1 /*- 2 * SPDX-License-Identifier: ISC 3 * 4 * Copyright (c) 2008-2009 Sam Leffler, Errno Consulting 5 * Copyright (c) 2008 Atheros Communications, Inc. 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 #include "opt_ah.h" 20 21 /* 22 * NB: Merlin and later have a simpler RF backend. 23 */ 24 #include "ah.h" 25 #include "ah_internal.h" 26 27 #include "ah_eeprom_v14.h" 28 29 #include "ar9002/ar9280.h" 30 #include "ar5416/ar5416reg.h" 31 #include "ar5416/ar5416phy.h" 32 33 #define N(a) (sizeof(a)/sizeof(a[0])) 34 35 struct ar9280State { 36 RF_HAL_FUNCS base; /* public state, must be first */ 37 uint16_t pcdacTable[1]; /* XXX */ 38 }; 39 #define AR9280(ah) ((struct ar9280State *) AH5212(ah)->ah_rfHal) 40 41 static HAL_BOOL ar9280GetChannelMaxMinPower(struct ath_hal *, 42 const struct ieee80211_channel *, int16_t *maxPow,int16_t *minPow); 43 int16_t ar9280GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c); 44 45 static void 46 ar9280WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, 47 int writes) 48 { 49 (void) ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_bb_rfgain, 50 freqIndex, writes); 51 } 52 53 /* 54 * Take the MHz channel value and set the Channel value 55 * 56 * ASSUMES: Writes enabled to analog bus 57 * 58 * Actual Expression, 59 * 60 * For 2GHz channel, 61 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) 62 * (freq_ref = 40MHz) 63 * 64 * For 5GHz channel, 65 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10) 66 * (freq_ref = 40MHz/(24>>amodeRefSel)) 67 * 68 * For 5GHz channels which are 5MHz spaced, 69 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) 70 * (freq_ref = 40MHz) 71 */ 72 static HAL_BOOL 73 ar9280SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan) 74 { 75 uint16_t bMode, fracMode, aModeRefSel = 0; 76 uint32_t freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0; 77 CHAN_CENTERS centers; 78 uint32_t refDivA = 24; 79 uint8_t frac_n_5g; 80 81 OS_MARK(ah, AH_MARK_SETCHANNEL, chan->ic_freq); 82 83 ar5416GetChannelCenters(ah, chan, ¢ers); 84 freq = centers.synth_center; 85 86 reg32 = OS_REG_READ(ah, AR_PHY_SYNTH_CONTROL); 87 reg32 &= 0xc0000000; 88 89 if (ath_hal_eepromGet(ah, AR_EEP_FRAC_N_5G, &frac_n_5g) != HAL_OK) 90 frac_n_5g = 0; 91 92 if (freq < 4800) { /* 2 GHz, fractional mode */ 93 uint32_t txctl; 94 95 bMode = 1; 96 fracMode = 1; 97 aModeRefSel = 0; 98 channelSel = (freq * 0x10000)/15; 99 100 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); 101 if (freq == 2484) { 102 /* Enable channel spreading for channel 14 */ 103 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 104 txctl | AR_PHY_CCK_TX_CTRL_JAPAN); 105 } else { 106 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 107 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); 108 } 109 } else { 110 bMode = 0; 111 fracMode = 0; 112 113 switch (frac_n_5g) { 114 case 0: 115 /* 116 * Enable fractional mode for half/quarter rate 117 * channels. 118 * 119 * This is from the Linux ath9k code, rather than 120 * the Atheros HAL code. 121 */ 122 if (IEEE80211_IS_CHAN_QUARTER(chan) || 123 IEEE80211_IS_CHAN_HALF(chan)) 124 aModeRefSel = 0; 125 else if ((freq % 20) == 0) { 126 aModeRefSel = 3; 127 } else if ((freq % 10) == 0) { 128 aModeRefSel = 2; 129 } 130 if (aModeRefSel) break; 131 case 1: 132 default: 133 aModeRefSel = 0; 134 /* Enable 2G (fractional) mode for channels which are 5MHz spaced */ 135 136 /* 137 * Workaround for talking on PSB non-5MHz channels; 138 * the pre-Merlin chips only had a 2.5MHz channel 139 * spacing so some channels aren't reachable. 