ath_stoprecv(sc);		/* turn off frame recv */
5373 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5374 			if_printf(ifp, "%s: unable to reset "
5375 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5376 			    __func__, ieee80211_chan2ieee(ic, chan),
5377 			    chan->ic_freq, chan->ic_flags, status);
5378 			return EIO;
5379 		}
5380 		sc->sc_diversity = ath_hal_getdiversity(ah);
5381 
5382 		/*
5383 		 * Re-enable rx framework.
5384 		 */
5385 		if (ath_startrecv(sc) != 0) {
5386 			if_printf(ifp, "%s: unable to restart recv logic\n",
5387 			    __func__);
5388 			return EIO;
5389 		}
5390 
5391 		/*
5392 		 * Change channels and update the h/w rate map
5393 		 * if we're switching; e.g. 11a to 11b/g.
5394 		 */
5395 		ath_chan_change(sc, chan);
5396 
5397 		/*
5398 		 * Re-enable interrupts.
5399 		 */
5400 		ath_hal_intrset(ah, sc->sc_imask);
5401 	}
5402 	return 0;
5403 }
5404 
5405 /*
5406  * Periodically recalibrate the PHY to account
5407  * for temperature/environment changes.
5408  */
5409 static void
5410 ath_calibrate(void *arg)
5411 {
5412 	struct ath_softc *sc = arg;
5413 	struct ath_hal *ah = sc->sc_ah;
5414 	struct ifnet *ifp = sc->sc_ifp;
5415 	struct ieee80211com *ic = ifp->if_l2com;
5416 	HAL_BOOL longCal, isCalDone;
5417 	int nextcal;
5418 
5419 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5420 		goto restart;
5421 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5422 	if (longCal) {
5423 		sc->sc_stats.ast_per_cal++;
5424 		sc->sc_lastlongcal = ticks;
5425 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5426 			/*
5427 			 * Rfgain is out of bounds, reset the chip
5428 			 * to load new gain values.
5429 			 */
5430 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5431 				"%s: rfgain change\n", __func__);
5432 			sc->sc_stats.ast_per_rfgain++;
5433 			ath_reset(ifp);
5434 		}
5435 		/*
5436 		 * If this long cal is after an idle period, then
5437 		 * reset the data collection state so we start fresh.
5438 		 */
5439 		if (sc->sc_resetcal) {
5440 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5441 			sc->sc_lastcalreset = ticks;
5442 			sc->sc_resetcal = 0;
5443 		}
5444 	}
5445 	if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5446 		if (longCal) {
5447 			/*
5448 			 * Calibrate noise floor data again in case of change.
5449 			 */
5450 			ath_hal_process_noisefloor(ah);
5451 		}
5452 	} else {
5453 		DPRINTF(sc, ATH_DEBUG_ANY,
5454 			"%s: calibration of channel %u failed\n",
5455 			__func__, sc->sc_curchan->ic_freq);
5456 		sc->sc_stats.ast_per_calfail++;
5457 	}
5458 	if (!isCalDone) {
5459 restart:
5460 		/*
5461 		 * Use a shorter interval to potentially collect multiple
5462 		 * data samples required to complete calibration.  Once
5463 		 * we're told the work is done we drop back to a longer
5464 		 * interval between requests.  We're more aggressive doing
5465 		 * work when operating as an AP to improve operation right
5466 		 * after startup.
5467 		 */
5468 		nextcal = (1000*ath_shortcalinterval)/hz;
5469 		if (sc->sc_opmode != HAL_M_HOSTAP)
5470 			nextcal *= 10;
5471 	} else {
5472 		nextcal = ath_longcalinterval*hz;
5473 		if (sc->sc_lastcalreset == 0)
5474 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5475 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5476 			sc->sc_resetcal = 1;	/* setup reset next trip */
5477 	}
5478 
5479 	if (nextcal != 0) {
5480 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5481 		    __func__, nextcal, isCalDone ? "" : "!");
5482 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5483 	} else {
5484 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5485 		    __func__);
5486 		/* NB: don't rearm timer */
5487 	}
5488 }
5489 
5490 static void
5491 ath_scan_start(struct ieee80211com *ic)
5492 {
5493 	struct ifnet *ifp = ic->ic_ifp;
5494 	struct ath_softc *sc = ifp->if_softc;
5495 	struct ath_hal *ah = sc->sc_ah;
5496 	u_int32_t rfilt;
5497 
5498 	/* XXX calibration timer? */
5499 
5500 	sc->sc_scanning = 1;
5501 	sc->sc_syncbeacon = 0;
5502 	rfilt = ath_calcrxfilter(sc);
5503 	ath_hal_setrxfilter(ah, rfilt);
5504 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5505 
5506 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5507 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5508 }
5509 
5510 static void
5511 ath_scan_end(struct ieee80211com *ic)
5512 {
5513 	struct ifnet *ifp = ic->ic_ifp;
5514 	struct ath_softc *sc = ifp->if_softc;
5515 	struct ath_hal *ah = sc->sc_ah;
5516 	u_int32_t rfilt;
5517 
5518 	sc->sc_scanning = 0;
5519 	rfilt = ath_calcrxfilter(sc);
5520 	ath_hal_setrxfilter(ah, rfilt);
5521 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5522 
5523 	ath_hal_process_noisefloor(ah);
5524 
5525 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5526 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5527 		 sc->sc_curaid);
5528 }
5529 
5530 static void
5531 ath_set_channel(struct ieee80211com *ic)
5532 {
5533 	struct ifnet *ifp = ic->ic_ifp;
5534 	struct ath_softc *sc = ifp->if_softc;
5535 
5536 	(void) ath_chan_set(sc, ic->ic_curchan);
5537 	/*
5538 	 * If we are returning to our bss channel then mark state
5539 	 * so the next recv'd beacon's tsf will be used to sync the
5540 	 * beacon timers.  Note that since we only hear beacons in
5541 	 * sta/ibss mode this has no effect in other operating modes.
5542 	 */
5543 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5544 		sc->sc_syncbeacon = 1;
5545 }
5546 
5547 /*
5548  * Walk the vap list and check if there any vap's in RUN state.
5549  */
5550 static int
5551 ath_isanyrunningvaps(struct ieee80211vap *this)
5552 {
5553 	struct ieee80211com *ic = this->iv_ic;
5554 	struct ieee80211vap *vap;
5555 
5556 	IEEE80211_LOCK_ASSERT(ic);
5557 
5558 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5559 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5560 			return 1;
5561 	}
5562 	return 0;
5563 }
5564 
5565 static int
5566 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5567 {
5568 	struct ieee80211com *ic = vap->iv_ic;
5569 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5570 	struct ath_vap *avp = ATH_VAP(vap);
5571 	struct ath_hal *ah = sc->sc_ah;
5572 	struct ieee80211_node *ni = NULL;
5573 	int i, error, stamode;
5574 	u_int32_t rfilt;
5575 	static const HAL_LED_STATE leds[] = {
5576 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5577 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5578 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5579 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5580 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5581 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5582 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5583 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5584 	};
5585 
5586 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5587 		ieee80211_state_name[vap->iv_state],
5588 		ieee80211_state_name[nstate]);
5589 
5590 	callout_drain(&sc->sc_cal_ch);
5591 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5592 
5593 	if (nstate == IEEE80211_S_SCAN) {
5594 		/*
5595 		 * Scanning: turn off beacon miss and don't beacon.
5596 		 * Mark beacon state so when we reach RUN state we'll
5597 		 * [re]setup beacons.  Unblock the task q thread so
5598 		 * deferred interrupt processing is done.
5599 		 */
5600 		ath_hal_intrset(ah,
5601 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5602 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5603 		sc->sc_beacons = 0;
5604 		taskqueue_unblock(sc->sc_tq);
5605 	}
5606 
5607 	ni = vap->iv_bss;
5608 	rfilt = ath_calcrxfilter(sc);
5609 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5610 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5611 		   vap->iv_opmode == IEEE80211_M_IBSS);
5612 	if (stamode && nstate == IEEE80211_S_RUN) {
5613 		sc->sc_curaid = ni->ni_associd;
5614 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5615 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5616 	}
5617 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5618 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5619 	ath_hal_setrxfilter(ah, rfilt);
5620 
5621 	/* XXX is this to restore keycache on resume? */
5622 	if (vap->iv_opmode != IEEE80211_M_STA &&
5623 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5624 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5625 			if (ath_hal_keyisvalid(ah, i))
5626 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5627 	}
5628 
5629 	/*
5630 	 * Invoke the parent method to do net80211 work.
5631 	 */
5632 	error = avp->av_newstate(vap, nstate, arg);
5633 	if (error != 0)
5634 		goto bad;
5635 
5636 	if (nstate == IEEE80211_S_RUN) {
5637 		/* NB: collect bss node again, it may have changed */
5638 		ni = vap->iv_bss;
5639 
5640 		DPRINTF(sc, ATH_DEBUG_STATE,
5641 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5642 		    "capinfo 0x%04x chan %d\n", __func__,
5643 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5644 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5645 
5646 		switch (vap->iv_opmode) {
5647 #ifdef IEEE80211_SUPPORT_TDMA
5648 		case IEEE80211_M_AHDEMO:
5649 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5650 				break;
5651 			/* fall thru... */
5652 #endif
5653 		case IEEE80211_M_HOSTAP:
5654 		case IEEE80211_M_IBSS:
5655 		case IEEE80211_M_MBSS:
5656 			/*
5657 			 * Allocate and setup the beacon frame.
5658 			 *
5659 			 * Stop any previous beacon DMA.  This may be
5660 			 * necessary, for example, when an ibss merge
5661 			 * causes reconfiguration; there will be a state
5662 			 * transition from RUN->RUN that means we may
5663 			 * be called with beacon transmission active.
