1 /* 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * Copyright (c) 2002-2008 Atheros Communications, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 * 17 * $FreeBSD$ 18 */ 19 #include "opt_ah.h" 20 21 #include "ah.h" 22 #include "ah_desc.h" 23 #include "ah_internal.h" 24 25 #include "ar5416/ar5416.h" 26 #include "ar5416/ar5416reg.h" 27 #include "ar5416/ar5416phy.h" 28 #include "ar5416/ar5416desc.h" 29 30 /* 31 * Stop transmit on the specified queue 32 */ 33 HAL_BOOL 34 ar5416StopTxDma(struct ath_hal *ah, u_int q) 35 { 36 #define STOP_DMA_TIMEOUT 4000 /* us */ 37 #define STOP_DMA_ITER 100 /* us */ 38 u_int i; 39 40 HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues); 41 42 HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE); 43 44 OS_REG_WRITE(ah, AR_Q_TXD, 1 << q); 45 for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) { 46 if (ar5212NumTxPending(ah, q) == 0) 47 break; 48 OS_DELAY(STOP_DMA_ITER); 49 } 50 #ifdef AH_DEBUG 51 if (i == 0) { 52 HALDEBUG(ah, HAL_DEBUG_ANY, 53 "%s: queue %u DMA did not stop in 400 msec\n", __func__, q); 54 HALDEBUG(ah, HAL_DEBUG_ANY, 55 "%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__, 56 OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE), 57 OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q))); 58 HALDEBUG(ah, HAL_DEBUG_ANY, 59 "%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n", 60 __func__, OS_REG_READ(ah, AR_QMISC(q)), 61 OS_REG_READ(ah, AR_QRDYTIMECFG(q)), 62 OS_REG_READ(ah, AR_Q_RDYTIMESHDN)); 63 } 64 #endif /* AH_DEBUG */ 65 66 /* ar5416 and up can kill packets at the PCU level */ 67 if (ar5212NumTxPending(ah, q)) { 68 uint32_t j; 69 70 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, 71 "%s: Num of pending TX Frames %d on Q %d\n", 72 __func__, ar5212NumTxPending(ah, q), q); 73 74 /* Kill last PCU Tx Frame */ 75 /* TODO - save off and restore current values of Q1/Q2? */ 76 for (j = 0; j < 2; j++) { 77 uint32_t tsfLow = OS_REG_READ(ah, AR_TSF_L32); 78 OS_REG_WRITE(ah, AR_QUIET2, 79 SM(10, AR_QUIET2_QUIET_DUR)); 80 OS_REG_WRITE(ah, AR_QUIET_PERIOD, 100); 81 OS_REG_WRITE(ah, AR_NEXT_QUIET, tsfLow >> 10); 82 OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET); 83 84 if ((OS_REG_READ(ah, AR_TSF_L32)>>10) == (tsfLow>>10)) 85 break; 86 87 HALDEBUG(ah, HAL_DEBUG_ANY, 88 "%s: TSF moved while trying to set quiet time " 89 "TSF: 0x%08x\n", __func__, tsfLow); 90 HALASSERT(j < 1); /* TSF shouldn't count twice or reg access is taking forever */ 91 } 92 93 OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE); 94 95 /* Allow the quiet mechanism to do its work */ 96 OS_DELAY(200); 97 OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET); 98 99 /* Verify the transmit q is empty */ 100 for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) { 101 if (ar5212NumTxPending(ah, q) == 0) 102 break; 103 OS_DELAY(STOP_DMA_ITER); 104 } 105 if (i == 0) { 106 HALDEBUG(ah, HAL_DEBUG_ANY, 107 "%s: Failed to stop Tx DMA in %d msec after killing" 108 " last frame\n", __func__, STOP_DMA_TIMEOUT / 1000); 109 } 110 OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE); 111 } 112 113 OS_REG_WRITE(ah, AR_Q_TXD, 0); 114 return (i != 0); 115 #undef STOP_DMA_ITER 116 #undef STOP_DMA_TIMEOUT 117 } 118 119 #define VALID_KEY_TYPES \ 120 ((1 << HAL_KEY_TYPE_CLEAR) | (1 << HAL_KEY_TYPE_WEP)|\ 121 (1 << HAL_KEY_TYPE_AES) | (1 << HAL_KEY_TYPE_TKIP)) 122 #define isValidKeyType(_t) ((1 << (_t)) & VALID_KEY_TYPES) 123 124 #define set11nTries(_series, _index) \ 125 (SM((_series)[_index].Tries, AR_XmitDataTries##_index)) 126 127 #define set11nRate(_series, _index) \ 128 (SM((_series)[_index].Rate, AR_XmitRate##_index)) 129 130 #define set11nPktDurRTSCTS(_series, _index) \ 131 (SM((_series)[_index].PktDuration, AR_PacketDur##_index) |\ 132 ((_series)[_index].RateFlags & HAL_RATESERIES_RTS_CTS ?\ 133 AR_RTSCTSQual##_index : 0)) 134 135 #define set11nRateFlags(_series, _index) \ 136 ((_series)[_index].RateFlags & HAL_RATESERIES_2040 ? AR_2040_##_index : 0) \ 137 |((_series)[_index].RateFlags & HAL_RATESERIES_HALFGI ? AR_GI##_index : 0) \ 138 |((_series)[_index].RateFlags & HAL_RATESERIES_STBC ? AR_STBC##_index : 0) \ 139 |SM((_series)[_index].ChSel, AR_ChainSel##_index) 140 141 /* 142 * Descriptor Access Functions 143 */ 144 145 #define VALID_PKT_TYPES \ 146 ((1<<HAL_PKT_TYPE_NORMAL)|(1<<HAL_PKT_TYPE_ATIM)|\ 147 (1<<HAL_PKT_TYPE_PSPOLL)|(1<<HAL_PKT_TYPE_PROBE_RESP)|\ 148 (1<<HAL_PKT_TYPE_BEACON)|(1<<HAL_PKT_TYPE_AMPDU)) 149 #define isValidPktType(_t) ((1<<(_t)) & VALID_PKT_TYPES) 150 #define VALID_TX_RATES \ 151 ((1<<0x0b)|(1<<0x0f)|(1<<0x0a)|(1<<0x0e)|(1<<0x09)|(1<<0x0d)|\ 152 (1<<0x08)|(1<<0x0c)|(1<<0x1b)|(1<<0x1a)|(1<<0x1e)|(1<<0x19)|\ 153 (1<<0x1d)|(1<<0x18)|(1<<0x1c)|(1<<0x01)|(1<<0x02)|(1<<0x03)|\ 154 (1<<0x04)|(1<<0x05)|(1<<0x06)|(1<<0x07)|(1<<0x00)) 155 /* NB: accept HT rates */ 156 #define isValidTxRate(_r) ((1<<((_r) & 0x7f)) & VALID_TX_RATES) 157 158 static inline int 159 ar5416RateToRateTable(struct ath_hal *ah, uint8_t rate, HAL_BOOL is_ht40) 160 { 161 162 /* 163 * Handle the non-MCS rates 164 */ 165 switch (rate) { 166 case /* 1 Mb */ 0x1b: 167 case /* 1 MbS*/ 0x1b | 0x4: 168 return (AH5416(ah)->ah_ratesArray[rate1l]); 169 case /* 2 Mb */ 0x1a: 170 return (AH5416(ah)->ah_ratesArray[rate2l]); 171 case /* 2 MbS*/ 0x1a | 0x4: 172 return (AH5416(ah)->ah_ratesArray[rate2s]); 173 case /* 5.5 Mb */ 0x19: 174 return (AH5416(ah)->ah_ratesArray[rate5_5l]); 175 case /* 5.5 MbS*/ 0x19 | 0x4: 176 return (AH5416(ah)->ah_ratesArray[rate5_5s]); 177 case /* 11 Mb */ 0x18: 178 return (AH5416(ah)->ah_ratesArray[rate11l]); 179 case /* 11 MbS*/ 0x18 | 0x4: 180 return (AH5416(ah)->ah_ratesArray[rate11s]); 181 } 182 183 /* OFDM rates */ 184 switch (rate) { 185 case /* 6 Mb */ 0x0b: 186 return (AH5416(ah)->ah_ratesArray[rate6mb]); 187 case /* 9 Mb */ 0x0f: 188 return (AH5416(ah)->ah_ratesArray[rate9mb]); 189 case /* 12 Mb */ 0x0a: 190 return (AH5416(ah)->ah_ratesArray[rate12mb]); 191 case /* 18 Mb */ 0x0e: 192 return (AH5416(ah)->ah_ratesArray[rate18mb]); 193 case /* 24 Mb */ 0x09: 194 return (AH5416(ah)->ah_ratesArray[rate24mb]); 195 case /* 36 Mb */ 0x0d: 196 return (AH5416(ah)->ah_ratesArray[rate36mb]); 197 case /* 48 Mb */ 0x08: 198 return (AH5416(ah)->ah_ratesArray[rate48mb]); 199 case /* 54 Mb */ 0x0c: 200 return (AH5416(ah)->ah_ratesArray[rate54mb]); 201 } 202 203 /* 204 * Handle HT20/HT40 - we only have to do MCS0-7; 205 * there's no stream differences. 