xref: /freebsd/sys/dev/ath/ath_hal/ar9002/ar9285_reset.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 
20 /*
21  * This is almost the same as ar5416_reset.c but uses the v4k EEPROM and
22  * supports only 2Ghz operation.
23  */
24 
25 #include "opt_ah.h"
26 
27 #include "ah.h"
28 #include "ah_internal.h"
29 #include "ah_devid.h"
30 
31 #include "ah_eeprom_v14.h"
32 #include "ah_eeprom_v4k.h"
33 
34 #include "ar9002/ar9285.h"
35 #include "ar5416/ar5416.h"
36 #include "ar5416/ar5416reg.h"
37 #include "ar5416/ar5416phy.h"
38 #include "ar9002/ar9002phy.h"
39 #include "ar9002/ar9285phy.h"
40 #include "ar9002/ar9285an.h"
41 
42 /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
43 #define	EEP_MINOR(_ah) \
44 	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
45 #define IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
46 #define IS_EEP_MINOR_V3(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
47 
48 /* Additional Time delay to wait after activiting the Base band */
49 #define BASE_ACTIVATE_DELAY	100	/* 100 usec */
50 #define PLL_SETTLE_DELAY	300	/* 300 usec */
51 #define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
52 
53 static HAL_BOOL ar9285SetPowerPerRateTable(struct ath_hal *ah,
54 	struct ar5416eeprom_4k *pEepData,
55 	const struct ieee80211_channel *chan, int16_t *ratesArray,
56 	uint16_t cfgCtl, uint16_t AntennaReduction,
57 	uint16_t twiceMaxRegulatoryPower,
58 	uint16_t powerLimit);
59 static HAL_BOOL ar9285SetPowerCalTable(struct ath_hal *ah,
60 	struct ar5416eeprom_4k *pEepData,
61 	const struct ieee80211_channel *chan,
62 	int16_t *pTxPowerIndexOffset);
63 static void ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
64 	const struct ieee80211_channel *chan, CAL_DATA_PER_FREQ_4K *pRawDataSet,
65 	uint8_t * bChans, uint16_t availPiers,
66 	uint16_t tPdGainOverlap, int16_t *pMinCalPower,
67 	uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
68 	uint16_t numXpdGains);
69 
70 HAL_BOOL
71 ar9285SetTransmitPower(struct ath_hal *ah,
72 	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
73 {
74 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
75 #define N(a)            (sizeof (a) / sizeof (a[0]))
76 
77     MODAL_EEP4K_HEADER	*pModal;
78     struct ath_hal_5212 *ahp = AH5212(ah);
79     int16_t		ratesArray[Ar5416RateSize];
80     int16_t		txPowerIndexOffset = 0;
81     uint8_t		ht40PowerIncForPdadc = 2;
82     int			i;
83 
84     uint16_t		cfgCtl;
85     uint16_t		powerLimit;
86     uint16_t		twiceAntennaReduction;
87     uint16_t		twiceMaxRegulatoryPower;
88     int16_t		maxPower;
89     HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
90     struct ar5416eeprom_4k *pEepData = &ee->ee_base;
91 
92     HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
93 
94     /* Setup info for the actual eeprom */
95     OS_MEMZERO(ratesArray, sizeof(ratesArray));
96     cfgCtl = ath_hal_getctl(ah, chan);
97     powerLimit = chan->ic_maxregpower * 2;
98     twiceAntennaReduction = chan->ic_maxantgain;
99     twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
100     pModal = &pEepData->modalHeader;
101     HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
102 	__func__,chan->ic_freq, cfgCtl );
103 
104     if (IS_EEP_MINOR_V2(ah)) {
105         ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
106     }
107 
108     if (!ar9285SetPowerPerRateTable(ah, pEepData,  chan,
109                                     &ratesArray[0],cfgCtl,
110                                     twiceAntennaReduction,
111 				    twiceMaxRegulatoryPower, powerLimit)) {
112         HALDEBUG(ah, HAL_DEBUG_ANY,
113 	    "%s: unable to set tx power per rate table\n", __func__);
114         return AH_FALSE;
115     }
116 
117     if (!ar9285SetPowerCalTable(ah,  pEepData, chan, &txPowerIndexOffset)) {
118         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
119 	    __func__);
120         return AH_FALSE;
121     }
122 
123     maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
124     maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
125 
126     if (IEEE80211_IS_CHAN_HT40(chan)) {
127         maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
128     }
129 
130     ahp->ah_tx6PowerInHalfDbm = maxPower;
131     AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
132     ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
133 
134     /*
135      * txPowerIndexOffset is set by the SetPowerTable() call -
136      *  adjust the rate table (0 offset if rates EEPROM not loaded)
137      */
138     for (i = 0; i < N(ratesArray); i++) {
139         ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
140 	/* -5 dBm offset for Merlin and later; this includes Kite */
141 	ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
142         if (ratesArray[i] > AR5416_MAX_RATE_POWER)
143             ratesArray[i] = AR5416_MAX_RATE_POWER;
144 	if (ratesArray[i] < 0)
145 		ratesArray[i] = 0;
146     }
147 
148 #ifdef AH_EEPROM_DUMP
149     ar5416PrintPowerPerRate(ah, ratesArray);
150 #endif
151 
152     /*
153      * Adjust the HT40 power to meet the correct target TX power
154      * for 40MHz mode, based on TX power curves that are established
155      * for 20MHz mode.
