xref: /freebsd/sys/dev/ath/if_ath.c (revision 0572ccaa4543b0abef8ef81e384c1d04de9f3da1)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_var.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_arp.h>
81 #include <net/ethernet.h>
82 #include <net/if_llc.h>
83 
84 #include <net80211/ieee80211_var.h>
85 #include <net80211/ieee80211_regdomain.h>
86 #ifdef IEEE80211_SUPPORT_SUPERG
87 #include <net80211/ieee80211_superg.h>
88 #endif
89 #ifdef IEEE80211_SUPPORT_TDMA
90 #include <net80211/ieee80211_tdma.h>
91 #endif
92 
93 #include <net/bpf.h>
94 
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/if_ether.h>
98 #endif
99 
100 #include <dev/ath/if_athvar.h>
101 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
102 #include <dev/ath/ath_hal/ah_diagcodes.h>
103 
104 #include <dev/ath/if_ath_debug.h>
105 #include <dev/ath/if_ath_misc.h>
106 #include <dev/ath/if_ath_tsf.h>
107 #include <dev/ath/if_ath_tx.h>
108 #include <dev/ath/if_ath_sysctl.h>
109 #include <dev/ath/if_ath_led.h>
110 #include <dev/ath/if_ath_keycache.h>
111 #include <dev/ath/if_ath_rx.h>
112 #include <dev/ath/if_ath_rx_edma.h>
113 #include <dev/ath/if_ath_tx_edma.h>
114 #include <dev/ath/if_ath_beacon.h>
115 #include <dev/ath/if_ath_btcoex.h>
116 #include <dev/ath/if_ath_spectral.h>
117 #include <dev/ath/if_ath_lna_div.h>
118 #include <dev/ath/if_athdfs.h>
119 
120 #ifdef ATH_TX99_DIAG
121 #include <dev/ath/ath_tx99/ath_tx99.h>
122 #endif
123 
124 #ifdef	ATH_DEBUG_ALQ
125 #include <dev/ath/if_ath_alq.h>
126 #endif
127 
128 /*
129  * Only enable this if you're working on PS-POLL support.
130  */
131 #define	ATH_SW_PSQ
132 
133 /*
134  * ATH_BCBUF determines the number of vap's that can transmit
135  * beacons and also (currently) the number of vap's that can
136  * have unique mac addresses/bssid.  When staggering beacons
137  * 4 is probably a good max as otherwise the beacons become
138  * very closely spaced and there is limited time for cab q traffic
139  * to go out.  You can burst beacons instead but that is not good
140  * for stations in power save and at some point you really want
141  * another radio (and channel).
142  *
143  * The limit on the number of mac addresses is tied to our use of
144  * the U/L bit and tracking addresses in a byte; it would be
145  * worthwhile to allow more for applications like proxy sta.
146  */
147 CTASSERT(ATH_BCBUF <= 8);
148 
149 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
150 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
151 		    const uint8_t [IEEE80211_ADDR_LEN],
152 		    const uint8_t [IEEE80211_ADDR_LEN]);
153 static void	ath_vap_delete(struct ieee80211vap *);
154 static void	ath_init(void *);
155 static void	ath_stop_locked(struct ifnet *);
156 static void	ath_stop(struct ifnet *);
157 static int	ath_reset_vap(struct ieee80211vap *, u_long);
158 static int	ath_transmit(struct ifnet *ifp, struct mbuf *m);
159 static void	ath_qflush(struct ifnet *ifp);
160 static int	ath_media_change(struct ifnet *);
161 static void	ath_watchdog(void *);
162 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
163 static void	ath_fatal_proc(void *, int);
164 static void	ath_bmiss_vap(struct ieee80211vap *);
165 static void	ath_bmiss_proc(void *, int);
166 static void	ath_key_update_begin(struct ieee80211vap *);
167 static void	ath_key_update_end(struct ieee80211vap *);
168 static void	ath_update_mcast_hw(struct ath_softc *);
169 static void	ath_update_mcast(struct ifnet *);
170 static void	ath_update_promisc(struct ifnet *);
171 static void	ath_updateslot(struct ifnet *);
172 static void	ath_bstuck_proc(void *, int);
173 static void	ath_reset_proc(void *, int);
174 static int	ath_desc_alloc(struct ath_softc *);
175 static void	ath_desc_free(struct ath_softc *);
176 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
177 			const uint8_t [IEEE80211_ADDR_LEN]);
178 static void	ath_node_cleanup(struct ieee80211_node *);
179 static void	ath_node_free(struct ieee80211_node *);
180 static void	ath_node_getsignal(const struct ieee80211_node *,
181 			int8_t *, int8_t *);
182 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
183 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
184 static int	ath_tx_setup(struct ath_softc *, int, int);
185 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
186 static void	ath_tx_cleanup(struct ath_softc *);
187 static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
188 		    int dosched);
189 static void	ath_tx_proc_q0(void *, int);
190 static void	ath_tx_proc_q0123(void *, int);
191 static void	ath_tx_proc(void *, int);
192 static void	ath_txq_sched_tasklet(void *, int);
193 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
194 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
195 static void	ath_scan_start(struct ieee80211com *);
196 static void	ath_scan_end(struct ieee80211com *);
197 static void	ath_set_channel(struct ieee80211com *);
198 #ifdef	ATH_ENABLE_11N
199 static void	ath_update_chw(struct ieee80211com *);
200 #endif	/* ATH_ENABLE_11N */
201 static void	ath_calibrate(void *);
202 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
203 static void	ath_setup_stationkey(struct ieee80211_node *);
204 static void	ath_newassoc(struct ieee80211_node *, int);
205 static int	ath_setregdomain(struct ieee80211com *,
206 		    struct ieee80211_regdomain *, int,
207 		    struct ieee80211_channel []);
208 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
209 		    struct ieee80211_channel []);
210 static int	ath_getchannels(struct ath_softc *);
211 
212 static int	ath_rate_setup(struct ath_softc *, u_int mode);
213 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
214 
215 static void	ath_announce(struct ath_softc *);
216 
217 static void	ath_dfs_tasklet(void *, int);
218 static void	ath_node_powersave(struct ieee80211_node *, int);
219 static int	ath_node_set_tim(struct ieee80211_node *, int);
220 static void	ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
221 
222 #ifdef IEEE80211_SUPPORT_TDMA
223 #include <dev/ath/if_ath_tdma.h>
224 #endif
225 
226 SYSCTL_DECL(_hw_ath);
227 
228 /* XXX validate sysctl values */
229 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
230 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
231 	    0, "long chip calibration interval (secs)");
232 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
233 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
234 	    0, "short chip calibration interval (msecs)");
235 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
236 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
237 	    0, "reset chip calibration results (secs)");
238 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
239 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
240 	    0, "ANI calibration (msecs)");
241 
242 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
243 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
244 	    0, "rx buffers allocated");
245 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
246 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
247 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
248 	    0, "tx buffers allocated");
249 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
250 int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
251 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
252 	    0, "tx (mgmt) buffers allocated");
253 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
254 
255 int ath_bstuck_threshold = 4;		/* max missed beacons */
256 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
257 	    0, "max missed beacon xmits before chip reset");
258 
259 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
260 
261 void
262 ath_legacy_attach_comp_func(struct ath_softc *sc)
263 {
264 
265 	/*
266 	 * Special case certain configurations.  Note the
267 	 * CAB queue is handled by these specially so don't
268 	 * include them when checking the txq setup mask.
269 	 */
270 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
271 	case 0x01:
272 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
273 		break;
274 	case 0x0f:
275 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
276 		break;
277 	default:
278 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
279 		break;
280 	}
281 }
282 
283 /*
284  * Set the target power mode.
285  *
286  * If this is called during a point in time where
287  * the hardware is being programmed elsewhere, it will
288  * simply store it away and update it when all current
289  * uses of the hardware are completed.
290  */
291 void
292 _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line)
293 {
294 	ATH_LOCK_ASSERT(sc);
295 
296 	sc->sc_target_powerstate = power_state;
297 
298 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
299 	    __func__,
300 	    file,
301 	    line,
302 	    power_state,
303 	    sc->sc_powersave_refcnt);
304 
305 	if (sc->sc_powersave_refcnt == 0 &&
306 	    power_state != sc->sc_cur_powerstate) {
307 		sc->sc_cur_powerstate = power_state;
308 		ath_hal_setpower(sc->sc_ah, power_state);
309 
310 		/*
311 		 * If the NIC is force-awake, then set the
312 		 * self-gen frame state appropriately.
313 		 *
314 		 * If the nic is in network sleep or full-sleep,
315 		 * we let the above call leave the self-gen
316 		 * state as "sleep".
317 		 */
318 		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
319 		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
320 			ath_hal_setselfgenpower(sc->sc_ah,
321 			    sc->sc_target_selfgen_state);
322 		}
323 	}
324 }
325 
326 /*
327  * Set the current self-generated frames state.
328  *
329  * This is separate from the target power mode.  The chip may be
330  * awake but the desired state is "sleep", so frames sent to the
331  * destination has PWRMGT=1 in the 802.11 header.  The NIC also
332  * needs to know to set PWRMGT=1 in self-generated frames.
333  */
334 void
335 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line)
336 {
337 
338 	ATH_LOCK_ASSERT(sc);
339 
340 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
341 	    __func__,
342 	    file,
343 	    line,
344 	    power_state,
345 	    sc->sc_target_selfgen_state);
346 
347 	sc->sc_target_selfgen_state = power_state;
348 
349 	/*
350 	 * If the NIC is force-awake, then set the power state.
351 	 * Network-state and full-sleep will already transition it to
352 	 * mark self-gen frames as sleeping - and we can't
353 	 * guarantee the NIC is awake to program the self-gen frame
354 	 * setting anyway.
355 	 */
356 	if (sc->sc_cur_powerstate == HAL_PM_AWAKE) {
357 		ath_hal_setselfgenpower(sc->sc_ah, power_state);
358 	}
359 }
360 
361 /*
362  * Set the hardware power mode and take a reference.
363  *
364  * This doesn't update the target power mode in the driver;
365  * it just updates the hardware power state.
366  *
367  * XXX it should only ever force the hardware awake; it should
368  * never be called to set it asleep.
369  */
370 void
371 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line)
372 {
373 	ATH_LOCK_ASSERT(sc);
374 
375 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
376 	    __func__,
377 	    file,
378 	    line,
379 	    power_state,
380 	    sc->sc_powersave_refcnt);
381 
382 	sc->sc_powersave_refcnt++;
383 
384 	if (power_state != sc->sc_cur_powerstate) {
385 		ath_hal_setpower(sc->sc_ah, power_state);
386 		sc->sc_cur_powerstate = power_state;
387 
388 		/*
389 		 * Adjust the self-gen powerstate if appropriate.
390 		 */
391 		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
392 		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
393 			ath_hal_setselfgenpower(sc->sc_ah,
394 			    sc->sc_target_selfgen_state);
395 		}
396 
397 	}
398 }
399 
400 /*
401  * Restore the power save mode to what it once was.
402  *
403  * This will decrement the reference counter and once it hits
404  * zero, it'll restore the powersave state.
405  */
406 void
407 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line)
408 {
409 
410 	ATH_LOCK_ASSERT(sc);
411 
412 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n",
413 	    __func__,
414 	    file,
415 	    line,
416 	    sc->sc_powersave_refcnt,
417 	    sc->sc_target_powerstate);
418 
419 	if (sc->sc_powersave_refcnt == 0)
420 		device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__);
421 	else
422 		sc->sc_powersave_refcnt--;
423 
424 	if (sc->sc_powersave_refcnt == 0 &&
425 	    sc->sc_target_powerstate != sc->sc_cur_powerstate) {
426 		sc->sc_cur_powerstate = sc->sc_target_powerstate;
427 		ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate);
428 	}
429 
430 	/*
431 	 * Adjust the self-gen powerstate if appropriate.
432 	 */
433 	if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
434 	    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
435 		ath_hal_setselfgenpower(sc->sc_ah,
436 		    sc->sc_target_selfgen_state);
437 	}
438 
439 }
440 
441 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
442 #define	HAL_MODE_HT40 \
443 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
444 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
445 int
446 ath_attach(u_int16_t devid, struct ath_softc *sc)
447 {
448 	struct ifnet *ifp;
449 	struct ieee80211com *ic;
450 	struct ath_hal *ah = NULL;
451 	HAL_STATUS status;
452 	int error = 0, i;
453 	u_int wmodes;
454 	uint8_t macaddr[IEEE80211_ADDR_LEN];
455 	int rx_chainmask, tx_chainmask;
456 
457 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
458 
459 	CURVNET_SET(vnet0);
460 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
461 	if (ifp == NULL) {
462 		device_printf(sc->sc_dev, "can not if_alloc()\n");
463 		error = ENOSPC;
464 		CURVNET_RESTORE();
465 		goto bad;
466 	}
467 	ic = ifp->if_l2com;
468 
469 	/* set these up early for if_printf use */
470 	if_initname(ifp, device_get_name(sc->sc_dev),
471 		device_get_unit(sc->sc_dev));
472 	CURVNET_RESTORE();
473 
474 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
475 	    sc->sc_eepromdata, &status);
476 	if (ah == NULL) {
477 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
478 			status);
479 		error = ENXIO;
480 		goto bad;
481 	}
482 	sc->sc_ah = ah;
483 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
484 #ifdef	ATH_DEBUG
485 	sc->sc_debug = ath_debug;
486 #endif
487 
488 	/*
489 	 * Setup the DMA/EDMA functions based on the current
490 	 * hardware support.
491 	 *
492 	 * This is required before the descriptors are allocated.
493 	 */
494 	if (ath_hal_hasedma(sc->sc_ah)) {
495 		sc->sc_isedma = 1;
496 		ath_recv_setup_edma(sc);
497 		ath_xmit_setup_edma(sc);
498 	} else {
499 		ath_recv_setup_legacy(sc);
500 		ath_xmit_setup_legacy(sc);
501 	}
502 
503 	if (ath_hal_hasmybeacon(sc->sc_ah)) {
504 		sc->sc_do_mybeacon = 1;
505 	}
506 
507 	/*
508 	 * Check if the MAC has multi-rate retry support.
509 	 * We do this by trying to setup a fake extended
510 	 * descriptor.  MAC's that don't have support will
511 	 * return false w/o doing anything.  MAC's that do
512 	 * support it will return true w/o doing anything.
513 	 */
514 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
515 
516 	/*
517 	 * Check if the device has hardware counters for PHY
518 	 * errors.  If so we need to enable the MIB interrupt
519 	 * so we can act on stat triggers.
520 	 */
521 	if (ath_hal_hwphycounters(ah))
522 		sc->sc_needmib = 1;
523 
524 	/*
525 	 * Get the hardware key cache size.
526 	 */
527 	sc->sc_keymax = ath_hal_keycachesize(ah);
528 	if (sc->sc_keymax > ATH_KEYMAX) {
529 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
530 			ATH_KEYMAX, sc->sc_keymax);
531 		sc->sc_keymax = ATH_KEYMAX;
532 	}
533 	/*
534 	 * Reset the key cache since some parts do not
535 	 * reset the contents on initial power up.
536 	 */
537 	for (i = 0; i < sc->sc_keymax; i++)
538 		ath_hal_keyreset(ah, i);
539 
540 	/*
541 	 * Collect the default channel list.
542 	 */
543 	error = ath_getchannels(sc);
544 	if (error != 0)
545 		goto bad;
546 
547 	/*
548 	 * Setup rate tables for all potential media types.
549 	 */
550 	ath_rate_setup(sc, IEEE80211_MODE_11A);
551 	ath_rate_setup(sc, IEEE80211_MODE_11B);
552 	ath_rate_setup(sc, IEEE80211_MODE_11G);
553 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
554 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
555 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
556 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
557 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
558 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
559 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
560 
561 	/* NB: setup here so ath_rate_update is happy */
562 	ath_setcurmode(sc, IEEE80211_MODE_11A);
563 
564 	/*
565 	 * Allocate TX descriptors and populate the lists.
566 	 */
567 	error = ath_desc_alloc(sc);
568 	if (error != 0) {
569 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
570 		    error);
571 		goto bad;
572 	}
573 	error = ath_txdma_setup(sc);
574 	if (error != 0) {
575 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
576 		    error);
577 		goto bad;
578 	}
579 
580 	/*
581 	 * Allocate RX descriptors and populate the lists.
582 	 */
583 	error = ath_rxdma_setup(sc);
584 	if (error != 0) {
585 		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
586 		    error);
587 		goto bad;
588 	}
589 
590 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
591 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
592 
593 	ATH_TXBUF_LOCK_INIT(sc);
594 
595 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
596 		taskqueue_thread_enqueue, &sc->sc_tq);
597 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
598 		"%s taskq", ifp->if_xname);
599 
600 	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
601 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
602 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
603 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
604 	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
605 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
606 
607 	/*
608 	 * Allocate hardware transmit queues: one queue for
609 	 * beacon frames and one data queue for each QoS
610 	 * priority.  Note that the hal handles resetting
611 	 * these queues at the needed time.
612 	 *
613 	 * XXX PS-Poll
614 	 */
615 	sc->sc_bhalq = ath_beaconq_setup(sc);
616 	if (sc->sc_bhalq == (u_int) -1) {
617 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
618 		error = EIO;
619 		goto bad2;
620 	}
621 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
622 	if (sc->sc_cabq == NULL) {
623 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
624 		error = EIO;
625 		goto bad2;
626 	}
627 	/* NB: insure BK queue is the lowest priority h/w queue */
628 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
629 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
630 			ieee80211_wme_acnames[WME_AC_BK]);
631 		error = EIO;
632 		goto bad2;
633 	}
634 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
635 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
636 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
637 		/*
638 		 * Not enough hardware tx queues to properly do WME;
639 		 * just punt and assign them all to the same h/w queue.
640 		 * We could do a better job of this if, for example,
641 		 * we allocate queues when we switch from station to
642 		 * AP mode.
643 		 */
644 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
645 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
646 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
647 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
648 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
649 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
650 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
651 	}
652 
653 	/*
654 	 * Attach the TX completion function.
655 	 *
656 	 * The non-EDMA chips may have some special case optimisations;
657 	 * this method gives everyone a chance to attach cleanly.
658 	 */
659 	sc->sc_tx.xmit_attach_comp_func(sc);
660 
661 	/*
662 	 * Setup rate control.  Some rate control modules
663 	 * call back to change the anntena state so expose
664 	 * the necessary entry points.
665 	 * XXX maybe belongs in struct ath_ratectrl?
666 	 */
667 	sc->sc_setdefantenna = ath_setdefantenna;
668 	sc->sc_rc = ath_rate_attach(sc);
669 	if (sc->sc_rc == NULL) {
670 		error = EIO;
671 		goto bad2;
672 	}
673 
674 	/* Attach DFS module */
675 	if (! ath_dfs_attach(sc)) {
676 		device_printf(sc->sc_dev,
677 		    "%s: unable to attach DFS\n", __func__);
678 		error = EIO;
679 		goto bad2;
680 	}
681 
682 	/* Attach spectral module */
683 	if (ath_spectral_attach(sc) < 0) {
684 		device_printf(sc->sc_dev,
685 		    "%s: unable to attach spectral\n", __func__);
686 		error = EIO;
687 		goto bad2;
688 	}
689 
690 	/* Attach bluetooth coexistence module */
691 	if (ath_btcoex_attach(sc) < 0) {
692 		device_printf(sc->sc_dev,
693 		    "%s: unable to attach bluetooth coexistence\n", __func__);
694 		error = EIO;
695 		goto bad2;
696 	}
697 
698 	/* Attach LNA diversity module */
699 	if (ath_lna_div_attach(sc) < 0) {
700 		device_printf(sc->sc_dev,
701 		    "%s: unable to attach LNA diversity\n", __func__);
702 		error = EIO;
703 		goto bad2;
704 	}
705 
706 	/* Start DFS processing tasklet */
707 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
708 
709 	/* Configure LED state */
710 	sc->sc_blinking = 0;
711 	sc->sc_ledstate = 1;
712 	sc->sc_ledon = 0;			/* low true */
713 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
714 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
715 
716 	/*
717 	 * Don't setup hardware-based blinking.
718 	 *
719 	 * Although some NICs may have this configured in the
720 	 * default reset register values, the user may wish
721 	 * to alter which pins have which function.
722 	 *
723 	 * The reference driver attaches the MAC network LED to GPIO1 and
724 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
725 	 * NIC has these reversed.
726 	 */
727 	sc->sc_hardled = (1 == 0);
728 	sc->sc_led_net_pin = -1;
729 	sc->sc_led_pwr_pin = -1;
730 	/*
731 	 * Auto-enable soft led processing for IBM cards and for
732 	 * 5211 minipci cards.  Users can also manually enable/disable
733 	 * support with a sysctl.
734 	 */
735 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
736 	ath_led_config(sc);
737 	ath_hal_setledstate(ah, HAL_LED_INIT);
738 
739 	ifp->if_softc = sc;
740 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
741 	ifp->if_transmit = ath_transmit;
742 	ifp->if_qflush = ath_qflush;
743 	ifp->if_ioctl = ath_ioctl;
744 	ifp->if_init = ath_init;
745 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
746 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
747 	IFQ_SET_READY(&ifp->if_snd);
748 
749 	ic->ic_ifp = ifp;
750 	/* XXX not right but it's not used anywhere important */
751 	ic->ic_phytype = IEEE80211_T_OFDM;
752 	ic->ic_opmode = IEEE80211_M_STA;
753 	ic->ic_caps =
754 		  IEEE80211_C_STA		/* station mode */
755 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
756 		| IEEE80211_C_HOSTAP		/* hostap mode */
757 		| IEEE80211_C_MONITOR		/* monitor mode */
758 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
759 		| IEEE80211_C_WDS		/* 4-address traffic works */
760 		| IEEE80211_C_MBSS		/* mesh point link mode */
761 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
762 		| IEEE80211_C_SHSLOT		/* short slot time supported */
763 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
764 #ifndef	ATH_ENABLE_11N
765 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
766 #endif
767 		| IEEE80211_C_TXFRAG		/* handle tx frags */
768 #ifdef	ATH_ENABLE_DFS
769 		| IEEE80211_C_DFS		/* Enable radar detection */
770 #endif
771 		| IEEE80211_C_PMGT		/* Station side power mgmt */
772 		| IEEE80211_C_SWSLEEP
773 		;
774 	/*
775 	 * Query the hal to figure out h/w crypto support.
776 	 */
777 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
778 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
779 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
780 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
781 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
782 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
783 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
784 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
785 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
786 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
787 		/*
788 		 * Check if h/w does the MIC and/or whether the
789 		 * separate key cache entries are required to
790 		 * handle both tx+rx MIC keys.
791 		 */
792 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
793 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
794 		/*
795 		 * If the h/w supports storing tx+rx MIC keys
796 		 * in one cache slot automatically enable use.
797 		 */
798 		if (ath_hal_hastkipsplit(ah) ||
799 		    !ath_hal_settkipsplit(ah, AH_FALSE))
800 			sc->sc_splitmic = 1;
801 		/*
802 		 * If the h/w can do TKIP MIC together with WME then
803 		 * we use it; otherwise we force the MIC to be done
804 		 * in software by the net80211 layer.
805 		 */
806 		if (ath_hal_haswmetkipmic(ah))
807 			sc->sc_wmetkipmic = 1;
808 	}
809 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
810 	/*
811 	 * Check for multicast key search support.
812 	 */
813 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
814 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
815 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
816 	}
817 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
818 	/*
819 	 * Mark key cache slots associated with global keys
820 	 * as in use.  If we knew TKIP was not to be used we
821 	 * could leave the +32, +64, and +32+64 slots free.
822 	 */
823 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
824 		setbit(sc->sc_keymap, i);
825 		setbit(sc->sc_keymap, i+64);
826 		if (sc->sc_splitmic) {
827 			setbit(sc->sc_keymap, i+32);
828 			setbit(sc->sc_keymap, i+32+64);
829 		}
830 	}
831 	/*
832 	 * TPC support can be done either with a global cap or
833 	 * per-packet support.  The latter is not available on
834 	 * all parts.  We're a bit pedantic here as all parts
835 	 * support a global cap.
836 	 */
837 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
838 		ic->ic_caps |= IEEE80211_C_TXPMGT;
839 
840 	/*
841 	 * Mark WME capability only if we have sufficient
842 	 * hardware queues to do proper priority scheduling.
843 	 */
844 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
845 		ic->ic_caps |= IEEE80211_C_WME;
846 	/*
847 	 * Check for misc other capabilities.
848 	 */
849 	if (ath_hal_hasbursting(ah))
850 		ic->ic_caps |= IEEE80211_C_BURST;
851 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
852 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
853 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
854 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
855 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
856 	sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
857 	sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
858 	sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
859 
860 	if (ath_hal_hasfastframes(ah))
861 		ic->ic_caps |= IEEE80211_C_FF;
862 	wmodes = ath_hal_getwirelessmodes(ah);
863 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
864 		ic->ic_caps |= IEEE80211_C_TURBOP;
865 #ifdef IEEE80211_SUPPORT_TDMA
866 	if (ath_hal_macversion(ah) > 0x78) {
867 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
868 		ic->ic_tdma_update = ath_tdma_update;
869 	}
870 #endif
871 
872 	/*
873 	 * TODO: enforce that at least this many frames are available
874 	 * in the txbuf list before allowing data frames (raw or
875 	 * otherwise) to be transmitted.
876 	 */
877 	sc->sc_txq_data_minfree = 10;
878 	/*
879 	 * Leave this as default to maintain legacy behaviour.
880 	 * Shortening the cabq/mcastq may end up causing some
881 	 * undesirable behaviour.
882 	 */
883 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
884 
885 	/*
886 	 * How deep can the node software TX queue get whilst it's asleep.
887 	 */
888 	sc->sc_txq_node_psq_maxdepth = 16;
889 
890 	/*
891 	 * Default the maximum queue depth for a given node
892 	 * to 1/4'th the TX buffers, or 64, whichever
893 	 * is larger.
894 	 */
895 	sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4);
896 
897 	/* Enable CABQ by default */
898 	sc->sc_cabq_enable = 1;
899 
900 	/*
901 	 * Allow the TX and RX chainmasks to be overridden by
902 	 * environment variables and/or device.hints.
903 	 *
904 	 * This must be done early - before the hardware is
905 	 * calibrated or before the 802.11n stream calculation
906 	 * is done.
907 	 */
908 	if (resource_int_value(device_get_name(sc->sc_dev),
909 	    device_get_unit(sc->sc_dev), "rx_chainmask",
910 	    &rx_chainmask) == 0) {
911 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
912 		    rx_chainmask);
913 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
914 	}
915 	if (resource_int_value(device_get_name(sc->sc_dev),
916 	    device_get_unit(sc->sc_dev), "tx_chainmask",
917 	    &tx_chainmask) == 0) {
918 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
919 		    tx_chainmask);
920 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
921 	}
922 
923 	/*
924 	 * Query the TX/RX chainmask configuration.
925 	 *
926 	 * This is only relevant for 11n devices.
927 	 */
928 	ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
929 	ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
930 
931 	/*
932 	 * Disable MRR with protected frames by default.
933 	 * Only 802.11n series NICs can handle this.
934 	 */
935 	sc->sc_mrrprot = 0;	/* XXX should be a capability */
936 
937 	/*
938 	 * Query the enterprise mode information the HAL.
939 	 */
940 	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
941 	    &sc->sc_ent_cfg) == HAL_OK)
942 		sc->sc_use_ent = 1;
943 
944 #ifdef	ATH_ENABLE_11N
945 	/*
946 	 * Query HT capabilities
947 	 */
948 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
949 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
950 		uint32_t rxs, txs;
951 
952 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
953 
954 		sc->sc_mrrprot = 1;	/* XXX should be a capability */
955 
956 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
957 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
958 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
959 			    | IEEE80211_HTCAP_MAXAMSDU_3839
960 			    				/* max A-MSDU length */
961 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
962 			;
963 
964 		/*
965 		 * Enable short-GI for HT20 only if the hardware
966 		 * advertises support.
967 		 * Notably, anything earlier than the AR9287 doesn't.
968 		 */
969 		if ((ath_hal_getcapability(ah,
970 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
971 		    (wmodes & HAL_MODE_HT20)) {
972 			device_printf(sc->sc_dev,
973 			    "[HT] enabling short-GI in 20MHz mode\n");
974 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
975 		}
976 
977 		if (wmodes & HAL_MODE_HT40)
978 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
979 			    |  IEEE80211_HTCAP_SHORTGI40;
980 
981 		/*
982 		 * TX/RX streams need to be taken into account when
983 		 * negotiating which MCS rates it'll receive and
984 		 * what MCS rates are available for TX.
985 		 */
986 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
987 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
988 		ic->ic_txstream = txs;
989 		ic->ic_rxstream = rxs;
990 
991 		/*
992 		 * Setup TX and RX STBC based on what the HAL allows and
993 		 * the currently configured chainmask set.
994 		 * Ie - don't enable STBC TX if only one chain is enabled.
995 		 * STBC RX is fine on a single RX chain; it just won't
996 		 * provide any real benefit.
