xref: /freebsd/sys/dev/ath/ath_hal/ar9002/ar9285_reset.c (revision 3b1f7d9e5d6f44b50ff07fde6fd0e1135f213762)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 
20 /*
21  * This is almost the same as ar5416_reset.c but uses the v4k EEPROM and
22  * supports only 2Ghz operation.
23  */
24 
25 #include "opt_ah.h"
26 
27 #include "ah.h"
28 #include "ah_internal.h"
29 #include "ah_devid.h"
30 
31 #include "ah_eeprom_v14.h"
32 #include "ah_eeprom_v4k.h"
33 
34 #include "ar9002/ar9285.h"
35 #include "ar5416/ar5416.h"
36 #include "ar5416/ar5416reg.h"
37 #include "ar5416/ar5416phy.h"
38 #include "ar9002/ar9002phy.h"
39 #include "ar9002/ar9285phy.h"
40 #include "ar9002/ar9285an.h"
41 #include "ar9002/ar9285_diversity.h"
42 
43 /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
44 #define	EEP_MINOR(_ah) \
45 	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
46 #define IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
47 #define IS_EEP_MINOR_V3(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
48 
49 /* Additional Time delay to wait after activiting the Base band */
50 #define BASE_ACTIVATE_DELAY	100	/* 100 usec */
51 #define PLL_SETTLE_DELAY	300	/* 300 usec */
52 #define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
53 
54 static HAL_BOOL ar9285SetPowerPerRateTable(struct ath_hal *ah,
55 	struct ar5416eeprom_4k *pEepData,
56 	const struct ieee80211_channel *chan, int16_t *ratesArray,
57 	uint16_t cfgCtl, uint16_t AntennaReduction,
58 	uint16_t twiceMaxRegulatoryPower,
59 	uint16_t powerLimit);
60 static HAL_BOOL ar9285SetPowerCalTable(struct ath_hal *ah,
61 	struct ar5416eeprom_4k *pEepData,
62 	const struct ieee80211_channel *chan,
63 	int16_t *pTxPowerIndexOffset);
64 static void ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
65 	const struct ieee80211_channel *chan, CAL_DATA_PER_FREQ_4K *pRawDataSet,
66 	uint8_t * bChans, uint16_t availPiers,
67 	uint16_t tPdGainOverlap, int16_t *pMinCalPower,
68 	uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
69 	uint16_t numXpdGains);
70 
71 HAL_BOOL
72 ar9285SetTransmitPower(struct ath_hal *ah,
73 	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
74 {
75 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
76 #define N(a)            (sizeof (a) / sizeof (a[0]))
77 
78     MODAL_EEP4K_HEADER	*pModal;
79     struct ath_hal_5212 *ahp = AH5212(ah);
80     int16_t		txPowerIndexOffset = 0;
81     int			i;
82 
83     uint16_t		cfgCtl;
84     uint16_t		powerLimit;
85     uint16_t		twiceAntennaReduction;
86     uint16_t		twiceMaxRegulatoryPower;
87     int16_t		maxPower;
88     HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
89     struct ar5416eeprom_4k *pEepData = &ee->ee_base;
90 
91     HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
92 
93     AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
94 
95     /* Setup info for the actual eeprom */
96     OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray));
97     cfgCtl = ath_hal_getctl(ah, chan);
98     powerLimit = chan->ic_maxregpower * 2;
99     twiceAntennaReduction = chan->ic_maxantgain;
100     twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
101     pModal = &pEepData->modalHeader;
102     HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
103 	__func__,chan->ic_freq, cfgCtl );
104 
105     if (IS_EEP_MINOR_V2(ah)) {
106         AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
107     }
108 
109     if (!ar9285SetPowerPerRateTable(ah, pEepData,  chan,
110                                     &AH5416(ah)->ah_ratesArray[0],cfgCtl,
111                                     twiceAntennaReduction,
112 				    twiceMaxRegulatoryPower, powerLimit)) {
113         HALDEBUG(ah, HAL_DEBUG_ANY,
114 	    "%s: unable to set tx power per rate table\n", __func__);
115         return AH_FALSE;
116     }
117 
118     if (!ar9285SetPowerCalTable(ah,  pEepData, chan, &txPowerIndexOffset)) {
119         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
120 	    __func__);
121         return AH_FALSE;
122     }
123 
124     maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
125       AH5416(ah)->ah_ratesArray[rateHt20_0]);
126     maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]);
127 
128     if (IEEE80211_IS_CHAN_HT40(chan)) {
129         maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]);
130     }
131 
132     ahp->ah_tx6PowerInHalfDbm = maxPower;
133     AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
134     ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
135 
136     /*
137      * txPowerIndexOffset is set by the SetPowerTable() call -
138      *  adjust the rate table (0 offset if rates EEPROM not loaded)
139      */
140     for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
141         AH5416(ah)->ah_ratesArray[i] = (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]);
142 	/* -5 dBm offset for Merlin and later; this includes Kite */
143 	AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
144         if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
145             AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
146 	if (AH5416(ah)->ah_ratesArray[i] < 0)
147 		AH5416(ah)->ah_ratesArray[i] = 0;
148     }
149 
150 #ifdef AH_EEPROM_DUMP
151     ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
152 #endif
153 
154     /*
155      * Adjust the HT40 power to meet the correct target TX power
156      * for 40MHz mode, based on TX power curves that are established
157      * for 20MHz mode.