156      *
157      * XXX handle overflow/too high power level?
158      */
159     if (IEEE80211_IS_CHAN_HT40(chan)) {
160         ratesArray[rateHt40_0] += ht40PowerIncForPdadc;
161         ratesArray[rateHt40_1] += ht40PowerIncForPdadc;
162         ratesArray[rateHt40_2] += ht40PowerIncForPdadc;
163         ratesArray[rateHt40_3] += ht40PowerIncForPdadc;
164         ratesArray[rateHt40_4] += ht40PowerIncForPdadc;
165         ratesArray[rateHt40_5] += ht40PowerIncForPdadc;
166         ratesArray[rateHt40_6] += ht40PowerIncForPdadc;
167         ratesArray[rateHt40_7] += ht40PowerIncForPdadc;
168     }
169 
170     /* Write the TX power rate registers */
171     ar5416WriteTxPowerRateRegisters(ah, chan, ratesArray);
172 
173     return AH_TRUE;
174 #undef POW_SM
175 #undef N
176 }
177 
178 static void
179 ar9285SetBoardGain(struct ath_hal *ah, const MODAL_EEP4K_HEADER *pModal,
180     const struct ar5416eeprom_4k *eep, uint8_t txRxAttenLocal)
181 {
182 	OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
183 		  pModal->antCtrlChain[0]);
184 
185 	OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0),
186 		  (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)) &
187 		   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
188 		     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
189 		  SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
190 		  SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
191 
192 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
193 	    AR5416_EEP_MINOR_VER_3) {
194 		txRxAttenLocal = pModal->txRxAttenCh[0];
195 
196 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
197 		    AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
198 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
199 		    AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
200 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
201 		    AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]);
202 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
203 		    AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
204 
205 		/* Set the block 1 value to block 0 value */
206 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
207 		      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
208 		      pModal->bswMargin[0]);
209 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
210 		      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
211 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
212 		      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
213 		      pModal->xatten2Margin[0]);
214 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
215 		      AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
216 	}
217 
218 	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
219 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
220 	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
221 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
222 
223 	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
224 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
225 	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
226 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
227 }
228 
229 /*
230  * Read EEPROM header info and program the device for correct operation
231  * given the channel value.
