xref: /freebsd/sys/dev/ath/ath_hal/ar5416/ar5416_xmit.c (revision af23369a6deaaeb612ab266eb88b8bb8d560c322)
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 #include "opt_ah.h"
22 
23 #include "ah.h"
24 #include "ah_desc.h"
25 #include "ah_internal.h"
26 
27 #include "ar5416/ar5416.h"
28 #include "ar5416/ar5416reg.h"
29 #include "ar5416/ar5416phy.h"
30 #include "ar5416/ar5416desc.h"
31 
32 /*
33  * Stop transmit on the specified queue
34  */
35 HAL_BOOL
36 ar5416StopTxDma(struct ath_hal *ah, u_int q)
37 {
38 #define	STOP_DMA_TIMEOUT	4000	/* us */
39 #define	STOP_DMA_ITER		100	/* us */
40 	u_int i;
41 
42 	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
43 
44 	HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
45 
46 	OS_REG_WRITE(ah, AR_Q_TXD, 1 << q);
47 	for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) {
48 		if (ar5212NumTxPending(ah, q) == 0)
49 			break;
50 		OS_DELAY(STOP_DMA_ITER);
51 	}
52 #ifdef AH_DEBUG
53 	if (i == 0) {
54 		HALDEBUG(ah, HAL_DEBUG_ANY,
55 		    "%s: queue %u DMA did not stop in 400 msec\n", __func__, q);
56 		HALDEBUG(ah, HAL_DEBUG_ANY,
57 		    "%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__,
58 		    OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE),
59 		    OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q)));
60 		HALDEBUG(ah, HAL_DEBUG_ANY,
61 		    "%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n",
62 		    __func__, OS_REG_READ(ah, AR_QMISC(q)),
63 		    OS_REG_READ(ah, AR_QRDYTIMECFG(q)),
64 		    OS_REG_READ(ah, AR_Q_RDYTIMESHDN));
65 	}
66 #endif /* AH_DEBUG */
67 
68 	/* ar5416 and up can kill packets at the PCU level */
69 	if (ar5212NumTxPending(ah, q)) {
70 		uint32_t j;
71 
72 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
73 		    "%s: Num of pending TX Frames %d on Q %d\n",
74 		    __func__, ar5212NumTxPending(ah, q), q);
75 
76 		/* Kill last PCU Tx Frame */
77 		/* TODO - save off and restore current values of Q1/Q2? */
78 		for (j = 0; j < 2; j++) {
79 			uint32_t tsfLow = OS_REG_READ(ah, AR_TSF_L32);
80 			OS_REG_WRITE(ah, AR_QUIET2,
81 			    SM(10, AR_QUIET2_QUIET_DUR));
82 			OS_REG_WRITE(ah, AR_QUIET_PERIOD, 100);
83 			OS_REG_WRITE(ah, AR_NEXT_QUIET, tsfLow >> 10);
84 			OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
85 
86 			if ((OS_REG_READ(ah, AR_TSF_L32)>>10) == (tsfLow>>10))
87 				break;
88 
89 			HALDEBUG(ah, HAL_DEBUG_ANY,
90 			    "%s: TSF moved while trying to set quiet time "
91 			    "TSF: 0x%08x\n", __func__, tsfLow);
92 			HALASSERT(j < 1); /* TSF shouldn't count twice or reg access is taking forever */
93 		}
94 
95 		OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
96 
97 		/* Allow the quiet mechanism to do its work */
98 		OS_DELAY(200);
99 		OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
100 
101 		/* Verify the transmit q is empty */
102 		for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) {
103 			if (ar5212NumTxPending(ah, q) == 0)
104 				break;
105 			OS_DELAY(STOP_DMA_ITER);
106 		}
107 		if (i == 0) {
108 			HALDEBUG(ah, HAL_DEBUG_ANY,
109 			    "%s: Failed to stop Tx DMA in %d msec after killing"
110 			    " last frame\n", __func__, STOP_DMA_TIMEOUT / 1000);
111 		}
112 		OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
113 	}
114 
115 	OS_REG_WRITE(ah, AR_Q_TXD, 0);
116 	return (i != 0);
117 #undef STOP_DMA_ITER
118 #undef STOP_DMA_TIMEOUT
119 }
120 
121 #define VALID_KEY_TYPES \
122         ((1 << HAL_KEY_TYPE_CLEAR) | (1 << HAL_KEY_TYPE_WEP)|\
123          (1 << HAL_KEY_TYPE_AES)   | (1 << HAL_KEY_TYPE_TKIP))
124 #define isValidKeyType(_t)      ((1 << (_t)) & VALID_KEY_TYPES)
125 
126 #define set11nTries(_series, _index) \
127         (SM((_series)[_index].Tries, AR_XmitDataTries##_index))
128 
129 #define set11nRate(_series, _index) \
130         (SM((_series)[_index].Rate, AR_XmitRate##_index))
131 
132 #define set11nPktDurRTSCTS(_series, _index) \
133         (SM((_series)[_index].PktDuration, AR_PacketDur##_index) |\
134          ((_series)[_index].RateFlags & HAL_RATESERIES_RTS_CTS   ?\
135          AR_RTSCTSQual##_index : 0))
136 
137 #define set11nRateFlags(_series, _index) \
138         ((_series)[_index].RateFlags & HAL_RATESERIES_2040 ? AR_2040_##_index : 0) \
139         |((_series)[_index].RateFlags & HAL_RATESERIES_HALFGI ? AR_GI##_index : 0) \
140         |((_series)[_index].RateFlags & HAL_RATESERIES_STBC ? AR_STBC##_index : 0) \
141         |SM((_series)[_index].ChSel, AR_ChainSel##_index)
142 
143 /*
144  * Descriptor Access Functions
145  */
146 
147 #define VALID_PKT_TYPES \
148         ((1<<HAL_PKT_TYPE_NORMAL)|(1<<HAL_PKT_TYPE_ATIM)|\
149          (1<<HAL_PKT_TYPE_PSPOLL)|(1<<HAL_PKT_TYPE_PROBE_RESP)|\
150          (1<<HAL_PKT_TYPE_BEACON)|(1<<HAL_PKT_TYPE_AMPDU))
151 #define isValidPktType(_t)      ((1<<(_t)) & VALID_PKT_TYPES)
152 #define VALID_TX_RATES \
153         ((1<<0x0b)|(1<<0x0f)|(1<<0x0a)|(1<<0x0e)|(1<<0x09)|(1<<0x0d)|\
154          (1<<0x08)|(1<<0x0c)|(1<<0x1b)|(1<<0x1a)|(1<<0x1e)|(1<<0x19)|\
155 	 (1<<0x1d)|(1<<0x18)|(1<<0x1c)|(1<<0x01)|(1<<0x02)|(1<<0x03)|\
156 	 (1<<0x04)|(1<<0x05)|(1<<0x06)|(1<<0x07)|(1<<0x00))
157 /* NB: accept HT rates */
158 #define	isValidTxRate(_r)	((1<<((_r) & 0x7f)) & VALID_TX_RATES)
159 
160 static inline int
161 ar5416RateToRateTable(struct ath_hal *ah, uint8_t rate, HAL_BOOL is_ht40)
162 {
163 
164 	/*
165 	 * Handle the non-MCS rates
166 	 */
167 	switch (rate) {
168 	case /*   1 Mb */ 0x1b:
169 	case /*   1 MbS*/ 0x1b | 0x4:
170 		return (AH5416(ah)->ah_ratesArray[rate1l]);
171 	case /*   2 Mb */ 0x1a:
172 		return (AH5416(ah)->ah_ratesArray[rate2l]);
173 	case /*   2 MbS*/ 0x1a | 0x4:
174 		return (AH5416(ah)->ah_ratesArray[rate2s]);
175 	case /* 5.5 Mb */ 0x19:
176 		return (AH5416(ah)->ah_ratesArray[rate5_5l]);
177 	case /* 5.5 MbS*/ 0x19 | 0x4:
178 		return (AH5416(ah)->ah_ratesArray[rate5_5s]);
179 	case /*  11 Mb */ 0x18:
180 		return (AH5416(ah)->ah_ratesArray[rate11l]);
181 	case /*  11 MbS*/ 0x18 | 0x4:
182 		return (AH5416(ah)->ah_ratesArray[rate11s]);
183 	}
184 
185 	/* OFDM rates */
186 	switch (rate) {
187 	case /*   6 Mb */ 0x0b:
188 		return (AH5416(ah)->ah_ratesArray[rate6mb]);
189 	case /*   9 Mb */ 0x0f:
190 		return (AH5416(ah)->ah_ratesArray[rate9mb]);
191 	case /*  12 Mb */ 0x0a:
192 		return (AH5416(ah)->ah_ratesArray[rate12mb]);
193 	case /*  18 Mb */ 0x0e:
194 		return (AH5416(ah)->ah_ratesArray[rate18mb]);
195 	case /*  24 Mb */ 0x09:
196 		return (AH5416(ah)->ah_ratesArray[rate24mb]);
197 	case /*  36 Mb */ 0x0d:
198 		return (AH5416(ah)->ah_ratesArray[rate36mb]);
199 	case /*  48 Mb */ 0x08:
200 		return (AH5416(ah)->ah_ratesArray[rate48mb]);
201 	case /*  54 Mb */ 0x0c:
202 		return (AH5416(ah)->ah_ratesArray[rate54mb]);
203 	}
204 
205 	/*
206 	 * Handle HT20/HT40 - we only have to do MCS0-7;
207 	 * there's no stream differences.
