1 /* 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * Copyright (c) 2002-2008 Atheros Communications, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 * 17 * $FreeBSD$ 18 */ 19 #include "opt_ah.h" 20 21 #include "ah.h" 22 #include "ah_desc.h" 23 #include "ah_internal.h" 24 25 #include "ar5416/ar5416.h" 26 #include "ar5416/ar5416reg.h" 27 #include "ar5416/ar5416phy.h" 28 #include "ar5416/ar5416desc.h" 29 30 /* 31 * Stop transmit on the specified queue 32 */ 33 HAL_BOOL 34 ar5416StopTxDma(struct ath_hal *ah, u_int q) 35 { 36 #define STOP_DMA_TIMEOUT 4000 /* us */ 37 #define STOP_DMA_ITER 100 /* us */ 38 u_int i; 39 40 HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues); 41 42 HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE); 43 44 OS_REG_WRITE(ah, AR_Q_TXD, 1 << q); 45 for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) { 46 if (ar5212NumTxPending(ah, q) == 0) 47 break; 48 OS_DELAY(STOP_DMA_ITER); 49 } 50 #ifdef AH_DEBUG 51 if (i == 0) { 52 HALDEBUG(ah, HAL_DEBUG_ANY, 53 "%s: queue %u DMA did not stop in 400 msec\n", __func__, q); 54 HALDEBUG(ah, HAL_DEBUG_ANY, 55 "%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__, 56 OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE), 57 OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q))); 58 HALDEBUG(ah, HAL_DEBUG_ANY, 59 "%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n", 60 __func__, OS_REG_READ(ah, AR_QMISC(q)), 61 OS_REG_READ(ah, AR_QRDYTIMECFG(q)), 62 OS_REG_READ(ah, AR_Q_RDYTIMESHDN)); 63 } 64 #endif /* AH_DEBUG */ 65 66 /* ar5416 and up can kill packets at the PCU level */ 67 if (ar5212NumTxPending(ah, q)) { 68 uint32_t j; 69 70 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, 71 "%s: Num of pending TX Frames %d on Q %d\n", 72 __func__, ar5212NumTxPending(ah, q), q); 73 74 /* Kill last PCU Tx Frame */ 75 /* TODO - save off and restore current values of Q1/Q2? */ 76 for (j = 0; j < 2; j++) { 77 uint32_t tsfLow = OS_REG_READ(ah, AR_TSF_L32); 78 OS_REG_WRITE(ah, AR_QUIET2, 79 SM(10, AR_QUIET2_QUIET_DUR)); 80 OS_REG_WRITE(ah, AR_QUIET_PERIOD, 100); 81 OS_REG_WRITE(ah, AR_NEXT_QUIET, tsfLow >> 10); 82 OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET); 83 84 if ((OS_REG_READ(ah, AR_TSF_L32)>>10) == (tsfLow>>10)) 85 break; 86 87 HALDEBUG(ah, HAL_DEBUG_ANY, 88 "%s: TSF moved while trying to set quiet time " 89 "TSF: 0x%08x\n", __func__, tsfLow); 90 HALASSERT(j < 1); /* TSF shouldn't count twice or reg access is taking forever */ 91 } 92 93 OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE); 94 95 /* Allow the quiet mechanism to do its work */ 96 OS_DELAY(200); 97 OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET); 98 99 /* Verify the transmit q is empty */ 100 for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) { 101 if (ar5212NumTxPending(ah, q) == 0) 102 break; 103 OS_DELAY(STOP_DMA_ITER); 104 } 105 if (i == 0) { 106 HALDEBUG(ah, HAL_DEBUG_ANY, 107 "%s: Failed to stop Tx DMA in %d msec after killing" 108 " last frame\n", __func__, STOP_DMA_TIMEOUT / 1000); 109 } 110 OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE); 111 } 112 113 OS_REG_WRITE(ah, AR_Q_TXD, 0); 114 return (i != 0); 115 #undef STOP_DMA_ITER 116 #undef STOP_DMA_TIMEOUT 117 } 118 119 #define VALID_KEY_TYPES \ 120 ((1 << HAL_KEY_TYPE_CLEAR) | (1 << HAL_KEY_TYPE_WEP)|\ 121 (1 << HAL_KEY_TYPE_AES) | (1 << HAL_KEY_TYPE_TKIP)) 122 #define isValidKeyType(_t) ((1 << (_t)) & VALID_KEY_TYPES) 123 124 #define set11nTries(_series, _index) \ 125 (SM((_series)[_index].Tries, AR_XmitDataTries##_index)) 126 127 #define set11nRate(_series, _index) \ 128 (SM((_series)[_index].Rate, AR_XmitRate##_index)) 129 130 #define set11nPktDurRTSCTS(_series, _index) \ 131 (SM((_series)[_index].PktDuration, AR_PacketDur##_index) |\ 132 ((_series)[_index].RateFlags & HAL_RATESERIES_RTS_CTS ?\ 133 AR_RTSCTSQual##_index : 0)) 134 135 #define set11nRateFlags(_series, _index) \ 136 ((_series)[_index].RateFlags & HAL_RATESERIES_2040 ? AR_2040_##_index : 0) \ 137 |((_series)[_index].RateFlags & HAL_RATESERIES_HALFGI ? AR_GI##_index : 0) \ 138 |SM((_series)[_index].ChSel, AR_ChainSel##_index) 139 140 /* 141 * Descriptor Access Functions 142 */ 143 144 #define VALID_PKT_TYPES \ 145 ((1<<HAL_PKT_TYPE_NORMAL)|(1<<HAL_PKT_TYPE_ATIM)|\ 146 (1<<HAL_PKT_TYPE_PSPOLL)|(1<<HAL_PKT_TYPE_PROBE_RESP)|\ 147 (1<<HAL_PKT_TYPE_BEACON)|(1<<HAL_PKT_TYPE_AMPDU)) 148 #define isValidPktType(_t) ((1<<(_t)) & VALID_PKT_TYPES) 149 #define VALID_TX_RATES \ 150 ((1<<0x0b)|(1<<0x0f)|(1<<0x0a)|(1<<0x0e)|(1<<0x09)|(1<<0x0d)|\ 151 (1<<0x08)|(1<<0x0c)|(1<<0x1b)|(1<<0x1a)|(1<<0x1e)|(1<<0x19)|\ 152 (1<<0x1d)|(1<<0x18)|(1<<0x1c)|(1<<0x01)|(1<<0x02)|(1<<0x03)|\ 153 (1<<0x04)|(1<<0x05)|(1<<0x06)|(1<<0x07)|(1<<0x00)) 154 /* NB: accept HT rates */ 155 #define isValidTxRate(_r) ((1<<((_r) & 0x7f)) & VALID_TX_RATES) 156 157 HAL_BOOL 158 ar5416SetupTxDesc(struct ath_hal *ah, struct ath_desc *ds, 159 u_int pktLen, 160 u_int hdrLen, 161 HAL_PKT_TYPE type, 162 u_int txPower, 163 u_int txRate0, u_int txTries0, 164 u_int keyIx, 165 u_int antMode, 166 u_int flags, 167 u_int rtsctsRate, 168 u_int rtsctsDuration, 169 u_int compicvLen, 170 u_int compivLen, 171 u_int comp) 172 { 173 #define RTSCTS (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA) 174 struct ar5416_desc *ads = AR5416DESC(ds); 175 struct ath_hal_5416 *ahp = AH5416(ah); 176 177 (void) hdrLen; 178 179 HALASSERT(txTries0 != 0); 180 HALASSERT(isValidPktType(type)); 181 HALASSERT(isValidTxRate(txRate0)); 182 HALASSERT((flags & RTSCTS) != RTSCTS); 183 /* XXX validate antMode */ 184 185 txPower = (txPower + AH5212(ah)->ah_txPowerIndexOffset); 186 if (txPower > 63) 187 txPower = 63; 188 189 ads->ds_ctl0 = (pktLen & AR_FrameLen) 190 | (txPower << AR_XmitPower_S) 191 | (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0) 192 | (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0) 193 | (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0) 194 ; 195 ads->ds_ctl1 = (type << AR_FrameType_S) 196 | (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0) 197 ; 198 ads->ds_ctl2 = SM(txTries0, AR_XmitDataTries0) 199 | (flags & HAL_TXDESC_DURENA ? AR_DurUpdateEn : 0) 200 ; 201 ads->ds_ctl3 = (txRate0 << AR_XmitRate0_S) 202 ; 203 ads->ds_ctl4 = 0; 204 ads->ds_ctl5 = 0; 205 ads->ds_ctl6 = 0; 206 ads->ds_ctl7 = SM(ahp->ah_tx_chainmask, AR_ChainSel0) 207 | SM(ahp->ah_tx_chainmask, AR_ChainSel1) 208 | SM(ahp->ah_tx_chainmask, AR_ChainSel2) 209 | SM(ahp->ah_tx_chainmask, AR_ChainSel3) 210 ; 211 ads->ds_ctl8 = SM(0, AR_AntCtl0); 212 ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1); 213 ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2); 214 ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3); 215 216 if (keyIx != HAL_TXKEYIX_INVALID) { 217 /* XXX validate key index */ 218 ads->ds_ctl1 |= SM(keyIx, AR_DestIdx); 219 ads->ds_ctl0 |= AR_DestIdxValid; 220 ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType); 221 } 222 if (flags & RTSCTS) { 223 if (!isValidTxRate(rtsctsRate)) { 224 HALDEBUG(ah, HAL_DEBUG_ANY, 225 "%s: invalid rts/cts rate 0x%x\n", 226 __func__, rtsctsRate); 227 return AH_FALSE; 228 } 229 /* XXX validate rtsctsDuration */ 230 ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0) 231 | (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0) 232 ; 233 ads->ds_ctl7 |= (rtsctsRate << AR_RTSCTSRate_S); 234 } 235 236 /* 237 * Set the TX antenna to 0 for Kite 238 * To preserve existing behaviour, also set the TPC bits to 0; 239 * when TPC is enabled these should be filled in appropriately. 240 */ 241 if (AR_SREV_KITE(ah)) { 242 ads->ds_ctl8 = SM(0, AR_AntCtl0); 243 ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1); 244 ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2); 245 ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3); 246 } 247 return AH_TRUE; 248 #undef RTSCTS 249 } 250 251 HAL_BOOL 252 ar5416SetupXTxDesc(struct ath_hal *ah, struct ath_desc *ds, 253 u_int txRate1, u_int txTries1, 254 u_int txRate2, u_int txTries2, 255 u_int txRate3, u_int txTries3) 256 { 257 struct ar5416_desc *ads = AR5416DESC(ds); 258 259 if (txTries1) { 260 HALASSERT(isValidTxRate(txRate1)); 261 ads->ds_ctl2 |= SM(txTries1, AR_XmitDataTries1); 262 ads->ds_ctl3 |= (txRate1 << AR_XmitRate1_S); 263 } 264 if (txTries2) { 265 HALASSERT(isValidTxRate(txRate2)); 266 ads->ds_ctl2 |= SM(txTries2, AR_XmitDataTries2); 267 ads->ds_ctl3 |= (txRate2 << AR_XmitRate2_S); 268 } 269 if (txTries3) { 270 HALASSERT(isValidTxRate(txRate3)); 271 ads->ds_ctl2 |= SM(txTries3, AR_XmitDataTries3); 272 ads->ds_ctl3 |= (txRate3 << AR_XmitRate3_S); 273 } 274 return AH_TRUE; 275 } 276 277 HAL_BOOL 278 ar5416FillTxDesc(struct ath_hal *ah, struct ath_desc *ds, 279 u_int segLen, HAL_BOOL firstSeg, HAL_BOOL lastSeg, 280 const struct ath_desc *ds0) 281 { 282 struct ar5416_desc *ads = AR5416DESC(ds); 283 284 HALASSERT((segLen &~ AR_BufLen) == 0); 285 286 if (firstSeg) { 287 /* 288 * First descriptor, don't clobber xmit control data 289 * setup by ar5212SetupTxDesc. 