xref: /freebsd/sys/dev/ath/ath_hal/ar9002/ar9287_reset.c (revision 70e0bbedef95258a4dadc996d641a9bebd3f107d)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 
20 #include "opt_ah.h"
21 
22 #include "ah.h"
23 #include "ah_internal.h"
24 #include "ah_devid.h"
25 
26 #include "ah_eeprom_v14.h"
27 #include "ah_eeprom_9287.h"
28 
29 #include "ar5416/ar5416.h"
30 #include "ar5416/ar5416reg.h"
31 #include "ar5416/ar5416phy.h"
32 
33 #include "ar9002/ar9287phy.h"
34 #include "ar9002/ar9287an.h"
35 
36 #include "ar9002/ar9287_olc.h"
37 #include "ar9002/ar9287_reset.h"
38 
39 /*
40  * Set the TX power calibration table per-chain.
41  *
42  * This only supports open-loop TX power control for the AR9287.
43  */
44 static void
45 ar9287SetPowerCalTable(struct ath_hal *ah,
46     const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
47 {
48         struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
49         uint8_t *pCalBChans = NULL;
50         uint16_t pdGainOverlap_t2;
51         uint16_t numPiers = 0, i;
52         uint16_t numXpdGain, xpdMask;
53         uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
54         uint32_t regChainOffset;
55 	HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
56         struct ar9287_eeprom *pEepData = &ee->ee_base;
57 
58         xpdMask = pEepData->modalHeader.xpdGain;
59 
60         if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
61             AR9287_EEP_MINOR_VER_2)
62                 pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
63         else
64                 pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5),
65                                             AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
66 
67 	/* Note: Kiwi should only be 2ghz.. */
68         if (IEEE80211_IS_CHAN_2GHZ(chan)) {
69                 pCalBChans = pEepData->calFreqPier2G;
70                 numPiers = AR9287_NUM_2G_CAL_PIERS;
71                 pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
72                 AH5416(ah)->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
73         }
74         numXpdGain = 0;
75 
76         /* Calculate the value of xpdgains from the xpdGain Mask */
77         for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
78                 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
79                         if (numXpdGain >= AR5416_NUM_PD_GAINS)
80                                 break;
81                         xpdGainValues[numXpdGain] =
82                                 (uint16_t)(AR5416_PD_GAINS_IN_MASK-i);
83                         numXpdGain++;
84                 }
85         }
86 
87         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
88                       (numXpdGain - 1) & 0x3);
89         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
90                       xpdGainValues[0]);
91         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
92                       xpdGainValues[1]);
93         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
94                       xpdGainValues[2]);
95 
96         for (i = 0; i < AR9287_MAX_CHAINS; i++) {
97                 regChainOffset = i * 0x1000;
98 
99                 if (pEepData->baseEepHeader.txMask & (1 << i)) {
100                         int8_t txPower;
101                         pRawDatasetOpenLoop =
102                         (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
103                                 ar9287olcGetTxGainIndex(ah, chan,
104                                     pRawDatasetOpenLoop,
105                                     pCalBChans, numPiers,
106                                     &txPower);
107                                 ar9287olcSetPDADCs(ah, txPower, i);
108                 }
109         }
110 
111         *pTxPowerIndexOffset = 0;
112 }
113 
114 
115 /* XXX hard-coded values? */
116 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
117 
118 /*
119  * ar9287SetPowerPerRateTable
120  *
121  * Sets the transmit power in the baseband for the given
122  * operating channel and mode.
123  *
124  * This is like the v14 EEPROM table except the 5GHz code.