158      *
159      * XXX handle overflow/too high power level?
160      */
161     if (IEEE80211_IS_CHAN_HT40(chan)) {
162         AH5416(ah)->ah_ratesArray[rateHt40_0] +=
163           AH5416(ah)->ah_ht40PowerIncForPdadc;
164         AH5416(ah)->ah_ratesArray[rateHt40_1] +=
165           AH5416(ah)->ah_ht40PowerIncForPdadc;
166         AH5416(ah)->ah_ratesArray[rateHt40_2] +=
167           AH5416(ah)->ah_ht40PowerIncForPdadc;
168         AH5416(ah)->ah_ratesArray[rateHt40_3] +=
169           AH5416(ah)->ah_ht40PowerIncForPdadc;
170         AH5416(ah)->ah_ratesArray[rateHt40_4] +=
171           AH5416(ah)->ah_ht40PowerIncForPdadc;
172         AH5416(ah)->ah_ratesArray[rateHt40_5] +=
173           AH5416(ah)->ah_ht40PowerIncForPdadc;
174         AH5416(ah)->ah_ratesArray[rateHt40_6] +=
175           AH5416(ah)->ah_ht40PowerIncForPdadc;
176         AH5416(ah)->ah_ratesArray[rateHt40_7] +=
177           AH5416(ah)->ah_ht40PowerIncForPdadc;
178     }
179 
180     /* Write the TX power rate registers */
181     ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
182 
183     return AH_TRUE;
184 #undef POW_SM
185 #undef N
186 }
187 
188 static void
189 ar9285SetBoardGain(struct ath_hal *ah, const MODAL_EEP4K_HEADER *pModal,
190     const struct ar5416eeprom_4k *eep, uint8_t txRxAttenLocal)
191 {
192 	OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
193 		  pModal->antCtrlChain[0]);
194 
195 	OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0),
196 		  (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)) &
197 		   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
198 		     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
199 		  SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
200 		  SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
201 
202 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
203 	    AR5416_EEP_MINOR_VER_3) {
204 		txRxAttenLocal = pModal->txRxAttenCh[0];
205 
206 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
207 		    AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
208 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
209 		    AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
210 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
211 		    AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]);
212 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
213 		    AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
214 
215 		/* Set the block 1 value to block 0 value */
216 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
217 		      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
218 		      pModal->bswMargin[0]);
219 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
220 		      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
221 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
222 		      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
223 		      pModal->xatten2Margin[0]);
224 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
225 		      AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
226 	}
227 
228 	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
229 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
230 	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
231 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
232 
233 	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
234 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
235 	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
236 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
237 }
238 
239 /*
240  * Read EEPROM header info and program the device for correct operation
241  * given the channel value.