997 		 */
998 		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
999 		    NULL) == HAL_OK) {
1000 			sc->sc_rx_stbc = 1;
1001 			device_printf(sc->sc_dev,
1002 			    "[HT] 1 stream STBC receive enabled\n");
1003 			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
1004 		}
1005 		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
1006 		    NULL) == HAL_OK) {
1007 			sc->sc_tx_stbc = 1;
1008 			device_printf(sc->sc_dev,
1009 			    "[HT] 1 stream STBC transmit enabled\n");
1010 			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
1011 		}
1012 
1013 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
1014 		    &sc->sc_rts_aggr_limit);
1015 		if (sc->sc_rts_aggr_limit != (64 * 1024))
1016 			device_printf(sc->sc_dev,
1017 			    "[HT] RTS aggregates limited to %d KiB\n",
1018 			    sc->sc_rts_aggr_limit / 1024);
1019 
1020 		device_printf(sc->sc_dev,
1021 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
1022 	}
1023 #endif
1024 
1025 	/*
1026 	 * Initial aggregation settings.
1027 	 */
1028 	sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
1029 	sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
1030 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1031 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1032 	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
1033 	sc->sc_delim_min_pad = 0;
1034 
1035 	/*
1036 	 * Check if the hardware requires PCI register serialisation.
1037 	 * Some of the Owl based MACs require this.
1038 	 */
1039 	if (mp_ncpus > 1 &&
1040 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
1041 	     0, NULL) == HAL_OK) {
1042 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
1043 		device_printf(sc->sc_dev,
1044 		    "Enabling register serialisation\n");
1045 	}
1046 
1047 	/*
1048 	 * Initialise the deferred completed RX buffer list.
1049 	 */
1050 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
1051 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
1052 
1053 	/*
1054 	 * Indicate we need the 802.11 header padded to a
1055 	 * 32-bit boundary for 4-address and QoS frames.
1056 	 */
1057 	ic->ic_flags |= IEEE80211_F_DATAPAD;
1058 
1059 	/*
1060 	 * Query the hal about antenna support.
1061 	 */
1062 	sc->sc_defant = ath_hal_getdefantenna(ah);
1063 
1064 	/*
1065 	 * Not all chips have the VEOL support we want to
1066 	 * use with IBSS beacons; check here for it.
1067 	 */
1068 	sc->sc_hasveol = ath_hal_hasveol(ah);
1069 
1070 	/* get mac address from hardware */
1071 	ath_hal_getmac(ah, macaddr);
1072 	if (sc->sc_hasbmask)
1073 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
1074 
1075 	/* NB: used to size node table key mapping array */
1076 	ic->ic_max_keyix = sc->sc_keymax;
1077 	/* call MI attach routine. */
1078 	ieee80211_ifattach(ic, macaddr);
1079 	ic->ic_setregdomain = ath_setregdomain;
1080 	ic->ic_getradiocaps = ath_getradiocaps;
1081 	sc->sc_opmode = HAL_M_STA;
1082 
1083 	/* override default methods */
1084 	ic->ic_newassoc = ath_newassoc;
1085 	ic->ic_updateslot = ath_updateslot;
1086 	ic->ic_wme.wme_update = ath_wme_update;
1087 	ic->ic_vap_create = ath_vap_create;
1088 	ic->ic_vap_delete = ath_vap_delete;
1089 	ic->ic_raw_xmit = ath_raw_xmit;
1090 	ic->ic_update_mcast = ath_update_mcast;
1091 	ic->ic_update_promisc = ath_update_promisc;
1092 	ic->ic_node_alloc = ath_node_alloc;
1093 	sc->sc_node_free = ic->ic_node_free;
1094 	ic->ic_node_free = ath_node_free;
1095 	sc->sc_node_cleanup = ic->ic_node_cleanup;
1096 	ic->ic_node_cleanup = ath_node_cleanup;
1097 	ic->ic_node_getsignal = ath_node_getsignal;
1098 	ic->ic_scan_start = ath_scan_start;
1099 	ic->ic_scan_end = ath_scan_end;
1100 	ic->ic_set_channel = ath_set_channel;
1101 #ifdef	ATH_ENABLE_11N
1102 	/* 802.11n specific - but just override anyway */
1103 	sc->sc_addba_request = ic->ic_addba_request;
1104 	sc->sc_addba_response = ic->ic_addba_response;
1105 	sc->sc_addba_stop = ic->ic_addba_stop;
1106 	sc->sc_bar_response = ic->ic_bar_response;
1107 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
1108 
1109 	ic->ic_addba_request = ath_addba_request;
1110 	ic->ic_addba_response = ath_addba_response;
1111 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
1112 	ic->ic_addba_stop = ath_addba_stop;
1113 	ic->ic_bar_response = ath_bar_response;
1114 
1115 	ic->ic_update_chw = ath_update_chw;
1116 #endif	/* ATH_ENABLE_11N */
1117 
1118 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
1119 	/*
1120 	 * There's one vendor bitmap entry in the RX radiotap
1121 	 * header; make sure that's taken into account.
1122 	 */
1123 	ieee80211_radiotap_attachv(ic,
1124 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
1125 		ATH_TX_RADIOTAP_PRESENT,
1126 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
1127 		ATH_RX_RADIOTAP_PRESENT);
1128 #else
1129 	/*
1130 	 * No vendor bitmap/extensions are present.
1131 	 */
1132 	ieee80211_radiotap_attach(ic,
1133 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
1134 		ATH_TX_RADIOTAP_PRESENT,
1135 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
1136 		ATH_RX_RADIOTAP_PRESENT);
1137 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
1138 
1139 	/*
1140 	 * Setup the ALQ logging if required
1141 	 */
1142 #ifdef	ATH_DEBUG_ALQ
1143 	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
1144 	if_ath_alq_setcfg(&sc->sc_alq,
1145 	    sc->sc_ah->ah_macVersion,
1146 	    sc->sc_ah->ah_macRev,
1147 	    sc->sc_ah->ah_phyRev,
1148 	    sc->sc_ah->ah_magic);
1149 #endif
1150 
1151 	/*
1152 	 * Setup dynamic sysctl's now that country code and
1153 	 * regdomain are available from the hal.
1154 	 */
1155 	ath_sysctlattach(sc);
1156 	ath_sysctl_stats_attach(sc);
1157 	ath_sysctl_hal_attach(sc);
1158 
1159 	if (bootverbose)
1160 		ieee80211_announce(ic);
1161 	ath_announce(sc);
1162 
1163 	/*
1164 	 * Put it to sleep for now.
1165 	 */
1166 	ATH_LOCK(sc);
1167 	ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
1168 	ATH_UNLOCK(sc);
1169 
1170 	return 0;
1171 bad2:
1172 	ath_tx_cleanup(sc);
1173 	ath_desc_free(sc);
1174 	ath_txdma_teardown(sc);
1175 	ath_rxdma_teardown(sc);
1176 bad:
1177 	if (ah)
1178 		ath_hal_detach(ah);
1179 
1180 	/*
1181 	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
1182 	 */
1183 	if (ifp != NULL && ifp->if_vnet) {
1184 		CURVNET_SET(ifp->if_vnet);
1185 		if_free(ifp);
1186 		CURVNET_RESTORE();
1187 	} else if (ifp != NULL)
1188 		if_free(ifp);
1189 	sc->sc_invalid = 1;
1190 	return error;
1191 }
1192 
1193 int
1194 ath_detach(struct ath_softc *sc)
1195 {
1196 	struct ifnet *ifp = sc->sc_ifp;
1197 
1198 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1199 		__func__, ifp->if_flags);
1200 
1201 	/*
1202 	 * NB: the order of these is important:
1203 	 * o stop the chip so no more interrupts will fire
1204 	 * o call the 802.11 layer before detaching the hal to
1205 	 *   insure callbacks into the driver to delete global
1206 	 *   key cache entries can be handled
1207 	 * o free the taskqueue which drains any pending tasks
1208 	 * o reclaim the tx queue data structures after calling
1209 	 *   the 802.11 layer as we'll get called back to reclaim
1210 	 *   node state and potentially want to use them
1211 	 * o to cleanup the tx queues the hal is called, so detach
1212 	 *   it last
1213 	 * Other than that, it's straightforward...
1214 	 */
1215 
1216 	/*
1217 	 * XXX Wake the hardware up first.  ath_stop() will still
1218 	 * wake it up first, but I'd rather do it here just to
1219 	 * ensure it's awake.
1220 	 */
1221 	ATH_LOCK(sc);
1222 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1223 	ath_power_setpower(sc, HAL_PM_AWAKE);
1224 	ATH_UNLOCK(sc);
1225 
1226 	/*
1227 	 * Stop things cleanly.
1228 	 */
1229 	ath_stop(ifp);
1230 
1231 	ieee80211_ifdetach(ifp->if_l2com);
1232 	taskqueue_free(sc->sc_tq);
1233 #ifdef ATH_TX99_DIAG
1234 	if (sc->sc_tx99 != NULL)
1235 		sc->sc_tx99->detach(sc->sc_tx99);
1236 #endif
1237 	ath_rate_detach(sc->sc_rc);
1238 #ifdef	ATH_DEBUG_ALQ
1239 	if_ath_alq_tidyup(&sc->sc_alq);
1240 #endif
1241 	ath_lna_div_detach(sc);
1242 	ath_btcoex_detach(sc);
1243 	ath_spectral_detach(sc);
1244 	ath_dfs_detach(sc);
1245 	ath_desc_free(sc);
1246 	ath_txdma_teardown(sc);
1247 	ath_rxdma_teardown(sc);
1248 	ath_tx_cleanup(sc);
1249 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1250 
1251 	CURVNET_SET(ifp->if_vnet);
1252 	if_free(ifp);
1253 	CURVNET_RESTORE();
1254 
1255 	return 0;
1256 }
1257 
1258 /*
1259  * MAC address handling for multiple BSS on the same radio.
1260  * The first vap uses the MAC address from the EEPROM.  For
1261  * subsequent vap's we set the U/L bit (bit 1) in the MAC
1262  * address and use the next six bits as an index.
1263  */
1264 static void
1265 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1266 {
1267 	int i;
1268 
1269 	if (clone && sc->sc_hasbmask) {
1270 		/* NB: we only do this if h/w supports multiple bssid */
1271 		for (i = 0; i < 8; i++)
1272 			if ((sc->sc_bssidmask & (1<<i)) == 0)
1273 				break;
1274 		if (i != 0)
1275 			mac[0] |= (i << 2)|0x2;
1276 	} else
1277 		i = 0;
1278 	sc->sc_bssidmask |= 1<<i;
1279 	sc->sc_hwbssidmask[0] &= ~mac[0];
1280 	if (i == 0)
1281 		sc->sc_nbssid0++;
1282 }
1283 
1284 static void
1285 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1286 {
1287 	int i = mac[0] >> 2;
1288 	uint8_t mask;
1289 
1290 	if (i != 0 || --sc->sc_nbssid0 == 0) {
1291 		sc->sc_bssidmask &= ~(1<<i);
1292 		/* recalculate bssid mask from remaining addresses */
1293 		mask = 0xff;
1294 		for (i = 1; i < 8; i++)
1295 			if (sc->sc_bssidmask & (1<<i))
1296 				mask &= ~((i<<2)|0x2);
1297 		sc->sc_hwbssidmask[0] |= mask;
1298 	}
1299 }
1300 
1301 /*
1302  * Assign a beacon xmit slot.  We try to space out
1303  * assignments so when beacons are staggered the
1304  * traffic coming out of the cab q has maximal time
1305  * to go out before the next beacon is scheduled.
1306  */
1307 static int
1308 assign_bslot(struct ath_softc *sc)
1309 {
1310 	u_int slot, free;
1311 
1312 	free = 0;
1313 	for (slot = 0; slot < ATH_BCBUF; slot++)
1314 		if (sc->sc_bslot[slot] == NULL) {
1315 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1316 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1317 				return slot;
1318 			free = slot;
1319 			/* NB: keep looking for a double slot */
1320 		}
1321 	return free;
1322 }
1323 
1324 static struct ieee80211vap *
1325 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1326     enum ieee80211_opmode opmode, int flags,
1327     const uint8_t bssid[IEEE80211_ADDR_LEN],
1328     const uint8_t mac0[IEEE80211_ADDR_LEN])
1329 {
1330 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1331 	struct ath_vap *avp;
1332 	struct ieee80211vap *vap;
1333 	uint8_t mac[IEEE80211_ADDR_LEN];
1334 	int needbeacon, error;
1335 	enum ieee80211_opmode ic_opmode;
1336 
1337 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1338 	    M_80211_VAP, M_WAITOK | M_ZERO);
1339 	needbeacon = 0;
1340 	IEEE80211_ADDR_COPY(mac, mac0);
1341 
1342 	ATH_LOCK(sc);
1343 	ic_opmode = opmode;		/* default to opmode of new vap */
1344 	switch (opmode) {
1345 	case IEEE80211_M_STA:
1346 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1347 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1348 			goto bad;
1349 		}
1350 		if (sc->sc_nvaps) {
1351 			/*
1352 			 * With multiple vaps we must fall back
1353 			 * to s/w beacon miss handling.
1354 			 */
1355 			flags |= IEEE80211_CLONE_NOBEACONS;
1356 		}
1357 		if (flags & IEEE80211_CLONE_NOBEACONS) {
1358 			/*
1359 			 * Station mode w/o beacons are implemented w/ AP mode.
1360 			 */
1361 			ic_opmode = IEEE80211_M_HOSTAP;
1362 		}
1363 		break;
1364 	case IEEE80211_M_IBSS:
1365 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1366 			device_printf(sc->sc_dev,
1367 			    "only 1 ibss vap supported\n");
1368 			goto bad;
1369 		}
1370 		needbeacon = 1;
1371 		break;
1372 	case IEEE80211_M_AHDEMO:
1373 #ifdef IEEE80211_SUPPORT_TDMA
1374 		if (flags & IEEE80211_CLONE_TDMA) {
1375 			if (sc->sc_nvaps != 0) {
1376 				device_printf(sc->sc_dev,
1377 				    "only 1 tdma vap supported\n");
1378 				goto bad;
1379 			}
1380 			needbeacon = 1;
1381 			flags |= IEEE80211_CLONE_NOBEACONS;
1382 		}
1383 		/* fall thru... */
1384 #endif
1385 	case IEEE80211_M_MONITOR:
1386 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1387 			/*
1388 			 * Adopt existing mode.  Adding a monitor or ahdemo
1389 			 * vap to an existing configuration is of dubious
1390 			 * value but should be ok.
1391 			 */
1392 			/* XXX not right for monitor mode */
1393 			ic_opmode = ic->ic_opmode;
1394 		}
1395 		break;
1396 	case IEEE80211_M_HOSTAP:
1397 	case IEEE80211_M_MBSS:
1398 		needbeacon = 1;
1399 		break;
1400 	case IEEE80211_M_WDS:
1401 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1402 			device_printf(sc->sc_dev,
1403 			    "wds not supported in sta mode\n");
1404 			goto bad;
1405 		}
1406 		/*
1407 		 * Silently remove any request for a unique
1408 		 * bssid; WDS vap's always share the local
1409 		 * mac address.
1410 		 */
1411 		flags &= ~IEEE80211_CLONE_BSSID;
1412 		if (sc->sc_nvaps == 0)
1413 			ic_opmode = IEEE80211_M_HOSTAP;
1414 		else
1415 			ic_opmode = ic->ic_opmode;
1416 		break;
1417 	default:
1418 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1419 		goto bad;
1420 	}
1421 	/*
1422 	 * Check that a beacon buffer is available; the code below assumes it.
1423 	 */
1424 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1425 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1426 		goto bad;
1427 	}
1428 
1429 	/* STA, AHDEMO? */
1430 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1431 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1432 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1433 	}
1434 
1435 	vap = &avp->av_vap;
1436 	/* XXX can't hold mutex across if_alloc */
1437 	ATH_UNLOCK(sc);
1438 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1439 	    bssid, mac);
1440 	ATH_LOCK(sc);
1441 	if (error != 0) {
1442 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1443 		    __func__, error);
1444 		goto bad2;
1445 	}
1446 
1447 	/* h/w crypto support */
1448 	vap->iv_key_alloc = ath_key_alloc;
1449 	vap->iv_key_delete = ath_key_delete;
1450 	vap->iv_key_set = ath_key_set;
1451 	vap->iv_key_update_begin = ath_key_update_begin;
1452 	vap->iv_key_update_end = ath_key_update_end;
1453 
1454 	/* override various methods */
1455 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1456 	vap->iv_recv_mgmt = ath_recv_mgmt;
1457 	vap->iv_reset = ath_reset_vap;
1458 	vap->iv_update_beacon = ath_beacon_update;
1459 	avp->av_newstate = vap->iv_newstate;
1460 	vap->iv_newstate = ath_newstate;
1461 	avp->av_bmiss = vap->iv_bmiss;
1462 	vap->iv_bmiss = ath_bmiss_vap;
1463 
1464 	avp->av_node_ps = vap->iv_node_ps;
1465 	vap->iv_node_ps = ath_node_powersave;
1466 
1467 	avp->av_set_tim = vap->iv_set_tim;
1468 	vap->iv_set_tim = ath_node_set_tim;
1469 
1470 	avp->av_recv_pspoll = vap->iv_recv_pspoll;
1471 	vap->iv_recv_pspoll = ath_node_recv_pspoll;
1472 
1473 	/* Set default parameters */
1474 
1475 	/*
1476 	 * Anything earlier than some AR9300 series MACs don't
1477 	 * support a smaller MPDU density.
1478 	 */
1479 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1480 	/*
1481 	 * All NICs can handle the maximum size, however
1482 	 * AR5416 based MACs can only TX aggregates w/ RTS
1483 	 * protection when the total aggregate size is <= 8k.
1484 	 * However, for now that's enforced by the TX path.
1485 	 */
1486 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1487 
1488 	avp->av_bslot = -1;
1489 	if (needbeacon) {
1490 		/*
1491 		 * Allocate beacon state and setup the q for buffered
1492 		 * multicast frames.  We know a beacon buffer is
1493 		 * available because we checked above.
1494 		 */
1495 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1496 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1497 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1498 			/*
1499 			 * Assign the vap to a beacon xmit slot.  As above
1500 			 * this cannot fail to find a free one.
1501 			 */
1502 			avp->av_bslot = assign_bslot(sc);
1503 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1504 			    ("beacon slot %u not empty", avp->av_bslot));
1505 			sc->sc_bslot[avp->av_bslot] = vap;
1506 			sc->sc_nbcnvaps++;
1507 		}
1508 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1509 			/*
1510 			 * Multple vaps are to transmit beacons and we
1511 			 * have h/w support for TSF adjusting; enable
1512 			 * use of staggered beacons.
1513 			 */
1514 			sc->sc_stagbeacons = 1;
1515 		}
1516 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1517 	}
1518 
1519 	ic->ic_opmode = ic_opmode;
1520 	if (opmode != IEEE80211_M_WDS) {
1521 		sc->sc_nvaps++;
1522 		if (opmode == IEEE80211_M_STA)
1523 			sc->sc_nstavaps++;
1524 		if (opmode == IEEE80211_M_MBSS)
1525 			sc->sc_nmeshvaps++;
1526 	}
1527 	switch (ic_opmode) {
1528 	case IEEE80211_M_IBSS:
1529 		sc->sc_opmode = HAL_M_IBSS;
1530 		break;
1531 	case IEEE80211_M_STA:
1532 		sc->sc_opmode = HAL_M_STA;
1533 		break;
1534 	case IEEE80211_M_AHDEMO:
1535 #ifdef IEEE80211_SUPPORT_TDMA
1536 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1537 			sc->sc_tdma = 1;
1538 			/* NB: disable tsf adjust */
1539 			sc->sc_stagbeacons = 0;
1540 		}
1541 		/*
1542 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1543 		 * just ap mode.
1544 		 */
1545 		/* fall thru... */
1546 #endif
1547 	case IEEE80211_M_HOSTAP:
1548 	case IEEE80211_M_MBSS:
1549 		sc->sc_opmode = HAL_M_HOSTAP;
1550 		break;
1551 	case IEEE80211_M_MONITOR:
1552 		sc->sc_opmode = HAL_M_MONITOR;
1553 		break;
1554 	default:
1555 		/* XXX should not happen */
1556 		break;
1557 	}
1558 	if (sc->sc_hastsfadd) {
1559 		/*
1560 		 * Configure whether or not TSF adjust should be done.
1561 		 */
1562 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1563 	}
1564 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1565 		/*
1566 		 * Enable s/w beacon miss handling.
1567 		 */
1568 		sc->sc_swbmiss = 1;
1569 	}
1570 	ATH_UNLOCK(sc);
1571 
1572 	/* complete setup */
1573 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1574 	return vap;
1575 bad2:
1576 	reclaim_address(sc, mac);
1577 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1578 bad:
1579 	free(avp, M_80211_VAP);
1580 	ATH_UNLOCK(sc);
1581 	return NULL;
1582 }
1583 
1584 static void
1585 ath_vap_delete(struct ieee80211vap *vap)
1586 {
1587 	struct ieee80211com *ic = vap->iv_ic;
1588 	struct ifnet *ifp = ic->ic_ifp;
1589 	struct ath_softc *sc = ifp->if_softc;
1590 	struct ath_hal *ah = sc->sc_ah;
1591 	struct ath_vap *avp = ATH_VAP(vap);
1592 
1593 	ATH_LOCK(sc);
1594 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1595 	ATH_UNLOCK(sc);
1596 
1597 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1598 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1599 		/*
1600 		 * Quiesce the hardware while we remove the vap.  In
1601 		 * particular we need to reclaim all references to
1602 		 * the vap state by any frames pending on the tx queues.
1603 		 */
1604 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1605 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1606 		/* XXX Do all frames from all vaps/nodes need draining here? */
1607 		ath_stoprecv(sc, 1);		/* stop recv side */
1608 	}
1609 
1610 	/* .. leave the hardware awake for now. */
1611 
1612 	ieee80211_vap_detach(vap);
1613 
1614 	/*
1615 	 * XXX Danger Will Robinson! Danger!
1616 	 *
1617 	 * Because ieee80211_vap_detach() can queue a frame (the station
1618 	 * diassociate message?) after we've drained the TXQ and
1619 	 * flushed the software TXQ, we will end up with a frame queued
1620 	 * to a node whose vap is about to be freed.
1621 	 *
1622 	 * To work around this, flush the hardware/software again.
1623 	 * This may be racy - the ath task may be running and the packet
1624 	 * may be being scheduled between sw->hw txq. Tsk.
1625 	 *
1626 	 * TODO: figure out why a new node gets allocated somewhere around
1627 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1628 	 * call!)
1629 	 */
1630 
1631 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1632 
1633 	ATH_LOCK(sc);
1634 	/*
1635 	 * Reclaim beacon state.  Note this must be done before
1636 	 * the vap instance is reclaimed as we may have a reference
1637 	 * to it in the buffer for the beacon frame.
1638 	 */
1639 	if (avp->av_bcbuf != NULL) {
1640 		if (avp->av_bslot != -1) {
1641 			sc->sc_bslot[avp->av_bslot] = NULL;
1642 			sc->sc_nbcnvaps--;
1643 		}
1644 		ath_beacon_return(sc, avp->av_bcbuf);
1645 		avp->av_bcbuf = NULL;
1646 		if (sc->sc_nbcnvaps == 0) {
1647 			sc->sc_stagbeacons = 0;
1648 			if (sc->sc_hastsfadd)
1649 				ath_hal_settsfadjust(sc->sc_ah, 0);
1650 		}
1651 		/*
1652 		 * Reclaim any pending mcast frames for the vap.
1653 		 */
1654 		ath_tx_draintxq(sc, &avp->av_mcastq);
1655 	}
1656 	/*
1657 	 * Update bookkeeping.
1658 	 */
1659 	if (vap->iv_opmode == IEEE80211_M_STA) {
1660 		sc->sc_nstavaps--;
1661 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1662 			sc->sc_swbmiss = 0;
1663 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1664 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1665 		reclaim_address(sc, vap->iv_myaddr);
1666 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1667 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1668 			sc->sc_nmeshvaps--;
1669 	}
1670 	if (vap->iv_opmode != IEEE80211_M_WDS)
1671 		sc->sc_nvaps--;
1672 #ifdef IEEE80211_SUPPORT_TDMA
1673 	/* TDMA operation ceases when the last vap is destroyed */
1674 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1675 		sc->sc_tdma = 0;
1676 		sc->sc_swbmiss = 0;
1677 	}
1678 #endif
1679 	free(avp, M_80211_VAP);
1680 
1681 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1682 		/*
1683 		 * Restart rx+tx machines if still running (RUNNING will
1684 		 * be reset if we just destroyed the last vap).
1685 		 */
1686 		if (ath_startrecv(sc) != 0)
1687 			if_printf(ifp, "%s: unable to restart recv logic\n",
1688 			    __func__);
1689 		if (sc->sc_beacons) {		/* restart beacons */
1690 #ifdef IEEE80211_SUPPORT_TDMA
1691 			if (sc->sc_tdma)
1692 				ath_tdma_config(sc, NULL);
1693 			else
1694 #endif
1695 				ath_beacon_config(sc, NULL);
1696 		}
1697 		ath_hal_intrset(ah, sc->sc_imask);
1698 	}
1699 
1700 	/* Ok, let the hardware asleep. */
1701 	ath_power_restore_power_state(sc);
1702 	ATH_UNLOCK(sc);
1703 }
1704 
1705 void
1706 ath_suspend(struct ath_softc *sc)
1707 {
1708 	struct ifnet *ifp = sc->sc_ifp;
1709 	struct ieee80211com *ic = ifp->if_l2com;
1710 
1711 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1712 		__func__, ifp->if_flags);
1713 
1714 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1715 
1716 	ieee80211_suspend_all(ic);
1717 	/*
1718 	 * NB: don't worry about putting the chip in low power
1719 	 * mode; pci will power off our socket on suspend and
1720 	 * CardBus detaches the device.
1721 	 */
1722 
1723 	/*
1724 	 * XXX ensure none of the taskqueues are running
1725 	 * XXX ensure sc_invalid is 1
1726 	 * XXX ensure the calibration callout is disabled
1727 	 */
1728 
1729 	/* Disable the PCIe PHY, complete with workarounds */
1730 	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1731 }
1732 
1733 /*
1734  * Reset the key cache since some parts do not reset the
1735  * contents on resume.  First we clear all entries, then
1736  * re-load keys that the 802.11 layer assumes are setup
1737  * in h/w.
1738  */
1739 static void
1740 ath_reset_keycache(struct ath_softc *sc)
1741 {
1742 	struct ifnet *ifp = sc->sc_ifp;
1743 	struct ieee80211com *ic = ifp->if_l2com;
1744 	struct ath_hal *ah = sc->sc_ah;
1745 	int i;
1746 
1747 	ATH_LOCK(sc);
1748 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1749 	for (i = 0; i < sc->sc_keymax; i++)
1750 		ath_hal_keyreset(ah, i);
1751 	ath_power_restore_power_state(sc);
1752 	ATH_UNLOCK(sc);
1753 	ieee80211_crypto_reload_keys(ic);
1754 }
1755 
1756 /*
1757  * Fetch the current chainmask configuration based on the current
1758  * operating channel and options.
1759  */
1760 static void
1761 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1762 {
1763 
1764 	/*
1765 	 * Set TX chainmask to the currently configured chainmask;
1766 	 * the TX chainmask depends upon the current operating mode.
1767 	 */
1768 	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1769 	if (IEEE80211_IS_CHAN_HT(chan)) {
1770 		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1771 	} else {
1772 		sc->sc_cur_txchainmask = 1;
1773 	}
1774 
1775 	DPRINTF(sc, ATH_DEBUG_RESET,
1776 	    "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1777 	    __func__,
1778 	    sc->sc_cur_txchainmask,
1779 	    sc->sc_cur_rxchainmask);
1780 }
1781 
1782 void
1783 ath_resume(struct ath_softc *sc)
1784 {
1785 	struct ifnet *ifp = sc->sc_ifp;
1786 	struct ieee80211com *ic = ifp->if_l2com;
1787 	struct ath_hal *ah = sc->sc_ah;
1788 	HAL_STATUS status;
1789 
1790 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1791 		__func__, ifp->if_flags);
1792 
1793 	/* Re-enable PCIe, re-enable the PCIe bus */
1794 	ath_hal_enablepcie(ah, 0, 0);
1795 
1796 	/*
1797 	 * Must reset the chip before we reload the
1798 	 * keycache as we were powered down on suspend.
1799 	 */
1800 	ath_update_chainmasks(sc,
1801 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1802 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1803 	    sc->sc_cur_rxchainmask);
1804 
1805 	/* Ensure we set the current power state to on */
1806 	ATH_LOCK(sc);
1807 	ath_power_setselfgen(sc, HAL_PM_AWAKE);
1808 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1809 	ath_power_setpower(sc, HAL_PM_AWAKE);
1810 	ATH_UNLOCK(sc);
1811 
1812 	ath_hal_reset(ah, sc->sc_opmode,
1813 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1814 	    AH_FALSE, &status);
1815 	ath_reset_keycache(sc);
1816 
1817 	/* Let DFS at it in case it's a DFS channel */
1818 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1819 
1820 	/* Let spectral at in case spectral is enabled */
1821 	ath_spectral_enable(sc, ic->ic_curchan);
1822 
1823 	/*
1824 	 * Let bluetooth coexistence at in case it's needed for this channel
1825 	 */
1826 	ath_btcoex_enable(sc, ic->ic_curchan);
1827 
1828 	/*
1829 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
1830 	 * support it.