208 	 */
209 	if ((rate & 0x80) && is_ht40) {
210 		return (AH5416(ah)->ah_ratesArray[rateHt40_0 + (rate & 0x7)]);
211 	} else if (rate & 0x80) {
212 		return (AH5416(ah)->ah_ratesArray[rateHt20_0 + (rate & 0x7)]);
213 	}
214 
215 	/* XXX default (eg XR, bad bad person!) */
216 	return (AH5416(ah)->ah_ratesArray[rate6mb]);
217 }
218 
219 /*
220  * Return the TX power to be used for the given rate/chains/TX power.
221  *
222  * There are a bunch of tweaks to make to a given TX power based on
223  * the current configuration, so...
224  */
225 static uint16_t
226 ar5416GetTxRatePower(struct ath_hal *ah, uint8_t rate, uint8_t tx_chainmask,
227     uint16_t txPower, HAL_BOOL is_ht40)
228 {
229 	int n_txpower, max_txpower;
230 	const int cck_ofdm_delta = 2;
231 #define	EEP_MINOR(_ah) \
232 	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
233 #define	IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
234 
235 	/* Take a copy ; we may underflow and thus need to clamp things */
236 	n_txpower = txPower;
237 
238 	/* HT40? Need to adjust the TX power by this */
239 	if (is_ht40)
240 		n_txpower += AH5416(ah)->ah_ht40PowerIncForPdadc;
241 
242 	/*
243 	 * Merlin? Offset the target TX power offset - it defaults to
244 	 * starting at -5.0dBm, but that can change!
245 	 *
246 	 * Kiwi/Kite? Always -5.0dBm offset.
247 	 */
248 	if (AR_SREV_KIWI_10_OR_LATER(ah)) {
249 		n_txpower -= (AR5416_PWR_TABLE_OFFSET_DB * 2);
250 	} else if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
251 		int8_t pwr_table_offset = 0;
252 		/* This is in dBm, convert to 1/2 dBm */
253 		(void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET,
254 		    &pwr_table_offset);
255 		n_txpower -= (pwr_table_offset * 2);
256 	}
257 
258 	/*
259 	 * If Open-loop TX power control is used, the CCK rates need
260 	 * to be offset by that.
261 	 *
262 	 * Rates: 2S, 2L, 1S, 1L, 5.5S, 5.5L
263 	 *
264 	 * XXX Odd, we don't have a PHY table entry for long preamble
265 	 * 1mbit CCK?
266 	 */
267 	if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
268 	    ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
269 		if (rate == 0x19 || rate == 0x1a || rate == 0x1b ||
270 		    rate == (0x19 | 0x04) || rate == (0x1a | 0x04) ||
271 		    rate == (0x1b | 0x04)) {
272 			n_txpower -= cck_ofdm_delta;
273 		}
274 	}
275 
276 	/*
277 	 * We're now offset by the same amount that the static maximum
278 	 * PHY power tables are.  So, clamp the value based on that rate.
279 	 */
280 	max_txpower = ar5416RateToRateTable(ah, rate, is_ht40);
281 #if 0
282 	ath_hal_printf(ah, "%s: n_txpower = %d, max_txpower = %d, "
283 	    "rate = 0x%x , is_ht40 = %d\n",
284 	    __func__,
285 	    n_txpower,
286 	    max_txpower,
287 	    rate,
288 	    is_ht40);
289 #endif
290 	n_txpower = MIN(max_txpower, n_txpower);
291 
292 	/*
293 	 * We don't have to offset the TX power for two or three
294 	 * chain operation here - it's done by the AR_PHY_POWER_TX_SUB
295 	 * register setting via the EEPROM.
296 	 *
297 	 * So for vendors that programmed the maximum target power assuming
298 	 * that 2/3 chains are always on, things will just plain work.
299 	 * (They won't reach that target power if only one chain is on, but
300 	 * that's a different problem.)
301 	 */
302 
303 	/* Over/underflow? Adjust */
304 	if (n_txpower < 0)
305 		n_txpower = 0;
306 	else if (n_txpower > 63)
307 		n_txpower = 63;
308 
309 	/*
310 	 * For some odd reason the AR9160 with txpower=0 results in a
311 	 * much higher (max?) TX power.  So, if it's a chipset before
312 	 * AR9220/AR9280, just clamp the minimum value at 1.
313 	 */
314 	if ((! AR_SREV_MERLIN_10_OR_LATER(ah)) && (n_txpower == 0))
315 		n_txpower = 1;
316 
317 	return (n_txpower);
318 #undef	EEP_MINOR
319 #undef	IS_EEP_MINOR_V2
320 }
321 
322 HAL_BOOL
323 ar5416SetupTxDesc(struct ath_hal *ah, struct ath_desc *ds,
324 	u_int pktLen,
325 	u_int hdrLen,
326 	HAL_PKT_TYPE type,
327 	u_int txPower,
328 	u_int txRate0, u_int txTries0,
329 	u_int keyIx,
330 	u_int antMode,
331 	u_int flags,
332 	u_int rtsctsRate,
333 	u_int rtsctsDuration,
334 	u_int compicvLen,
335 	u_int compivLen,
336 	u_int comp)
337 {
338 #define	RTSCTS	(HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
339 	struct ar5416_desc *ads = AR5416DESC(ds);
340 	struct ath_hal_5416 *ahp = AH5416(ah);
341 
342 	(void) hdrLen;
343 
344 	HALASSERT(txTries0 != 0);
345 	HALASSERT(isValidPktType(type));
346 	HALASSERT(isValidTxRate(txRate0));
347 	HALASSERT((flags & RTSCTS) != RTSCTS);
348 	/* XXX validate antMode */
349 
350         txPower = (txPower + AH5212(ah)->ah_txPowerIndexOffset);
351         if (txPower > 63)
352 		txPower = 63;
353 
354 	/*
355 	 * XXX For now, just assume that this isn't a HT40 frame.
356 	 * It'll get over-ridden by the multi-rate TX power setup.