290 */ 291 ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore); 292 } else if (lastSeg) { /* !firstSeg && lastSeg */ 293 /* 294 * Last descriptor in a multi-descriptor frame, 295 * copy the multi-rate transmit parameters from 296 * the first frame for processing on completion. 297 */ 298 ads->ds_ctl0 = 0; 299 ads->ds_ctl1 = segLen; 300 #ifdef AH_NEED_DESC_SWAP 301 ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2); 302 ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3); 303 #else 304 ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2; 305 ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3; 306 #endif 307 } else { /* !firstSeg && !lastSeg */ 308 /* 309 * Intermediate descriptor in a multi-descriptor frame. 310 */ 311 ads->ds_ctl0 = 0; 312 ads->ds_ctl1 = segLen | AR_TxMore; 313 ads->ds_ctl2 = 0; 314 ads->ds_ctl3 = 0; 315 } 316 /* XXX only on last descriptor? */ 317 OS_MEMZERO(ads->u.tx.status, sizeof(ads->u.tx.status)); 318 return AH_TRUE; 319 } 320 321 HAL_BOOL 322 ar5416ChainTxDesc(struct ath_hal *ah, struct ath_desc *ds, 323 u_int pktLen, 324 u_int hdrLen, 325 HAL_PKT_TYPE type, 326 u_int keyIx, 327 HAL_CIPHER cipher, 328 uint8_t delims, 329 u_int segLen, 330 HAL_BOOL firstSeg, 331 HAL_BOOL lastSeg) 332 { 333 struct ar5416_desc *ads = AR5416DESC(ds); 334 uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads); 335 struct ath_hal_5416 *ahp = AH5416(ah); 336 337 int isaggr = 0; 338 339 (void) hdrLen; 340 (void) ah; 341 342 HALASSERT((segLen &~ AR_BufLen) == 0); 343 344 HALASSERT(isValidPktType(type)); 345 if (type == HAL_PKT_TYPE_AMPDU) { 346 type = HAL_PKT_TYPE_NORMAL; 347 isaggr = 1; 348 } 349 350 if (!firstSeg) { 351 OS_MEMZERO(ds->ds_hw, AR5416_DESC_TX_CTL_SZ); 352 } 353 354 ads->ds_ctl0 = (pktLen & AR_FrameLen); 355 ads->ds_ctl1 = (type << AR_FrameType_S) 356 | (isaggr ? (AR_IsAggr | AR_MoreAggr) : 0); 357 ads->ds_ctl2 = 0; 358 ads->ds_ctl3 = 0; 359 if (keyIx != HAL_TXKEYIX_INVALID) { 360 /* XXX validate key index */ 361 ads->ds_ctl1 |= SM(keyIx, AR_DestIdx); 362 ads->ds_ctl0 |= AR_DestIdxValid; 363 } 364 365 ads->ds_ctl6 = SM(ahp->ah_keytype[cipher], AR_EncrType); 366 if (isaggr) { 367 ads->ds_ctl6 |= SM(delims, AR_PadDelim); 368 } 369 370 if (firstSeg) { 371 ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore); 372 } else if (lastSeg) { /* !firstSeg && lastSeg */ 373 ads->ds_ctl0 = 0; 374 ads->ds_ctl1 |= segLen; 375 } else { /* !firstSeg && !lastSeg */ 376 /* 377 * Intermediate descriptor in a multi-descriptor frame. 378 */ 379 ads->ds_ctl0 = 0; 380 ads->ds_ctl1 |= segLen | AR_TxMore; 381 } 382 ds_txstatus[0] = ds_txstatus[1] = 0; 383 ds_txstatus[9] &= ~AR_TxDone; 384 385 return AH_TRUE; 386 } 387 388 HAL_BOOL 389 ar5416SetupFirstTxDesc(struct ath_hal *ah, struct ath_desc *ds, 390 u_int aggrLen, u_int flags, u_int txPower, 391 u_int txRate0, u_int txTries0, u_int antMode, 392 u_int rtsctsRate, u_int rtsctsDuration) 393 { 394 #define RTSCTS (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA) 395 struct ar5416_desc *ads = AR5416DESC(ds); 396 struct ath_hal_5212 *ahp = AH5212(ah); 397 398 HALASSERT(txTries0 != 0); 399 HALASSERT(isValidTxRate(txRate0)); 400 HALASSERT((flags & RTSCTS) != RTSCTS); 401 /* XXX validate antMode */ 402 403 txPower = (txPower + ahp->ah_txPowerIndexOffset ); 404 if(txPower > 63) txPower=63; 405 406 ads->ds_ctl0 |= (txPower << AR_XmitPower_S) 407 | (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0) 408 | (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0) 409 | (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0); 410 ads->ds_ctl1 |= (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0); 411 ads->ds_ctl2 |= SM(txTries0, AR_XmitDataTries0); 412 ads->ds_ctl3 |= (txRate0 << AR_XmitRate0_S); 413 ads->ds_ctl7 = SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel0) 414 | SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel1) 415 | SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel2) 416 | SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel3); 417 418 /* NB: no V1 WAR */ 419 ads->ds_ctl8 = SM(0, AR_AntCtl0); 420 ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1); 421 ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2); 422 ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3); 423 424 ads->ds_ctl6 &= ~(0xffff); 425 ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen); 426 427 if (flags & RTSCTS) { 428 /* XXX validate rtsctsDuration */ 429 ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0) 430 | (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0); 431 } 432 433 /* 434 * Set the TX antenna to 0 for Kite 435 * To preserve existing behaviour, also set the TPC bits to 0; 436 * when TPC is enabled these should be filled in appropriately. 