1831 	 */
1832 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
1833 		ath_hal_setenforcetxop(sc->sc_ah, 1);
1834 	else
1835 		ath_hal_setenforcetxop(sc->sc_ah, 0);
1836 
1837 	/* Restore the LED configuration */
1838 	ath_led_config(sc);
1839 	ath_hal_setledstate(ah, HAL_LED_INIT);
1840 
1841 	if (sc->sc_resume_up)
1842 		ieee80211_resume_all(ic);
1843 
1844 	ATH_LOCK(sc);
1845 	ath_power_restore_power_state(sc);
1846 	ATH_UNLOCK(sc);
1847 
1848 	/* XXX beacons ? */
1849 }
1850 
1851 void
1852 ath_shutdown(struct ath_softc *sc)
1853 {
1854 	struct ifnet *ifp = sc->sc_ifp;
1855 
1856 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1857 		__func__, ifp->if_flags);
1858 
1859 	ath_stop(ifp);
1860 	/* NB: no point powering down chip as we're about to reboot */
1861 }
1862 
1863 /*
1864  * Interrupt handler.  Most of the actual processing is deferred.
1865  */
1866 void
1867 ath_intr(void *arg)
1868 {
1869 	struct ath_softc *sc = arg;
1870 	struct ifnet *ifp = sc->sc_ifp;
1871 	struct ath_hal *ah = sc->sc_ah;
1872 	HAL_INT status = 0;
1873 	uint32_t txqs;
1874 
1875 	/*
1876 	 * If we're inside a reset path, just print a warning and
1877 	 * clear the ISR. The reset routine will finish it for us.
1878 	 */
1879 	ATH_PCU_LOCK(sc);
1880 	if (sc->sc_inreset_cnt) {
1881 		HAL_INT status;
1882 		ath_hal_getisr(ah, &status);	/* clear ISR */
1883 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1884 		DPRINTF(sc, ATH_DEBUG_ANY,
1885 		    "%s: in reset, ignoring: status=0x%x\n",
1886 		    __func__, status);
1887 		ATH_PCU_UNLOCK(sc);
1888 		return;
1889 	}
1890 
1891 	if (sc->sc_invalid) {
1892 		/*
1893 		 * The hardware is not ready/present, don't touch anything.
1894 		 * Note this can happen early on if the IRQ is shared.
1895 		 */
1896 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1897 		ATH_PCU_UNLOCK(sc);
1898 		return;
1899 	}
1900 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1901 		ATH_PCU_UNLOCK(sc);
1902 		return;
1903 	}
1904 
1905 	ATH_LOCK(sc);
1906 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1907 	ATH_UNLOCK(sc);
1908 
1909 	if ((ifp->if_flags & IFF_UP) == 0 ||
1910 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1911 		HAL_INT status;
1912 
1913 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1914 			__func__, ifp->if_flags);
1915 		ath_hal_getisr(ah, &status);	/* clear ISR */
1916 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1917 		ATH_PCU_UNLOCK(sc);
1918 
1919 		ATH_LOCK(sc);
1920 		ath_power_restore_power_state(sc);
1921 		ATH_UNLOCK(sc);
1922 		return;
1923 	}
1924 
1925 	/*
1926 	 * Figure out the reason(s) for the interrupt.  Note
1927 	 * that the hal returns a pseudo-ISR that may include
1928 	 * bits we haven't explicitly enabled so we mask the
1929 	 * value to insure we only process bits we requested.
1930 	 */
1931 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1932 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1933 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
1934 #ifdef	ATH_DEBUG_ALQ
1935 	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
1936 	    ah->ah_syncstate);
1937 #endif	/* ATH_DEBUG_ALQ */
1938 #ifdef	ATH_KTR_INTR_DEBUG
1939 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
1940 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1941 	    ah->ah_intrstate[0],
1942 	    ah->ah_intrstate[1],
1943 	    ah->ah_intrstate[2],
1944 	    ah->ah_intrstate[3],
1945 	    ah->ah_intrstate[6]);
1946 #endif
1947 
1948 	/* Squirrel away SYNC interrupt debugging */
1949 	if (ah->ah_syncstate != 0) {
1950 		int i;
1951 		for (i = 0; i < 32; i++)
1952 			if (ah->ah_syncstate & (i << i))
1953 				sc->sc_intr_stats.sync_intr[i]++;
1954 	}
1955 
1956 	status &= sc->sc_imask;			/* discard unasked for bits */
1957 
1958 	/* Short-circuit un-handled interrupts */
1959 	if (status == 0x0) {
1960 		ATH_PCU_UNLOCK(sc);
1961 
1962 		ATH_LOCK(sc);
1963 		ath_power_restore_power_state(sc);
1964 		ATH_UNLOCK(sc);
1965 
1966 		return;
1967 	}
1968 
1969 	/*
1970 	 * Take a note that we're inside the interrupt handler, so
1971 	 * the reset routines know to wait.
1972 	 */
1973 	sc->sc_intr_cnt++;
1974 	ATH_PCU_UNLOCK(sc);
1975 
1976 	/*
1977 	 * Handle the interrupt. We won't run concurrent with the reset
1978 	 * or channel change routines as they'll wait for sc_intr_cnt
1979 	 * to be 0 before continuing.
1980 	 */
1981 	if (status & HAL_INT_FATAL) {
1982 		sc->sc_stats.ast_hardware++;
1983 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1984 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1985 	} else {
1986 		if (status & HAL_INT_SWBA) {
1987 			/*
1988 			 * Software beacon alert--time to send a beacon.
1989 			 * Handle beacon transmission directly; deferring
1990 			 * this is too slow to meet timing constraints
1991 			 * under load.
1992 			 */
1993 #ifdef IEEE80211_SUPPORT_TDMA
1994 			if (sc->sc_tdma) {
1995 				if (sc->sc_tdmaswba == 0) {
1996 					struct ieee80211com *ic = ifp->if_l2com;
1997 					struct ieee80211vap *vap =
1998 					    TAILQ_FIRST(&ic->ic_vaps);
1999 					ath_tdma_beacon_send(sc, vap);
2000 					sc->sc_tdmaswba =
2001 					    vap->iv_tdma->tdma_bintval;
2002 				} else
2003 					sc->sc_tdmaswba--;
2004 			} else
2005 #endif
2006 			{
2007 				ath_beacon_proc(sc, 0);
2008 #ifdef IEEE80211_SUPPORT_SUPERG
2009 				/*
2010 				 * Schedule the rx taskq in case there's no
2011 				 * traffic so any frames held on the staging
2012 				 * queue are aged and potentially flushed.
2013 				 */
2014 				sc->sc_rx.recv_sched(sc, 1);
2015 #endif
2016 			}
2017 		}
2018 		if (status & HAL_INT_RXEOL) {
2019 			int imask;
2020 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
2021 			ATH_PCU_LOCK(sc);
2022 			/*
2023 			 * NB: the hardware should re-read the link when
2024 			 *     RXE bit is written, but it doesn't work at
2025 			 *     least on older hardware revs.
2026 			 */
2027 			sc->sc_stats.ast_rxeol++;
2028 			/*
2029 			 * Disable RXEOL/RXORN - prevent an interrupt
2030 			 * storm until the PCU logic can be reset.
2031 			 * In case the interface is reset some other
2032 			 * way before "sc_kickpcu" is called, don't
2033 			 * modify sc_imask - that way if it is reset
2034 			 * by a call to ath_reset() somehow, the
2035 			 * interrupt mask will be correctly reprogrammed.
2036 			 */
2037 			imask = sc->sc_imask;
2038 			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
2039 			ath_hal_intrset(ah, imask);
2040 			/*
2041 			 * Only blank sc_rxlink if we've not yet kicked
2042 			 * the PCU.
2043 			 *
2044 			 * This isn't entirely correct - the correct solution
2045 			 * would be to have a PCU lock and engage that for
2046 			 * the duration of the PCU fiddling; which would include
2047 			 * running the RX process. Otherwise we could end up
2048 			 * messing up the RX descriptor chain and making the
2049 			 * RX desc list much shorter.
2050 			 */
2051 			if (! sc->sc_kickpcu)
2052 				sc->sc_rxlink = NULL;
2053 			sc->sc_kickpcu = 1;
2054 			ATH_PCU_UNLOCK(sc);
2055 			/*
2056 			 * Enqueue an RX proc, to handled whatever
2057 			 * is in the RX queue.
2058 			 * This will then kick the PCU.
2059 			 */
2060 			sc->sc_rx.recv_sched(sc, 1);
2061 		}
2062 		if (status & HAL_INT_TXURN) {
2063 			sc->sc_stats.ast_txurn++;
2064 			/* bump tx trigger level */
2065 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
2066 		}
2067 		/*
2068 		 * Handle both the legacy and RX EDMA interrupt bits.
2069 		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
2070 		 */
2071 		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
2072 			sc->sc_stats.ast_rx_intr++;
2073 			sc->sc_rx.recv_sched(sc, 1);
2074 		}
2075 		if (status & HAL_INT_TX) {
2076 			sc->sc_stats.ast_tx_intr++;
2077 			/*
2078 			 * Grab all the currently set bits in the HAL txq bitmap
2079 			 * and blank them. This is the only place we should be
2080 			 * doing this.
2081 			 */
2082 			if (! sc->sc_isedma) {
2083 				ATH_PCU_LOCK(sc);
2084 				txqs = 0xffffffff;
2085 				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
2086 				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
2087 				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
2088 				    txqs,
2089 				    sc->sc_txq_active,
2090 				    sc->sc_txq_active | txqs);
2091 				sc->sc_txq_active |= txqs;
2092 				ATH_PCU_UNLOCK(sc);
2093 			}
2094 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
2095 		}
2096 		if (status & HAL_INT_BMISS) {
2097 			sc->sc_stats.ast_bmiss++;
2098 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
2099 		}
2100 		if (status & HAL_INT_GTT)
2101 			sc->sc_stats.ast_tx_timeout++;
2102 		if (status & HAL_INT_CST)
2103 			sc->sc_stats.ast_tx_cst++;
2104 		if (status & HAL_INT_MIB) {
2105 			sc->sc_stats.ast_mib++;
2106 			ATH_PCU_LOCK(sc);
2107 			/*
2108 			 * Disable interrupts until we service the MIB
2109 			 * interrupt; otherwise it will continue to fire.
2110 			 */
2111 			ath_hal_intrset(ah, 0);
2112 			/*
2113 			 * Let the hal handle the event.  We assume it will
2114 			 * clear whatever condition caused the interrupt.
2115 			 */
2116 			ath_hal_mibevent(ah, &sc->sc_halstats);
2117 			/*
2118 			 * Don't reset the interrupt if we've just
2119 			 * kicked the PCU, or we may get a nested
2120 			 * RXEOL before the rxproc has had a chance
2121 			 * to run.
2122 			 */
2123 			if (sc->sc_kickpcu == 0)
2124 				ath_hal_intrset(ah, sc->sc_imask);
2125 			ATH_PCU_UNLOCK(sc);
2126 		}
2127 		if (status & HAL_INT_RXORN) {
2128 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
2129 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
2130 			sc->sc_stats.ast_rxorn++;
2131 		}
2132 		if (status & HAL_INT_TSFOOR) {
2133 			device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__);
2134 			sc->sc_syncbeacon = 1;
2135 		}
2136 	}
2137 	ATH_PCU_LOCK(sc);
2138 	sc->sc_intr_cnt--;
2139 	ATH_PCU_UNLOCK(sc);
2140 
2141 	ATH_LOCK(sc);
2142 	ath_power_restore_power_state(sc);
2143 	ATH_UNLOCK(sc);
2144 }
2145 
2146 static void
2147 ath_fatal_proc(void *arg, int pending)
2148 {
2149 	struct ath_softc *sc = arg;
2150 	struct ifnet *ifp = sc->sc_ifp;
2151 	u_int32_t *state;
2152 	u_int32_t len;
2153 	void *sp;
2154 
2155 	if_printf(ifp, "hardware error; resetting\n");
2156 	/*
2157 	 * Fatal errors are unrecoverable.  Typically these
2158 	 * are caused by DMA errors.  Collect h/w state from
2159 	 * the hal so we can diagnose what's going on.
2160 	 */
2161 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
2162 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
2163 		state = sp;
2164 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
2165 		    state[0], state[1] , state[2], state[3],
2166 		    state[4], state[5]);
2167 	}
2168 	ath_reset(ifp, ATH_RESET_NOLOSS);
2169 }
2170 
2171 static void
2172 ath_bmiss_vap(struct ieee80211vap *vap)
2173 {
2174 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2175 
2176 	/*
2177 	 * Workaround phantom bmiss interrupts by sanity-checking
2178 	 * the time of our last rx'd frame.  If it is within the
2179 	 * beacon miss interval then ignore the interrupt.  If it's
2180 	 * truly a bmiss we'll get another interrupt soon and that'll
2181 	 * be dispatched up for processing.  Note this applies only
2182 	 * for h/w beacon miss events.
2183 	 */
2184 
2185 	/*
2186 	 * XXX TODO: Just read the TSF during the interrupt path;
2187 	 * that way we don't have to wake up again just to read it
2188 	 * again.
2189 	 */
2190 	ATH_LOCK(sc);
2191 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2192 	ATH_UNLOCK(sc);
2193 
2194 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2195 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
2196 		struct ath_softc *sc = ifp->if_softc;
2197 		u_int64_t lastrx = sc->sc_lastrx;
2198 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
2199 		/* XXX should take a locked ref to iv_bss */
2200 		u_int bmisstimeout =
2201 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
2202 
2203 		DPRINTF(sc, ATH_DEBUG_BEACON,
2204 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
2205 		    __func__, (unsigned long long) tsf,
2206 		    (unsigned long long)(tsf - lastrx),
2207 		    (unsigned long long) lastrx, bmisstimeout);
2208 
2209 		if (tsf - lastrx <= bmisstimeout) {
2210 			sc->sc_stats.ast_bmiss_phantom++;
2211 
2212 			ATH_LOCK(sc);
2213 			ath_power_restore_power_state(sc);
2214 			ATH_UNLOCK(sc);
2215 
2216 			return;
2217 		}
2218 	}
2219 
2220 	/*
2221 	 * There's no need to keep the hardware awake during the call
2222 	 * to av_bmiss().
2223 	 */
2224 	ATH_LOCK(sc);
2225 	ath_power_restore_power_state(sc);
2226 	ATH_UNLOCK(sc);
2227 
2228 	/*
2229 	 * Attempt to force a beacon resync.
2230 	 */
2231 	sc->sc_syncbeacon = 1;
2232 
2233 	ATH_VAP(vap)->av_bmiss(vap);
2234 }
2235 
2236 /* XXX this needs a force wakeup! */
2237 int
2238 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
2239 {
2240 	uint32_t rsize;
2241 	void *sp;
2242 
2243 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
2244 		return 0;
2245 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
2246 	*hangs = *(uint32_t *)sp;
2247 	return 1;
2248 }
2249 
2250 static void
2251 ath_bmiss_proc(void *arg, int pending)
2252 {
2253 	struct ath_softc *sc = arg;
2254 	struct ifnet *ifp = sc->sc_ifp;
2255 	uint32_t hangs;
2256 
2257 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2258 
2259 	ATH_LOCK(sc);
2260 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2261 	ATH_UNLOCK(sc);
2262 
2263 	ath_beacon_miss(sc);
2264 
2265 	/*
2266 	 * Do a reset upon any becaon miss event.
2267 	 *
2268 	 * It may be a non-recognised RX clear hang which needs a reset
2269 	 * to clear.
2270 	 */
2271 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
2272 		ath_reset(ifp, ATH_RESET_NOLOSS);
2273 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
2274 	} else {
2275 		ath_reset(ifp, ATH_RESET_NOLOSS);
2276 		ieee80211_beacon_miss(ifp->if_l2com);
2277 	}
2278 
2279 	/* Force a beacon resync, in case they've drifted */
2280 	sc->sc_syncbeacon = 1;
2281 
2282 	ATH_LOCK(sc);
2283 	ath_power_restore_power_state(sc);
2284 	ATH_UNLOCK(sc);
2285 }
2286 
2287 /*
2288  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
2289  * calcs together with WME.  If necessary disable the crypto
2290  * hardware and mark the 802.11 state so keys will be setup
2291  * with the MIC work done in software.
2292  */
2293 static void
2294 ath_settkipmic(struct ath_softc *sc)
2295 {
2296 	struct ifnet *ifp = sc->sc_ifp;
2297 	struct ieee80211com *ic = ifp->if_l2com;
2298 
2299 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2300 		if (ic->ic_flags & IEEE80211_F_WME) {
2301 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
2302 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2303 		} else {
2304 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
2305 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2306 		}
2307 	}
2308 }
2309 
2310 static void
2311 ath_init(void *arg)
2312 {
2313 	struct ath_softc *sc = (struct ath_softc *) arg;
2314 	struct ifnet *ifp = sc->sc_ifp;
2315 	struct ieee80211com *ic = ifp->if_l2com;
2316 	struct ath_hal *ah = sc->sc_ah;
2317 	HAL_STATUS status;
2318 
2319 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
2320 		__func__, ifp->if_flags);
2321 
2322 	ATH_LOCK(sc);
2323 	/*
2324 	 * Force the sleep state awake.
2325 	 */
2326 	ath_power_setselfgen(sc, HAL_PM_AWAKE);
2327 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2328 	ath_power_setpower(sc, HAL_PM_AWAKE);
2329 
2330 	/*
2331 	 * Stop anything previously setup.  This is safe
2332 	 * whether this is the first time through or not.
2333 	 */
2334 	ath_stop_locked(ifp);
2335 
2336 	/*
2337 	 * The basic interface to setting the hardware in a good
2338 	 * state is ``reset''.  On return the hardware is known to
2339 	 * be powered up and with interrupts disabled.  This must
2340 	 * be followed by initialization of the appropriate bits
2341 	 * and then setup of the interrupt mask.
2342 	 */
2343 	ath_settkipmic(sc);
2344 	ath_update_chainmasks(sc, ic->ic_curchan);
2345 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2346 	    sc->sc_cur_rxchainmask);
2347 
2348 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
2349 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
2350 			status);
2351 		ATH_UNLOCK(sc);
2352 		return;
2353 	}
2354 	ath_chan_change(sc, ic->ic_curchan);
2355 
2356 	/* Let DFS at it in case it's a DFS channel */
2357 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2358 
2359 	/* Let spectral at in case spectral is enabled */
2360 	ath_spectral_enable(sc, ic->ic_curchan);
2361 
2362 	/*
2363 	 * Let bluetooth coexistence at in case it's needed for this channel
2364 	 */
2365 	ath_btcoex_enable(sc, ic->ic_curchan);
2366 
2367 	/*
2368 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2369 	 * support it.
2370 	 */
2371 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2372 		ath_hal_setenforcetxop(sc->sc_ah, 1);
2373 	else
2374 		ath_hal_setenforcetxop(sc->sc_ah, 0);
2375 
2376 	/*
2377 	 * Likewise this is set during reset so update
2378 	 * state cached in the driver.
2379 	 */
2380 	sc->sc_diversity = ath_hal_getdiversity(ah);
2381 	sc->sc_lastlongcal = 0;
2382 	sc->sc_resetcal = 1;
2383 	sc->sc_lastcalreset = 0;
2384 	sc->sc_lastani = 0;
2385 	sc->sc_lastshortcal = 0;
2386 	sc->sc_doresetcal = AH_FALSE;
2387 	/*
2388 	 * Beacon timers were cleared here; give ath_newstate()
2389 	 * a hint that the beacon timers should be poked when
2390 	 * things transition to the RUN state.
2391 	 */
2392 	sc->sc_beacons = 0;
2393 
2394 	/*
2395 	 * Setup the hardware after reset: the key cache
2396 	 * is filled as needed and the receive engine is
2397 	 * set going.  Frame transmit is handled entirely
2398 	 * in the frame output path; there's nothing to do
2399 	 * here except setup the interrupt mask.
2400 	 */
2401 	if (ath_startrecv(sc) != 0) {
2402 		if_printf(ifp, "unable to start recv logic\n");
2403 		ath_power_restore_power_state(sc);
2404 		ATH_UNLOCK(sc);
2405 		return;
2406 	}
2407 
2408 	/*
2409 	 * Enable interrupts.
2410 	 */
2411 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2412 		  | HAL_INT_RXEOL | HAL_INT_RXORN
2413 		  | HAL_INT_TXURN
2414 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2415 
2416 	/*
2417 	 * Enable RX EDMA bits.  Note these overlap with
2418 	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2419 	 */
2420 	if (sc->sc_isedma)
2421 		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2422 
2423 	/*
2424 	 * Enable MIB interrupts when there are hardware phy counters.
2425 	 * Note we only do this (at the moment) for station mode.
2426 	 */
2427 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2428 		sc->sc_imask |= HAL_INT_MIB;
2429 
2430 	/*
2431 	 * XXX add capability for this.
2432 	 *
2433 	 * If we're in STA mode (and maybe IBSS?) then register for
2434 	 * TSFOOR interrupts.
2435 	 */
2436 	if (ic->ic_opmode == IEEE80211_M_STA)
2437 		sc->sc_imask |= HAL_INT_TSFOOR;
2438 
2439 	/* Enable global TX timeout and carrier sense timeout if available */
2440 	if (ath_hal_gtxto_supported(ah))
2441 		sc->sc_imask |= HAL_INT_GTT;
2442 
2443 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2444 		__func__, sc->sc_imask);
2445 
2446 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2447 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2448 	ath_hal_intrset(ah, sc->sc_imask);
2449 
2450 	ath_power_restore_power_state(sc);
2451 	ATH_UNLOCK(sc);
2452 
2453 #ifdef ATH_TX99_DIAG
2454 	if (sc->sc_tx99 != NULL)
2455 		sc->sc_tx99->start(sc->sc_tx99);
2456 	else
2457 #endif
2458 	ieee80211_start_all(ic);		/* start all vap's */
2459 }
2460 
2461 static void
2462 ath_stop_locked(struct ifnet *ifp)
2463 {
2464 	struct ath_softc *sc = ifp->if_softc;
2465 	struct ath_hal *ah = sc->sc_ah;
2466 
2467 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2468 		__func__, sc->sc_invalid, ifp->if_flags);
2469 
2470 	ATH_LOCK_ASSERT(sc);
2471 
2472 	/*
2473 	 * Wake the hardware up before fiddling with it.
2474 	 */
2475 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2476 
2477 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2478 		/*
2479 		 * Shutdown the hardware and driver:
2480 		 *    reset 802.11 state machine
2481 		 *    turn off timers
2482 		 *    disable interrupts
2483 		 *    turn off the radio
2484 		 *    clear transmit machinery
2485 		 *    clear receive machinery
2486 		 *    drain and release tx queues
2487 		 *    reclaim beacon resources
2488 		 *    power down hardware
2489 		 *
2490 		 * Note that some of this work is not possible if the
2491 		 * hardware is gone (invalid).
2492 		 */
2493 #ifdef ATH_TX99_DIAG
2494 		if (sc->sc_tx99 != NULL)
2495 			sc->sc_tx99->stop(sc->sc_tx99);
2496 #endif
2497 		callout_stop(&sc->sc_wd_ch);
2498 		sc->sc_wd_timer = 0;
2499 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2500 		if (!sc->sc_invalid) {
2501 			if (sc->sc_softled) {
2502 				callout_stop(&sc->sc_ledtimer);
2503 				ath_hal_gpioset(ah, sc->sc_ledpin,
2504 					!sc->sc_ledon);
2505 				sc->sc_blinking = 0;
2506 			}
2507 			ath_hal_intrset(ah, 0);
2508 		}
2509 		ath_draintxq(sc, ATH_RESET_DEFAULT);
2510 		if (!sc->sc_invalid) {
2511 			ath_stoprecv(sc, 1);
2512 			ath_hal_phydisable(ah);
2513 		} else
2514 			sc->sc_rxlink = NULL;
2515 		ath_beacon_free(sc);	/* XXX not needed */
2516 	}
2517 
2518 	/* And now, restore the current power state */
2519 	ath_power_restore_power_state(sc);
2520 }
2521 
2522 /*
2523  * Wait until all pending TX/RX has completed.
2524  *
2525  * This waits until all existing transmit, receive and interrupts
2526  * have completed.  It's assumed that the caller has first
2527  * grabbed the reset lock so it doesn't try to do overlapping
2528  * chip resets.
2529  */
2530 #define	MAX_TXRX_ITERATIONS	100
2531 static void
2532 ath_txrx_stop_locked(struct ath_softc *sc)
2533 {
2534 	int i = MAX_TXRX_ITERATIONS;
2535 
2536 	ATH_UNLOCK_ASSERT(sc);
2537 	ATH_PCU_LOCK_ASSERT(sc);
2538 
2539 	/*
2540 	 * Sleep until all the pending operations have completed.
2541 	 *
2542 	 * The caller must ensure that reset has been incremented
2543 	 * or the pending operations may continue being queued.
2544 	 */
2545 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2546 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2547 		if (i <= 0)
2548 			break;
2549 		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
2550 		    msecs_to_ticks(10));
2551 		i--;
2552 	}
2553 
2554 	if (i <= 0)
2555 		device_printf(sc->sc_dev,
2556 		    "%s: didn't finish after %d iterations\n",
2557 		    __func__, MAX_TXRX_ITERATIONS);
2558 }
2559 #undef	MAX_TXRX_ITERATIONS
2560 
2561 #if 0
2562 static void
2563 ath_txrx_stop(struct ath_softc *sc)
2564 {
2565 	ATH_UNLOCK_ASSERT(sc);
2566 	ATH_PCU_UNLOCK_ASSERT(sc);
2567 
2568 	ATH_PCU_LOCK(sc);
2569 	ath_txrx_stop_locked(sc);
2570 	ATH_PCU_UNLOCK(sc);
2571 }
2572 #endif
2573 
2574 static void
2575 ath_txrx_start(struct ath_softc *sc)
2576 {
2577 
2578 	taskqueue_unblock(sc->sc_tq);
2579 }
2580 
2581 /*
2582  * Grab the reset lock, and wait around until noone else
2583  * is trying to do anything with it.
2584  *
2585  * This is totally horrible but we can't hold this lock for
2586  * long enough to do TX/RX or we end up with net80211/ip stack
2587  * LORs and eventual deadlock.
2588  *
2589  * "dowait" signals whether to spin, waiting for the reset
2590  * lock count to reach 0. This should (for now) only be used
2591  * during the reset path, as the rest of the code may not
2592  * be locking-reentrant enough to behave correctly.
2593  *
2594  * Another, cleaner way should be found to serialise all of
2595  * these operations.
2596  */
2597 #define	MAX_RESET_ITERATIONS	25
2598 static int
2599 ath_reset_grablock(struct ath_softc *sc, int dowait)
2600 {
2601 	int w = 0;
2602 	int i = MAX_RESET_ITERATIONS;
2603 
2604 	ATH_PCU_LOCK_ASSERT(sc);
2605 	do {
2606 		if (sc->sc_inreset_cnt == 0) {
2607 			w = 1;
2608 			break;
2609 		}
2610 		if (dowait == 0) {
2611 			w = 0;
2612 			break;
2613 		}
2614 		ATH_PCU_UNLOCK(sc);
2615 		/*
2616 		 * 1 tick is likely not enough time for long calibrations
2617 		 * to complete.  So we should wait quite a while.
2618 		 */
2619 		pause("ath_reset_grablock", msecs_to_ticks(100));
2620 		i--;
2621 		ATH_PCU_LOCK(sc);
2622 	} while (i > 0);
2623 
2624 	/*
2625 	 * We always increment the refcounter, regardless
2626 	 * of whether we succeeded to get it in an exclusive
2627 	 * way.
2628 	 */
2629 	sc->sc_inreset_cnt++;
2630 
2631 	if (i <= 0)
2632 		device_printf(sc->sc_dev,
2633 		    "%s: didn't finish after %d iterations\n",
2634 		    __func__, MAX_RESET_ITERATIONS);
2635 
2636 	if (w == 0)
2637 		device_printf(sc->sc_dev,
2638 		    "%s: warning, recursive reset path!\n",
2639 		    __func__);
2640 
2641 	return w;
2642 }
2643 #undef MAX_RESET_ITERATIONS
2644 
2645 /*
2646  * XXX TODO: write ath_reset_releaselock
2647  */
2648 
2649 static void
2650 ath_stop(struct ifnet *ifp)
2651 {
2652 	struct ath_softc *sc = ifp->if_softc;
2653 
2654 	ATH_LOCK(sc);
2655 	ath_stop_locked(ifp);
2656 	ATH_UNLOCK(sc);
2657 }
2658 
2659 /*
2660  * Reset the hardware w/o losing operational state.  This is
2661  * basically a more efficient way of doing ath_stop, ath_init,
2662  * followed by state transitions to the current 802.11
2663  * operational state.  Used to recover from various errors and
2664  * to reset or reload hardware state.
