xref: /freebsd/sys/dev/ath/ath_hal/ar9002/ar9285_reset.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 
22 /*
23  * This is almost the same as ar5416_reset.c but uses the v4k EEPROM and
24  * supports only 2Ghz operation.
25  */
26 
27 #include "opt_ah.h"
28 
29 #include "ah.h"
30 #include "ah_internal.h"
31 #include "ah_devid.h"
32 
33 #include "ah_eeprom_v14.h"
34 #include "ah_eeprom_v4k.h"
35 
36 #include "ar9002/ar9285.h"
37 #include "ar5416/ar5416.h"
38 #include "ar5416/ar5416reg.h"
39 #include "ar5416/ar5416phy.h"
40 #include "ar9002/ar9002phy.h"
41 #include "ar9002/ar9285phy.h"
42 #include "ar9002/ar9285an.h"
43 #include "ar9002/ar9285_diversity.h"
44 
45 /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
46 #define	EEP_MINOR(_ah) \
47 	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
48 #define IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
49 #define IS_EEP_MINOR_V3(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
50 
51 /* Additional Time delay to wait after activiting the Base band */
52 #define BASE_ACTIVATE_DELAY	100	/* 100 usec */
53 #define PLL_SETTLE_DELAY	300	/* 300 usec */
54 #define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
55 
56 static HAL_BOOL ar9285SetPowerPerRateTable(struct ath_hal *ah,
57 	struct ar5416eeprom_4k *pEepData,
58 	const struct ieee80211_channel *chan, int16_t *ratesArray,
59 	uint16_t cfgCtl, uint16_t AntennaReduction,
60 	uint16_t twiceMaxRegulatoryPower,
61 	uint16_t powerLimit);
62 static HAL_BOOL ar9285SetPowerCalTable(struct ath_hal *ah,
63 	struct ar5416eeprom_4k *pEepData,
64 	const struct ieee80211_channel *chan,
65 	int16_t *pTxPowerIndexOffset);
66 static void ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
67 	const struct ieee80211_channel *chan, CAL_DATA_PER_FREQ_4K *pRawDataSet,
68 	uint8_t * bChans, uint16_t availPiers,
69 	uint16_t tPdGainOverlap, int16_t *pMinCalPower,
70 	uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
71 	uint16_t numXpdGains);
72 
73 HAL_BOOL
74 ar9285SetTransmitPower(struct ath_hal *ah,
75 	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
76 {
77 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
78 #define N(a)            (sizeof (a) / sizeof (a[0]))
79 
80     MODAL_EEP4K_HEADER	*pModal;
81     struct ath_hal_5212 *ahp = AH5212(ah);
82     int16_t		txPowerIndexOffset = 0;
83     int			i;
84 
85     uint16_t		cfgCtl;
86     uint16_t		powerLimit;
87     uint16_t		twiceAntennaReduction;
88     uint16_t		twiceMaxRegulatoryPower;
89     int16_t		maxPower;
90     HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
91     struct ar5416eeprom_4k *pEepData = &ee->ee_base;
92 
93     HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
94 
95     AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
96 
97     /* Setup info for the actual eeprom */
98     OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray));
99     cfgCtl = ath_hal_getctl(ah, chan);
100     powerLimit = chan->ic_maxregpower * 2;
101     twiceAntennaReduction = chan->ic_maxantgain;
102     twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
103     pModal = &pEepData->modalHeader;
104     HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
105 	__func__,chan->ic_freq, cfgCtl );
106 
107     if (IS_EEP_MINOR_V2(ah)) {
108         AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
109     }
110 
111     if (!ar9285SetPowerPerRateTable(ah, pEepData,  chan,
112                                     &AH5416(ah)->ah_ratesArray[0],cfgCtl,
113                                     twiceAntennaReduction,
114 				    twiceMaxRegulatoryPower, powerLimit)) {
115         HALDEBUG(ah, HAL_DEBUG_ANY,
116 	    "%s: unable to set tx power per rate table\n", __func__);
117         return AH_FALSE;
118     }
119 
120     if (!ar9285SetPowerCalTable(ah,  pEepData, chan, &txPowerIndexOffset)) {
121         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
122 	    __func__);
123         return AH_FALSE;
124     }
125 
126     maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
127       AH5416(ah)->ah_ratesArray[rateHt20_0]);
128     maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]);
129 
130     if (IEEE80211_IS_CHAN_HT40(chan)) {
131         maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]);
132     }
133 
134     ahp->ah_tx6PowerInHalfDbm = maxPower;
135     AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
136     ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
137 
138     /*
139      * txPowerIndexOffset is set by the SetPowerTable() call -
140      *  adjust the rate table (0 offset if rates EEPROM not loaded)
141      */
142     for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
143         AH5416(ah)->ah_ratesArray[i] = (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]);
144 	/* -5 dBm offset for Merlin and later; this includes Kite */
145 	AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
146         if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
147             AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
148 	if (AH5416(ah)->ah_ratesArray[i] < 0)
149 		AH5416(ah)->ah_ratesArray[i] = 0;
150     }
151 
152 #ifdef AH_EEPROM_DUMP
153     ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
154 #endif
155 
156     /*
157      * Adjust the HT40 power to meet the correct target TX power
158      * for 40MHz mode, based on TX power curves that are established
159      * for 20MHz mode.