437 */ 438 if (AR_SREV_KITE(ah)) { 439 ads->ds_ctl8 = SM(0, AR_AntCtl0); 440 ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1); 441 ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2); 442 ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3); 443 } 444 445 return AH_TRUE; 446 #undef RTSCTS 447 } 448 449 HAL_BOOL 450 ar5416SetupLastTxDesc(struct ath_hal *ah, struct ath_desc *ds, 451 const struct ath_desc *ds0) 452 { 453 struct ar5416_desc *ads = AR5416DESC(ds); 454 455 ads->ds_ctl1 &= ~AR_MoreAggr; 456 ads->ds_ctl6 &= ~AR_PadDelim; 457 458 /* hack to copy rate info to last desc for later processing */ 459 #ifdef AH_NEED_DESC_SWAP 460 ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2); 461 ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3); 462 #else 463 ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2; 464 ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3; 465 #endif 466 467 return AH_TRUE; 468 } 469 470 #ifdef AH_NEED_DESC_SWAP 471 /* Swap transmit descriptor */ 472 static __inline void 473 ar5416SwapTxDesc(struct ath_desc *ds) 474 { 475 ds->ds_data = __bswap32(ds->ds_data); 476 ds->ds_ctl0 = __bswap32(ds->ds_ctl0); 477 ds->ds_ctl1 = __bswap32(ds->ds_ctl1); 478 ds->ds_hw[0] = __bswap32(ds->ds_hw[0]); 479 ds->ds_hw[1] = __bswap32(ds->ds_hw[1]); 480 ds->ds_hw[2] = __bswap32(ds->ds_hw[2]); 481 ds->ds_hw[3] = __bswap32(ds->ds_hw[3]); 482 } 483 #endif 484 485 /* 486 * Processing of HW TX descriptor. 487 */ 488 HAL_STATUS 489 ar5416ProcTxDesc(struct ath_hal *ah, 490 struct ath_desc *ds, struct ath_tx_status *ts) 491 { 492 struct ar5416_desc *ads = AR5416DESC(ds); 493 uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads); 494 495 #ifdef AH_NEED_DESC_SWAP 496 if ((ds_txstatus[9] & __bswap32(AR_TxDone)) == 0) 497 return HAL_EINPROGRESS; 498 ar5416SwapTxDesc(ds); 499 #else 500 if ((ds_txstatus[9] & AR_TxDone) == 0) 501 return HAL_EINPROGRESS; 502 #endif 503 504 /* Update software copies of the HW status */ 505 ts->ts_seqnum = MS(ds_txstatus[9], AR_SeqNum); 506 ts->ts_tstamp = AR_SendTimestamp(ds_txstatus); 507 508 ts->ts_status = 0; 509 if (ds_txstatus[1] & AR_ExcessiveRetries) 510 ts->ts_status |= HAL_TXERR_XRETRY; 511 if (ds_txstatus[1] & AR_Filtered) 512 ts->ts_status |= HAL_TXERR_FILT; 513 if (ds_txstatus[1] & AR_FIFOUnderrun) 514 ts->ts_status |= HAL_TXERR_FIFO; 515 if (ds_txstatus[9] & AR_TxOpExceeded) 516 ts->ts_status |= HAL_TXERR_XTXOP; 517 if (ds_txstatus[1] & AR_TxTimerExpired) 518 ts->ts_status |= HAL_TXERR_TIMER_EXPIRED; 519 520 ts->ts_flags = 0; 521 if (ds_txstatus[0] & AR_TxBaStatus) { 522 ts->ts_flags |= HAL_TX_BA; 523 ts->ts_ba_low = AR_BaBitmapLow(ds_txstatus); 524 ts->ts_ba_high = AR_BaBitmapHigh(ds_txstatus); 525 } 526 if (ds->ds_ctl1 & AR_IsAggr) 527 ts->ts_flags |= HAL_TX_AGGR; 528 if (ds_txstatus[1] & AR_DescCfgErr) 529 ts->ts_flags |= HAL_TX_DESC_CFG_ERR; 530 if (ds_txstatus[1] & AR_TxDataUnderrun) 531 ts->ts_flags |= HAL_TX_DATA_UNDERRUN; 532 if (ds_txstatus[1] & AR_TxDelimUnderrun) 533 ts->ts_flags |= HAL_TX_DELIM_UNDERRUN; 534 535 /* 536 * Extract the transmit rate used and mark the rate as 537 * ``alternate'' if it wasn't the series 0 rate. 538 */ 539 ts->ts_finaltsi = MS(ds_txstatus[9], AR_FinalTxIdx); 540 switch (ts->ts_finaltsi) { 541 case 0: 542 ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate0); 543 break; 544 case 1: 545 ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate1); 546 break; 547 case 2: 548 ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate2); 549 break; 550 case 3: 551 ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate3); 552 break; 553 } 554 555 ts->ts_rssi = MS(ds_txstatus[5], AR_TxRSSICombined); 556 ts->ts_rssi_ctl[0] = MS(ds_txstatus[0], AR_TxRSSIAnt00); 557 ts->ts_rssi_ctl[1] = MS(ds_txstatus[0], AR_TxRSSIAnt01); 558 ts->ts_rssi_ctl[2] = MS(ds_txstatus[0], AR_TxRSSIAnt02); 559 ts->ts_rssi_ext[0] = MS(ds_txstatus[5], AR_TxRSSIAnt10); 560 ts->ts_rssi_ext[1] = MS(ds_txstatus[5], AR_TxRSSIAnt11); 561 ts->ts_rssi_ext[2] = MS(ds_txstatus[5], AR_TxRSSIAnt12); 562 ts->ts_evm0 = AR_TxEVM0(ds_txstatus); 563 ts->ts_evm1 = AR_TxEVM1(ds_txstatus); 564 ts->ts_evm2 = AR_TxEVM2(ds_txstatus); 565 566 ts->ts_shortretry = MS(ds_txstatus[1], AR_RTSFailCnt); 567 ts->ts_longretry = MS(ds_txstatus[1], AR_DataFailCnt); 568 /* 569 * The retry count has the number of un-acked tries for the 570 * final series used. When doing multi-rate retry we must 571 * fixup the retry count by adding in the try counts for 572 * each series that was fully-processed. Beware that this 573 * takes values from the try counts in the final descriptor. 