242  */
243 HAL_BOOL
244 ar9285SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
245 {
246 	const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
247 	const struct ar5416eeprom_4k *eep = &ee->ee_base;
248 	const MODAL_EEP4K_HEADER *pModal;
249 	uint8_t txRxAttenLocal;
250 	uint8_t ob[5], db1[5], db2[5];
251 
252 	pModal = &eep->modalHeader;
253 	txRxAttenLocal = 23;
254 
255 	OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
256 
257 	/* Single chain for 4K EEPROM*/
258 	ar9285SetBoardGain(ah, pModal, eep, txRxAttenLocal);
259 
260 	/* Initialize Ant Diversity settings if supported */
261 	(void) ar9285SetAntennaSwitch(ah, AH5212(ah)->ah_antControl);
262 
263 	/* Configure TX power calibration */
264 	if (pModal->version >= 2) {
265 		ob[0] = pModal->ob_0;
266 		ob[1] = pModal->ob_1;
267 		ob[2] = pModal->ob_2;
268 		ob[3] = pModal->ob_3;
269 		ob[4] = pModal->ob_4;
270 
271 		db1[0] = pModal->db1_0;
272 		db1[1] = pModal->db1_1;
273 		db1[2] = pModal->db1_2;
274 		db1[3] = pModal->db1_3;
275 		db1[4] = pModal->db1_4;
276 
277 		db2[0] = pModal->db2_0;
278 		db2[1] = pModal->db2_1;
279 		db2[2] = pModal->db2_2;
280 		db2[3] = pModal->db2_3;
281 		db2[4] = pModal->db2_4;
282 	} else if (pModal->version == 1) {
283 		ob[0] = pModal->ob_0;
284 		ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
285 		db1[0] = pModal->db1_0;
286 		db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
287 		db2[0] = pModal->db2_0;
288 		db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
289 	} else {
290 		int i;
291 
292 		for (i = 0; i < 5; i++) {
293 			ob[i] = pModal->ob_0;
294 			db1[i] = pModal->db1_0;
295 			db2[i] = pModal->db1_0;
296 		}
297 	}
298 
299 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_0, ob[0]);
300 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_1, ob[1]);
301 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_2, ob[2]);
302 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_3, ob[3]);
303 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_4, ob[4]);
304 
305 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_0, db1[0]);
306 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_1, db1[1]);
307 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_2, db1[2]);
308 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_3, db1[3]);
309 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_4, db1[4]);
310 
311 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_0, db2[0]);
312 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_1, db2[1]);
313 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_2, db2[2]);
314 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_3, db2[3]);
315 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_4, db2[4]);
316 
317 	OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
318 		      pModal->switchSettling);
319 	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
320 		      pModal->adcDesiredSize);
321 
322 	OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
323 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
324 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
325 		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
326 		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
327 
328 	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
329 		      pModal->txEndToRxOn);
330 
331 	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
332 		      pModal->thresh62);
333 	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
334 		      pModal->thresh62);
335 
336 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
337 	    AR5416_EEP_MINOR_VER_2) {
338 		OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
339 		    pModal->txFrameToDataStart);
340 		OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
341 		    pModal->txFrameToPaOn);
342 	}
343 
344 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
345 	    AR5416_EEP_MINOR_VER_3) {
346 		if (IEEE80211_IS_CHAN_HT40(chan))
347 			OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
348 			    AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
349 	}
350 
351 	/*
352 	 * Program the CCK TX gain factor appropriately if needed.
353 	 * The AR9285/AR9271 has a non-constant PA tx gain behaviour
354 	 * for CCK versus OFDM rates; other chips deal with this
355 	 * differently.
356 	 *
357 	 * The mask/shift/multiply hackery is done so place the same
358 	 * value (bb_desired_scale) into multiple 5-bit fields.
359 	 * For example, AR_PHY_TX_PWRCTRL9 has bb_desired_scale written
360 	 * to three fields: (0..4), (5..9) and (10..14).