357 	 */
358 	if (AH5212(ah)->ah_tpcEnabled) {
359 		txPower = ar5416GetTxRatePower(ah, txRate0,
360 		    ahp->ah_tx_chainmask,
361 		    txPower,
362 		    AH_FALSE);
363 	}
364 
365 	ads->ds_ctl0 = (pktLen & AR_FrameLen)
366 		     | (txPower << AR_XmitPower_S)
367 		     | (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
368 		     | (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
369 		     | (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0)
370 		     ;
371 	ads->ds_ctl1 = (type << AR_FrameType_S)
372 		     | (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0)
373 		     | (flags & HAL_TXDESC_HWTS ? AR_InsertTS : 0)
374                      ;
375 	ads->ds_ctl2 = SM(txTries0, AR_XmitDataTries0)
376 		     | (flags & HAL_TXDESC_DURENA ? AR_DurUpdateEn : 0)
377 		     ;
378 	ads->ds_ctl3 = (txRate0 << AR_XmitRate0_S)
379 		     ;
380 	ads->ds_ctl4 = 0;
381 	ads->ds_ctl5 = 0;
382 	ads->ds_ctl6 = 0;
383 	ads->ds_ctl7 = SM(ahp->ah_tx_chainmask, AR_ChainSel0)
384 		     | SM(ahp->ah_tx_chainmask, AR_ChainSel1)
385 		     | SM(ahp->ah_tx_chainmask, AR_ChainSel2)
386 		     | SM(ahp->ah_tx_chainmask, AR_ChainSel3)
387 		     ;
388 	ads->ds_ctl8 = SM(0, AR_AntCtl0);
389 	ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1);
390 	ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2);
391 	ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3);
392 
393 	if (keyIx != HAL_TXKEYIX_INVALID) {
394 		/* XXX validate key index */
395 		ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
396 		ads->ds_ctl0 |= AR_DestIdxValid;
397 		ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType);
398 	}
399 	if (flags & RTSCTS) {
400 		if (!isValidTxRate(rtsctsRate)) {
401 			HALDEBUG(ah, HAL_DEBUG_ANY,
402 			    "%s: invalid rts/cts rate 0x%x\n",
403 			    __func__, rtsctsRate);
404 			return AH_FALSE;
405 		}
406 		/* XXX validate rtsctsDuration */
407 		ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
408 			     | (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0)
409 			     ;
410 		ads->ds_ctl7 |= (rtsctsRate << AR_RTSCTSRate_S);
411 	}
412 
413 	/*
414 	 * Set the TX antenna to 0 for Kite
415 	 * To preserve existing behaviour, also set the TPC bits to 0;
416 	 * when TPC is enabled these should be filled in appropriately.
417 	 *
418 	 * XXX TODO: when doing TPC, set the TX power up appropriately?
419 	 */
420 	if (AR_SREV_KITE(ah)) {
421 		ads->ds_ctl8 = SM(0, AR_AntCtl0);
422 		ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1);
423 		ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2);
424 		ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3);
425 	}
426 	return AH_TRUE;
427 #undef RTSCTS
428 }
429 
430 HAL_BOOL
431 ar5416SetupXTxDesc(struct ath_hal *ah, struct ath_desc *ds,
432 	u_int txRate1, u_int txTries1,
433 	u_int txRate2, u_int txTries2,
434 	u_int txRate3, u_int txTries3)
435 {
436 	struct ar5416_desc *ads = AR5416DESC(ds);
437 
438 	if (txTries1) {
439 		HALASSERT(isValidTxRate(txRate1));
440 		ads->ds_ctl2 |= SM(txTries1, AR_XmitDataTries1);
441 		ads->ds_ctl3 |= (txRate1 << AR_XmitRate1_S);
442 	}
443 	if (txTries2) {
444 		HALASSERT(isValidTxRate(txRate2));
445 		ads->ds_ctl2 |= SM(txTries2, AR_XmitDataTries2);
446 		ads->ds_ctl3 |= (txRate2 << AR_XmitRate2_S);
447 	}
448 	if (txTries3) {
449 		HALASSERT(isValidTxRate(txRate3));
450 		ads->ds_ctl2 |= SM(txTries3, AR_XmitDataTries3);
451 		ads->ds_ctl3 |= (txRate3 << AR_XmitRate3_S);
452 	}
453 	return AH_TRUE;
454 }
455 
456 /*
457  * XXX TODO: Figure out if AR_InsertTS is required on all sub-frames
458  * of a TX descriptor.
459  */
460 HAL_BOOL
461 ar5416FillTxDesc(struct ath_hal *ah, struct ath_desc *ds,
462 	HAL_DMA_ADDR *bufAddrList, uint32_t *segLenList, u_int descId,
463 	u_int qcuId, HAL_BOOL firstSeg, HAL_BOOL lastSeg,
464 	const struct ath_desc *ds0)
465 {
466 	struct ar5416_desc *ads = AR5416DESC(ds);
467 	uint32_t segLen = segLenList[0];
468 
469 	HALASSERT((segLen &~ AR_BufLen) == 0);
470 
471 	ds->ds_data = bufAddrList[0];
472 
473 	if (firstSeg) {
474 		/*
475 		 * First descriptor, don't clobber xmit control data
476 		 * setup by ar5212SetupTxDesc.
477 		 */
478 		ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
479 	} else if (lastSeg) {		/* !firstSeg && lastSeg */
480 		/*
481 		 * Last descriptor in a multi-descriptor frame,
482 		 * copy the multi-rate transmit parameters from
483 		 * the first frame for processing on completion.
484 		 */
485 		ads->ds_ctl1 = segLen;
486 #ifdef AH_NEED_DESC_SWAP
487 		ads->ds_ctl0 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl0)
488 		    & AR_TxIntrReq;
489 		ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2);
490 		ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3);
491 		/* ctl6 - we only need encrtype; the rest are blank */
492 		ads->ds_ctl6 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType);
493 #else
494 		ads->ds_ctl0 = AR5416DESC_CONST(ds0)->ds_ctl0 & AR_TxIntrReq;
495 		ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
496 		ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
497 		/* ctl6 - we only need encrtype; the rest are blank */
498 		ads->ds_ctl6 = AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType;
499 #endif
500 	} else {			/* !firstSeg && !lastSeg */
501 		/*
502 		 * Intermediate descriptor in a multi-descriptor frame.
503 		 */
504 #ifdef AH_NEED_DESC_SWAP
505 		ads->ds_ctl0 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl0)
506 		    & AR_TxIntrReq;
507 		ads->ds_ctl6 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType);
508 #else
509 		ads->ds_ctl0 = AR5416DESC_CONST(ds0)->ds_ctl0 & AR_TxIntrReq;
510 		ads->ds_ctl6 = AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType;
511 #endif
512 		ads->ds_ctl1 = segLen | AR_TxMore;
513 		ads->ds_ctl2 = 0;
514 		ads->ds_ctl3 = 0;
515 	}
516 	/* XXX only on last descriptor? */
517 	OS_MEMZERO(ads->u.tx.status, sizeof(ads->u.tx.status));
518 	return AH_TRUE;
519 }
520 
521 /*
522  * NB: cipher is no longer used, it's calculated.
523  */
524 HAL_BOOL
525 ar5416ChainTxDesc(struct ath_hal *ah, struct ath_desc *ds,
526 	HAL_DMA_ADDR *bufAddrList,
527 	uint32_t *segLenList,
528 	u_int pktLen,
529 	u_int hdrLen,
530 	HAL_PKT_TYPE type,
531 	u_int keyIx,
532 	HAL_CIPHER cipher,
533 	uint8_t delims,
534 	HAL_BOOL firstSeg,
535 	HAL_BOOL lastSeg,
536 	HAL_BOOL lastAggr)
537 {
538 	struct ar5416_desc *ads = AR5416DESC(ds);
539 	uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
540 	struct ath_hal_5416 *ahp = AH5416(ah);
541 	u_int segLen = segLenList[0];
542 
543 	int isaggr = 0;
544 	uint32_t last_aggr = 0;
545 
546 	(void) hdrLen;
547 	(void) ah;
548 
549 	HALASSERT((segLen &~ AR_BufLen) == 0);
550 	ds->ds_data = bufAddrList[0];
551 
552 	HALASSERT(isValidPktType(type));
553 	if (type == HAL_PKT_TYPE_AMPDU) {
554 		type = HAL_PKT_TYPE_NORMAL;
555 		isaggr = 1;
556 		if (lastAggr == AH_FALSE)
557 			last_aggr = AR_MoreAggr;
558 	}
559 
560 	/*
561 	 * Since this function is called before any of the other
562 	 * descriptor setup functions (at least in this particular
563 	 * 802.11n aggregation implementation), always bzero() the
564 	 * descriptor. Previously this would be done for all but
565 	 * the first segment.
566 	 * XXX TODO: figure out why; perhaps I'm using this slightly
567 	 * XXX incorrectly.
568 	 */
569 	OS_MEMZERO(ds->ds_hw, AR5416_DESC_TX_CTL_SZ);
570 
571 	/*
572 	 * Note: VEOL should only be for the last descriptor in the chain.
