1 /* 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * Copyright (c) 2002-2008 Atheros Communications, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 * 17 * $FreeBSD$ 18 */ 19 #include "opt_ah.h" 20 21 #include "ah.h" 22 #include "ah_internal.h" 23 #include "ah_devid.h" 24 25 #include "ah_eeprom_v14.h" 26 27 #include "ar5416/ar5416.h" 28 #include "ar5416/ar5416reg.h" 29 #include "ar5416/ar5416phy.h" 30 31 /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */ 32 #define EEP_MINOR(_ah) \ 33 (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK) 34 #define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2) 35 #define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3) 36 37 /* Additional Time delay to wait after activiting the Base band */ 38 #define BASE_ACTIVATE_DELAY 100 /* 100 usec */ 39 #define PLL_SETTLE_DELAY 300 /* 300 usec */ 40 #define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */ 41 42 static void ar5416InitDMA(struct ath_hal *ah); 43 static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *); 44 static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode); 45 static void ar5416InitQoS(struct ath_hal *ah); 46 static void ar5416InitUserSettings(struct ath_hal *ah); 47 static void ar5416UpdateChainMasks(struct ath_hal *ah, HAL_BOOL is_ht); 48 static void ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *); 49 50 #if 0 51 static HAL_BOOL ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *); 52 #endif 53 static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *); 54 55 static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah); 56 static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type); 57 static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah, 58 struct ar5416eeprom *pEepData, 59 const struct ieee80211_channel *chan, int16_t *ratesArray, 60 uint16_t cfgCtl, uint16_t AntennaReduction, 61 uint16_t twiceMaxRegulatoryPower, 62 uint16_t powerLimit); 63 static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan); 64 static void ar5416MarkPhyInactive(struct ath_hal *ah); 65 66 /* 67 * Places the device in and out of reset and then places sane 68 * values in the registers based on EEPROM config, initialization 69 * vectors (as determined by the mode), and station configuration 70 * 71 * bChannelChange is used to preserve DMA/PCU registers across 72 * a HW Reset during channel change. 73 */ 74 HAL_BOOL 75 ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode, 76 struct ieee80211_channel *chan, 77 HAL_BOOL bChannelChange, HAL_STATUS *status) 78 { 79 #define N(a) (sizeof (a) / sizeof (a[0])) 80 #define FAIL(_code) do { ecode = _code; goto bad; } while (0) 81 struct ath_hal_5212 *ahp = AH5212(ah); 82 HAL_CHANNEL_INTERNAL *ichan; 83 uint32_t saveDefAntenna, saveLedState; 84 uint32_t macStaId1; 85 uint16_t rfXpdGain[2]; 86 HAL_STATUS ecode; 87 uint32_t powerVal, rssiThrReg; 88 uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow; 89 int i; 90 uint64_t tsf = 0; 91 92 OS_MARK(ah, AH_MARK_RESET, bChannelChange); 93 94 /* Bring out of sleep mode */ 95 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) { 96 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n", 97 __func__); 98 FAIL(HAL_EIO); 99 } 100 101 /* 102 * Map public channel to private. 103 */ 104 ichan = ath_hal_checkchannel(ah, chan); 105 if (ichan == AH_NULL) 106 FAIL(HAL_EINVAL); 107 switch (opmode) { 108 case HAL_M_STA: 109 case HAL_M_IBSS: 110 case HAL_M_HOSTAP: 111 case HAL_M_MONITOR: 112 break; 113 default: 114 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n", 115 __func__, opmode); 116 FAIL(HAL_EINVAL); 117 break; 118 } 119 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1); 120 121 /* XXX Turn on fast channel change for 5416 */ 122 /* 123 * Preserve the bmiss rssi threshold and count threshold 124 * across resets 125 */ 126 rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR); 127 /* If reg is zero, first time thru set to default val */ 128 if (rssiThrReg == 0) 129 rssiThrReg = INIT_RSSI_THR; 130 131 /* 132 * Preserve the antenna on a channel change 133 */ 134 saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA); 135 if (saveDefAntenna == 0) /* XXX magic constants */ 136 saveDefAntenna = 1; 137 138 /* Save hardware flag before chip reset clears the register */ 139 macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & 140 (AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT); 141 142 /* Save led state from pci config register */ 143 saveLedState = OS_REG_READ(ah, AR_MAC_LED) & 144 (AR_MAC_LED_ASSOC | AR_MAC_LED_MODE | 145 AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW); 146 147 /* For chips on which the RTC reset is done, save TSF before it gets cleared */ 148 if (AR_SREV_HOWL(ah) || 149 (AR_SREV_MERLIN(ah) && 150 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) || 151 (ah->ah_config.ah_force_full_reset)) 152 tsf = ar5416GetTsf64(ah); 153 154 /* Mark PHY as inactive; marked active in ar5416InitBB() */ 155 ar5416MarkPhyInactive(ah); 156 157 if (!ar5416ChipReset(ah, chan)) { 158 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__); 159 FAIL(HAL_EIO); 160 } 161 162 /* Restore TSF */ 163 if (tsf) 164 ar5416SetTsf64(ah, tsf); 165 166 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); 167 if (AR_SREV_MERLIN_10_OR_LATER(ah)) 168 OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); 169 170 AH5416(ah)->ah_writeIni(ah, chan); 171 172 if(AR_SREV_KIWI_13_OR_LATER(ah) ) { 173 /* Enable ASYNC FIFO */ 174 OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, 175 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL); 176 OS_REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO); 177 OS_REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, 178 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); 179 OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, 180 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); 181 } 182 183 /* Override ini values (that can be overriden in this fashion) */ 184 ar5416OverrideIni(ah, chan); 185 186 /* Setup 11n MAC/Phy mode registers */ 187 ar5416Set11nRegs(ah, chan); 188 189 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); 190 191 /* 192 * Some AR91xx SoC devices frequently fail to accept TSF writes 193 * right after the chip reset. When that happens, write a new 194 * value after the initvals have been applied, with an offset 195 * based on measured time difference 196 */ 197 if (AR_SREV_HOWL(ah) && (ar5416GetTsf64(ah) < tsf)) { 198 tsf += 1500; 199 ar5416SetTsf64(ah, tsf); 200 } 201 202 HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n", 203 __func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK)); 204 HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n", 205 __func__, OS_REG_READ(ah,AR_PHY_ADC_CTL)); 206 207 /* 208 * Setup ah_tx_chainmask / ah_rx_chainmask before we fiddle 209 * with enabling the TX/RX radio chains. 210 */ 211 ar5416UpdateChainMasks(ah, IEEE80211_IS_CHAN_HT(chan)); 212 /* 213 * This routine swaps the analog chains - it should be done 214 * before any radio register twiddling is done. 215 */ 216 ar5416InitChainMasks(ah); 217 218 /* Setup the open-loop power calibration if required */ 219 if (ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { 220 AH5416(ah)->ah_olcInit(ah); 221 AH5416(ah)->ah_olcTempCompensation(ah); 222 } 223 224 /* Setup the transmit power values. */ 225 if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) { 226 HALDEBUG(ah, HAL_DEBUG_ANY, 227 "%s: error init'ing transmit power\n", __func__); 228 FAIL(HAL_EIO); 229 } 230 231 /* Write the analog registers */ 232 if (!ahp->ah_rfHal->setRfRegs(ah, chan, 233 IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) { 234 HALDEBUG(ah, HAL_DEBUG_ANY, 235 "%s: ar5212SetRfRegs failed\n", __func__); 236 FAIL(HAL_EIO); 237 } 238 239 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */ 240 if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan)) 241 ar5416SetDeltaSlope(ah, chan); 242 243 AH5416(ah)->ah_spurMitigate(ah, chan); 244 245 /* Setup board specific options for EEPROM version 3 */ 246 if (!ah->ah_setBoardValues(ah, chan)) { 247 HALDEBUG(ah, HAL_DEBUG_ANY, 248 "%s: error setting board options\n", __func__); 249 FAIL(HAL_EIO); 250 } 251 252 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); 253 254 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr)); 255 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4) 256 | macStaId1 257 | AR_STA_ID1_RTS_USE_DEF 258 | ahp->ah_staId1Defaults 259 ); 260 ar5212SetOperatingMode(ah, opmode); 261 262 /* Set Venice BSSID mask according to current state */ 263 OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask)); 264 OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4)); 265 266 /* Restore previous led state */ 267 if (AR_SREV_HOWL(ah)) 268 OS_REG_WRITE(ah, AR_MAC_LED, 269 AR_MAC_LED_ASSOC_ACTIVE | AR_CFG_SCLK_32KHZ); 270 else 271 OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) | 272 saveLedState); 273 274 /* Start TSF2 for generic timer 8-15 */ 275 #ifdef NOTYET 276 if (AR_SREV_KIWI(ah)) 277 ar5416StartTsf2(ah); 278 #endif 279 280 /* Restore previous antenna */ 281 OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); 282 283 /* then our BSSID and associate id */ 284 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid)); 285 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) | 286 (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S); 287 288 /* Restore bmiss rssi & count thresholds */ 289 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr); 290 291 OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */ 292 293 /* Restore bmiss rssi & count thresholds */ 294 OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg); 295 296 if (!ar5212SetChannel(ah, chan)) 297 FAIL(HAL_EIO); 298 299 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); 300 301 /* Set 1:1 QCU to DCU mapping for all queues */ 302 for (i = 0; i < AR_NUM_DCU; i++) 303 OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); 304 305 ahp->ah_intrTxqs = 0; 306 for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++) 307 ah->ah_resetTxQueue(ah, i); 308 309 ar5416InitIMR(ah, opmode); 310 ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1); 311 ar5416InitQoS(ah); 312 /* This may override the AR_DIAG_SW register */ 313 ar5416InitUserSettings(ah); 314 315 if (AR_SREV_KIWI_13_OR_LATER(ah)) { 316 /* 317 * Enable ASYNC FIFO 318 * 319 * If Async FIFO is enabled, the following counters change 320 * as MAC now runs at 117 Mhz instead of 88/44MHz when 321 * async FIFO is disabled. 322 * 323 * Overwrite the delay/timeouts initialized in ProcessIni() 324 * above. 325 */ 326 OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 327 AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR); 328 OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, 329 AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR); 330 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 331 AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR); 332 333 OS_REG_WRITE(ah, AR_TIME_OUT, 334 AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR); 335 OS_REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR); 336 337 OS_REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER, 338 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); 339 OS_REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN, 340 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); 341 } 342 343 if (AR_SREV_KIWI_13_OR_LATER(ah)) { 344 /* Enable AGGWEP to accelerate encryption engine */ 345 OS_REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 346 AR_PCU_MISC_MODE2_ENABLE_AGGWEP); 347 } 348 349 350 /* 351 * disable seq number generation in hw 352 */ 353 OS_REG_WRITE(ah, AR_STA_ID1, 354 OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM); 355 356 ar5416InitDMA(ah); 357 358 /* 359 * program OBS bus to see MAC interrupts 360 */ 361 OS_REG_WRITE(ah, AR_OBS, 8); 362 363 /* 364 * Disable the "general" TX/RX mitigation timers. 