574 * These are not required by the hardware. We assume they 575 * are placed there by the driver as otherwise we have no 576 * access and the driver can't do the calculation because it 577 * doesn't know the descriptor format. 578 */ 579 switch (ts->ts_finaltsi) { 580 case 3: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries2); 581 case 2: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries1); 582 case 1: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries0); 583 } 584 585 /* 586 * These fields are not used. Zero these to preserve compatability 587 * with existing drivers. 588 */ 589 ts->ts_virtcol = MS(ads->ds_ctl1, AR_VirtRetryCnt); 590 ts->ts_antenna = 0; /* We don't switch antennas on Owl*/ 591 592 /* handle tx trigger level changes internally */ 593 if ((ts->ts_status & HAL_TXERR_FIFO) || 594 (ts->ts_flags & (HAL_TX_DATA_UNDERRUN | HAL_TX_DELIM_UNDERRUN))) 595 ar5212UpdateTxTrigLevel(ah, AH_TRUE); 596 597 return HAL_OK; 598 } 599 600 HAL_BOOL 601 ar5416SetGlobalTxTimeout(struct ath_hal *ah, u_int tu) 602 { 603 struct ath_hal_5416 *ahp = AH5416(ah); 604 605 if (tu > 0xFFFF) { 606 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad global tx timeout %u\n", 607 __func__, tu); 608 /* restore default handling */ 609 ahp->ah_globaltxtimeout = (u_int) -1; 610 return AH_FALSE; 611 } 612 OS_REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); 613 ahp->ah_globaltxtimeout = tu; 614 return AH_TRUE; 615 } 616 617 u_int 618 ar5416GetGlobalTxTimeout(struct ath_hal *ah) 619 { 620 return MS(OS_REG_READ(ah, AR_GTXTO), AR_GTXTO_TIMEOUT_LIMIT); 621 } 622 623 void 624 ar5416Set11nRateScenario(struct ath_hal *ah, struct ath_desc *ds, 625 u_int durUpdateEn, u_int rtsctsRate, 626 HAL_11N_RATE_SERIES series[], u_int nseries, u_int flags) 627 { 628 struct ar5416_desc *ads = AR5416DESC(ds); 629 uint32_t ds_ctl0; 630 631 HALASSERT(nseries == 4); 632 (void)nseries; 633 634 /* 635 * XXX since the upper layers doesn't know the current chainmask 636 * XXX setup, just override its decisions here. 637 * XXX The upper layers need to be taught this! 638 */ 639 if (series[0].Tries != 0) 640 series[0].ChSel = AH5416(ah)->ah_tx_chainmask; 641 if (series[1].Tries != 0) 642 series[1].ChSel = AH5416(ah)->ah_tx_chainmask; 643 if (series[2].Tries != 0) 644 series[2].ChSel = AH5416(ah)->ah_tx_chainmask; 645 if (series[3].Tries != 0) 646 series[3].ChSel = AH5416(ah)->ah_tx_chainmask; 647 648 /* 649 * Only one of RTS and CTS enable must be set. 650 * If a frame has both set, just do RTS protection - 651 * that's enough to satisfy legacy protection. 652 */ 653 if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) { 654 ds_ctl0 = ads->ds_ctl0; 655 656 if (flags & HAL_TXDESC_RTSENA) { 657 ds_ctl0 &= ~AR_CTSEnable; 658 ds_ctl0 |= AR_RTSEnable; 659 } else { 660 ds_ctl0 &= ~AR_RTSEnable; 661 ds_ctl0 |= AR_CTSEnable; 662 } 663 664 ads->ds_ctl0 = ds_ctl0; 665 } else { 666 ads->ds_ctl0 = 667 (ads->ds_ctl0 & ~(AR_RTSEnable | AR_CTSEnable)); 668 } 669 670 ads->ds_ctl2 = set11nTries(series, 0) 671 | set11nTries(series, 1) 672 | set11nTries(series, 2) 673 | set11nTries(series, 3) 674 | (durUpdateEn ? AR_DurUpdateEn : 0); 675 676 ads->ds_ctl3 = set11nRate(series, 0) 677 | set11nRate(series, 1) 678 | set11nRate(series, 2) 679 | set11nRate(series, 3); 680 681 ads->ds_ctl4 = set11nPktDurRTSCTS(series, 0) 682 | set11nPktDurRTSCTS(series, 1); 683 684 ads->ds_ctl5 = set11nPktDurRTSCTS(series, 2) 685 | set11nPktDurRTSCTS(series, 3); 686 687 ads->ds_ctl7 = set11nRateFlags(series, 0) 688 | set11nRateFlags(series, 1) 689 | set11nRateFlags(series, 2) 690 | set11nRateFlags(series, 3) 691 | SM(rtsctsRate, AR_RTSCTSRate); 692 } 693 694 void 695 ar5416Set11nAggrMiddle(struct ath_hal *ah, struct ath_desc *ds, u_int numDelims) 696 { 697 struct ar5416_desc *ads = AR5416DESC(ds); 698 uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads); 699 700 ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr); 701 702 ads->ds_ctl6 &= ~AR_PadDelim; 703 ads->ds_ctl6 |= SM(numDelims, AR_PadDelim); 704 ads->ds_ctl6 &= ~AR_AggrLen; 705 706 /* 707 * Clear the TxDone status here, may need to change 708 * func name to reflect this 709 */ 710 ds_txstatus[9] &= ~AR_TxDone; 711 } 712 713 void 