160      *
161      * XXX handle overflow/too high power level?
162      */
163     if (IEEE80211_IS_CHAN_HT40(chan)) {
164         AH5416(ah)->ah_ratesArray[rateHt40_0] +=
165           AH5416(ah)->ah_ht40PowerIncForPdadc;
166         AH5416(ah)->ah_ratesArray[rateHt40_1] +=
167           AH5416(ah)->ah_ht40PowerIncForPdadc;
168         AH5416(ah)->ah_ratesArray[rateHt40_2] +=
169           AH5416(ah)->ah_ht40PowerIncForPdadc;
170         AH5416(ah)->ah_ratesArray[rateHt40_3] +=
171           AH5416(ah)->ah_ht40PowerIncForPdadc;
172         AH5416(ah)->ah_ratesArray[rateHt40_4] +=
173           AH5416(ah)->ah_ht40PowerIncForPdadc;
174         AH5416(ah)->ah_ratesArray[rateHt40_5] +=
175           AH5416(ah)->ah_ht40PowerIncForPdadc;
176         AH5416(ah)->ah_ratesArray[rateHt40_6] +=
177           AH5416(ah)->ah_ht40PowerIncForPdadc;
178         AH5416(ah)->ah_ratesArray[rateHt40_7] +=
179           AH5416(ah)->ah_ht40PowerIncForPdadc;
180     }
181 
182     /* Write the TX power rate registers */
183     ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
184 
185     return AH_TRUE;
186 #undef POW_SM
187 #undef N
188 }
189 
190 static void
191 ar9285SetBoardGain(struct ath_hal *ah, const MODAL_EEP4K_HEADER *pModal,
192     const struct ar5416eeprom_4k *eep, uint8_t txRxAttenLocal)
193 {
194 	OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
195 		  pModal->antCtrlChain[0]);
196 
197 	OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0),
198 		  (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)) &
199 		   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
200 		     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
201 		  SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
202 		  SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
203 
204 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
205 	    AR5416_EEP_MINOR_VER_3) {
206 		txRxAttenLocal = pModal->txRxAttenCh[0];
207 
208 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
209 		    AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
210 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
211 		    AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
212 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
213 		    AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]);
214 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
215 		    AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
216 
217 		/* Set the block 1 value to block 0 value */
218 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
219 		      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
220 		      pModal->bswMargin[0]);
221 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
222 		      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
223 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
224 		      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
225 		      pModal->xatten2Margin[0]);
226 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
227 		      AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
228 	}
229 
230 	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
231 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
232 	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
233 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
234 
235 	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
236 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
237 	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
238 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
239 }
240 
241 /*
242  * Read EEPROM header info and program the device for correct operation
243  * given the channel value.
