1 /*- 2 * SPDX-License-Identifier: ISC 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * Copyright (c) 2002-2008 Atheros Communications, Inc. 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 #include "opt_ah.h" 20 21 #include "ah.h" 22 #include "ah_desc.h" 23 #include "ah_internal.h" 24 25 #include "ar5416/ar5416.h" 26 #include "ar5416/ar5416reg.h" 27 #include "ar5416/ar5416phy.h" 28 #include "ar5416/ar5416desc.h" 29 30 /* 31 * Stop transmit on the specified queue 32 */ 33 HAL_BOOL 34 ar5416StopTxDma(struct ath_hal *ah, u_int q) 35 { 36 #define STOP_DMA_TIMEOUT 4000 /* us */ 37 #define STOP_DMA_ITER 100 /* us */ 38 u_int i; 39 40 HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues); 41 42 HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE); 43 44 OS_REG_WRITE(ah, AR_Q_TXD, 1 << q); 45 for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) { 46 if (ar5212NumTxPending(ah, q) == 0) 47 break; 48 OS_DELAY(STOP_DMA_ITER); 49 } 50 #ifdef AH_DEBUG 51 if (i == 0) { 52 HALDEBUG(ah, HAL_DEBUG_ANY, 53 "%s: queue %u DMA did not stop in 400 msec\n", __func__, q); 54 HALDEBUG(ah, HAL_DEBUG_ANY, 55 "%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__, 56 OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE), 57 OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q))); 58 HALDEBUG(ah, HAL_DEBUG_ANY, 59 "%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n", 60 __func__, OS_REG_READ(ah, AR_QMISC(q)), 61 OS_REG_READ(ah, AR_QRDYTIMECFG(q)), 62 OS_REG_READ(ah, AR_Q_RDYTIMESHDN)); 63 } 64 #endif /* AH_DEBUG */ 65 66 /* ar5416 and up can kill packets at the PCU level */ 67 if (ar5212NumTxPending(ah, q)) { 68 uint32_t j; 69 70 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, 71 "%s: Num of pending TX Frames %d on Q %d\n", 72 __func__, ar5212NumTxPending(ah, q), q); 73 74 /* Kill last PCU Tx Frame */ 75 /* TODO - save off and restore current values of Q1/Q2? */ 76 for (j = 0; j < 2; j++) { 77 uint32_t tsfLow = OS_REG_READ(ah, AR_TSF_L32); 78 OS_REG_WRITE(ah, AR_QUIET2, 79 SM(10, AR_QUIET2_QUIET_DUR)); 80 OS_REG_WRITE(ah, AR_QUIET_PERIOD, 100); 81 OS_REG_WRITE(ah, AR_NEXT_QUIET, tsfLow >> 10); 82 OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET); 83 84 if ((OS_REG_READ(ah, AR_TSF_L32)>>10) == (tsfLow>>10)) 85 break; 86 87 HALDEBUG(ah, HAL_DEBUG_ANY, 88 "%s: TSF moved while trying to set quiet time " 89 "TSF: 0x%08x\n", __func__, tsfLow); 90 HALASSERT(j < 1); /* TSF shouldn't count twice or reg access is taking forever */ 91 } 92 93 OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE); 94 95 /* Allow the quiet mechanism to do its work */ 96 OS_DELAY(200); 97 OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET); 98 99 /* Verify the transmit q is empty */ 100 for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) { 101 if (ar5212NumTxPending(ah, q) == 0) 102 break; 103 OS_DELAY(STOP_DMA_ITER); 104 } 105 if (i == 0) { 106 HALDEBUG(ah, HAL_DEBUG_ANY, 107 "%s: Failed to stop Tx DMA in %d msec after killing" 108 " last frame\n", __func__, STOP_DMA_TIMEOUT / 1000); 109 } 110 OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE); 111 } 112 113 OS_REG_WRITE(ah, AR_Q_TXD, 0); 114 return (i != 0); 115 #undef STOP_DMA_ITER 116 #undef STOP_DMA_TIMEOUT 117 } 118 119 #define VALID_KEY_TYPES \ 120 ((1 << HAL_KEY_TYPE_CLEAR) | (1 << HAL_KEY_TYPE_WEP)|\ 121 (1 << HAL_KEY_TYPE_AES) | (1 << HAL_KEY_TYPE_TKIP)) 122 #define isValidKeyType(_t) ((1 << (_t)) & VALID_KEY_TYPES) 123 124 #define set11nTries(_series, _index) \ 125 (SM((_series)[_index].Tries, AR_XmitDataTries##_index)) 126 127 #define set11nRate(_series, _index) \ 128 (SM((_series)[_index].Rate, AR_XmitRate##_index)) 129 130 #define set11nPktDurRTSCTS(_series, _index) \ 131 (SM((_series)[_index].PktDuration, AR_PacketDur##_index) |\ 132 ((_series)[_index].RateFlags & HAL_RATESERIES_RTS_CTS ?\ 133 AR_RTSCTSQual##_index : 0)) 134 135 #define set11nRateFlags(_series, _index) \ 136 ((_series)[_index].RateFlags & HAL_RATESERIES_2040 ? AR_2040_##_index : 0) \ 137 |((_series)[_index].RateFlags & HAL_RATESERIES_HALFGI ? AR_GI##_index : 0) \ 138 |((_series)[_index].RateFlags & HAL_RATESERIES_STBC ? AR_STBC##_index : 0) \ 139 |SM((_series)[_index].ChSel, AR_ChainSel##_index) 140 141 /* 142 * Descriptor Access Functions 143 */ 144 145 #define VALID_PKT_TYPES \ 146 ((1<<HAL_PKT_TYPE_NORMAL)|(1<<HAL_PKT_TYPE_ATIM)|\ 147 (1<<HAL_PKT_TYPE_PSPOLL)|(1<<HAL_PKT_TYPE_PROBE_RESP)|\ 148 (1<<HAL_PKT_TYPE_BEACON)|(1<<HAL_PKT_TYPE_AMPDU)) 149 #define isValidPktType(_t) ((1<<(_t)) & VALID_PKT_TYPES) 150 #define VALID_TX_RATES \ 151 ((1<<0x0b)|(1<<0x0f)|(1<<0x0a)|(1<<0x0e)|(1<<0x09)|(1<<0x0d)|\ 152 (1<<0x08)|(1<<0x0c)|(1<<0x1b)|(1<<0x1a)|(1<<0x1e)|(1<<0x19)|\ 153 (1<<0x1d)|(1<<0x18)|(1<<0x1c)|(1<<0x01)|(1<<0x02)|(1<<0x03)|\ 154 (1<<0x04)|(1<<0x05)|(1<<0x06)|(1<<0x07)|(1<<0x00)) 155 /* NB: accept HT rates */ 156 #define isValidTxRate(_r) ((1<<((_r) & 0x7f)) & VALID_TX_RATES) 157 158 static inline int 159 ar5416RateToRateTable(struct ath_hal *ah, uint8_t rate, HAL_BOOL is_ht40) 160 { 161 162 /* 163 * Handle the non-MCS rates 164 */ 165 switch (rate) { 166 case /* 1 Mb */ 0x1b: 167 case /* 1 MbS*/ 0x1b | 0x4: 168 return (AH5416(ah)->ah_ratesArray[rate1l]); 169 case /* 2 Mb */ 0x1a: 170 return (AH5416(ah)->ah_ratesArray[rate2l]); 171 case /* 2 MbS*/ 0x1a | 0x4: 172 return (AH5416(ah)->ah_ratesArray[rate2s]); 173 case /* 5.5 Mb */ 0x19: 174 return (AH5416(ah)->ah_ratesArray[rate5_5l]); 175 case /* 5.5 MbS*/ 0x19 | 0x4: 176 return (AH5416(ah)->ah_ratesArray[rate5_5s]); 177 case /* 11 Mb */ 0x18: 178 return (AH5416(ah)->ah_ratesArray[rate11l]); 179 case /* 11 MbS*/ 0x18 | 0x4: 180 return (AH5416(ah)->ah_ratesArray[rate11s]); 181 } 182 183 /* OFDM rates */ 184 switch (rate) { 185 case /* 6 Mb */ 0x0b: 186 return (AH5416(ah)->ah_ratesArray[rate6mb]); 187 case /* 9 Mb */ 0x0f: 188 return (AH5416(ah)->ah_ratesArray[rate9mb]); 189 case /* 12 Mb */ 0x0a: 190 return (AH5416(ah)->ah_ratesArray[rate12mb]); 191 case /* 18 Mb */ 0x0e: 192 return (AH5416(ah)->ah_ratesArray[rate18mb]); 193 case /* 24 Mb */ 0x09: 194 return (AH5416(ah)->ah_ratesArray[rate24mb]); 195 case /* 36 Mb */ 0x0d: 196 return (AH5416(ah)->ah_ratesArray[rate36mb]); 197 case /* 48 Mb */ 0x08: 198 return (AH5416(ah)->ah_ratesArray[rate48mb]); 199 case /* 54 Mb */ 0x0c: 200 return (AH5416(ah)->ah_ratesArray[rate54mb]); 201 } 202 203 /* 204 * Handle HT20/HT40 - we only have to do MCS0-7; 205 * there's no stream differences. 