206 */ 207 if ((rate & 0x80) && is_ht40) { 208 return (AH5416(ah)->ah_ratesArray[rateHt40_0 + (rate & 0x7)]); 209 } else if (rate & 0x80) { 210 return (AH5416(ah)->ah_ratesArray[rateHt20_0 + (rate & 0x7)]); 211 } 212 213 /* XXX default (eg XR, bad bad person!) */ 214 return (AH5416(ah)->ah_ratesArray[rate6mb]); 215 } 216 217 /* 218 * Return the TX power to be used for the given rate/chains/TX power. 219 * 220 * There are a bunch of tweaks to make to a given TX power based on 221 * the current configuration, so... 222 */ 223 static uint16_t 224 ar5416GetTxRatePower(struct ath_hal *ah, uint8_t rate, uint8_t tx_chainmask, 225 uint16_t txPower, HAL_BOOL is_ht40) 226 { 227 int n_txpower, max_txpower; 228 const int cck_ofdm_delta = 2; 229 #define EEP_MINOR(_ah) \ 230 (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK) 231 #define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2) 232 233 /* Take a copy ; we may underflow and thus need to clamp things */ 234 n_txpower = txPower; 235 236 /* HT40? Need to adjust the TX power by this */ 237 if (is_ht40) 238 n_txpower += AH5416(ah)->ah_ht40PowerIncForPdadc; 239 240 /* 241 * Merlin? Offset the target TX power offset - it defaults to 242 * starting at -5.0dBm, but that can change! 243 * 244 * Kiwi/Kite? Always -5.0dBm offset. 245 */ 246 if (AR_SREV_KIWI_10_OR_LATER(ah)) { 247 n_txpower -= (AR5416_PWR_TABLE_OFFSET_DB * 2); 248 } else if (AR_SREV_MERLIN_20_OR_LATER(ah)) { 249 int8_t pwr_table_offset = 0; 250 /* This is in dBm, convert to 1/2 dBm */ 251 (void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET, 252 &pwr_table_offset); 253 n_txpower -= (pwr_table_offset * 2); 254 } 255 256 /* 257 * If Open-loop TX power control is used, the CCK rates need 258 * to be offset by that. 259 * 260 * Rates: 2S, 2L, 1S, 1L, 5.5S, 5.5L 261 * 262 * XXX Odd, we don't have a PHY table entry for long preamble 263 * 1mbit CCK? 264 */ 265 if (AR_SREV_MERLIN_20_OR_LATER(ah) && 266 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { 267 268 if (rate == 0x19 || rate == 0x1a || rate == 0x1b || 269 rate == (0x19 | 0x04) || rate == (0x1a | 0x04) || 270 rate == (0x1b | 0x04)) { 271 n_txpower -= cck_ofdm_delta; 272 } 273 } 274 275 /* 276 * We're now offset by the same amount that the static maximum 277 * PHY power tables are. So, clamp the value based on that rate. 278 */ 279 max_txpower = ar5416RateToRateTable(ah, rate, is_ht40); 280 #if 0 281 ath_hal_printf(ah, "%s: n_txpower = %d, max_txpower = %d, " 282 "rate = 0x%x , is_ht40 = %d\n", 283 __func__, 284 n_txpower, 285 max_txpower, 286 rate, 287 is_ht40); 288 #endif 289 n_txpower = MIN(max_txpower, n_txpower); 290 291 /* 292 * We don't have to offset the TX power for two or three 293 * chain operation here - it's done by the AR_PHY_POWER_TX_SUB 294 * register setting via the EEPROM. 295 * 296 * So for vendors that programmed the maximum target power assuming 297 * that 2/3 chains are always on, things will just plain work. 298 * (They won't reach that target power if only one chain is on, but 299 * that's a different problem.) 300 */ 301 302 /* Over/underflow? Adjust */ 303 if (n_txpower < 0) 304 n_txpower = 0; 305 else if (n_txpower > 63) 306 n_txpower = 63; 307 308 /* 309 * For some odd reason the AR9160 with txpower=0 results in a 310 * much higher (max?) TX power. So, if it's a chipset before 311 * AR9220/AR9280, just clamp the minimum value at 1. 312 */ 313 if ((! AR_SREV_MERLIN_10_OR_LATER(ah)) && (n_txpower == 0)) 314 n_txpower = 1; 315 316 return (n_txpower); 317 #undef EEP_MINOR 318 #undef IS_EEP_MINOR_V2 319 } 320 321 HAL_BOOL 322 ar5416SetupTxDesc(struct ath_hal *ah, struct ath_desc *ds, 323 u_int pktLen, 324 u_int hdrLen, 325 HAL_PKT_TYPE type, 326 u_int txPower, 327 u_int txRate0, u_int txTries0, 328 u_int keyIx, 329 u_int antMode, 330 u_int flags, 331 u_int rtsctsRate, 332 u_int rtsctsDuration, 333 u_int compicvLen, 334 u_int compivLen, 335 u_int comp) 336 { 337 #define RTSCTS (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA) 338 struct ar5416_desc *ads = AR5416DESC(ds); 339 struct ath_hal_5416 *ahp = AH5416(ah); 340 341 (void) hdrLen; 342 343 HALASSERT(txTries0 != 0); 344 HALASSERT(isValidPktType(type)); 345 HALASSERT(isValidTxRate(txRate0)); 346 HALASSERT((flags & RTSCTS) != RTSCTS); 347 /* XXX validate antMode */ 348 349 txPower = (txPower + AH5212(ah)->ah_txPowerIndexOffset); 350 if (txPower > 63) 351 txPower = 63; 352 353 /* 354 * XXX For now, just assume that this isn't a HT40 frame. 355 */ 356 if (AH5212(ah)->ah_tpcEnabled) { 357 txPower = ar5416GetTxRatePower(ah, txRate0, 358 ahp->ah_tx_chainmask, 359 txPower, 360 AH_FALSE); 361 } 362 363 ads->ds_ctl0 = (pktLen & AR_FrameLen) 364 | (txPower << AR_XmitPower_S) 365 | (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0) 366 | (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0) 367 | (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0) 368 ; 369 ads->ds_ctl1 = (type << AR_FrameType_S) 370 | (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0) 371 ; 372 ads->ds_ctl2 = SM(txTries0, AR_XmitDataTries0) 373 | (flags & HAL_TXDESC_DURENA ? AR_DurUpdateEn : 0) 374 ; 375 ads->ds_ctl3 = (txRate0 << AR_XmitRate0_S) 376 ; 377 ads->ds_ctl4 = 0; 378 ads->ds_ctl5 = 0; 379 ads->ds_ctl6 = 0; 380 ads->ds_ctl7 = SM(ahp->ah_tx_chainmask, AR_ChainSel0) 381 | SM(ahp->ah_tx_chainmask, AR_ChainSel1) 382 | SM(ahp->ah_tx_chainmask, AR_ChainSel2) 383 | SM(ahp->ah_tx_chainmask, AR_ChainSel3) 384 ; 385 ads->ds_ctl8 = SM(0, AR_AntCtl0); 386 ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1); 387 ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2); 388 ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3); 389 390 if (keyIx != HAL_TXKEYIX_INVALID) { 391 /* XXX validate key index */ 392 ads->ds_ctl1 |= SM(keyIx, AR_DestIdx); 393 ads->ds_ctl0 |= AR_DestIdxValid; 394 ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType); 395 } 396 if (flags & RTSCTS) { 397 if (!isValidTxRate(rtsctsRate)) { 398 HALDEBUG(ah, HAL_DEBUG_ANY, 399 "%s: invalid rts/cts rate 0x%x\n", 400 __func__, rtsctsRate); 401 return AH_FALSE; 402 } 403 /* XXX validate rtsctsDuration */ 404 ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0) 405 | (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0) 406 ; 407 ads->ds_ctl7 |= (rtsctsRate << AR_RTSCTSRate_S); 408 } 409 410 /* 411 * Set the TX antenna to 0 for Kite 412 * To preserve existing behaviour, also set the TPC bits to 0; 413 * when TPC is enabled these should be filled in appropriately. 