xref: /freebsd/sys/dev/ath/ath_hal/ar5416/ar5416_xmit.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_desc.h"
23 #include "ah_internal.h"
24 
25 #include "ar5416/ar5416.h"
26 #include "ar5416/ar5416reg.h"
27 #include "ar5416/ar5416phy.h"
28 #include "ar5416/ar5416desc.h"
29 
30 /*
31  * Stop transmit on the specified queue
32  */
33 HAL_BOOL
34 ar5416StopTxDma(struct ath_hal *ah, u_int q)
35 {
36 #define	STOP_DMA_TIMEOUT	4000	/* us */
37 #define	STOP_DMA_ITER		100	/* us */
38 	u_int i;
39 
40 	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
41 
42 	HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
43 
44 	OS_REG_WRITE(ah, AR_Q_TXD, 1 << q);
45 	for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) {
46 		if (ar5212NumTxPending(ah, q) == 0)
47 			break;
48 		OS_DELAY(STOP_DMA_ITER);
49 	}
50 #ifdef AH_DEBUG
51 	if (i == 0) {
52 		HALDEBUG(ah, HAL_DEBUG_ANY,
53 		    "%s: queue %u DMA did not stop in 400 msec\n", __func__, q);
54 		HALDEBUG(ah, HAL_DEBUG_ANY,
55 		    "%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__,
56 		    OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE),
57 		    OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q)));
58 		HALDEBUG(ah, HAL_DEBUG_ANY,
59 		    "%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n",
60 		    __func__, OS_REG_READ(ah, AR_QMISC(q)),
61 		    OS_REG_READ(ah, AR_QRDYTIMECFG(q)),
62 		    OS_REG_READ(ah, AR_Q_RDYTIMESHDN));
63 	}
64 #endif /* AH_DEBUG */
65 
66 	/* ar5416 and up can kill packets at the PCU level */
67 	if (ar5212NumTxPending(ah, q)) {
68 		uint32_t j;
69 
70 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
71 		    "%s: Num of pending TX Frames %d on Q %d\n",
72 		    __func__, ar5212NumTxPending(ah, q), q);
73 
74 		/* Kill last PCU Tx Frame */
75 		/* TODO - save off and restore current values of Q1/Q2? */
76 		for (j = 0; j < 2; j++) {
77 			uint32_t tsfLow = OS_REG_READ(ah, AR_TSF_L32);
78 			OS_REG_WRITE(ah, AR_QUIET2,
79 			    SM(10, AR_QUIET2_QUIET_DUR));
80 			OS_REG_WRITE(ah, AR_QUIET_PERIOD, 100);
81 			OS_REG_WRITE(ah, AR_NEXT_QUIET, tsfLow >> 10);
82 			OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
83 
84 			if ((OS_REG_READ(ah, AR_TSF_L32)>>10) == (tsfLow>>10))
85 				break;
86 
87 			HALDEBUG(ah, HAL_DEBUG_ANY,
88 			    "%s: TSF moved while trying to set quiet time "
89 			    "TSF: 0x%08x\n", __func__, tsfLow);
90 			HALASSERT(j < 1); /* TSF shouldn't count twice or reg access is taking forever */
91 		}
92 
93 		OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
94 
95 		/* Allow the quiet mechanism to do its work */
96 		OS_DELAY(200);
97 		OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
98 
99 		/* Verify the transmit q is empty */
100 		for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) {
101 			if (ar5212NumTxPending(ah, q) == 0)
102 				break;
103 			OS_DELAY(STOP_DMA_ITER);
104 		}
105 		if (i == 0) {
106 			HALDEBUG(ah, HAL_DEBUG_ANY,
107 			    "%s: Failed to stop Tx DMA in %d msec after killing"
108 			    " last frame\n", __func__, STOP_DMA_TIMEOUT / 1000);
109 		}
110 		OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
111 	}
112 
113 	OS_REG_WRITE(ah, AR_Q_TXD, 0);
114 	return (i != 0);
115 #undef STOP_DMA_ITER
116 #undef STOP_DMA_TIMEOUT
117 }
118 
119 #define VALID_KEY_TYPES \
120         ((1 << HAL_KEY_TYPE_CLEAR) | (1 << HAL_KEY_TYPE_WEP)|\
121          (1 << HAL_KEY_TYPE_AES)   | (1 << HAL_KEY_TYPE_TKIP))
122 #define isValidKeyType(_t)      ((1 << (_t)) & VALID_KEY_TYPES)
123 
124 #define set11nTries(_series, _index) \
125         (SM((_series)[_index].Tries, AR_XmitDataTries##_index))
126 
127 #define set11nRate(_series, _index) \
128         (SM((_series)[_index].Rate, AR_XmitRate##_index))
129 
130 #define set11nPktDurRTSCTS(_series, _index) \
131         (SM((_series)[_index].PktDuration, AR_PacketDur##_index) |\
132          ((_series)[_index].RateFlags & HAL_RATESERIES_RTS_CTS   ?\
133          AR_RTSCTSQual##_index : 0))
134 
135 #define set11nRateFlags(_series, _index) \
136         ((_series)[_index].RateFlags & HAL_RATESERIES_2040 ? AR_2040_##_index : 0) \
137         |((_series)[_index].RateFlags & HAL_RATESERIES_HALFGI ? AR_GI##_index : 0) \
138         |SM((_series)[_index].ChSel, AR_ChainSel##_index)
139 
140 /*
141  * Descriptor Access Functions
142  */
143 
144 #define VALID_PKT_TYPES \
145         ((1<<HAL_PKT_TYPE_NORMAL)|(1<<HAL_PKT_TYPE_ATIM)|\
146          (1<<HAL_PKT_TYPE_PSPOLL)|(1<<HAL_PKT_TYPE_PROBE_RESP)|\
147          (1<<HAL_PKT_TYPE_BEACON)|(1<<HAL_PKT_TYPE_AMPDU))
148 #define isValidPktType(_t)      ((1<<(_t)) & VALID_PKT_TYPES)
149 #define VALID_TX_RATES \
150         ((1<<0x0b)|(1<<0x0f)|(1<<0x0a)|(1<<0x0e)|(1<<0x09)|(1<<0x0d)|\
