1 /* 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * Copyright (c) 2002-2008 Atheros Communications, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 * 17 * $FreeBSD$ 18 */ 19 #include "opt_ah.h" 20 21 #include "ah.h" 22 #include "ah_internal.h" 23 #include "ah_devid.h" 24 25 #include "ah_eeprom_v14.h" 26 27 #include "ar5416/ar5416.h" 28 #include "ar5416/ar5416reg.h" 29 #include "ar5416/ar5416phy.h" 30 31 /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */ 32 #define EEP_MINOR(_ah) \ 33 (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK) 34 #define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2) 35 #define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3) 36 37 /* Additional Time delay to wait after activiting the Base band */ 38 #define BASE_ACTIVATE_DELAY 100 /* 100 usec */ 39 #define PLL_SETTLE_DELAY 300 /* 300 usec */ 40 #define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */ 41 42 static void ar5416InitDMA(struct ath_hal *ah); 43 static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *); 44 static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode); 45 static void ar5416InitQoS(struct ath_hal *ah); 46 static void ar5416InitUserSettings(struct ath_hal *ah); 47 static void ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *); 48 49 #if 0 50 static HAL_BOOL ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *); 51 #endif 52 static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *); 53 54 static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah); 55 static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type); 56 static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah, 57 struct ar5416eeprom *pEepData, 58 const struct ieee80211_channel *chan, int16_t *ratesArray, 59 uint16_t cfgCtl, uint16_t AntennaReduction, 60 uint16_t twiceMaxRegulatoryPower, 61 uint16_t powerLimit); 62 static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan); 63 static void ar5416MarkPhyInactive(struct ath_hal *ah); 64 static void ar5416SetIFSTiming(struct ath_hal *ah, 65 const struct ieee80211_channel *chan); 66 67 /* 68 * Places the device in and out of reset and then places sane 69 * values in the registers based on EEPROM config, initialization 70 * vectors (as determined by the mode), and station configuration 71 * 72 * bChannelChange is used to preserve DMA/PCU registers across 73 * a HW Reset during channel change. 74 */ 75 HAL_BOOL 76 ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode, 77 struct ieee80211_channel *chan, 78 HAL_BOOL bChannelChange, HAL_STATUS *status) 79 { 80 #define N(a) (sizeof (a) / sizeof (a[0])) 81 #define FAIL(_code) do { ecode = _code; goto bad; } while (0) 82 struct ath_hal_5212 *ahp = AH5212(ah); 83 HAL_CHANNEL_INTERNAL *ichan; 84 uint32_t saveDefAntenna, saveLedState; 85 uint32_t macStaId1; 86 uint16_t rfXpdGain[2]; 87 HAL_STATUS ecode; 88 uint32_t powerVal, rssiThrReg; 89 uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow; 90 int i; 91 uint64_t tsf = 0; 92 93 OS_MARK(ah, AH_MARK_RESET, bChannelChange); 94 95 /* Bring out of sleep mode */ 96 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) { 97 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n", 98 __func__); 99 FAIL(HAL_EIO); 100 } 101 102 /* 103 * Map public channel to private. 104 */ 105 ichan = ath_hal_checkchannel(ah, chan); 106 if (ichan == AH_NULL) 107 FAIL(HAL_EINVAL); 108 switch (opmode) { 109 case HAL_M_STA: 110 case HAL_M_IBSS: 111 case HAL_M_HOSTAP: 112 case HAL_M_MONITOR: 113 break; 114 default: 115 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n", 116 __func__, opmode); 117 FAIL(HAL_EINVAL); 118 break; 119 } 120 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1); 121 122 /* Blank the channel survey statistics */ 123 OS_MEMZERO(&ahp->ah_chansurvey, sizeof(ahp->ah_chansurvey)); 124 125 /* XXX Turn on fast channel change for 5416 */ 126 /* 127 * Preserve the bmiss rssi threshold and count threshold 128 * across resets 129 */ 130 rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR); 131 /* If reg is zero, first time thru set to default val */ 132 if (rssiThrReg == 0) 133 rssiThrReg = INIT_RSSI_THR; 134 135 /* 136 * Preserve the antenna on a channel change 137 */ 138 saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA); 139 140 /* 141 * Don't do this for the AR9285 - it breaks RX for single 142 * antenna designs when diversity is disabled. 143 * 144 * I'm not sure what this was working around; it may be 145 * something to do with the AR5416. Certainly this register 146 * isn't supposed to be used by the MIMO chips for anything 147 * except for defining the default antenna when an external 148 * phase array / smart antenna is connected. 149 * 150 * See PR: kern/179269 . 151 */ 152 if ((! AR_SREV_KITE(ah)) && saveDefAntenna == 0) /* XXX magic constants */ 153 saveDefAntenna = 1; 154 155 /* Save hardware flag before chip reset clears the register */ 156 macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & 157 (AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT); 158 159 /* Save led state from pci config register */ 160 saveLedState = OS_REG_READ(ah, AR_MAC_LED) & 161 (AR_MAC_LED_ASSOC | AR_MAC_LED_MODE | 162 AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW); 163 164 /* For chips on which the RTC reset is done, save TSF before it gets cleared */ 165 if (AR_SREV_HOWL(ah) || 166 (AR_SREV_MERLIN(ah) && 167 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) || 168 (ah->ah_config.ah_force_full_reset)) 169 tsf = ar5416GetTsf64(ah); 170 171 /* Mark PHY as inactive; marked active in ar5416InitBB() */ 172 ar5416MarkPhyInactive(ah); 173 174 if (!ar5416ChipReset(ah, chan)) { 175 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__); 176 FAIL(HAL_EIO); 177 } 178 179 /* Restore TSF */ 180 if (tsf) 181 ar5416SetTsf64(ah, tsf); 182 183 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); 184 if (AR_SREV_MERLIN_10_OR_LATER(ah)) 185 OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); 186 187 AH5416(ah)->ah_writeIni(ah, chan); 188 189 if(AR_SREV_KIWI_13_OR_LATER(ah) ) { 190 /* Enable ASYNC FIFO */ 191 OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, 192 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL); 193 OS_REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO); 194 OS_REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, 195 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); 196 OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, 197 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); 198 } 199 200 /* Override ini values (that can be overriden in this fashion) */ 201 ar5416OverrideIni(ah, chan); 202 203 /* Setup 11n MAC/Phy mode registers */ 204 ar5416Set11nRegs(ah, chan); 205 206 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); 207 208 /* 209 * Some AR91xx SoC devices frequently fail to accept TSF writes 210 * right after the chip reset. When that happens, write a new 211 * value after the initvals have been applied, with an offset 212 * based on measured time difference 213 */ 214 if (AR_SREV_HOWL(ah) && (ar5416GetTsf64(ah) < tsf)) { 215 tsf += 1500; 216 ar5416SetTsf64(ah, tsf); 217 } 218 219 HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n", 220 __func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK)); 221 HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n", 222 __func__, OS_REG_READ(ah,AR_PHY_ADC_CTL)); 223 224 /* 225 * This routine swaps the analog chains - it should be done 226 * before any radio register twiddling is done. 227 */ 228 ar5416InitChainMasks(ah); 229 230 /* Setup the open-loop power calibration if required */ 231 if (ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { 232 AH5416(ah)->ah_olcInit(ah); 233 AH5416(ah)->ah_olcTempCompensation(ah); 234 } 235 236 /* Setup the transmit power values. */ 237 if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) { 238 HALDEBUG(ah, HAL_DEBUG_ANY, 239 "%s: error init'ing transmit power\n", __func__); 240 FAIL(HAL_EIO); 241 } 242 243 /* Write the analog registers */ 244 if (!ahp->ah_rfHal->setRfRegs(ah, chan, 245 IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) { 246 HALDEBUG(ah, HAL_DEBUG_ANY, 247 "%s: ar5212SetRfRegs failed\n", __func__); 248 FAIL(HAL_EIO); 249 } 250 251 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */ 252 if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan)) 253 ar5416SetDeltaSlope(ah, chan); 254 255 AH5416(ah)->ah_spurMitigate(ah, chan); 256 257 /* Setup board specific options for EEPROM version 3 */ 258 if (!ah->ah_setBoardValues(ah, chan)) { 259 HALDEBUG(ah, HAL_DEBUG_ANY, 260 "%s: error setting board options\n", __func__); 261 FAIL(HAL_EIO); 262 } 263 264 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); 265 266 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr)); 267 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4) 268 | macStaId1 269 | AR_STA_ID1_RTS_USE_DEF 270 | ahp->ah_staId1Defaults 271 ); 272 ar5212SetOperatingMode(ah, opmode); 273 274 /* Set Venice BSSID mask according to current state */ 275 OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask)); 276 OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4)); 277 278 /* Restore previous led state */ 279 if (AR_SREV_HOWL(ah)) 280 OS_REG_WRITE(ah, AR_MAC_LED, 281 AR_MAC_LED_ASSOC_ACTIVE | AR_CFG_SCLK_32KHZ); 282 else 283 OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) | 284 saveLedState); 285 286 /* Start TSF2 for generic timer 8-15 */ 287 #ifdef NOTYET 288 if (AR_SREV_KIWI(ah)) 289 ar5416StartTsf2(ah); 290 #endif 291 292 /* 293 * Enable Bluetooth Coexistence if it's enabled. 294 */ 295 if (AH5416(ah)->ah_btCoexConfigType != HAL_BT_COEX_CFG_NONE) 296 ar5416InitBTCoex(ah); 297 298 /* Restore previous antenna */ 299 OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); 300 301 /* then our BSSID and associate id */ 302 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid)); 303 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) | 304 (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S); 305 306 /* Restore bmiss rssi & count thresholds */ 307 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr); 308 309 OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */ 310 311 /* Restore bmiss rssi & count thresholds */ 312 OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg); 313 314 if (!ar5212SetChannel(ah, chan)) 315 FAIL(HAL_EIO); 316 317 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); 318 319 /* Set 1:1 QCU to DCU mapping for all queues */ 320 for (i = 0; i < AR_NUM_DCU; i++) 321 OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); 322 323 ahp->ah_intrTxqs = 0; 324 for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++) 325 ah->ah_resetTxQueue(ah, i); 326 327 ar5416InitIMR(ah, opmode); 328 ar5416SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1); 329 ar5416InitQoS(ah); 330 /* This may override the AR_DIAG_SW register */ 331 ar5416InitUserSettings(ah); 332 333 /* XXX this won't work for AR9287! */ 334 if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) { 335 ar5416SetIFSTiming(ah, chan); 336 #if 0 337 /* 338 * AR5413? 339 * Force window_length for 1/2 and 1/4 rate channels, 340 * the ini file sets this to zero otherwise. 341 */ 342 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, 343 AR_PHY_FRAME_CTL_WINLEN, 3); 344 } 345 #endif 346 } 347 348 if (AR_SREV_KIWI_13_OR_LATER(ah)) { 349 /* 350 * Enable ASYNC FIFO 351 * 352 * If Async FIFO is enabled, the following counters change 353 * as MAC now runs at 117 Mhz instead of 88/44MHz when 354 * async FIFO is disabled. 355 * 356 * Overwrite the delay/timeouts initialized in ProcessIni() 357 * above. 