244  */
245 HAL_BOOL
246 ar9285SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
247 {
248 	const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
249 	const struct ar5416eeprom_4k *eep = &ee->ee_base;
250 	const MODAL_EEP4K_HEADER *pModal;
251 	uint8_t txRxAttenLocal;
252 	uint8_t ob[5], db1[5], db2[5];
253 
254 	pModal = &eep->modalHeader;
255 	txRxAttenLocal = 23;
256 
257 	OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
258 
259 	/* Single chain for 4K EEPROM*/
260 	ar9285SetBoardGain(ah, pModal, eep, txRxAttenLocal);
261 
262 	/* Initialize Ant Diversity settings if supported */
263 	(void) ar9285SetAntennaSwitch(ah, AH5212(ah)->ah_antControl);
264 
265 	/* Configure TX power calibration */
266 	if (pModal->version >= 2) {
267 		ob[0] = pModal->ob_0;
268 		ob[1] = pModal->ob_1;
269 		ob[2] = pModal->ob_2;
270 		ob[3] = pModal->ob_3;
271 		ob[4] = pModal->ob_4;
272 
273 		db1[0] = pModal->db1_0;
274 		db1[1] = pModal->db1_1;
275 		db1[2] = pModal->db1_2;
276 		db1[3] = pModal->db1_3;
277 		db1[4] = pModal->db1_4;
278 
279 		db2[0] = pModal->db2_0;
280 		db2[1] = pModal->db2_1;
281 		db2[2] = pModal->db2_2;
282 		db2[3] = pModal->db2_3;
283 		db2[4] = pModal->db2_4;
284 	} else if (pModal->version == 1) {
285 		ob[0] = pModal->ob_0;
286 		ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
287 		db1[0] = pModal->db1_0;
288 		db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
289 		db2[0] = pModal->db2_0;
290 		db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
291 	} else {
292 		int i;
293 
294 		for (i = 0; i < 5; i++) {
295 			ob[i] = pModal->ob_0;
296 			db1[i] = pModal->db1_0;
297 			db2[i] = pModal->db1_0;
298 		}
299 	}
300 
301 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_0, ob[0]);
302 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_1, ob[1]);
303 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_2, ob[2]);
304 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_3, ob[3]);
305 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_4, ob[4]);
306 
307 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_0, db1[0]);
308 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_1, db1[1]);
309 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_2, db1[2]);
310 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_3, db1[3]);
311 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_4, db1[4]);
312 
313 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_0, db2[0]);
314 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_1, db2[1]);
315 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_2, db2[2]);
316 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_3, db2[3]);
317 	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_4, db2[4]);
318 
319 	OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
320 		      pModal->switchSettling);
321 	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
322 		      pModal->adcDesiredSize);
323 
324 	OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
325 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
326 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
327 		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
328 		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
329 
330 	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
331 		      pModal->txEndToRxOn);
332 
333 	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
334 		      pModal->thresh62);
335 	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
336 		      pModal->thresh62);
337 
338 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
339 	    AR5416_EEP_MINOR_VER_2) {
340 		OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
341 		    pModal->txFrameToDataStart);
342 		OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
343 		    pModal->txFrameToPaOn);
344 	}
345 
346 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
347 	    AR5416_EEP_MINOR_VER_3) {
348 		if (IEEE80211_IS_CHAN_HT40(chan))
349 			OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
350 			    AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
351 	}
352 
353 	/*
354 	 * Program the CCK TX gain factor appropriately if needed.
355 	 * The AR9285/AR9271 has a non-constant PA tx gain behaviour
356 	 * for CCK versus OFDM rates; other chips deal with this
357 	 * differently.
358 	 *
359 	 * The mask/shift/multiply hackery is done so place the same
360 	 * value (bb_desired_scale) into multiple 5-bit fields.
361 	 * For example, AR_PHY_TX_PWRCTRL9 has bb_desired_scale written
362 	 * to three fields: (0..4), (5..9) and (10..14).
