xref: /freebsd/sys/dev/ath/ath_hal/ar9002/ar9287_reset.c (revision 62ff619dcc3540659a319be71c9a489f1659e14a)
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 
22 #include "opt_ah.h"
23 
24 #include "ah.h"
25 #include "ah_internal.h"
26 #include "ah_devid.h"
27 
28 #include "ah_eeprom_v14.h"
29 #include "ah_eeprom_9287.h"
30 
31 #include "ar5416/ar5416.h"
32 #include "ar5416/ar5416reg.h"
33 #include "ar5416/ar5416phy.h"
34 
35 #include "ar9002/ar9287phy.h"
36 #include "ar9002/ar9287an.h"
37 
38 #include "ar9002/ar9287_olc.h"
39 #include "ar9002/ar9287_reset.h"
40 
41 /*
42  * Set the TX power calibration table per-chain.
43  *
44  * This only supports open-loop TX power control for the AR9287.
45  */
46 static void
47 ar9287SetPowerCalTable(struct ath_hal *ah,
48     const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
49 {
50 	struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
51 	uint8_t *pCalBChans = NULL;
52 	uint16_t pdGainOverlap_t2;
53 	uint16_t numPiers = 0, i;
54 	uint16_t numXpdGain, xpdMask;
55 	uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
56 	uint32_t regChainOffset;
57 	HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
58 	struct ar9287_eeprom *pEepData = &ee->ee_base;
59 
60 	xpdMask = pEepData->modalHeader.xpdGain;
61 
62 	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
63 	    AR9287_EEP_MINOR_VER_2)
64 		pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
65 	else
66 		pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5),
67 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
68 
69 	/* Note: Kiwi should only be 2ghz.. */
70 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
71 		pCalBChans = pEepData->calFreqPier2G;
72 		numPiers = AR9287_NUM_2G_CAL_PIERS;
73 		pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
74 		AH5416(ah)->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
75 	}
76 	numXpdGain = 0;
77 
78 	/* Calculate the value of xpdgains from the xpdGain Mask */
79 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
80 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
81 			if (numXpdGain >= AR5416_NUM_PD_GAINS)
82 				break;
83 			xpdGainValues[numXpdGain] =
84 				(uint16_t)(AR5416_PD_GAINS_IN_MASK-i);
85 			numXpdGain++;
86 		}
87 	}
88 
89 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
90 		      (numXpdGain - 1) & 0x3);
91 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
92 		      xpdGainValues[0]);
93 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
94 		      xpdGainValues[1]);
95 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
96 		      xpdGainValues[2]);
97 
98 	for (i = 0; i < AR9287_MAX_CHAINS; i++) {
99 		regChainOffset = i * 0x1000;
100 
101 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
102 			int8_t txPower;
103 			pRawDatasetOpenLoop =
104 			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
105 				ar9287olcGetTxGainIndex(ah, chan,
106 				    pRawDatasetOpenLoop,
107 				    pCalBChans, numPiers,
108 				    &txPower);
109 				ar9287olcSetPDADCs(ah, txPower, i);
110 		}
111 	}
112 
113 	*pTxPowerIndexOffset = 0;
114 }
115 
116 /* XXX hard-coded values? */
117 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
118 
119 /*
120  * ar9287SetPowerPerRateTable
121  *
122  * Sets the transmit power in the baseband for the given
123  * operating channel and mode.
124  *
125  * This is like the v14 EEPROM table except the 5GHz code.