206 */ 207 if ((rate & 0x80) && is_ht40) { 208 return (AH5416(ah)->ah_ratesArray[rateHt40_0 + (rate & 0x7)]); 209 } else if (rate & 0x80) { 210 return (AH5416(ah)->ah_ratesArray[rateHt20_0 + (rate & 0x7)]); 211 } 212 213 /* XXX default (eg XR, bad bad person!) */ 214 return (AH5416(ah)->ah_ratesArray[rate6mb]); 215 } 216 217 /* 218 * Return the TX power to be used for the given rate/chains/TX power. 219 * 220 * There are a bunch of tweaks to make to a given TX power based on 221 * the current configuration, so... 222 */ 223 static uint16_t 224 ar5416GetTxRatePower(struct ath_hal *ah, uint8_t rate, uint8_t tx_chainmask, 225 uint16_t txPower, HAL_BOOL is_ht40) 226 { 227 int n_txpower, max_txpower; 228 const int cck_ofdm_delta = 2; 229 #define EEP_MINOR(_ah) \ 230 (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK) 231 #define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2) 232 233 /* Take a copy ; we may underflow and thus need to clamp things */ 234 n_txpower = txPower; 235 236 /* HT40? Need to adjust the TX power by this */ 237 if (is_ht40) 238 n_txpower += AH5416(ah)->ah_ht40PowerIncForPdadc; 239 240 /* 241 * Merlin? Offset the target TX power offset - it defaults to 242 * starting at -5.0dBm, but that can change! 243 * 244 * Kiwi/Kite? Always -5.0dBm offset. 245 */ 246 if (AR_SREV_KIWI_10_OR_LATER(ah)) { 247 n_txpower -= (AR5416_PWR_TABLE_OFFSET_DB * 2); 248 } else if (AR_SREV_MERLIN_20_OR_LATER(ah)) { 249 int8_t pwr_table_offset = 0; 250 /* This is in dBm, convert to 1/2 dBm */ 251 (void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET, 252 &pwr_table_offset); 253 n_txpower -= (pwr_table_offset * 2); 254 } 255 256 /* 257 * If Open-loop TX power control is used, the CCK rates need 258 * to be offset by that. 259 * 260 * Rates: 2S, 2L, 1S, 1L, 5.5S, 5.5L 261 * 262 * XXX Odd, we don't have a PHY table entry for long preamble 263 * 1mbit CCK? 264 */ 265 if (AR_SREV_MERLIN_20_OR_LATER(ah) && 266 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { 267 if (rate == 0x19 || rate == 0x1a || rate == 0x1b || 268 rate == (0x19 | 0x04) || rate == (0x1a | 0x04) || 269 rate == (0x1b | 0x04)) { 270 n_txpower -= cck_ofdm_delta; 271 } 272 } 273 274 /* 275 * We're now offset by the same amount that the static maximum 276 * PHY power tables are. So, clamp the value based on that rate. 277 */ 278 max_txpower = ar5416RateToRateTable(ah, rate, is_ht40); 279 #if 0 280 ath_hal_printf(ah, "%s: n_txpower = %d, max_txpower = %d, " 281 "rate = 0x%x , is_ht40 = %d\n", 282 __func__, 283 n_txpower, 284 max_txpower, 285 rate, 286 is_ht40); 287 #endif 288 n_txpower = MIN(max_txpower, n_txpower); 289 290 /* 291 * We don't have to offset the TX power for two or three 292 * chain operation here - it's done by the AR_PHY_POWER_TX_SUB 293 * register setting via the EEPROM. 294 * 295 * So for vendors that programmed the maximum target power assuming 296 * that 2/3 chains are always on, things will just plain work. 297 * (They won't reach that target power if only one chain is on, but 298 * that's a different problem.) 299 */ 300 301 /* Over/underflow? Adjust */ 302 if (n_txpower < 0) 303 n_txpower = 0; 304 else if (n_txpower > 63) 305 n_txpower = 63; 306 307 /* 308 * For some odd reason the AR9160 with txpower=0 results in a 309 * much higher (max?) TX power. So, if it's a chipset before 310 * AR9220/AR9280, just clamp the minimum value at 1. 311 */ 312 if ((! AR_SREV_MERLIN_10_OR_LATER(ah)) && (n_txpower == 0)) 313 n_txpower = 1; 314 315 return (n_txpower); 316 #undef EEP_MINOR 317 #undef IS_EEP_MINOR_V2 318 } 319 320 HAL_BOOL 321 ar5416SetupTxDesc(struct ath_hal *ah, struct ath_desc *ds, 322 u_int pktLen, 323 u_int hdrLen, 324 HAL_PKT_TYPE type, 325 u_int txPower, 326 u_int txRate0, u_int txTries0, 327 u_int keyIx, 328 u_int antMode, 329 u_int flags, 330 u_int rtsctsRate, 331 u_int rtsctsDuration, 332 u_int compicvLen, 333 u_int compivLen, 334 u_int comp) 335 { 336 #define RTSCTS (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA) 337 struct ar5416_desc *ads = AR5416DESC(ds); 338 struct ath_hal_5416 *ahp = AH5416(ah); 339 340 (void) hdrLen; 341 342 HALASSERT(txTries0 != 0); 343 HALASSERT(isValidPktType(type)); 344 HALASSERT(isValidTxRate(txRate0)); 345 HALASSERT((flags & RTSCTS) != RTSCTS); 346 /* XXX validate antMode */ 347 348 txPower = (txPower + AH5212(ah)->ah_txPowerIndexOffset); 349 if (txPower > 63) 350 txPower = 63; 351 352 /* 353 * XXX For now, just assume that this isn't a HT40 frame. 354 * It'll get over-ridden by the multi-rate TX power setup. 355 */ 356 if (AH5212(ah)->ah_tpcEnabled) { 357 txPower = ar5416GetTxRatePower(ah, txRate0, 358 ahp->ah_tx_chainmask, 359 txPower, 360 AH_FALSE); 361 } 362 363 ads->ds_ctl0 = (pktLen & AR_FrameLen) 364 | (txPower << AR_XmitPower_S) 365 | (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0) 366 | (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0) 367 | (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0) 368 ; 369 ads->ds_ctl1 = (type << AR_FrameType_S) 370 | (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0) 371 | (flags & HAL_TXDESC_HWTS ? AR_InsertTS : 0) 372 ; 373 ads->ds_ctl2 = SM(txTries0, AR_XmitDataTries0) 374 | (flags & HAL_TXDESC_DURENA ? AR_DurUpdateEn : 0) 375 ; 376 ads->ds_ctl3 = (txRate0 << AR_XmitRate0_S) 377 ; 378 ads->ds_ctl4 = 0; 379 ads->ds_ctl5 = 0; 380 ads->ds_ctl6 = 0; 381 ads->ds_ctl7 = SM(ahp->ah_tx_chainmask, AR_ChainSel0) 382 | SM(ahp->ah_tx_chainmask, AR_ChainSel1) 383 | SM(ahp->ah_tx_chainmask, AR_ChainSel2) 384 | SM(ahp->ah_tx_chainmask, AR_ChainSel3) 385 ; 386 ads->ds_ctl8 = SM(0, AR_AntCtl0); 387 ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1); 388 ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2); 389 ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3); 390 391 if (keyIx != HAL_TXKEYIX_INVALID) { 392 /* XXX validate key index */ 393 ads->ds_ctl1 |= SM(keyIx, AR_DestIdx); 394 ads->ds_ctl0 |= AR_DestIdxValid; 395 ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType); 396 } 397 if (flags & RTSCTS) { 398 if (!isValidTxRate(rtsctsRate)) { 399 HALDEBUG(ah, HAL_DEBUG_ANY, 400 "%s: invalid rts/cts rate 0x%x\n", 401 __func__, rtsctsRate); 402 return AH_FALSE; 403 } 404 /* XXX validate rtsctsDuration */ 405 ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0) 406 | (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0) 407 ; 408 ads->ds_ctl7 |= (rtsctsRate << AR_RTSCTSRate_S); 409 } 410 411 /* 412 * Set the TX antenna to 0 for Kite 413 * To preserve existing behaviour, also set the TPC bits to 0; 414 * when TPC is enabled these should be filled in appropriately. 