358 */ 359 OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 360 AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR); 361 OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, 362 AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR); 363 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 364 AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR); 365 366 OS_REG_WRITE(ah, AR_TIME_OUT, 367 AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR); 368 OS_REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR); 369 370 OS_REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER, 371 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); 372 OS_REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN, 373 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); 374 } 375 376 if (AR_SREV_KIWI_13_OR_LATER(ah)) { 377 /* Enable AGGWEP to accelerate encryption engine */ 378 OS_REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 379 AR_PCU_MISC_MODE2_ENABLE_AGGWEP); 380 } 381 382 383 /* 384 * disable seq number generation in hw 385 */ 386 OS_REG_WRITE(ah, AR_STA_ID1, 387 OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM); 388 389 ar5416InitDMA(ah); 390 391 /* 392 * program OBS bus to see MAC interrupts 393 */ 394 OS_REG_WRITE(ah, AR_OBS, 8); 395 396 /* 397 * Disable the "general" TX/RX mitigation timers. 398 */ 399 OS_REG_WRITE(ah, AR_MIRT, 0); 400 401 #ifdef AH_AR5416_INTERRUPT_MITIGATION 402 /* 403 * This initialises the RX interrupt mitigation timers. 404 * 405 * The mitigation timers begin at idle and are triggered 406 * upon the RXOK of a single frame (or sub-frame, for A-MPDU.) 407 * Then, the RX mitigation interrupt will fire: 408 * 409 * + 250uS after the last RX'ed frame, or 410 * + 700uS after the first RX'ed frame 411 * 412 * Thus, the LAST field dictates the extra latency 413 * induced by the RX mitigation method and the FIRST 414 * field dictates how long to delay before firing an 415 * RX mitigation interrupt. 416 * 417 * Please note this only seems to be for RXOK frames; 418 * not CRC or PHY error frames. 419 * 420 */ 421 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 250); 422 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 700); 423 #endif 424 ar5416InitBB(ah, chan); 425 426 /* Setup compression registers */ 427 ar5212SetCompRegs(ah); /* XXX not needed? */ 428 429 /* 430 * 5416 baseband will check the per rate power table 431 * and select the lower of the two 432 */ 433 ackTpcPow = 63; 434 ctsTpcPow = 63; 435 chirpTpcPow = 63; 436 powerVal = SM(ackTpcPow, AR_TPC_ACK) | 437 SM(ctsTpcPow, AR_TPC_CTS) | 438 SM(chirpTpcPow, AR_TPC_CHIRP); 439 OS_REG_WRITE(ah, AR_TPC, powerVal); 440 441 if (!ar5416InitCal(ah, chan)) 442 FAIL(HAL_ESELFTEST); 443 444 ar5416RestoreChainMask(ah); 445 446 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */ 447 448 if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan)) 449 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; 450 451 if (AR_SREV_HOWL(ah)) { 452 /* 453 * Enable the MBSSID block-ack fix for HOWL. 454 * This feature is only supported on Howl 1.4, but it is safe to 455 * set bit 22 of STA_ID1 on other Howl revisions (1.1, 1.2, 1.3), 456 * since bit 22 is unused in those Howl revisions. 457 */ 458 unsigned int reg; 459 reg = (OS_REG_READ(ah, AR_STA_ID1) | (1<<22)); 460 OS_REG_WRITE(ah,AR_STA_ID1, reg); 461 ath_hal_printf(ah, "MBSSID Set bit 22 of AR_STA_ID 0x%x\n", reg); 462 } 463 464 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__); 465 466 OS_MARK(ah, AH_MARK_RESET_DONE, 0); 467 468 return AH_TRUE; 469 bad: 470 OS_MARK(ah, AH_MARK_RESET_DONE, ecode); 471 if (status != AH_NULL) 472 *status = ecode; 473 return AH_FALSE; 474 #undef FAIL 475 #undef N 476 } 477 478 #if 0 479 /* 480 * This channel change evaluates whether the selected hardware can 481 * perform a synthesizer-only channel change (no reset). If the 482 * TX is not stopped, or the RFBus cannot be granted in the given 483 * time, the function returns false as a reset is necessary 484 */ 485 HAL_BOOL 486 ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan) 487 { 488 uint32_t ulCount; 489 uint32_t data, synthDelay, qnum; 490 uint16_t rfXpdGain[4]; 491 struct ath_hal_5212 *ahp = AH5212(ah); 492 HAL_CHANNEL_INTERNAL *ichan; 493 494 /* 495 * Map public channel to private. 496 */ 497 ichan = ath_hal_checkchannel(ah, chan); 498 499 /* TX must be stopped or RF Bus grant will not work */ 500 for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) { 501 if (ar5212NumTxPending(ah, qnum)) { 502 HALDEBUG(ah, HAL_DEBUG_ANY, 503 "%s: frames pending on queue %d\n", __func__, qnum); 504 return AH_FALSE; 505 } 506 } 507 508 /* 509 * Kill last Baseband Rx Frame - Request analog bus grant 510 */ 511 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST); 512 if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) { 513 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n", 514 __func__); 515 return AH_FALSE; 516 } 517 518 ar5416Set11nRegs(ah, chan); /* NB: setup 5416-specific regs */ 519 520 /* Change the synth */ 521 if (!ar5212SetChannel(ah, chan)) 522 return AH_FALSE; 523 524 /* Setup the transmit power values. */ 525 if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) { 526 HALDEBUG(ah, HAL_DEBUG_ANY, 527 "%s: error init'ing transmit power\n", __func__); 528 return AH_FALSE; 529 } 530 531 /* 532 * Wait for the frequency synth to settle (synth goes on 533 * via PHY_ACTIVE_EN). Read the phy active delay register. 534 * Value is in 100ns increments. 535 */ 536 data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; 537 if (IS_CHAN_CCK(ichan)) { 538 synthDelay = (4 * data) / 22; 539 } else { 540 synthDelay = data / 10; 541 } 542 543 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY); 544 545 /* Release the RFBus Grant */ 546 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0); 547 548 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */ 549 if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) { 550 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3); 551 ar5212SetSpurMitigation(ah, chan); 552 ar5416SetDeltaSlope(ah, chan); 553 } 554 555 /* XXX spur mitigation for Melin */ 556 557 if (!IEEE80211_IS_CHAN_DFS(chan)) 558 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; 559 560 ichan->channel_time = 0; 561 ichan->tsf_last = ar5416GetTsf64(ah); 562 ar5212TxEnable(ah, AH_TRUE); 563 return AH_TRUE; 564 } 565 #endif 566 567 static void 568 ar5416InitDMA(struct ath_hal *ah) 569 { 570 struct ath_hal_5212 *ahp = AH5212(ah); 571 572 /* 573 * set AHB_MODE not to do cacheline prefetches 574 */ 575 OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN); 576 577 /* 578 * let mac dma reads be in 128 byte chunks 579 */ 580 OS_REG_WRITE(ah, AR_TXCFG, 581 (OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B); 582 583 /* 584 * let mac dma writes be in 128 byte chunks 585 */ 586 /* 587 * XXX If you change this, you must change the headroom 588 * assigned in ah_maxTxTrigLev - see ar5416InitState(). 589 */ 590 OS_REG_WRITE(ah, AR_RXCFG, 591 (OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B); 592 593 /* restore TX trigger level */ 594 OS_REG_WRITE(ah, AR_TXCFG, 595 (OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) | 596 SM(ahp->ah_txTrigLev, AR_FTRIG)); 597 598 /* 599 * Setup receive FIFO threshold to hold off TX activities 600 */ 601 OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); 602 603 /* 604 * reduce the number of usable entries in PCU TXBUF to avoid 605 * wrap around. 606 */ 607 if (AR_SREV_KITE(ah)) 608 /* 609 * For AR9285 the number of Fifos are reduced to half. 610 * So set the usable tx buf size also to half to 611 * avoid data/delimiter underruns 612 */ 613 OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE); 614 else 615 OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE); 616 } 617 618 static void 619 ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan) 620 { 621 uint32_t synthDelay; 622 623 /* 624 * Wait for the frequency synth to settle (synth goes on 625 * via AR_PHY_ACTIVE_EN). Read the phy active delay register. 626 * Value is in 100ns increments. 627 */ 628 synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; 629 if (IEEE80211_IS_CHAN_CCK(chan)) { 630 synthDelay = (4 * synthDelay) / 22; 631 } else { 632 synthDelay /= 10; 633 } 634 635 /* Turn on PLL on 5416 */ 636 HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n", 637 __func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz"); 638 639 /* Activate the PHY (includes baseband activate and synthesizer on) */ 640 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); 641 642 /* 643 * If the AP starts the calibration before the base band timeout 644 * completes we could get rx_clear false triggering. Add an 645 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition 646 * does not happen. 647 */ 648 if (IEEE80211_IS_CHAN_HALF(chan)) { 649 OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY); 650 } else if (IEEE80211_IS_CHAN_QUARTER(chan)) { 651 OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY); 652 } else { 653 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY); 654 } 655 } 656 657 static void 658 ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode) 659 { 660 struct ath_hal_5212 *ahp = AH5212(ah); 661 662 /* 663 * Setup interrupt handling. Note that ar5212ResetTxQueue 664 * manipulates the secondary IMR's as queues are enabled 665 * and disabled. This is done with RMW ops to insure the 666 * settings we make here are preserved. 667 */ 668 ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN 669 | AR_IMR_RXERR | AR_IMR_RXORN 670 | AR_IMR_BCNMISC; 671 672 #ifdef AH_AR5416_INTERRUPT_MITIGATION 673 ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 674 #else 675 ahp->ah_maskReg |= AR_IMR_RXOK; 676 #endif 677 ahp->ah_maskReg |= AR_IMR_TXOK; 678 679 if (opmode == HAL_M_HOSTAP) 680 ahp->ah_maskReg |= AR_IMR_MIB; 681 OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg); 682 683 #ifdef ADRIAN_NOTYET 684 /* This is straight from ath9k */ 685 if (! AR_SREV_HOWL(ah)) { 686 OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); 687 OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); 688 OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); 689 } 690 #endif 691 692 /* Enable bus errors that are OR'd to set the HIUERR bit */ 693 #if 0 694 OS_REG_WRITE(ah, AR_IMR_S2, 695 OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST); 696 #endif 697 } 698 699 static void 700 ar5416InitQoS(struct ath_hal *ah) 701 { 702 /* QoS support */ 703 OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */ 704 OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */ 705 706 /* Turn on NOACK Support for QoS packets */ 707 OS_REG_WRITE(ah, AR_NOACK, 708 SM(2, AR_NOACK_2BIT_VALUE) | 709 SM(5, AR_NOACK_BIT_OFFSET) | 710 SM(0, AR_NOACK_BYTE_OFFSET)); 711 712 /* 713 * initialize TXOP for all TIDs 714 */ 715 OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); 716 OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); 717 OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); 718 OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); 719 OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); 720 } 721 722 static void 723 ar5416InitUserSettings(struct ath_hal *ah) 724 { 725 struct ath_hal_5212 *ahp = AH5212(ah); 726 727 /* Restore user-specified settings */ 728 if (ahp->ah_miscMode != 0) 729 OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) 730 | ahp->ah_miscMode); 731 if (ahp->ah_sifstime != (u_int) -1) 732 ar5212SetSifsTime(ah, ahp->ah_sifstime); 733 if (ahp->ah_slottime != (u_int) -1) 734 ar5212SetSlotTime(ah, ahp->ah_slottime); 735 if (ahp->ah_acktimeout != (u_int) -1) 736 ar5212SetAckTimeout(ah, ahp->ah_acktimeout); 737 if (ahp->ah_ctstimeout != (u_int) -1) 738 ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout); 739 if (AH_PRIVATE(ah)->ah_diagreg != 0) 740 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg); 741 if (AH5416(ah)->ah_globaltxtimeout != (u_int) -1) 742 ar5416SetGlobalTxTimeout(ah, AH5416(ah)->ah_globaltxtimeout); 743 } 744 745 static void 746 ar5416SetRfMode(struct ath_hal *ah, const struct ieee80211_channel *chan) 747 { 748 uint32_t rfMode; 749 750 if (chan == AH_NULL) 751 return; 752 753 /* treat channel B as channel G , no B mode suport in owl */ 754 rfMode = IEEE80211_IS_CHAN_CCK(chan) ? 755 AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; 756 757 if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) { 758 /* phy mode bits for 5GHz channels require Fast Clock */ 759 rfMode |= AR_PHY_MODE_DYNAMIC 760 | AR_PHY_MODE_DYN_CCK_DISABLE; 761 } else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) { 762 rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ? 