126  */
127 static HAL_BOOL
128 ar9287SetPowerPerRateTable(struct ath_hal *ah,
129     struct ar9287_eeprom *pEepData,
130     const struct ieee80211_channel *chan,
131     int16_t *ratesArray, uint16_t cfgCtl,
132     uint16_t AntennaReduction,
133     uint16_t twiceMaxRegulatoryPower,
134     uint16_t powerLimit)
135 {
136 #define	N(a)	(sizeof(a)/sizeof(a[0]))
137 /* Local defines to distinguish between extension and control CTL's */
138 #define EXT_ADDITIVE (0x8000)
139 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
140 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
141 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
142 
143 	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
144 	int i;
145 	int16_t  twiceLargestAntenna;
146 	struct cal_ctl_data_ar9287 *rep;
147 	CAL_TARGET_POWER_LEG targetPowerOfdm;
148 	CAL_TARGET_POWER_LEG targetPowerCck = {0, {0, 0, 0, 0}};
149 	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}};
150 	CAL_TARGET_POWER_LEG targetPowerCckExt = {0, {0, 0, 0, 0}};
151 	CAL_TARGET_POWER_HT  targetPowerHt20;
152 	CAL_TARGET_POWER_HT  targetPowerHt40 = {0, {0, 0, 0, 0}};
153 	int16_t scaledPower, minCtlPower;
154 
155 #define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
156 	static const uint16_t ctlModesFor11g[] = {
157 	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
158 	};
159 	const uint16_t *pCtlMode;
160 	uint16_t numCtlModes, ctlMode, freq;
161 	CHAN_CENTERS centers;
162 
163 	ar5416GetChannelCenters(ah,  chan, &centers);
164 
165 	/* Compute TxPower reduction due to Antenna Gain */
166 
167 	twiceLargestAntenna = AH_MAX(
168 	    pEepData->modalHeader.antennaGainCh[0],
169 	    pEepData->modalHeader.antennaGainCh[1]);
170 
171 	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
172 
173 	/* XXX setup for 5212 use (really used?) */
174 	ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
175 
176 	/*
177 	 * scaledPower is the minimum of the user input power level and
178 	 * the regulatory allowed power level
179 	 */
180 	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
181 
182 	/* Reduce scaled Power by number of chains active to get to per chain tx power level */
183 	/* TODO: better value than these? */
184 	switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
185 	case 1:
186 		break;
187 	case 2:
188 		scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
189 		break;
190 	default:
191 		return AH_FALSE; /* Unsupported number of chains */
192 	}
193 
194 	scaledPower = AH_MAX(0, scaledPower);
195 
196 	/* Get target powers from EEPROM - our baseline for TX Power */
197 	/* XXX assume channel is 2ghz */
198 	if (1) {
199 		/* Setup for CTL modes */
200 		numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
201 		pCtlMode = ctlModesFor11g;
202 
203 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
204 				AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
205 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
206 				AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
207 		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
208 				AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
209 
210 		if (IEEE80211_IS_CHAN_HT40(chan)) {
211 			numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
212 
213 			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
214 				AR9287_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
215 			/* Get target powers for extension channels */
216 			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
217 				AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
218 			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
219 				AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
220 		}
221 	}
222 
223 	/*
224 	 * For MIMO, need to apply regulatory caps individually across dynamically
225 	 * running modes: CCK, OFDM, HT20, HT40
226 	 *
227 	 * The outer loop walks through each possible applicable runtime mode.
228 	 * The inner loop walks through each ctlIndex entry in EEPROM.
