xref: /freebsd/sys/dev/ath/ath_hal/ar9002/ar9287.c (revision 62cfcf62f627e5093fb37026a6d8c98e4d2ef04c)
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2008-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 #include "opt_ah.h"
22 
23 /*
24  * NB: Merlin and later have a simpler RF backend.
25  */
26 #include "ah.h"
27 #include "ah_internal.h"
28 
29 #include "ah_eeprom_v14.h"
30 
31 #include "ar9002/ar9287.h"
32 #include "ar5416/ar5416reg.h"
33 #include "ar5416/ar5416phy.h"
34 
35 #define N(a)    (sizeof(a)/sizeof(a[0]))
36 
37 struct ar9287State {
38 	RF_HAL_FUNCS	base;		/* public state, must be first */
39 	uint16_t	pcdacTable[1];	/* XXX */
40 };
41 #define	AR9287(ah)	((struct ar9287State *) AH5212(ah)->ah_rfHal)
42 
43 static HAL_BOOL ar9287GetChannelMaxMinPower(struct ath_hal *,
44 	const struct ieee80211_channel *, int16_t *maxPow,int16_t *minPow);
45 int16_t ar9287GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c);
46 
47 static void
48 ar9287WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
49 	int writes)
50 {
51 	(void) ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_bb_rfgain,
52 		freqIndex, writes);
53 }
54 
55 /*
56  * Take the MHz channel value and set the Channel value
57  *
58  * ASSUMES: Writes enabled to analog bus
59  *
60  * Actual Expression,
61  *
62  * For 2GHz channel,
63  * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
64  * (freq_ref = 40MHz)
65  *
66  * For 5GHz channel,
67  * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
68  * (freq_ref = 40MHz/(24>>amodeRefSel))
69  *
70  * For 5GHz channels which are 5MHz spaced,
71  * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
72  * (freq_ref = 40MHz)
73  */
74 static HAL_BOOL
75 ar9287SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
76 {
77 	uint16_t bMode, fracMode, aModeRefSel = 0;
78 	uint32_t freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
79 	CHAN_CENTERS centers;
80 	uint32_t refDivA = 24;
81 
82 	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->ic_freq);
83 
84 	ar5416GetChannelCenters(ah, chan, &centers);
85 	freq = centers.synth_center;
86 
87 	reg32 = OS_REG_READ(ah, AR_PHY_SYNTH_CONTROL);
88 	reg32 &= 0xc0000000;
89 
90 	if (freq < 4800) {     /* 2 GHz, fractional mode */
91 		uint32_t txctl;
92 		int regWrites = 0;
93 
94 		bMode = 1;
95 		fracMode = 1;
96 		aModeRefSel = 0;
97 		channelSel = (freq * 0x10000)/15;
98 
99 		if (AR_SREV_KIWI_11_OR_LATER(ah)) {
100 			if (freq == 2484) {
101 				ath_hal_ini_write(ah,
102 				    &AH9287(ah)->ah_ini_cckFirJapan2484, 1,
103 				    regWrites);
104 			} else {
105 				ath_hal_ini_write(ah,
106 				    &AH9287(ah)->ah_ini_cckFirNormal, 1,
107 				    regWrites);
108 			}
109 		}
110 
111 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
112 		if (freq == 2484) {
113 			/* Enable channel spreading for channel 14 */
114 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
115 			    txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
116 		} else {
117 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
118 			    txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
119 		}
120 	} else {
121 		bMode = 0;
122 		fracMode = 0;
123 
124 		if ((freq % 20) == 0) {
125 			aModeRefSel = 3;
126 		} else if ((freq % 10) == 0) {
127 			aModeRefSel = 2;
128 		} else {
129 			aModeRefSel = 0;
130 			/*
131 			 * Enable 2G (fractional) mode for channels which
132 			 * are 5MHz spaced
133 			 */
134 			fracMode = 1;
135 			refDivA = 1;
136 			channelSel = (freq * 0x8000)/15;
137 
138 			/* RefDivA setting */
139 			OS_A_REG_RMW_FIELD(ah, AR_AN_SYNTH9,
140 			    AR_AN_SYNTH9_REFDIVA, refDivA);
141 		}
142 		if (!fracMode) {
143 			ndiv = (freq * (refDivA >> aModeRefSel))/60;
144 			channelSel =  ndiv & 0x1ff;
145 			channelFrac = (ndiv & 0xfffffe00) * 2;
146 			channelSel = (channelSel << 17) | channelFrac;
147 		}
148 	}
149 
150 	reg32 = reg32 | (bMode << 29) | (fracMode << 28) |
151 	    (aModeRefSel << 26) | (channelSel);
152 
153 	OS_REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
154 
155 	AH_PRIVATE(ah)->ah_curchan = chan;
156 
157 	return AH_TRUE;
158 }
159 
160 /*
161  * Return a reference to the requested RF Bank.