232  */
233 HAL_BOOL
234 ar9285SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
235 {
236 	const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
237 	const struct ar5416eeprom_4k *eep = &ee->ee_base;
238 	const MODAL_EEP4K_HEADER *pModal;
239 	uint8_t txRxAttenLocal;
240 	uint8_t ob[5], db1[5], db2[5];
241 
242 	pModal = &eep->modalHeader;
243 	txRxAttenLocal = 23;
244 
245 	OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
246 
247 	/* Single chain for 4K EEPROM*/
248 	ar9285SetBoardGain(ah, pModal, eep, txRxAttenLocal);
249 
250 	/* Initialize Ant Diversity settings if supported */
251 	(void) ar9285SetAntennaSwitch(ah, AH5212(ah)->ah_antControl);
252 
253 	/* Configure TX power calibration */
254 	if (pModal->version >= 2) {
255 		ob[0] = pModal->ob_0;
256 		ob[1] = pModal->ob_1;
257 		ob[2] = pModal->ob_2;
258 		ob[3] = pModal->ob_3;
259 		ob[4] = pModal->ob_4;
260 
261 		db1[0] = pModal->db1_0;
262 		db1[1] = pModal->db1_1;
263 		db1[2] = pModal->db1_2;
264 		db1[3] = pModal->db1_3;
265 		db1[4] = pModal->db1_4;
266 
267 		db2[0] = pModal->db2_0;
268 		db2[1] = pModal->db2_1;
269 		db2[2] = pModal->db2_2;
270 		db2[3] = pModal->db2_3;
271 		db2[4] = pModal->db2_4;
272 	} else if (pModal->version == 1) {
273 		ob[0] = pModal->ob_0;
274 		ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
275 		db1[0] = pModal->db1_0;
276 		db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
277 		db2[0] = pModal->db2_0;
278 		db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
279 	} else {
280 		int i;
281 
282 		for (i = 0; i < 5; i++) {
283 			ob[i] = pModal->ob_0;
284 			db1[i] = pModal->db1_0;
285 			db2[i] = pModal->db1_0;
286 		}
287 	}
288 
289 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_0, ob[0]);
290 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_1, ob[1]);
291 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_2, ob[2]);
292 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_3, ob[3]);
293 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_4, ob[4]);
294 
295 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_0, db1[0]);
296 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_1, db1[1]);
297 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_2, db1[2]);
298 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_3, db1[3]);
299 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_4, db1[4]);
300 
301 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_0, db2[0]);
302 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_1, db2[1]);
303 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_2, db2[2]);
304 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_3, db2[3]);
305 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_4, db2[4]);
306 
307 	OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
308 		      pModal->switchSettling);
309 	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
310 		      pModal->adcDesiredSize);
311 
312 	OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
313 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
314 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
315 		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
316 		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
317 
318 	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
319 		      pModal->txEndToRxOn);
320 
321 	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
322 		      pModal->thresh62);
323 	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
324 		      pModal->thresh62);
325 
326 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
327 	    AR5416_EEP_MINOR_VER_2) {
328 		OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
329 		    pModal->txFrameToDataStart);
330 		OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
331 		    pModal->txFrameToPaOn);
332 	}
333 
334 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
335 	    AR5416_EEP_MINOR_VER_3) {
336 		if (IEEE80211_IS_CHAN_HT40(chan))
337 			OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
338 			    AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
339 	}
340 
341 	/*
342 	 * Program the CCK TX gain factor appropriately if needed.
343 	 * The AR9285/AR9271 has a non-constant PA tx gain behaviour
344 	 * for CCK versus OFDM rates; other chips deal with this
345 	 * differently.
346 	 *
347 	 * The mask/shift/multiply hackery is done so place the same
348 	 * value (bb_desired_scale) into multiple 5-bit fields.
349 	 * For example, AR_PHY_TX_PWRCTRL9 has bb_desired_scale written
350 	 * to three fields: (0..4), (5..9) and (10..14).