573 	 */
574 	ads->ds_ctl0 = (pktLen & AR_FrameLen);
575 
576 	/*
577 	 * For aggregates:
578 	 * + IsAggr must be set for all descriptors of all subframes of
579 	 *   the aggregate
580 	 * + MoreAggr must be set for all descriptors of all subframes
581 	 *   of the aggregate EXCEPT the last subframe;
582 	 * + MoreAggr must be _CLEAR_ for all descrpitors of the last
583 	 *   subframe of the aggregate.
584 	 */
585 	ads->ds_ctl1 = (type << AR_FrameType_S)
586 			| (isaggr ? (AR_IsAggr | last_aggr) : 0);
587 
588 	ads->ds_ctl2 = 0;
589 	ads->ds_ctl3 = 0;
590 	if (keyIx != HAL_TXKEYIX_INVALID) {
591 		/* XXX validate key index */
592 		ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
593 		ads->ds_ctl0 |= AR_DestIdxValid;
594 	}
595 
596 	ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType);
597 	if (isaggr) {
598 		ads->ds_ctl6 |= SM(delims, AR_PadDelim);
599 	}
600 
601 	if (firstSeg) {
602 		ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
603 	} else if (lastSeg) {           /* !firstSeg && lastSeg */
604 		ads->ds_ctl0 = 0;
605 		ads->ds_ctl1 |= segLen;
606 	} else {                        /* !firstSeg && !lastSeg */
607 		/*
608 		 * Intermediate descriptor in a multi-descriptor frame.
609 		 */
610 		ads->ds_ctl0 = 0;
611 		ads->ds_ctl1 |= segLen | AR_TxMore;
612 	}
613 	ds_txstatus[0] = ds_txstatus[1] = 0;
614 	ds_txstatus[9] &= ~AR_TxDone;
615 
616 	return AH_TRUE;
617 }
618 
619 HAL_BOOL
620 ar5416SetupFirstTxDesc(struct ath_hal *ah, struct ath_desc *ds,
621 	u_int aggrLen, u_int flags, u_int txPower,
622 	u_int txRate0, u_int txTries0, u_int antMode,
623 	u_int rtsctsRate, u_int rtsctsDuration)
624 {
625 #define RTSCTS  (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
626 	struct ar5416_desc *ads = AR5416DESC(ds);
627 	struct ath_hal_5212 *ahp = AH5212(ah);
628 
629 	HALASSERT(txTries0 != 0);
630 	HALASSERT(isValidTxRate(txRate0));
631 	HALASSERT((flags & RTSCTS) != RTSCTS);
632 	/* XXX validate antMode */
633 
634 	txPower = (txPower + ahp->ah_txPowerIndexOffset );
635 	if(txPower > 63)  txPower=63;
636 
637 	ads->ds_ctl0 |= (txPower << AR_XmitPower_S)
638 		| (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
639 		| (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
640 		| (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0);
641 	ads->ds_ctl1 |= (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0);
642 	ads->ds_ctl2 |= SM(txTries0, AR_XmitDataTries0);
643 	ads->ds_ctl3 |= (txRate0 << AR_XmitRate0_S);
644 	ads->ds_ctl7 = SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel0)
645 		| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel1)
646 		| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel2)
647 		| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel3);
648 
649 	/* NB: no V1 WAR */
650 	ads->ds_ctl8 = SM(0, AR_AntCtl0);
651 	ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1);
652 	ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2);
653 	ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3);
654 
655 	ads->ds_ctl6 &= ~(0xffff);
656 	ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen);
657 
658 	if (flags & RTSCTS) {
659 		/* XXX validate rtsctsDuration */
660 		ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
661 			| (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0);
662 	}
663 
664 	/*
665 	 * Set the TX antenna to 0 for Kite
666 	 * To preserve existing behaviour, also set the TPC bits to 0;
667 	 * when TPC is enabled these should be filled in appropriately.
668 	 */
669 	if (AR_SREV_KITE(ah)) {
670 		ads->ds_ctl8 = SM(0, AR_AntCtl0);
671 		ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1);
672 		ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2);
673 		ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3);
674 	}
675 
676 	return AH_TRUE;
677 #undef RTSCTS
678 }
679 
680 HAL_BOOL
681 ar5416SetupLastTxDesc(struct ath_hal *ah, struct ath_desc *ds,
682 		const struct ath_desc *ds0)
683 {
684 	struct ar5416_desc *ads = AR5416DESC(ds);
685 
686 	ads->ds_ctl1 &= ~AR_MoreAggr;
687 	ads->ds_ctl6 &= ~AR_PadDelim;
688 
689 	/* hack to copy rate info to last desc for later processing */
690 #ifdef AH_NEED_DESC_SWAP
691 	ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2);
692 	ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3);
693 #else
694 	ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
695 	ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
696 #endif
697 	return AH_TRUE;
698 }
699 
700 #ifdef AH_NEED_DESC_SWAP
701 /* Swap transmit descriptor */
702 static __inline void
703 ar5416SwapTxDesc(struct ath_desc *ds)
704 {
705 	ds->ds_data = __bswap32(ds->ds_data);
706 	ds->ds_ctl0 = __bswap32(ds->ds_ctl0);
707 	ds->ds_ctl1 = __bswap32(ds->ds_ctl1);
708 	ds->ds_hw[0] = __bswap32(ds->ds_hw[0]);
709 	ds->ds_hw[1] = __bswap32(ds->ds_hw[1]);
710 	ds->ds_hw[2] = __bswap32(ds->ds_hw[2]);
711 	ds->ds_hw[3] = __bswap32(ds->ds_hw[3]);
712 }
713 #endif
714 
715 /*
716  * Processing of HW TX descriptor.
717  */
718 HAL_STATUS
719 ar5416ProcTxDesc(struct ath_hal *ah,
720 	struct ath_desc *ds, struct ath_tx_status *ts)
721 {
722 	struct ar5416_desc *ads = AR5416DESC(ds);
723 	uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
724 
725 #ifdef AH_NEED_DESC_SWAP
726 	if ((ds_txstatus[9] & __bswap32(AR_TxDone)) == 0)
727 		return HAL_EINPROGRESS;
728 	ar5416SwapTxDesc(ds);
729 #else
730 	if ((ds_txstatus[9] & AR_TxDone) == 0)
731 		return HAL_EINPROGRESS;
732 #endif
733 
734 	/* Update software copies of the HW status */
735 	ts->ts_seqnum = MS(ds_txstatus[9], AR_SeqNum);
736 	ts->ts_tstamp = AR_SendTimestamp(ds_txstatus);
737 	ts->ts_tid = MS(ds_txstatus[9], AR_TxTid);
738 
739 	ts->ts_status = 0;
740 	if (ds_txstatus[1] & AR_ExcessiveRetries)
741 		ts->ts_status |= HAL_TXERR_XRETRY;
742 	if (ds_txstatus[1] & AR_Filtered)
743 		ts->ts_status |= HAL_TXERR_FILT;
744 	if (ds_txstatus[1] & AR_FIFOUnderrun)
745 		ts->ts_status |= HAL_TXERR_FIFO;
746 	if (ds_txstatus[9] & AR_TxOpExceeded)
747 		ts->ts_status |= HAL_TXERR_XTXOP;
748 	if (ds_txstatus[1] & AR_TxTimerExpired)
749 		ts->ts_status |= HAL_TXERR_TIMER_EXPIRED;
750 
751 	ts->ts_flags  = 0;
752 	if (ds_txstatus[0] & AR_TxBaStatus) {
753 		ts->ts_flags |= HAL_TX_BA;
754 		ts->ts_ba_low = AR_BaBitmapLow(ds_txstatus);
755 		ts->ts_ba_high = AR_BaBitmapHigh(ds_txstatus);
756 	}
757 	if (ds->ds_ctl1 & AR_IsAggr)
758 		ts->ts_flags |= HAL_TX_AGGR;
759 	if (ds_txstatus[1] & AR_DescCfgErr)
760 		ts->ts_flags |= HAL_TX_DESC_CFG_ERR;
761 	if (ds_txstatus[1] & AR_TxDataUnderrun)
762 		ts->ts_flags |= HAL_TX_DATA_UNDERRUN;
763 	if (ds_txstatus[1] & AR_TxDelimUnderrun)
764 		ts->ts_flags |= HAL_TX_DELIM_UNDERRUN;
765 
766 	/*
767 	 * Extract the transmit rate used and mark the rate as
768 	 * ``alternate'' if it wasn't the series 0 rate.
