xref: /freebsd/sys/dev/ath/ath_hal/ar5416/ar5416_reset.c (revision 2e1417489338b971e5fd599ff48b5f65df9e8d3b)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 #include "ah_devid.h"
24 
25 #include "ah_eeprom_v14.h"
26 
27 #include "ar5416/ar5416.h"
28 #include "ar5416/ar5416reg.h"
29 #include "ar5416/ar5416phy.h"
30 
31 /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
32 #define	EEP_MINOR(_ah) \
33 	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
34 #define IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
35 #define IS_EEP_MINOR_V3(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
36 
37 /* Additional Time delay to wait after activiting the Base band */
38 #define BASE_ACTIVATE_DELAY	100	/* 100 usec */
39 #define PLL_SETTLE_DELAY	300	/* 300 usec */
40 #define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
41 
42 static void ar5416InitDMA(struct ath_hal *ah);
43 static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *);
44 static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
45 static void ar5416InitQoS(struct ath_hal *ah);
46 static void ar5416InitUserSettings(struct ath_hal *ah);
47 static void ar5416UpdateChainMasks(struct ath_hal *ah, HAL_BOOL is_ht);
48 static void ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *);
49 
50 #if 0
51 static HAL_BOOL	ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *);
52 #endif
53 static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *);
54 
55 static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
56 static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
57 static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
58 	struct ar5416eeprom *pEepData,
59 	const struct ieee80211_channel *chan, int16_t *ratesArray,
60 	uint16_t cfgCtl, uint16_t AntennaReduction,
61 	uint16_t twiceMaxRegulatoryPower,
62 	uint16_t powerLimit);
63 static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan);
64 static void ar5416MarkPhyInactive(struct ath_hal *ah);
65 
66 /*
67  * Places the device in and out of reset and then places sane
68  * values in the registers based on EEPROM config, initialization
69  * vectors (as determined by the mode), and station configuration
70  *
71  * bChannelChange is used to preserve DMA/PCU registers across
72  * a HW Reset during channel change.
73  */
74 HAL_BOOL
75 ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
76 	struct ieee80211_channel *chan,
77 	HAL_BOOL bChannelChange, HAL_STATUS *status)
78 {
79 #define	N(a)	(sizeof (a) / sizeof (a[0]))
80 #define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
81 	struct ath_hal_5212 *ahp = AH5212(ah);
82 	HAL_CHANNEL_INTERNAL *ichan;
83 	uint32_t saveDefAntenna, saveLedState;
84 	uint32_t macStaId1;
85 	uint16_t rfXpdGain[2];
86 	HAL_STATUS ecode;
87 	uint32_t powerVal, rssiThrReg;
88 	uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
89 	int i;
90 	uint64_t tsf = 0;
91 
92 	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
93 
94 	/* Bring out of sleep mode */
95 	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
96 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
97 		    __func__);
98 		FAIL(HAL_EIO);
99 	}
100 
101 	/*
102 	 * Map public channel to private.
103 	 */
104 	ichan = ath_hal_checkchannel(ah, chan);
105 	if (ichan == AH_NULL)
106 		FAIL(HAL_EINVAL);
107 	switch (opmode) {
108 	case HAL_M_STA:
109 	case HAL_M_IBSS:
110 	case HAL_M_HOSTAP:
111 	case HAL_M_MONITOR:
112 		break;
113 	default:
114 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
115 		    __func__, opmode);
116 		FAIL(HAL_EINVAL);
117 		break;
118 	}
119 	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
120 
121 	/* XXX Turn on fast channel change for 5416 */
122 	/*
123 	 * Preserve the bmiss rssi threshold and count threshold
124 	 * across resets
125 	 */
126 	rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
127 	/* If reg is zero, first time thru set to default val */
128 	if (rssiThrReg == 0)
129 		rssiThrReg = INIT_RSSI_THR;
130 
131 	/*
132 	 * Preserve the antenna on a channel change
133 	 */
134 	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
135 	if (saveDefAntenna == 0)		/* XXX magic constants */
136 		saveDefAntenna = 1;
137 
138 	/* Save hardware flag before chip reset clears the register */
139 	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
140 		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
141 
142 	/* Save led state from pci config register */
143 	saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
144 		(AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
145 		 AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
146 
147 	/* For chips on which the RTC reset is done, save TSF before it gets cleared */
148 	if (AR_SREV_HOWL(ah) ||
149 	    (AR_SREV_MERLIN(ah) &&
150 	     ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) ||
151 	    (ah->ah_config.ah_force_full_reset))
152 		tsf = ar5416GetTsf64(ah);
153 
154 	/* Mark PHY as inactive; marked active in ar5416InitBB() */
155 	ar5416MarkPhyInactive(ah);
156 
157 	if (!ar5416ChipReset(ah, chan)) {
158 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
159 		FAIL(HAL_EIO);
160 	}
161 
162 	/* Restore TSF */
163 	if (tsf)
164 		ar5416SetTsf64(ah, tsf);
165 
166 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
167 	if (AR_SREV_MERLIN_10_OR_LATER(ah))
168 		OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
169 
170 	AH5416(ah)->ah_writeIni(ah, chan);
171 
172 	if(AR_SREV_KIWI_13_OR_LATER(ah) ) {
173 		/* Enable ASYNC FIFO */
174 		OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
175 		    AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
176 		OS_REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
177 		OS_REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
178 		    AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
179 		OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
180 		    AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
181 	}
182 
183 	/* Override ini values (that can be overriden in this fashion) */
184 	ar5416OverrideIni(ah, chan);
185 
186 	/* Setup 11n MAC/Phy mode registers */
187 	ar5416Set11nRegs(ah, chan);
188 
189 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
190 
191 	/*
192 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
193 	 * right after the chip reset. When that happens, write a new
194 	 * value after the initvals have been applied, with an offset
195 	 * based on measured time difference
196 	 */
197 	if (AR_SREV_HOWL(ah) && (ar5416GetTsf64(ah) < tsf)) {
198 		tsf += 1500;
199 		ar5416SetTsf64(ah, tsf);
200 	}
201 
202 	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
203 		__func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
204 	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
205 		__func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
206 
207 	/*
208 	 * Setup ah_tx_chainmask / ah_rx_chainmask before we fiddle
209 	 * with enabling the TX/RX radio chains.
