1 /* 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * Copyright (c) 2002-2008 Atheros Communications, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 * 17 * $FreeBSD$ 18 */ 19 #include "opt_ah.h" 20 21 #include "ah.h" 22 #include "ah_internal.h" 23 #include "ah_devid.h" 24 25 #include "ah_eeprom_v14.h" 26 27 #include "ar5416/ar5416.h" 28 #include "ar5416/ar5416reg.h" 29 #include "ar5416/ar5416phy.h" 30 31 /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */ 32 #define EEP_MINOR(_ah) \ 33 (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK) 34 #define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2) 35 #define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3) 36 37 /* Additional Time delay to wait after activiting the Base band */ 38 #define BASE_ACTIVATE_DELAY 100 /* 100 usec */ 39 #define PLL_SETTLE_DELAY 300 /* 300 usec */ 40 #define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */ 41 42 static void ar5416InitDMA(struct ath_hal *ah); 43 static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *); 44 static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode); 45 static void ar5416InitQoS(struct ath_hal *ah); 46 static void ar5416InitUserSettings(struct ath_hal *ah); 47 static void ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *); 48 49 #if 0 50 static HAL_BOOL ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *); 51 #endif 52 static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *); 53 54 static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah); 55 static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type); 56 static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah, 57 struct ar5416eeprom *pEepData, 58 const struct ieee80211_channel *chan, int16_t *ratesArray, 59 uint16_t cfgCtl, uint16_t AntennaReduction, 60 uint16_t twiceMaxRegulatoryPower, 61 uint16_t powerLimit); 62 static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan); 63 static void ar5416MarkPhyInactive(struct ath_hal *ah); 64 static void ar5416SetIFSTiming(struct ath_hal *ah, 65 const struct ieee80211_channel *chan); 66 67 /* 68 * Places the device in and out of reset and then places sane 69 * values in the registers based on EEPROM config, initialization 70 * vectors (as determined by the mode), and station configuration 71 * 72 * bChannelChange is used to preserve DMA/PCU registers across 73 * a HW Reset during channel change. 74 */ 75 HAL_BOOL 76 ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode, 77 struct ieee80211_channel *chan, 78 HAL_BOOL bChannelChange, 79 HAL_RESET_TYPE resetType, 80 HAL_STATUS *status) 81 { 82 #define N(a) (sizeof (a) / sizeof (a[0])) 83 #define FAIL(_code) do { ecode = _code; goto bad; } while (0) 84 struct ath_hal_5212 *ahp = AH5212(ah); 85 HAL_CHANNEL_INTERNAL *ichan; 86 uint32_t saveDefAntenna, saveLedState; 87 uint32_t macStaId1; 88 uint16_t rfXpdGain[2]; 89 HAL_STATUS ecode; 90 uint32_t powerVal, rssiThrReg; 91 uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow; 92 int i; 93 uint64_t tsf = 0; 94 95 OS_MARK(ah, AH_MARK_RESET, bChannelChange); 96 97 /* Bring out of sleep mode */ 98 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) { 99 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n", 100 __func__); 101 FAIL(HAL_EIO); 102 } 103 104 /* 105 * Map public channel to private. 106 */ 107 ichan = ath_hal_checkchannel(ah, chan); 108 if (ichan == AH_NULL) 109 FAIL(HAL_EINVAL); 110 switch (opmode) { 111 case HAL_M_STA: 112 case HAL_M_IBSS: 113 case HAL_M_HOSTAP: 114 case HAL_M_MONITOR: 115 break; 116 default: 117 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n", 118 __func__, opmode); 119 FAIL(HAL_EINVAL); 120 break; 121 } 122 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1); 123 124 /* Blank the channel survey statistics */ 125 ath_hal_survey_clear(ah); 126 127 /* XXX Turn on fast channel change for 5416 */ 128 129 /* 130 * Preserve the bmiss rssi threshold and count threshold 131 * across resets 132 */ 133 rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR); 134 /* If reg is zero, first time thru set to default val */ 135 if (rssiThrReg == 0) 136 rssiThrReg = INIT_RSSI_THR; 137 138 /* 139 * Preserve the antenna on a channel change 140 */ 141 saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA); 142 143 /* 144 * Don't do this for the AR9285 - it breaks RX for single 145 * antenna designs when diversity is disabled. 146 * 147 * I'm not sure what this was working around; it may be 148 * something to do with the AR5416. Certainly this register 149 * isn't supposed to be used by the MIMO chips for anything 150 * except for defining the default antenna when an external 151 * phase array / smart antenna is connected. 152 * 153 * See PR: kern/179269 . 154 */ 155 if ((! AR_SREV_KITE(ah)) && saveDefAntenna == 0) /* XXX magic constants */ 156 saveDefAntenna = 1; 157 158 /* Save hardware flag before chip reset clears the register */ 159 macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & 160 (AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT); 161 162 /* Save led state from pci config register */ 163 saveLedState = OS_REG_READ(ah, AR_MAC_LED) & 164 (AR_MAC_LED_ASSOC | AR_MAC_LED_MODE | 165 AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW); 166 167 /* For chips on which the RTC reset is done, save TSF before it gets cleared */ 168 if (AR_SREV_HOWL(ah) || 169 (AR_SREV_MERLIN(ah) && 170 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) || 171 (ah->ah_config.ah_force_full_reset)) 172 tsf = ar5416GetTsf64(ah); 173 174 /* Mark PHY as inactive; marked active in ar5416InitBB() */ 175 ar5416MarkPhyInactive(ah); 176 177 if (!ar5416ChipReset(ah, chan)) { 178 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__); 179 FAIL(HAL_EIO); 180 } 181 182 /* Restore TSF */ 183 if (tsf) 184 ar5416SetTsf64(ah, tsf); 185 186 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); 187 if (AR_SREV_MERLIN_10_OR_LATER(ah)) 188 OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); 189 190 AH5416(ah)->ah_writeIni(ah, chan); 191 192 if(AR_SREV_KIWI_13_OR_LATER(ah) ) { 193 /* Enable ASYNC FIFO */ 194 OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, 195 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL); 196 OS_REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO); 197 OS_REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, 198 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); 199 OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, 200 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); 201 } 202 203 /* Override ini values (that can be overriden in this fashion) */ 204 ar5416OverrideIni(ah, chan); 205 206 /* Setup 11n MAC/Phy mode registers */ 207 ar5416Set11nRegs(ah, chan); 208 209 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); 210 211 /* 212 * Some AR91xx SoC devices frequently fail to accept TSF writes 213 * right after the chip reset. When that happens, write a new 214 * value after the initvals have been applied, with an offset 215 * based on measured time difference 216 */ 217 if (AR_SREV_HOWL(ah) && (ar5416GetTsf64(ah) < tsf)) { 218 tsf += 1500; 219 ar5416SetTsf64(ah, tsf); 220 } 221 222 HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n", 223 __func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK)); 224 HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n", 225 __func__, OS_REG_READ(ah,AR_PHY_ADC_CTL)); 226 227 /* 228 * This routine swaps the analog chains - it should be done 229 * before any radio register twiddling is done. 230 */ 231 ar5416InitChainMasks(ah); 232 233 /* Setup the open-loop power calibration if required */ 234 if (ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { 235 AH5416(ah)->ah_olcInit(ah); 236 AH5416(ah)->ah_olcTempCompensation(ah); 237 } 238 239 /* Setup the transmit power values. */ 240 if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) { 241 HALDEBUG(ah, HAL_DEBUG_ANY, 242 "%s: error init'ing transmit power\n", __func__); 243 FAIL(HAL_EIO); 244 } 245 246 /* Write the analog registers */ 247 if (!ahp->ah_rfHal->setRfRegs(ah, chan, 248 IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) { 249 HALDEBUG(ah, HAL_DEBUG_ANY, 250 "%s: ar5212SetRfRegs failed\n", __func__); 251 FAIL(HAL_EIO); 252 } 253 254 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */ 255 if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan)) 256 ar5416SetDeltaSlope(ah, chan); 257 258 AH5416(ah)->ah_spurMitigate(ah, chan); 259 260 /* Setup board specific options for EEPROM version 3 */ 261 if (!ah->ah_setBoardValues(ah, chan)) { 262 HALDEBUG(ah, HAL_DEBUG_ANY, 263 "%s: error setting board options\n", __func__); 264 FAIL(HAL_EIO); 265 } 266 267 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); 268 269 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr)); 270 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4) 271 | macStaId1 272 | AR_STA_ID1_RTS_USE_DEF 273 | ahp->ah_staId1Defaults 274 ); 275 ar5212SetOperatingMode(ah, opmode); 276 277 /* Set Venice BSSID mask according to current state */ 278 OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask)); 279 OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4)); 280 281 /* Restore previous led state */ 282 if (AR_SREV_HOWL(ah)) 283 OS_REG_WRITE(ah, AR_MAC_LED, 284 AR_MAC_LED_ASSOC_ACTIVE | AR_CFG_SCLK_32KHZ); 285 else 286 OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) | 287 saveLedState); 288 289 /* Start TSF2 for generic timer 8-15 */ 290 #ifdef NOTYET 291 if (AR_SREV_KIWI(ah)) 292 ar5416StartTsf2(ah); 293 #endif 294 295 /* 296 * Enable Bluetooth Coexistence if it's enabled. 297 */ 298 if (AH5416(ah)->ah_btCoexConfigType != HAL_BT_COEX_CFG_NONE) 299 ar5416InitBTCoex(ah); 300 301 /* Restore previous antenna */ 302 OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); 303 304 /* then our BSSID and associate id */ 305 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid)); 306 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) | 307 (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S); 308 309 /* Restore bmiss rssi & count thresholds */ 310 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr); 311 312 OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */ 313 314 /* Restore bmiss rssi & count thresholds */ 315 OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg); 316 317 if (!ar5212SetChannel(ah, chan)) 318 FAIL(HAL_EIO); 319 320 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); 321 322 /* Set 1:1 QCU to DCU mapping for all queues */ 323 for (i = 0; i < AR_NUM_DCU; i++) 324 OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); 325 326 ahp->ah_intrTxqs = 0; 327 for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++) 328 ah->ah_resetTxQueue(ah, i); 329 330 ar5416InitIMR(ah, opmode); 331 ar5416SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1); 332 ar5416InitQoS(ah); 333 /* This may override the AR_DIAG_SW register */ 334 ar5416InitUserSettings(ah); 335 336 /* XXX this won't work for AR9287! */ 337 if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) { 338 ar5416SetIFSTiming(ah, chan); 339 #if 0 340 /* 341 * AR5413? 342 * Force window_length for 1/2 and 1/4 rate channels, 343 * the ini file sets this to zero otherwise. 344 */ 345 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, 346 AR_PHY_FRAME_CTL_WINLEN, 3); 347 } 348 #endif 349 } 350 351 if (AR_SREV_KIWI_13_OR_LATER(ah)) { 352 /* 353 * Enable ASYNC FIFO 354 * 355 * If Async FIFO is enabled, the following counters change 356 * as MAC now runs at 117 Mhz instead of 88/44MHz when 357 * async FIFO is disabled. 358 * 359 * Overwrite the delay/timeouts initialized in ProcessIni() 360 * above. 