769 	 */
770 	ts->ts_finaltsi =  MS(ds_txstatus[9], AR_FinalTxIdx);
771 	switch (ts->ts_finaltsi) {
772 	case 0:
773 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate0);
774 		break;
775 	case 1:
776 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate1);
777 		break;
778 	case 2:
779 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate2);
780 		break;
781 	case 3:
782 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate3);
783 		break;
784 	}
785 
786 	ts->ts_rssi = MS(ds_txstatus[5], AR_TxRSSICombined);
787 	ts->ts_rssi_ctl[0] = MS(ds_txstatus[0], AR_TxRSSIAnt00);
788 	ts->ts_rssi_ctl[1] = MS(ds_txstatus[0], AR_TxRSSIAnt01);
789 	ts->ts_rssi_ctl[2] = MS(ds_txstatus[0], AR_TxRSSIAnt02);
790 	ts->ts_rssi_ext[0] = MS(ds_txstatus[5], AR_TxRSSIAnt10);
791 	ts->ts_rssi_ext[1] = MS(ds_txstatus[5], AR_TxRSSIAnt11);
792 	ts->ts_rssi_ext[2] = MS(ds_txstatus[5], AR_TxRSSIAnt12);
793 	ts->ts_evm0 = AR_TxEVM0(ds_txstatus);
794 	ts->ts_evm1 = AR_TxEVM1(ds_txstatus);
795 	ts->ts_evm2 = AR_TxEVM2(ds_txstatus);
796 
797 	ts->ts_shortretry = MS(ds_txstatus[1], AR_RTSFailCnt);
798 	ts->ts_longretry = MS(ds_txstatus[1], AR_DataFailCnt);
799 	/*
800 	 * The retry count has the number of un-acked tries for the
801 	 * final series used.  When doing multi-rate retry we must
802 	 * fixup the retry count by adding in the try counts for
803 	 * each series that was fully-processed.  Beware that this
804 	 * takes values from the try counts in the final descriptor.
805 	 * These are not required by the hardware.  We assume they
806 	 * are placed there by the driver as otherwise we have no
807 	 * access and the driver can't do the calculation because it
808 	 * doesn't know the descriptor format.
809 	 */
810 	switch (ts->ts_finaltsi) {
811 	case 3: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries2);
812 	case 2: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries1);
813 	case 1: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries0);
814 	}
815 
816 	/*
817 	 * These fields are not used. Zero these to preserve compatibility
818 	 * with existing drivers.
819 	 */
820 	ts->ts_virtcol = MS(ads->ds_ctl1, AR_VirtRetryCnt);
821 	ts->ts_antenna = 0; /* We don't switch antennas on Owl*/
822 
823 	/* handle tx trigger level changes internally */
824 	if ((ts->ts_status & HAL_TXERR_FIFO) ||
825 	    (ts->ts_flags & (HAL_TX_DATA_UNDERRUN | HAL_TX_DELIM_UNDERRUN)))
826 		ar5212UpdateTxTrigLevel(ah, AH_TRUE);
827 
828 	return HAL_OK;
829 }
830 
831 HAL_BOOL
832 ar5416SetGlobalTxTimeout(struct ath_hal *ah, u_int tu)
833 {
834 	struct ath_hal_5416 *ahp = AH5416(ah);
835 
836 	if (tu > 0xFFFF) {
837 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad global tx timeout %u\n",
838 		    __func__, tu);
839 		/* restore default handling */
840 		ahp->ah_globaltxtimeout = (u_int) -1;
841 		return AH_FALSE;
842 	}
843 	OS_REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
844 	ahp->ah_globaltxtimeout = tu;
845 	return AH_TRUE;
846 }
847 
848 u_int
849 ar5416GetGlobalTxTimeout(struct ath_hal *ah)
850 {
851 	return MS(OS_REG_READ(ah, AR_GTXTO), AR_GTXTO_TIMEOUT_LIMIT);
852 }
853 
854 #define	HT_RC_2_MCS(_rc)	((_rc) & 0x0f)
855 static const u_int8_t baDurationDelta[] = {
856 	24,	//  0: BPSK
857 	12,	//  1: QPSK 1/2
858 	12,	//  2: QPSK 3/4
859 	4,	//  3: 16-QAM 1/2
860 	4,	//  4: 16-QAM 3/4
861 	4,	//  5: 64-QAM 2/3
862 	4,	//  6: 64-QAM 3/4
863 	4,	//  7: 64-QAM 5/6
864 	24,	//  8: BPSK
865 	12,	//  9: QPSK 1/2
866 	12,	// 10: QPSK 3/4
867 	4,	// 11: 16-QAM 1/2
868 	4,	// 12: 16-QAM 3/4
869 	4,	// 13: 64-QAM 2/3
870 	4,	// 14: 64-QAM 3/4
871 	4,	// 15: 64-QAM 5/6
872 };
873 
874 void
875 ar5416Set11nRateScenario(struct ath_hal *ah, struct ath_desc *ds,
876         u_int durUpdateEn, u_int rtsctsRate,
877 	HAL_11N_RATE_SERIES series[], u_int nseries, u_int flags)
878 {
879 	struct ar5416_desc *ads = AR5416DESC(ds);
880 	uint32_t ds_ctl0;
881 
882 	HALASSERT(nseries == 4);
883 	(void)nseries;
884 
885 	/*
886 	 * Only one of RTS and CTS enable must be set.
887 	 * If a frame has both set, just do RTS protection -
888 	 * that's enough to satisfy legacy protection.
889 	 */
890 	if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
891 		ds_ctl0 = ads->ds_ctl0;
892 
893 		if (flags & HAL_TXDESC_RTSENA) {
894 			ds_ctl0 &= ~AR_CTSEnable;
895 			ds_ctl0 |= AR_RTSEnable;
896 		} else {
897 			ds_ctl0 &= ~AR_RTSEnable;
898 			ds_ctl0 |= AR_CTSEnable;
899 		}
900 
901 		ads->ds_ctl0 = ds_ctl0;
902 	} else {
903 		ads->ds_ctl0 =
904 		    (ads->ds_ctl0 & ~(AR_RTSEnable | AR_CTSEnable));
905 	}
906 
907 	ads->ds_ctl2 = set11nTries(series, 0)
908 		     | set11nTries(series, 1)
909 		     | set11nTries(series, 2)
910 		     | set11nTries(series, 3)
911 		     | (durUpdateEn ? AR_DurUpdateEn : 0);
912 
913 	ads->ds_ctl3 = set11nRate(series, 0)
914 		     | set11nRate(series, 1)
915 		     | set11nRate(series, 2)
916 		     | set11nRate(series, 3);
917 
918 	ads->ds_ctl4 = set11nPktDurRTSCTS(series, 0)
919 		     | set11nPktDurRTSCTS(series, 1);
920 
921 	ads->ds_ctl5 = set11nPktDurRTSCTS(series, 2)
922 		     | set11nPktDurRTSCTS(series, 3);
923 
924 	ads->ds_ctl7 = set11nRateFlags(series, 0)
925 		     | set11nRateFlags(series, 1)
926 		     | set11nRateFlags(series, 2)
927 		     | set11nRateFlags(series, 3)
928 		     | SM(rtsctsRate, AR_RTSCTSRate);
929 
930 	/*
931 	 * Doing per-packet TPC - update the TX power for the first
932 	 * field; program in the other series.
933 	 */
934 	if (AH5212(ah)->ah_tpcEnabled) {
935 		uint32_t ds_ctl0;
936 		uint16_t txPower;
937 
938 		/* Modify the tx power field for rate 0 */
939 		txPower = ar5416GetTxRatePower(ah, series[0].Rate,
940 		    series[0].ChSel,
941 		    series[0].tx_power_cap,
942 		    !! (series[0].RateFlags & HAL_RATESERIES_2040));
943 		ds_ctl0 = ads->ds_ctl0 & ~AR_XmitPower;
944 		ds_ctl0 |= (txPower << AR_XmitPower_S);
945 		ads->ds_ctl0 = ds_ctl0;
946 
947 		/*
948 		 * Override the whole descriptor field for each TX power.
949 		 *
950 		 * This will need changing if we ever support antenna control
951 		 * programming.