210 	 */
211 	ar5416UpdateChainMasks(ah, IEEE80211_IS_CHAN_HT(chan));
212 	/*
213 	 * This routine swaps the analog chains - it should be done
214 	 * before any radio register twiddling is done.
215 	 */
216 	ar5416InitChainMasks(ah);
217 
218 	/* Setup the open-loop power calibration if required */
219 	if (ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
220 		AH5416(ah)->ah_olcInit(ah);
221 		AH5416(ah)->ah_olcTempCompensation(ah);
222 	}
223 
224 	/* Setup the transmit power values. */
225 	if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
226 		HALDEBUG(ah, HAL_DEBUG_ANY,
227 		    "%s: error init'ing transmit power\n", __func__);
228 		FAIL(HAL_EIO);
229 	}
230 
231 	/* Write the analog registers */
232 	if (!ahp->ah_rfHal->setRfRegs(ah, chan,
233 	    IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) {
234 		HALDEBUG(ah, HAL_DEBUG_ANY,
235 		    "%s: ar5212SetRfRegs failed\n", __func__);
236 		FAIL(HAL_EIO);
237 	}
238 
239 	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
240 	if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan))
241 		ar5416SetDeltaSlope(ah, chan);
242 
243 	AH5416(ah)->ah_spurMitigate(ah, chan);
244 
245 	/* Setup board specific options for EEPROM version 3 */
246 	if (!ah->ah_setBoardValues(ah, chan)) {
247 		HALDEBUG(ah, HAL_DEBUG_ANY,
248 		    "%s: error setting board options\n", __func__);
249 		FAIL(HAL_EIO);
250 	}
251 
252 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
253 
254 	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
255 	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
256 		| macStaId1
257 		| AR_STA_ID1_RTS_USE_DEF
258 		| ahp->ah_staId1Defaults
259 	);
260 	ar5212SetOperatingMode(ah, opmode);
261 
262 	/* Set Venice BSSID mask according to current state */
263 	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
264 	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
265 
266 	/* Restore previous led state */
267 	if (AR_SREV_HOWL(ah))
268 		OS_REG_WRITE(ah, AR_MAC_LED,
269 		    AR_MAC_LED_ASSOC_ACTIVE | AR_CFG_SCLK_32KHZ);
270 	else
271 		OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) |
272 		    saveLedState);
273 
274         /* Start TSF2 for generic timer 8-15 */
275 #ifdef	NOTYET
276 	if (AR_SREV_KIWI(ah))
277 		ar5416StartTsf2(ah);
278 #endif
279 
280 	/* Restore previous antenna */
281 	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
282 
283 	/* then our BSSID and associate id */
284 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
285 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
286 	    (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S);
287 
288 	/* Restore bmiss rssi & count thresholds */
289 	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
290 
291 	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
292 
293 	/* Restore bmiss rssi & count thresholds */
294 	OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
295 
296 	if (!ar5212SetChannel(ah, chan))
297 		FAIL(HAL_EIO);
298 
299 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
300 
301 	/* Set 1:1 QCU to DCU mapping for all queues */
302 	for (i = 0; i < AR_NUM_DCU; i++)
303 		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
304 
305 	ahp->ah_intrTxqs = 0;
306 	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
307 		ah->ah_resetTxQueue(ah, i);
308 
309 	ar5416InitIMR(ah, opmode);
310 	ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
311 	ar5416InitQoS(ah);
312 	/* This may override the AR_DIAG_SW register */
313 	ar5416InitUserSettings(ah);
314 
315 	if (AR_SREV_KIWI_13_OR_LATER(ah)) {
316 		/*
317 		 * Enable ASYNC FIFO
318 		 *
319 		 * If Async FIFO is enabled, the following counters change
320 		 * as MAC now runs at 117 Mhz instead of 88/44MHz when
321 		 * async FIFO is disabled.