414 * 415 * XXX TODO: when doing TPC, set the TX power up appropriately? 416 */ 417 if (AR_SREV_KITE(ah)) { 418 ads->ds_ctl8 = SM(0, AR_AntCtl0); 419 ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1); 420 ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2); 421 ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3); 422 } 423 return AH_TRUE; 424 #undef RTSCTS 425 } 426 427 HAL_BOOL 428 ar5416SetupXTxDesc(struct ath_hal *ah, struct ath_desc *ds, 429 u_int txRate1, u_int txTries1, 430 u_int txRate2, u_int txTries2, 431 u_int txRate3, u_int txTries3) 432 { 433 struct ar5416_desc *ads = AR5416DESC(ds); 434 435 if (txTries1) { 436 HALASSERT(isValidTxRate(txRate1)); 437 ads->ds_ctl2 |= SM(txTries1, AR_XmitDataTries1); 438 ads->ds_ctl3 |= (txRate1 << AR_XmitRate1_S); 439 } 440 if (txTries2) { 441 HALASSERT(isValidTxRate(txRate2)); 442 ads->ds_ctl2 |= SM(txTries2, AR_XmitDataTries2); 443 ads->ds_ctl3 |= (txRate2 << AR_XmitRate2_S); 444 } 445 if (txTries3) { 446 HALASSERT(isValidTxRate(txRate3)); 447 ads->ds_ctl2 |= SM(txTries3, AR_XmitDataTries3); 448 ads->ds_ctl3 |= (txRate3 << AR_XmitRate3_S); 449 } 450 return AH_TRUE; 451 } 452 453 HAL_BOOL 454 ar5416FillTxDesc(struct ath_hal *ah, struct ath_desc *ds, 455 HAL_DMA_ADDR *bufAddrList, uint32_t *segLenList, u_int descId, 456 u_int qcuId, HAL_BOOL firstSeg, HAL_BOOL lastSeg, 457 const struct ath_desc *ds0) 458 { 459 struct ar5416_desc *ads = AR5416DESC(ds); 460 uint32_t segLen = segLenList[0]; 461 462 HALASSERT((segLen &~ AR_BufLen) == 0); 463 464 ds->ds_data = bufAddrList[0]; 465 466 if (firstSeg) { 467 /* 468 * First descriptor, don't clobber xmit control data 469 * setup by ar5212SetupTxDesc. 470 */ 471 ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore); 472 } else if (lastSeg) { /* !firstSeg && lastSeg */ 473 /* 474 * Last descriptor in a multi-descriptor frame, 475 * copy the multi-rate transmit parameters from 476 * the first frame for processing on completion. 477 */ 478 ads->ds_ctl1 = segLen; 479 #ifdef AH_NEED_DESC_SWAP 480 ads->ds_ctl0 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl0) 481 & AR_TxIntrReq; 482 ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2); 483 ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3); 484 /* ctl6 - we only need encrtype; the rest are blank */ 485 ads->ds_ctl6 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType); 486 #else 487 ads->ds_ctl0 = AR5416DESC_CONST(ds0)->ds_ctl0 & AR_TxIntrReq; 488 ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2; 489 ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3; 490 /* ctl6 - we only need encrtype; the rest are blank */ 491 ads->ds_ctl6 = AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType; 492 #endif 493 } else { /* !firstSeg && !lastSeg */ 494 /* 495 * Intermediate descriptor in a multi-descriptor frame. 496 */ 497 #ifdef AH_NEED_DESC_SWAP 498 ads->ds_ctl0 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl0) 499 & AR_TxIntrReq; 500 ads->ds_ctl6 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType); 501 #else 502 ads->ds_ctl0 = AR5416DESC_CONST(ds0)->ds_ctl0 & AR_TxIntrReq; 503 ads->ds_ctl6 = AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType; 504 #endif 505 ads->ds_ctl1 = segLen | AR_TxMore; 506 ads->ds_ctl2 = 0; 507 ads->ds_ctl3 = 0; 508 } 509 /* XXX only on last descriptor? */ 510 OS_MEMZERO(ads->u.tx.status, sizeof(ads->u.tx.status)); 511 return AH_TRUE; 512 } 513 514 /* 515 * NB: cipher is no longer used, it's calculated. 516 */ 517 HAL_BOOL 518 ar5416ChainTxDesc(struct ath_hal *ah, struct ath_desc *ds, 519 HAL_DMA_ADDR *bufAddrList, 520 uint32_t *segLenList, 521 u_int pktLen, 522 u_int hdrLen, 523 HAL_PKT_TYPE type, 524 u_int keyIx, 525 HAL_CIPHER cipher, 526 uint8_t delims, 527 HAL_BOOL firstSeg, 528 HAL_BOOL lastSeg, 529 HAL_BOOL lastAggr) 530 { 531 struct ar5416_desc *ads = AR5416DESC(ds); 532 uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads); 533 struct ath_hal_5416 *ahp = AH5416(ah); 534 u_int segLen = segLenList[0]; 535 536 int isaggr = 0; 537 uint32_t last_aggr = 0; 538 539 (void) hdrLen; 540 (void) ah; 541 542 HALASSERT((segLen &~ AR_BufLen) == 0); 543 ds->ds_data = bufAddrList[0]; 544 545 HALASSERT(isValidPktType(type)); 546 if (type == HAL_PKT_TYPE_AMPDU) { 547 type = HAL_PKT_TYPE_NORMAL; 548 isaggr = 1; 549 if (lastAggr == AH_FALSE) 550 last_aggr = AR_MoreAggr; 551 } 552 553 /* 554 * Since this function is called before any of the other 555 * descriptor setup functions (at least in this particular 556 * 802.11n aggregation implementation), always bzero() the 557 * descriptor. Previously this would be done for all but 558 * the first segment. 559 * XXX TODO: figure out why; perhaps I'm using this slightly 560 * XXX incorrectly. 561 */ 562 OS_MEMZERO(ds->ds_hw, AR5416_DESC_TX_CTL_SZ); 563 564 /* 565 * Note: VEOL should only be for the last descriptor in the chain. 566 */ 567 ads->ds_ctl0 = (pktLen & AR_FrameLen); 568 569 /* 570 * For aggregates: 571 * + IsAggr must be set for all descriptors of all subframes of 572 * the aggregate 573 * + MoreAggr must be set for all descriptors of all subframes 574 * of the aggregate EXCEPT the last subframe; 575 * + MoreAggr must be _CLEAR_ for all descrpitors of the last 576 * subframe of the aggregate. 