162  */
163 static uint32_t *
164 ar9287GetRfBank(struct ath_hal *ah, int bank)
165 {
166 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
167 	    __func__, bank);
168 	return AH_NULL;
169 }
170 
171 /*
172  * Reads EEPROM header info from device structure and programs
173  * all rf registers
174  */
175 static HAL_BOOL
176 ar9287SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
177                 uint16_t modesIndex, uint16_t *rfXpdGain)
178 {
179 	return AH_TRUE;		/* nothing to do */
180 }
181 
182 /*
183  * Read the transmit power levels from the structures taken from EEPROM
184  * Interpolate read transmit power values for this channel
185  * Organize the transmit power values into a table for writing into the hardware
186  */
187 
188 static HAL_BOOL
189 ar9287SetPowerTable(struct ath_hal *ah, int16_t *pPowerMin, int16_t *pPowerMax,
190 	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
191 {
192 	return AH_TRUE;
193 }
194 
195 #if 0
196 static int16_t
197 ar9287GetMinPower(struct ath_hal *ah, EXPN_DATA_PER_CHANNEL_5112 *data)
198 {
199     int i, minIndex;
200     int16_t minGain,minPwr,minPcdac,retVal;
201 
202     /* Assume NUM_POINTS_XPD0 > 0 */
203     minGain = data->pDataPerXPD[0].xpd_gain;
204     for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {
205         if (data->pDataPerXPD[i].xpd_gain < minGain) {
206             minIndex = i;
207             minGain = data->pDataPerXPD[i].xpd_gain;
208         }
209     }
210     minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];
211     minPcdac = data->pDataPerXPD[minIndex].pcdac[0];
212     for (i=1; i<NUM_POINTS_XPD0; i++) {
213         if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {
214             minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];
215             minPcdac = data->pDataPerXPD[minIndex].pcdac[i];
216         }
217     }
218     retVal = minPwr - (minPcdac*2);
219     return(retVal);
220 }
221 #endif
222 
223 static HAL_BOOL
224 ar9287GetChannelMaxMinPower(struct ath_hal *ah,
225 	const struct ieee80211_channel *chan,
226 	int16_t *maxPow, int16_t *minPow)
227 {
228 #if 0
229     struct ath_hal_5212 *ahp = AH5212(ah);
230     int numChannels=0,i,last;
231     int totalD, totalF,totalMin;
232     EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;
233     EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;
234 
235     *maxPow = 0;
236     if (IS_CHAN_A(chan)) {
237         powerArray = ahp->ah_modePowerArray5112;
238         data = powerArray[headerInfo11A].pDataPerChannel;
239         numChannels = powerArray[headerInfo11A].numChannels;
240     } else if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) {
241         /* XXX - is this correct? Should we also use the same power for turbo G? */
242         powerArray = ahp->ah_modePowerArray5112;
243         data = powerArray[headerInfo11G].pDataPerChannel;
244         numChannels = powerArray[headerInfo11G].numChannels;
245     } else if (IS_CHAN_B(chan)) {
246         powerArray = ahp->ah_modePowerArray5112;
247         data = powerArray[headerInfo11B].pDataPerChannel;
248         numChannels = powerArray[headerInfo11B].numChannels;
249     } else {
250         return (AH_TRUE);
251     }
252     /* Make sure the channel is in the range of the TP values
253      *  (freq piers)
254      */
255     if ((numChannels < 1) ||
256         (chan->channel < data[0].channelValue) ||
257         (chan->channel > data[numChannels-1].channelValue))
258         return(AH_FALSE);
259 
260     /* Linearly interpolate the power value now */
261     for (last=0,i=0;
262          (i<numChannels) && (chan->channel > data[i].channelValue);
263          last=i++);
264     totalD = data[i].channelValue - data[last].channelValue;
265     if (totalD > 0) {
266         totalF = data[i].maxPower_t4 - data[last].maxPower_t4;
267         *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);
268 
269         totalMin = ar9287GetMinPower(ah,&data[i]) - ar9287GetMinPower(ah, &data[last]);