229 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
230 	 *
231 	 */
232 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
233 		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
234 		    (pCtlMode[ctlMode] == CTL_2GHT40);
235 		if (isHt40CtlMode) {
236 			freq = centers.ctl_center;
237 		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
238 			freq = centers.ext_center;
239 		} else {
240 			freq = centers.ctl_center;
241 		}
242 
243 		/* walk through each CTL index stored in EEPROM */
244 		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
245 			uint16_t twiceMinEdgePower;
246 
247 			/* compare test group from regulatory channel list with test mode from pCtlMode list */
248 			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
249 				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
250 				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
251 				rep = &(pEepData->ctlData[i]);
252 				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
253 							rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
254 							IEEE80211_IS_CHAN_2GHZ(chan));
255 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
256 					/* Find the minimum of all CTL edge powers that apply to this channel */
257 					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
258 				} else {
259 					/* specific */
260 					twiceMaxEdgePower = twiceMinEdgePower;
261 					break;
262 				}
263 			}
264 		}
265 		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
266 		/* Apply ctl mode to correct target power set */
267 		switch(pCtlMode[ctlMode]) {
268 		case CTL_11B:
269 			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
270 				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
271 			}
272 			break;
273 		case CTL_11A:
274 		case CTL_11G:
275 			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
276 				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
277 			}
278 			break;
279 		case CTL_5GHT20:
280 		case CTL_2GHT20:
281 			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
282 				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
283 			}
284 			break;
285 		case CTL_11B_EXT:
286 			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
287 			break;
288 		case CTL_11A_EXT:
289 		case CTL_11G_EXT:
290 			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
291 			break;
292 		case CTL_5GHT40:
293 		case CTL_2GHT40:
294 			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
295 				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
296 			}
297 			break;
298 		default:
299 			return AH_FALSE;
300 			break;
301 		}
302 	} /* end ctl mode checking */
303 
304 	/* Set rates Array from collected data */
305 	ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
306 	    &targetPowerCck,
307 	    &targetPowerCckExt,
308 	    &targetPowerOfdm,
309 	    &targetPowerOfdmExt,
310 	    &targetPowerHt20,
311 	    &targetPowerHt40);
312 	return AH_TRUE;
313 #undef EXT_ADDITIVE
314 #undef CTL_11A_EXT
315 #undef CTL_11G_EXT
316 #undef CTL_11B_EXT
317 #undef SUB_NUM_CTL_MODES_AT_5G_40
318 #undef SUB_NUM_CTL_MODES_AT_2G_40
319 #undef N
320 }
321 
322 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
323 
324 /*
325  * This is based off of the AR5416/AR9285 code and likely could
326  * be unified in the future.
327  */
328 HAL_BOOL
329 ar9287SetTransmitPower(struct ath_hal *ah,
330 	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
331 {
332 #define	POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
333 #define	N(a)	    (sizeof (a) / sizeof (a[0]))
334 
335 	const struct modal_eep_ar9287_header *pModal;
336 	struct ath_hal_5212 *ahp = AH5212(ah);
337 	int16_t	     txPowerIndexOffset = 0;
338 	int		 i;
339 
340 	uint16_t	    cfgCtl;
341 	uint16_t	    powerLimit;
342 	uint16_t	    twiceAntennaReduction;
343 	uint16_t	    twiceMaxRegulatoryPower;
344 	int16_t	     maxPower;
345 	HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