363 	 */
364 	if (AR_SREV_9271(ah) || AR_SREV_KITE(ah)) {
365 		uint8_t bb_desired_scale = (pModal->bb_scale_smrt_antenna & EEP_4K_BB_DESIRED_SCALE_MASK);
366 		if ((eep->baseEepHeader.txGainType == 0) && (bb_desired_scale != 0)) {
367 			ath_hal_printf(ah, "[ath]: adjusting cck tx gain factor\n");
368 			uint32_t pwrctrl, mask, clr;
369 
370 			mask = (1<<0) | (1<<5) | (1<<10) | (1<<15) | (1<<20) | (1<<25);
371 			pwrctrl = mask * bb_desired_scale;
372 			clr = mask * 0x1f;
373 			OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
374 			OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
375 			OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
376 
377 			mask = (1<<0) | (1<<5) | (1<<15);
378 			pwrctrl = mask * bb_desired_scale;
379 			clr = mask * 0x1f;
380 			OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
381 
382 			mask = (1<<0) | (1<<5);
383 			pwrctrl = mask * bb_desired_scale;
384 			clr = mask * 0x1f;
385 			OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
386 			OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
387 		}
388 	}
389 
390 	return AH_TRUE;
391 }
392 
393 /*
394  * Helper functions common for AP/CB/XB
395  */
396 
397 static HAL_BOOL
398 ar9285SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
399                            const struct ieee80211_channel *chan,
400                            int16_t *ratesArray, uint16_t cfgCtl,
401                            uint16_t AntennaReduction,
402                            uint16_t twiceMaxRegulatoryPower,
403                            uint16_t powerLimit)
404 {
405 #define	N(a)	(sizeof(a)/sizeof(a[0]))
406 /* Local defines to distinguish between extension and control CTL's */
407 #define EXT_ADDITIVE (0x8000)
408 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
409 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
410 
411 	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
412 	int i;
413 	int16_t  twiceLargestAntenna;
414 	CAL_CTL_DATA_4K *rep;
415 	CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
416 	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
417 	CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
418 	int16_t scaledPower, minCtlPower;
419 
420 #define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
421 	static const uint16_t ctlModesFor11g[] = {
422 	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
423 	};
424 	const uint16_t *pCtlMode;
425 	uint16_t numCtlModes, ctlMode, freq;
426 	CHAN_CENTERS centers;
427 
428 	ar5416GetChannelCenters(ah,  chan, &centers);
429 
430 	/* Compute TxPower reduction due to Antenna Gain */
431 
432 	twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
433 	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
434 
435 	/* XXX setup for 5212 use (really used?) */
436 	ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
437 
438 	/*
439 	 * scaledPower is the minimum of the user input power level and
440 	 * the regulatory allowed power level
441 	 */
442 	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
443 
444 	/* Get target powers from EEPROM - our baseline for TX Power */
445 	/* Setup for CTL modes */
446 	numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
447 	pCtlMode = ctlModesFor11g;
448 
449 	ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
450 			AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
451 	ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
452 			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
453 	ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
454 			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
455 
456 	if (IEEE80211_IS_CHAN_HT40(chan)) {
457 		numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
458 
459 		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
460 			AR5416_4K_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
461 		/* Get target powers for extension channels */
462 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
463 			AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
464 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
465 			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
466 	}
467 
468 	/*
469 	 * For MIMO, need to apply regulatory caps individually across dynamically
470 	 * running modes: CCK, OFDM, HT20, HT40
471 	 *
472 	 * The outer loop walks through each possible applicable runtime mode.
473 	 * The inner loop walks through each ctlIndex entry in EEPROM.
474 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
475 	 *
476 	 */
477 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
478 		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
479 		    (pCtlMode[ctlMode] == CTL_2GHT40);
480 		if (isHt40CtlMode) {
481 			freq = centers.ctl_center;
482 		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
483 			freq = centers.ext_center;
484 		} else {
485 			freq = centers.ctl_center;
486 		}
487 
488 		/* walk through each CTL index stored in EEPROM */
489 		for (i = 0; (i < AR5416_4K_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
490 			uint16_t twiceMinEdgePower;
491 
492 			/* compare test group from regulatory channel list with test mode from pCtlMode list */
493 			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
494 				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
495 				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
496 				rep = &(pEepData->ctlData[i]);
497 				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
498 							rep->ctlEdges[
499 							  owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1], AH_TRUE);
500 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
501 					/* Find the minimum of all CTL edge powers that apply to this channel */
502 					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
503 				} else {
504 					/* specific */
505 					twiceMaxEdgePower = twiceMinEdgePower;
506 					break;
507 				}
508 			}
509 		}
