1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_rx_edma.h> 113 #include <dev/ath/if_ath_tx_edma.h> 114 #include <dev/ath/if_ath_beacon.h> 115 #include <dev/ath/if_ath_btcoex.h> 116 #include <dev/ath/if_ath_spectral.h> 117 #include <dev/ath/if_ath_lna_div.h> 118 #include <dev/ath/if_athdfs.h> 119 120 #ifdef ATH_TX99_DIAG 121 #include <dev/ath/ath_tx99/ath_tx99.h> 122 #endif 123 124 #ifdef ATH_DEBUG_ALQ 125 #include <dev/ath/if_ath_alq.h> 126 #endif 127 128 /* 129 * Only enable this if you're working on PS-POLL support. 130 */ 131 #define ATH_SW_PSQ 132 133 /* 134 * ATH_BCBUF determines the number of vap's that can transmit 135 * beacons and also (currently) the number of vap's that can 136 * have unique mac addresses/bssid. When staggering beacons 137 * 4 is probably a good max as otherwise the beacons become 138 * very closely spaced and there is limited time for cab q traffic 139 * to go out. You can burst beacons instead but that is not good 140 * for stations in power save and at some point you really want 141 * another radio (and channel). 142 * 143 * The limit on the number of mac addresses is tied to our use of 144 * the U/L bit and tracking addresses in a byte; it would be 145 * worthwhile to allow more for applications like proxy sta. 146 */ 147 CTASSERT(ATH_BCBUF <= 8); 148 149 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 150 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 151 const uint8_t [IEEE80211_ADDR_LEN], 152 const uint8_t [IEEE80211_ADDR_LEN]); 153 static void ath_vap_delete(struct ieee80211vap *); 154 static void ath_init(void *); 155 static void ath_stop_locked(struct ifnet *); 156 static void ath_stop(struct ifnet *); 157 static int ath_reset_vap(struct ieee80211vap *, u_long); 158 static int ath_transmit(struct ifnet *ifp, struct mbuf *m); 159 static void ath_qflush(struct ifnet *ifp); 160 static int ath_media_change(struct ifnet *); 161 static void ath_watchdog(void *); 162 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 163 static void ath_fatal_proc(void *, int); 164 static void ath_bmiss_vap(struct ieee80211vap *); 165 static void ath_bmiss_proc(void *, int); 166 static void ath_key_update_begin(struct ieee80211vap *); 167 static void ath_key_update_end(struct ieee80211vap *); 168 static void ath_update_mcast_hw(struct ath_softc *); 169 static void ath_update_mcast(struct ifnet *); 170 static void ath_update_promisc(struct ifnet *); 171 static void ath_updateslot(struct ifnet *); 172 static void ath_bstuck_proc(void *, int); 173 static void ath_reset_proc(void *, int); 174 static int ath_desc_alloc(struct ath_softc *); 175 static void ath_desc_free(struct ath_softc *); 176 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 177 const uint8_t [IEEE80211_ADDR_LEN]); 178 static void ath_node_cleanup(struct ieee80211_node *); 179 static void ath_node_free(struct ieee80211_node *); 180 static void ath_node_getsignal(const struct ieee80211_node *, 181 int8_t *, int8_t *); 182 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 183 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 184 static int ath_tx_setup(struct ath_softc *, int, int); 185 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 186 static void ath_tx_cleanup(struct ath_softc *); 187 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 188 int dosched); 189 static void ath_tx_proc_q0(void *, int); 190 static void ath_tx_proc_q0123(void *, int); 191 static void ath_tx_proc(void *, int); 192 static void ath_txq_sched_tasklet(void *, int); 193 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 194 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 195 static void ath_scan_start(struct ieee80211com *); 196 static void ath_scan_end(struct ieee80211com *); 197 static void ath_set_channel(struct ieee80211com *); 198 #ifdef ATH_ENABLE_11N 199 static void ath_update_chw(struct ieee80211com *); 200 #endif /* ATH_ENABLE_11N */ 201 static void ath_calibrate(void *); 202 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 203 static void ath_setup_stationkey(struct ieee80211_node *); 204 static void ath_newassoc(struct ieee80211_node *, int); 205 static int ath_setregdomain(struct ieee80211com *, 206 struct ieee80211_regdomain *, int, 207 struct ieee80211_channel []); 208 static void ath_getradiocaps(struct ieee80211com *, int, int *, 209 struct ieee80211_channel []); 210 static int ath_getchannels(struct ath_softc *); 211 212 static int ath_rate_setup(struct ath_softc *, u_int mode); 213 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 214 215 static void ath_announce(struct ath_softc *); 216 217 static void ath_dfs_tasklet(void *, int); 218 static void ath_node_powersave(struct ieee80211_node *, int); 219 static int ath_node_set_tim(struct ieee80211_node *, int); 220 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 221 222 #ifdef IEEE80211_SUPPORT_TDMA 223 #include <dev/ath/if_ath_tdma.h> 224 #endif 225 226 SYSCTL_DECL(_hw_ath); 227 228 /* XXX validate sysctl values */ 229 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 230 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 231 0, "long chip calibration interval (secs)"); 232 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 233 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 234 0, "short chip calibration interval (msecs)"); 235 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 236 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 237 0, "reset chip calibration results (secs)"); 238 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 239 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 240 0, "ANI calibration (msecs)"); 241 242 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 243 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 244 0, "rx buffers allocated"); 245 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 246 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 247 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 248 0, "tx buffers allocated"); 249 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 250 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 251 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 252 0, "tx (mgmt) buffers allocated"); 253 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 254 255 int ath_bstuck_threshold = 4; /* max missed beacons */ 256 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 257 0, "max missed beacon xmits before chip reset"); 258 259 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 260 261 void 262 ath_legacy_attach_comp_func(struct ath_softc *sc) 263 { 264 265 /* 266 * Special case certain configurations. Note the 267 * CAB queue is handled by these specially so don't 268 * include them when checking the txq setup mask. 269 */ 270 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 271 case 0x01: 272 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 273 break; 274 case 0x0f: 275 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 276 break; 277 default: 278 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 279 break; 280 } 281 } 282 283 /* 284 * Set the target power mode. 285 * 286 * If this is called during a point in time where 287 * the hardware is being programmed elsewhere, it will 288 * simply store it away and update it when all current 289 * uses of the hardware are completed. 290 */ 291 void 292 _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line) 293 { 294 ATH_LOCK_ASSERT(sc); 295 296 sc->sc_target_powerstate = power_state; 297 298 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 299 __func__, 300 file, 301 line, 302 power_state, 303 sc->sc_powersave_refcnt); 304 305 if (sc->sc_powersave_refcnt == 0 && 306 power_state != sc->sc_cur_powerstate) { 307 sc->sc_cur_powerstate = power_state; 308 ath_hal_setpower(sc->sc_ah, power_state); 309 310 /* 311 * If the NIC is force-awake, then set the 312 * self-gen frame state appropriately. 313 * 314 * If the nic is in network sleep or full-sleep, 315 * we let the above call leave the self-gen 316 * state as "sleep". 317 */ 318 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 319 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 320 ath_hal_setselfgenpower(sc->sc_ah, 321 sc->sc_target_selfgen_state); 322 } 323 } 324 } 325 326 /* 327 * Set the current self-generated frames state. 328 * 329 * This is separate from the target power mode. The chip may be 330 * awake but the desired state is "sleep", so frames sent to the 331 * destination has PWRMGT=1 in the 802.11 header. The NIC also 332 * needs to know to set PWRMGT=1 in self-generated frames. 333 */ 334 void 335 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 336 { 337 338 ATH_LOCK_ASSERT(sc); 339 340 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 341 __func__, 342 file, 343 line, 344 power_state, 345 sc->sc_target_selfgen_state); 346 347 sc->sc_target_selfgen_state = power_state; 348 349 /* 350 * If the NIC is force-awake, then set the power state. 351 * Network-state and full-sleep will already transition it to 352 * mark self-gen frames as sleeping - and we can't 353 * guarantee the NIC is awake to program the self-gen frame 354 * setting anyway. 355 */ 356 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 357 ath_hal_setselfgenpower(sc->sc_ah, power_state); 358 } 359 } 360 361 /* 362 * Set the hardware power mode and take a reference. 363 * 364 * This doesn't update the target power mode in the driver; 365 * it just updates the hardware power state. 366 * 367 * XXX it should only ever force the hardware awake; it should 368 * never be called to set it asleep. 369 */ 370 void 371 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 372 { 373 ATH_LOCK_ASSERT(sc); 374 375 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 376 __func__, 377 file, 378 line, 379 power_state, 380 sc->sc_powersave_refcnt); 381 382 sc->sc_powersave_refcnt++; 383 384 if (power_state != sc->sc_cur_powerstate) { 385 ath_hal_setpower(sc->sc_ah, power_state); 386 sc->sc_cur_powerstate = power_state; 387 388 /* 389 * Adjust the self-gen powerstate if appropriate. 390 */ 391 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 392 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 393 ath_hal_setselfgenpower(sc->sc_ah, 394 sc->sc_target_selfgen_state); 395 } 396 397 } 398 } 399 400 /* 401 * Restore the power save mode to what it once was. 402 * 403 * This will decrement the reference counter and once it hits 404 * zero, it'll restore the powersave state. 405 */ 406 void 407 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 408 { 409 410 ATH_LOCK_ASSERT(sc); 411 412 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 413 __func__, 414 file, 415 line, 416 sc->sc_powersave_refcnt, 417 sc->sc_target_powerstate); 418 419 if (sc->sc_powersave_refcnt == 0) 420 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 421 else 422 sc->sc_powersave_refcnt--; 423 424 if (sc->sc_powersave_refcnt == 0 && 425 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 426 sc->sc_cur_powerstate = sc->sc_target_powerstate; 427 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 428 } 429 430 /* 431 * Adjust the self-gen powerstate if appropriate. 432 */ 433 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 434 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 435 ath_hal_setselfgenpower(sc->sc_ah, 436 sc->sc_target_selfgen_state); 437 } 438 439 } 440 441 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 442 #define HAL_MODE_HT40 \ 443 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 444 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 445 int 446 ath_attach(u_int16_t devid, struct ath_softc *sc) 447 { 448 struct ifnet *ifp; 449 struct ieee80211com *ic; 450 struct ath_hal *ah = NULL; 451 HAL_STATUS status; 452 int error = 0, i; 453 u_int wmodes; 454 uint8_t macaddr[IEEE80211_ADDR_LEN]; 455 int rx_chainmask, tx_chainmask; 456 457 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 458 459 CURVNET_SET(vnet0); 460 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 461 if (ifp == NULL) { 462 device_printf(sc->sc_dev, "can not if_alloc()\n"); 463 error = ENOSPC; 464 CURVNET_RESTORE(); 465 goto bad; 466 } 467 ic = ifp->if_l2com; 468 469 /* set these up early for if_printf use */ 470 if_initname(ifp, device_get_name(sc->sc_dev), 471 device_get_unit(sc->sc_dev)); 472 CURVNET_RESTORE(); 473 474 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 475 sc->sc_eepromdata, &status); 476 if (ah == NULL) { 477 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 478 status); 479 error = ENXIO; 480 goto bad; 481 } 482 sc->sc_ah = ah; 483 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 484 #ifdef ATH_DEBUG 485 sc->sc_debug = ath_debug; 486 #endif 487 488 /* 489 * Setup the DMA/EDMA functions based on the current 490 * hardware support. 491 * 492 * This is required before the descriptors are allocated. 493 */ 494 if (ath_hal_hasedma(sc->sc_ah)) { 495 sc->sc_isedma = 1; 496 ath_recv_setup_edma(sc); 497 ath_xmit_setup_edma(sc); 498 } else { 499 ath_recv_setup_legacy(sc); 500 ath_xmit_setup_legacy(sc); 501 } 502 503 if (ath_hal_hasmybeacon(sc->sc_ah)) { 504 sc->sc_do_mybeacon = 1; 505 } 506 507 /* 508 * Check if the MAC has multi-rate retry support. 509 * We do this by trying to setup a fake extended 510 * descriptor. MAC's that don't have support will 511 * return false w/o doing anything. MAC's that do 512 * support it will return true w/o doing anything. 513 */ 514 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 515 516 /* 517 * Check if the device has hardware counters for PHY 518 * errors. If so we need to enable the MIB interrupt 519 * so we can act on stat triggers. 520 */ 521 if (ath_hal_hwphycounters(ah)) 522 sc->sc_needmib = 1; 523 524 /* 525 * Get the hardware key cache size. 526 */ 527 sc->sc_keymax = ath_hal_keycachesize(ah); 528 if (sc->sc_keymax > ATH_KEYMAX) { 529 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 530 ATH_KEYMAX, sc->sc_keymax); 531 sc->sc_keymax = ATH_KEYMAX; 532 } 533 /* 534 * Reset the key cache since some parts do not 535 * reset the contents on initial power up. 536 */ 537 for (i = 0; i < sc->sc_keymax; i++) 538 ath_hal_keyreset(ah, i); 539 540 /* 541 * Collect the default channel list. 542 */ 543 error = ath_getchannels(sc); 544 if (error != 0) 545 goto bad; 546 547 /* 548 * Setup rate tables for all potential media types. 549 */ 550 ath_rate_setup(sc, IEEE80211_MODE_11A); 551 ath_rate_setup(sc, IEEE80211_MODE_11B); 552 ath_rate_setup(sc, IEEE80211_MODE_11G); 553 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 554 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 555 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 556 ath_rate_setup(sc, IEEE80211_MODE_11NA); 557 ath_rate_setup(sc, IEEE80211_MODE_11NG); 558 ath_rate_setup(sc, IEEE80211_MODE_HALF); 559 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 560 561 /* NB: setup here so ath_rate_update is happy */ 562 ath_setcurmode(sc, IEEE80211_MODE_11A); 563 564 /* 565 * Allocate TX descriptors and populate the lists. 566 */ 567 error = ath_desc_alloc(sc); 568 if (error != 0) { 569 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 570 error); 571 goto bad; 572 } 573 error = ath_txdma_setup(sc); 574 if (error != 0) { 575 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 576 error); 577 goto bad; 578 } 579 580 /* 581 * Allocate RX descriptors and populate the lists. 582 */ 583 error = ath_rxdma_setup(sc); 584 if (error != 0) { 585 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 586 error); 587 goto bad; 588 } 589 590 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 591 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 592 593 ATH_TXBUF_LOCK_INIT(sc); 594 595 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 596 taskqueue_thread_enqueue, &sc->sc_tq); 597 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 598 "%s taskq", ifp->if_xname); 599 600 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 601 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 602 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 603 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 604 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 605 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 606 607 /* 608 * Allocate hardware transmit queues: one queue for 609 * beacon frames and one data queue for each QoS 610 * priority. Note that the hal handles resetting 611 * these queues at the needed time. 612 * 613 * XXX PS-Poll 614 */ 615 sc->sc_bhalq = ath_beaconq_setup(sc); 616 if (sc->sc_bhalq == (u_int) -1) { 617 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 618 error = EIO; 619 goto bad2; 620 } 621 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 622 if (sc->sc_cabq == NULL) { 623 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 624 error = EIO; 625 goto bad2; 626 } 627 /* NB: insure BK queue is the lowest priority h/w queue */ 628 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 629 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 630 ieee80211_wme_acnames[WME_AC_BK]); 631 error = EIO; 632 goto bad2; 633 } 634 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 635 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 636 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 637 /* 638 * Not enough hardware tx queues to properly do WME; 639 * just punt and assign them all to the same h/w queue. 640 * We could do a better job of this if, for example, 641 * we allocate queues when we switch from station to 642 * AP mode. 643 */ 644 if (sc->sc_ac2q[WME_AC_VI] != NULL) 645 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 646 if (sc->sc_ac2q[WME_AC_BE] != NULL) 647 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 648 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 649 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 650 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 651 } 652 653 /* 654 * Attach the TX completion function. 655 * 656 * The non-EDMA chips may have some special case optimisations; 657 * this method gives everyone a chance to attach cleanly. 658 */ 659 sc->sc_tx.xmit_attach_comp_func(sc); 660 661 /* 662 * Setup rate control. Some rate control modules 663 * call back to change the anntena state so expose 664 * the necessary entry points. 665 * XXX maybe belongs in struct ath_ratectrl? 666 */ 667 sc->sc_setdefantenna = ath_setdefantenna; 668 sc->sc_rc = ath_rate_attach(sc); 669 if (sc->sc_rc == NULL) { 670 error = EIO; 671 goto bad2; 672 } 673 674 /* Attach DFS module */ 675 if (! ath_dfs_attach(sc)) { 676 device_printf(sc->sc_dev, 677 "%s: unable to attach DFS\n", __func__); 678 error = EIO; 679 goto bad2; 680 } 681 682 /* Attach spectral module */ 683 if (ath_spectral_attach(sc) < 0) { 684 device_printf(sc->sc_dev, 685 "%s: unable to attach spectral\n", __func__); 686 error = EIO; 687 goto bad2; 688 } 689 690 /* Attach bluetooth coexistence module */ 691 if (ath_btcoex_attach(sc) < 0) { 692 device_printf(sc->sc_dev, 693 "%s: unable to attach bluetooth coexistence\n", __func__); 694 error = EIO; 695 goto bad2; 696 } 697 698 /* Attach LNA diversity module */ 699 if (ath_lna_div_attach(sc) < 0) { 700 device_printf(sc->sc_dev, 701 "%s: unable to attach LNA diversity\n", __func__); 702 error = EIO; 703 goto bad2; 704 } 705 706 /* Start DFS processing tasklet */ 707 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 708 709 /* Configure LED state */ 710 sc->sc_blinking = 0; 711 sc->sc_ledstate = 1; 712 sc->sc_ledon = 0; /* low true */ 713 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 714 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 715 716 /* 717 * Don't setup hardware-based blinking. 718 * 719 * Although some NICs may have this configured in the 720 * default reset register values, the user may wish 721 * to alter which pins have which function. 722 * 723 * The reference driver attaches the MAC network LED to GPIO1 and 724 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 725 * NIC has these reversed. 726 */ 727 sc->sc_hardled = (1 == 0); 728 sc->sc_led_net_pin = -1; 729 sc->sc_led_pwr_pin = -1; 730 /* 731 * Auto-enable soft led processing for IBM cards and for 732 * 5211 minipci cards. Users can also manually enable/disable 733 * support with a sysctl. 734 */ 735 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 736 ath_led_config(sc); 737 ath_hal_setledstate(ah, HAL_LED_INIT); 738 739 ifp->if_softc = sc; 740 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 741 ifp->if_transmit = ath_transmit; 742 ifp->if_qflush = ath_qflush; 743 ifp->if_ioctl = ath_ioctl; 744 ifp->if_init = ath_init; 745 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 746 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 747 IFQ_SET_READY(&ifp->if_snd); 748 749 ic->ic_ifp = ifp; 750 /* XXX not right but it's not used anywhere important */ 751 ic->ic_phytype = IEEE80211_T_OFDM; 752 ic->ic_opmode = IEEE80211_M_STA; 753 ic->ic_caps = 754 IEEE80211_C_STA /* station mode */ 755 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 756 | IEEE80211_C_HOSTAP /* hostap mode */ 757 | IEEE80211_C_MONITOR /* monitor mode */ 758 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 759 | IEEE80211_C_WDS /* 4-address traffic works */ 760 | IEEE80211_C_MBSS /* mesh point link mode */ 761 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 762 | IEEE80211_C_SHSLOT /* short slot time supported */ 763 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 764 #ifndef ATH_ENABLE_11N 765 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 766 #endif 767 | IEEE80211_C_TXFRAG /* handle tx frags */ 768 #ifdef ATH_ENABLE_DFS 769 | IEEE80211_C_DFS /* Enable radar detection */ 770 #endif 771 | IEEE80211_C_PMGT /* Station side power mgmt */ 772 | IEEE80211_C_SWSLEEP 773 ; 774 /* 775 * Query the hal to figure out h/w crypto support. 776 */ 777 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 778 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 779 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 780 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 781 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 782 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 783 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 784 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 785 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 786 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 787 /* 788 * Check if h/w does the MIC and/or whether the 789 * separate key cache entries are required to 790 * handle both tx+rx MIC keys. 791 */ 792 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 793 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 794 /* 795 * If the h/w supports storing tx+rx MIC keys 796 * in one cache slot automatically enable use. 797 */ 798 if (ath_hal_hastkipsplit(ah) || 799 !ath_hal_settkipsplit(ah, AH_FALSE)) 800 sc->sc_splitmic = 1; 801 /* 802 * If the h/w can do TKIP MIC together with WME then 803 * we use it; otherwise we force the MIC to be done 804 * in software by the net80211 layer. 805 */ 806 if (ath_hal_haswmetkipmic(ah)) 807 sc->sc_wmetkipmic = 1; 808 } 809 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 810 /* 811 * Check for multicast key search support. 812 */ 813 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 814 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 815 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 816 } 817 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 818 /* 819 * Mark key cache slots associated with global keys 820 * as in use. If we knew TKIP was not to be used we 821 * could leave the +32, +64, and +32+64 slots free. 822 */ 823 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 824 setbit(sc->sc_keymap, i); 825 setbit(sc->sc_keymap, i+64); 826 if (sc->sc_splitmic) { 827 setbit(sc->sc_keymap, i+32); 828 setbit(sc->sc_keymap, i+32+64); 829 } 830 } 831 /* 832 * TPC support can be done either with a global cap or 833 * per-packet support. The latter is not available on 834 * all parts. We're a bit pedantic here as all parts 835 * support a global cap. 836 */ 837 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 838 ic->ic_caps |= IEEE80211_C_TXPMGT; 839 840 /* 841 * Mark WME capability only if we have sufficient 842 * hardware queues to do proper priority scheduling. 843 */ 844 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 845 ic->ic_caps |= IEEE80211_C_WME; 846 /* 847 * Check for misc other capabilities. 848 */ 849 if (ath_hal_hasbursting(ah)) 850 ic->ic_caps |= IEEE80211_C_BURST; 851 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 852 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 853 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 854 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 855 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 856 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 857 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 858 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 859 860 if (ath_hal_hasfastframes(ah)) 861 ic->ic_caps |= IEEE80211_C_FF; 862 wmodes = ath_hal_getwirelessmodes(ah); 863 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 864 ic->ic_caps |= IEEE80211_C_TURBOP; 865 #ifdef IEEE80211_SUPPORT_TDMA 866 if (ath_hal_macversion(ah) > 0x78) { 867 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 868 ic->ic_tdma_update = ath_tdma_update; 869 } 870 #endif 871 872 /* 873 * TODO: enforce that at least this many frames are available 874 * in the txbuf list before allowing data frames (raw or 875 * otherwise) to be transmitted. 876 */ 877 sc->sc_txq_data_minfree = 10; 878 /* 879 * Leave this as default to maintain legacy behaviour. 880 * Shortening the cabq/mcastq may end up causing some 881 * undesirable behaviour. 882 */ 883 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 884 885 /* 886 * How deep can the node software TX queue get whilst it's asleep. 887 */ 888 sc->sc_txq_node_psq_maxdepth = 16; 889 890 /* 891 * Default the maximum queue depth for a given node 892 * to 1/4'th the TX buffers, or 64, whichever 893 * is larger. 