365 */ 366 OS_REG_WRITE(ah, AR_MIRT, 0); 367 368 #ifdef AH_AR5416_INTERRUPT_MITIGATION 369 /* 370 * This initialises the RX interrupt mitigation timers. 371 * 372 * The mitigation timers begin at idle and are triggered 373 * upon the RXOK of a single frame (or sub-frame, for A-MPDU.) 374 * Then, the RX mitigation interrupt will fire: 375 * 376 * + 250uS after the last RX'ed frame, or 377 * + 700uS after the first RX'ed frame 378 * 379 * Thus, the LAST field dictates the extra latency 380 * induced by the RX mitigation method and the FIRST 381 * field dictates how long to delay before firing an 382 * RX mitigation interrupt. 383 * 384 * Please note this only seems to be for RXOK frames; 385 * not CRC or PHY error frames. 386 * 387 */ 388 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 250); 389 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 700); 390 #endif 391 ar5416InitBB(ah, chan); 392 393 /* Setup compression registers */ 394 ar5212SetCompRegs(ah); /* XXX not needed? */ 395 396 /* 397 * 5416 baseband will check the per rate power table 398 * and select the lower of the two 399 */ 400 ackTpcPow = 63; 401 ctsTpcPow = 63; 402 chirpTpcPow = 63; 403 powerVal = SM(ackTpcPow, AR_TPC_ACK) | 404 SM(ctsTpcPow, AR_TPC_CTS) | 405 SM(chirpTpcPow, AR_TPC_CHIRP); 406 OS_REG_WRITE(ah, AR_TPC, powerVal); 407 408 if (!ar5416InitCal(ah, chan)) 409 FAIL(HAL_ESELFTEST); 410 411 ar5416RestoreChainMask(ah); 412 413 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */ 414 415 if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan)) 416 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; 417 418 if (AR_SREV_HOWL(ah)) { 419 /* 420 * Enable the MBSSID block-ack fix for HOWL. 421 * This feature is only supported on Howl 1.4, but it is safe to 422 * set bit 22 of STA_ID1 on other Howl revisions (1.1, 1.2, 1.3), 423 * since bit 22 is unused in those Howl revisions. 424 */ 425 unsigned int reg; 426 reg = (OS_REG_READ(ah, AR_STA_ID1) | (1<<22)); 427 OS_REG_WRITE(ah,AR_STA_ID1, reg); 428 ath_hal_printf(ah, "MBSSID Set bit 22 of AR_STA_ID 0x%x\n", reg); 429 } 430 431 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__); 432 433 OS_MARK(ah, AH_MARK_RESET_DONE, 0); 434 435 return AH_TRUE; 436 bad: 437 OS_MARK(ah, AH_MARK_RESET_DONE, ecode); 438 if (status != AH_NULL) 439 *status = ecode; 440 return AH_FALSE; 441 #undef FAIL 442 #undef N 443 } 444 445 #if 0 446 /* 447 * This channel change evaluates whether the selected hardware can 448 * perform a synthesizer-only channel change (no reset). If the 449 * TX is not stopped, or the RFBus cannot be granted in the given 450 * time, the function returns false as a reset is necessary 451 */ 452 HAL_BOOL 453 ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan) 454 { 455 uint32_t ulCount; 456 uint32_t data, synthDelay, qnum; 457 uint16_t rfXpdGain[4]; 458 struct ath_hal_5212 *ahp = AH5212(ah); 459 HAL_CHANNEL_INTERNAL *ichan; 460 461 /* 462 * Map public channel to private. 463 */ 464 ichan = ath_hal_checkchannel(ah, chan); 465 466 /* TX must be stopped or RF Bus grant will not work */ 467 for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) { 468 if (ar5212NumTxPending(ah, qnum)) { 469 HALDEBUG(ah, HAL_DEBUG_ANY, 470 "%s: frames pending on queue %d\n", __func__, qnum); 471 return AH_FALSE; 472 } 473 } 474 475 /* 476 * Kill last Baseband Rx Frame - Request analog bus grant 477 */ 478 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST); 479 if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) { 480 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n", 481 __func__); 482 return AH_FALSE; 483 } 484 485 ar5416Set11nRegs(ah, chan); /* NB: setup 5416-specific regs */ 486 487 /* Change the synth */ 488 if (!ar5212SetChannel(ah, chan)) 489 return AH_FALSE; 490 491 /* Setup the transmit power values. */ 492 if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) { 493 HALDEBUG(ah, HAL_DEBUG_ANY, 494 "%s: error init'ing transmit power\n", __func__); 495 return AH_FALSE; 496 } 497 498 /* 499 * Wait for the frequency synth to settle (synth goes on 500 * via PHY_ACTIVE_EN). Read the phy active delay register. 501 * Value is in 100ns increments. 502 */ 503 data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; 504 if (IS_CHAN_CCK(ichan)) { 505 synthDelay = (4 * data) / 22; 506 } else { 507 synthDelay = data / 10; 508 } 509 510 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY); 511 512 /* Release the RFBus Grant */ 513 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0); 514 515 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */ 516 if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) { 517 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3); 518 ar5212SetSpurMitigation(ah, chan); 519 ar5416SetDeltaSlope(ah, chan); 520 } 521 522 /* XXX spur mitigation for Melin */ 523 524 if (!IEEE80211_IS_CHAN_DFS(chan)) 525 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; 526 527 ichan->channel_time = 0; 528 ichan->tsf_last = ar5416GetTsf64(ah); 529 ar5212TxEnable(ah, AH_TRUE); 530 return AH_TRUE; 531 } 532 #endif 533 534 static void 535 ar5416InitDMA(struct ath_hal *ah) 536 { 537 struct ath_hal_5212 *ahp = AH5212(ah); 538 539 /* 540 * set AHB_MODE not to do cacheline prefetches 541 */ 542 OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN); 543 544 /* 545 * let mac dma reads be in 128 byte chunks 546 */ 547 OS_REG_WRITE(ah, AR_TXCFG, 548 (OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B); 549 550 /* 551 * let mac dma writes be in 128 byte chunks 552 */ 553 OS_REG_WRITE(ah, AR_RXCFG, 554 (OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B); 555 556 /* restore TX trigger level */ 557 OS_REG_WRITE(ah, AR_TXCFG, 558 (OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) | 559 SM(ahp->ah_txTrigLev, AR_FTRIG)); 560 561 /* 562 * Setup receive FIFO threshold to hold off TX activities 563 */ 564 OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); 565 566 /* 567 * reduce the number of usable entries in PCU TXBUF to avoid 568 * wrap around. 569 */ 570 if (AR_SREV_KITE(ah)) 571 /* 572 * For AR9285 the number of Fifos are reduced to half. 573 * So set the usable tx buf size also to half to 574 * avoid data/delimiter underruns 575 */ 576 OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE); 577 else 578 OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE); 579 } 580 581 static void 582 ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan) 583 { 584 uint32_t synthDelay; 585 586 /* 587 * Wait for the frequency synth to settle (synth goes on 588 * via AR_PHY_ACTIVE_EN). Read the phy active delay register. 589 * Value is in 100ns increments. 590 */ 591 synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; 592 if (IEEE80211_IS_CHAN_CCK(chan)) { 593 synthDelay = (4 * synthDelay) / 22; 594 } else { 595 synthDelay /= 10; 596 } 597 598 /* Turn on PLL on 5416 */ 599 HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n", 600 __func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz"); 601 602 /* Activate the PHY (includes baseband activate and synthesizer on) */ 603 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); 604 605 /* 606 * If the AP starts the calibration before the base band timeout 607 * completes we could get rx_clear false triggering. Add an 608 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition 609 * does not happen. 610 */ 611 if (IEEE80211_IS_CHAN_HALF(chan)) { 612 OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY); 613 } else if (IEEE80211_IS_CHAN_QUARTER(chan)) { 614 OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY); 615 } else { 616 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY); 617 } 618 } 619 620 static void 621 ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode) 622 { 623 struct ath_hal_5212 *ahp = AH5212(ah); 624 625 /* 626 * Setup interrupt handling. Note that ar5212ResetTxQueue 627 * manipulates the secondary IMR's as queues are enabled 628 * and disabled. This is done with RMW ops to insure the 629 * settings we make here are preserved. 630 */ 631 ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN 632 | AR_IMR_RXERR | AR_IMR_RXORN 633 | AR_IMR_BCNMISC; 634 635 #ifdef AH_AR5416_INTERRUPT_MITIGATION 636 ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 637 #else 638 ahp->ah_maskReg |= AR_IMR_RXOK; 639 #endif 640 ahp->ah_maskReg |= AR_IMR_TXOK; 641 642 if (opmode == HAL_M_HOSTAP) 643 ahp->ah_maskReg |= AR_IMR_MIB; 644 OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg); 645 646 #ifdef ADRIAN_NOTYET 647 /* This is straight from ath9k */ 648 if (! AR_SREV_HOWL(ah)) { 649 OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); 650 OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); 651 OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); 652 } 653 #endif 654 655 /* Enable bus errors that are OR'd to set the HIUERR bit */ 656 #if 0 657 OS_REG_WRITE(ah, AR_IMR_S2, 658 OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST); 659 #endif 660 } 661 662 static void 663 ar5416InitQoS(struct ath_hal *ah) 664 { 665 /* QoS support */ 666 OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */ 667 OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */ 668 669 /* Turn on NOACK Support for QoS packets */ 670 OS_REG_WRITE(ah, AR_NOACK, 671 SM(2, AR_NOACK_2BIT_VALUE) | 672 SM(5, AR_NOACK_BIT_OFFSET) | 673 SM(0, AR_NOACK_BYTE_OFFSET)); 674 675 /* 676 * initialize TXOP for all TIDs 677 */ 678 OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); 679 OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); 680 OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); 681 OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); 682 OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); 683 } 684 685 static void 686 ar5416InitUserSettings(struct ath_hal *ah) 687 { 688 struct ath_hal_5212 *ahp = AH5212(ah); 689 690 /* Restore user-specified settings */ 691 if (ahp->ah_miscMode != 0) 692 OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) 693 | ahp->ah_miscMode); 694 if (ahp->ah_sifstime != (u_int) -1) 695 ar5212SetSifsTime(ah, ahp->ah_sifstime); 696 if (ahp->ah_slottime != (u_int) -1) 697 ar5212SetSlotTime(ah, ahp->ah_slottime); 698 if (ahp->ah_acktimeout != (u_int) -1) 699 ar5212SetAckTimeout(ah, ahp->ah_acktimeout); 700 if (ahp->ah_ctstimeout != (u_int) -1) 701 ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout); 702 if (AH_PRIVATE(ah)->ah_diagreg != 0) 703 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg); 704 if (AH5416(ah)->ah_globaltxtimeout != (u_int) -1) 705 ar5416SetGlobalTxTimeout(ah, AH5416(ah)->ah_globaltxtimeout); 706 } 707 708 static void 709 ar5416SetRfMode(struct ath_hal *ah, const struct ieee80211_channel *chan) 710 { 711 uint32_t rfMode; 712 713 if (chan == AH_NULL) 714 return; 715 716 /* treat channel B as channel G , no B mode suport in owl */ 717 rfMode = IEEE80211_IS_CHAN_CCK(chan) ? 