1 /*- 2 * SPDX-License-Identifier: ISC 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * Copyright (c) 2002-2008 Atheros Communications, Inc. 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 * 19 * $FreeBSD$ 20 */ 21 #include "opt_ah.h" 22 23 #include "ah.h" 24 #include "ah_desc.h" 25 #include "ah_internal.h" 26 27 #include "ar5416/ar5416.h" 28 #include "ar5416/ar5416reg.h" 29 #include "ar5416/ar5416phy.h" 30 #include "ar5416/ar5416desc.h" 31 32 /* 33 * Stop transmit on the specified queue 34 */ 35 HAL_BOOL 36 ar5416StopTxDma(struct ath_hal *ah, u_int q) 37 { 38 #define STOP_DMA_TIMEOUT 4000 /* us */ 39 #define STOP_DMA_ITER 100 /* us */ 40 u_int i; 41 42 HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues); 43 44 HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE); 45 46 OS_REG_WRITE(ah, AR_Q_TXD, 1 << q); 47 for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) { 48 if (ar5212NumTxPending(ah, q) == 0) 49 break; 50 OS_DELAY(STOP_DMA_ITER); 51 } 52 #ifdef AH_DEBUG 53 if (i == 0) { 54 HALDEBUG(ah, HAL_DEBUG_ANY, 55 "%s: queue %u DMA did not stop in 400 msec\n", __func__, q); 56 HALDEBUG(ah, HAL_DEBUG_ANY, 57 "%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__, 58 OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE), 59 OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q))); 60 HALDEBUG(ah, HAL_DEBUG_ANY, 61 "%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n", 62 __func__, OS_REG_READ(ah, AR_QMISC(q)), 63 OS_REG_READ(ah, AR_QRDYTIMECFG(q)), 64 OS_REG_READ(ah, AR_Q_RDYTIMESHDN)); 65 } 66 #endif /* AH_DEBUG */ 67 68 /* ar5416 and up can kill packets at the PCU level */ 69 if (ar5212NumTxPending(ah, q)) { 70 uint32_t j; 71 72 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, 73 "%s: Num of pending TX Frames %d on Q %d\n", 74 __func__, ar5212NumTxPending(ah, q), q); 75 76 /* Kill last PCU Tx Frame */ 77 /* TODO - save off and restore current values of Q1/Q2? */ 78 for (j = 0; j < 2; j++) { 79 uint32_t tsfLow = OS_REG_READ(ah, AR_TSF_L32); 80 OS_REG_WRITE(ah, AR_QUIET2, 81 SM(10, AR_QUIET2_QUIET_DUR)); 82 OS_REG_WRITE(ah, AR_QUIET_PERIOD, 100); 83 OS_REG_WRITE(ah, AR_NEXT_QUIET, tsfLow >> 10); 84 OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET); 85 86 if ((OS_REG_READ(ah, AR_TSF_L32)>>10) == (tsfLow>>10)) 87 break; 88 89 HALDEBUG(ah, HAL_DEBUG_ANY, 90 "%s: TSF moved while trying to set quiet time " 91 "TSF: 0x%08x\n", __func__, tsfLow); 92 HALASSERT(j < 1); /* TSF shouldn't count twice or reg access is taking forever */ 93 } 94 95 OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE); 96 97 /* Allow the quiet mechanism to do its work */ 98 OS_DELAY(200); 99 OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET); 100 101 /* Verify the transmit q is empty */ 102 for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) { 103 if (ar5212NumTxPending(ah, q) == 0) 104 break; 105 OS_DELAY(STOP_DMA_ITER); 106 } 107 if (i == 0) { 108 HALDEBUG(ah, HAL_DEBUG_ANY, 109 "%s: Failed to stop Tx DMA in %d msec after killing" 110 " last frame\n", __func__, STOP_DMA_TIMEOUT / 1000); 111 } 112 OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE); 113 } 114 115 OS_REG_WRITE(ah, AR_Q_TXD, 0); 116 return (i != 0); 117 #undef STOP_DMA_ITER 118 #undef STOP_DMA_TIMEOUT 119 } 120 121 #define VALID_KEY_TYPES \ 122 ((1 << HAL_KEY_TYPE_CLEAR) | (1 << HAL_KEY_TYPE_WEP)|\ 123 (1 << HAL_KEY_TYPE_AES) | (1 << HAL_KEY_TYPE_TKIP)) 124 #define isValidKeyType(_t) ((1 << (_t)) & VALID_KEY_TYPES) 125 126 #define set11nTries(_series, _index) \ 127 (SM((_series)[_index].Tries, AR_XmitDataTries##_index)) 128 129 #define set11nRate(_series, _index) \ 130 (SM((_series)[_index].Rate, AR_XmitRate##_index)) 131 132 #define set11nPktDurRTSCTS(_series, _index) \ 133 (SM((_series)[_index].PktDuration, AR_PacketDur##_index) |\ 134 ((_series)[_index].RateFlags & HAL_RATESERIES_RTS_CTS ?\ 135 AR_RTSCTSQual##_index : 0)) 136 137 #define set11nRateFlags(_series, _index) \ 138 ((_series)[_index].RateFlags & HAL_RATESERIES_2040 ? AR_2040_##_index : 0) \ 139 |((_series)[_index].RateFlags & HAL_RATESERIES_HALFGI ? AR_GI##_index : 0) \ 140 |((_series)[_index].RateFlags & HAL_RATESERIES_STBC ? AR_STBC##_index : 0) \ 141 |SM((_series)[_index].ChSel, AR_ChainSel##_index) 142 143 /* 144 * Descriptor Access Functions 145 */ 146 147 #define VALID_PKT_TYPES \ 148 ((1<<HAL_PKT_TYPE_NORMAL)|(1<<HAL_PKT_TYPE_ATIM)|\ 149 (1<<HAL_PKT_TYPE_PSPOLL)|(1<<HAL_PKT_TYPE_PROBE_RESP)|\ 150 (1<<HAL_PKT_TYPE_BEACON)|(1<<HAL_PKT_TYPE_AMPDU)) 151 #define isValidPktType(_t) ((1<<(_t)) & VALID_PKT_TYPES) 152 #define VALID_TX_RATES \ 153 ((1<<0x0b)|(1<<0x0f)|(1<<0x0a)|(1<<0x0e)|(1<<0x09)|(1<<0x0d)|\ 154 (1<<0x08)|(1<<0x0c)|(1<<0x1b)|(1<<0x1a)|(1<<0x1e)|(1<<0x19)|\ 155 (1<<0x1d)|(1<<0x18)|(1<<0x1c)|(1<<0x01)|(1<<0x02)|(1<<0x03)|\ 156 (1<<0x04)|(1<<0x05)|(1<<0x06)|(1<<0x07)|(1<<0x00)) 157 /* NB: accept HT rates */ 158 #define isValidTxRate(_r) ((1<<((_r) & 0x7f)) & VALID_TX_RATES) 159 160 static inline int 161 ar5416RateToRateTable(struct ath_hal *ah, uint8_t rate, HAL_BOOL is_ht40) 162 { 163 164 /* 165 * Handle the non-MCS rates 166 */ 167 switch (rate) { 168 case /* 1 Mb */ 0x1b: 169 case /* 1 MbS*/ 0x1b | 0x4: 170 return (AH5416(ah)->ah_ratesArray[rate1l]); 171 case /* 2 Mb */ 0x1a: 172 return (AH5416(ah)->ah_ratesArray[rate2l]); 173 case /* 2 MbS*/ 0x1a | 0x4: 174 return (AH5416(ah)->ah_ratesArray[rate2s]); 175 case /* 5.5 Mb */ 0x19: 176 return (AH5416(ah)->ah_ratesArray[rate5_5l]); 177 case /* 5.5 MbS*/ 0x19 | 0x4: 178 return (AH5416(ah)->ah_ratesArray[rate5_5s]); 179 case /* 11 Mb */ 0x18: 180 return (AH5416(ah)->ah_ratesArray[rate11l]); 181 case /* 11 MbS*/ 0x18 | 0x4: 182 return (AH5416(ah)->ah_ratesArray[rate11s]); 183 } 184 185 /* OFDM rates */ 186 switch (rate) { 187 case /* 6 Mb */ 0x0b: 188 return (AH5416(ah)->ah_ratesArray[rate6mb]); 189 case /* 9 Mb */ 0x0f: 190 return (AH5416(ah)->ah_ratesArray[rate9mb]); 191 case /* 12 Mb */ 0x0a: 192 return (AH5416(ah)->ah_ratesArray[rate12mb]); 193 case /* 18 Mb */ 0x0e: 194 return (AH5416(ah)->ah_ratesArray[rate18mb]); 195 case /* 24 Mb */ 0x09: 196 return (AH5416(ah)->ah_ratesArray[rate24mb]); 197 case /* 36 Mb */ 0x0d: 198 return (AH5416(ah)->ah_ratesArray[rate36mb]); 199 case /* 48 Mb */ 0x08: 200 return (AH5416(ah)->ah_ratesArray[rate48mb]); 201 case /* 54 Mb */ 0x0c: 202 return (AH5416(ah)->ah_ratesArray[rate54mb]); 203 } 204 205 /* 206 * Handle HT20/HT40 - we only have to do MCS0-7; 207 * there's no stream differences. 