270         *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + ar9287GetMinPower(ah, &data[last])*totalD)/totalD);
271         return (AH_TRUE);
272     } else {
273         if (chan->channel == data[i].channelValue) {
274             *maxPow = data[i].maxPower_t4;
275             *minPow = ar9287GetMinPower(ah, &data[i]);
276             return(AH_TRUE);
277         } else
278             return(AH_FALSE);
279     }
280 #else
281 	*maxPow = *minPow = 0;
282 	return AH_FALSE;
283 #endif
284 }
285 
286 /*
287  * The ordering of nfarray is thus:
288  *
289  * nfarray[0]: Chain 0 ctl
290  * nfarray[1]: Chain 1 ctl
291  * nfarray[2]: Chain 2 ctl
292  * nfarray[3]: Chain 0 ext
293  * nfarray[4]: Chain 1 ext
294  * nfarray[5]: Chain 2 ext
295  */
296 static void
297 ar9287GetNoiseFloor(struct ath_hal *ah, int16_t nfarray[])
298 {
299 	int16_t nf;
300 
301 	nf = MS(OS_REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
302 	if (nf & 0x100)
303 		nf = 0 - ((nf ^ 0x1ff) + 1);
304 	HALDEBUG(ah, HAL_DEBUG_NFCAL,
305 	    "NF calibrated [ctl] [chain 0] is %d\n", nf);
306 	nfarray[0] = nf;
307 
308 	nf = MS(OS_REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
309 	if (nf & 0x100)
310 		nf = 0 - ((nf ^ 0x1ff) + 1);
311 	HALDEBUG(ah, HAL_DEBUG_NFCAL,
312 	    "NF calibrated [ctl] [chain 1] is %d\n", nf);
313 	nfarray[1] = nf;
314 
315 	nf = MS(OS_REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
316 	if (nf & 0x100)
317 		nf = 0 - ((nf ^ 0x1ff) + 1);
318 	HALDEBUG(ah, HAL_DEBUG_NFCAL,
319 	    "NF calibrated [ext] [chain 0] is %d\n", nf);
320 	nfarray[3] = nf;
321 
322 	nf = MS(OS_REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
323 	if (nf & 0x100)
324 		nf = 0 - ((nf ^ 0x1ff) + 1);
325 	HALDEBUG(ah, HAL_DEBUG_NFCAL,
326 	    "NF calibrated [ext] [chain 1] is %d\n", nf);
327 	nfarray[4] = nf;
328 
329         /* Chain 2 - invalid */
330         nfarray[2] = 0;
331         nfarray[5] = 0;
332 
333 }
334 
335 /*
336  * Adjust NF based on statistical values for 5GHz frequencies.
337  * Stubbed:Not used by Fowl
338  */
339 int16_t
340 ar9287GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
341 {
342 	return 0;
343 }
344 
345 /*
346  * Free memory for analog bank scratch buffers
347  */
348 static void
349 ar9287RfDetach(struct ath_hal *ah)
350 {
351 	struct ath_hal_5212 *ahp = AH5212(ah);
352 
353 	HALASSERT(ahp->ah_rfHal != AH_NULL);
354 	ath_hal_free(ahp->ah_rfHal);
355 	ahp->ah_rfHal = AH_NULL;
356 }
357 
358 HAL_BOOL
359 ar9287RfAttach(struct ath_hal *ah, HAL_STATUS *status)
360 {
361 	struct ath_hal_5212 *ahp = AH5212(ah);
362 	struct ar9287State *priv;
363 
364 	HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: attach AR9280 radio\n", __func__);
365 
366 	HALASSERT(ahp->ah_rfHal == AH_NULL);
367 	priv = ath_hal_malloc(sizeof(struct ar9287State));
368 	if (priv == AH_NULL) {
369 		HALDEBUG(ah, HAL_DEBUG_ANY,
370 		    "%s: cannot allocate private state\n", __func__);
371 		*status = HAL_ENOMEM;		/* XXX */
372 		return AH_FALSE;
373 	}
374 	priv->base.rfDetach		= ar9287RfDetach;
375 	priv->base.writeRegs		= ar9287WriteRegs;
376 	priv->base.getRfBank		= ar9287GetRfBank;
377 	priv->base.setChannel		= ar9287SetChannel;
378 	priv->base.setRfRegs		= ar9287SetRfRegs;
379 	priv->base.setPowerTable	= ar9287SetPowerTable;
380 	priv->base.getChannelMaxMinPower = ar9287GetChannelMaxMinPower;
381 	priv->base.getNfAdjust		= ar9287GetNfAdjust;
382 
383 	ahp->ah_pcdacTable = priv->pcdacTable;
384 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
385 	ahp->ah_rfHal = &priv->base;
386 	/*
387 	 * Set noise floor adjust method; we arrange a
388 	 * direct call instead of thunking.
389 	 */
390 	AH_PRIVATE(ah)->ah_getNfAdjust = priv->base.getNfAdjust;
391 	AH_PRIVATE(ah)->ah_getNoiseFloor = ar9287GetNoiseFloor;
392 
393 	return AH_TRUE;
394 }
395 
396 static HAL_BOOL
397 ar9287RfProbe(struct ath_hal *ah)
398 {
399 	return (AR_SREV_KIWI(ah));
400 }
401 
402 AH_RF(RF9287, ar9287RfProbe, ar9287RfAttach);
403