351 	 */
352 	if (AR_SREV_9271(ah) || AR_SREV_KITE(ah)) {
353 		uint8_t bb_desired_scale = (pModal->bb_scale_smrt_antenna & EEP_4K_BB_DESIRED_SCALE_MASK);
354 		if ((eep->baseEepHeader.txGainType == 0) && (bb_desired_scale != 0)) {
355 			ath_hal_printf(ah, "[ath]: adjusting cck tx gain factor\n");
356 			uint32_t pwrctrl, mask, clr;
357 
358 			mask = (1<<0) | (1<<5) | (1<<10) | (1<<15) | (1<<20) | (1<<25);
359 			pwrctrl = mask * bb_desired_scale;
360 			clr = mask * 0x1f;
361 			OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
362 			OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
363 			OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
364 
365 			mask = (1<<0) | (1<<5) | (1<<15);
366 			pwrctrl = mask * bb_desired_scale;
367 			clr = mask * 0x1f;
368 			OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
369 
370 			mask = (1<<0) | (1<<5);
371 			pwrctrl = mask * bb_desired_scale;
372 			clr = mask * 0x1f;
373 			OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
374 			OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
375 		}
376 	}
377 
378 	return AH_TRUE;
379 }
380 
381 /*
382  * Helper functions common for AP/CB/XB
383  */
384 
385 static HAL_BOOL
386 ar9285SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
387                            const struct ieee80211_channel *chan,
388                            int16_t *ratesArray, uint16_t cfgCtl,
389                            uint16_t AntennaReduction,
390                            uint16_t twiceMaxRegulatoryPower,
391                            uint16_t powerLimit)
392 {
393 #define	N(a)	(sizeof(a)/sizeof(a[0]))
394 /* Local defines to distinguish between extension and control CTL's */
395 #define EXT_ADDITIVE (0x8000)
396 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
397 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
398 
399 	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
400 	int i;
401 	int16_t  twiceLargestAntenna;
402 	CAL_CTL_DATA_4K *rep;
403 	CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
404 	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
405 	CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
406 	int16_t scaledPower, minCtlPower;
407 
408 #define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
409 	static const uint16_t ctlModesFor11g[] = {
410 	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
411 	};
412 	const uint16_t *pCtlMode;
413 	uint16_t numCtlModes, ctlMode, freq;
414 	CHAN_CENTERS centers;
415 
416 	ar5416GetChannelCenters(ah,  chan, &centers);
417 
418 	/* Compute TxPower reduction due to Antenna Gain */
419 
420 	twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
421 	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
422 
423 	/* XXX setup for 5212 use (really used?) */
424 	ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
425 
426 	/*
427 	 * scaledPower is the minimum of the user input power level and
428 	 * the regulatory allowed power level
429 	 */
430 	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
431 
432 	/* Get target powers from EEPROM - our baseline for TX Power */
433 	/* Setup for CTL modes */
434 	numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
435 	pCtlMode = ctlModesFor11g;
436 
437 	ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
438 			AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
439 	ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
440 			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
441 	ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
442 			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
443 
444 	if (IEEE80211_IS_CHAN_HT40(chan)) {
445 		numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
446 
447 		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
448 			AR5416_4K_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
449 		/* Get target powers for extension channels */
450 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
451 			AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
452 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
453 			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
454 	}
455 
456 	/*
457 	 * For MIMO, need to apply regulatory caps individually across dynamically
458 	 * running modes: CCK, OFDM, HT20, HT40
459 	 *
460 	 * The outer loop walks through each possible applicable runtime mode.
461 	 * The inner loop walks through each ctlIndex entry in EEPROM.
462 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
463 	 *
464 	 */
465 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
466 		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
467 		    (pCtlMode[ctlMode] == CTL_2GHT40);
468 		if (isHt40CtlMode) {
469 			freq = centers.ctl_center;
470 		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
471 			freq = centers.ext_center;
472 		} else {
473 			freq = centers.ctl_center;
474 		}
475 
476 		/* walk through each CTL index stored in EEPROM */
477 		for (i = 0; (i < AR5416_4K_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
478 			uint16_t twiceMinEdgePower;
479 
480 			/* compare test group from regulatory channel list with test mode from pCtlMode list */
481 			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
482 				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
483 				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
484 				rep = &(pEepData->ctlData[i]);
485 				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
486 							rep->ctlEdges[
487 							  owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1], AH_TRUE);
488 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
489 					/* Find the minimum of all CTL edge powers that apply to this channel */
490 					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
491 				} else {
492 					/* specific */
493 					twiceMaxEdgePower = twiceMinEdgePower;
494 					break;
495 				}
496 			}
497 		}