322 		 *
323 		 * Overwrite the delay/timeouts initialized in ProcessIni()
324 		 * above.
325 		 */
326 		OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
327 		    AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
328 		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
329 		    AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
330 		OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
331 		    AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
332 
333 		OS_REG_WRITE(ah, AR_TIME_OUT,
334 		    AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
335 		OS_REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
336 
337 		OS_REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
338 		    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
339 		OS_REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
340 		    AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
341 	}
342 
343 	if (AR_SREV_KIWI_13_OR_LATER(ah)) {
344 		/* Enable AGGWEP to accelerate encryption engine */
345 		OS_REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
346 		    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
347 	}
348 
349 
350 	/*
351 	 * disable seq number generation in hw
352 	 */
353 	 OS_REG_WRITE(ah, AR_STA_ID1,
354 	     OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
355 
356 	ar5416InitDMA(ah);
357 
358 	/*
359 	 * program OBS bus to see MAC interrupts
360 	 */
361 	OS_REG_WRITE(ah, AR_OBS, 8);
362 
363 	/*
364 	 * Disable the "general" TX/RX mitigation timers.
365 	 */
366 	OS_REG_WRITE(ah, AR_MIRT, 0);
367 
368 #ifdef	AH_AR5416_INTERRUPT_MITIGATION
369 	/*
370 	 * This initialises the RX interrupt mitigation timers.
371 	 *
372 	 * The mitigation timers begin at idle and are triggered
373 	 * upon the RXOK of a single frame (or sub-frame, for A-MPDU.)
374 	 * Then, the RX mitigation interrupt will fire:
375 	 *
376 	 * + 250uS after the last RX'ed frame, or
377 	 * + 700uS after the first RX'ed frame
378 	 *
379 	 * Thus, the LAST field dictates the extra latency
380 	 * induced by the RX mitigation method and the FIRST
381 	 * field dictates how long to delay before firing an
382 	 * RX mitigation interrupt.
383 	 *
384 	 * Please note this only seems to be for RXOK frames;
385 	 * not CRC or PHY error frames.
386 	 *
387 	 */
388 	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 250);
389 	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 700);
390 #endif
391 	ar5416InitBB(ah, chan);
392 
393 	/* Setup compression registers */
394 	ar5212SetCompRegs(ah);		/* XXX not needed? */
395 
396 	/*
397 	 * 5416 baseband will check the per rate power table
398 	 * and select the lower of the two
399 	 */
400 	ackTpcPow = 63;
401 	ctsTpcPow = 63;
402 	chirpTpcPow = 63;
403 	powerVal = SM(ackTpcPow, AR_TPC_ACK) |
404 		SM(ctsTpcPow, AR_TPC_CTS) |
405 		SM(chirpTpcPow, AR_TPC_CHIRP);
406 	OS_REG_WRITE(ah, AR_TPC, powerVal);
407 
408 	if (!ar5416InitCal(ah, chan))
409 		FAIL(HAL_ESELFTEST);
410 
411 	ar5416RestoreChainMask(ah);
412 
413 	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
414 
415 	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
416 		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
417 
418 	if (AR_SREV_HOWL(ah)) {
419 		/*
420 		 * Enable the MBSSID block-ack fix for HOWL.
421 		 * This feature is only supported on Howl 1.4, but it is safe to
422 		 * set bit 22 of STA_ID1 on other Howl revisions (1.1, 1.2, 1.3),
423 		 * since bit 22 is unused in those Howl revisions.
424 		 */
425 		unsigned int reg;
426 		reg = (OS_REG_READ(ah, AR_STA_ID1) | (1<<22));
427 		OS_REG_WRITE(ah,AR_STA_ID1, reg);
428 		ath_hal_printf(ah, "MBSSID Set bit 22 of AR_STA_ID 0x%x\n", reg);
429 	}
430 
431 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
432 
433 	OS_MARK(ah, AH_MARK_RESET_DONE, 0);
434 
435 	return AH_TRUE;
436 bad:
437 	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
438 	if (status != AH_NULL)
439 		*status = ecode;
440 	return AH_FALSE;
441 #undef FAIL
442 #undef N
443 }
444 
445 #if 0
446 /*
447  * This channel change evaluates whether the selected hardware can
448  * perform a synthesizer-only channel change (no reset).  If the
449  * TX is not stopped, or the RFBus cannot be granted in the given
450  * time, the function returns false as a reset is necessary
451  */
452 HAL_BOOL
453 ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan)
454 {
455 	uint32_t       ulCount;
456 	uint32_t   data, synthDelay, qnum;
457 	uint16_t   rfXpdGain[4];
458 	struct ath_hal_5212 *ahp = AH5212(ah);
459 	HAL_CHANNEL_INTERNAL *ichan;
460 
461 	/*
462 	 * Map public channel to private.