415 * 416 * XXX TODO: when doing TPC, set the TX power up appropriately? 417 */ 418 if (AR_SREV_KITE(ah)) { 419 ads->ds_ctl8 = SM(0, AR_AntCtl0); 420 ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1); 421 ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2); 422 ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3); 423 } 424 return AH_TRUE; 425 #undef RTSCTS 426 } 427 428 HAL_BOOL 429 ar5416SetupXTxDesc(struct ath_hal *ah, struct ath_desc *ds, 430 u_int txRate1, u_int txTries1, 431 u_int txRate2, u_int txTries2, 432 u_int txRate3, u_int txTries3) 433 { 434 struct ar5416_desc *ads = AR5416DESC(ds); 435 436 if (txTries1) { 437 HALASSERT(isValidTxRate(txRate1)); 438 ads->ds_ctl2 |= SM(txTries1, AR_XmitDataTries1); 439 ads->ds_ctl3 |= (txRate1 << AR_XmitRate1_S); 440 } 441 if (txTries2) { 442 HALASSERT(isValidTxRate(txRate2)); 443 ads->ds_ctl2 |= SM(txTries2, AR_XmitDataTries2); 444 ads->ds_ctl3 |= (txRate2 << AR_XmitRate2_S); 445 } 446 if (txTries3) { 447 HALASSERT(isValidTxRate(txRate3)); 448 ads->ds_ctl2 |= SM(txTries3, AR_XmitDataTries3); 449 ads->ds_ctl3 |= (txRate3 << AR_XmitRate3_S); 450 } 451 return AH_TRUE; 452 } 453 454 /* 455 * XXX TODO: Figure out if AR_InsertTS is required on all sub-frames 456 * of a TX descriptor. 457 */ 458 HAL_BOOL 459 ar5416FillTxDesc(struct ath_hal *ah, struct ath_desc *ds, 460 HAL_DMA_ADDR *bufAddrList, uint32_t *segLenList, u_int descId, 461 u_int qcuId, HAL_BOOL firstSeg, HAL_BOOL lastSeg, 462 const struct ath_desc *ds0) 463 { 464 struct ar5416_desc *ads = AR5416DESC(ds); 465 uint32_t segLen = segLenList[0]; 466 467 HALASSERT((segLen &~ AR_BufLen) == 0); 468 469 ds->ds_data = bufAddrList[0]; 470 471 if (firstSeg) { 472 /* 473 * First descriptor, don't clobber xmit control data 474 * setup by ar5212SetupTxDesc. 475 */ 476 ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore); 477 } else if (lastSeg) { /* !firstSeg && lastSeg */ 478 /* 479 * Last descriptor in a multi-descriptor frame, 480 * copy the multi-rate transmit parameters from 481 * the first frame for processing on completion. 482 */ 483 ads->ds_ctl1 = segLen; 484 #ifdef AH_NEED_DESC_SWAP 485 ads->ds_ctl0 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl0) 486 & AR_TxIntrReq; 487 ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2); 488 ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3); 489 /* ctl6 - we only need encrtype; the rest are blank */ 490 ads->ds_ctl6 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType); 491 #else 492 ads->ds_ctl0 = AR5416DESC_CONST(ds0)->ds_ctl0 & AR_TxIntrReq; 493 ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2; 494 ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3; 495 /* ctl6 - we only need encrtype; the rest are blank */ 496 ads->ds_ctl6 = AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType; 497 #endif 498 } else { /* !firstSeg && !lastSeg */ 499 /* 500 * Intermediate descriptor in a multi-descriptor frame. 501 */ 502 #ifdef AH_NEED_DESC_SWAP 503 ads->ds_ctl0 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl0) 504 & AR_TxIntrReq; 505 ads->ds_ctl6 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType); 506 #else 507 ads->ds_ctl0 = AR5416DESC_CONST(ds0)->ds_ctl0 & AR_TxIntrReq; 508 ads->ds_ctl6 = AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType; 509 #endif 510 ads->ds_ctl1 = segLen | AR_TxMore; 511 ads->ds_ctl2 = 0; 512 ads->ds_ctl3 = 0; 513 } 514 /* XXX only on last descriptor? */ 515 OS_MEMZERO(ads->u.tx.status, sizeof(ads->u.tx.status)); 516 return AH_TRUE; 517 } 518 519 /* 520 * NB: cipher is no longer used, it's calculated. 521 */ 522 HAL_BOOL 523 ar5416ChainTxDesc(struct ath_hal *ah, struct ath_desc *ds, 524 HAL_DMA_ADDR *bufAddrList, 525 uint32_t *segLenList, 526 u_int pktLen, 527 u_int hdrLen, 528 HAL_PKT_TYPE type, 529 u_int keyIx, 530 HAL_CIPHER cipher, 531 uint8_t delims, 532 HAL_BOOL firstSeg, 533 HAL_BOOL lastSeg, 534 HAL_BOOL lastAggr) 535 { 536 struct ar5416_desc *ads = AR5416DESC(ds); 537 uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads); 538 struct ath_hal_5416 *ahp = AH5416(ah); 539 u_int segLen = segLenList[0]; 540 541 int isaggr = 0; 542 uint32_t last_aggr = 0; 543 544 (void) hdrLen; 545 (void) ah; 546 547 HALASSERT((segLen &~ AR_BufLen) == 0); 548 ds->ds_data = bufAddrList[0]; 549 550 HALASSERT(isValidPktType(type)); 551 if (type == HAL_PKT_TYPE_AMPDU) { 552 type = HAL_PKT_TYPE_NORMAL; 553 isaggr = 1; 554 if (lastAggr == AH_FALSE) 555 last_aggr = AR_MoreAggr; 556 } 557 558 /* 559 * Since this function is called before any of the other 560 * descriptor setup functions (at least in this particular 561 * 802.11n aggregation implementation), always bzero() the 562 * descriptor. Previously this would be done for all but 563 * the first segment. 564 * XXX TODO: figure out why; perhaps I'm using this slightly 565 * XXX incorrectly. 566 */ 567 OS_MEMZERO(ds->ds_hw, AR5416_DESC_TX_CTL_SZ); 568 569 /* 570 * Note: VEOL should only be for the last descriptor in the chain. 571 */ 572 ads->ds_ctl0 = (pktLen & AR_FrameLen); 573 574 /* 575 * For aggregates: 576 * + IsAggr must be set for all descriptors of all subframes of 577 * the aggregate 578 * + MoreAggr must be set for all descriptors of all subframes 579 * of the aggregate EXCEPT the last subframe; 580 * + MoreAggr must be _CLEAR_ for all descrpitors of the last 581 * subframe of the aggregate. 