894 */ 895 sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4); 896 897 /* Enable CABQ by default */ 898 sc->sc_cabq_enable = 1; 899 900 /* 901 * Allow the TX and RX chainmasks to be overridden by 902 * environment variables and/or device.hints. 903 * 904 * This must be done early - before the hardware is 905 * calibrated or before the 802.11n stream calculation 906 * is done. 907 */ 908 if (resource_int_value(device_get_name(sc->sc_dev), 909 device_get_unit(sc->sc_dev), "rx_chainmask", 910 &rx_chainmask) == 0) { 911 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 912 rx_chainmask); 913 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 914 } 915 if (resource_int_value(device_get_name(sc->sc_dev), 916 device_get_unit(sc->sc_dev), "tx_chainmask", 917 &tx_chainmask) == 0) { 918 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 919 tx_chainmask); 920 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 921 } 922 923 /* 924 * Query the TX/RX chainmask configuration. 925 * 926 * This is only relevant for 11n devices. 927 */ 928 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 929 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 930 931 /* 932 * Disable MRR with protected frames by default. 933 * Only 802.11n series NICs can handle this. 934 */ 935 sc->sc_mrrprot = 0; /* XXX should be a capability */ 936 937 /* 938 * Query the enterprise mode information the HAL. 939 */ 940 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 941 &sc->sc_ent_cfg) == HAL_OK) 942 sc->sc_use_ent = 1; 943 944 #ifdef ATH_ENABLE_11N 945 /* 946 * Query HT capabilities 947 */ 948 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 949 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 950 uint32_t rxs, txs; 951 952 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 953 954 sc->sc_mrrprot = 1; /* XXX should be a capability */ 955 956 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 957 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 958 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 959 | IEEE80211_HTCAP_MAXAMSDU_3839 960 /* max A-MSDU length */ 961 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 962 ; 963 964 /* 965 * Enable short-GI for HT20 only if the hardware 966 * advertises support. 967 * Notably, anything earlier than the AR9287 doesn't. 968 */ 969 if ((ath_hal_getcapability(ah, 970 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 971 (wmodes & HAL_MODE_HT20)) { 972 device_printf(sc->sc_dev, 973 "[HT] enabling short-GI in 20MHz mode\n"); 974 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 975 } 976 977 if (wmodes & HAL_MODE_HT40) 978 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 979 | IEEE80211_HTCAP_SHORTGI40; 980 981 /* 982 * TX/RX streams need to be taken into account when 983 * negotiating which MCS rates it'll receive and 984 * what MCS rates are available for TX. 985 */ 986 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 987 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 988 ic->ic_txstream = txs; 989 ic->ic_rxstream = rxs; 990 991 /* 992 * Setup TX and RX STBC based on what the HAL allows and 993 * the currently configured chainmask set. 994 * Ie - don't enable STBC TX if only one chain is enabled. 995 * STBC RX is fine on a single RX chain; it just won't 996 * provide any real benefit. 997 */ 998 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 999 NULL) == HAL_OK) { 1000 sc->sc_rx_stbc = 1; 1001 device_printf(sc->sc_dev, 1002 "[HT] 1 stream STBC receive enabled\n"); 1003 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1004 } 1005 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1006 NULL) == HAL_OK) { 1007 sc->sc_tx_stbc = 1; 1008 device_printf(sc->sc_dev, 1009 "[HT] 1 stream STBC transmit enabled\n"); 1010 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1011 } 1012 1013 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1014 &sc->sc_rts_aggr_limit); 1015 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1016 device_printf(sc->sc_dev, 1017 "[HT] RTS aggregates limited to %d KiB\n", 1018 sc->sc_rts_aggr_limit / 1024); 1019 1020 device_printf(sc->sc_dev, 1021 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1022 } 1023 #endif 1024 1025 /* 1026 * Initial aggregation settings. 1027 */ 1028 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1029 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1030 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1031 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1032 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1033 sc->sc_delim_min_pad = 0; 1034 1035 /* 1036 * Check if the hardware requires PCI register serialisation. 1037 * Some of the Owl based MACs require this. 1038 */ 1039 if (mp_ncpus > 1 && 1040 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1041 0, NULL) == HAL_OK) { 1042 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1043 device_printf(sc->sc_dev, 1044 "Enabling register serialisation\n"); 1045 } 1046 1047 /* 1048 * Initialise the deferred completed RX buffer list. 1049 */ 1050 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1051 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1052 1053 /* 1054 * Indicate we need the 802.11 header padded to a 1055 * 32-bit boundary for 4-address and QoS frames. 1056 */ 1057 ic->ic_flags |= IEEE80211_F_DATAPAD; 1058 1059 /* 1060 * Query the hal about antenna support. 1061 */ 1062 sc->sc_defant = ath_hal_getdefantenna(ah); 1063 1064 /* 1065 * Not all chips have the VEOL support we want to 1066 * use with IBSS beacons; check here for it. 1067 */ 1068 sc->sc_hasveol = ath_hal_hasveol(ah); 1069 1070 /* get mac address from hardware */ 1071 ath_hal_getmac(ah, macaddr); 1072 if (sc->sc_hasbmask) 1073 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1074 1075 /* NB: used to size node table key mapping array */ 1076 ic->ic_max_keyix = sc->sc_keymax; 1077 /* call MI attach routine. */ 1078 ieee80211_ifattach(ic, macaddr); 1079 ic->ic_setregdomain = ath_setregdomain; 1080 ic->ic_getradiocaps = ath_getradiocaps; 1081 sc->sc_opmode = HAL_M_STA; 1082 1083 /* override default methods */ 1084 ic->ic_newassoc = ath_newassoc; 1085 ic->ic_updateslot = ath_updateslot; 1086 ic->ic_wme.wme_update = ath_wme_update; 1087 ic->ic_vap_create = ath_vap_create; 1088 ic->ic_vap_delete = ath_vap_delete; 1089 ic->ic_raw_xmit = ath_raw_xmit; 1090 ic->ic_update_mcast = ath_update_mcast; 1091 ic->ic_update_promisc = ath_update_promisc; 1092 ic->ic_node_alloc = ath_node_alloc; 1093 sc->sc_node_free = ic->ic_node_free; 1094 ic->ic_node_free = ath_node_free; 1095 sc->sc_node_cleanup = ic->ic_node_cleanup; 1096 ic->ic_node_cleanup = ath_node_cleanup; 1097 ic->ic_node_getsignal = ath_node_getsignal; 1098 ic->ic_scan_start = ath_scan_start; 1099 ic->ic_scan_end = ath_scan_end; 1100 ic->ic_set_channel = ath_set_channel; 1101 #ifdef ATH_ENABLE_11N 1102 /* 802.11n specific - but just override anyway */ 1103 sc->sc_addba_request = ic->ic_addba_request; 1104 sc->sc_addba_response = ic->ic_addba_response; 1105 sc->sc_addba_stop = ic->ic_addba_stop; 1106 sc->sc_bar_response = ic->ic_bar_response; 1107 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1108 1109 ic->ic_addba_request = ath_addba_request; 1110 ic->ic_addba_response = ath_addba_response; 1111 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1112 ic->ic_addba_stop = ath_addba_stop; 1113 ic->ic_bar_response = ath_bar_response; 1114 1115 ic->ic_update_chw = ath_update_chw; 1116 #endif /* ATH_ENABLE_11N */ 1117 1118 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1119 /* 1120 * There's one vendor bitmap entry in the RX radiotap 1121 * header; make sure that's taken into account. 1122 */ 1123 ieee80211_radiotap_attachv(ic, 1124 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1125 ATH_TX_RADIOTAP_PRESENT, 1126 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1127 ATH_RX_RADIOTAP_PRESENT); 1128 #else 1129 /* 1130 * No vendor bitmap/extensions are present. 1131 */ 1132 ieee80211_radiotap_attach(ic, 1133 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1134 ATH_TX_RADIOTAP_PRESENT, 1135 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1136 ATH_RX_RADIOTAP_PRESENT); 1137 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1138 1139 /* 1140 * Setup the ALQ logging if required 1141 */ 1142 #ifdef ATH_DEBUG_ALQ 1143 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1144 if_ath_alq_setcfg(&sc->sc_alq, 1145 sc->sc_ah->ah_macVersion, 1146 sc->sc_ah->ah_macRev, 1147 sc->sc_ah->ah_phyRev, 1148 sc->sc_ah->ah_magic); 1149 #endif 1150 1151 /* 1152 * Setup dynamic sysctl's now that country code and 1153 * regdomain are available from the hal. 1154 */ 1155 ath_sysctlattach(sc); 1156 ath_sysctl_stats_attach(sc); 1157 ath_sysctl_hal_attach(sc); 1158 1159 if (bootverbose) 1160 ieee80211_announce(ic); 1161 ath_announce(sc); 1162 1163 /* 1164 * Put it to sleep for now. 1165 */ 1166 ATH_LOCK(sc); 1167 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 1168 ATH_UNLOCK(sc); 1169 1170 return 0; 1171 bad2: 1172 ath_tx_cleanup(sc); 1173 ath_desc_free(sc); 1174 ath_txdma_teardown(sc); 1175 ath_rxdma_teardown(sc); 1176 bad: 1177 if (ah) 1178 ath_hal_detach(ah); 1179 1180 /* 1181 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE.. 1182 */ 1183 if (ifp != NULL && ifp->if_vnet) { 1184 CURVNET_SET(ifp->if_vnet); 1185 if_free(ifp); 1186 CURVNET_RESTORE(); 1187 } else if (ifp != NULL) 1188 if_free(ifp); 1189 sc->sc_invalid = 1; 1190 return error; 1191 } 1192 1193 int 1194 ath_detach(struct ath_softc *sc) 1195 { 1196 struct ifnet *ifp = sc->sc_ifp; 1197 1198 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1199 __func__, ifp->if_flags); 1200 1201 /* 1202 * NB: the order of these is important: 1203 * o stop the chip so no more interrupts will fire 1204 * o call the 802.11 layer before detaching the hal to 1205 * insure callbacks into the driver to delete global 1206 * key cache entries can be handled 1207 * o free the taskqueue which drains any pending tasks 1208 * o reclaim the tx queue data structures after calling 1209 * the 802.11 layer as we'll get called back to reclaim 1210 * node state and potentially want to use them 1211 * o to cleanup the tx queues the hal is called, so detach 1212 * it last 1213 * Other than that, it's straightforward... 1214 */ 1215 1216 /* 1217 * XXX Wake the hardware up first. ath_stop() will still 1218 * wake it up first, but I'd rather do it here just to 1219 * ensure it's awake. 1220 */ 1221 ATH_LOCK(sc); 1222 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1223 ath_power_setpower(sc, HAL_PM_AWAKE); 1224 ATH_UNLOCK(sc); 1225 1226 /* 1227 * Stop things cleanly. 1228 */ 1229 ath_stop(ifp); 1230 1231 ieee80211_ifdetach(ifp->if_l2com); 1232 taskqueue_free(sc->sc_tq); 1233 #ifdef ATH_TX99_DIAG 1234 if (sc->sc_tx99 != NULL) 1235 sc->sc_tx99->detach(sc->sc_tx99); 1236 #endif 1237 ath_rate_detach(sc->sc_rc); 1238 #ifdef ATH_DEBUG_ALQ 1239 if_ath_alq_tidyup(&sc->sc_alq); 1240 #endif 1241 ath_lna_div_detach(sc); 1242 ath_btcoex_detach(sc); 1243 ath_spectral_detach(sc); 1244 ath_dfs_detach(sc); 1245 ath_desc_free(sc); 1246 ath_txdma_teardown(sc); 1247 ath_rxdma_teardown(sc); 1248 ath_tx_cleanup(sc); 1249 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1250 1251 CURVNET_SET(ifp->if_vnet); 1252 if_free(ifp); 1253 CURVNET_RESTORE(); 1254 1255 return 0; 1256 } 1257 1258 /* 1259 * MAC address handling for multiple BSS on the same radio. 1260 * The first vap uses the MAC address from the EEPROM. For 1261 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1262 * address and use the next six bits as an index. 1263 */ 1264 static void 1265 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1266 { 1267 int i; 1268 1269 if (clone && sc->sc_hasbmask) { 1270 /* NB: we only do this if h/w supports multiple bssid */ 1271 for (i = 0; i < 8; i++) 1272 if ((sc->sc_bssidmask & (1<<i)) == 0) 1273 break; 1274 if (i != 0) 1275 mac[0] |= (i << 2)|0x2; 1276 } else 1277 i = 0; 1278 sc->sc_bssidmask |= 1<<i; 1279 sc->sc_hwbssidmask[0] &= ~mac[0]; 1280 if (i == 0) 1281 sc->sc_nbssid0++; 1282 } 1283 1284 static void 1285 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1286 { 1287 int i = mac[0] >> 2; 1288 uint8_t mask; 1289 1290 if (i != 0 || --sc->sc_nbssid0 == 0) { 1291 sc->sc_bssidmask &= ~(1<<i); 1292 /* recalculate bssid mask from remaining addresses */ 1293 mask = 0xff; 1294 for (i = 1; i < 8; i++) 1295 if (sc->sc_bssidmask & (1<<i)) 1296 mask &= ~((i<<2)|0x2); 1297 sc->sc_hwbssidmask[0] |= mask; 1298 } 1299 } 1300 1301 /* 1302 * Assign a beacon xmit slot. We try to space out 1303 * assignments so when beacons are staggered the 1304 * traffic coming out of the cab q has maximal time 1305 * to go out before the next beacon is scheduled. 1306 */ 1307 static int 1308 assign_bslot(struct ath_softc *sc) 1309 { 1310 u_int slot, free; 1311 1312 free = 0; 1313 for (slot = 0; slot < ATH_BCBUF; slot++) 1314 if (sc->sc_bslot[slot] == NULL) { 1315 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1316 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1317 return slot; 1318 free = slot; 1319 /* NB: keep looking for a double slot */ 1320 } 1321 return free; 1322 } 1323 1324 static struct ieee80211vap * 1325 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1326 enum ieee80211_opmode opmode, int flags, 1327 const uint8_t bssid[IEEE80211_ADDR_LEN], 1328 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1329 { 1330 struct ath_softc *sc = ic->ic_ifp->if_softc; 1331 struct ath_vap *avp; 1332 struct ieee80211vap *vap; 1333 uint8_t mac[IEEE80211_ADDR_LEN]; 1334 int needbeacon, error; 1335 enum ieee80211_opmode ic_opmode; 1336 1337 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1338 M_80211_VAP, M_WAITOK | M_ZERO); 1339 needbeacon = 0; 1340 IEEE80211_ADDR_COPY(mac, mac0); 1341 1342 ATH_LOCK(sc); 1343 ic_opmode = opmode; /* default to opmode of new vap */ 1344 switch (opmode) { 1345 case IEEE80211_M_STA: 1346 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1347 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1348 goto bad; 1349 } 1350 if (sc->sc_nvaps) { 1351 /* 1352 * With multiple vaps we must fall back 1353 * to s/w beacon miss handling. 1354 */ 1355 flags |= IEEE80211_CLONE_NOBEACONS; 1356 } 1357 if (flags & IEEE80211_CLONE_NOBEACONS) { 1358 /* 1359 * Station mode w/o beacons are implemented w/ AP mode. 1360 */ 1361 ic_opmode = IEEE80211_M_HOSTAP; 1362 } 1363 break; 1364 case IEEE80211_M_IBSS: 1365 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1366 device_printf(sc->sc_dev, 1367 "only 1 ibss vap supported\n"); 1368 goto bad; 1369 } 1370 needbeacon = 1; 1371 break; 1372 case IEEE80211_M_AHDEMO: 1373 #ifdef IEEE80211_SUPPORT_TDMA 1374 if (flags & IEEE80211_CLONE_TDMA) { 1375 if (sc->sc_nvaps != 0) { 1376 device_printf(sc->sc_dev, 1377 "only 1 tdma vap supported\n"); 1378 goto bad; 1379 } 1380 needbeacon = 1; 1381 flags |= IEEE80211_CLONE_NOBEACONS; 1382 } 1383 /* fall thru... */ 1384 #endif 1385 case IEEE80211_M_MONITOR: 1386 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1387 /* 1388 * Adopt existing mode. Adding a monitor or ahdemo 1389 * vap to an existing configuration is of dubious 1390 * value but should be ok. 1391 */ 1392 /* XXX not right for monitor mode */ 1393 ic_opmode = ic->ic_opmode; 1394 } 1395 break; 1396 case IEEE80211_M_HOSTAP: 1397 case IEEE80211_M_MBSS: 1398 needbeacon = 1; 1399 break; 1400 case IEEE80211_M_WDS: 1401 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1402 device_printf(sc->sc_dev, 1403 "wds not supported in sta mode\n"); 1404 goto bad; 1405 } 1406 /* 1407 * Silently remove any request for a unique 1408 * bssid; WDS vap's always share the local 1409 * mac address. 1410 */ 1411 flags &= ~IEEE80211_CLONE_BSSID; 1412 if (sc->sc_nvaps == 0) 1413 ic_opmode = IEEE80211_M_HOSTAP; 1414 else 1415 ic_opmode = ic->ic_opmode; 1416 break; 1417 default: 1418 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1419 goto bad; 1420 } 1421 /* 1422 * Check that a beacon buffer is available; the code below assumes it. 1423 */ 1424 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1425 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1426 goto bad; 1427 } 1428 1429 /* STA, AHDEMO? */ 1430 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1431 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1432 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1433 } 1434 1435 vap = &avp->av_vap; 1436 /* XXX can't hold mutex across if_alloc */ 1437 ATH_UNLOCK(sc); 1438 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1439 bssid, mac); 1440 ATH_LOCK(sc); 1441 if (error != 0) { 1442 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1443 __func__, error); 1444 goto bad2; 1445 } 1446 1447 /* h/w crypto support */ 1448 vap->iv_key_alloc = ath_key_alloc; 1449 vap->iv_key_delete = ath_key_delete; 1450 vap->iv_key_set = ath_key_set; 1451 vap->iv_key_update_begin = ath_key_update_begin; 1452 vap->iv_key_update_end = ath_key_update_end; 1453 1454 /* override various methods */ 1455 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1456 vap->iv_recv_mgmt = ath_recv_mgmt; 1457 vap->iv_reset = ath_reset_vap; 1458 vap->iv_update_beacon = ath_beacon_update; 1459 avp->av_newstate = vap->iv_newstate; 1460 vap->iv_newstate = ath_newstate; 1461 avp->av_bmiss = vap->iv_bmiss; 1462 vap->iv_bmiss = ath_bmiss_vap; 1463 1464 avp->av_node_ps = vap->iv_node_ps; 1465 vap->iv_node_ps = ath_node_powersave; 1466 1467 avp->av_set_tim = vap->iv_set_tim; 1468 vap->iv_set_tim = ath_node_set_tim; 1469 1470 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1471 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1472 1473 /* Set default parameters */ 1474 1475 /* 1476 * Anything earlier than some AR9300 series MACs don't 1477 * support a smaller MPDU density. 1478 */ 1479 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1480 /* 1481 * All NICs can handle the maximum size, however 1482 * AR5416 based MACs can only TX aggregates w/ RTS 1483 * protection when the total aggregate size is <= 8k. 1484 * However, for now that's enforced by the TX path. 1485 */ 1486 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1487 1488 avp->av_bslot = -1; 1489 if (needbeacon) { 1490 /* 1491 * Allocate beacon state and setup the q for buffered 1492 * multicast frames. We know a beacon buffer is 1493 * available because we checked above. 1494 */ 1495 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1496 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1497 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1498 /* 1499 * Assign the vap to a beacon xmit slot. As above 1500 * this cannot fail to find a free one. 1501 */ 1502 avp->av_bslot = assign_bslot(sc); 1503 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1504 ("beacon slot %u not empty", avp->av_bslot)); 1505 sc->sc_bslot[avp->av_bslot] = vap; 1506 sc->sc_nbcnvaps++; 1507 } 1508 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1509 /* 1510 * Multple vaps are to transmit beacons and we 1511 * have h/w support for TSF adjusting; enable 1512 * use of staggered beacons. 1513 */ 1514 sc->sc_stagbeacons = 1; 1515 } 1516 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1517 } 1518 1519 ic->ic_opmode = ic_opmode; 1520 if (opmode != IEEE80211_M_WDS) { 1521 sc->sc_nvaps++; 1522 if (opmode == IEEE80211_M_STA) 1523 sc->sc_nstavaps++; 1524 if (opmode == IEEE80211_M_MBSS) 1525 sc->sc_nmeshvaps++; 1526 } 1527 switch (ic_opmode) { 1528 case IEEE80211_M_IBSS: 1529 sc->sc_opmode = HAL_M_IBSS; 1530 break; 1531 case IEEE80211_M_STA: 1532 sc->sc_opmode = HAL_M_STA; 1533 break; 1534 case IEEE80211_M_AHDEMO: 1535 #ifdef IEEE80211_SUPPORT_TDMA 1536 if (vap->iv_caps & IEEE80211_C_TDMA) { 1537 sc->sc_tdma = 1; 1538 /* NB: disable tsf adjust */ 1539 sc->sc_stagbeacons = 0; 1540 } 1541 /* 1542 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1543 * just ap mode. 1544 */ 1545 /* fall thru... */ 1546 #endif 1547 case IEEE80211_M_HOSTAP: 1548 case IEEE80211_M_MBSS: 1549 sc->sc_opmode = HAL_M_HOSTAP; 1550 break; 1551 case IEEE80211_M_MONITOR: 1552 sc->sc_opmode = HAL_M_MONITOR; 1553 break; 1554 default: 1555 /* XXX should not happen */ 1556 break; 1557 } 1558 if (sc->sc_hastsfadd) { 1559 /* 1560 * Configure whether or not TSF adjust should be done. 1561 */ 1562 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1563 } 1564 if (flags & IEEE80211_CLONE_NOBEACONS) { 1565 /* 1566 * Enable s/w beacon miss handling. 1567 */ 1568 sc->sc_swbmiss = 1; 1569 } 1570 ATH_UNLOCK(sc); 1571 1572 /* complete setup */ 1573 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1574 return vap; 1575 bad2: 1576 reclaim_address(sc, mac); 1577 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1578 bad: 1579 free(avp, M_80211_VAP); 1580 ATH_UNLOCK(sc); 1581 return NULL; 1582 } 1583 1584 static void 1585 ath_vap_delete(struct ieee80211vap *vap) 1586 { 1587 struct ieee80211com *ic = vap->iv_ic; 1588 struct ifnet *ifp = ic->ic_ifp; 1589 struct ath_softc *sc = ifp->if_softc; 1590 struct ath_hal *ah = sc->sc_ah; 1591 struct ath_vap *avp = ATH_VAP(vap); 1592 1593 ATH_LOCK(sc); 1594 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1595 ATH_UNLOCK(sc); 1596 1597 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1598 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1599 /* 1600 * Quiesce the hardware while we remove the vap. In 1601 * particular we need to reclaim all references to 1602 * the vap state by any frames pending on the tx queues. 1603 */ 1604 ath_hal_intrset(ah, 0); /* disable interrupts */ 1605 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1606 /* XXX Do all frames from all vaps/nodes need draining here? */ 1607 ath_stoprecv(sc, 1); /* stop recv side */ 1608 } 1609 1610 /* .. leave the hardware awake for now. */ 1611 1612 ieee80211_vap_detach(vap); 1613 1614 /* 1615 * XXX Danger Will Robinson! Danger! 1616 * 1617 * Because ieee80211_vap_detach() can queue a frame (the station 1618 * diassociate message?) after we've drained the TXQ and 1619 * flushed the software TXQ, we will end up with a frame queued 1620 * to a node whose vap is about to be freed. 1621 * 1622 * To work around this, flush the hardware/software again. 1623 * This may be racy - the ath task may be running and the packet 1624 * may be being scheduled between sw->hw txq. Tsk. 1625 * 1626 * TODO: figure out why a new node gets allocated somewhere around 1627 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1628 * call!) 1629 */ 1630 1631 ath_draintxq(sc, ATH_RESET_DEFAULT); 1632 1633 ATH_LOCK(sc); 1634 /* 1635 * Reclaim beacon state. Note this must be done before 1636 * the vap instance is reclaimed as we may have a reference 1637 * to it in the buffer for the beacon frame. 1638 */ 1639 if (avp->av_bcbuf != NULL) { 1640 if (avp->av_bslot != -1) { 1641 sc->sc_bslot[avp->av_bslot] = NULL; 1642 sc->sc_nbcnvaps--; 1643 } 1644 ath_beacon_return(sc, avp->av_bcbuf); 1645 avp->av_bcbuf = NULL; 1646 if (sc->sc_nbcnvaps == 0) { 1647 sc->sc_stagbeacons = 0; 1648 if (sc->sc_hastsfadd) 1649 ath_hal_settsfadjust(sc->sc_ah, 0); 1650 } 1651 /* 1652 * Reclaim any pending mcast frames for the vap. 1653 */ 1654 ath_tx_draintxq(sc, &avp->av_mcastq); 1655 } 1656 /* 1657 * Update bookkeeping. 1658 */ 1659 if (vap->iv_opmode == IEEE80211_M_STA) { 1660 sc->sc_nstavaps--; 1661 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1662 sc->sc_swbmiss = 0; 1663 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1664 vap->iv_opmode == IEEE80211_M_MBSS) { 1665 reclaim_address(sc, vap->iv_myaddr); 1666 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1667 if (vap->iv_opmode == IEEE80211_M_MBSS) 1668 sc->sc_nmeshvaps--; 1669 } 1670 if (vap->iv_opmode != IEEE80211_M_WDS) 1671 sc->sc_nvaps--; 1672 #ifdef IEEE80211_SUPPORT_TDMA 1673 /* TDMA operation ceases when the last vap is destroyed */ 1674 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1675 sc->sc_tdma = 0; 1676 sc->sc_swbmiss = 0; 1677 } 1678 #endif 1679 free(avp, M_80211_VAP); 1680 1681 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1682 /* 1683 * Restart rx+tx machines if still running (RUNNING will 1684 * be reset if we just destroyed the last vap). 1685 */ 1686 if (ath_startrecv(sc) != 0) 1687 if_printf(ifp, "%s: unable to restart recv logic\n", 1688 __func__); 1689 if (sc->sc_beacons) { /* restart beacons */ 1690 #ifdef IEEE80211_SUPPORT_TDMA 1691 if (sc->sc_tdma) 1692 ath_tdma_config(sc, NULL); 1693 else 1694 #endif 1695 ath_beacon_config(sc, NULL); 1696 } 1697 ath_hal_intrset(ah, sc->sc_imask); 1698 } 1699 1700 /* Ok, let the hardware asleep. */ 1701 ath_power_restore_power_state(sc); 1702 ATH_UNLOCK(sc); 1703 } 1704 1705 void 1706 ath_suspend(struct ath_softc *sc) 1707 { 1708 struct ifnet *ifp = sc->sc_ifp; 1709 struct ieee80211com *ic = ifp->if_l2com; 1710 1711 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1712 __func__, ifp->if_flags); 1713 1714 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1715 1716 ieee80211_suspend_all(ic); 1717 /* 1718 * NB: don't worry about putting the chip in low power 1719 * mode; pci will power off our socket on suspend and 1720 * CardBus detaches the device. 1721 */ 1722 1723 /* 1724 * XXX ensure none of the taskqueues are running 1725 * XXX ensure sc_invalid is 1 1726 * XXX ensure the calibration callout is disabled 1727 */ 1728 1729 /* Disable the PCIe PHY, complete with workarounds */ 1730 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1731 } 1732 1733 /* 1734 * Reset the key cache since some parts do not reset the 1735 * contents on resume. First we clear all entries, then 1736 * re-load keys that the 802.11 layer assumes are setup 1737 * in h/w. 1738 */ 1739 static void 1740 ath_reset_keycache(struct ath_softc *sc) 1741 { 1742 struct ifnet *ifp = sc->sc_ifp; 1743 struct ieee80211com *ic = ifp->if_l2com; 1744 struct ath_hal *ah = sc->sc_ah; 1745 int i; 1746 1747 ATH_LOCK(sc); 1748 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1749 for (i = 0; i < sc->sc_keymax; i++) 1750 ath_hal_keyreset(ah, i); 1751 ath_power_restore_power_state(sc); 1752 ATH_UNLOCK(sc); 1753 ieee80211_crypto_reload_keys(ic); 1754 } 1755 1756 /* 1757 * Fetch the current chainmask configuration based on the current 1758 * operating channel and options. 