577 */ 578 ads->ds_ctl1 = (type << AR_FrameType_S) 579 | (isaggr ? (AR_IsAggr | last_aggr) : 0); 580 581 ads->ds_ctl2 = 0; 582 ads->ds_ctl3 = 0; 583 if (keyIx != HAL_TXKEYIX_INVALID) { 584 /* XXX validate key index */ 585 ads->ds_ctl1 |= SM(keyIx, AR_DestIdx); 586 ads->ds_ctl0 |= AR_DestIdxValid; 587 } 588 589 ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType); 590 if (isaggr) { 591 ads->ds_ctl6 |= SM(delims, AR_PadDelim); 592 } 593 594 if (firstSeg) { 595 ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore); 596 } else if (lastSeg) { /* !firstSeg && lastSeg */ 597 ads->ds_ctl0 = 0; 598 ads->ds_ctl1 |= segLen; 599 } else { /* !firstSeg && !lastSeg */ 600 /* 601 * Intermediate descriptor in a multi-descriptor frame. 602 */ 603 ads->ds_ctl0 = 0; 604 ads->ds_ctl1 |= segLen | AR_TxMore; 605 } 606 ds_txstatus[0] = ds_txstatus[1] = 0; 607 ds_txstatus[9] &= ~AR_TxDone; 608 609 return AH_TRUE; 610 } 611 612 HAL_BOOL 613 ar5416SetupFirstTxDesc(struct ath_hal *ah, struct ath_desc *ds, 614 u_int aggrLen, u_int flags, u_int txPower, 615 u_int txRate0, u_int txTries0, u_int antMode, 616 u_int rtsctsRate, u_int rtsctsDuration) 617 { 618 #define RTSCTS (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA) 619 struct ar5416_desc *ads = AR5416DESC(ds); 620 struct ath_hal_5212 *ahp = AH5212(ah); 621 622 HALASSERT(txTries0 != 0); 623 HALASSERT(isValidTxRate(txRate0)); 624 HALASSERT((flags & RTSCTS) != RTSCTS); 625 /* XXX validate antMode */ 626 627 txPower = (txPower + ahp->ah_txPowerIndexOffset ); 628 if(txPower > 63) txPower=63; 629 630 ads->ds_ctl0 |= (txPower << AR_XmitPower_S) 631 | (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0) 632 | (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0) 633 | (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0); 634 ads->ds_ctl1 |= (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0); 635 ads->ds_ctl2 |= SM(txTries0, AR_XmitDataTries0); 636 ads->ds_ctl3 |= (txRate0 << AR_XmitRate0_S); 637 ads->ds_ctl7 = SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel0) 638 | SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel1) 639 | SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel2) 640 | SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel3); 641 642 /* NB: no V1 WAR */ 643 ads->ds_ctl8 = SM(0, AR_AntCtl0); 644 ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1); 645 ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2); 646 ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3); 647 648 ads->ds_ctl6 &= ~(0xffff); 649 ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen); 650 651 if (flags & RTSCTS) { 652 /* XXX validate rtsctsDuration */ 653 ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0) 654 | (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0); 655 } 656 657 /* 658 * Set the TX antenna to 0 for Kite 659 * To preserve existing behaviour, also set the TPC bits to 0; 660 * when TPC is enabled these should be filled in appropriately. 661 */ 662 if (AR_SREV_KITE(ah)) { 663 ads->ds_ctl8 = SM(0, AR_AntCtl0); 664 ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1); 665 ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2); 666 ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3); 667 } 668 669 return AH_TRUE; 670 #undef RTSCTS 671 } 672 673 HAL_BOOL 674 ar5416SetupLastTxDesc(struct ath_hal *ah, struct ath_desc *ds, 675 const struct ath_desc *ds0) 676 { 677 struct ar5416_desc *ads = AR5416DESC(ds); 678 679 ads->ds_ctl1 &= ~AR_MoreAggr; 680 ads->ds_ctl6 &= ~AR_PadDelim; 681 682 /* hack to copy rate info to last desc for later processing */ 683 #ifdef AH_NEED_DESC_SWAP 684 ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2); 685 ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3); 686 #else 687 ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2; 688 ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3; 689 #endif 690 return AH_TRUE; 691 } 692 693 #ifdef AH_NEED_DESC_SWAP 694 /* Swap transmit descriptor */ 695 static __inline void 696 ar5416SwapTxDesc(struct ath_desc *ds) 697 { 698 ds->ds_data = __bswap32(ds->ds_data); 699 ds->ds_ctl0 = __bswap32(ds->ds_ctl0); 700 ds->ds_ctl1 = __bswap32(ds->ds_ctl1); 701 ds->ds_hw[0] = __bswap32(ds->ds_hw[0]); 702 ds->ds_hw[1] = __bswap32(ds->ds_hw[1]); 703 ds->ds_hw[2] = __bswap32(ds->ds_hw[2]); 704 ds->ds_hw[3] = __bswap32(ds->ds_hw[3]); 705 } 706 #endif 707 708 /* 709 * Processing of HW TX descriptor. 710 */ 711 HAL_STATUS 712 ar5416ProcTxDesc(struct ath_hal *ah, 713 struct ath_desc *ds, struct ath_tx_status *ts) 714 { 715 struct ar5416_desc *ads = AR5416DESC(ds); 716 uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads); 717 718 #ifdef AH_NEED_DESC_SWAP 719 if ((ds_txstatus[9] & __bswap32(AR_TxDone)) == 0) 720 return HAL_EINPROGRESS; 721 ar5416SwapTxDesc(ds); 722 #else 723 if ((ds_txstatus[9] & AR_TxDone) == 0) 724 return HAL_EINPROGRESS; 725 #endif 726 727 /* Update software copies of the HW status */ 728 ts->ts_seqnum = MS(ds_txstatus[9], AR_SeqNum); 729 ts->ts_tstamp = AR_SendTimestamp(ds_txstatus); 730 ts->ts_tid = MS(ds_txstatus[9], AR_TxTid); 731 732 ts->ts_status = 0; 733 if (ds_txstatus[1] & AR_ExcessiveRetries) 734 ts->ts_status |= HAL_TXERR_XRETRY; 735 if (ds_txstatus[1] & AR_Filtered) 736 ts->ts_status |= HAL_TXERR_FILT; 737 if (ds_txstatus[1] & AR_FIFOUnderrun) 738 ts->ts_status |= HAL_TXERR_FIFO; 739 if (ds_txstatus[9] & AR_TxOpExceeded) 740 ts->ts_status |= HAL_TXERR_XTXOP; 741 if (ds_txstatus[1] & AR_TxTimerExpired) 742 ts->ts_status |= HAL_TXERR_TIMER_EXPIRED; 743 744 ts->ts_flags = 0; 745 if (ds_txstatus[0] & AR_TxBaStatus) { 746 ts->ts_flags |= HAL_TX_BA; 747 ts->ts_ba_low = AR_BaBitmapLow(ds_txstatus); 748 ts->ts_ba_high = AR_BaBitmapHigh(ds_txstatus); 749 } 750 if (ds->ds_ctl1 & AR_IsAggr) 751 ts->ts_flags |= HAL_TX_AGGR; 752 if (ds_txstatus[1] & AR_DescCfgErr) 753 ts->ts_flags |= HAL_TX_DESC_CFG_ERR; 754 if (ds_txstatus[1] & AR_TxDataUnderrun) 755 ts->ts_flags |= HAL_TX_DATA_UNDERRUN; 756 if (ds_txstatus[1] & AR_TxDelimUnderrun) 757 ts->ts_flags |= HAL_TX_DELIM_UNDERRUN; 758 759 /* 760 * Extract the transmit rate used and mark the rate as 761 * ``alternate'' if it wasn't the series 0 rate. 762 */ 763 ts->ts_finaltsi = MS(ds_txstatus[9], AR_FinalTxIdx); 764 switch (ts->ts_finaltsi) { 765 case 0: 766 ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate0); 767 break; 768 case 1: 769 ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate1); 770 break; 771 case 2: 772 ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate2); 773 break; 774 case 3: 775 ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate3); 776 break; 777 } 778 779 ts->ts_rssi = MS(ds_txstatus[5], AR_TxRSSICombined); 780 ts->ts_rssi_ctl[0] = MS(ds_txstatus[0], AR_TxRSSIAnt00); 781 ts->ts_rssi_ctl[1] = MS(ds_txstatus[0], AR_TxRSSIAnt01); 782 ts->ts_rssi_ctl[2] = MS(ds_txstatus[0], AR_TxRSSIAnt02); 783 ts->ts_rssi_ext[0] = MS(ds_txstatus[5], AR_TxRSSIAnt10); 784 ts->ts_rssi_ext[1] = MS(ds_txstatus[5], AR_TxRSSIAnt11); 785 ts->ts_rssi_ext[2] = MS(ds_txstatus[5], AR_TxRSSIAnt12); 786 ts->ts_evm0 = AR_TxEVM0(ds_txstatus); 787 ts->ts_evm1 = AR_TxEVM1(ds_txstatus); 788 ts->ts_evm2 = AR_TxEVM2(ds_txstatus); 789 790 ts->ts_shortretry = MS(ds_txstatus[1], AR_RTSFailCnt); 791 ts->ts_longretry = MS(ds_txstatus[1], AR_DataFailCnt); 792 /* 793 * The retry count has the number of un-acked tries for the 794 * final series used. When doing multi-rate retry we must 795 * fixup the retry count by adding in the try counts for 796 * each series that was fully-processed. Beware that this 797 * takes values from the try counts in the final descriptor. 798 * These are not required by the hardware. We assume they 799 * are placed there by the driver as otherwise we have no 800 * access and the driver can't do the calculation because it 801 * doesn't know the descriptor format. 802 */ 803 switch (ts->ts_finaltsi) { 804 case 3: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries2); 805 case 2: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries1); 806 case 1: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries0); 807 } 808 809 /* 810 * These fields are not used. Zero these to preserve compatability 811 * with existing drivers. 812 */ 813 ts->ts_virtcol = MS(ads->ds_ctl1, AR_VirtRetryCnt); 814 ts->ts_antenna = 0; /* We don't switch antennas on Owl*/ 815 816 /* handle tx trigger level changes internally */ 817 if ((ts->ts_status & HAL_TXERR_FIFO) || 818 (ts->ts_flags & (HAL_TX_DATA_UNDERRUN | HAL_TX_DELIM_UNDERRUN))) 819 ar5212UpdateTxTrigLevel(ah, AH_TRUE); 820 821 return HAL_OK; 822 } 823 824 HAL_BOOL 825 ar5416SetGlobalTxTimeout(struct ath_hal *ah, u_int tu) 826 { 827 struct ath_hal_5416 *ahp = AH5416(ah); 828 829 if (tu > 0xFFFF) { 830 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad global tx timeout %u\n", 831 __func__, tu); 832 /* restore default handling */ 833 ahp->ah_globaltxtimeout = (u_int) -1; 834 return AH_FALSE; 835 } 836 OS_REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); 837 ahp->ah_globaltxtimeout = tu; 838 return AH_TRUE; 839 } 840 841 u_int 842 ar5416GetGlobalTxTimeout(struct ath_hal *ah) 843 { 844 return MS(OS_REG_READ(ah, AR_GTXTO), AR_GTXTO_TIMEOUT_LIMIT); 845 } 846 847 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f) 848 static const u_int8_t baDurationDelta[] = { 849 24, // 0: BPSK 850 12, // 1: QPSK 1/2 851 12, // 2: QPSK 3/4 852 4, // 3: 16-QAM 1/2 853 4, // 4: 16-QAM 3/4 854 4, // 5: 64-QAM 2/3 855 4, // 6: 64-QAM 3/4 856 4, // 7: 64-QAM 5/6 857 24, // 8: BPSK 858 12, // 9: QPSK 1/2 859 12, // 10: QPSK 3/4 860 4, // 11: 16-QAM 1/2 861 4, // 12: 16-QAM 3/4 862 4, // 13: 64-QAM 2/3 863 4, // 14: 64-QAM 3/4 864 4, // 15: 64-QAM 5/6 865 }; 866 867 void 868 ar5416Set11nRateScenario(struct ath_hal *ah, struct ath_desc *ds, 869 u_int durUpdateEn, u_int rtsctsRate, 870 HAL_11N_RATE_SERIES series[], u_int nseries, u_int flags) 871 { 872 struct ar5416_desc *ads = AR5416DESC(ds); 873 uint32_t ds_ctl0; 874 875 HALASSERT(nseries == 4); 876 (void)nseries; 877 878 /* 879 * Only one of RTS and CTS enable must be set. 880 * If a frame has both set, just do RTS protection - 881 * that's enough to satisfy legacy protection. 882 */ 883 if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) { 884 ds_ctl0 = ads->ds_ctl0; 885 886 if (flags & HAL_TXDESC_RTSENA) { 887 ds_ctl0 &= ~AR_CTSEnable; 888 ds_ctl0 |= AR_RTSEnable; 889 } else { 890 ds_ctl0 &= ~AR_RTSEnable; 891 ds_ctl0 |= AR_CTSEnable; 892 } 893 894 ads->ds_ctl0 = ds_ctl0; 895 } else { 896 ads->ds_ctl0 = 897 (ads->ds_ctl0 & ~(AR_RTSEnable | AR_CTSEnable)); 898 } 899 900 ads->ds_ctl2 = set11nTries(series, 0) 901 | set11nTries(series, 1) 902 | set11nTries(series, 2) 903 | set11nTries(series, 3) 904 | (durUpdateEn ? AR_DurUpdateEn : 0); 905 906 ads->ds_ctl3 = set11nRate(series, 0) 907 | set11nRate(series, 1) 908 | set11nRate(series, 2) 909 | set11nRate(series, 3); 910 911 ads->ds_ctl4 = set11nPktDurRTSCTS(series, 0) 912 | set11nPktDurRTSCTS(series, 1); 913 914 ads->ds_ctl5 = set11nPktDurRTSCTS(series, 2) 915 | set11nPktDurRTSCTS(series, 3); 916 917 ads->ds_ctl7 = set11nRateFlags(series, 0) 918 | set11nRateFlags(series, 1) 919 | set11nRateFlags(series, 2) 920 | set11nRateFlags(series, 3) 921 | SM(rtsctsRate, AR_RTSCTSRate); 922 923 /* 924 * Doing per-packet TPC - update the TX power for the first 925 * field; program in the other series. 926 */ 927 if (AH5212(ah)->ah_tpcEnabled) { 928 uint32_t ds_ctl0; 929 uint16_t txPower; 930 931 /* Modify the tx power field for rate 0 */ 932 txPower = ar5416GetTxRatePower(ah, series[0].Rate, 933 series[0].ChSel, 934 series[0].tx_power_cap, 935 !! (series[0].RateFlags & HAL_RATESERIES_2040)); 936 ds_ctl0 = ads->ds_ctl0 & ~AR_XmitPower; 937 ds_ctl0 |= (txPower << AR_XmitPower_S); 938 ads->ds_ctl0 = ds_ctl0; 939 940 /* 941 * Override the whole descriptor field for each TX power. 942 * 943 * This will need changing if we ever support antenna control 944 * programming. 