361 	 */
362 	if (AR_SREV_9271(ah) || AR_SREV_KITE(ah)) {
363 		uint8_t bb_desired_scale = (pModal->bb_scale_smrt_antenna & EEP_4K_BB_DESIRED_SCALE_MASK);
364 		if ((eep->baseEepHeader.txGainType == 0) && (bb_desired_scale != 0)) {
365 			ath_hal_printf(ah, "[ath]: adjusting cck tx gain factor\n");
366 			uint32_t pwrctrl, mask, clr;
367 
368 			mask = (1<<0) | (1<<5) | (1<<10) | (1<<15) | (1<<20) | (1<<25);
369 			pwrctrl = mask * bb_desired_scale;
370 			clr = mask * 0x1f;
371 			OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
372 			OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
373 			OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
374 
375 			mask = (1<<0) | (1<<5) | (1<<15);
376 			pwrctrl = mask * bb_desired_scale;
377 			clr = mask * 0x1f;
378 			OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
379 
380 			mask = (1<<0) | (1<<5);
381 			pwrctrl = mask * bb_desired_scale;
382 			clr = mask * 0x1f;
383 			OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
384 			OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
385 		}
386 	}
387 
388 	return AH_TRUE;
389 }
390 
391 /*
392  * Helper functions common for AP/CB/XB
393  */
394 
395 static HAL_BOOL
396 ar9285SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
397                            const struct ieee80211_channel *chan,
398                            int16_t *ratesArray, uint16_t cfgCtl,
399                            uint16_t AntennaReduction,
400                            uint16_t twiceMaxRegulatoryPower,
401                            uint16_t powerLimit)
402 {
403 #define	N(a)	(sizeof(a)/sizeof(a[0]))
404 /* Local defines to distinguish between extension and control CTL's */
405 #define EXT_ADDITIVE (0x8000)
406 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
407 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
408 
409 	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
410 	int i;
411 	int16_t  twiceLargestAntenna;
412 	CAL_CTL_DATA_4K *rep;
413 	CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
414 	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
415 	CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
416 	int16_t scaledPower, minCtlPower;
417 
418 #define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
419 	static const uint16_t ctlModesFor11g[] = {
420 	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
421 	};
422 	const uint16_t *pCtlMode;
423 	uint16_t numCtlModes, ctlMode, freq;
424 	CHAN_CENTERS centers;
425 
426 	ar5416GetChannelCenters(ah,  chan, &centers);
427 
428 	/* Compute TxPower reduction due to Antenna Gain */
429 
430 	twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
431 	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
432 
433 	/* XXX setup for 5212 use (really used?) */
434 	ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
435 
436 	/*
437 	 * scaledPower is the minimum of the user input power level and
438 	 * the regulatory allowed power level
439 	 */
440 	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
441 
442 	/* Get target powers from EEPROM - our baseline for TX Power */
443 	/* Setup for CTL modes */
444 	numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
445 	pCtlMode = ctlModesFor11g;
446 
447 	ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
448 			AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
449 	ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
450 			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
451 	ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
452 			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
453 
454 	if (IEEE80211_IS_CHAN_HT40(chan)) {
455 		numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
456 
457 		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
458 			AR5416_4K_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
459 		/* Get target powers for extension channels */
460 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
461 			AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
462 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
463 			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
464 	}
465 
466 	/*
467 	 * For MIMO, need to apply regulatory caps individually across dynamically
468 	 * running modes: CCK, OFDM, HT20, HT40
469 	 *
470 	 * The outer loop walks through each possible applicable runtime mode.
471 	 * The inner loop walks through each ctlIndex entry in EEPROM.
472 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
473 	 *
474 	 */
475 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
476 		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
477 		    (pCtlMode[ctlMode] == CTL_2GHT40);
478 		if (isHt40CtlMode) {
479 			freq = centers.ctl_center;
480 		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
481 			freq = centers.ext_center;
482 		} else {
483 			freq = centers.ctl_center;
484 		}
485 
486 		/* walk through each CTL index stored in EEPROM */
487 		for (i = 0; (i < AR5416_4K_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
488 			uint16_t twiceMinEdgePower;
489 
490 			/* compare test group from regulatory channel list with test mode from pCtlMode list */
491 			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
492 				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
493 				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
494 				rep = &(pEepData->ctlData[i]);
495 				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
496 							rep->ctlEdges[
497 							  owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1], AH_TRUE);
498 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
499 					/* Find the minimum of all CTL edge powers that apply to this channel */
500 					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
501 				} else {
502 					/* specific */
503 					twiceMaxEdgePower = twiceMinEdgePower;
504 					break;
505 				}
506 			}
507 		}