718 AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; 719 720 if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) { 721 /* phy mode bits for 5GHz channels require Fast Clock */ 722 rfMode |= AR_PHY_MODE_DYNAMIC 723 | AR_PHY_MODE_DYN_CCK_DISABLE; 724 } else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) { 725 rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ? 726 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ; 727 } 728 729 /* 730 * Set half/quarter mode flags if required. 731 * 732 * This doesn't change the IFS timings at all; that needs to 733 * be done as part of the MAC setup. Similarly, the PLL 734 * configuration also needs some changes for the half/quarter 735 * rate clock. 736 */ 737 if (IEEE80211_IS_CHAN_HALF(chan)) 738 rfMode |= AR_PHY_MODE_HALF; 739 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 740 rfMode |= AR_PHY_MODE_QUARTER; 741 742 OS_REG_WRITE(ah, AR_PHY_MODE, rfMode); 743 } 744 745 /* 746 * Places the hardware into reset and then pulls it out of reset 747 */ 748 HAL_BOOL 749 ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan) 750 { 751 OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0); 752 /* 753 * Warm reset is optimistic for open-loop TX power control. 754 */ 755 if (AR_SREV_MERLIN(ah) && 756 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { 757 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) 758 return AH_FALSE; 759 } else if (ah->ah_config.ah_force_full_reset) { 760 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) 761 return AH_FALSE; 762 } else { 763 if (!ar5416SetResetReg(ah, HAL_RESET_WARM)) 764 return AH_FALSE; 765 } 766 767 /* Bring out of sleep mode (AGAIN) */ 768 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 769 return AH_FALSE; 770 771 #ifdef notyet 772 ahp->ah_chipFullSleep = AH_FALSE; 773 #endif 774 775 AH5416(ah)->ah_initPLL(ah, chan); 776 777 /* 778 * Perform warm reset before the mode/PLL/turbo registers 779 * are changed in order to deactivate the radio. Mode changes 780 * with an active radio can result in corrupted shifts to the 781 * radio device. 782 */ 783 ar5416SetRfMode(ah, chan); 784 785 return AH_TRUE; 786 } 787 788 /* 789 * Delta slope coefficient computation. 790 * Required for OFDM operation. 791 */ 792 static void 793 ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled, 794 uint32_t *coef_mantissa, uint32_t *coef_exponent) 795 { 796 #define COEF_SCALE_S 24 797 uint32_t coef_exp, coef_man; 798 /* 799 * ALGO -> coef_exp = 14-floor(log2(coef)); 800 * floor(log2(x)) is the highest set bit position 801 */ 802 for (coef_exp = 31; coef_exp > 0; coef_exp--) 803 if ((coef_scaled >> coef_exp) & 0x1) 804 break; 805 /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */ 806 HALASSERT(coef_exp); 807 coef_exp = 14 - (coef_exp - COEF_SCALE_S); 808 809 /* 810 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5); 811 * The coefficient is already shifted up for scaling 812 */ 813 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); 814 815 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); 816 *coef_exponent = coef_exp - 16; 817 818 #undef COEF_SCALE_S 819 } 820 821 void 822 ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan) 823 { 824 #define INIT_CLOCKMHZSCALED 0x64000000 825 uint32_t coef_scaled, ds_coef_exp, ds_coef_man; 826 uint32_t clockMhzScaled; 827 828 CHAN_CENTERS centers; 829 830 /* half and quarter rate can divide the scaled clock by 2 or 4 respectively */ 831 /* scale for selected channel bandwidth */ 832 clockMhzScaled = INIT_CLOCKMHZSCALED; 833 if (IEEE80211_IS_CHAN_TURBO(chan)) 834 clockMhzScaled <<= 1; 835 else if (IEEE80211_IS_CHAN_HALF(chan)) 836 clockMhzScaled >>= 1; 837 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 838 clockMhzScaled >>= 2; 839 840 /* 841 * ALGO -> coef = 1e8/fcarrier*fclock/40; 842 * scaled coef to provide precision for this floating calculation 843 */ 844 ar5416GetChannelCenters(ah, chan, ¢ers); 845 coef_scaled = clockMhzScaled / centers.synth_center; 846 847 ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); 848 849 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3, 850 AR_PHY_TIMING3_DSC_MAN, ds_coef_man); 851 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3, 852 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp); 853 854 /* 855 * For Short GI, 856 * scaled coeff is 9/10 that of normal coeff 857 */ 858 coef_scaled = (9 * coef_scaled)/10; 859 860 ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); 861 862 /* for short gi */ 863 OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI, 864 AR_PHY_HALFGI_DSC_MAN, ds_coef_man); 865 OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI, 866 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp); 867 #undef INIT_CLOCKMHZSCALED 868 } 869 870 /* 871 * Set a limit on the overall output power. Used for dynamic 872 * transmit power control and the like. 873 * 874 * NB: limit is in units of 0.5 dbM. 875 */ 876 HAL_BOOL 877 ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit) 878 { 879 uint16_t dummyXpdGains[2]; 880 881 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER); 882 return ah->ah_setTxPower(ah, AH_PRIVATE(ah)->ah_curchan, 883 dummyXpdGains); 884 } 885 886 HAL_BOOL 887 ar5416GetChipPowerLimits(struct ath_hal *ah, 888 struct ieee80211_channel *chan) 889 { 890 struct ath_hal_5212 *ahp = AH5212(ah); 891 int16_t minPower, maxPower; 892 893 /* 894 * Get Pier table max and min powers. 895 */ 896 if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) { 897 /* NB: rf code returns 1/4 dBm units, convert */ 898 chan->ic_maxpower = maxPower / 2; 899 chan->ic_minpower = minPower / 2; 900 } else { 901 HALDEBUG(ah, HAL_DEBUG_ANY, 902 "%s: no min/max power for %u/0x%x\n", 903 __func__, chan->ic_freq, chan->ic_flags); 904 chan->ic_maxpower = AR5416_MAX_RATE_POWER; 905 chan->ic_minpower = 0; 906 } 907 HALDEBUG(ah, HAL_DEBUG_RESET, 908 "Chan %d: MaxPow = %d MinPow = %d\n", 909 chan->ic_freq, chan->ic_maxpower, chan->ic_minpower); 910 return AH_TRUE; 911 } 912 913 /************************************************************** 914 * ar5416WriteTxPowerRateRegisters 915 * 916 * Write the TX power rate registers from the raw values given 917 * in ratesArray[]. 918 * 919 * The CCK and HT40 rate registers are only written if needed. 920 * HT20 and 11g/11a OFDM rate registers are always written. 921 * 922 * The values written are raw values which should be written 923 * to the registers - so it's up to the caller to pre-adjust 924 * them (eg CCK power offset value, or Merlin TX power offset, 925 * etc.) 926 */ 927 void 928 ar5416WriteTxPowerRateRegisters(struct ath_hal *ah, 929 const struct ieee80211_channel *chan, const int16_t ratesArray[]) 930 { 931 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s)) 932 933 /* Write the OFDM power per rate set */ 934 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, 935 POW_SM(ratesArray[rate18mb], 24) 936 | POW_SM(ratesArray[rate12mb], 16) 937 | POW_SM(ratesArray[rate9mb], 8) 938 | POW_SM(ratesArray[rate6mb], 0) 939 ); 940 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, 941 POW_SM(ratesArray[rate54mb], 24) 942 | POW_SM(ratesArray[rate48mb], 16) 943 | POW_SM(ratesArray[rate36mb], 8) 944 | POW_SM(ratesArray[rate24mb], 0) 945 ); 946 947 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 948 /* Write the CCK power per rate set */ 949 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, 950 POW_SM(ratesArray[rate2s], 24) 951 | POW_SM(ratesArray[rate2l], 16) 952 | POW_SM(ratesArray[rateXr], 8) /* XR target power */ 953 | POW_SM(ratesArray[rate1l], 0) 954 ); 955 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, 956 POW_SM(ratesArray[rate11s], 24) 957 | POW_SM(ratesArray[rate11l], 16) 958 | POW_SM(ratesArray[rate5_5s], 8) 959 | POW_SM(ratesArray[rate5_5l], 0) 960 ); 961 HALDEBUG(ah, HAL_DEBUG_RESET, 962 "%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n", 963 __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3), 964 OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4)); 965 } 966 967 /* Write the HT20 power per rate set */ 968 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, 969 POW_SM(ratesArray[rateHt20_3], 24) 970 | POW_SM(ratesArray[rateHt20_2], 16) 971 | POW_SM(ratesArray[rateHt20_1], 8) 972 | POW_SM(ratesArray[rateHt20_0], 0) 973 ); 974 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, 975 POW_SM(ratesArray[rateHt20_7], 24) 976 | POW_SM(ratesArray[rateHt20_6], 16) 977 | POW_SM(ratesArray[rateHt20_5], 8) 978 | POW_SM(ratesArray[rateHt20_4], 0) 979 ); 980 981 if (IEEE80211_IS_CHAN_HT40(chan)) { 982 /* Write the HT40 power per rate set */ 983 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, 984 POW_SM(ratesArray[rateHt40_3], 24) 985 | POW_SM(ratesArray[rateHt40_2], 16) 986 | POW_SM(ratesArray[rateHt40_1], 8) 987 | POW_SM(ratesArray[rateHt40_0], 0) 988 ); 989 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, 990 POW_SM(ratesArray[rateHt40_7], 24) 991 | POW_SM(ratesArray[rateHt40_6], 16) 992 | POW_SM(ratesArray[rateHt40_5], 8) 993 | POW_SM(ratesArray[rateHt40_4], 0) 994 ); 995 /* Write the Dup/Ext 40 power per rate set */ 996 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, 997 POW_SM(ratesArray[rateExtOfdm], 24) 998 | POW_SM(ratesArray[rateExtCck], 16) 999 | POW_SM(ratesArray[rateDupOfdm], 8) 1000 | POW_SM(ratesArray[rateDupCck], 0) 1001 ); 1002 } 1003 } 1004 1005 1006 /************************************************************** 1007 * ar5416SetTransmitPower 1008 * 1009 * Set the transmit power in the baseband for the given 1010 * operating channel and mode. 1011 */ 1012 HAL_BOOL 1013 ar5416SetTransmitPower(struct ath_hal *ah, 1014 const struct ieee80211_channel *chan, uint16_t *rfXpdGain) 1015 { 1016 #define N(a) (sizeof (a) / sizeof (a[0])) 1017 1018 MODAL_EEP_HEADER *pModal; 1019 struct ath_hal_5212 *ahp = AH5212(ah); 1020 int16_t ratesArray[Ar5416RateSize]; 1021 int16_t txPowerIndexOffset = 0; 1022 uint8_t ht40PowerIncForPdadc = 2; 1023 int i; 1024 1025 uint16_t cfgCtl; 1026 uint16_t powerLimit; 1027 uint16_t twiceAntennaReduction; 1028 uint16_t twiceMaxRegulatoryPower; 1029 int16_t maxPower; 1030 HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom; 1031 struct ar5416eeprom *pEepData = &ee->ee_base; 1032 1033 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1); 1034 1035 /* Setup info for the actual eeprom */ 1036 OS_MEMZERO(ratesArray, sizeof(ratesArray)); 1037 cfgCtl = ath_hal_getctl(ah, chan); 1038 powerLimit = chan->ic_maxregpower * 2; 1039 twiceAntennaReduction = chan->ic_maxantgain; 1040 twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit); 1041 pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]; 1042 HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n", 1043 __func__,chan->ic_freq, cfgCtl ); 1044 1045 if (IS_EEP_MINOR_V2(ah)) { 1046 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; 1047 } 1048 1049 if (!ar5416SetPowerPerRateTable(ah, pEepData, chan, 1050 &ratesArray[0],cfgCtl, 1051 twiceAntennaReduction, 1052 twiceMaxRegulatoryPower, powerLimit)) { 1053 HALDEBUG(ah, HAL_DEBUG_ANY, 1054 "%s: unable to set tx power per rate table\n", __func__); 1055 return AH_FALSE; 1056 } 1057 1058 if (!AH5416(ah)->ah_setPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) { 1059 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n", 1060 __func__); 1061 return AH_FALSE; 1062 } 1063 1064 maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]); 1065 1066 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1067 maxPower = AH_MAX(maxPower, ratesArray[rate1l]); 1068 } 1069 1070 if (IEEE80211_IS_CHAN_HT40(chan)) { 1071 maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]); 1072 } 1073 1074 ahp->ah_tx6PowerInHalfDbm = maxPower; 1075 AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower; 1076 ahp->ah_txPowerIndexOffset = txPowerIndexOffset; 1077 1078 /* 1079 * txPowerIndexOffset is set by the SetPowerTable() call - 1080 * adjust the rate table (0 offset if rates EEPROM not loaded) 1081 */ 1082 for (i = 0; i < N(ratesArray); i++) { 1083 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]); 1084 if (ratesArray[i] > AR5416_MAX_RATE_POWER) 1085 ratesArray[i] = AR5416_MAX_RATE_POWER; 1086 } 1087 1088 #ifdef AH_EEPROM_DUMP 1089 /* 1090 * Dump the rate array whilst it represents the intended dBm*2 1091 * values versus what's being adjusted before being programmed 1092 * in. Keep this in mind if you code up this function and enable 1093 * this debugging; the values won't necessarily be what's being 1094 * programmed into the hardware. 