714 ar5416Clr11nAggr(struct ath_hal *ah, struct ath_desc *ds) 715 { 716 struct ar5416_desc *ads = AR5416DESC(ds); 717 718 ads->ds_ctl1 &= (~AR_IsAggr & ~AR_MoreAggr); 719 ads->ds_ctl6 &= ~AR_PadDelim; 720 ads->ds_ctl6 &= ~AR_AggrLen; 721 } 722 723 void 724 ar5416Set11nBurstDuration(struct ath_hal *ah, struct ath_desc *ds, 725 u_int burstDuration) 726 { 727 struct ar5416_desc *ads = AR5416DESC(ds); 728 729 ads->ds_ctl2 &= ~AR_BurstDur; 730 ads->ds_ctl2 |= SM(burstDuration, AR_BurstDur); 731 } 732 733 /* 734 * Retrieve the rate table from the given TX completion descriptor 735 */ 736 HAL_BOOL 737 ar5416GetTxCompletionRates(struct ath_hal *ah, const struct ath_desc *ds0, int *rates, int *tries) 738 { 739 const struct ar5416_desc *ads = AR5416DESC_CONST(ds0); 740 741 rates[0] = MS(ads->ds_ctl3, AR_XmitRate0); 742 rates[1] = MS(ads->ds_ctl3, AR_XmitRate1); 743 rates[2] = MS(ads->ds_ctl3, AR_XmitRate2); 744 rates[3] = MS(ads->ds_ctl3, AR_XmitRate3); 745 746 tries[0] = MS(ads->ds_ctl2, AR_XmitDataTries0); 747 tries[1] = MS(ads->ds_ctl2, AR_XmitDataTries1); 748 tries[2] = MS(ads->ds_ctl2, AR_XmitDataTries2); 749 tries[3] = MS(ads->ds_ctl2, AR_XmitDataTries3); 750 751 return AH_TRUE; 752 } 753 754 755 /* 756 * TX queue management routines - AR5416 and later chipsets 757 */ 758 759 /* 760 * Allocate and initialize a tx DCU/QCU combination. 761 */ 762 int 763 ar5416SetupTxQueue(struct ath_hal *ah, HAL_TX_QUEUE type, 764 const HAL_TXQ_INFO *qInfo) 765 { 766 struct ath_hal_5212 *ahp = AH5212(ah); 767 HAL_TX_QUEUE_INFO *qi; 768 HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps; 769 int q, defqflags; 770 771 /* by default enable OK+ERR+DESC+URN interrupts */ 772 defqflags = HAL_TXQ_TXOKINT_ENABLE 773 | HAL_TXQ_TXERRINT_ENABLE 774 | HAL_TXQ_TXDESCINT_ENABLE 775 | HAL_TXQ_TXURNINT_ENABLE; 776 /* XXX move queue assignment to driver */ 777 switch (type) { 778 case HAL_TX_QUEUE_BEACON: 779 q = pCap->halTotalQueues-1; /* highest priority */ 780 defqflags |= HAL_TXQ_DBA_GATED 781 | HAL_TXQ_CBR_DIS_QEMPTY 782 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 783 | HAL_TXQ_BACKOFF_DISABLE; 784 break; 785 case HAL_TX_QUEUE_CAB: 786 q = pCap->halTotalQueues-2; /* next highest priority */ 787 defqflags |= HAL_TXQ_DBA_GATED 788 | HAL_TXQ_CBR_DIS_QEMPTY 789 | HAL_TXQ_CBR_DIS_BEMPTY 790 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 791 | HAL_TXQ_BACKOFF_DISABLE; 792 break; 793 case HAL_TX_QUEUE_PSPOLL: 794 q = 1; /* lowest priority */ 795 defqflags |= HAL_TXQ_DBA_GATED 796 | HAL_TXQ_CBR_DIS_QEMPTY 797 | HAL_TXQ_CBR_DIS_BEMPTY 798 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 799 | HAL_TXQ_BACKOFF_DISABLE; 800 break; 801 case HAL_TX_QUEUE_UAPSD: 802 q = pCap->halTotalQueues-3; /* nextest highest priority */ 803 if (ahp->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE) { 804 HALDEBUG(ah, HAL_DEBUG_ANY, 805 "%s: no available UAPSD tx queue\n", __func__); 806 return -1; 807 } 808 break; 809 case HAL_TX_QUEUE_DATA: 810 for (q = 0; q < pCap->halTotalQueues; q++) 811 if (ahp->ah_txq[q].tqi_type == HAL_TX_QUEUE_INACTIVE) 812 break; 813 if (q == pCap->halTotalQueues) { 814 HALDEBUG(ah, HAL_DEBUG_ANY, 815 "%s: no available tx queue\n", __func__); 816 return -1; 817 } 818 break; 819 default: 820 HALDEBUG(ah, HAL_DEBUG_ANY, 821 "%s: bad tx queue type %u\n", __func__, type); 822 return -1; 823 } 824 825 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q); 826 827 qi = &ahp->ah_txq[q]; 828 if (qi->tqi_type != HAL_TX_QUEUE_INACTIVE) { 829 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: tx queue %u already active\n", 830 __func__, q); 831 return -1; 832 } 833 OS_MEMZERO(qi, sizeof(HAL_TX_QUEUE_INFO)); 834 qi->tqi_type = type; 835 if (qInfo == AH_NULL) { 836 qi->tqi_qflags = defqflags; 837 qi->tqi_aifs = INIT_AIFS; 838 qi->tqi_cwmin = HAL_TXQ_USEDEFAULT; /* NB: do at reset */ 839 qi->tqi_cwmax = INIT_CWMAX; 840 qi->tqi_shretry = INIT_SH_RETRY; 841 qi->tqi_lgretry = INIT_LG_RETRY; 842 qi->tqi_physCompBuf = 0; 843 } else { 844 qi->tqi_physCompBuf = qInfo->tqi_compBuf; 845 (void) ar5212SetTxQueueProps(ah, q, qInfo); 846 } 847 /* NB: must be followed by ar5212ResetTxQueue */ 848 return q; 849 } 850 851 /* 852 * Update the h/w interrupt registers to reflect a tx q's configuration. 