361 */ 362 OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 363 AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR); 364 OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, 365 AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR); 366 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 367 AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR); 368 369 OS_REG_WRITE(ah, AR_TIME_OUT, 370 AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR); 371 OS_REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR); 372 373 OS_REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER, 374 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); 375 OS_REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN, 376 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); 377 } 378 379 if (AR_SREV_KIWI_13_OR_LATER(ah)) { 380 /* Enable AGGWEP to accelerate encryption engine */ 381 OS_REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 382 AR_PCU_MISC_MODE2_ENABLE_AGGWEP); 383 } 384 385 386 /* 387 * disable seq number generation in hw 388 */ 389 OS_REG_WRITE(ah, AR_STA_ID1, 390 OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM); 391 392 ar5416InitDMA(ah); 393 394 /* 395 * program OBS bus to see MAC interrupts 396 */ 397 OS_REG_WRITE(ah, AR_OBS, 8); 398 399 /* 400 * Disable the "general" TX/RX mitigation timers. 401 */ 402 OS_REG_WRITE(ah, AR_MIRT, 0); 403 404 #ifdef AH_AR5416_INTERRUPT_MITIGATION 405 /* 406 * This initialises the RX interrupt mitigation timers. 407 * 408 * The mitigation timers begin at idle and are triggered 409 * upon the RXOK of a single frame (or sub-frame, for A-MPDU.) 410 * Then, the RX mitigation interrupt will fire: 411 * 412 * + 250uS after the last RX'ed frame, or 413 * + 700uS after the first RX'ed frame 414 * 415 * Thus, the LAST field dictates the extra latency 416 * induced by the RX mitigation method and the FIRST 417 * field dictates how long to delay before firing an 418 * RX mitigation interrupt. 419 * 420 * Please note this only seems to be for RXOK frames; 421 * not CRC or PHY error frames. 422 * 423 */ 424 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 250); 425 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 700); 426 #endif 427 ar5416InitBB(ah, chan); 428 429 /* Setup compression registers */ 430 ar5212SetCompRegs(ah); /* XXX not needed? */ 431 432 /* 433 * 5416 baseband will check the per rate power table 434 * and select the lower of the two 435 */ 436 ackTpcPow = 63; 437 ctsTpcPow = 63; 438 chirpTpcPow = 63; 439 powerVal = SM(ackTpcPow, AR_TPC_ACK) | 440 SM(ctsTpcPow, AR_TPC_CTS) | 441 SM(chirpTpcPow, AR_TPC_CHIRP); 442 OS_REG_WRITE(ah, AR_TPC, powerVal); 443 444 if (!ar5416InitCal(ah, chan)) 445 FAIL(HAL_ESELFTEST); 446 447 ar5416RestoreChainMask(ah); 448 449 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */ 450 451 if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan)) 452 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; 453 454 if (AR_SREV_HOWL(ah)) { 455 /* 456 * Enable the MBSSID block-ack fix for HOWL. 457 * This feature is only supported on Howl 1.4, but it is safe to 458 * set bit 22 of STA_ID1 on other Howl revisions (1.1, 1.2, 1.3), 459 * since bit 22 is unused in those Howl revisions. 460 */ 461 unsigned int reg; 462 reg = (OS_REG_READ(ah, AR_STA_ID1) | (1<<22)); 463 OS_REG_WRITE(ah,AR_STA_ID1, reg); 464 ath_hal_printf(ah, "MBSSID Set bit 22 of AR_STA_ID 0x%x\n", reg); 465 } 466 467 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__); 468 469 OS_MARK(ah, AH_MARK_RESET_DONE, 0); 470 471 return AH_TRUE; 472 bad: 473 OS_MARK(ah, AH_MARK_RESET_DONE, ecode); 474 if (status != AH_NULL) 475 *status = ecode; 476 return AH_FALSE; 477 #undef FAIL 478 #undef N 479 } 480 481 #if 0 482 /* 483 * This channel change evaluates whether the selected hardware can 484 * perform a synthesizer-only channel change (no reset). If the 485 * TX is not stopped, or the RFBus cannot be granted in the given 486 * time, the function returns false as a reset is necessary 487 */ 488 HAL_BOOL 489 ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan) 490 { 491 uint32_t ulCount; 492 uint32_t data, synthDelay, qnum; 493 uint16_t rfXpdGain[4]; 494 struct ath_hal_5212 *ahp = AH5212(ah); 495 HAL_CHANNEL_INTERNAL *ichan; 496 497 /* 498 * Map public channel to private. 499 */ 500 ichan = ath_hal_checkchannel(ah, chan); 501 502 /* TX must be stopped or RF Bus grant will not work */ 503 for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) { 504 if (ar5212NumTxPending(ah, qnum)) { 505 HALDEBUG(ah, HAL_DEBUG_ANY, 506 "%s: frames pending on queue %d\n", __func__, qnum); 507 return AH_FALSE; 508 } 509 } 510 511 /* 512 * Kill last Baseband Rx Frame - Request analog bus grant 513 */ 514 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST); 515 if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) { 516 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n", 517 __func__); 518 return AH_FALSE; 519 } 520 521 ar5416Set11nRegs(ah, chan); /* NB: setup 5416-specific regs */ 522 523 /* Change the synth */ 524 if (!ar5212SetChannel(ah, chan)) 525 return AH_FALSE; 526 527 /* Setup the transmit power values. */ 528 if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) { 529 HALDEBUG(ah, HAL_DEBUG_ANY, 530 "%s: error init'ing transmit power\n", __func__); 531 return AH_FALSE; 532 } 533 534 /* 535 * Wait for the frequency synth to settle (synth goes on 536 * via PHY_ACTIVE_EN). Read the phy active delay register. 537 * Value is in 100ns increments. 538 */ 539 data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; 540 if (IS_CHAN_CCK(ichan)) { 541 synthDelay = (4 * data) / 22; 542 } else { 543 synthDelay = data / 10; 544 } 545 546 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY); 547 548 /* Release the RFBus Grant */ 549 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0); 550 551 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */ 552 if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) { 553 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3); 554 ar5212SetSpurMitigation(ah, chan); 555 ar5416SetDeltaSlope(ah, chan); 556 } 557 558 /* XXX spur mitigation for Melin */ 559 560 if (!IEEE80211_IS_CHAN_DFS(chan)) 561 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; 562 563 ichan->channel_time = 0; 564 ichan->tsf_last = ar5416GetTsf64(ah); 565 ar5212TxEnable(ah, AH_TRUE); 566 return AH_TRUE; 567 } 568 #endif 569 570 static void 571 ar5416InitDMA(struct ath_hal *ah) 572 { 573 struct ath_hal_5212 *ahp = AH5212(ah); 574 575 /* 576 * set AHB_MODE not to do cacheline prefetches 577 */ 578 OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN); 579 580 /* 581 * let mac dma reads be in 128 byte chunks 582 */ 583 OS_REG_WRITE(ah, AR_TXCFG, 584 (OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B); 585 586 /* 587 * let mac dma writes be in 128 byte chunks 588 */ 589 /* 590 * XXX If you change this, you must change the headroom 591 * assigned in ah_maxTxTrigLev - see ar5416InitState(). 592 */ 593 OS_REG_WRITE(ah, AR_RXCFG, 594 (OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B); 595 596 /* restore TX trigger level */ 597 OS_REG_WRITE(ah, AR_TXCFG, 598 (OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) | 599 SM(ahp->ah_txTrigLev, AR_FTRIG)); 600 601 /* 602 * Setup receive FIFO threshold to hold off TX activities 603 */ 604 OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); 605 606 /* 607 * reduce the number of usable entries in PCU TXBUF to avoid 608 * wrap around. 609 */ 610 if (AR_SREV_KITE(ah)) 611 /* 612 * For AR9285 the number of Fifos are reduced to half. 613 * So set the usable tx buf size also to half to 614 * avoid data/delimiter underruns 615 */ 616 OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE); 617 else 618 OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE); 619 } 620 621 static void 622 ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan) 623 { 624 uint32_t synthDelay; 625 626 /* 627 * Wait for the frequency synth to settle (synth goes on 628 * via AR_PHY_ACTIVE_EN). Read the phy active delay register. 629 * Value is in 100ns increments. 630 */ 631 synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; 632 if (IEEE80211_IS_CHAN_CCK(chan)) { 633 synthDelay = (4 * synthDelay) / 22; 634 } else { 635 synthDelay /= 10; 636 } 637 638 /* Turn on PLL on 5416 */ 639 HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n", 640 __func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz"); 641 642 /* Activate the PHY (includes baseband activate and synthesizer on) */ 643 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); 644 645 /* 646 * If the AP starts the calibration before the base band timeout 647 * completes we could get rx_clear false triggering. Add an 648 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition 649 * does not happen. 650 */ 651 if (IEEE80211_IS_CHAN_HALF(chan)) { 652 OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY); 653 } else if (IEEE80211_IS_CHAN_QUARTER(chan)) { 654 OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY); 655 } else { 656 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY); 657 } 658 } 659 660 static void 661 ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode) 662 { 663 struct ath_hal_5212 *ahp = AH5212(ah); 664 665 /* 666 * Setup interrupt handling. Note that ar5212ResetTxQueue 667 * manipulates the secondary IMR's as queues are enabled 668 * and disabled. This is done with RMW ops to insure the 669 * settings we make here are preserved. 670 */ 671 ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN 672 | AR_IMR_RXERR | AR_IMR_RXORN 673 | AR_IMR_BCNMISC; 674 675 #ifdef AH_AR5416_INTERRUPT_MITIGATION 676 ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 677 #else 678 ahp->ah_maskReg |= AR_IMR_RXOK; 679 #endif 680 ahp->ah_maskReg |= AR_IMR_TXOK; 681 682 if (opmode == HAL_M_HOSTAP) 683 ahp->ah_maskReg |= AR_IMR_MIB; 684 OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg); 685 686 #ifdef ADRIAN_NOTYET 687 /* This is straight from ath9k */ 688 if (! AR_SREV_HOWL(ah)) { 689 OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); 690 OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); 691 OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); 692 } 693 #endif 694 695 /* Enable bus errors that are OR'd to set the HIUERR bit */ 696 #if 0 697 OS_REG_WRITE(ah, AR_IMR_S2, 698 OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST); 699 #endif 700 } 701 702 static void 703 ar5416InitQoS(struct ath_hal *ah) 704 { 705 /* QoS support */ 706 OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */ 707 OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */ 708 709 /* Turn on NOACK Support for QoS packets */ 710 OS_REG_WRITE(ah, AR_NOACK, 711 SM(2, AR_NOACK_2BIT_VALUE) | 712 SM(5, AR_NOACK_BIT_OFFSET) | 713 SM(0, AR_NOACK_BYTE_OFFSET)); 714 715 /* 716 * initialize TXOP for all TIDs 717 */ 718 OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); 719 OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); 720 OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); 721 OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); 722 OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); 723 } 724 725 static void 726 ar5416InitUserSettings(struct ath_hal *ah) 727 { 728 struct ath_hal_5212 *ahp = AH5212(ah); 729 730 /* Restore user-specified settings */ 731 if (ahp->ah_miscMode != 0) 732 OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) 733 | ahp->ah_miscMode); 734 if (ahp->ah_sifstime != (u_int) -1) 735 ar5212SetSifsTime(ah, ahp->ah_sifstime); 736 if (ahp->ah_slottime != (u_int) -1) 737 ar5212SetSlotTime(ah, ahp->ah_slottime); 738 if (ahp->ah_acktimeout != (u_int) -1) 739 ar5212SetAckTimeout(ah, ahp->ah_acktimeout); 740 if (ahp->ah_ctstimeout != (u_int) -1) 741 ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout); 742 if (AH_PRIVATE(ah)->ah_diagreg != 0) 743 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg); 744 if (AH5416(ah)->ah_globaltxtimeout != (u_int) -1) 745 ar5416SetGlobalTxTimeout(ah, AH5416(ah)->ah_globaltxtimeout); 746 } 747 748 static void 749 ar5416SetRfMode(struct ath_hal *ah, const struct ieee80211_channel *chan) 750 { 751 uint32_t rfMode; 752 753 if (chan == AH_NULL) 754 return; 755 756 /* treat channel B as channel G , no B mode suport in owl */ 757 rfMode = IEEE80211_IS_CHAN_CCK(chan) ? 758 AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; 759 760 if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) { 761 /* phy mode bits for 5GHz channels require Fast Clock */ 762 rfMode |= AR_PHY_MODE_DYNAMIC 763 | AR_PHY_MODE_DYN_CCK_DISABLE; 764 } else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) { 765 rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ? 