125  */
126 static HAL_BOOL
127 ar9287SetPowerPerRateTable(struct ath_hal *ah,
128     struct ar9287_eeprom *pEepData,
129     const struct ieee80211_channel *chan,
130     int16_t *ratesArray, uint16_t cfgCtl,
131     uint16_t AntennaReduction,
132     uint16_t twiceMaxRegulatoryPower,
133     uint16_t powerLimit)
134 {
135 #define	N(a)	(sizeof(a)/sizeof(a[0]))
136 /* Local defines to distinguish between extension and control CTL's */
137 #define EXT_ADDITIVE (0x8000)
138 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
139 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
140 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
141 
142 	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
143 	int i;
144 	int16_t  twiceLargestAntenna;
145 	struct cal_ctl_data_ar9287 *rep;
146 	CAL_TARGET_POWER_LEG targetPowerOfdm;
147 	CAL_TARGET_POWER_LEG targetPowerCck = {0, {0, 0, 0, 0}};
148 	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}};
149 	CAL_TARGET_POWER_LEG targetPowerCckExt = {0, {0, 0, 0, 0}};
150 	CAL_TARGET_POWER_HT  targetPowerHt20;
151 	CAL_TARGET_POWER_HT  targetPowerHt40 = {0, {0, 0, 0, 0}};
152 	int16_t scaledPower, minCtlPower;
153 
154 #define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
155 	static const uint16_t ctlModesFor11g[] = {
156 	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
157 	};
158 	const uint16_t *pCtlMode;
159 	uint16_t numCtlModes, ctlMode, freq;
160 	CHAN_CENTERS centers;
161 
162 	ar5416GetChannelCenters(ah,  chan, &centers);
163 
164 	/* Compute TxPower reduction due to Antenna Gain */
165 
166 	twiceLargestAntenna = AH_MAX(
167 	    pEepData->modalHeader.antennaGainCh[0],
168 	    pEepData->modalHeader.antennaGainCh[1]);
169 
170 	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
171 
172 	/* XXX setup for 5212 use (really used?) */
173 	ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
174 
175 	/*
176 	 * scaledPower is the minimum of the user input power level and
177 	 * the regulatory allowed power level
178 	 */
179 	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
180 
181 	/* Reduce scaled Power by number of chains active to get to per chain tx power level */
182 	/* TODO: better value than these? */
183 	switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
184 	case 1:
185 		break;
186 	case 2:
187 		scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
188 		break;
189 	default:
190 		return AH_FALSE; /* Unsupported number of chains */
191 	}
192 
193 	scaledPower = AH_MAX(0, scaledPower);
194 
195 	/* Get target powers from EEPROM - our baseline for TX Power */
196 	/* XXX assume channel is 2ghz */
197 	if (1) {
198 		/* Setup for CTL modes */
199 		numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
200 		pCtlMode = ctlModesFor11g;
201 
202 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
203 				AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
204 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
205 				AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
206 		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
207 				AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
208 
209 		if (IEEE80211_IS_CHAN_HT40(chan)) {
210 			numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
211 
212 			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
213 				AR9287_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
214 			/* Get target powers for extension channels */
215 			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
216 				AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
217 			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
218 				AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
219 		}
220 	}
221 
222 	/*
223 	 * For MIMO, need to apply regulatory caps individually across dynamically
224 	 * running modes: CCK, OFDM, HT20, HT40
225 	 *
226 	 * The outer loop walks through each possible applicable runtime mode.
227 	 * The inner loop walks through each ctlIndex entry in EEPROM.
228 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
229 	 *
230 	 */
231 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
232 		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
233 		    (pCtlMode[ctlMode] == CTL_2GHT40);
234 		if (isHt40CtlMode) {
235 			freq = centers.ctl_center;
236 		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
237 			freq = centers.ext_center;
238 		} else {
239 			freq = centers.ctl_center;
240 		}
241 
242 		/* walk through each CTL index stored in EEPROM */
243 		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
244 			uint16_t twiceMinEdgePower;
245 
246 			/* compare test group from regulatory channel list with test mode from pCtlMode list */
247 			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
248 				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
249 				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
250 				rep = &(pEepData->ctlData[i]);
251 				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
252 							rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
253 							IEEE80211_IS_CHAN_2GHZ(chan));
254 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
255 					/* Find the minimum of all CTL edge powers that apply to this channel */
256 					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
257 				} else {
258 					/* specific */
259 					twiceMaxEdgePower = twiceMinEdgePower;
260 					break;
261 				}
262 			}
263 		}
264 		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
265 		/* Apply ctl mode to correct target power set */
266 		switch(pCtlMode[ctlMode]) {
267 		case CTL_11B:
268 			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
269 				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
270 			}
271 			break;
272 		case CTL_11A:
273 		case CTL_11G:
274 			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
275 				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
276 			}
277 			break;
278 		case CTL_5GHT20:
279 		case CTL_2GHT20:
280 			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
281 				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
282 			}
283 			break;
284 		case CTL_11B_EXT:
285 			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
286 			break;
287 		case CTL_11A_EXT:
288 		case CTL_11G_EXT:
289 			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
290 			break;
291 		case CTL_5GHT40:
292 		case CTL_2GHT40:
293 			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
294 				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
295 			}
296 			break;
297 		default:
298 			return AH_FALSE;
299 			break;
300 		}
301 	} /* end ctl mode checking */
302 
303 	/* Set rates Array from collected data */
304 	ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
305 	    &targetPowerCck,
306 	    &targetPowerCckExt,
307 	    &targetPowerOfdm,
308 	    &targetPowerOfdmExt,
309 	    &targetPowerHt20,
310 	    &targetPowerHt40);
311 	return AH_TRUE;
312 #undef EXT_ADDITIVE
313 #undef CTL_11A_EXT
314 #undef CTL_11G_EXT
315 #undef CTL_11B_EXT
316 #undef SUB_NUM_CTL_MODES_AT_5G_40
317 #undef SUB_NUM_CTL_MODES_AT_2G_40
318 #undef N
319 }
320 
321 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
322 
323 /*
324  * This is based off of the AR5416/AR9285 code and likely could
325  * be unified in the future.