853 */ 854 static void 855 setTxQInterrupts(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi) 856 { 857 struct ath_hal_5212 *ahp = AH5212(ah); 858 859 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, 860 "%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", __func__, 861 ahp->ah_txOkInterruptMask, ahp->ah_txErrInterruptMask, 862 ahp->ah_txDescInterruptMask, ahp->ah_txEolInterruptMask, 863 ahp->ah_txUrnInterruptMask); 864 865 OS_REG_WRITE(ah, AR_IMR_S0, 866 SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK) 867 | SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC) 868 ); 869 OS_REG_WRITE(ah, AR_IMR_S1, 870 SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR) 871 | SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL) 872 ); 873 OS_REG_RMW_FIELD(ah, AR_IMR_S2, 874 AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask); 875 } 876 877 /* 878 * Set the retry, aifs, cwmin/max, readyTime regs for specified queue 879 * Assumes: 880 * phwChannel has been set to point to the current channel 881 */ 882 HAL_BOOL 883 ar5416ResetTxQueue(struct ath_hal *ah, u_int q) 884 { 885 struct ath_hal_5212 *ahp = AH5212(ah); 886 HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps; 887 const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; 888 HAL_TX_QUEUE_INFO *qi; 889 uint32_t cwMin, chanCwMin, value, qmisc, dmisc; 890 891 if (q >= pCap->halTotalQueues) { 892 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n", 893 __func__, q); 894 return AH_FALSE; 895 } 896 qi = &ahp->ah_txq[q]; 897 if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) { 898 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n", 899 __func__, q); 900 return AH_TRUE; /* XXX??? */ 901 } 902 903 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: reset queue %u\n", __func__, q); 904 905 if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT) { 906 /* 907 * Select cwmin according to channel type. 908 * NB: chan can be NULL during attach 909 */ 910 if (chan && IEEE80211_IS_CHAN_B(chan)) 911 chanCwMin = INIT_CWMIN_11B; 912 else 913 chanCwMin = INIT_CWMIN; 914 /* make sure that the CWmin is of the form (2^n - 1) */ 915 for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1) 916 ; 917 } else 918 cwMin = qi->tqi_cwmin; 919 920 /* set cwMin/Max and AIFS values */ 921 OS_REG_WRITE(ah, AR_DLCL_IFS(q), 922 SM(cwMin, AR_D_LCL_IFS_CWMIN) 923 | SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) 924 | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS)); 925 926 /* Set retry limit values */ 927 OS_REG_WRITE(ah, AR_DRETRY_LIMIT(q), 928 SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) 929 | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) 930 | SM(qi->tqi_lgretry, AR_D_RETRY_LIMIT_FR_LG) 931 | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH) 932 ); 933 934 /* NB: always enable early termination on the QCU */ 935 qmisc = AR_Q_MISC_DCU_EARLY_TERM_REQ 936 | SM(AR_Q_MISC_FSP_ASAP, AR_Q_MISC_FSP); 937 938 /* NB: always enable DCU to wait for next fragment from QCU */ 939 dmisc = AR_D_MISC_FRAG_WAIT_EN; 940 941 /* Enable exponential backoff window */ 942 dmisc |= AR_D_MISC_BKOFF_PERSISTENCE; 943 944 /* 945 * The chip reset default is to use a DCU backoff threshold of 0x2. 946 * Restore this when programming the DCU MISC register. 947 */ 948 dmisc |= 0x2; 949 950 /* multiqueue support */ 951 if (qi->tqi_cbrPeriod) { 952 OS_REG_WRITE(ah, AR_QCBRCFG(q), 953 SM(qi->tqi_cbrPeriod,AR_Q_CBRCFG_CBR_INTERVAL) 954 | SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_CBR_OVF_THRESH)); 955 qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_CBR; 956 if (qi->tqi_cbrOverflowLimit) 957 qmisc |= AR_Q_MISC_CBR_EXP_CNTR_LIMIT; 958 } 959 if (qi->tqi_readyTime) { 960 OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), 961 SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT) 962 | AR_Q_RDYTIMECFG_ENA); 963 } 964 965 OS_REG_WRITE(ah, AR_DCHNTIME(q), 966 SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) 967 | (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0)); 968 969 if (qi->tqi_readyTime && 970 (qi->tqi_qflags & HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE)) 971 qmisc |= AR_Q_MISC_RDYTIME_EXP_POLICY; 972 if (qi->tqi_qflags & HAL_TXQ_DBA_GATED) 973 qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_DBA_GATED; 974 if (MS(qmisc, AR_Q_MISC_FSP) != AR_Q_MISC_FSP_ASAP) { 975 /* 976 * These are meangingful only when not scheduled asap. 977 */ 978 if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_BEMPTY) 979 qmisc |= AR_Q_MISC_CBR_INCR_DIS0; 980 else 981 qmisc &= ~AR_Q_MISC_CBR_INCR_DIS0; 982 if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_QEMPTY) 983 qmisc |= AR_Q_MISC_CBR_INCR_DIS1; 984 else 985 qmisc &= ~AR_Q_MISC_CBR_INCR_DIS1; 