151          (1<<0x08)|(1<<0x0c)|(1<<0x1b)|(1<<0x1a)|(1<<0x1e)|(1<<0x19)|\
152 	 (1<<0x1d)|(1<<0x18)|(1<<0x1c)|(1<<0x01)|(1<<0x02)|(1<<0x03)|\
153 	 (1<<0x04)|(1<<0x05)|(1<<0x06)|(1<<0x07)|(1<<0x00))
154 /* NB: accept HT rates */
155 #define	isValidTxRate(_r)	((1<<((_r) & 0x7f)) & VALID_TX_RATES)
156 
157 HAL_BOOL
158 ar5416SetupTxDesc(struct ath_hal *ah, struct ath_desc *ds,
159 	u_int pktLen,
160 	u_int hdrLen,
161 	HAL_PKT_TYPE type,
162 	u_int txPower,
163 	u_int txRate0, u_int txTries0,
164 	u_int keyIx,
165 	u_int antMode,
166 	u_int flags,
167 	u_int rtsctsRate,
168 	u_int rtsctsDuration,
169 	u_int compicvLen,
170 	u_int compivLen,
171 	u_int comp)
172 {
173 #define	RTSCTS	(HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
174 	struct ar5416_desc *ads = AR5416DESC(ds);
175 	struct ath_hal_5416 *ahp = AH5416(ah);
176 
177 	(void) hdrLen;
178 
179 	HALASSERT(txTries0 != 0);
180 	HALASSERT(isValidPktType(type));
181 	HALASSERT(isValidTxRate(txRate0));
182 	HALASSERT((flags & RTSCTS) != RTSCTS);
183 	/* XXX validate antMode */
184 
185         txPower = (txPower + AH5212(ah)->ah_txPowerIndexOffset);
186         if (txPower > 63)
187 		txPower = 63;
188 
189 	ads->ds_ctl0 = (pktLen & AR_FrameLen)
190 		     | (txPower << AR_XmitPower_S)
191 		     | (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
192 		     | (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
193 		     | (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0)
194 		     ;
195 	ads->ds_ctl1 = (type << AR_FrameType_S)
196 		     | (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0)
197                      ;
198 	ads->ds_ctl2 = SM(txTries0, AR_XmitDataTries0)
199 		     | (flags & HAL_TXDESC_DURENA ? AR_DurUpdateEn : 0)
200 		     ;
201 	ads->ds_ctl3 = (txRate0 << AR_XmitRate0_S)
202 		     ;
203 	ads->ds_ctl4 = 0;
204 	ads->ds_ctl5 = 0;
205 	ads->ds_ctl6 = 0;
206 	ads->ds_ctl7 = SM(ahp->ah_tx_chainmask, AR_ChainSel0)
207 		     | SM(ahp->ah_tx_chainmask, AR_ChainSel1)
208 		     | SM(ahp->ah_tx_chainmask, AR_ChainSel2)
209 		     | SM(ahp->ah_tx_chainmask, AR_ChainSel3)
210 		     ;
211 	ads->ds_ctl8 = SM(0, AR_AntCtl0);
212 	ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1);
213 	ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2);
214 	ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3);
215 
216 	if (keyIx != HAL_TXKEYIX_INVALID) {
217 		/* XXX validate key index */
218 		ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
219 		ads->ds_ctl0 |= AR_DestIdxValid;
220 		ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType);
221 	}
222 	if (flags & RTSCTS) {
223 		if (!isValidTxRate(rtsctsRate)) {
224 			HALDEBUG(ah, HAL_DEBUG_ANY,
225 			    "%s: invalid rts/cts rate 0x%x\n",
226 			    __func__, rtsctsRate);
227 			return AH_FALSE;
228 		}
229 		/* XXX validate rtsctsDuration */
230 		ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
231 			     | (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0)
232 			     ;
233 		ads->ds_ctl7 |= (rtsctsRate << AR_RTSCTSRate_S);
234 	}
235 
236 	/*
237 	 * Set the TX antenna to 0 for Kite
238 	 * To preserve existing behaviour, also set the TPC bits to 0;
239 	 * when TPC is enabled these should be filled in appropriately.
240 	 */
241 	if (AR_SREV_KITE(ah)) {
242 		ads->ds_ctl8 = SM(0, AR_AntCtl0);
243 		ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1);
244 		ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2);
245 		ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3);
246 	}
247 	return AH_TRUE;
248 #undef RTSCTS
249 }
250 
251 HAL_BOOL
252 ar5416SetupXTxDesc(struct ath_hal *ah, struct ath_desc *ds,
253 	u_int txRate1, u_int txTries1,
254 	u_int txRate2, u_int txTries2,
255 	u_int txRate3, u_int txTries3)
256 {
257 	struct ar5416_desc *ads = AR5416DESC(ds);
258 
259 	if (txTries1) {
260 		HALASSERT(isValidTxRate(txRate1));
261 		ads->ds_ctl2 |= SM(txTries1, AR_XmitDataTries1);
262 		ads->ds_ctl3 |= (txRate1 << AR_XmitRate1_S);
263 	}
264 	if (txTries2) {
265 		HALASSERT(isValidTxRate(txRate2));
266 		ads->ds_ctl2 |= SM(txTries2, AR_XmitDataTries2);
267 		ads->ds_ctl3 |= (txRate2 << AR_XmitRate2_S);
268 	}
269 	if (txTries3) {
270 		HALASSERT(isValidTxRate(txRate3));
271 		ads->ds_ctl2 |= SM(txTries3, AR_XmitDataTries3);
272 		ads->ds_ctl3 |= (txRate3 << AR_XmitRate3_S);
273 	}
274 	return AH_TRUE;
275 }
276 
277 HAL_BOOL
278 ar5416FillTxDesc(struct ath_hal *ah, struct ath_desc *ds,
279 	u_int segLen, HAL_BOOL firstSeg, HAL_BOOL lastSeg,
280 	const struct ath_desc *ds0)
281 {
282 	struct ar5416_desc *ads = AR5416DESC(ds);
283 
284 	HALASSERT((segLen &~ AR_BufLen) == 0);
285 
286 	if (firstSeg) {
287 		/*
288 		 * First descriptor, don't clobber xmit control data
289 		 * setup by ar5212SetupTxDesc.