326  */
327 HAL_BOOL
328 ar9287SetTransmitPower(struct ath_hal *ah,
329 	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
330 {
331 #define	POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
332 #define	N(a)            (sizeof (a) / sizeof (a[0]))
333 
334 	const struct modal_eep_ar9287_header *pModal;
335 	struct ath_hal_5212 *ahp = AH5212(ah);
336 	int16_t             ratesArray[Ar5416RateSize];
337 	int16_t             txPowerIndexOffset = 0;
338 	uint8_t             ht40PowerIncForPdadc = 2;
339 	int                 i;
340 
341 	uint16_t            cfgCtl;
342 	uint16_t            powerLimit;
343 	uint16_t            twiceAntennaReduction;
344 	uint16_t            twiceMaxRegulatoryPower;
345 	int16_t             maxPower;
346 	HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
347 	struct ar9287_eeprom *pEepData = &ee->ee_base;
348 
349 	/* Setup info for the actual eeprom */
350 	OS_MEMZERO(ratesArray, sizeof(ratesArray));
351 	cfgCtl = ath_hal_getctl(ah, chan);
352 	powerLimit = chan->ic_maxregpower * 2;
353 	twiceAntennaReduction = chan->ic_maxantgain;
354 	twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
355 	pModal = &pEepData->modalHeader;
356 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
357 	    __func__,chan->ic_freq, cfgCtl );
358 
359 	/* XXX Assume Minor is v2 or later */
360 	ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
361 
362 	/* Fetch per-rate power table for the given channel */
363 	if (! ar9287SetPowerPerRateTable(ah, pEepData,  chan,
364             &ratesArray[0],cfgCtl,
365             twiceAntennaReduction,
366             twiceMaxRegulatoryPower, powerLimit)) {
367 		HALDEBUG(ah, HAL_DEBUG_ANY,
368 		    "%s: unable to set tx power per rate table\n", __func__);
369 		return AH_FALSE;
370 	}
371 
372 	/* Set TX power control calibration curves for each TX chain */
373 	ar9287SetPowerCalTable(ah, chan, &txPowerIndexOffset);
374 
375 	/* Calculate maximum power level */
376 	maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
377 	maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
378 
379 	if (IEEE80211_IS_CHAN_HT40(chan))
380 		maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
381 
382 	ahp->ah_tx6PowerInHalfDbm = maxPower;
383 	AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
384 	ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
385 
386 	/*
387 	 * txPowerIndexOffset is set by the SetPowerTable() call -
388 	 *  adjust the rate table (0 offset if rates EEPROM not loaded)
389 	 */
390 	/* XXX what about the pwrTableOffset? */
391 	for (i = 0; i < N(ratesArray); i++) {
392 		ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
393 		/* -5 dBm offset for Merlin and later; this includes Kiwi */
394 		ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
395 		if (ratesArray[i] > AR5416_MAX_RATE_POWER)
396 			ratesArray[i] = AR5416_MAX_RATE_POWER;
397 		if (ratesArray[i] < 0)
398 			ratesArray[i] = 0;
399 	}
400 
401 #ifdef AH_EEPROM_DUMP
402 	ar5416PrintPowerPerRate(ah, ratesArray);
403 #endif
404 
405 	/*
406 	 * Adjust the HT40 power to meet the correct target TX power
407 	 * for 40MHz mode, based on TX power curves that are established
408 	 * for 20MHz mode.
409 	 *
410 	 * XXX handle overflow/too high power level?
411 	 */
412 	if (IEEE80211_IS_CHAN_HT40(chan)) {
413 		ratesArray[rateHt40_0] += ht40PowerIncForPdadc;
414 		ratesArray[rateHt40_1] += ht40PowerIncForPdadc;
415 		ratesArray[rateHt40_2] += ht40PowerIncForPdadc;
416 		ratesArray[rateHt40_3] += ht40PowerIncForPdadc;
417 		ratesArray[rateHt40_4] += ht40PowerIncForPdadc;
418 		ratesArray[rateHt40_5] += ht40PowerIncForPdadc;
419 		ratesArray[rateHt40_6] += ht40PowerIncForPdadc;
420 		ratesArray[rateHt40_7] += ht40PowerIncForPdadc;
421 	}
422 
423 	/* Write the TX power rate registers */
424 	ar5416WriteTxPowerRateRegisters(ah, chan, ratesArray);
425 
426 	return AH_TRUE;
427 #undef POW_SM
428 #undef N
429 }
430 
431 /*
432  * Read EEPROM header info and program the device for correct operation
433  * given the channel value.