2665  */
2666 int
2667 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2668 {
2669 	struct ath_softc *sc = ifp->if_softc;
2670 	struct ieee80211com *ic = ifp->if_l2com;
2671 	struct ath_hal *ah = sc->sc_ah;
2672 	HAL_STATUS status;
2673 	int i;
2674 
2675 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2676 
2677 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2678 	ATH_PCU_UNLOCK_ASSERT(sc);
2679 	ATH_UNLOCK_ASSERT(sc);
2680 
2681 	/* Try to (stop any further TX/RX from occuring */
2682 	taskqueue_block(sc->sc_tq);
2683 
2684 	/*
2685 	 * Wake the hardware up.
2686 	 */
2687 	ATH_LOCK(sc);
2688 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2689 	ATH_UNLOCK(sc);
2690 
2691 	ATH_PCU_LOCK(sc);
2692 
2693 	/*
2694 	 * Grab the reset lock before TX/RX is stopped.
2695 	 *
2696 	 * This is needed to ensure that when the TX/RX actually does finish,
2697 	 * no further TX/RX/reset runs in parallel with this.
2698 	 */
2699 	if (ath_reset_grablock(sc, 1) == 0) {
2700 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2701 		    __func__);
2702 	}
2703 
2704 	/* disable interrupts */
2705 	ath_hal_intrset(ah, 0);
2706 
2707 	/*
2708 	 * Now, ensure that any in progress TX/RX completes before we
2709 	 * continue.
2710 	 */
2711 	ath_txrx_stop_locked(sc);
2712 
2713 	ATH_PCU_UNLOCK(sc);
2714 
2715 	/*
2716 	 * Should now wait for pending TX/RX to complete
2717 	 * and block future ones from occuring. This needs to be
2718 	 * done before the TX queue is drained.
2719 	 */
2720 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2721 
2722 	/*
2723 	 * Regardless of whether we're doing a no-loss flush or
2724 	 * not, stop the PCU and handle what's in the RX queue.
2725 	 * That way frames aren't dropped which shouldn't be.
2726 	 */
2727 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2728 	ath_rx_flush(sc);
2729 
2730 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2731 	/* NB: indicate channel change so we do a full reset */
2732 	ath_update_chainmasks(sc, ic->ic_curchan);
2733 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2734 	    sc->sc_cur_rxchainmask);
2735 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2736 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2737 			__func__, status);
2738 	sc->sc_diversity = ath_hal_getdiversity(ah);
2739 
2740 	/* Let DFS at it in case it's a DFS channel */
2741 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2742 
2743 	/* Let spectral at in case spectral is enabled */
2744 	ath_spectral_enable(sc, ic->ic_curchan);
2745 
2746 	/*
2747 	 * Let bluetooth coexistence at in case it's needed for this channel
2748 	 */
2749 	ath_btcoex_enable(sc, ic->ic_curchan);
2750 
2751 	/*
2752 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2753 	 * support it.
2754 	 */
2755 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2756 		ath_hal_setenforcetxop(sc->sc_ah, 1);
2757 	else
2758 		ath_hal_setenforcetxop(sc->sc_ah, 0);
2759 
2760 	if (ath_startrecv(sc) != 0)	/* restart recv */
2761 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2762 	/*
2763 	 * We may be doing a reset in response to an ioctl
2764 	 * that changes the channel so update any state that
2765 	 * might change as a result.
2766 	 */
2767 	ath_chan_change(sc, ic->ic_curchan);
2768 	if (sc->sc_beacons) {		/* restart beacons */
2769 #ifdef IEEE80211_SUPPORT_TDMA
2770 		if (sc->sc_tdma)
2771 			ath_tdma_config(sc, NULL);
2772 		else
2773 #endif
2774 			ath_beacon_config(sc, NULL);
2775 	}
2776 
2777 	/*
2778 	 * Release the reset lock and re-enable interrupts here.
2779 	 * If an interrupt was being processed in ath_intr(),
2780 	 * it would disable interrupts at this point. So we have
2781 	 * to atomically enable interrupts and decrement the
2782 	 * reset counter - this way ath_intr() doesn't end up
2783 	 * disabling interrupts without a corresponding enable
2784 	 * in the rest or channel change path.
2785 	 *
2786 	 * Grab the TX reference in case we need to transmit.
2787 	 * That way a parallel transmit doesn't.
2788 	 */
2789 	ATH_PCU_LOCK(sc);
2790 	sc->sc_inreset_cnt--;
2791 	sc->sc_txstart_cnt++;
2792 	/* XXX only do this if sc_inreset_cnt == 0? */
2793 	ath_hal_intrset(ah, sc->sc_imask);
2794 	ATH_PCU_UNLOCK(sc);
2795 
2796 	/*
2797 	 * TX and RX can be started here. If it were started with
2798 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2799 	 * Thus if this is a nested call through the reset or
2800 	 * channel change code, TX completion will occur but
2801 	 * RX completion and ath_start / ath_tx_start will not
2802 	 * run.
2803 	 */
2804 
2805 	/* Restart TX/RX as needed */
2806 	ath_txrx_start(sc);
2807 
2808 	/* XXX TODO: we need to hold the tx refcount here! */
2809 
2810 	/* Restart TX completion and pending TX */
2811 	if (reset_type == ATH_RESET_NOLOSS) {
2812 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2813 			if (ATH_TXQ_SETUP(sc, i)) {
2814 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2815 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2816 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2817 
2818 				ATH_TX_LOCK(sc);
2819 				ath_txq_sched(sc, &sc->sc_txq[i]);
2820 				ATH_TX_UNLOCK(sc);
2821 			}
2822 		}
2823 	}
2824 
2825 	/*
2826 	 * This may have been set during an ath_start() call which
2827 	 * set this once it detected a concurrent TX was going on.
2828 	 * So, clear it.
2829 	 */
2830 	IF_LOCK(&ifp->if_snd);
2831 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2832 	IF_UNLOCK(&ifp->if_snd);
2833 
2834 	ATH_LOCK(sc);
2835 	ath_power_restore_power_state(sc);
2836 	ATH_UNLOCK(sc);
2837 
2838 	ATH_PCU_LOCK(sc);
2839 	sc->sc_txstart_cnt--;
2840 	ATH_PCU_UNLOCK(sc);
2841 
2842 	/* Handle any frames in the TX queue */
2843 	/*
2844 	 * XXX should this be done by the caller, rather than
2845 	 * ath_reset() ?
2846 	 */
2847 	ath_tx_kick(sc);		/* restart xmit */
2848 	return 0;
2849 }
2850 
2851 static int
2852 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2853 {
2854 	struct ieee80211com *ic = vap->iv_ic;
2855 	struct ifnet *ifp = ic->ic_ifp;
2856 	struct ath_softc *sc = ifp->if_softc;
2857 	struct ath_hal *ah = sc->sc_ah;
2858 
2859 	switch (cmd) {
2860 	case IEEE80211_IOC_TXPOWER:
2861 		/*
2862 		 * If per-packet TPC is enabled, then we have nothing
2863 		 * to do; otherwise we need to force the global limit.
2864 		 * All this can happen directly; no need to reset.
2865 		 */
2866 		if (!ath_hal_gettpc(ah))
2867 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2868 		return 0;
2869 	}
2870 	/* XXX? Full or NOLOSS? */
2871 	return ath_reset(ifp, ATH_RESET_FULL);
2872 }
2873 
2874 struct ath_buf *
2875 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2876 {
2877 	struct ath_buf *bf;
2878 
2879 	ATH_TXBUF_LOCK_ASSERT(sc);
2880 
2881 	if (btype == ATH_BUFTYPE_MGMT)
2882 		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2883 	else
2884 		bf = TAILQ_FIRST(&sc->sc_txbuf);
2885 
2886 	if (bf == NULL) {
2887 		sc->sc_stats.ast_tx_getnobuf++;
2888 	} else {
2889 		if (bf->bf_flags & ATH_BUF_BUSY) {
2890 			sc->sc_stats.ast_tx_getbusybuf++;
2891 			bf = NULL;
2892 		}
2893 	}
2894 
2895 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2896 		if (btype == ATH_BUFTYPE_MGMT)
2897 			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2898 		else {
2899 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2900 			sc->sc_txbuf_cnt--;
2901 
2902 			/*
2903 			 * This shuldn't happen; however just to be
2904 			 * safe print a warning and fudge the txbuf
2905 			 * count.
2906 			 */
2907 			if (sc->sc_txbuf_cnt < 0) {
2908 				device_printf(sc->sc_dev,
2909 				    "%s: sc_txbuf_cnt < 0?\n",
2910 				    __func__);
2911 				sc->sc_txbuf_cnt = 0;
2912 			}
2913 		}
2914 	} else
2915 		bf = NULL;
2916 
2917 	if (bf == NULL) {
2918 		/* XXX should check which list, mgmt or otherwise */
2919 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2920 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2921 			"out of xmit buffers" : "xmit buffer busy");
2922 		return NULL;
2923 	}
2924 
2925 	/* XXX TODO: should do this at buffer list initialisation */
2926 	/* XXX (then, ensure the buffer has the right flag set) */
2927 	bf->bf_flags = 0;
2928 	if (btype == ATH_BUFTYPE_MGMT)
2929 		bf->bf_flags |= ATH_BUF_MGMT;
2930 	else
2931 		bf->bf_flags &= (~ATH_BUF_MGMT);
2932 
2933 	/* Valid bf here; clear some basic fields */
2934 	bf->bf_next = NULL;	/* XXX just to be sure */
2935 	bf->bf_last = NULL;	/* XXX again, just to be sure */
2936 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2937 	bzero(&bf->bf_state, sizeof(bf->bf_state));
2938 
2939 	/*
2940 	 * Track the descriptor ID only if doing EDMA
2941 	 */
2942 	if (sc->sc_isedma) {
2943 		bf->bf_descid = sc->sc_txbuf_descid;
2944 		sc->sc_txbuf_descid++;
2945 	}
2946 
2947 	return bf;
2948 }
2949 
2950 /*
2951  * When retrying a software frame, buffers marked ATH_BUF_BUSY
2952  * can't be thrown back on the queue as they could still be
2953  * in use by the hardware.
2954  *
2955  * This duplicates the buffer, or returns NULL.
2956  *
2957  * The descriptor is also copied but the link pointers and
2958  * the DMA segments aren't copied; this frame should thus
2959  * be again passed through the descriptor setup/chain routines
2960  * so the link is correct.
2961  *
2962  * The caller must free the buffer using ath_freebuf().
2963  */
2964 struct ath_buf *
2965 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
2966 {
2967 	struct ath_buf *tbf;
2968 
2969 	tbf = ath_getbuf(sc,
2970 	    (bf->bf_flags & ATH_BUF_MGMT) ?
2971 	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2972 	if (tbf == NULL)
2973 		return NULL;	/* XXX failure? Why? */
2974 
2975 	/* Copy basics */
2976 	tbf->bf_next = NULL;
2977 	tbf->bf_nseg = bf->bf_nseg;
2978 	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
2979 	tbf->bf_status = bf->bf_status;
2980 	tbf->bf_m = bf->bf_m;
2981 	tbf->bf_node = bf->bf_node;
2982 	KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__));
2983 	/* will be setup by the chain/setup function */
2984 	tbf->bf_lastds = NULL;
2985 	/* for now, last == self */
2986 	tbf->bf_last = tbf;
2987 	tbf->bf_comp = bf->bf_comp;
2988 
2989 	/* NOTE: DMA segments will be setup by the setup/chain functions */
2990 
2991 	/* The caller has to re-init the descriptor + links */
2992 
2993 	/*
2994 	 * Free the DMA mapping here, before we NULL the mbuf.
2995 	 * We must only call bus_dmamap_unload() once per mbuf chain
2996 	 * or behaviour is undefined.
2997 	 */
2998 	if (bf->bf_m != NULL) {
2999 		/*
3000 		 * XXX is this POSTWRITE call required?
3001 		 */
3002 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3003 		    BUS_DMASYNC_POSTWRITE);
3004 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3005 	}
3006 
3007 	bf->bf_m = NULL;
3008 	bf->bf_node = NULL;
3009 
3010 	/* Copy state */
3011 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
3012 
3013 	return tbf;
3014 }
3015 
3016 struct ath_buf *
3017 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
3018 {
3019 	struct ath_buf *bf;
3020 
3021 	ATH_TXBUF_LOCK(sc);
3022 	bf = _ath_getbuf_locked(sc, btype);
3023 	/*
3024 	 * If a mgmt buffer was requested but we're out of those,
3025 	 * try requesting a normal one.
3026 	 */
3027 	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
3028 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
3029 	ATH_TXBUF_UNLOCK(sc);
3030 	if (bf == NULL) {
3031 		struct ifnet *ifp = sc->sc_ifp;
3032 
3033 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
3034 		sc->sc_stats.ast_tx_qstop++;
3035 		IF_LOCK(&ifp->if_snd);
3036 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3037 		IF_UNLOCK(&ifp->if_snd);
3038 	}
3039 	return bf;
3040 }
3041 
3042 static void
3043 ath_qflush(struct ifnet *ifp)
3044 {
3045 
3046 	/* XXX TODO */
3047 }
3048 
3049 /*
3050  * Transmit a single frame.
3051  *
3052  * net80211 will free the node reference if the transmit
3053  * fails, so don't free the node reference here.
3054  */
3055 static int
3056 ath_transmit(struct ifnet *ifp, struct mbuf *m)
3057 {
3058 	struct ieee80211com *ic = ifp->if_l2com;
3059 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3060 	struct ieee80211_node *ni;
3061 	struct mbuf *next;
3062 	struct ath_buf *bf;
3063 	ath_bufhead frags;
3064 	int retval = 0;
3065 
3066 	/*
3067 	 * Tell the reset path that we're currently transmitting.
3068 	 */
3069 	ATH_PCU_LOCK(sc);
3070 	if (sc->sc_inreset_cnt > 0) {
3071 		DPRINTF(sc, ATH_DEBUG_XMIT,
3072 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
3073 		ATH_PCU_UNLOCK(sc);
3074 		IF_LOCK(&ifp->if_snd);
3075 		sc->sc_stats.ast_tx_qstop++;
3076 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3077 		IF_UNLOCK(&ifp->if_snd);
3078 		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
3079 		return (ENOBUFS);	/* XXX should be EINVAL or? */
3080 	}
3081 	sc->sc_txstart_cnt++;
3082 	ATH_PCU_UNLOCK(sc);
3083 
3084 	/* Wake the hardware up already */
3085 	ATH_LOCK(sc);
3086 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3087 	ATH_UNLOCK(sc);
3088 
3089 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
3090 	/*
3091 	 * Grab the TX lock - it's ok to do this here; we haven't
3092 	 * yet started transmitting.
3093 	 */
3094 	ATH_TX_LOCK(sc);
3095 
3096 	/*
3097 	 * Node reference, if there's one.
3098 	 */
3099 	ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
3100 
3101 	/*
3102 	 * Enforce how deep a node queue can get.
3103 	 *
3104 	 * XXX it would be nicer if we kept an mbuf queue per
3105 	 * node and only whacked them into ath_bufs when we
3106 	 * are ready to schedule some traffic from them.
3107 	 * .. that may come later.
3108 	 *
3109 	 * XXX we should also track the per-node hardware queue
3110 	 * depth so it is easy to limit the _SUM_ of the swq and
3111 	 * hwq frames.  Since we only schedule two HWQ frames
3112 	 * at a time, this should be OK for now.
3113 	 */
3114 	if ((!(m->m_flags & M_EAPOL)) &&
3115 	    (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
3116 		sc->sc_stats.ast_tx_nodeq_overflow++;
3117 		m_freem(m);
3118 		m = NULL;
3119 		retval = ENOBUFS;
3120 		goto finish;
3121 	}
3122 
3123 	/*
3124 	 * Check how many TX buffers are available.
3125 	 *
3126 	 * If this is for non-EAPOL traffic, just leave some
3127 	 * space free in order for buffer cloning and raw
3128 	 * frame transmission to occur.
3129 	 *
3130 	 * If it's for EAPOL traffic, ignore this for now.
3131 	 * Management traffic will be sent via the raw transmit
3132 	 * method which bypasses this check.
3133 	 *
3134 	 * This is needed to ensure that EAPOL frames during
3135 	 * (re) keying have a chance to go out.
3136 	 *
3137 	 * See kern/138379 for more information.
3138 	 */
3139 	if ((!(m->m_flags & M_EAPOL)) &&
3140 	    (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
3141 		sc->sc_stats.ast_tx_nobuf++;
3142 		m_freem(m);
3143 		m = NULL;
3144 		retval = ENOBUFS;
3145 		goto finish;
3146 	}
3147 
3148 	/*
3149 	 * Grab a TX buffer and associated resources.
3150 	 *
3151 	 * If it's an EAPOL frame, allocate a MGMT ath_buf.
3152 	 * That way even with temporary buffer exhaustion due to
3153 	 * the data path doesn't leave us without the ability
3154 	 * to transmit management frames.
3155 	 *
3156 	 * Otherwise allocate a normal buffer.
3157 	 */
3158 	if (m->m_flags & M_EAPOL)
3159 		bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
3160 	else
3161 		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
3162 
3163 	if (bf == NULL) {
3164 		/*
3165 		 * If we failed to allocate a buffer, fail.
3166 		 *
3167 		 * We shouldn't fail normally, due to the check
3168 		 * above.
3169 		 */
3170 		sc->sc_stats.ast_tx_nobuf++;
3171 		IF_LOCK(&ifp->if_snd);
3172 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3173 		IF_UNLOCK(&ifp->if_snd);
3174 		m_freem(m);
3175 		m = NULL;
3176 		retval = ENOBUFS;
3177 		goto finish;
3178 	}
3179 
3180 	/*
3181 	 * At this point we have a buffer; so we need to free it
3182 	 * if we hit any error conditions.
3183 	 */
3184 
3185 	/*
3186 	 * Check for fragmentation.  If this frame
3187 	 * has been broken up verify we have enough
3188 	 * buffers to send all the fragments so all
3189 	 * go out or none...
3190 	 */
3191 	TAILQ_INIT(&frags);
3192 	if ((m->m_flags & M_FRAG) &&
3193 	    !ath_txfrag_setup(sc, &frags, m, ni)) {
3194 		DPRINTF(sc, ATH_DEBUG_XMIT,
3195 		    "%s: out of txfrag buffers\n", __func__);
3196 		sc->sc_stats.ast_tx_nofrag++;
3197 		ifp->if_oerrors++;
3198 		ath_freetx(m);
3199 		goto bad;
3200 	}
3201 
3202 	/*
3203 	 * At this point if we have any TX fragments, then we will
3204 	 * have bumped the node reference once for each of those.
3205 	 */
3206 
3207 	/*
3208 	 * XXX Is there anything actually _enforcing_ that the
3209 	 * fragments are being transmitted in one hit, rather than
3210 	 * being interleaved with other transmissions on that
3211 	 * hardware queue?
3212 	 *
3213 	 * The ATH TX output lock is the only thing serialising this
3214 	 * right now.
3215 	 */
3216 
3217 	/*
3218 	 * Calculate the "next fragment" length field in ath_buf
3219 	 * in order to let the transmit path know enough about
3220 	 * what to next write to the hardware.
3221 	 */
3222 	if (m->m_flags & M_FRAG) {
3223 		struct ath_buf *fbf = bf;
3224 		struct ath_buf *n_fbf = NULL;
3225 		struct mbuf *fm = m->m_nextpkt;
3226 
3227 		/*
3228 		 * We need to walk the list of fragments and set
3229 		 * the next size to the following buffer.
3230 		 * However, the first buffer isn't in the frag
3231 		 * list, so we have to do some gymnastics here.
3232 		 */
3233 		TAILQ_FOREACH(n_fbf, &frags, bf_list) {
3234 			fbf->bf_nextfraglen = fm->m_pkthdr.len;
3235 			fbf = n_fbf;
3236 			fm = fm->m_nextpkt;
3237 		}
3238 	}
3239 
3240 	/*
3241 	 * Bump the ifp output counter.
3242 	 *
3243 	 * XXX should use atomics?
3244 	 */
3245 	ifp->if_opackets++;
3246 nextfrag:
3247 	/*
3248 	 * Pass the frame to the h/w for transmission.
3249 	 * Fragmented frames have each frag chained together
3250 	 * with m_nextpkt.  We know there are sufficient ath_buf's
3251 	 * to send all the frags because of work done by
3252 	 * ath_txfrag_setup.  We leave m_nextpkt set while
3253 	 * calling ath_tx_start so it can use it to extend the
3254 	 * the tx duration to cover the subsequent frag and
3255 	 * so it can reclaim all the mbufs in case of an error;
3256 	 * ath_tx_start clears m_nextpkt once it commits to
3257 	 * handing the frame to the hardware.
3258 	 *
3259 	 * Note: if this fails, then the mbufs are freed but
3260 	 * not the node reference.
3261 	 */
3262 	next = m->m_nextpkt;
3263 	if (ath_tx_start(sc, ni, bf, m)) {
3264 bad:
3265 		ifp->if_oerrors++;
3266 reclaim:
3267 		bf->bf_m = NULL;
3268 		bf->bf_node = NULL;
3269 		ATH_TXBUF_LOCK(sc);
3270 		ath_returnbuf_head(sc, bf);
3271 		/*
3272 		 * Free the rest of the node references and
3273 		 * buffers for the fragment list.
3274 		 */
3275 		ath_txfrag_cleanup(sc, &frags, ni);
3276 		ATH_TXBUF_UNLOCK(sc);
3277 		retval = ENOBUFS;
3278 		goto finish;
3279 	}
3280 
3281 	/*
3282 	 * Check here if the node is in power save state.
3283 	 */
3284 	ath_tx_update_tim(sc, ni, 1);
3285 
3286 	if (next != NULL) {
3287 		/*
3288 		 * Beware of state changing between frags.
3289 		 * XXX check sta power-save state?
3290 		 */
3291 		if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
3292 			DPRINTF(sc, ATH_DEBUG_XMIT,
3293 			    "%s: flush fragmented packet, state %s\n",
3294 			    __func__,
3295 			    ieee80211_state_name[ni->ni_vap->iv_state]);
3296 			/* XXX dmamap */
3297 			ath_freetx(next);
3298 			goto reclaim;
3299 		}
3300 		m = next;
3301 		bf = TAILQ_FIRST(&frags);
3302 		KASSERT(bf != NULL, ("no buf for txfrag"));
3303 		TAILQ_REMOVE(&frags, bf, bf_list);
3304 		goto nextfrag;
3305 	}
3306 
3307 	/*
3308 	 * Bump watchdog timer.
3309 	 */
3310 	sc->sc_wd_timer = 5;
3311 
3312 finish:
3313 	ATH_TX_UNLOCK(sc);
3314 
3315 	/*
3316 	 * Finished transmitting!
3317 	 */
3318 	ATH_PCU_LOCK(sc);
3319 	sc->sc_txstart_cnt--;
3320 	ATH_PCU_UNLOCK(sc);
3321 
3322 	/* Sleep the hardware if required */
3323 	ATH_LOCK(sc);
3324 	ath_power_restore_power_state(sc);
3325 	ATH_UNLOCK(sc);
3326 
3327 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
3328 
3329 	return (retval);
3330 }
3331 
3332 static int
3333 ath_media_change(struct ifnet *ifp)
3334 {
3335 	int error = ieee80211_media_change(ifp);
3336 	/* NB: only the fixed rate can change and that doesn't need a reset */
3337 	return (error == ENETRESET ? 0 : error);
3338 }
3339 
3340 /*
3341  * Block/unblock tx+rx processing while a key change is done.
3342  * We assume the caller serializes key management operations
3343  * so we only need to worry about synchronization with other
3344  * uses that originate in the driver.
3345  */
3346 static void
3347 ath_key_update_begin(struct ieee80211vap *vap)
3348 {
3349 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3350 	struct ath_softc *sc = ifp->if_softc;
3351 
3352 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3353 	taskqueue_block(sc->sc_tq);
3354 }
3355 
3356 static void
3357 ath_key_update_end(struct ieee80211vap *vap)
3358 {
3359 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3360 	struct ath_softc *sc = ifp->if_softc;
3361 
3362 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3363 	taskqueue_unblock(sc->sc_tq);
3364 }
3365 
3366 static void
3367 ath_update_promisc(struct ifnet *ifp)
3368 {
3369 	struct ath_softc *sc = ifp->if_softc;
3370 	u_int32_t rfilt;
3371 
3372 	/* configure rx filter */
3373 	ATH_LOCK(sc);
3374 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3375 	rfilt = ath_calcrxfilter(sc);
3376 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
3377 	ath_power_restore_power_state(sc);
3378 	ATH_UNLOCK(sc);
3379 
3380 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3381 }
3382 
3383 /*
3384  * Driver-internal mcast update call.
3385  *
3386  * Assumes the hardware is already awake.
3387  */
3388 static void
3389 ath_update_mcast_hw(struct ath_softc *sc)
3390 {
3391 	struct ifnet *ifp = sc->sc_ifp;
3392 	u_int32_t mfilt[2];
3393 
3394 	/* calculate and install multicast filter */
3395 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3396 		struct ifmultiaddr *ifma;
3397 		/*
3398 		 * Merge multicast addresses to form the hardware filter.
3399 		 */
3400 		mfilt[0] = mfilt[1] = 0;
3401 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
3402 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3403 			caddr_t dl;
3404 			u_int32_t val;
3405 			u_int8_t pos;
3406 
3407 			/* calculate XOR of eight 6bit values */
3408 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
3409 			val = LE_READ_4(dl + 0);
3410 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3411 			val = LE_READ_4(dl + 3);
3412 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3413 			pos &= 0x3f;
3414 			mfilt[pos / 32] |= (1 << (pos % 32));
3415 		}
3416 		if_maddr_runlock(ifp);
3417 	} else
3418 		mfilt[0] = mfilt[1] = ~0;
3419 
3420 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3421 
3422 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3423 		__func__, mfilt[0], mfilt[1]);
3424 }
3425 
3426 /*
3427  * Called from the net80211 layer - force the hardware
3428  * awake before operating.
3429  */
3430 static void
3431 ath_update_mcast(struct ifnet *ifp)
3432 {
3433 	struct ath_softc *sc = ifp->if_softc;
3434 
3435 	ATH_LOCK(sc);
3436 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3437 	ATH_UNLOCK(sc);
3438 
3439 	ath_update_mcast_hw(sc);
3440 
3441 	ATH_LOCK(sc);
3442 	ath_power_restore_power_state(sc);
3443 	ATH_UNLOCK(sc);
3444 }
3445 
3446 void
3447 ath_mode_init(struct ath_softc *sc)
3448 {
3449 	struct ifnet *ifp = sc->sc_ifp;
3450 	struct ath_hal *ah = sc->sc_ah;
3451 	u_int32_t rfilt;
3452 
3453 	/* configure rx filter */
3454 	rfilt = ath_calcrxfilter(sc);
3455 	ath_hal_setrxfilter(ah, rfilt);
3456 
3457 	/* configure operational mode */
3458 	ath_hal_setopmode(ah);
3459 
3460 	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
3461 	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
3462 	    __func__,
3463 	    ah,
3464 	    ifp,
3465 	    (ifp == NULL) ? NULL : ifp->if_addr);
3466 
3467 	/* handle any link-level address change */
3468 	ath_hal_setmac(ah, IF_LLADDR(ifp));
3469 
3470 	/* calculate and install multicast filter */
3471 	ath_update_mcast_hw(sc);
3472 }
3473 
3474 /*
3475  * Set the slot time based on the current setting.
3476  */
3477 void
3478 ath_setslottime(struct ath_softc *sc)
3479 {
3480 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3481 	struct ath_hal *ah = sc->sc_ah;
3482 	u_int usec;
3483 
3484 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3485 		usec = 13;
3486 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3487 		usec = 21;
3488 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3489 		/* honor short/long slot time only in 11g */
3490 		/* XXX shouldn't honor on pure g or turbo g channel */
3491 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
3492 			usec = HAL_SLOT_TIME_9;
3493 		else
3494 			usec = HAL_SLOT_TIME_20;
3495 	} else
3496 		usec = HAL_SLOT_TIME_9;
3497 
3498 	DPRINTF(sc, ATH_DEBUG_RESET,
3499 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3500 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3501 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3502 
3503 	/* Wake up the hardware first before updating the slot time */
3504 	ATH_LOCK(sc);
3505 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3506 	ath_hal_setslottime(ah, usec);
3507 	ath_power_restore_power_state(sc);
3508 	sc->sc_updateslot = OK;
3509 	ATH_UNLOCK(sc);
3510 }
3511 
3512 /*
3513  * Callback from the 802.11 layer to update the
3514  * slot time based on the current setting.
3515  */
3516 static void
3517 ath_updateslot(struct ifnet *ifp)
3518 {
3519 	struct ath_softc *sc = ifp->if_softc;
3520 	struct ieee80211com *ic = ifp->if_l2com;
3521 
3522 	/*
3523 	 * When not coordinating the BSS, change the hardware
3524 	 * immediately.  For other operation we defer the change
3525 	 * until beacon updates have propagated to the stations.