582 */ 583 ads->ds_ctl1 = (type << AR_FrameType_S) 584 | (isaggr ? (AR_IsAggr | last_aggr) : 0); 585 586 ads->ds_ctl2 = 0; 587 ads->ds_ctl3 = 0; 588 if (keyIx != HAL_TXKEYIX_INVALID) { 589 /* XXX validate key index */ 590 ads->ds_ctl1 |= SM(keyIx, AR_DestIdx); 591 ads->ds_ctl0 |= AR_DestIdxValid; 592 } 593 594 ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType); 595 if (isaggr) { 596 ads->ds_ctl6 |= SM(delims, AR_PadDelim); 597 } 598 599 if (firstSeg) { 600 ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore); 601 } else if (lastSeg) { /* !firstSeg && lastSeg */ 602 ads->ds_ctl0 = 0; 603 ads->ds_ctl1 |= segLen; 604 } else { /* !firstSeg && !lastSeg */ 605 /* 606 * Intermediate descriptor in a multi-descriptor frame. 607 */ 608 ads->ds_ctl0 = 0; 609 ads->ds_ctl1 |= segLen | AR_TxMore; 610 } 611 ds_txstatus[0] = ds_txstatus[1] = 0; 612 ds_txstatus[9] &= ~AR_TxDone; 613 614 return AH_TRUE; 615 } 616 617 HAL_BOOL 618 ar5416SetupFirstTxDesc(struct ath_hal *ah, struct ath_desc *ds, 619 u_int aggrLen, u_int flags, u_int txPower, 620 u_int txRate0, u_int txTries0, u_int antMode, 621 u_int rtsctsRate, u_int rtsctsDuration) 622 { 623 #define RTSCTS (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA) 624 struct ar5416_desc *ads = AR5416DESC(ds); 625 struct ath_hal_5212 *ahp = AH5212(ah); 626 627 HALASSERT(txTries0 != 0); 628 HALASSERT(isValidTxRate(txRate0)); 629 HALASSERT((flags & RTSCTS) != RTSCTS); 630 /* XXX validate antMode */ 631 632 txPower = (txPower + ahp->ah_txPowerIndexOffset ); 633 if(txPower > 63) txPower=63; 634 635 ads->ds_ctl0 |= (txPower << AR_XmitPower_S) 636 | (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0) 637 | (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0) 638 | (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0); 639 ads->ds_ctl1 |= (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0); 640 ads->ds_ctl2 |= SM(txTries0, AR_XmitDataTries0); 641 ads->ds_ctl3 |= (txRate0 << AR_XmitRate0_S); 642 ads->ds_ctl7 = SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel0) 643 | SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel1) 644 | SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel2) 645 | SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel3); 646 647 /* NB: no V1 WAR */ 648 ads->ds_ctl8 = SM(0, AR_AntCtl0); 649 ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1); 650 ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2); 651 ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3); 652 653 ads->ds_ctl6 &= ~(0xffff); 654 ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen); 655 656 if (flags & RTSCTS) { 657 /* XXX validate rtsctsDuration */ 658 ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0) 659 | (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0); 660 } 661 662 /* 663 * Set the TX antenna to 0 for Kite 664 * To preserve existing behaviour, also set the TPC bits to 0; 665 * when TPC is enabled these should be filled in appropriately. 666 */ 667 if (AR_SREV_KITE(ah)) { 668 ads->ds_ctl8 = SM(0, AR_AntCtl0); 669 ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1); 670 ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2); 671 ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3); 672 } 673 674 return AH_TRUE; 675 #undef RTSCTS 676 } 677 678 HAL_BOOL 679 ar5416SetupLastTxDesc(struct ath_hal *ah, struct ath_desc *ds, 680 const struct ath_desc *ds0) 681 { 682 struct ar5416_desc *ads = AR5416DESC(ds); 683 684 ads->ds_ctl1 &= ~AR_MoreAggr; 685 ads->ds_ctl6 &= ~AR_PadDelim; 686 687 /* hack to copy rate info to last desc for later processing */ 688 #ifdef AH_NEED_DESC_SWAP 689 ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2); 690 ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3); 691 #else 692 ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2; 693 ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3; 694 #endif 695 return AH_TRUE; 696 } 697 698 #ifdef AH_NEED_DESC_SWAP 699 /* Swap transmit descriptor */ 700 static __inline void 701 ar5416SwapTxDesc(struct ath_desc *ds) 702 { 703 ds->ds_data = __bswap32(ds->ds_data); 704 ds->ds_ctl0 = __bswap32(ds->ds_ctl0); 705 ds->ds_ctl1 = __bswap32(ds->ds_ctl1); 706 ds->ds_hw[0] = __bswap32(ds->ds_hw[0]); 707 ds->ds_hw[1] = __bswap32(ds->ds_hw[1]); 708 ds->ds_hw[2] = __bswap32(ds->ds_hw[2]); 709 ds->ds_hw[3] = __bswap32(ds->ds_hw[3]); 710 } 711 #endif 712 713 /* 714 * Processing of HW TX descriptor. 715 */ 716 HAL_STATUS 717 ar5416ProcTxDesc(struct ath_hal *ah, 718 struct ath_desc *ds, struct ath_tx_status *ts) 719 { 720 struct ar5416_desc *ads = AR5416DESC(ds); 721 uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads); 722 723 #ifdef AH_NEED_DESC_SWAP 724 if ((ds_txstatus[9] & __bswap32(AR_TxDone)) == 0) 725 return HAL_EINPROGRESS; 726 ar5416SwapTxDesc(ds); 727 #else 728 if ((ds_txstatus[9] & AR_TxDone) == 0) 729 return HAL_EINPROGRESS; 730 #endif 731 732 /* Update software copies of the HW status */ 733 ts->ts_seqnum = MS(ds_txstatus[9], AR_SeqNum); 734 ts->ts_tstamp = AR_SendTimestamp(ds_txstatus); 735 ts->ts_tid = MS(ds_txstatus[9], AR_TxTid); 736 737 ts->ts_status = 0; 738 if (ds_txstatus[1] & AR_ExcessiveRetries) 739 ts->ts_status |= HAL_TXERR_XRETRY; 740 if (ds_txstatus[1] & AR_Filtered) 741 ts->ts_status |= HAL_TXERR_FILT; 742 if (ds_txstatus[1] & AR_FIFOUnderrun) 743 ts->ts_status |= HAL_TXERR_FIFO; 744 if (ds_txstatus[9] & AR_TxOpExceeded) 745 ts->ts_status |= HAL_TXERR_XTXOP; 746 if (ds_txstatus[1] & AR_TxTimerExpired) 747 ts->ts_status |= HAL_TXERR_TIMER_EXPIRED; 748 749 ts->ts_flags = 0; 750 if (ds_txstatus[0] & AR_TxBaStatus) { 751 ts->ts_flags |= HAL_TX_BA; 752 ts->ts_ba_low = AR_BaBitmapLow(ds_txstatus); 753 ts->ts_ba_high = AR_BaBitmapHigh(ds_txstatus); 754 } 755 if (ds->ds_ctl1 & AR_IsAggr) 756 ts->ts_flags |= HAL_TX_AGGR; 757 if (ds_txstatus[1] & AR_DescCfgErr) 758 ts->ts_flags |= HAL_TX_DESC_CFG_ERR; 759 if (ds_txstatus[1] & AR_TxDataUnderrun) 760 ts->ts_flags |= HAL_TX_DATA_UNDERRUN; 761 if (ds_txstatus[1] & AR_TxDelimUnderrun) 762 ts->ts_flags |= HAL_TX_DELIM_UNDERRUN; 763 764 /* 765 * Extract the