763 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ; 764 } 765 766 OS_REG_WRITE(ah, AR_PHY_MODE, rfMode); 767 } 768 769 /* 770 * Places the hardware into reset and then pulls it out of reset 771 */ 772 HAL_BOOL 773 ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan) 774 { 775 OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0); 776 /* 777 * Warm reset is optimistic for open-loop TX power control. 778 */ 779 if (AR_SREV_MERLIN(ah) && 780 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { 781 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) 782 return AH_FALSE; 783 } else if (ah->ah_config.ah_force_full_reset) { 784 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) 785 return AH_FALSE; 786 } else { 787 if (!ar5416SetResetReg(ah, HAL_RESET_WARM)) 788 return AH_FALSE; 789 } 790 791 /* Bring out of sleep mode (AGAIN) */ 792 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 793 return AH_FALSE; 794 795 #ifdef notyet 796 ahp->ah_chipFullSleep = AH_FALSE; 797 #endif 798 799 AH5416(ah)->ah_initPLL(ah, chan); 800 801 /* 802 * Perform warm reset before the mode/PLL/turbo registers 803 * are changed in order to deactivate the radio. Mode changes 804 * with an active radio can result in corrupted shifts to the 805 * radio device. 806 */ 807 ar5416SetRfMode(ah, chan); 808 809 return AH_TRUE; 810 } 811 812 /* 813 * Delta slope coefficient computation. 814 * Required for OFDM operation. 815 */ 816 static void 817 ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled, 818 uint32_t *coef_mantissa, uint32_t *coef_exponent) 819 { 820 #define COEF_SCALE_S 24 821 uint32_t coef_exp, coef_man; 822 /* 823 * ALGO -> coef_exp = 14-floor(log2(coef)); 824 * floor(log2(x)) is the highest set bit position 825 */ 826 for (coef_exp = 31; coef_exp > 0; coef_exp--) 827 if ((coef_scaled >> coef_exp) & 0x1) 828 break; 829 /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */ 830 HALASSERT(coef_exp); 831 coef_exp = 14 - (coef_exp - COEF_SCALE_S); 832 833 /* 834 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5); 835 * The coefficient is already shifted up for scaling 836 */ 837 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); 838 839 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); 840 *coef_exponent = coef_exp - 16; 841 842 #undef COEF_SCALE_S 843 } 844 845 void 846 ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan) 847 { 848 #define INIT_CLOCKMHZSCALED 0x64000000 849 uint32_t coef_scaled, ds_coef_exp, ds_coef_man; 850 uint32_t clockMhzScaled; 851 852 CHAN_CENTERS centers; 853 854 /* half and quarter rate can divide the scaled clock by 2 or 4 respectively */ 855 /* scale for selected channel bandwidth */ 856 clockMhzScaled = INIT_CLOCKMHZSCALED; 857 if (IEEE80211_IS_CHAN_TURBO(chan)) 858 clockMhzScaled <<= 1; 859 else if (IEEE80211_IS_CHAN_HALF(chan)) 860 clockMhzScaled >>= 1; 861 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 862 clockMhzScaled >>= 2; 863 864 /* 865 * ALGO -> coef = 1e8/fcarrier*fclock/40; 866 * scaled coef to provide precision for this floating calculation 867 */ 868 ar5416GetChannelCenters(ah, chan, ¢ers); 869 coef_scaled = clockMhzScaled / centers.synth_center; 870 871 ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); 872 873 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3, 874 AR_PHY_TIMING3_DSC_MAN, ds_coef_man); 875 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3, 876 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp); 877 878 /* 879 * For Short GI, 880 * scaled coeff is 9/10 that of normal coeff 881 */ 882 coef_scaled = (9 * coef_scaled)/10; 883 884 ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); 885 886 /* for short gi */ 887 OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI, 888 AR_PHY_HALFGI_DSC_MAN, ds_coef_man); 889 OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI, 890 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp); 891 #undef INIT_CLOCKMHZSCALED 892 } 893 894 /* 895 * Set a limit on the overall output power. Used for dynamic 896 * transmit power control and the like. 897 * 898 * NB: limit is in units of 0.5 dbM. 899 */ 900 HAL_BOOL 901 ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit) 902 { 903 uint16_t dummyXpdGains[2]; 904 905 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER); 906 return ah->ah_setTxPower(ah, AH_PRIVATE(ah)->ah_curchan, 907 dummyXpdGains); 908 } 909 910 HAL_BOOL 911 ar5416GetChipPowerLimits(struct ath_hal *ah, 912 struct ieee80211_channel *chan) 913 { 914 struct ath_hal_5212 *ahp = AH5212(ah); 915 int16_t minPower, maxPower; 916 917 /* 918 * Get Pier table max and min powers. 919 */ 920 if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) { 921 /* NB: rf code returns 1/4 dBm units, convert */ 922 chan->ic_maxpower = maxPower / 2; 923 chan->ic_minpower = minPower / 2; 924 } else { 925 HALDEBUG(ah, HAL_DEBUG_ANY, 926 "%s: no min/max power for %u/0x%x\n", 927 __func__, chan->ic_freq, chan->ic_flags); 928 chan->ic_maxpower = AR5416_MAX_RATE_POWER; 929 chan->ic_minpower = 0; 930 } 931 HALDEBUG(ah, HAL_DEBUG_RESET, 932 "Chan %d: MaxPow = %d MinPow = %d\n", 933 chan->ic_freq, chan->ic_maxpower, chan->ic_minpower); 934 return AH_TRUE; 935 } 936 937 /************************************************************** 938 * ar5416WriteTxPowerRateRegisters 939 * 940 * Write the TX power rate registers from the raw values given 941 * in ratesArray[]. 942 * 943 * The CCK and HT40 rate registers are only written if needed. 944 * HT20 and 11g/11a OFDM rate registers are always written. 945 * 946 * The values written are raw values which should be written 947 * to the registers - so it's up to the caller to pre-adjust 948 * them (eg CCK power offset value, or Merlin TX power offset, 949 * etc.) 950 */ 951 void 952 ar5416WriteTxPowerRateRegisters(struct ath_hal *ah, 953 const struct ieee80211_channel *chan, const int16_t ratesArray[]) 954 { 955 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s)) 956 957 /* Write the OFDM power per rate set */ 958 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, 959 POW_SM(ratesArray[rate18mb], 24) 960 | POW_SM(ratesArray[rate12mb], 16) 961 | POW_SM(ratesArray[rate9mb], 8) 962 | POW_SM(ratesArray[rate6mb], 0) 963 ); 964 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, 965 POW_SM(ratesArray[rate54mb], 24) 966 | POW_SM(ratesArray[rate48mb], 16) 967 | POW_SM(ratesArray[rate36mb], 8) 968 | POW_SM(ratesArray[rate24mb], 0) 969 ); 970 971 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 972 /* Write the CCK power per rate set */ 973 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, 974 POW_SM(ratesArray[rate2s], 24) 975 | POW_SM(ratesArray[rate2l], 16) 976 | POW_SM(ratesArray[rateXr], 8) /* XR target power */ 977 | POW_SM(ratesArray[rate1l], 0) 978 ); 979 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, 980 POW_SM(ratesArray[rate11s], 24) 981 | POW_SM(ratesArray[rate11l], 16) 982 | POW_SM(ratesArray[rate5_5s], 8) 983 | POW_SM(ratesArray[rate5_5l], 0) 984 ); 985 HALDEBUG(ah, HAL_DEBUG_RESET, 986 "%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n", 987 __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3), 988 OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4)); 989 } 990 991 /* Write the HT20 power per rate set */ 992 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, 993 POW_SM(ratesArray[rateHt20_3], 24) 994 | POW_SM(ratesArray[rateHt20_2], 16) 995 | POW_SM(ratesArray[rateHt20_1], 8) 996 | POW_SM(ratesArray[rateHt20_0], 0) 997 ); 998 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, 999 POW_SM(ratesArray[rateHt20_7], 24) 1000 | POW_SM(ratesArray[rateHt20_6], 16) 1001 | POW_SM(ratesArray[rateHt20_5], 8) 1002 | POW_SM(ratesArray[rateHt20_4], 0) 1003 ); 1004 1005 if (IEEE80211_IS_CHAN_HT40(chan)) { 1006 /* Write the HT40 power per rate set */ 1007 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, 1008 POW_SM(ratesArray[rateHt40_3], 24) 1009 | POW_SM(ratesArray[rateHt40_2], 16) 1010 | POW_SM(ratesArray[rateHt40_1], 8) 1011 | POW_SM(ratesArray[rateHt40_0], 0) 1012 ); 1013 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, 1014 POW_SM(ratesArray[rateHt40_7], 24) 1015 | POW_SM(ratesArray[rateHt40_6], 16) 1016 | POW_SM(ratesArray[rateHt40_5], 8) 1017 | POW_SM(ratesArray[rateHt40_4], 0) 1018 ); 1019 /* Write the Dup/Ext 40 power per rate set */ 1020 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, 1021 POW_SM(ratesArray[rateExtOfdm], 24) 1022 | POW_SM(ratesArray[rateExtCck], 16) 1023 | POW_SM(ratesArray[rateDupOfdm], 8) 1024 | POW_SM(ratesArray[rateDupCck], 0) 1025 ); 1026 } 1027 1028 /* 1029 * Set max power to 30 dBm and, optionally, 1030 * enable TPC in tx descriptors. 1031 */ 1032 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER | 1033 (AH5212(ah)->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0)); 1034 #undef POW_SM 1035 } 1036 1037 1038 /************************************************************** 1039 * ar5416SetTransmitPower 1040 * 1041 * Set the transmit power in the baseband for the given 1042 * operating channel and mode. 1043 */ 1044 HAL_BOOL 1045 ar5416SetTransmitPower(struct ath_hal *ah, 1046 const struct ieee80211_channel *chan, uint16_t *rfXpdGain) 1047 { 1048 #define N(a) (sizeof (a) / sizeof (a[0])) 1049 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s)) 1050 1051 MODAL_EEP_HEADER *pModal; 1052 struct ath_hal_5212 *ahp = AH5212(ah); 1053 int16_t txPowerIndexOffset = 0; 1054 int i; 1055 1056 uint16_t cfgCtl; 1057 uint16_t powerLimit; 1058 uint16_t twiceAntennaReduction; 1059 uint16_t twiceMaxRegulatoryPower; 1060 int16_t maxPower; 1061 HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom; 1062 struct ar5416eeprom *pEepData = &ee->ee_base; 1063 1064 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1); 1065 1066 /* 1067 * Default to 2, is overridden based on the EEPROM version / value. 1068 */ 1069 AH5416(ah)->ah_ht40PowerIncForPdadc = 2; 1070 1071 /* Setup info for the actual eeprom */ 1072 OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray)); 1073 cfgCtl = ath_hal_getctl(ah, chan); 1074 powerLimit = chan->ic_maxregpower * 2; 1075 twiceAntennaReduction = chan->ic_maxantgain; 1076 twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit); 1077 pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]; 1078 HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n", 1079 __func__,chan->ic_freq, cfgCtl ); 1080 1081 if (IS_EEP_MINOR_V2(ah)) { 1082 AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; 1083 } 1084 1085 if (!ar5416SetPowerPerRateTable(ah, pEepData, chan, 1086 &AH5416(ah)->ah_ratesArray[0], 1087 cfgCtl, 1088 twiceAntennaReduction, 1089 twiceMaxRegulatoryPower, powerLimit)) { 1090 HALDEBUG(ah, HAL_DEBUG_ANY, 1091 "%s: unable to set tx power per rate table\n", __func__); 1092 return AH_FALSE; 1093 } 1094 1095 if (!AH5416(ah)->ah_setPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) { 1096 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n", 1097 __func__); 1098 return AH_FALSE; 1099 } 1100 1101 maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb], 1102 AH5416(ah)->ah_ratesArray[rateHt20_0]); 1103 1104 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1105 maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]); 1106 } 1107 1108 if (IEEE80211_IS_CHAN_HT40(chan)) { 1109 maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]); 1110 } 1111 1112 ahp->ah_tx6PowerInHalfDbm = maxPower; 1113 AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower; 1114 ahp->ah_txPowerIndexOffset = txPowerIndexOffset; 1115 1116 /* 1117 * txPowerIndexOffset is set by the SetPowerTable() call - 1118 * adjust the rate table (0 offset if rates EEPROM not loaded) 1119 */ 1120 for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) { 1121 AH5416(ah)->ah_ratesArray[i] = 1122 (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]); 1123 if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER) 1124 AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER; 1125 } 1126 1127 #ifdef AH_EEPROM_DUMP 1128 /* 1129 * Dump the rate array whilst it represents the intended dBm*2 1130 * values versus what's being adjusted before being programmed 1131 * in. Keep this in mind if you code up this function and enable 1132 * this debugging; the values won't necessarily be what's being 1133 * programmed into the hardware. 