208 */ 209 if ((rate & 0x80) && is_ht40) { 210 return (AH5416(ah)->ah_ratesArray[rateHt40_0 + (rate & 0x7)]); 211 } else if (rate & 0x80) { 212 return (AH5416(ah)->ah_ratesArray[rateHt20_0 + (rate & 0x7)]); 213 } 214 215 /* XXX default (eg XR, bad bad person!) */ 216 return (AH5416(ah)->ah_ratesArray[rate6mb]); 217 } 218 219 /* 220 * Return the TX power to be used for the given rate/chains/TX power. 221 * 222 * There are a bunch of tweaks to make to a given TX power based on 223 * the current configuration, so... 224 */ 225 static uint16_t 226 ar5416GetTxRatePower(struct ath_hal *ah, uint8_t rate, uint8_t tx_chainmask, 227 uint16_t txPower, HAL_BOOL is_ht40) 228 { 229 int n_txpower, max_txpower; 230 const int cck_ofdm_delta = 2; 231 #define EEP_MINOR(_ah) \ 232 (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK) 233 #define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2) 234 235 /* Take a copy ; we may underflow and thus need to clamp things */ 236 n_txpower = txPower; 237 238 /* HT40? Need to adjust the TX power by this */ 239 if (is_ht40) 240 n_txpower += AH5416(ah)->ah_ht40PowerIncForPdadc; 241 242 /* 243 * Merlin? Offset the target TX power offset - it defaults to 244 * starting at -5.0dBm, but that can change! 245 * 246 * Kiwi/Kite? Always -5.0dBm offset. 247 */ 248 if (AR_SREV_KIWI_10_OR_LATER(ah)) { 249 n_txpower -= (AR5416_PWR_TABLE_OFFSET_DB * 2); 250 } else if (AR_SREV_MERLIN_20_OR_LATER(ah)) { 251 int8_t pwr_table_offset = 0; 252 /* This is in dBm, convert to 1/2 dBm */ 253 (void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET, 254 &pwr_table_offset); 255 n_txpower -= (pwr_table_offset * 2); 256 } 257 258 /* 259 * If Open-loop TX power control is used, the CCK rates need 260 * to be offset by that. 261 * 262 * Rates: 2S, 2L, 1S, 1L, 5.5S, 5.5L 263 * 264 * XXX Odd, we don't have a PHY table entry for long preamble 265 * 1mbit CCK? 266 */ 267 if (AR_SREV_MERLIN_20_OR_LATER(ah) && 268 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { 269 if (rate == 0x19 || rate == 0x1a || rate == 0x1b || 270 rate == (0x19 | 0x04) || rate == (0x1a | 0x04) || 271 rate == (0x1b | 0x04)) { 272 n_txpower -= cck_ofdm_delta; 273 } 274 } 275 276 /* 277 * We're now offset by the same amount that the static maximum 278 * PHY power tables are. So, clamp the value based on that rate. 279 */ 280 max_txpower = ar5416RateToRateTable(ah, rate, is_ht40); 281 #if 0 282 ath_hal_printf(ah, "%s: n_txpower = %d, max_txpower = %d, " 283 "rate = 0x%x , is_ht40 = %d\n", 284 __func__, 285 n_txpower, 286 max_txpower, 287 rate, 288 is_ht40); 289 #endif 290 n_txpower = MIN(max_txpower, n_txpower); 291 292 /* 293 * We don't have to offset the TX power for two or three 294 * chain operation here - it's done by the AR_PHY_POWER_TX_SUB 295 * register setting via the EEPROM. 296 * 297 * So for vendors that programmed the maximum target power assuming 298 * that 2/3 chains are always on, things will just plain work. 299 * (They won't reach that target power if only one chain is on, but 300 * that's a different problem.) 301 */ 302 303 /* Over/underflow? Adjust */ 304 if (n_txpower < 0) 305 n_txpower = 0; 306 else if (n_txpower > 63) 307 n_txpower = 63; 308 309 /* 310 * For some odd reason the AR9160 with txpower=0 results in a 311 * much higher (max?) TX power. So, if it's a chipset before 312 * AR9220/AR9280, just clamp the minimum value at 1. 313 */ 314 if ((! AR_SREV_MERLIN_10_OR_LATER(ah)) && (n_txpower == 0)) 315 n_txpower = 1; 316 317 return (n_txpower); 318 #undef EEP_MINOR 319 #undef IS_EEP_MINOR_V2 320 } 321 322 HAL_BOOL 323 ar5416SetupTxDesc(struct ath_hal *ah, struct ath_desc *ds, 324 u_int pktLen, 325 u_int hdrLen, 326 HAL_PKT_TYPE type, 327 u_int txPower, 328 u_int txRate0, u_int txTries0, 329 u_int keyIx, 330 u_int antMode, 331 u_int flags, 332 u_int rtsctsRate, 333 u_int rtsctsDuration, 334 u_int compicvLen, 335 u_int compivLen, 336 u_int comp) 337 { 338 #define RTSCTS (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA) 339 struct ar5416_desc *ads = AR5416DESC(ds); 340 struct ath_hal_5416 *ahp = AH5416(ah); 341 342 (void) hdrLen; 343 344 HALASSERT(txTries0 != 0); 345 HALASSERT(isValidPktType(type)); 346 HALASSERT(isValidTxRate(txRate0)); 347 HALASSERT((flags & RTSCTS) != RTSCTS); 348 /* XXX validate antMode */ 349 350 txPower = (txPower + AH5212(ah)->ah_txPowerIndexOffset); 351 if (txPower > 63) 352 txPower = 63; 353 354 /* 355 * XXX For now, just assume that this isn't a HT40 frame. 356 * It'll get over-ridden by the multi-rate TX power setup. 357 */ 358 if (AH5212(ah)->ah_tpcEnabled) { 359 txPower = ar5416GetTxRatePower(ah, txRate0, 360 ahp->ah_tx_chainmask, 361 txPower, 362 AH_FALSE); 363 } 364 365 ads->ds_ctl0 = (pktLen & AR_FrameLen) 366 | (txPower << AR_XmitPower_S) 367 | (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0) 368 | (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0) 369 | (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0) 370 ; 371 ads->ds_ctl1 = (type << AR_FrameType_S) 372 | (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0) 373 | (flags & HAL_TXDESC_HWTS ? AR_InsertTS : 0) 374 ; 375 ads->ds_ctl2 = SM(txTries0, AR_XmitDataTries0) 376 | (flags & HAL_TXDESC_DURENA ? AR_DurUpdateEn : 0) 377 ; 378 ads->ds_ctl3 = (txRate0 << AR_XmitRate0_S) 379 ; 380 ads->ds_ctl4 = 0; 381 ads->ds_ctl5 = 0; 382 ads->ds_ctl6 = 0; 383 ads->ds_ctl7 = SM(ahp->ah_tx_chainmask, AR_ChainSel0) 384 | SM(ahp->ah_tx_chainmask, AR_ChainSel1) 385 | SM(ahp->ah_tx_chainmask, AR_ChainSel2) 386 | SM(ahp->ah_tx_chainmask, AR_ChainSel3) 387 ; 388 ads->ds_ctl8 = SM(0, AR_AntCtl0); 389 ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1); 390 ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2); 391 ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3); 392 393 if (keyIx != HAL_TXKEYIX_INVALID) { 394 /* XXX validate key index */ 395 ads->ds_ctl1 |= SM(keyIx, AR_DestIdx); 396 ads->ds_ctl0 |= AR_DestIdxValid; 397 ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType); 398 } 399 if (flags & RTSCTS) { 400 if (!isValidTxRate(rtsctsRate)) { 401 HALDEBUG(ah, HAL_DEBUG_ANY, 402 "%s: invalid rts/cts rate 0x%x\n", 403 __func__, rtsctsRate); 404 return AH_FALSE; 405 } 406 /* XXX validate rtsctsDuration */ 407 ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0) 408 | (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0) 409 ; 410 ads->ds_ctl7 |= (rtsctsRate << AR_RTSCTSRate_S); 411 } 412 413 /* 414 * Set the TX antenna to 0 for Kite 415 * To preserve existing behaviour, also set the TPC bits to 0; 416 * when TPC is enabled these should be filled in appropriately. 