463 	 */
464 	ichan = ath_hal_checkchannel(ah, chan);
465 
466 	/* TX must be stopped or RF Bus grant will not work */
467 	for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
468 		if (ar5212NumTxPending(ah, qnum)) {
469 			HALDEBUG(ah, HAL_DEBUG_ANY,
470 			    "%s: frames pending on queue %d\n", __func__, qnum);
471 			return AH_FALSE;
472 		}
473 	}
474 
475 	/*
476 	 * Kill last Baseband Rx Frame - Request analog bus grant
477 	 */
478 	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
479 	if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
480 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
481 		    __func__);
482 		return AH_FALSE;
483 	}
484 
485 	ar5416Set11nRegs(ah, chan);	/* NB: setup 5416-specific regs */
486 
487 	/* Change the synth */
488 	if (!ar5212SetChannel(ah, chan))
489 		return AH_FALSE;
490 
491 	/* Setup the transmit power values. */
492 	if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
493 		HALDEBUG(ah, HAL_DEBUG_ANY,
494 		    "%s: error init'ing transmit power\n", __func__);
495 		return AH_FALSE;
496 	}
497 
498 	/*
499 	 * Wait for the frequency synth to settle (synth goes on
500 	 * via PHY_ACTIVE_EN).  Read the phy active delay register.
501 	 * Value is in 100ns increments.
502 	 */
503 	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
504 	if (IS_CHAN_CCK(ichan)) {
505 		synthDelay = (4 * data) / 22;
506 	} else {
507 		synthDelay = data / 10;
508 	}
509 
510 	OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
511 
512 	/* Release the RFBus Grant */
513 	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
514 
515 	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
516 	if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) {
517 		HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3);
518 		ar5212SetSpurMitigation(ah, chan);
519 		ar5416SetDeltaSlope(ah, chan);
520 	}
521 
522 	/* XXX spur mitigation for Melin */
523 
524 	if (!IEEE80211_IS_CHAN_DFS(chan))
525 		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
526 
527 	ichan->channel_time = 0;
528 	ichan->tsf_last = ar5416GetTsf64(ah);
529 	ar5212TxEnable(ah, AH_TRUE);
530 	return AH_TRUE;
531 }
532 #endif
533 
534 static void
535 ar5416InitDMA(struct ath_hal *ah)
536 {
537 	struct ath_hal_5212 *ahp = AH5212(ah);
538 
539 	/*
540 	 * set AHB_MODE not to do cacheline prefetches
541 	 */
542 	OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
543 
544 	/*
545 	 * let mac dma reads be in 128 byte chunks
546 	 */
547 	OS_REG_WRITE(ah, AR_TXCFG,
548 		(OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
549 
550 	/*
551 	 * let mac dma writes be in 128 byte chunks
552 	 */
553 	OS_REG_WRITE(ah, AR_RXCFG,
554 		(OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
555 
556 	/* restore TX trigger level */
557 	OS_REG_WRITE(ah, AR_TXCFG,
558 		(OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) |
559 		    SM(ahp->ah_txTrigLev, AR_FTRIG));
560 
561 	/*
562 	 * Setup receive FIFO threshold to hold off TX activities
563 	 */
564 	OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
565 
566 	/*
567 	 * reduce the number of usable entries in PCU TXBUF to avoid
568 	 * wrap around.
569 	 */
570 	if (AR_SREV_KITE(ah))
571 		/*
572 		 * For AR9285 the number of Fifos are reduced to half.
573 		 * So set the usable tx buf size also to half to
574 		 * avoid data/delimiter underruns
575 		 */
576 		OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
577 	else
578 		OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
579 }
580 
581 static void
582 ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan)
583 {
584 	uint32_t synthDelay;
585 
586 	/*
587 	 * Wait for the frequency synth to settle (synth goes on
588 	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
589 	 * Value is in 100ns increments.
590 	  */
591 	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
592 	if (IEEE80211_IS_CHAN_CCK(chan)) {
593 		synthDelay = (4 * synthDelay) / 22;
594 	} else {
595 		synthDelay /= 10;
596 	}
597 
598 	/* Turn on PLL on 5416 */
599 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
600 	    __func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
601 
602 	/* Activate the PHY (includes baseband activate and synthesizer on) */
603 	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
604 
605 	/*
606 	 * If the AP starts the calibration before the base band timeout
607 	 * completes  we could get rx_clear false triggering.  Add an
608 	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
609 	 * does not happen.
610 	 */
611 	if (IEEE80211_IS_CHAN_HALF(chan)) {
612 		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
613 	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
614 		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
615 	} else {
616 		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
617 	}
618 }
619 
620 static void
621 ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
622 {
623 	struct ath_hal_5212 *ahp = AH5212(ah);
624 
625 	/*
626 	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
627 	 * manipulates the secondary IMR's as queues are enabled
628 	 * and disabled.  This is done with RMW ops to insure the
629 	 * settings we make here are preserved.