1134 */ 1135 ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray); 1136 #endif 1137 1138 /* 1139 * Merlin and later have a power offset, so subtract 1140 * pwr_table_offset * 2 from each value. The default 1141 * power offset is -5 dBm - ie, a register value of 0 1142 * equates to a TX power of -5 dBm. 1143 */ 1144 if (AR_SREV_MERLIN_20_OR_LATER(ah)) { 1145 int8_t pwr_table_offset; 1146 1147 (void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET, 1148 &pwr_table_offset); 1149 /* Underflow power gets clamped at raw value 0 */ 1150 /* Overflow power gets camped at AR5416_MAX_RATE_POWER */ 1151 for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) { 1152 /* 1153 * + pwr_table_offset is in dBm 1154 * + ratesArray is in 1/2 dBm 1155 */ 1156 AH5416(ah)->ah_ratesArray[i] -= (pwr_table_offset * 2); 1157 if (AH5416(ah)->ah_ratesArray[i] < 0) 1158 AH5416(ah)->ah_ratesArray[i] = 0; 1159 else if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER) 1160 AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER; 1161 } 1162 } 1163 1164 /* 1165 * Adjust rates for OLC where needed 1166 * 1167 * The following CCK rates need adjusting when doing 2.4ghz 1168 * CCK transmission. 1169 * 1170 * + rate2s, rate2l, rate1l, rate11s, rate11l, rate5_5s, rate5_5l 1171 * + rateExtCck, rateDupCck 1172 * 1173 * They're adjusted here regardless. The hardware then gets 1174 * programmed as needed. 5GHz operation doesn't program in CCK 1175 * rates for legacy mode but they seem to be initialised for 1176 * HT40 regardless of channel type. 1177 */ 1178 if (AR_SREV_MERLIN_20_OR_LATER(ah) && 1179 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { 1180 int adj[] = { 1181 rate2s, rate2l, rate1l, rate11s, rate11l, 1182 rate5_5s, rate5_5l, rateExtCck, rateDupCck 1183 }; 1184 int cck_ofdm_delta = 2; 1185 int i; 1186 for (i = 0; i < N(adj); i++) { 1187 AH5416(ah)->ah_ratesArray[adj[i]] -= cck_ofdm_delta; 1188 if (AH5416(ah)->ah_ratesArray[adj[i]] < 0) 1189 AH5416(ah)->ah_ratesArray[adj[i]] = 0; 1190 } 1191 } 1192 1193 /* 1194 * Adjust the HT40 power to meet the correct target TX power 1195 * for 40MHz mode, based on TX power curves that are established 1196 * for 20MHz mode. 1197 * 1198 * XXX handle overflow/too high power level? 1199 */ 1200 if (IEEE80211_IS_CHAN_HT40(chan)) { 1201 AH5416(ah)->ah_ratesArray[rateHt40_0] += 1202 AH5416(ah)->ah_ht40PowerIncForPdadc; 1203 AH5416(ah)->ah_ratesArray[rateHt40_1] += 1204 AH5416(ah)->ah_ht40PowerIncForPdadc; 1205 AH5416(ah)->ah_ratesArray[rateHt40_2] += AH5416(ah)->ah_ht40PowerIncForPdadc; 1206 AH5416(ah)->ah_ratesArray[rateHt40_3] += AH5416(ah)->ah_ht40PowerIncForPdadc; 1207 AH5416(ah)->ah_ratesArray[rateHt40_4] += AH5416(ah)->ah_ht40PowerIncForPdadc; 1208 AH5416(ah)->ah_ratesArray[rateHt40_5] += AH5416(ah)->ah_ht40PowerIncForPdadc; 1209 AH5416(ah)->ah_ratesArray[rateHt40_6] += AH5416(ah)->ah_ht40PowerIncForPdadc; 1210 AH5416(ah)->ah_ratesArray[rateHt40_7] += AH5416(ah)->ah_ht40PowerIncForPdadc; 1211 } 1212 1213 /* Write the TX power rate registers */ 1214 ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray); 1215 1216 /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */ 1217 OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB, 1218 POW_SM(pModal->pwrDecreaseFor3Chain, 6) 1219 | POW_SM(pModal->pwrDecreaseFor2Chain, 0) 1220 ); 1221 return AH_TRUE; 1222 #undef POW_SM 1223 #undef N 1224 } 1225 1226 /* 1227 * Exported call to check for a recent gain reading and return 1228 * the current state of the thermal calibration gain engine. 1229 */ 1230 HAL_RFGAIN 1231 ar5416GetRfgain(struct ath_hal *ah) 1232 { 1233 1234 return (HAL_RFGAIN_INACTIVE); 1235 } 1236 1237 /* 1238 * Places all of hardware into reset 1239 */ 1240 HAL_BOOL 1241 ar5416Disable(struct ath_hal *ah) 1242 { 1243 1244 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 1245 return AH_FALSE; 1246 if (! ar5416SetResetReg(ah, HAL_RESET_COLD)) 1247 return AH_FALSE; 1248 1249 AH5416(ah)->ah_initPLL(ah, AH_NULL); 1250 return (AH_TRUE); 1251 } 1252 1253 /* 1254 * Places the PHY and Radio chips into reset. A full reset 1255 * must be called to leave this state. The PCI/MAC/PCU are 1256 * not placed into reset as we must receive interrupt to 1257 * re-enable the hardware. 1258 */ 1259 HAL_BOOL 1260 ar5416PhyDisable(struct ath_hal *ah) 1261 { 1262 1263 if (! ar5416SetResetReg(ah, HAL_RESET_WARM)) 1264 return AH_FALSE; 1265 1266 AH5416(ah)->ah_initPLL(ah, AH_NULL); 1267 return (AH_TRUE); 1268 } 1269 1270 /* 1271 * Write the given reset bit mask into the reset register 1272 */ 1273 HAL_BOOL 1274 ar5416SetResetReg(struct ath_hal *ah, uint32_t type) 1275 { 1276 /* 1277 * Set force wake 1278 */ 1279 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1280 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1281 1282 switch (type) { 1283 case HAL_RESET_POWER_ON: 1284 return ar5416SetResetPowerOn(ah); 1285 case HAL_RESET_WARM: 1286 case HAL_RESET_COLD: 1287 return ar5416SetReset(ah, type); 1288 default: 1289 HALASSERT(AH_FALSE); 1290 return AH_FALSE; 1291 } 1292 } 1293 1294 static HAL_BOOL 1295 ar5416SetResetPowerOn(struct ath_hal *ah) 1296 { 1297 /* Power On Reset (Hard Reset) */ 1298 1299 /* 1300 * Set force wake 1301 * 1302 * If the MAC was running, previously calling 1303 * reset will wake up the MAC but it may go back to sleep 1304 * before we can start polling. 1305 * Set force wake stops that 1306 * This must be called before initiating a hard reset. 1307 */ 1308 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1309 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1310 1311 /* 1312 * PowerOn reset can be used in open loop power control or failure recovery. 1313 * If we do RTC reset while DMA is still running, hardware may corrupt memory. 1314 * Therefore, we need to reset AHB first to stop DMA. 1315 */ 1316 if (! AR_SREV_HOWL(ah)) 1317 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB); 1318 /* 1319 * RTC reset and clear 1320 */ 1321 OS_REG_WRITE(ah, AR_RTC_RESET, 0); 1322 OS_DELAY(20); 1323 1324 if (! AR_SREV_HOWL(ah)) 1325 OS_REG_WRITE(ah, AR_RC, 0); 1326 1327 OS_REG_WRITE(ah, AR_RTC_RESET, 1); 1328 1329 /* 1330 * Poll till RTC is ON 1331 */ 1332 if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) { 1333 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__); 1334 return AH_FALSE; 1335 } 1336 1337 return ar5416SetReset(ah, HAL_RESET_COLD); 1338 } 1339 1340 static HAL_BOOL 1341 ar5416SetReset(struct ath_hal *ah, int type) 1342 { 1343 uint32_t tmpReg, mask; 1344 uint32_t rst_flags; 1345 1346 #ifdef AH_SUPPORT_AR9130 /* Because of the AR9130 specific registers */ 1347 if (AR_SREV_HOWL(ah)) { 1348 HALDEBUG(ah, HAL_DEBUG_ANY, "[ath] HOWL: Fiddling with derived clk!\n"); 1349 uint32_t val = OS_REG_READ(ah, AR_RTC_DERIVED_CLK); 1350 val &= ~AR_RTC_DERIVED_CLK_PERIOD; 1351 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD); 1352 OS_REG_WRITE(ah, AR_RTC_DERIVED_CLK, val); 1353 (void) OS_REG_READ(ah, AR_RTC_DERIVED_CLK); 1354 } 1355 #endif /* AH_SUPPORT_AR9130 */ 1356 1357 /* 1358 * Force wake 1359 */ 1360 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1361 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1362 1363 #ifdef AH_SUPPORT_AR9130 1364 if (AR_SREV_HOWL(ah)) { 1365 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | 1366 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; 1367 } else { 1368 #endif /* AH_SUPPORT_AR9130 */ 1369 /* 1370 * Reset AHB 1371 * 1372 * (In case the last interrupt source was a bus timeout.) 1373 * XXX TODO: this is not the way to do it! It should be recorded 1374 * XXX by the interrupt handler and passed _into_ the 1375 * XXX reset path routine so this occurs. 1376 */ 1377 tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE); 1378 if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) { 1379 OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); 1380 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF); 1381 } else { 1382 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB); 1383 } 1384 rst_flags = AR_RTC_RC_MAC_WARM; 1385 if (type == HAL_RESET_COLD) 1386 rst_flags |= AR_RTC_RC_MAC_COLD; 1387 #ifdef AH_SUPPORT_AR9130 1388 } 1389 #endif /* AH_SUPPORT_AR9130 */ 1390 1391 OS_REG_WRITE(ah, AR_RTC_RC, rst_flags); 1392 1393 if (AR_SREV_HOWL(ah)) 1394 OS_DELAY(10000); 1395 else 1396 OS_DELAY(100); 1397 1398 /* 1399 * Clear resets and force wakeup 1400 */ 1401 OS_REG_WRITE(ah, AR_RTC_RC, 0); 1402 if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) { 1403 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__); 1404 return AH_FALSE; 1405 } 1406 1407 /* Clear AHB reset */ 1408 if (! AR_SREV_HOWL(ah)) 1409 OS_REG_WRITE(ah, AR_RC, 0); 1410 1411 if (AR_SREV_HOWL(ah)) 1412 OS_DELAY(50); 1413 1414 if (AR_SREV_HOWL(ah)) { 1415 uint32_t mask; 1416 mask = OS_REG_READ(ah, AR_CFG); 1417 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { 1418 HALDEBUG(ah, HAL_DEBUG_RESET, 1419 "CFG Byte Swap Set 0x%x\n", mask); 1420 } else { 1421 mask = 1422 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; 1423 OS_REG_WRITE(ah, AR_CFG, mask); 1424 HALDEBUG(ah, HAL_DEBUG_RESET, 1425 "Setting CFG 0x%x\n", OS_REG_READ(ah, AR_CFG)); 1426 } 1427 } else { 1428 if (type == HAL_RESET_COLD) { 1429 if (isBigEndian()) { 1430 /* 1431 * Set CFG, little-endian for descriptor accesses. 1432 */ 1433 mask = INIT_CONFIG_STATUS | AR_CFG_SWRD; 1434 #ifndef AH_NEED_DESC_SWAP 1435 mask |= AR_CFG_SWTD; 1436 #endif 1437 HALDEBUG(ah, HAL_DEBUG_RESET, 1438 "%s Applying descriptor swap\n", __func__); 1439 OS_REG_WRITE(ah, AR_CFG, mask); 1440 } else 1441 OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS); 1442 } 1443 } 1444 1445 return AH_TRUE; 1446 } 1447 1448 void 1449 ar5416InitChainMasks(struct ath_hal *ah) 1450 { 1451 int rx_chainmask = AH5416(ah)->ah_rx_chainmask; 1452 1453 /* Flip this for this chainmask regardless of chip */ 1454 if (rx_chainmask == 0x5) 1455 OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); 1456 1457 /* 1458 * Workaround for OWL 1.0 calibration failure; enable multi-chain; 1459 * then set true mask after calibration. 1460 */ 1461 if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) { 1462 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7); 1463 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7); 1464 } else { 1465 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask); 1466 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask); 1467 } 1468 OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask); 1469 1470 if (AH5416(ah)->ah_tx_chainmask == 0x5) 1471 OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); 1472 1473 if (AR_SREV_HOWL(ah)) { 1474 OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, 1475 OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001); 1476 } 1477 } 1478 1479 /* 1480 * Work-around for Owl 1.0 calibration failure. 1481 * 1482 * ar5416InitChainMasks sets the RX chainmask to 0x7 if it's Owl 1.0 1483 * due to init calibration failures. ar5416RestoreChainMask restores 1484 * these registers to the correct setting. 