945 */ 946 txPower = ar5416GetTxRatePower(ah, series[1].Rate, 947 series[1].ChSel, 948 series[1].tx_power_cap, 949 !! (series[1].RateFlags & HAL_RATESERIES_2040)); 950 ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1); 951 952 txPower = ar5416GetTxRatePower(ah, series[2].Rate, 953 series[2].ChSel, 954 series[2].tx_power_cap, 955 !! (series[2].RateFlags & HAL_RATESERIES_2040)); 956 ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2); 957 958 txPower = ar5416GetTxRatePower(ah, series[3].Rate, 959 series[3].ChSel, 960 series[3].tx_power_cap, 961 !! (series[3].RateFlags & HAL_RATESERIES_2040)); 962 ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3); 963 } 964 } 965 966 /* 967 * Note: this should be called before calling ar5416SetBurstDuration() 968 * (if it is indeed called) in order to ensure that the burst duration 969 * is correctly updated with the BA delta workaround. 970 */ 971 void 972 ar5416Set11nAggrFirst(struct ath_hal *ah, struct ath_desc *ds, u_int aggrLen, 973 u_int numDelims) 974 { 975 struct ar5416_desc *ads = AR5416DESC(ds); 976 uint32_t flags; 977 uint32_t burstDur; 978 uint8_t rate; 979 980 ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr); 981 982 ads->ds_ctl6 &= ~(AR_AggrLen | AR_PadDelim); 983 ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen); 984 ads->ds_ctl6 |= SM(numDelims, AR_PadDelim); 985 986 if (! AR_SREV_MERLIN_10_OR_LATER(ah)) { 987 /* 988 * XXX It'd be nice if I were passed in the rate scenario 989 * at this point.. 990 */ 991 rate = MS(ads->ds_ctl3, AR_XmitRate0); 992 flags = ads->ds_ctl0 & (AR_CTSEnable | AR_RTSEnable); 993 /* 994 * WAR - MAC assumes normal ACK time instead of 995 * block ACK while computing packet duration. 996 * Add this delta to the burst duration in the descriptor. 997 */ 998 if (flags && (ads->ds_ctl1 & AR_IsAggr)) { 999 burstDur = baDurationDelta[HT_RC_2_MCS(rate)]; 1000 ads->ds_ctl2 &= ~(AR_BurstDur); 1001 ads->ds_ctl2 |= SM(burstDur, AR_BurstDur); 1002 } 1003 } 1004 } 1005 1006 void 1007 ar5416Set11nAggrMiddle(struct ath_hal *ah, struct ath_desc *ds, u_int numDelims) 1008 { 1009 struct ar5416_desc *ads = AR5416DESC(ds); 1010 uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads); 1011 1012 ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr); 1013 1014 ads->ds_ctl6 &= ~AR_PadDelim; 1015 ads->ds_ctl6 |= SM(numDelims, AR_PadDelim); 1016 ads->ds_ctl6 &= ~AR_AggrLen; 1017 1018 /* 1019 * Clear the TxDone status here, may need to change 1020 * func name to reflect this 1021 */ 1022 ds_txstatus[9] &= ~AR_TxDone; 1023 } 1024 1025 void 1026 ar5416Set11nAggrLast(struct ath_hal *ah, struct ath_desc *ds) 1027 { 1028 struct ar5416_desc *ads = AR5416DESC(ds); 1029 1030 ads->ds_ctl1 |= AR_IsAggr; 1031 ads->ds_ctl1 &= ~AR_MoreAggr; 1032 ads->ds_ctl6 &= ~AR_PadDelim; 1033 } 1034 1035 void 1036 ar5416Clr11nAggr(struct ath_hal *ah, struct ath_desc *ds) 1037 { 1038 struct ar5416_desc *ads = AR5416DESC(ds); 1039 1040 ads->ds_ctl1 &= (~AR_IsAggr & ~AR_MoreAggr); 1041 ads->ds_ctl6 &= ~AR_PadDelim; 1042 ads->ds_ctl6 &= ~AR_AggrLen; 1043 } 1044 1045 void 1046 ar5416Set11nVirtualMoreFrag(struct ath_hal *ah, struct ath_desc *ds, 1047 u_int vmf) 1048 { 1049 struct ar5416_desc *ads = AR5416DESC(ds); 1050 if (vmf) 1051 ads->ds_ctl0 |= AR_VirtMoreFrag; 1052 else 1053 ads->ds_ctl0 &= ~AR_VirtMoreFrag; 1054 } 1055 1056 /* 1057 * Program the burst duration, with the included BA delta if it's 1058 * applicable. 1059 */ 1060 void 1061 ar5416Set11nBurstDuration(struct ath_hal *ah, struct ath_desc *ds, 1062 u_int burstDuration) 1063 { 1064 struct ar5416_desc *ads = AR5416DESC(ds); 1065 uint32_t burstDur = 0; 1066 uint8_t rate; 1067 1068 if (! AR_SREV_MERLIN_10_OR_LATER(ah)) { 1069 /* 1070 * XXX It'd be nice if I were passed in the rate scenario 1071 * at this point.. 1072 */ 1073 rate = MS(ads->ds_ctl3, AR_XmitDataTries0); 1074 /* 1075 * WAR - MAC assumes normal ACK time instead of 1076 * block ACK while computing packet duration. 1077 * Add this delta to the burst duration in the descriptor. 1078 */ 1079 if (ads->ds_ctl1 & AR_IsAggr) { 1080 burstDur = baDurationDelta[HT_RC_2_MCS(rate)]; 1081 } 1082 } 1083 1084 ads->ds_ctl2 &= ~AR_BurstDur; 1085 ads->ds_ctl2 |= SM(burstDur + burstDuration, AR_BurstDur); 1086 } 1087 1088 /* 1089 * Retrieve the rate table from the given TX completion descriptor 1090 */ 1091 HAL_BOOL 1092 ar5416GetTxCompletionRates(struct ath_hal *ah, const struct ath_desc *ds0, int *rates, int *tries) 1093 { 1094 const struct ar5416_desc *ads = AR5416DESC_CONST(ds0); 1095 1096 rates[0] = MS(ads->ds_ctl3, AR_XmitRate0); 1097 rates[1] = MS(ads->ds_ctl3, AR_XmitRate1); 1098 rates[2] = MS(ads->ds_ctl3, AR_XmitRate2); 1099 rates[3] = MS(ads->ds_ctl3, AR_XmitRate3); 1100 1101 tries[0] = MS(ads->ds_ctl2, AR_XmitDataTries0); 1102 tries[1] = MS(ads->ds_ctl2, AR_XmitDataTries1); 1103 tries[2] = MS(ads->ds_ctl2, AR_XmitDataTries2); 1104 tries[3] = MS(ads->ds_ctl2, AR_XmitDataTries3); 1105 1106 return AH_TRUE; 1107 } 1108 1109 1110 /* 1111 * TX queue management routines - AR5416 and later chipsets 1112 */ 1113 1114 /* 1115 * Allocate and initialize a tx DCU/QCU combination. 1116 */ 1117 int 1118 ar5416SetupTxQueue(struct ath_hal *ah, HAL_TX_QUEUE type, 1119 const HAL_TXQ_INFO *qInfo) 1120 { 1121 struct ath_hal_5212 *ahp = AH5212(ah); 1122 HAL_TX_QUEUE_INFO *qi; 1123 HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps; 1124 int q, defqflags; 1125 1126 /* by default enable OK+ERR+DESC+URN interrupts */ 1127 defqflags = HAL_TXQ_TXOKINT_ENABLE 1128 | HAL_TXQ_TXERRINT_ENABLE 1129 | HAL_TXQ_TXDESCINT_ENABLE 1130 | HAL_TXQ_TXURNINT_ENABLE; 1131 /* XXX move queue assignment to driver */ 1132 switch (type) { 1133 case HAL_TX_QUEUE_BEACON: 1134 q = pCap->halTotalQueues-1; /* highest priority */ 1135 defqflags |= HAL_TXQ_DBA_GATED 1136 | HAL_TXQ_CBR_DIS_QEMPTY 1137 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 1138 | HAL_TXQ_BACKOFF_DISABLE; 1139 break; 1140 case HAL_TX_QUEUE_CAB: 1141 q = pCap->halTotalQueues-2; /* next highest priority */ 1142 defqflags |= HAL_TXQ_DBA_GATED 1143 | HAL_TXQ_CBR_DIS_QEMPTY 1144 | HAL_TXQ_CBR_DIS_BEMPTY 1145 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 1146 | HAL_TXQ_BACKOFF_DISABLE; 1147 break; 1148 case HAL_TX_QUEUE_PSPOLL: 1149 q = 1; /* lowest priority */ 1150 defqflags |= HAL_TXQ_DBA_GATED 1151 | HAL_TXQ_CBR_DIS_QEMPTY 1152 | HAL_TXQ_CBR_DIS_BEMPTY 1153 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 1154 | HAL_TXQ_BACKOFF_DISABLE; 1155 