140 141 * 142 * This interoperates on the quarter rate channels 143 * with the AR5112 and later RF synths. Please note 144 * that the synthesiser isn't able to completely 145 * accurately represent these frequencies (as the 146 * resolution in this reference is 2.5MHz) and thus 147 * it will be slightly "off centre." This matches 148 * the same slightly incorrect centre frequency 149 * behaviour that the AR5112 and later channel 150 * selection code has. 151 * 152 * This also interoperates with the AR5416 153 * synthesiser modification for programming 154 * fractional frequencies in 5GHz mode. However 155 * that modification is also disabled by default. 156 * 157 * This is disabled because it hasn't been tested for 158 * regulatory compliance and neither have the NICs 159 * which would use it. So if you enable this code, 160 * you must first ensure that you've re-certified the 161 * NICs in question beforehand or you will be 162 * violating your local regulatory rules and breaking 163 * the law. 164 */ 165 #if 0 166 if (freq % 5 == 0) { 167 #endif 168 /* Normal */ 169 fracMode = 1; 170 refDivA = 1; 171 channelSel = (freq * 0x8000)/15; 172 #if 0 173 } else { 174 /* Offset by 500KHz */ 175 uint32_t f, ch, ch2; 176 177 fracMode = 1; 178 refDivA = 1; 179 180 /* Calculate the "adjusted" frequency */ 181 f = freq - 2; 182 ch = (((f - 4800) * 10) / 25) + 1; 183 184 ch2 = ((ch * 25) / 5) + 9600; 185 channelSel = (ch2 * 0x4000) / 15; 186 //ath_hal_printf(ah, 187 // "%s: freq=%d, ch=%d, ch2=%d, " 188 // "channelSel=%d\n", 189 // __func__, freq, ch, ch2, channelSel); 190 } 191 #endif 192 193 /* RefDivA setting */ 194 OS_A_REG_RMW_FIELD(ah, AR_AN_SYNTH9, 195 AR_AN_SYNTH9_REFDIVA, refDivA); 196 } 197 198 if (!fracMode) { 199 ndiv = (freq * (refDivA >> aModeRefSel))/60; 200 channelSel = ndiv & 0x1ff; 201 channelFrac = (ndiv & 0xfffffe00) * 2; 202 channelSel = (channelSel << 17) | channelFrac; 203 } 204 } 205 206 reg32 = reg32 | (bMode << 29) | (fracMode << 28) | 207 (aModeRefSel << 26) | (channelSel); 208 209 OS_REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32); 210 211 AH_PRIVATE(ah)->ah_curchan = chan; 212 213 return AH_TRUE; 214 } 215 216 /* 217 * Return a reference to the requested RF Bank. 218 */ 219 static uint32_t * 220 ar9280GetRfBank(struct ath_hal *ah, int bank) 221 { 222 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n", 223 __func__, bank); 224 return AH_NULL; 225 } 226 227 /* 228 * Reads EEPROM header info from device structure and programs 229 * all rf registers 230 */ 231 static HAL_BOOL 232 ar9280SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan, 233 uint16_t modesIndex, uint16_t *rfXpdGain) 234 { 235 return AH_TRUE; /* nothing to do */ 236 } 237 238 /* 239 * Read the transmit power levels from the structures taken from EEPROM 240 * Interpolate read transmit power values for this channel 241 * Organize the transmit power values into a table for writing into the hardware 242 */ 243 244 static HAL_BOOL 245 ar9280SetPowerTable(struct ath_hal *ah, int16_t *pPowerMin, int16_t *pPowerMax, 246 const struct ieee80211_channel *chan, uint16_t *rfXpdGain) 247 { 248 return AH_TRUE; 249 } 250 251 #if 0 252 static int16_t 253 ar9280GetMinPower(struct ath_hal *ah, EXPN_DATA_PER_CHANNEL_5112 *data) 254 { 255 int i, minIndex; 256 int16_t minGain,minPwr,minPcdac,retVal; 257 258 /* Assume NUM_POINTS_XPD0 > 0 */ 259 minGain = data->pDataPerXPD[0].xpd_gain; 260 for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) { 261 if (data->pDataPerXPD[i].xpd_gain < minGain) { 262 minIndex = i; 263 minGain = data->pDataPerXPD[i].xpd_gain; 264 } 265 } 266 minPwr = data->pDataPerXPD[minIndex].pwr_t4[0]; 267 minPcdac = data->pDataPerXPD[minIndex].pcdac[0]; 268 for (i=1; i<NUM_POINTS_XPD0; i++) { 269 if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) { 270 minPwr = data->pDataPerXPD[minIndex].pwr_t4[i]; 271 minPcdac = data->pDataPerXPD[minIndex].pcdac[i]; 272 } 273 } 274 retVal = minPwr - (minPcdac*2); 275 return(retVal); 276 } 277 #endif 278 279 static HAL_BOOL 280 ar9280GetChannelMaxMinPower(struct ath_hal *ah, 281 const struct ieee80211_channel *chan, 282 int16_t *maxPow, int16_t *minPow) 283 { 284 #if 0 285 struct ath_hal_5212 *ahp = AH5212(ah); 286 int numChannels=0,i,last; 287 int totalD, totalF,totalMin; 288 EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL; 289 EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL; 290 291 *maxPow = 0; 292 if (IS_CHAN_A(chan)) { 293 powerArray = ahp->ah_modePowerArray5112; 294 data = powerArray[headerInfo11A].pDataPerChannel; 295 numChannels = powerArray[headerInfo11A].numChannels; 296 } else if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) { 297 /* XXX - is this correct? Should we also use the same power for turbo G? */ 298 powerArray = ahp->ah_modePowerArray5112; 299 data = powerArray[headerInfo11G].pDataPerChannel; 300 numChannels = powerArray[headerInfo11G].numChannels; 301 } else if (IS_CHAN_B(chan)) { 302 powerArray = ahp->ah_modePowerArray5112; 303 data = powerArray[headerInfo11B].pDataPerChannel; 304 numChannels = powerArray[headerInfo11B].numChannels; 305 } else { 306 return (AH_TRUE); 307 } 308 /* Make sure the channel is in the range of the TP values 309 * (freq piers) 310 */ 311 if ((numChannels < 1) || 312 (chan->channel < data[0].channelValue) || 313 (chan->channel > data[numChannels-1].channelValue)) 314 return(AH_FALSE); 315 316 /* Linearly interpolate the power value now */ 317 for (last=0,i=0; 318 (i<numChannels) && (chan->channel > data[i].channelValue); 319 last=i++); 320 totalD = data[i].channelValue - data[last].channelValue; 321 if (totalD > 0) { 322 totalF = data[i].maxPower_t4 - data[last].maxPower_t4; 323 *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD); 324 325 totalMin = ar9280GetMinPower(ah,&data[i]) - ar9280GetMinPower(ah, &data[last]); 326 *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + ar9280GetMinPower(ah, &data[last])*totalD)/totalD); 327 return (AH_TRUE); 328 } else { 329 if (chan->channel == data[i].channelValue) { 330 *maxPow = data[i].maxPower_t4; 331 *minPow = ar9280GetMinPower(ah, &data[i]); 332 return(AH_TRUE); 333 } else 334 return(AH_FALSE); 335 } 336 #else 337 *maxPow = *minPow = 0; 338 return AH_FALSE; 339 #endif 340 } 341 342 /* 343 * The ordering of nfarray is thus: 344 * 345 * nfarray[0]: Chain 0 ctl 346 * nfarray[1]: Chain 1 ctl 347 * nfarray[2]: Chain 2 ctl 348 * nfarray[3]: Chain 0 ext 349 * nfarray[4]: Chain 1 ext 350 * nfarray[5]: Chain 2 ext 351 */ 352 static void 353 ar9280GetNoiseFloor(struct ath_hal *ah, int16_t nfarray[]) 354 { 355 int16_t nf; 356 357 nf = MS(OS_REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR); 358 if (nf & 0x100) 359 nf = 0 - ((nf ^ 0x1ff) + 1); 360 HALDEBUG(ah, HAL_DEBUG_NFCAL, 361 "NF calibrated [ctl] [chain 0] is %d\n", nf); 362 nfarray[0] = nf; 363 364 nf = MS(OS_REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR); 365 if (nf & 0x100) 366 nf = 0 - ((nf ^ 0x1ff) + 1); 367 HALDEBUG(ah, HAL_DEBUG_NFCAL, 368 "NF calibrated [ctl] [chain 1] is %d\n", nf); 369 nfarray[1] = nf; 370 371 nf = MS(OS_REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR); 372 if (nf & 0x100) 373 nf = 0 - ((nf ^ 0x1ff) + 1); 374 HALDEBUG(ah, HAL_DEBUG_NFCAL, 375 "NF calibrated [ext] [chain 0] is %d\n", nf); 376 nfarray[3] = nf; 377 378 nf = MS(OS_REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR); 379 if (nf & 0x100) 380 nf = 0 - ((nf ^ 0x1ff) + 1); 381 HALDEBUG(ah, HAL_DEBUG_NFCAL, 382 "NF calibrated [ext] [chain 1] is %d\n", nf); 383 nfarray[4] = nf; 384 385 /* Chain 2 - invalid */ 386 nfarray[2] = 0; 387 nfarray[5] = 0; 388 389 } 390 391 /* 392 * Adjust NF based on statistical values for 5GHz frequencies. 393 * Stubbed:Not used by Fowl 394 */ 395 int16_t 396 ar9280GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c) 397 { 398 return 0; 399 } 400 401 /* 402 * Free memory for analog bank scratch buffers 403 */ 404 static void 405 ar9280RfDetach(struct ath_hal *ah) 406 { 407 struct ath_hal_5212 *ahp = AH5212(ah); 408 409 HALASSERT(ahp->ah_rfHal != AH_NULL); 410 ath_hal_free(ahp->ah_rfHal); 411 ahp->ah_rfHal = AH_NULL; 412 } 413 414 HAL_BOOL 415 ar9280RfAttach(struct ath_hal *ah, HAL_STATUS *status) 416 { 417 struct ath_hal_5212 *ahp = AH5212(ah); 418 struct ar9280State *priv; 419 420 HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: attach AR9280 radio\n", __func__); 421 422 HALASSERT(ahp->ah_rfHal == AH_NULL); 423 priv = ath_hal_malloc(sizeof(struct ar9280State)); 424 if (priv == AH_NULL) { 425 HALDEBUG(ah, HAL_DEBUG_ANY, 426 "%s: cannot allocate private state\n", __func__); 427 *status = HAL_ENOMEM; /* XXX */ 428 return AH_FALSE; 429 } 430 priv->base.rfDetach = ar9280RfDetach; 431 priv->base.writeRegs = ar9280WriteRegs; 432 priv->base.getRfBank = ar9280GetRfBank; 433 priv->base.setChannel = ar9280SetChannel; 434 priv->base.setRfRegs = ar9280SetRfRegs; 435 priv->base.setPowerTable = ar9280SetPowerTable; 436 priv->base.getChannelMaxMinPower = ar9280GetChannelMaxMinPower; 437 priv->base.getNfAdjust = ar9280GetNfAdjust; 438 439 ahp->ah_pcdacTable = priv->pcdacTable; 440 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); 441 ahp->ah_rfHal = &priv->base; 442 /* 443 * Set noise floor adjust method; we arrange a 444 * direct call instead of thunking. 445 */ 446 AH_PRIVATE(ah)->ah_getNfAdjust = priv->base.getNfAdjust; 447 AH_PRIVATE(ah)->ah_getNoiseFloor = ar9280GetNoiseFloor; 448 449 return AH_TRUE; 450 } 451 452 static HAL_BOOL 453 ar9280RfProbe(struct ath_hal *ah) 454 { 455 return (AR_SREV_MERLIN(ah)); 456 } 457 458 AH_RF(RF9280, ar9280RfProbe, ar9280RfAttach); 459