1759 */ 1760 static void 1761 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1762 { 1763 1764 /* 1765 * Set TX chainmask to the currently configured chainmask; 1766 * the TX chainmask depends upon the current operating mode. 1767 */ 1768 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1769 if (IEEE80211_IS_CHAN_HT(chan)) { 1770 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1771 } else { 1772 sc->sc_cur_txchainmask = 1; 1773 } 1774 1775 DPRINTF(sc, ATH_DEBUG_RESET, 1776 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1777 __func__, 1778 sc->sc_cur_txchainmask, 1779 sc->sc_cur_rxchainmask); 1780 } 1781 1782 void 1783 ath_resume(struct ath_softc *sc) 1784 { 1785 struct ifnet *ifp = sc->sc_ifp; 1786 struct ieee80211com *ic = ifp->if_l2com; 1787 struct ath_hal *ah = sc->sc_ah; 1788 HAL_STATUS status; 1789 1790 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1791 __func__, ifp->if_flags); 1792 1793 /* Re-enable PCIe, re-enable the PCIe bus */ 1794 ath_hal_enablepcie(ah, 0, 0); 1795 1796 /* 1797 * Must reset the chip before we reload the 1798 * keycache as we were powered down on suspend. 1799 */ 1800 ath_update_chainmasks(sc, 1801 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1802 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1803 sc->sc_cur_rxchainmask); 1804 1805 /* Ensure we set the current power state to on */ 1806 ATH_LOCK(sc); 1807 ath_power_setselfgen(sc, HAL_PM_AWAKE); 1808 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1809 ath_power_setpower(sc, HAL_PM_AWAKE); 1810 ATH_UNLOCK(sc); 1811 1812 ath_hal_reset(ah, sc->sc_opmode, 1813 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1814 AH_FALSE, &status); 1815 ath_reset_keycache(sc); 1816 1817 /* Let DFS at it in case it's a DFS channel */ 1818 ath_dfs_radar_enable(sc, ic->ic_curchan); 1819 1820 /* Let spectral at in case spectral is enabled */ 1821 ath_spectral_enable(sc, ic->ic_curchan); 1822 1823 /* 1824 * Let bluetooth coexistence at in case it's needed for this channel 1825 */ 1826 ath_btcoex_enable(sc, ic->ic_curchan); 1827 1828 /* 1829 * If we're doing TDMA, enforce the TXOP limitation for chips that 1830 * support it. 1831 */ 1832 if (sc->sc_hasenforcetxop && sc->sc_tdma) 1833 ath_hal_setenforcetxop(sc->sc_ah, 1); 1834 else 1835 ath_hal_setenforcetxop(sc->sc_ah, 0); 1836 1837 /* Restore the LED configuration */ 1838 ath_led_config(sc); 1839 ath_hal_setledstate(ah, HAL_LED_INIT); 1840 1841 if (sc->sc_resume_up) 1842 ieee80211_resume_all(ic); 1843 1844 ATH_LOCK(sc); 1845 ath_power_restore_power_state(sc); 1846 ATH_UNLOCK(sc); 1847 1848 /* XXX beacons ? */ 1849 } 1850 1851 void 1852 ath_shutdown(struct ath_softc *sc) 1853 { 1854 struct ifnet *ifp = sc->sc_ifp; 1855 1856 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1857 __func__, ifp->if_flags); 1858 1859 ath_stop(ifp); 1860 /* NB: no point powering down chip as we're about to reboot */ 1861 } 1862 1863 /* 1864 * Interrupt handler. Most of the actual processing is deferred. 1865 */ 1866 void 1867 ath_intr(void *arg) 1868 { 1869 struct ath_softc *sc = arg; 1870 struct ifnet *ifp = sc->sc_ifp; 1871 struct ath_hal *ah = sc->sc_ah; 1872 HAL_INT status = 0; 1873 uint32_t txqs; 1874 1875 /* 1876 * If we're inside a reset path, just print a warning and 1877 * clear the ISR. The reset routine will finish it for us. 1878 */ 1879 ATH_PCU_LOCK(sc); 1880 if (sc->sc_inreset_cnt) { 1881 HAL_INT status; 1882 ath_hal_getisr(ah, &status); /* clear ISR */ 1883 ath_hal_intrset(ah, 0); /* disable further intr's */ 1884 DPRINTF(sc, ATH_DEBUG_ANY, 1885 "%s: in reset, ignoring: status=0x%x\n", 1886 __func__, status); 1887 ATH_PCU_UNLOCK(sc); 1888 return; 1889 } 1890 1891 if (sc->sc_invalid) { 1892 /* 1893 * The hardware is not ready/present, don't touch anything. 1894 * Note this can happen early on if the IRQ is shared. 1895 */ 1896 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1897 ATH_PCU_UNLOCK(sc); 1898 return; 1899 } 1900 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1901 ATH_PCU_UNLOCK(sc); 1902 return; 1903 } 1904 1905 ATH_LOCK(sc); 1906 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1907 ATH_UNLOCK(sc); 1908 1909 if ((ifp->if_flags & IFF_UP) == 0 || 1910 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1911 HAL_INT status; 1912 1913 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1914 __func__, ifp->if_flags); 1915 ath_hal_getisr(ah, &status); /* clear ISR */ 1916 ath_hal_intrset(ah, 0); /* disable further intr's */ 1917 ATH_PCU_UNLOCK(sc); 1918 1919 ATH_LOCK(sc); 1920 ath_power_restore_power_state(sc); 1921 ATH_UNLOCK(sc); 1922 return; 1923 } 1924 1925 /* 1926 * Figure out the reason(s) for the interrupt. Note 1927 * that the hal returns a pseudo-ISR that may include 1928 * bits we haven't explicitly enabled so we mask the 1929 * value to insure we only process bits we requested. 1930 */ 1931 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1932 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1933 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 1934 #ifdef ATH_DEBUG_ALQ 1935 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 1936 ah->ah_syncstate); 1937 #endif /* ATH_DEBUG_ALQ */ 1938 #ifdef ATH_KTR_INTR_DEBUG 1939 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 1940 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1941 ah->ah_intrstate[0], 1942 ah->ah_intrstate[1], 1943 ah->ah_intrstate[2], 1944 ah->ah_intrstate[3], 1945 ah->ah_intrstate[6]); 1946 #endif 1947 1948 /* Squirrel away SYNC interrupt debugging */ 1949 if (ah->ah_syncstate != 0) { 1950 int i; 1951 for (i = 0; i < 32; i++) 1952 if (ah->ah_syncstate & (i << i)) 1953 sc->sc_intr_stats.sync_intr[i]++; 1954 } 1955 1956 status &= sc->sc_imask; /* discard unasked for bits */ 1957 1958 /* Short-circuit un-handled interrupts */ 1959 if (status == 0x0) { 1960 ATH_PCU_UNLOCK(sc); 1961 1962 ATH_LOCK(sc); 1963 ath_power_restore_power_state(sc); 1964 ATH_UNLOCK(sc); 1965 1966 return; 1967 } 1968 1969 /* 1970 * Take a note that we're inside the interrupt handler, so 1971 * the reset routines know to wait. 1972 */ 1973 sc->sc_intr_cnt++; 1974 ATH_PCU_UNLOCK(sc); 1975 1976 /* 1977 * Handle the interrupt. We won't run concurrent with the reset 1978 * or channel change routines as they'll wait for sc_intr_cnt 1979 * to be 0 before continuing. 1980 */ 1981 if (status & HAL_INT_FATAL) { 1982 sc->sc_stats.ast_hardware++; 1983 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1984 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1985 } else { 1986 if (status & HAL_INT_SWBA) { 1987 /* 1988 * Software beacon alert--time to send a beacon. 1989 * Handle beacon transmission directly; deferring 1990 * this is too slow to meet timing constraints 1991 * under load. 1992 */ 1993 #ifdef IEEE80211_SUPPORT_TDMA 1994 if (sc->sc_tdma) { 1995 if (sc->sc_tdmaswba == 0) { 1996 struct ieee80211com *ic = ifp->if_l2com; 1997 struct ieee80211vap *vap = 1998 TAILQ_FIRST(&ic->ic_vaps); 1999 ath_tdma_beacon_send(sc, vap); 2000 sc->sc_tdmaswba = 2001 vap->iv_tdma->tdma_bintval; 2002 } else 2003 sc->sc_tdmaswba--; 2004 } else 2005 #endif 2006 { 2007 ath_beacon_proc(sc, 0); 2008 #ifdef IEEE80211_SUPPORT_SUPERG 2009 /* 2010 * Schedule the rx taskq in case there's no 2011 * traffic so any frames held on the staging 2012 * queue are aged and potentially flushed. 2013 */ 2014 sc->sc_rx.recv_sched(sc, 1); 2015 #endif 2016 } 2017 } 2018 if (status & HAL_INT_RXEOL) { 2019 int imask; 2020 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2021 ATH_PCU_LOCK(sc); 2022 /* 2023 * NB: the hardware should re-read the link when 2024 * RXE bit is written, but it doesn't work at 2025 * least on older hardware revs. 2026 */ 2027 sc->sc_stats.ast_rxeol++; 2028 /* 2029 * Disable RXEOL/RXORN - prevent an interrupt 2030 * storm until the PCU logic can be reset. 2031 * In case the interface is reset some other 2032 * way before "sc_kickpcu" is called, don't 2033 * modify sc_imask - that way if it is reset 2034 * by a call to ath_reset() somehow, the 2035 * interrupt mask will be correctly reprogrammed. 2036 */ 2037 imask = sc->sc_imask; 2038 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2039 ath_hal_intrset(ah, imask); 2040 /* 2041 * Only blank sc_rxlink if we've not yet kicked 2042 * the PCU. 2043 * 2044 * This isn't entirely correct - the correct solution 2045 * would be to have a PCU lock and engage that for 2046 * the duration of the PCU fiddling; which would include 2047 * running the RX process. Otherwise we could end up 2048 * messing up the RX descriptor chain and making the 2049 * RX desc list much shorter. 2050 */ 2051 if (! sc->sc_kickpcu) 2052 sc->sc_rxlink = NULL; 2053 sc->sc_kickpcu = 1; 2054 ATH_PCU_UNLOCK(sc); 2055 /* 2056 * Enqueue an RX proc, to handled whatever 2057 * is in the RX queue. 2058 * This will then kick the PCU. 2059 */ 2060 sc->sc_rx.recv_sched(sc, 1); 2061 } 2062 if (status & HAL_INT_TXURN) { 2063 sc->sc_stats.ast_txurn++; 2064 /* bump tx trigger level */ 2065 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2066 } 2067 /* 2068 * Handle both the legacy and RX EDMA interrupt bits. 2069 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2070 */ 2071 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2072 sc->sc_stats.ast_rx_intr++; 2073 sc->sc_rx.recv_sched(sc, 1); 2074 } 2075 if (status & HAL_INT_TX) { 2076 sc->sc_stats.ast_tx_intr++; 2077 /* 2078 * Grab all the currently set bits in the HAL txq bitmap 2079 * and blank them. This is the only place we should be 2080 * doing this. 2081 */ 2082 if (! sc->sc_isedma) { 2083 ATH_PCU_LOCK(sc); 2084 txqs = 0xffffffff; 2085 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2086 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2087 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2088 txqs, 2089 sc->sc_txq_active, 2090 sc->sc_txq_active | txqs); 2091 sc->sc_txq_active |= txqs; 2092 ATH_PCU_UNLOCK(sc); 2093 } 2094 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2095 } 2096 if (status & HAL_INT_BMISS) { 2097 sc->sc_stats.ast_bmiss++; 2098 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2099 } 2100 if (status & HAL_INT_GTT) 2101 sc->sc_stats.ast_tx_timeout++; 2102 if (status & HAL_INT_CST) 2103 sc->sc_stats.ast_tx_cst++; 2104 if (status & HAL_INT_MIB) { 2105 sc->sc_stats.ast_mib++; 2106 ATH_PCU_LOCK(sc); 2107 /* 2108 * Disable interrupts until we service the MIB 2109 * interrupt; otherwise it will continue to fire. 2110 */ 2111 ath_hal_intrset(ah, 0); 2112 /* 2113 * Let the hal handle the event. We assume it will 2114 * clear whatever condition caused the interrupt. 2115 */ 2116 ath_hal_mibevent(ah, &sc->sc_halstats); 2117 /* 2118 * Don't reset the interrupt if we've just 2119 * kicked the PCU, or we may get a nested 2120 * RXEOL before the rxproc has had a chance 2121 * to run. 2122 */ 2123 if (sc->sc_kickpcu == 0) 2124 ath_hal_intrset(ah, sc->sc_imask); 2125 ATH_PCU_UNLOCK(sc); 2126 } 2127 if (status & HAL_INT_RXORN) { 2128 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2129 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2130 sc->sc_stats.ast_rxorn++; 2131 } 2132 if (status & HAL_INT_TSFOOR) { 2133 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2134 sc->sc_syncbeacon = 1; 2135 } 2136 } 2137 ATH_PCU_LOCK(sc); 2138 sc->sc_intr_cnt--; 2139 ATH_PCU_UNLOCK(sc); 2140 2141 ATH_LOCK(sc); 2142 ath_power_restore_power_state(sc); 2143 ATH_UNLOCK(sc); 2144 } 2145 2146 static void 2147 ath_fatal_proc(void *arg, int pending) 2148 { 2149 struct ath_softc *sc = arg; 2150 struct ifnet *ifp = sc->sc_ifp; 2151 u_int32_t *state; 2152 u_int32_t len; 2153 void *sp; 2154 2155 if_printf(ifp, "hardware error; resetting\n"); 2156 /* 2157 * Fatal errors are unrecoverable. Typically these 2158 * are caused by DMA errors. Collect h/w state from 2159 * the hal so we can diagnose what's going on. 2160 */ 2161 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2162 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2163 state = sp; 2164 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 2165 state[0], state[1] , state[2], state[3], 2166 state[4], state[5]); 2167 } 2168 ath_reset(ifp, ATH_RESET_NOLOSS); 2169 } 2170 2171 static void 2172 ath_bmiss_vap(struct ieee80211vap *vap) 2173 { 2174 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 2175 2176 /* 2177 * Workaround phantom bmiss interrupts by sanity-checking 2178 * the time of our last rx'd frame. If it is within the 2179 * beacon miss interval then ignore the interrupt. If it's 2180 * truly a bmiss we'll get another interrupt soon and that'll 2181 * be dispatched up for processing. Note this applies only 2182 * for h/w beacon miss events. 2183 */ 2184 2185 /* 2186 * XXX TODO: Just read the TSF during the interrupt path; 2187 * that way we don't have to wake up again just to read it 2188 * again. 2189 */ 2190 ATH_LOCK(sc); 2191 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2192 ATH_UNLOCK(sc); 2193 2194 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2195 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2196 struct ath_softc *sc = ifp->if_softc; 2197 u_int64_t lastrx = sc->sc_lastrx; 2198 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2199 /* XXX should take a locked ref to iv_bss */ 2200 u_int bmisstimeout = 2201 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2202 2203 DPRINTF(sc, ATH_DEBUG_BEACON, 2204 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2205 __func__, (unsigned long long) tsf, 2206 (unsigned long long)(tsf - lastrx), 2207 (unsigned long long) lastrx, bmisstimeout); 2208 2209 if (tsf - lastrx <= bmisstimeout) { 2210 sc->sc_stats.ast_bmiss_phantom++; 2211 2212 ATH_LOCK(sc); 2213 ath_power_restore_power_state(sc); 2214 ATH_UNLOCK(sc); 2215 2216 return; 2217 } 2218 } 2219 2220 /* 2221 * There's no need to keep the hardware awake during the call 2222 * to av_bmiss(). 2223 */ 2224 ATH_LOCK(sc); 2225 ath_power_restore_power_state(sc); 2226 ATH_UNLOCK(sc); 2227 2228 /* 2229 * Attempt to force a beacon resync. 2230 */ 2231 sc->sc_syncbeacon = 1; 2232 2233 ATH_VAP(vap)->av_bmiss(vap); 2234 } 2235 2236 /* XXX this needs a force wakeup! */ 2237 int 2238 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2239 { 2240 uint32_t rsize; 2241 void *sp; 2242 2243 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2244 return 0; 2245 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2246 *hangs = *(uint32_t *)sp; 2247 return 1; 2248 } 2249 2250 static void 2251 ath_bmiss_proc(void *arg, int pending) 2252 { 2253 struct ath_softc *sc = arg; 2254 struct ifnet *ifp = sc->sc_ifp; 2255 uint32_t hangs; 2256 2257 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2258 2259 ATH_LOCK(sc); 2260 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2261 ATH_UNLOCK(sc); 2262 2263 ath_beacon_miss(sc); 2264 2265 /* 2266 * Do a reset upon any becaon miss event. 2267 * 2268 * It may be a non-recognised RX clear hang which needs a reset 2269 * to clear. 2270 */ 2271 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2272 ath_reset(ifp, ATH_RESET_NOLOSS); 2273 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 2274 } else { 2275 ath_reset(ifp, ATH_RESET_NOLOSS); 2276 ieee80211_beacon_miss(ifp->if_l2com); 2277 } 2278 2279 /* Force a beacon resync, in case they've drifted */ 2280 sc->sc_syncbeacon = 1; 2281 2282 ATH_LOCK(sc); 2283 ath_power_restore_power_state(sc); 2284 ATH_UNLOCK(sc); 2285 } 2286 2287 /* 2288 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2289 * calcs together with WME. If necessary disable the crypto 2290 * hardware and mark the 802.11 state so keys will be setup 2291 * with the MIC work done in software. 2292 */ 2293 static void 2294 ath_settkipmic(struct ath_softc *sc) 2295 { 2296 struct ifnet *ifp = sc->sc_ifp; 2297 struct ieee80211com *ic = ifp->if_l2com; 2298 2299 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2300 if (ic->ic_flags & IEEE80211_F_WME) { 2301 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2302 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2303 } else { 2304 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2305 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2306 } 2307 } 2308 } 2309 2310 static void 2311 ath_init(void *arg) 2312 { 2313 struct ath_softc *sc = (struct ath_softc *) arg; 2314 struct ifnet *ifp = sc->sc_ifp; 2315 struct ieee80211com *ic = ifp->if_l2com; 2316 struct ath_hal *ah = sc->sc_ah; 2317 HAL_STATUS status; 2318 2319 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 2320 __func__, ifp->if_flags); 2321 2322 ATH_LOCK(sc); 2323 /* 2324 * Force the sleep state awake. 2325 */ 2326 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2327 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2328 ath_power_setpower(sc, HAL_PM_AWAKE); 2329 2330 /* 2331 * Stop anything previously setup. This is safe 2332 * whether this is the first time through or not. 2333 */ 2334 ath_stop_locked(ifp); 2335 2336 /* 2337 * The basic interface to setting the hardware in a good 2338 * state is ``reset''. On return the hardware is known to 2339 * be powered up and with interrupts disabled. This must 2340 * be followed by initialization of the appropriate bits 2341 * and then setup of the interrupt mask. 2342 */ 2343 ath_settkipmic(sc); 2344 ath_update_chainmasks(sc, ic->ic_curchan); 2345 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2346 sc->sc_cur_rxchainmask); 2347 2348 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 2349 if_printf(ifp, "unable to reset hardware; hal status %u\n", 2350 status); 2351 ATH_UNLOCK(sc); 2352 return; 2353 } 2354 ath_chan_change(sc, ic->ic_curchan); 2355 2356 /* Let DFS at it in case it's a DFS channel */ 2357 ath_dfs_radar_enable(sc, ic->ic_curchan); 2358 2359 /* Let spectral at in case spectral is enabled */ 2360 ath_spectral_enable(sc, ic->ic_curchan); 2361 2362 /* 2363 * Let bluetooth coexistence at in case it's needed for this channel 2364 */ 2365 ath_btcoex_enable(sc, ic->ic_curchan); 2366 2367 /* 2368 * If we're doing TDMA, enforce the TXOP limitation for chips that 2369 * support it. 2370 */ 2371 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2372 ath_hal_setenforcetxop(sc->sc_ah, 1); 2373 else 2374 ath_hal_setenforcetxop(sc->sc_ah, 0); 2375 2376 /* 2377 * Likewise this is set during reset so update 2378 * state cached in the driver. 2379 */ 2380 sc->sc_diversity = ath_hal_getdiversity(ah); 2381 sc->sc_lastlongcal = 0; 2382 sc->sc_resetcal = 1; 2383 sc->sc_lastcalreset = 0; 2384 sc->sc_lastani = 0; 2385 sc->sc_lastshortcal = 0; 2386 sc->sc_doresetcal = AH_FALSE; 2387 /* 2388 * Beacon timers were cleared here; give ath_newstate() 2389 * a hint that the beacon timers should be poked when 2390 * things transition to the RUN state. 2391 */ 2392 sc->sc_beacons = 0; 2393 2394 /* 2395 * Setup the hardware after reset: the key cache 2396 * is filled as needed and the receive engine is 2397 * set going. Frame transmit is handled entirely 2398 * in the frame output path; there's nothing to do 2399 * here except setup the interrupt mask. 2400 */ 2401 if (ath_startrecv(sc) != 0) { 2402 if_printf(ifp, "unable to start recv logic\n"); 2403 ath_power_restore_power_state(sc); 2404 ATH_UNLOCK(sc); 2405 return; 2406 } 2407 2408 /* 2409 * Enable interrupts. 2410 */ 2411 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2412 | HAL_INT_RXEOL | HAL_INT_RXORN 2413 | HAL_INT_TXURN 2414 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2415 2416 /* 2417 * Enable RX EDMA bits. Note these overlap with 2418 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2419 */ 2420 if (sc->sc_isedma) 2421 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2422 2423 /* 2424 * Enable MIB interrupts when there are hardware phy counters. 2425 * Note we only do this (at the moment) for station mode. 2426 */ 2427 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2428 sc->sc_imask |= HAL_INT_MIB; 2429 2430 /* 2431 * XXX add capability for this. 2432 * 2433 * If we're in STA mode (and maybe IBSS?) then register for 2434 * TSFOOR interrupts. 2435 */ 2436 if (ic->ic_opmode == IEEE80211_M_STA) 2437 sc->sc_imask |= HAL_INT_TSFOOR; 2438 2439 /* Enable global TX timeout and carrier sense timeout if available */ 2440 if (ath_hal_gtxto_supported(ah)) 2441 sc->sc_imask |= HAL_INT_GTT; 2442 2443 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2444 __func__, sc->sc_imask); 2445 2446 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2447 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2448 ath_hal_intrset(ah, sc->sc_imask); 2449 2450 ath_power_restore_power_state(sc); 2451 ATH_UNLOCK(sc); 2452 2453 #ifdef ATH_TX99_DIAG 2454 if (sc->sc_tx99 != NULL) 2455 sc->sc_tx99->start(sc->sc_tx99); 2456 else 2457 #endif 2458 ieee80211_start_all(ic); /* start all vap's */ 2459 } 2460 2461 static void 2462 ath_stop_locked(struct ifnet *ifp) 2463 { 2464 struct ath_softc *sc = ifp->if_softc; 2465 struct ath_hal *ah = sc->sc_ah; 2466 2467 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 2468 __func__, sc->sc_invalid, ifp->if_flags); 2469 2470 ATH_LOCK_ASSERT(sc); 2471 2472 /* 2473 * Wake the hardware up before fiddling with it. 2474 */ 2475 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2476 2477 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2478 /* 2479 * Shutdown the hardware and driver: 2480 * reset 802.11 state machine 2481 * turn off timers 2482 * disable interrupts 2483 * turn off the radio 2484 * clear transmit machinery 2485 * clear receive machinery 2486 * drain and release tx queues 2487 * reclaim beacon resources 2488 * power down hardware 2489 * 2490 * Note that some of this work is not possible if the 2491 * hardware is gone (invalid). 2492 */ 2493 #ifdef ATH_TX99_DIAG 2494 if (sc->sc_tx99 != NULL) 2495 sc->sc_tx99->stop(sc->sc_tx99); 2496 #endif 2497 callout_stop(&sc->sc_wd_ch); 2498 sc->sc_wd_timer = 0; 2499 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2500 if (!sc->sc_invalid) { 2501 if (sc->sc_softled) { 2502 callout_stop(&sc->sc_ledtimer); 2503 ath_hal_gpioset(ah, sc->sc_ledpin, 2504 !sc->sc_ledon); 2505 sc->sc_blinking = 0; 2506 } 2507 ath_hal_intrset(ah, 0); 2508 } 2509 ath_draintxq(sc, ATH_RESET_DEFAULT); 2510 if (!sc->sc_invalid) { 2511 ath_stoprecv(sc, 1); 2512 ath_hal_phydisable(ah); 2513 } else 2514 sc->sc_rxlink = NULL; 2515 ath_beacon_free(sc); /* XXX not needed */ 2516 } 2517 2518 /* And now, restore the current power state */ 2519 ath_power_restore_power_state(sc); 2520 } 2521 2522 /* 2523 * Wait until all pending TX/RX has completed. 2524 * 2525 * This waits until all existing transmit, receive and interrupts 2526 * have completed. It's assumed that the caller has first 2527 * grabbed the reset lock so it doesn't try to do overlapping 2528 * chip resets. 2529 */ 2530 #define MAX_TXRX_ITERATIONS 100 2531 static void 2532 ath_txrx_stop_locked(struct ath_softc *sc) 2533 { 2534 int i = MAX_TXRX_ITERATIONS; 2535 2536 ATH_UNLOCK_ASSERT(sc); 2537 ATH_PCU_LOCK_ASSERT(sc); 2538 2539 /* 2540 * Sleep until all the pending operations have completed. 2541 * 2542 * The caller must ensure that reset has been incremented 2543 * or the pending operations may continue being queued. 2544 */ 2545 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2546 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2547 if (i <= 0) 2548 break; 2549 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2550 msecs_to_ticks(10)); 2551 i--; 2552 } 2553 2554 if (i <= 0) 2555 device_printf(sc->sc_dev, 2556 "%s: didn't finish after %d iterations\n", 2557 __func__, MAX_TXRX_ITERATIONS); 2558 } 2559 #undef MAX_TXRX_ITERATIONS 2560 2561 #if 0 2562 static void 2563 ath_txrx_stop(struct ath_softc *sc) 2564 { 2565 ATH_UNLOCK_ASSERT(sc); 2566 ATH_PCU_UNLOCK_ASSERT(sc); 2567 2568 ATH_PCU_LOCK(sc); 2569 ath_txrx_stop_locked(sc); 2570 ATH_PCU_UNLOCK(sc); 2571 } 2572 #endif 2573 2574 static void 2575 ath_txrx_start(struct ath_softc *sc) 2576 { 2577 2578 taskqueue_unblock(sc->sc_tq); 2579 } 2580 2581 /* 2582 * Grab the reset lock, and wait around until noone else 2583 * is trying to do anything with it. 2584 * 2585 * This is totally horrible but we can't hold this lock for 2586 * long enough to do TX/RX or we end up with net80211/ip stack 2587 * LORs and eventual deadlock. 2588 * 2589 * "dowait" signals whether to spin, waiting for the reset 2590 * lock count to reach 0. This should (for now) only be used 2591 * during the reset path, as the rest of the code may not 2592 * be locking-reentrant enough to behave correctly. 2593 * 2594 * Another, cleaner way should be found to serialise all of 2595 * these operations. 2596 */ 2597 #define MAX_RESET_ITERATIONS 25 2598 static int 2599 ath_reset_grablock(struct ath_softc *sc, int dowait) 2600 { 2601 int w = 0; 2602 int i = MAX_RESET_ITERATIONS; 2603 2604 ATH_PCU_LOCK_ASSERT(sc); 2605 do { 2606 if (sc->sc_inreset_cnt == 0) { 2607 w = 1; 2608 break; 2609 } 2610 if (dowait == 0) { 2611 w = 0; 2612 break; 2613 } 2614 ATH_PCU_UNLOCK(sc); 2615 /* 2616 * 1 tick is likely not enough time for long calibrations 2617 * to complete. So we should wait quite a while. 2618 */ 2619 pause("ath_reset_grablock", msecs_to_ticks(100)); 2620 i--; 2621 ATH_PCU_LOCK(sc); 2622 } while (i > 0); 2623 2624 /* 2625 * We always increment the refcounter, regardless 2626 * of whether we succeeded to get it in an exclusive 2627 * way. 2628 */ 2629 sc->sc_inreset_cnt++; 2630 2631 if (i <= 0) 2632 device_printf(sc->sc_dev, 2633 "%s: didn't finish after %d iterations\n", 2634 __func__, MAX_RESET_ITERATIONS); 2635 2636 if (w == 0) 2637 device_printf(sc->sc_dev, 2638 "%s: warning, recursive reset path!\n", 2639 __func__); 2640 2641 return w; 2642 } 2643 #undef MAX_RESET_ITERATIONS 2644 2645 /* 2646 * XXX TODO: write ath_reset_releaselock 2647 */ 2648 2649 static void 2650 ath_stop(struct ifnet *ifp) 2651 { 2652 struct ath_softc *sc = ifp->if_softc; 2653 2654 ATH_LOCK(sc); 2655 ath_stop_locked(ifp); 2656 ATH_UNLOCK(sc); 2657 } 2658 2659 /* 2660 * Reset the hardware w/o losing operational state. This is 2661 * basically a more efficient way of doing ath_stop, ath_init, 2662 * followed by state transitions to the current 802.11 2663 * operational state. Used to recover from various errors and 2664 * to reset or reload hardware state. 