transmit rate used and mark the rate as 766 * ``alternate'' if it wasn't the series 0 rate. 767 */ 768 ts->ts_finaltsi = MS(ds_txstatus[9], AR_FinalTxIdx); 769 switch (ts->ts_finaltsi) { 770 case 0: 771 ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate0); 772 break; 773 case 1: 774 ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate1); 775 break; 776 case 2: 777 ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate2); 778 break; 779 case 3: 780 ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate3); 781 break; 782 } 783 784 ts->ts_rssi = MS(ds_txstatus[5], AR_TxRSSICombined); 785 ts->ts_rssi_ctl[0] = MS(ds_txstatus[0], AR_TxRSSIAnt00); 786 ts->ts_rssi_ctl[1] = MS(ds_txstatus[0], AR_TxRSSIAnt01); 787 ts->ts_rssi_ctl[2] = MS(ds_txstatus[0], AR_TxRSSIAnt02); 788 ts->ts_rssi_ext[0] = MS(ds_txstatus[5], AR_TxRSSIAnt10); 789 ts->ts_rssi_ext[1] = MS(ds_txstatus[5], AR_TxRSSIAnt11); 790 ts->ts_rssi_ext[2] = MS(ds_txstatus[5], AR_TxRSSIAnt12); 791 ts->ts_evm0 = AR_TxEVM0(ds_txstatus); 792 ts->ts_evm1 = AR_TxEVM1(ds_txstatus); 793 ts->ts_evm2 = AR_TxEVM2(ds_txstatus); 794 795 ts->ts_shortretry = MS(ds_txstatus[1], AR_RTSFailCnt); 796 ts->ts_longretry = MS(ds_txstatus[1], AR_DataFailCnt); 797 /* 798 * The retry count has the number of un-acked tries for the 799 * final series used. When doing multi-rate retry we must 800 * fixup the retry count by adding in the try counts for 801 * each series that was fully-processed. Beware that this 802 * takes values from the try counts in the final descriptor. 803 * These are not required by the hardware. We assume they 804 * are placed there by the driver as otherwise we have no 805 * access and the driver can't do the calculation because it 806 * doesn't know the descriptor format. 807 */ 808 switch (ts->ts_finaltsi) { 809 case 3: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries2); 810 case 2: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries1); 811 case 1: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries0); 812 } 813 814 /* 815 * These fields are not used. Zero these to preserve compatibility 816 * with existing drivers. 817 */ 818 ts->ts_virtcol = MS(ads->ds_ctl1, AR_VirtRetryCnt); 819 ts->ts_antenna = 0; /* We don't switch antennas on Owl*/ 820 821 /* handle tx trigger level changes internally */ 822 if ((ts->ts_status & HAL_TXERR_FIFO) || 823 (ts->ts_flags & (HAL_TX_DATA_UNDERRUN | HAL_TX_DELIM_UNDERRUN))) 824 ar5212UpdateTxTrigLevel(ah, AH_TRUE); 825 826 return HAL_OK; 827 } 828 829 HAL_BOOL 830 ar5416SetGlobalTxTimeout(struct ath_hal *ah, u_int tu) 831 { 832 struct ath_hal_5416 *ahp = AH5416(ah); 833 834 if (tu > 0xFFFF) { 835 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad global tx timeout %u\n", 836 __func__, tu); 837 /* restore default handling */ 838 ahp->ah_globaltxtimeout = (u_int) -1; 839 return AH_FALSE; 840 } 841 OS_REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); 842 ahp->ah_globaltxtimeout = tu; 843 return AH_TRUE; 844 } 845 846 u_int 847 ar5416GetGlobalTxTimeout(struct ath_hal *ah) 848 { 849 return MS(OS_REG_READ(ah, AR_GTXTO), AR_GTXTO_TIMEOUT_LIMIT); 850 } 851 852 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f) 853 static const u_int8_t baDurationDelta[] = { 854 24, // 0: BPSK 855 12, // 1: QPSK 1/2 856 12, // 2: QPSK 3/4 857 4, // 3: 16-QAM 1/2 858 4, // 4: 16-QAM 3/4 859 4, // 5: 64-QAM 2/3 860 4, // 6: 64-QAM 3/4 861 4, // 7: 64-QAM 5/6 862 24, // 8: BPSK 863 12, // 9: QPSK 1/2 864 12, // 10: QPSK 3/4 865 4, // 11: 16-QAM 1/2 866 4, // 12: 16-QAM 3/4 867 4, // 13: 64-QAM 2/3 868 4, // 14: 64-QAM 3/4 869 4, // 15: 64-QAM 5/6 870 }; 871 872 void 873 ar5416Set11nRateScenario(struct ath_hal *ah, struct ath_desc *ds, 874 u_int durUpdateEn, u_int rtsctsRate, 875 HAL_11N_RATE_SERIES series[], u_int nseries, u_int flags) 876 { 877 struct ar5416_desc *ads = AR5416DESC(ds); 878 uint32_t ds_ctl0; 879 880 HALASSERT(nseries == 4); 881 (void)nseries; 882 883 /* 884 * Only one of RTS and CTS enable must be set. 885 * If a frame has both set, just do RTS protection - 886 * that's enough to satisfy legacy protection. 887 */ 888 if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) { 889 ds_ctl0 = ads->ds_ctl0; 890 891 if (flags & HAL_TXDESC_RTSENA) { 892 ds_ctl0 &= ~AR_CTSEnable; 893 ds_ctl0 |= AR_RTSEnable; 894 } else { 895 ds_ctl0 &= ~AR_RTSEnable; 896 ds_ctl0 |= AR_CTSEnable; 897 } 898 899 ads->ds_ctl0 = ds_ctl0; 900 } else { 901 ads->ds_ctl0 = 902 (ads->ds_ctl0 & ~(AR_RTSEnable | AR_CTSEnable)); 903 } 904 905 ads->ds_ctl2 = set11nTries(series, 0) 906 | set11nTries(series, 1) 907 | set11nTries(series, 2) 908 | set11nTries(series, 3) 909 | (durUpdateEn ? AR_DurUpdateEn : 0); 910 911 ads->ds_ctl3 = set11nRate(series, 0) 912 | set11nRate(series, 1) 913 | set11nRate(series, 2) 914 | set11nRate(series, 3); 915 916 ads->ds_ctl4 = set11nPktDurRTSCTS(series, 0) 917 | set11nPktDurRTSCTS(series, 1); 918 919 ads->ds_ctl5 = set11nPktDurRTSCTS(series, 2) 920 | set11nPktDurRTSCTS(series, 3); 921 922 ads->ds_ctl7 = set11nRateFlags(series, 0) 923 | set11nRateFlags(series, 1) 924 | set11nRateFlags(series, 2) 925 | set11nRateFlags(series, 3) 926 | SM(rtsctsRate, AR_RTSCTSRate); 927 928 /* 929 * Doing per-packet TPC - update the TX power for the first 930 * field; program in the other series. 931 */ 932 if (AH5212(ah)->ah_tpcEnabled) { 933 uint32_t ds_ctl0; 934 uint16_t txPower; 935 936 /* Modify the tx power field for rate 0 */ 937 txPower = ar5416GetTxRatePower(ah, series[0].Rate, 938 series[0].ChSel, 939 series[0].tx_power_cap, 940 !! (series[0].RateFlags & HAL_RATESERIES_2040)); 941 ds_ctl0 = ads->ds_ctl0 & ~AR_XmitPower; 942 ds_ctl0 |= (txPower << AR_XmitPower_S); 943 ads->ds_ctl0 = ds_ctl0; 944 945 /* 946 * Override the whole descriptor field for each TX power. 947 * 948 * This will need changing if we ever support antenna control 949 * programming. 