1485 */ 1486 void 1487 ar5416RestoreChainMask(struct ath_hal *ah) 1488 { 1489 int rx_chainmask = AH5416(ah)->ah_rx_chainmask; 1490 1491 if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) { 1492 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); 1493 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); 1494 } 1495 } 1496 1497 void 1498 ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan) 1499 { 1500 uint32_t pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2; 1501 if (chan != AH_NULL) { 1502 if (IEEE80211_IS_CHAN_HALF(chan)) 1503 pll |= SM(0x1, AR_RTC_PLL_CLKSEL); 1504 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1505 pll |= SM(0x2, AR_RTC_PLL_CLKSEL); 1506 1507 if (IEEE80211_IS_CHAN_5GHZ(chan)) 1508 pll |= SM(0xa, AR_RTC_PLL_DIV); 1509 else 1510 pll |= SM(0xb, AR_RTC_PLL_DIV); 1511 } else 1512 pll |= SM(0xb, AR_RTC_PLL_DIV); 1513 1514 OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); 1515 1516 /* TODO: 1517 * For multi-band owl, switch between bands by reiniting the PLL. 1518 */ 1519 1520 OS_DELAY(RTC_PLL_SETTLE_DELAY); 1521 1522 OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK); 1523 } 1524 1525 static void 1526 ar5416SetDefGainValues(struct ath_hal *ah, 1527 const MODAL_EEP_HEADER *pModal, 1528 const struct ar5416eeprom *eep, 1529 uint8_t txRxAttenLocal, int regChainOffset, int i) 1530 { 1531 1532 if (IS_EEP_MINOR_V3(ah)) { 1533 txRxAttenLocal = pModal->txRxAttenCh[i]; 1534 1535 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 1536 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1537 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, 1538 pModal->bswMargin[i]); 1539 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1540 AR_PHY_GAIN_2GHZ_XATTEN1_DB, 1541 pModal->bswAtten[i]); 1542 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1543 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, 1544 pModal->xatten2Margin[i]); 1545 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1546 AR_PHY_GAIN_2GHZ_XATTEN2_DB, 1547 pModal->xatten2Db[i]); 1548 } else { 1549 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1550 AR_PHY_GAIN_2GHZ_BSW_MARGIN, 1551 pModal->bswMargin[i]); 1552 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1553 AR_PHY_GAIN_2GHZ_BSW_ATTEN, 1554 pModal->bswAtten[i]); 1555 } 1556 } 1557 1558 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 1559 OS_REG_RMW_FIELD(ah, 1560 AR_PHY_RXGAIN + regChainOffset, 1561 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); 1562 OS_REG_RMW_FIELD(ah, 1563 AR_PHY_RXGAIN + regChainOffset, 1564 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]); 1565 } else { 1566 OS_REG_RMW_FIELD(ah, 1567 AR_PHY_RXGAIN + regChainOffset, 1568 AR_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); 1569 OS_REG_RMW_FIELD(ah, 1570 AR_PHY_GAIN_2GHZ + regChainOffset, 1571 AR_PHY_GAIN_2GHZ_RXTX_MARGIN, pModal->rxTxMarginCh[i]); 1572 } 1573 } 1574 1575 /* 1576 * Get the register chain offset for the given chain. 1577 * 1578 * Take into account the register chain swapping with AR5416 v2.0. 1579 * 1580 * XXX make sure that the reg chain swapping is only done for 1581 * XXX AR5416 v2.0 or greater, and not later chips? 1582 */ 1583 int 1584 ar5416GetRegChainOffset(struct ath_hal *ah, int i) 1585 { 1586 int regChainOffset; 1587 1588 if (AR_SREV_5416_V20_OR_LATER(ah) && 1589 (AH5416(ah)->ah_rx_chainmask == 0x5 || 1590 AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) { 1591 /* Regs are swapped from chain 2 to 1 for 5416 2_0 with 1592 * only chains 0 and 2 populated 1593 */ 1594 regChainOffset = (i == 1) ? 0x2000 : 0x1000; 1595 } else { 1596 regChainOffset = i * 0x1000; 1597 } 1598 1599 return regChainOffset; 1600 } 1601 1602 /* 1603 * Read EEPROM header info and program the device for correct operation 1604 * given the channel value. 1605 */ 1606 HAL_BOOL 1607 ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan) 1608 { 1609 const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom; 1610 const struct ar5416eeprom *eep = &ee->ee_base; 1611 const MODAL_EEP_HEADER *pModal; 1612 int i, regChainOffset; 1613 uint8_t txRxAttenLocal; /* workaround for eeprom versions <= 14.2 */ 1614 1615 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1); 1616 pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]; 1617 1618 /* NB: workaround for eeprom versions <= 14.2 */ 1619 txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44; 1620 1621 OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon); 1622 for (i = 0; i < AR5416_MAX_CHAINS; i++) { 1623 if (AR_SREV_MERLIN(ah)) { 1624 if (i >= 2) break; 1625 } 1626 regChainOffset = ar5416GetRegChainOffset(ah, i); 1627 1628 OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]); 1629 1630 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset, 1631 (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) & 1632 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | 1633 SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | 1634 SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); 1635 1636 /* 1637 * Large signal upgrade, 1638 * If 14.3 or later EEPROM, use 1639 * txRxAttenLocal = pModal->txRxAttenCh[i] 1640 * else txRxAttenLocal is fixed value above. 1641 */ 1642 1643 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) 1644 ar5416SetDefGainValues(ah, pModal, eep, txRxAttenLocal, regChainOffset, i); 1645 1646 } 1647 1648 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 1649 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1650 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, pModal->ob); 1651 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, pModal->db); 1652 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, pModal->ob_ch1); 1653 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, pModal->db_ch1); 1654 } else { 1655 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, pModal->ob); 1656 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, pModal->db); 1657 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, pModal->ob_ch1); 1658 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, pModal->db_ch1); 1659 } 1660 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl); 1661 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS, 1662 !!(pModal->flagBits & AR5416_EEP_FLAG_LOCALBIAS)); 1663 OS_A_REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG, 1664 !!(pModal->flagBits & AR5416_EEP_FLAG_FORCEXPAON)); 1665 } 1666 1667 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling); 1668 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize); 1669 1670 if (! AR_SREV_MERLIN_10_OR_LATER(ah)) 1671 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize); 1672 1673 OS_REG_WRITE(ah, AR_PHY_RF_CTL4, 1674 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) 1675 | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) 1676 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) 1677 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON)); 1678 1679 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, 1680 pModal->txEndToRxOn); 1681 1682 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 1683 OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, 1684 pModal->thresh62); 1685 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62, 1686 pModal->thresh62); 1687 } else { 1688 OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62, 1689 pModal->thresh62); 1690 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62, 1691 pModal->thresh62); 1692 } 1693 1694 /* Minor Version Specific application */ 1695 if (IS_EEP_MINOR_V2(ah)) { 1696 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START, 1697 pModal->txFrameToDataStart); 1698 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON, 1699 pModal->txFrameToPaOn); 1700 } 1701 1702 if (IS_EEP_MINOR_V3(ah) && IEEE80211_IS_CHAN_HT40(chan)) 1703 /* Overwrite switch settling with HT40 value */ 1704 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, 1705 pModal->swSettleHt40); 1706 1707 if (AR_SREV_MERLIN_20_OR_LATER(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_19) 1708 OS_REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, pModal->miscBits); 1709 1710 if (AR_SREV_MERLIN_20(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_20) { 1711 if (IEEE80211_IS_CHAN_2GHZ(chan)) 1712 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 1713 eep->baseEepHeader.dacLpMode); 1714 else if (eep->baseEepHeader.dacHiPwrMode_5G) 1715 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0); 1716 else 1717 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 1718 eep->baseEepHeader.dacLpMode); 1719 1720 OS_DELAY(100); 1721 1722 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP, 1723 pModal->miscBits >> 2); 1724 OS_REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_DESIRED_SCALE_CCK, 1725 eep->baseEepHeader.desiredScaleCCK); 1726 } 1727 1728 return (AH_TRUE); 1729 } 1730 1731 /* 1732 * Helper functions common for AP/CB/XB 1733 */ 1734 1735 /* 1736 * Set the target power array "ratesArray" from the 1737 * given set of target powers. 1738 * 1739 * This is used by the various chipset/EEPROM TX power 1740 * setup routines. 1741 */ 1742 void 1743 ar5416SetRatesArrayFromTargetPower(struct ath_hal *ah, 1744 const struct ieee80211_channel *chan, 1745 int16_t *ratesArray, 1746 const CAL_TARGET_POWER_LEG *targetPowerCck, 1747 const CAL_TARGET_POWER_LEG *targetPowerCckExt, 1748 const CAL_TARGET_POWER_LEG *targetPowerOfdm, 1749 const CAL_TARGET_POWER_LEG *targetPowerOfdmExt, 1750 const CAL_TARGET_POWER_HT *targetPowerHt20, 1751 const CAL_TARGET_POWER_HT *targetPowerHt40) 1752 { 1753 #define N(a) (sizeof(a)/sizeof(a[0])) 1754 int i; 1755 1756 /* Blank the rates array, to be consistent */ 1757 for (i = 0; i < Ar5416RateSize; i++) 1758 ratesArray[i] = 0; 1759 1760 /* Set rates Array from collected data */ 1761 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = 1762 ratesArray[rate18mb] = ratesArray[rate24mb] = 1763 targetPowerOfdm->tPow2x[0]; 1764 ratesArray[rate36mb] = targetPowerOfdm->tPow2x[1]; 1765 ratesArray[rate48mb] = targetPowerOfdm->tPow2x[2]; 1766 ratesArray[rate54mb] = targetPowerOfdm->tPow2x[3]; 1767 ratesArray[rateXr] = targetPowerOfdm->tPow2x[0]; 1768 1769 for (i = 0; i < N(targetPowerHt20->tPow2x); i++) { 1770 ratesArray[rateHt20_0 + i] = targetPowerHt20->tPow2x[i]; 1771 } 1772 1773 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1774 ratesArray[rate1l] = targetPowerCck->tPow2x[0]; 1775 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck->tPow2x[1]; 1776 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck->tPow2x[2]; 1777 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck->tPow2x[3]; 1778 } 1779 if (IEEE80211_IS_CHAN_HT40(chan)) { 1780 for (i = 0; i < N(targetPowerHt40->tPow2x); i++) { 1781 ratesArray[rateHt40_0 + i] = targetPowerHt40->tPow2x[i]; 1782 } 1783 ratesArray[rateDupOfdm] = targetPowerHt40->tPow2x[0]; 1784 ratesArray[rateDupCck] = targetPowerHt40->tPow2x[0]; 1785 ratesArray[rateExtOfdm] = targetPowerOfdmExt->tPow2x[0]; 1786 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1787 ratesArray[rateExtCck] = targetPowerCckExt->tPow2x[0]; 1788 } 1789 } 1790 #undef N 1791 } 1792 1793 /* 1794 * ar5416SetPowerPerRateTable 1795 * 1796 * Sets the transmit power in the baseband for the given 1797 * operating channel and mode. 1798 */ 1799 static HAL_BOOL 1800 ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, 1801 const struct ieee80211_channel *chan, 1802 int16_t *ratesArray, uint16_t cfgCtl, 1803 uint16_t AntennaReduction, 1804 uint16_t twiceMaxRegulatoryPower, 1805 uint16_t powerLimit) 1806 { 1807 #define N(a) (sizeof(a)/sizeof(a[0])) 1808 /* Local defines to distinguish between extension and control CTL's */ 1809 #define EXT_ADDITIVE (0x8000) 1810 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE) 1811 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE) 1812 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE) 1813 1814 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER; 1815 int i; 1816 int16_t twiceLargestAntenna; 1817 CAL_CTL_DATA *rep; 1818 CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}}; 1819 CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}}; 1820 CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}}; 1821 int16_t scaledPower, minCtlPower; 1822 1823 #define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */ 1824 #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */ 1825 static const uint16_t ctlModesFor11a[] = { 1826 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 1827 }; 1828 static const uint16_t ctlModesFor11g[] = { 1829 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40 1830 }; 1831 const uint16_t *pCtlMode; 1832 uint16_t numCtlModes, ctlMode, freq; 1833 CHAN_CENTERS centers; 1834 1835 ar5416GetChannelCenters(ah, chan, ¢ers); 1836 1837 /* Compute TxPower reduction due to Antenna Gain */ 1838 1839 twiceLargestAntenna = AH_MAX(AH_MAX( 1840 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0], 1841 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]), 1842 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]); 1843 #if 0 1844 /* Turn it back on if we need to calculate per chain antenna gain reduction */ 1845 /* Use only if the expected gain > 6dbi */ 1846 /* Chain 0 is always used */ 1847 twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0]; 1848 1849 /* Look at antenna gains of Chains 1 and 2 if the TX mask is set */ 1850 if (ahp->ah_tx_chainmask & 0x2) 1851 twiceLargestAntenna = AH_MAX(twiceLargestAntenna, 1852 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]); 1853 1854 if (ahp->ah_tx_chainmask & 0x4) 1855 twiceLargestAntenna = AH_MAX(twiceLargestAntenna, 1856 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]); 1857 #endif 1858 twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0); 1859 1860 /* XXX setup for 5212 use (really used?) */ 1861 ath_hal_eepromSet(ah, 1862 IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5, 1863 twiceLargestAntenna); 1864 1865 /* 1866 * scaledPower is the minimum of the user input power level and 1867 * the regulatory allowed power level 1868 */ 1869 scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna); 1870 1871 /* Reduce scaled Power by number of chains active to get to per chain tx power level */ 1872 /* TODO: better value than these? */ 1873 switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) { 1874 case 1: 1875 break; 1876 case 2: 1877 scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain; 1878 break; 1879 case 3: 1880 scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain; 1881 break; 1882 default: 1883 return AH_FALSE; /* Unsupported number of chains */ 1884 } 1885 1886 scaledPower = AH_MAX(0, scaledPower); 1887 1888 /* Get target powers from EEPROM - our baseline for TX Power */ 1889 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1890 /* Setup for CTL modes */ 1891 numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */ 1892 pCtlMode = ctlModesFor11g; 1893 1894 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck, 1895 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE); 1896 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G, 1897 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE); 1898 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20, 1899 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE); 1900 1901 if (IEEE80211_IS_CHAN_HT40(chan)) { 1902 numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */ 1903 1904 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40, 1905 AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE); 1906 /* Get target powers for extension channels */ 1907 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck, 1908 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE); 1909 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G, 1910 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE); 1911 } 1912 } else { 1913 /* Setup for CTL modes */ 1914 numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */ 1915 pCtlMode = ctlModesFor11a; 1916 1917 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G, 1918 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE); 1919 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT20, 1920 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE); 1921 1922 if (IEEE80211_IS_CHAN_HT40(chan)) { 1923 numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */ 1924 1925 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT40, 1926 AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE); 1927 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G, 1928 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE); 1929 } 1930 } 1931 1932 /* 1933 * For MIMO, need to apply regulatory caps individually across dynamically 1934 * running modes: CCK, OFDM, HT20, HT40 1935 * 1936 * The outer loop walks through each possible applicable runtime mode. 1937 * The inner loop walks through each ctlIndex entry in EEPROM. 1938 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode. 1939 * 1940 */ 1941 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { 1942 HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || 1943 (pCtlMode[ctlMode] == CTL_2GHT40); 1944 if (isHt40CtlMode) { 1945 freq = centers.ctl_center; 1946 } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) { 1947 freq = centers.ext_center; 1948 } else { 1949 freq = centers.ctl_center; 1950 } 1951 1952 /* walk through each CTL index stored in EEPROM */ 1953 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) { 1954 uint16_t twiceMinEdgePower; 1955 1956 /* compare test group from regulatory channel list with test mode from pCtlMode list */ 1957 if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) || 1958 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == 1959 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) { 1960 rep = &(pEepData->ctlData[i]); 1961 twiceMinEdgePower = ar5416GetMaxEdgePower(freq, 1962 rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1], 1963 IEEE80211_IS_CHAN_2GHZ(chan)); 1964 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { 1965 /* Find the minimum of all CTL edge powers that apply to this channel */ 1966 twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower); 1967 } else { 1968 /* specific */ 1969 twiceMaxEdgePower = twiceMinEdgePower; 1970 break; 1971 } 1972 } 1973 } 1974 minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower); 1975 /* Apply ctl mode to correct target power set */ 1976 switch(pCtlMode[ctlMode]) { 1977 case CTL_11B: 1978 for (i = 0; i < N(targetPowerCck.tPow2x); i++) { 1979 targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower); 1980 } 1981 break; 1982 case CTL_11A: 1983 case CTL_11G: 1984 for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) { 1985 targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower); 1986 } 1987 break; 1988 case CTL_5GHT20: 1989 case CTL_2GHT20: 1990 for (i = 0; i < N(targetPowerHt20.tPow2x); i++) { 1991 targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower); 1992 } 1993 break; 1994 case CTL_11B_EXT: 1995 targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower); 1996 break; 1997 case CTL_11A_EXT: 1998 case CTL_11G_EXT: 1999 targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower); 2000 break; 2001 case CTL_5GHT40: 2002 case CTL_2GHT40: 2003 for (i = 0; i < N(targetPowerHt40.tPow2x); i++) { 2004 targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower); 2005 } 2006 break; 2007 default: 2008 return AH_FALSE; 2009 break; 2010 } 2011 } /* end ctl mode checking */ 2012 2013 /* Set rates Array from collected data */ 2014 ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray, 2015 &targetPowerCck, 2016 &targetPowerCckExt, 2017 &targetPowerOfdm, 2018 &targetPowerOfdmExt, 2019 &targetPowerHt20, 2020 &targetPowerHt40); 2021 return AH_TRUE; 2022 #undef EXT_ADDITIVE 2023 #undef CTL_11A_EXT 2024 #undef CTL_11G_EXT 2025 #undef CTL_11B_EXT 2026 #undef SUB_NUM_CTL_MODES_AT_5G_40 2027 #undef SUB_NUM_CTL_MODES_AT_2G_40 2028 #undef N 2029 } 2030 2031 /************************************************************************** 2032 * fbin2freq 2033 * 2034 * Get channel value from binary representation held in eeprom 2035 * RETURNS: the frequency in MHz 2036 */ 2037 static uint16_t 2038 fbin2freq(uint8_t fbin, HAL_BOOL is2GHz) 2039 { 2040 /* 2041 * Reserved value 0xFF provides an empty definition both as 2042 * an fbin and as a frequency - do not convert 2043 */ 2044 if (fbin == AR5416_BCHAN_UNUSED) { 2045 return fbin; 2046 } 2047 2048 return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin)); 2049 } 2050 2051 /* 2052 * ar5416GetMaxEdgePower 2053 * 2054 * Find the maximum conformance test limit for the given channel and CTL info 2055 */ 2056 uint16_t 2057 ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz) 2058 { 2059 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER; 2060 int i; 2061 2062 /* Get the edge power */ 2063 for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) { 2064 /* 2065 * If there's an exact channel match or an inband flag set 2066 * on the lower channel use the given rdEdgePower 2067 */ 2068 if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) { 2069 twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER); 2070 break; 2071 } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) { 2072 if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) { 2073 twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER); 2074 } 2075 /* Leave loop - no more affecting edges possible in this monotonic increasing list */ 2076 break; 2077 } 2078 } 2079 HALASSERT(twiceMaxEdgePower > 0); 2080 return twiceMaxEdgePower; 2081 } 2082 2083 /************************************************************** 2084 * ar5416GetTargetPowers 2085 * 2086 * Return the rates of target power for the given target power table 2087 * channel, and number of channels 2088 */ 2089 void 2090 ar5416GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan, 2091 CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels, 2092 CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates, 2093 HAL_BOOL isHt40Target) 2094 { 2095 uint16_t clo, chi; 2096 int i; 2097 int matchIndex = -1, lowIndex = -1; 2098 uint16_t freq; 2099 CHAN_CENTERS centers; 2100 2101 ar5416GetChannelCenters(ah, chan, ¢ers); 2102 freq = isHt40Target ? centers.synth_center : centers.ctl_center; 2103 2104 /* Copy the target powers into the temp channel list */ 2105 if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { 2106 matchIndex = 0; 2107 } else { 2108 for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { 2109 if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { 2110 matchIndex = i; 2111 break; 2112 } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) && 2113 (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)))) 2114 { 2115 lowIndex = i - 1; 2116 break; 2117 } 2118 } 2119 if ((matchIndex == -1) && (lowIndex == -1)) { 2120 HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))); 2121 matchIndex = i - 1; 2122 } 2123 } 2124 2125 if (matchIndex != -1) { 2126 OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower)); 2127 } else { 2128 HALASSERT(lowIndex != -1); 2129 /* 2130 * Get the lower and upper channels, target powers, 2131 * and interpolate between them. 2132 */ 2133 clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); 2134 chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); 2135 2136 for (i = 0; i < numRates; i++) { 2137 pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi, 2138 powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]); 2139 } 2140 } 2141 } 2142 /************************************************************** 2143 * ar5416GetTargetPowersLeg 2144 * 2145 * Return the four rates of target power for the given target power table 2146 * channel, and number of channels 2147 */ 2148 void 2149 ar5416GetTargetPowersLeg(struct ath_hal *ah, 2150 const struct ieee80211_channel *chan, 2151 CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels, 2152 CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates, 2153 HAL_BOOL isExtTarget) 2154 { 2155 uint16_t clo, chi; 2156 int i; 2157 int matchIndex = -1, lowIndex = -1; 2158 uint16_t freq; 2159 CHAN_CENTERS centers; 2160 2161 ar5416GetChannelCenters(ah, chan, ¢ers); 2162 freq = (isExtTarget) ? centers.ext_center :centers.ctl_center; 2163 2164 /* Copy the target powers into the temp channel list */ 2165 if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { 2166 matchIndex = 0; 2167 } else { 2168 for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { 2169 if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { 2170 matchIndex = i; 2171 break; 2172 } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) && 2173 (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)))) 2174 { 2175 lowIndex = i - 1; 2176 break; 2177 } 2178 } 2179 if ((matchIndex == -1) && (lowIndex == -1)) { 2180 HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))); 2181 matchIndex = i - 1; 2182 } 2183 } 2184 2185 if (matchIndex != -1) { 2186 OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower)); 2187 } else { 2188 HALASSERT(lowIndex != -1); 2189 /* 2190 * Get the lower and upper channels, target powers, 2191 * and interpolate between them. 2192 */ 2193 clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); 2194 chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); 2195 2196 for (i = 0; i < numRates; i++) { 2197 pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi, 2198 powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]); 2199 } 2200 } 2201 } 2202 2203 /* 2204 * Set the gain boundaries for the given radio chain. 