510 		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
511 		/* Apply ctl mode to correct target power set */
512 		switch(pCtlMode[ctlMode]) {
513 		case CTL_11B:
514 			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
515 				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
516 			}
517 			break;
518 		case CTL_11A:
519 		case CTL_11G:
520 			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
521 				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
522 			}
523 			break;
524 		case CTL_5GHT20:
525 		case CTL_2GHT20:
526 			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
527 				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
528 			}
529 			break;
530 		case CTL_11B_EXT:
531 			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
532 			break;
533 		case CTL_11G_EXT:
534 			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
535 			break;
536 		case CTL_5GHT40:
537 		case CTL_2GHT40:
538 			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
539 				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
540 			}
541 			break;
542 		default:
543 			return AH_FALSE;
544 			break;
545 		}
546 	} /* end ctl mode checking */
547 
548         /* Set rates Array from collected data */
549 	ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
550 	    &targetPowerCck,
551 	    &targetPowerCckExt,
552 	    &targetPowerOfdm,
553 	    &targetPowerOfdmExt,
554 	    &targetPowerHt20,
555 	    &targetPowerHt40);
556 
557 	return AH_TRUE;
558 #undef EXT_ADDITIVE
559 #undef CTL_11G_EXT
560 #undef CTL_11B_EXT
561 #undef SUB_NUM_CTL_MODES_AT_2G_40
562 #undef N
563 }
564 
565 static HAL_BOOL
566 ar9285SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
567 	const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
568 {
569     CAL_DATA_PER_FREQ_4K *pRawDataset;
570     uint8_t  *pCalBChans = AH_NULL;
571     uint16_t pdGainOverlap_t2;
572     static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
573     uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
574     uint16_t numPiers, i;
575     int16_t  tMinCalPower;
576     uint16_t numXpdGain, xpdMask;
577     uint16_t xpdGainValues[4];	/* v4k eeprom has 2; the other two stay 0 */
578     uint32_t regChainOffset;
579 
580     OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
581 
582     xpdMask = pEepData->modalHeader.xpdGain;
583 
584     if (IS_EEP_MINOR_V2(ah)) {
585         pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
586     } else {
587     	pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
588     }
589 
590     pCalBChans = pEepData->calFreqPier2G;
591     numPiers = AR5416_4K_NUM_2G_CAL_PIERS;
592     numXpdGain = 0;
593 
594     /* Calculate the value of xpdgains from the xpdGain Mask */
595     for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
596         if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
597             if (numXpdGain >= AR5416_4K_NUM_PD_GAINS) {
598                 HALASSERT(0);
599                 break;
600             }
601             xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
602             numXpdGain++;
603         }
604     }
605 
606     /* Write the detector gain biases and their number */
607     ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
608 
609     for (i = 0; i < AR5416_MAX_CHAINS; i++) {
610 	regChainOffset = ar5416GetRegChainOffset(ah, i);
611         if (pEepData->baseEepHeader.txMask & (1 << i)) {
612             pRawDataset = pEepData->calPierData2G[i];
613 
614             ar9285GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
615                                              pCalBChans, numPiers,
616                                              pdGainOverlap_t2,
617                                              &tMinCalPower, gainBoundaries,
618                                              pdadcValues, numXpdGain);
619 
620             if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
621                 /*
622                  * Note the pdadc table may not start at 0 dBm power, could be
623                  * negative or greater than 0.  Need to offset the power
624                  * values by the amount of minPower for griffin
625                  */
626 		ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2, gainBoundaries);
627             }
628 
629             /* Write the power values into the baseband power table */
630 	    ar5416WritePdadcValues(ah, i, pdadcValues);
631         }
632     }
633     *pTxPowerIndexOffset = 0;
634 
635     return AH_TRUE;
636 }
637 
638 static void
639 ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
640                                  const struct ieee80211_channel *chan,
641 				 CAL_DATA_PER_FREQ_4K *pRawDataSet,
642                                  uint8_t * bChans,  uint16_t availPiers,
643                                  uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
644                                  uint8_t * pPDADCValues, uint16_t numXpdGains)
645 {
646 
647     int       i, j, k;
648     int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
649     uint16_t  idxL, idxR, numPiers; /* Pier indexes */
650 
651     /* filled out Vpd table for all pdGains (chanL) */
652     static uint8_t   vpdTableL[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
653 
654     /* filled out Vpd table for all pdGains (chanR) */
655     static uint8_t   vpdTableR[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
656 
657     /* filled out Vpd table for all pdGains (interpolated) */
658     static uint8_t   vpdTableI[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
659 
660     uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
661     uint8_t   minPwrT4[AR5416_4K_NUM_PD_GAINS];
662     uint8_t   maxPwrT4[AR5416_4K_NUM_PD_GAINS];
663     int16_t   vpdStep;
664     int16_t   tmpVal;
665     uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
666     HAL_BOOL    match;