346 	struct ar9287_eeprom *pEepData = &ee->ee_base;
347 
348 	AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
349 
350 	/* Setup info for the actual eeprom */
351 	OS_MEMZERO(AH5416(ah)->ah_ratesArray,
352 	  sizeof(AH5416(ah)->ah_ratesArray));
353 	cfgCtl = ath_hal_getctl(ah, chan);
354 	powerLimit = chan->ic_maxregpower * 2;
355 	twiceAntennaReduction = chan->ic_maxantgain;
356 	twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER,
357 	    AH_PRIVATE(ah)->ah_powerLimit);
358 	pModal = &pEepData->modalHeader;
359 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
360 	    __func__,chan->ic_freq, cfgCtl );
361 
362 	/* XXX Assume Minor is v2 or later */
363 	AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
364 
365 	/* Fetch per-rate power table for the given channel */
366 	if (! ar9287SetPowerPerRateTable(ah, pEepData,  chan,
367 	    &AH5416(ah)->ah_ratesArray[0],
368 	    cfgCtl,
369 	    twiceAntennaReduction,
370 	    twiceMaxRegulatoryPower, powerLimit)) {
371 		HALDEBUG(ah, HAL_DEBUG_ANY,
372 		    "%s: unable to set tx power per rate table\n", __func__);
373 		return AH_FALSE;
374 	}
375 
376 	/* Set TX power control calibration curves for each TX chain */
377 	ar9287SetPowerCalTable(ah, chan, &txPowerIndexOffset);
378 
379 	/* Calculate maximum power level */
380 	maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
381 	    AH5416(ah)->ah_ratesArray[rateHt20_0]);
382 	maxPower = AH_MAX(maxPower,
383 	    AH5416(ah)->ah_ratesArray[rate1l]);
384 
385 	if (IEEE80211_IS_CHAN_HT40(chan))
386 		maxPower = AH_MAX(maxPower,
387 		    AH5416(ah)->ah_ratesArray[rateHt40_0]);
388 
389 	ahp->ah_tx6PowerInHalfDbm = maxPower;
390 	AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
391 	ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
392 
393 	/*
394 	 * txPowerIndexOffset is set by the SetPowerTable() call -
395 	 *  adjust the rate table (0 offset if rates EEPROM not loaded)
396 	 */
397 	/* XXX what about the pwrTableOffset? */
398 	for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
399 		AH5416(ah)->ah_ratesArray[i] =
400 		    (int16_t)(txPowerIndexOffset +
401 		      AH5416(ah)->ah_ratesArray[i]);
402 		/* -5 dBm offset for Merlin and later; this includes Kiwi */
403 		AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
404 		if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
405 			AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
406 		if (AH5416(ah)->ah_ratesArray[i] < 0)
407 			AH5416(ah)->ah_ratesArray[i] = 0;
408 	}
409 
410 #ifdef AH_EEPROM_DUMP
411 	ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
412 #endif
413 
414 	/*
415 	 * Adjust the HT40 power to meet the correct target TX power
416 	 * for 40MHz mode, based on TX power curves that are established
417 	 * for 20MHz mode.
418 	 *
419 	 * XXX handle overflow/too high power level?
420 	 */
421 	if (IEEE80211_IS_CHAN_HT40(chan)) {
422 		AH5416(ah)->ah_ratesArray[rateHt40_0] +=
423 		  AH5416(ah)->ah_ht40PowerIncForPdadc;
424 		AH5416(ah)->ah_ratesArray[rateHt40_1] +=
425 		  AH5416(ah)->ah_ht40PowerIncForPdadc;
426 		AH5416(ah)->ah_ratesArray[rateHt40_2] +=
427 		  AH5416(ah)->ah_ht40PowerIncForPdadc;
428 		AH5416(ah)->ah_ratesArray[rateHt40_3] +=
429 		  AH5416(ah)->ah_ht40PowerIncForPdadc;
430 		AH5416(ah)->ah_ratesArray[rateHt40_4] +=
431 		  AH5416(ah)->ah_ht40PowerIncForPdadc;
432 		AH5416(ah)->ah_ratesArray[rateHt40_5] +=
433 		  AH5416(ah)->ah_ht40PowerIncForPdadc;
434 		AH5416(ah)->ah_ratesArray[rateHt40_6] +=
435 		  AH5416(ah)->ah_ht40PowerIncForPdadc;
436 		AH5416(ah)->ah_ratesArray[rateHt40_7] +=
437 		  AH5416(ah)->ah_ht40PowerIncForPdadc;
438 	}
439 
440 	/* Write the TX power rate registers */
441 	ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
442 
443 	return AH_TRUE;
444 #undef POW_SM
445 #undef N
446 }
447 
448 /*
449  * Read EEPROM header info and program the device for correct operation
450  * given the channel value.