290 		 */
291 		ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
292 	} else if (lastSeg) {		/* !firstSeg && lastSeg */
293 		/*
294 		 * Last descriptor in a multi-descriptor frame,
295 		 * copy the multi-rate transmit parameters from
296 		 * the first frame for processing on completion.
297 		 */
298 		ads->ds_ctl0 = 0;
299 		ads->ds_ctl1 = segLen;
300 #ifdef AH_NEED_DESC_SWAP
301 		ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2);
302 		ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3);
303 #else
304 		ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
305 		ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
306 #endif
307 	} else {			/* !firstSeg && !lastSeg */
308 		/*
309 		 * Intermediate descriptor in a multi-descriptor frame.
310 		 */
311 		ads->ds_ctl0 = 0;
312 		ads->ds_ctl1 = segLen | AR_TxMore;
313 		ads->ds_ctl2 = 0;
314 		ads->ds_ctl3 = 0;
315 	}
316 	/* XXX only on last descriptor? */
317 	OS_MEMZERO(ads->u.tx.status, sizeof(ads->u.tx.status));
318 	return AH_TRUE;
319 }
320 
321 HAL_BOOL
322 ar5416ChainTxDesc(struct ath_hal *ah, struct ath_desc *ds,
323 	u_int pktLen,
324 	u_int hdrLen,
325 	HAL_PKT_TYPE type,
326 	u_int keyIx,
327 	HAL_CIPHER cipher,
328 	uint8_t delims,
329 	u_int segLen,
330 	HAL_BOOL firstSeg,
331 	HAL_BOOL lastSeg)
332 {
333 	struct ar5416_desc *ads = AR5416DESC(ds);
334 	uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
335 	struct ath_hal_5416 *ahp = AH5416(ah);
336 
337 	int isaggr = 0;
338 
339 	(void) hdrLen;
340 	(void) ah;
341 
342 	HALASSERT((segLen &~ AR_BufLen) == 0);
343 
344 	HALASSERT(isValidPktType(type));
345 	if (type == HAL_PKT_TYPE_AMPDU) {
346 		type = HAL_PKT_TYPE_NORMAL;
347 		isaggr = 1;
348 	}
349 
350 	if (!firstSeg) {
351 		OS_MEMZERO(ds->ds_hw, AR5416_DESC_TX_CTL_SZ);
352 	}
353 
354 	ads->ds_ctl0 = (pktLen & AR_FrameLen);
355 	ads->ds_ctl1 = (type << AR_FrameType_S)
356 			| (isaggr ? (AR_IsAggr | AR_MoreAggr) : 0);
357 	ads->ds_ctl2 = 0;
358 	ads->ds_ctl3 = 0;
359 	if (keyIx != HAL_TXKEYIX_INVALID) {
360 		/* XXX validate key index */
361 		ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
362 		ads->ds_ctl0 |= AR_DestIdxValid;
363 	}
364 
365 	ads->ds_ctl6 = SM(ahp->ah_keytype[cipher], AR_EncrType);
366 	if (isaggr) {
367 		ads->ds_ctl6 |= SM(delims, AR_PadDelim);
368 	}
369 
370 	if (firstSeg) {
371 		ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
372 	} else if (lastSeg) {           /* !firstSeg && lastSeg */
373 		ads->ds_ctl0 = 0;
374 		ads->ds_ctl1 |= segLen;
375 	} else {                        /* !firstSeg && !lastSeg */
376 		/*
377 		 * Intermediate descriptor in a multi-descriptor frame.
378 		 */
379 		ads->ds_ctl0 = 0;
380 		ads->ds_ctl1 |= segLen | AR_TxMore;
381 	}
382 	ds_txstatus[0] = ds_txstatus[1] = 0;
383 	ds_txstatus[9] &= ~AR_TxDone;
384 
385 	return AH_TRUE;
386 }
387 
388 HAL_BOOL
389 ar5416SetupFirstTxDesc(struct ath_hal *ah, struct ath_desc *ds,
390 	u_int aggrLen, u_int flags, u_int txPower,
391 	u_int txRate0, u_int txTries0, u_int antMode,
392 	u_int rtsctsRate, u_int rtsctsDuration)
393 {
394 #define RTSCTS  (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
395 	struct ar5416_desc *ads = AR5416DESC(ds);
396 	struct ath_hal_5212 *ahp = AH5212(ah);
397 
398 	HALASSERT(txTries0 != 0);
399 	HALASSERT(isValidTxRate(txRate0));
400 	HALASSERT((flags & RTSCTS) != RTSCTS);
401 	/* XXX validate antMode */
402 
403 	txPower = (txPower + ahp->ah_txPowerIndexOffset );
404 	if(txPower > 63)  txPower=63;
405 
406 	ads->ds_ctl0 |= (txPower << AR_XmitPower_S)
407 		| (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
408 		| (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
409 		| (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0);
410 	ads->ds_ctl1 |= (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0);
411 	ads->ds_ctl2 |= SM(txTries0, AR_XmitDataTries0);
412 	ads->ds_ctl3 |= (txRate0 << AR_XmitRate0_S);
413 	ads->ds_ctl7 = SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel0)
414 		| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel1)
415 		| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel2)
416 		| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel3);
417 
418 	/* NB: no V1 WAR */
419 	ads->ds_ctl8 = SM(0, AR_AntCtl0);
420 	ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1);
421 	ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2);
422 	ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3);
423 
424 	ads->ds_ctl6 &= ~(0xffff);
425 	ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen);
426 
427 	if (flags & RTSCTS) {
428 		/* XXX validate rtsctsDuration */
429 		ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
430 			| (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0);
431 	}
432 
433 	/*
434 	 * Set the TX antenna to 0 for Kite
435 	 * To preserve existing behaviour, also set the TPC bits to 0;
436 	 * when TPC is enabled these should be filled in appropriately.