766 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ; 767 } 768 769 OS_REG_WRITE(ah, AR_PHY_MODE, rfMode); 770 } 771 772 /* 773 * Places the hardware into reset and then pulls it out of reset 774 */ 775 HAL_BOOL 776 ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan) 777 { 778 OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0); 779 /* 780 * Warm reset is optimistic for open-loop TX power control. 781 */ 782 if (AR_SREV_MERLIN(ah) && 783 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { 784 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) 785 return AH_FALSE; 786 } else if (ah->ah_config.ah_force_full_reset) { 787 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) 788 return AH_FALSE; 789 } else { 790 if (!ar5416SetResetReg(ah, HAL_RESET_WARM)) 791 return AH_FALSE; 792 } 793 794 /* Bring out of sleep mode (AGAIN) */ 795 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 796 return AH_FALSE; 797 798 #ifdef notyet 799 ahp->ah_chipFullSleep = AH_FALSE; 800 #endif 801 802 AH5416(ah)->ah_initPLL(ah, chan); 803 804 /* 805 * Perform warm reset before the mode/PLL/turbo registers 806 * are changed in order to deactivate the radio. Mode changes 807 * with an active radio can result in corrupted shifts to the 808 * radio device. 809 */ 810 ar5416SetRfMode(ah, chan); 811 812 return AH_TRUE; 813 } 814 815 /* 816 * Delta slope coefficient computation. 817 * Required for OFDM operation. 818 */ 819 static void 820 ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled, 821 uint32_t *coef_mantissa, uint32_t *coef_exponent) 822 { 823 #define COEF_SCALE_S 24 824 uint32_t coef_exp, coef_man; 825 /* 826 * ALGO -> coef_exp = 14-floor(log2(coef)); 827 * floor(log2(x)) is the highest set bit position 828 */ 829 for (coef_exp = 31; coef_exp > 0; coef_exp--) 830 if ((coef_scaled >> coef_exp) & 0x1) 831 break; 832 /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */ 833 HALASSERT(coef_exp); 834 coef_exp = 14 - (coef_exp - COEF_SCALE_S); 835 836 /* 837 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5); 838 * The coefficient is already shifted up for scaling 839 */ 840 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); 841 842 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); 843 *coef_exponent = coef_exp - 16; 844 845 #undef COEF_SCALE_S 846 } 847 848 void 849 ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan) 850 { 851 #define INIT_CLOCKMHZSCALED 0x64000000 852 uint32_t coef_scaled, ds_coef_exp, ds_coef_man; 853 uint32_t clockMhzScaled; 854 855 CHAN_CENTERS centers; 856 857 /* half and quarter rate can divide the scaled clock by 2 or 4 respectively */ 858 /* scale for selected channel bandwidth */ 859 clockMhzScaled = INIT_CLOCKMHZSCALED; 860 if (IEEE80211_IS_CHAN_TURBO(chan)) 861 clockMhzScaled <<= 1; 862 else if (IEEE80211_IS_CHAN_HALF(chan)) 863 clockMhzScaled >>= 1; 864 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 865 clockMhzScaled >>= 2; 866 867 /* 868 * ALGO -> coef = 1e8/fcarrier*fclock/40; 869 * scaled coef to provide precision for this floating calculation 870 */ 871 ar5416GetChannelCenters(ah, chan, ¢ers); 872 coef_scaled = clockMhzScaled / centers.synth_center; 873 874 ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); 875 876 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3, 877 AR_PHY_TIMING3_DSC_MAN, ds_coef_man); 878 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3, 879 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp); 880 881 /* 882 * For Short GI, 883 * scaled coeff is 9/10 that of normal coeff 884 */ 885 coef_scaled = (9 * coef_scaled)/10; 886 887 ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); 888 889 /* for short gi */ 890 OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI, 891 AR_PHY_HALFGI_DSC_MAN, ds_coef_man); 892 OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI, 893 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp); 894 #undef INIT_CLOCKMHZSCALED 895 } 896 897 /* 898 * Set a limit on the overall output power. Used for dynamic 899 * transmit power control and the like. 900 * 901 * NB: limit is in units of 0.5 dbM. 902 */ 903 HAL_BOOL 904 ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit) 905 { 906 uint16_t dummyXpdGains[2]; 907 908 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER); 909 return ah->ah_setTxPower(ah, AH_PRIVATE(ah)->ah_curchan, 910 dummyXpdGains); 911 } 912 913 HAL_BOOL 914 ar5416GetChipPowerLimits(struct ath_hal *ah, 915 struct ieee80211_channel *chan) 916 { 917 struct ath_hal_5212 *ahp = AH5212(ah); 918 int16_t minPower, maxPower; 919 920 /* 921 * Get Pier table max and min powers. 922 */ 923 if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) { 924 /* NB: rf code returns 1/4 dBm units, convert */ 925 chan->ic_maxpower = maxPower / 2; 926 chan->ic_minpower = minPower / 2; 927 } else { 928 HALDEBUG(ah, HAL_DEBUG_ANY, 929 "%s: no min/max power for %u/0x%x\n", 930 __func__, chan->ic_freq, chan->ic_flags); 931 chan->ic_maxpower = AR5416_MAX_RATE_POWER; 932 chan->ic_minpower = 0; 933 } 934 HALDEBUG(ah, HAL_DEBUG_RESET, 935 "Chan %d: MaxPow = %d MinPow = %d\n", 936 chan->ic_freq, chan->ic_maxpower, chan->ic_minpower); 937 return AH_TRUE; 938 } 939 940 /************************************************************** 941 * ar5416WriteTxPowerRateRegisters 942 * 943 * Write the TX power rate registers from the raw values given 944 * in ratesArray[]. 945 * 946 * The CCK and HT40 rate registers are only written if needed. 947 * HT20 and 11g/11a OFDM rate registers are always written. 948 * 949 * The values written are raw values which should be written 950 * to the registers - so it's up to the caller to pre-adjust 951 * them (eg CCK power offset value, or Merlin TX power offset, 952 * etc.) 953 */ 954 void 955 ar5416WriteTxPowerRateRegisters(struct ath_hal *ah, 956 const struct ieee80211_channel *chan, const int16_t ratesArray[]) 957 { 958 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s)) 959 960 /* Write the OFDM power per rate set */ 961 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, 962 POW_SM(ratesArray[rate18mb], 24) 963 | POW_SM(ratesArray[rate12mb], 16) 964 | POW_SM(ratesArray[rate9mb], 8) 965 | POW_SM(ratesArray[rate6mb], 0) 966 ); 967 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, 968 POW_SM(ratesArray[rate54mb], 24) 969 | POW_SM(ratesArray[rate48mb], 16) 970 | POW_SM(ratesArray[rate36mb], 8) 971 | POW_SM(ratesArray[rate24mb], 0) 972 ); 973 974 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 975 /* Write the CCK power per rate set */ 976 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, 977 POW_SM(ratesArray[rate2s], 24) 978 | POW_SM(ratesArray[rate2l], 16) 979 | POW_SM(ratesArray[rateXr], 8) /* XR target power */ 980 | POW_SM(ratesArray[rate1l], 0) 981 ); 982 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, 983 POW_SM(ratesArray[rate11s], 24) 984 | POW_SM(ratesArray[rate11l], 16) 985 | POW_SM(ratesArray[rate5_5s], 8) 986 | POW_SM(ratesArray[rate5_5l], 0) 987 ); 988 HALDEBUG(ah, HAL_DEBUG_RESET, 989 "%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n", 990 __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3), 991 OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4)); 992 } 993 994 /* Write the HT20 power per rate set */ 995 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, 996 POW_SM(ratesArray[rateHt20_3], 24) 997 | POW_SM(ratesArray[rateHt20_2], 16) 998 | POW_SM(ratesArray[rateHt20_1], 8) 999 | POW_SM(ratesArray[rateHt20_0], 0) 1000 ); 1001 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, 1002 POW_SM(ratesArray[rateHt20_7], 24) 1003 | POW_SM(ratesArray[rateHt20_6], 16) 1004 | POW_SM(ratesArray[rateHt20_5], 8) 1005 | POW_SM(ratesArray[rateHt20_4], 0) 1006 ); 1007 1008 if (IEEE80211_IS_CHAN_HT40(chan)) { 1009 /* Write the HT40 power per rate set */ 1010 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, 1011 POW_SM(ratesArray[rateHt40_3], 24) 1012 | POW_SM(ratesArray[rateHt40_2], 16) 1013 | POW_SM(ratesArray[rateHt40_1], 8) 1014 | POW_SM(ratesArray[rateHt40_0], 0) 1015 ); 1016 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, 1017 POW_SM(ratesArray[rateHt40_7], 24) 1018 | POW_SM(ratesArray[rateHt40_6], 16) 1019 | POW_SM(ratesArray[rateHt40_5], 8) 1020 | POW_SM(ratesArray[rateHt40_4], 0) 1021 ); 1022 /* Write the Dup/Ext 40 power per rate set */ 1023 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, 1024 POW_SM(ratesArray[rateExtOfdm], 24) 1025 | POW_SM(ratesArray[rateExtCck], 16) 1026 | POW_SM(ratesArray[rateDupOfdm], 8) 1027 | POW_SM(ratesArray[rateDupCck], 0) 1028 ); 1029 } 1030 1031 /* 1032 * Set max power to 30 dBm and, optionally, 1033 * enable TPC in tx descriptors. 1034 */ 1035 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER | 1036 (AH5212(ah)->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0)); 1037 #undef POW_SM 1038 } 1039 1040 1041 /************************************************************** 1042 * ar5416SetTransmitPower 1043 * 1044 * Set the transmit power in the baseband for the given 1045 * operating channel and mode. 1046 */ 1047 HAL_BOOL 1048 ar5416SetTransmitPower(struct ath_hal *ah, 1049 const struct ieee80211_channel *chan, uint16_t *rfXpdGain) 1050 { 1051 #define N(a) (sizeof (a) / sizeof (a[0])) 1052 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s)) 1053 1054 MODAL_EEP_HEADER *pModal; 1055 struct ath_hal_5212 *ahp = AH5212(ah); 1056 int16_t txPowerIndexOffset = 0; 1057 int i; 1058 1059 uint16_t cfgCtl; 1060 uint16_t powerLimit; 1061 uint16_t twiceAntennaReduction; 1062 uint16_t twiceMaxRegulatoryPower; 1063 int16_t maxPower; 1064 HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom; 1065 struct ar5416eeprom *pEepData = &ee->ee_base; 1066 1067 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1); 1068 1069 /* 1070 * Default to 2, is overridden based on the EEPROM version / value. 1071 */ 1072 AH5416(ah)->ah_ht40PowerIncForPdadc = 2; 1073 1074 /* Setup info for the actual eeprom */ 1075 OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray)); 1076 cfgCtl = ath_hal_getctl(ah, chan); 1077 powerLimit = chan->ic_maxregpower * 2; 1078 twiceAntennaReduction = chan->ic_maxantgain; 1079 twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit); 1080 pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]; 1081 HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n", 1082 __func__,chan->ic_freq, cfgCtl ); 1083 1084 if (IS_EEP_MINOR_V2(ah)) { 1085 AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; 1086 } 1087 1088 if (!ar5416SetPowerPerRateTable(ah, pEepData, chan, 1089 &AH5416(ah)->ah_ratesArray[0], 1090 cfgCtl, 1091 twiceAntennaReduction, 1092 twiceMaxRegulatoryPower, powerLimit)) { 1093 HALDEBUG(ah, HAL_DEBUG_ANY, 1094 "%s: unable to set tx power per rate table\n", __func__); 1095 return AH_FALSE; 1096 } 1097 1098 if (!AH5416(ah)->ah_setPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) { 1099 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n", 1100 __func__); 1101 return AH_FALSE; 1102 } 1103 1104 maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb], 1105 AH5416(ah)->ah_ratesArray[rateHt20_0]); 1106 1107 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1108 maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]); 1109 } 1110 1111 if (IEEE80211_IS_CHAN_HT40(chan)) { 1112 maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]); 1113 } 1114 1115 ahp->ah_tx6PowerInHalfDbm = maxPower; 1116 AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower; 1117 ahp->ah_txPowerIndexOffset = txPowerIndexOffset; 1118 1119 /* 1120 * txPowerIndexOffset is set by the SetPowerTable() call - 1121 * adjust the rate table (0 offset if rates EEPROM not loaded) 1122 */ 1123 for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) { 1124 AH5416(ah)->ah_ratesArray[i] = 1125 (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]); 1126 if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER) 1127 AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER; 1128 } 1129 1130 #ifdef AH_EEPROM_DUMP 1131 /* 1132 * Dump the rate array whilst it represents the intended dBm*2 1133 * values versus what's being adjusted before being programmed 1134 * in. Keep this in mind if you code up this function and enable 1135 * this debugging; the values won't necessarily be what's being 1136 * programmed into the hardware. 