950 */ 951 txPower = ar5416GetTxRatePower(ah, series[1].Rate, 952 series[1].ChSel, 953 series[1].tx_power_cap, 954 !! (series[1].RateFlags & HAL_RATESERIES_2040)); 955 ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1); 956 957 txPower = ar5416GetTxRatePower(ah, series[2].Rate, 958 series[2].ChSel, 959 series[2].tx_power_cap, 960 !! (series[2].RateFlags & HAL_RATESERIES_2040)); 961 ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2); 962 963 txPower = ar5416GetTxRatePower(ah, series[3].Rate, 964 series[3].ChSel, 965 series[3].tx_power_cap, 966 !! (series[3].RateFlags & HAL_RATESERIES_2040)); 967 ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3); 968 } 969 } 970 971 /* 972 * Note: this should be called before calling ar5416SetBurstDuration() 973 * (if it is indeed called) in order to ensure that the burst duration 974 * is correctly updated with the BA delta workaround. 975 */ 976 void 977 ar5416Set11nAggrFirst(struct ath_hal *ah, struct ath_desc *ds, u_int aggrLen, 978 u_int numDelims) 979 { 980 struct ar5416_desc *ads = AR5416DESC(ds); 981 uint32_t flags; 982 uint32_t burstDur; 983 uint8_t rate; 984 985 ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr); 986 987 ads->ds_ctl6 &= ~(AR_AggrLen | AR_PadDelim); 988 ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen); 989 ads->ds_ctl6 |= SM(numDelims, AR_PadDelim); 990 991 if (! AR_SREV_MERLIN_10_OR_LATER(ah)) { 992 /* 993 * XXX It'd be nice if I were passed in the rate scenario 994 * at this point.. 995 */ 996 rate = MS(ads->ds_ctl3, AR_XmitRate0); 997 flags = ads->ds_ctl0 & (AR_CTSEnable | AR_RTSEnable); 998 /* 999 * WAR - MAC assumes normal ACK time instead of 1000 * block ACK while computing packet duration. 1001 * Add this delta to the burst duration in the descriptor. 1002 */ 1003 if (flags && (ads->ds_ctl1 & AR_IsAggr)) { 1004 burstDur = baDurationDelta[HT_RC_2_MCS(rate)]; 1005 ads->ds_ctl2 &= ~(AR_BurstDur); 1006 ads->ds_ctl2 |= SM(burstDur, AR_BurstDur); 1007 } 1008 } 1009 } 1010 1011 void 1012 ar5416Set11nAggrMiddle(struct ath_hal *ah, struct ath_desc *ds, u_int numDelims) 1013 { 1014 struct ar5416_desc *ads = AR5416DESC(ds); 1015 uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads); 1016 1017 ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr); 1018 1019 ads->ds_ctl6 &= ~AR_PadDelim; 1020 ads->ds_ctl6 |= SM(numDelims, AR_PadDelim); 1021 ads->ds_ctl6 &= ~AR_AggrLen; 1022 1023 /* 1024 * Clear the TxDone status here, may need to change 1025 * func name to reflect this 1026 */ 1027 ds_txstatus[9] &= ~AR_TxDone; 1028 } 1029 1030 void 1031 ar5416Set11nAggrLast(struct ath_hal *ah, struct ath_desc *ds) 1032 { 1033 struct ar5416_desc *ads = AR5416DESC(ds); 1034 1035 ads->ds_ctl1 |= AR_IsAggr; 1036 ads->ds_ctl1 &= ~AR_MoreAggr; 1037 ads->ds_ctl6 &= ~AR_PadDelim; 1038 } 1039 1040 void 1041 ar5416Clr11nAggr(struct ath_hal *ah, struct ath_desc *ds) 1042 { 1043 struct ar5416_desc *ads = AR5416DESC(ds); 1044 1045 ads->ds_ctl1 &= (~AR_IsAggr & ~AR_MoreAggr); 1046 ads->ds_ctl6 &= ~AR_PadDelim; 1047 ads->ds_ctl6 &= ~AR_AggrLen; 1048 } 1049 1050 void 1051 ar5416Set11nVirtualMoreFrag(struct ath_hal *ah, struct ath_desc *ds, 1052 u_int vmf) 1053 { 1054 struct ar5416_desc *ads = AR5416DESC(ds); 1055 if (vmf) 1056 ads->ds_ctl0 |= AR_VirtMoreFrag; 1057 else 1058 ads->ds_ctl0 &= ~AR_VirtMoreFrag; 1059 } 1060 1061 /* 1062 * Program the burst duration, with the included BA delta if it's 1063 * applicable. 1064 */ 1065 void 1066 ar5416Set11nBurstDuration(struct ath_hal *ah, struct ath_desc *ds, 1067 u_int burstDuration) 1068 { 1069 struct ar5416_desc *ads = AR5416DESC(ds); 1070 uint32_t burstDur = 0; 1071 uint8_t rate; 1072 1073 if (! AR_SREV_MERLIN_10_OR_LATER(ah)) { 1074 /* 1075 * XXX It'd be nice if I were passed in the rate scenario 1076 * at this point.. 1077 */ 1078 rate = MS(ads->ds_ctl3, AR_XmitDataTries0); 1079 /* 1080 * WAR - MAC assumes normal ACK time instead of 1081 * block ACK while computing packet duration. 1082 * Add this delta to the burst duration in the descriptor. 1083 */ 1084 if (ads->ds_ctl1 & AR_IsAggr) { 1085 burstDur = baDurationDelta[HT_RC_2_MCS(rate)]; 1086 } 1087 } 1088 1089 ads->ds_ctl2 &= ~AR_BurstDur; 1090 ads->ds_ctl2 |= SM(burstDur + burstDuration, AR_BurstDur); 1091 } 1092 1093 /* 1094 * Retrieve the rate table from the given TX completion descriptor 1095 */ 1096 HAL_BOOL 1097 ar5416GetTxCompletionRates(struct ath_hal *ah, const struct ath_desc *ds0, int *rates, int *tries) 1098 { 1099 const struct ar5416_desc *ads = AR5416DESC_CONST(ds0); 1100 1101 rates[0] = MS(ads->ds_ctl3, AR_XmitRate0); 1102 rates[1] = MS(ads->ds_ctl3, AR_XmitRate1); 1103 rates[2] = MS(ads->ds_ctl3, AR_XmitRate2); 1104 rates[3] = MS(ads->ds_ctl3, AR_XmitRate3); 1105 1106 tries[0] = MS(ads->ds_ctl2, AR_XmitDataTries0); 1107 tries[1] = MS(ads->ds_ctl2, AR_XmitDataTries1); 1108 tries[2] = MS(ads->ds_ctl2, AR_XmitDataTries2); 1109 tries[3] = MS(ads->ds_ctl2, AR_XmitDataTries3); 1110 1111 return AH_TRUE; 1112 } 1113 1114 /* 1115 * TX queue management routines - AR5416 and later chipsets 1116 */ 1117 1118 /* 1119 * Allocate and initialize a tx DCU/QCU combination. 1120 */ 1121 int 1122 ar5416SetupTxQueue(struct ath_hal *ah, HAL_TX_QUEUE type, 1123 const HAL_TXQ_INFO *qInfo) 1124 { 1125 struct ath_hal_5212 *ahp = AH5212(ah); 1126 HAL_TX_QUEUE_INFO *qi; 1127 HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps; 1128 int q, defqflags; 1129 1130 /* by default enable OK+ERR+DESC+URN interrupts */ 1131 defqflags = HAL_TXQ_TXOKINT_ENABLE 1132 | HAL_TXQ_TXERRINT_ENABLE 1133 | HAL_TXQ_TXDESCINT_ENABLE 1134 | HAL_TXQ_TXURNINT_ENABLE; 1135 /* XXX move queue assignment to driver */ 1136 switch (type) { 1137 case HAL_TX_QUEUE_BEACON: 1138 q = pCap->halTotalQueues-1; /* highest priority */ 1139 defqflags |= HAL_TXQ_DBA_GATED 1140 | HAL_TXQ_CBR_DIS_QEMPTY 1141 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 1142 | HAL_TXQ_BACKOFF_DISABLE; 1143 break; 1144 case HAL_TX_QUEUE_CAB: 1145 q = pCap->halTotalQueues-2; /* next highest priority */ 1146 defqflags |= HAL_TXQ_DBA_GATED 1147 | HAL_TXQ_CBR_DIS_QEMPTY 1148 | HAL_TXQ_CBR_DIS_BEMPTY 1149 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 1150 | HAL_TXQ_BACKOFF_DISABLE; 1151 break; 1152 case HAL_TX_QUEUE_PSPOLL: 1153 q = 1; /* lowest priority */ 1154 defqflags |= HAL_TXQ_DBA_GATED 1155 | HAL_TXQ_CBR_DIS_QEMPTY 1156 | HAL_TXQ_CBR_DIS_BEMPTY 1157 