508 		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
509 		/* Apply ctl mode to correct target power set */
510 		switch(pCtlMode[ctlMode]) {
511 		case CTL_11B:
512 			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
513 				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
514 			}
515 			break;
516 		case CTL_11A:
517 		case CTL_11G:
518 			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
519 				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
520 			}
521 			break;
522 		case CTL_5GHT20:
523 		case CTL_2GHT20:
524 			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
525 				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
526 			}
527 			break;
528 		case CTL_11B_EXT:
529 			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
530 			break;
531 		case CTL_11G_EXT:
532 			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
533 			break;
534 		case CTL_5GHT40:
535 		case CTL_2GHT40:
536 			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
537 				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
538 			}
539 			break;
540 		default:
541 			return AH_FALSE;
542 			break;
543 		}
544 	} /* end ctl mode checking */
545 
546         /* Set rates Array from collected data */
547 	ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
548 	    &targetPowerCck,
549 	    &targetPowerCckExt,
550 	    &targetPowerOfdm,
551 	    &targetPowerOfdmExt,
552 	    &targetPowerHt20,
553 	    &targetPowerHt40);
554 
555 	return AH_TRUE;
556 #undef EXT_ADDITIVE
557 #undef CTL_11G_EXT
558 #undef CTL_11B_EXT
559 #undef SUB_NUM_CTL_MODES_AT_2G_40
560 #undef N
561 }
562 
563 static HAL_BOOL
564 ar9285SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
565 	const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
566 {
567     CAL_DATA_PER_FREQ_4K *pRawDataset;
568     uint8_t  *pCalBChans = AH_NULL;
569     uint16_t pdGainOverlap_t2;
570     static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
571     uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
572     uint16_t numPiers, i;
573     int16_t  tMinCalPower;
574     uint16_t numXpdGain, xpdMask;
575     uint16_t xpdGainValues[4];	/* v4k eeprom has 2; the other two stay 0 */
576     uint32_t regChainOffset;
577 
578     OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
579 
580     xpdMask = pEepData->modalHeader.xpdGain;
581 
582     if (IS_EEP_MINOR_V2(ah)) {
583         pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
584     } else {
585     	pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
586     }
587 
588     pCalBChans = pEepData->calFreqPier2G;
589     numPiers = AR5416_4K_NUM_2G_CAL_PIERS;
590     numXpdGain = 0;
591 
592     /* Calculate the value of xpdgains from the xpdGain Mask */
593     for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
594         if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
595             if (numXpdGain >= AR5416_4K_NUM_PD_GAINS) {
596                 HALASSERT(0);
597                 break;
598             }
599             xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
600             numXpdGain++;
601         }
602     }
603 
604     /* Write the detector gain biases and their number */
605     ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
606 
607     for (i = 0; i < AR5416_MAX_CHAINS; i++) {
608 	regChainOffset = ar5416GetRegChainOffset(ah, i);
609         if (pEepData->baseEepHeader.txMask & (1 << i)) {
610             pRawDataset = pEepData->calPierData2G[i];
611 
612             ar9285GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
613                                              pCalBChans, numPiers,
614                                              pdGainOverlap_t2,
615                                              &tMinCalPower, gainBoundaries,
616                                              pdadcValues, numXpdGain);
617 
618             if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
619                 /*
620                  * Note the pdadc table may not start at 0 dBm power, could be
621                  * negative or greater than 0.  Need to offset the power
622                  * values by the amount of minPower for griffin
623                  */
624 		ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2, gainBoundaries);
625             }
626 
627             /* Write the power values into the baseband power table */
628 	    ar5416WritePdadcValues(ah, i, pdadcValues);
629         }
630     }
631     *pTxPowerIndexOffset = 0;
632 
633     return AH_TRUE;
634 }
635 
636 static void
637 ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
638                                  const struct ieee80211_channel *chan,
639 				 CAL_DATA_PER_FREQ_4K *pRawDataSet,
640                                  uint8_t * bChans,  uint16_t availPiers,
641                                  uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
642                                  uint8_t * pPDADCValues, uint16_t numXpdGains)
643 {
644 
645     int       i, j, k;
646     int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
647     uint16_t  idxL, idxR, numPiers; /* Pier indexes */
648 
649     /* filled out Vpd table for all pdGains (chanL) */
650     static uint8_t   vpdTableL[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
651 
652     /* filled out Vpd table for all pdGains (chanR) */
653     static uint8_t   vpdTableR[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
654 
655     /* filled out Vpd table for all pdGains (interpolated) */
656     static uint8_t   vpdTableI[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
657 
658     uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
659     uint8_t   minPwrT4[AR5416_4K_NUM_PD_GAINS];
660     uint8_t   maxPwrT4[AR5416_4K_NUM_PD_GAINS];
661     int16_t   vpdStep;
662     int16_t   tmpVal;
663     uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
664     HAL_BOOL    match;