1137 */ 1138 ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray); 1139 #endif 1140 1141 /* 1142 * Merlin and later have a power offset, so subtract 1143 * pwr_table_offset * 2 from each value. The default 1144 * power offset is -5 dBm - ie, a register value of 0 1145 * equates to a TX power of -5 dBm. 1146 */ 1147 if (AR_SREV_MERLIN_20_OR_LATER(ah)) { 1148 int8_t pwr_table_offset; 1149 1150 (void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET, 1151 &pwr_table_offset); 1152 /* Underflow power gets clamped at raw value 0 */ 1153 /* Overflow power gets camped at AR5416_MAX_RATE_POWER */ 1154 for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) { 1155 /* 1156 * + pwr_table_offset is in dBm 1157 * + ratesArray is in 1/2 dBm 1158 */ 1159 AH5416(ah)->ah_ratesArray[i] -= (pwr_table_offset * 2); 1160 if (AH5416(ah)->ah_ratesArray[i] < 0) 1161 AH5416(ah)->ah_ratesArray[i] = 0; 1162 else if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER) 1163 AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER; 1164 } 1165 } 1166 1167 /* 1168 * Adjust rates for OLC where needed 1169 * 1170 * The following CCK rates need adjusting when doing 2.4ghz 1171 * CCK transmission. 1172 * 1173 * + rate2s, rate2l, rate1l, rate11s, rate11l, rate5_5s, rate5_5l 1174 * + rateExtCck, rateDupCck 1175 * 1176 * They're adjusted here regardless. The hardware then gets 1177 * programmed as needed. 5GHz operation doesn't program in CCK 1178 * rates for legacy mode but they seem to be initialised for 1179 * HT40 regardless of channel type. 1180 */ 1181 if (AR_SREV_MERLIN_20_OR_LATER(ah) && 1182 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { 1183 int adj[] = { 1184 rate2s, rate2l, rate1l, rate11s, rate11l, 1185 rate5_5s, rate5_5l, rateExtCck, rateDupCck 1186 }; 1187 int cck_ofdm_delta = 2; 1188 int i; 1189 for (i = 0; i < N(adj); i++) { 1190 AH5416(ah)->ah_ratesArray[adj[i]] -= cck_ofdm_delta; 1191 if (AH5416(ah)->ah_ratesArray[adj[i]] < 0) 1192 AH5416(ah)->ah_ratesArray[adj[i]] = 0; 1193 } 1194 } 1195 1196 /* 1197 * Adjust the HT40 power to meet the correct target TX power 1198 * for 40MHz mode, based on TX power curves that are established 1199 * for 20MHz mode. 1200 * 1201 * XXX handle overflow/too high power level? 1202 */ 1203 if (IEEE80211_IS_CHAN_HT40(chan)) { 1204 AH5416(ah)->ah_ratesArray[rateHt40_0] += 1205 AH5416(ah)->ah_ht40PowerIncForPdadc; 1206 AH5416(ah)->ah_ratesArray[rateHt40_1] += 1207 AH5416(ah)->ah_ht40PowerIncForPdadc; 1208 AH5416(ah)->ah_ratesArray[rateHt40_2] += AH5416(ah)->ah_ht40PowerIncForPdadc; 1209 AH5416(ah)->ah_ratesArray[rateHt40_3] += AH5416(ah)->ah_ht40PowerIncForPdadc; 1210 AH5416(ah)->ah_ratesArray[rateHt40_4] += AH5416(ah)->ah_ht40PowerIncForPdadc; 1211 AH5416(ah)->ah_ratesArray[rateHt40_5] += AH5416(ah)->ah_ht40PowerIncForPdadc; 1212 AH5416(ah)->ah_ratesArray[rateHt40_6] += AH5416(ah)->ah_ht40PowerIncForPdadc; 1213 AH5416(ah)->ah_ratesArray[rateHt40_7] += AH5416(ah)->ah_ht40PowerIncForPdadc; 1214 } 1215 1216 /* Write the TX power rate registers */ 1217 ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray); 1218 1219 /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */ 1220 OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB, 1221 POW_SM(pModal->pwrDecreaseFor3Chain, 6) 1222 | POW_SM(pModal->pwrDecreaseFor2Chain, 0) 1223 ); 1224 return AH_TRUE; 1225 #undef POW_SM 1226 #undef N 1227 } 1228 1229 /* 1230 * Exported call to check for a recent gain reading and return 1231 * the current state of the thermal calibration gain engine. 1232 */ 1233 HAL_RFGAIN 1234 ar5416GetRfgain(struct ath_hal *ah) 1235 { 1236 1237 return (HAL_RFGAIN_INACTIVE); 1238 } 1239 1240 /* 1241 * Places all of hardware into reset 1242 */ 1243 HAL_BOOL 1244 ar5416Disable(struct ath_hal *ah) 1245 { 1246 1247 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 1248 return AH_FALSE; 1249 if (! ar5416SetResetReg(ah, HAL_RESET_COLD)) 1250 return AH_FALSE; 1251 1252 AH5416(ah)->ah_initPLL(ah, AH_NULL); 1253 return (AH_TRUE); 1254 } 1255 1256 /* 1257 * Places the PHY and Radio chips into reset. A full reset 1258 * must be called to leave this state. The PCI/MAC/PCU are 1259 * not placed into reset as we must receive interrupt to 1260 * re-enable the hardware. 1261 */ 1262 HAL_BOOL 1263 ar5416PhyDisable(struct ath_hal *ah) 1264 { 1265 1266 if (! ar5416SetResetReg(ah, HAL_RESET_WARM)) 1267 return AH_FALSE; 1268 1269 AH5416(ah)->ah_initPLL(ah, AH_NULL); 1270 return (AH_TRUE); 1271 } 1272 1273 /* 1274 * Write the given reset bit mask into the reset register 1275 */ 1276 HAL_BOOL 1277 ar5416SetResetReg(struct ath_hal *ah, uint32_t type) 1278 { 1279 /* 1280 * Set force wake 1281 */ 1282 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1283 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1284 1285 switch (type) { 1286 case HAL_RESET_POWER_ON: 1287 return ar5416SetResetPowerOn(ah); 1288 case HAL_RESET_WARM: 1289 case HAL_RESET_COLD: 1290 return ar5416SetReset(ah, type); 1291 default: 1292 HALASSERT(AH_FALSE); 1293 return AH_FALSE; 1294 } 1295 } 1296 1297 static HAL_BOOL 1298 ar5416SetResetPowerOn(struct ath_hal *ah) 1299 { 1300 /* Power On Reset (Hard Reset) */ 1301 1302 /* 1303 * Set force wake 1304 * 1305 * If the MAC was running, previously calling 1306 * reset will wake up the MAC but it may go back to sleep 1307 * before we can start polling. 1308 * Set force wake stops that 1309 * This must be called before initiating a hard reset. 1310 */ 1311 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1312 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1313 1314 /* 1315 * PowerOn reset can be used in open loop power control or failure recovery. 1316 * If we do RTC reset while DMA is still running, hardware may corrupt memory. 1317 * Therefore, we need to reset AHB first to stop DMA. 1318 */ 1319 if (! AR_SREV_HOWL(ah)) 1320 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB); 1321 /* 1322 * RTC reset and clear 1323 */ 1324 OS_REG_WRITE(ah, AR_RTC_RESET, 0); 1325 OS_DELAY(20); 1326 1327 if (! AR_SREV_HOWL(ah)) 1328 OS_REG_WRITE(ah, AR_RC, 0); 1329 1330 OS_REG_WRITE(ah, AR_RTC_RESET, 1); 1331 1332 /* 1333 * Poll till RTC is ON 1334 */ 1335 if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) { 1336 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__); 1337 return AH_FALSE; 1338 } 1339 1340 return ar5416SetReset(ah, HAL_RESET_COLD); 1341 } 1342 1343 static HAL_BOOL 1344 ar5416SetReset(struct ath_hal *ah, int type) 1345 { 1346 uint32_t tmpReg, mask; 1347 uint32_t rst_flags; 1348 1349 #ifdef AH_SUPPORT_AR9130 /* Because of the AR9130 specific registers */ 1350 if (AR_SREV_HOWL(ah)) { 1351 HALDEBUG(ah, HAL_DEBUG_ANY, "[ath] HOWL: Fiddling with derived clk!\n"); 1352 uint32_t val = OS_REG_READ(ah, AR_RTC_DERIVED_CLK); 1353 val &= ~AR_RTC_DERIVED_CLK_PERIOD; 1354 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD); 1355 OS_REG_WRITE(ah, AR_RTC_DERIVED_CLK, val); 1356 (void) OS_REG_READ(ah, AR_RTC_DERIVED_CLK); 1357 } 1358 #endif /* AH_SUPPORT_AR9130 */ 1359 1360 /* 1361 * Force wake 1362 */ 1363 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1364 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1365 1366 #ifdef AH_SUPPORT_AR9130 1367 if (AR_SREV_HOWL(ah)) { 1368 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | 1369 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; 1370 } else { 1371 #endif /* AH_SUPPORT_AR9130 */ 1372 /* 1373 * Reset AHB 1374 * 1375 * (In case the last interrupt source was a bus timeout.) 1376 * XXX TODO: this is not the way to do it! It should be recorded 1377 * XXX by the interrupt handler and passed _into_ the 1378 * XXX reset path routine so this occurs. 1379 */ 1380 tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE); 1381 if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) { 1382 OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); 1383 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF); 1384 } else { 1385 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB); 1386 } 1387 rst_flags = AR_RTC_RC_MAC_WARM; 1388 if (type == HAL_RESET_COLD) 1389 rst_flags |= AR_RTC_RC_MAC_COLD; 1390 #ifdef AH_SUPPORT_AR9130 1391 } 1392 #endif /* AH_SUPPORT_AR9130 */ 1393 1394 OS_REG_WRITE(ah, AR_RTC_RC, rst_flags); 1395 1396 if (AR_SREV_HOWL(ah)) 1397 OS_DELAY(10000); 1398 else 1399 OS_DELAY(100); 1400 1401 /* 1402 * Clear resets and force wakeup 1403 */ 1404 OS_REG_WRITE(ah, AR_RTC_RC, 0); 1405 if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) { 1406 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__); 1407 return AH_FALSE; 1408 } 1409 1410 /* Clear AHB reset */ 1411 if (! AR_SREV_HOWL(ah)) 1412 OS_REG_WRITE(ah, AR_RC, 0); 1413 1414 if (AR_SREV_HOWL(ah)) 1415 OS_DELAY(50); 1416 1417 if (AR_SREV_HOWL(ah)) { 1418 uint32_t mask; 1419 mask = OS_REG_READ(ah, AR_CFG); 1420 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { 1421 HALDEBUG(ah, HAL_DEBUG_RESET, 1422 "CFG Byte Swap Set 0x%x\n", mask); 1423 } else { 1424 mask = 1425 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; 1426 OS_REG_WRITE(ah, AR_CFG, mask); 1427 HALDEBUG(ah, HAL_DEBUG_RESET, 1428 "Setting CFG 0x%x\n", OS_REG_READ(ah, AR_CFG)); 1429 } 1430 } else { 1431 if (type == HAL_RESET_COLD) { 1432 if (isBigEndian()) { 1433 /* 1434 * Set CFG, little-endian for descriptor accesses. 1435 */ 1436 mask = INIT_CONFIG_STATUS | AR_CFG_SWRD; 1437 #ifndef AH_NEED_DESC_SWAP 1438 mask |= AR_CFG_SWTD; 1439 #endif 1440 HALDEBUG(ah, HAL_DEBUG_RESET, 1441 "%s Applying descriptor swap\n", __func__); 1442 OS_REG_WRITE(ah, AR_CFG, mask); 1443 } else 1444 OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS); 1445 } 1446 } 1447 1448 return AH_TRUE; 1449 } 1450 1451 void 1452 ar5416InitChainMasks(struct ath_hal *ah) 1453 { 1454 int rx_chainmask = AH5416(ah)->ah_rx_chainmask; 1455 1456 /* Flip this for this chainmask regardless of chip */ 1457 if (rx_chainmask == 0x5) 1458 OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); 1459 1460 /* 1461 * Workaround for OWL 1.0 calibration failure; enable multi-chain; 1462 * then set true mask after calibration. 1463 */ 1464 if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) { 1465 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7); 1466 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7); 1467 } else { 1468 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask); 1469 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask); 1470 } 1471 OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask); 1472 1473 if (AH5416(ah)->ah_tx_chainmask == 0x5) 1474 OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); 1475 1476 if (AR_SREV_HOWL(ah)) { 1477 OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, 1478 OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001); 1479 } 1480 } 1481 1482 /* 1483 * Work-around for Owl 1.0 calibration failure. 1484 * 1485 * ar5416InitChainMasks sets the RX chainmask to 0x7 if it's Owl 1.0 1486 * due to init calibration failures. ar5416RestoreChainMask restores 1487 * these registers to the correct setting. 