952 		 */
953 		txPower = ar5416GetTxRatePower(ah, series[1].Rate,
954 		    series[1].ChSel,
955 		    series[1].tx_power_cap,
956 		    !! (series[1].RateFlags & HAL_RATESERIES_2040));
957 		ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1);
958 
959 		txPower = ar5416GetTxRatePower(ah, series[2].Rate,
960 		    series[2].ChSel,
961 		    series[2].tx_power_cap,
962 		    !! (series[2].RateFlags & HAL_RATESERIES_2040));
963 		ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2);
964 
965 		txPower = ar5416GetTxRatePower(ah, series[3].Rate,
966 		    series[3].ChSel,
967 		    series[3].tx_power_cap,
968 		    !! (series[3].RateFlags & HAL_RATESERIES_2040));
969 		ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3);
970 	}
971 }
972 
973 /*
974  * Note: this should be called before calling ar5416SetBurstDuration()
975  * (if it is indeed called) in order to ensure that the burst duration
976  * is correctly updated with the BA delta workaround.
977  */
978 void
979 ar5416Set11nAggrFirst(struct ath_hal *ah, struct ath_desc *ds, u_int aggrLen,
980     u_int numDelims)
981 {
982 	struct ar5416_desc *ads = AR5416DESC(ds);
983 	uint32_t flags;
984 	uint32_t burstDur;
985 	uint8_t rate;
986 
987 	ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
988 
989 	ads->ds_ctl6 &= ~(AR_AggrLen | AR_PadDelim);
990 	ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen);
991 	ads->ds_ctl6 |= SM(numDelims, AR_PadDelim);
992 
993 	if (! AR_SREV_MERLIN_10_OR_LATER(ah)) {
994 		/*
995 		 * XXX It'd be nice if I were passed in the rate scenario
996 		 * at this point..
997 		 */
998 		rate = MS(ads->ds_ctl3, AR_XmitRate0);
999 		flags = ads->ds_ctl0 & (AR_CTSEnable | AR_RTSEnable);
1000 		/*
1001 		 * WAR - MAC assumes normal ACK time instead of
1002 		 * block ACK while computing packet duration.
1003 		 * Add this delta to the burst duration in the descriptor.
1004 		 */
1005 		if (flags && (ads->ds_ctl1 & AR_IsAggr)) {
1006 			burstDur = baDurationDelta[HT_RC_2_MCS(rate)];
1007 			ads->ds_ctl2 &= ~(AR_BurstDur);
1008 			ads->ds_ctl2 |= SM(burstDur, AR_BurstDur);
1009 		}
1010 	}
1011 }
1012 
1013 void
1014 ar5416Set11nAggrMiddle(struct ath_hal *ah, struct ath_desc *ds, u_int numDelims)
1015 {
1016 	struct ar5416_desc *ads = AR5416DESC(ds);
1017 	uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
1018 
1019 	ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
1020 
1021 	ads->ds_ctl6 &= ~AR_PadDelim;
1022 	ads->ds_ctl6 |= SM(numDelims, AR_PadDelim);
1023 	ads->ds_ctl6 &= ~AR_AggrLen;
1024 
1025 	/*
1026 	 * Clear the TxDone status here, may need to change
1027 	 * func name to reflect this
1028 	 */
1029 	ds_txstatus[9] &= ~AR_TxDone;
1030 }
1031 
1032 void
1033 ar5416Set11nAggrLast(struct ath_hal *ah, struct ath_desc *ds)
1034 {
1035 	struct ar5416_desc *ads = AR5416DESC(ds);
1036 
1037 	ads->ds_ctl1 |= AR_IsAggr;
1038 	ads->ds_ctl1 &= ~AR_MoreAggr;
1039 	ads->ds_ctl6 &= ~AR_PadDelim;
1040 }
1041 
1042 void
1043 ar5416Clr11nAggr(struct ath_hal *ah, struct ath_desc *ds)
1044 {
1045 	struct ar5416_desc *ads = AR5416DESC(ds);
1046 
1047 	ads->ds_ctl1 &= (~AR_IsAggr & ~AR_MoreAggr);
1048 	ads->ds_ctl6 &= ~AR_PadDelim;
1049 	ads->ds_ctl6 &= ~AR_AggrLen;
1050 }
1051 
1052 void
1053 ar5416Set11nVirtualMoreFrag(struct ath_hal *ah, struct ath_desc *ds,
1054     u_int vmf)
1055 {
1056 	struct ar5416_desc *ads = AR5416DESC(ds);
1057 	if (vmf)
1058 		ads->ds_ctl0 |= AR_VirtMoreFrag;
1059 	else
1060 		ads->ds_ctl0 &= ~AR_VirtMoreFrag;
1061 }
1062 
1063 /*
1064  * Program the burst duration, with the included BA delta if it's
1065  * applicable.
1066  */
1067 void
1068 ar5416Set11nBurstDuration(struct ath_hal *ah, struct ath_desc *ds,
1069                                                   u_int burstDuration)
1070 {
1071 	struct ar5416_desc *ads = AR5416DESC(ds);
1072 	uint32_t burstDur = 0;
1073 	uint8_t rate;
1074 
1075 	if (! AR_SREV_MERLIN_10_OR_LATER(ah)) {
1076 		/*
1077 		 * XXX It'd be nice if I were passed in the rate scenario
1078 		 * at this point..
1079 		 */
1080 		rate = MS(ads->ds_ctl3, AR_XmitDataTries0);
1081 		/*
1082 		 * WAR - MAC assumes normal ACK time instead of
1083 		 * block ACK while computing packet duration.
1084 		 * Add this delta to the burst duration in the descriptor.
1085 		 */
1086 		if (ads->ds_ctl1 & AR_IsAggr) {
1087 			burstDur = baDurationDelta[HT_RC_2_MCS(rate)];
1088 		}
1089 	}
1090 
1091 	ads->ds_ctl2 &= ~AR_BurstDur;
1092 	ads->ds_ctl2 |= SM(burstDur + burstDuration, AR_BurstDur);
1093 }
1094 
1095 /*
1096  * Retrieve the rate table from the given TX completion descriptor
1097  */
1098 HAL_BOOL
1099 ar5416GetTxCompletionRates(struct ath_hal *ah, const struct ath_desc *ds0, int *rates, int *tries)
1100 {
1101 	const struct ar5416_desc *ads = AR5416DESC_CONST(ds0);
1102 
1103 	rates[0] = MS(ads->ds_ctl3, AR_XmitRate0);
1104 	rates[1] = MS(ads->ds_ctl3, AR_XmitRate1);
1105 	rates[2] = MS(ads->ds_ctl3, AR_XmitRate2);
1106 	rates[3] = MS(ads->ds_ctl3, AR_XmitRate3);
1107 
1108 	tries[0] = MS(ads->ds_ctl2, AR_XmitDataTries0);
1109 	tries[1] = MS(ads->ds_ctl2, AR_XmitDataTries1);
1110 	tries[2] = MS(ads->ds_ctl2, AR_XmitDataTries2);
1111 	tries[3] = MS(ads->ds_ctl2, AR_XmitDataTries3);
1112 
1113 	return AH_TRUE;
1114 }
1115 
1116 /*
1117  * TX queue management routines - AR5416 and later chipsets
1118  */
1119 
1120 /*
1121  * Allocate and initialize a tx DCU/QCU combination.