417 * 418 * XXX TODO: when doing TPC, set the TX power up appropriately? 419 */ 420 if (AR_SREV_KITE(ah)) { 421 ads->ds_ctl8 = SM(0, AR_AntCtl0); 422 ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1); 423 ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2); 424 ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3); 425 } 426 return AH_TRUE; 427 #undef RTSCTS 428 } 429 430 HAL_BOOL 431 ar5416SetupXTxDesc(struct ath_hal *ah, struct ath_desc *ds, 432 u_int txRate1, u_int txTries1, 433 u_int txRate2, u_int txTries2, 434 u_int txRate3, u_int txTries3) 435 { 436 struct ar5416_desc *ads = AR5416DESC(ds); 437 438 if (txTries1) { 439 HALASSERT(isValidTxRate(txRate1)); 440 ads->ds_ctl2 |= SM(txTries1, AR_XmitDataTries1); 441 ads->ds_ctl3 |= (txRate1 << AR_XmitRate1_S); 442 } 443 if (txTries2) { 444 HALASSERT(isValidTxRate(txRate2)); 445 ads->ds_ctl2 |= SM(txTries2, AR_XmitDataTries2); 446 ads->ds_ctl3 |= (txRate2 << AR_XmitRate2_S); 447 } 448 if (txTries3) { 449 HALASSERT(isValidTxRate(txRate3)); 450 ads->ds_ctl2 |= SM(txTries3, AR_XmitDataTries3); 451 ads->ds_ctl3 |= (txRate3 << AR_XmitRate3_S); 452 } 453 return AH_TRUE; 454 } 455 456 /* 457 * XXX TODO: Figure out if AR_InsertTS is required on all sub-frames 458 * of a TX descriptor. 459 */ 460 HAL_BOOL 461 ar5416FillTxDesc(struct ath_hal *ah, struct ath_desc *ds, 462 HAL_DMA_ADDR *bufAddrList, uint32_t *segLenList, u_int descId, 463 u_int qcuId, HAL_BOOL firstSeg, HAL_BOOL lastSeg, 464 const struct ath_desc *ds0) 465 { 466 struct ar5416_desc *ads = AR5416DESC(ds); 467 uint32_t segLen = segLenList[0]; 468 469 HALASSERT((segLen &~ AR_BufLen) == 0); 470 471 ds->ds_data = bufAddrList[0]; 472 473 if (firstSeg) { 474 /* 475 * First descriptor, don't clobber xmit control data 476 * setup by ar5212SetupTxDesc. 477 */ 478 ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore); 479 } else if (lastSeg) { /* !firstSeg && lastSeg */ 480 /* 481 * Last descriptor in a multi-descriptor frame, 482 * copy the multi-rate transmit parameters from 483 * the first frame for processing on completion. 484 */ 485 ads->ds_ctl1 = segLen; 486 #ifdef AH_NEED_DESC_SWAP 487 ads->ds_ctl0 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl0) 488 & AR_TxIntrReq; 489 ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2); 490 ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3); 491 /* ctl6 - we only need encrtype; the rest are blank */ 492 ads->ds_ctl6 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType); 493 #else 494 ads->ds_ctl0 = AR5416DESC_CONST(ds0)->ds_ctl0 & AR_TxIntrReq; 495 ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2; 496 ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3; 497 /* ctl6 - we only need encrtype; the rest are blank */ 498 ads->ds_ctl6 = AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType; 499 #endif 500 } else { /* !firstSeg && !lastSeg */ 501 /* 502 * Intermediate descriptor in a multi-descriptor frame. 503 */ 504 #ifdef AH_NEED_DESC_SWAP 505 ads->ds_ctl0 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl0) 506 & AR_TxIntrReq; 507 ads->ds_ctl6 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType); 508 #else 509 ads->ds_ctl0 = AR5416DESC_CONST(ds0)->ds_ctl0 & AR_TxIntrReq; 510 ads->ds_ctl6 = AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType; 511 #endif 512 ads->ds_ctl1 = segLen | AR_TxMore; 513 ads->ds_ctl2 = 0; 514 ads->ds_ctl3 = 0; 515 } 516 /* XXX only on last descriptor? */ 517 OS_MEMZERO(ads->u.tx.status, sizeof(ads->u.tx.status)); 518 return AH_TRUE; 519 } 520 521 /* 522 * NB: cipher is no longer used, it's calculated. 523 */ 524 HAL_BOOL 525 ar5416ChainTxDesc(struct ath_hal *ah, struct ath_desc *ds, 526 HAL_DMA_ADDR *bufAddrList, 527 uint32_t *segLenList, 528 u_int pktLen, 529 u_int hdrLen, 530 HAL_PKT_TYPE type, 531 u_int keyIx, 532 HAL_CIPHER cipher, 533 uint8_t delims, 534 HAL_BOOL firstSeg, 535 HAL_BOOL lastSeg, 536 HAL_BOOL lastAggr) 537 { 538 struct ar5416_desc *ads = AR5416DESC(ds); 539 uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads); 540 struct ath_hal_5416 *ahp = AH5416(ah); 541 u_int segLen = segLenList[0]; 542 543 int isaggr = 0; 544 uint32_t last_aggr = 0; 545 546 (void) hdrLen; 547 (void) ah; 548 549 HALASSERT((segLen &~ AR_BufLen) == 0); 550 ds->ds_data = bufAddrList[0]; 551 552 HALASSERT(isValidPktType(type)); 553 if (type == HAL_PKT_TYPE_AMPDU) { 554 type = HAL_PKT_TYPE_NORMAL; 555 isaggr = 1; 556 if (lastAggr == AH_FALSE) 557 last_aggr = AR_MoreAggr; 558 } 559 560 /* 561 * Since this function is called before any of the other 562 * descriptor setup functions (at least in this particular 563 * 802.11n aggregation implementation), always bzero() the 564 * descriptor. Previously this would be done for all but 565 * the first segment. 566 * XXX TODO: figure out why; perhaps I'm using this slightly 567 * XXX incorrectly. 568 */ 569 OS_MEMZERO(ds->ds_hw, AR5416_DESC_TX_CTL_SZ); 570 571 /* 572 * Note: VEOL should only be for the last descriptor in the chain. 573 */ 574 ads->ds_ctl0 = (pktLen & AR_FrameLen); 575 576 /* 577 * For aggregates: 578 * + IsAggr must be set for all descriptors of all subframes of 579 * the aggregate 580 * + MoreAggr must be set for all descriptors of all subframes 581 * of the aggregate EXCEPT the last subframe; 582 * + MoreAggr must be _CLEAR_ for all descrpitors of the last 583 * subframe of the aggregate. 