2665 */ 2666 int 2667 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2668 { 2669 struct ath_softc *sc = ifp->if_softc; 2670 struct ieee80211com *ic = ifp->if_l2com; 2671 struct ath_hal *ah = sc->sc_ah; 2672 HAL_STATUS status; 2673 int i; 2674 2675 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2676 2677 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2678 ATH_PCU_UNLOCK_ASSERT(sc); 2679 ATH_UNLOCK_ASSERT(sc); 2680 2681 /* Try to (stop any further TX/RX from occuring */ 2682 taskqueue_block(sc->sc_tq); 2683 2684 /* 2685 * Wake the hardware up. 2686 */ 2687 ATH_LOCK(sc); 2688 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2689 ATH_UNLOCK(sc); 2690 2691 ATH_PCU_LOCK(sc); 2692 2693 /* 2694 * Grab the reset lock before TX/RX is stopped. 2695 * 2696 * This is needed to ensure that when the TX/RX actually does finish, 2697 * no further TX/RX/reset runs in parallel with this. 2698 */ 2699 if (ath_reset_grablock(sc, 1) == 0) { 2700 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2701 __func__); 2702 } 2703 2704 /* disable interrupts */ 2705 ath_hal_intrset(ah, 0); 2706 2707 /* 2708 * Now, ensure that any in progress TX/RX completes before we 2709 * continue. 2710 */ 2711 ath_txrx_stop_locked(sc); 2712 2713 ATH_PCU_UNLOCK(sc); 2714 2715 /* 2716 * Should now wait for pending TX/RX to complete 2717 * and block future ones from occuring. This needs to be 2718 * done before the TX queue is drained. 2719 */ 2720 ath_draintxq(sc, reset_type); /* stop xmit side */ 2721 2722 /* 2723 * Regardless of whether we're doing a no-loss flush or 2724 * not, stop the PCU and handle what's in the RX queue. 2725 * That way frames aren't dropped which shouldn't be. 2726 */ 2727 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2728 ath_rx_flush(sc); 2729 2730 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2731 /* NB: indicate channel change so we do a full reset */ 2732 ath_update_chainmasks(sc, ic->ic_curchan); 2733 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2734 sc->sc_cur_rxchainmask); 2735 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2736 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2737 __func__, status); 2738 sc->sc_diversity = ath_hal_getdiversity(ah); 2739 2740 /* Let DFS at it in case it's a DFS channel */ 2741 ath_dfs_radar_enable(sc, ic->ic_curchan); 2742 2743 /* Let spectral at in case spectral is enabled */ 2744 ath_spectral_enable(sc, ic->ic_curchan); 2745 2746 /* 2747 * Let bluetooth coexistence at in case it's needed for this channel 2748 */ 2749 ath_btcoex_enable(sc, ic->ic_curchan); 2750 2751 /* 2752 * If we're doing TDMA, enforce the TXOP limitation for chips that 2753 * support it. 2754 */ 2755 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2756 ath_hal_setenforcetxop(sc->sc_ah, 1); 2757 else 2758 ath_hal_setenforcetxop(sc->sc_ah, 0); 2759 2760 if (ath_startrecv(sc) != 0) /* restart recv */ 2761 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2762 /* 2763 * We may be doing a reset in response to an ioctl 2764 * that changes the channel so update any state that 2765 * might change as a result. 2766 */ 2767 ath_chan_change(sc, ic->ic_curchan); 2768 if (sc->sc_beacons) { /* restart beacons */ 2769 #ifdef IEEE80211_SUPPORT_TDMA 2770 if (sc->sc_tdma) 2771 ath_tdma_config(sc, NULL); 2772 else 2773 #endif 2774 ath_beacon_config(sc, NULL); 2775 } 2776 2777 /* 2778 * Release the reset lock and re-enable interrupts here. 2779 * If an interrupt was being processed in ath_intr(), 2780 * it would disable interrupts at this point. So we have 2781 * to atomically enable interrupts and decrement the 2782 * reset counter - this way ath_intr() doesn't end up 2783 * disabling interrupts without a corresponding enable 2784 * in the rest or channel change path. 2785 * 2786 * Grab the TX reference in case we need to transmit. 2787 * That way a parallel transmit doesn't. 2788 */ 2789 ATH_PCU_LOCK(sc); 2790 sc->sc_inreset_cnt--; 2791 sc->sc_txstart_cnt++; 2792 /* XXX only do this if sc_inreset_cnt == 0? */ 2793 ath_hal_intrset(ah, sc->sc_imask); 2794 ATH_PCU_UNLOCK(sc); 2795 2796 /* 2797 * TX and RX can be started here. If it were started with 2798 * sc_inreset_cnt > 0, the TX and RX path would abort. 2799 * Thus if this is a nested call through the reset or 2800 * channel change code, TX completion will occur but 2801 * RX completion and ath_start / ath_tx_start will not 2802 * run. 2803 */ 2804 2805 /* Restart TX/RX as needed */ 2806 ath_txrx_start(sc); 2807 2808 /* XXX TODO: we need to hold the tx refcount here! */ 2809 2810 /* Restart TX completion and pending TX */ 2811 if (reset_type == ATH_RESET_NOLOSS) { 2812 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2813 if (ATH_TXQ_SETUP(sc, i)) { 2814 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2815 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2816 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2817 2818 ATH_TX_LOCK(sc); 2819 ath_txq_sched(sc, &sc->sc_txq[i]); 2820 ATH_TX_UNLOCK(sc); 2821 } 2822 } 2823 } 2824 2825 /* 2826 * This may have been set during an ath_start() call which 2827 * set this once it detected a concurrent TX was going on. 2828 * So, clear it. 2829 */ 2830 IF_LOCK(&ifp->if_snd); 2831 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2832 IF_UNLOCK(&ifp->if_snd); 2833 2834 ATH_LOCK(sc); 2835 ath_power_restore_power_state(sc); 2836 ATH_UNLOCK(sc); 2837 2838 ATH_PCU_LOCK(sc); 2839 sc->sc_txstart_cnt--; 2840 ATH_PCU_UNLOCK(sc); 2841 2842 /* Handle any frames in the TX queue */ 2843 /* 2844 * XXX should this be done by the caller, rather than 2845 * ath_reset() ? 2846 */ 2847 ath_tx_kick(sc); /* restart xmit */ 2848 return 0; 2849 } 2850 2851 static int 2852 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2853 { 2854 struct ieee80211com *ic = vap->iv_ic; 2855 struct ifnet *ifp = ic->ic_ifp; 2856 struct ath_softc *sc = ifp->if_softc; 2857 struct ath_hal *ah = sc->sc_ah; 2858 2859 switch (cmd) { 2860 case IEEE80211_IOC_TXPOWER: 2861 /* 2862 * If per-packet TPC is enabled, then we have nothing 2863 * to do; otherwise we need to force the global limit. 2864 * All this can happen directly; no need to reset. 2865 */ 2866 if (!ath_hal_gettpc(ah)) 2867 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2868 return 0; 2869 } 2870 /* XXX? Full or NOLOSS? */ 2871 return ath_reset(ifp, ATH_RESET_FULL); 2872 } 2873 2874 struct ath_buf * 2875 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2876 { 2877 struct ath_buf *bf; 2878 2879 ATH_TXBUF_LOCK_ASSERT(sc); 2880 2881 if (btype == ATH_BUFTYPE_MGMT) 2882 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2883 else 2884 bf = TAILQ_FIRST(&sc->sc_txbuf); 2885 2886 if (bf == NULL) { 2887 sc->sc_stats.ast_tx_getnobuf++; 2888 } else { 2889 if (bf->bf_flags & ATH_BUF_BUSY) { 2890 sc->sc_stats.ast_tx_getbusybuf++; 2891 bf = NULL; 2892 } 2893 } 2894 2895 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2896 if (btype == ATH_BUFTYPE_MGMT) 2897 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2898 else { 2899 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2900 sc->sc_txbuf_cnt--; 2901 2902 /* 2903 * This shuldn't happen; however just to be 2904 * safe print a warning and fudge the txbuf 2905 * count. 2906 */ 2907 if (sc->sc_txbuf_cnt < 0) { 2908 device_printf(sc->sc_dev, 2909 "%s: sc_txbuf_cnt < 0?\n", 2910 __func__); 2911 sc->sc_txbuf_cnt = 0; 2912 } 2913 } 2914 } else 2915 bf = NULL; 2916 2917 if (bf == NULL) { 2918 /* XXX should check which list, mgmt or otherwise */ 2919 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2920 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2921 "out of xmit buffers" : "xmit buffer busy"); 2922 return NULL; 2923 } 2924 2925 /* XXX TODO: should do this at buffer list initialisation */ 2926 /* XXX (then, ensure the buffer has the right flag set) */ 2927 bf->bf_flags = 0; 2928 if (btype == ATH_BUFTYPE_MGMT) 2929 bf->bf_flags |= ATH_BUF_MGMT; 2930 else 2931 bf->bf_flags &= (~ATH_BUF_MGMT); 2932 2933 /* Valid bf here; clear some basic fields */ 2934 bf->bf_next = NULL; /* XXX just to be sure */ 2935 bf->bf_last = NULL; /* XXX again, just to be sure */ 2936 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2937 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2938 2939 /* 2940 * Track the descriptor ID only if doing EDMA 2941 */ 2942 if (sc->sc_isedma) { 2943 bf->bf_descid = sc->sc_txbuf_descid; 2944 sc->sc_txbuf_descid++; 2945 } 2946 2947 return bf; 2948 } 2949 2950 /* 2951 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2952 * can't be thrown back on the queue as they could still be 2953 * in use by the hardware. 2954 * 2955 * This duplicates the buffer, or returns NULL. 2956 * 2957 * The descriptor is also copied but the link pointers and 2958 * the DMA segments aren't copied; this frame should thus 2959 * be again passed through the descriptor setup/chain routines 2960 * so the link is correct. 2961 * 2962 * The caller must free the buffer using ath_freebuf(). 2963 */ 2964 struct ath_buf * 2965 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 2966 { 2967 struct ath_buf *tbf; 2968 2969 tbf = ath_getbuf(sc, 2970 (bf->bf_flags & ATH_BUF_MGMT) ? 2971 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2972 if (tbf == NULL) 2973 return NULL; /* XXX failure? Why? */ 2974 2975 /* Copy basics */ 2976 tbf->bf_next = NULL; 2977 tbf->bf_nseg = bf->bf_nseg; 2978 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 2979 tbf->bf_status = bf->bf_status; 2980 tbf->bf_m = bf->bf_m; 2981 tbf->bf_node = bf->bf_node; 2982 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 2983 /* will be setup by the chain/setup function */ 2984 tbf->bf_lastds = NULL; 2985 /* for now, last == self */ 2986 tbf->bf_last = tbf; 2987 tbf->bf_comp = bf->bf_comp; 2988 2989 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2990 2991 /* The caller has to re-init the descriptor + links */ 2992 2993 /* 2994 * Free the DMA mapping here, before we NULL the mbuf. 2995 * We must only call bus_dmamap_unload() once per mbuf chain 2996 * or behaviour is undefined. 2997 */ 2998 if (bf->bf_m != NULL) { 2999 /* 3000 * XXX is this POSTWRITE call required? 3001 */ 3002 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3003 BUS_DMASYNC_POSTWRITE); 3004 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3005 } 3006 3007 bf->bf_m = NULL; 3008 bf->bf_node = NULL; 3009 3010 /* Copy state */ 3011 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3012 3013 return tbf; 3014 } 3015 3016 struct ath_buf * 3017 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3018 { 3019 struct ath_buf *bf; 3020 3021 ATH_TXBUF_LOCK(sc); 3022 bf = _ath_getbuf_locked(sc, btype); 3023 /* 3024 * If a mgmt buffer was requested but we're out of those, 3025 * try requesting a normal one. 3026 */ 3027 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3028 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3029 ATH_TXBUF_UNLOCK(sc); 3030 if (bf == NULL) { 3031 struct ifnet *ifp = sc->sc_ifp; 3032 3033 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3034 sc->sc_stats.ast_tx_qstop++; 3035 IF_LOCK(&ifp->if_snd); 3036 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3037 IF_UNLOCK(&ifp->if_snd); 3038 } 3039 return bf; 3040 } 3041 3042 static void 3043 ath_qflush(struct ifnet *ifp) 3044 { 3045 3046 /* XXX TODO */ 3047 } 3048 3049 /* 3050 * Transmit a single frame. 3051 * 3052 * net80211 will free the node reference if the transmit 3053 * fails, so don't free the node reference here. 3054 */ 3055 static int 3056 ath_transmit(struct ifnet *ifp, struct mbuf *m) 3057 { 3058 struct ieee80211com *ic = ifp->if_l2com; 3059 struct ath_softc *sc = ic->ic_ifp->if_softc; 3060 struct ieee80211_node *ni; 3061 struct mbuf *next; 3062 struct ath_buf *bf; 3063 ath_bufhead frags; 3064 int retval = 0; 3065 3066 /* 3067 * Tell the reset path that we're currently transmitting. 3068 */ 3069 ATH_PCU_LOCK(sc); 3070 if (sc->sc_inreset_cnt > 0) { 3071 DPRINTF(sc, ATH_DEBUG_XMIT, 3072 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3073 ATH_PCU_UNLOCK(sc); 3074 IF_LOCK(&ifp->if_snd); 3075 sc->sc_stats.ast_tx_qstop++; 3076 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3077 IF_UNLOCK(&ifp->if_snd); 3078 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3079 return (ENOBUFS); /* XXX should be EINVAL or? */ 3080 } 3081 sc->sc_txstart_cnt++; 3082 ATH_PCU_UNLOCK(sc); 3083 3084 /* Wake the hardware up already */ 3085 ATH_LOCK(sc); 3086 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3087 ATH_UNLOCK(sc); 3088 3089 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3090 /* 3091 * Grab the TX lock - it's ok to do this here; we haven't 3092 * yet started transmitting. 3093 */ 3094 ATH_TX_LOCK(sc); 3095 3096 /* 3097 * Node reference, if there's one. 3098 */ 3099 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3100 3101 /* 3102 * Enforce how deep a node queue can get. 3103 * 3104 * XXX it would be nicer if we kept an mbuf queue per 3105 * node and only whacked them into ath_bufs when we 3106 * are ready to schedule some traffic from them. 3107 * .. that may come later. 3108 * 3109 * XXX we should also track the per-node hardware queue 3110 * depth so it is easy to limit the _SUM_ of the swq and 3111 * hwq frames. Since we only schedule two HWQ frames 3112 * at a time, this should be OK for now. 3113 */ 3114 if ((!(m->m_flags & M_EAPOL)) && 3115 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3116 sc->sc_stats.ast_tx_nodeq_overflow++; 3117 m_freem(m); 3118 m = NULL; 3119 retval = ENOBUFS; 3120 goto finish; 3121 } 3122 3123 /* 3124 * Check how many TX buffers are available. 3125 * 3126 * If this is for non-EAPOL traffic, just leave some 3127 * space free in order for buffer cloning and raw 3128 * frame transmission to occur. 3129 * 3130 * If it's for EAPOL traffic, ignore this for now. 3131 * Management traffic will be sent via the raw transmit 3132 * method which bypasses this check. 3133 * 3134 * This is needed to ensure that EAPOL frames during 3135 * (re) keying have a chance to go out. 3136 * 3137 * See kern/138379 for more information. 3138 */ 3139 if ((!(m->m_flags & M_EAPOL)) && 3140 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3141 sc->sc_stats.ast_tx_nobuf++; 3142 m_freem(m); 3143 m = NULL; 3144 retval = ENOBUFS; 3145 goto finish; 3146 } 3147 3148 /* 3149 * Grab a TX buffer and associated resources. 3150 * 3151 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3152 * That way even with temporary buffer exhaustion due to 3153 * the data path doesn't leave us without the ability 3154 * to transmit management frames. 3155 * 3156 * Otherwise allocate a normal buffer. 3157 */ 3158 if (m->m_flags & M_EAPOL) 3159 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3160 else 3161 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3162 3163 if (bf == NULL) { 3164 /* 3165 * If we failed to allocate a buffer, fail. 3166 * 3167 * We shouldn't fail normally, due to the check 3168 * above. 3169 */ 3170 sc->sc_stats.ast_tx_nobuf++; 3171 IF_LOCK(&ifp->if_snd); 3172 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3173 IF_UNLOCK(&ifp->if_snd); 3174 m_freem(m); 3175 m = NULL; 3176 retval = ENOBUFS; 3177 goto finish; 3178 } 3179 3180 /* 3181 * At this point we have a buffer; so we need to free it 3182 * if we hit any error conditions. 3183 */ 3184 3185 /* 3186 * Check for fragmentation. If this frame 3187 * has been broken up verify we have enough 3188 * buffers to send all the fragments so all 3189 * go out or none... 3190 */ 3191 TAILQ_INIT(&frags); 3192 if ((m->m_flags & M_FRAG) && 3193 !ath_txfrag_setup(sc, &frags, m, ni)) { 3194 DPRINTF(sc, ATH_DEBUG_XMIT, 3195 "%s: out of txfrag buffers\n", __func__); 3196 sc->sc_stats.ast_tx_nofrag++; 3197 ifp->if_oerrors++; 3198 ath_freetx(m); 3199 goto bad; 3200 } 3201 3202 /* 3203 * At this point if we have any TX fragments, then we will 3204 * have bumped the node reference once for each of those. 3205 */ 3206 3207 /* 3208 * XXX Is there anything actually _enforcing_ that the 3209 * fragments are being transmitted in one hit, rather than 3210 * being interleaved with other transmissions on that 3211 * hardware queue? 3212 * 3213 * The ATH TX output lock is the only thing serialising this 3214 * right now. 3215 */ 3216 3217 /* 3218 * Calculate the "next fragment" length field in ath_buf 3219 * in order to let the transmit path know enough about 3220 * what to next write to the hardware. 3221 */ 3222 if (m->m_flags & M_FRAG) { 3223 struct ath_buf *fbf = bf; 3224 struct ath_buf *n_fbf = NULL; 3225 struct mbuf *fm = m->m_nextpkt; 3226 3227 /* 3228 * We need to walk the list of fragments and set 3229 * the next size to the following buffer. 3230 * However, the first buffer isn't in the frag 3231 * list, so we have to do some gymnastics here. 3232 */ 3233 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3234 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3235 fbf = n_fbf; 3236 fm = fm->m_nextpkt; 3237 } 3238 } 3239 3240 /* 3241 * Bump the ifp output counter. 3242 * 3243 * XXX should use atomics? 3244 */ 3245 ifp->if_opackets++; 3246 nextfrag: 3247 /* 3248 * Pass the frame to the h/w for transmission. 3249 * Fragmented frames have each frag chained together 3250 * with m_nextpkt. We know there are sufficient ath_buf's 3251 * to send all the frags because of work done by 3252 * ath_txfrag_setup. We leave m_nextpkt set while 3253 * calling ath_tx_start so it can use it to extend the 3254 * the tx duration to cover the subsequent frag and 3255 * so it can reclaim all the mbufs in case of an error; 3256 * ath_tx_start clears m_nextpkt once it commits to 3257 * handing the frame to the hardware. 3258 * 3259 * Note: if this fails, then the mbufs are freed but 3260 * not the node reference. 3261 */ 3262 next = m->m_nextpkt; 3263 if (ath_tx_start(sc, ni, bf, m)) { 3264 bad: 3265 ifp->if_oerrors++; 3266 reclaim: 3267 bf->bf_m = NULL; 3268 bf->bf_node = NULL; 3269 ATH_TXBUF_LOCK(sc); 3270 ath_returnbuf_head(sc, bf); 3271 /* 3272 * Free the rest of the node references and 3273 * buffers for the fragment list. 3274 */ 3275 ath_txfrag_cleanup(sc, &frags, ni); 3276 ATH_TXBUF_UNLOCK(sc); 3277 retval = ENOBUFS; 3278 goto finish; 3279 } 3280 3281 /* 3282 * Check here if the node is in power save state. 3283 */ 3284 ath_tx_update_tim(sc, ni, 1); 3285 3286 if (next != NULL) { 3287 /* 3288 * Beware of state changing between frags. 3289 * XXX check sta power-save state? 3290 */ 3291 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3292 DPRINTF(sc, ATH_DEBUG_XMIT, 3293 "%s: flush fragmented packet, state %s\n", 3294 __func__, 3295 ieee80211_state_name[ni->ni_vap->iv_state]); 3296 /* XXX dmamap */ 3297 ath_freetx(next); 3298 goto reclaim; 3299 } 3300 m = next; 3301 bf = TAILQ_FIRST(&frags); 3302 KASSERT(bf != NULL, ("no buf for txfrag")); 3303 TAILQ_REMOVE(&frags, bf, bf_list); 3304 goto nextfrag; 3305 } 3306 3307 /* 3308 * Bump watchdog timer. 3309 */ 3310 sc->sc_wd_timer = 5; 3311 3312 finish: 3313 ATH_TX_UNLOCK(sc); 3314 3315 /* 3316 * Finished transmitting! 3317 */ 3318 ATH_PCU_LOCK(sc); 3319 sc->sc_txstart_cnt--; 3320 ATH_PCU_UNLOCK(sc); 3321 3322 /* Sleep the hardware if required */ 3323 ATH_LOCK(sc); 3324 ath_power_restore_power_state(sc); 3325 ATH_UNLOCK(sc); 3326 3327 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3328 3329 return (retval); 3330 } 3331 3332 static int 3333 ath_media_change(struct ifnet *ifp) 3334 { 3335 int error = ieee80211_media_change(ifp); 3336 /* NB: only the fixed rate can change and that doesn't need a reset */ 3337 return (error == ENETRESET ? 0 : error); 3338 } 3339 3340 /* 3341 * Block/unblock tx+rx processing while a key change is done. 3342 * We assume the caller serializes key management operations 3343 * so we only need to worry about synchronization with other 3344 * uses that originate in the driver. 3345 */ 3346 static void 3347 ath_key_update_begin(struct ieee80211vap *vap) 3348 { 3349 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3350 struct ath_softc *sc = ifp->if_softc; 3351 3352 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3353 taskqueue_block(sc->sc_tq); 3354 } 3355 3356 static void 3357 ath_key_update_end(struct ieee80211vap *vap) 3358 { 3359 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3360 struct ath_softc *sc = ifp->if_softc; 3361 3362 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3363 taskqueue_unblock(sc->sc_tq); 3364 } 3365 3366 static void 3367 ath_update_promisc(struct ifnet *ifp) 3368 { 3369 struct ath_softc *sc = ifp->if_softc; 3370 u_int32_t rfilt; 3371 3372 /* configure rx filter */ 3373 ATH_LOCK(sc); 3374 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3375 rfilt = ath_calcrxfilter(sc); 3376 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3377 ath_power_restore_power_state(sc); 3378 ATH_UNLOCK(sc); 3379 3380 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3381 } 3382 3383 /* 3384 * Driver-internal mcast update call. 3385 * 3386 * Assumes the hardware is already awake. 3387 */ 3388 static void 3389 ath_update_mcast_hw(struct ath_softc *sc) 3390 { 3391 struct ifnet *ifp = sc->sc_ifp; 3392 u_int32_t mfilt[2]; 3393 3394 /* calculate and install multicast filter */ 3395 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 3396 struct ifmultiaddr *ifma; 3397 /* 3398 * Merge multicast addresses to form the hardware filter. 3399 */ 3400 mfilt[0] = mfilt[1] = 0; 3401 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 3402 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3403 caddr_t dl; 3404 u_int32_t val; 3405 u_int8_t pos; 3406 3407 /* calculate XOR of eight 6bit values */ 3408 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 3409 val = LE_READ_4(dl + 0); 3410 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3411 val = LE_READ_4(dl + 3); 3412 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3413 pos &= 0x3f; 3414 mfilt[pos / 32] |= (1 << (pos % 32)); 3415 } 3416 if_maddr_runlock(ifp); 3417 } else 3418 mfilt[0] = mfilt[1] = ~0; 3419 3420 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3421 3422 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3423 __func__, mfilt[0], mfilt[1]); 3424 } 3425 3426 /* 3427 * Called from the net80211 layer - force the hardware 3428 * awake before operating. 3429 */ 3430 static void 3431 ath_update_mcast(struct ifnet *ifp) 3432 { 3433 struct ath_softc *sc = ifp->if_softc; 3434 3435 ATH_LOCK(sc); 3436 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3437 ATH_UNLOCK(sc); 3438 3439 ath_update_mcast_hw(sc); 3440 3441 ATH_LOCK(sc); 3442 ath_power_restore_power_state(sc); 3443 ATH_UNLOCK(sc); 3444 } 3445 3446 void 3447 ath_mode_init(struct ath_softc *sc) 3448 { 3449 struct ifnet *ifp = sc->sc_ifp; 3450 struct ath_hal *ah = sc->sc_ah; 3451 u_int32_t rfilt; 3452 3453 /* configure rx filter */ 3454 rfilt = ath_calcrxfilter(sc); 3455 ath_hal_setrxfilter(ah, rfilt); 3456 3457 /* configure operational mode */ 3458 ath_hal_setopmode(ah); 3459 3460 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 3461 "%s: ah=%p, ifp=%p, if_addr=%p\n", 3462 __func__, 3463 ah, 3464 ifp, 3465 (ifp == NULL) ? NULL : ifp->if_addr); 3466 3467 /* handle any link-level address change */ 3468 ath_hal_setmac(ah, IF_LLADDR(ifp)); 3469 3470 /* calculate and install multicast filter */ 3471 ath_update_mcast_hw(sc); 3472 } 3473 3474 /* 3475 * Set the slot time based on the current setting. 3476 */ 3477 void 3478 ath_setslottime(struct ath_softc *sc) 3479 { 3480 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3481 struct ath_hal *ah = sc->sc_ah; 3482 u_int usec; 3483 3484 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3485 usec = 13; 3486 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3487 usec = 21; 3488 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3489 /* honor short/long slot time only in 11g */ 3490 /* XXX shouldn't honor on pure g or turbo g channel */ 3491 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3492 usec = HAL_SLOT_TIME_9; 3493 else 3494 usec = HAL_SLOT_TIME_20; 3495 } else 3496 usec = HAL_SLOT_TIME_9; 3497 3498 DPRINTF(sc, ATH_DEBUG_RESET, 3499 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3500 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3501 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3502 3503 /* Wake up the hardware first before updating the slot time */ 3504 ATH_LOCK(sc); 3505 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3506 ath_hal_setslottime(ah, usec); 3507 ath_power_restore_power_state(sc); 3508 sc->sc_updateslot = OK; 3509 ATH_UNLOCK(sc); 3510 } 3511 3512 /* 3513 * Callback from the 802.11 layer to update the 3514 * slot time based on the current setting. 3515 */ 3516 static void 3517 ath_updateslot(struct ifnet *ifp) 3518 { 3519 struct ath_softc *sc = ifp->if_softc; 3520 struct ieee80211com *ic = ifp->if_l2com; 3521 3522 /* 3523 * When not coordinating the BSS, change the hardware 3524 * immediately. For other operation we defer the change 3525 * until beacon updates have propagated to the stations. 3526 * 3527 * XXX sc_updateslot isn't changed behind a lock? 3528 */ 3529 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3530 ic->ic_opmode == IEEE80211_M_MBSS) 3531 sc->sc_updateslot = UPDATE; 3532 else 3533 ath_setslottime(sc); 3534 } 3535 3536 /* 3537 * Append the contents of src to dst; both queues 3538 * are assumed to be locked. 3539 */ 3540 void 3541 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3542 { 3543 3544 ATH_TXQ_LOCK_ASSERT(src); 3545 ATH_TXQ_LOCK_ASSERT(dst); 3546 3547 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3548 dst->axq_link = src->axq_link; 3549 src->axq_link = NULL; 3550 dst->axq_depth += src->axq_depth; 3551 dst->axq_aggr_depth += src->axq_aggr_depth; 3552 src->axq_depth = 0; 3553 src->axq_aggr_depth = 0; 3554 } 3555 3556 /* 3557 * Reset the hardware, with no loss. 3558 * 3559 * This can't be used for a general case reset. 