5664 			 */
5665 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5666 
5667 			error = ath_beacon_alloc(sc, ni);
5668 			if (error != 0)
5669 				goto bad;
5670 			/*
5671 			 * If joining an adhoc network defer beacon timer
5672 			 * configuration to the next beacon frame so we
5673 			 * have a current TSF to use.  Otherwise we're
5674 			 * starting an ibss/bss so there's no need to delay;
5675 			 * if this is the first vap moving to RUN state, then
5676 			 * beacon state needs to be [re]configured.
5677 			 */
5678 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5679 			    ni->ni_tstamp.tsf != 0) {
5680 				sc->sc_syncbeacon = 1;
5681 			} else if (!sc->sc_beacons) {
5682 #ifdef IEEE80211_SUPPORT_TDMA
5683 				if (vap->iv_caps & IEEE80211_C_TDMA)
5684 					ath_tdma_config(sc, vap);
5685 				else
5686 #endif
5687 					ath_beacon_config(sc, vap);
5688 				sc->sc_beacons = 1;
5689 			}
5690 			break;
5691 		case IEEE80211_M_STA:
5692 			/*
5693 			 * Defer beacon timer configuration to the next
5694 			 * beacon frame so we have a current TSF to use
5695 			 * (any TSF collected when scanning is likely old).
5696 			 */
5697 			sc->sc_syncbeacon = 1;
5698 			break;
5699 		case IEEE80211_M_MONITOR:
5700 			/*
5701 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5702 			 * transitions so we must re-enable interrupts here to
5703 			 * handle the case of a single monitor mode vap.
5704 			 */
5705 			ath_hal_intrset(ah, sc->sc_imask);
5706 			break;
5707 		case IEEE80211_M_WDS:
5708 			break;
5709 		default:
5710 			break;
5711 		}
5712 		/*
5713 		 * Let the hal process statistics collected during a
5714 		 * scan so it can provide calibrated noise floor data.
5715 		 */
5716 		ath_hal_process_noisefloor(ah);
5717 		/*
5718 		 * Reset rssi stats; maybe not the best place...
5719 		 */
5720 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5721 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5722 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5723 		/*
5724 		 * Finally, start any timers and the task q thread
5725 		 * (in case we didn't go through SCAN state).
5726 		 */
5727 		if (ath_longcalinterval != 0) {
5728 			/* start periodic recalibration timer */
5729 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5730 		} else {
5731 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5732 			    "%s: calibration disabled\n", __func__);
5733 		}
5734 		taskqueue_unblock(sc->sc_tq);
5735 	} else if (nstate == IEEE80211_S_INIT) {
5736 		/*
5737 		 * If there are no vaps left in RUN state then
5738 		 * shutdown host/driver operation:
5739 		 * o disable interrupts
5740 		 * o disable the task queue thread
5741 		 * o mark beacon processing as stopped
5742 		 */
5743 		if (!ath_isanyrunningvaps(vap)) {
5744 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5745 			/* disable interrupts  */
5746 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5747 			taskqueue_block(sc->sc_tq);
5748 			sc->sc_beacons = 0;
5749 		}
5750 #ifdef IEEE80211_SUPPORT_TDMA
5751 		ath_hal_setcca(ah, AH_TRUE);
5752 #endif
5753 	}
5754 bad:
5755 	return error;
5756 }
5757 
5758 /*
5759  * Allocate a key cache slot to the station so we can
5760  * setup a mapping from key index to node. The key cache
5761  * slot is needed for managing antenna state and for
5762  * compression when stations do not use crypto.  We do
5763  * it uniliaterally here; if crypto is employed this slot
5764  * will be reassigned.
5765  */
5766 static void
5767 ath_setup_stationkey(struct ieee80211_node *ni)
5768 {
5769 	struct ieee80211vap *vap = ni->ni_vap;
5770 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5771 	ieee80211_keyix keyix, rxkeyix;
5772 
5773 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5774 		/*
5775 		 * Key cache is full; we'll fall back to doing
5776 		 * the more expensive lookup in software.  Note
5777 		 * this also means no h/w compression.
5778 		 */
5779 		/* XXX msg+statistic */
5780 	} else {
5781 		/* XXX locking? */
5782 		ni->ni_ucastkey.wk_keyix = keyix;
5783 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5784 		/* NB: must mark device key to get called back on delete */
5785 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5786 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5787 		/* NB: this will create a pass-thru key entry */
5788 		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
5789 	}
5790 }
5791 
5792 /*
5793  * Setup driver-specific state for a newly associated node.
5794  * Note that we're called also on a re-associate, the isnew
5795  * param tells us if this is the first time or not.
5796  */
5797 static void
5798 ath_newassoc(struct ieee80211_node *ni, int isnew)
5799 {
5800 	struct ath_node *an = ATH_NODE(ni);
5801 	struct ieee80211vap *vap = ni->ni_vap;
5802 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5803 	const struct ieee80211_txparam *tp = ni->ni_txparms;
5804 
5805 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5806 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5807 
5808 	ath_rate_newassoc(sc, an, isnew);
5809 	if (isnew &&
5810 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5811 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5812 		ath_setup_stationkey(ni);
5813 }
5814 
5815 static int
5816 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5817 	int nchans, struct ieee80211_channel chans[])
5818 {
5819 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5820 	struct ath_hal *ah = sc->sc_ah;
5821 	HAL_STATUS status;
5822 
5823 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5824 	    "%s: rd %u cc %u location %c%s\n",
5825 	    __func__, reg->regdomain, reg->country, reg->location,
5826 	    reg->ecm ? " ecm" : "");
5827 
5828 	status = ath_hal_set_channels(ah, chans, nchans,
5829 	    reg->country, reg->regdomain);
5830 	if (status != HAL_OK) {
5831 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5832 		    __func__, status);
5833 		return EINVAL;		/* XXX */
5834 	}
5835 	return 0;
5836 }
5837 
5838 static void
5839 ath_getradiocaps(struct ieee80211com *ic,
5840 	int maxchans, int *nchans, struct ieee80211_channel chans[])
5841 {
5842 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5843 	struct ath_hal *ah = sc->sc_ah;
5844 
5845 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5846 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5847 
5848 	/* XXX check return */
5849 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5850 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5851 
5852 }
5853 
5854 static int
5855 ath_getchannels(struct ath_softc *sc)
5856 {
5857 	struct ifnet *ifp = sc->sc_ifp;
5858 	struct ieee80211com *ic = ifp->if_l2com;
5859 	struct ath_hal *ah = sc->sc_ah;
5860 	HAL_STATUS status;
5861 
5862 	/*
5863 	 * Collect channel set based on EEPROM contents.
5864 	 */
5865 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5866 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5867 	if (status != HAL_OK) {
5868 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5869 		    "status %d\n", __func__, status);
5870 		return EINVAL;
5871 	}
5872 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5873 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5874 	/* XXX map Atheros sku's to net80211 SKU's */
5875 	/* XXX net80211 types too small */
5876 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5877 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5878 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5879 	ic->ic_regdomain.isocc[1] = ' ';
5880 
5881 	ic->ic_regdomain.ecm = 1;
5882 	ic->ic_regdomain.location = 'I';
5883 
5884 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5885 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5886 	    __func__, sc->sc_eerd, sc->sc_eecc,
5887 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5888 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5889 	return 0;
5890 }
5891 
5892 static void
5893 ath_led_done(void *arg)
5894 {
5895 	struct ath_softc *sc = arg;
5896 
5897 	sc->sc_blinking = 0;
5898 }
5899 
5900 /*
5901  * Turn the LED off: flip the pin and then set a timer so no
5902  * update will happen for the specified duration.
5903  */
5904 static void
5905 ath_led_off(void *arg)
5906 {
5907 	struct ath_softc *sc = arg;
5908 
5909 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5910 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
5911 }
5912 
5913 /*
5914  * Blink the LED according to the specified on/off times.
5915  */
5916 static void
5917 ath_led_blink(struct ath_softc *sc, int on, int off)
5918 {
5919 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5920 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5921 	sc->sc_blinking = 1;
5922 	sc->sc_ledoff = off;
5923 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5924 }
5925 
5926 static void
5927 ath_led_event(struct ath_softc *sc, int rix)
5928 {
5929 	sc->sc_ledevent = ticks;	/* time of last event */
5930 	if (sc->sc_blinking)		/* don't interrupt active blink */
5931 		return;
5932 	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
5933 }
5934 
5935 static int
5936 ath_rate_setup(struct ath_softc *sc, u_int mode)
5937 {
5938 	struct ath_hal *ah = sc->sc_ah;
5939 	const HAL_RATE_TABLE *rt;
5940 
5941 	switch (mode) {
5942 	case IEEE80211_MODE_11A:
5943 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5944 		break;
5945 	case IEEE80211_MODE_HALF:
5946 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5947 		break;
5948 	case IEEE80211_MODE_QUARTER:
5949 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5950 		break;
5951 	case IEEE80211_MODE_11B:
5952 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5953 		break;
5954 	case IEEE80211_MODE_11G:
5955 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5956 		break;
5957 	case IEEE80211_MODE_TURBO_A:
5958 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5959 		break;
5960 	case IEEE80211_MODE_TURBO_G:
5961 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5962 		break;
5963 	case IEEE80211_MODE_STURBO_A:
5964 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5965 		break;
5966 	case IEEE80211_MODE_11NA:
5967 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5968 		break;
5969 	case IEEE80211_MODE_11NG:
5970 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5971 		break;
5972 	default:
5973 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5974 			__func__, mode);
5975 		return 0;
5976 	}
5977 	sc->sc_rates[mode] = rt;
5978 	return (rt != NULL);
5979 }
5980 
5981 static void
5982 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5983 {
5984 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5985 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5986 	static const struct {
5987 		u_int		rate;		/* tx/rx 802.11 rate */
5988 		u_int16_t	timeOn;		/* LED on time (ms) */
5989 		u_int16_t	timeOff;	/* LED off time (ms) */
5990 	} blinkrates[] = {
5991 		{ 108,  40,  10 },
5992 		{  96,  44,  11 },
5993 		{  72,  50,  13 },
5994 		{  48,  57,  14 },
5995 		{  36,  67,  16 },
5996 		{  24,  80,  20 },
5997 		{  22, 100,  25 },
5998 		{  18, 133,  34 },
5999 		{  12, 160,  40 },
6000 		{  10, 200,  50 },
6001 		{   6, 240,  58 },
6002 		{   4, 267,  66 },
6003 		{   2, 400, 100 },
6004 		{   0, 500, 130 },
6005 		/* XXX half/quarter rates */
6006 	};
6007 	const HAL_RATE_TABLE *rt;
6008 	int i, j;
6009 
6010 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6011 	rt = sc->sc_rates[mode];
6012 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6013 	for (i = 0; i < rt->rateCount; i++) {
6014 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6015 		if (rt->info[i].phy != IEEE80211_T_HT)
6016 			sc->sc_rixmap[ieeerate] = i;
6017 		else
6018 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6019 	}
6020 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6021 	for (i = 0; i < N(sc->sc_hwmap); i++) {
6022 		if (i >= rt->rateCount) {
6023 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6024 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6025 			continue;
6026 		}
6027 		sc->sc_hwmap[i].ieeerate =
6028 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6029 		if (rt->info[i].phy == IEEE80211_T_HT)
6030 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6031 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6032 		if (rt->info[i].shortPreamble ||
6033 		    rt->info[i].phy == IEEE80211_T_OFDM)
6034 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6035 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6036 		for (j = 0; j < N(blinkrates)-1; j++)
6037 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6038 				break;
6039 		/* NB: this uses the last entry if the rate isn't found */
6040 		/* XXX beware of overlow */
6041 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6042 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6043 	}
6044 	sc->sc_currates = rt;
6045 	sc->sc_curmode = mode;
6046 	/*
6047 	 * All protection frames are transmited at 2Mb/s for
6048 	 * 11g, otherwise at 1Mb/s.