667     int16_t  minDelta = 0;
668     CHAN_CENTERS centers;
669 
670     ar5416GetChannelCenters(ah, chan, &centers);
671 
672     /* Trim numPiers for the number of populated channel Piers */
673     for (numPiers = 0; numPiers < availPiers; numPiers++) {
674         if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
675             break;
676         }
677     }
678 
679     /* Find pier indexes around the current channel */
680     match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
681       IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
682 
683     if (match) {
684         /* Directly fill both vpd tables from the matching index */
685         for (i = 0; i < numXpdGains; i++) {
686             minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
687             maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
688             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i],
689 			       pRawDataSet[idxL].pwrPdg[i],
690                                pRawDataSet[idxL].vpdPdg[i],
691 			       AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
692         }
693     } else {
694         for (i = 0; i < numXpdGains; i++) {
695             pVpdL = pRawDataSet[idxL].vpdPdg[i];
696             pPwrL = pRawDataSet[idxL].pwrPdg[i];
697             pVpdR = pRawDataSet[idxR].vpdPdg[i];
698             pPwrR = pRawDataSet[idxR].pwrPdg[i];
699 
700             /* Start Vpd interpolation from the max of the minimum powers */
701             minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
702 
703             /* End Vpd interpolation from the min of the max powers */
704             maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
705             HALASSERT(maxPwrT4[i] > minPwrT4[i]);
706 
707             /* Fill pier Vpds */
708             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL,
709 			       AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
710             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR,
711 			       AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
712 
713             /* Interpolate the final vpd */
714             for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
715                 vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
716                     IEEE80211_IS_CHAN_2GHZ(chan)),
717                     bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
718             }
719         }
720     }
721     *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
722 
723     k = 0; /* index for the final table */
724     for (i = 0; i < numXpdGains; i++) {
725         if (i == (numXpdGains - 1)) {
726             pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
727         } else {
728             pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
729         }
730 
731         pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
732 
733 	/* NB: only applies to owl 1.0 */
734         if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
735 	    /*
736              * fix the gain delta, but get a delta that can be applied to min to
737              * keep the upper power values accurate, don't think max needs to
738              * be adjusted because should not be at that area of the table?
739 	     */
740             minDelta = pPdGainBoundaries[0] - 23;
741             pPdGainBoundaries[0] = 23;
742         }
743         else {
744             minDelta = 0;
745         }
746 
747         /* Find starting index for this pdGain */
748         if (i == 0) {
749             if (AR_SREV_MERLIN_20_OR_LATER(ah))
750                 ss = (int16_t)(0 - (minPwrT4[i] / 2));
751             else
752                 ss = 0; /* for the first pdGain, start from index 0 */
753         } else {
754 	    /* need overlap entries extrapolated below. */
755             ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
756         }
757         vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
758         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
759         /*
760          *-ve ss indicates need to extrapolate data below for this pdGain
761          */
762         while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
763             tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
764             pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
765             ss++;
766         }
767 
768         sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
769         tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
770         maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
771 
772         while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
773             pPDADCValues[k++] = vpdTableI[i][ss++];
774         }
775 
776         vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
777         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
778         /*
779          * for last gain, pdGainBoundary == Pmax_t2, so will
780          * have to extrapolate
781          */
782         if (tgtIndex >= maxIndex) {  /* need to extrapolate above */
783             while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
784                 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
785                           (ss - maxIndex +1) * vpdStep));
786                 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
787                 ss++;
788             }
789         }               /* extrapolated above */
790     }                   /* for all pdGainUsed */
791 
792     /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
793     while (i < AR5416_PD_GAINS_IN_MASK) {
794         pPdGainBoundaries[i] = AR5416_4K_EEP_PD_GAIN_BOUNDARY_DEFAULT;
795         i++;
796     }
797 
798     while (k < AR5416_NUM_PDADC_VALUES) {
799         pPDADCValues[k] = pPDADCValues[k-1];
800         k++;
801     }
802     return;
803 }
804