1095 */ 1096 ar5416PrintPowerPerRate(ah, ratesArray); 1097 #endif 1098 1099 /* 1100 * Merlin and later have a power offset, so subtract 1101 * pwr_table_offset * 2 from each value. The default 1102 * power offset is -5 dBm - ie, a register value of 0 1103 * equates to a TX power of -5 dBm. 1104 */ 1105 if (AR_SREV_MERLIN_20_OR_LATER(ah)) { 1106 int8_t pwr_table_offset; 1107 1108 (void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET, 1109 &pwr_table_offset); 1110 /* Underflow power gets clamped at raw value 0 */ 1111 /* Overflow power gets camped at AR5416_MAX_RATE_POWER */ 1112 for (i = 0; i < N(ratesArray); i++) { 1113 /* 1114 * + pwr_table_offset is in dBm 1115 * + ratesArray is in 1/2 dBm 1116 */ 1117 ratesArray[i] -= (pwr_table_offset * 2); 1118 if (ratesArray[i] < 0) 1119 ratesArray[i] = 0; 1120 else if (ratesArray[i] > AR5416_MAX_RATE_POWER) 1121 ratesArray[i] = AR5416_MAX_RATE_POWER; 1122 } 1123 } 1124 1125 /* 1126 * Adjust rates for OLC where needed 1127 * 1128 * The following CCK rates need adjusting when doing 2.4ghz 1129 * CCK transmission. 1130 * 1131 * + rate2s, rate2l, rate1l, rate11s, rate11l, rate5_5s, rate5_5l 1132 * + rateExtCck, rateDupCck 1133 * 1134 * They're adjusted here regardless. The hardware then gets 1135 * programmed as needed. 5GHz operation doesn't program in CCK 1136 * rates for legacy mode but they seem to be initialised for 1137 * HT40 regardless of channel type. 1138 */ 1139 if (AR_SREV_MERLIN_20_OR_LATER(ah) && 1140 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { 1141 int adj[] = { 1142 rate2s, rate2l, rate1l, rate11s, rate11l, 1143 rate5_5s, rate5_5l, rateExtCck, rateDupCck 1144 }; 1145 int cck_ofdm_delta = 2; 1146 int i; 1147 for (i = 0; i < N(adj); i++) { 1148 ratesArray[adj[i]] -= cck_ofdm_delta; 1149 if (ratesArray[adj[i]] < 0) 1150 ratesArray[adj[i]] = 0; 1151 } 1152 } 1153 1154 /* 1155 * Adjust the HT40 power to meet the correct target TX power 1156 * for 40MHz mode, based on TX power curves that are established 1157 * for 20MHz mode. 1158 * 1159 * XXX handle overflow/too high power level? 1160 */ 1161 if (IEEE80211_IS_CHAN_HT40(chan)) { 1162 ratesArray[rateHt40_0] += ht40PowerIncForPdadc; 1163 ratesArray[rateHt40_1] += ht40PowerIncForPdadc; 1164 ratesArray[rateHt40_2] += ht40PowerIncForPdadc; 1165 ratesArray[rateHt40_3] += ht40PowerIncForPdadc; 1166 ratesArray[rateHt40_4] += ht40PowerIncForPdadc; 1167 ratesArray[rateHt40_5] += ht40PowerIncForPdadc; 1168 ratesArray[rateHt40_6] += ht40PowerIncForPdadc; 1169 ratesArray[rateHt40_7] += ht40PowerIncForPdadc; 1170 } 1171 1172 /* Write the TX power rate registers */ 1173 ar5416WriteTxPowerRateRegisters(ah, chan, ratesArray); 1174 1175 /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */ 1176 OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB, 1177 POW_SM(pModal->pwrDecreaseFor3Chain, 6) 1178 | POW_SM(pModal->pwrDecreaseFor2Chain, 0) 1179 ); 1180 return AH_TRUE; 1181 #undef POW_SM 1182 #undef N 1183 } 1184 1185 /* 1186 * Exported call to check for a recent gain reading and return 1187 * the current state of the thermal calibration gain engine. 1188 */ 1189 HAL_RFGAIN 1190 ar5416GetRfgain(struct ath_hal *ah) 1191 { 1192 1193 return (HAL_RFGAIN_INACTIVE); 1194 } 1195 1196 /* 1197 * Places all of hardware into reset 1198 */ 1199 HAL_BOOL 1200 ar5416Disable(struct ath_hal *ah) 1201 { 1202 1203 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 1204 return AH_FALSE; 1205 if (! ar5416SetResetReg(ah, HAL_RESET_COLD)) 1206 return AH_FALSE; 1207 1208 AH5416(ah)->ah_initPLL(ah, AH_NULL); 1209 return (AH_TRUE); 1210 } 1211 1212 /* 1213 * Places the PHY and Radio chips into reset. A full reset 1214 * must be called to leave this state. The PCI/MAC/PCU are 1215 * not placed into reset as we must receive interrupt to 1216 * re-enable the hardware. 1217 */ 1218 HAL_BOOL 1219 ar5416PhyDisable(struct ath_hal *ah) 1220 { 1221 1222 if (! ar5416SetResetReg(ah, HAL_RESET_WARM)) 1223 return AH_FALSE; 1224 1225 AH5416(ah)->ah_initPLL(ah, AH_NULL); 1226 return (AH_TRUE); 1227 } 1228 1229 /* 1230 * Write the given reset bit mask into the reset register 1231 */ 1232 HAL_BOOL 1233 ar5416SetResetReg(struct ath_hal *ah, uint32_t type) 1234 { 1235 /* 1236 * Set force wake 1237 */ 1238 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1239 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1240 1241 switch (type) { 1242 case HAL_RESET_POWER_ON: 1243 return ar5416SetResetPowerOn(ah); 1244 case HAL_RESET_WARM: 1245 case HAL_RESET_COLD: 1246 return ar5416SetReset(ah, type); 1247 default: 1248 HALASSERT(AH_FALSE); 1249 return AH_FALSE; 1250 } 1251 } 1252 1253 static HAL_BOOL 1254 ar5416SetResetPowerOn(struct ath_hal *ah) 1255 { 1256 /* Power On Reset (Hard Reset) */ 1257 1258 /* 1259 * Set force wake 1260 * 1261 * If the MAC was running, previously calling 1262 * reset will wake up the MAC but it may go back to sleep 1263 * before we can start polling. 1264 * Set force wake stops that 1265 * This must be called before initiating a hard reset. 1266 */ 1267 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1268 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1269 1270 /* 1271 * PowerOn reset can be used in open loop power control or failure recovery. 1272 * If we do RTC reset while DMA is still running, hardware may corrupt memory. 1273 * Therefore, we need to reset AHB first to stop DMA. 1274 */ 1275 if (! AR_SREV_HOWL(ah)) 1276 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB); 1277 /* 1278 * RTC reset and clear 1279 */ 1280 OS_REG_WRITE(ah, AR_RTC_RESET, 0); 1281 OS_DELAY(20); 1282 1283 if (! AR_SREV_HOWL(ah)) 1284 OS_REG_WRITE(ah, AR_RC, 0); 1285 1286 OS_REG_WRITE(ah, AR_RTC_RESET, 1); 1287 1288 /* 1289 * Poll till RTC is ON 1290 */ 1291 if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) { 1292 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__); 1293 return AH_FALSE; 1294 } 1295 1296 return ar5416SetReset(ah, HAL_RESET_COLD); 1297 } 1298 1299 static HAL_BOOL 1300 ar5416SetReset(struct ath_hal *ah, int type) 1301 { 1302 uint32_t tmpReg, mask; 1303 uint32_t rst_flags; 1304 1305 #ifdef AH_SUPPORT_AR9130 /* Because of the AR9130 specific registers */ 1306 if (AR_SREV_HOWL(ah)) { 1307 HALDEBUG(ah, HAL_DEBUG_ANY, "[ath] HOWL: Fiddling with derived clk!\n"); 1308 uint32_t val = OS_REG_READ(ah, AR_RTC_DERIVED_CLK); 1309 val &= ~AR_RTC_DERIVED_CLK_PERIOD; 1310 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD); 1311 OS_REG_WRITE(ah, AR_RTC_DERIVED_CLK, val); 1312 (void) OS_REG_READ(ah, AR_RTC_DERIVED_CLK); 1313 } 1314 #endif /* AH_SUPPORT_AR9130 */ 1315 1316 /* 1317 * Force wake 1318 */ 1319 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1320 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1321 1322 #ifdef AH_SUPPORT_AR9130 1323 if (AR_SREV_HOWL(ah)) { 1324 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | 1325 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; 1326 } else { 1327 #endif /* AH_SUPPORT_AR9130 */ 1328 /* 1329 * Reset AHB 1330 * 1331 * (In case the last interrupt source was a bus timeout.) 1332 * XXX TODO: this is not the way to do it! It should be recorded 1333 * XXX by the interrupt handler and passed _into_ the 1334 * XXX reset path routine so this occurs. 1335 */ 1336 tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE); 1337 if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) { 1338 OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); 1339 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF); 1340 } else { 1341 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB); 1342 } 1343 rst_flags = AR_RTC_RC_MAC_WARM; 1344 if (type == HAL_RESET_COLD) 1345 rst_flags |= AR_RTC_RC_MAC_COLD; 1346 #ifdef AH_SUPPORT_AR9130 1347 } 1348 #endif /* AH_SUPPORT_AR9130 */ 1349 1350 OS_REG_WRITE(ah, AR_RTC_RC, rst_flags); 1351 1352 if (AR_SREV_HOWL(ah)) 1353 OS_DELAY(10000); 1354 else 1355 OS_DELAY(100); 1356 1357 /* 1358 * Clear resets and force wakeup 1359 */ 1360 OS_REG_WRITE(ah, AR_RTC_RC, 0); 1361 if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) { 1362 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__); 1363 return AH_FALSE; 1364 } 1365 1366 /* Clear AHB reset */ 1367 if (! AR_SREV_HOWL(ah)) 1368 OS_REG_WRITE(ah, AR_RC, 0); 1369 1370 if (AR_SREV_HOWL(ah)) 1371 OS_DELAY(50); 1372 1373 if (AR_SREV_HOWL(ah)) { 1374 uint32_t mask; 1375 mask = OS_REG_READ(ah, AR_CFG); 1376 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { 1377 HALDEBUG(ah, HAL_DEBUG_RESET, 1378 "CFG Byte Swap Set 0x%x\n", mask); 1379 } else { 1380 mask = 1381 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; 1382 OS_REG_WRITE(ah, AR_CFG, mask); 1383 HALDEBUG(ah, HAL_DEBUG_RESET, 1384 "Setting CFG 0x%x\n", OS_REG_READ(ah, AR_CFG)); 1385 } 1386 } else { 1387 if (type == HAL_RESET_COLD) { 1388 if (isBigEndian()) { 1389 /* 1390 * Set CFG, little-endian for descriptor accesses. 1391 */ 1392 mask = INIT_CONFIG_STATUS | AR_CFG_SWRD; 1393 #ifndef AH_NEED_DESC_SWAP 1394 mask |= AR_CFG_SWTD; 1395 #endif 1396 HALDEBUG(ah, HAL_DEBUG_RESET, 1397 "%s Applying descriptor swap\n", __func__); 1398 OS_REG_WRITE(ah, AR_CFG, mask); 1399 } else 1400 OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS); 1401 } 1402 } 1403 1404 return AH_TRUE; 1405 } 1406 1407 void 1408 ar5416InitChainMasks(struct ath_hal *ah) 1409 { 1410 int rx_chainmask = AH5416(ah)->ah_rx_chainmask; 1411 1412 /* Flip this for this chainmask regardless of chip */ 1413 if (rx_chainmask == 0x5) 1414 OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); 1415 1416 /* 1417 * Workaround for OWL 1.0 calibration failure; enable multi-chain; 1418 * then set true mask after calibration. 1419 */ 1420 if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) { 1421 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7); 1422 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7); 1423 } else { 1424 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask); 1425 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask); 1426 } 1427 OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask); 1428 1429 if (AH5416(ah)->ah_tx_chainmask == 0x5) 1430 OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); 1431 1432 if (AR_SREV_HOWL(ah)) { 1433 OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, 1434 OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001); 1435 } 1436 } 1437 1438 /* 1439 * Work-around for Owl 1.0 calibration failure. 1440 * 1441 * ar5416InitChainMasks sets the RX chainmask to 0x7 if it's Owl 1.0 1442 * due to init calibration failures. ar5416RestoreChainMask restores 1443 * these registers to the correct setting. 