1488 */ 1489 void 1490 ar5416RestoreChainMask(struct ath_hal *ah) 1491 { 1492 int rx_chainmask = AH5416(ah)->ah_rx_chainmask; 1493 1494 if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) { 1495 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); 1496 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); 1497 } 1498 } 1499 1500 void 1501 ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan) 1502 { 1503 uint32_t pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2; 1504 if (chan != AH_NULL) { 1505 if (IEEE80211_IS_CHAN_HALF(chan)) 1506 pll |= SM(0x1, AR_RTC_PLL_CLKSEL); 1507 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1508 pll |= SM(0x2, AR_RTC_PLL_CLKSEL); 1509 1510 if (IEEE80211_IS_CHAN_5GHZ(chan)) 1511 pll |= SM(0xa, AR_RTC_PLL_DIV); 1512 else 1513 pll |= SM(0xb, AR_RTC_PLL_DIV); 1514 } else 1515 pll |= SM(0xb, AR_RTC_PLL_DIV); 1516 1517 OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); 1518 1519 /* TODO: 1520 * For multi-band owl, switch between bands by reiniting the PLL. 1521 */ 1522 1523 OS_DELAY(RTC_PLL_SETTLE_DELAY); 1524 1525 OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK); 1526 } 1527 1528 static void 1529 ar5416SetDefGainValues(struct ath_hal *ah, 1530 const MODAL_EEP_HEADER *pModal, 1531 const struct ar5416eeprom *eep, 1532 uint8_t txRxAttenLocal, int regChainOffset, int i) 1533 { 1534 1535 if (IS_EEP_MINOR_V3(ah)) { 1536 txRxAttenLocal = pModal->txRxAttenCh[i]; 1537 1538 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 1539 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1540 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, 1541 pModal->bswMargin[i]); 1542 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1543 AR_PHY_GAIN_2GHZ_XATTEN1_DB, 1544 pModal->bswAtten[i]); 1545 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1546 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, 1547 pModal->xatten2Margin[i]); 1548 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1549 AR_PHY_GAIN_2GHZ_XATTEN2_DB, 1550 pModal->xatten2Db[i]); 1551 } else { 1552 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1553 AR_PHY_GAIN_2GHZ_BSW_MARGIN, 1554 pModal->bswMargin[i]); 1555 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1556 AR_PHY_GAIN_2GHZ_BSW_ATTEN, 1557 pModal->bswAtten[i]); 1558 } 1559 } 1560 1561 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 1562 OS_REG_RMW_FIELD(ah, 1563 AR_PHY_RXGAIN + regChainOffset, 1564 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); 1565 OS_REG_RMW_FIELD(ah, 1566 AR_PHY_RXGAIN + regChainOffset, 1567 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]); 1568 } else { 1569 OS_REG_RMW_FIELD(ah, 1570 AR_PHY_RXGAIN + regChainOffset, 1571 AR_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); 1572 OS_REG_RMW_FIELD(ah, 1573 AR_PHY_GAIN_2GHZ + regChainOffset, 1574 AR_PHY_GAIN_2GHZ_RXTX_MARGIN, pModal->rxTxMarginCh[i]); 1575 } 1576 } 1577 1578 /* 1579 * Get the register chain offset for the given chain. 1580 * 1581 * Take into account the register chain swapping with AR5416 v2.0. 1582 * 1583 * XXX make sure that the reg chain swapping is only done for 1584 * XXX AR5416 v2.0 or greater, and not later chips? 1585 */ 1586 int 1587 ar5416GetRegChainOffset(struct ath_hal *ah, int i) 1588 { 1589 int regChainOffset; 1590 1591 if (AR_SREV_5416_V20_OR_LATER(ah) && 1592 (AH5416(ah)->ah_rx_chainmask == 0x5 || 1593 AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) { 1594 /* Regs are swapped from chain 2 to 1 for 5416 2_0 with 1595 * only chains 0 and 2 populated 1596 */ 1597 regChainOffset = (i == 1) ? 0x2000 : 0x1000; 1598 } else { 1599 regChainOffset = i * 0x1000; 1600 } 1601 1602 return regChainOffset; 1603 } 1604 1605 /* 1606 * Read EEPROM header info and program the device for correct operation 1607 * given the channel value. 1608 */ 1609 HAL_BOOL 1610 ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan) 1611 { 1612 const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom; 1613 const struct ar5416eeprom *eep = &ee->ee_base; 1614 const MODAL_EEP_HEADER *pModal; 1615 int i, regChainOffset; 1616 uint8_t txRxAttenLocal; /* workaround for eeprom versions <= 14.2 */ 1617 1618 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1); 1619 pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]; 1620 1621 /* NB: workaround for eeprom versions <= 14.2 */ 1622 txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44; 1623 1624 OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon); 1625 for (i = 0; i < AR5416_MAX_CHAINS; i++) { 1626 if (AR_SREV_MERLIN(ah)) { 1627 if (i >= 2) break; 1628 } 1629 regChainOffset = ar5416GetRegChainOffset(ah, i); 1630 1631 OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]); 1632 1633 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset, 1634 (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) & 1635 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | 1636 SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | 1637 SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); 1638 1639 /* 1640 * Large signal upgrade, 1641 * If 14.3 or later EEPROM, use 1642 * txRxAttenLocal = pModal->txRxAttenCh[i] 1643 * else txRxAttenLocal is fixed value above. 1644 */ 1645 1646 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) 1647 ar5416SetDefGainValues(ah, pModal, eep, txRxAttenLocal, regChainOffset, i); 1648 1649 } 1650 1651 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 1652 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1653 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, pModal->ob); 1654 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, pModal->db); 1655 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, pModal->ob_ch1); 1656 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, pModal->db_ch1); 1657 } else { 1658 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, pModal->ob); 1659 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, pModal->db); 1660 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, pModal->ob_ch1); 1661 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, pModal->db_ch1); 1662 } 1663 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl); 1664 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS, 1665 !!(pModal->flagBits & AR5416_EEP_FLAG_LOCALBIAS)); 1666 OS_A_REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG, 1667 !!(pModal->flagBits & AR5416_EEP_FLAG_FORCEXPAON)); 1668 } 1669 1670 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling); 1671 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize); 1672 1673 if (! AR_SREV_MERLIN_10_OR_LATER(ah)) 1674 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize); 1675 1676 OS_REG_WRITE(ah, AR_PHY_RF_CTL4, 1677 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) 1678 | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) 1679 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) 1680 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON)); 1681 1682 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, 1683 pModal->txEndToRxOn); 1684 1685 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 1686 OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, 1687 pModal->thresh62); 1688 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62, 1689 pModal->thresh62); 1690 } else { 1691 OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62, 1692 pModal->thresh62); 1693 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62, 1694 pModal->thresh62); 1695 } 1696 1697 /* Minor Version Specific application */ 1698 if (IS_EEP_MINOR_V2(ah)) { 1699 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START, 1700 pModal->txFrameToDataStart); 1701 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON, 1702 pModal->txFrameToPaOn); 1703 } 1704 1705 if (IS_EEP_MINOR_V3(ah) && IEEE80211_IS_CHAN_HT40(chan)) 1706 /* Overwrite switch settling with HT40 value */ 1707 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, 1708 pModal->swSettleHt40); 1709 1710 if (AR_SREV_MERLIN_20_OR_LATER(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_19) 1711 OS_REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, pModal->miscBits); 1712 1713 if (AR_SREV_MERLIN_20(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_20) { 1714 if (IEEE80211_IS_CHAN_2GHZ(chan)) 1715 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 1716 eep->baseEepHeader.dacLpMode); 1717 else if (eep->baseEepHeader.dacHiPwrMode_5G) 1718 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0); 1719 else 1720 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 1721 eep->baseEepHeader.dacLpMode); 1722 1723 OS_DELAY(100); 1724 1725 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP, 1726 pModal->miscBits >> 2); 1727 OS_REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_DESIRED_SCALE_CCK, 1728 eep->baseEepHeader.desiredScaleCCK); 1729 } 1730 1731 return (AH_TRUE); 1732 } 1733 1734 /* 1735 * Helper functions common for AP/CB/XB 1736 */ 1737 1738 /* 1739 * Set the target power array "ratesArray" from the 1740 * given set of target powers. 1741 * 1742 * This is used by the various chipset/EEPROM TX power 1743 * setup routines. 1744 */ 1745 void 1746 ar5416SetRatesArrayFromTargetPower(struct ath_hal *ah, 1747 const struct ieee80211_channel *chan, 1748 int16_t *ratesArray, 1749 const CAL_TARGET_POWER_LEG *targetPowerCck, 1750 const CAL_TARGET_POWER_LEG *targetPowerCckExt, 1751 const CAL_TARGET_POWER_LEG *targetPowerOfdm, 1752 const CAL_TARGET_POWER_LEG *targetPowerOfdmExt, 1753 const CAL_TARGET_POWER_HT *targetPowerHt20, 1754 const CAL_TARGET_POWER_HT *targetPowerHt40) 1755 { 1756 #define N(a) (sizeof(a)/sizeof(a[0])) 1757 int i; 1758 1759 /* Blank the rates array, to be consistent */ 1760 for (i = 0; i < Ar5416RateSize; i++) 1761 ratesArray[i] = 0; 1762 1763 /* Set rates Array from collected data */ 1764 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = 1765 ratesArray[rate18mb] = ratesArray[rate24mb] = 1766 targetPowerOfdm->tPow2x[0]; 1767 ratesArray[rate36mb] = targetPowerOfdm->tPow2x[1]; 1768 ratesArray[rate48mb] = targetPowerOfdm->tPow2x[2]; 1769 ratesArray[rate54mb] = targetPowerOfdm->tPow2x[3]; 1770 ratesArray[rateXr] = targetPowerOfdm->tPow2x[0]; 1771 1772 for (i = 0; i < N(targetPowerHt20->tPow2x); i++) { 1773 ratesArray[rateHt20_0 + i] = targetPowerHt20->tPow2x[i]; 1774 } 1775 1776 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1777 ratesArray[rate1l] = targetPowerCck->tPow2x[0]; 1778 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck->tPow2x[1]; 1779 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck->tPow2x[2]; 1780 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck->tPow2x[3]; 1781 } 1782 if (IEEE80211_IS_CHAN_HT40(chan)) { 1783 for (i = 0; i < N(targetPowerHt40->tPow2x); i++) { 1784 ratesArray[rateHt40_0 + i] = targetPowerHt40->tPow2x[i]; 1785 } 1786 ratesArray[rateDupOfdm] = targetPowerHt40->tPow2x[0]; 1787 ratesArray[rateDupCck] = targetPowerHt40->tPow2x[0]; 1788 ratesArray[rateExtOfdm] = targetPowerOfdmExt->tPow2x[0]; 1789 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1790 ratesArray[rateExtCck] = targetPowerCckExt->tPow2x[0]; 1791 } 1792 } 1793 #undef N 1794 } 1795 1796 /* 1797 * ar5416SetPowerPerRateTable 1798 * 1799 * Sets the transmit power in the baseband for the given 1800 * operating channel and mode. 1801 */ 1802 static HAL_BOOL 1803 ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, 1804 const struct ieee80211_channel *chan, 1805 int16_t *ratesArray, uint16_t cfgCtl, 1806 uint16_t AntennaReduction, 1807 uint16_t twiceMaxRegulatoryPower, 1808 uint16_t powerLimit) 1809 { 1810 #define N(a) (sizeof(a)/sizeof(a[0])) 1811 /* Local defines to distinguish between extension and control CTL's */ 1812 #define EXT_ADDITIVE (0x8000) 1813 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE) 1814 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE) 1815 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE) 1816 1817 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER; 1818 int i; 1819 int16_t twiceLargestAntenna; 1820 CAL_CTL_DATA *rep; 1821 CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}}; 1822 CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}}; 1823 CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}}; 1824 int16_t scaledPower, minCtlPower; 1825 1826 #define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */ 1827 #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */ 1828 static const uint16_t ctlModesFor11a[] = { 1829 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 1830 }; 1831 static const uint16_t ctlModesFor11g[] = { 1832 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40 1833 }; 1834 const uint16_t *pCtlMode; 1835 uint16_t numCtlModes, ctlMode, freq; 1836 CHAN_CENTERS centers; 1837 1838 ar5416GetChannelCenters(ah, chan, ¢ers); 1839 1840 /* Compute TxPower reduction due to Antenna Gain */ 1841 1842 twiceLargestAntenna = AH_MAX(AH_MAX( 1843 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0], 1844 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]), 1845 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]); 1846 #if 0 1847 /* Turn it back on if we need to calculate per chain antenna gain reduction */ 1848 /* Use only if the expected gain > 6dbi */ 1849 /* Chain 0 is always used */ 1850 twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0]; 1851 