630 	 */
631         ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
632 			| AR_IMR_RXERR | AR_IMR_RXORN
633                         | AR_IMR_BCNMISC;
634 
635 #ifdef	AH_AR5416_INTERRUPT_MITIGATION
636 	ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
637 #else
638 	ahp->ah_maskReg |= AR_IMR_RXOK;
639 #endif
640 	ahp->ah_maskReg |= AR_IMR_TXOK;
641 
642 	if (opmode == HAL_M_HOSTAP)
643 		ahp->ah_maskReg |= AR_IMR_MIB;
644 	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
645 
646 #ifdef  ADRIAN_NOTYET
647 	/* This is straight from ath9k */
648 	if (! AR_SREV_HOWL(ah)) {
649 		OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
650 		OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
651 		OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
652 	}
653 #endif
654 
655 	/* Enable bus errors that are OR'd to set the HIUERR bit */
656 #if 0
657 	OS_REG_WRITE(ah, AR_IMR_S2,
658 	    	OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
659 #endif
660 }
661 
662 static void
663 ar5416InitQoS(struct ath_hal *ah)
664 {
665 	/* QoS support */
666 	OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
667 	OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
668 
669 	/* Turn on NOACK Support for QoS packets */
670 	OS_REG_WRITE(ah, AR_NOACK,
671 		SM(2, AR_NOACK_2BIT_VALUE) |
672 		SM(5, AR_NOACK_BIT_OFFSET) |
673 		SM(0, AR_NOACK_BYTE_OFFSET));
674 
675     	/*
676     	 * initialize TXOP for all TIDs
677     	 */
678 	OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
679 	OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
680 	OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
681 	OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
682 	OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
683 }
684 
685 static void
686 ar5416InitUserSettings(struct ath_hal *ah)
687 {
688 	struct ath_hal_5212 *ahp = AH5212(ah);
689 
690 	/* Restore user-specified settings */
691 	if (ahp->ah_miscMode != 0)
692 		OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) | ahp->ah_miscMode);
693 	if (ahp->ah_sifstime != (u_int) -1)
694 		ar5212SetSifsTime(ah, ahp->ah_sifstime);
695 	if (ahp->ah_slottime != (u_int) -1)
696 		ar5212SetSlotTime(ah, ahp->ah_slottime);
697 	if (ahp->ah_acktimeout != (u_int) -1)
698 		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
699 	if (ahp->ah_ctstimeout != (u_int) -1)
700 		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
701 	if (AH_PRIVATE(ah)->ah_diagreg != 0)
702 		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
703 	if (AH5416(ah)->ah_globaltxtimeout != (u_int) -1)
704         	ar5416SetGlobalTxTimeout(ah, AH5416(ah)->ah_globaltxtimeout);
705 }
706 
707 static void
708 ar5416SetRfMode(struct ath_hal *ah, const struct ieee80211_channel *chan)
709 {
710 	uint32_t rfMode;
711 
712 	if (chan == AH_NULL)
713 		return;
714 
715 	/* treat channel B as channel G , no  B mode suport in owl */
716 	rfMode = IEEE80211_IS_CHAN_CCK(chan) ?
717 	    AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
718 
719 	if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
720 		/* phy mode bits for 5GHz channels require Fast Clock */
721 		rfMode |= AR_PHY_MODE_DYNAMIC
722 		       |  AR_PHY_MODE_DYN_CCK_DISABLE;
723 	} else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
724 		rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ?
725 			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
726 	}
727 
728 	/*
729 	 * Set half/quarter mode flags if required.
730 	 *
731 	 * This doesn't change the IFS timings at all; that needs to
732 	 * be done as part of the MAC setup.  Similarly, the PLL
733 	 * configuration also needs some changes for the half/quarter
734 	 * rate clock.
735 	 */
736 	if (IEEE80211_IS_CHAN_HALF(chan))
737 		rfMode |= AR_PHY_MODE_HALF;
738 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
739 		rfMode |= AR_PHY_MODE_QUARTER;
740 
741 	OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
742 }
743 
744 /*
745  * Places the hardware into reset and then pulls it out of reset
746  */
747 HAL_BOOL
748 ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
749 {
750 	OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
751 	/*
752 	 * Warm reset is optimistic for open-loop TX power control.
753 	 */
754 	if (AR_SREV_MERLIN(ah) &&
755 	    ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
756 		if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
757 			return AH_FALSE;
758 	} else if (ah->ah_config.ah_force_full_reset) {
759 		if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
760 			return AH_FALSE;
761 	} else {
762 		if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
763 			return AH_FALSE;
764 	}
765 
766 	/* Bring out of sleep mode (AGAIN) */
767 	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
768 	       return AH_FALSE;
769 
770 #ifdef notyet
771 	ahp->ah_chipFullSleep = AH_FALSE;
772 #endif
773 
774 	AH5416(ah)->ah_initPLL(ah, chan);
775 
776 	/*
777 	 * Perform warm reset before the mode/PLL/turbo registers
778 	 * are changed in order to deactivate the radio.  Mode changes
779 	 * with an active radio can result in corrupted shifts to the
780 	 * radio device.