498 		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
499 		/* Apply ctl mode to correct target power set */
500 		switch(pCtlMode[ctlMode]) {
501 		case CTL_11B:
502 			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
503 				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
504 			}
505 			break;
506 		case CTL_11A:
507 		case CTL_11G:
508 			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
509 				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
510 			}
511 			break;
512 		case CTL_5GHT20:
513 		case CTL_2GHT20:
514 			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
515 				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
516 			}
517 			break;
518 		case CTL_11B_EXT:
519 			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
520 			break;
521 		case CTL_11G_EXT:
522 			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
523 			break;
524 		case CTL_5GHT40:
525 		case CTL_2GHT40:
526 			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
527 				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
528 			}
529 			break;
530 		default:
531 			return AH_FALSE;
532 			break;
533 		}
534 	} /* end ctl mode checking */
535 
536         /* Set rates Array from collected data */
537 	ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
538 	    &targetPowerCck,
539 	    &targetPowerCckExt,
540 	    &targetPowerOfdm,
541 	    &targetPowerOfdmExt,
542 	    &targetPowerHt20,
543 	    &targetPowerHt40);
544 
545 	return AH_TRUE;
546 #undef EXT_ADDITIVE
547 #undef CTL_11G_EXT
548 #undef CTL_11B_EXT
549 #undef SUB_NUM_CTL_MODES_AT_2G_40
550 #undef N
551 }
552 
553 static HAL_BOOL
554 ar9285SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
555 	const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
556 {
557     CAL_DATA_PER_FREQ_4K *pRawDataset;
558     uint8_t  *pCalBChans = AH_NULL;
559     uint16_t pdGainOverlap_t2;
560     static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
561     uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
562     uint16_t numPiers, i;
563     int16_t  tMinCalPower;
564     uint16_t numXpdGain, xpdMask;
565     uint16_t xpdGainValues[4];	/* v4k eeprom has 2; the other two stay 0 */
566     uint32_t regChainOffset;
567 
568     OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
569 
570     xpdMask = pEepData->modalHeader.xpdGain;
571 
572     if (IS_EEP_MINOR_V2(ah)) {
573         pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
574     } else {
575     	pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
576     }
577 
578     pCalBChans = pEepData->calFreqPier2G;
579     numPiers = AR5416_4K_NUM_2G_CAL_PIERS;
580     numXpdGain = 0;
581 
582     /* Calculate the value of xpdgains from the xpdGain Mask */
583     for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
584         if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
585             if (numXpdGain >= AR5416_4K_NUM_PD_GAINS) {
586                 HALASSERT(0);
587                 break;
588             }
589             xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
590             numXpdGain++;
591         }
592     }
593 
594     /* Write the detector gain biases and their number */
595     ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
596 
597     for (i = 0; i < AR5416_MAX_CHAINS; i++) {
598 	regChainOffset = ar5416GetRegChainOffset(ah, i);
599         if (pEepData->baseEepHeader.txMask & (1 << i)) {
600             pRawDataset = pEepData->calPierData2G[i];
601 
602             ar9285GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
603                                              pCalBChans, numPiers,
604                                              pdGainOverlap_t2,
605                                              &tMinCalPower, gainBoundaries,
606                                              pdadcValues, numXpdGain);
607 
608             if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
609                 /*
610                  * Note the pdadc table may not start at 0 dBm power, could be
611                  * negative or greater than 0.  Need to offset the power
612                  * values by the amount of minPower for griffin
613                  */
614 		ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2, gainBoundaries);
615             }
616 
617             /* Write the power values into the baseband power table */
618 	    ar5416WritePdadcValues(ah, i, pdadcValues);
619         }
620     }
621     *pTxPowerIndexOffset = 0;
622 
623     return AH_TRUE;
624 }
625 
626 static void
627 ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
628                                  const struct ieee80211_channel *chan,
629 				 CAL_DATA_PER_FREQ_4K *pRawDataSet,
630                                  uint8_t * bChans,  uint16_t availPiers,
631                                  uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
632                                  uint8_t * pPDADCValues, uint16_t numXpdGains)
633 {
634 
635     int       i, j, k;
636     int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
637     uint16_t  idxL, idxR, numPiers; /* Pier indexes */
638 
639     /* filled out Vpd table for all pdGains (chanL) */
640     static uint8_t   vpdTableL[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
641 
642     /* filled out Vpd table for all pdGains (chanR) */
643     static uint8_t   vpdTableR[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
644 
645     /* filled out Vpd table for all pdGains (interpolated) */
646     static uint8_t   vpdTableI[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
647 
648     uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
649     uint8_t   minPwrT4[AR5416_4K_NUM_PD_GAINS];
650     uint8_t   maxPwrT4[AR5416_4K_NUM_PD_GAINS];
651     int16_t   vpdStep;
652     int16_t   tmpVal;
653     uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
654     HAL_BOOL    match;