1852 /* Look at antenna gains of Chains 1 and 2 if the TX mask is set */ 1853 if (ahp->ah_tx_chainmask & 0x2) 1854 twiceLargestAntenna = AH_MAX(twiceLargestAntenna, 1855 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]); 1856 1857 if (ahp->ah_tx_chainmask & 0x4) 1858 twiceLargestAntenna = AH_MAX(twiceLargestAntenna, 1859 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]); 1860 #endif 1861 twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0); 1862 1863 /* XXX setup for 5212 use (really used?) */ 1864 ath_hal_eepromSet(ah, 1865 IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5, 1866 twiceLargestAntenna); 1867 1868 /* 1869 * scaledPower is the minimum of the user input power level and 1870 * the regulatory allowed power level 1871 */ 1872 scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna); 1873 1874 /* Reduce scaled Power by number of chains active to get to per chain tx power level */ 1875 /* TODO: better value than these? */ 1876 switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) { 1877 case 1: 1878 break; 1879 case 2: 1880 scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain; 1881 break; 1882 case 3: 1883 scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain; 1884 break; 1885 default: 1886 return AH_FALSE; /* Unsupported number of chains */ 1887 } 1888 1889 scaledPower = AH_MAX(0, scaledPower); 1890 1891 /* Get target powers from EEPROM - our baseline for TX Power */ 1892 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1893 /* Setup for CTL modes */ 1894 numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */ 1895 pCtlMode = ctlModesFor11g; 1896 1897 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck, 1898 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE); 1899 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G, 1900 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE); 1901 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20, 1902 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE); 1903 1904 if (IEEE80211_IS_CHAN_HT40(chan)) { 1905 numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */ 1906 1907 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40, 1908 AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE); 1909 /* Get target powers for extension channels */ 1910 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck, 1911 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE); 1912 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G, 1913 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE); 1914 } 1915 } else { 1916 /* Setup for CTL modes */ 1917 numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */ 1918 pCtlMode = ctlModesFor11a; 1919 1920 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G, 1921 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE); 1922 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT20, 1923 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE); 1924 1925 if (IEEE80211_IS_CHAN_HT40(chan)) { 1926 numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */ 1927 1928 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT40, 1929 AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE); 1930 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G, 1931 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE); 1932 } 1933 } 1934 1935 /* 1936 * For MIMO, need to apply regulatory caps individually across dynamically 1937 * running modes: CCK, OFDM, HT20, HT40 1938 * 1939 * The outer loop walks through each possible applicable runtime mode. 1940 * The inner loop walks through each ctlIndex entry in EEPROM. 1941 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode. 1942 * 1943 */ 1944 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { 1945 HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || 1946 (pCtlMode[ctlMode] == CTL_2GHT40); 1947 if (isHt40CtlMode) { 1948 freq = centers.ctl_center; 1949 } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) { 1950 freq = centers.ext_center; 1951 } else { 1952 freq = centers.ctl_center; 1953 } 1954 1955 /* walk through each CTL index stored in EEPROM */ 1956 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) { 1957 uint16_t twiceMinEdgePower; 1958 1959 /* compare test group from regulatory channel list with test mode from pCtlMode list */ 1960 if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) || 1961 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == 1962 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) { 1963 rep = &(pEepData->ctlData[i]); 1964 twiceMinEdgePower = ar5416GetMaxEdgePower(freq, 1965 rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1], 1966 IEEE80211_IS_CHAN_2GHZ(chan)); 1967 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { 1968 /* Find the minimum of all CTL edge powers that apply to this channel */ 1969 twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower); 1970 } else { 1971 /* specific */ 1972 twiceMaxEdgePower = twiceMinEdgePower; 1973 break; 1974 } 1975 } 1976 } 1977 minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower); 1978 /* Apply ctl mode to correct target power set */ 1979 switch(pCtlMode[ctlMode]) { 1980 case CTL_11B: 1981 for (i = 0; i < N(targetPowerCck.tPow2x); i++) { 1982 targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower); 1983 } 1984 break; 1985 case CTL_11A: 1986 case CTL_11G: 1987 for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) { 1988 targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower); 1989 } 1990 break; 1991 case CTL_5GHT20: 1992 case CTL_2GHT20: 1993 for (i = 0; i < N(targetPowerHt20.tPow2x); i++) { 1994 targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower); 1995 } 1996 break; 1997 case CTL_11B_EXT: 1998 targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower); 1999 break; 2000 case CTL_11A_EXT: 2001 case CTL_11G_EXT: 2002 targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower); 2003 break; 2004 case CTL_5GHT40: 2005 case CTL_2GHT40: 2006 for (i = 0; i < N(targetPowerHt40.tPow2x); i++) { 2007 targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower); 2008 } 2009 break; 2010 default: 2011 return AH_FALSE; 2012 break; 2013 } 2014 } /* end ctl mode checking */ 2015 2016 /* Set rates Array from collected data */ 2017 ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray, 2018 &targetPowerCck, 2019 &targetPowerCckExt, 2020 &targetPowerOfdm, 2021 &targetPowerOfdmExt, 2022 &targetPowerHt20, 2023 &targetPowerHt40); 2024 return AH_TRUE; 2025 #undef EXT_ADDITIVE 2026 #undef CTL_11A_EXT 2027 #undef CTL_11G_EXT 2028 #undef CTL_11B_EXT 2029 #undef SUB_NUM_CTL_MODES_AT_5G_40 2030 #undef SUB_NUM_CTL_MODES_AT_2G_40 2031 #undef N 2032 } 2033 2034 /************************************************************************** 2035 * fbin2freq 2036 * 2037 * Get channel value from binary representation held in eeprom 2038 * RETURNS: the frequency in MHz 2039 */ 2040 static uint16_t 2041 fbin2freq(uint8_t fbin, HAL_BOOL is2GHz) 2042 { 2043 /* 2044 * Reserved value 0xFF provides an empty definition both as 2045 * an fbin and as a frequency - do not convert 2046 */ 2047 if (fbin == AR5416_BCHAN_UNUSED) { 2048 return fbin; 2049 } 2050 2051 return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin)); 2052 } 2053 2054 /* 2055 * ar5416GetMaxEdgePower 2056 * 2057 * Find the maximum conformance test limit for the given channel and CTL info 2058 */ 2059 uint16_t 2060 ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz) 2061 { 2062 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER; 2063 int i; 2064 2065 /* Get the edge power */ 2066 for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) { 2067 /* 2068 * If there's an exact channel match or an inband flag set 2069 * on the lower channel use the given rdEdgePower 2070 */ 2071 if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) { 2072 twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER); 2073 break; 2074 } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) { 2075 if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) { 2076 twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER); 2077 } 2078 /* Leave loop - no more affecting edges possible in this monotonic increasing list */ 2079 break; 2080 } 2081 } 2082 HALASSERT(twiceMaxEdgePower > 0); 2083 return twiceMaxEdgePower; 2084 } 2085 2086 /************************************************************** 2087 * ar5416GetTargetPowers 2088 * 2089 * Return the rates of target power for the given target power table 2090 * channel, and number of channels 2091 */ 2092 void 2093 ar5416GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan, 2094 CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels, 2095 CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates, 2096 HAL_BOOL isHt40Target) 2097 { 2098 uint16_t clo, chi; 2099 int i; 2100 int matchIndex = -1, lowIndex = -1; 2101 uint16_t freq; 2102 CHAN_CENTERS centers; 2103 2104 ar5416GetChannelCenters(ah, chan, ¢ers); 2105 freq = isHt40Target ? centers.synth_center : centers.ctl_center; 2106 2107 /* Copy the target powers into the temp channel list */ 2108 if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { 2109 matchIndex = 0; 2110 } else { 2111 for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { 2112 if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { 2113 matchIndex = i; 2114 break; 2115 } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) && 2116 (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)))) 2117 { 2118 lowIndex = i - 1; 2119 break; 2120 } 2121 } 2122 if ((matchIndex == -1) && (lowIndex == -1)) { 2123 HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))); 2124 matchIndex = i - 1; 2125 } 2126 } 2127 2128 if (matchIndex != -1) { 2129 OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower)); 2130 } else { 2131 HALASSERT(lowIndex != -1); 2132 /* 2133 * Get the lower and upper channels, target powers, 2134 * and interpolate between them. 2135 */ 2136 clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); 2137 chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); 2138 2139 for (i = 0; i < numRates; i++) { 2140 pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi, 2141 powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]); 2142 } 2143 } 2144 } 2145 /************************************************************** 2146 * ar5416GetTargetPowersLeg 2147 * 2148 * Return the four rates of target power for the given target power table 2149 * channel, and number of channels 2150 */ 2151 void 2152 ar5416GetTargetPowersLeg(struct ath_hal *ah, 2153 const struct ieee80211_channel *chan, 2154 CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels, 2155 CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates, 2156 HAL_BOOL isExtTarget) 2157 { 2158 uint16_t clo, chi; 2159 int i; 2160 int matchIndex = -1, lowIndex = -1; 2161 uint16_t freq; 2162 CHAN_CENTERS centers; 2163 2164 ar5416GetChannelCenters(ah, chan, ¢ers); 2165 freq = (isExtTarget) ? centers.ext_center :centers.ctl_center; 2166 2167 /* Copy the target powers into the temp channel list */ 2168 if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { 2169 matchIndex = 0; 2170 } else { 2171 for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { 2172 if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { 2173 matchIndex = i; 2174 break; 2175 } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) && 2176 (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)))) 2177 { 2178 lowIndex = i - 1; 2179 break; 2180 } 2181 } 2182 if ((matchIndex == -1) && (lowIndex == -1)) { 2183 HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))); 2184 matchIndex = i - 1; 2185 } 2186 } 2187 2188 if (matchIndex != -1) { 2189 OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower)); 2190 } else { 2191 HALASSERT(lowIndex != -1); 2192 /* 2193 * Get the lower and upper channels, target powers, 2194 * and interpolate between them. 2195 */ 2196 clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); 2197 chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); 2198 2199 for (i = 0; i < numRates; i++) { 2200 pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi, 2201 powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]); 2202 } 2203 } 2204 } 2205 2206 /* 2207 * Set the gain boundaries for the given radio chain. 