437 	 */
438 	if (AR_SREV_KITE(ah)) {
439 		ads->ds_ctl8 = SM(0, AR_AntCtl0);
440 		ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1);
441 		ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2);
442 		ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3);
443 	}
444 
445 	return AH_TRUE;
446 #undef RTSCTS
447 }
448 
449 HAL_BOOL
450 ar5416SetupLastTxDesc(struct ath_hal *ah, struct ath_desc *ds,
451 		const struct ath_desc *ds0)
452 {
453 	struct ar5416_desc *ads = AR5416DESC(ds);
454 
455 	ads->ds_ctl1 &= ~AR_MoreAggr;
456 	ads->ds_ctl6 &= ~AR_PadDelim;
457 
458 	/* hack to copy rate info to last desc for later processing */
459 #ifdef AH_NEED_DESC_SWAP
460 	ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2);
461 	ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3);
462 #else
463 	ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
464 	ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
465 #endif
466 
467 	return AH_TRUE;
468 }
469 
470 #ifdef AH_NEED_DESC_SWAP
471 /* Swap transmit descriptor */
472 static __inline void
473 ar5416SwapTxDesc(struct ath_desc *ds)
474 {
475 	ds->ds_data = __bswap32(ds->ds_data);
476 	ds->ds_ctl0 = __bswap32(ds->ds_ctl0);
477 	ds->ds_ctl1 = __bswap32(ds->ds_ctl1);
478 	ds->ds_hw[0] = __bswap32(ds->ds_hw[0]);
479 	ds->ds_hw[1] = __bswap32(ds->ds_hw[1]);
480 	ds->ds_hw[2] = __bswap32(ds->ds_hw[2]);
481 	ds->ds_hw[3] = __bswap32(ds->ds_hw[3]);
482 }
483 #endif
484 
485 /*
486  * Processing of HW TX descriptor.
487  */
488 HAL_STATUS
489 ar5416ProcTxDesc(struct ath_hal *ah,
490 	struct ath_desc *ds, struct ath_tx_status *ts)
491 {
492 	struct ar5416_desc *ads = AR5416DESC(ds);
493 	uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
494 
495 #ifdef AH_NEED_DESC_SWAP
496 	if ((ds_txstatus[9] & __bswap32(AR_TxDone)) == 0)
497 		return HAL_EINPROGRESS;
498 	ar5416SwapTxDesc(ds);
499 #else
500 	if ((ds_txstatus[9] & AR_TxDone) == 0)
501 		return HAL_EINPROGRESS;
502 #endif
503 
504 	/* Update software copies of the HW status */
505 	ts->ts_seqnum = MS(ds_txstatus[9], AR_SeqNum);
506 	ts->ts_tstamp = AR_SendTimestamp(ds_txstatus);
507 
508 	ts->ts_status = 0;
509 	if (ds_txstatus[1] & AR_ExcessiveRetries)
510 		ts->ts_status |= HAL_TXERR_XRETRY;
511 	if (ds_txstatus[1] & AR_Filtered)
512 		ts->ts_status |= HAL_TXERR_FILT;
513 	if (ds_txstatus[1] & AR_FIFOUnderrun)
514 		ts->ts_status |= HAL_TXERR_FIFO;
515 	if (ds_txstatus[9] & AR_TxOpExceeded)
516 		ts->ts_status |= HAL_TXERR_XTXOP;
517 	if (ds_txstatus[1] & AR_TxTimerExpired)
518 		ts->ts_status |= HAL_TXERR_TIMER_EXPIRED;
519 
520 	ts->ts_flags  = 0;
521 	if (ds_txstatus[0] & AR_TxBaStatus) {
522 		ts->ts_flags |= HAL_TX_BA;
523 		ts->ts_ba_low = AR_BaBitmapLow(ds_txstatus);
524 		ts->ts_ba_high = AR_BaBitmapHigh(ds_txstatus);
525 	}
526 	if (ds->ds_ctl1 & AR_IsAggr)
527 		ts->ts_flags |= HAL_TX_AGGR;
528 	if (ds_txstatus[1] & AR_DescCfgErr)
529 		ts->ts_flags |= HAL_TX_DESC_CFG_ERR;
530 	if (ds_txstatus[1] & AR_TxDataUnderrun)
531 		ts->ts_flags |= HAL_TX_DATA_UNDERRUN;
532 	if (ds_txstatus[1] & AR_TxDelimUnderrun)
533 		ts->ts_flags |= HAL_TX_DELIM_UNDERRUN;
534 
535 	/*
536 	 * Extract the transmit rate used and mark the rate as
537 	 * ``alternate'' if it wasn't the series 0 rate.
538 	 */
539 	ts->ts_finaltsi =  MS(ds_txstatus[9], AR_FinalTxIdx);
540 	switch (ts->ts_finaltsi) {
541 	case 0:
542 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate0);
543 		break;
544 	case 1:
545 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate1);
546 		break;
547 	case 2:
548 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate2);
549 		break;
550 	case 3:
551 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate3);
552 		break;
553 	}
554 
555 	ts->ts_rssi = MS(ds_txstatus[5], AR_TxRSSICombined);
556 	ts->ts_rssi_ctl[0] = MS(ds_txstatus[0], AR_TxRSSIAnt00);
557 	ts->ts_rssi_ctl[1] = MS(ds_txstatus[0], AR_TxRSSIAnt01);
558 	ts->ts_rssi_ctl[2] = MS(ds_txstatus[0], AR_TxRSSIAnt02);
559 	ts->ts_rssi_ext[0] = MS(ds_txstatus[5], AR_TxRSSIAnt10);
560 	ts->ts_rssi_ext[1] = MS(ds_txstatus[5], AR_TxRSSIAnt11);
561 	ts->ts_rssi_ext[2] = MS(ds_txstatus[5], AR_TxRSSIAnt12);
562 	ts->ts_evm0 = AR_TxEVM0(ds_txstatus);
563 	ts->ts_evm1 = AR_TxEVM1(ds_txstatus);
564 	ts->ts_evm2 = AR_TxEVM2(ds_txstatus);
565 
566 	ts->ts_shortretry = MS(ds_txstatus[1], AR_RTSFailCnt);
567 	ts->ts_longretry = MS(ds_txstatus[1], AR_DataFailCnt);
568 	/*
569 	 * The retry count has the number of un-acked tries for the
570 	 * final series used.  When doing multi-rate retry we must
571 	 * fixup the retry count by adding in the try counts for
572 	 * each series that was fully-processed.  Beware that this
573 	 * takes values from the try counts in the final descriptor.