655     int16_t  minDelta = 0;
656     CHAN_CENTERS centers;
657 
658     ar5416GetChannelCenters(ah, chan, &centers);
659 
660     /* Trim numPiers for the number of populated channel Piers */
661     for (numPiers = 0; numPiers < availPiers; numPiers++) {
662         if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
663             break;
664         }
665     }
666 
667     /* Find pier indexes around the current channel */
668     match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
669       IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
670 
671     if (match) {
672         /* Directly fill both vpd tables from the matching index */
673         for (i = 0; i < numXpdGains; i++) {
674             minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
675             maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
676             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i],
677 			       pRawDataSet[idxL].pwrPdg[i],
678                                pRawDataSet[idxL].vpdPdg[i],
679 			       AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
680         }
681     } else {
682         for (i = 0; i < numXpdGains; i++) {
683             pVpdL = pRawDataSet[idxL].vpdPdg[i];
684             pPwrL = pRawDataSet[idxL].pwrPdg[i];
685             pVpdR = pRawDataSet[idxR].vpdPdg[i];
686             pPwrR = pRawDataSet[idxR].pwrPdg[i];
687 
688             /* Start Vpd interpolation from the max of the minimum powers */
689             minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
690 
691             /* End Vpd interpolation from the min of the max powers */
692             maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
693             HALASSERT(maxPwrT4[i] > minPwrT4[i]);
694 
695             /* Fill pier Vpds */
696             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL,
697 			       AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
698             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR,
699 			       AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
700 
701             /* Interpolate the final vpd */
702             for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
703                 vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
704                     IEEE80211_IS_CHAN_2GHZ(chan)),
705                     bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
706             }
707         }
708     }
709     *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
710 
711     k = 0; /* index for the final table */
712     for (i = 0; i < numXpdGains; i++) {
713         if (i == (numXpdGains - 1)) {
714             pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
715         } else {
716             pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
717         }
718 
719         pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
720 
721 	/* NB: only applies to owl 1.0 */
722         if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
723 	    /*
724              * fix the gain delta, but get a delta that can be applied to min to
725              * keep the upper power values accurate, don't think max needs to
726              * be adjusted because should not be at that area of the table?
727 	     */
728             minDelta = pPdGainBoundaries[0] - 23;
729             pPdGainBoundaries[0] = 23;
730         }
731         else {
732             minDelta = 0;
733         }
734 
735         /* Find starting index for this pdGain */
736         if (i == 0) {
737             if (AR_SREV_MERLIN_20_OR_LATER(ah))
738                 ss = (int16_t)(0 - (minPwrT4[i] / 2));
739             else
740                 ss = 0; /* for the first pdGain, start from index 0 */
741         } else {
742 	    /* need overlap entries extrapolated below. */
743             ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
744         }
745         vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
746         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
747         /*
748          *-ve ss indicates need to extrapolate data below for this pdGain
749          */
750         while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
751             tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
752             pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
753             ss++;
754         }
755 
756         sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
757         tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
758         maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
759 
760         while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
761             pPDADCValues[k++] = vpdTableI[i][ss++];
762         }
763 
764         vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
765         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
766         /*
767          * for last gain, pdGainBoundary == Pmax_t2, so will
768          * have to extrapolate
769          */
770         if (tgtIndex >= maxIndex) {  /* need to extrapolate above */
771             while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
772                 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
773                           (ss - maxIndex +1) * vpdStep));
774                 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
775                 ss++;
776             }
777         }               /* extrapolated above */
778     }                   /* for all pdGainUsed */
779 
780     /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
781     while (i < AR5416_PD_GAINS_IN_MASK) {
782         pPdGainBoundaries[i] = AR5416_4K_EEP_PD_GAIN_BOUNDARY_DEFAULT;
783         i++;
784     }
785 
786     while (k < AR5416_NUM_PDADC_VALUES) {
787         pPDADCValues[k] = pPDADCValues[k-1];
788         k++;
789     }
790     return;
791 }
792