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 1158 | HAL_TXQ_BACKOFF_DISABLE; 1159 break; 1160 case HAL_TX_QUEUE_UAPSD: 1161 q = pCap->halTotalQueues-3; /* nextest highest priority */ 1162 if (ahp->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE) { 1163 HALDEBUG(ah, HAL_DEBUG_ANY, 1164 "%s: no available UAPSD tx queue\n", __func__); 1165 return -1; 1166 } 1167 break; 1168 case HAL_TX_QUEUE_DATA: 1169 for (q = 0; q < pCap->halTotalQueues; q++) 1170 if (ahp->ah_txq[q].tqi_type == HAL_TX_QUEUE_INACTIVE) 1171 break; 1172 if (q == pCap->halTotalQueues) { 1173 HALDEBUG(ah, HAL_DEBUG_ANY, 1174 "%s: no available tx queue\n", __func__); 1175 return -1; 1176 } 1177 break; 1178 default: 1179 HALDEBUG(ah, HAL_DEBUG_ANY, 1180 "%s: bad tx queue type %u\n", __func__, type); 1181 return -1; 1182 } 1183 1184 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q); 1185 1186 qi = &ahp->ah_txq[q]; 1187 if (qi->tqi_type != HAL_TX_QUEUE_INACTIVE) { 1188 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: tx queue %u already active\n", 1189 __func__, q); 1190 return -1; 1191 } 1192 OS_MEMZERO(qi, sizeof(HAL_TX_QUEUE_INFO)); 1193 qi->tqi_type = type; 1194 if (qInfo == AH_NULL) { 1195 qi->tqi_qflags = defqflags; 1196 qi->tqi_aifs = INIT_AIFS; 1197 qi->tqi_cwmin = HAL_TXQ_USEDEFAULT; /* NB: do at reset */ 1198 qi->tqi_cwmax = INIT_CWMAX; 1199 qi->tqi_shretry = INIT_SH_RETRY; 1200 qi->tqi_lgretry = INIT_LG_RETRY; 1201 qi->tqi_physCompBuf = 0; 1202 } else { 1203 qi->tqi_physCompBuf = qInfo->tqi_compBuf; 1204 (void) ar5212SetTxQueueProps(ah, q, qInfo); 1205 } 1206 /* NB: must be followed by ar5212ResetTxQueue */ 1207 return q; 1208 } 1209 1210 /* 1211 * Update the h/w interrupt registers to reflect a tx q's configuration. 1212 */ 1213 static void 1214 setTxQInterrupts(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi) 1215 { 1216 struct ath_hal_5212 *ahp = AH5212(ah); 1217 1218 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, 1219 "%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", __func__, 1220 ahp->ah_txOkInterruptMask, ahp->ah_txErrInterruptMask, 1221 ahp->ah_txDescInterruptMask, ahp->ah_txEolInterruptMask, 1222 ahp->ah_txUrnInterruptMask); 1223 1224 OS_REG_WRITE(ah, AR_IMR_S0, 1225 SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK) 1226 | SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC) 1227 ); 1228 OS_REG_WRITE(ah, AR_IMR_S1, 1229 SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR) 1230 | SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL) 1231 ); 1232 OS_REG_RMW_FIELD(ah, AR_IMR_S2, 1233 AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask); 1234 } 1235 1236 /* 1237 * Set the retry, aifs, cwmin/max, readyTime regs for specified queue 1238 * Assumes: 1239 * phwChannel has been set to point to the current channel 1240 */ 1241 #define TU_TO_USEC(_tu) ((_tu) << 10) 1242 HAL_BOOL 1243 ar5416ResetTxQueue(struct ath_hal *ah, u_int q) 1244 { 1245 struct ath_hal_5212 *ahp = AH5212(ah); 1246 HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps; 1247 const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; 1248 HAL_TX_QUEUE_INFO *qi; 1249 uint32_t cwMin, chanCwMin, qmisc, dmisc; 1250 1251 if (q >= pCap->halTotalQueues) { 1252 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n", 1253 __func__, q); 1254 return AH_FALSE; 1255 } 1256 qi = &ahp->ah_txq[q]; 1257 if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) { 1258 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n", 1259 __func__, q); 1260 return AH_TRUE; /* XXX??? */ 1261 } 1262 1263 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: reset queue %u\n", __func__, q); 1264 1265 if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT) { 1266 /* 1267 * Select cwmin according to channel type. 1268 * NB: chan can be NULL during attach 1269 */ 1270 if (chan && IEEE80211_IS_CHAN_B(chan)) 1271 chanCwMin = INIT_CWMIN_11B; 1272 else 1273 chanCwMin = INIT_CWMIN; 1274 /* make sure that the CWmin is of the form (2^n - 1) */ 1275 for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1) 1276 ; 1277 } else 1278 cwMin = qi->tqi_cwmin; 1279 1280 /* set cwMin/Max and AIFS values */ 1281 OS_REG_WRITE(ah, AR_DLCL_IFS(q), 1282 SM(cwMin, AR_D_LCL_IFS_CWMIN) 1283 | SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) 1284 | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS)); 1285 1286 /* Set retry limit values */ 1287 OS_REG_WRITE(ah, AR_DRETRY_LIMIT(q), 1288 SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) 1289 | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) 1290 | SM(qi->tqi_lgretry, AR_D_RETRY_LIMIT_FR_LG) 1291 | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH) 1292 ); 1293 1294 /* NB: always enable early termination on the QCU */ 1295 qmisc = AR_Q_MISC_DCU_EARLY_TERM_REQ 1296 | SM(AR_Q_MISC_FSP_ASAP, AR_Q_MISC_FSP); 1297 1298 /* NB: always enable DCU to wait for next fragment from QCU */ 1299 dmisc = AR_D_MISC_FRAG_WAIT_EN; 1300 1301 /* Enable exponential backoff window */ 1302 dmisc |= AR_D_MISC_BKOFF_PERSISTENCE; 1303 1304 /* 1305 * The chip reset default is to use a DCU backoff threshold of 0x2. 1306 * Restore this when programming the DCU MISC register. 1307 */ 1308 dmisc |= 0x2; 1309 1310 /* multiqueue support */ 1311 if (qi->tqi_cbrPeriod) { 1312 OS_REG_WRITE(ah, AR_QCBRCFG(q), 1313 SM(qi->tqi_cbrPeriod,AR_Q_CBRCFG_CBR_INTERVAL) 1314 | SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_CBR_OVF_THRESH)); 1315 qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_CBR; 1316 if (qi->tqi_cbrOverflowLimit) 1317 qmisc |= AR_Q_MISC_CBR_EXP_CNTR_LIMIT; 1318 } 1319 1320 if (qi->tqi_readyTime && (qi->tqi_type != HAL_TX_QUEUE_CAB)) { 1321 OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), 1322 SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT) 1323 | AR_Q_RDYTIMECFG_ENA); 1324 } 1325 1326 OS_REG_WRITE(ah, AR_DCHNTIME(q), 1327 SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) 1328 | (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0)); 1329 1330 if (qi->tqi_readyTime && 1331 (qi->tqi_qflags & HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE)) 1332 qmisc |= AR_Q_MISC_RDYTIME_EXP_POLICY; 