6049 	 */
6050 	if (mode == IEEE80211_MODE_11G)
6051 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6052 	else
6053 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6054 	/* NB: caller is responsible for resetting rate control state */
6055 #undef N
6056 }
6057 
6058 #ifdef ATH_DEBUG
6059 static void
6060 ath_printrxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6061 	u_int ix, int done)
6062 {
6063 	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
6064 	struct ath_hal *ah = sc->sc_ah;
6065 	const struct ath_desc *ds;
6066 	int i;
6067 
6068 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6069 		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
6070 		       "      %08x %08x %08x %08x\n",
6071 		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
6072 		    ds->ds_link, ds->ds_data,
6073 		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
6074 		    ds->ds_ctl0, ds->ds_ctl1,
6075 		    ds->ds_hw[0], ds->ds_hw[1]);
6076 		if (ah->ah_magic == 0x20065416) {
6077 			printf("        %08x %08x %08x %08x %08x %08x %08x\n",
6078 			    ds->ds_hw[2], ds->ds_hw[3], ds->ds_hw[4],
6079 			    ds->ds_hw[5], ds->ds_hw[6], ds->ds_hw[7],
6080 			    ds->ds_hw[8]);
6081 		}
6082 	}
6083 }
6084 
6085 static void
6086 ath_printtxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6087 	u_int qnum, u_int ix, int done)
6088 {
6089 	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
6090 	struct ath_hal *ah = sc->sc_ah;
6091 	const struct ath_desc *ds;
6092 	int i;
6093 
6094 	printf("Q%u[%3u]", qnum, ix);
6095 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6096 		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
6097 		       "        %08x %08x %08x %08x %08x %08x\n",
6098 		    ds, (const struct ath_desc *)bf->bf_daddr + i,
6099 		    ds->ds_link, ds->ds_data, bf->bf_txflags,
6100 		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
6101 		    ds->ds_ctl0, ds->ds_ctl1,
6102 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
6103 		if (ah->ah_magic == 0x20065416) {
6104 			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6105 			    ds->ds_hw[4], ds->ds_hw[5], ds->ds_hw[6],
6106 			    ds->ds_hw[7], ds->ds_hw[8], ds->ds_hw[9],
6107 			    ds->ds_hw[10],ds->ds_hw[11]);
6108 			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6109 			    ds->ds_hw[12],ds->ds_hw[13],ds->ds_hw[14],
6110 			    ds->ds_hw[15],ds->ds_hw[16],ds->ds_hw[17],
6111 			    ds->ds_hw[18], ds->ds_hw[19]);
6112 		}
6113 	}
6114 }
6115 #endif /* ATH_DEBUG */
6116 
6117 static void
6118 ath_watchdog(void *arg)
6119 {
6120 	struct ath_softc *sc = arg;
6121 
6122 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6123 		struct ifnet *ifp = sc->sc_ifp;
6124 		uint32_t hangs;
6125 
6126 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6127 		    hangs != 0) {
6128 			if_printf(ifp, "%s hang detected (0x%x)\n",
6129 			    hangs & 0xff ? "bb" : "mac", hangs);
6130 		} else
6131 			if_printf(ifp, "device timeout\n");
6132 		ath_reset(ifp);
6133 		ifp->if_oerrors++;
6134 		sc->sc_stats.ast_watchdog++;
6135 	}
6136 	callout_schedule(&sc->sc_wd_ch, hz);
6137 }
6138 
6139 #ifdef ATH_DIAGAPI
6140 /*
6141  * Diagnostic interface to the HAL.  This is used by various
6142  * tools to do things like retrieve register contents for
6143  * debugging.  The mechanism is intentionally opaque so that
6144  * it can change frequently w/o concern for compatiblity.
6145  */
6146 static int
6147 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6148 {
6149 	struct ath_hal *ah = sc->sc_ah;
6150 	u_int id = ad->ad_id & ATH_DIAG_ID;
6151 	void *indata = NULL;
6152 	void *outdata = NULL;
6153 	u_int32_t insize = ad->ad_in_size;
6154 	u_int32_t outsize = ad->ad_out_size;
6155 	int error = 0;
6156 
6157 	if (ad->ad_id & ATH_DIAG_IN) {
6158 		/*
6159 		 * Copy in data.
6160 		 */
6161 		indata = malloc(insize, M_TEMP, M_NOWAIT);
6162 		if (indata == NULL) {
6163 			error = ENOMEM;
6164 			goto bad;
6165 		}
6166 		error = copyin(ad->ad_in_data, indata, insize);
6167 		if (error)
6168 			goto bad;
6169 	}
6170 	if (ad->ad_id & ATH_DIAG_DYN) {
6171 		/*
6172 		 * Allocate a buffer for the results (otherwise the HAL
6173 		 * returns a pointer to a buffer where we can read the
6174 		 * results).  Note that we depend on the HAL leaving this
6175 		 * pointer for us to use below in reclaiming the buffer;
6176 		 * may want to be more defensive.
6177 		 */
6178 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6179 		if (outdata == NULL) {
6180 			error = ENOMEM;
6181 			goto bad;
6182 		}
6183 	}
6184 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6185 		if (outsize < ad->ad_out_size)
6186 			ad->ad_out_size = outsize;
6187 		if (outdata != NULL)
6188 			error = copyout(outdata, ad->ad_out_data,
6189 					ad->ad_out_size);
6190 	} else {
6191 		error = EINVAL;
6192 	}
6193 bad:
6194 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6195 		free(indata, M_TEMP);
6196 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6197 		free(outdata, M_TEMP);
6198 	return error;
6199 }
6200 #endif /* ATH_DIAGAPI */
6201 
6202 static int
6203 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6204 {
6205 #define	IS_RUNNING(ifp) \
6206 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6207 	struct ath_softc *sc = ifp->if_softc;
6208 	struct ieee80211com *ic = ifp->if_l2com;
6209 	struct ifreq *ifr = (struct ifreq *)data;
6210 	const HAL_RATE_TABLE *rt;
6211 	int error = 0;
6212 
6213 	switch (cmd) {
6214 	case SIOCSIFFLAGS:
6215 		ATH_LOCK(sc);
6216 		if (IS_RUNNING(ifp)) {
6217 			/*
6218 			 * To avoid rescanning another access point,
6219 			 * do not call ath_init() here.  Instead,
6220 			 * only reflect promisc mode settings.
6221 			 */
6222 			ath_mode_init(sc);
6223 		} else if (ifp->if_flags & IFF_UP) {
6224 			/*
6225 			 * Beware of being called during attach/detach
6226 			 * to reset promiscuous mode.  In that case we
6227 			 * will still be marked UP but not RUNNING.
6228 			 * However trying to re-init the interface
6229 			 * is the wrong thing to do as we've already
6230 			 * torn down much of our state.  There's
6231 			 * probably a better way to deal with this.