3560 */ 3561 static void 3562 ath_reset_proc(void *arg, int pending) 3563 { 3564 struct ath_softc *sc = arg; 3565 struct ifnet *ifp = sc->sc_ifp; 3566 3567 #if 0 3568 if_printf(ifp, "%s: resetting\n", __func__); 3569 #endif 3570 ath_reset(ifp, ATH_RESET_NOLOSS); 3571 } 3572 3573 /* 3574 * Reset the hardware after detecting beacons have stopped. 3575 */ 3576 static void 3577 ath_bstuck_proc(void *arg, int pending) 3578 { 3579 struct ath_softc *sc = arg; 3580 struct ifnet *ifp = sc->sc_ifp; 3581 uint32_t hangs = 0; 3582 3583 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3584 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 3585 3586 #ifdef ATH_DEBUG_ALQ 3587 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3588 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3589 #endif 3590 3591 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3592 sc->sc_bmisscount); 3593 sc->sc_stats.ast_bstuck++; 3594 /* 3595 * This assumes that there's no simultaneous channel mode change 3596 * occuring. 3597 */ 3598 ath_reset(ifp, ATH_RESET_NOLOSS); 3599 } 3600 3601 static void 3602 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3603 { 3604 bus_addr_t *paddr = (bus_addr_t*) arg; 3605 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3606 *paddr = segs->ds_addr; 3607 } 3608 3609 /* 3610 * Allocate the descriptors and appropriate DMA tag/setup. 3611 * 3612 * For some situations (eg EDMA TX completion), there isn't a requirement 3613 * for the ath_buf entries to be allocated. 3614 */ 3615 int 3616 ath_descdma_alloc_desc(struct ath_softc *sc, 3617 struct ath_descdma *dd, ath_bufhead *head, 3618 const char *name, int ds_size, int ndesc) 3619 { 3620 #define DS2PHYS(_dd, _ds) \ 3621 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3622 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3623 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3624 struct ifnet *ifp = sc->sc_ifp; 3625 int error; 3626 3627 dd->dd_descsize = ds_size; 3628 3629 DPRINTF(sc, ATH_DEBUG_RESET, 3630 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 3631 __func__, name, ndesc, dd->dd_descsize); 3632 3633 dd->dd_name = name; 3634 dd->dd_desc_len = dd->dd_descsize * ndesc; 3635 3636 /* 3637 * Merlin work-around: 3638 * Descriptors that cross the 4KB boundary can't be used. 3639 * Assume one skipped descriptor per 4KB page. 3640 */ 3641 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3642 int numpages = dd->dd_desc_len / 4096; 3643 dd->dd_desc_len += ds_size * numpages; 3644 } 3645 3646 /* 3647 * Setup DMA descriptor area. 3648 * 3649 * BUS_DMA_ALLOCNOW is not used; we never use bounce 3650 * buffers for the descriptors themselves. 3651 */ 3652 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3653 PAGE_SIZE, 0, /* alignment, bounds */ 3654 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3655 BUS_SPACE_MAXADDR, /* highaddr */ 3656 NULL, NULL, /* filter, filterarg */ 3657 dd->dd_desc_len, /* maxsize */ 3658 1, /* nsegments */ 3659 dd->dd_desc_len, /* maxsegsize */ 3660 0, /* flags */ 3661 NULL, /* lockfunc */ 3662 NULL, /* lockarg */ 3663 &dd->dd_dmat); 3664 if (error != 0) { 3665 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3666 return error; 3667 } 3668 3669 /* allocate descriptors */ 3670 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3671 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3672 &dd->dd_dmamap); 3673 if (error != 0) { 3674 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3675 "error %u\n", ndesc, dd->dd_name, error); 3676 goto fail1; 3677 } 3678 3679 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3680 dd->dd_desc, dd->dd_desc_len, 3681 ath_load_cb, &dd->dd_desc_paddr, 3682 BUS_DMA_NOWAIT); 3683 if (error != 0) { 3684 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3685 dd->dd_name, error); 3686 goto fail2; 3687 } 3688 3689 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3690 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 3691 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 3692 /*XXX*/ (u_long) dd->dd_desc_len); 3693 3694 return (0); 3695 3696 fail2: 3697 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3698 fail1: 3699 bus_dma_tag_destroy(dd->dd_dmat); 3700 memset(dd, 0, sizeof(*dd)); 3701 return error; 3702 #undef DS2PHYS 3703 #undef ATH_DESC_4KB_BOUND_CHECK 3704 } 3705 3706 int 3707 ath_descdma_setup(struct ath_softc *sc, 3708 struct ath_descdma *dd, ath_bufhead *head, 3709 const char *name, int ds_size, int nbuf, int ndesc) 3710 { 3711 #define DS2PHYS(_dd, _ds) \ 3712 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3713 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3714 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3715 struct ifnet *ifp = sc->sc_ifp; 3716 uint8_t *ds; 3717 struct ath_buf *bf; 3718 int i, bsize, error; 3719 3720 /* Allocate descriptors */ 3721 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 3722 nbuf * ndesc); 3723 3724 /* Assume any errors during allocation were dealt with */ 3725 if (error != 0) { 3726 return (error); 3727 } 3728 3729 ds = (uint8_t *) dd->dd_desc; 3730 3731 /* allocate rx buffers */ 3732 bsize = sizeof(struct ath_buf) * nbuf; 3733 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3734 if (bf == NULL) { 3735 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3736 dd->dd_name, bsize); 3737 goto fail3; 3738 } 3739 dd->dd_bufptr = bf; 3740 3741 TAILQ_INIT(head); 3742 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 3743 bf->bf_desc = (struct ath_desc *) ds; 3744 bf->bf_daddr = DS2PHYS(dd, ds); 3745 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3746 /* 3747 * Merlin WAR: Skip descriptor addresses which 3748 * cause 4KB boundary crossing along any point 3749 * in the descriptor. 3750 */ 3751 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3752 dd->dd_descsize)) { 3753 /* Start at the next page */ 3754 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3755 bf->bf_desc = (struct ath_desc *) ds; 3756 bf->bf_daddr = DS2PHYS(dd, ds); 3757 } 3758 } 3759 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3760 &bf->bf_dmamap); 3761 if (error != 0) { 3762 if_printf(ifp, "unable to create dmamap for %s " 3763 "buffer %u, error %u\n", dd->dd_name, i, error); 3764 ath_descdma_cleanup(sc, dd, head); 3765 return error; 3766 } 3767 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3768 TAILQ_INSERT_TAIL(head, bf, bf_list); 3769 } 3770 3771 /* 3772 * XXX TODO: ensure that ds doesn't overflow the descriptor 3773 * allocation otherwise weird stuff will occur and crash your 3774 * machine. 3775 */ 3776 return 0; 3777 /* XXX this should likely just call ath_descdma_cleanup() */ 3778 fail3: 3779 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3780 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3781 bus_dma_tag_destroy(dd->dd_dmat); 3782 memset(dd, 0, sizeof(*dd)); 3783 return error; 3784 #undef DS2PHYS 3785 #undef ATH_DESC_4KB_BOUND_CHECK 3786 } 3787 3788 /* 3789 * Allocate ath_buf entries but no descriptor contents. 3790 * 3791 * This is for RX EDMA where the descriptors are the header part of 3792 * the RX buffer. 3793 */ 3794 int 3795 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3796 struct ath_descdma *dd, ath_bufhead *head, 3797 const char *name, int nbuf, int rx_status_len) 3798 { 3799 struct ifnet *ifp = sc->sc_ifp; 3800 struct ath_buf *bf; 3801 int i, bsize, error; 3802 3803 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3804 __func__, name, nbuf); 3805 3806 dd->dd_name = name; 3807 /* 3808 * This is (mostly) purely for show. We're not allocating any actual 3809 * descriptors here as EDMA RX has the descriptor be part 3810 * of the RX buffer. 3811 * 3812 * However, dd_desc_len is used by ath_descdma_free() to determine 3813 * whether we have already freed this DMA mapping. 3814 */ 3815 dd->dd_desc_len = rx_status_len * nbuf; 3816 dd->dd_descsize = rx_status_len; 3817 3818 /* allocate rx buffers */ 3819 bsize = sizeof(struct ath_buf) * nbuf; 3820 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3821 if (bf == NULL) { 3822 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3823 dd->dd_name, bsize); 3824 error = ENOMEM; 3825 goto fail3; 3826 } 3827 dd->dd_bufptr = bf; 3828 3829 TAILQ_INIT(head); 3830 for (i = 0; i < nbuf; i++, bf++) { 3831 bf->bf_desc = NULL; 3832 bf->bf_daddr = 0; 3833 bf->bf_lastds = NULL; /* Just an initial value */ 3834 3835 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3836 &bf->bf_dmamap); 3837 if (error != 0) { 3838 if_printf(ifp, "unable to create dmamap for %s " 3839 "buffer %u, error %u\n", dd->dd_name, i, error); 3840 ath_descdma_cleanup(sc, dd, head); 3841 return error; 3842 } 3843 TAILQ_INSERT_TAIL(head, bf, bf_list); 3844 } 3845 return 0; 3846 fail3: 3847 memset(dd, 0, sizeof(*dd)); 3848 return error; 3849 } 3850 3851 void 3852 ath_descdma_cleanup(struct ath_softc *sc, 3853 struct ath_descdma *dd, ath_bufhead *head) 3854 { 3855 struct ath_buf *bf; 3856 struct ieee80211_node *ni; 3857 int do_warning = 0; 3858 3859 if (dd->dd_dmamap != 0) { 3860 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3861 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3862 bus_dma_tag_destroy(dd->dd_dmat); 3863 } 3864 3865 if (head != NULL) { 3866 TAILQ_FOREACH(bf, head, bf_list) { 3867 if (bf->bf_m) { 3868 /* 3869 * XXX warn if there's buffers here. 3870 * XXX it should have been freed by the 3871 * owner! 3872 */ 3873 3874 if (do_warning == 0) { 3875 do_warning = 1; 3876 device_printf(sc->sc_dev, 3877 "%s: %s: mbuf should've been" 3878 " unmapped/freed!\n", 3879 __func__, 3880 dd->dd_name); 3881 } 3882 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3883 BUS_DMASYNC_POSTREAD); 3884 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3885 m_freem(bf->bf_m); 3886 bf->bf_m = NULL; 3887 } 3888 if (bf->bf_dmamap != NULL) { 3889 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3890 bf->bf_dmamap = NULL; 3891 } 3892 ni = bf->bf_node; 3893 bf->bf_node = NULL; 3894 if (ni != NULL) { 3895 /* 3896 * Reclaim node reference. 3897 */ 3898 ieee80211_free_node(ni); 3899 } 3900 } 3901 } 3902 3903 if (head != NULL) 3904 TAILQ_INIT(head); 3905 3906 if (dd->dd_bufptr != NULL) 3907 free(dd->dd_bufptr, M_ATHDEV); 3908 memset(dd, 0, sizeof(*dd)); 3909 } 3910 3911 static int 3912 ath_desc_alloc(struct ath_softc *sc) 3913 { 3914 int error; 3915 3916 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3917 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3918 if (error != 0) { 3919 return error; 3920 } 3921 sc->sc_txbuf_cnt = ath_txbuf; 3922 3923 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3924 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3925 ATH_TXDESC); 3926 if (error != 0) { 3927 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3928 return error; 3929 } 3930 3931 /* 3932 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3933 * flag doesn't have to be set in ath_getbuf_locked(). 3934 */ 3935 3936 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3937 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3938 if (error != 0) { 3939 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3940 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3941 &sc->sc_txbuf_mgmt); 3942 return error; 3943 } 3944 return 0; 3945 } 3946 3947 static void 3948 ath_desc_free(struct ath_softc *sc) 3949 { 3950 3951 if (sc->sc_bdma.dd_desc_len != 0) 3952 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3953 if (sc->sc_txdma.dd_desc_len != 0) 3954 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3955 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3956 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3957 &sc->sc_txbuf_mgmt); 3958 } 3959 3960 static struct ieee80211_node * 3961 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3962 { 3963 struct ieee80211com *ic = vap->iv_ic; 3964 struct ath_softc *sc = ic->ic_ifp->if_softc; 3965 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3966 struct ath_node *an; 3967 3968 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3969 if (an == NULL) { 3970 /* XXX stat+msg */ 3971 return NULL; 3972 } 3973 ath_rate_node_init(sc, an); 3974 3975 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3976 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3977 device_get_nameunit(sc->sc_dev), an); 3978 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3979 3980 /* XXX setup ath_tid */ 3981 ath_tx_tid_init(sc, an); 3982 3983 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 3984 return &an->an_node; 3985 } 3986 3987 static void 3988 ath_node_cleanup(struct ieee80211_node *ni) 3989 { 3990 struct ieee80211com *ic = ni->ni_ic; 3991 struct ath_softc *sc = ic->ic_ifp->if_softc; 3992 3993 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3994 ni->ni_macaddr, ":", ATH_NODE(ni)); 3995 3996 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3997 ath_tx_node_flush(sc, ATH_NODE(ni)); 3998 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3999 sc->sc_node_cleanup(ni); 4000 } 4001 4002 static void 4003 ath_node_free(struct ieee80211_node *ni) 4004 { 4005 struct ieee80211com *ic = ni->ni_ic; 4006 struct ath_softc *sc = ic->ic_ifp->if_softc; 4007 4008 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 4009 ni->ni_macaddr, ":", ATH_NODE(ni)); 4010 mtx_destroy(&ATH_NODE(ni)->an_mtx); 4011 sc->sc_node_free(ni); 4012 } 4013 4014 static void 4015 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 4016 { 4017 struct ieee80211com *ic = ni->ni_ic; 4018 struct ath_softc *sc = ic->ic_ifp->if_softc; 4019 struct ath_hal *ah = sc->sc_ah; 4020 4021 *rssi = ic->ic_node_getrssi(ni); 4022 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 4023 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 4024 else 4025 *noise = -95; /* nominally correct */ 4026 } 4027 4028 /* 4029 * Set the default antenna. 4030 */ 4031 void 4032 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 4033 { 4034 struct ath_hal *ah = sc->sc_ah; 4035 4036 /* XXX block beacon interrupts */ 4037 ath_hal_setdefantenna(ah, antenna); 4038 if (sc->sc_defant != antenna) 4039 sc->sc_stats.ast_ant_defswitch++; 4040 sc->sc_defant = antenna; 4041 sc->sc_rxotherant = 0; 4042 } 4043 4044 static void 4045 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4046 { 4047 txq->axq_qnum = qnum; 4048 txq->axq_ac = 0; 4049 txq->axq_depth = 0; 4050 txq->axq_aggr_depth = 0; 4051 txq->axq_intrcnt = 0; 4052 txq->axq_link = NULL; 4053 txq->axq_softc = sc; 4054 TAILQ_INIT(&txq->axq_q); 4055 TAILQ_INIT(&txq->axq_tidq); 4056 TAILQ_INIT(&txq->fifo.axq_q); 4057 ATH_TXQ_LOCK_INIT(sc, txq); 4058 } 4059 4060 /* 4061 * Setup a h/w transmit queue. 4062 */ 4063 static struct ath_txq * 4064 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4065 { 4066 #define N(a) (sizeof(a)/sizeof(a[0])) 4067 struct ath_hal *ah = sc->sc_ah; 4068 HAL_TXQ_INFO qi; 4069 int qnum; 4070 4071 memset(&qi, 0, sizeof(qi)); 4072 qi.tqi_subtype = subtype; 4073 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4074 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4075 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4076 /* 4077 * Enable interrupts only for EOL and DESC conditions. 4078 * We mark tx descriptors to receive a DESC interrupt 4079 * when a tx queue gets deep; otherwise waiting for the 4080 * EOL to reap descriptors. Note that this is done to 4081 * reduce interrupt load and this only defers reaping 4082 * descriptors, never transmitting frames. Aside from 4083 * reducing interrupts this also permits more concurrency. 4084 * The only potential downside is if the tx queue backs 4085 * up in which case the top half of the kernel may backup 4086 * due to a lack of tx descriptors. 4087 */ 4088 if (sc->sc_isedma) 4089 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4090 HAL_TXQ_TXOKINT_ENABLE; 4091 else 4092 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4093 HAL_TXQ_TXDESCINT_ENABLE; 4094 4095 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4096 if (qnum == -1) { 4097 /* 4098 * NB: don't print a message, this happens 4099 * normally on parts with too few tx queues 4100 */ 4101 return NULL; 4102 } 4103 if (qnum >= N(sc->sc_txq)) { 4104 device_printf(sc->sc_dev, 4105 "hal qnum %u out of range, max %zu!\n", 4106 qnum, N(sc->sc_txq)); 4107 ath_hal_releasetxqueue(ah, qnum); 4108 return NULL; 4109 } 4110 if (!ATH_TXQ_SETUP(sc, qnum)) { 4111 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4112 sc->sc_txqsetup |= 1<<qnum; 4113 } 4114 return &sc->sc_txq[qnum]; 4115 #undef N 4116 } 4117 4118 /* 4119 * Setup a hardware data transmit queue for the specified 4120 * access control. The hal may not support all requested 4121 * queues in which case it will return a reference to a 4122 * previously setup queue. We record the mapping from ac's 4123 * to h/w queues for use by ath_tx_start and also track 4124 * the set of h/w queues being used to optimize work in the 4125 * transmit interrupt handler and related routines. 4126 */ 4127 static int 4128 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4129 { 4130 #define N(a) (sizeof(a)/sizeof(a[0])) 4131 struct ath_txq *txq; 4132 4133 if (ac >= N(sc->sc_ac2q)) { 4134 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4135 ac, N(sc->sc_ac2q)); 4136 return 0; 4137 } 4138 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4139 if (txq != NULL) { 4140 txq->axq_ac = ac; 4141 sc->sc_ac2q[ac] = txq; 4142 return 1; 4143 } else 4144 return 0; 4145 #undef N 4146 } 4147 4148 /* 4149 * Update WME parameters for a transmit queue. 4150 */ 4151 static int 4152 ath_txq_update(struct ath_softc *sc, int ac) 4153 { 4154 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4155 #define ATH_TXOP_TO_US(v) (v<<5) 4156 struct ifnet *ifp = sc->sc_ifp; 4157 struct ieee80211com *ic = ifp->if_l2com; 4158 struct ath_txq *txq = sc->sc_ac2q[ac]; 4159 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4160 struct ath_hal *ah = sc->sc_ah; 4161 HAL_TXQ_INFO qi; 4162 4163 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4164 #ifdef IEEE80211_SUPPORT_TDMA 4165 if (sc->sc_tdma) { 4166 /* 4167 * AIFS is zero so there's no pre-transmit wait. The 4168 * burst time defines the slot duration and is configured 4169 * through net80211. The QCU is setup to not do post-xmit 4170 * back off, lockout all lower-priority QCU's, and fire 4171 * off the DMA beacon alert timer which is setup based 4172 * on the slot configuration. 4173 */ 4174 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4175 | HAL_TXQ_TXERRINT_ENABLE 4176 | HAL_TXQ_TXURNINT_ENABLE 4177 | HAL_TXQ_TXEOLINT_ENABLE 4178 | HAL_TXQ_DBA_GATED 4179 | HAL_TXQ_BACKOFF_DISABLE 4180 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4181 ; 4182 qi.tqi_aifs = 0; 4183 /* XXX +dbaprep? */ 4184 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4185 qi.tqi_burstTime = qi.tqi_readyTime; 4186 } else { 4187 #endif 4188 /* 4189 * XXX shouldn't this just use the default flags 4190 * used in the previous queue setup? 4191 */ 4192 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4193 | HAL_TXQ_TXERRINT_ENABLE 4194 | HAL_TXQ_TXDESCINT_ENABLE 4195 | HAL_TXQ_TXURNINT_ENABLE 4196 | HAL_TXQ_TXEOLINT_ENABLE 4197 ; 4198 qi.tqi_aifs = wmep->wmep_aifsn; 4199 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4200 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4201 qi.tqi_readyTime = 0; 4202 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 4203 #ifdef IEEE80211_SUPPORT_TDMA 4204 } 4205 #endif 4206 4207 DPRINTF(sc, ATH_DEBUG_RESET, 4208 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4209 __func__, txq->axq_qnum, qi.tqi_qflags, 4210 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4211 4212 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4213 if_printf(ifp, "unable to update hardware queue " 4214 "parameters for %s traffic!\n", 4215 ieee80211_wme_acnames[ac]); 4216 return 0; 4217 } else { 4218 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4219 return 1; 4220 } 4221 #undef ATH_TXOP_TO_US 4222 #undef ATH_EXPONENT_TO_VALUE 4223 } 4224 4225 /* 4226 * Callback from the 802.11 layer to update WME parameters. 4227 */ 4228 int 4229 ath_wme_update(struct ieee80211com *ic) 4230 { 4231 struct ath_softc *sc = ic->ic_ifp->if_softc; 4232 4233 return !ath_txq_update(sc, WME_AC_BE) || 4234 !ath_txq_update(sc, WME_AC_BK) || 4235 !ath_txq_update(sc, WME_AC_VI) || 4236 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4237 } 4238 4239 /* 4240 * Reclaim resources for a setup queue. 4241 */ 4242 static void 4243 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4244 { 4245 4246 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4247 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4248 ATH_TXQ_LOCK_DESTROY(txq); 4249 } 4250 4251 /* 4252 * Reclaim all tx queue resources. 4253 */ 4254 static void 4255 ath_tx_cleanup(struct ath_softc *sc) 4256 { 4257 int i; 4258 4259 ATH_TXBUF_LOCK_DESTROY(sc); 4260 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4261 if (ATH_TXQ_SETUP(sc, i)) 4262 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4263 } 4264 4265 /* 4266 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4267 * using the current rates in sc_rixmap. 4268 */ 4269 int 4270 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4271 { 4272 int rix = sc->sc_rixmap[rate]; 4273 /* NB: return lowest rix for invalid rate */ 4274 return (rix == 0xff ? 0 : rix); 4275 } 4276 4277 static void 4278 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4279 struct ath_buf *bf) 4280 { 4281 struct ieee80211_node *ni = bf->bf_node; 4282 struct ifnet *ifp = sc->sc_ifp; 4283 struct ieee80211com *ic = ifp->if_l2com; 4284 int sr, lr, pri; 4285 4286 if (ts->ts_status == 0) { 4287 u_int8_t txant = ts->ts_antenna; 4288 sc->sc_stats.ast_ant_tx[txant]++; 4289 sc->sc_ant_tx[txant]++; 4290 if (ts->ts_finaltsi != 0) 4291 sc->sc_stats.ast_tx_altrate++; 4292 pri = M_WME_GETAC(bf->bf_m); 4293 if (pri >= WME_AC_VO) 4294 ic->ic_wme.wme_hipri_traffic++; 4295 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4296 ni->ni_inact = ni->ni_inact_reload; 4297 } else { 4298 if (ts->ts_status & HAL_TXERR_XRETRY) 4299 sc->sc_stats.ast_tx_xretries++; 4300 if (ts->ts_status & HAL_TXERR_FIFO) 4301 sc->sc_stats.ast_tx_fifoerr++; 4302 if (ts->ts_status & HAL_TXERR_FILT) 4303 sc->sc_stats.ast_tx_filtered++; 4304 if (ts->ts_status & HAL_TXERR_XTXOP) 4305 sc->sc_stats.ast_tx_xtxop++; 4306 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4307 sc->sc_stats.ast_tx_timerexpired++; 4308 4309 if (bf->bf_m->m_flags & M_FF) 4310 sc->sc_stats.ast_ff_txerr++; 4311 } 4312 /* XXX when is this valid? */ 4313 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4314 sc->sc_stats.ast_tx_desccfgerr++; 4315 /* 4316 * This can be valid for successful frame transmission! 4317 * If there's a TX FIFO underrun during aggregate transmission, 4318 * the MAC will pad the rest of the aggregate with delimiters. 4319 * If a BA is returned, the frame is marked as "OK" and it's up 4320 * to the TX completion code to notice which frames weren't 4321 * successfully transmitted. 4322 */ 4323 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4324 sc->sc_stats.ast_tx_data_underrun++; 4325 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4326 sc->sc_stats.ast_tx_delim_underrun++; 4327 4328 sr = ts->ts_shortretry; 4329 lr = ts->ts_longretry; 4330 sc->sc_stats.ast_tx_shortretry += sr; 4331 sc->sc_stats.ast_tx_longretry += lr; 4332 4333 } 4334 4335 /* 4336 * The default completion. If fail is 1, this means 4337 * "please don't retry the frame, and just return -1 status 4338 * to the net80211 stack. 4339 */ 4340 void 4341 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4342 { 4343 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4344 int st; 4345 4346 if (fail == 1) 4347 st = -1; 4348 else 4349 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4350 ts->ts_status : HAL_TXERR_XRETRY; 4351 4352 #if 0 4353 if (bf->bf_state.bfs_dobaw) 4354 device_printf(sc->sc_dev, 4355 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4356 __func__, 4357 bf, 4358 SEQNO(bf->bf_state.bfs_seqno)); 4359 #endif 4360 if (bf->bf_next != NULL) 4361 device_printf(sc->sc_dev, 4362 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4363 __func__, 4364 bf, 4365 SEQNO(bf->bf_state.bfs_seqno)); 4366 4367 /* 4368 * Check if the node software queue is empty; if so 4369 * then clear the TIM. 4370 * 4371 * This needs to be done before the buffer is freed as 4372 * otherwise the node reference will have been released 4373 * and the node may not actually exist any longer. 4374 * 4375 * XXX I don't like this belonging here, but it's cleaner 4376 * to do it here right now then all the other places 4377 * where ath_tx_default_comp() is called. 4378 * 4379 * XXX TODO: during drain, ensure that the callback is 4380 * being called so we get a chance to update the TIM. 4381 */ 4382 if (bf->bf_node) { 4383 ATH_TX_LOCK(sc); 4384 ath_tx_update_tim(sc, bf->bf_node, 0); 4385 ATH_TX_UNLOCK(sc); 4386 } 4387 4388 /* 4389 * Do any tx complete callback. Note this must 4390 * be done before releasing the node reference. 4391 * This will free the mbuf, release the net80211 4392 * node and recycle the ath_buf. 4393 */ 4394 ath_tx_freebuf(sc, bf, st); 4395 } 4396 4397 /* 4398 * Update rate control with the given completion status. 4399 */ 4400 void 4401 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4402 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4403 int nframes, int nbad) 4404 { 4405 struct ath_node *an; 4406 4407 /* Only for unicast frames */ 4408 if (ni == NULL) 4409 return; 4410 4411 an = ATH_NODE(ni); 4412 ATH_NODE_UNLOCK_ASSERT(an); 4413 4414 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4415 ATH_NODE_LOCK(an); 4416 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4417 ATH_NODE_UNLOCK(an); 4418 } 4419 } 4420 4421 /* 4422 * Process the completion of the given buffer. 4423 * 4424 * This calls the rate control update and then the buffer completion. 4425 * This will either free the buffer or requeue it. In any case, the 4426 * bf pointer should be treated as invalid after this function is called. 