451  */
452 HAL_BOOL
453 ar9287SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
454 {
455 	const HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
456 	const struct ar9287_eeprom *eep = &ee->ee_base;
457 	const struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
458 	uint16_t antWrites[AR9287_ANT_16S];
459 	uint32_t regChainOffset, regval;
460 	uint8_t txRxAttenLocal;
461 	int i, j, offset_num;
462 
463 	pModal = &eep->modalHeader;
464 
465 	antWrites[0] = (uint16_t)((pModal->antCtrlCommon >> 28) & 0xF);
466 	antWrites[1] = (uint16_t)((pModal->antCtrlCommon >> 24) & 0xF);
467 	antWrites[2] = (uint16_t)((pModal->antCtrlCommon >> 20) & 0xF);
468 	antWrites[3] = (uint16_t)((pModal->antCtrlCommon >> 16) & 0xF);
469 	antWrites[4] = (uint16_t)((pModal->antCtrlCommon >> 12) & 0xF);
470 	antWrites[5] = (uint16_t)((pModal->antCtrlCommon >> 8) & 0xF);
471 	antWrites[6] = (uint16_t)((pModal->antCtrlCommon >> 4)  & 0xF);
472 	antWrites[7] = (uint16_t)(pModal->antCtrlCommon & 0xF);
473 
474 	offset_num = 8;
475 
476 	for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
477 		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 28) & 0xf);
478 		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 10) & 0x3);
479 		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 8) & 0x3);
480 		antWrites[j++] = 0;
481 		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 6) & 0x3);
482 		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 4) & 0x3);
483 		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 2) & 0x3);
484 		antWrites[j++] = (uint16_t)(pModal->antCtrlChain[i] & 0x3);
485 	}
486 
487 	OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
488 
489 	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
490 		regChainOffset = i * 0x1000;
491 
492 		OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
493 			  pModal->antCtrlChain[i]);
494 
495 		OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0) + regChainOffset,
496 			  (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)
497 			      + regChainOffset)
498 			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
499 			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
500 			  SM(pModal->iqCalICh[i],
501 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
502 			  SM(pModal->iqCalQCh[i],
503 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
504 
505 		txRxAttenLocal = pModal->txRxAttenCh[i];
506 
507 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
508 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
509 			      pModal->bswMargin[i]);
510 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
511 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
512 			      pModal->bswAtten[i]);
513 		OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
514 			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
515 			      txRxAttenLocal);
516 		OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
517 			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
518 			      pModal->rxTxMarginCh[i]);
519 	}
520 
521 	if (IEEE80211_IS_CHAN_HT40(chan))
522 		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
523 			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
524 	else
525 		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
526 			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
527 
528 	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
529 		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
530 
531 	OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
532 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
533 		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
534 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
535 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
536 
537 	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
538 		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
539 
540 	OS_REG_RMW_FIELD(ah, AR_PHY_CCA,
541 		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
542 	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
543 		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
544 
545 	regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH0);
546 	regval &= ~(AR9287_AN_RF2G3_DB1 |
547 		    AR9287_AN_RF2G3_DB2 |
548 		    AR9287_AN_RF2G3_OB_CCK |
549 		    AR9287_AN_RF2G3_OB_PSK |
550 		    AR9287_AN_RF2G3_OB_QAM |
551 		    AR9287_AN_RF2G3_OB_PAL_OFF);
552 	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
553 		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
554 		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
555 		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
556 		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
557 		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
558 
559 	/* Analog write - requires a 100usec delay */
560 	OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH0, regval);
561 
562 	regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH1);
563 	regval &= ~(AR9287_AN_RF2G3_DB1 |
564 		    AR9287_AN_RF2G3_DB2 |
565 		    AR9287_AN_RF2G3_OB_CCK |
566 		    AR9287_AN_RF2G3_OB_PSK |
567 		    AR9287_AN_RF2G3_OB_QAM |
568 		    AR9287_AN_RF2G3_OB_PAL_OFF);
569 	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
570 		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
571 		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
572 		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
573 		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
574 		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
575 
576 	OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH1, regval);
577 
578 	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
579 	    AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
580 	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
581 	    AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
582 
583 	OS_A_REG_RMW_FIELD(ah, AR9287_AN_TOP2,
584 	    AR9287_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
585 
586 	return AH_TRUE;
587 }
588