781 	 */
782 	ar5416SetRfMode(ah, chan);
783 
784 	return AH_TRUE;
785 }
786 
787 /*
788  * Delta slope coefficient computation.
789  * Required for OFDM operation.
790  */
791 static void
792 ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
793                           uint32_t *coef_mantissa, uint32_t *coef_exponent)
794 {
795 #define COEF_SCALE_S 24
796     uint32_t coef_exp, coef_man;
797     /*
798      * ALGO -> coef_exp = 14-floor(log2(coef));
799      * floor(log2(x)) is the highest set bit position
800      */
801     for (coef_exp = 31; coef_exp > 0; coef_exp--)
802             if ((coef_scaled >> coef_exp) & 0x1)
803                     break;
804     /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
805     HALASSERT(coef_exp);
806     coef_exp = 14 - (coef_exp - COEF_SCALE_S);
807 
808     /*
809      * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
810      * The coefficient is already shifted up for scaling
811      */
812     coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
813 
814     *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
815     *coef_exponent = coef_exp - 16;
816 
817 #undef COEF_SCALE_S
818 }
819 
820 void
821 ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
822 {
823 #define INIT_CLOCKMHZSCALED	0x64000000
824 	uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
825 	uint32_t clockMhzScaled;
826 
827 	CHAN_CENTERS centers;
828 
829 	/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
830 	/* scale for selected channel bandwidth */
831 	clockMhzScaled = INIT_CLOCKMHZSCALED;
832 	if (IEEE80211_IS_CHAN_TURBO(chan))
833 		clockMhzScaled <<= 1;
834 	else if (IEEE80211_IS_CHAN_HALF(chan))
835 		clockMhzScaled >>= 1;
836 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
837 		clockMhzScaled >>= 2;
838 
839 	/*
840 	 * ALGO -> coef = 1e8/fcarrier*fclock/40;
841 	 * scaled coef to provide precision for this floating calculation
842 	 */
843 	ar5416GetChannelCenters(ah, chan, &centers);
844 	coef_scaled = clockMhzScaled / centers.synth_center;
845 
846  	ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
847 
848 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
849 		AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
850 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
851 		AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
852 
853         /*
854          * For Short GI,
855          * scaled coeff is 9/10 that of normal coeff
856          */
857         coef_scaled = (9 * coef_scaled)/10;
858 
859         ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
860 
861         /* for short gi */
862         OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
863                 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
864         OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
865                 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
866 #undef INIT_CLOCKMHZSCALED
867 }
868 
869 /*
870  * Set a limit on the overall output power.  Used for dynamic
871  * transmit power control and the like.
872  *
873  * NB: limit is in units of 0.5 dbM.
874  */
875 HAL_BOOL
876 ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
877 {
878 	uint16_t dummyXpdGains[2];
879 
880 	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
881 	return ah->ah_setTxPower(ah, AH_PRIVATE(ah)->ah_curchan,
882 			dummyXpdGains);
883 }
884 
885 HAL_BOOL
886 ar5416GetChipPowerLimits(struct ath_hal *ah,
887 	struct ieee80211_channel *chan)
888 {
889 	struct ath_hal_5212 *ahp = AH5212(ah);
890 	int16_t minPower, maxPower;
891 
892 	/*
893 	 * Get Pier table max and min powers.
894 	 */
895 	if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
896 		/* NB: rf code returns 1/4 dBm units, convert */
897 		chan->ic_maxpower = maxPower / 2;
898 		chan->ic_minpower = minPower / 2;
899 	} else {
900 		HALDEBUG(ah, HAL_DEBUG_ANY,
901 		    "%s: no min/max power for %u/0x%x\n",
902 		    __func__, chan->ic_freq, chan->ic_flags);
903 		chan->ic_maxpower = AR5416_MAX_RATE_POWER;
904 		chan->ic_minpower = 0;
905 	}
906 	HALDEBUG(ah, HAL_DEBUG_RESET,
907 	    "Chan %d: MaxPow = %d MinPow = %d\n",
908 	    chan->ic_freq, chan->ic_maxpower, chan->ic_minpower);
909 	return AH_TRUE;
910 }
911 
912 /**************************************************************
913  * ar5416WriteTxPowerRateRegisters
914  *
915  * Write the TX power rate registers from the raw values given
916  * in ratesArray[].
917  *
918  * The CCK and HT40 rate registers are only written if needed.
919  * HT20 and 11g/11a OFDM rate registers are always written.
920  *
921  * The values written are raw values which should be written
922  * to the registers - so it's up to the caller to pre-adjust
923  * them (eg CCK power offset value, or Merlin TX power offset,
924  * etc.)