4427 */ 4428 void 4429 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4430 struct ath_tx_status *ts, struct ath_buf *bf) 4431 { 4432 struct ieee80211_node *ni = bf->bf_node; 4433 struct ath_node *an = NULL; 4434 4435 ATH_TX_UNLOCK_ASSERT(sc); 4436 ATH_TXQ_UNLOCK_ASSERT(txq); 4437 4438 /* If unicast frame, update general statistics */ 4439 if (ni != NULL) { 4440 an = ATH_NODE(ni); 4441 /* update statistics */ 4442 ath_tx_update_stats(sc, ts, bf); 4443 } 4444 4445 /* 4446 * Call the completion handler. 4447 * The completion handler is responsible for 4448 * calling the rate control code. 4449 * 4450 * Frames with no completion handler get the 4451 * rate control code called here. 4452 */ 4453 if (bf->bf_comp == NULL) { 4454 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4455 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4456 /* 4457 * XXX assume this isn't an aggregate 4458 * frame. 4459 */ 4460 ath_tx_update_ratectrl(sc, ni, 4461 bf->bf_state.bfs_rc, ts, 4462 bf->bf_state.bfs_pktlen, 1, 4463 (ts->ts_status == 0 ? 0 : 1)); 4464 } 4465 ath_tx_default_comp(sc, bf, 0); 4466 } else 4467 bf->bf_comp(sc, bf, 0); 4468 } 4469 4470 4471 4472 /* 4473 * Process completed xmit descriptors from the specified queue. 4474 * Kick the packet scheduler if needed. This can occur from this 4475 * particular task. 4476 */ 4477 static int 4478 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4479 { 4480 struct ath_hal *ah = sc->sc_ah; 4481 struct ath_buf *bf; 4482 struct ath_desc *ds; 4483 struct ath_tx_status *ts; 4484 struct ieee80211_node *ni; 4485 #ifdef IEEE80211_SUPPORT_SUPERG 4486 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4487 #endif /* IEEE80211_SUPPORT_SUPERG */ 4488 int nacked; 4489 HAL_STATUS status; 4490 4491 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4492 __func__, txq->axq_qnum, 4493 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4494 txq->axq_link); 4495 4496 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4497 "ath_tx_processq: txq=%u head %p link %p depth %p", 4498 txq->axq_qnum, 4499 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4500 txq->axq_link, 4501 txq->axq_depth); 4502 4503 nacked = 0; 4504 for (;;) { 4505 ATH_TXQ_LOCK(txq); 4506 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4507 bf = TAILQ_FIRST(&txq->axq_q); 4508 if (bf == NULL) { 4509 ATH_TXQ_UNLOCK(txq); 4510 break; 4511 } 4512 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4513 ts = &bf->bf_status.ds_txstat; 4514 4515 status = ath_hal_txprocdesc(ah, ds, ts); 4516 #ifdef ATH_DEBUG 4517 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4518 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4519 status == HAL_OK); 4520 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4521 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4522 status == HAL_OK); 4523 #endif 4524 #ifdef ATH_DEBUG_ALQ 4525 if (if_ath_alq_checkdebug(&sc->sc_alq, 4526 ATH_ALQ_EDMA_TXSTATUS)) { 4527 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4528 sc->sc_tx_statuslen, 4529 (char *) ds); 4530 } 4531 #endif 4532 4533 if (status == HAL_EINPROGRESS) { 4534 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4535 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4536 txq->axq_qnum, bf, ds); 4537 ATH_TXQ_UNLOCK(txq); 4538 break; 4539 } 4540 ATH_TXQ_REMOVE(txq, bf, bf_list); 4541 4542 /* 4543 * Sanity check. 4544 */ 4545 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4546 device_printf(sc->sc_dev, 4547 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4548 __func__, 4549 txq->axq_qnum, 4550 bf, 4551 bf->bf_state.bfs_tx_queue); 4552 } 4553 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4554 device_printf(sc->sc_dev, 4555 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4556 __func__, 4557 txq->axq_qnum, 4558 bf->bf_last, 4559 bf->bf_last->bf_state.bfs_tx_queue); 4560 } 4561 4562 #if 0 4563 if (txq->axq_depth > 0) { 4564 /* 4565 * More frames follow. Mark the buffer busy 4566 * so it's not re-used while the hardware may 4567 * still re-read the link field in the descriptor. 4568 * 4569 * Use the last buffer in an aggregate as that 4570 * is where the hardware may be - intermediate 4571 * descriptors won't be "busy". 4572 */ 4573 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4574 } else 4575 txq->axq_link = NULL; 4576 #else 4577 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4578 #endif 4579 if (bf->bf_state.bfs_aggr) 4580 txq->axq_aggr_depth--; 4581 4582 ni = bf->bf_node; 4583 4584 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4585 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4586 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4587 /* 4588 * If unicast frame was ack'd update RSSI, 4589 * including the last rx time used to 4590 * workaround phantom bmiss interrupts. 4591 */ 4592 if (ni != NULL && ts->ts_status == 0 && 4593 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4594 nacked++; 4595 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4596 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4597 ts->ts_rssi); 4598 } 4599 ATH_TXQ_UNLOCK(txq); 4600 4601 /* 4602 * Update statistics and call completion 4603 */ 4604 ath_tx_process_buf_completion(sc, txq, ts, bf); 4605 4606 /* XXX at this point, bf and ni may be totally invalid */ 4607 } 4608 #ifdef IEEE80211_SUPPORT_SUPERG 4609 /* 4610 * Flush fast-frame staging queue when traffic slows. 4611 */ 4612 if (txq->axq_depth <= 1) 4613 ieee80211_ff_flush(ic, txq->axq_ac); 4614 #endif 4615 4616 /* Kick the software TXQ scheduler */ 4617 if (dosched) { 4618 ATH_TX_LOCK(sc); 4619 ath_txq_sched(sc, txq); 4620 ATH_TX_UNLOCK(sc); 4621 } 4622 4623 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4624 "ath_tx_processq: txq=%u: done", 4625 txq->axq_qnum); 4626 4627 return nacked; 4628 } 4629 4630 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4631 4632 /* 4633 * Deferred processing of transmit interrupt; special-cased 4634 * for a single hardware transmit queue (e.g. 5210 and 5211). 4635 */ 4636 static void 4637 ath_tx_proc_q0(void *arg, int npending) 4638 { 4639 struct ath_softc *sc = arg; 4640 struct ifnet *ifp = sc->sc_ifp; 4641 uint32_t txqs; 4642 4643 ATH_PCU_LOCK(sc); 4644 sc->sc_txproc_cnt++; 4645 txqs = sc->sc_txq_active; 4646 sc->sc_txq_active &= ~txqs; 4647 ATH_PCU_UNLOCK(sc); 4648 4649 ATH_LOCK(sc); 4650 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4651 ATH_UNLOCK(sc); 4652 4653 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4654 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4655 4656 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4657 /* XXX why is lastrx updated in tx code? */ 4658 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4659 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4660 ath_tx_processq(sc, sc->sc_cabq, 1); 4661 IF_LOCK(&ifp->if_snd); 4662 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4663 IF_UNLOCK(&ifp->if_snd); 4664 sc->sc_wd_timer = 0; 4665 4666 if (sc->sc_softled) 4667 ath_led_event(sc, sc->sc_txrix); 4668 4669 ATH_PCU_LOCK(sc); 4670 sc->sc_txproc_cnt--; 4671 ATH_PCU_UNLOCK(sc); 4672 4673 ATH_LOCK(sc); 4674 ath_power_restore_power_state(sc); 4675 ATH_UNLOCK(sc); 4676 4677 ath_tx_kick(sc); 4678 } 4679 4680 /* 4681 * Deferred processing of transmit interrupt; special-cased 4682 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4683 */ 4684 static void 4685 ath_tx_proc_q0123(void *arg, int npending) 4686 { 4687 struct ath_softc *sc = arg; 4688 struct ifnet *ifp = sc->sc_ifp; 4689 int nacked; 4690 uint32_t txqs; 4691 4692 ATH_PCU_LOCK(sc); 4693 sc->sc_txproc_cnt++; 4694 txqs = sc->sc_txq_active; 4695 sc->sc_txq_active &= ~txqs; 4696 ATH_PCU_UNLOCK(sc); 4697 4698 ATH_LOCK(sc); 4699 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4700 ATH_UNLOCK(sc); 4701 4702 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4703 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4704 4705 /* 4706 * Process each active queue. 4707 */ 4708 nacked = 0; 4709 if (TXQACTIVE(txqs, 0)) 4710 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4711 if (TXQACTIVE(txqs, 1)) 4712 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4713 if (TXQACTIVE(txqs, 2)) 4714 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4715 if (TXQACTIVE(txqs, 3)) 4716 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4717 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4718 ath_tx_processq(sc, sc->sc_cabq, 1); 4719 if (nacked) 4720 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4721 4722 IF_LOCK(&ifp->if_snd); 4723 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4724 IF_UNLOCK(&ifp->if_snd); 4725 sc->sc_wd_timer = 0; 4726 4727 if (sc->sc_softled) 4728 ath_led_event(sc, sc->sc_txrix); 4729 4730 ATH_PCU_LOCK(sc); 4731 sc->sc_txproc_cnt--; 4732 ATH_PCU_UNLOCK(sc); 4733 4734 ATH_LOCK(sc); 4735 ath_power_restore_power_state(sc); 4736 ATH_UNLOCK(sc); 4737 4738 ath_tx_kick(sc); 4739 } 4740 4741 /* 4742 * Deferred processing of transmit interrupt. 4743 */ 4744 static void 4745 ath_tx_proc(void *arg, int npending) 4746 { 4747 struct ath_softc *sc = arg; 4748 struct ifnet *ifp = sc->sc_ifp; 4749 int i, nacked; 4750 uint32_t txqs; 4751 4752 ATH_PCU_LOCK(sc); 4753 sc->sc_txproc_cnt++; 4754 txqs = sc->sc_txq_active; 4755 sc->sc_txq_active &= ~txqs; 4756 ATH_PCU_UNLOCK(sc); 4757 4758 ATH_LOCK(sc); 4759 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4760 ATH_UNLOCK(sc); 4761 4762 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4763 4764 /* 4765 * Process each active queue. 4766 */ 4767 nacked = 0; 4768 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4769 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4770 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4771 if (nacked) 4772 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4773 4774 /* XXX check this inside of IF_LOCK? */ 4775 IF_LOCK(&ifp->if_snd); 4776 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4777 IF_UNLOCK(&ifp->if_snd); 4778 sc->sc_wd_timer = 0; 4779 4780 if (sc->sc_softled) 4781 ath_led_event(sc, sc->sc_txrix); 4782 4783 ATH_PCU_LOCK(sc); 4784 sc->sc_txproc_cnt--; 4785 ATH_PCU_UNLOCK(sc); 4786 4787 ATH_LOCK(sc); 4788 ath_power_restore_power_state(sc); 4789 ATH_UNLOCK(sc); 4790 4791 ath_tx_kick(sc); 4792 } 4793 #undef TXQACTIVE 4794 4795 /* 4796 * Deferred processing of TXQ rescheduling. 4797 */ 4798 static void 4799 ath_txq_sched_tasklet(void *arg, int npending) 4800 { 4801 struct ath_softc *sc = arg; 4802 int i; 4803 4804 /* XXX is skipping ok? */ 4805 ATH_PCU_LOCK(sc); 4806 #if 0 4807 if (sc->sc_inreset_cnt > 0) { 4808 device_printf(sc->sc_dev, 4809 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4810 ATH_PCU_UNLOCK(sc); 4811 return; 4812 } 4813 #endif 4814 sc->sc_txproc_cnt++; 4815 ATH_PCU_UNLOCK(sc); 4816 4817 ATH_LOCK(sc); 4818 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4819 ATH_UNLOCK(sc); 4820 4821 ATH_TX_LOCK(sc); 4822 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4823 if (ATH_TXQ_SETUP(sc, i)) { 4824 ath_txq_sched(sc, &sc->sc_txq[i]); 4825 } 4826 } 4827 ATH_TX_UNLOCK(sc); 4828 4829 ATH_LOCK(sc); 4830 ath_power_restore_power_state(sc); 4831 ATH_UNLOCK(sc); 4832 4833 ATH_PCU_LOCK(sc); 4834 sc->sc_txproc_cnt--; 4835 ATH_PCU_UNLOCK(sc); 4836 } 4837 4838 void 4839 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4840 { 4841 4842 ATH_TXBUF_LOCK_ASSERT(sc); 4843 4844 if (bf->bf_flags & ATH_BUF_MGMT) 4845 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4846 else { 4847 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4848 sc->sc_txbuf_cnt++; 4849 if (sc->sc_txbuf_cnt > ath_txbuf) { 4850 device_printf(sc->sc_dev, 4851 "%s: sc_txbuf_cnt > %d?\n", 4852 __func__, 4853 ath_txbuf); 4854 sc->sc_txbuf_cnt = ath_txbuf; 4855 } 4856 } 4857 } 4858 4859 void 4860 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4861 { 4862 4863 ATH_TXBUF_LOCK_ASSERT(sc); 4864 4865 if (bf->bf_flags & ATH_BUF_MGMT) 4866 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4867 else { 4868 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4869 sc->sc_txbuf_cnt++; 4870 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4871 device_printf(sc->sc_dev, 4872 "%s: sc_txbuf_cnt > %d?\n", 4873 __func__, 4874 ATH_TXBUF); 4875 sc->sc_txbuf_cnt = ATH_TXBUF; 4876 } 4877 } 4878 } 4879 4880 /* 4881 * Free the holding buffer if it exists 4882 */ 4883 void 4884 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4885 { 4886 ATH_TXBUF_UNLOCK_ASSERT(sc); 4887 ATH_TXQ_LOCK_ASSERT(txq); 4888 4889 if (txq->axq_holdingbf == NULL) 4890 return; 4891 4892 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4893 4894 ATH_TXBUF_LOCK(sc); 4895 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4896 ATH_TXBUF_UNLOCK(sc); 4897 4898 txq->axq_holdingbf = NULL; 4899 } 4900 4901 /* 4902 * Add this buffer to the holding queue, freeing the previous 4903 * one if it exists. 4904 */ 4905 static void 4906 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4907 { 4908 struct ath_txq *txq; 4909 4910 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4911 4912 ATH_TXBUF_UNLOCK_ASSERT(sc); 4913 ATH_TXQ_LOCK_ASSERT(txq); 4914 4915 /* XXX assert ATH_BUF_BUSY is set */ 4916 4917 /* XXX assert the tx queue is under the max number */ 4918 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4919 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4920 __func__, 4921 bf, 4922 bf->bf_state.bfs_tx_queue); 4923 bf->bf_flags &= ~ATH_BUF_BUSY; 4924 ath_returnbuf_tail(sc, bf); 4925 return; 4926 } 4927 ath_txq_freeholdingbuf(sc, txq); 4928 txq->axq_holdingbf = bf; 4929 } 4930 4931 /* 4932 * Return a buffer to the pool and update the 'busy' flag on the 4933 * previous 'tail' entry. 4934 * 4935 * This _must_ only be called when the buffer is involved in a completed 4936 * TX. The logic is that if it was part of an active TX, the previous 4937 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4938 * for restart (eg for TDMA.) 4939 * 4940 * The caller must free the mbuf and recycle the node reference. 4941 * 4942 * XXX This method of handling busy / holding buffers is insanely stupid. 4943 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4944 * be much nicer if buffers in the processq() methods would instead be 4945 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4946 * exactly what hardware queue they came from in the first place. 4947 */ 4948 void 4949 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4950 { 4951 struct ath_txq *txq; 4952 4953 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4954 4955 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4956 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4957 4958 /* 4959 * If this buffer is busy, push it onto the holding queue. 4960 */ 4961 if (bf->bf_flags & ATH_BUF_BUSY) { 4962 ATH_TXQ_LOCK(txq); 4963 ath_txq_addholdingbuf(sc, bf); 4964 ATH_TXQ_UNLOCK(txq); 4965 return; 4966 } 4967 4968 /* 4969 * Not a busy buffer, so free normally 4970 */ 4971 ATH_TXBUF_LOCK(sc); 4972 ath_returnbuf_tail(sc, bf); 4973 ATH_TXBUF_UNLOCK(sc); 4974 } 4975 4976 /* 4977 * This is currently used by ath_tx_draintxq() and 4978 * ath_tx_tid_free_pkts(). 4979 * 4980 * It recycles a single ath_buf. 4981 */ 4982 void 4983 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4984 { 4985 struct ieee80211_node *ni = bf->bf_node; 4986 struct mbuf *m0 = bf->bf_m; 4987 4988 /* 4989 * Make sure that we only sync/unload if there's an mbuf. 4990 * If not (eg we cloned a buffer), the unload will have already 4991 * occured. 4992 */ 4993 if (bf->bf_m != NULL) { 4994 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4995 BUS_DMASYNC_POSTWRITE); 4996 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4997 } 4998 4999 bf->bf_node = NULL; 5000 bf->bf_m = NULL; 5001 5002 /* Free the buffer, it's not needed any longer */ 5003 ath_freebuf(sc, bf); 5004 5005 /* Pass the buffer back to net80211 - completing it */ 5006 ieee80211_tx_complete(ni, m0, status); 5007 } 5008 5009 static struct ath_buf * 5010 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 5011 { 5012 struct ath_buf *bf; 5013 5014 ATH_TXQ_LOCK_ASSERT(txq); 5015 5016 /* 5017 * Drain the FIFO queue first, then if it's 5018 * empty, move to the normal frame queue. 5019 */ 5020 bf = TAILQ_FIRST(&txq->fifo.axq_q); 5021 if (bf != NULL) { 5022 /* 5023 * Is it the last buffer in this set? 5024 * Decrement the FIFO counter. 5025 */ 5026 if (bf->bf_flags & ATH_BUF_FIFOEND) { 5027 if (txq->axq_fifo_depth == 0) { 5028 device_printf(sc->sc_dev, 5029 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 5030 __func__, 5031 txq->axq_qnum, 5032 txq->fifo.axq_depth); 5033 } else 5034 txq->axq_fifo_depth--; 5035 } 5036 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 5037 return (bf); 5038 } 5039 5040 /* 5041 * Debugging! 5042 */ 5043 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 5044 device_printf(sc->sc_dev, 5045 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 5046 __func__, 5047 txq->axq_qnum, 5048 txq->axq_fifo_depth, 5049 txq->fifo.axq_depth); 5050 } 5051 5052 /* 5053 * Now drain the pending queue. 5054 */ 5055 bf = TAILQ_FIRST(&txq->axq_q); 5056 if (bf == NULL) { 5057 txq->axq_link = NULL; 5058 return (NULL); 5059 } 5060 ATH_TXQ_REMOVE(txq, bf, bf_list); 5061 return (bf); 5062 } 5063 5064 void 5065 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5066 { 5067 #ifdef ATH_DEBUG 5068 struct ath_hal *ah = sc->sc_ah; 5069 #endif 5070 struct ath_buf *bf; 5071 u_int ix; 5072 5073 /* 5074 * NB: this assumes output has been stopped and 5075 * we do not need to block ath_tx_proc 5076 */ 5077 for (ix = 0;; ix++) { 5078 ATH_TXQ_LOCK(txq); 5079 bf = ath_tx_draintxq_get_one(sc, txq); 5080 if (bf == NULL) { 5081 ATH_TXQ_UNLOCK(txq); 5082 break; 5083 } 5084 if (bf->bf_state.bfs_aggr) 5085 txq->axq_aggr_depth--; 5086 #ifdef ATH_DEBUG 5087 if (sc->sc_debug & ATH_DEBUG_RESET) { 5088 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5089 int status = 0; 5090 5091 /* 5092 * EDMA operation has a TX completion FIFO 5093 * separate from the TX descriptor, so this 5094 * method of checking the "completion" status 5095 * is wrong. 5096 */ 5097 if (! sc->sc_isedma) { 5098 status = (ath_hal_txprocdesc(ah, 5099 bf->bf_lastds, 5100 &bf->bf_status.ds_txstat) == HAL_OK); 5101 } 5102 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 5103 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5104 bf->bf_m->m_len, 0, -1); 5105 } 5106 #endif /* ATH_DEBUG */ 5107 /* 5108 * Since we're now doing magic in the completion 5109 * functions, we -must- call it for aggregation 5110 * destinations or BAW tracking will get upset. 5111 */ 5112 /* 5113 * Clear ATH_BUF_BUSY; the completion handler 5114 * will free the buffer. 5115 */ 5116 ATH_TXQ_UNLOCK(txq); 5117 bf->bf_flags &= ~ATH_BUF_BUSY; 5118 if (bf->bf_comp) 5119 bf->bf_comp(sc, bf, 1); 5120 else 5121 ath_tx_default_comp(sc, bf, 1); 5122 } 5123 5124 /* 5125 * Free the holding buffer if it exists 5126 */ 5127 ATH_TXQ_LOCK(txq); 5128 ath_txq_freeholdingbuf(sc, txq); 5129 ATH_TXQ_UNLOCK(txq); 5130 5131 /* 5132 * Drain software queued frames which are on 5133 * active TIDs. 5134 */ 5135 ath_tx_txq_drain(sc, txq); 5136 } 5137 5138 static void 5139 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5140 { 5141 struct ath_hal *ah = sc->sc_ah; 5142 5143 ATH_TXQ_LOCK_ASSERT(txq); 5144 5145 DPRINTF(sc, ATH_DEBUG_RESET, 5146 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 5147 "link %p, holdingbf=%p\n", 5148 __func__, 5149 txq->axq_qnum, 5150 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5151 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 5152 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 5153 txq->axq_flags, 5154 txq->axq_link, 5155 txq->axq_holdingbf); 5156 5157 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5158 /* We've stopped TX DMA, so mark this as stopped. */ 5159 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 5160 5161 #ifdef ATH_DEBUG 5162 if ((sc->sc_debug & ATH_DEBUG_RESET) 5163 && (txq->axq_holdingbf != NULL)) { 5164 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 5165 } 5166 #endif 5167 } 5168 5169 int 5170 ath_stoptxdma(struct ath_softc *sc) 5171 { 5172 struct ath_hal *ah = sc->sc_ah; 5173 int i; 5174 5175 /* XXX return value */ 5176 if (sc->sc_invalid) 5177 return 0; 5178 5179 if (!sc->sc_invalid) { 5180 /* don't touch the hardware if marked invalid */ 5181 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5182 __func__, sc->sc_bhalq, 5183 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5184 NULL); 5185 5186 /* stop the beacon queue */ 5187 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5188 5189 /* Stop the data queues */ 5190 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5191 if (ATH_TXQ_SETUP(sc, i)) { 5192 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5193 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5194 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5195 } 5196 } 5197 } 5198 5199 return 1; 5200 } 5201 5202 #ifdef ATH_DEBUG 5203 void 5204 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 5205 { 5206 struct ath_hal *ah = sc->sc_ah; 5207 struct ath_buf *bf; 5208 int i = 0; 5209 5210 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 5211 return; 5212 5213 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 5214 __func__, txq->axq_qnum); 5215 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 5216 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 5217 ath_hal_txprocdesc(ah, bf->bf_lastds, 5218 &bf->bf_status.ds_txstat) == HAL_OK); 5219 i++; 5220 } 5221 device_printf(sc->sc_dev, "%s: Q%d: end\n", 5222 __func__, txq->axq_qnum); 5223 } 5224 #endif /* ATH_DEBUG */ 5225 5226 /* 5227 * Drain the transmit queues and reclaim resources. 5228 */ 5229 void 5230 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5231 { 5232 struct ath_hal *ah = sc->sc_ah; 5233 struct ifnet *ifp = sc->sc_ifp; 5234 int i; 5235 struct ath_buf *bf_last; 5236 5237 (void) ath_stoptxdma(sc); 5238 5239 /* 5240 * Dump the queue contents 5241 */ 5242 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5243 /* 5244 * XXX TODO: should we just handle the completed TX frames 5245 * here, whether or not the reset is a full one or not? 5246 */ 5247 if (ATH_TXQ_SETUP(sc, i)) { 5248 #ifdef ATH_DEBUG 5249 if (sc->sc_debug & ATH_DEBUG_RESET) 5250 ath_tx_dump(sc, &sc->sc_txq[i]); 5251 #endif /* ATH_DEBUG */ 5252 if (reset_type == ATH_RESET_NOLOSS) { 5253 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5254 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5255 /* 5256 * Free the holding buffer; DMA is now 5257 * stopped. 5258 */ 5259 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 5260 /* 5261 * Setup the link pointer to be the 5262 * _last_ buffer/descriptor in the list. 5263 * If there's nothing in the list, set it 5264 * to NULL. 5265 */ 5266 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5267 axq_q_s); 5268 if (bf_last != NULL) { 5269 ath_hal_gettxdesclinkptr(ah, 5270 bf_last->bf_lastds, 5271 &sc->sc_txq[i].axq_link); 5272 } else { 5273 sc->sc_txq[i].axq_link = NULL; 5274 } 5275 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5276 } else 5277 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5278 } 5279 } 5280 #ifdef ATH_DEBUG 5281 if (sc->sc_debug & ATH_DEBUG_RESET) { 5282 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5283 if (bf != NULL && bf->bf_m != NULL) { 5284 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5285 ath_hal_txprocdesc(ah, bf->bf_lastds, 5286 &bf->bf_status.ds_txstat) == HAL_OK); 5287 ieee80211_dump_pkt(ifp->if_l2com, 5288 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5289 0, -1); 5290 } 5291 } 5292 #endif /* ATH_DEBUG */ 5293 IF_LOCK(&ifp->if_snd); 5294 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5295 IF_UNLOCK(&ifp->if_snd); 5296 sc->sc_wd_timer = 0; 5297 } 5298 5299 /* 5300 * Update internal state after a channel change. 5301 */ 5302 static void 5303 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5304 { 5305 enum ieee80211_phymode mode; 5306 5307 /* 5308 * Change channels and update the h/w rate map 5309 * if we're switching; e.g. 11a to 11b/g. 5310 */ 5311 mode = ieee80211_chan2mode(chan); 5312 if (mode != sc->sc_curmode) 5313 ath_setcurmode(sc, mode); 5314 sc->sc_curchan = chan; 5315 } 5316 5317 /* 5318 * Set/change channels. If the channel is really being changed, 5319 * it's done by resetting the chip. To accomplish this we must 5320 * first cleanup any pending DMA, then restart stuff after a la 5321 * ath_init. 5322 */ 5323 static int 5324 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5325 { 5326 struct ifnet *ifp = sc->sc_ifp; 5327 struct ieee80211com *ic = ifp->if_l2com; 5328 struct ath_hal *ah = sc->sc_ah; 5329 int ret = 0; 5330 5331 /* Treat this as an interface reset */ 5332 ATH_PCU_UNLOCK_ASSERT(sc); 5333 ATH_UNLOCK_ASSERT(sc); 5334 5335 /* (Try to) stop TX/RX from occuring */ 5336 taskqueue_block(sc->sc_tq); 5337 5338 ATH_PCU_LOCK(sc); 5339 5340 /* Stop new RX/TX/interrupt completion */ 5341 if (ath_reset_grablock(sc, 1) == 0) { 5342 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5343 __func__); 5344 } 5345 5346 ath_hal_intrset(ah, 0); 5347 5348 /* Stop pending RX/TX completion */ 5349 ath_txrx_stop_locked(sc); 5350 5351 ATH_PCU_UNLOCK(sc); 5352 5353 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5354 __func__, ieee80211_chan2ieee(ic, chan), 5355 chan->ic_freq, chan->ic_flags); 5356 if (chan != sc->sc_curchan) { 5357 HAL_STATUS status; 5358 /* 5359 * To switch channels clear any pending DMA operations; 5360 * wait long enough for the RX fifo to drain, reset the 5361 * hardware at the new frequency, and then re-enable 5362 * the relevant bits of the h/w. 5363 */ 5364 #if 0 5365 ath_hal_intrset(ah, 0); /* disable interrupts */ 5366 #endif 5367 ath_stoprecv(sc, 1); /* turn off frame recv */ 5368 /* 5369 * First, handle completed TX/RX frames. 5370 */ 5371 ath_rx_flush(sc); 5372 ath_draintxq(sc, ATH_RESET_NOLOSS); 5373 /* 5374 * Next, flush the non-scheduled frames. 