584 */ 585 ads->ds_ctl1 = (type << AR_FrameType_S) 586 | (isaggr ? (AR_IsAggr | last_aggr) : 0); 587 588 ads->ds_ctl2 = 0; 589 ads->ds_ctl3 = 0; 590 if (keyIx != HAL_TXKEYIX_INVALID) { 591 /* XXX validate key index */ 592 ads->ds_ctl1 |= SM(keyIx, AR_DestIdx); 593 ads->ds_ctl0 |= AR_DestIdxValid; 594 } 595 596 ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType); 597 if (isaggr) { 598 ads->ds_ctl6 |= SM(delims, AR_PadDelim); 599 } 600 601 if (firstSeg) { 602 ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore); 603 } else if (lastSeg) { /* !firstSeg && lastSeg */ 604 ads->ds_ctl0 = 0; 605 ads->ds_ctl1 |= segLen; 606 } else { /* !firstSeg && !lastSeg */ 607 /* 608 * Intermediate descriptor in a multi-descriptor frame. 609 */ 610 ads->ds_ctl0 = 0; 611 ads->ds_ctl1 |= segLen | AR_TxMore; 612 } 613 ds_txstatus[0] = ds_txstatus[1] = 0; 614 ds_txstatus[9] &= ~AR_TxDone; 615 616 return AH_TRUE; 617 } 618 619 HAL_BOOL 620 ar5416SetupFirstTxDesc(struct ath_hal *ah, struct ath_desc *ds, 621 u_int aggrLen, u_int flags, u_int txPower, 622 u_int txRate0, u_int txTries0, u_int antMode, 623 u_int rtsctsRate, u_int rtsctsDuration) 624 { 625 #define RTSCTS (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA) 626 struct ar5416_desc *ads = AR5416DESC(ds); 627 struct ath_hal_5212 *ahp = AH5212(ah); 628 629 HALASSERT(txTries0 != 0); 630 HALASSERT(isValidTxRate(txRate0)); 631 HALASSERT((flags & RTSCTS) != RTSCTS); 632 /* XXX validate antMode */ 633 634 txPower = (txPower + ahp->ah_txPowerIndexOffset ); 635 if(txPower > 63) txPower=63; 636 637 ads->ds_ctl0 |= (txPower << AR_XmitPower_S) 638 | (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0) 639 | (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0) 640 | (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0); 641 ads->ds_ctl1 |= (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0); 642 ads->ds_ctl2 |= SM(txTries0, AR_XmitDataTries0); 643 ads->ds_ctl3 |= (txRate0 << AR_XmitRate0_S); 644 ads->ds_ctl7 = SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel0) 645 | SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel1) 646 | SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel2) 647 | SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel3); 648 649 /* NB: no V1 WAR */ 650 ads->ds_ctl8 = SM(0, AR_AntCtl0); 651 ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1); 652 ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2); 653 ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3); 654 655 ads->ds_ctl6 &= ~(0xffff); 656 ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen); 657 658 if (flags & RTSCTS) { 659 /* XXX validate rtsctsDuration */ 660 ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0) 661 | (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0); 662 } 663 664 /* 665 * Set the TX antenna to 0 for Kite 666 * To preserve existing behaviour, also set the TPC bits to 0; 667 * when TPC is enabled these should be filled in appropriately. 668 */ 669 if (AR_SREV_KITE(ah)) { 670 ads->ds_ctl8 = SM(0, AR_AntCtl0); 671 ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1); 672 ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2); 673 ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3); 674 } 675 676 return AH_TRUE; 677 #undef RTSCTS 678 } 679 680 HAL_BOOL 681 ar5416SetupLastTxDesc(struct ath_hal *ah, struct ath_desc *ds, 682 const struct ath_desc *ds0) 683 { 684 struct ar5416_desc *ads = AR5416DESC(ds); 685 686 ads->ds_ctl1 &= ~AR_MoreAggr; 687 ads->ds_ctl6 &= ~AR_PadDelim; 688 689 /* hack to copy rate info to last desc for later processing */ 690 #ifdef AH_NEED_DESC_SWAP 691 ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2); 692 ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3); 693 #else 694 ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2; 695 ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3; 696 #endif 697 return AH_TRUE; 698 } 699 700 #ifdef AH_NEED_DESC_SWAP 701 /* Swap transmit descriptor */ 702 static __inline void 703 ar5416SwapTxDesc(struct ath_desc *ds) 704 { 705 ds->ds_data = __bswap32(ds->ds_data); 706 ds->ds_ctl0 = __bswap32(ds->ds_ctl0); 707 ds->ds_ctl1 = __bswap32(ds->ds_ctl1); 708 ds->ds_hw[0] = __bswap32(ds->ds_hw[0]); 709 ds->ds_hw[1] = __bswap32(ds->ds_hw[1]); 710 ds->ds_hw[2] = __bswap32(ds->ds_hw[2]); 711 ds->ds_hw[3] = __bswap32(ds->ds_hw[3]); 712 } 713 #endif 714 715 /* 716 * Processing of HW TX descriptor. 717 */ 718 HAL_STATUS 719 ar5416ProcTxDesc(struct ath_hal *ah, 720 struct ath_desc *ds, struct ath_tx_status *ts) 721 { 722 struct ar5416_desc *ads = AR5416DESC(ds); 723 uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads); 724 725 #ifdef AH_NEED_DESC_SWAP 726 if ((ds_txstatus[9] & __bswap32(AR_TxDone)) == 0) 727 return HAL_EINPROGRESS; 728 ar5416SwapTxDesc(ds); 729 #else 730 if ((ds_txstatus[9] & AR_TxDone) == 0) 731 return HAL_EINPROGRESS; 732 #endif 733 734 /* Update software copies of the HW status */ 735 ts->ts_seqnum = MS(ds_txstatus[9], AR_SeqNum); 736 ts->ts_tstamp = AR_SendTimestamp(ds_txstatus); 737 ts->ts_tid = MS(ds_txstatus[9], AR_TxTid); 738 739 ts->ts_status = 0; 740 if (ds_txstatus[1] & AR_ExcessiveRetries) 741 ts->ts_status |= HAL_TXERR_XRETRY; 742 if (ds_txstatus[1] & AR_Filtered) 743 ts->ts_status |= HAL_TXERR_FILT; 744 if (ds_txstatus[1] & AR_FIFOUnderrun) 745 ts->ts_status |= HAL_TXERR_FIFO; 746 if (ds_txstatus[9] & AR_TxOpExceeded) 747 ts->ts_status |= HAL_TXERR_XTXOP; 748 if (ds_txstatus[1] & AR_TxTimerExpired) 749 ts->ts_status |= HAL_TXERR_TIMER_EXPIRED; 750 751 ts->ts_flags = 0; 752 if (ds_txstatus[0] & AR_TxBaStatus) { 753 ts->ts_flags |= HAL_TX_BA; 754 ts->ts_ba_low = AR_BaBitmapLow(ds_txstatus); 755 ts->ts_ba_high = AR_BaBitmapHigh(ds_txstatus); 756 } 757 if (ds->ds_ctl1 & AR_IsAggr) 758 ts->ts_flags |= HAL_TX_AGGR; 759 if (ds_txstatus[1] & AR_DescCfgErr) 760 ts->ts_flags |= HAL_TX_DESC_CFG_ERR; 761 if (ds_txstatus[1] & AR_TxDataUnderrun) 762 ts->ts_flags |= HAL_TX_DATA_UNDERRUN; 763 if (ds_txstatus[1] & AR_TxDelimUnderrun) 764 ts->ts_flags |= HAL_TX_DELIM_UNDERRUN; 765 766 /* 767 * Extract the