574 	 * These are not required by the hardware.  We assume they
575 	 * are placed there by the driver as otherwise we have no
576 	 * access and the driver can't do the calculation because it
577 	 * doesn't know the descriptor format.
578 	 */
579 	switch (ts->ts_finaltsi) {
580 	case 3: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries2);
581 	case 2: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries1);
582 	case 1: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries0);
583 	}
584 
585 	/*
586 	 * These fields are not used. Zero these to preserve compatability
587 	 * with existing drivers.
588 	 */
589 	ts->ts_virtcol = MS(ads->ds_ctl1, AR_VirtRetryCnt);
590 	ts->ts_antenna = 0; /* We don't switch antennas on Owl*/
591 
592 	/* handle tx trigger level changes internally */
593 	if ((ts->ts_status & HAL_TXERR_FIFO) ||
594 	    (ts->ts_flags & (HAL_TX_DATA_UNDERRUN | HAL_TX_DELIM_UNDERRUN)))
595 		ar5212UpdateTxTrigLevel(ah, AH_TRUE);
596 
597 	return HAL_OK;
598 }
599 
600 HAL_BOOL
601 ar5416SetGlobalTxTimeout(struct ath_hal *ah, u_int tu)
602 {
603 	struct ath_hal_5416 *ahp = AH5416(ah);
604 
605 	if (tu > 0xFFFF) {
606 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad global tx timeout %u\n",
607 		    __func__, tu);
608 		/* restore default handling */
609 		ahp->ah_globaltxtimeout = (u_int) -1;
610 		return AH_FALSE;
611 	}
612 	OS_REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
613 	ahp->ah_globaltxtimeout = tu;
614 	return AH_TRUE;
615 }
616 
617 u_int
618 ar5416GetGlobalTxTimeout(struct ath_hal *ah)
619 {
620 	return MS(OS_REG_READ(ah, AR_GTXTO), AR_GTXTO_TIMEOUT_LIMIT);
621 }
622 
623 void
624 ar5416Set11nRateScenario(struct ath_hal *ah, struct ath_desc *ds,
625         u_int durUpdateEn, u_int rtsctsRate,
626 	HAL_11N_RATE_SERIES series[], u_int nseries, u_int flags)
627 {
628 	struct ar5416_desc *ads = AR5416DESC(ds);
629 	uint32_t ds_ctl0;
630 
631 	HALASSERT(nseries == 4);
632 	(void)nseries;
633 
634 	/*
635 	 * XXX since the upper layers doesn't know the current chainmask
636 	 * XXX setup, just override its decisions here.
637 	 * XXX The upper layers need to be taught this!
638 	 */
639 	if (series[0].Tries != 0)
640 		series[0].ChSel = AH5416(ah)->ah_tx_chainmask;
641 	if (series[1].Tries != 0)
642 		series[1].ChSel = AH5416(ah)->ah_tx_chainmask;
643 	if (series[2].Tries != 0)
644 		series[2].ChSel = AH5416(ah)->ah_tx_chainmask;
645 	if (series[3].Tries != 0)
646 		series[3].ChSel = AH5416(ah)->ah_tx_chainmask;
647 
648 	/*
649 	 * Only one of RTS and CTS enable must be set.
650 	 * If a frame has both set, just do RTS protection -
651 	 * that's enough to satisfy legacy protection.
652 	 */
653 	if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
654 		ds_ctl0 = ads->ds_ctl0;
655 
656 		if (flags & HAL_TXDESC_RTSENA) {
657 			ds_ctl0 &= ~AR_CTSEnable;
658 			ds_ctl0 |= AR_RTSEnable;
659 		} else {
660 			ds_ctl0 &= ~AR_RTSEnable;
661 			ds_ctl0 |= AR_CTSEnable;
662 		}
663 
664 		ads->ds_ctl0 = ds_ctl0;
665 	} else {
666 		ads->ds_ctl0 =
667 		    (ads->ds_ctl0 & ~(AR_RTSEnable | AR_CTSEnable));
668 	}
669 
670 	ads->ds_ctl2 = set11nTries(series, 0)
671 		     | set11nTries(series, 1)
672 		     | set11nTries(series, 2)
673 		     | set11nTries(series, 3)
674 		     | (durUpdateEn ? AR_DurUpdateEn : 0);
675 
676 	ads->ds_ctl3 = set11nRate(series, 0)
677 		     | set11nRate(series, 1)
678 		     | set11nRate(series, 2)
679 		     | set11nRate(series, 3);
680 
681 	ads->ds_ctl4 = set11nPktDurRTSCTS(series, 0)
682 		     | set11nPktDurRTSCTS(series, 1);
683 
684 	ads->ds_ctl5 = set11nPktDurRTSCTS(series, 2)
685 		     | set11nPktDurRTSCTS(series, 3);
686 
687 	ads->ds_ctl7 = set11nRateFlags(series, 0)
688 		     | set11nRateFlags(series, 1)
689 		     | set11nRateFlags(series, 2)
690 		     | set11nRateFlags(series, 3)
691 		     | SM(rtsctsRate, AR_RTSCTSRate);
692 }
693 
694 void
695 ar5416Set11nAggrMiddle(struct ath_hal *ah, struct ath_desc *ds, u_int numDelims)
696 {
697 	struct ar5416_desc *ads = AR5416DESC(ds);
698 	uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
699 
700 	ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
701 
702 	ads->ds_ctl6 &= ~AR_PadDelim;
703 	ads->ds_ctl6 |= SM(numDelims, AR_PadDelim);
704 	ads->ds_ctl6 &= ~AR_AggrLen;
705 
706 	/*
707 	 * Clear the TxDone status here, may need to change
708 	 * func name to reflect this
709 	 */
710 	ds_txstatus[9] &= ~AR_TxDone;
711 }
712 
713 void
714 ar5416Clr11nAggr(struct ath_hal *ah, struct ath_desc *ds)