break; 1156 case HAL_TX_QUEUE_UAPSD: 1157 q = pCap->halTotalQueues-3; /* nextest highest priority */ 1158 if (ahp->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE) { 1159 HALDEBUG(ah, HAL_DEBUG_ANY, 1160 "%s: no available UAPSD tx queue\n", __func__); 1161 return -1; 1162 } 1163 break; 1164 case HAL_TX_QUEUE_DATA: 1165 for (q = 0; q < pCap->halTotalQueues; q++) 1166 if (ahp->ah_txq[q].tqi_type == HAL_TX_QUEUE_INACTIVE) 1167 break; 1168 if (q == pCap->halTotalQueues) { 1169 HALDEBUG(ah, HAL_DEBUG_ANY, 1170 "%s: no available tx queue\n", __func__); 1171 return -1; 1172 } 1173 break; 1174 default: 1175 HALDEBUG(ah, HAL_DEBUG_ANY, 1176 "%s: bad tx queue type %u\n", __func__, type); 1177 return -1; 1178 } 1179 1180 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q); 1181 1182 qi = &ahp->ah_txq[q]; 1183 if (qi->tqi_type != HAL_TX_QUEUE_INACTIVE) { 1184 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: tx queue %u already active\n", 1185 __func__, q); 1186 return -1; 1187 } 1188 OS_MEMZERO(qi, sizeof(HAL_TX_QUEUE_INFO)); 1189 qi->tqi_type = type; 1190 if (qInfo == AH_NULL) { 1191 qi->tqi_qflags = defqflags; 1192 qi->tqi_aifs = INIT_AIFS; 1193 qi->tqi_cwmin = HAL_TXQ_USEDEFAULT; /* NB: do at reset */ 1194 qi->tqi_cwmax = INIT_CWMAX; 1195 qi->tqi_shretry = INIT_SH_RETRY; 1196 qi->tqi_lgretry = INIT_LG_RETRY; 1197 qi->tqi_physCompBuf = 0; 1198 } else { 1199 qi->tqi_physCompBuf = qInfo->tqi_compBuf; 1200 (void) ar5212SetTxQueueProps(ah, q, qInfo); 1201 } 1202 /* NB: must be followed by ar5212ResetTxQueue */ 1203 return q; 1204 } 1205 1206 /* 1207 * Update the h/w interrupt registers to reflect a tx q's configuration. 1208 */ 1209 static void 1210 setTxQInterrupts(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi) 1211 { 1212 struct ath_hal_5212 *ahp = AH5212(ah); 1213 1214 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, 1215 "%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", __func__, 1216 ahp->ah_txOkInterruptMask, ahp->ah_txErrInterruptMask, 1217 ahp->ah_txDescInterruptMask, ahp->ah_txEolInterruptMask, 1218 ahp->ah_txUrnInterruptMask); 1219 1220 OS_REG_WRITE(ah, AR_IMR_S0, 1221 SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK) 1222 | SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC) 1223 ); 1224 OS_REG_WRITE(ah, AR_IMR_S1, 1225 SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR) 1226 | SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL) 1227 ); 1228 OS_REG_RMW_FIELD(ah, AR_IMR_S2, 1229 AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask); 1230 } 1231 1232 /* 1233 * Set the retry, aifs, cwmin/max, readyTime regs for specified queue 1234 * Assumes: 1235 * phwChannel has been set to point to the current channel 1236 */ 1237 #define TU_TO_USEC(_tu) ((_tu) << 10) 1238 HAL_BOOL 1239 ar5416ResetTxQueue(struct ath_hal *ah, u_int q) 1240 { 1241 struct ath_hal_5212 *ahp = AH5212(ah); 1242 HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps; 1243 const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; 1244 HAL_TX_QUEUE_INFO *qi; 1245 uint32_t cwMin, chanCwMin, qmisc, dmisc; 1246 1247 if (q >= pCap->halTotalQueues) { 1248 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n", 1249 __func__, q); 1250 return AH_FALSE; 1251 } 1252 qi = &ahp->ah_txq[q]; 1253 if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) { 1254 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n", 1255 __func__, q); 1256 return AH_TRUE; /* XXX??? */ 1257 } 1258 1259 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: reset queue %u\n", __func__, q); 1260 1261 if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT) { 1262 /* 1263 * Select cwmin according to channel type. 1264 * NB: chan can be NULL during attach 1265 */ 1266 if (chan && IEEE80211_IS_CHAN_B(chan)) 1267 chanCwMin = INIT_CWMIN_11B; 1268 else 1269 chanCwMin = INIT_CWMIN; 1270 /* make sure that the CWmin is of the form (2^n - 1) */ 1271 for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1) 1272 ; 1273 } else 1274 cwMin = qi->tqi_cwmin; 1275 1276 /* set cwMin/Max and AIFS values */ 1277 OS_REG_WRITE(ah, AR_DLCL_IFS(q), 1278 SM(cwMin, AR_D_LCL_IFS_CWMIN) 1279 | SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) 1280 | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS)); 1281 1282 /* Set retry limit values */ 1283 OS_REG_WRITE(ah, AR_DRETRY_LIMIT(q), 1284 SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) 1285 | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) 1286 | SM(qi->tqi_lgretry, AR_D_RETRY_LIMIT_FR_LG) 1287 | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH) 1288 ); 1289 1290 /* NB: always enable early termination on the QCU */ 1291 qmisc = AR_Q_MISC_DCU_EARLY_TERM_REQ 1292 | SM(AR_Q_MISC_FSP_ASAP, AR_Q_MISC_FSP); 1293 1294 /* NB: always enable DCU to wait for next fragment from QCU */ 1295 dmisc = AR_D_MISC_FRAG_WAIT_EN; 1296 1297 /* Enable exponential backoff window */ 1298 dmisc |= AR_D_MISC_BKOFF_PERSISTENCE; 1299 1300 /* 1301 * The chip reset default is to use a DCU backoff threshold of 0x2. 1302 * Restore this when programming the DCU MISC register. 1303 */ 1304 dmisc |= 0x2; 1305 1306 /* multiqueue support */ 1307 if (qi->tqi_cbrPeriod) { 1308 OS_REG_WRITE(ah, AR_QCBRCFG(q), 1309 SM(qi->tqi_cbrPeriod,AR_Q_CBRCFG_CBR_INTERVAL) 1310 | SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_CBR_OVF_THRESH)); 1311 qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_CBR; 1312 if (qi->tqi_cbrOverflowLimit) 1313 qmisc |= AR_Q_MISC_CBR_EXP_CNTR_LIMIT; 1314 } 1315 1316 if (qi->tqi_readyTime && (qi->tqi_type != HAL_TX_QUEUE_CAB)) { 1317 OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), 1318 SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT) 1319 | AR_Q_RDYTIMECFG_ENA); 1320 } 1321 1322 OS_REG_WRITE(ah, AR_DCHNTIME(q), 1323 SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) 1324 | (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0)); 1325 1326 if (qi->tqi_readyTime && 1327 (qi->tqi_qflags & HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE)) 1328 qmisc |= AR_Q_MISC_RDYTIME_EXP_POLICY; 1329 if (qi->tqi_qflags & HAL_TXQ_DBA_GATED) 