986 } 987 988 if (qi->tqi_qflags & HAL_TXQ_BACKOFF_DISABLE) 989 dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS; 990 if (qi->tqi_qflags & HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE) 991 dmisc |= AR_D_MISC_FRAG_BKOFF_EN; 992 if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_GLOBAL) 993 dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, 994 AR_D_MISC_ARB_LOCKOUT_CNTRL); 995 else if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_INTRA) 996 dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_INTRA_FR, 997 AR_D_MISC_ARB_LOCKOUT_CNTRL); 998 if (qi->tqi_qflags & HAL_TXQ_IGNORE_VIRTCOL) 999 dmisc |= SM(AR_D_MISC_VIR_COL_HANDLING_IGNORE, 1000 AR_D_MISC_VIR_COL_HANDLING); 1001 if (qi->tqi_qflags & HAL_TXQ_SEQNUM_INC_DIS) 1002 dmisc |= AR_D_MISC_SEQ_NUM_INCR_DIS; 1003 1004 /* 1005 * Fillin type-dependent bits. Most of this can be 1006 * removed by specifying the queue parameters in the 1007 * driver; it's here for backwards compatibility. 1008 */ 1009 switch (qi->tqi_type) { 1010 case HAL_TX_QUEUE_BEACON: /* beacon frames */ 1011 qmisc |= AR_Q_MISC_FSP_DBA_GATED 1012 | AR_Q_MISC_BEACON_USE 1013 | AR_Q_MISC_CBR_INCR_DIS1; 1014 1015 dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, 1016 AR_D_MISC_ARB_LOCKOUT_CNTRL) 1017 | AR_D_MISC_BEACON_USE 1018 | AR_D_MISC_POST_FR_BKOFF_DIS; 1019 break; 1020 case HAL_TX_QUEUE_CAB: /* CAB frames */ 1021 /* 1022 * No longer Enable AR_Q_MISC_RDYTIME_EXP_POLICY, 1023 * There is an issue with the CAB Queue 1024 * not properly refreshing the Tx descriptor if 1025 * the TXE clear setting is used. 1026 */ 1027 qmisc |= AR_Q_MISC_FSP_DBA_GATED 1028 | AR_Q_MISC_CBR_INCR_DIS1 1029 | AR_Q_MISC_CBR_INCR_DIS0; 1030 1031 if (!qi->tqi_readyTime) { 1032 /* 1033 * NB: don't set default ready time if driver 1034 * has explicitly specified something. This is 1035 * here solely for backwards compatibility. 1036 */ 1037 value = (ahp->ah_beaconInterval 1038 - (ath_hal_sw_beacon_response_time - 1039 ath_hal_dma_beacon_response_time) 1040 - ath_hal_additional_swba_backoff) * 1024; 1041 OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), value | AR_Q_RDYTIMECFG_ENA); 1042 } 1043 dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, 1044 AR_D_MISC_ARB_LOCKOUT_CNTRL); 1045 break; 1046 case HAL_TX_QUEUE_PSPOLL: 1047 qmisc |= AR_Q_MISC_CBR_INCR_DIS1; 1048 break; 1049 case HAL_TX_QUEUE_UAPSD: 1050 dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS; 1051 break; 1052 default: /* NB: silence compiler */ 1053 break; 1054 } 1055 1056 OS_REG_WRITE(ah, AR_QMISC(q), qmisc); 1057 OS_REG_WRITE(ah, AR_DMISC(q), dmisc); 1058 1059 /* Setup compression scratchpad buffer */ 1060 /* 1061 * XXX: calling this asynchronously to queue operation can 1062 * cause unexpected behavior!!! 1063 */ 1064 if (qi->tqi_physCompBuf) { 1065 HALASSERT(qi->tqi_type == HAL_TX_QUEUE_DATA || 1066 qi->tqi_type == HAL_TX_QUEUE_UAPSD); 1067 OS_REG_WRITE(ah, AR_Q_CBBS, (80 + 2*q)); 1068 OS_REG_WRITE(ah, AR_Q_CBBA, qi->tqi_physCompBuf); 1069 OS_REG_WRITE(ah, AR_Q_CBC, HAL_COMP_BUF_MAX_SIZE/1024); 1070 OS_REG_WRITE(ah, AR_Q0_MISC + 4*q, 1071 OS_REG_READ(ah, AR_Q0_MISC + 4*q) 1072 | AR_Q_MISC_QCU_COMP_EN); 1073 } 1074 1075 /* 1076 * Always update the secondary interrupt mask registers - this 1077 * could be a new queue getting enabled in a running system or 1078 * hw getting re-initialized during a reset! 1079 * 1080 * Since we don't differentiate between tx interrupts corresponding 1081 * to individual queues - secondary tx mask regs are always unmasked; 1082 * tx interrupts are enabled/disabled for all queues collectively 1083 * using the primary mask reg 1084 */ 1085 if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE) 1086 ahp->ah_txOkInterruptMask |= 1 << q; 1087 else 1088 ahp->ah_txOkInterruptMask &= ~(1 << q); 1089 if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE) 1090 ahp->ah_txErrInterruptMask |= 1 << q; 1091 else 1092 ahp->ah_txErrInterruptMask &= ~(1 << q); 1093 if (qi->tqi_qflags & HAL_TXQ_TXDESCINT_ENABLE) 1094 ahp->ah_txDescInterruptMask |= 1 << q; 1095 else 1096 ahp->ah_txDescInterruptMask &= ~(1 << q); 1097 if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE) 1098 ahp->ah_txEolInterruptMask |= 1 << q; 1099 else 1100 ahp->ah_txEolInterruptMask &= ~(1 << q); 1101 if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE) 1102 ahp->ah_txUrnInterruptMask |= 1 << q; 1103 else 1104 ahp->ah_txUrnInterruptMask &= ~(1 << q); 1105 setTxQInterrupts(ah, qi); 1106 1107 return AH_TRUE; 1108 } 1109