1333 if (qi->tqi_qflags & HAL_TXQ_DBA_GATED) 1334 qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_DBA_GATED; 1335 if (MS(qmisc, AR_Q_MISC_FSP) != AR_Q_MISC_FSP_ASAP) { 1336 /* 1337 * These are meangingful only when not scheduled asap. 1338 */ 1339 if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_BEMPTY) 1340 qmisc |= AR_Q_MISC_CBR_INCR_DIS0; 1341 else 1342 qmisc &= ~AR_Q_MISC_CBR_INCR_DIS0; 1343 if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_QEMPTY) 1344 qmisc |= AR_Q_MISC_CBR_INCR_DIS1; 1345 else 1346 qmisc &= ~AR_Q_MISC_CBR_INCR_DIS1; 1347 } 1348 1349 if (qi->tqi_qflags & HAL_TXQ_BACKOFF_DISABLE) 1350 dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS; 1351 if (qi->tqi_qflags & HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE) 1352 dmisc |= AR_D_MISC_FRAG_BKOFF_EN; 1353 if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_GLOBAL) 1354 dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, 1355 AR_D_MISC_ARB_LOCKOUT_CNTRL); 1356 else if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_INTRA) 1357 dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_INTRA_FR, 1358 AR_D_MISC_ARB_LOCKOUT_CNTRL); 1359 if (qi->tqi_qflags & HAL_TXQ_IGNORE_VIRTCOL) 1360 dmisc |= SM(AR_D_MISC_VIR_COL_HANDLING_IGNORE, 1361 AR_D_MISC_VIR_COL_HANDLING); 1362 if (qi->tqi_qflags & HAL_TXQ_SEQNUM_INC_DIS) 1363 dmisc |= AR_D_MISC_SEQ_NUM_INCR_DIS; 1364 1365 /* 1366 * Fillin type-dependent bits. Most of this can be 1367 * removed by specifying the queue parameters in the 1368 * driver; it's here for backwards compatibility. 1369 */ 1370 switch (qi->tqi_type) { 1371 case HAL_TX_QUEUE_BEACON: /* beacon frames */ 1372 qmisc |= AR_Q_MISC_FSP_DBA_GATED 1373 | AR_Q_MISC_BEACON_USE 1374 | AR_Q_MISC_CBR_INCR_DIS1; 1375 1376 dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, 1377 AR_D_MISC_ARB_LOCKOUT_CNTRL) 1378 | AR_D_MISC_BEACON_USE 1379 | AR_D_MISC_POST_FR_BKOFF_DIS; 1380 break; 1381 case HAL_TX_QUEUE_CAB: /* CAB frames */ 1382 /* 1383 * No longer Enable AR_Q_MISC_RDYTIME_EXP_POLICY, 1384 * There is an issue with the CAB Queue 1385 * not properly refreshing the Tx descriptor if 1386 * the TXE clear setting is used. 1387 */ 1388 qmisc |= AR_Q_MISC_FSP_DBA_GATED 1389 | AR_Q_MISC_CBR_INCR_DIS1 1390 | AR_Q_MISC_CBR_INCR_DIS0; 1391 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: CAB: tqi_readyTime = %d\n", 1392 __func__, qi->tqi_readyTime); 1393 if (qi->tqi_readyTime) { 1394 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, 1395 "%s: using tqi_readyTime\n", __func__); 1396 OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), 1397 SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT) | 1398 AR_Q_RDYTIMECFG_ENA); 1399 } else { 1400 int value; 1401 /* 1402 * NB: don't set default ready time if driver 1403 * has explicitly specified something. This is 1404 * here solely for backwards compatibility. 1405 */ 1406 /* 1407 * XXX for now, hard-code a CAB interval of 70% 1408 * XXX of the total beacon interval. 1409 * 1410 * XXX This keeps Merlin and later based MACs 1411 * XXX quite a bit happier (stops stuck beacons, 1412 * XXX which I gather is because of such a long 1413 * XXX cabq time.) 1414 */ 1415 value = (ahp->ah_beaconInterval * 50 / 100) 1416 - ah->ah_config.ah_additional_swba_backoff 1417 - ah->ah_config.ah_sw_beacon_response_time 1418 + ah->ah_config.ah_dma_beacon_response_time; 1419 /* 1420 * XXX Ensure it isn't too low - nothing lower 1421 * XXX than 10 TU 1422 */ 1423 if (value < 10) 1424 value = 10; 1425 HALDEBUG(ah, HAL_DEBUG_TXQUEUE, 1426 "%s: defaulting to rdytime = %d uS\n", 1427 __func__, value); 1428 OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), 1429 SM(TU_TO_USEC(value), AR_Q_RDYTIMECFG_INT) | 1430 AR_Q_RDYTIMECFG_ENA); 1431 } 1432 dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, 1433 AR_D_MISC_ARB_LOCKOUT_CNTRL); 1434 break; 1435 case HAL_TX_QUEUE_PSPOLL: 1436 qmisc |= AR_Q_MISC_CBR_INCR_DIS1; 1437 break; 1438 case HAL_TX_QUEUE_UAPSD: 1439 dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS; 1440 break; 1441 default: /* NB: silence compiler */ 1442 break; 1443 } 1444 1445 OS_REG_WRITE(ah, AR_QMISC(q), qmisc); 1446 OS_REG_WRITE(ah, AR_DMISC(q), dmisc); 1447 1448 /* Setup compression scratchpad buffer */ 1449 /* 1450 * XXX: calling this asynchronously to queue operation can 1451 * cause unexpected behavior!!! 1452 */ 1453 if (qi->tqi_physCompBuf) { 1454 HALASSERT(qi->tqi_type == HAL_TX_QUEUE_DATA || 1455 qi->tqi_type == HAL_TX_QUEUE_UAPSD); 1456 OS_REG_WRITE(ah, AR_Q_CBBS, (80 + 2*q)); 1457 OS_REG_WRITE(ah, AR_Q_CBBA, qi->tqi_physCompBuf); 1458 OS_REG_WRITE(ah, AR_Q_CBC, HAL_COMP_BUF_MAX_SIZE/1024); 1459 OS_REG_WRITE(ah, AR_Q0_MISC + 4*q, 1460 OS_REG_READ(ah, AR_Q0_MISC + 4*q) 1461 | AR_Q_MISC_QCU_COMP_EN); 1462 } 1463 1464 /* 1465 * Always update the secondary interrupt mask registers - this 1466 * could be a new queue getting enabled in a running system or 1467 * hw getting re-initialized during a reset! 1468 * 1469 * Since we don't differentiate between tx interrupts corresponding 1470 * to individual queues - secondary tx mask regs are always unmasked; 1471 * tx interrupts are enabled/disabled for all queues collectively 1472 * using the primary mask reg 1473 */ 1474 if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE) 1475 ahp->ah_txOkInterruptMask |= 1 << q; 1476 else 1477 ahp->ah_txOkInterruptMask &= ~(1 << q); 1478 if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE) 1479 ahp->ah_txErrInterruptMask |= 1 << q; 1480 else 1481 ahp->ah_txErrInterruptMask &= ~(1 << q); 1482 if (qi->tqi_qflags & HAL_TXQ_TXDESCINT_ENABLE) 1483 ahp->ah_txDescInterruptMask |= 1 << q; 1484 else 1485 ahp->ah_txDescInterruptMask &= ~(1 << q); 1486 if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE) 1487 ahp->ah_txEolInterruptMask |= 1 << q; 1488 else 1489 ahp->ah_txEolInterruptMask &= ~(1 << q); 1490 if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE) 1491 ahp->ah_txUrnInterruptMask |= 1 << q; 1492 else 1493 ahp->ah_txUrnInterruptMask &= ~(1 << q); 1494 setTxQInterrupts(ah, qi); 1495 1496 return AH_TRUE; 1497 } 1498 #undef TU_TO_USEC 1499