715 {
716 	struct ar5416_desc *ads = AR5416DESC(ds);
717 
718 	ads->ds_ctl1 &= (~AR_IsAggr & ~AR_MoreAggr);
719 	ads->ds_ctl6 &= ~AR_PadDelim;
720 	ads->ds_ctl6 &= ~AR_AggrLen;
721 }
722 
723 void
724 ar5416Set11nBurstDuration(struct ath_hal *ah, struct ath_desc *ds,
725                                                   u_int burstDuration)
726 {
727 	struct ar5416_desc *ads = AR5416DESC(ds);
728 
729 	ads->ds_ctl2 &= ~AR_BurstDur;
730 	ads->ds_ctl2 |= SM(burstDuration, AR_BurstDur);
731 }
732 
733 /*
734  * Retrieve the rate table from the given TX completion descriptor
735  */
736 HAL_BOOL
737 ar5416GetTxCompletionRates(struct ath_hal *ah, const struct ath_desc *ds0, int *rates, int *tries)
738 {
739 	const struct ar5416_desc *ads = AR5416DESC_CONST(ds0);
740 
741 	rates[0] = MS(ads->ds_ctl3, AR_XmitRate0);
742 	rates[1] = MS(ads->ds_ctl3, AR_XmitRate1);
743 	rates[2] = MS(ads->ds_ctl3, AR_XmitRate2);
744 	rates[3] = MS(ads->ds_ctl3, AR_XmitRate3);
745 
746 	tries[0] = MS(ads->ds_ctl2, AR_XmitDataTries0);
747 	tries[1] = MS(ads->ds_ctl2, AR_XmitDataTries1);
748 	tries[2] = MS(ads->ds_ctl2, AR_XmitDataTries2);
749 	tries[3] = MS(ads->ds_ctl2, AR_XmitDataTries3);
750 
751 	return AH_TRUE;
752 }
753 
754 
755 /*
756  * TX queue management routines - AR5416 and later chipsets
757  */
758 
759 /*
760  * Allocate and initialize a tx DCU/QCU combination.
761  */
762 int
763 ar5416SetupTxQueue(struct ath_hal *ah, HAL_TX_QUEUE type,
764 	const HAL_TXQ_INFO *qInfo)
765 {
766 	struct ath_hal_5212 *ahp = AH5212(ah);
767 	HAL_TX_QUEUE_INFO *qi;
768 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
769 	int q, defqflags;
770 
771 	/* by default enable OK+ERR+DESC+URN interrupts */
772 	defqflags = HAL_TXQ_TXOKINT_ENABLE
773 		  | HAL_TXQ_TXERRINT_ENABLE
774 		  | HAL_TXQ_TXDESCINT_ENABLE
775 		  | HAL_TXQ_TXURNINT_ENABLE;
776 	/* XXX move queue assignment to driver */
777 	switch (type) {
778 	case HAL_TX_QUEUE_BEACON:
779 		q = pCap->halTotalQueues-1;	/* highest priority */
780 		defqflags |= HAL_TXQ_DBA_GATED
781 		       | HAL_TXQ_CBR_DIS_QEMPTY
782 		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
783 		       | HAL_TXQ_BACKOFF_DISABLE;
784 		break;
785 	case HAL_TX_QUEUE_CAB:
786 		q = pCap->halTotalQueues-2;	/* next highest priority */
787 		defqflags |= HAL_TXQ_DBA_GATED
788 		       | HAL_TXQ_CBR_DIS_QEMPTY
789 		       | HAL_TXQ_CBR_DIS_BEMPTY
790 		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
791 		       | HAL_TXQ_BACKOFF_DISABLE;
792 		break;
793 	case HAL_TX_QUEUE_PSPOLL:
794 		q = 1;				/* lowest priority */
795 		defqflags |= HAL_TXQ_DBA_GATED
796 		       | HAL_TXQ_CBR_DIS_QEMPTY
797 		       | HAL_TXQ_CBR_DIS_BEMPTY
798 		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
799 		       | HAL_TXQ_BACKOFF_DISABLE;
800 		break;
801 	case HAL_TX_QUEUE_UAPSD:
802 		q = pCap->halTotalQueues-3;	/* nextest highest priority */
803 		if (ahp->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE) {
804 			HALDEBUG(ah, HAL_DEBUG_ANY,
805 			    "%s: no available UAPSD tx queue\n", __func__);
806 			return -1;
807 		}
808 		break;
809 	case HAL_TX_QUEUE_DATA:
810 		for (q = 0; q < pCap->halTotalQueues; q++)
811 			if (ahp->ah_txq[q].tqi_type == HAL_TX_QUEUE_INACTIVE)
812 				break;
813 		if (q == pCap->halTotalQueues) {
814 			HALDEBUG(ah, HAL_DEBUG_ANY,
815 			    "%s: no available tx queue\n", __func__);
816 			return -1;
817 		}
818 		break;
819 	default:
820 		HALDEBUG(ah, HAL_DEBUG_ANY,
821 		    "%s: bad tx queue type %u\n", __func__, type);
822 		return -1;
823 	}
824 
825 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q);
826 
827 	qi = &ahp->ah_txq[q];
828 	if (qi->tqi_type != HAL_TX_QUEUE_INACTIVE) {
829 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: tx queue %u already active\n",
830 		    __func__, q);
831 		return -1;
832 	}
833 	OS_MEMZERO(qi, sizeof(HAL_TX_QUEUE_INFO));
834 	qi->tqi_type = type;
835 	if (qInfo == AH_NULL) {
836 		qi->tqi_qflags = defqflags;
837 		qi->tqi_aifs = INIT_AIFS;
838 		qi->tqi_cwmin = HAL_TXQ_USEDEFAULT;	/* NB: do at reset */
839 		qi->tqi_cwmax = INIT_CWMAX;
840 		qi->tqi_shretry = INIT_SH_RETRY;
841 		qi->tqi_lgretry = INIT_LG_RETRY;
842 		qi->tqi_physCompBuf = 0;
843 	} else {
844 		qi->tqi_physCompBuf = qInfo->tqi_compBuf;
845 		(void) ar5212SetTxQueueProps(ah, q, qInfo);
846 	}
847 	/* NB: must be followed by ar5212ResetTxQueue */
848 	return q;
849 }
850 
851 /*
852  * Update the h/w interrupt registers to reflect a tx q's configuration.