925  */
926 void
927 ar5416WriteTxPowerRateRegisters(struct ath_hal *ah,
928     const struct ieee80211_channel *chan, const int16_t ratesArray[])
929 {
930 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
931 
932     /* Write the OFDM power per rate set */
933     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
934         POW_SM(ratesArray[rate18mb], 24)
935           | POW_SM(ratesArray[rate12mb], 16)
936           | POW_SM(ratesArray[rate9mb], 8)
937           | POW_SM(ratesArray[rate6mb], 0)
938     );
939     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
940         POW_SM(ratesArray[rate54mb], 24)
941           | POW_SM(ratesArray[rate48mb], 16)
942           | POW_SM(ratesArray[rate36mb], 8)
943           | POW_SM(ratesArray[rate24mb], 0)
944     );
945 
946     if (IEEE80211_IS_CHAN_2GHZ(chan)) {
947         /* Write the CCK power per rate set */
948         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
949             POW_SM(ratesArray[rate2s], 24)
950               | POW_SM(ratesArray[rate2l],  16)
951               | POW_SM(ratesArray[rateXr],  8) /* XR target power */
952               | POW_SM(ratesArray[rate1l],   0)
953         );
954         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
955             POW_SM(ratesArray[rate11s], 24)
956               | POW_SM(ratesArray[rate11l], 16)
957               | POW_SM(ratesArray[rate5_5s], 8)
958               | POW_SM(ratesArray[rate5_5l], 0)
959         );
960     HALDEBUG(ah, HAL_DEBUG_RESET,
961 	"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
962 	    __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
963 	    OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
964     }
965 
966     /* Write the HT20 power per rate set */
967     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
968         POW_SM(ratesArray[rateHt20_3], 24)
969           | POW_SM(ratesArray[rateHt20_2], 16)
970           | POW_SM(ratesArray[rateHt20_1], 8)
971           | POW_SM(ratesArray[rateHt20_0], 0)
972     );
973     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
974         POW_SM(ratesArray[rateHt20_7], 24)
975           | POW_SM(ratesArray[rateHt20_6], 16)
976           | POW_SM(ratesArray[rateHt20_5], 8)
977           | POW_SM(ratesArray[rateHt20_4], 0)
978     );
979 
980     if (IEEE80211_IS_CHAN_HT40(chan)) {
981         /* Write the HT40 power per rate set */
982         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
983             POW_SM(ratesArray[rateHt40_3], 24)
984               | POW_SM(ratesArray[rateHt40_2], 16)
985               | POW_SM(ratesArray[rateHt40_1], 8)
986               | POW_SM(ratesArray[rateHt40_0], 0)
987         );
988         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
989             POW_SM(ratesArray[rateHt40_7], 24)
990               | POW_SM(ratesArray[rateHt40_6], 16)
991               | POW_SM(ratesArray[rateHt40_5], 8)
992               | POW_SM(ratesArray[rateHt40_4], 0)
993         );
994         /* Write the Dup/Ext 40 power per rate set */
995         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
996             POW_SM(ratesArray[rateExtOfdm], 24)
997               | POW_SM(ratesArray[rateExtCck], 16)
998               | POW_SM(ratesArray[rateDupOfdm], 8)
999               | POW_SM(ratesArray[rateDupCck], 0)
1000         );
1001     }
1002 }
1003 
1004 
1005 /**************************************************************
1006  * ar5416SetTransmitPower
1007  *
1008  * Set the transmit power in the baseband for the given
1009  * operating channel and mode.
1010  */
1011 HAL_BOOL
1012 ar5416SetTransmitPower(struct ath_hal *ah,
1013 	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
1014 {
1015 #define N(a)            (sizeof (a) / sizeof (a[0]))
1016 
1017     MODAL_EEP_HEADER	*pModal;
1018     struct ath_hal_5212 *ahp = AH5212(ah);
1019     int16_t		ratesArray[Ar5416RateSize];
1020     int16_t		txPowerIndexOffset = 0;
1021     uint8_t		ht40PowerIncForPdadc = 2;
1022     int			i;
1023 
1024     uint16_t		cfgCtl;
1025     uint16_t		powerLimit;
1026     uint16_t		twiceAntennaReduction;
1027     uint16_t		twiceMaxRegulatoryPower;
1028     int16_t		maxPower;
1029     HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1030     struct ar5416eeprom	*pEepData = &ee->ee_base;
1031 
1032     HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1033 
1034     /* Setup info for the actual eeprom */
1035     OS_MEMZERO(ratesArray, sizeof(ratesArray));
1036     cfgCtl = ath_hal_getctl(ah, chan);
1037     powerLimit = chan->ic_maxregpower * 2;
1038     twiceAntennaReduction = chan->ic_maxantgain;
1039     twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
1040     pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
1041     HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
1042 	__func__,chan->ic_freq, cfgCtl );
1043 
1044     if (IS_EEP_MINOR_V2(ah)) {
1045         ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1046     }
1047 
1048     if (!ar5416SetPowerPerRateTable(ah, pEepData,  chan,
1049                                     &ratesArray[0],cfgCtl,
1050                                     twiceAntennaReduction,
1051 				    twiceMaxRegulatoryPower, powerLimit)) {
1052         HALDEBUG(ah, HAL_DEBUG_ANY,
1053 	    "%s: unable to set tx power per rate table\n", __func__);
1054         return AH_FALSE;
1055     }
1056 
1057     if (!AH5416(ah)->ah_setPowerCalTable(ah,  pEepData, chan, &txPowerIndexOffset)) {
1058         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
1059 	    __func__);
1060         return AH_FALSE;
1061     }
1062 
1063     maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
1064 
1065     if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1066         maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
1067     }
1068 
1069     if (IEEE80211_IS_CHAN_HT40(chan)) {
1070         maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
1071     }
1072 
1073     ahp->ah_tx6PowerInHalfDbm = maxPower;
1074     AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
1075     ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
1076 
1077     /*
1078      * txPowerIndexOffset is set by the SetPowerTable() call -
1079      *  adjust the rate table (0 offset if rates EEPROM not loaded)
1080      */
1081     for (i = 0; i < N(ratesArray); i++) {
1082         ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1083         if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1084             ratesArray[i] = AR5416_MAX_RATE_POWER;
1085     }
1086 
1087 #ifdef AH_EEPROM_DUMP
1088     /*
1089      * Dump the rate array whilst it represents the intended dBm*2
1090      * values versus what's being adjusted before being programmed
1091      * in. Keep this in mind if you code up this function and enable
1092      * this debugging; the values won't necessarily be what's being
1093      * programmed into the hardware.