2208 * 2209 * The gain boundaries tell the hardware at what point in the 2210 * PDADC array to "switch over" from one PD gain setting 2211 * to another. There's also a gain overlap between two 2212 * PDADC array gain curves where there's valid PD values 2213 * for 2 gain settings. 2214 * 2215 * The hardware uses the gain overlap and gain boundaries 2216 * to determine which gain curve to use for the given 2217 * target TX power. 2218 */ 2219 void 2220 ar5416SetGainBoundariesClosedLoop(struct ath_hal *ah, int i, 2221 uint16_t pdGainOverlap_t2, uint16_t gainBoundaries[]) 2222 { 2223 int regChainOffset; 2224 2225 regChainOffset = ar5416GetRegChainOffset(ah, i); 2226 2227 HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: chain %d: gainOverlap_t2: %d," 2228 " gainBoundaries: %d, %d, %d, %d\n", __func__, i, pdGainOverlap_t2, 2229 gainBoundaries[0], gainBoundaries[1], gainBoundaries[2], 2230 gainBoundaries[3]); 2231 OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset, 2232 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 2233 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | 2234 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | 2235 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | 2236 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); 2237 } 2238 2239 /* 2240 * Get the gain values and the number of gain levels given 2241 * in xpdMask. 2242 * 2243 * The EEPROM xpdMask determines which power detector gain 2244 * levels were used during calibration. Each of these mask 2245 * bits maps to a fixed gain level in hardware. 2246 */ 2247 uint16_t 2248 ar5416GetXpdGainValues(struct ath_hal *ah, uint16_t xpdMask, 2249 uint16_t xpdGainValues[]) 2250 { 2251 int i; 2252 uint16_t numXpdGain = 0; 2253 2254 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { 2255 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { 2256 if (numXpdGain >= AR5416_NUM_PD_GAINS) { 2257 HALASSERT(0); 2258 break; 2259 } 2260 xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i); 2261 numXpdGain++; 2262 } 2263 } 2264 return numXpdGain; 2265 } 2266 2267 /* 2268 * Write the detector gain and biases. 2269 * 2270 * There are four power detector gain levels. The xpdMask in the EEPROM 2271 * determines which power detector gain levels have TX power calibration 2272 * data associated with them. This function writes the number of 2273 * PD gain levels and their values into the hardware. 2274 * 2275 * This is valid for all TX chains - the calibration data itself however 2276 * will likely differ per-chain. 2277 */ 2278 void 2279 ar5416WriteDetectorGainBiases(struct ath_hal *ah, uint16_t numXpdGain, 2280 uint16_t xpdGainValues[]) 2281 { 2282 HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: numXpdGain: %d," 2283 " xpdGainValues: %d, %d, %d\n", __func__, numXpdGain, 2284 xpdGainValues[0], xpdGainValues[1], xpdGainValues[2]); 2285 2286 OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) & 2287 ~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | 2288 AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) | 2289 SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | 2290 SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) | 2291 SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | 2292 SM(xpdGainValues[2], AR_PHY_TPCRG1_PD_GAIN_3)); 2293 } 2294 2295 /* 2296 * Write the PDADC array to the given radio chain i. 2297 * 2298 * The 32 PDADC registers are written without any care about 2299 * their contents - so if various chips treat values as "special", 2300 * this routine will not care. 2301 */ 2302 void 2303 ar5416WritePdadcValues(struct ath_hal *ah, int i, uint8_t pdadcValues[]) 2304 { 2305 int regOffset, regChainOffset; 2306 int j; 2307 int reg32; 2308 2309 regChainOffset = ar5416GetRegChainOffset(ah, i); 2310 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; 2311 2312 for (j = 0; j < 32; j++) { 2313 reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) | 2314 ((pdadcValues[4*j + 1] & 0xFF) << 8) | 2315 ((pdadcValues[4*j + 2] & 0xFF) << 16) | 2316 ((pdadcValues[4*j + 3] & 0xFF) << 24) ; 2317 OS_REG_WRITE(ah, regOffset, reg32); 2318 HALDEBUG(ah, HAL_DEBUG_EEPROM, "PDADC: Chain %d |" 2319 " PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d" 2320 " Value %3d | PDADC %3d Value %3d |\n", 2321 i, 2322 4*j, pdadcValues[4*j], 2323 4*j+1, pdadcValues[4*j + 1], 2324 4*j+2, pdadcValues[4*j + 2], 2325 4*j+3, pdadcValues[4*j + 3]); 2326 regOffset += 4; 2327 } 2328 } 2329 2330 /************************************************************** 2331 * ar5416SetPowerCalTable 2332 * 2333 * Pull the PDADC piers from cal data and interpolate them across the given 2334 * points as well as from the nearest pier(s) to get a power detector 2335 * linear voltage to power level table. 2336 */ 2337 HAL_BOOL 2338 ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, 2339 const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset) 2340 { 2341 CAL_DATA_PER_FREQ *pRawDataset; 2342 uint8_t *pCalBChans = AH_NULL; 2343 uint16_t pdGainOverlap_t2; 2344 static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES]; 2345 uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK]; 2346 uint16_t numPiers, i; 2347 int16_t tMinCalPower; 2348 uint16_t numXpdGain, xpdMask; 2349 uint16_t xpdGainValues[AR5416_NUM_PD_GAINS]; 2350 uint32_t regChainOffset; 2351 2352 OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues)); 2353 2354 xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain; 2355 2356 if (IS_EEP_MINOR_V2(ah)) { 2357 pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap; 2358 } else { 2359 pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); 2360 } 2361 2362 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 2363 pCalBChans = pEepData->calFreqPier2G; 2364 numPiers = AR5416_NUM_2G_CAL_PIERS; 2365 } else { 2366 pCalBChans = pEepData->calFreqPier5G; 2367 numPiers = AR5416_NUM_5G_CAL_PIERS; 2368 } 2369 2370 /* Calculate the value of xpdgains from the xpdGain Mask */ 2371 numXpdGain = ar5416GetXpdGainValues(ah, xpdMask, xpdGainValues); 2372 2373 /* Write the detector gain biases and their number */ 2374 ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues); 2375 2376 for (i = 0; i < AR5416_MAX_CHAINS; i++) { 2377 regChainOffset = ar5416GetRegChainOffset(ah, i); 2378 2379 if (pEepData->baseEepHeader.txMask & (1 << i)) { 2380 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 2381 pRawDataset = pEepData->calPierData2G[i]; 2382 } else { 2383 pRawDataset = pEepData->calPierData5G[i]; 2384 } 2385 2386 /* Fetch the gain boundaries and the PDADC values */ 2387 ar5416GetGainBoundariesAndPdadcs(ah, chan, pRawDataset, 2388 pCalBChans, numPiers, 2389 pdGainOverlap_t2, 2390 &tMinCalPower, gainBoundaries, 2391 pdadcValues, numXpdGain); 2392 2393 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) { 2394 ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2, 2395 gainBoundaries); 2396 } 2397 2398 /* Write the power values into the baseband power table */ 2399 ar5416WritePdadcValues(ah, i, pdadcValues); 2400 } 2401 } 2402 *pTxPowerIndexOffset = 0; 2403 2404 return AH_TRUE; 2405 } 2406 2407 /************************************************************** 2408 * ar5416GetGainBoundariesAndPdadcs 2409 * 2410 * Uses the data points read from EEPROM to reconstruct the pdadc power table 2411 * Called by ar5416SetPowerCalTable only. 2412 */ 2413 void 2414 ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah, 2415 const struct ieee80211_channel *chan, 2416 CAL_DATA_PER_FREQ *pRawDataSet, 2417 uint8_t * bChans, uint16_t availPiers, 2418 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries, 2419 uint8_t * pPDADCValues, uint16_t numXpdGains) 2420 { 2421 2422 int i, j, k; 2423 int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */ 2424 uint16_t idxL, idxR, numPiers; /* Pier indexes */ 2425 2426 /* filled out Vpd table for all pdGains (chanL) */ 2427 static uint8_t vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; 2428 2429 /* filled out Vpd table for all pdGains (chanR) */ 2430 static uint8_t vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; 2431 2432 /* filled out Vpd table for all pdGains (interpolated) */ 2433 static uint8_t vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; 2434 2435 uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR; 2436 uint8_t minPwrT4[AR5416_NUM_PD_GAINS]; 2437 uint8_t maxPwrT4[AR5416_NUM_PD_GAINS]; 2438 int16_t vpdStep; 2439 int16_t tmpVal; 2440 uint16_t sizeCurrVpdTable, maxIndex, tgtIndex; 2441 HAL_BOOL match; 2442 int16_t minDelta = 0; 2443 CHAN_CENTERS centers; 2444 2445 ar5416GetChannelCenters(ah, chan, ¢ers); 2446 2447 /* Trim numPiers for the number of populated channel Piers */ 2448 for (numPiers = 0; numPiers < availPiers; numPiers++) { 2449 if (bChans[numPiers] == AR5416_BCHAN_UNUSED) { 2450 break; 2451 } 2452 } 2453 2454 /* Find pier indexes around the current channel */ 2455 match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, 2456 IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR); 2457 2458 if (match) { 2459 /* Directly fill both vpd tables from the matching index */ 2460 for (i = 0; i < numXpdGains; i++) { 2461 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0]; 2462 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4]; 2463 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i], 2464 pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]); 2465 } 2466 } else { 2467 for (i = 0; i < numXpdGains; i++) { 2468 pVpdL = pRawDataSet[idxL].vpdPdg[i]; 2469 pPwrL = pRawDataSet[idxL].pwrPdg[i]; 2470 pVpdR = pRawDataSet[idxR].vpdPdg[i]; 2471 pPwrR = pRawDataSet[idxR].pwrPdg[i]; 2472 2473 /* Start Vpd interpolation from the max of the minimum powers */ 2474 minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]); 2475 2476 /* End Vpd interpolation from the min of the max powers */ 2477 maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]); 2478 HALASSERT(maxPwrT4[i] > minPwrT4[i]); 2479 2480 /* Fill pier Vpds */ 2481 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]); 2482 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]); 2483 2484 /* Interpolate the final vpd */ 2485 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) { 2486 vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center, 2487 IEEE80211_IS_CHAN_2GHZ(chan)), 2488 bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j])); 2489 } 2490 } 2491 } 2492 *pMinCalPower = (int16_t)(minPwrT4[0] / 2); 2493 2494 k = 0; /* index for the final table */ 2495 for (i = 0; i < numXpdGains; i++) { 2496 if (i == (numXpdGains - 1)) { 2497 pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2); 2498 } else { 2499 pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4); 2500 } 2501 2502 pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]); 2503 2504 /* NB: only applies to owl 1.0 */ 2505 if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) { 2506 /* 2507 * fix the gain delta, but get a delta that can be applied to min to 2508 * keep the upper power values accurate, don't think max needs to 2509 * be adjusted because should not be at that area of the table? 