1122  */
1123 int
1124 ar5416SetupTxQueue(struct ath_hal *ah, HAL_TX_QUEUE type,
1125 	const HAL_TXQ_INFO *qInfo)
1126 {
1127 	struct ath_hal_5212 *ahp = AH5212(ah);
1128 	HAL_TX_QUEUE_INFO *qi;
1129 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
1130 	int q, defqflags;
1131 
1132 	/* by default enable OK+ERR+DESC+URN interrupts */
1133 	defqflags = HAL_TXQ_TXOKINT_ENABLE
1134 		  | HAL_TXQ_TXERRINT_ENABLE
1135 		  | HAL_TXQ_TXDESCINT_ENABLE
1136 		  | HAL_TXQ_TXURNINT_ENABLE;
1137 	/* XXX move queue assignment to driver */
1138 	switch (type) {
1139 	case HAL_TX_QUEUE_BEACON:
1140 		q = pCap->halTotalQueues-1;	/* highest priority */
1141 		defqflags |= HAL_TXQ_DBA_GATED
1142 		       | HAL_TXQ_CBR_DIS_QEMPTY
1143 		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
1144 		       | HAL_TXQ_BACKOFF_DISABLE;
1145 		break;
1146 	case HAL_TX_QUEUE_CAB:
1147 		q = pCap->halTotalQueues-2;	/* next highest priority */
1148 		defqflags |= HAL_TXQ_DBA_GATED
1149 		       | HAL_TXQ_CBR_DIS_QEMPTY
1150 		       | HAL_TXQ_CBR_DIS_BEMPTY
1151 		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
1152 		       | HAL_TXQ_BACKOFF_DISABLE;
1153 		break;
1154 	case HAL_TX_QUEUE_PSPOLL:
1155 		q = 1;				/* lowest priority */
1156 		defqflags |= HAL_TXQ_DBA_GATED
1157 		       | HAL_TXQ_CBR_DIS_QEMPTY
1158 		       | HAL_TXQ_CBR_DIS_BEMPTY
1159 		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
1160 		       | HAL_TXQ_BACKOFF_DISABLE;
1161 		break;
1162 	case HAL_TX_QUEUE_UAPSD:
1163 		q = pCap->halTotalQueues-3;	/* nextest highest priority */
1164 		if (ahp->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE) {
1165 			HALDEBUG(ah, HAL_DEBUG_ANY,
1166 			    "%s: no available UAPSD tx queue\n", __func__);
1167 			return -1;
1168 		}
1169 		break;
1170 	case HAL_TX_QUEUE_DATA:
1171 		for (q = 0; q < pCap->halTotalQueues; q++)
1172 			if (ahp->ah_txq[q].tqi_type == HAL_TX_QUEUE_INACTIVE)
1173 				break;
1174 		if (q == pCap->halTotalQueues) {
1175 			HALDEBUG(ah, HAL_DEBUG_ANY,
1176 			    "%s: no available tx queue\n", __func__);
1177 			return -1;
1178 		}
1179 		break;
1180 	default:
1181 		HALDEBUG(ah, HAL_DEBUG_ANY,
1182 		    "%s: bad tx queue type %u\n", __func__, type);
1183 		return -1;
1184 	}
1185 
1186 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q);
1187 
1188 	qi = &ahp->ah_txq[q];
1189 	if (qi->tqi_type != HAL_TX_QUEUE_INACTIVE) {
1190 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: tx queue %u already active\n",
1191 		    __func__, q);
1192 		return -1;
1193 	}
1194 	OS_MEMZERO(qi, sizeof(HAL_TX_QUEUE_INFO));
1195 	qi->tqi_type = type;
1196 	if (qInfo == AH_NULL) {
1197 		qi->tqi_qflags = defqflags;
1198 		qi->tqi_aifs = INIT_AIFS;
1199 		qi->tqi_cwmin = HAL_TXQ_USEDEFAULT;	/* NB: do at reset */
1200 		qi->tqi_cwmax = INIT_CWMAX;
1201 		qi->tqi_shretry = INIT_SH_RETRY;
1202 		qi->tqi_lgretry = INIT_LG_RETRY;
1203 		qi->tqi_physCompBuf = 0;
1204 	} else {
1205 		qi->tqi_physCompBuf = qInfo->tqi_compBuf;
1206 		(void) ar5212SetTxQueueProps(ah, q, qInfo);
1207 	}
1208 	/* NB: must be followed by ar5212ResetTxQueue */
1209 	return q;
1210 }
1211 
1212 /*
1213  * Update the h/w interrupt registers to reflect a tx q's configuration.
1214  */
1215 static void
1216 setTxQInterrupts(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi)
1217 {
1218 	struct ath_hal_5212 *ahp = AH5212(ah);
1219 
1220 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
1221 	    "%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", __func__,
1222 	    ahp->ah_txOkInterruptMask, ahp->ah_txErrInterruptMask,
1223 	    ahp->ah_txDescInterruptMask, ahp->ah_txEolInterruptMask,
1224 	    ahp->ah_txUrnInterruptMask);
1225 
1226 	OS_REG_WRITE(ah, AR_IMR_S0,
1227 		  SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK)
1228 		| SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC)
1229 	);
1230 	OS_REG_WRITE(ah, AR_IMR_S1,
1231 		  SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR)
1232 		| SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL)
1233 	);
1234 	OS_REG_RMW_FIELD(ah, AR_IMR_S2,
1235 		AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask);
1236 }
1237 
1238 /*
1239  * Set the retry, aifs, cwmin/max, readyTime regs for specified queue
1240  * Assumes:
1241  *  phwChannel has been set to point to the current channel
1242  */
1243 #define	TU_TO_USEC(_tu)		((_tu) << 10)
1244 HAL_BOOL
1245 ar5416ResetTxQueue(struct ath_hal *ah, u_int q)
1246 {
1247 	struct ath_hal_5212 *ahp = AH5212(ah);
1248 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
1249 	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1250 	HAL_TX_QUEUE_INFO *qi;
1251 	uint32_t cwMin, chanCwMin, qmisc, dmisc;
1252 
1253 	if (q >= pCap->halTotalQueues) {
1254 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
1255 		    __func__, q);
1256 		return AH_FALSE;
1257 	}
1258 	qi = &ahp->ah_txq[q];
1259 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
1260 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n",
1261 		    __func__, q);
1262 		return AH_TRUE;		/* XXX??? */
1263 	}
1264 
1265 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: reset queue %u\n", __func__, q);
1266 
1267 	if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT) {
1268 		/*
1269 		 * Select cwmin according to channel type.
1270 		 * NB: chan can be NULL during attach
1271 		 */
1272 		if (chan && IEEE80211_IS_CHAN_B(chan))
1273 			chanCwMin = INIT_CWMIN_11B;
1274 		else
1275 			chanCwMin = INIT_CWMIN;
1276 		/* make sure that the CWmin is of the form (2^n - 1) */
1277 		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1)
1278 			;
1279 	} else
1280 		cwMin = qi->tqi_cwmin;
1281 
1282 	/* set cwMin/Max and AIFS values */
1283 	OS_REG_WRITE(ah, AR_DLCL_IFS(q),
1284 		  SM(cwMin, AR_D_LCL_IFS_CWMIN)
1285 		| SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX)
1286 		| SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
1287 
1288 	/* Set retry limit values */
1289 	OS_REG_WRITE(ah, AR_DRETRY_LIMIT(q),
1290 		   SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH)
1291 		 | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG)
1292 		 | SM(qi->tqi_lgretry, AR_D_RETRY_LIMIT_FR_LG)
1293 		 | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH)
1294 	);
1295 
1296 	/* NB: always enable early termination on the QCU */
1297 	qmisc = AR_Q_MISC_DCU_EARLY_TERM_REQ
1298 	      | SM(AR_Q_MISC_FSP_ASAP, AR_Q_MISC_FSP);
1299 
1300 	/* NB: always enable DCU to wait for next fragment from QCU */
1301 	dmisc = AR_D_MISC_FRAG_WAIT_EN;
1302 
1303 	/* Enable exponential backoff window */
1304 	dmisc |= AR_D_MISC_BKOFF_PERSISTENCE;
1305 
1306 	/*
1307 	 * The chip reset default is to use a DCU backoff threshold of 0x2.
1308 	 * Restore this when programming the DCU MISC register.
1309 	 */
1310 	dmisc |= 0x2;
1311 
1312 	/* multiqueue support */
1313 	if (qi->tqi_cbrPeriod) {
1314 		OS_REG_WRITE(ah, AR_QCBRCFG(q),
1315 			  SM(qi->tqi_cbrPeriod,AR_Q_CBRCFG_CBR_INTERVAL)
1316 			| SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_CBR_OVF_THRESH));
1317 		qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_CBR;
1318 		if (qi->tqi_cbrOverflowLimit)
1319 			qmisc |= AR_Q_MISC_CBR_EXP_CNTR_LIMIT;
1320 	}
1321 
1322 	if (qi->tqi_readyTime && (qi->tqi_type != HAL_TX_QUEUE_CAB)) {
1323 		OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
1324 			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT)
1325 			| AR_Q_RDYTIMECFG_ENA);
1326 	}
1327 
1328 	OS_REG_WRITE(ah, AR_DCHNTIME(q),
1329 		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR)
1330 		| (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
1331 
1332 	if (qi->tqi_readyTime &&
1333 	    (qi->tqi_qflags & HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE))
1334 		qmisc |= AR_Q_MISC_RDYTIME_EXP_POLICY;
1335 	if (qi->tqi_qflags & HAL_TXQ_DBA_GATED)
1336 		qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_DBA_GATED;
1337 	if (MS(qmisc, AR_Q_MISC_FSP) != AR_Q_MISC_FSP_ASAP) {
1338 		/*
1339 		 * These are meangingful only when not scheduled asap.