transmit rate used and mark the rate as 768 * ``alternate'' if it wasn't the series 0 rate. 769 */ 770 ts->ts_finaltsi = MS(ds_txstatus[9], AR_FinalTxIdx); 771 switch (ts->ts_finaltsi) { 772 case 0: 773 ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate0); 774 break; 775 case 1: 776 ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate1); 777 break; 778 case 2: 779 ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate2); 780 break; 781 case 3: 782 ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate3); 783 break; 784 } 785 786 ts->ts_rssi = MS(ds_txstatus[5], AR_TxRSSICombined); 787 ts->ts_rssi_ctl[0] = MS(ds_txstatus[0], AR_TxRSSIAnt00); 788 ts->ts_rssi_ctl[1] = MS(ds_txstatus[0], AR_TxRSSIAnt01); 789 ts->ts_rssi_ctl[2] = MS(ds_txstatus[0], AR_TxRSSIAnt02); 790 ts->ts_rssi_ext[0] = MS(ds_txstatus[5], AR_TxRSSIAnt10); 791 ts->ts_rssi_ext[1] = MS(ds_txstatus[5], AR_TxRSSIAnt11); 792 ts->ts_rssi_ext[2] = MS(ds_txstatus[5], AR_TxRSSIAnt12); 793 ts->ts_evm0 = AR_TxEVM0(ds_txstatus); 794 ts->ts_evm1 = AR_TxEVM1(ds_txstatus); 795 ts->ts_evm2 = AR_TxEVM2(ds_txstatus); 796 797 ts->ts_shortretry = MS(ds_txstatus[1], AR_RTSFailCnt); 798 ts->ts_longretry = MS(ds_txstatus[1], AR_DataFailCnt); 799 /* 800 * The retry count has the number of un-acked tries for the 801 * final series used. When doing multi-rate retry we must 802 * fixup the retry count by adding in the try counts for 803 * each series that was fully-processed. Beware that this 804 * takes values from the try counts in the final descriptor. 805 * These are not required by the hardware. We assume they 806 * are placed there by the driver as otherwise we have no 807 * access and the driver can't do the calculation because it 808 * doesn't know the descriptor format. 809 */ 810 switch (ts->ts_finaltsi) { 811 case 3: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries2); 812 case 2: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries1); 813 case 1: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries0); 814 } 815 816 /* 817 * These fields are not used. Zero these to preserve compatibility 818 * with existing drivers. 819 */ 820 ts->ts_virtcol = MS(ads->ds_ctl1, AR_VirtRetryCnt); 821 ts->ts_antenna = 0; /* We don't switch antennas on Owl*/ 822 823 /* handle tx trigger level changes internally */ 824 if ((ts->ts_status & HAL_TXERR_FIFO) || 825 (ts->ts_flags & (HAL_TX_DATA_UNDERRUN | HAL_TX_DELIM_UNDERRUN))) 826 ar5212UpdateTxTrigLevel(ah, AH_TRUE); 827 828 return HAL_OK; 829 } 830 831 HAL_BOOL 832 ar5416SetGlobalTxTimeout(struct ath_hal *ah, u_int tu) 833 { 834 struct ath_hal_5416 *ahp = AH5416(ah); 835 836 if (tu > 0xFFFF) { 837 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad global tx timeout %u\n", 838 __func__, tu); 839 /* restore default handling */ 840 ahp->ah_globaltxtimeout = (u_int) -1; 841 return AH_FALSE; 842 } 843 OS_REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); 844 ahp->ah_globaltxtimeout = tu; 845 return AH_TRUE; 846 } 847 848 u_int 849 ar5416GetGlobalTxTimeout(struct ath_hal *ah) 850 { 851 return MS(OS_REG_READ(ah, AR_GTXTO), AR_GTXTO_TIMEOUT_LIMIT); 852 } 853 854 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f) 855 static const u_int8_t baDurationDelta[] = { 856 24, // 0: BPSK 857 12, // 1: QPSK 1/2 858 12, // 2: QPSK 3/4 859 4, // 3: 16-QAM 1/2 860 4, // 4: 16-QAM 3/4 861 4, // 5: 64-QAM 2/3 862 4, // 6: 64-QAM 3/4 863 4, // 7: 64-QAM 5/6 864 24, // 8: BPSK 865 12, // 9: QPSK 1/2 866 12, // 10: QPSK 3/4 867 4, // 11: 16-QAM 1/2 868 4, // 12: 16-QAM 3/4 869 4, // 13: 64-QAM 2/3 870 4, // 14: 64-QAM 3/4 871 4, // 15: 64-QAM 5/6 872 }; 873 874 void 875 ar5416Set11nRateScenario(struct ath_hal *ah, struct ath_desc *ds, 876 u_int durUpdateEn, u_int rtsctsRate, 877 HAL_11N_RATE_SERIES series[], u_int nseries, u_int flags) 878 { 879 struct ar5416_desc *ads = AR5416DESC(ds); 880 uint32_t ds_ctl0; 881 882 HALASSERT(nseries == 4); 883 (void)nseries; 884 885 /* 886 * Only one of RTS and CTS enable must be set. 887 * If a frame has both set, just do RTS protection - 888 * that's enough to satisfy legacy protection. 889 */ 890 if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) { 891 ds_ctl0 = ads->ds_ctl0; 892 893 if (flags & HAL_TXDESC_RTSENA) { 894 ds_ctl0 &= ~AR_CTSEnable; 895 ds_ctl0 |= AR_RTSEnable; 896 } else { 897 ds_ctl0 &= ~AR_RTSEnable; 898 ds_ctl0 |= AR_CTSEnable; 899 } 900 901 ads->ds_ctl0 = ds_ctl0; 902 } else { 903 ads->ds_ctl0 = 904 (ads->ds_ctl0 & ~(AR_RTSEnable | AR_CTSEnable)); 905 } 906 907 ads->ds_ctl2 = set11nTries(series, 0) 908 | set11nTries(series, 1) 909 | set11nTries(series, 2) 910 | set11nTries(series, 3) 911 | (durUpdateEn ? AR_DurUpdateEn : 0); 912 913 ads->ds_ctl3 = set11nRate(series, 0) 914 | set11nRate(series, 1) 915 | set11nRate(series, 2) 916 | set11nRate(series, 3); 917 918 ads->ds_ctl4 = set11nPktDurRTSCTS(series, 0) 919 | set11nPktDurRTSCTS(series, 1); 920 921 ads->ds_ctl5 = set11nPktDurRTSCTS(series, 2) 922 | set11nPktDurRTSCTS(series, 3); 923 924 ads->ds_ctl7 = set11nRateFlags(series, 0) 925 | set11nRateFlags(series, 1) 926 | set11nRateFlags(series, 2) 927 | set11nRateFlags(series, 3) 928 | SM(rtsctsRate, AR_RTSCTSRate); 929 930 /* 931 * Doing per-packet TPC - update the TX power for the first 932 * field; program in the other series. 933 */ 934 if (AH5212(ah)->ah_tpcEnabled) { 935 uint32_t ds_ctl0; 936 uint16_t txPower; 937 938 /* Modify the tx power field for rate 0 */ 939 txPower = ar5416GetTxRatePower(ah, series[0].Rate, 940 series[0].ChSel, 941 series[0].tx_power_cap, 942 !! (series[0].RateFlags & HAL_RATESERIES_2040)); 943 ds_ctl0 = ads->ds_ctl0 & ~AR_XmitPower; 944 ds_ctl0 |= (txPower << AR_XmitPower_S); 945 ads->ds_ctl0 = ds_ctl0; 946 947 /* 948 * Override the whole descriptor field for each TX power. 949 * 950 * This will need changing if we ever support antenna control 951 * programming. 