853  */
854 static void
855 setTxQInterrupts(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi)
856 {
857 	struct ath_hal_5212 *ahp = AH5212(ah);
858 
859 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
860 	    "%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", __func__,
861 	    ahp->ah_txOkInterruptMask, ahp->ah_txErrInterruptMask,
862 	    ahp->ah_txDescInterruptMask, ahp->ah_txEolInterruptMask,
863 	    ahp->ah_txUrnInterruptMask);
864 
865 	OS_REG_WRITE(ah, AR_IMR_S0,
866 		  SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK)
867 		| SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC)
868 	);
869 	OS_REG_WRITE(ah, AR_IMR_S1,
870 		  SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR)
871 		| SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL)
872 	);
873 	OS_REG_RMW_FIELD(ah, AR_IMR_S2,
874 		AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask);
875 }
876 
877 /*
878  * Set the retry, aifs, cwmin/max, readyTime regs for specified queue
879  * Assumes:
880  *  phwChannel has been set to point to the current channel
881  */
882 HAL_BOOL
883 ar5416ResetTxQueue(struct ath_hal *ah, u_int q)
884 {
885 	struct ath_hal_5212 *ahp = AH5212(ah);
886 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
887 	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
888 	HAL_TX_QUEUE_INFO *qi;
889 	uint32_t cwMin, chanCwMin, value, qmisc, dmisc;
890 
891 	if (q >= pCap->halTotalQueues) {
892 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
893 		    __func__, q);
894 		return AH_FALSE;
895 	}
896 	qi = &ahp->ah_txq[q];
897 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
898 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n",
899 		    __func__, q);
900 		return AH_TRUE;		/* XXX??? */
901 	}
902 
903 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: reset queue %u\n", __func__, q);
904 
905 	if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT) {
906 		/*
907 		 * Select cwmin according to channel type.
908 		 * NB: chan can be NULL during attach
909 		 */
910 		if (chan && IEEE80211_IS_CHAN_B(chan))
911 			chanCwMin = INIT_CWMIN_11B;
912 		else
913 			chanCwMin = INIT_CWMIN;
914 		/* make sure that the CWmin is of the form (2^n - 1) */
915 		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1)
916 			;
917 	} else
918 		cwMin = qi->tqi_cwmin;
919 
920 	/* set cwMin/Max and AIFS values */
921 	OS_REG_WRITE(ah, AR_DLCL_IFS(q),
922 		  SM(cwMin, AR_D_LCL_IFS_CWMIN)
923 		| SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX)
924 		| SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
925 
926 	/* Set retry limit values */
927 	OS_REG_WRITE(ah, AR_DRETRY_LIMIT(q),
928 		   SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH)
929 		 | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG)
930 		 | SM(qi->tqi_lgretry, AR_D_RETRY_LIMIT_FR_LG)
931 		 | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH)
932 	);
933 
934 	/* NB: always enable early termination on the QCU */
935 	qmisc = AR_Q_MISC_DCU_EARLY_TERM_REQ
936 	      | SM(AR_Q_MISC_FSP_ASAP, AR_Q_MISC_FSP);
937 
938 	/* NB: always enable DCU to wait for next fragment from QCU */
939 	dmisc = AR_D_MISC_FRAG_WAIT_EN;
940 
941 	/* Enable exponential backoff window */
942 	dmisc |= AR_D_MISC_BKOFF_PERSISTENCE;
943 
944 	/*
945 	 * The chip reset default is to use a DCU backoff threshold of 0x2.
946 	 * Restore this when programming the DCU MISC register.
947 	 */
948 	dmisc |= 0x2;
949 
950 	/* multiqueue support */
951 	if (qi->tqi_cbrPeriod) {
952 		OS_REG_WRITE(ah, AR_QCBRCFG(q),
953 			  SM(qi->tqi_cbrPeriod,AR_Q_CBRCFG_CBR_INTERVAL)
954 			| SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_CBR_OVF_THRESH));
955 		qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_CBR;
956 		if (qi->tqi_cbrOverflowLimit)
957 			qmisc |= AR_Q_MISC_CBR_EXP_CNTR_LIMIT;
958 	}
959 	if (qi->tqi_readyTime) {
960 		OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
961 			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT)
962 			| AR_Q_RDYTIMECFG_ENA);
963 	}
964 
965 	OS_REG_WRITE(ah, AR_DCHNTIME(q),
966 		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR)
967 		| (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
968 
969 	if (qi->tqi_readyTime &&
970 	    (qi->tqi_qflags & HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE))
971 		qmisc |= AR_Q_MISC_RDYTIME_EXP_POLICY;
972 	if (qi->tqi_qflags & HAL_TXQ_DBA_GATED)
973 		qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_DBA_GATED;
974 	if (MS(qmisc, AR_Q_MISC_FSP) != AR_Q_MISC_FSP_ASAP) {
975 		/*
976 		 * These are meangingful only when not scheduled asap.