1330 qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_DBA_GATED; 1331 if (MS(qmisc, AR_Q_MISC_FSP) != AR_Q_MISC_FSP_ASAP) { 1332 /* 1333 * These are meangingful only when not scheduled asap. 1334 */ 1335 if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_BEMPTY) 1336 qmisc |= AR_Q_MISC_CBR_INCR_DIS0; 1337 else 1338 qmisc &= ~AR_Q_MISC_CBR_INCR_DIS0; 1339 if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_QEMPTY) 1340 qmisc |= AR_Q_MISC_CBR_INCR_DIS1; 1341 else 1342 qmisc &= ~AR_Q_MISC_CBR_INCR_DIS1; 1343 } 1344 1345 if (qi->tqi_qflags & HAL_TXQ_BACKOFF_DISABLE) 1346 dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS; 1347 if (qi->tqi_qflags & HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE) 1348 dmisc |= AR_D_MISC_FRAG_BKOFF_EN; 1349 if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_GLOBAL) 1350 dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, 1351 AR_D_MISC_ARB_LOCKOUT_CNTRL); 1352 else if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_INTRA) 1353 dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_INTRA_FR, 1354 AR_D_MISC_ARB_LOCKOUT_CNTRL); 1355 if (qi->tqi_qflags & HAL_TXQ_IGNORE_VIRTCOL) 1356 dmisc |= SM(AR_D_MISC_VIR_COL_HANDLING_IGNORE, 1357 AR_D_MISC_VIR_COL_HANDLING); 1358 if (qi->tqi_qflags & HAL_TXQ_SEQNUM_INC_DIS) 1359 dmisc |= AR_D_MISC_SEQ_NUM_INCR_DIS; 1360 1361 /* 1362 * Fillin type-dependent bits. Most of this can be 1363 * removed by specifying the queue parameters in the 1364 * driver; it's here for backwards compatibility. 1365 */ 1366 switch (qi->tqi_type) { 1367 case HAL_TX_QUEUE_BEACON: /* beacon frames */ 1368 qmisc |= AR_Q_MISC_FSP_DBA_GATED 1369 | AR_Q_MISC_BEACON_USE 1370 | AR_Q_MISC_CBR_INCR_DIS1; 1371 1372 dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, 1373 AR_D_MISC_ARB_LOCKOUT_CNTRL) 1374 | AR_D_MISC_BEACON_USE 1375 | AR_D_MISC_POST_FR_BKOFF_DIS; 1376 break; 1377 case HAL_TX_QUEUE_CAB: /* CAB frames */ 1378 /* 1379 * No longer Enable AR_Q_MISC_RDYTIME_EXP_POLICY, 1380 * There is an issue with the CAB Queue 1381 * not properly refreshing the Tx descriptor if 1382 * the TXE clear setting is used. 1383 */ 1384 qmisc |= AR_Q_MISC_FSP_DBA_GATED 1385 | AR_Q_MISC_CBR_INCR_DIS1 1386 | AR_Q_MISC_CBR_INCR_DIS0; 1387 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: CAB: tqi_readyTime = %d\n", 1388 __func__, qi->tqi_readyTime); 1389 if (qi->tqi_readyTime) { 1390 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, 1391 "%s: using tqi_readyTime\n", __func__); 1392 OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), 1393 SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT) | 1394 AR_Q_RDYTIMECFG_ENA); 1395 } else { 1396 int value; 1397 /* 1398 * NB: don't set default ready time if driver 1399 * has explicitly specified something. This is 1400 * here solely for backwards compatibility. 1401 */ 1402 /* 1403 * XXX for now, hard-code a CAB interval of 70% 1404 * XXX of the total beacon interval. 1405 * 1406 * XXX This keeps Merlin and later based MACs 1407 * XXX quite a bit happier (stops stuck beacons, 1408 * XXX which I gather is because of such a long 1409 * XXX cabq time.) 1410 */ 1411 value = (ahp->ah_beaconInterval * 50 / 100) 1412 - ah->ah_config.ah_additional_swba_backoff 1413 - ah->ah_config.ah_sw_beacon_response_time 1414 + ah->ah_config.ah_dma_beacon_response_time; 1415 /* 1416 * XXX Ensure it isn't too low - nothing lower 1417 * XXX than 10 TU 1418 */ 1419 if (value < 10) 1420 value = 10; 1421 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, 1422 "%s: defaulting to rdytime = %d uS\n", 1423 __func__, value); 1424 OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), 1425 SM(TU_TO_USEC(value), AR_Q_RDYTIMECFG_INT) | 1426 AR_Q_RDYTIMECFG_ENA); 1427 } 1428 dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, 1429 AR_D_MISC_ARB_LOCKOUT_CNTRL); 1430 break; 1431 case HAL_TX_QUEUE_PSPOLL: 1432 qmisc |= AR_Q_MISC_CBR_INCR_DIS1; 1433 break; 1434 case HAL_TX_QUEUE_UAPSD: 1435 dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS; 1436 break; 1437 default: /* NB: silence compiler */ 1438 break; 1439 } 1440 1441 OS_REG_WRITE(ah, AR_QMISC(q), qmisc); 1442 OS_REG_WRITE(ah, AR_DMISC(q), dmisc); 1443 1444 /* Setup compression scratchpad buffer */ 1445 /* 1446 * XXX: calling this asynchronously to queue operation can 1447 * cause unexpected behavior!!! 1448 */ 1449 if (qi->tqi_physCompBuf) { 1450 HALASSERT(qi->tqi_type == HAL_TX_QUEUE_DATA || 1451 qi->tqi_type == HAL_TX_QUEUE_UAPSD); 1452 OS_REG_WRITE(ah, AR_Q_CBBS, (80 + 2*q)); 1453 OS_REG_WRITE(ah, AR_Q_CBBA, qi->tqi_physCompBuf); 1454 OS_REG_WRITE(ah, AR_Q_CBC, HAL_COMP_BUF_MAX_SIZE/1024); 1455 OS_REG_WRITE(ah, AR_Q0_MISC + 4*q, 1456 OS_REG_READ(ah, AR_Q0_MISC + 4*q) 1457 | AR_Q_MISC_QCU_COMP_EN); 1458 } 1459 1460 /* 1461 * Always update the secondary interrupt mask registers - this 1462 * could be a new queue getting enabled in a running system or 1463 * hw getting re-initialized during a reset! 1464 * 1465 * Since we don't differentiate between tx interrupts corresponding 1466 * to individual queues - secondary tx mask regs are always unmasked; 1467 * tx interrupts are enabled/disabled for all queues collectively 1468 * using the primary mask reg 1469 */ 1470 if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE) 1471 ahp->ah_txOkInterruptMask |= 1 << q; 1472 else 1473 ahp->ah_txOkInterruptMask &= ~(1 << q); 1474 if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE) 1475 ahp->ah_txErrInterruptMask |= 1 << q; 1476 else 1477 ahp->ah_txErrInterruptMask &= ~(1 << q); 1478 if (qi->tqi_qflags & HAL_TXQ_TXDESCINT_ENABLE) 1479 ahp->ah_txDescInterruptMask |= 1 << q; 1480 else 1481 ahp->ah_txDescInterruptMask &= ~(1 << q); 1482 if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE) 1483 ahp->ah_txEolInterruptMask |= 1 << q; 1484 else 1485 ahp->ah_txEolInterruptMask &= ~(1 << q); 1486 if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE) 1487 ahp->ah_txUrnInterruptMask |= 1 << q; 1488 else 1489 ahp->ah_txUrnInterruptMask &= ~(1 << q); 1490 setTxQInterrupts(ah, qi); 1491 1492 return AH_TRUE; 1493 } 1494 #undef TU_TO_USEC 1495