1340 		 */
1341 		if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_BEMPTY)
1342 			qmisc |= AR_Q_MISC_CBR_INCR_DIS0;
1343 		else
1344 			qmisc &= ~AR_Q_MISC_CBR_INCR_DIS0;
1345 		if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_QEMPTY)
1346 			qmisc |= AR_Q_MISC_CBR_INCR_DIS1;
1347 		else
1348 			qmisc &= ~AR_Q_MISC_CBR_INCR_DIS1;
1349 	}
1350 
1351 	if (qi->tqi_qflags & HAL_TXQ_BACKOFF_DISABLE)
1352 		dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS;
1353 	if (qi->tqi_qflags & HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE)
1354 		dmisc |= AR_D_MISC_FRAG_BKOFF_EN;
1355 	if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_GLOBAL)
1356 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
1357 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
1358 	else if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_INTRA)
1359 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_INTRA_FR,
1360 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
1361 	if (qi->tqi_qflags & HAL_TXQ_IGNORE_VIRTCOL)
1362 		dmisc |= SM(AR_D_MISC_VIR_COL_HANDLING_IGNORE,
1363 			    AR_D_MISC_VIR_COL_HANDLING);
1364 	if (qi->tqi_qflags & HAL_TXQ_SEQNUM_INC_DIS)
1365 		dmisc |= AR_D_MISC_SEQ_NUM_INCR_DIS;
1366 
1367 	/*
1368 	 * Fillin type-dependent bits.  Most of this can be
1369 	 * removed by specifying the queue parameters in the
1370 	 * driver; it's here for backwards compatibility.
1371 	 */
1372 	switch (qi->tqi_type) {
1373 	case HAL_TX_QUEUE_BEACON:		/* beacon frames */
1374 		qmisc |= AR_Q_MISC_FSP_DBA_GATED
1375 		      |  AR_Q_MISC_BEACON_USE
1376 		      |  AR_Q_MISC_CBR_INCR_DIS1;
1377 
1378 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
1379 			    AR_D_MISC_ARB_LOCKOUT_CNTRL)
1380 		      |  AR_D_MISC_BEACON_USE
1381 		      |  AR_D_MISC_POST_FR_BKOFF_DIS;
1382 		break;
1383 	case HAL_TX_QUEUE_CAB:			/* CAB  frames */
1384 		/*
1385 		 * No longer Enable AR_Q_MISC_RDYTIME_EXP_POLICY,
1386 		 * There is an issue with the CAB Queue
1387 		 * not properly refreshing the Tx descriptor if
1388 		 * the TXE clear setting is used.
1389 		 */
1390 		qmisc |= AR_Q_MISC_FSP_DBA_GATED
1391 		      |  AR_Q_MISC_CBR_INCR_DIS1
1392 		      |  AR_Q_MISC_CBR_INCR_DIS0;
1393 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: CAB: tqi_readyTime = %d\n",
1394 		    __func__, qi->tqi_readyTime);
1395 		if (qi->tqi_readyTime) {
1396 			HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
1397 			    "%s: using tqi_readyTime\n", __func__);
1398 			OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
1399 			    SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT) |
1400 			    AR_Q_RDYTIMECFG_ENA);
1401 		} else {
1402 			int value;
1403 			/*
1404 			 * NB: don't set default ready time if driver
1405 			 * has explicitly specified something.  This is
1406 			 * here solely for backwards compatibility.
1407 			 */
1408 			/*
1409 			 * XXX for now, hard-code a CAB interval of 70%
1410 			 * XXX of the total beacon interval.
1411 			 *
1412 			 * XXX This keeps Merlin and later based MACs
1413 			 * XXX quite a bit happier (stops stuck beacons,
1414 			 * XXX which I gather is because of such a long
1415 			 * XXX cabq time.)
1416 			 */
1417 			value = (ahp->ah_beaconInterval * 50 / 100)
1418 				- ah->ah_config.ah_additional_swba_backoff
1419 				- ah->ah_config.ah_sw_beacon_response_time
1420 				+ ah->ah_config.ah_dma_beacon_response_time;
1421 			/*
1422 			 * XXX Ensure it isn't too low - nothing lower
1423 			 * XXX than 10 TU
1424 			 */
1425 			if (value < 10)
1426 				value = 10;
1427 			HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
1428 			    "%s: defaulting to rdytime = %d uS\n",
1429 			    __func__, value);
1430 			OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
1431 			    SM(TU_TO_USEC(value), AR_Q_RDYTIMECFG_INT) |
1432 			    AR_Q_RDYTIMECFG_ENA);
1433 		}
1434 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
1435 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
1436 		break;
1437 	case HAL_TX_QUEUE_PSPOLL:
1438 		qmisc |= AR_Q_MISC_CBR_INCR_DIS1;
1439 		break;
1440 	case HAL_TX_QUEUE_UAPSD:
1441 		dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS;
1442 		break;
1443 	default:			/* NB: silence compiler */
1444 		break;
1445 	}
1446 
1447 	OS_REG_WRITE(ah, AR_QMISC(q), qmisc);
1448 	OS_REG_WRITE(ah, AR_DMISC(q), dmisc);
1449 
1450 	/* Setup compression scratchpad buffer */
1451 	/*
1452 	 * XXX: calling this asynchronously to queue operation can
1453 	 *      cause unexpected behavior!!!
1454 	 */
1455 	if (qi->tqi_physCompBuf) {
1456 		HALASSERT(qi->tqi_type == HAL_TX_QUEUE_DATA ||
1457 			  qi->tqi_type == HAL_TX_QUEUE_UAPSD);
1458 		OS_REG_WRITE(ah, AR_Q_CBBS, (80 + 2*q));
1459 		OS_REG_WRITE(ah, AR_Q_CBBA, qi->tqi_physCompBuf);
1460 		OS_REG_WRITE(ah, AR_Q_CBC,  HAL_COMP_BUF_MAX_SIZE/1024);
1461 		OS_REG_WRITE(ah, AR_Q0_MISC + 4*q,
1462 			     OS_REG_READ(ah, AR_Q0_MISC + 4*q)
1463 			     | AR_Q_MISC_QCU_COMP_EN);
1464 	}
1465 
1466 	/*
1467 	 * Always update the secondary interrupt mask registers - this
1468 	 * could be a new queue getting enabled in a running system or
1469 	 * hw getting re-initialized during a reset!
1470 	 *
1471 	 * Since we don't differentiate between tx interrupts corresponding
1472 	 * to individual queues - secondary tx mask regs are always unmasked;
1473 	 * tx interrupts are enabled/disabled for all queues collectively
1474 	 * using the primary mask reg
1475 	 */
1476 	if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE)
1477 		ahp->ah_txOkInterruptMask |= 1 << q;
1478 	else
1479 		ahp->ah_txOkInterruptMask &= ~(1 << q);
1480 	if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE)
1481 		ahp->ah_txErrInterruptMask |= 1 << q;
1482 	else
1483 		ahp->ah_txErrInterruptMask &= ~(1 << q);
1484 	if (qi->tqi_qflags & HAL_TXQ_TXDESCINT_ENABLE)
1485 		ahp->ah_txDescInterruptMask |= 1 << q;
1486 	else
1487 		ahp->ah_txDescInterruptMask &= ~(1 << q);
1488 	if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE)
1489 		ahp->ah_txEolInterruptMask |= 1 << q;
1490 	else
1491 		ahp->ah_txEolInterruptMask &= ~(1 << q);
1492 	if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE)
1493 		ahp->ah_txUrnInterruptMask |= 1 << q;
1494 	else
1495 		ahp->ah_txUrnInterruptMask &= ~(1 << q);
1496 	setTxQInterrupts(ah, qi);
1497 
1498 	return AH_TRUE;
1499 }
1500 #undef	TU_TO_USEC
1501