434  */
435 HAL_BOOL
436 ar9287SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
437 {
438 	const HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
439 	const struct ar9287_eeprom *eep = &ee->ee_base;
440 	const struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
441 	uint16_t antWrites[AR9287_ANT_16S];
442 	uint32_t regChainOffset, regval;
443 	uint8_t txRxAttenLocal;
444 	int i, j, offset_num;
445 
446 	pModal = &eep->modalHeader;
447 
448 	antWrites[0] = (uint16_t)((pModal->antCtrlCommon >> 28) & 0xF);
449 	antWrites[1] = (uint16_t)((pModal->antCtrlCommon >> 24) & 0xF);
450 	antWrites[2] = (uint16_t)((pModal->antCtrlCommon >> 20) & 0xF);
451 	antWrites[3] = (uint16_t)((pModal->antCtrlCommon >> 16) & 0xF);
452 	antWrites[4] = (uint16_t)((pModal->antCtrlCommon >> 12) & 0xF);
453 	antWrites[5] = (uint16_t)((pModal->antCtrlCommon >> 8) & 0xF);
454 	antWrites[6] = (uint16_t)((pModal->antCtrlCommon >> 4)  & 0xF);
455 	antWrites[7] = (uint16_t)(pModal->antCtrlCommon & 0xF);
456 
457 	offset_num = 8;
458 
459 	for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
460 		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 28) & 0xf);
461 		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 10) & 0x3);
462 		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 8) & 0x3);
463 		antWrites[j++] = 0;
464 		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 6) & 0x3);
465 		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 4) & 0x3);
466 		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 2) & 0x3);
467 		antWrites[j++] = (uint16_t)(pModal->antCtrlChain[i] & 0x3);
468 	}
469 
470 	OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
471 
472 	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
473 		regChainOffset = i * 0x1000;
474 
475 		OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
476 			  pModal->antCtrlChain[i]);
477 
478 		OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0) + regChainOffset,
479 			  (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0) + regChainOffset)
480 			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
481 			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
482 			  SM(pModal->iqCalICh[i],
483 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
484 			  SM(pModal->iqCalQCh[i],
485 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
486 
487 		txRxAttenLocal = pModal->txRxAttenCh[i];
488 
489 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
490 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
491 			      pModal->bswMargin[i]);
492 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
493 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
494 			      pModal->bswAtten[i]);
495 		OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
496 			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
497 			      txRxAttenLocal);
498 		OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
499 			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
500 			      pModal->rxTxMarginCh[i]);
501 	}
502 
503 
504 	if (IEEE80211_IS_CHAN_HT40(chan))
505 		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
506 			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
507 	else
508 		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
509 			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
510 
511 	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
512 		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
513 
514 	OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
515 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
516 		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
517 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
518 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
519 
520 	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
521 		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
522 
523 	OS_REG_RMW_FIELD(ah, AR_PHY_CCA,
524 		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
525 	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
526 		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
527 
528 	regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH0);
529 	regval &= ~(AR9287_AN_RF2G3_DB1 |
530 		    AR9287_AN_RF2G3_DB2 |
531 		    AR9287_AN_RF2G3_OB_CCK |
532 		    AR9287_AN_RF2G3_OB_PSK |
533 		    AR9287_AN_RF2G3_OB_QAM |
534 		    AR9287_AN_RF2G3_OB_PAL_OFF);
535 	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
536 		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
537 		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
538 		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
539 		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
540 		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
541 
542 	OS_REG_WRITE(ah, AR9287_AN_RF2G3_CH0, regval);
543 	OS_DELAY(100);	/* analog write */
544 
545 	regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH1);
546 	regval &= ~(AR9287_AN_RF2G3_DB1 |
547 		    AR9287_AN_RF2G3_DB2 |
548 		    AR9287_AN_RF2G3_OB_CCK |
549 		    AR9287_AN_RF2G3_OB_PSK |
550 		    AR9287_AN_RF2G3_OB_QAM |
551 		    AR9287_AN_RF2G3_OB_PAL_OFF);
552 	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
553 		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
554 		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
555 		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
556 		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
557 		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
558 
559 	OS_REG_WRITE(ah, AR9287_AN_RF2G3_CH1, regval);
560 	OS_DELAY(100);	/* analog write */
561 
562 	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
563 	    AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
564 	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
565 	    AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
566 
567 	OS_A_REG_RMW_FIELD(ah, AR9287_AN_TOP2,
568 	    AR9287_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
569 
570 	return AH_TRUE;
571 }
572