5375 */ 5376 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5377 5378 ath_update_chainmasks(sc, chan); 5379 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5380 sc->sc_cur_rxchainmask); 5381 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 5382 if_printf(ifp, "%s: unable to reset " 5383 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5384 __func__, ieee80211_chan2ieee(ic, chan), 5385 chan->ic_freq, chan->ic_flags, status); 5386 ret = EIO; 5387 goto finish; 5388 } 5389 sc->sc_diversity = ath_hal_getdiversity(ah); 5390 5391 /* Let DFS at it in case it's a DFS channel */ 5392 ath_dfs_radar_enable(sc, chan); 5393 5394 /* Let spectral at in case spectral is enabled */ 5395 ath_spectral_enable(sc, chan); 5396 5397 /* 5398 * Let bluetooth coexistence at in case it's needed for this 5399 * channel 5400 */ 5401 ath_btcoex_enable(sc, ic->ic_curchan); 5402 5403 /* 5404 * If we're doing TDMA, enforce the TXOP limitation for chips 5405 * that support it. 5406 */ 5407 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5408 ath_hal_setenforcetxop(sc->sc_ah, 1); 5409 else 5410 ath_hal_setenforcetxop(sc->sc_ah, 0); 5411 5412 /* 5413 * Re-enable rx framework. 5414 */ 5415 if (ath_startrecv(sc) != 0) { 5416 if_printf(ifp, "%s: unable to restart recv logic\n", 5417 __func__); 5418 ret = EIO; 5419 goto finish; 5420 } 5421 5422 /* 5423 * Change channels and update the h/w rate map 5424 * if we're switching; e.g. 11a to 11b/g. 5425 */ 5426 ath_chan_change(sc, chan); 5427 5428 /* 5429 * Reset clears the beacon timers; reset them 5430 * here if needed. 5431 */ 5432 if (sc->sc_beacons) { /* restart beacons */ 5433 #ifdef IEEE80211_SUPPORT_TDMA 5434 if (sc->sc_tdma) 5435 ath_tdma_config(sc, NULL); 5436 else 5437 #endif 5438 ath_beacon_config(sc, NULL); 5439 } 5440 5441 /* 5442 * Re-enable interrupts. 5443 */ 5444 #if 0 5445 ath_hal_intrset(ah, sc->sc_imask); 5446 #endif 5447 } 5448 5449 finish: 5450 ATH_PCU_LOCK(sc); 5451 sc->sc_inreset_cnt--; 5452 /* XXX only do this if sc_inreset_cnt == 0? */ 5453 ath_hal_intrset(ah, sc->sc_imask); 5454 ATH_PCU_UNLOCK(sc); 5455 5456 IF_LOCK(&ifp->if_snd); 5457 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5458 IF_UNLOCK(&ifp->if_snd); 5459 ath_txrx_start(sc); 5460 /* XXX ath_start? */ 5461 5462 return ret; 5463 } 5464 5465 /* 5466 * Periodically recalibrate the PHY to account 5467 * for temperature/environment changes. 5468 */ 5469 static void 5470 ath_calibrate(void *arg) 5471 { 5472 struct ath_softc *sc = arg; 5473 struct ath_hal *ah = sc->sc_ah; 5474 struct ifnet *ifp = sc->sc_ifp; 5475 struct ieee80211com *ic = ifp->if_l2com; 5476 HAL_BOOL longCal, isCalDone = AH_TRUE; 5477 HAL_BOOL aniCal, shortCal = AH_FALSE; 5478 int nextcal; 5479 5480 /* 5481 * Force the hardware awake for ANI work. 5482 */ 5483 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5484 5485 /* Skip trying to do this if we're in reset */ 5486 if (sc->sc_inreset_cnt) 5487 goto restart; 5488 5489 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5490 goto restart; 5491 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5492 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5493 if (sc->sc_doresetcal) 5494 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5495 5496 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5497 if (aniCal) { 5498 sc->sc_stats.ast_ani_cal++; 5499 sc->sc_lastani = ticks; 5500 ath_hal_ani_poll(ah, sc->sc_curchan); 5501 } 5502 5503 if (longCal) { 5504 sc->sc_stats.ast_per_cal++; 5505 sc->sc_lastlongcal = ticks; 5506 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5507 /* 5508 * Rfgain is out of bounds, reset the chip 5509 * to load new gain values. 5510 */ 5511 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5512 "%s: rfgain change\n", __func__); 5513 sc->sc_stats.ast_per_rfgain++; 5514 sc->sc_resetcal = 0; 5515 sc->sc_doresetcal = AH_TRUE; 5516 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5517 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5518 ath_power_restore_power_state(sc); 5519 return; 5520 } 5521 /* 5522 * If this long cal is after an idle period, then 5523 * reset the data collection state so we start fresh. 5524 */ 5525 if (sc->sc_resetcal) { 5526 (void) ath_hal_calreset(ah, sc->sc_curchan); 5527 sc->sc_lastcalreset = ticks; 5528 sc->sc_lastshortcal = ticks; 5529 sc->sc_resetcal = 0; 5530 sc->sc_doresetcal = AH_TRUE; 5531 } 5532 } 5533 5534 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5535 if (shortCal || longCal) { 5536 isCalDone = AH_FALSE; 5537 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5538 if (longCal) { 5539 /* 5540 * Calibrate noise floor data again in case of change. 5541 */ 5542 ath_hal_process_noisefloor(ah); 5543 } 5544 } else { 5545 DPRINTF(sc, ATH_DEBUG_ANY, 5546 "%s: calibration of channel %u failed\n", 5547 __func__, sc->sc_curchan->ic_freq); 5548 sc->sc_stats.ast_per_calfail++; 5549 } 5550 if (shortCal) 5551 sc->sc_lastshortcal = ticks; 5552 } 5553 if (!isCalDone) { 5554 restart: 5555 /* 5556 * Use a shorter interval to potentially collect multiple 5557 * data samples required to complete calibration. Once 5558 * we're told the work is done we drop back to a longer 5559 * interval between requests. We're more aggressive doing 5560 * work when operating as an AP to improve operation right 5561 * after startup. 5562 */ 5563 sc->sc_lastshortcal = ticks; 5564 nextcal = ath_shortcalinterval*hz/1000; 5565 if (sc->sc_opmode != HAL_M_HOSTAP) 5566 nextcal *= 10; 5567 sc->sc_doresetcal = AH_TRUE; 5568 } else { 5569 /* nextcal should be the shortest time for next event */ 5570 nextcal = ath_longcalinterval*hz; 5571 if (sc->sc_lastcalreset == 0) 5572 sc->sc_lastcalreset = sc->sc_lastlongcal; 5573 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5574 sc->sc_resetcal = 1; /* setup reset next trip */ 5575 sc->sc_doresetcal = AH_FALSE; 5576 } 5577 /* ANI calibration may occur more often than short/long/resetcal */ 5578 if (ath_anicalinterval > 0) 5579 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5580 5581 if (nextcal != 0) { 5582 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5583 __func__, nextcal, isCalDone ? "" : "!"); 5584 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5585 } else { 5586 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5587 __func__); 5588 /* NB: don't rearm timer */ 5589 } 5590 /* 5591 * Restore power state now that we're done. 5592 */ 5593 ath_power_restore_power_state(sc); 5594 } 5595 5596 static void 5597 ath_scan_start(struct ieee80211com *ic) 5598 { 5599 struct ifnet *ifp = ic->ic_ifp; 5600 struct ath_softc *sc = ifp->if_softc; 5601 struct ath_hal *ah = sc->sc_ah; 5602 u_int32_t rfilt; 5603 5604 /* XXX calibration timer? */ 5605 5606 ATH_LOCK(sc); 5607 sc->sc_scanning = 1; 5608 sc->sc_syncbeacon = 0; 5609 rfilt = ath_calcrxfilter(sc); 5610 ATH_UNLOCK(sc); 5611 5612 ATH_PCU_LOCK(sc); 5613 ath_hal_setrxfilter(ah, rfilt); 5614 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5615 ATH_PCU_UNLOCK(sc); 5616 5617 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5618 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5619 } 5620 5621 static void 5622 ath_scan_end(struct ieee80211com *ic) 5623 { 5624 struct ifnet *ifp = ic->ic_ifp; 5625 struct ath_softc *sc = ifp->if_softc; 5626 struct ath_hal *ah = sc->sc_ah; 5627 u_int32_t rfilt; 5628 5629 ATH_LOCK(sc); 5630 sc->sc_scanning = 0; 5631 rfilt = ath_calcrxfilter(sc); 5632 ATH_UNLOCK(sc); 5633 5634 ATH_PCU_LOCK(sc); 5635 ath_hal_setrxfilter(ah, rfilt); 5636 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5637 5638 ath_hal_process_noisefloor(ah); 5639 ATH_PCU_UNLOCK(sc); 5640 5641 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5642 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5643 sc->sc_curaid); 5644 } 5645 5646 #ifdef ATH_ENABLE_11N 5647 /* 5648 * For now, just do a channel change. 5649 * 5650 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5651 * control state and resetting the hardware without dropping frames out 5652 * of the queue. 5653 * 5654 * The unfortunate trouble here is making absolutely sure that the 5655 * channel width change has propagated enough so the hardware 5656 * absolutely isn't handed bogus frames for it's current operating 5657 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5658 * does occur in parallel, we need to make certain we've blocked 5659 * any further ongoing TX (and RX, that can cause raw TX) 5660 * before we do this. 5661 */ 5662 static void 5663 ath_update_chw(struct ieee80211com *ic) 5664 { 5665 struct ifnet *ifp = ic->ic_ifp; 5666 struct ath_softc *sc = ifp->if_softc; 5667 5668 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5669 ath_set_channel(ic); 5670 } 5671 #endif /* ATH_ENABLE_11N */ 5672 5673 static void 5674 ath_set_channel(struct ieee80211com *ic) 5675 { 5676 struct ifnet *ifp = ic->ic_ifp; 5677 struct ath_softc *sc = ifp->if_softc; 5678 5679 ATH_LOCK(sc); 5680 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5681 ATH_UNLOCK(sc); 5682 5683 (void) ath_chan_set(sc, ic->ic_curchan); 5684 /* 5685 * If we are returning to our bss channel then mark state 5686 * so the next recv'd beacon's tsf will be used to sync the 5687 * beacon timers. Note that since we only hear beacons in 5688 * sta/ibss mode this has no effect in other operating modes. 5689 */ 5690 ATH_LOCK(sc); 5691 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5692 sc->sc_syncbeacon = 1; 5693 ath_power_restore_power_state(sc); 5694 ATH_UNLOCK(sc); 5695 } 5696 5697 /* 5698 * Walk the vap list and check if there any vap's in RUN state. 5699 */ 5700 static int 5701 ath_isanyrunningvaps(struct ieee80211vap *this) 5702 { 5703 struct ieee80211com *ic = this->iv_ic; 5704 struct ieee80211vap *vap; 5705 5706 IEEE80211_LOCK_ASSERT(ic); 5707 5708 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5709 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5710 return 1; 5711 } 5712 return 0; 5713 } 5714 5715 static int 5716 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5717 { 5718 struct ieee80211com *ic = vap->iv_ic; 5719 struct ath_softc *sc = ic->ic_ifp->if_softc; 5720 struct ath_vap *avp = ATH_VAP(vap); 5721 struct ath_hal *ah = sc->sc_ah; 5722 struct ieee80211_node *ni = NULL; 5723 int i, error, stamode; 5724 u_int32_t rfilt; 5725 int csa_run_transition = 0; 5726 enum ieee80211_state ostate = vap->iv_state; 5727 5728 static const HAL_LED_STATE leds[] = { 5729 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5730 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5731 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5732 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5733 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5734 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5735 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5736 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5737 }; 5738 5739 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5740 ieee80211_state_name[ostate], 5741 ieee80211_state_name[nstate]); 5742 5743 /* 5744 * net80211 _should_ have the comlock asserted at this point. 5745 * There are some comments around the calls to vap->iv_newstate 5746 * which indicate that it (newstate) may end up dropping the 5747 * lock. This and the subsequent lock assert check after newstate 5748 * are an attempt to catch these and figure out how/why. 5749 */ 5750 IEEE80211_LOCK_ASSERT(ic); 5751 5752 /* Before we touch the hardware - wake it up */ 5753 ATH_LOCK(sc); 5754 /* 5755 * If the NIC is in anything other than SLEEP state, 5756 * we need to ensure that self-generated frames are 5757 * set for PWRMGT=0. Otherwise we may end up with 5758 * strange situations. 5759 * 5760 * XXX TODO: is this actually the case? :-) 5761 */ 5762 if (nstate != IEEE80211_S_SLEEP) 5763 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5764 5765 /* 5766 * Now, wake the thing up. 5767 */ 5768 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5769 ATH_UNLOCK(sc); 5770 5771 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5772 csa_run_transition = 1; 5773 5774 callout_drain(&sc->sc_cal_ch); 5775 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5776 5777 if (nstate == IEEE80211_S_SCAN) { 5778 /* 5779 * Scanning: turn off beacon miss and don't beacon. 5780 * Mark beacon state so when we reach RUN state we'll 5781 * [re]setup beacons. Unblock the task q thread so 5782 * deferred interrupt processing is done. 5783 */ 5784 5785 /* Ensure we stay awake during scan */ 5786 ATH_LOCK(sc); 5787 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5788 ath_power_setpower(sc, HAL_PM_AWAKE); 5789 ATH_UNLOCK(sc); 5790 5791 ath_hal_intrset(ah, 5792 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5793 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5794 sc->sc_beacons = 0; 5795 taskqueue_unblock(sc->sc_tq); 5796 } 5797 5798 ni = ieee80211_ref_node(vap->iv_bss); 5799 rfilt = ath_calcrxfilter(sc); 5800 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5801 vap->iv_opmode == IEEE80211_M_AHDEMO || 5802 vap->iv_opmode == IEEE80211_M_IBSS); 5803 5804 /* 5805 * XXX Dont need to do this (and others) if we've transitioned 5806 * from SLEEP->RUN. 5807 */ 5808 if (stamode && nstate == IEEE80211_S_RUN) { 5809 sc->sc_curaid = ni->ni_associd; 5810 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5811 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5812 } 5813 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5814 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5815 ath_hal_setrxfilter(ah, rfilt); 5816 5817 /* XXX is this to restore keycache on resume? */ 5818 if (vap->iv_opmode != IEEE80211_M_STA && 5819 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5820 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5821 if (ath_hal_keyisvalid(ah, i)) 5822 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5823 } 5824 5825 /* 5826 * Invoke the parent method to do net80211 work. 5827 */ 5828 error = avp->av_newstate(vap, nstate, arg); 5829 if (error != 0) 5830 goto bad; 5831 5832 /* 5833 * See above: ensure av_newstate() doesn't drop the lock 5834 * on us. 5835 */ 5836 IEEE80211_LOCK_ASSERT(ic); 5837 5838 if (nstate == IEEE80211_S_RUN) { 5839 /* NB: collect bss node again, it may have changed */ 5840 ieee80211_free_node(ni); 5841 ni = ieee80211_ref_node(vap->iv_bss); 5842 5843 DPRINTF(sc, ATH_DEBUG_STATE, 5844 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5845 "capinfo 0x%04x chan %d\n", __func__, 5846 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5847 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5848 5849 switch (vap->iv_opmode) { 5850 #ifdef IEEE80211_SUPPORT_TDMA 5851 case IEEE80211_M_AHDEMO: 5852 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5853 break; 5854 /* fall thru... */ 5855 #endif 5856 case IEEE80211_M_HOSTAP: 5857 case IEEE80211_M_IBSS: 5858 case IEEE80211_M_MBSS: 5859 /* 5860 * Allocate and setup the beacon frame. 5861 * 5862 * Stop any previous beacon DMA. This may be 5863 * necessary, for example, when an ibss merge 5864 * causes reconfiguration; there will be a state 5865 * transition from RUN->RUN that means we may 5866 * be called with beacon transmission active. 5867 */ 5868 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5869 5870 error = ath_beacon_alloc(sc, ni); 5871 if (error != 0) 5872 goto bad; 5873 /* 5874 * If joining an adhoc network defer beacon timer 5875 * configuration to the next beacon frame so we 5876 * have a current TSF to use. Otherwise we're 5877 * starting an ibss/bss so there's no need to delay; 5878 * if this is the first vap moving to RUN state, then 5879 * beacon state needs to be [re]configured. 5880 */ 5881 if (vap->iv_opmode == IEEE80211_M_IBSS && 5882 ni->ni_tstamp.tsf != 0) { 5883 sc->sc_syncbeacon = 1; 5884 } else if (!sc->sc_beacons) { 5885 #ifdef IEEE80211_SUPPORT_TDMA 5886 if (vap->iv_caps & IEEE80211_C_TDMA) 5887 ath_tdma_config(sc, vap); 5888 else 5889 #endif 5890 ath_beacon_config(sc, vap); 5891 sc->sc_beacons = 1; 5892 } 5893 break; 5894 case IEEE80211_M_STA: 5895 /* 5896 * Defer beacon timer configuration to the next 5897 * beacon frame so we have a current TSF to use 5898 * (any TSF collected when scanning is likely old). 5899 * However if it's due to a CSA -> RUN transition, 5900 * force a beacon update so we pick up a lack of 5901 * beacons from an AP in CAC and thus force a 5902 * scan. 5903 * 5904 * And, there's also corner cases here where 5905 * after a scan, the AP may have disappeared. 5906 * In that case, we may not receive an actual 5907 * beacon to update the beacon timer and thus we 5908 * won't get notified of the missing beacons. 5909 */ 5910 if (ostate != IEEE80211_S_RUN && 5911 ostate != IEEE80211_S_SLEEP) { 5912 DPRINTF(sc, ATH_DEBUG_BEACON, 5913 "%s: STA; syncbeacon=1\n", __func__); 5914 sc->sc_syncbeacon = 1; 5915 5916 if (csa_run_transition) 5917 ath_beacon_config(sc, vap); 5918 5919 /* 5920 * PR: kern/175227 5921 * 5922 * Reconfigure beacons during reset; as otherwise 5923 * we won't get the beacon timers reprogrammed 5924 * after a reset and thus we won't pick up a 5925 * beacon miss interrupt. 5926 * 5927 * Hopefully we'll see a beacon before the BMISS 5928 * timer fires (too often), leading to a STA 5929 * disassociation. 5930 */ 5931 sc->sc_beacons = 1; 5932 } 5933 break; 5934 case IEEE80211_M_MONITOR: 5935 /* 5936 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5937 * transitions so we must re-enable interrupts here to 5938 * handle the case of a single monitor mode vap. 5939 */ 5940 ath_hal_intrset(ah, sc->sc_imask); 5941 break; 5942 case IEEE80211_M_WDS: 5943 break; 5944 default: 5945 break; 5946 } 5947 /* 5948 * Let the hal process statistics collected during a 5949 * scan so it can provide calibrated noise floor data. 5950 */ 5951 ath_hal_process_noisefloor(ah); 5952 /* 5953 * Reset rssi stats; maybe not the best place... 5954 */ 5955 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5956 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5957 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5958 5959 /* 5960 * Force awake for RUN mode. 5961 */ 5962 ATH_LOCK(sc); 5963 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5964 ath_power_setpower(sc, HAL_PM_AWAKE); 5965 ATH_UNLOCK(sc); 5966 5967 /* 5968 * Finally, start any timers and the task q thread 5969 * (in case we didn't go through SCAN state). 5970 */ 5971 if (ath_longcalinterval != 0) { 5972 /* start periodic recalibration timer */ 5973 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5974 } else { 5975 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5976 "%s: calibration disabled\n", __func__); 5977 } 5978 5979 taskqueue_unblock(sc->sc_tq); 5980 } else if (nstate == IEEE80211_S_INIT) { 5981 /* 5982 * If there are no vaps left in RUN state then 5983 * shutdown host/driver operation: 5984 * o disable interrupts 5985 * o disable the task queue thread 5986 * o mark beacon processing as stopped 5987 */ 5988 if (!ath_isanyrunningvaps(vap)) { 5989 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5990 /* disable interrupts */ 5991 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5992 taskqueue_block(sc->sc_tq); 5993 sc->sc_beacons = 0; 5994 } 5995 #ifdef IEEE80211_SUPPORT_TDMA 5996 ath_hal_setcca(ah, AH_TRUE); 5997 #endif 5998 } else if (nstate == IEEE80211_S_SLEEP) { 5999 /* We're going to sleep, so transition appropriately */ 6000 /* For now, only do this if we're a single STA vap */ 6001 if (sc->sc_nvaps == 1 && 6002 vap->iv_opmode == IEEE80211_M_STA) { 6003 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 6004 ATH_LOCK(sc); 6005 /* 6006 * Always at least set the self-generated 6007 * frame config to set PWRMGT=1. 6008 */ 6009 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 6010 6011 /* 6012 * If we're not syncing beacons, transition 6013 * to NETWORK_SLEEP. 6014 * 6015 * We stay awake if syncbeacon > 0 in case 6016 * we need to listen for some beacons otherwise 6017 * our beacon timer config may be wrong. 6018 */ 6019 if (sc->sc_syncbeacon == 0) { 6020 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP); 6021 } 6022 ATH_UNLOCK(sc); 6023 } 6024 } 6025 bad: 6026 ieee80211_free_node(ni); 6027 6028 /* 6029 * Restore the power state - either to what it was, or 6030 * to network_sleep if it's alright. 6031 */ 6032 ATH_LOCK(sc); 6033 ath_power_restore_power_state(sc); 6034 ATH_UNLOCK(sc); 6035 return error; 6036 } 6037 6038 /* 6039 * Allocate a key cache slot to the station so we can 6040 * setup a mapping from key index to node. The key cache 6041 * slot is needed for managing antenna state and for 6042 * compression when stations do not use crypto. We do 6043 * it uniliaterally here; if crypto is employed this slot 6044 * will be reassigned. 6045 */ 6046 static void 6047 ath_setup_stationkey(struct ieee80211_node *ni) 6048 { 6049 struct ieee80211vap *vap = ni->ni_vap; 6050 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6051 ieee80211_keyix keyix, rxkeyix; 6052 6053 /* XXX should take a locked ref to vap->iv_bss */ 6054 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 6055 /* 6056 * Key cache is full; we'll fall back to doing 6057 * the more expensive lookup in software. Note 6058 * this also means no h/w compression. 6059 */ 6060 /* XXX msg+statistic */ 6061 } else { 6062 /* XXX locking? */ 6063 ni->ni_ucastkey.wk_keyix = keyix; 6064 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 6065 /* NB: must mark device key to get called back on delete */ 6066 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 6067 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 6068 /* NB: this will create a pass-thru key entry */ 6069 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 6070 } 6071 } 6072 6073 /* 6074 * Setup driver-specific state for a newly associated node. 6075 * Note that we're called also on a re-associate, the isnew 6076 * param tells us if this is the first time or not. 6077 */ 6078 static void 6079 ath_newassoc(struct ieee80211_node *ni, int isnew) 6080 { 6081 struct ath_node *an = ATH_NODE(ni); 6082 struct ieee80211vap *vap = ni->ni_vap; 6083 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6084 const struct ieee80211_txparam *tp = ni->ni_txparms; 6085 6086 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 6087 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 6088 6089 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 6090 __func__, 6091 ni->ni_macaddr, 6092 ":", 6093 isnew, 6094 an->an_is_powersave); 6095 6096 ATH_NODE_LOCK(an); 6097 ath_rate_newassoc(sc, an, isnew); 6098 ATH_NODE_UNLOCK(an); 6099 6100 if (isnew && 6101 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6102 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6103 ath_setup_stationkey(ni); 6104 6105 /* 6106 * If we're reassociating, make sure that any paused queues 6107 * get unpaused. 6108 * 6109 * Now, we may hvae frames in the hardware queue for this node. 6110 * So if we are reassociating and there are frames in the queue, 6111 * we need to go through the cleanup path to ensure that they're 6112 * marked as non-aggregate. 6113 */ 6114 if (! isnew) { 6115 DPRINTF(sc, ATH_DEBUG_NODE, 6116 "%s: %6D: reassoc; is_powersave=%d\n", 6117 __func__, 6118 ni->ni_macaddr, 6119 ":", 6120 an->an_is_powersave); 6121 6122 /* XXX for now, we can't hold the lock across assoc */ 6123 ath_tx_node_reassoc(sc, an); 6124 6125 /* XXX for now, we can't hold the lock across wakeup */ 6126 if (an->an_is_powersave) 6127 ath_tx_node_wakeup(sc, an); 6128 } 6129 } 6130 6131 static int 6132 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6133 int nchans, struct ieee80211_channel chans[]) 6134 { 6135 struct ath_softc *sc = ic->ic_ifp->if_softc; 6136 struct ath_hal *ah = sc->sc_ah; 6137 HAL_STATUS status; 6138 6139 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6140 "%s: rd %u cc %u location %c%s\n", 6141 __func__, reg->regdomain, reg->country, reg->location, 6142 reg->ecm ? " ecm" : ""); 6143 6144 status = ath_hal_set_channels(ah, chans, nchans, 6145 reg->country, reg->regdomain); 6146 if (status != HAL_OK) { 6147 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6148 __func__, status); 6149 return EINVAL; /* XXX */ 6150 } 6151 6152 return 0; 6153 } 6154 6155 static void 6156 ath_getradiocaps(struct ieee80211com *ic, 6157 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6158 { 6159 struct ath_softc *sc = ic->ic_ifp->if_softc; 6160 struct ath_hal *ah = sc->sc_ah; 6161 6162 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6163 __func__, SKU_DEBUG, CTRY_DEFAULT); 6164 6165 /* XXX check return */ 6166 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6167 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6168 6169 } 6170 6171 static int 6172 ath_getchannels(struct ath_softc *sc) 6173 { 6174 struct ifnet *ifp = sc->sc_ifp; 6175 struct ieee80211com *ic = ifp->if_l2com; 6176 struct ath_hal *ah = sc->sc_ah; 6177 HAL_STATUS status; 6178 6179 /* 6180 * Collect channel set based on EEPROM contents. 