977 		 */
978 		if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_BEMPTY)
979 			qmisc |= AR_Q_MISC_CBR_INCR_DIS0;
980 		else
981 			qmisc &= ~AR_Q_MISC_CBR_INCR_DIS0;
982 		if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_QEMPTY)
983 			qmisc |= AR_Q_MISC_CBR_INCR_DIS1;
984 		else
985 			qmisc &= ~AR_Q_MISC_CBR_INCR_DIS1;
986 	}
987 
988 	if (qi->tqi_qflags & HAL_TXQ_BACKOFF_DISABLE)
989 		dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS;
990 	if (qi->tqi_qflags & HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE)
991 		dmisc |= AR_D_MISC_FRAG_BKOFF_EN;
992 	if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_GLOBAL)
993 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
994 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
995 	else if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_INTRA)
996 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_INTRA_FR,
997 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
998 	if (qi->tqi_qflags & HAL_TXQ_IGNORE_VIRTCOL)
999 		dmisc |= SM(AR_D_MISC_VIR_COL_HANDLING_IGNORE,
1000 			    AR_D_MISC_VIR_COL_HANDLING);
1001 	if (qi->tqi_qflags & HAL_TXQ_SEQNUM_INC_DIS)
1002 		dmisc |= AR_D_MISC_SEQ_NUM_INCR_DIS;
1003 
1004 	/*
1005 	 * Fillin type-dependent bits.  Most of this can be
1006 	 * removed by specifying the queue parameters in the
1007 	 * driver; it's here for backwards compatibility.
1008 	 */
1009 	switch (qi->tqi_type) {
1010 	case HAL_TX_QUEUE_BEACON:		/* beacon frames */
1011 		qmisc |= AR_Q_MISC_FSP_DBA_GATED
1012 		      |  AR_Q_MISC_BEACON_USE
1013 		      |  AR_Q_MISC_CBR_INCR_DIS1;
1014 
1015 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
1016 			    AR_D_MISC_ARB_LOCKOUT_CNTRL)
1017 		      |  AR_D_MISC_BEACON_USE
1018 		      |  AR_D_MISC_POST_FR_BKOFF_DIS;
1019 		break;
1020 	case HAL_TX_QUEUE_CAB:			/* CAB  frames */
1021 		/*
1022 		 * No longer Enable AR_Q_MISC_RDYTIME_EXP_POLICY,
1023 		 * There is an issue with the CAB Queue
1024 		 * not properly refreshing the Tx descriptor if
1025 		 * the TXE clear setting is used.
1026 		 */
1027 		qmisc |= AR_Q_MISC_FSP_DBA_GATED
1028 		      |  AR_Q_MISC_CBR_INCR_DIS1
1029 		      |  AR_Q_MISC_CBR_INCR_DIS0;
1030 
1031 		if (!qi->tqi_readyTime) {
1032 			/*
1033 			 * NB: don't set default ready time if driver
1034 			 * has explicitly specified something.  This is
1035 			 * here solely for backwards compatibility.
1036 			 */
1037 			value = (ahp->ah_beaconInterval
1038 				- (ath_hal_sw_beacon_response_time -
1039 					ath_hal_dma_beacon_response_time)
1040 				- ath_hal_additional_swba_backoff) * 1024;
1041 			OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), value | AR_Q_RDYTIMECFG_ENA);
1042 		}
1043 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
1044 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
1045 		break;
1046 	case HAL_TX_QUEUE_PSPOLL:
1047 		qmisc |= AR_Q_MISC_CBR_INCR_DIS1;
1048 		break;
1049 	case HAL_TX_QUEUE_UAPSD:
1050 		dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS;
1051 		break;
1052 	default:			/* NB: silence compiler */
1053 		break;
1054 	}
1055 
1056 	OS_REG_WRITE(ah, AR_QMISC(q), qmisc);
1057 	OS_REG_WRITE(ah, AR_DMISC(q), dmisc);
1058 
1059 	/* Setup compression scratchpad buffer */
1060 	/*
1061 	 * XXX: calling this asynchronously to queue operation can
1062 	 *      cause unexpected behavior!!!
1063 	 */
1064 	if (qi->tqi_physCompBuf) {
1065 		HALASSERT(qi->tqi_type == HAL_TX_QUEUE_DATA ||
1066 			  qi->tqi_type == HAL_TX_QUEUE_UAPSD);
1067 		OS_REG_WRITE(ah, AR_Q_CBBS, (80 + 2*q));
1068 		OS_REG_WRITE(ah, AR_Q_CBBA, qi->tqi_physCompBuf);
1069 		OS_REG_WRITE(ah, AR_Q_CBC,  HAL_COMP_BUF_MAX_SIZE/1024);
1070 		OS_REG_WRITE(ah, AR_Q0_MISC + 4*q,
1071 			     OS_REG_READ(ah, AR_Q0_MISC + 4*q)
1072 			     | AR_Q_MISC_QCU_COMP_EN);
1073 	}
1074 
1075 	/*
1076 	 * Always update the secondary interrupt mask registers - this
1077 	 * could be a new queue getting enabled in a running system or
1078 	 * hw getting re-initialized during a reset!
1079 	 *
1080 	 * Since we don't differentiate between tx interrupts corresponding
1081 	 * to individual queues - secondary tx mask regs are always unmasked;
1082 	 * tx interrupts are enabled/disabled for all queues collectively
1083 	 * using the primary mask reg
1084 	 */
1085 	if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE)
1086 		ahp->ah_txOkInterruptMask |= 1 << q;
1087 	else
1088 		ahp->ah_txOkInterruptMask &= ~(1 << q);
1089 	if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE)
1090 		ahp->ah_txErrInterruptMask |= 1 << q;
1091 	else
1092 		ahp->ah_txErrInterruptMask &= ~(1 << q);
1093 	if (qi->tqi_qflags & HAL_TXQ_TXDESCINT_ENABLE)
1094 		ahp->ah_txDescInterruptMask |= 1 << q;
1095 	else
1096 		ahp->ah_txDescInterruptMask &= ~(1 << q);
1097 	if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE)
1098 		ahp->ah_txEolInterruptMask |= 1 << q;
1099 	else
1100 		ahp->ah_txEolInterruptMask &= ~(1 << q);
1101 	if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE)
1102 		ahp->ah_txUrnInterruptMask |= 1 << q;
1103 	else
1104 		ahp->ah_txUrnInterruptMask &= ~(1 << q);
1105 	setTxQInterrupts(ah, qi);
1106 
1107 	return AH_TRUE;
1108 }
1109