665     int16_t  minDelta = 0;
666     CHAN_CENTERS centers;
667 
668     ar5416GetChannelCenters(ah, chan, &centers);
669 
670     /* Trim numPiers for the number of populated channel Piers */
671     for (numPiers = 0; numPiers < availPiers; numPiers++) {
672         if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
673             break;
674         }
675     }
676 
677     /* Find pier indexes around the current channel */
678     match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
679       IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
680 
681     if (match) {
682         /* Directly fill both vpd tables from the matching index */
683         for (i = 0; i < numXpdGains; i++) {
684             minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
685             maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
686             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i],
687 			       pRawDataSet[idxL].pwrPdg[i],
688                                pRawDataSet[idxL].vpdPdg[i],
689 			       AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
690         }
691     } else {
692         for (i = 0; i < numXpdGains; i++) {
693             pVpdL = pRawDataSet[idxL].vpdPdg[i];
694             pPwrL = pRawDataSet[idxL].pwrPdg[i];
695             pVpdR = pRawDataSet[idxR].vpdPdg[i];
696             pPwrR = pRawDataSet[idxR].pwrPdg[i];
697 
698             /* Start Vpd interpolation from the max of the minimum powers */
699             minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
700 
701             /* End Vpd interpolation from the min of the max powers */
702             maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
703             HALASSERT(maxPwrT4[i] > minPwrT4[i]);
704 
705             /* Fill pier Vpds */
706             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL,
707 			       AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
708             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR,
709 			       AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
710 
711             /* Interpolate the final vpd */
712             for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
713                 vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
714                     IEEE80211_IS_CHAN_2GHZ(chan)),
715                     bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
716             }
717         }
718     }
719     *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
720 
721     k = 0; /* index for the final table */
722     for (i = 0; i < numXpdGains; i++) {
723         if (i == (numXpdGains - 1)) {
724             pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
725         } else {
726             pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
727         }
728 
729         pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
730 
731 	/* NB: only applies to owl 1.0 */
732         if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
733 	    /*
734              * fix the gain delta, but get a delta that can be applied to min to
735              * keep the upper power values accurate, don't think max needs to
736              * be adjusted because should not be at that area of the table?
737 	     */
738             minDelta = pPdGainBoundaries[0] - 23;
739             pPdGainBoundaries[0] = 23;
740         }
741         else {
742             minDelta = 0;
743         }
744 
745         /* Find starting index for this pdGain */
746         if (i == 0) {
747             if (AR_SREV_MERLIN_20_OR_LATER(ah))
748                 ss = (int16_t)(0 - (minPwrT4[i] / 2));
749             else
750                 ss = 0; /* for the first pdGain, start from index 0 */
751         } else {
752 	    /* need overlap entries extrapolated below. */
753             ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
754         }
755         vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
756         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
757         /*
758          *-ve ss indicates need to extrapolate data below for this pdGain
759          */
760         while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
761             tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
762             pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
763             ss++;
764         }
765 
766         sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
767         tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
768         maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
769 
770         while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
771             pPDADCValues[k++] = vpdTableI[i][ss++];
772         }
773 
774         vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
775         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
776         /*
777          * for last gain, pdGainBoundary == Pmax_t2, so will
778          * have to extrapolate
779          */
780         if (tgtIndex >= maxIndex) {  /* need to extrapolate above */
781             while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
782                 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
783                           (ss - maxIndex +1) * vpdStep));
784                 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
785                 ss++;
786             }
787         }               /* extrapolated above */
788     }                   /* for all pdGainUsed */
789 
790     /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
791     while (i < AR5416_PD_GAINS_IN_MASK) {
792         pPdGainBoundaries[i] = AR5416_4K_EEP_PD_GAIN_BOUNDARY_DEFAULT;
793         i++;
794     }
795 
796     while (k < AR5416_NUM_PDADC_VALUES) {
797         pPDADCValues[k] = pPDADCValues[k-1];
798         k++;
799     }
800     return;
801 }
802