6232 			 */
6233 			if (!sc->sc_invalid)
6234 				ath_init(sc);	/* XXX lose error */
6235 		} else {
6236 			ath_stop_locked(ifp);
6237 #ifdef notyet
6238 			/* XXX must wakeup in places like ath_vap_delete */
6239 			if (!sc->sc_invalid)
6240 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6241 #endif
6242 		}
6243 		ATH_UNLOCK(sc);
6244 		break;
6245 	case SIOCGIFMEDIA:
6246 	case SIOCSIFMEDIA:
6247 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6248 		break;
6249 	case SIOCGATHSTATS:
6250 		/* NB: embed these numbers to get a consistent view */
6251 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6252 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6253 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6254 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6255 #ifdef IEEE80211_SUPPORT_TDMA
6256 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6257 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6258 #endif
6259 		rt = sc->sc_currates;
6260 		/* XXX HT rates */
6261 		sc->sc_stats.ast_tx_rate =
6262 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6263 		return copyout(&sc->sc_stats,
6264 		    ifr->ifr_data, sizeof (sc->sc_stats));
6265 	case SIOCZATHSTATS:
6266 		error = priv_check(curthread, PRIV_DRIVER);
6267 		if (error == 0)
6268 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6269 		break;
6270 #ifdef ATH_DIAGAPI
6271 	case SIOCGATHDIAG:
6272 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6273 		break;
6274 #endif
6275 	case SIOCGIFADDR:
6276 		error = ether_ioctl(ifp, cmd, data);
6277 		break;
6278 	default:
6279 		error = EINVAL;
6280 		break;
6281 	}
6282 	return error;
6283 #undef IS_RUNNING
6284 }
6285 
6286 static int
6287 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
6288 {
6289 	struct ath_softc *sc = arg1;
6290 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
6291 	int error;
6292 
6293 	error = sysctl_handle_int(oidp, &slottime, 0, req);
6294 	if (error || !req->newptr)
6295 		return error;
6296 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
6297 }
6298 
6299 static int
6300 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
6301 {
6302 	struct ath_softc *sc = arg1;
6303 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
6304 	int error;
6305 
6306 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
6307 	if (error || !req->newptr)
6308 		return error;
6309 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
6310 }
6311 
6312 static int
6313 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
6314 {
6315 	struct ath_softc *sc = arg1;
6316 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
6317 	int error;
6318 
6319 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
6320 	if (error || !req->newptr)
6321 		return error;
6322 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
6323 }
6324 
6325 static int
6326 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
6327 {
6328 	struct ath_softc *sc = arg1;
6329 	int softled = sc->sc_softled;
6330 	int error;
6331 
6332 	error = sysctl_handle_int(oidp, &softled, 0, req);
6333 	if (error || !req->newptr)
6334 		return error;
6335 	softled = (softled != 0);
6336 	if (softled != sc->sc_softled) {
6337 		if (softled) {
6338 			/* NB: handle any sc_ledpin change */
6339 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6340 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6341 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6342 				!sc->sc_ledon);
6343 		}
6344 		sc->sc_softled = softled;
6345 	}
6346 	return 0;
6347 }
6348 
6349 static int
6350 ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
6351 {
6352 	struct ath_softc *sc = arg1;
6353 	int ledpin = sc->sc_ledpin;
6354 	int error;
6355 
6356 	error = sysctl_handle_int(oidp, &ledpin, 0, req);
6357 	if (error || !req->newptr)
6358 		return error;
6359 	if (ledpin != sc->sc_ledpin) {
6360 		sc->sc_ledpin = ledpin;
6361 		if (sc->sc_softled) {
6362 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6363 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6364 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6365 				!sc->sc_ledon);
6366 		}
6367 	}
6368 	return 0;
6369 }
6370 
6371 static int
6372 ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
6373 {
6374 	struct ath_softc *sc = arg1;
6375 	u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah);
6376 	int error;
6377 
6378 	error = sysctl_handle_int(oidp, &txantenna, 0, req);
6379 	if (!error && req->newptr) {
6380 		/* XXX assumes 2 antenna ports */
6381 		if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B)
6382 			return EINVAL;
6383 		ath_hal_setantennaswitch(sc->sc_ah, txantenna);
6384 		/*
6385 		 * NB: with the switch locked this isn't meaningful,
6386 		 *     but set it anyway so things like radiotap get
6387 		 *     consistent info in their data.
6388 		 */
6389 		sc->sc_txantenna = txantenna;
6390 	}
6391 	return error;
6392 }
6393 
6394 static int
6395 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
6396 {
6397 	struct ath_softc *sc = arg1;
6398 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
6399 	int error;
6400 
6401 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
6402 	if (!error && req->newptr)
6403 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
6404 	return error;
6405 }
6406 
6407 static int
6408 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
6409 {
6410 	struct ath_softc *sc = arg1;
6411 	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
6412 	int error;
6413 
6414 	error = sysctl_handle_int(oidp, &diversity, 0, req);
6415 	if (error || !req->newptr)
6416 		return error;
6417 	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
6418 		return EINVAL;
6419 	sc->sc_diversity = diversity;
6420 	return 0;
6421 }
6422 
6423 static int
6424 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
6425 {
6426 	struct ath_softc *sc = arg1;
6427 	u_int32_t diag;
6428 	int error;
6429 
6430 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
6431 		return EINVAL;
6432 	error = sysctl_handle_int(oidp, &diag, 0, req);
6433 	if (error || !req->newptr)
6434 		return error;
6435 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
6436 }
6437 
6438 static int
6439 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
6440 {
6441 	struct ath_softc *sc = arg1;
6442 	struct ifnet *ifp = sc->sc_ifp;
6443 	u_int32_t scale;
6444 	int error;
6445 
6446 	(void) ath_hal_gettpscale(sc->sc_ah, &scale);
6447 	error = sysctl_handle_int(oidp, &scale, 0, req);
6448 	if (error || !req->newptr)
6449 		return error;
6450 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL :
6451 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6452 }
6453 
6454 static int
6455 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
6456 {
6457 	struct ath_softc *sc = arg1;
6458 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
6459 	int error;
6460 
6461 	error = sysctl_handle_int(oidp, &tpc, 0, req);
6462 	if (error || !req->newptr)
6463 		return error;
6464 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
6465 }
6466 
6467 static int
6468 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
6469 {
6470 	struct ath_softc *sc = arg1;
6471 	struct ifnet *ifp = sc->sc_ifp;
6472 	struct ath_hal *ah = sc->sc_ah;
6473 	u_int rfkill = ath_hal_getrfkill(ah);
6474 	int error;
6475 
6476 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
6477 	if (error || !req->newptr)
6478 		return error;
6479 	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
6480 		return 0;
6481 	if (!ath_hal_setrfkill(ah, rfkill))
6482 		return EINVAL;
6483 	return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6484 }
6485 
6486 static int
6487 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
6488 {
6489 	struct ath_softc *sc = arg1;
6490 	u_int rfsilent;
6491 	int error;
6492 
6493 	(void) ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
6494 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
6495 	if (error || !req->newptr)
6496 		return error;
6497 	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
6498 		return EINVAL;
6499 	sc->sc_rfsilentpin = rfsilent & 0x1c;
6500 	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
6501 	return 0;
6502 }
6503 
6504 static int
6505 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
6506 {
6507 	struct ath_softc *sc = arg1;
6508 	u_int32_t tpack;
6509 	int error;
6510 
6511 	(void) ath_hal_gettpack(sc->sc_ah, &tpack);
6512 	error = sysctl_handle_int(oidp, &tpack, 0, req);
6513 	if (error || !req->newptr)
6514 		return error;
6515 	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
6516 }
6517 
6518 static int
6519 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
6520 {
6521 	struct ath_softc *sc = arg1;
6522 	u_int32_t tpcts;
6523 	int error;
6524 
6525 	(void) ath_hal_gettpcts(sc->sc_ah, &tpcts);
6526 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
6527 	if (error || !req->newptr)
6528 		return error;
6529 	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
6530 }
6531 
6532 static int
6533 ath_sysctl_intmit(SYSCTL_HANDLER_ARGS)
6534 {
6535 	struct ath_softc *sc = arg1;
6536 	int intmit, error;
6537 
6538 	intmit = ath_hal_getintmit(sc->sc_ah);
6539 	error = sysctl_handle_int(oidp, &intmit, 0, req);
6540 	if (error || !req->newptr)
6541 		return error;
6542 	return !ath_hal_setintmit(sc->sc_ah, intmit) ? EINVAL : 0;
6543 }
6544 
6545 #ifdef IEEE80211_SUPPORT_TDMA
6546 static int
6547 ath_sysctl_setcca(SYSCTL_HANDLER_ARGS)
6548 {
6549 	struct ath_softc *sc = arg1;
6550 	int setcca, error;
6551 
6552 	setcca = sc->sc_setcca;
6553 	error = sysctl_handle_int(oidp, &setcca, 0, req);
6554 	if (error || !req->newptr)
6555 		return error;
6556 	sc->sc_setcca = (setcca != 0);
6557 	return 0;
6558 }
6559 #endif /* IEEE80211_SUPPORT_TDMA */
6560 
6561 static void
6562 ath_sysctlattach(struct ath_softc *sc)
6563 {
6564 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
6565 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
6566 	struct ath_hal *ah = sc->sc_ah;
6567 
6568 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6569 		"countrycode", CTLFLAG_RD, &sc->sc_eecc, 0,
6570 		"EEPROM country code");
6571 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6572 		"regdomain", CTLFLAG_RD, &sc->sc_eerd, 0,
6573 		"EEPROM regdomain code");
6574 #ifdef	ATH_DEBUG
6575 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6576 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
6577 		"control debugging printfs");
6578 #endif
6579 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6580 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6581 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
6582 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6583 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6584 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
6585 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6586 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6587 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
6588 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6589 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6590 		ath_sysctl_softled, "I", "enable/disable software LED support");
6591 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6592 		"ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6593 		ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
6594 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6595 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
6596 		"setting to turn LED on");
6597 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6598 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
6599 		"idle time for inactivity LED (ticks)");
6600 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6601 		"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6602 		ath_sysctl_txantenna, "I", "antenna switch");
6603 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6604 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6605 		ath_sysctl_rxantenna, "I", "default/rx antenna");
6606 	if (ath_hal_hasdiversity(ah))
6607 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6608 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6609 			ath_sysctl_diversity, "I", "antenna diversity");
6610 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
6611 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6612 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
6613 		"tx descriptor batching");
6614 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6615 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6616 		ath_sysctl_diag, "I", "h/w diagnostic control");
6617 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6618 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6619 		ath_sysctl_tpscale, "I", "tx power scaling");
6620 	if (ath_hal_hastpc(ah)) {
6621 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6622 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6623 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
6624 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6625 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6626 			ath_sysctl_tpack, "I", "tx power for ack frames");
6627 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6628 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6629 			ath_sysctl_tpcts, "I", "tx power for cts frames");
6630 	}
6631 	if (ath_hal_hasrfsilent(ah)) {
6632 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6633 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6634 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
6635 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6636 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6637 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
6638 	}
6639 	if (ath_hal_hasintmit(ah)) {
6640 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6641 			"intmit", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6642 			ath_sysctl_intmit, "I", "interference mitigation");
6643 	}
6644 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
6645 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6646 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
6647 		"mask of error frames to pass when monitoring");
6648 #ifdef IEEE80211_SUPPORT_TDMA
6649 	if (ath_hal_macversion(ah) > 0x78) {
6650 		sc->sc_tdmadbaprep = 2;
6651 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6652 			"dbaprep", CTLFLAG_RW, &sc->sc_tdmadbaprep, 0,
6653 			"TDMA DBA preparation time");
6654 		sc->sc_tdmaswbaprep = 10;
6655 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6656 			"swbaprep", CTLFLAG_RW, &sc->sc_tdmaswbaprep, 0,
6657 			"TDMA SWBA preparation time");
6658 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6659 			"guardtime", CTLFLAG_RW, &sc->sc_tdmaguard, 0,
6660 			"TDMA slot guard time");
6661 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6662 			"superframe", CTLFLAG_RD, &sc->sc_tdmabintval, 0,
6663 			"TDMA calculated super frame");
6664 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6665 			"setcca", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6666 			ath_sysctl_setcca, "I", "enable CCA control");
6667 	}
6668 #endif
6669 }
6670 
6671 static int
6672 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
6673 	struct ath_buf *bf, struct mbuf *m0,
6674 	const struct ieee80211_bpf_params *params)
6675 {
6676 	struct ifnet *ifp = sc->sc_ifp;
6677 	struct ieee80211com *ic = ifp->if_l2com;
6678 	struct ath_hal *ah = sc->sc_ah;
6679 	struct ieee80211vap *vap = ni->ni_vap;
6680 	int error, ismcast, ismrr;
6681 	int keyix, hdrlen, pktlen, try0, txantenna;
6682 	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
6683 	struct ieee80211_frame *wh;
6684 	u_int flags, ctsduration;
6685 	HAL_PKT_TYPE atype;
6686 	const HAL_RATE_TABLE *rt;
6687 	struct ath_desc *ds;
6688 	u_int pri;
6689 
6690 	wh = mtod(m0, struct ieee80211_frame *);
6691 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
6692 	hdrlen = ieee80211_anyhdrsize(wh);
6693 	/*
6694 	 * Packet length must not include any
6695 	 * pad bytes; deduct them here.