2205 * 2206 * The gain boundaries tell the hardware at what point in the 2207 * PDADC array to "switch over" from one PD gain setting 2208 * to another. There's also a gain overlap between two 2209 * PDADC array gain curves where there's valid PD values 2210 * for 2 gain settings. 2211 * 2212 * The hardware uses the gain overlap and gain boundaries 2213 * to determine which gain curve to use for the given 2214 * target TX power. 2215 */ 2216 void 2217 ar5416SetGainBoundariesClosedLoop(struct ath_hal *ah, int i, 2218 uint16_t pdGainOverlap_t2, uint16_t gainBoundaries[]) 2219 { 2220 int regChainOffset; 2221 2222 regChainOffset = ar5416GetRegChainOffset(ah, i); 2223 2224 HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: chain %d: gainOverlap_t2: %d," 2225 " gainBoundaries: %d, %d, %d, %d\n", __func__, i, pdGainOverlap_t2, 2226 gainBoundaries[0], gainBoundaries[1], gainBoundaries[2], 2227 gainBoundaries[3]); 2228 OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset, 2229 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 2230 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | 2231 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | 2232 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | 2233 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); 2234 } 2235 2236 /* 2237 * Get the gain values and the number of gain levels given 2238 * in xpdMask. 2239 * 2240 * The EEPROM xpdMask determines which power detector gain 2241 * levels were used during calibration. Each of these mask 2242 * bits maps to a fixed gain level in hardware. 2243 */ 2244 uint16_t 2245 ar5416GetXpdGainValues(struct ath_hal *ah, uint16_t xpdMask, 2246 uint16_t xpdGainValues[]) 2247 { 2248 int i; 2249 uint16_t numXpdGain = 0; 2250 2251 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { 2252 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { 2253 if (numXpdGain >= AR5416_NUM_PD_GAINS) { 2254 HALASSERT(0); 2255 break; 2256 } 2257 xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i); 2258 numXpdGain++; 2259 } 2260 } 2261 return numXpdGain; 2262 } 2263 2264 /* 2265 * Write the detector gain and biases. 2266 * 2267 * There are four power detector gain levels. The xpdMask in the EEPROM 2268 * determines which power detector gain levels have TX power calibration 2269 * data associated with them. This function writes the number of 2270 * PD gain levels and their values into the hardware. 2271 * 2272 * This is valid for all TX chains - the calibration data itself however 2273 * will likely differ per-chain. 2274 */ 2275 void 2276 ar5416WriteDetectorGainBiases(struct ath_hal *ah, uint16_t numXpdGain, 2277 uint16_t xpdGainValues[]) 2278 { 2279 HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: numXpdGain: %d," 2280 " xpdGainValues: %d, %d, %d\n", __func__, numXpdGain, 2281 xpdGainValues[0], xpdGainValues[1], xpdGainValues[2]); 2282 2283 OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) & 2284 ~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | 2285 AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) | 2286 SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | 2287 SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) | 2288 SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | 2289 SM(xpdGainValues[2], AR_PHY_TPCRG1_PD_GAIN_3)); 2290 } 2291 2292 /* 2293 * Write the PDADC array to the given radio chain i. 2294 * 2295 * The 32 PDADC registers are written without any care about 2296 * their contents - so if various chips treat values as "special", 2297 * this routine will not care. 2298 */ 2299 void 2300 ar5416WritePdadcValues(struct ath_hal *ah, int i, uint8_t pdadcValues[]) 2301 { 2302 int regOffset, regChainOffset; 2303 int j; 2304 int reg32; 2305 2306 regChainOffset = ar5416GetRegChainOffset(ah, i); 2307 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; 2308 2309 for (j = 0; j < 32; j++) { 2310 reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) | 2311 ((pdadcValues[4*j + 1] & 0xFF) << 8) | 2312 ((pdadcValues[4*j + 2] & 0xFF) << 16) | 2313 ((pdadcValues[4*j + 3] & 0xFF) << 24) ; 2314 OS_REG_WRITE(ah, regOffset, reg32); 2315 HALDEBUG(ah, HAL_DEBUG_EEPROM, "PDADC: Chain %d |" 2316 " PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d" 2317 " Value %3d | PDADC %3d Value %3d |\n", 2318 i, 2319 4*j, pdadcValues[4*j], 2320 4*j+1, pdadcValues[4*j + 1], 2321 4*j+2, pdadcValues[4*j + 2], 2322 4*j+3, pdadcValues[4*j + 3]); 2323 regOffset += 4; 2324 } 2325 } 2326 2327 /************************************************************** 2328 * ar5416SetPowerCalTable 2329 * 2330 * Pull the PDADC piers from cal data and interpolate them across the given 2331 * points as well as from the nearest pier(s) to get a power detector 2332 * linear voltage to power level table. 2333 */ 2334 HAL_BOOL 2335 ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, 2336 const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset) 2337 { 2338 CAL_DATA_PER_FREQ *pRawDataset; 2339 uint8_t *pCalBChans = AH_NULL; 2340 uint16_t pdGainOverlap_t2; 2341 static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES]; 2342 uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK]; 2343 uint16_t numPiers, i; 2344 int16_t tMinCalPower; 2345 uint16_t numXpdGain, xpdMask; 2346 uint16_t xpdGainValues[AR5416_NUM_PD_GAINS]; 2347 uint32_t regChainOffset; 2348 2349 OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues)); 2350 2351 xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain; 2352 2353 if (IS_EEP_MINOR_V2(ah)) { 2354 pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap; 2355 } else { 2356 pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); 2357 } 2358 2359 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 2360 pCalBChans = pEepData->calFreqPier2G; 2361 numPiers = AR5416_NUM_2G_CAL_PIERS; 2362 } else { 2363 pCalBChans = pEepData->calFreqPier5G; 2364 numPiers = AR5416_NUM_5G_CAL_PIERS; 2365 } 2366 2367 /* Calculate the value of xpdgains from the xpdGain Mask */ 2368 numXpdGain = ar5416GetXpdGainValues(ah, xpdMask, xpdGainValues); 2369 2370 /* Write the detector gain biases and their number */ 2371 ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues); 2372 2373 for (i = 0; i < AR5416_MAX_CHAINS; i++) { 2374 regChainOffset = ar5416GetRegChainOffset(ah, i); 2375 2376 if (pEepData->baseEepHeader.txMask & (1 << i)) { 2377 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 2378 pRawDataset = pEepData->calPierData2G[i]; 2379 } else { 2380 pRawDataset = pEepData->calPierData5G[i]; 2381 } 2382 2383 /* Fetch the gain boundaries and the PDADC values */ 2384 ar5416GetGainBoundariesAndPdadcs(ah, chan, pRawDataset, 2385 pCalBChans, numPiers, 2386 pdGainOverlap_t2, 2387 &tMinCalPower, gainBoundaries, 2388 pdadcValues, numXpdGain); 2389 2390 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) { 2391 ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2, 2392 gainBoundaries); 2393 } 2394 2395 /* Write the power values into the baseband power table */ 2396 ar5416WritePdadcValues(ah, i, pdadcValues); 2397 } 2398 } 2399 *pTxPowerIndexOffset = 0; 2400 2401 return AH_TRUE; 2402 } 2403 2404 /************************************************************** 2405 * ar5416GetGainBoundariesAndPdadcs 2406 * 2407 * Uses the data points read from EEPROM to reconstruct the pdadc power table 2408 * Called by ar5416SetPowerCalTable only. 2409 */ 2410 void 2411 ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah, 2412 const struct ieee80211_channel *chan, 2413 CAL_DATA_PER_FREQ *pRawDataSet, 2414 uint8_t * bChans, uint16_t availPiers, 2415 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries, 2416 uint8_t * pPDADCValues, uint16_t numXpdGains) 2417 { 2418 2419 int i, j, k; 2420 int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */ 2421 uint16_t idxL, idxR, numPiers; /* Pier indexes */ 2422 2423 /* filled out Vpd table for all pdGains (chanL) */ 2424 static uint8_t vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; 2425 2426 /* filled out Vpd table for all pdGains (chanR) */ 2427 static uint8_t vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; 2428 2429 /* filled out Vpd table for all pdGains (interpolated) */ 2430 static uint8_t vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; 2431 2432 uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR; 2433 uint8_t minPwrT4[AR5416_NUM_PD_GAINS]; 2434 uint8_t maxPwrT4[AR5416_NUM_PD_GAINS]; 2435 int16_t vpdStep; 2436 int16_t tmpVal; 2437 uint16_t sizeCurrVpdTable, maxIndex, tgtIndex; 2438 HAL_BOOL match; 2439 int16_t minDelta = 0; 2440 CHAN_CENTERS centers; 2441 2442 ar5416GetChannelCenters(ah, chan, ¢ers); 2443 2444 /* Trim numPiers for the number of populated channel Piers */ 2445 for (numPiers = 0; numPiers < availPiers; numPiers++) { 2446 if (bChans[numPiers] == AR5416_BCHAN_UNUSED) { 2447 break; 2448 } 2449 } 2450 2451 /* Find pier indexes around the current channel */ 2452 match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, 2453 IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR); 2454 2455 if (match) { 2456 /* Directly fill both vpd tables from the matching index */ 2457 for (i = 0; i < numXpdGains; i++) { 2458 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0]; 2459 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4]; 2460 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i], 2461 pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]); 2462 } 2463 } else { 2464 for (i = 0; i < numXpdGains; i++) { 2465 pVpdL = pRawDataSet[idxL].vpdPdg[i]; 2466 pPwrL = pRawDataSet[idxL].pwrPdg[i]; 2467 pVpdR = pRawDataSet[idxR].vpdPdg[i]; 2468 pPwrR = pRawDataSet[idxR].pwrPdg[i]; 2469 2470 /* Start Vpd interpolation from the max of the minimum powers */ 2471 minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]); 2472 2473 /* End Vpd interpolation from the min of the max powers */ 2474 maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]); 2475 HALASSERT(maxPwrT4[i] > minPwrT4[i]); 2476 2477 /* Fill pier Vpds */ 2478 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]); 2479 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]); 2480 2481 /* Interpolate the final vpd */ 2482 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) { 2483 vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center, 2484 IEEE80211_IS_CHAN_2GHZ(chan)), 2485 bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j])); 2486 } 2487 } 2488 } 2489 *pMinCalPower = (int16_t)(minPwrT4[0] / 2); 2490 2491 k = 0; /* index for the final table */ 2492 for (i = 0; i < numXpdGains; i++) { 2493 if (i == (numXpdGains - 1)) { 2494 pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2); 2495 } else { 2496 pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4); 2497 } 2498 2499 pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]); 2500 2501 /* NB: only applies to owl 1.0 */ 2502 if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) { 2503 /* 2504 * fix the gain delta, but get a delta that can be applied to min to 2505 * keep the upper power values accurate, don't think max needs to 2506 * be adjusted because should not be at that area of the table? 