3526 	 *
3527 	 * XXX sc_updateslot isn't changed behind a lock?
3528 	 */
3529 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3530 	    ic->ic_opmode == IEEE80211_M_MBSS)
3531 		sc->sc_updateslot = UPDATE;
3532 	else
3533 		ath_setslottime(sc);
3534 }
3535 
3536 /*
3537  * Append the contents of src to dst; both queues
3538  * are assumed to be locked.
3539  */
3540 void
3541 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3542 {
3543 
3544 	ATH_TXQ_LOCK_ASSERT(src);
3545 	ATH_TXQ_LOCK_ASSERT(dst);
3546 
3547 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3548 	dst->axq_link = src->axq_link;
3549 	src->axq_link = NULL;
3550 	dst->axq_depth += src->axq_depth;
3551 	dst->axq_aggr_depth += src->axq_aggr_depth;
3552 	src->axq_depth = 0;
3553 	src->axq_aggr_depth = 0;
3554 }
3555 
3556 /*
3557  * Reset the hardware, with no loss.
3558  *
3559  * This can't be used for a general case reset.
3560  */
3561 static void
3562 ath_reset_proc(void *arg, int pending)
3563 {
3564 	struct ath_softc *sc = arg;
3565 	struct ifnet *ifp = sc->sc_ifp;
3566 
3567 #if 0
3568 	if_printf(ifp, "%s: resetting\n", __func__);
3569 #endif
3570 	ath_reset(ifp, ATH_RESET_NOLOSS);
3571 }
3572 
3573 /*
3574  * Reset the hardware after detecting beacons have stopped.
3575  */
3576 static void
3577 ath_bstuck_proc(void *arg, int pending)
3578 {
3579 	struct ath_softc *sc = arg;
3580 	struct ifnet *ifp = sc->sc_ifp;
3581 	uint32_t hangs = 0;
3582 
3583 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3584 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3585 
3586 #ifdef	ATH_DEBUG_ALQ
3587 	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
3588 		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3589 #endif
3590 
3591 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3592 		sc->sc_bmisscount);
3593 	sc->sc_stats.ast_bstuck++;
3594 	/*
3595 	 * This assumes that there's no simultaneous channel mode change
3596 	 * occuring.
3597 	 */
3598 	ath_reset(ifp, ATH_RESET_NOLOSS);
3599 }
3600 
3601 static void
3602 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3603 {
3604 	bus_addr_t *paddr = (bus_addr_t*) arg;
3605 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3606 	*paddr = segs->ds_addr;
3607 }
3608 
3609 /*
3610  * Allocate the descriptors and appropriate DMA tag/setup.
3611  *
3612  * For some situations (eg EDMA TX completion), there isn't a requirement
3613  * for the ath_buf entries to be allocated.
3614  */
3615 int
3616 ath_descdma_alloc_desc(struct ath_softc *sc,
3617 	struct ath_descdma *dd, ath_bufhead *head,
3618 	const char *name, int ds_size, int ndesc)
3619 {
3620 #define	DS2PHYS(_dd, _ds) \
3621 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3622 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3623 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3624 	struct ifnet *ifp = sc->sc_ifp;
3625 	int error;
3626 
3627 	dd->dd_descsize = ds_size;
3628 
3629 	DPRINTF(sc, ATH_DEBUG_RESET,
3630 	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
3631 	    __func__, name, ndesc, dd->dd_descsize);
3632 
3633 	dd->dd_name = name;
3634 	dd->dd_desc_len = dd->dd_descsize * ndesc;
3635 
3636 	/*
3637 	 * Merlin work-around:
3638 	 * Descriptors that cross the 4KB boundary can't be used.
3639 	 * Assume one skipped descriptor per 4KB page.
3640 	 */
3641 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3642 		int numpages = dd->dd_desc_len / 4096;
3643 		dd->dd_desc_len += ds_size * numpages;
3644 	}
3645 
3646 	/*
3647 	 * Setup DMA descriptor area.
3648 	 *
3649 	 * BUS_DMA_ALLOCNOW is not used; we never use bounce
3650 	 * buffers for the descriptors themselves.
3651 	 */
3652 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3653 		       PAGE_SIZE, 0,		/* alignment, bounds */
3654 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3655 		       BUS_SPACE_MAXADDR,	/* highaddr */
3656 		       NULL, NULL,		/* filter, filterarg */
3657 		       dd->dd_desc_len,		/* maxsize */
3658 		       1,			/* nsegments */
3659 		       dd->dd_desc_len,		/* maxsegsize */
3660 		       0,			/* flags */
3661 		       NULL,			/* lockfunc */
3662 		       NULL,			/* lockarg */
3663 		       &dd->dd_dmat);
3664 	if (error != 0) {
3665 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3666 		return error;
3667 	}
3668 
3669 	/* allocate descriptors */
3670 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3671 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3672 				 &dd->dd_dmamap);
3673 	if (error != 0) {
3674 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3675 			"error %u\n", ndesc, dd->dd_name, error);
3676 		goto fail1;
3677 	}
3678 
3679 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3680 				dd->dd_desc, dd->dd_desc_len,
3681 				ath_load_cb, &dd->dd_desc_paddr,
3682 				BUS_DMA_NOWAIT);
3683 	if (error != 0) {
3684 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3685 			dd->dd_name, error);
3686 		goto fail2;
3687 	}
3688 
3689 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3690 	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
3691 	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
3692 	    /*XXX*/ (u_long) dd->dd_desc_len);
3693 
3694 	return (0);
3695 
3696 fail2:
3697 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3698 fail1:
3699 	bus_dma_tag_destroy(dd->dd_dmat);
3700 	memset(dd, 0, sizeof(*dd));
3701 	return error;
3702 #undef DS2PHYS
3703 #undef ATH_DESC_4KB_BOUND_CHECK
3704 }
3705 
3706 int
3707 ath_descdma_setup(struct ath_softc *sc,
3708 	struct ath_descdma *dd, ath_bufhead *head,
3709 	const char *name, int ds_size, int nbuf, int ndesc)
3710 {
3711 #define	DS2PHYS(_dd, _ds) \
3712 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3713 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3714 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3715 	struct ifnet *ifp = sc->sc_ifp;
3716 	uint8_t *ds;
3717 	struct ath_buf *bf;
3718 	int i, bsize, error;
3719 
3720 	/* Allocate descriptors */
3721 	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3722 	    nbuf * ndesc);
3723 
3724 	/* Assume any errors during allocation were dealt with */
3725 	if (error != 0) {
3726 		return (error);
3727 	}
3728 
3729 	ds = (uint8_t *) dd->dd_desc;
3730 
3731 	/* allocate rx buffers */
3732 	bsize = sizeof(struct ath_buf) * nbuf;
3733 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3734 	if (bf == NULL) {
3735 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3736 			dd->dd_name, bsize);
3737 		goto fail3;
3738 	}
3739 	dd->dd_bufptr = bf;
3740 
3741 	TAILQ_INIT(head);
3742 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3743 		bf->bf_desc = (struct ath_desc *) ds;
3744 		bf->bf_daddr = DS2PHYS(dd, ds);
3745 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3746 			/*
3747 			 * Merlin WAR: Skip descriptor addresses which
3748 			 * cause 4KB boundary crossing along any point
3749 			 * in the descriptor.
3750 			 */
3751 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3752 			     dd->dd_descsize)) {
3753 				/* Start at the next page */
3754 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3755 				bf->bf_desc = (struct ath_desc *) ds;
3756 				bf->bf_daddr = DS2PHYS(dd, ds);
3757 			}
3758 		}
3759 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3760 				&bf->bf_dmamap);
3761 		if (error != 0) {
3762 			if_printf(ifp, "unable to create dmamap for %s "
3763 				"buffer %u, error %u\n", dd->dd_name, i, error);
3764 			ath_descdma_cleanup(sc, dd, head);
3765 			return error;
3766 		}
3767 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3768 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3769 	}
3770 
3771 	/*
3772 	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3773 	 * allocation otherwise weird stuff will occur and crash your
3774 	 * machine.
3775 	 */
3776 	return 0;
3777 	/* XXX this should likely just call ath_descdma_cleanup() */
3778 fail3:
3779 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3780 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3781 	bus_dma_tag_destroy(dd->dd_dmat);
3782 	memset(dd, 0, sizeof(*dd));
3783 	return error;
3784 #undef DS2PHYS
3785 #undef ATH_DESC_4KB_BOUND_CHECK
3786 }
3787 
3788 /*
3789  * Allocate ath_buf entries but no descriptor contents.
3790  *
3791  * This is for RX EDMA where the descriptors are the header part of
3792  * the RX buffer.
3793  */
3794 int
3795 ath_descdma_setup_rx_edma(struct ath_softc *sc,
3796 	struct ath_descdma *dd, ath_bufhead *head,
3797 	const char *name, int nbuf, int rx_status_len)
3798 {
3799 	struct ifnet *ifp = sc->sc_ifp;
3800 	struct ath_buf *bf;
3801 	int i, bsize, error;
3802 
3803 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3804 	    __func__, name, nbuf);
3805 
3806 	dd->dd_name = name;
3807 	/*
3808 	 * This is (mostly) purely for show.  We're not allocating any actual
3809 	 * descriptors here as EDMA RX has the descriptor be part
3810 	 * of the RX buffer.
3811 	 *
3812 	 * However, dd_desc_len is used by ath_descdma_free() to determine
3813 	 * whether we have already freed this DMA mapping.
3814 	 */
3815 	dd->dd_desc_len = rx_status_len * nbuf;
3816 	dd->dd_descsize = rx_status_len;
3817 
3818 	/* allocate rx buffers */
3819 	bsize = sizeof(struct ath_buf) * nbuf;
3820 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3821 	if (bf == NULL) {
3822 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3823 			dd->dd_name, bsize);
3824 		error = ENOMEM;
3825 		goto fail3;
3826 	}
3827 	dd->dd_bufptr = bf;
3828 
3829 	TAILQ_INIT(head);
3830 	for (i = 0; i < nbuf; i++, bf++) {
3831 		bf->bf_desc = NULL;
3832 		bf->bf_daddr = 0;
3833 		bf->bf_lastds = NULL;	/* Just an initial value */
3834 
3835 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3836 				&bf->bf_dmamap);
3837 		if (error != 0) {
3838 			if_printf(ifp, "unable to create dmamap for %s "
3839 				"buffer %u, error %u\n", dd->dd_name, i, error);
3840 			ath_descdma_cleanup(sc, dd, head);
3841 			return error;
3842 		}
3843 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3844 	}
3845 	return 0;
3846 fail3:
3847 	memset(dd, 0, sizeof(*dd));
3848 	return error;
3849 }
3850 
3851 void
3852 ath_descdma_cleanup(struct ath_softc *sc,
3853 	struct ath_descdma *dd, ath_bufhead *head)
3854 {
3855 	struct ath_buf *bf;
3856 	struct ieee80211_node *ni;
3857 	int do_warning = 0;
3858 
3859 	if (dd->dd_dmamap != 0) {
3860 		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3861 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3862 		bus_dma_tag_destroy(dd->dd_dmat);
3863 	}
3864 
3865 	if (head != NULL) {
3866 		TAILQ_FOREACH(bf, head, bf_list) {
3867 			if (bf->bf_m) {
3868 				/*
3869 				 * XXX warn if there's buffers here.
3870 				 * XXX it should have been freed by the
3871 				 * owner!
3872 				 */
3873 
3874 				if (do_warning == 0) {
3875 					do_warning = 1;
3876 					device_printf(sc->sc_dev,
3877 					    "%s: %s: mbuf should've been"
3878 					    " unmapped/freed!\n",
3879 					    __func__,
3880 					    dd->dd_name);
3881 				}
3882 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3883 				    BUS_DMASYNC_POSTREAD);
3884 				bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3885 				m_freem(bf->bf_m);
3886 				bf->bf_m = NULL;
3887 			}
3888 			if (bf->bf_dmamap != NULL) {
3889 				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3890 				bf->bf_dmamap = NULL;
3891 			}
3892 			ni = bf->bf_node;
3893 			bf->bf_node = NULL;
3894 			if (ni != NULL) {
3895 				/*
3896 				 * Reclaim node reference.
3897 				 */
3898 				ieee80211_free_node(ni);
3899 			}
3900 		}
3901 	}
3902 
3903 	if (head != NULL)
3904 		TAILQ_INIT(head);
3905 
3906 	if (dd->dd_bufptr != NULL)
3907 		free(dd->dd_bufptr, M_ATHDEV);
3908 	memset(dd, 0, sizeof(*dd));
3909 }
3910 
3911 static int
3912 ath_desc_alloc(struct ath_softc *sc)
3913 {
3914 	int error;
3915 
3916 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3917 		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
3918 	if (error != 0) {
3919 		return error;
3920 	}
3921 	sc->sc_txbuf_cnt = ath_txbuf;
3922 
3923 	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3924 		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3925 		    ATH_TXDESC);
3926 	if (error != 0) {
3927 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3928 		return error;
3929 	}
3930 
3931 	/*
3932 	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3933 	 * flag doesn't have to be set in ath_getbuf_locked().
3934 	 */
3935 
3936 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3937 			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3938 	if (error != 0) {
3939 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3940 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3941 		    &sc->sc_txbuf_mgmt);
3942 		return error;
3943 	}
3944 	return 0;
3945 }
3946 
3947 static void
3948 ath_desc_free(struct ath_softc *sc)
3949 {
3950 
3951 	if (sc->sc_bdma.dd_desc_len != 0)
3952 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3953 	if (sc->sc_txdma.dd_desc_len != 0)
3954 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3955 	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3956 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3957 		    &sc->sc_txbuf_mgmt);
3958 }
3959 
3960 static struct ieee80211_node *
3961 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3962 {
3963 	struct ieee80211com *ic = vap->iv_ic;
3964 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3965 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3966 	struct ath_node *an;
3967 
3968 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3969 	if (an == NULL) {
3970 		/* XXX stat+msg */
3971 		return NULL;
3972 	}
3973 	ath_rate_node_init(sc, an);
3974 
3975 	/* Setup the mutex - there's no associd yet so set the name to NULL */
3976 	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3977 	    device_get_nameunit(sc->sc_dev), an);
3978 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3979 
3980 	/* XXX setup ath_tid */
3981 	ath_tx_tid_init(sc, an);
3982 
3983 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an);
3984 	return &an->an_node;
3985 }
3986 
3987 static void
3988 ath_node_cleanup(struct ieee80211_node *ni)
3989 {
3990 	struct ieee80211com *ic = ni->ni_ic;
3991 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3992 
3993 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3994 	    ni->ni_macaddr, ":", ATH_NODE(ni));
3995 
3996 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3997 	ath_tx_node_flush(sc, ATH_NODE(ni));
3998 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3999 	sc->sc_node_cleanup(ni);
4000 }
4001 
4002 static void
4003 ath_node_free(struct ieee80211_node *ni)
4004 {
4005 	struct ieee80211com *ic = ni->ni_ic;
4006 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4007 
4008 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
4009 	    ni->ni_macaddr, ":", ATH_NODE(ni));
4010 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
4011 	sc->sc_node_free(ni);
4012 }
4013 
4014 static void
4015 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
4016 {
4017 	struct ieee80211com *ic = ni->ni_ic;
4018 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4019 	struct ath_hal *ah = sc->sc_ah;
4020 
4021 	*rssi = ic->ic_node_getrssi(ni);
4022 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
4023 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
4024 	else
4025 		*noise = -95;		/* nominally correct */
4026 }
4027 
4028 /*
4029  * Set the default antenna.
4030  */
4031 void
4032 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
4033 {
4034 	struct ath_hal *ah = sc->sc_ah;
4035 
4036 	/* XXX block beacon interrupts */
4037 	ath_hal_setdefantenna(ah, antenna);
4038 	if (sc->sc_defant != antenna)
4039 		sc->sc_stats.ast_ant_defswitch++;
4040 	sc->sc_defant = antenna;
4041 	sc->sc_rxotherant = 0;
4042 }
4043 
4044 static void
4045 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4046 {
4047 	txq->axq_qnum = qnum;
4048 	txq->axq_ac = 0;
4049 	txq->axq_depth = 0;
4050 	txq->axq_aggr_depth = 0;
4051 	txq->axq_intrcnt = 0;
4052 	txq->axq_link = NULL;
4053 	txq->axq_softc = sc;
4054 	TAILQ_INIT(&txq->axq_q);
4055 	TAILQ_INIT(&txq->axq_tidq);
4056 	TAILQ_INIT(&txq->fifo.axq_q);
4057 	ATH_TXQ_LOCK_INIT(sc, txq);
4058 }
4059 
4060 /*
4061  * Setup a h/w transmit queue.
4062  */
4063 static struct ath_txq *
4064 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4065 {
4066 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4067 	struct ath_hal *ah = sc->sc_ah;
4068 	HAL_TXQ_INFO qi;
4069 	int qnum;
4070 
4071 	memset(&qi, 0, sizeof(qi));
4072 	qi.tqi_subtype = subtype;
4073 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4074 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4075 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4076 	/*
4077 	 * Enable interrupts only for EOL and DESC conditions.
4078 	 * We mark tx descriptors to receive a DESC interrupt
4079 	 * when a tx queue gets deep; otherwise waiting for the
4080 	 * EOL to reap descriptors.  Note that this is done to
4081 	 * reduce interrupt load and this only defers reaping
4082 	 * descriptors, never transmitting frames.  Aside from
4083 	 * reducing interrupts this also permits more concurrency.
4084 	 * The only potential downside is if the tx queue backs
4085 	 * up in which case the top half of the kernel may backup
4086 	 * due to a lack of tx descriptors.
4087 	 */
4088 	if (sc->sc_isedma)
4089 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4090 		    HAL_TXQ_TXOKINT_ENABLE;
4091 	else
4092 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4093 		    HAL_TXQ_TXDESCINT_ENABLE;
4094 
4095 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4096 	if (qnum == -1) {
4097 		/*
4098 		 * NB: don't print a message, this happens
4099 		 * normally on parts with too few tx queues
4100 		 */
4101 		return NULL;
4102 	}
4103 	if (qnum >= N(sc->sc_txq)) {
4104 		device_printf(sc->sc_dev,
4105 			"hal qnum %u out of range, max %zu!\n",
4106 			qnum, N(sc->sc_txq));
4107 		ath_hal_releasetxqueue(ah, qnum);
4108 		return NULL;
4109 	}
4110 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4111 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4112 		sc->sc_txqsetup |= 1<<qnum;
4113 	}
4114 	return &sc->sc_txq[qnum];
4115 #undef N
4116 }
4117 
4118 /*
4119  * Setup a hardware data transmit queue for the specified
4120  * access control.  The hal may not support all requested
4121  * queues in which case it will return a reference to a
4122  * previously setup queue.  We record the mapping from ac's
4123  * to h/w queues for use by ath_tx_start and also track
4124  * the set of h/w queues being used to optimize work in the
4125  * transmit interrupt handler and related routines.
4126  */
4127 static int
4128 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4129 {
4130 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4131 	struct ath_txq *txq;
4132 
4133 	if (ac >= N(sc->sc_ac2q)) {
4134 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4135 			ac, N(sc->sc_ac2q));
4136 		return 0;
4137 	}
4138 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4139 	if (txq != NULL) {
4140 		txq->axq_ac = ac;
4141 		sc->sc_ac2q[ac] = txq;
4142 		return 1;
4143 	} else
4144 		return 0;
4145 #undef N
4146 }
4147 
4148 /*
4149  * Update WME parameters for a transmit queue.
4150  */
4151 static int
4152 ath_txq_update(struct ath_softc *sc, int ac)
4153 {
4154 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4155 #define	ATH_TXOP_TO_US(v)		(v<<5)
4156 	struct ifnet *ifp = sc->sc_ifp;
4157 	struct ieee80211com *ic = ifp->if_l2com;
4158 	struct ath_txq *txq = sc->sc_ac2q[ac];
4159 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4160 	struct ath_hal *ah = sc->sc_ah;
4161 	HAL_TXQ_INFO qi;
4162 
4163 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4164 #ifdef IEEE80211_SUPPORT_TDMA
4165 	if (sc->sc_tdma) {
4166 		/*
4167 		 * AIFS is zero so there's no pre-transmit wait.  The
4168 		 * burst time defines the slot duration and is configured
4169 		 * through net80211.  The QCU is setup to not do post-xmit
4170 		 * back off, lockout all lower-priority QCU's, and fire
4171 		 * off the DMA beacon alert timer which is setup based
4172 		 * on the slot configuration.
4173 		 */
4174 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4175 			      | HAL_TXQ_TXERRINT_ENABLE
4176 			      | HAL_TXQ_TXURNINT_ENABLE
4177 			      | HAL_TXQ_TXEOLINT_ENABLE
4178 			      | HAL_TXQ_DBA_GATED
4179 			      | HAL_TXQ_BACKOFF_DISABLE
4180 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4181 			      ;
4182 		qi.tqi_aifs = 0;
4183 		/* XXX +dbaprep? */
4184 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4185 		qi.tqi_burstTime = qi.tqi_readyTime;
4186 	} else {
4187 #endif
4188 		/*
4189 		 * XXX shouldn't this just use the default flags
4190 		 * used in the previous queue setup?
4191 		 */
4192 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4193 			      | HAL_TXQ_TXERRINT_ENABLE
4194 			      | HAL_TXQ_TXDESCINT_ENABLE
4195 			      | HAL_TXQ_TXURNINT_ENABLE
4196 			      | HAL_TXQ_TXEOLINT_ENABLE
4197 			      ;
4198 		qi.tqi_aifs = wmep->wmep_aifsn;
4199 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4200 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4201 		qi.tqi_readyTime = 0;
4202 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4203 #ifdef IEEE80211_SUPPORT_TDMA
4204 	}
4205 #endif
4206 
4207 	DPRINTF(sc, ATH_DEBUG_RESET,
4208 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4209 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4210 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4211 
4212 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4213 		if_printf(ifp, "unable to update hardware queue "
4214 			"parameters for %s traffic!\n",
4215 			ieee80211_wme_acnames[ac]);
4216 		return 0;
4217 	} else {
4218 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4219 		return 1;
4220 	}
4221 #undef ATH_TXOP_TO_US
4222 #undef ATH_EXPONENT_TO_VALUE
4223 }
4224 
4225 /*
4226  * Callback from the 802.11 layer to update WME parameters.
4227  */
4228 int
4229 ath_wme_update(struct ieee80211com *ic)
4230 {
4231 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4232 
4233 	return !ath_txq_update(sc, WME_AC_BE) ||
4234 	    !ath_txq_update(sc, WME_AC_BK) ||
4235 	    !ath_txq_update(sc, WME_AC_VI) ||
4236 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4237 }
4238 
4239 /*
4240  * Reclaim resources for a setup queue.
4241  */
4242 static void
4243 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4244 {
4245 
4246 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4247 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4248 	ATH_TXQ_LOCK_DESTROY(txq);
4249 }
4250 
4251 /*
4252  * Reclaim all tx queue resources.
4253  */
4254 static void
4255 ath_tx_cleanup(struct ath_softc *sc)
4256 {
4257 	int i;
4258 
4259 	ATH_TXBUF_LOCK_DESTROY(sc);
4260 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4261 		if (ATH_TXQ_SETUP(sc, i))
4262 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4263 }
4264 
4265 /*
4266  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4267  * using the current rates in sc_rixmap.
4268  */
4269 int
4270 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4271 {
4272 	int rix = sc->sc_rixmap[rate];
4273 	/* NB: return lowest rix for invalid rate */
4274 	return (rix == 0xff ? 0 : rix);
4275 }
4276 
4277 static void
4278 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4279     struct ath_buf *bf)
4280 {
4281 	struct ieee80211_node *ni = bf->bf_node;
4282 	struct ifnet *ifp = sc->sc_ifp;
4283 	struct ieee80211com *ic = ifp->if_l2com;
4284 	int sr, lr, pri;
4285 
4286 	if (ts->ts_status == 0) {
4287 		u_int8_t txant = ts->ts_antenna;
4288 		sc->sc_stats.ast_ant_tx[txant]++;
4289 		sc->sc_ant_tx[txant]++;
4290 		if (ts->ts_finaltsi != 0)
4291 			sc->sc_stats.ast_tx_altrate++;
4292 		pri = M_WME_GETAC(bf->bf_m);
4293 		if (pri >= WME_AC_VO)
4294 			ic->ic_wme.wme_hipri_traffic++;
4295 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
4296 			ni->ni_inact = ni->ni_inact_reload;
4297 	} else {
4298 		if (ts->ts_status & HAL_TXERR_XRETRY)
4299 			sc->sc_stats.ast_tx_xretries++;
4300 		if (ts->ts_status & HAL_TXERR_FIFO)
4301 			sc->sc_stats.ast_tx_fifoerr++;
4302 		if (ts->ts_status & HAL_TXERR_FILT)
4303 			sc->sc_stats.ast_tx_filtered++;
4304 		if (ts->ts_status & HAL_TXERR_XTXOP)
4305 			sc->sc_stats.ast_tx_xtxop++;
4306 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4307 			sc->sc_stats.ast_tx_timerexpired++;
4308 
4309 		if (bf->bf_m->m_flags & M_FF)
4310 			sc->sc_stats.ast_ff_txerr++;
4311 	}
4312 	/* XXX when is this valid? */
4313 	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
4314 		sc->sc_stats.ast_tx_desccfgerr++;
4315 	/*
4316 	 * This can be valid for successful frame transmission!
4317 	 * If there's a TX FIFO underrun during aggregate transmission,
4318 	 * the MAC will pad the rest of the aggregate with delimiters.
4319 	 * If a BA is returned, the frame is marked as "OK" and it's up
4320 	 * to the TX completion code to notice which frames weren't
4321 	 * successfully transmitted.
4322 	 */
4323 	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
4324 		sc->sc_stats.ast_tx_data_underrun++;
4325 	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
4326 		sc->sc_stats.ast_tx_delim_underrun++;
4327 
4328 	sr = ts->ts_shortretry;
4329 	lr = ts->ts_longretry;
4330 	sc->sc_stats.ast_tx_shortretry += sr;
4331 	sc->sc_stats.ast_tx_longretry += lr;
4332 
4333 }
4334 
4335 /*
4336  * The default completion. If fail is 1, this means
4337  * "please don't retry the frame, and just return -1 status
4338  * to the net80211 stack.
4339  */
4340 void
4341 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4342 {
4343 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4344 	int st;
4345 
4346 	if (fail == 1)
4347 		st = -1;
4348 	else
4349 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
4350 		    ts->ts_status : HAL_TXERR_XRETRY;
4351 
4352 #if 0
4353 	if (bf->bf_state.bfs_dobaw)
4354 		device_printf(sc->sc_dev,
4355 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4356 		    __func__,
4357 		    bf,
4358 		    SEQNO(bf->bf_state.bfs_seqno));
4359 #endif
4360 	if (bf->bf_next != NULL)
4361 		device_printf(sc->sc_dev,
4362 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
4363 		    __func__,
4364 		    bf,
4365 		    SEQNO(bf->bf_state.bfs_seqno));
4366 
4367 	/*
4368 	 * Check if the node software queue is empty; if so
4369 	 * then clear the TIM.
4370 	 *
4371 	 * This needs to be done before the buffer is freed as
4372 	 * otherwise the node reference will have been released
4373 	 * and the node may not actually exist any longer.
4374 	 *
4375 	 * XXX I don't like this belonging here, but it's cleaner
4376 	 * to do it here right now then all the other places
4377 	 * where ath_tx_default_comp() is called.
4378 	 *
4379 	 * XXX TODO: during drain, ensure that the callback is
4380 	 * being called so we get a chance to update the TIM.
4381 	 */
4382 	if (bf->bf_node) {
4383 		ATH_TX_LOCK(sc);
4384 		ath_tx_update_tim(sc, bf->bf_node, 0);
4385 		ATH_TX_UNLOCK(sc);
4386 	}
4387 
4388 	/*
4389 	 * Do any tx complete callback.  Note this must
4390 	 * be done before releasing the node reference.
4391 	 * This will free the mbuf, release the net80211
4392 	 * node and recycle the ath_buf.
4393 	 */
4394 	ath_tx_freebuf(sc, bf, st);
4395 }
4396 
4397 /*
4398  * Update rate control with the given completion status.
4399  */
4400 void
4401 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4402     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4403     int nframes, int nbad)
4404 {
4405 	struct ath_node *an;
4406 
4407 	/* Only for unicast frames */
4408 	if (ni == NULL)
4409 		return;
4410 
4411 	an = ATH_NODE(ni);
4412 	ATH_NODE_UNLOCK_ASSERT(an);
4413 
4414 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4415 		ATH_NODE_LOCK(an);
4416 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4417 		ATH_NODE_UNLOCK(an);
4418 	}
4419 }
4420 
4421 /*
4422  * Process the completion of the given buffer.
4423  *
4424  * This calls the rate control update and then the buffer completion.
4425  * This will either free the buffer or requeue it.  In any case, the
4426  * bf pointer should be treated as invalid after this function is called.