6181 */ 6182 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6183 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6184 if (status != HAL_OK) { 6185 if_printf(ifp, "%s: unable to collect channel list from hal, " 6186 "status %d\n", __func__, status); 6187 return EINVAL; 6188 } 6189 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6190 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6191 /* XXX map Atheros sku's to net80211 SKU's */ 6192 /* XXX net80211 types too small */ 6193 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6194 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6195 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6196 ic->ic_regdomain.isocc[1] = ' '; 6197 6198 ic->ic_regdomain.ecm = 1; 6199 ic->ic_regdomain.location = 'I'; 6200 6201 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6202 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6203 __func__, sc->sc_eerd, sc->sc_eecc, 6204 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6205 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6206 return 0; 6207 } 6208 6209 static int 6210 ath_rate_setup(struct ath_softc *sc, u_int mode) 6211 { 6212 struct ath_hal *ah = sc->sc_ah; 6213 const HAL_RATE_TABLE *rt; 6214 6215 switch (mode) { 6216 case IEEE80211_MODE_11A: 6217 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6218 break; 6219 case IEEE80211_MODE_HALF: 6220 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6221 break; 6222 case IEEE80211_MODE_QUARTER: 6223 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6224 break; 6225 case IEEE80211_MODE_11B: 6226 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6227 break; 6228 case IEEE80211_MODE_11G: 6229 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6230 break; 6231 case IEEE80211_MODE_TURBO_A: 6232 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6233 break; 6234 case IEEE80211_MODE_TURBO_G: 6235 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6236 break; 6237 case IEEE80211_MODE_STURBO_A: 6238 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6239 break; 6240 case IEEE80211_MODE_11NA: 6241 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6242 break; 6243 case IEEE80211_MODE_11NG: 6244 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6245 break; 6246 default: 6247 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6248 __func__, mode); 6249 return 0; 6250 } 6251 sc->sc_rates[mode] = rt; 6252 return (rt != NULL); 6253 } 6254 6255 static void 6256 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6257 { 6258 #define N(a) (sizeof(a)/sizeof(a[0])) 6259 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6260 static const struct { 6261 u_int rate; /* tx/rx 802.11 rate */ 6262 u_int16_t timeOn; /* LED on time (ms) */ 6263 u_int16_t timeOff; /* LED off time (ms) */ 6264 } blinkrates[] = { 6265 { 108, 40, 10 }, 6266 { 96, 44, 11 }, 6267 { 72, 50, 13 }, 6268 { 48, 57, 14 }, 6269 { 36, 67, 16 }, 6270 { 24, 80, 20 }, 6271 { 22, 100, 25 }, 6272 { 18, 133, 34 }, 6273 { 12, 160, 40 }, 6274 { 10, 200, 50 }, 6275 { 6, 240, 58 }, 6276 { 4, 267, 66 }, 6277 { 2, 400, 100 }, 6278 { 0, 500, 130 }, 6279 /* XXX half/quarter rates */ 6280 }; 6281 const HAL_RATE_TABLE *rt; 6282 int i, j; 6283 6284 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6285 rt = sc->sc_rates[mode]; 6286 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6287 for (i = 0; i < rt->rateCount; i++) { 6288 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6289 if (rt->info[i].phy != IEEE80211_T_HT) 6290 sc->sc_rixmap[ieeerate] = i; 6291 else 6292 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6293 } 6294 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6295 for (i = 0; i < N(sc->sc_hwmap); i++) { 6296 if (i >= rt->rateCount) { 6297 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6298 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6299 continue; 6300 } 6301 sc->sc_hwmap[i].ieeerate = 6302 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6303 if (rt->info[i].phy == IEEE80211_T_HT) 6304 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6305 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6306 if (rt->info[i].shortPreamble || 6307 rt->info[i].phy == IEEE80211_T_OFDM) 6308 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6309 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6310 for (j = 0; j < N(blinkrates)-1; j++) 6311 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6312 break; 6313 /* NB: this uses the last entry if the rate isn't found */ 6314 /* XXX beware of overlow */ 6315 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6316 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6317 } 6318 sc->sc_currates = rt; 6319 sc->sc_curmode = mode; 6320 /* 6321 * All protection frames are transmited at 2Mb/s for 6322 * 11g, otherwise at 1Mb/s. 6323 */ 6324 if (mode == IEEE80211_MODE_11G) 6325 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6326 else 6327 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6328 /* NB: caller is responsible for resetting rate control state */ 6329 #undef N 6330 } 6331 6332 static void 6333 ath_watchdog(void *arg) 6334 { 6335 struct ath_softc *sc = arg; 6336 int do_reset = 0; 6337 6338 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6339 struct ifnet *ifp = sc->sc_ifp; 6340 uint32_t hangs; 6341 6342 ATH_LOCK(sc); 6343 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6344 ATH_UNLOCK(sc); 6345 6346 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6347 hangs != 0) { 6348 if_printf(ifp, "%s hang detected (0x%x)\n", 6349 hangs & 0xff ? "bb" : "mac", hangs); 6350 } else 6351 if_printf(ifp, "device timeout\n"); 6352 do_reset = 1; 6353 ifp->if_oerrors++; 6354 sc->sc_stats.ast_watchdog++; 6355 6356 ATH_LOCK(sc); 6357 ath_power_restore_power_state(sc); 6358 ATH_UNLOCK(sc); 6359 } 6360 6361 /* 6362 * We can't hold the lock across the ath_reset() call. 6363 * 6364 * And since this routine can't hold a lock and sleep, 6365 * do the reset deferred. 6366 */ 6367 if (do_reset) { 6368 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6369 } 6370 6371 callout_schedule(&sc->sc_wd_ch, hz); 6372 } 6373 6374 /* 6375 * Fetch the rate control statistics for the given node. 6376 */ 6377 static int 6378 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 6379 { 6380 struct ath_node *an; 6381 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 6382 struct ieee80211_node *ni; 6383 int error = 0; 6384 6385 /* Perform a lookup on the given node */ 6386 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 6387 if (ni == NULL) { 6388 error = EINVAL; 6389 goto bad; 6390 } 6391 6392 /* Lock the ath_node */ 6393 an = ATH_NODE(ni); 6394 ATH_NODE_LOCK(an); 6395 6396 /* Fetch the rate control stats for this node */ 6397 error = ath_rate_fetch_node_stats(sc, an, rs); 6398 6399 /* No matter what happens here, just drop through */ 6400 6401 /* Unlock the ath_node */ 6402 ATH_NODE_UNLOCK(an); 6403 6404 /* Unref the node */ 6405 ieee80211_node_decref(ni); 6406 6407 bad: 6408 return (error); 6409 } 6410 6411 #ifdef ATH_DIAGAPI 6412 /* 6413 * Diagnostic interface to the HAL. This is used by various 6414 * tools to do things like retrieve register contents for 6415 * debugging. The mechanism is intentionally opaque so that 6416 * it can change frequently w/o concern for compatiblity. 6417 */ 6418 static int 6419 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6420 { 6421 struct ath_hal *ah = sc->sc_ah; 6422 u_int id = ad->ad_id & ATH_DIAG_ID; 6423 void *indata = NULL; 6424 void *outdata = NULL; 6425 u_int32_t insize = ad->ad_in_size; 6426 u_int32_t outsize = ad->ad_out_size; 6427 int error = 0; 6428 6429 if (ad->ad_id & ATH_DIAG_IN) { 6430 /* 6431 * Copy in data. 6432 */ 6433 indata = malloc(insize, M_TEMP, M_NOWAIT); 6434 if (indata == NULL) { 6435 error = ENOMEM; 6436 goto bad; 6437 } 6438 error = copyin(ad->ad_in_data, indata, insize); 6439 if (error) 6440 goto bad; 6441 } 6442 if (ad->ad_id & ATH_DIAG_DYN) { 6443 /* 6444 * Allocate a buffer for the results (otherwise the HAL 6445 * returns a pointer to a buffer where we can read the 6446 * results). Note that we depend on the HAL leaving this 6447 * pointer for us to use below in reclaiming the buffer; 6448 * may want to be more defensive. 6449 */ 6450 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6451 if (outdata == NULL) { 6452 error = ENOMEM; 6453 goto bad; 6454 } 6455 } 6456 6457 6458 ATH_LOCK(sc); 6459 if (id != HAL_DIAG_REGS) 6460 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6461 ATH_UNLOCK(sc); 6462 6463 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6464 if (outsize < ad->ad_out_size) 6465 ad->ad_out_size = outsize; 6466 if (outdata != NULL) 6467 error = copyout(outdata, ad->ad_out_data, 6468 ad->ad_out_size); 6469 } else { 6470 error = EINVAL; 6471 } 6472 6473 ATH_LOCK(sc); 6474 if (id != HAL_DIAG_REGS) 6475 ath_power_restore_power_state(sc); 6476 ATH_UNLOCK(sc); 6477 6478 bad: 6479 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6480 free(indata, M_TEMP); 6481 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6482 free(outdata, M_TEMP); 6483 return error; 6484 } 6485 #endif /* ATH_DIAGAPI */ 6486 6487 static int 6488 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 6489 { 6490 #define IS_RUNNING(ifp) \ 6491 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 6492 struct ath_softc *sc = ifp->if_softc; 6493 struct ieee80211com *ic = ifp->if_l2com; 6494 struct ifreq *ifr = (struct ifreq *)data; 6495 const HAL_RATE_TABLE *rt; 6496 int error = 0; 6497 6498 switch (cmd) { 6499 case SIOCSIFFLAGS: 6500 if (IS_RUNNING(ifp)) { 6501 /* 6502 * To avoid rescanning another access point, 6503 * do not call ath_init() here. Instead, 6504 * only reflect promisc mode settings. 6505 */ 6506 ATH_LOCK(sc); 6507 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6508 ath_mode_init(sc); 6509 ath_power_restore_power_state(sc); 6510 ATH_UNLOCK(sc); 6511 } else if (ifp->if_flags & IFF_UP) { 6512 /* 6513 * Beware of being called during attach/detach 6514 * to reset promiscuous mode. In that case we 6515 * will still be marked UP but not RUNNING. 6516 * However trying to re-init the interface 6517 * is the wrong thing to do as we've already 6518 * torn down much of our state. There's 6519 * probably a better way to deal with this. 6520 */ 6521 if (!sc->sc_invalid) 6522 ath_init(sc); /* XXX lose error */ 6523 } else { 6524 ATH_LOCK(sc); 6525 ath_stop_locked(ifp); 6526 if (!sc->sc_invalid) 6527 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 6528 ATH_UNLOCK(sc); 6529 } 6530 break; 6531 case SIOCGIFMEDIA: 6532 case SIOCSIFMEDIA: 6533 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 6534 break; 6535 case SIOCGATHSTATS: 6536 /* NB: embed these numbers to get a consistent view */ 6537 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 6538 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 6539 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 6540 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 6541 #ifdef IEEE80211_SUPPORT_TDMA 6542 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 6543 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 6544 #endif 6545 rt = sc->sc_currates; 6546 sc->sc_stats.ast_tx_rate = 6547 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 6548 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 6549 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 6550 return copyout(&sc->sc_stats, 6551 ifr->ifr_data, sizeof (sc->sc_stats)); 6552 case SIOCGATHAGSTATS: 6553 return copyout(&sc->sc_aggr_stats, 6554 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 6555 case SIOCZATHSTATS: 6556 error = priv_check(curthread, PRIV_DRIVER); 6557 if (error == 0) { 6558 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6559 memset(&sc->sc_aggr_stats, 0, 6560 sizeof(sc->sc_aggr_stats)); 6561 memset(&sc->sc_intr_stats, 0, 6562 sizeof(sc->sc_intr_stats)); 6563 } 6564 break; 6565 #ifdef ATH_DIAGAPI 6566 case SIOCGATHDIAG: 6567 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 6568 break; 6569 case SIOCGATHPHYERR: 6570 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 6571 break; 6572 #endif 6573 case SIOCGATHSPECTRAL: 6574 error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr); 6575 break; 6576 case SIOCGATHNODERATESTATS: 6577 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 6578 break; 6579 case SIOCGIFADDR: 6580 error = ether_ioctl(ifp, cmd, data); 6581 break; 6582 default: 6583 error = EINVAL; 6584 break; 6585 } 6586 return error; 6587 #undef IS_RUNNING 6588 } 6589 6590 /* 6591 * Announce various information on device/driver attach. 6592 */ 6593 static void 6594 ath_announce(struct ath_softc *sc) 6595 { 6596 struct ifnet *ifp = sc->sc_ifp; 6597 struct ath_hal *ah = sc->sc_ah; 6598 6599 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 6600 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6601 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6602 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6603 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6604 if (bootverbose) { 6605 int i; 6606 for (i = 0; i <= WME_AC_VO; i++) { 6607 struct ath_txq *txq = sc->sc_ac2q[i]; 6608 if_printf(ifp, "Use hw queue %u for %s traffic\n", 6609 txq->axq_qnum, ieee80211_wme_acnames[i]); 6610 } 6611 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 6612 sc->sc_cabq->axq_qnum); 6613 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 6614 } 6615 if (ath_rxbuf != ATH_RXBUF) 6616 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 6617 if (ath_txbuf != ATH_TXBUF) 6618 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 6619 if (sc->sc_mcastkey && bootverbose) 6620 if_printf(ifp, "using multicast key search\n"); 6621 } 6622 6623 static void 6624 ath_dfs_tasklet(void *p, int npending) 6625 { 6626 struct ath_softc *sc = (struct ath_softc *) p; 6627 struct ifnet *ifp = sc->sc_ifp; 6628 struct ieee80211com *ic = ifp->if_l2com; 6629 6630 /* 6631 * If previous processing has found a radar event, 6632 * signal this to the net80211 layer to begin DFS 6633 * processing. 6634 */ 6635 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6636 /* DFS event found, initiate channel change */ 6637 /* 6638 * XXX doesn't currently tell us whether the event 6639 * XXX was found in the primary or extension 6640 * XXX channel! 6641 */ 6642 IEEE80211_LOCK(ic); 6643 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6644 IEEE80211_UNLOCK(ic); 6645 } 6646 } 6647 6648 /* 6649 * Enable/disable power save. This must be called with 6650 * no TX driver locks currently held, so it should only 6651 * be called from the RX path (which doesn't hold any 6652 * TX driver locks.) 6653 */ 6654 static void 6655 ath_node_powersave(struct ieee80211_node *ni, int enable) 6656 { 6657 #ifdef ATH_SW_PSQ 6658 struct ath_node *an = ATH_NODE(ni); 6659 struct ieee80211com *ic = ni->ni_ic; 6660 struct ath_softc *sc = ic->ic_ifp->if_softc; 6661 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6662 6663 /* XXX and no TXQ locks should be held here */ 6664 6665 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6666 __func__, 6667 ni->ni_macaddr, 6668 ":", 6669 !! enable); 6670 6671 /* Suspend or resume software queue handling */ 6672 if (enable) 6673 ath_tx_node_sleep(sc, an); 6674 else 6675 ath_tx_node_wakeup(sc, an); 6676 6677 /* Update net80211 state */ 6678 avp->av_node_ps(ni, enable); 6679 #else 6680 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6681 6682 /* Update net80211 state */ 6683 avp->av_node_ps(ni, enable); 6684 #endif/* ATH_SW_PSQ */ 6685 } 6686 6687 /* 6688 * Notification from net80211 that the powersave queue state has 6689 * changed. 6690 * 6691 * Since the software queue also may have some frames: 6692 * 6693 * + if the node software queue has frames and the TID state 6694 * is 0, we set the TIM; 6695 * + if the node and the stack are both empty, we clear the TIM bit. 6696 * + If the stack tries to set the bit, always set it. 6697 * + If the stack tries to clear the bit, only clear it if the 6698 * software queue in question is also cleared. 6699 * 6700 * TODO: this is called during node teardown; so let's ensure this 6701 * is all correctly handled and that the TIM bit is cleared. 6702 * It may be that the node flush is called _AFTER_ the net80211 6703 * stack clears the TIM. 6704 * 6705 * Here is the racy part. Since it's possible >1 concurrent, 6706 * overlapping TXes will appear complete with a TX completion in 6707 * another thread, it's possible that the concurrent TIM calls will 6708 * clash. We can't hold the node lock here because setting the 6709 * TIM grabs the net80211 comlock and this may cause a LOR. 6710 * The solution is either to totally serialise _everything_ at 6711 * this point (ie, all TX, completion and any reset/flush go into 6712 * one taskqueue) or a new "ath TIM lock" needs to be created that 6713 * just wraps the driver state change and this call to avp->av_set_tim(). 6714 * 6715 * The same race exists in the net80211 power save queue handling 6716 * as well. Since multiple transmitting threads may queue frames 6717 * into the driver, as well as ps-poll and the driver transmitting 6718 * frames (and thus clearing the psq), it's quite possible that 6719 * a packet entering the PSQ and a ps-poll being handled will 6720 * race, causing the TIM to be cleared and not re-set. 6721 */ 6722 static int 6723 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6724 { 6725 #ifdef ATH_SW_PSQ 6726 struct ieee80211com *ic = ni->ni_ic; 6727 struct ath_softc *sc = ic->ic_ifp->if_softc; 6728 struct ath_node *an = ATH_NODE(ni); 6729 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6730 int changed = 0; 6731 6732 ATH_TX_LOCK(sc); 6733 an->an_stack_psq = enable; 6734 6735 /* 6736 * This will get called for all operating modes, 6737 * even if avp->av_set_tim is unset. 6738 * It's currently set for hostap/ibss modes; but 6739 * the same infrastructure is used for both STA 6740 * and AP/IBSS node power save. 6741 */ 6742 if (avp->av_set_tim == NULL) { 6743 ATH_TX_UNLOCK(sc); 6744 return (0); 6745 } 6746 6747 /* 6748 * If setting the bit, always set it here. 6749 * If clearing the bit, only clear it if the 6750 * software queue is also empty. 6751 * 6752 * If the node has left power save, just clear the TIM 6753 * bit regardless of the state of the power save queue. 6754 * 6755 * XXX TODO: although atomics are used, it's quite possible 6756 * that a race will occur between this and setting/clearing 6757 * in another thread. TX completion will occur always in 6758 * one thread, however setting/clearing the TIM bit can come 6759 * from a variety of different process contexts! 6760 */ 6761 if (enable && an->an_tim_set == 1) { 6762 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6763 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6764 __func__, 6765 ni->ni_macaddr, 6766 ":", 6767 enable); 6768 ATH_TX_UNLOCK(sc); 6769 } else if (enable) { 6770 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6771 "%s: %6D: enable=%d, enabling TIM\n", 6772 __func__, 6773 ni->ni_macaddr, 6774 ":", 6775 enable); 6776 an->an_tim_set = 1; 6777 ATH_TX_UNLOCK(sc); 6778 changed = avp->av_set_tim(ni, enable); 6779 } else if (an->an_swq_depth == 0) { 6780 /* disable */ 6781 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6782 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6783 __func__, 6784 ni->ni_macaddr, 6785 ":", 6786 enable); 6787 an->an_tim_set = 0; 6788 ATH_TX_UNLOCK(sc); 6789 changed = avp->av_set_tim(ni, enable); 6790 } else if (! an->an_is_powersave) { 6791 /* 6792 * disable regardless; the node isn't in powersave now 6793 */ 6794 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6795 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6796 __func__, 6797 ni->ni_macaddr, 6798 ":", 6799 enable); 6800 an->an_tim_set = 0; 6801 ATH_TX_UNLOCK(sc); 6802 changed = avp->av_set_tim(ni, enable); 6803 } else { 6804 /* 6805 * psq disable, node is currently in powersave, node 6806 * software queue isn't empty, so don't clear the TIM bit 6807 * for now. 6808 */ 6809 ATH_TX_UNLOCK(sc); 6810 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6811 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6812 __func__, 6813 ni->ni_macaddr, 6814 ":", 6815 enable); 6816 changed = 0; 6817 } 6818 6819 return (changed); 6820 #else 6821 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6822 6823 /* 6824 * Some operating modes don't set av_set_tim(), so don't 6825 * update it here. 6826 */ 6827 if (avp->av_set_tim == NULL) 6828 return (0); 6829 6830 return (avp->av_set_tim(ni, enable)); 6831 #endif /* ATH_SW_PSQ */ 6832 } 6833 6834 /* 6835 * Set or update the TIM from the software queue. 6836 * 6837 * Check the software queue depth before attempting to do lock 6838 * anything; that avoids trying to obtain the lock. Then, 6839 * re-check afterwards to ensure nothing has changed in the 6840 * meantime. 6841 * 6842 * set: This is designed to be called from the TX path, after 6843 * a frame has been queued; to see if the swq > 0. 6844 * 6845 * clear: This is designed to be called from the buffer completion point 6846 * (right now it's ath_tx_default_comp()) where the state of 6847 * a software queue has changed. 6848 * 6849 * It makes sense to place it at buffer free / completion rather 6850 * than after each software queue operation, as there's no real 6851 * point in churning the TIM bit as the last frames in the software 6852 * queue are transmitted. If they fail and we retry them, we'd 6853 * just be setting the TIM bit again anyway. 6854 */ 6855 void 6856 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6857 int enable) 6858 { 6859 #ifdef ATH_SW_PSQ 6860 struct ath_node *an; 6861 struct ath_vap *avp; 6862 6863 /* Don't do this for broadcast/etc frames */ 6864 if (ni == NULL) 6865 return; 6866 6867 an = ATH_NODE(ni); 6868 avp = ATH_VAP(ni->ni_vap); 6869 6870 /* 6871 * And for operating modes without the TIM handler set, let's 6872 * just skip those. 6873 */ 6874 if (avp->av_set_tim == NULL) 6875 return; 6876 6877 ATH_TX_LOCK_ASSERT(sc); 6878 6879 if (enable) { 6880 if (an->an_is_powersave && 6881 an->an_tim_set == 0 && 6882 an->an_swq_depth != 0) { 6883 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6884 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6885 __func__, 6886 ni->ni_macaddr, 6887 ":"); 6888 an->an_tim_set = 1; 6889 (void) avp->av_set_tim(ni, 1); 6890 } 6891 } else { 6892 /* 6893 * Don't bother grabbing the lock unless the queue is empty. 6894 */ 6895 if (&an->an_swq_depth != 0) 6896 return; 6897 6898 if (an->an_is_powersave && 6899 an->an_stack_psq == 0 && 6900 an->an_tim_set == 1 && 6901 an->an_swq_depth == 0) { 6902 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6903 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6904 " clear!\n", 6905 __func__, 6906 ni->ni_macaddr, 6907 ":"); 6908 an->an_tim_set = 0; 6909 (void) avp->av_set_tim(ni, 0); 6910 } 6911 } 6912 #else 6913 return; 6914 #endif /* ATH_SW_PSQ */ 6915 } 6916 6917 /* 6918 * Received a ps-poll frame from net80211. 6919 * 6920 * Here we get a chance to serve out a software-queued frame ourselves 6921 * before we punt it to net80211 to transmit us one itself - either 6922 * because there's traffic in the net80211 psq, or a NULL frame to 6923 * indicate there's nothing else. 6924 */ 6925 static void 6926 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6927 { 6928 #ifdef ATH_SW_PSQ 6929 struct ath_node *an; 6930 struct ath_vap *avp; 6931 struct ieee80211com *ic = ni->ni_ic; 6932 struct ath_softc *sc = ic->ic_ifp->if_softc; 6933 int tid; 6934 6935 /* Just paranoia */ 6936 if (ni == NULL) 6937 return; 6938 6939 /* 6940 * Unassociated (temporary node) station. 6941 */ 6942 if (ni->ni_associd == 0) 6943 return; 6944 6945 /* 6946 * We do have an active node, so let's begin looking into it. 6947 */ 6948 an = ATH_NODE(ni); 6949 avp = ATH_VAP(ni->ni_vap); 6950 6951 /* 6952 * For now, we just call the original ps-poll method. 6953 * Once we're ready to flip this on: 6954 * 6955 * + Set leak to 1, as no matter what we're going to have 6956 * to send a frame; 6957 * + Check the software queue and if there's something in it, 6958 * schedule the highest TID thas has traffic from this node. 6959 * Then make sure we schedule the software scheduler to 6960 * run so it picks up said frame. 6961 * 6962 * That way whatever happens, we'll at least send _a_ frame 6963 * to the given node. 6964 * 6965 * Again, yes, it's crappy QoS if the node has multiple 6966 * TIDs worth of traffic - but let's get it working first 6967 * before we optimise it. 6968 * 6969 * Also yes, there's definitely latency here - we're not 6970 * direct dispatching to the hardware in this path (and 6971 * we're likely being called from the packet receive path, 6972 * so going back into TX may be a little hairy!) but again 6973 * I'd like to get this working first before optimising 6974 * turn-around time. 6975 */ 6976 6977 ATH_TX_LOCK(sc); 6978 6979 /* 6980 * Legacy - we're called and the node isn't asleep. 6981 * Immediately punt. 6982 */ 6983 if (! an->an_is_powersave) { 6984 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6985 "%s: %6D: not in powersave?\n", 6986 __func__, 6987 ni->ni_macaddr, 6988 ":"); 6989 ATH_TX_UNLOCK(sc); 6990 avp->av_recv_pspoll(ni, m); 6991 return; 6992 } 6993 6994 /* 6995 * We're in powersave. 6996 * 6997 * Leak a frame. 6998 */ 6999 an->an_leak_count = 1; 7000 7001 /* 7002 * Now, if there's no frames in the node, just punt to 7003 * recv_pspoll. 7004 * 7005 * Don't bother checking if the TIM bit is set, we really 7006 * only care if there are any frames here! 7007 */ 7008 if (an->an_swq_depth == 0) { 7009 ATH_TX_UNLOCK(sc); 7010 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7011 "%s: %6D: SWQ empty; punting to net80211\n", 7012 __func__, 7013 ni->ni_macaddr, 7014 ":"); 7015 avp->av_recv_pspoll(ni, m); 7016 return; 7017 } 7018 7019 /* 7020 * Ok, let's schedule the highest TID that has traffic 7021 * and then schedule something. 7022 */ 7023 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 7024 struct ath_tid *atid = &an->an_tid[tid]; 7025 /* 7026 * No frames? Skip. 7027 */ 7028 if (atid->axq_depth == 0) 7029 continue; 7030 ath_tx_tid_sched(sc, atid); 7031 /* 7032 * XXX we could do a direct call to the TXQ 7033 * scheduler code here to optimise latency 7034 * at the expense of a REALLY deep callstack. 7035 */ 7036 ATH_TX_UNLOCK(sc); 7037 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 7038 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7039 "%s: %6D: leaking frame to TID %d\n", 7040 __func__, 7041 ni->ni_macaddr, 7042 ":", 7043 tid); 7044 return; 7045 } 7046 7047 ATH_TX_UNLOCK(sc); 7048 7049 /* 7050 * XXX nothing in the TIDs at this point? Eek. 7051 */ 7052 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7053 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 7054 __func__, 7055 ni->ni_macaddr, 7056 ":"); 7057 avp->av_recv_pspoll(ni, m); 7058 #else 7059 avp->av_recv_pspoll(ni, m); 7060 #endif /* ATH_SW_PSQ */ 7061 } 7062 7063 MODULE_VERSION(if_ath, 1); 7064 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 7065 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 7066 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 7067 #endif 7068