1444 */ 1445 void 1446 ar5416RestoreChainMask(struct ath_hal *ah) 1447 { 1448 int rx_chainmask = AH5416(ah)->ah_rx_chainmask; 1449 1450 if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) { 1451 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); 1452 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); 1453 } 1454 } 1455 1456 /* 1457 * Update the chainmask based on the current channel configuration. 1458 * 1459 * XXX ath9k checks bluetooth co-existence here 1460 * XXX ath9k checks whether the current state is "off-channel". 1461 * XXX ath9k sticks the hardware into 1x1 mode for legacy; 1462 * we're going to leave multi-RX on for multi-path cancellation. 1463 */ 1464 static void 1465 ar5416UpdateChainMasks(struct ath_hal *ah, HAL_BOOL is_ht) 1466 { 1467 struct ath_hal_private *ahpriv = AH_PRIVATE(ah); 1468 HAL_CAPABILITIES *pCap = &ahpriv->ah_caps; 1469 1470 if (is_ht) { 1471 AH5416(ah)->ah_tx_chainmask = pCap->halTxChainMask; 1472 } else { 1473 AH5416(ah)->ah_tx_chainmask = 1; 1474 } 1475 AH5416(ah)->ah_rx_chainmask = pCap->halRxChainMask; 1476 HALDEBUG(ah, HAL_DEBUG_RESET, "TX chainmask: 0x%x; RX chainmask: 0x%x\n", 1477 AH5416(ah)->ah_tx_chainmask, 1478 AH5416(ah)->ah_rx_chainmask); 1479 } 1480 1481 void 1482 ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan) 1483 { 1484 uint32_t pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2; 1485 if (chan != AH_NULL) { 1486 if (IEEE80211_IS_CHAN_HALF(chan)) 1487 pll |= SM(0x1, AR_RTC_PLL_CLKSEL); 1488 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1489 pll |= SM(0x2, AR_RTC_PLL_CLKSEL); 1490 1491 if (IEEE80211_IS_CHAN_5GHZ(chan)) 1492 pll |= SM(0xa, AR_RTC_PLL_DIV); 1493 else 1494 pll |= SM(0xb, AR_RTC_PLL_DIV); 1495 } else 1496 pll |= SM(0xb, AR_RTC_PLL_DIV); 1497 1498 OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); 1499 1500 /* TODO: 1501 * For multi-band owl, switch between bands by reiniting the PLL. 1502 */ 1503 1504 OS_DELAY(RTC_PLL_SETTLE_DELAY); 1505 1506 OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK); 1507 } 1508 1509 static void 1510 ar5416SetDefGainValues(struct ath_hal *ah, 1511 const MODAL_EEP_HEADER *pModal, 1512 const struct ar5416eeprom *eep, 1513 uint8_t txRxAttenLocal, int regChainOffset, int i) 1514 { 1515 1516 if (IS_EEP_MINOR_V3(ah)) { 1517 txRxAttenLocal = pModal->txRxAttenCh[i]; 1518 1519 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 1520 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1521 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, 1522 pModal->bswMargin[i]); 1523 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1524 AR_PHY_GAIN_2GHZ_XATTEN1_DB, 1525 pModal->bswAtten[i]); 1526 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1527 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, 1528 pModal->xatten2Margin[i]); 1529 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1530 AR_PHY_GAIN_2GHZ_XATTEN2_DB, 1531 pModal->xatten2Db[i]); 1532 } else { 1533 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1534 AR_PHY_GAIN_2GHZ_BSW_MARGIN, 1535 pModal->bswMargin[i]); 1536 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1537 AR_PHY_GAIN_2GHZ_BSW_ATTEN, 1538 pModal->bswAtten[i]); 1539 } 1540 } 1541 1542 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 1543 OS_REG_RMW_FIELD(ah, 1544 AR_PHY_RXGAIN + regChainOffset, 1545 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); 1546 OS_REG_RMW_FIELD(ah, 1547 AR_PHY_RXGAIN + regChainOffset, 1548 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]); 1549 } else { 1550 OS_REG_RMW_FIELD(ah, 1551 AR_PHY_RXGAIN + regChainOffset, 1552 AR_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); 1553 OS_REG_RMW_FIELD(ah, 1554 AR_PHY_GAIN_2GHZ + regChainOffset, 1555 AR_PHY_GAIN_2GHZ_RXTX_MARGIN, pModal->rxTxMarginCh[i]); 1556 } 1557 } 1558 1559 /* 1560 * Get the register chain offset for the given chain. 1561 * 1562 * Take into account the register chain swapping with AR5416 v2.0. 1563 * 1564 * XXX make sure that the reg chain swapping is only done for 1565 * XXX AR5416 v2.0 or greater, and not later chips? 1566 */ 1567 int 1568 ar5416GetRegChainOffset(struct ath_hal *ah, int i) 1569 { 1570 int regChainOffset; 1571 1572 if (AR_SREV_5416_V20_OR_LATER(ah) && 1573 (AH5416(ah)->ah_rx_chainmask == 0x5 || 1574 AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) { 1575 /* Regs are swapped from chain 2 to 1 for 5416 2_0 with 1576 * only chains 0 and 2 populated 1577 */ 1578 regChainOffset = (i == 1) ? 0x2000 : 0x1000; 1579 } else { 1580 regChainOffset = i * 0x1000; 1581 } 1582 1583 return regChainOffset; 1584 } 1585 1586 /* 1587 * Read EEPROM header info and program the device for correct operation 1588 * given the channel value. 1589 */ 1590 HAL_BOOL 1591 ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan) 1592 { 1593 const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom; 1594 const struct ar5416eeprom *eep = &ee->ee_base; 1595 const MODAL_EEP_HEADER *pModal; 1596 int i, regChainOffset; 1597 uint8_t txRxAttenLocal; /* workaround for eeprom versions <= 14.2 */ 1598 1599 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1); 1600 pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]; 1601 1602 /* NB: workaround for eeprom versions <= 14.2 */ 1603 txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44; 1604 1605 OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon); 1606 for (i = 0; i < AR5416_MAX_CHAINS; i++) { 1607 if (AR_SREV_MERLIN(ah)) { 1608 if (i >= 2) break; 1609 } 1610 regChainOffset = ar5416GetRegChainOffset(ah, i); 1611 1612 OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]); 1613 1614 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset, 1615 (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) & 1616 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | 1617 SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | 1618 SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); 1619 1620 /* 1621 * Large signal upgrade, 1622 * If 14.3 or later EEPROM, use 1623 * txRxAttenLocal = pModal->txRxAttenCh[i] 1624 * else txRxAttenLocal is fixed value above. 1625 */ 1626 1627 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) 1628 ar5416SetDefGainValues(ah, pModal, eep, txRxAttenLocal, regChainOffset, i); 1629 1630 } 1631 1632 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 1633 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1634 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, pModal->ob); 1635 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, pModal->db); 1636 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, pModal->ob_ch1); 1637 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, pModal->db_ch1); 1638 } else { 1639 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, pModal->ob); 1640 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, pModal->db); 1641 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, pModal->ob_ch1); 1642 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, pModal->db_ch1); 1643 } 1644 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl); 1645 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS, 1646 !!(pModal->flagBits & AR5416_EEP_FLAG_LOCALBIAS)); 1647 OS_A_REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG, 1648 !!(pModal->flagBits & AR5416_EEP_FLAG_FORCEXPAON)); 1649 } 1650 1651 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling); 1652 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize); 1653 1654 if (! AR_SREV_MERLIN_10_OR_LATER(ah)) 1655 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize); 1656 1657 OS_REG_WRITE(ah, AR_PHY_RF_CTL4, 1658 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) 1659 | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) 1660 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) 1661 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON)); 1662 1663 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, 1664 pModal->txEndToRxOn); 1665 1666 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 1667 OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, 1668 pModal->thresh62); 1669 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62, 1670 pModal->thresh62); 1671 } else { 1672 OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62, 1673 pModal->thresh62); 1674 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62, 1675 pModal->thresh62); 1676 } 1677 1678 /* Minor Version Specific application */ 1679 if (IS_EEP_MINOR_V2(ah)) { 1680 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START, 1681 pModal->txFrameToDataStart); 1682 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON, 1683 pModal->txFrameToPaOn); 1684 } 1685 1686 if (IS_EEP_MINOR_V3(ah) && IEEE80211_IS_CHAN_HT40(chan)) 1687 /* Overwrite switch settling with HT40 value */ 1688 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, 1689 pModal->swSettleHt40); 1690 1691 if (AR_SREV_MERLIN_20_OR_LATER(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_19) 1692 OS_REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, pModal->miscBits); 1693 1694 if (AR_SREV_MERLIN_20(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_20) { 1695 if (IEEE80211_IS_CHAN_2GHZ(chan)) 1696 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 1697 eep->baseEepHeader.dacLpMode); 1698 else if (eep->baseEepHeader.dacHiPwrMode_5G) 1699 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0); 1700 else 1701 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 1702 eep->baseEepHeader.dacLpMode); 1703 1704 OS_DELAY(100); 1705 1706 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP, 1707 pModal->miscBits >> 2); 1708 OS_REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_DESIRED_SCALE_CCK, 1709 eep->baseEepHeader.desiredScaleCCK); 1710 } 1711 1712 return (AH_TRUE); 1713 } 1714 1715 /* 1716 * Helper functions common for AP/CB/XB 1717 */ 1718 1719 /* 1720 * Set the target power array "ratesArray" from the 1721 * given set of target powers. 1722 * 1723 * This is used by the various chipset/EEPROM TX power 1724 * setup routines. 