4427  */
4428 void
4429 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
4430     struct ath_tx_status *ts, struct ath_buf *bf)
4431 {
4432 	struct ieee80211_node *ni = bf->bf_node;
4433 	struct ath_node *an = NULL;
4434 
4435 	ATH_TX_UNLOCK_ASSERT(sc);
4436 	ATH_TXQ_UNLOCK_ASSERT(txq);
4437 
4438 	/* If unicast frame, update general statistics */
4439 	if (ni != NULL) {
4440 		an = ATH_NODE(ni);
4441 		/* update statistics */
4442 		ath_tx_update_stats(sc, ts, bf);
4443 	}
4444 
4445 	/*
4446 	 * Call the completion handler.
4447 	 * The completion handler is responsible for
4448 	 * calling the rate control code.
4449 	 *
4450 	 * Frames with no completion handler get the
4451 	 * rate control code called here.
4452 	 */
4453 	if (bf->bf_comp == NULL) {
4454 		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4455 		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4456 			/*
4457 			 * XXX assume this isn't an aggregate
4458 			 * frame.
4459 			 */
4460 			ath_tx_update_ratectrl(sc, ni,
4461 			     bf->bf_state.bfs_rc, ts,
4462 			    bf->bf_state.bfs_pktlen, 1,
4463 			    (ts->ts_status == 0 ? 0 : 1));
4464 		}
4465 		ath_tx_default_comp(sc, bf, 0);
4466 	} else
4467 		bf->bf_comp(sc, bf, 0);
4468 }
4469 
4470 
4471 
4472 /*
4473  * Process completed xmit descriptors from the specified queue.
4474  * Kick the packet scheduler if needed. This can occur from this
4475  * particular task.
4476  */
4477 static int
4478 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4479 {
4480 	struct ath_hal *ah = sc->sc_ah;
4481 	struct ath_buf *bf;
4482 	struct ath_desc *ds;
4483 	struct ath_tx_status *ts;
4484 	struct ieee80211_node *ni;
4485 #ifdef	IEEE80211_SUPPORT_SUPERG
4486 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4487 #endif	/* IEEE80211_SUPPORT_SUPERG */
4488 	int nacked;
4489 	HAL_STATUS status;
4490 
4491 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4492 		__func__, txq->axq_qnum,
4493 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4494 		txq->axq_link);
4495 
4496 	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4497 	    "ath_tx_processq: txq=%u head %p link %p depth %p",
4498 	    txq->axq_qnum,
4499 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4500 	    txq->axq_link,
4501 	    txq->axq_depth);
4502 
4503 	nacked = 0;
4504 	for (;;) {
4505 		ATH_TXQ_LOCK(txq);
4506 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4507 		bf = TAILQ_FIRST(&txq->axq_q);
4508 		if (bf == NULL) {
4509 			ATH_TXQ_UNLOCK(txq);
4510 			break;
4511 		}
4512 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4513 		ts = &bf->bf_status.ds_txstat;
4514 
4515 		status = ath_hal_txprocdesc(ah, ds, ts);
4516 #ifdef ATH_DEBUG
4517 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4518 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4519 			    status == HAL_OK);
4520 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4521 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4522 			    status == HAL_OK);
4523 #endif
4524 #ifdef	ATH_DEBUG_ALQ
4525 		if (if_ath_alq_checkdebug(&sc->sc_alq,
4526 		    ATH_ALQ_EDMA_TXSTATUS)) {
4527 			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
4528 			sc->sc_tx_statuslen,
4529 			(char *) ds);
4530 		}
4531 #endif
4532 
4533 		if (status == HAL_EINPROGRESS) {
4534 			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4535 			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4536 			    txq->axq_qnum, bf, ds);
4537 			ATH_TXQ_UNLOCK(txq);
4538 			break;
4539 		}
4540 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4541 
4542 		/*
4543 		 * Sanity check.
4544 		 */
4545 		if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4546 			device_printf(sc->sc_dev,
4547 			    "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4548 			    __func__,
4549 			    txq->axq_qnum,
4550 			    bf,
4551 			    bf->bf_state.bfs_tx_queue);
4552 		}
4553 		if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4554 			device_printf(sc->sc_dev,
4555 			    "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4556 			    __func__,
4557 			    txq->axq_qnum,
4558 			    bf->bf_last,
4559 			    bf->bf_last->bf_state.bfs_tx_queue);
4560 		}
4561 
4562 #if 0
4563 		if (txq->axq_depth > 0) {
4564 			/*
4565 			 * More frames follow.  Mark the buffer busy
4566 			 * so it's not re-used while the hardware may
4567 			 * still re-read the link field in the descriptor.
4568 			 *
4569 			 * Use the last buffer in an aggregate as that
4570 			 * is where the hardware may be - intermediate
4571 			 * descriptors won't be "busy".
4572 			 */
4573 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4574 		} else
4575 			txq->axq_link = NULL;
4576 #else
4577 		bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4578 #endif
4579 		if (bf->bf_state.bfs_aggr)
4580 			txq->axq_aggr_depth--;
4581 
4582 		ni = bf->bf_node;
4583 
4584 		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4585 		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4586 		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
4587 		/*
4588 		 * If unicast frame was ack'd update RSSI,
4589 		 * including the last rx time used to
4590 		 * workaround phantom bmiss interrupts.
4591 		 */
4592 		if (ni != NULL && ts->ts_status == 0 &&
4593 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4594 			nacked++;
4595 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4596 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4597 				ts->ts_rssi);
4598 		}
4599 		ATH_TXQ_UNLOCK(txq);
4600 
4601 		/*
4602 		 * Update statistics and call completion
4603 		 */
4604 		ath_tx_process_buf_completion(sc, txq, ts, bf);
4605 
4606 		/* XXX at this point, bf and ni may be totally invalid */
4607 	}
4608 #ifdef IEEE80211_SUPPORT_SUPERG
4609 	/*
4610 	 * Flush fast-frame staging queue when traffic slows.
4611 	 */
4612 	if (txq->axq_depth <= 1)
4613 		ieee80211_ff_flush(ic, txq->axq_ac);
4614 #endif
4615 
4616 	/* Kick the software TXQ scheduler */
4617 	if (dosched) {
4618 		ATH_TX_LOCK(sc);
4619 		ath_txq_sched(sc, txq);
4620 		ATH_TX_UNLOCK(sc);
4621 	}
4622 
4623 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4624 	    "ath_tx_processq: txq=%u: done",
4625 	    txq->axq_qnum);
4626 
4627 	return nacked;
4628 }
4629 
4630 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4631 
4632 /*
4633  * Deferred processing of transmit interrupt; special-cased
4634  * for a single hardware transmit queue (e.g. 5210 and 5211).
4635  */
4636 static void
4637 ath_tx_proc_q0(void *arg, int npending)
4638 {
4639 	struct ath_softc *sc = arg;
4640 	struct ifnet *ifp = sc->sc_ifp;
4641 	uint32_t txqs;
4642 
4643 	ATH_PCU_LOCK(sc);
4644 	sc->sc_txproc_cnt++;
4645 	txqs = sc->sc_txq_active;
4646 	sc->sc_txq_active &= ~txqs;
4647 	ATH_PCU_UNLOCK(sc);
4648 
4649 	ATH_LOCK(sc);
4650 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4651 	ATH_UNLOCK(sc);
4652 
4653 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4654 	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4655 
4656 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4657 		/* XXX why is lastrx updated in tx code? */
4658 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4659 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4660 		ath_tx_processq(sc, sc->sc_cabq, 1);
4661 	IF_LOCK(&ifp->if_snd);
4662 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4663 	IF_UNLOCK(&ifp->if_snd);
4664 	sc->sc_wd_timer = 0;
4665 
4666 	if (sc->sc_softled)
4667 		ath_led_event(sc, sc->sc_txrix);
4668 
4669 	ATH_PCU_LOCK(sc);
4670 	sc->sc_txproc_cnt--;
4671 	ATH_PCU_UNLOCK(sc);
4672 
4673 	ATH_LOCK(sc);
4674 	ath_power_restore_power_state(sc);
4675 	ATH_UNLOCK(sc);
4676 
4677 	ath_tx_kick(sc);
4678 }
4679 
4680 /*
4681  * Deferred processing of transmit interrupt; special-cased
4682  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4683  */
4684 static void
4685 ath_tx_proc_q0123(void *arg, int npending)
4686 {
4687 	struct ath_softc *sc = arg;
4688 	struct ifnet *ifp = sc->sc_ifp;
4689 	int nacked;
4690 	uint32_t txqs;
4691 
4692 	ATH_PCU_LOCK(sc);
4693 	sc->sc_txproc_cnt++;
4694 	txqs = sc->sc_txq_active;
4695 	sc->sc_txq_active &= ~txqs;
4696 	ATH_PCU_UNLOCK(sc);
4697 
4698 	ATH_LOCK(sc);
4699 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4700 	ATH_UNLOCK(sc);
4701 
4702 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4703 	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4704 
4705 	/*
4706 	 * Process each active queue.
4707 	 */
4708 	nacked = 0;
4709 	if (TXQACTIVE(txqs, 0))
4710 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4711 	if (TXQACTIVE(txqs, 1))
4712 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4713 	if (TXQACTIVE(txqs, 2))
4714 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4715 	if (TXQACTIVE(txqs, 3))
4716 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4717 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4718 		ath_tx_processq(sc, sc->sc_cabq, 1);
4719 	if (nacked)
4720 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4721 
4722 	IF_LOCK(&ifp->if_snd);
4723 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4724 	IF_UNLOCK(&ifp->if_snd);
4725 	sc->sc_wd_timer = 0;
4726 
4727 	if (sc->sc_softled)
4728 		ath_led_event(sc, sc->sc_txrix);
4729 
4730 	ATH_PCU_LOCK(sc);
4731 	sc->sc_txproc_cnt--;
4732 	ATH_PCU_UNLOCK(sc);
4733 
4734 	ATH_LOCK(sc);
4735 	ath_power_restore_power_state(sc);
4736 	ATH_UNLOCK(sc);
4737 
4738 	ath_tx_kick(sc);
4739 }
4740 
4741 /*
4742  * Deferred processing of transmit interrupt.
4743  */
4744 static void
4745 ath_tx_proc(void *arg, int npending)
4746 {
4747 	struct ath_softc *sc = arg;
4748 	struct ifnet *ifp = sc->sc_ifp;
4749 	int i, nacked;
4750 	uint32_t txqs;
4751 
4752 	ATH_PCU_LOCK(sc);
4753 	sc->sc_txproc_cnt++;
4754 	txqs = sc->sc_txq_active;
4755 	sc->sc_txq_active &= ~txqs;
4756 	ATH_PCU_UNLOCK(sc);
4757 
4758 	ATH_LOCK(sc);
4759 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4760 	ATH_UNLOCK(sc);
4761 
4762 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4763 
4764 	/*
4765 	 * Process each active queue.
4766 	 */
4767 	nacked = 0;
4768 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4769 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4770 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4771 	if (nacked)
4772 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4773 
4774 	/* XXX check this inside of IF_LOCK? */
4775 	IF_LOCK(&ifp->if_snd);
4776 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4777 	IF_UNLOCK(&ifp->if_snd);
4778 	sc->sc_wd_timer = 0;
4779 
4780 	if (sc->sc_softled)
4781 		ath_led_event(sc, sc->sc_txrix);
4782 
4783 	ATH_PCU_LOCK(sc);
4784 	sc->sc_txproc_cnt--;
4785 	ATH_PCU_UNLOCK(sc);
4786 
4787 	ATH_LOCK(sc);
4788 	ath_power_restore_power_state(sc);
4789 	ATH_UNLOCK(sc);
4790 
4791 	ath_tx_kick(sc);
4792 }
4793 #undef	TXQACTIVE
4794 
4795 /*
4796  * Deferred processing of TXQ rescheduling.
4797  */
4798 static void
4799 ath_txq_sched_tasklet(void *arg, int npending)
4800 {
4801 	struct ath_softc *sc = arg;
4802 	int i;
4803 
4804 	/* XXX is skipping ok? */
4805 	ATH_PCU_LOCK(sc);
4806 #if 0
4807 	if (sc->sc_inreset_cnt > 0) {
4808 		device_printf(sc->sc_dev,
4809 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4810 		ATH_PCU_UNLOCK(sc);
4811 		return;
4812 	}
4813 #endif
4814 	sc->sc_txproc_cnt++;
4815 	ATH_PCU_UNLOCK(sc);
4816 
4817 	ATH_LOCK(sc);
4818 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4819 	ATH_UNLOCK(sc);
4820 
4821 	ATH_TX_LOCK(sc);
4822 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4823 		if (ATH_TXQ_SETUP(sc, i)) {
4824 			ath_txq_sched(sc, &sc->sc_txq[i]);
4825 		}
4826 	}
4827 	ATH_TX_UNLOCK(sc);
4828 
4829 	ATH_LOCK(sc);
4830 	ath_power_restore_power_state(sc);
4831 	ATH_UNLOCK(sc);
4832 
4833 	ATH_PCU_LOCK(sc);
4834 	sc->sc_txproc_cnt--;
4835 	ATH_PCU_UNLOCK(sc);
4836 }
4837 
4838 void
4839 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4840 {
4841 
4842 	ATH_TXBUF_LOCK_ASSERT(sc);
4843 
4844 	if (bf->bf_flags & ATH_BUF_MGMT)
4845 		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4846 	else {
4847 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4848 		sc->sc_txbuf_cnt++;
4849 		if (sc->sc_txbuf_cnt > ath_txbuf) {
4850 			device_printf(sc->sc_dev,
4851 			    "%s: sc_txbuf_cnt > %d?\n",
4852 			    __func__,
4853 			    ath_txbuf);
4854 			sc->sc_txbuf_cnt = ath_txbuf;
4855 		}
4856 	}
4857 }
4858 
4859 void
4860 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4861 {
4862 
4863 	ATH_TXBUF_LOCK_ASSERT(sc);
4864 
4865 	if (bf->bf_flags & ATH_BUF_MGMT)
4866 		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4867 	else {
4868 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4869 		sc->sc_txbuf_cnt++;
4870 		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4871 			device_printf(sc->sc_dev,
4872 			    "%s: sc_txbuf_cnt > %d?\n",
4873 			    __func__,
4874 			    ATH_TXBUF);
4875 			sc->sc_txbuf_cnt = ATH_TXBUF;
4876 		}
4877 	}
4878 }
4879 
4880 /*
4881  * Free the holding buffer if it exists
4882  */
4883 void
4884 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
4885 {
4886 	ATH_TXBUF_UNLOCK_ASSERT(sc);
4887 	ATH_TXQ_LOCK_ASSERT(txq);
4888 
4889 	if (txq->axq_holdingbf == NULL)
4890 		return;
4891 
4892 	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
4893 
4894 	ATH_TXBUF_LOCK(sc);
4895 	ath_returnbuf_tail(sc, txq->axq_holdingbf);
4896 	ATH_TXBUF_UNLOCK(sc);
4897 
4898 	txq->axq_holdingbf = NULL;
4899 }
4900 
4901 /*
4902  * Add this buffer to the holding queue, freeing the previous
4903  * one if it exists.
4904  */
4905 static void
4906 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
4907 {
4908 	struct ath_txq *txq;
4909 
4910 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4911 
4912 	ATH_TXBUF_UNLOCK_ASSERT(sc);
4913 	ATH_TXQ_LOCK_ASSERT(txq);
4914 
4915 	/* XXX assert ATH_BUF_BUSY is set */
4916 
4917 	/* XXX assert the tx queue is under the max number */
4918 	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
4919 		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
4920 		    __func__,
4921 		    bf,
4922 		    bf->bf_state.bfs_tx_queue);
4923 		bf->bf_flags &= ~ATH_BUF_BUSY;
4924 		ath_returnbuf_tail(sc, bf);
4925 		return;
4926 	}
4927 	ath_txq_freeholdingbuf(sc, txq);
4928 	txq->axq_holdingbf = bf;
4929 }
4930 
4931 /*
4932  * Return a buffer to the pool and update the 'busy' flag on the
4933  * previous 'tail' entry.
4934  *
4935  * This _must_ only be called when the buffer is involved in a completed
4936  * TX. The logic is that if it was part of an active TX, the previous
4937  * buffer on the list is now not involved in a halted TX DMA queue, waiting
4938  * for restart (eg for TDMA.)
4939  *
4940  * The caller must free the mbuf and recycle the node reference.
4941  *
4942  * XXX This method of handling busy / holding buffers is insanely stupid.
4943  * It requires bf_state.bfs_tx_queue to be correctly assigned.  It would
4944  * be much nicer if buffers in the processq() methods would instead be
4945  * always completed there (pushed onto a txq or ath_bufhead) so we knew
4946  * exactly what hardware queue they came from in the first place.
4947  */
4948 void
4949 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4950 {
4951 	struct ath_txq *txq;
4952 
4953 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4954 
4955 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4956 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4957 
4958 	/*
4959 	 * If this buffer is busy, push it onto the holding queue.
4960 	 */
4961 	if (bf->bf_flags & ATH_BUF_BUSY) {
4962 		ATH_TXQ_LOCK(txq);
4963 		ath_txq_addholdingbuf(sc, bf);
4964 		ATH_TXQ_UNLOCK(txq);
4965 		return;
4966 	}
4967 
4968 	/*
4969 	 * Not a busy buffer, so free normally
4970 	 */
4971 	ATH_TXBUF_LOCK(sc);
4972 	ath_returnbuf_tail(sc, bf);
4973 	ATH_TXBUF_UNLOCK(sc);
4974 }
4975 
4976 /*
4977  * This is currently used by ath_tx_draintxq() and
4978  * ath_tx_tid_free_pkts().
4979  *
4980  * It recycles a single ath_buf.
4981  */
4982 void
4983 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4984 {
4985 	struct ieee80211_node *ni = bf->bf_node;
4986 	struct mbuf *m0 = bf->bf_m;
4987 
4988 	/*
4989 	 * Make sure that we only sync/unload if there's an mbuf.
4990 	 * If not (eg we cloned a buffer), the unload will have already
4991 	 * occured.
4992 	 */
4993 	if (bf->bf_m != NULL) {
4994 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4995 		    BUS_DMASYNC_POSTWRITE);
4996 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4997 	}
4998 
4999 	bf->bf_node = NULL;
5000 	bf->bf_m = NULL;
5001 
5002 	/* Free the buffer, it's not needed any longer */
5003 	ath_freebuf(sc, bf);
5004 
5005 	/* Pass the buffer back to net80211 - completing it */
5006 	ieee80211_tx_complete(ni, m0, status);
5007 }
5008 
5009 static struct ath_buf *
5010 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
5011 {
5012 	struct ath_buf *bf;
5013 
5014 	ATH_TXQ_LOCK_ASSERT(txq);
5015 
5016 	/*
5017 	 * Drain the FIFO queue first, then if it's
5018 	 * empty, move to the normal frame queue.
5019 	 */
5020 	bf = TAILQ_FIRST(&txq->fifo.axq_q);
5021 	if (bf != NULL) {
5022 		/*
5023 		 * Is it the last buffer in this set?
5024 		 * Decrement the FIFO counter.
5025 		 */
5026 		if (bf->bf_flags & ATH_BUF_FIFOEND) {
5027 			if (txq->axq_fifo_depth == 0) {
5028 				device_printf(sc->sc_dev,
5029 				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
5030 				    __func__,
5031 				    txq->axq_qnum,
5032 				    txq->fifo.axq_depth);
5033 			} else
5034 				txq->axq_fifo_depth--;
5035 		}
5036 		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
5037 		return (bf);
5038 	}
5039 
5040 	/*
5041 	 * Debugging!
5042 	 */
5043 	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
5044 		device_printf(sc->sc_dev,
5045 		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
5046 		    __func__,
5047 		    txq->axq_qnum,
5048 		    txq->axq_fifo_depth,
5049 		    txq->fifo.axq_depth);
5050 	}
5051 
5052 	/*
5053 	 * Now drain the pending queue.
5054 	 */
5055 	bf = TAILQ_FIRST(&txq->axq_q);
5056 	if (bf == NULL) {
5057 		txq->axq_link = NULL;
5058 		return (NULL);
5059 	}
5060 	ATH_TXQ_REMOVE(txq, bf, bf_list);
5061 	return (bf);
5062 }
5063 
5064 void
5065 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5066 {
5067 #ifdef ATH_DEBUG
5068 	struct ath_hal *ah = sc->sc_ah;
5069 #endif
5070 	struct ath_buf *bf;
5071 	u_int ix;
5072 
5073 	/*
5074 	 * NB: this assumes output has been stopped and
5075 	 *     we do not need to block ath_tx_proc
5076 	 */
5077 	for (ix = 0;; ix++) {
5078 		ATH_TXQ_LOCK(txq);
5079 		bf = ath_tx_draintxq_get_one(sc, txq);
5080 		if (bf == NULL) {
5081 			ATH_TXQ_UNLOCK(txq);
5082 			break;
5083 		}
5084 		if (bf->bf_state.bfs_aggr)
5085 			txq->axq_aggr_depth--;
5086 #ifdef ATH_DEBUG
5087 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5088 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5089 			int status = 0;
5090 
5091 			/*
5092 			 * EDMA operation has a TX completion FIFO
5093 			 * separate from the TX descriptor, so this
5094 			 * method of checking the "completion" status
5095 			 * is wrong.
5096 			 */
5097 			if (! sc->sc_isedma) {
5098 				status = (ath_hal_txprocdesc(ah,
5099 				    bf->bf_lastds,
5100 				    &bf->bf_status.ds_txstat) == HAL_OK);
5101 			}
5102 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
5103 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5104 			    bf->bf_m->m_len, 0, -1);
5105 		}
5106 #endif /* ATH_DEBUG */
5107 		/*
5108 		 * Since we're now doing magic in the completion
5109 		 * functions, we -must- call it for aggregation
5110 		 * destinations or BAW tracking will get upset.
5111 		 */
5112 		/*
5113 		 * Clear ATH_BUF_BUSY; the completion handler
5114 		 * will free the buffer.
5115 		 */
5116 		ATH_TXQ_UNLOCK(txq);
5117 		bf->bf_flags &= ~ATH_BUF_BUSY;
5118 		if (bf->bf_comp)
5119 			bf->bf_comp(sc, bf, 1);
5120 		else
5121 			ath_tx_default_comp(sc, bf, 1);
5122 	}
5123 
5124 	/*
5125 	 * Free the holding buffer if it exists
5126 	 */
5127 	ATH_TXQ_LOCK(txq);
5128 	ath_txq_freeholdingbuf(sc, txq);
5129 	ATH_TXQ_UNLOCK(txq);
5130 
5131 	/*
5132 	 * Drain software queued frames which are on
5133 	 * active TIDs.
5134 	 */
5135 	ath_tx_txq_drain(sc, txq);
5136 }
5137 
5138 static void
5139 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5140 {
5141 	struct ath_hal *ah = sc->sc_ah;
5142 
5143 	ATH_TXQ_LOCK_ASSERT(txq);
5144 
5145 	DPRINTF(sc, ATH_DEBUG_RESET,
5146 	    "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
5147 	    "link %p, holdingbf=%p\n",
5148 	    __func__,
5149 	    txq->axq_qnum,
5150 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5151 	    (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
5152 	    (int) ath_hal_numtxpending(ah, txq->axq_qnum),
5153 	    txq->axq_flags,
5154 	    txq->axq_link,
5155 	    txq->axq_holdingbf);
5156 
5157 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5158 	/* We've stopped TX DMA, so mark this as stopped. */
5159 	txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
5160 
5161 #ifdef	ATH_DEBUG
5162 	if ((sc->sc_debug & ATH_DEBUG_RESET)
5163 	    && (txq->axq_holdingbf != NULL)) {
5164 		ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
5165 	}
5166 #endif
5167 }
5168 
5169 int
5170 ath_stoptxdma(struct ath_softc *sc)
5171 {
5172 	struct ath_hal *ah = sc->sc_ah;
5173 	int i;
5174 
5175 	/* XXX return value */
5176 	if (sc->sc_invalid)
5177 		return 0;
5178 
5179 	if (!sc->sc_invalid) {
5180 		/* don't touch the hardware if marked invalid */
5181 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5182 		    __func__, sc->sc_bhalq,
5183 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5184 		    NULL);
5185 
5186 		/* stop the beacon queue */
5187 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5188 
5189 		/* Stop the data queues */
5190 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5191 			if (ATH_TXQ_SETUP(sc, i)) {
5192 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5193 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5194 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5195 			}
5196 		}
5197 	}
5198 
5199 	return 1;
5200 }
5201 
5202 #ifdef	ATH_DEBUG
5203 void
5204 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
5205 {
5206 	struct ath_hal *ah = sc->sc_ah;
5207 	struct ath_buf *bf;
5208 	int i = 0;
5209 
5210 	if (! (sc->sc_debug & ATH_DEBUG_RESET))
5211 		return;
5212 
5213 	device_printf(sc->sc_dev, "%s: Q%d: begin\n",
5214 	    __func__, txq->axq_qnum);
5215 	TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
5216 		ath_printtxbuf(sc, bf, txq->axq_qnum, i,
5217 			ath_hal_txprocdesc(ah, bf->bf_lastds,
5218 			    &bf->bf_status.ds_txstat) == HAL_OK);
5219 		i++;
5220 	}
5221 	device_printf(sc->sc_dev, "%s: Q%d: end\n",
5222 	    __func__, txq->axq_qnum);
5223 }
5224 #endif /* ATH_DEBUG */
5225 
5226 /*
5227  * Drain the transmit queues and reclaim resources.
5228  */
5229 void
5230 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5231 {
5232 	struct ath_hal *ah = sc->sc_ah;
5233 	struct ifnet *ifp = sc->sc_ifp;
5234 	int i;
5235 	struct ath_buf *bf_last;
5236 
5237 	(void) ath_stoptxdma(sc);
5238 
5239 	/*
5240 	 * Dump the queue contents
5241 	 */
5242 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5243 		/*
5244 		 * XXX TODO: should we just handle the completed TX frames
5245 		 * here, whether or not the reset is a full one or not?
5246 		 */
5247 		if (ATH_TXQ_SETUP(sc, i)) {
5248 #ifdef	ATH_DEBUG
5249 			if (sc->sc_debug & ATH_DEBUG_RESET)
5250 				ath_tx_dump(sc, &sc->sc_txq[i]);
5251 #endif	/* ATH_DEBUG */
5252 			if (reset_type == ATH_RESET_NOLOSS) {
5253 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
5254 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5255 				/*
5256 				 * Free the holding buffer; DMA is now
5257 				 * stopped.
5258 				 */
5259 				ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
5260 				/*
5261 				 * Setup the link pointer to be the
5262 				 * _last_ buffer/descriptor in the list.
5263 				 * If there's nothing in the list, set it
5264 				 * to NULL.
5265 				 */
5266 				bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
5267 				    axq_q_s);
5268 				if (bf_last != NULL) {
5269 					ath_hal_gettxdesclinkptr(ah,
5270 					    bf_last->bf_lastds,
5271 					    &sc->sc_txq[i].axq_link);
5272 				} else {
5273 					sc->sc_txq[i].axq_link = NULL;
5274 				}
5275 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5276 			} else
5277 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
5278 		}
5279 	}
5280 #ifdef ATH_DEBUG
5281 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5282 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5283 		if (bf != NULL && bf->bf_m != NULL) {
5284 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5285 				ath_hal_txprocdesc(ah, bf->bf_lastds,
5286 				    &bf->bf_status.ds_txstat) == HAL_OK);
5287 			ieee80211_dump_pkt(ifp->if_l2com,
5288 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5289 			    0, -1);
5290 		}
5291 	}
5292 #endif /* ATH_DEBUG */
5293 	IF_LOCK(&ifp->if_snd);
5294 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5295 	IF_UNLOCK(&ifp->if_snd);
5296 	sc->sc_wd_timer = 0;
5297 }
5298 
5299 /*
5300  * Update internal state after a channel change.
5301  */
5302 static void
5303 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5304 {
5305 	enum ieee80211_phymode mode;
5306 
5307 	/*
5308 	 * Change channels and update the h/w rate map
5309 	 * if we're switching; e.g. 11a to 11b/g.
5310 	 */
5311 	mode = ieee80211_chan2mode(chan);
5312 	if (mode != sc->sc_curmode)
5313 		ath_setcurmode(sc, mode);
5314 	sc->sc_curchan = chan;
5315 }
5316 
5317 /*
5318  * Set/change channels.  If the channel is really being changed,
5319  * it's done by resetting the chip.  To accomplish this we must
5320  * first cleanup any pending DMA, then restart stuff after a la
5321  * ath_init.