952 */ 953 txPower = ar5416GetTxRatePower(ah, series[1].Rate, 954 series[1].ChSel, 955 series[1].tx_power_cap, 956 !! (series[1].RateFlags & HAL_RATESERIES_2040)); 957 ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1); 958 959 txPower = ar5416GetTxRatePower(ah, series[2].Rate, 960 series[2].ChSel, 961 series[2].tx_power_cap, 962 !! (series[2].RateFlags & HAL_RATESERIES_2040)); 963 ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2); 964 965 txPower = ar5416GetTxRatePower(ah, series[3].Rate, 966 series[3].ChSel, 967 series[3].tx_power_cap, 968 !! (series[3].RateFlags & HAL_RATESERIES_2040)); 969 ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3); 970 } 971 } 972 973 /* 974 * Note: this should be called before calling ar5416SetBurstDuration() 975 * (if it is indeed called) in order to ensure that the burst duration 976 * is correctly updated with the BA delta workaround. 977 */ 978 void 979 ar5416Set11nAggrFirst(struct ath_hal *ah, struct ath_desc *ds, u_int aggrLen, 980 u_int numDelims) 981 { 982 struct ar5416_desc *ads = AR5416DESC(ds); 983 uint32_t flags; 984 uint32_t burstDur; 985 uint8_t rate; 986 987 ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr); 988 989 ads->ds_ctl6 &= ~(AR_AggrLen | AR_PadDelim); 990 ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen); 991 ads->ds_ctl6 |= SM(numDelims, AR_PadDelim); 992 993 if (! AR_SREV_MERLIN_10_OR_LATER(ah)) { 994 /* 995 * XXX It'd be nice if I were passed in the rate scenario 996 * at this point.. 997 */ 998 rate = MS(ads->ds_ctl3, AR_XmitRate0); 999 flags = ads->ds_ctl0 & (AR_CTSEnable | AR_RTSEnable); 1000 /* 1001 * WAR - MAC assumes normal ACK time instead of 1002 * block ACK while computing packet duration. 1003 * Add this delta to the burst duration in the descriptor. 1004 */ 1005 if (flags && (ads->ds_ctl1 & AR_IsAggr)) { 1006 burstDur = baDurationDelta[HT_RC_2_MCS(rate)]; 1007 ads->ds_ctl2 &= ~(AR_BurstDur); 1008 ads->ds_ctl2 |= SM(burstDur, AR_BurstDur); 1009 } 1010 } 1011 } 1012 1013 void 1014 ar5416Set11nAggrMiddle(struct ath_hal *ah, struct ath_desc *ds, u_int numDelims) 1015 { 1016 struct ar5416_desc *ads = AR5416DESC(ds); 1017 uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads); 1018 1019 ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr); 1020 1021 ads->ds_ctl6 &= ~AR_PadDelim; 1022 ads->ds_ctl6 |= SM(numDelims, AR_PadDelim); 1023 ads->ds_ctl6 &= ~AR_AggrLen; 1024 1025 /* 1026 * Clear the TxDone status here, may need to change 1027 * func name to reflect this 1028 */ 1029 ds_txstatus[9] &= ~AR_TxDone; 1030 } 1031 1032 void 1033 ar5416Set11nAggrLast(struct ath_hal *ah, struct ath_desc *ds) 1034 { 1035 struct ar5416_desc *ads = AR5416DESC(ds); 1036 1037 ads->ds_ctl1 |= AR_IsAggr; 1038 ads->ds_ctl1 &= ~AR_MoreAggr; 1039 ads->ds_ctl6 &= ~AR_PadDelim; 1040 } 1041 1042 void 1043 ar5416Clr11nAggr(struct ath_hal *ah, struct ath_desc *ds) 1044 { 1045 struct ar5416_desc *ads = AR5416DESC(ds); 1046 1047 ads->ds_ctl1 &= (~AR_IsAggr & ~AR_MoreAggr); 1048 ads->ds_ctl6 &= ~AR_PadDelim; 1049 ads->ds_ctl6 &= ~AR_AggrLen; 1050 } 1051 1052 void 1053 ar5416Set11nVirtualMoreFrag(struct ath_hal *ah, struct ath_desc *ds, 1054 u_int vmf) 1055 { 1056 struct ar5416_desc *ads = AR5416DESC(ds); 1057 if (vmf) 1058 ads->ds_ctl0 |= AR_VirtMoreFrag; 1059 else 1060 ads->ds_ctl0 &= ~AR_VirtMoreFrag; 1061 } 1062 1063 /* 1064 * Program the burst duration, with the included BA delta if it's 1065 * applicable. 1066 */ 1067 void 1068 ar5416Set11nBurstDuration(struct ath_hal *ah, struct ath_desc *ds, 1069 u_int burstDuration) 1070 { 1071 struct ar5416_desc *ads = AR5416DESC(ds); 1072 uint32_t burstDur = 0; 1073 uint8_t rate; 1074 1075 if (! AR_SREV_MERLIN_10_OR_LATER(ah)) { 1076 /* 1077 * XXX It'd be nice if I were passed in the rate scenario 1078 * at this point.. 1079 */ 1080 rate = MS(ads->ds_ctl3, AR_XmitDataTries0); 1081 /* 1082 * WAR - MAC assumes normal ACK time instead of 1083 * block ACK while computing packet duration. 1084 * Add this delta to the burst duration in the descriptor. 1085 */ 1086 if (ads->ds_ctl1 & AR_IsAggr) { 1087 burstDur = baDurationDelta[HT_RC_2_MCS(rate)]; 1088 } 1089 } 1090 1091 ads->ds_ctl2 &= ~AR_BurstDur; 1092 ads->ds_ctl2 |= SM(burstDur + burstDuration, AR_BurstDur); 1093 } 1094 1095 /* 1096 * Retrieve the rate table from the given TX completion descriptor 1097 */ 1098 HAL_BOOL 1099 ar5416GetTxCompletionRates(struct ath_hal *ah, const struct ath_desc *ds0, int *rates, int *tries) 1100 { 1101 const struct ar5416_desc *ads = AR5416DESC_CONST(ds0); 1102 1103 rates[0] = MS(ads->ds_ctl3, AR_XmitRate0); 1104 rates[1] = MS(ads->ds_ctl3, AR_XmitRate1); 1105 rates[2] = MS(ads->ds_ctl3, AR_XmitRate2); 1106 rates[3] = MS(ads->ds_ctl3, AR_XmitRate3); 1107 1108 tries[0] = MS(ads->ds_ctl2, AR_XmitDataTries0); 1109 tries[1] = MS(ads->ds_ctl2, AR_XmitDataTries1); 1110 tries[2] = MS(ads->ds_ctl2, AR_XmitDataTries2); 1111 tries[3] = MS(ads->ds_ctl2, AR_XmitDataTries3); 1112 1113 return AH_TRUE; 1114 } 1115 1116 /* 1117 * TX queue management routines - AR5416 and later chipsets 1118 */ 1119 1120 /* 1121 * Allocate and initialize a tx DCU/QCU combination. 1122 */ 1123 int 1124 ar5416SetupTxQueue(struct ath_hal *ah, HAL_TX_QUEUE type, 1125 const HAL_TXQ_INFO *qInfo) 1126 { 1127 struct ath_hal_5212 *ahp = AH5212(ah); 1128 HAL_TX_QUEUE_INFO *qi; 1129 HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps; 1130 int q, defqflags; 1131 1132 /* by default enable OK+ERR+DESC+URN interrupts */ 1133 defqflags = HAL_TXQ_TXOKINT_ENABLE 1134 | HAL_TXQ_TXERRINT_ENABLE 1135 | HAL_TXQ_TXDESCINT_ENABLE 1136 | HAL_TXQ_TXURNINT_ENABLE; 1137 /* XXX move queue assignment to driver */ 1138 switch (type) { 1139 case HAL_TX_QUEUE_BEACON: 1140 q = pCap->halTotalQueues-1; /* highest priority */ 1141 defqflags |= HAL_TXQ_DBA_GATED 1142 | HAL_TXQ_CBR_DIS_QEMPTY 1143 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 1144 | HAL_TXQ_BACKOFF_DISABLE; 1145 break; 1146 case HAL_TX_QUEUE_CAB: 1147 q = pCap->halTotalQueues-2; /* next highest priority */ 1148 defqflags |= HAL_TXQ_DBA_GATED 1149 | HAL_TXQ_CBR_DIS_QEMPTY 1150 | HAL_TXQ_CBR_DIS_BEMPTY 1151 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 1152 | HAL_TXQ_BACKOFF_DISABLE; 1153 break; 1154 case HAL_TX_QUEUE_PSPOLL: 1155 q = 1; /* lowest priority */ 1156 defqflags |= HAL_TXQ_DBA_GATED 1157 | HAL_TXQ_CBR_DIS_QEMPTY 1158 | HAL_TXQ_CBR_DIS_BEMPTY 1159 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 