6696 	 */
6697 	/* XXX honor IEEE80211_BPF_DATAPAD */
6698 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
6699 
6700 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
6701 		const struct ieee80211_cipher *cip;
6702 		struct ieee80211_key *k;
6703 
6704 		/*
6705 		 * Construct the 802.11 header+trailer for an encrypted
6706 		 * frame. The only reason this can fail is because of an
6707 		 * unknown or unsupported cipher/key type.
6708 		 */
6709 		k = ieee80211_crypto_encap(ni, m0);
6710 		if (k == NULL) {
6711 			/*
6712 			 * This can happen when the key is yanked after the
6713 			 * frame was queued.  Just discard the frame; the
6714 			 * 802.11 layer counts failures and provides
6715 			 * debugging/diagnostics.
6716 			 */
6717 			ath_freetx(m0);
6718 			return EIO;
6719 		}
6720 		/*
6721 		 * Adjust the packet + header lengths for the crypto
6722 		 * additions and calculate the h/w key index.  When
6723 		 * a s/w mic is done the frame will have had any mic
6724 		 * added to it prior to entry so m0->m_pkthdr.len will
6725 		 * account for it. Otherwise we need to add it to the
6726 		 * packet length.
6727 		 */
6728 		cip = k->wk_cipher;
6729 		hdrlen += cip->ic_header;
6730 		pktlen += cip->ic_header + cip->ic_trailer;
6731 		/* NB: frags always have any TKIP MIC done in s/w */
6732 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
6733 			pktlen += cip->ic_miclen;
6734 		keyix = k->wk_keyix;
6735 
6736 		/* packet header may have moved, reset our local pointer */
6737 		wh = mtod(m0, struct ieee80211_frame *);
6738 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
6739 		/*
6740 		 * Use station key cache slot, if assigned.
6741 		 */
6742 		keyix = ni->ni_ucastkey.wk_keyix;
6743 		if (keyix == IEEE80211_KEYIX_NONE)
6744 			keyix = HAL_TXKEYIX_INVALID;
6745 	} else
6746 		keyix = HAL_TXKEYIX_INVALID;
6747 
6748 	error = ath_tx_dmasetup(sc, bf, m0);
6749 	if (error != 0)
6750 		return error;
6751 	m0 = bf->bf_m;				/* NB: may have changed */
6752 	wh = mtod(m0, struct ieee80211_frame *);
6753 	bf->bf_node = ni;			/* NB: held reference */
6754 
6755 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
6756 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
6757 	if (params->ibp_flags & IEEE80211_BPF_RTS)
6758 		flags |= HAL_TXDESC_RTSENA;
6759 	else if (params->ibp_flags & IEEE80211_BPF_CTS)
6760 		flags |= HAL_TXDESC_CTSENA;
6761 	/* XXX leave ismcast to injector? */
6762 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
6763 		flags |= HAL_TXDESC_NOACK;
6764 
6765 	rt = sc->sc_currates;
6766 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
6767 	rix = ath_tx_findrix(sc, params->ibp_rate0);
6768 	txrate = rt->info[rix].rateCode;
6769 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6770 		txrate |= rt->info[rix].shortPreamble;
6771 	sc->sc_txrix = rix;
6772 	try0 = params->ibp_try0;
6773 	ismrr = (params->ibp_try1 != 0);
6774 	txantenna = params->ibp_pri >> 2;
6775 	if (txantenna == 0)			/* XXX? */
6776 		txantenna = sc->sc_txantenna;
6777 	ctsduration = 0;
6778 	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
6779 		cix = ath_tx_findrix(sc, params->ibp_ctsrate);
6780 		ctsrate = rt->info[cix].rateCode;
6781 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
6782 			ctsrate |= rt->info[cix].shortPreamble;
6783 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6784 				ctsduration += rt->info[cix].spAckDuration;
6785 			ctsduration += ath_hal_computetxtime(ah,
6786 				rt, pktlen, rix, AH_TRUE);
6787 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6788 				ctsduration += rt->info[rix].spAckDuration;
6789 		} else {
6790 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6791 				ctsduration += rt->info[cix].lpAckDuration;
6792 			ctsduration += ath_hal_computetxtime(ah,
6793 				rt, pktlen, rix, AH_FALSE);
6794 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6795 				ctsduration += rt->info[rix].lpAckDuration;
6796 		}
6797 		ismrr = 0;			/* XXX */
6798 	} else
6799 		ctsrate = 0;
6800 	pri = params->ibp_pri & 3;
6801 	/*
6802 	 * NB: we mark all packets as type PSPOLL so the h/w won't
6803 	 * set the sequence number, duration, etc.
6804 	 */
6805 	atype = HAL_PKT_TYPE_PSPOLL;
6806 
6807 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
6808 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
6809 		    sc->sc_hwmap[rix].ieeerate, -1);
6810 
6811 	if (ieee80211_radiotap_active_vap(vap)) {
6812 		u_int64_t tsf = ath_hal_gettsf64(ah);
6813 
6814 		sc->sc_tx_th.wt_tsf = htole64(tsf);
6815 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
6816 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
6817 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
6818 		if (m0->m_flags & M_FRAG)
6819 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
6820 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
6821 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
6822 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
6823 
6824 		ieee80211_radiotap_tx(vap, m0);
6825 	}
6826 
6827 	/*
6828 	 * Formulate first tx descriptor with tx controls.
6829 	 */
6830 	ds = bf->bf_desc;
6831 	/* XXX check return value? */
6832 	ath_hal_setuptxdesc(ah, ds
6833 		, pktlen		/* packet length */
6834 		, hdrlen		/* header length */
6835 		, atype			/* Atheros packet type */
6836 		, params->ibp_power	/* txpower */
6837 		, txrate, try0		/* series 0 rate/tries */
6838 		, keyix			/* key cache index */
6839 		, txantenna		/* antenna mode */
6840 		, flags			/* flags */
6841 		, ctsrate		/* rts/cts rate */
6842 		, ctsduration		/* rts/cts duration */
6843 	);
6844 	bf->bf_txflags = flags;
6845 
6846 	if (ismrr) {
6847 		rix = ath_tx_findrix(sc, params->ibp_rate1);
6848 		rate1 = rt->info[rix].rateCode;
6849 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6850 			rate1 |= rt->info[rix].shortPreamble;
6851 		if (params->ibp_try2) {
6852 			rix = ath_tx_findrix(sc, params->ibp_rate2);
6853 			rate2 = rt->info[rix].rateCode;
6854 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6855 				rate2 |= rt->info[rix].shortPreamble;
6856 		} else
6857 			rate2 = 0;
6858 		if (params->ibp_try3) {
6859 			rix = ath_tx_findrix(sc, params->ibp_rate3);
6860 			rate3 = rt->info[rix].rateCode;
6861 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6862 				rate3 |= rt->info[rix].shortPreamble;
6863 		} else
6864 			rate3 = 0;
6865 		ath_hal_setupxtxdesc(ah, ds
6866 			, rate1, params->ibp_try1	/* series 1 */
6867 			, rate2, params->ibp_try2	/* series 2 */
6868 			, rate3, params->ibp_try3	/* series 3 */
6869 		);
6870 	}
6871 
6872 	/* NB: no buffered multicast in power save support */
6873 	ath_tx_handoff(sc, sc->sc_ac2q[pri], bf);
6874 	return 0;
6875 }
6876 
6877 static int
6878 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
6879 	const struct ieee80211_bpf_params *params)
6880 {
6881 	struct ieee80211com *ic = ni->ni_ic;
6882 	struct ifnet *ifp = ic->ic_ifp;
6883 	struct ath_softc *sc = ifp->if_softc;
6884 	struct ath_buf *bf;
6885 	int error;
6886 
6887 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
6888 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
6889 		    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ?