5322  */
5323 static int
5324 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5325 {
5326 	struct ifnet *ifp = sc->sc_ifp;
5327 	struct ieee80211com *ic = ifp->if_l2com;
5328 	struct ath_hal *ah = sc->sc_ah;
5329 	int ret = 0;
5330 
5331 	/* Treat this as an interface reset */
5332 	ATH_PCU_UNLOCK_ASSERT(sc);
5333 	ATH_UNLOCK_ASSERT(sc);
5334 
5335 	/* (Try to) stop TX/RX from occuring */
5336 	taskqueue_block(sc->sc_tq);
5337 
5338 	ATH_PCU_LOCK(sc);
5339 
5340 	/* Stop new RX/TX/interrupt completion */
5341 	if (ath_reset_grablock(sc, 1) == 0) {
5342 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5343 		    __func__);
5344 	}
5345 
5346 	ath_hal_intrset(ah, 0);
5347 
5348 	/* Stop pending RX/TX completion */
5349 	ath_txrx_stop_locked(sc);
5350 
5351 	ATH_PCU_UNLOCK(sc);
5352 
5353 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5354 	    __func__, ieee80211_chan2ieee(ic, chan),
5355 	    chan->ic_freq, chan->ic_flags);
5356 	if (chan != sc->sc_curchan) {
5357 		HAL_STATUS status;
5358 		/*
5359 		 * To switch channels clear any pending DMA operations;
5360 		 * wait long enough for the RX fifo to drain, reset the
5361 		 * hardware at the new frequency, and then re-enable
5362 		 * the relevant bits of the h/w.
5363 		 */
5364 #if 0
5365 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5366 #endif
5367 		ath_stoprecv(sc, 1);		/* turn off frame recv */
5368 		/*
5369 		 * First, handle completed TX/RX frames.
5370 		 */
5371 		ath_rx_flush(sc);
5372 		ath_draintxq(sc, ATH_RESET_NOLOSS);
5373 		/*
5374 		 * Next, flush the non-scheduled frames.
5375 		 */
5376 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5377 
5378 		ath_update_chainmasks(sc, chan);
5379 		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
5380 		    sc->sc_cur_rxchainmask);
5381 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5382 			if_printf(ifp, "%s: unable to reset "
5383 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5384 			    __func__, ieee80211_chan2ieee(ic, chan),
5385 			    chan->ic_freq, chan->ic_flags, status);
5386 			ret = EIO;
5387 			goto finish;
5388 		}
5389 		sc->sc_diversity = ath_hal_getdiversity(ah);
5390 
5391 		/* Let DFS at it in case it's a DFS channel */
5392 		ath_dfs_radar_enable(sc, chan);
5393 
5394 		/* Let spectral at in case spectral is enabled */
5395 		ath_spectral_enable(sc, chan);
5396 
5397 		/*
5398 		 * Let bluetooth coexistence at in case it's needed for this
5399 		 * channel
5400 		 */
5401 		ath_btcoex_enable(sc, ic->ic_curchan);
5402 
5403 		/*
5404 		 * If we're doing TDMA, enforce the TXOP limitation for chips
5405 		 * that support it.
5406 		 */
5407 		if (sc->sc_hasenforcetxop && sc->sc_tdma)
5408 			ath_hal_setenforcetxop(sc->sc_ah, 1);
5409 		else
5410 			ath_hal_setenforcetxop(sc->sc_ah, 0);
5411 
5412 		/*
5413 		 * Re-enable rx framework.
5414 		 */
5415 		if (ath_startrecv(sc) != 0) {
5416 			if_printf(ifp, "%s: unable to restart recv logic\n",
5417 			    __func__);
5418 			ret = EIO;
5419 			goto finish;
5420 		}
5421 
5422 		/*
5423 		 * Change channels and update the h/w rate map
5424 		 * if we're switching; e.g. 11a to 11b/g.
5425 		 */
5426 		ath_chan_change(sc, chan);
5427 
5428 		/*
5429 		 * Reset clears the beacon timers; reset them
5430 		 * here if needed.
5431 		 */
5432 		if (sc->sc_beacons) {		/* restart beacons */
5433 #ifdef IEEE80211_SUPPORT_TDMA
5434 			if (sc->sc_tdma)
5435 				ath_tdma_config(sc, NULL);
5436 			else
5437 #endif
5438 			ath_beacon_config(sc, NULL);
5439 		}
5440 
5441 		/*
5442 		 * Re-enable interrupts.
5443 		 */
5444 #if 0
5445 		ath_hal_intrset(ah, sc->sc_imask);
5446 #endif
5447 	}
5448 
5449 finish:
5450 	ATH_PCU_LOCK(sc);
5451 	sc->sc_inreset_cnt--;
5452 	/* XXX only do this if sc_inreset_cnt == 0? */
5453 	ath_hal_intrset(ah, sc->sc_imask);
5454 	ATH_PCU_UNLOCK(sc);
5455 
5456 	IF_LOCK(&ifp->if_snd);
5457 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5458 	IF_UNLOCK(&ifp->if_snd);
5459 	ath_txrx_start(sc);
5460 	/* XXX ath_start? */
5461 
5462 	return ret;
5463 }
5464 
5465 /*
5466  * Periodically recalibrate the PHY to account
5467  * for temperature/environment changes.
5468  */
5469 static void
5470 ath_calibrate(void *arg)
5471 {
5472 	struct ath_softc *sc = arg;
5473 	struct ath_hal *ah = sc->sc_ah;
5474 	struct ifnet *ifp = sc->sc_ifp;
5475 	struct ieee80211com *ic = ifp->if_l2com;
5476 	HAL_BOOL longCal, isCalDone = AH_TRUE;
5477 	HAL_BOOL aniCal, shortCal = AH_FALSE;
5478 	int nextcal;
5479 
5480 	/*
5481 	 * Force the hardware awake for ANI work.
5482 	 */
5483 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5484 
5485 	/* Skip trying to do this if we're in reset */
5486 	if (sc->sc_inreset_cnt)
5487 		goto restart;
5488 
5489 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5490 		goto restart;
5491 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5492 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5493 	if (sc->sc_doresetcal)
5494 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5495 
5496 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5497 	if (aniCal) {
5498 		sc->sc_stats.ast_ani_cal++;
5499 		sc->sc_lastani = ticks;
5500 		ath_hal_ani_poll(ah, sc->sc_curchan);
5501 	}
5502 
5503 	if (longCal) {
5504 		sc->sc_stats.ast_per_cal++;
5505 		sc->sc_lastlongcal = ticks;
5506 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5507 			/*
5508 			 * Rfgain is out of bounds, reset the chip
5509 			 * to load new gain values.
5510 			 */
5511 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5512 				"%s: rfgain change\n", __func__);
5513 			sc->sc_stats.ast_per_rfgain++;
5514 			sc->sc_resetcal = 0;
5515 			sc->sc_doresetcal = AH_TRUE;
5516 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5517 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5518 			ath_power_restore_power_state(sc);
5519 			return;
5520 		}
5521 		/*
5522 		 * If this long cal is after an idle period, then
5523 		 * reset the data collection state so we start fresh.
5524 		 */
5525 		if (sc->sc_resetcal) {
5526 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5527 			sc->sc_lastcalreset = ticks;
5528 			sc->sc_lastshortcal = ticks;
5529 			sc->sc_resetcal = 0;
5530 			sc->sc_doresetcal = AH_TRUE;
5531 		}
5532 	}
5533 
5534 	/* Only call if we're doing a short/long cal, not for ANI calibration */
5535 	if (shortCal || longCal) {
5536 		isCalDone = AH_FALSE;
5537 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5538 			if (longCal) {
5539 				/*
5540 				 * Calibrate noise floor data again in case of change.
5541 				 */
5542 				ath_hal_process_noisefloor(ah);
5543 			}
5544 		} else {
5545 			DPRINTF(sc, ATH_DEBUG_ANY,
5546 				"%s: calibration of channel %u failed\n",
5547 				__func__, sc->sc_curchan->ic_freq);
5548 			sc->sc_stats.ast_per_calfail++;
5549 		}
5550 		if (shortCal)
5551 			sc->sc_lastshortcal = ticks;
5552 	}
5553 	if (!isCalDone) {
5554 restart:
5555 		/*
5556 		 * Use a shorter interval to potentially collect multiple
5557 		 * data samples required to complete calibration.  Once
5558 		 * we're told the work is done we drop back to a longer
5559 		 * interval between requests.  We're more aggressive doing
5560 		 * work when operating as an AP to improve operation right
5561 		 * after startup.
5562 		 */
5563 		sc->sc_lastshortcal = ticks;
5564 		nextcal = ath_shortcalinterval*hz/1000;
5565 		if (sc->sc_opmode != HAL_M_HOSTAP)
5566 			nextcal *= 10;
5567 		sc->sc_doresetcal = AH_TRUE;
5568 	} else {
5569 		/* nextcal should be the shortest time for next event */
5570 		nextcal = ath_longcalinterval*hz;
5571 		if (sc->sc_lastcalreset == 0)
5572 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5573 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5574 			sc->sc_resetcal = 1;	/* setup reset next trip */
5575 		sc->sc_doresetcal = AH_FALSE;
5576 	}
5577 	/* ANI calibration may occur more often than short/long/resetcal */
5578 	if (ath_anicalinterval > 0)
5579 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5580 
5581 	if (nextcal != 0) {
5582 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5583 		    __func__, nextcal, isCalDone ? "" : "!");
5584 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5585 	} else {
5586 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5587 		    __func__);
5588 		/* NB: don't rearm timer */
5589 	}
5590 	/*
5591 	 * Restore power state now that we're done.
5592 	 */
5593 	ath_power_restore_power_state(sc);
5594 }
5595 
5596 static void
5597 ath_scan_start(struct ieee80211com *ic)
5598 {
5599 	struct ifnet *ifp = ic->ic_ifp;
5600 	struct ath_softc *sc = ifp->if_softc;
5601 	struct ath_hal *ah = sc->sc_ah;
5602 	u_int32_t rfilt;
5603 
5604 	/* XXX calibration timer? */
5605 
5606 	ATH_LOCK(sc);
5607 	sc->sc_scanning = 1;
5608 	sc->sc_syncbeacon = 0;
5609 	rfilt = ath_calcrxfilter(sc);
5610 	ATH_UNLOCK(sc);
5611 
5612 	ATH_PCU_LOCK(sc);
5613 	ath_hal_setrxfilter(ah, rfilt);
5614 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5615 	ATH_PCU_UNLOCK(sc);
5616 
5617 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5618 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5619 }
5620 
5621 static void
5622 ath_scan_end(struct ieee80211com *ic)
5623 {
5624 	struct ifnet *ifp = ic->ic_ifp;
5625 	struct ath_softc *sc = ifp->if_softc;
5626 	struct ath_hal *ah = sc->sc_ah;
5627 	u_int32_t rfilt;
5628 
5629 	ATH_LOCK(sc);
5630 	sc->sc_scanning = 0;
5631 	rfilt = ath_calcrxfilter(sc);
5632 	ATH_UNLOCK(sc);
5633 
5634 	ATH_PCU_LOCK(sc);
5635 	ath_hal_setrxfilter(ah, rfilt);
5636 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5637 
5638 	ath_hal_process_noisefloor(ah);
5639 	ATH_PCU_UNLOCK(sc);
5640 
5641 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5642 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5643 		 sc->sc_curaid);
5644 }
5645 
5646 #ifdef	ATH_ENABLE_11N
5647 /*
5648  * For now, just do a channel change.
5649  *
5650  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5651  * control state and resetting the hardware without dropping frames out
5652  * of the queue.
5653  *
5654  * The unfortunate trouble here is making absolutely sure that the
5655  * channel width change has propagated enough so the hardware
5656  * absolutely isn't handed bogus frames for it's current operating
5657  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5658  * does occur in parallel, we need to make certain we've blocked
5659  * any further ongoing TX (and RX, that can cause raw TX)
5660  * before we do this.
5661  */
5662 static void
5663 ath_update_chw(struct ieee80211com *ic)
5664 {
5665 	struct ifnet *ifp = ic->ic_ifp;
5666 	struct ath_softc *sc = ifp->if_softc;
5667 
5668 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5669 	ath_set_channel(ic);
5670 }
5671 #endif	/* ATH_ENABLE_11N */
5672 
5673 static void
5674 ath_set_channel(struct ieee80211com *ic)
5675 {
5676 	struct ifnet *ifp = ic->ic_ifp;
5677 	struct ath_softc *sc = ifp->if_softc;
5678 
5679 	ATH_LOCK(sc);
5680 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5681 	ATH_UNLOCK(sc);
5682 
5683 	(void) ath_chan_set(sc, ic->ic_curchan);
5684 	/*
5685 	 * If we are returning to our bss channel then mark state
5686 	 * so the next recv'd beacon's tsf will be used to sync the
5687 	 * beacon timers.  Note that since we only hear beacons in
5688 	 * sta/ibss mode this has no effect in other operating modes.
5689 	 */
5690 	ATH_LOCK(sc);
5691 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5692 		sc->sc_syncbeacon = 1;
5693 	ath_power_restore_power_state(sc);
5694 	ATH_UNLOCK(sc);
5695 }
5696 
5697 /*
5698  * Walk the vap list and check if there any vap's in RUN state.
5699  */
5700 static int
5701 ath_isanyrunningvaps(struct ieee80211vap *this)
5702 {
5703 	struct ieee80211com *ic = this->iv_ic;
5704 	struct ieee80211vap *vap;
5705 
5706 	IEEE80211_LOCK_ASSERT(ic);
5707 
5708 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5709 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5710 			return 1;
5711 	}
5712 	return 0;
5713 }
5714 
5715 static int
5716 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5717 {
5718 	struct ieee80211com *ic = vap->iv_ic;
5719 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5720 	struct ath_vap *avp = ATH_VAP(vap);
5721 	struct ath_hal *ah = sc->sc_ah;
5722 	struct ieee80211_node *ni = NULL;
5723 	int i, error, stamode;
5724 	u_int32_t rfilt;
5725 	int csa_run_transition = 0;
5726 	enum ieee80211_state ostate = vap->iv_state;
5727 
5728 	static const HAL_LED_STATE leds[] = {
5729 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5730 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5731 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5732 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5733 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5734 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5735 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5736 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5737 	};
5738 
5739 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5740 		ieee80211_state_name[ostate],
5741 		ieee80211_state_name[nstate]);
5742 
5743 	/*
5744 	 * net80211 _should_ have the comlock asserted at this point.
5745 	 * There are some comments around the calls to vap->iv_newstate
5746 	 * which indicate that it (newstate) may end up dropping the
5747 	 * lock.  This and the subsequent lock assert check after newstate
5748 	 * are an attempt to catch these and figure out how/why.
5749 	 */
5750 	IEEE80211_LOCK_ASSERT(ic);
5751 
5752 	/* Before we touch the hardware - wake it up */
5753 	ATH_LOCK(sc);
5754 	/*
5755 	 * If the NIC is in anything other than SLEEP state,
5756 	 * we need to ensure that self-generated frames are
5757 	 * set for PWRMGT=0.  Otherwise we may end up with
5758 	 * strange situations.
5759 	 *
5760 	 * XXX TODO: is this actually the case? :-)
5761 	 */
5762 	if (nstate != IEEE80211_S_SLEEP)
5763 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5764 
5765 	/*
5766 	 * Now, wake the thing up.
5767 	 */
5768 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5769 	ATH_UNLOCK(sc);
5770 
5771 	if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5772 		csa_run_transition = 1;
5773 
5774 	callout_drain(&sc->sc_cal_ch);
5775 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5776 
5777 	if (nstate == IEEE80211_S_SCAN) {
5778 		/*
5779 		 * Scanning: turn off beacon miss and don't beacon.
5780 		 * Mark beacon state so when we reach RUN state we'll
5781 		 * [re]setup beacons.  Unblock the task q thread so
5782 		 * deferred interrupt processing is done.
5783 		 */
5784 
5785 		/* Ensure we stay awake during scan */
5786 		ATH_LOCK(sc);
5787 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5788 		ath_power_setpower(sc, HAL_PM_AWAKE);
5789 		ATH_UNLOCK(sc);
5790 
5791 		ath_hal_intrset(ah,
5792 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5793 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5794 		sc->sc_beacons = 0;
5795 		taskqueue_unblock(sc->sc_tq);
5796 	}
5797 
5798 	ni = ieee80211_ref_node(vap->iv_bss);
5799 	rfilt = ath_calcrxfilter(sc);
5800 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5801 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5802 		   vap->iv_opmode == IEEE80211_M_IBSS);
5803 
5804 	/*
5805 	 * XXX Dont need to do this (and others) if we've transitioned
5806 	 * from SLEEP->RUN.
5807 	 */
5808 	if (stamode && nstate == IEEE80211_S_RUN) {
5809 		sc->sc_curaid = ni->ni_associd;
5810 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5811 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5812 	}
5813 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5814 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5815 	ath_hal_setrxfilter(ah, rfilt);
5816 
5817 	/* XXX is this to restore keycache on resume? */
5818 	if (vap->iv_opmode != IEEE80211_M_STA &&
5819 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5820 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5821 			if (ath_hal_keyisvalid(ah, i))
5822 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5823 	}
5824 
5825 	/*
5826 	 * Invoke the parent method to do net80211 work.
5827 	 */
5828 	error = avp->av_newstate(vap, nstate, arg);
5829 	if (error != 0)
5830 		goto bad;
5831 
5832 	/*
5833 	 * See above: ensure av_newstate() doesn't drop the lock
5834 	 * on us.
5835 	 */
5836 	IEEE80211_LOCK_ASSERT(ic);
5837 
5838 	if (nstate == IEEE80211_S_RUN) {
5839 		/* NB: collect bss node again, it may have changed */
5840 		ieee80211_free_node(ni);
5841 		ni = ieee80211_ref_node(vap->iv_bss);
5842 
5843 		DPRINTF(sc, ATH_DEBUG_STATE,
5844 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5845 		    "capinfo 0x%04x chan %d\n", __func__,
5846 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5847 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5848 
5849 		switch (vap->iv_opmode) {
5850 #ifdef IEEE80211_SUPPORT_TDMA
5851 		case IEEE80211_M_AHDEMO:
5852 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5853 				break;
5854 			/* fall thru... */
5855 #endif
5856 		case IEEE80211_M_HOSTAP:
5857 		case IEEE80211_M_IBSS:
5858 		case IEEE80211_M_MBSS:
5859 			/*
5860 			 * Allocate and setup the beacon frame.
5861 			 *
5862 			 * Stop any previous beacon DMA.  This may be
5863 			 * necessary, for example, when an ibss merge
5864 			 * causes reconfiguration; there will be a state
5865 			 * transition from RUN->RUN that means we may
5866 			 * be called with beacon transmission active.
5867 			 */
5868 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5869 
5870 			error = ath_beacon_alloc(sc, ni);
5871 			if (error != 0)
5872 				goto bad;
5873 			/*
5874 			 * If joining an adhoc network defer beacon timer
5875 			 * configuration to the next beacon frame so we
5876 			 * have a current TSF to use.  Otherwise we're
5877 			 * starting an ibss/bss so there's no need to delay;
5878 			 * if this is the first vap moving to RUN state, then
5879 			 * beacon state needs to be [re]configured.
5880 			 */
5881 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5882 			    ni->ni_tstamp.tsf != 0) {
5883 				sc->sc_syncbeacon = 1;
5884 			} else if (!sc->sc_beacons) {
5885 #ifdef IEEE80211_SUPPORT_TDMA
5886 				if (vap->iv_caps & IEEE80211_C_TDMA)
5887 					ath_tdma_config(sc, vap);
5888 				else
5889 #endif
5890 					ath_beacon_config(sc, vap);
5891 				sc->sc_beacons = 1;
5892 			}
5893 			break;
5894 		case IEEE80211_M_STA:
5895 			/*
5896 			 * Defer beacon timer configuration to the next
5897 			 * beacon frame so we have a current TSF to use
5898 			 * (any TSF collected when scanning is likely old).
5899 			 * However if it's due to a CSA -> RUN transition,
5900 			 * force a beacon update so we pick up a lack of
5901 			 * beacons from an AP in CAC and thus force a
5902 			 * scan.
5903 			 *
5904 			 * And, there's also corner cases here where
5905 			 * after a scan, the AP may have disappeared.
5906 			 * In that case, we may not receive an actual
5907 			 * beacon to update the beacon timer and thus we
5908 			 * won't get notified of the missing beacons.
5909 			 */
5910 			if (ostate != IEEE80211_S_RUN &&
5911 			    ostate != IEEE80211_S_SLEEP) {
5912 				DPRINTF(sc, ATH_DEBUG_BEACON,
5913 				    "%s: STA; syncbeacon=1\n", __func__);
5914 				sc->sc_syncbeacon = 1;
5915 
5916 				if (csa_run_transition)
5917 					ath_beacon_config(sc, vap);
5918 
5919 			/*
5920 			 * PR: kern/175227
5921 			 *
5922 			 * Reconfigure beacons during reset; as otherwise
5923 			 * we won't get the beacon timers reprogrammed
5924 			 * after a reset and thus we won't pick up a
5925 			 * beacon miss interrupt.
5926 			 *
5927 			 * Hopefully we'll see a beacon before the BMISS
5928 			 * timer fires (too often), leading to a STA
5929 			 * disassociation.
5930 			 */
5931 				sc->sc_beacons = 1;
5932 			}
5933 			break;
5934 		case IEEE80211_M_MONITOR:
5935 			/*
5936 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5937 			 * transitions so we must re-enable interrupts here to
5938 			 * handle the case of a single monitor mode vap.
5939 			 */
5940 			ath_hal_intrset(ah, sc->sc_imask);
5941 			break;
5942 		case IEEE80211_M_WDS:
5943 			break;
5944 		default:
5945 			break;
5946 		}
5947 		/*
5948 		 * Let the hal process statistics collected during a
5949 		 * scan so it can provide calibrated noise floor data.
5950 		 */
5951 		ath_hal_process_noisefloor(ah);
5952 		/*
5953 		 * Reset rssi stats; maybe not the best place...
5954 		 */
5955 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5956 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5957 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5958 
5959 		/*
5960 		 * Force awake for RUN mode.
5961 		 */
5962 		ATH_LOCK(sc);
5963 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5964 		ath_power_setpower(sc, HAL_PM_AWAKE);
5965 		ATH_UNLOCK(sc);
5966 
5967 		/*
5968 		 * Finally, start any timers and the task q thread
5969 		 * (in case we didn't go through SCAN state).
5970 		 */
5971 		if (ath_longcalinterval != 0) {
5972 			/* start periodic recalibration timer */
5973 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5974 		} else {
5975 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5976 			    "%s: calibration disabled\n", __func__);
5977 		}
5978 
5979 		taskqueue_unblock(sc->sc_tq);
5980 	} else if (nstate == IEEE80211_S_INIT) {
5981 		/*
5982 		 * If there are no vaps left in RUN state then
5983 		 * shutdown host/driver operation:
5984 		 * o disable interrupts
5985 		 * o disable the task queue thread
5986 		 * o mark beacon processing as stopped
5987 		 */
5988 		if (!ath_isanyrunningvaps(vap)) {
5989 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5990 			/* disable interrupts  */
5991 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5992 			taskqueue_block(sc->sc_tq);
5993 			sc->sc_beacons = 0;
5994 		}
5995 #ifdef IEEE80211_SUPPORT_TDMA
5996 		ath_hal_setcca(ah, AH_TRUE);
5997 #endif
5998 	} else if (nstate == IEEE80211_S_SLEEP) {
5999 		/* We're going to sleep, so transition appropriately */
6000 		/* For now, only do this if we're a single STA vap */
6001 		if (sc->sc_nvaps == 1 &&
6002 		    vap->iv_opmode == IEEE80211_M_STA) {
6003 			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon);
6004 			ATH_LOCK(sc);
6005 			/*
6006 			 * Always at least set the self-generated
6007 			 * frame config to set PWRMGT=1.
6008 			 */
6009 			ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP);
6010 
6011 			/*
6012 			 * If we're not syncing beacons, transition
6013 			 * to NETWORK_SLEEP.
6014 			 *
6015 			 * We stay awake if syncbeacon > 0 in case
6016 			 * we need to listen for some beacons otherwise
6017 			 * our beacon timer config may be wrong.
6018 			 */
6019 			if (sc->sc_syncbeacon == 0) {
6020 				ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP);
6021 			}
6022 			ATH_UNLOCK(sc);
6023 		}
6024 	}
6025 bad:
6026 	ieee80211_free_node(ni);
6027 
6028 	/*
6029 	 * Restore the power state - either to what it was, or
6030 	 * to network_sleep if it's alright.
6031 	 */
6032 	ATH_LOCK(sc);
6033 	ath_power_restore_power_state(sc);
6034 	ATH_UNLOCK(sc);
6035 	return error;
6036 }
6037 
6038 /*
6039  * Allocate a key cache slot to the station so we can
6040  * setup a mapping from key index to node. The key cache
6041  * slot is needed for managing antenna state and for
6042  * compression when stations do not use crypto.  We do
6043  * it uniliaterally here; if crypto is employed this slot
6044  * will be reassigned.
6045  */
6046 static void
6047 ath_setup_stationkey(struct ieee80211_node *ni)
6048 {
6049 	struct ieee80211vap *vap = ni->ni_vap;
6050 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6051 	ieee80211_keyix keyix, rxkeyix;
6052 
6053 	/* XXX should take a locked ref to vap->iv_bss */
6054 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6055 		/*
6056 		 * Key cache is full; we'll fall back to doing
6057 		 * the more expensive lookup in software.  Note
6058 		 * this also means no h/w compression.
6059 		 */
6060 		/* XXX msg+statistic */
6061 	} else {
6062 		/* XXX locking? */
6063 		ni->ni_ucastkey.wk_keyix = keyix;
6064 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6065 		/* NB: must mark device key to get called back on delete */
6066 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6067 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6068 		/* NB: this will create a pass-thru key entry */
6069 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
6070 	}
6071 }
6072 
6073 /*
6074  * Setup driver-specific state for a newly associated node.
6075  * Note that we're called also on a re-associate, the isnew
6076  * param tells us if this is the first time or not.
6077  */
6078 static void
6079 ath_newassoc(struct ieee80211_node *ni, int isnew)
6080 {
6081 	struct ath_node *an = ATH_NODE(ni);
6082 	struct ieee80211vap *vap = ni->ni_vap;
6083 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6084 	const struct ieee80211_txparam *tp = ni->ni_txparms;
6085 
6086 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
6087 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
6088 
6089 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n",
6090 	    __func__,
6091 	    ni->ni_macaddr,
6092 	    ":",
6093 	    isnew,
6094 	    an->an_is_powersave);
6095 
6096 	ATH_NODE_LOCK(an);
6097 	ath_rate_newassoc(sc, an, isnew);
6098 	ATH_NODE_UNLOCK(an);
6099 
6100 	if (isnew &&
6101 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6102 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6103 		ath_setup_stationkey(ni);
6104 
6105 	/*
6106 	 * If we're reassociating, make sure that any paused queues
6107 	 * get unpaused.
6108 	 *
6109 	 * Now, we may hvae frames in the hardware queue for this node.
6110 	 * So if we are reassociating and there are frames in the queue,
6111 	 * we need to go through the cleanup path to ensure that they're
6112 	 * marked as non-aggregate.
6113 	 */
6114 	if (! isnew) {
6115 		DPRINTF(sc, ATH_DEBUG_NODE,
6116 		    "%s: %6D: reassoc; is_powersave=%d\n",
6117 		    __func__,
6118 		    ni->ni_macaddr,
6119 		    ":",
6120 		    an->an_is_powersave);
6121 
6122 		/* XXX for now, we can't hold the lock across assoc */
6123 		ath_tx_node_reassoc(sc, an);
6124 
6125 		/* XXX for now, we can't hold the lock across wakeup */
6126 		if (an->an_is_powersave)
6127 			ath_tx_node_wakeup(sc, an);
6128 	}
6129 }
6130 
6131 static int
6132 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6133 	int nchans, struct ieee80211_channel chans[])
6134 {
6135 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6136 	struct ath_hal *ah = sc->sc_ah;
6137 	HAL_STATUS status;
6138 
6139 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6140 	    "%s: rd %u cc %u location %c%s\n",
6141 	    __func__, reg->regdomain, reg->country, reg->location,
6142 	    reg->ecm ? " ecm" : "");
6143 
6144 	status = ath_hal_set_channels(ah, chans, nchans,
6145 	    reg->country, reg->regdomain);
6146 	if (status != HAL_OK) {
6147 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6148 		    __func__, status);
6149 		return EINVAL;		/* XXX */
6150 	}
6151 
6152 	return 0;
6153 }
6154 
6155 static void
6156 ath_getradiocaps(struct ieee80211com *ic,
6157 	int maxchans, int *nchans, struct ieee80211_channel chans[])
6158 {
6159 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6160 	struct ath_hal *ah = sc->sc_ah;
6161 
6162 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6163 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
6164 
6165 	/* XXX check return */
6166 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6167 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6168 
6169 }
6170 
6171 static int
6172 ath_getchannels(struct ath_softc *sc)
6173 {
6174 	struct ifnet *ifp = sc->sc_ifp;
6175 	struct ieee80211com *ic = ifp->if_l2com;
6176 	struct ath_hal *ah = sc->sc_ah;
6177 	HAL_STATUS status;
6178 
6179 	/*
6180 	 * Collect channel set based on EEPROM contents.