2507 */ 2508 minDelta = pPdGainBoundaries[0] - 23; 2509 pPdGainBoundaries[0] = 23; 2510 } 2511 else { 2512 minDelta = 0; 2513 } 2514 2515 /* Find starting index for this pdGain */ 2516 if (i == 0) { 2517 if (AR_SREV_MERLIN_10_OR_LATER(ah)) 2518 ss = (int16_t)(0 - (minPwrT4[i] / 2)); 2519 else 2520 ss = 0; /* for the first pdGain, start from index 0 */ 2521 } else { 2522 /* need overlap entries extrapolated below. */ 2523 ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta); 2524 } 2525 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]); 2526 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); 2527 /* 2528 *-ve ss indicates need to extrapolate data below for this pdGain 2529 */ 2530 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { 2531 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep); 2532 pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal); 2533 ss++; 2534 } 2535 2536 sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1); 2537 tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2)); 2538 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; 2539 2540 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { 2541 pPDADCValues[k++] = vpdTableI[i][ss++]; 2542 } 2543 2544 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]); 2545 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); 2546 /* 2547 * for last gain, pdGainBoundary == Pmax_t2, so will 2548 * have to extrapolate 2549 */ 2550 if (tgtIndex >= maxIndex) { /* need to extrapolate above */ 2551 while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { 2552 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] + 2553 (ss - maxIndex +1) * vpdStep)); 2554 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal); 2555 ss++; 2556 } 2557 } /* extrapolated above */ 2558 } /* for all pdGainUsed */ 2559 2560 /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */ 2561 while (i < AR5416_PD_GAINS_IN_MASK) { 2562 pPdGainBoundaries[i] = pPdGainBoundaries[i-1]; 2563 i++; 2564 } 2565 2566 while (k < AR5416_NUM_PDADC_VALUES) { 2567 pPDADCValues[k] = pPDADCValues[k-1]; 2568 k++; 2569 } 2570 return; 2571 } 2572 2573 /* 2574 * The linux ath9k driver and (from what I've been told) the reference 2575 * Atheros driver enables the 11n PHY by default whether or not it's 2576 * configured. 2577 */ 2578 static void 2579 ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan) 2580 { 2581 uint32_t phymode; 2582 uint32_t enableDacFifo = 0; 2583 HAL_HT_MACMODE macmode; /* MAC - 20/40 mode */ 2584 2585 if (AR_SREV_KITE_10_OR_LATER(ah)) 2586 enableDacFifo = (OS_REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO); 2587 2588 /* Enable 11n HT, 20 MHz */ 2589 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 2590 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo; 2591 2592 /* Configure baseband for dynamic 20/40 operation */ 2593 if (IEEE80211_IS_CHAN_HT40(chan)) { 2594 phymode |= AR_PHY_FC_DYN2040_EN; 2595 2596 /* Configure control (primary) channel at +-10MHz */ 2597 if (IEEE80211_IS_CHAN_HT40U(chan)) 2598 phymode |= AR_PHY_FC_DYN2040_PRI_CH; 2599 #if 0 2600 /* Configure 20/25 spacing */ 2601 if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25) 2602 phymode |= AR_PHY_FC_DYN2040_EXT_CH; 2603 #endif 2604 macmode = HAL_HT_MACMODE_2040; 2605 } else 2606 macmode = HAL_HT_MACMODE_20; 2607 OS_REG_WRITE(ah, AR_PHY_TURBO, phymode); 2608 2609 /* Configure MAC for 20/40 operation */ 2610 ar5416Set11nMac2040(ah, macmode); 2611 2612 /* global transmit timeout (25 TUs default)*/ 2613 /* XXX - put this elsewhere??? */ 2614 OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ; 2615 2616 /* carrier sense timeout */ 2617 OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC); 2618 OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S); 2619 } 2620 2621 void 2622 ar5416GetChannelCenters(struct ath_hal *ah, 2623 const struct ieee80211_channel *chan, CHAN_CENTERS *centers) 2624 { 2625 uint16_t freq = ath_hal_gethwchannel(ah, chan); 2626 2627 centers->ctl_center = freq; 2628 centers->synth_center = freq; 2629 /* 2630 * In 20/40 phy mode, the center frequency is 2631 * "between" the control and extension channels. 2632 */ 2633 if (IEEE80211_IS_CHAN_HT40U(chan)) { 2634 centers->synth_center += HT40_CHANNEL_CENTER_SHIFT; 2635 centers->ext_center = 2636 centers->synth_center + HT40_CHANNEL_CENTER_SHIFT; 2637 } else if (IEEE80211_IS_CHAN_HT40D(chan)) { 2638 centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT; 2639 centers->ext_center = 2640 centers->synth_center - HT40_CHANNEL_CENTER_SHIFT; 2641 } else { 2642 centers->ext_center = freq; 2643 } 2644 } 2645 2646 /* 2647 * Override the INI vals being programmed. 2648 */ 2649 static void 2650 ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *chan) 2651 { 2652 uint32_t val; 2653 2654 /* 2655 * Set the RX_ABORT and RX_DIS and clear if off only after 2656 * RXE is set for MAC. This prevents frames with corrupted 2657 * descriptor status. 2658 */ 2659 OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); 2660 2661 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 2662 val = OS_REG_READ(ah, AR_PCU_MISC_MODE2); 2663 val &= (~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE); 2664 if (!AR_SREV_9271(ah)) 2665 val &= ~AR_PCU_MISC_MODE2_HWWAR1; 2666 2667 if (AR_SREV_KIWI_10_OR_LATER(ah)) 2668 val = val & (~AR_PCU_MISC_MODE2_HWWAR2); 2669 2670 OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, val); 2671 } 2672 2673 /* 2674 * Disable RIFS search on some chips to avoid baseband 2675 * hang issues. 2676 */ 2677 if (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) 2678 (void) ar5416SetRifsDelay(ah, chan, AH_FALSE); 2679 2680 if (!AR_SREV_5416_V20_OR_LATER(ah) || AR_SREV_MERLIN(ah)) 2681 return; 2682 2683 /* 2684 * Disable BB clock gating 2685 * Necessary to avoid issues on AR5416 2.0 2686 */ 2687 OS_REG_WRITE(ah, 0x9800 + (651 << 2), 0x11); 2688 } 2689 2690 struct ini { 2691 uint32_t *data; /* NB: !const */ 2692 int rows, cols; 2693 }; 2694 2695 /* 2696 * Override XPA bias level based on operating frequency. 2697 * This is a v14 EEPROM specific thing for the AR9160. 2698 */ 2699 void 2700 ar5416EepromSetAddac(struct ath_hal *ah, const struct ieee80211_channel *chan) 2701 { 2702 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt]) 2703 MODAL_EEP_HEADER *pModal; 2704 HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom; 2705 struct ar5416eeprom *eep = &ee->ee_base; 2706 uint8_t biaslevel; 2707 2708 if (! AR_SREV_SOWL(ah)) 2709 return; 2710 2711 if (EEP_MINOR(ah) < AR5416_EEP_MINOR_VER_7) 2712 return; 2713 2714 pModal = &(eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]); 2715 2716 if (pModal->xpaBiasLvl != 0xff) 2717 biaslevel = pModal->xpaBiasLvl; 2718 else { 2719 uint16_t resetFreqBin, freqBin, freqCount = 0; 2720 CHAN_CENTERS centers; 2721 2722 ar5416GetChannelCenters(ah, chan, ¢ers); 2723 2724 resetFreqBin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)); 2725 freqBin = XPA_LVL_FREQ(0) & 0xff; 2726 biaslevel = (uint8_t) (XPA_LVL_FREQ(0) >> 14); 2727 2728 freqCount++; 2729 2730 while (freqCount < 3) { 2731 if (XPA_LVL_FREQ(freqCount) == 0x0) 2732 break; 2733 2734 freqBin = XPA_LVL_FREQ(freqCount) & 0xff; 2735 if (resetFreqBin >= freqBin) 2736 biaslevel = (uint8_t)(XPA_LVL_FREQ(freqCount) >> 14); 2737 else 2738 break; 2739 freqCount++; 2740 } 2741 } 2742 2743 HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: overriding XPA bias level = %d\n", 2744 __func__, biaslevel); 2745 2746 /* 2747 * This is a dirty workaround for the const initval data, 2748 * which will upset multiple AR9160's on the same board. 2749 * 2750 * The HAL should likely just have a private copy of the addac 2751 * data per instance. 2752 */ 2753 if (IEEE80211_IS_CHAN_2GHZ(chan)) 2754 HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 7, 1) = 2755 (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3; 2756 else 2757 HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 6, 1) = 2758 (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6; 2759 #undef XPA_LVL_FREQ 2760 } 2761 2762 static void 2763 ar5416MarkPhyInactive(struct ath_hal *ah) 2764 { 2765 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); 2766 } 2767 2768 #define AR5416_IFS_SLOT_FULL_RATE_40 0x168 /* 9 us half, 40 MHz core clock (9*40) */ 2769 #define AR5416_IFS_SLOT_HALF_RATE_40 0x104 /* 13 us half, 20 MHz core clock (13*20) */ 2770 #define AR5416_IFS_SLOT_QUARTER_RATE_40 0xD2 /* 21 us quarter, 10 MHz core clock (21*10) */ 2771 2772 #define AR5416_IFS_EIFS_FULL_RATE_40 0xE60 /* (74 + (2 * 9)) * 40MHz core clock */ 2773 #define AR5416_IFS_EIFS_HALF_RATE_40 0xDAC /* (149 + (2 * 13)) * 20MHz core clock */ 2774 #define AR5416_IFS_EIFS_QUARTER_RATE_40 0xD48 /* (298 + (2 * 21)) * 10MHz core clock */ 2775 2776 #define AR5416_IFS_SLOT_FULL_RATE_44 0x18c /* 9 us half, 44 MHz core clock (9*44) */ 2777 #define AR5416_IFS_SLOT_HALF_RATE_44 0x11e /* 13 us half, 22 MHz core clock (13*22) */ 2778 #define AR5416_IFS_SLOT_QUARTER_RATE_44 0xe7 /* 21 us quarter, 11 MHz core clock (21*11) */ 2779 2780 #define AR5416_IFS_EIFS_FULL_RATE_44 0xfd0 /* (74 + (2 * 9)) * 44MHz core clock */ 2781 #define AR5416_IFS_EIFS_HALF_RATE_44 0xf0a /* (149 + (2 * 13)) * 22MHz core clock */ 2782 #define AR5416_IFS_EIFS_QUARTER_RATE_44 0xe9c /* (298 + (2 * 21)) * 11MHz core clock */ 2783 2784 #define AR5416_INIT_USEC_40 40 2785 #define AR5416_HALF_RATE_USEC_40 19 /* ((40 / 2) - 1 ) */ 2786 #define AR5416_QUARTER_RATE_USEC_40 9 /* ((40 / 4) - 1 ) */ 2787 2788 #define AR5416_INIT_USEC_44 44 2789 #define AR5416_HALF_RATE_USEC_44 21 /* ((44 / 2) - 1 ) */ 2790 #define AR5416_QUARTER_RATE_USEC_44 10 /* ((44 / 4) - 1 ) */ 2791 2792 2793 /* XXX What should these be for 40/44MHz clocks (and half/quarter) ? */ 2794 #define AR5416_RX_NON_FULL_RATE_LATENCY 63 2795 #define AR5416_TX_HALF_RATE_LATENCY 108 2796 #define AR5416_TX_QUARTER_RATE_LATENCY 216 2797 2798 /* 2799 * Adjust various register settings based on half/quarter rate clock setting. 2800 * This includes: 2801 * 2802 * + USEC, TX/RX latency, 2803 * + IFS params: slot, eifs, misc etc. 2804 * 2805 * TODO: 2806 * 2807 * + Verify which other registers need to be tweaked; 2808 * + Verify the behaviour of this for 5GHz fast and non-fast clock mode; 2809 * + This just plain won't work for long distance links - the coverage class 2810 * code isn't aware of the slot/ifs/ACK/RTS timeout values that need to 2811 * change; 2812 * + Verify whether the 32KHz USEC value needs to be kept for the 802.11n 2813 * series chips? 2814 * + Calculate/derive values for 2GHz, 5GHz, 5GHz fast clock 2815 */ 2816 static void 2817 ar5416SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan) 2818 { 2819 uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec; 2820 int clk_44 = 0; 2821 2822 HALASSERT(IEEE80211_IS_CHAN_HALF(chan) || 2823 IEEE80211_IS_CHAN_QUARTER(chan)); 2824 2825 /* 2GHz and 5GHz fast clock - 44MHz; else 40MHz */ 2826 if (IEEE80211_IS_CHAN_2GHZ(chan)) 2827 clk_44 = 1; 2828 else if (IEEE80211_IS_CHAN_5GHZ(chan) && 2829 IS_5GHZ_FAST_CLOCK_EN(ah, chan)) 2830 clk_44 = 1; 2831 2832 /* XXX does this need save/restoring for the 11n chips? */ 2833 refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32; 2834 2835 /* 2836 * XXX This really should calculate things, not use 2837 * hard coded values! Ew. 2838 */ 2839 if (IEEE80211_IS_CHAN_HALF(chan)) { 2840 if (clk_44) { 2841 slot = AR5416_IFS_SLOT_HALF_RATE_44; 2842 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << 2843 AR5416_USEC_RX_LAT_S; 2844 txLat = AR5416_TX_HALF_RATE_LATENCY << 2845 AR5416_USEC_TX_LAT_S; 2846 usec = AR5416_HALF_RATE_USEC_44; 2847 eifs = AR5416_IFS_EIFS_HALF_RATE_44; 2848 init_usec = AR5416_INIT_USEC_44 >> 1; 2849 } else { 2850 slot = AR5416_IFS_SLOT_HALF_RATE_40; 2851 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << 2852 AR5416_USEC_RX_LAT_S; 2853 txLat = AR5416_TX_HALF_RATE_LATENCY << 2854 AR5416_USEC_TX_LAT_S; 2855 usec = AR5416_HALF_RATE_USEC_40; 2856 eifs = AR5416_IFS_EIFS_HALF_RATE_40; 2857 init_usec = AR5416_INIT_USEC_40 >> 1; 2858 } 2859 } else { /* quarter rate */ 2860 if (clk_44) { 2861 slot = AR5416_IFS_SLOT_QUARTER_RATE_44; 2862 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << 2863 AR5416_USEC_RX_LAT_S; 2864 txLat = AR5416_TX_QUARTER_RATE_LATENCY << 2865 AR5416_USEC_TX_LAT_S; 2866 usec = AR5416_QUARTER_RATE_USEC_44; 2867 eifs = AR5416_IFS_EIFS_QUARTER_RATE_44; 2868 init_usec = AR5416_INIT_USEC_44 >> 2; 2869 } else { 2870 slot = AR5416_IFS_SLOT_QUARTER_RATE_40; 2871 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << 2872 AR5416_USEC_RX_LAT_S; 2873 txLat = AR5416_TX_QUARTER_RATE_LATENCY << 2874 AR5416_USEC_TX_LAT_S; 2875 usec = AR5416_QUARTER_RATE_USEC_40; 2876 eifs = AR5416_IFS_EIFS_QUARTER_RATE_40; 2877 init_usec = AR5416_INIT_USEC_40 >> 2; 2878 } 2879 } 2880 2881 /* XXX verify these! */ 2882 OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat)); 2883 OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot); 2884 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs); 2885 OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC, 2886 AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec); 2887 } 2888 2889