1160 | HAL_TXQ_BACKOFF_DISABLE; 1161 break; 1162 case HAL_TX_QUEUE_UAPSD: 1163 q = pCap->halTotalQueues-3; /* nextest highest priority */ 1164 if (ahp->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE) { 1165 HALDEBUG(ah, HAL_DEBUG_ANY, 1166 "%s: no available UAPSD tx queue\n", __func__); 1167 return -1; 1168 } 1169 break; 1170 case HAL_TX_QUEUE_DATA: 1171 for (q = 0; q < pCap->halTotalQueues; q++) 1172 if (ahp->ah_txq[q].tqi_type == HAL_TX_QUEUE_INACTIVE) 1173 break; 1174 if (q == pCap->halTotalQueues) { 1175 HALDEBUG(ah, HAL_DEBUG_ANY, 1176 "%s: no available tx queue\n", __func__); 1177 return -1; 1178 } 1179 break; 1180 default: 1181 HALDEBUG(ah, HAL_DEBUG_ANY, 1182 "%s: bad tx queue type %u\n", __func__, type); 1183 return -1; 1184 } 1185 1186 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q); 1187 1188 qi = &ahp->ah_txq[q]; 1189 if (qi->tqi_type != HAL_TX_QUEUE_INACTIVE) { 1190 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: tx queue %u already active\n", 1191 __func__, q); 1192 return -1; 1193 } 1194 OS_MEMZERO(qi, sizeof(HAL_TX_QUEUE_INFO)); 1195 qi->tqi_type = type; 1196 if (qInfo == AH_NULL) { 1197 qi->tqi_qflags = defqflags; 1198 qi->tqi_aifs = INIT_AIFS; 1199 qi->tqi_cwmin = HAL_TXQ_USEDEFAULT; /* NB: do at reset */ 1200 qi->tqi_cwmax = INIT_CWMAX; 1201 qi->tqi_shretry = INIT_SH_RETRY; 1202 qi->tqi_lgretry = INIT_LG_RETRY; 1203 qi->tqi_physCompBuf = 0; 1204 } else { 1205 qi->tqi_physCompBuf = qInfo->tqi_compBuf; 1206 (void) ar5212SetTxQueueProps(ah, q, qInfo); 1207 } 1208 /* NB: must be followed by ar5212ResetTxQueue */ 1209 return q; 1210 } 1211 1212 /* 1213 * Update the h/w interrupt registers to reflect a tx q's configuration. 1214 */ 1215 static void 1216 setTxQInterrupts(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi) 1217 { 1218 struct ath_hal_5212 *ahp = AH5212(ah); 1219 1220 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, 1221 "%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", __func__, 1222 ahp->ah_txOkInterruptMask, ahp->ah_txErrInterruptMask, 1223 ahp->ah_txDescInterruptMask, ahp->ah_txEolInterruptMask, 1224 ahp->ah_txUrnInterruptMask); 1225 1226 OS_REG_WRITE(ah, AR_IMR_S0, 1227 SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK) 1228 | SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC) 1229 ); 1230 OS_REG_WRITE(ah, AR_IMR_S1, 1231 SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR) 1232 | SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL) 1233 ); 1234 OS_REG_RMW_FIELD(ah, AR_IMR_S2, 1235 AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask); 1236 } 1237 1238 /* 1239 * Set the retry, aifs, cwmin/max, readyTime regs for specified queue 1240 * Assumes: 1241 * phwChannel has been set to point to the current channel 1242 */ 1243 #define TU_TO_USEC(_tu) ((_tu) << 10) 1244 HAL_BOOL 1245 ar5416ResetTxQueue(struct ath_hal *ah, u_int q) 1246 { 1247 struct ath_hal_5212 *ahp = AH5212(ah); 1248 HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps; 1249 const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; 1250 HAL_TX_QUEUE_INFO *qi; 1251 uint32_t cwMin, chanCwMin, qmisc, dmisc; 1252 1253 if (q >= pCap->halTotalQueues) { 1254 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n", 1255 __func__, q); 1256 return AH_FALSE; 1257 } 1258 qi = &ahp->ah_txq[q]; 1259 if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) { 1260 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n", 1261 __func__, q); 1262 return AH_TRUE; /* XXX??? */ 1263 } 1264 1265 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: reset queue %u\n", __func__, q); 1266 1267 if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT) { 1268 /* 1269 * Select cwmin according to channel type. 1270 * NB: chan can be NULL during attach 1271 */ 1272 if (chan && IEEE80211_IS_CHAN_B(chan)) 1273 chanCwMin = INIT_CWMIN_11B; 1274 else 1275 chanCwMin = INIT_CWMIN; 1276 /* make sure that the CWmin is of the form (2^n - 1) */ 1277 for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1) 1278 ; 1279 } else 1280 cwMin = qi->tqi_cwmin; 1281 1282 /* set cwMin/Max and AIFS values */ 1283 OS_REG_WRITE(ah, AR_DLCL_IFS(q), 1284 SM(cwMin, AR_D_LCL_IFS_CWMIN) 1285 | SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) 1286 | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS)); 1287 1288 /* Set retry limit values */ 1289 OS_REG_WRITE(ah, AR_DRETRY_LIMIT(q), 1290 SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) 1291 | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) 1292 | SM(qi->tqi_lgretry, AR_D_RETRY_LIMIT_FR_LG) 1293 | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH) 1294 ); 1295 1296 /* NB: always enable early termination on the QCU */ 1297 qmisc = AR_Q_MISC_DCU_EARLY_TERM_REQ 1298 | SM(AR_Q_MISC_FSP_ASAP, AR_Q_MISC_FSP); 1299 1300 /* NB: always enable DCU to wait for next fragment from QCU */ 1301 dmisc = AR_D_MISC_FRAG_WAIT_EN; 1302 1303 /* Enable exponential backoff window */ 1304 dmisc |= AR_D_MISC_BKOFF_PERSISTENCE; 1305 1306 /* 1307 * The chip reset default is to use a DCU backoff threshold of 0x2. 1308 * Restore this when programming the DCU MISC register. 1309 */ 1310 dmisc |= 0x2; 1311 1312 /* multiqueue support */ 1313 if (qi->tqi_cbrPeriod) { 1314 OS_REG_WRITE(ah, AR_QCBRCFG(q), 1315 SM(qi->tqi_cbrPeriod,AR_Q_CBRCFG_CBR_INTERVAL) 1316 | SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_CBR_OVF_THRESH)); 1317 qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_CBR; 1318 if (qi->tqi_cbrOverflowLimit) 1319 qmisc |= AR_Q_MISC_CBR_EXP_CNTR_LIMIT; 1320 } 1321 1322 if (qi->tqi_readyTime && (qi->tqi_type != HAL_TX_QUEUE_CAB)) { 1323 OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), 1324 SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT) 1325 | AR_Q_RDYTIMECFG_ENA); 1326 } 1327 1328 OS_REG_WRITE(ah, AR_DCHNTIME(q), 1329 SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) 1330 | (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0)); 1331 1332 if (qi->tqi_readyTime && 1333 (qi->tqi_qflags & HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE)) 1334 qmisc |= AR_Q_MISC_RDYTIME_EXP_POLICY; 1335 if (qi->tqi_qflags & HAL_TXQ_DBA_GATED) 1336 qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_DBA_GATED; 1337 if (MS(qmisc, AR_Q_MISC_FSP) != AR_Q_MISC_FSP_ASAP) { 1338 /* 1339 * These are meangingful only when not scheduled asap. 1340 */ 1341 if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_BEMPTY) 1342 qmisc |= AR_Q_MISC_CBR_INCR_DIS0; 1343 else 1344 qmisc &= ~AR_Q_MISC_CBR_INCR_DIS0; 1345 if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_QEMPTY) 1346 qmisc |= AR_Q_MISC_CBR_INCR_DIS1; 1347 else 1348 qmisc &= ~AR_Q_MISC_CBR_INCR_DIS1; 1349 } 1350 1351 if (qi->tqi_qflags & HAL_TXQ_BACKOFF_DISABLE) 1352 dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS; 1353 if (qi->tqi_qflags & HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE) 1354 dmisc |= AR_D_MISC_FRAG_BKOFF_EN; 1355 if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_GLOBAL) 1356 dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, 1357 AR_D_MISC_ARB_LOCKOUT_CNTRL); 1358 else if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_INTRA) 1359 dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_INTRA_FR, 1360 AR_D_MISC_ARB_LOCKOUT_CNTRL); 1361 if (qi->tqi_qflags & HAL_TXQ_IGNORE_VIRTCOL) 1362 dmisc |= SM(AR_D_MISC_VIR_COL_HANDLING_IGNORE, 1363 AR_D_MISC_VIR_COL_HANDLING); 1364 if (qi->tqi_qflags & HAL_TXQ_SEQNUM_INC_DIS) 1365 dmisc |= AR_D_MISC_SEQ_NUM_INCR_DIS; 1366 1367 /* 1368 * Fillin type-dependent bits. Most of this can be 1369 * removed by specifying the queue parameters in the 1370 * driver; it's here for backwards compatibility. 1371 */ 1372 switch (qi->tqi_type) { 1373 case HAL_TX_QUEUE_BEACON: /* beacon frames */ 1374 qmisc |= AR_Q_MISC_FSP_DBA_GATED 1375 | AR_Q_MISC_BEACON_USE 1376 | AR_Q_MISC_CBR_INCR_DIS1; 1377 1378 dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, 1379 AR_D_MISC_ARB_LOCKOUT_CNTRL) 1380 | AR_D_MISC_BEACON_USE 1381 | AR_D_MISC_POST_FR_BKOFF_DIS; 1382 break; 1383 case HAL_TX_QUEUE_CAB: /* CAB frames */ 1384 /* 1385 * No longer Enable AR_Q_MISC_RDYTIME_EXP_POLICY, 1386 * There is an issue with the CAB Queue 1387 * not properly refreshing the Tx descriptor if 1388 * the TXE clear setting is used. 1389 */ 1390 qmisc |= AR_Q_MISC_FSP_DBA_GATED 1391 | AR_Q_MISC_CBR_INCR_DIS1 1392 | AR_Q_MISC_CBR_INCR_DIS0; 1393 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: CAB: tqi_readyTime = %d\n", 1394 __func__, qi->tqi_readyTime); 1395 if (qi->tqi_readyTime) { 1396 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, 1397 "%s: using tqi_readyTime\n", __func__); 1398 OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), 1399 SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT) | 1400 AR_Q_RDYTIMECFG_ENA); 1401 } else { 1402 int value; 1403 /* 1404 * NB: don't set default ready time if driver 1405 * has explicitly specified something. This is 1406 * here solely for backwards compatibility. 1407 */ 1408 /* 1409 * XXX for now, hard-code a CAB interval of 70% 1410 * XXX of the total beacon interval. 1411 * 1412 * XXX This keeps Merlin and later based MACs 1413 * XXX quite a bit happier (stops stuck beacons, 1414 * XXX which I gather is because of such a long 1415 * XXX cabq time.) 1416 */ 1417 value = (ahp->ah_beaconInterval * 50 / 100) 1418 - ah->ah_config.ah_additional_swba_backoff 1419 - ah->ah_config.ah_sw_beacon_response_time 1420 + ah->ah_config.ah_dma_beacon_response_time; 1421 /* 1422 * XXX Ensure it isn't too low - nothing lower 1423 * XXX than 10 TU 1424 */ 1425 if (value < 10) 1426 value = 10; 1427 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, 1428 "%s: defaulting to rdytime = %d uS\n", 1429 __func__, value); 1430 OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), 1431 SM(TU_TO_USEC(value), AR_Q_RDYTIMECFG_INT) | 1432 AR_Q_RDYTIMECFG_ENA); 1433 } 1434 dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, 1435 AR_D_MISC_ARB_LOCKOUT_CNTRL); 1436 break; 1437 case HAL_TX_QUEUE_PSPOLL: 1438 qmisc |= AR_Q_MISC_CBR_INCR_DIS1; 1439 break; 1440 case HAL_TX_QUEUE_UAPSD: 1441 dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS; 1442 break; 1443 default: /* NB: silence compiler */ 1444 break; 1445 } 1446 1447 OS_REG_WRITE(ah, AR_QMISC(q), qmisc); 1448 OS_REG_WRITE(ah, AR_DMISC(q), dmisc); 1449 1450 /* Setup compression scratchpad buffer */ 1451 /* 1452 * XXX: calling this asynchronously to queue operation can 1453 * cause unexpected behavior!!! 1454 */ 1455 if (qi->tqi_physCompBuf) { 1456 HALASSERT(qi->tqi_type == HAL_TX_QUEUE_DATA || 1457 qi->tqi_type == HAL_TX_QUEUE_UAPSD); 1458 OS_REG_WRITE(ah, AR_Q_CBBS, (80 + 2*q)); 1459 OS_REG_WRITE(ah, AR_Q_CBBA, qi->tqi_physCompBuf); 1460 OS_REG_WRITE(ah, AR_Q_CBC, HAL_COMP_BUF_MAX_SIZE/1024); 1461 OS_REG_WRITE(ah, AR_Q0_MISC + 4*q, 1462 OS_REG_READ(ah, AR_Q0_MISC + 4*q) 1463 | AR_Q_MISC_QCU_COMP_EN); 1464 } 1465 1466 /* 1467 * Always update the secondary interrupt mask registers - this 1468 * could be a new queue getting enabled in a running system or 1469 * hw getting re-initialized during a reset! 1470 * 1471 * Since we don't differentiate between tx interrupts corresponding 1472 * to individual queues - secondary tx mask regs are always unmasked; 1473 * tx interrupts are enabled/disabled for all queues collectively 1474 * using the primary mask reg 1475 */ 1476 if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE) 1477 ahp->ah_txOkInterruptMask |= 1 << q; 1478 else 1479 ahp->ah_txOkInterruptMask &= ~(1 << q); 1480 if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE) 1481 ahp->ah_txErrInterruptMask |= 1 << q; 1482 else 1483 ahp->ah_txErrInterruptMask &= ~(1 << q); 1484 if (qi->tqi_qflags & HAL_TXQ_TXDESCINT_ENABLE) 1485 ahp->ah_txDescInterruptMask |= 1 << q; 1486 else 1487 ahp->ah_txDescInterruptMask &= ~(1 << q); 1488 if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE) 1489 ahp->ah_txEolInterruptMask |= 1 << q; 1490 else 1491 ahp->ah_txEolInterruptMask &= ~(1 << q); 1492 if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE) 1493 ahp->ah_txUrnInterruptMask |= 1 << q; 1494 else 1495 ahp->ah_txUrnInterruptMask &= ~(1 << q); 1496 setTxQInterrupts(ah, qi); 1497 1498 return AH_TRUE; 1499 } 1500 #undef TU_TO_USEC 1501