6181 	 */
6182 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6183 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6184 	if (status != HAL_OK) {
6185 		if_printf(ifp, "%s: unable to collect channel list from hal, "
6186 		    "status %d\n", __func__, status);
6187 		return EINVAL;
6188 	}
6189 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6190 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6191 	/* XXX map Atheros sku's to net80211 SKU's */
6192 	/* XXX net80211 types too small */
6193 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6194 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6195 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
6196 	ic->ic_regdomain.isocc[1] = ' ';
6197 
6198 	ic->ic_regdomain.ecm = 1;
6199 	ic->ic_regdomain.location = 'I';
6200 
6201 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6202 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6203 	    __func__, sc->sc_eerd, sc->sc_eecc,
6204 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6205 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6206 	return 0;
6207 }
6208 
6209 static int
6210 ath_rate_setup(struct ath_softc *sc, u_int mode)
6211 {
6212 	struct ath_hal *ah = sc->sc_ah;
6213 	const HAL_RATE_TABLE *rt;
6214 
6215 	switch (mode) {
6216 	case IEEE80211_MODE_11A:
6217 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6218 		break;
6219 	case IEEE80211_MODE_HALF:
6220 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6221 		break;
6222 	case IEEE80211_MODE_QUARTER:
6223 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6224 		break;
6225 	case IEEE80211_MODE_11B:
6226 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6227 		break;
6228 	case IEEE80211_MODE_11G:
6229 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6230 		break;
6231 	case IEEE80211_MODE_TURBO_A:
6232 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6233 		break;
6234 	case IEEE80211_MODE_TURBO_G:
6235 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6236 		break;
6237 	case IEEE80211_MODE_STURBO_A:
6238 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6239 		break;
6240 	case IEEE80211_MODE_11NA:
6241 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6242 		break;
6243 	case IEEE80211_MODE_11NG:
6244 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6245 		break;
6246 	default:
6247 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6248 			__func__, mode);
6249 		return 0;
6250 	}
6251 	sc->sc_rates[mode] = rt;
6252 	return (rt != NULL);
6253 }
6254 
6255 static void
6256 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6257 {
6258 #define	N(a)	(sizeof(a)/sizeof(a[0]))
6259 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6260 	static const struct {
6261 		u_int		rate;		/* tx/rx 802.11 rate */
6262 		u_int16_t	timeOn;		/* LED on time (ms) */
6263 		u_int16_t	timeOff;	/* LED off time (ms) */
6264 	} blinkrates[] = {
6265 		{ 108,  40,  10 },
6266 		{  96,  44,  11 },
6267 		{  72,  50,  13 },
6268 		{  48,  57,  14 },
6269 		{  36,  67,  16 },
6270 		{  24,  80,  20 },
6271 		{  22, 100,  25 },
6272 		{  18, 133,  34 },
6273 		{  12, 160,  40 },
6274 		{  10, 200,  50 },
6275 		{   6, 240,  58 },
6276 		{   4, 267,  66 },
6277 		{   2, 400, 100 },
6278 		{   0, 500, 130 },
6279 		/* XXX half/quarter rates */
6280 	};
6281 	const HAL_RATE_TABLE *rt;
6282 	int i, j;
6283 
6284 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6285 	rt = sc->sc_rates[mode];
6286 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6287 	for (i = 0; i < rt->rateCount; i++) {
6288 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6289 		if (rt->info[i].phy != IEEE80211_T_HT)
6290 			sc->sc_rixmap[ieeerate] = i;
6291 		else
6292 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6293 	}
6294 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6295 	for (i = 0; i < N(sc->sc_hwmap); i++) {
6296 		if (i >= rt->rateCount) {
6297 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6298 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6299 			continue;
6300 		}
6301 		sc->sc_hwmap[i].ieeerate =
6302 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6303 		if (rt->info[i].phy == IEEE80211_T_HT)
6304 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6305 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6306 		if (rt->info[i].shortPreamble ||
6307 		    rt->info[i].phy == IEEE80211_T_OFDM)
6308 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6309 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6310 		for (j = 0; j < N(blinkrates)-1; j++)
6311 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6312 				break;
6313 		/* NB: this uses the last entry if the rate isn't found */
6314 		/* XXX beware of overlow */
6315 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6316 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6317 	}
6318 	sc->sc_currates = rt;
6319 	sc->sc_curmode = mode;
6320 	/*
6321 	 * All protection frames are transmited at 2Mb/s for
6322 	 * 11g, otherwise at 1Mb/s.
6323 	 */
6324 	if (mode == IEEE80211_MODE_11G)
6325 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6326 	else
6327 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6328 	/* NB: caller is responsible for resetting rate control state */
6329 #undef N
6330 }
6331 
6332 static void
6333 ath_watchdog(void *arg)
6334 {
6335 	struct ath_softc *sc = arg;
6336 	int do_reset = 0;
6337 
6338 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6339 		struct ifnet *ifp = sc->sc_ifp;
6340 		uint32_t hangs;
6341 
6342 		ATH_LOCK(sc);
6343 		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6344 		ATH_UNLOCK(sc);
6345 
6346 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6347 		    hangs != 0) {
6348 			if_printf(ifp, "%s hang detected (0x%x)\n",
6349 			    hangs & 0xff ? "bb" : "mac", hangs);
6350 		} else
6351 			if_printf(ifp, "device timeout\n");
6352 		do_reset = 1;
6353 		ifp->if_oerrors++;
6354 		sc->sc_stats.ast_watchdog++;
6355 
6356 		ATH_LOCK(sc);
6357 		ath_power_restore_power_state(sc);
6358 		ATH_UNLOCK(sc);
6359 	}
6360 
6361 	/*
6362 	 * We can't hold the lock across the ath_reset() call.
6363 	 *
6364 	 * And since this routine can't hold a lock and sleep,
6365 	 * do the reset deferred.
6366 	 */
6367 	if (do_reset) {
6368 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
6369 	}
6370 
6371 	callout_schedule(&sc->sc_wd_ch, hz);
6372 }
6373 
6374 /*
6375  * Fetch the rate control statistics for the given node.
6376  */
6377 static int
6378 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
6379 {
6380 	struct ath_node *an;
6381 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
6382 	struct ieee80211_node *ni;
6383 	int error = 0;
6384 
6385 	/* Perform a lookup on the given node */
6386 	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
6387 	if (ni == NULL) {
6388 		error = EINVAL;
6389 		goto bad;
6390 	}
6391 
6392 	/* Lock the ath_node */
6393 	an = ATH_NODE(ni);
6394 	ATH_NODE_LOCK(an);
6395 
6396 	/* Fetch the rate control stats for this node */
6397 	error = ath_rate_fetch_node_stats(sc, an, rs);
6398 
6399 	/* No matter what happens here, just drop through */
6400 
6401 	/* Unlock the ath_node */
6402 	ATH_NODE_UNLOCK(an);
6403 
6404 	/* Unref the node */
6405 	ieee80211_node_decref(ni);
6406 
6407 bad:
6408 	return (error);
6409 }
6410 
6411 #ifdef ATH_DIAGAPI
6412 /*
6413  * Diagnostic interface to the HAL.  This is used by various
6414  * tools to do things like retrieve register contents for
6415  * debugging.  The mechanism is intentionally opaque so that
6416  * it can change frequently w/o concern for compatiblity.
6417  */
6418 static int
6419 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6420 {
6421 	struct ath_hal *ah = sc->sc_ah;
6422 	u_int id = ad->ad_id & ATH_DIAG_ID;
6423 	void *indata = NULL;
6424 	void *outdata = NULL;
6425 	u_int32_t insize = ad->ad_in_size;
6426 	u_int32_t outsize = ad->ad_out_size;
6427 	int error = 0;
6428 
6429 	if (ad->ad_id & ATH_DIAG_IN) {
6430 		/*
6431 		 * Copy in data.
6432 		 */
6433 		indata = malloc(insize, M_TEMP, M_NOWAIT);
6434 		if (indata == NULL) {
6435 			error = ENOMEM;
6436 			goto bad;
6437 		}
6438 		error = copyin(ad->ad_in_data, indata, insize);
6439 		if (error)
6440 			goto bad;
6441 	}
6442 	if (ad->ad_id & ATH_DIAG_DYN) {
6443 		/*
6444 		 * Allocate a buffer for the results (otherwise the HAL
6445 		 * returns a pointer to a buffer where we can read the
6446 		 * results).  Note that we depend on the HAL leaving this
6447 		 * pointer for us to use below in reclaiming the buffer;
6448 		 * may want to be more defensive.
6449 		 */
6450 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6451 		if (outdata == NULL) {
6452 			error = ENOMEM;
6453 			goto bad;
6454 		}
6455 	}
6456 
6457 
6458 	ATH_LOCK(sc);
6459 	if (id != HAL_DIAG_REGS)
6460 		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6461 	ATH_UNLOCK(sc);
6462 
6463 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6464 		if (outsize < ad->ad_out_size)
6465 			ad->ad_out_size = outsize;
6466 		if (outdata != NULL)
6467 			error = copyout(outdata, ad->ad_out_data,
6468 					ad->ad_out_size);
6469 	} else {
6470 		error = EINVAL;
6471 	}
6472 
6473 	ATH_LOCK(sc);
6474 	if (id != HAL_DIAG_REGS)
6475 		ath_power_restore_power_state(sc);
6476 	ATH_UNLOCK(sc);
6477 
6478 bad:
6479 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6480 		free(indata, M_TEMP);
6481 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6482 		free(outdata, M_TEMP);
6483 	return error;
6484 }
6485 #endif /* ATH_DIAGAPI */
6486 
6487 static int
6488 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6489 {
6490 #define	IS_RUNNING(ifp) \
6491 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6492 	struct ath_softc *sc = ifp->if_softc;
6493 	struct ieee80211com *ic = ifp->if_l2com;
6494 	struct ifreq *ifr = (struct ifreq *)data;
6495 	const HAL_RATE_TABLE *rt;
6496 	int error = 0;
6497 
6498 	switch (cmd) {
6499 	case SIOCSIFFLAGS:
6500 		if (IS_RUNNING(ifp)) {
6501 			/*
6502 			 * To avoid rescanning another access point,
6503 			 * do not call ath_init() here.  Instead,
6504 			 * only reflect promisc mode settings.
6505 			 */
6506 			ATH_LOCK(sc);
6507 			ath_power_set_power_state(sc, HAL_PM_AWAKE);
6508 			ath_mode_init(sc);
6509 			ath_power_restore_power_state(sc);
6510 			ATH_UNLOCK(sc);
6511 		} else if (ifp->if_flags & IFF_UP) {
6512 			/*
6513 			 * Beware of being called during attach/detach
6514 			 * to reset promiscuous mode.  In that case we
6515 			 * will still be marked UP but not RUNNING.
6516 			 * However trying to re-init the interface
6517 			 * is the wrong thing to do as we've already
6518 			 * torn down much of our state.  There's
6519 			 * probably a better way to deal with this.
6520 			 */
6521 			if (!sc->sc_invalid)
6522 				ath_init(sc);	/* XXX lose error */
6523 		} else {
6524 			ATH_LOCK(sc);
6525 			ath_stop_locked(ifp);
6526 			if (!sc->sc_invalid)
6527 				ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
6528 			ATH_UNLOCK(sc);
6529 		}
6530 		break;
6531 	case SIOCGIFMEDIA:
6532 	case SIOCSIFMEDIA:
6533 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6534 		break;
6535 	case SIOCGATHSTATS:
6536 		/* NB: embed these numbers to get a consistent view */
6537 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6538 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6539 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6540 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6541 #ifdef IEEE80211_SUPPORT_TDMA
6542 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6543 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6544 #endif
6545 		rt = sc->sc_currates;
6546 		sc->sc_stats.ast_tx_rate =
6547 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6548 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
6549 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
6550 		return copyout(&sc->sc_stats,
6551 		    ifr->ifr_data, sizeof (sc->sc_stats));
6552 	case SIOCGATHAGSTATS:
6553 		return copyout(&sc->sc_aggr_stats,
6554 		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
6555 	case SIOCZATHSTATS:
6556 		error = priv_check(curthread, PRIV_DRIVER);
6557 		if (error == 0) {
6558 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6559 			memset(&sc->sc_aggr_stats, 0,
6560 			    sizeof(sc->sc_aggr_stats));
6561 			memset(&sc->sc_intr_stats, 0,
6562 			    sizeof(sc->sc_intr_stats));
6563 		}
6564 		break;
6565 #ifdef ATH_DIAGAPI
6566 	case SIOCGATHDIAG:
6567 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6568 		break;
6569 	case SIOCGATHPHYERR:
6570 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
6571 		break;
6572 #endif
6573 	case SIOCGATHSPECTRAL:
6574 		error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
6575 		break;
6576 	case SIOCGATHNODERATESTATS:
6577 		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
6578 		break;
6579 	case SIOCGIFADDR:
6580 		error = ether_ioctl(ifp, cmd, data);
6581 		break;
6582 	default:
6583 		error = EINVAL;
6584 		break;
6585 	}
6586 	return error;
6587 #undef IS_RUNNING
6588 }
6589 
6590 /*
6591  * Announce various information on device/driver attach.
6592  */
6593 static void
6594 ath_announce(struct ath_softc *sc)
6595 {
6596 	struct ifnet *ifp = sc->sc_ifp;
6597 	struct ath_hal *ah = sc->sc_ah;
6598 
6599 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6600 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6601 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6602 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6603 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6604 	if (bootverbose) {
6605 		int i;
6606 		for (i = 0; i <= WME_AC_VO; i++) {
6607 			struct ath_txq *txq = sc->sc_ac2q[i];
6608 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6609 				txq->axq_qnum, ieee80211_wme_acnames[i]);
6610 		}
6611 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6612 			sc->sc_cabq->axq_qnum);
6613 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6614 	}
6615 	if (ath_rxbuf != ATH_RXBUF)
6616 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6617 	if (ath_txbuf != ATH_TXBUF)
6618 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6619 	if (sc->sc_mcastkey && bootverbose)
6620 		if_printf(ifp, "using multicast key search\n");
6621 }
6622 
6623 static void
6624 ath_dfs_tasklet(void *p, int npending)
6625 {
6626 	struct ath_softc *sc = (struct ath_softc *) p;
6627 	struct ifnet *ifp = sc->sc_ifp;
6628 	struct ieee80211com *ic = ifp->if_l2com;
6629 
6630 	/*
6631 	 * If previous processing has found a radar event,
6632 	 * signal this to the net80211 layer to begin DFS
6633 	 * processing.
6634 	 */
6635 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6636 		/* DFS event found, initiate channel change */
6637 		/*
6638 		 * XXX doesn't currently tell us whether the event
6639 		 * XXX was found in the primary or extension
6640 		 * XXX channel!
6641 		 */
6642 		IEEE80211_LOCK(ic);
6643 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6644 		IEEE80211_UNLOCK(ic);
6645 	}
6646 }
6647 
6648 /*
6649  * Enable/disable power save.  This must be called with
6650  * no TX driver locks currently held, so it should only
6651  * be called from the RX path (which doesn't hold any
6652  * TX driver locks.)
6653  */
6654 static void
6655 ath_node_powersave(struct ieee80211_node *ni, int enable)
6656 {
6657 #ifdef	ATH_SW_PSQ
6658 	struct ath_node *an = ATH_NODE(ni);
6659 	struct ieee80211com *ic = ni->ni_ic;
6660 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6661 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6662 
6663 	/* XXX and no TXQ locks should be held here */
6664 
6665 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n",
6666 	    __func__,
6667 	    ni->ni_macaddr,
6668 	    ":",
6669 	    !! enable);
6670 
6671 	/* Suspend or resume software queue handling */
6672 	if (enable)
6673 		ath_tx_node_sleep(sc, an);
6674 	else
6675 		ath_tx_node_wakeup(sc, an);
6676 
6677 	/* Update net80211 state */
6678 	avp->av_node_ps(ni, enable);
6679 #else
6680 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6681 
6682 	/* Update net80211 state */
6683 	avp->av_node_ps(ni, enable);
6684 #endif/* ATH_SW_PSQ */
6685 }
6686 
6687 /*
6688  * Notification from net80211 that the powersave queue state has
6689  * changed.
6690  *
6691  * Since the software queue also may have some frames:
6692  *
6693  * + if the node software queue has frames and the TID state
6694  *   is 0, we set the TIM;
6695  * + if the node and the stack are both empty, we clear the TIM bit.
6696  * + If the stack tries to set the bit, always set it.
6697  * + If the stack tries to clear the bit, only clear it if the
6698  *   software queue in question is also cleared.
6699  *
6700  * TODO: this is called during node teardown; so let's ensure this
6701  * is all correctly handled and that the TIM bit is cleared.
6702  * It may be that the node flush is called _AFTER_ the net80211
6703  * stack clears the TIM.
6704  *
6705  * Here is the racy part.  Since it's possible >1 concurrent,
6706  * overlapping TXes will appear complete with a TX completion in
6707  * another thread, it's possible that the concurrent TIM calls will
6708  * clash.  We can't hold the node lock here because setting the
6709  * TIM grabs the net80211 comlock and this may cause a LOR.
6710  * The solution is either to totally serialise _everything_ at
6711  * this point (ie, all TX, completion and any reset/flush go into
6712  * one taskqueue) or a new "ath TIM lock" needs to be created that
6713  * just wraps the driver state change and this call to avp->av_set_tim().
6714  *
6715  * The same race exists in the net80211 power save queue handling
6716  * as well.  Since multiple transmitting threads may queue frames
6717  * into the driver, as well as ps-poll and the driver transmitting
6718  * frames (and thus clearing the psq), it's quite possible that
6719  * a packet entering the PSQ and a ps-poll being handled will
6720  * race, causing the TIM to be cleared and not re-set.
6721  */
6722 static int
6723 ath_node_set_tim(struct ieee80211_node *ni, int enable)
6724 {
6725 #ifdef	ATH_SW_PSQ
6726 	struct ieee80211com *ic = ni->ni_ic;
6727 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6728 	struct ath_node *an = ATH_NODE(ni);
6729 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6730 	int changed = 0;
6731 
6732 	ATH_TX_LOCK(sc);
6733 	an->an_stack_psq = enable;
6734 
6735 	/*
6736 	 * This will get called for all operating modes,
6737 	 * even if avp->av_set_tim is unset.
6738 	 * It's currently set for hostap/ibss modes; but
6739 	 * the same infrastructure is used for both STA
6740 	 * and AP/IBSS node power save.
6741 	 */
6742 	if (avp->av_set_tim == NULL) {
6743 		ATH_TX_UNLOCK(sc);
6744 		return (0);
6745 	}
6746 
6747 	/*
6748 	 * If setting the bit, always set it here.
6749 	 * If clearing the bit, only clear it if the
6750 	 * software queue is also empty.
6751 	 *
6752 	 * If the node has left power save, just clear the TIM
6753 	 * bit regardless of the state of the power save queue.
6754 	 *
6755 	 * XXX TODO: although atomics are used, it's quite possible
6756 	 * that a race will occur between this and setting/clearing
6757 	 * in another thread.  TX completion will occur always in
6758 	 * one thread, however setting/clearing the TIM bit can come
6759 	 * from a variety of different process contexts!
6760 	 */
6761 	if (enable && an->an_tim_set == 1) {
6762 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6763 		    "%s: %6D: enable=%d, tim_set=1, ignoring\n",
6764 		    __func__,
6765 		    ni->ni_macaddr,
6766 		    ":",
6767 		    enable);
6768 		ATH_TX_UNLOCK(sc);
6769 	} else if (enable) {
6770 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6771 		    "%s: %6D: enable=%d, enabling TIM\n",
6772 		    __func__,
6773 		    ni->ni_macaddr,
6774 		    ":",
6775 		    enable);
6776 		an->an_tim_set = 1;
6777 		ATH_TX_UNLOCK(sc);
6778 		changed = avp->av_set_tim(ni, enable);
6779 	} else if (an->an_swq_depth == 0) {
6780 		/* disable */
6781 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6782 		    "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n",
6783 		    __func__,
6784 		    ni->ni_macaddr,
6785 		    ":",
6786 		    enable);
6787 		an->an_tim_set = 0;
6788 		ATH_TX_UNLOCK(sc);
6789 		changed = avp->av_set_tim(ni, enable);
6790 	} else if (! an->an_is_powersave) {
6791 		/*
6792 		 * disable regardless; the node isn't in powersave now
6793 		 */
6794 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6795 		    "%s: %6D: enable=%d, an_pwrsave=0, disabling\n",
6796 		    __func__,
6797 		    ni->ni_macaddr,
6798 		    ":",
6799 		    enable);
6800 		an->an_tim_set = 0;
6801 		ATH_TX_UNLOCK(sc);
6802 		changed = avp->av_set_tim(ni, enable);
6803 	} else {
6804 		/*
6805 		 * psq disable, node is currently in powersave, node
6806 		 * software queue isn't empty, so don't clear the TIM bit
6807 		 * for now.
6808 		 */
6809 		ATH_TX_UNLOCK(sc);
6810 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6811 		    "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n",
6812 		    __func__,
6813 		    ni->ni_macaddr,
6814 		    ":",
6815 		    enable);
6816 		changed = 0;
6817 	}
6818 
6819 	return (changed);
6820 #else
6821 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6822 
6823 	/*
6824 	 * Some operating modes don't set av_set_tim(), so don't
6825 	 * update it here.
6826 	 */
6827 	if (avp->av_set_tim == NULL)
6828 		return (0);
6829 
6830 	return (avp->av_set_tim(ni, enable));
6831 #endif /* ATH_SW_PSQ */
6832 }
6833 
6834 /*
6835  * Set or update the TIM from the software queue.
6836  *
6837  * Check the software queue depth before attempting to do lock
6838  * anything; that avoids trying to obtain the lock.  Then,
6839  * re-check afterwards to ensure nothing has changed in the
6840  * meantime.
6841  *
6842  * set:   This is designed to be called from the TX path, after
6843  *        a frame has been queued; to see if the swq > 0.
6844  *
6845  * clear: This is designed to be called from the buffer completion point
6846  *        (right now it's ath_tx_default_comp()) where the state of
6847  *        a software queue has changed.
6848  *
6849  * It makes sense to place it at buffer free / completion rather
6850  * than after each software queue operation, as there's no real
6851  * point in churning the TIM bit as the last frames in the software
6852  * queue are transmitted.  If they fail and we retry them, we'd
6853  * just be setting the TIM bit again anyway.
6854  */
6855 void
6856 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
6857      int enable)
6858 {
6859 #ifdef	ATH_SW_PSQ
6860 	struct ath_node *an;
6861 	struct ath_vap *avp;
6862 
6863 	/* Don't do this for broadcast/etc frames */
6864 	if (ni == NULL)
6865 		return;
6866 
6867 	an = ATH_NODE(ni);
6868 	avp = ATH_VAP(ni->ni_vap);
6869 
6870 	/*
6871 	 * And for operating modes without the TIM handler set, let's
6872 	 * just skip those.
6873 	 */
6874 	if (avp->av_set_tim == NULL)
6875 		return;
6876 
6877 	ATH_TX_LOCK_ASSERT(sc);
6878 
6879 	if (enable) {
6880 		if (an->an_is_powersave &&
6881 		    an->an_tim_set == 0 &&
6882 		    an->an_swq_depth != 0) {
6883 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6884 			    "%s: %6D: swq_depth>0, tim_set=0, set!\n",
6885 			    __func__,
6886 			    ni->ni_macaddr,
6887 			    ":");
6888 			an->an_tim_set = 1;
6889 			(void) avp->av_set_tim(ni, 1);
6890 		}
6891 	} else {
6892 		/*
6893 		 * Don't bother grabbing the lock unless the queue is empty.
6894 		 */
6895 		if (&an->an_swq_depth != 0)
6896 			return;
6897 
6898 		if (an->an_is_powersave &&
6899 		    an->an_stack_psq == 0 &&
6900 		    an->an_tim_set == 1 &&
6901 		    an->an_swq_depth == 0) {
6902 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6903 			    "%s: %6D: swq_depth=0, tim_set=1, psq_set=0,"
6904 			    " clear!\n",
6905 			    __func__,
6906 			    ni->ni_macaddr,
6907 			    ":");
6908 			an->an_tim_set = 0;
6909 			(void) avp->av_set_tim(ni, 0);
6910 		}
6911 	}
6912 #else
6913 	return;
6914 #endif	/* ATH_SW_PSQ */
6915 }
6916 
6917 /*
6918  * Received a ps-poll frame from net80211.
6919  *
6920  * Here we get a chance to serve out a software-queued frame ourselves
6921  * before we punt it to net80211 to transmit us one itself - either
6922  * because there's traffic in the net80211 psq, or a NULL frame to
6923  * indicate there's nothing else.
6924  */
6925 static void
6926 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
6927 {
6928 #ifdef	ATH_SW_PSQ
6929 	struct ath_node *an;
6930 	struct ath_vap *avp;
6931 	struct ieee80211com *ic = ni->ni_ic;
6932 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6933 	int tid;
6934 
6935 	/* Just paranoia */
6936 	if (ni == NULL)
6937 		return;
6938 
6939 	/*
6940 	 * Unassociated (temporary node) station.
6941 	 */
6942 	if (ni->ni_associd == 0)
6943 		return;
6944 
6945 	/*
6946 	 * We do have an active node, so let's begin looking into it.
6947 	 */
6948 	an = ATH_NODE(ni);
6949 	avp = ATH_VAP(ni->ni_vap);
6950 
6951 	/*
6952 	 * For now, we just call the original ps-poll method.
6953 	 * Once we're ready to flip this on:
6954 	 *
6955 	 * + Set leak to 1, as no matter what we're going to have
6956 	 *   to send a frame;
6957 	 * + Check the software queue and if there's something in it,
6958 	 *   schedule the highest TID thas has traffic from this node.
6959 	 *   Then make sure we schedule the software scheduler to
6960 	 *   run so it picks up said frame.
6961 	 *
6962 	 * That way whatever happens, we'll at least send _a_ frame
6963 	 * to the given node.
6964 	 *
6965 	 * Again, yes, it's crappy QoS if the node has multiple
6966 	 * TIDs worth of traffic - but let's get it working first
6967 	 * before we optimise it.
6968 	 *
6969 	 * Also yes, there's definitely latency here - we're not
6970 	 * direct dispatching to the hardware in this path (and
6971 	 * we're likely being called from the packet receive path,
6972 	 * so going back into TX may be a little hairy!) but again
6973 	 * I'd like to get this working first before optimising
6974 	 * turn-around time.
6975 	 */
6976 
6977 	ATH_TX_LOCK(sc);
6978 
6979 	/*
6980 	 * Legacy - we're called and the node isn't asleep.
6981 	 * Immediately punt.
6982 	 */
6983 	if (! an->an_is_powersave) {
6984 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6985 		    "%s: %6D: not in powersave?\n",
6986 		    __func__,
6987 		    ni->ni_macaddr,
6988 		    ":");
6989 		ATH_TX_UNLOCK(sc);
6990 		avp->av_recv_pspoll(ni, m);
6991 		return;
6992 	}
6993 
6994 	/*
6995 	 * We're in powersave.
6996 	 *
6997 	 * Leak a frame.
6998 	 */
6999 	an->an_leak_count = 1;
7000 
7001 	/*
7002 	 * Now, if there's no frames in the node, just punt to
7003 	 * recv_pspoll.
7004 	 *
7005 	 * Don't bother checking if the TIM bit is set, we really
7006 	 * only care if there are any frames here!
7007 	 */
7008 	if (an->an_swq_depth == 0) {
7009 		ATH_TX_UNLOCK(sc);
7010 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7011 		    "%s: %6D: SWQ empty; punting to net80211\n",
7012 		    __func__,
7013 		    ni->ni_macaddr,
7014 		    ":");
7015 		avp->av_recv_pspoll(ni, m);
7016 		return;
7017 	}
7018 
7019 	/*
7020 	 * Ok, let's schedule the highest TID that has traffic
7021 	 * and then schedule something.
7022 	 */
7023 	for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
7024 		struct ath_tid *atid = &an->an_tid[tid];
7025 		/*
7026 		 * No frames? Skip.
7027 		 */
7028 		if (atid->axq_depth == 0)
7029 			continue;
7030 		ath_tx_tid_sched(sc, atid);
7031 		/*
7032 		 * XXX we could do a direct call to the TXQ
7033 		 * scheduler code here to optimise latency
7034 		 * at the expense of a REALLY deep callstack.
7035 		 */
7036 		ATH_TX_UNLOCK(sc);
7037 		taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
7038 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7039 		    "%s: %6D: leaking frame to TID %d\n",
7040 		    __func__,
7041 		    ni->ni_macaddr,
7042 		    ":",
7043 		    tid);
7044 		return;
7045 	}
7046 
7047 	ATH_TX_UNLOCK(sc);
7048 
7049 	/*
7050 	 * XXX nothing in the TIDs at this point? Eek.
7051 	 */
7052 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7053 	    "%s: %6D: TIDs empty, but ath_node showed traffic?!\n",
7054 	    __func__,
7055 	    ni->ni_macaddr,
7056 	    ":");
7057 	avp->av_recv_pspoll(ni, m);
7058 #else
7059 	avp->av_recv_pspoll(ni, m);
7060 #endif	/* ATH_SW_PSQ */
7061 }
7062 
7063 MODULE_VERSION(if_ath, 1);
7064 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
7065 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
7066 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
7067 #endif
7068