1725 */ 1726 void 1727 ar5416SetRatesArrayFromTargetPower(struct ath_hal *ah, 1728 const struct ieee80211_channel *chan, 1729 int16_t *ratesArray, 1730 const CAL_TARGET_POWER_LEG *targetPowerCck, 1731 const CAL_TARGET_POWER_LEG *targetPowerCckExt, 1732 const CAL_TARGET_POWER_LEG *targetPowerOfdm, 1733 const CAL_TARGET_POWER_LEG *targetPowerOfdmExt, 1734 const CAL_TARGET_POWER_HT *targetPowerHt20, 1735 const CAL_TARGET_POWER_HT *targetPowerHt40) 1736 { 1737 #define N(a) (sizeof(a)/sizeof(a[0])) 1738 int i; 1739 1740 /* Blank the rates array, to be consistent */ 1741 for (i = 0; i < Ar5416RateSize; i++) 1742 ratesArray[i] = 0; 1743 1744 /* Set rates Array from collected data */ 1745 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = 1746 ratesArray[rate18mb] = ratesArray[rate24mb] = 1747 targetPowerOfdm->tPow2x[0]; 1748 ratesArray[rate36mb] = targetPowerOfdm->tPow2x[1]; 1749 ratesArray[rate48mb] = targetPowerOfdm->tPow2x[2]; 1750 ratesArray[rate54mb] = targetPowerOfdm->tPow2x[3]; 1751 ratesArray[rateXr] = targetPowerOfdm->tPow2x[0]; 1752 1753 for (i = 0; i < N(targetPowerHt20->tPow2x); i++) { 1754 ratesArray[rateHt20_0 + i] = targetPowerHt20->tPow2x[i]; 1755 } 1756 1757 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1758 ratesArray[rate1l] = targetPowerCck->tPow2x[0]; 1759 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck->tPow2x[1]; 1760 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck->tPow2x[2]; 1761 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck->tPow2x[3]; 1762 } 1763 if (IEEE80211_IS_CHAN_HT40(chan)) { 1764 for (i = 0; i < N(targetPowerHt40->tPow2x); i++) { 1765 ratesArray[rateHt40_0 + i] = targetPowerHt40->tPow2x[i]; 1766 } 1767 ratesArray[rateDupOfdm] = targetPowerHt40->tPow2x[0]; 1768 ratesArray[rateDupCck] = targetPowerHt40->tPow2x[0]; 1769 ratesArray[rateExtOfdm] = targetPowerOfdmExt->tPow2x[0]; 1770 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1771 ratesArray[rateExtCck] = targetPowerCckExt->tPow2x[0]; 1772 } 1773 } 1774 #undef N 1775 } 1776 1777 /* 1778 * ar5416SetPowerPerRateTable 1779 * 1780 * Sets the transmit power in the baseband for the given 1781 * operating channel and mode. 1782 */ 1783 static HAL_BOOL 1784 ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, 1785 const struct ieee80211_channel *chan, 1786 int16_t *ratesArray, uint16_t cfgCtl, 1787 uint16_t AntennaReduction, 1788 uint16_t twiceMaxRegulatoryPower, 1789 uint16_t powerLimit) 1790 { 1791 #define N(a) (sizeof(a)/sizeof(a[0])) 1792 /* Local defines to distinguish between extension and control CTL's */ 1793 #define EXT_ADDITIVE (0x8000) 1794 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE) 1795 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE) 1796 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE) 1797 1798 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER; 1799 int i; 1800 int16_t twiceLargestAntenna; 1801 CAL_CTL_DATA *rep; 1802 CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}}; 1803 CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}}; 1804 CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}}; 1805 int16_t scaledPower, minCtlPower; 1806 1807 #define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */ 1808 #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */ 1809 static const uint16_t ctlModesFor11a[] = { 1810 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 1811 }; 1812 static const uint16_t ctlModesFor11g[] = { 1813 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40 1814 }; 1815 const uint16_t *pCtlMode; 1816 uint16_t numCtlModes, ctlMode, freq; 1817 CHAN_CENTERS centers; 1818 1819 ar5416GetChannelCenters(ah, chan, ¢ers); 1820 1821 /* Compute TxPower reduction due to Antenna Gain */ 1822 1823 twiceLargestAntenna = AH_MAX(AH_MAX( 1824 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0], 1825 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]), 1826 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]); 1827 #if 0 1828 /* Turn it back on if we need to calculate per chain antenna gain reduction */ 1829 /* Use only if the expected gain > 6dbi */ 1830 /* Chain 0 is always used */ 1831 twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0]; 1832 1833 /* Look at antenna gains of Chains 1 and 2 if the TX mask is set */ 1834 if (ahp->ah_tx_chainmask & 0x2) 1835 twiceLargestAntenna = AH_MAX(twiceLargestAntenna, 1836 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]); 1837 1838 if (ahp->ah_tx_chainmask & 0x4) 1839 twiceLargestAntenna = AH_MAX(twiceLargestAntenna, 1840 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]); 1841 #endif 1842 twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0); 1843 1844 /* XXX setup for 5212 use (really used?) */ 1845 ath_hal_eepromSet(ah, 1846 IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5, 1847 twiceLargestAntenna); 1848 1849 /* 1850 * scaledPower is the minimum of the user input power level and 1851 * the regulatory allowed power level 1852 */ 1853 scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna); 1854 1855 /* Reduce scaled Power by number of chains active to get to per chain tx power level */ 1856 /* TODO: better value than these? */ 1857 switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) { 1858 case 1: 1859 break; 1860 case 2: 1861 scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain; 1862 break; 1863 case 3: 1864 scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain; 1865 break; 1866 default: 1867 return AH_FALSE; /* Unsupported number of chains */ 1868 } 1869 1870 scaledPower = AH_MAX(0, scaledPower); 1871 1872 /* Get target powers from EEPROM - our baseline for TX Power */ 1873 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1874 /* Setup for CTL modes */ 1875 numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */ 1876 pCtlMode = ctlModesFor11g; 1877 1878 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck, 1879 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE); 1880 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G, 1881 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE); 1882 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20, 1883 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE); 1884 1885 if (IEEE80211_IS_CHAN_HT40(chan)) { 1886 numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */ 1887 1888 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40, 1889 AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE); 1890 /* Get target powers for extension channels */ 1891 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck, 1892 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE); 1893 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G, 1894 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE); 1895 } 1896 } else { 1897 /* Setup for CTL modes */ 1898 numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */ 1899 pCtlMode = ctlModesFor11a; 1900 1901 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G, 1902 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE); 1903 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT20, 1904 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE); 1905 1906 if (IEEE80211_IS_CHAN_HT40(chan)) { 1907 numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */ 1908 1909 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT40, 1910 AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE); 1911 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G, 1912 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE); 1913 } 1914 } 1915 1916 /* 1917 * For MIMO, need to apply regulatory caps individually across dynamically 1918 * running modes: CCK, OFDM, HT20, HT40 1919 * 1920 * The outer loop walks through each possible applicable runtime mode. 1921 * The inner loop walks through each ctlIndex entry in EEPROM. 1922 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode. 1923 * 1924 */ 1925 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { 1926 HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || 1927 (pCtlMode[ctlMode] == CTL_2GHT40); 1928 if (isHt40CtlMode) { 1929 freq = centers.ctl_center; 1930 } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) { 1931 freq = centers.ext_center; 1932 } else { 1933 freq = centers.ctl_center; 1934 } 1935 1936 /* walk through each CTL index stored in EEPROM */ 1937 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) { 1938 uint16_t twiceMinEdgePower; 1939 1940 /* compare test group from regulatory channel list with test mode from pCtlMode list */ 1941 if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) || 1942 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == 1943 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) { 1944 rep = &(pEepData->ctlData[i]); 1945 twiceMinEdgePower = ar5416GetMaxEdgePower(freq, 1946 rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1], 1947 IEEE80211_IS_CHAN_2GHZ(chan)); 1948 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { 1949 /* Find the minimum of all CTL edge powers that apply to this channel */ 1950 twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower); 1951 } else { 1952 /* specific */ 1953 twiceMaxEdgePower = twiceMinEdgePower; 1954 break; 1955 } 1956 } 1957 } 1958 minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower); 1959 /* Apply ctl mode to correct target power set */ 1960 switch(pCtlMode[ctlMode]) { 1961 case CTL_11B: 1962 for (i = 0; i < N(targetPowerCck.tPow2x); i++) { 1963 targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower); 1964 } 1965 break; 1966 case CTL_11A: 1967 case CTL_11G: 1968 for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) { 1969 targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower); 1970 } 1971 break; 1972 case CTL_5GHT20: 1973 case CTL_2GHT20: 1974 for (i = 0; i < N(targetPowerHt20.tPow2x); i++) { 1975 targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower); 1976 } 1977 break; 1978 case CTL_11B_EXT: 1979 targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower); 1980 break; 1981 case CTL_11A_EXT: 1982 case CTL_11G_EXT: 1983 targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower); 1984 break; 1985 case CTL_5GHT40: 1986 case CTL_2GHT40: 1987 for (i = 0; i < N(targetPowerHt40.tPow2x); i++) { 1988 targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower); 1989 } 1990 break; 1991 default: 1992 return AH_FALSE; 1993 break; 1994 } 1995 } /* end ctl mode checking */ 1996 1997 /* Set rates Array from collected data */ 1998 ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray, 1999 &targetPowerCck, 2000 &targetPowerCckExt, 2001 &targetPowerOfdm, 2002 &targetPowerOfdmExt, 2003 &targetPowerHt20, 2004 &targetPowerHt40); 2005 return AH_TRUE; 2006 #undef EXT_ADDITIVE 2007 #undef CTL_11A_EXT 2008 #undef CTL_11G_EXT 2009 #undef CTL_11B_EXT 2010 #undef SUB_NUM_CTL_MODES_AT_5G_40 2011 #undef SUB_NUM_CTL_MODES_AT_2G_40 2012 #undef N 2013 } 2014 2015 /************************************************************************** 2016 * fbin2freq 2017 * 2018 * Get channel value from binary representation held in eeprom 2019 * RETURNS: the frequency in MHz 2020 */ 2021 static uint16_t 2022 fbin2freq(uint8_t fbin, HAL_BOOL is2GHz) 2023 { 2024 /* 2025 * Reserved value 0xFF provides an empty definition both as 2026 * an fbin and as a frequency - do not convert 2027 */ 2028 if (fbin == AR5416_BCHAN_UNUSED) { 2029 return fbin; 2030 } 2031 2032 return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin)); 2033 } 2034 2035 /* 2036 * ar5416GetMaxEdgePower 2037 * 2038 * Find the maximum conformance test limit for the given channel and CTL info 2039 */ 2040 uint16_t 2041 ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz) 2042 { 2043 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER; 2044 int i; 2045 2046 /* Get the edge power */ 2047 for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) { 2048 /* 2049 * If there's an exact channel match or an inband flag set 2050 * on the lower channel use the given rdEdgePower 2051 */ 2052 if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) { 2053 twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER); 2054 break; 2055 } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) { 2056 if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) { 2057 twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER); 2058 } 2059 /* Leave loop - no more affecting edges possible in this monotonic increasing list */ 2060 break; 2061 } 2062 } 2063 HALASSERT(twiceMaxEdgePower > 0); 2064 return twiceMaxEdgePower; 2065 } 2066 2067 /************************************************************** 2068 * ar5416GetTargetPowers 2069 * 2070 * Return the rates of target power for the given target power table 2071 * channel, and number of channels 2072 */ 2073 void 2074 ar5416GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan, 2075 CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels, 2076 CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates, 2077 HAL_BOOL isHt40Target) 2078 { 2079 uint16_t clo, chi; 2080 int i; 2081 int matchIndex = -1, lowIndex = -1; 2082 uint16_t freq; 2083 CHAN_CENTERS centers; 2084 2085 ar5416GetChannelCenters(ah, chan, ¢ers); 2086 freq = isHt40Target ? centers.synth_center : centers.ctl_center; 2087 2088 /* Copy the target powers into the temp channel list */ 2089 if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { 2090 matchIndex = 0; 2091 } else { 2092 for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { 2093 if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { 2094 matchIndex = i; 2095 break; 2096 } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) && 2097 (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)))) 2098 { 2099 lowIndex = i - 1; 2100 break; 2101 } 2102 } 2103 if ((matchIndex == -1) && (lowIndex == -1)) { 2104 HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))); 2105 matchIndex = i - 1; 2106 } 2107 } 2108 2109 if (matchIndex != -1) { 2110 OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower)); 2111 } else { 2112 HALASSERT(lowIndex != -1); 2113 /* 2114 * Get the lower and upper channels, target powers, 2115 * and interpolate between them. 2116 */ 2117 clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); 2118 chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); 2119 2120 for (i = 0; i < numRates; i++) { 2121 pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi, 2122 powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]); 2123 } 2124 } 2125 } 2126 /************************************************************** 2127 * ar5416GetTargetPowersLeg 2128 * 2129 * Return the four rates of target power for the given target power table 2130 * channel, and number of channels 2131 */ 2132 void 2133 ar5416GetTargetPowersLeg(struct ath_hal *ah, 2134 const struct ieee80211_channel *chan, 2135 CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels, 2136 CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates, 2137 HAL_BOOL isExtTarget) 2138 { 2139 uint16_t clo, chi; 2140 int i; 2141 int matchIndex = -1, lowIndex = -1; 2142 uint16_t freq; 2143 CHAN_CENTERS centers; 2144 2145 ar5416GetChannelCenters(ah, chan, ¢ers); 2146 freq = (isExtTarget) ? centers.ext_center :centers.ctl_center; 2147 2148 /* Copy the target powers into the temp channel list */ 2149 if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { 2150 matchIndex = 0; 2151 } else { 2152 for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { 2153 if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { 2154 matchIndex = i; 2155 break; 2156 } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) && 2157 (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)))) 2158 { 2159 lowIndex = i - 1; 2160 break; 2161 } 2162 } 2163 if ((matchIndex == -1) && (lowIndex == -1)) { 2164 HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))); 2165 matchIndex = i - 1; 2166 } 2167 } 2168 2169 if (matchIndex != -1) { 2170 OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower)); 2171 } else { 2172 HALASSERT(lowIndex != -1); 2173 /* 2174 * Get the lower and upper channels, target powers, 2175 * and interpolate between them. 2176 */ 2177 clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); 2178 chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); 2179 2180 for (i = 0; i < numRates; i++) { 2181 pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi, 2182 powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]); 2183 } 2184 } 2185 } 2186 2187 /* 2188 * Set the gain boundaries for the given radio chain. 2189 * 2190 * The gain boundaries tell the hardware at what point in the 2191 * PDADC array to "switch over" from one PD gain setting 2192 * to another. There's also a gain overlap between two 2193 * PDADC array gain curves where there's valid PD values 2194 * for 2 gain settings. 2195 * 2196 * The hardware uses the gain overlap and gain boundaries 2197 * to determine which gain curve to use for the given 2198 * target TX power. 2199 */ 2200 void 2201 ar5416SetGainBoundariesClosedLoop(struct ath_hal *ah, int i, 2202 uint16_t pdGainOverlap_t2, uint16_t gainBoundaries[]) 2203 { 2204 int regChainOffset; 2205 2206 regChainOffset = ar5416GetRegChainOffset(ah, i); 2207 2208 HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: chain %d: gainOverlap_t2: %d," 2209 " gainBoundaries: %d, %d, %d, %d\n", __func__, i, pdGainOverlap_t2, 2210 gainBoundaries[0], gainBoundaries[1], gainBoundaries[2], 2211 gainBoundaries[3]); 2212 OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset, 2213 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 2214 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | 2215 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | 2216 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | 2217 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); 2218 } 2219 2220 /* 2221 * Get the gain values and the number of gain levels given 2222 * in xpdMask. 2223 * 2224 * The EEPROM xpdMask determines which power detector gain 2225 * levels were used during calibration. Each of these mask 2226 * bits maps to a fixed gain level in hardware. 2227 */ 2228 uint16_t 2229 ar5416GetXpdGainValues(struct ath_hal *ah, uint16_t xpdMask, 2230 uint16_t xpdGainValues[]) 2231 { 2232 int i; 2233 uint16_t numXpdGain = 0; 2234 2235 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { 2236 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { 2237 if (numXpdGain >= AR5416_NUM_PD_GAINS) { 2238 HALASSERT(0); 2239 break; 2240 } 2241 xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i); 2242 numXpdGain++; 2243 } 2244 } 2245 return numXpdGain; 2246 } 2247 2248 /* 2249 * Write the detector gain and biases. 2250 * 2251 * There are four power detector gain levels. The xpdMask in the EEPROM 2252 * determines which power detector gain levels have TX power calibration 2253 * data associated with them. This function writes the number of 2254 * PD gain levels and their values into the hardware. 2255 * 2256 * This is valid for all TX chains - the calibration data itself however 2257 * will likely differ per-chain. 2258 */ 2259 void 2260 ar5416WriteDetectorGainBiases(struct ath_hal *ah, uint16_t numXpdGain, 2261 uint16_t xpdGainValues[]) 2262 { 2263 HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: numXpdGain: %d," 2264 " xpdGainValues: %d, %d, %d\n", __func__, numXpdGain, 2265 xpdGainValues[0], xpdGainValues[1], xpdGainValues[2]); 2266 2267 OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) & 2268 ~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | 2269 AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) | 2270 SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | 2271 SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) | 2272 SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | 2273 SM(xpdGainValues[2], AR_PHY_TPCRG1_PD_GAIN_3)); 2274 } 2275 2276 /* 2277 * Write the PDADC array to the given radio chain i. 2278 * 2279 * The 32 PDADC registers are written without any care about 2280 * their contents - so if various chips treat values as "special", 2281 * this routine will not care. 2282 */ 2283 void 2284 ar5416WritePdadcValues(struct ath_hal *ah, int i, uint8_t pdadcValues[]) 2285 { 2286 int regOffset, regChainOffset; 2287 int j; 2288 int reg32; 2289 2290 regChainOffset = ar5416GetRegChainOffset(ah, i); 2291 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; 2292 2293 for (j = 0; j < 32; j++) { 2294 reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) | 2295 ((pdadcValues[4*j + 1] & 0xFF) << 8) | 2296 ((pdadcValues[4*j + 2] & 0xFF) << 16) | 2297 ((pdadcValues[4*j + 3] & 0xFF) << 24) ; 2298 OS_REG_WRITE(ah, regOffset, reg32); 2299 HALDEBUG(ah, HAL_DEBUG_EEPROM, "PDADC: Chain %d |" 2300 " PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d" 2301 " Value %3d | PDADC %3d Value %3d |\n", 2302 i, 2303 4*j, pdadcValues[4*j], 2304 4*j+1, pdadcValues[4*j + 1], 2305 4*j+2, pdadcValues[4*j + 2], 2306 4*j+3, pdadcValues[4*j + 3]); 2307 regOffset += 4; 2308 } 2309 } 2310 2311 /************************************************************** 2312 * ar5416SetPowerCalTable 2313 * 2314 * Pull the PDADC piers from cal data and interpolate them across the given 2315 * points as well as from the nearest pier(s) to get a power detector 2316 * linear voltage to power level table. 2317 */ 2318 HAL_BOOL 2319 ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, 2320 const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset) 2321 { 2322 CAL_DATA_PER_FREQ *pRawDataset; 2323 uint8_t *pCalBChans = AH_NULL; 2324 uint16_t pdGainOverlap_t2; 2325 static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES]; 2326 uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK]; 2327 uint16_t numPiers, i; 2328 int16_t tMinCalPower; 2329 uint16_t numXpdGain, xpdMask; 2330 uint16_t xpdGainValues[AR5416_NUM_PD_GAINS]; 2331 uint32_t regChainOffset; 2332 2333 OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues)); 2334 2335 xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain; 2336 2337 if (IS_EEP_MINOR_V2(ah)) { 2338 pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap; 2339 } else { 2340 pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); 2341 } 2342 2343 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 2344 pCalBChans = pEepData->calFreqPier2G; 2345 numPiers = AR5416_NUM_2G_CAL_PIERS; 2346 } else { 2347 pCalBChans = pEepData->calFreqPier5G; 2348 numPiers = AR5416_NUM_5G_CAL_PIERS; 2349 } 2350 2351 /* Calculate the value of xpdgains from the xpdGain Mask */ 2352 numXpdGain = ar5416GetXpdGainValues(ah, xpdMask, xpdGainValues); 2353 2354 /* Write the detector gain biases and their number */ 2355 ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues); 2356 2357 for (i = 0; i < AR5416_MAX_CHAINS; i++) { 2358 regChainOffset = ar5416GetRegChainOffset(ah, i); 2359 2360 if (pEepData->baseEepHeader.txMask & (1 << i)) { 2361 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 2362 pRawDataset = pEepData->calPierData2G[i]; 2363 } else { 2364 pRawDataset = pEepData->calPierData5G[i]; 2365 } 2366 2367 /* Fetch the gain boundaries and the PDADC values */ 2368 ar5416GetGainBoundariesAndPdadcs(ah, chan, pRawDataset, 2369 pCalBChans, numPiers, 2370 pdGainOverlap_t2, 2371 &tMinCalPower, gainBoundaries, 2372 pdadcValues, numXpdGain); 2373 2374 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) { 2375 ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2, 2376 gainBoundaries); 2377 } 2378 2379 /* Write the power values into the baseband power table */ 2380 ar5416WritePdadcValues(ah, i, pdadcValues); 2381 } 2382 } 2383 *pTxPowerIndexOffset = 0; 2384 2385 return AH_TRUE; 2386 } 2387 2388 /************************************************************** 2389 * ar5416GetGainBoundariesAndPdadcs 2390 * 2391 * Uses the data points read from EEPROM to reconstruct the pdadc power table 2392 * Called by ar5416SetPowerCalTable only. 2393 */ 2394 void 2395 ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah, 2396 const struct ieee80211_channel *chan, 2397 CAL_DATA_PER_FREQ *pRawDataSet, 2398 uint8_t * bChans, uint16_t availPiers, 2399 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries, 2400 uint8_t * pPDADCValues, uint16_t numXpdGains) 2401 { 2402 2403 int i, j, k; 2404 int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */ 2405 uint16_t idxL, idxR, numPiers; /* Pier indexes */ 