2510 */ 2511 minDelta = pPdGainBoundaries[0] - 23; 2512 pPdGainBoundaries[0] = 23; 2513 } 2514 else { 2515 minDelta = 0; 2516 } 2517 2518 /* Find starting index for this pdGain */ 2519 if (i == 0) { 2520 if (AR_SREV_MERLIN_10_OR_LATER(ah)) 2521 ss = (int16_t)(0 - (minPwrT4[i] / 2)); 2522 else 2523 ss = 0; /* for the first pdGain, start from index 0 */ 2524 } else { 2525 /* need overlap entries extrapolated below. */ 2526 ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta); 2527 } 2528 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]); 2529 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); 2530 /* 2531 *-ve ss indicates need to extrapolate data below for this pdGain 2532 */ 2533 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { 2534 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep); 2535 pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal); 2536 ss++; 2537 } 2538 2539 sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1); 2540 tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2)); 2541 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; 2542 2543 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { 2544 pPDADCValues[k++] = vpdTableI[i][ss++]; 2545 } 2546 2547 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]); 2548 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); 2549 /* 2550 * for last gain, pdGainBoundary == Pmax_t2, so will 2551 * have to extrapolate 2552 */ 2553 if (tgtIndex >= maxIndex) { /* need to extrapolate above */ 2554 while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { 2555 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] + 2556 (ss - maxIndex +1) * vpdStep)); 2557 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal); 2558 ss++; 2559 } 2560 } /* extrapolated above */ 2561 } /* for all pdGainUsed */ 2562 2563 /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */ 2564 while (i < AR5416_PD_GAINS_IN_MASK) { 2565 pPdGainBoundaries[i] = pPdGainBoundaries[i-1]; 2566 i++; 2567 } 2568 2569 while (k < AR5416_NUM_PDADC_VALUES) { 2570 pPDADCValues[k] = pPDADCValues[k-1]; 2571 k++; 2572 } 2573 return; 2574 } 2575 2576 /* 2577 * The linux ath9k driver and (from what I've been told) the reference 2578 * Atheros driver enables the 11n PHY by default whether or not it's 2579 * configured. 2580 */ 2581 static void 2582 ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan) 2583 { 2584 uint32_t phymode; 2585 uint32_t enableDacFifo = 0; 2586 HAL_HT_MACMODE macmode; /* MAC - 20/40 mode */ 2587 2588 if (AR_SREV_KITE_10_OR_LATER(ah)) 2589 enableDacFifo = (OS_REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO); 2590 2591 /* Enable 11n HT, 20 MHz */ 2592 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 2593 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo; 2594 2595 /* Configure baseband for dynamic 20/40 operation */ 2596 if (IEEE80211_IS_CHAN_HT40(chan)) { 2597 phymode |= AR_PHY_FC_DYN2040_EN; 2598 2599 /* Configure control (primary) channel at +-10MHz */ 2600 if (IEEE80211_IS_CHAN_HT40U(chan)) 2601 phymode |= AR_PHY_FC_DYN2040_PRI_CH; 2602 #if 0 2603 /* Configure 20/25 spacing */ 2604 if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25) 2605 phymode |= AR_PHY_FC_DYN2040_EXT_CH; 2606 #endif 2607 macmode = HAL_HT_MACMODE_2040; 2608 } else 2609 macmode = HAL_HT_MACMODE_20; 2610 OS_REG_WRITE(ah, AR_PHY_TURBO, phymode); 2611 2612 /* Configure MAC for 20/40 operation */ 2613 ar5416Set11nMac2040(ah, macmode); 2614 2615 /* global transmit timeout (25 TUs default)*/ 2616 /* XXX - put this elsewhere??? */ 2617 OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ; 2618 2619 /* carrier sense timeout */ 2620 OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC); 2621 OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S); 2622 } 2623 2624 void 2625 ar5416GetChannelCenters(struct ath_hal *ah, 2626 const struct ieee80211_channel *chan, CHAN_CENTERS *centers) 2627 { 2628 uint16_t freq = ath_hal_gethwchannel(ah, chan); 2629 2630 centers->ctl_center = freq; 2631 centers->synth_center = freq; 2632 /* 2633 * In 20/40 phy mode, the center frequency is 2634 * "between" the control and extension channels. 2635 */ 2636 if (IEEE80211_IS_CHAN_HT40U(chan)) { 2637 centers->synth_center += HT40_CHANNEL_CENTER_SHIFT; 2638 centers->ext_center = 2639 centers->synth_center + HT40_CHANNEL_CENTER_SHIFT; 2640 } else if (IEEE80211_IS_CHAN_HT40D(chan)) { 2641 centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT; 2642 centers->ext_center = 2643 centers->synth_center - HT40_CHANNEL_CENTER_SHIFT; 2644 } else { 2645 centers->ext_center = freq; 2646 } 2647 } 2648 2649 /* 2650 * Override the INI vals being programmed. 2651 */ 2652 static void 2653 ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *chan) 2654 { 2655 uint32_t val; 2656 2657 /* 2658 * Set the RX_ABORT and RX_DIS and clear if off only after 2659 * RXE is set for MAC. This prevents frames with corrupted 2660 * descriptor status. 2661 */ 2662 OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); 2663 2664 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 2665 val = OS_REG_READ(ah, AR_PCU_MISC_MODE2); 2666 val &= (~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE); 2667 if (!AR_SREV_9271(ah)) 2668 val &= ~AR_PCU_MISC_MODE2_HWWAR1; 2669 2670 if (AR_SREV_KIWI_10_OR_LATER(ah)) 2671 val = val & (~AR_PCU_MISC_MODE2_HWWAR2); 2672 2673 OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, val); 2674 } 2675 2676 /* 2677 * Disable RIFS search on some chips to avoid baseband 2678 * hang issues. 2679 */ 2680 if (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) 2681 (void) ar5416SetRifsDelay(ah, chan, AH_FALSE); 2682 2683 if (!AR_SREV_5416_V20_OR_LATER(ah) || AR_SREV_MERLIN(ah)) 2684 return; 2685 2686 /* 2687 * Disable BB clock gating 2688 * Necessary to avoid issues on AR5416 2.0 2689 */ 2690 OS_REG_WRITE(ah, 0x9800 + (651 << 2), 0x11); 2691 } 2692 2693 struct ini { 2694 uint32_t *data; /* NB: !const */ 2695 int rows, cols; 2696 }; 2697 2698 /* 2699 * Override XPA bias level based on operating frequency. 2700 * This is a v14 EEPROM specific thing for the AR9160. 2701 */ 2702 void 2703 ar5416EepromSetAddac(struct ath_hal *ah, const struct ieee80211_channel *chan) 2704 { 2705 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt]) 2706 MODAL_EEP_HEADER *pModal; 2707 HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom; 2708 struct ar5416eeprom *eep = &ee->ee_base; 2709 uint8_t biaslevel; 2710 2711 if (! AR_SREV_SOWL(ah)) 2712 return; 2713 2714 if (EEP_MINOR(ah) < AR5416_EEP_MINOR_VER_7) 2715 return; 2716 2717 pModal = &(eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]); 2718 2719 if (pModal->xpaBiasLvl != 0xff) 2720 biaslevel = pModal->xpaBiasLvl; 2721 else { 2722 uint16_t resetFreqBin, freqBin, freqCount = 0; 2723 CHAN_CENTERS centers; 2724 2725 ar5416GetChannelCenters(ah, chan, ¢ers); 2726 2727 resetFreqBin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)); 2728 freqBin = XPA_LVL_FREQ(0) & 0xff; 2729 biaslevel = (uint8_t) (XPA_LVL_FREQ(0) >> 14); 2730 2731 freqCount++; 2732 2733 while (freqCount < 3) { 2734 if (XPA_LVL_FREQ(freqCount) == 0x0) 2735 break; 2736 2737 freqBin = XPA_LVL_FREQ(freqCount) & 0xff; 2738 if (resetFreqBin >= freqBin) 2739 biaslevel = (uint8_t)(XPA_LVL_FREQ(freqCount) >> 14); 2740 else 2741 break; 2742 freqCount++; 2743 } 2744 } 2745 2746 HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: overriding XPA bias level = %d\n", 2747 __func__, biaslevel); 2748 2749 /* 2750 * This is a dirty workaround for the const initval data, 2751 * which will upset multiple AR9160's on the same board. 2752 * 2753 * The HAL should likely just have a private copy of the addac 2754 * data per instance. 2755 */ 2756 if (IEEE80211_IS_CHAN_2GHZ(chan)) 2757 HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 7, 1) = 2758 (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3; 2759 else 2760 HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 6, 1) = 2761 (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6; 2762 #undef XPA_LVL_FREQ 2763 } 2764 2765 static void 2766 ar5416MarkPhyInactive(struct ath_hal *ah) 2767 { 2768 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); 2769 } 2770 2771 #define AR5416_IFS_SLOT_FULL_RATE_40 0x168 /* 9 us half, 40 MHz core clock (9*40) */ 2772 #define AR5416_IFS_SLOT_HALF_RATE_40 0x104 /* 13 us half, 20 MHz core clock (13*20) */ 2773 #define AR5416_IFS_SLOT_QUARTER_RATE_40 0xD2 /* 21 us quarter, 10 MHz core clock (21*10) */ 2774 2775 #define AR5416_IFS_EIFS_FULL_RATE_40 0xE60 /* (74 + (2 * 9)) * 40MHz core clock */ 2776 #define AR5416_IFS_EIFS_HALF_RATE_40 0xDAC /* (149 + (2 * 13)) * 20MHz core clock */ 2777 #define AR5416_IFS_EIFS_QUARTER_RATE_40 0xD48 /* (298 + (2 * 21)) * 10MHz core clock */ 2778 2779 #define AR5416_IFS_SLOT_FULL_RATE_44 0x18c /* 9 us half, 44 MHz core clock (9*44) */ 2780 #define AR5416_IFS_SLOT_HALF_RATE_44 0x11e /* 13 us half, 22 MHz core clock (13*22) */ 2781 #define AR5416_IFS_SLOT_QUARTER_RATE_44 0xe7 /* 21 us quarter, 11 MHz core clock (21*11) */ 2782 2783 #define AR5416_IFS_EIFS_FULL_RATE_44 0xfd0 /* (74 + (2 * 9)) * 44MHz core clock */ 2784 #define AR5416_IFS_EIFS_HALF_RATE_44 0xf0a /* (149 + (2 * 13)) * 22MHz core clock */ 2785 #define AR5416_IFS_EIFS_QUARTER_RATE_44 0xe9c /* (298 + (2 * 21)) * 11MHz core clock */ 2786 2787 #define AR5416_INIT_USEC_40 40 2788 #define AR5416_HALF_RATE_USEC_40 19 /* ((40 / 2) - 1 ) */ 2789 #define AR5416_QUARTER_RATE_USEC_40 9 /* ((40 / 4) - 1 ) */ 2790 2791 #define AR5416_INIT_USEC_44 44 2792 #define AR5416_HALF_RATE_USEC_44 21 /* ((44 / 2) - 1 ) */ 2793 #define AR5416_QUARTER_RATE_USEC_44 10 /* ((44 / 4) - 1 ) */ 2794 2795 2796 /* XXX What should these be for 40/44MHz clocks (and half/quarter) ? */ 2797 #define AR5416_RX_NON_FULL_RATE_LATENCY 63 2798 #define AR5416_TX_HALF_RATE_LATENCY 108 2799 #define AR5416_TX_QUARTER_RATE_LATENCY 216 2800 2801 /* 2802 * Adjust various register settings based on half/quarter rate clock setting. 2803 * This includes: 2804 * 2805 * + USEC, TX/RX latency, 2806 * + IFS params: slot, eifs, misc etc. 2807 * 2808 * TODO: 2809 * 2810 * + Verify which other registers need to be tweaked; 2811 * + Verify the behaviour of this for 5GHz fast and non-fast clock mode; 2812 * + This just plain won't work for long distance links - the coverage class 2813 * code isn't aware of the slot/ifs/ACK/RTS timeout values that need to 2814 * change; 2815 * + Verify whether the 32KHz USEC value needs to be kept for the 802.11n 2816 * series chips? 2817 * + Calculate/derive values for 2GHz, 5GHz, 5GHz fast clock 2818 */ 2819 static void 2820 ar5416SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan) 2821 { 2822 uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec; 2823 int clk_44 = 0; 2824 2825 HALASSERT(IEEE80211_IS_CHAN_HALF(chan) || 2826 IEEE80211_IS_CHAN_QUARTER(chan)); 2827 2828 /* 2GHz and 5GHz fast clock - 44MHz; else 40MHz */ 2829 if (IEEE80211_IS_CHAN_2GHZ(chan)) 2830 clk_44 = 1; 2831 else if (IEEE80211_IS_CHAN_5GHZ(chan) && 2832 IS_5GHZ_FAST_CLOCK_EN(ah, chan)) 2833 clk_44 = 1; 2834 2835 /* XXX does this need save/restoring for the 11n chips? */ 2836 /* 2837 * XXX TODO: should mask out the txlat/rxlat/usec values? 2838 */ 2839 refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32; 2840 2841 /* 2842 * XXX This really should calculate things, not use 2843 * hard coded values! Ew. 2844 */ 2845 if (IEEE80211_IS_CHAN_HALF(chan)) { 2846 if (clk_44) { 2847 slot = AR5416_IFS_SLOT_HALF_RATE_44; 2848 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << 2849 AR5416_USEC_RX_LAT_S; 2850 txLat = AR5416_TX_HALF_RATE_LATENCY << 2851 AR5416_USEC_TX_LAT_S; 2852 usec = AR5416_HALF_RATE_USEC_44; 2853 eifs = AR5416_IFS_EIFS_HALF_RATE_44; 2854 init_usec = AR5416_INIT_USEC_44 >> 1; 2855 } else { 2856 slot = AR5416_IFS_SLOT_HALF_RATE_40; 2857 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << 2858 AR5416_USEC_RX_LAT_S; 2859 txLat = AR5416_TX_HALF_RATE_LATENCY << 2860 AR5416_USEC_TX_LAT_S; 2861 usec = AR5416_HALF_RATE_USEC_40; 2862 eifs = AR5416_IFS_EIFS_HALF_RATE_40; 2863 init_usec = AR5416_INIT_USEC_40 >> 1; 2864 } 2865 } else { /* quarter rate */ 2866 if (clk_44) { 2867 slot = AR5416_IFS_SLOT_QUARTER_RATE_44; 2868 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << 2869 AR5416_USEC_RX_LAT_S; 2870 txLat = AR5416_TX_QUARTER_RATE_LATENCY << 2871 AR5416_USEC_TX_LAT_S; 2872 usec = AR5416_QUARTER_RATE_USEC_44; 2873 eifs = AR5416_IFS_EIFS_QUARTER_RATE_44; 2874 init_usec = AR5416_INIT_USEC_44 >> 2; 2875 } else { 2876 slot = AR5416_IFS_SLOT_QUARTER_RATE_40; 2877 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << 2878 AR5416_USEC_RX_LAT_S; 2879 txLat = AR5416_TX_QUARTER_RATE_LATENCY << 2880 AR5416_USEC_TX_LAT_S; 2881 usec = AR5416_QUARTER_RATE_USEC_40; 2882 eifs = AR5416_IFS_EIFS_QUARTER_RATE_40; 2883 init_usec = AR5416_INIT_USEC_40 >> 2; 2884 } 2885 } 2886 2887 /* XXX verify these! */ 2888 OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat)); 2889 OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot); 2890 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs); 2891 OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC, 2892 AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec); 2893 } 2894 2895