6890 			"!running" : "invalid");
6891 		m_freem(m);
6892 		error = ENETDOWN;
6893 		goto bad;
6894 	}
6895 	/*
6896 	 * Grab a TX buffer and associated resources.
6897 	 */
6898 	bf = ath_getbuf(sc);
6899 	if (bf == NULL) {
6900 		sc->sc_stats.ast_tx_nobuf++;
6901 		m_freem(m);
6902 		error = ENOBUFS;
6903 		goto bad;
6904 	}
6905 
6906 	if (params == NULL) {
6907 		/*
6908 		 * Legacy path; interpret frame contents to decide
6909 		 * precisely how to send the frame.
6910 		 */
6911 		if (ath_tx_start(sc, ni, bf, m)) {
6912 			error = EIO;		/* XXX */
6913 			goto bad2;
6914 		}
6915 	} else {
6916 		/*
6917 		 * Caller supplied explicit parameters to use in
6918 		 * sending the frame.
6919 		 */
6920 		if (ath_tx_raw_start(sc, ni, bf, m, params)) {
6921 			error = EIO;		/* XXX */
6922 			goto bad2;
6923 		}
6924 	}
6925 	sc->sc_wd_timer = 5;
6926 	ifp->if_opackets++;
6927 	sc->sc_stats.ast_tx_raw++;
6928 
6929 	return 0;
6930 bad2:
6931 	ATH_TXBUF_LOCK(sc);
6932 	STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
6933 	ATH_TXBUF_UNLOCK(sc);
6934 bad:
6935 	ifp->if_oerrors++;
6936 	sc->sc_stats.ast_tx_raw_fail++;
6937 	ieee80211_free_node(ni);
6938 	return error;
6939 }
6940 
6941 /*
6942  * Announce various information on device/driver attach.
6943  */
6944 static void
6945 ath_announce(struct ath_softc *sc)
6946 {
6947 	struct ifnet *ifp = sc->sc_ifp;
6948 	struct ath_hal *ah = sc->sc_ah;
6949 
6950 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6951 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6952 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6953 	if (bootverbose) {
6954 		int i;
6955 		for (i = 0; i <= WME_AC_VO; i++) {
6956 			struct ath_txq *txq = sc->sc_ac2q[i];
6957 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6958 				txq->axq_qnum, ieee80211_wme_acnames[i]);
6959 		}
6960 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6961 			sc->sc_cabq->axq_qnum);
6962 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6963 	}
6964 	if (ath_rxbuf != ATH_RXBUF)
6965 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6966 	if (ath_txbuf != ATH_TXBUF)
6967 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6968 	if (sc->sc_mcastkey && bootverbose)
6969 		if_printf(ifp, "using multicast key search\n");
6970 }
6971 
6972 #ifdef IEEE80211_SUPPORT_TDMA
6973 static __inline uint32_t
6974 ath_hal_getnexttbtt(struct ath_hal *ah)
6975 {
6976 #define	AR_TIMER0	0x8028
6977 	return OS_REG_READ(ah, AR_TIMER0);
6978 }
6979 
6980 static __inline void
6981 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
6982 {
6983 	/* XXX handle wrap/overflow */
6984 	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
6985 }
6986 
6987 static void
6988 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
6989 {
6990 	struct ath_hal *ah = sc->sc_ah;
6991 	HAL_BEACON_TIMERS bt;
6992 
6993 	bt.bt_intval = bintval | HAL_BEACON_ENA;
6994 	bt.bt_nexttbtt = nexttbtt;
6995 	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
6996 	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
6997 	bt.bt_nextatim = nexttbtt+1;
6998 	ath_hal_beaconsettimers(ah, &bt);
6999 }
7000 
7001 /*
7002  * Calculate the beacon interval.  This is periodic in the
7003  * superframe for the bss.  We assume each station is configured
7004  * identically wrt transmit rate so the guard time we calculate
7005  * above will be the same on all stations.  Note we need to
7006  * factor in the xmit time because the hardware will schedule
7007  * a frame for transmit if the start of the frame is within
7008  * the burst time.  When we get hardware that properly kills
7009  * frames in the PCU we can reduce/eliminate the guard time.
7010  *
7011  * Roundup to 1024 is so we have 1 TU buffer in the guard time
7012  * to deal with the granularity of the nexttbtt timer.  11n MAC's
7013  * with 1us timer granularity should allow us to reduce/eliminate
7014  * this.
7015  */
7016 static void
7017 ath_tdma_bintvalsetup(struct ath_softc *sc,
7018 	const struct ieee80211_tdma_state *tdma)
7019 {
7020 	/* copy from vap state (XXX check all vaps have same value?) */
7021 	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
7022 
7023 	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
7024 		tdma->tdma_slotcnt, 1024);
7025 	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
7026 	if (sc->sc_tdmabintval & 1)
7027 		sc->sc_tdmabintval++;
7028 
7029 	if (tdma->tdma_slot == 0) {
7030 		/*
7031 		 * Only slot 0 beacons; other slots respond.
7032 		 */
7033 		sc->sc_imask |= HAL_INT_SWBA;
7034 		sc->sc_tdmaswba = 0;		/* beacon immediately */
7035 	} else {
7036 		/* XXX all vaps must be slot 0 or slot !0 */
7037 		sc->sc_imask &= ~HAL_INT_SWBA;
7038 	}
7039 }
7040 
7041 /*
7042  * Max 802.11 overhead.  This assumes no 4-address frames and
7043  * the encapsulation done by ieee80211_encap (llc).  We also
7044  * include potential crypto overhead.
7045  */
7046 #define	IEEE80211_MAXOVERHEAD \
7047 	(sizeof(struct ieee80211_qosframe) \
7048 	 + sizeof(struct llc) \
7049 	 + IEEE80211_ADDR_LEN \
7050 	 + IEEE80211_WEP_IVLEN \
7051 	 + IEEE80211_WEP_KIDLEN \
7052 	 + IEEE80211_WEP_CRCLEN \
7053 	 + IEEE80211_WEP_MICLEN \
7054 	 + IEEE80211_CRC_LEN)
7055 
7056 /*
7057  * Setup initially for tdma operation.  Start the beacon
7058  * timers and enable SWBA if we are slot 0.  Otherwise
7059  * we wait for slot 0 to arrive so we can sync up before
7060  * starting to transmit.
7061  */
7062 static void
7063 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
7064 {
7065 	struct ath_hal *ah = sc->sc_ah;
7066 	struct ifnet *ifp = sc->sc_ifp;
7067 	struct ieee80211com *ic = ifp->if_l2com;
7068 	const struct ieee80211_txparam *tp;
7069 	const struct ieee80211_tdma_state *tdma = NULL;
7070 	int rix;
7071 
7072 	if (vap == NULL) {
7073 		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
7074 		if (vap == NULL) {
7075 			if_printf(ifp, "%s: no vaps?\n", __func__);
7076 			return;
7077 		}
7078 	}
7079 	tp = vap->iv_bss->ni_txparms;
7080 	/*
7081 	 * Calculate the guard time for each slot.  This is the
7082 	 * time to send a maximal-size frame according to the
7083 	 * fixed/lowest transmit rate.  Note that the interface
7084 	 * mtu does not include the 802.11 overhead so we must
7085 	 * tack that on (ath_hal_computetxtime includes the
7086 	 * preamble and plcp in it's calculation).
7087 	 */
7088 	tdma = vap->iv_tdma;
7089 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
7090 		rix = ath_tx_findrix(sc, tp->ucastrate);
7091 	else
7092 		rix = ath_tx_findrix(sc, tp->mcastrate);
7093 	/* XXX short preamble assumed */
7094 	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
7095 		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
7096 
7097 	ath_hal_intrset(ah, 0);
7098 
7099 	ath_beaconq_config(sc);			/* setup h/w beacon q */
7100 	if (sc->sc_setcca)
7101 		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
7102 	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
7103 	ath_tdma_settimers(sc, sc->sc_tdmabintval,
7104 		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
7105 	sc->sc_syncbeacon = 0;
7106 
7107 	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
7108 	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
7109 
7110 	ath_hal_intrset(ah, sc->sc_imask);
7111 
7112 	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
7113 	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
7114 	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
7115 	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
7116 	    sc->sc_tdmadbaprep);
7117 }
7118 
7119 /*
7120  * Update tdma operation.  Called from the 802.11 layer
7121  * when a beacon is received from the TDMA station operating
7122  * in the slot immediately preceding us in the bss.  Use
7123  * the rx timestamp for the beacon frame to update our
7124  * beacon timers so we follow their schedule.  Note that
7125  * by using the rx timestamp we implicitly include the
7126  * propagation delay in our schedule.
7127  */
7128 static void
7129 ath_tdma_update(struct ieee80211_node *ni,
7130 	const struct ieee80211_tdma_param *tdma, int changed)
7131 {
7132 #define	TSF_TO_TU(_h,_l) \
7133 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
7134 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
7135 	struct ieee80211vap *vap = ni->ni_vap;
7136 	struct ieee80211com *ic = ni->ni_ic;
7137 	struct ath_softc *sc = ic->ic_ifp->if_softc;
7138 	struct ath_hal *ah = sc->sc_ah;
7139 	const HAL_RATE_TABLE *rt = sc->sc_currates;
7140 	u_int64_t tsf, rstamp, nextslot;
7141 	u_int32_t txtime, nextslottu, timer0;
7142 	int32_t tudelta, tsfdelta;
7143 	const struct ath_rx_status *rs;
7144 	int rix;
7145 
7146 	sc->sc_stats.ast_tdma_update++;
7147 
7148 	/*
7149 	 * Check for and adopt configuration changes.