2406 2407 /* filled out Vpd table for all pdGains (chanL) */ 2408 static uint8_t vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; 2409 2410 /* filled out Vpd table for all pdGains (chanR) */ 2411 static uint8_t vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; 2412 2413 /* filled out Vpd table for all pdGains (interpolated) */ 2414 static uint8_t vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; 2415 2416 uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR; 2417 uint8_t minPwrT4[AR5416_NUM_PD_GAINS]; 2418 uint8_t maxPwrT4[AR5416_NUM_PD_GAINS]; 2419 int16_t vpdStep; 2420 int16_t tmpVal; 2421 uint16_t sizeCurrVpdTable, maxIndex, tgtIndex; 2422 HAL_BOOL match; 2423 int16_t minDelta = 0; 2424 CHAN_CENTERS centers; 2425 2426 ar5416GetChannelCenters(ah, chan, ¢ers); 2427 2428 /* Trim numPiers for the number of populated channel Piers */ 2429 for (numPiers = 0; numPiers < availPiers; numPiers++) { 2430 if (bChans[numPiers] == AR5416_BCHAN_UNUSED) { 2431 break; 2432 } 2433 } 2434 2435 /* Find pier indexes around the current channel */ 2436 match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, 2437 IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR); 2438 2439 if (match) { 2440 /* Directly fill both vpd tables from the matching index */ 2441 for (i = 0; i < numXpdGains; i++) { 2442 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0]; 2443 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4]; 2444 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i], 2445 pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]); 2446 } 2447 } else { 2448 for (i = 0; i < numXpdGains; i++) { 2449 pVpdL = pRawDataSet[idxL].vpdPdg[i]; 2450 pPwrL = pRawDataSet[idxL].pwrPdg[i]; 2451 pVpdR = pRawDataSet[idxR].vpdPdg[i]; 2452 pPwrR = pRawDataSet[idxR].pwrPdg[i]; 2453 2454 /* Start Vpd interpolation from the max of the minimum powers */ 2455 minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]); 2456 2457 /* End Vpd interpolation from the min of the max powers */ 2458 maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]); 2459 HALASSERT(maxPwrT4[i] > minPwrT4[i]); 2460 2461 /* Fill pier Vpds */ 2462 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]); 2463 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]); 2464 2465 /* Interpolate the final vpd */ 2466 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) { 2467 vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center, 2468 IEEE80211_IS_CHAN_2GHZ(chan)), 2469 bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j])); 2470 } 2471 } 2472 } 2473 *pMinCalPower = (int16_t)(minPwrT4[0] / 2); 2474 2475 k = 0; /* index for the final table */ 2476 for (i = 0; i < numXpdGains; i++) { 2477 if (i == (numXpdGains - 1)) { 2478 pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2); 2479 } else { 2480 pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4); 2481 } 2482 2483 pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]); 2484 2485 /* NB: only applies to owl 1.0 */ 2486 if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) { 2487 /* 2488 * fix the gain delta, but get a delta that can be applied to min to 2489 * keep the upper power values accurate, don't think max needs to 2490 * be adjusted because should not be at that area of the table? 2491 */ 2492 minDelta = pPdGainBoundaries[0] - 23; 2493 pPdGainBoundaries[0] = 23; 2494 } 2495 else { 2496 minDelta = 0; 2497 } 2498 2499 /* Find starting index for this pdGain */ 2500 if (i == 0) { 2501 if (AR_SREV_MERLIN_10_OR_LATER(ah)) 2502 ss = (int16_t)(0 - (minPwrT4[i] / 2)); 2503 else 2504 ss = 0; /* for the first pdGain, start from index 0 */ 2505 } else { 2506 /* need overlap entries extrapolated below. */ 2507 ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta); 2508 } 2509 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]); 2510 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); 2511 /* 2512 *-ve ss indicates need to extrapolate data below for this pdGain 2513 */ 2514 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { 2515 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep); 2516 pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal); 2517 ss++; 2518 } 2519 2520 sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1); 2521 tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2)); 2522 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; 2523 2524 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { 2525 pPDADCValues[k++] = vpdTableI[i][ss++]; 2526 } 2527 2528 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]); 2529 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); 2530 /* 2531 * for last gain, pdGainBoundary == Pmax_t2, so will 2532 * have to extrapolate 2533 */ 2534 if (tgtIndex >= maxIndex) { /* need to extrapolate above */ 2535 while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { 2536 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] + 2537 (ss - maxIndex +1) * vpdStep)); 2538 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal); 2539 ss++; 2540 } 2541 } /* extrapolated above */ 2542 } /* for all pdGainUsed */ 2543 2544 /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */ 2545 while (i < AR5416_PD_GAINS_IN_MASK) { 2546 pPdGainBoundaries[i] = pPdGainBoundaries[i-1]; 2547 i++; 2548 } 2549 2550 while (k < AR5416_NUM_PDADC_VALUES) { 2551 pPDADCValues[k] = pPDADCValues[k-1]; 2552 k++; 2553 } 2554 return; 2555 } 2556 2557 /* 2558 * The linux ath9k driver and (from what I've been told) the reference 2559 * Atheros driver enables the 11n PHY by default whether or not it's 2560 * configured. 2561 */ 2562 static void 2563 ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan) 2564 { 2565 uint32_t phymode; 2566 uint32_t enableDacFifo = 0; 2567 HAL_HT_MACMODE macmode; /* MAC - 20/40 mode */ 2568 2569 if (AR_SREV_KITE_10_OR_LATER(ah)) 2570 enableDacFifo = (OS_REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO); 2571 2572 /* Enable 11n HT, 20 MHz */ 2573 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 2574 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo; 2575 2576 /* Configure baseband for dynamic 20/40 operation */ 2577 if (IEEE80211_IS_CHAN_HT40(chan)) { 2578 phymode |= AR_PHY_FC_DYN2040_EN; 2579 2580 /* Configure control (primary) channel at +-10MHz */ 2581 if (IEEE80211_IS_CHAN_HT40U(chan)) 2582 phymode |= AR_PHY_FC_DYN2040_PRI_CH; 2583 #if 0 2584 /* Configure 20/25 spacing */ 2585 if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25) 2586 phymode |= AR_PHY_FC_DYN2040_EXT_CH; 2587 #endif 2588 macmode = HAL_HT_MACMODE_2040; 2589 } else 2590 macmode = HAL_HT_MACMODE_20; 2591 OS_REG_WRITE(ah, AR_PHY_TURBO, phymode); 2592 2593 /* Configure MAC for 20/40 operation */ 2594 ar5416Set11nMac2040(ah, macmode); 2595 2596 /* global transmit timeout (25 TUs default)*/ 2597 /* XXX - put this elsewhere??? */ 2598 OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ; 2599 2600 /* carrier sense timeout */ 2601 OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC); 2602 OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S); 2603 } 2604 2605 void 2606 ar5416GetChannelCenters(struct ath_hal *ah, 2607 const struct ieee80211_channel *chan, CHAN_CENTERS *centers) 2608 { 2609 uint16_t freq = ath_hal_gethwchannel(ah, chan); 2610 2611 centers->ctl_center = freq; 2612 centers->synth_center = freq; 2613 /* 2614 * In 20/40 phy mode, the center frequency is 2615 * "between" the control and extension channels. 2616 */ 2617 if (IEEE80211_IS_CHAN_HT40U(chan)) { 2618 centers->synth_center += HT40_CHANNEL_CENTER_SHIFT; 2619 centers->ext_center = 2620 centers->synth_center + HT40_CHANNEL_CENTER_SHIFT; 2621 } else if (IEEE80211_IS_CHAN_HT40D(chan)) { 2622 centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT; 2623 centers->ext_center = 2624 centers->synth_center - HT40_CHANNEL_CENTER_SHIFT; 2625 } else { 2626 centers->ext_center = freq; 2627 } 2628 } 2629 2630 /* 2631 * Override the INI vals being programmed. 2632 */ 2633 static void 2634 ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *chan) 2635 { 2636 uint32_t val; 2637 2638 /* 2639 * Set the RX_ABORT and RX_DIS and clear if off only after 2640 * RXE is set for MAC. This prevents frames with corrupted 2641 * descriptor status. 2642 */ 2643 OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); 2644 2645 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 2646 val = OS_REG_READ(ah, AR_PCU_MISC_MODE2); 2647 val &= (~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE); 2648 if (!AR_SREV_9271(ah)) 2649 val &= ~AR_PCU_MISC_MODE2_HWWAR1; 2650 2651 if (AR_SREV_KIWI_10_OR_LATER(ah)) 2652 val = val & (~AR_PCU_MISC_MODE2_HWWAR2); 2653 2654 OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, val); 2655 } 2656 2657 /* 2658 * Disable RIFS search on some chips to avoid baseband 2659 * hang issues. 2660 */ 2661 if (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) 2662 (void) ar5416SetRifsDelay(ah, chan, AH_FALSE); 2663 2664 if (!AR_SREV_5416_V20_OR_LATER(ah) || AR_SREV_MERLIN(ah)) 2665 return; 2666 2667 /* 2668 * Disable BB clock gating 2669 * Necessary to avoid issues on AR5416 2.0 2670 */ 2671 OS_REG_WRITE(ah, 0x9800 + (651 << 2), 0x11); 2672 } 2673 2674 struct ini { 2675 uint32_t *data; /* NB: !const */ 2676 int rows, cols; 2677 }; 2678 2679 /* 2680 * Override XPA bias level based on operating frequency. 2681 * This is a v14 EEPROM specific thing for the AR9160. 2682 */ 2683 void 2684 ar5416EepromSetAddac(struct ath_hal *ah, const struct ieee80211_channel *chan) 2685 { 2686 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt]) 2687 MODAL_EEP_HEADER *pModal; 2688 HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom; 2689 struct ar5416eeprom *eep = &ee->ee_base; 2690 uint8_t biaslevel; 2691 2692 if (! AR_SREV_SOWL(ah)) 2693 return; 2694 2695 if (EEP_MINOR(ah) < AR5416_EEP_MINOR_VER_7) 2696 return; 2697 2698 pModal = &(eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]); 2699 2700 if (pModal->xpaBiasLvl != 0xff) 2701 biaslevel = pModal->xpaBiasLvl; 2702 else { 2703 uint16_t resetFreqBin, freqBin, freqCount = 0; 2704 CHAN_CENTERS centers; 2705 2706 ar5416GetChannelCenters(ah, chan, ¢ers); 2707 2708 resetFreqBin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)); 2709 freqBin = XPA_LVL_FREQ(0) & 0xff; 2710 biaslevel = (uint8_t) (XPA_LVL_FREQ(0) >> 14); 2711 2712 freqCount++; 2713 2714 while (freqCount < 3) { 2715 if (XPA_LVL_FREQ(freqCount) == 0x0) 2716 break; 2717 2718 freqBin = XPA_LVL_FREQ(freqCount) & 0xff; 2719 if (resetFreqBin >= freqBin) 2720 biaslevel = (uint8_t)(XPA_LVL_FREQ(freqCount) >> 14); 2721 else 2722 break; 2723 freqCount++; 2724 } 2725 } 2726 2727 HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: overriding XPA bias level = %d\n", 2728 __func__, biaslevel); 2729 2730 /* 2731 * This is a dirty workaround for the const initval data, 2732 * which will upset multiple AR9160's on the same board. 2733 * 2734 * The HAL should likely just have a private copy of the addac 2735 * data per instance. 2736 */ 2737 if (IEEE80211_IS_CHAN_2GHZ(chan)) 2738 HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 7, 1) = 2739 (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3; 2740 else 2741 HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 6, 1) = 2742 (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6; 2743 #undef XPA_LVL_FREQ 2744 } 2745 2746 static void 2747 ar5416MarkPhyInactive(struct ath_hal *ah) 2748 { 2749 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); 2750 } 2751