7150 	 */
7151 	if (changed != 0) {
7152 		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
7153 
7154 		ath_tdma_bintvalsetup(sc, ts);
7155 		if (changed & TDMA_UPDATE_SLOTLEN)
7156 			ath_wme_update(ic);
7157 
7158 		DPRINTF(sc, ATH_DEBUG_TDMA,
7159 		    "%s: adopt slot %u slotcnt %u slotlen %u us "
7160 		    "bintval %u TU\n", __func__,
7161 		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
7162 		    sc->sc_tdmabintval);
7163 
7164 		/* XXX right? */
7165 		ath_hal_intrset(ah, sc->sc_imask);
7166 		/* NB: beacon timers programmed below */
7167 	}
7168 
7169 	/* extend rx timestamp to 64 bits */
7170 	rs = sc->sc_lastrs;
7171 	tsf = ath_hal_gettsf64(ah);
7172 	rstamp = ath_extend_tsf(rs->rs_tstamp, tsf);
7173 	/*
7174 	 * The rx timestamp is set by the hardware on completing
7175 	 * reception (at the point where the rx descriptor is DMA'd
7176 	 * to the host).  To find the start of our next slot we
7177 	 * must adjust this time by the time required to send
7178 	 * the packet just received.
7179 	 */
7180 	rix = rt->rateCodeToIndex[rs->rs_rate];
7181 	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
7182 	    rt->info[rix].shortPreamble);
7183 	/* NB: << 9 is to cvt to TU and /2 */
7184 	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
7185 	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
7186 
7187 	/*
7188 	 * TIMER0 is the h/w's idea of NextTBTT (in TU's).  Convert
7189 	 * to usecs and calculate the difference between what the
7190 	 * other station thinks and what we have programmed.  This
7191 	 * lets us figure how to adjust our timers to match.  The
7192 	 * adjustments are done by pulling the TSF forward and possibly
7193 	 * rewriting the beacon timers.
7194 	 */
7195 	timer0 = ath_hal_getnexttbtt(ah);
7196 	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0));
7197 
7198 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7199 	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
7200 	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
7201 
7202 	if (tsfdelta < 0) {
7203 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7204 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
7205 		tsfdelta = -tsfdelta % 1024;
7206 		nextslottu++;
7207 	} else if (tsfdelta > 0) {
7208 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
7209 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7210 		tsfdelta = 1024 - (tsfdelta % 1024);
7211 		nextslottu++;
7212 	} else {
7213 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7214 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7215 	}
7216 	tudelta = nextslottu - timer0;
7217 
7218 	/*
7219 	 * Copy sender's timetstamp into tdma ie so they can
7220 	 * calculate roundtrip time.  We submit a beacon frame
7221 	 * below after any timer adjustment.  The frame goes out
7222 	 * at the next TBTT so the sender can calculate the
7223 	 * roundtrip by inspecting the tdma ie in our beacon frame.
7224 	 *
7225 	 * NB: This tstamp is subtlely preserved when
7226 	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
7227 	 *     slot position changes) because ieee80211_add_tdma
7228 	 *     skips over the data.
7229 	 */
7230 	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
7231 		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
7232 		&ni->ni_tstamp.data, 8);
7233 #if 0
7234 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7235 	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n",
7236 	    (unsigned long long) tsf, (unsigned long long) nextslot,
7237 	    (int)(nextslot - tsf), tsfdelta,
7238 	    nextslottu, timer0, tudelta);
7239 #endif
7240 	/*
7241 	 * Adjust the beacon timers only when pulling them forward
7242 	 * or when going back by less than the beacon interval.
7243 	 * Negative jumps larger than the beacon interval seem to
7244 	 * cause the timers to stop and generally cause instability.
7245 	 * This basically filters out jumps due to missed beacons.
7246 	 */
7247 	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
7248 		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
7249 		sc->sc_stats.ast_tdma_timers++;
7250 	}
7251 	if (tsfdelta > 0) {
7252 		ath_hal_adjusttsf(ah, tsfdelta);
7253 		sc->sc_stats.ast_tdma_tsf++;
7254 	}
7255 	ath_tdma_beacon_send(sc, vap);		/* prepare response */
7256 #undef TU_TO_TSF
7257 #undef TSF_TO_TU
7258 }
7259 
7260 /*
7261  * Transmit a beacon frame at SWBA.  Dynamic updates
7262  * to the frame contents are done as needed.
7263  */
7264 static void
7265 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
7266 {
7267 	struct ath_hal *ah = sc->sc_ah;
7268 	struct ath_buf *bf;
7269 	int otherant;
7270 
7271 	/*
7272 	 * Check if the previous beacon has gone out.  If
7273 	 * not don't try to post another, skip this period
7274 	 * and wait for the next.  Missed beacons indicate
7275 	 * a problem and should not occur.  If we miss too
7276 	 * many consecutive beacons reset the device.
7277 	 */
7278 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
7279 		sc->sc_bmisscount++;
7280 		DPRINTF(sc, ATH_DEBUG_BEACON,
7281 			"%s: missed %u consecutive beacons\n",
7282 			__func__, sc->sc_bmisscount);
7283 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
7284 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
7285 		return;
7286 	}
7287 	if (sc->sc_bmisscount != 0) {
7288 		DPRINTF(sc, ATH_DEBUG_BEACON,
7289 			"%s: resume beacon xmit after %u misses\n",
7290 			__func__, sc->sc_bmisscount);
7291 		sc->sc_bmisscount = 0;
7292 	}
7293 
7294 	/*
7295 	 * Check recent per-antenna transmit statistics and flip
7296 	 * the default antenna if noticeably more frames went out
7297 	 * on the non-default antenna.
7298 	 * XXX assumes 2 anntenae
7299 	 */
7300 	if (!sc->sc_diversity) {
7301 		otherant = sc->sc_defant & 1 ? 2 : 1;
7302 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
7303 			ath_setdefantenna(sc, otherant);
7304 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
7305 	}
7306 
7307 	bf = ath_beacon_generate(sc, vap);
7308 	if (bf != NULL) {
7309 		/*
7310 		 * Stop any current dma and put the new frame on the queue.
7311 		 * This should never fail since we check above that no frames
7312 		 * are still pending on the queue.
7313 		 */
7314 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
7315 			DPRINTF(sc, ATH_DEBUG_ANY,
7316 				"%s: beacon queue %u did not stop?\n",
7317 				__func__, sc->sc_bhalq);
7318 			/* NB: the HAL still stops DMA, so proceed */
7319 		}
7320 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
7321 		ath_hal_txstart(ah, sc->sc_bhalq);
7322 
7323 		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
7324 
7325 		/*
7326 		 * Record local TSF for our last send for use
7327 		 * in arbitrating slot collisions.
7328 		 */
7329 		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
7330 	}
7331 }
7332 #endif /* IEEE80211_SUPPORT_TDMA */
7333 
7334 static int
7335 ath_sysctl_clearstats(SYSCTL_HANDLER_ARGS)
7336 {
7337 	struct ath_softc *sc = arg1;
7338 	int val = 0;
7339 	int error;
7340 
7341 	error = sysctl_handle_int(oidp, &val, 0, req);
7342 	if (error || !req->newptr)
7343 		return error;
7344 	if (val == 0)
7345 		return 0;       /* Not clearing the stats is still valid */
7346 	memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
7347 	val = 0;
7348 	return 0;
7349 }
7350 
7351 static void
7352 ath_sysctl_stats_attach(struct ath_softc *sc)
7353 {
7354 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
7355 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
7356 	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
7357 
7358 	/* Create "clear" node */
7359 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7360 	    "clear_stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7361 	    ath_sysctl_clearstats, "I", "clear stats");
7362 
7363 	/* Create stats node */
7364 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
7365 	    NULL, "Statistics");
7366 	child = SYSCTL_CHILDREN(tree);
7367 
7368 	/* This was generated from if_athioctl.h */
7369 
7370 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_watchdog", CTLFLAG_RD,
7371 	    &sc->sc_stats.ast_watchdog, 0, "device reset by watchdog");
7372 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_hardware", CTLFLAG_RD,
7373 	    &sc->sc_stats.ast_hardware, 0, "fatal hardware error interrupts");
7374 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_bmiss", CTLFLAG_RD,
7375 	    &sc->sc_stats.ast_bmiss, 0, "beacon miss interrupts");
7376 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_bmiss_phantom", CTLFLAG_RD,
7377 	    &sc->sc_stats.ast_bmiss_phantom, 0, "beacon miss interrupts");
7378 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_bstuck", CTLFLAG_RD,
7379 	    &sc->sc_stats.ast_bstuck, 0, "beacon stuck interrupts");
7380 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rxorn", CTLFLAG_RD,
7381 	    &sc->sc_stats.ast_rxorn, 0, "rx overrun interrupts");
7382 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rxeol", CTLFLAG_RD,
7383 	    &sc->sc_stats.ast_rxeol, 0, "rx eol interrupts");
7384 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_txurn", CTLFLAG_RD,
7385 	    &sc->sc_stats.ast_txurn, 0, "tx underrun interrupts");
7386 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_mib", CTLFLAG_RD,
7387 	    &sc->sc_stats.ast_mib, 0, "mib interrupts");
7388 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_intrcoal", CTLFLAG_RD,
7389 	    &sc->sc_stats.ast_intrcoal, 0, "interrupts coalesced");
7390 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_packets", CTLFLAG_RD,
7391 	    &sc->sc_stats.ast_tx_packets, 0, "packet sent on the interface");
7392 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_mgmt", CTLFLAG_RD,
7393 	    &sc->sc_stats.ast_tx_mgmt, 0, "management frames transmitted");
7394 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_discard", CTLFLAG_RD,
7395 	    &sc->sc_stats.ast_tx_discard, 0, "frames discarded prior to assoc");
7396 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_qstop", CTLFLAG_RD,
7397 	    &sc->sc_stats.ast_tx_qstop, 0, "output stopped 'cuz no buffer");
7398 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_encap", CTLFLAG_RD,
7399 	    &sc->sc_stats.ast_tx_encap, 0, "tx encapsulation failed");
7400 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nonode", CTLFLAG_RD,
7401 	    &sc->sc_stats.ast_tx_nonode, 0, "tx failed 'cuz no node");
7402 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nombuf", CTLFLAG_RD,
7403 	    &sc->sc_stats.ast_tx_nombuf, 0, "tx failed 'cuz no mbuf");
7404 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nomcl", CTLFLAG_RD,
7405 	    &sc->sc_stats.ast_tx_nomcl, 0, "tx failed 'cuz no cluster");
7406 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_linear", CTLFLAG_RD,
7407 	    &sc->sc_stats.ast_tx_linear, 0, "tx linearized to cluster");
7408 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nodata", CTLFLAG_RD,
7409 	    &sc->sc_stats.ast_tx_nodata, 0, "tx discarded empty frame");
7410 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_busdma", CTLFLAG_RD,
7411 	    &sc->sc_stats.ast_tx_busdma, 0, "tx failed for dma resrcs");
7412 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_xretries", CTLFLAG_RD,
7413 	    &sc->sc_stats.ast_tx_xretries, 0, "tx failed 'cuz too many retries");
7414 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_fifoerr", CTLFLAG_RD,
7415 	    &sc->sc_stats.ast_tx_fifoerr, 0, "tx failed 'cuz FIFO underrun");
7416 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_filtered", CTLFLAG_RD,
7417 	    &sc->sc_stats.ast_tx_filtered, 0, "tx failed 'cuz xmit filtered");
7418 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_shortretry", CTLFLAG_RD,
7419 	    &sc->sc_stats.ast_tx_shortretry, 0, "tx on-chip retries (short)");
7420 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_longretry", CTLFLAG_RD,
7421 	    &sc->sc_stats.ast_tx_longretry, 0, "tx on-chip retries (long)");
7422 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_badrate", CTLFLAG_RD,
7423 	    &sc->sc_stats.ast_tx_badrate, 0, "tx failed 'cuz bogus xmit rate");
7424 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_noack", CTLFLAG_RD,
7425 	    &sc->sc_stats.ast_tx_noack, 0, "tx frames with no ack marked");
7426 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_rts", CTLFLAG_RD,
7427 	    &sc->sc_stats.ast_tx_rts, 0, "tx frames with rts enabled");
7428 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_cts", CTLFLAG_RD,
7429 	    &sc->sc_stats.ast_tx_cts, 0, "tx frames with cts enabled");
7430 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_shortpre", CTLFLAG_RD,
7431 	    &sc->sc_stats.ast_tx_shortpre, 0, "tx frames with short preamble");
7432 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_altrate", CTLFLAG_RD,
7433 	    &sc->sc_stats.ast_tx_altrate, 0, "tx frames with alternate rate");
7434 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_protect", CTLFLAG_RD,
7435 	    &sc->sc_stats.ast_tx_protect, 0, "tx frames with protection");
7436 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_ctsburst", CTLFLAG_RD,
7437 	    &sc->sc_stats.ast_tx_ctsburst, 0, "tx frames with cts and bursting");
7438 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_ctsext", CTLFLAG_RD,
7439 	    &sc->sc_stats.ast_tx_ctsext, 0, "tx frames with cts extension");
7440 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_nombuf", CTLFLAG_RD,
7441 	    &sc->sc_stats.ast_rx_nombuf, 0, "rx setup failed 'cuz no mbuf");
7442 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_busdma", CTLFLAG_RD,
7443 	    &sc->sc_stats.ast_rx_busdma, 0, "rx setup failed for dma resrcs");
7444 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_orn", CTLFLAG_RD,
7445 	    &sc->sc_stats.ast_rx_orn, 0, "rx failed 'cuz of desc overrun");
7446 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_crcerr", CTLFLAG_RD,
7447 	    &sc->sc_stats.ast_rx_crcerr, 0, "rx failed 'cuz of bad CRC");
7448 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_fifoerr", CTLFLAG_RD,
7449 	    &sc->sc_stats.ast_rx_fifoerr, 0, "rx failed 'cuz of FIFO overrun");
7450 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_badcrypt", CTLFLAG_RD,
7451 	    &sc->sc_stats.ast_rx_badcrypt, 0, "rx failed 'cuz decryption");
7452 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_badmic", CTLFLAG_RD,
7453 	    &sc->sc_stats.ast_rx_badmic, 0, "rx failed 'cuz MIC failure");
7454 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_phyerr", CTLFLAG_RD,
7455 	    &sc->sc_stats.ast_rx_phyerr, 0, "rx failed 'cuz of PHY err");
7456 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_tooshort", CTLFLAG_RD,
7457 	    &sc->sc_stats.ast_rx_tooshort, 0, "rx discarded 'cuz frame too short");
7458 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_toobig", CTLFLAG_RD,
7459 	    &sc->sc_stats.ast_rx_toobig, 0, "rx discarded 'cuz frame too large");
7460 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_packets", CTLFLAG_RD,
7461 	    &sc->sc_stats.ast_rx_packets, 0, "packet recv on the interface");
7462 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_mgt", CTLFLAG_RD,
7463 	    &sc->sc_stats.ast_rx_mgt, 0, "management frames received");
7464 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_ctl", CTLFLAG_RD,
7465 	    &sc->sc_stats.ast_rx_ctl, 0, "rx discarded 'cuz ctl frame");
7466 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_be_xmit", CTLFLAG_RD,
7467 	    &sc->sc_stats.ast_be_xmit, 0, "beacons transmitted");
7468 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_be_nombuf", CTLFLAG_RD,
7469 	    &sc->sc_stats.ast_be_nombuf, 0, "beacon setup failed 'cuz no mbuf");
7470 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_per_cal", CTLFLAG_RD,
7471 	    &sc->sc_stats.ast_per_cal, 0, "periodic calibration calls");
7472 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_per_calfail", CTLFLAG_RD,
7473 	    &sc->sc_stats.ast_per_calfail, 0, "periodic calibration failed");
7474 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_per_rfgain", CTLFLAG_RD,
7475 	    &sc->sc_stats.ast_per_rfgain, 0, "periodic calibration rfgain reset");
7476 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rate_calls", CTLFLAG_RD,
7477 	    &sc->sc_stats.ast_rate_calls, 0, "rate control checks");
7478 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rate_raise", CTLFLAG_RD,
7479 	    &sc->sc_stats.ast_rate_raise, 0, "rate control raised xmit rate");
7480 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rate_drop", CTLFLAG_RD,
7481 	    &sc->sc_stats.ast_rate_drop, 0, "rate control dropped xmit rate");
7482 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ant_defswitch", CTLFLAG_RD,
7483 	    &sc->sc_stats.ast_ant_defswitch, 0, "rx/default antenna switches");
7484 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ant_txswitch", CTLFLAG_RD,
7485 	    &sc->sc_stats.ast_ant_txswitch, 0, "tx antenna switches");
7486 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_cabq_xmit", CTLFLAG_RD,
7487 	    &sc->sc_stats.ast_cabq_xmit, 0, "cabq frames transmitted");
7488 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_cabq_busy", CTLFLAG_RD,
7489 	    &sc->sc_stats.ast_cabq_busy, 0, "cabq found busy");
7490 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_raw", CTLFLAG_RD,
7491 	    &sc->sc_stats.ast_tx_raw, 0, "tx frames through raw api");
7492 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_txok", CTLFLAG_RD,
7493 	    &sc->sc_stats.ast_ff_txok, 0, "fast frames tx'd successfully");
7494 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_txerr", CTLFLAG_RD,
7495 	    &sc->sc_stats.ast_ff_txerr, 0, "fast frames tx'd w/ error");
7496 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_rx", CTLFLAG_RD,
7497 	    &sc->sc_stats.ast_ff_rx, 0, "fast frames rx'd");
7498 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_flush", CTLFLAG_RD,
7499 	    &sc->sc_stats.ast_ff_flush, 0, "fast frames flushed from staging q");
7500 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_qfull", CTLFLAG_RD,
7501 	    &sc->sc_stats.ast_tx_qfull, 0, "tx dropped 'cuz of queue limit");
7502 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nobuf", CTLFLAG_RD,
7503 	    &sc->sc_stats.ast_tx_nobuf, 0, "tx dropped 'cuz no ath buffer");
7504 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_update", CTLFLAG_RD,
7505 	    &sc->sc_stats.ast_tdma_update, 0, "TDMA slot timing updates");
7506 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_timers", CTLFLAG_RD,
7507 	    &sc->sc_stats.ast_tdma_timers, 0, "TDMA slot update set beacon timers");
7508 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_tsf", CTLFLAG_RD,
7509 	    &sc->sc_stats.ast_tdma_tsf, 0, "TDMA slot update set TSF");
7510 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_ack", CTLFLAG_RD,
7511 	    &sc->sc_stats.ast_tdma_ack, 0, "TDMA tx failed 'cuz ACK required");
7512 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_raw_fail", CTLFLAG_RD,
7513 	    &sc->sc_stats.ast_tx_raw_fail, 0, "raw tx failed 'cuz h/w down");
7514 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nofrag", CTLFLAG_RD,
7515 	    &sc->sc_stats.ast_tx_nofrag, 0, "tx dropped 'cuz no ath frag buffer");
7516 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_be_missed", CTLFLAG_RD,
7517 	    &sc->sc_stats.ast_be_missed, 0, "number of -missed- beacons");
7518 }
7519