1094      */
1095     ar5416PrintPowerPerRate(ah, ratesArray);
1096 #endif
1097 
1098     /*
1099      * Merlin and later have a power offset, so subtract
1100      * pwr_table_offset * 2 from each value. The default
1101      * power offset is -5 dBm - ie, a register value of 0
1102      * equates to a TX power of -5 dBm.
1103      */
1104     if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
1105         int8_t pwr_table_offset;
1106 
1107 	(void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET,
1108 	    &pwr_table_offset);
1109 	/* Underflow power gets clamped at raw value 0 */
1110 	/* Overflow power gets camped at AR5416_MAX_RATE_POWER */
1111 	for (i = 0; i < N(ratesArray); i++) {
1112 		/*
1113 		 * + pwr_table_offset is in dBm
1114 		 * + ratesArray is in 1/2 dBm
1115 		 */
1116 		ratesArray[i] -= (pwr_table_offset * 2);
1117 		if (ratesArray[i] < 0)
1118 			ratesArray[i] = 0;
1119 		else if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1120 		    ratesArray[i] = AR5416_MAX_RATE_POWER;
1121 	}
1122     }
1123 
1124     /*
1125      * Adjust rates for OLC where needed
1126      *
1127      * The following CCK rates need adjusting when doing 2.4ghz
1128      * CCK transmission.
1129      *
1130      * + rate2s, rate2l, rate1l, rate11s, rate11l, rate5_5s, rate5_5l
1131      * + rateExtCck, rateDupCck
1132      *
1133      * They're adjusted here regardless. The hardware then gets
1134      * programmed as needed. 5GHz operation doesn't program in CCK
1135      * rates for legacy mode but they seem to be initialised for
1136      * HT40 regardless of channel type.
1137      */
1138     if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
1139 	    ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
1140         int adj[] = {
1141 	              rate2s, rate2l, rate1l, rate11s, rate11l,
1142 	              rate5_5s, rate5_5l, rateExtCck, rateDupCck
1143 		    };
1144         int cck_ofdm_delta = 2;
1145 	int i;
1146 	for (i = 0; i < N(adj); i++) {
1147             ratesArray[adj[i]] -= cck_ofdm_delta;
1148 	    if (ratesArray[adj[i]] < 0)
1149 	        ratesArray[adj[i]] = 0;
1150         }
1151     }
1152 
1153     /*
1154      * Adjust the HT40 power to meet the correct target TX power
1155      * for 40MHz mode, based on TX power curves that are established
1156      * for 20MHz mode.
1157      *
1158      * XXX handle overflow/too high power level?
1159      */
1160     if (IEEE80211_IS_CHAN_HT40(chan)) {
1161 	ratesArray[rateHt40_0] += ht40PowerIncForPdadc;
1162 	ratesArray[rateHt40_1] += ht40PowerIncForPdadc;
1163 	ratesArray[rateHt40_2] += ht40PowerIncForPdadc;
1164 	ratesArray[rateHt40_3] += ht40PowerIncForPdadc;
1165 	ratesArray[rateHt40_4] += ht40PowerIncForPdadc;
1166 	ratesArray[rateHt40_5] += ht40PowerIncForPdadc;
1167 	ratesArray[rateHt40_6] += ht40PowerIncForPdadc;
1168 	ratesArray[rateHt40_7] += ht40PowerIncForPdadc;
1169     }
1170 
1171     /* Write the TX power rate registers */
1172     ar5416WriteTxPowerRateRegisters(ah, chan, ratesArray);
1173 
1174     /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
1175     OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1176         POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1177           | POW_SM(pModal->pwrDecreaseFor2Chain, 0)
1178     );
1179     return AH_TRUE;
1180 #undef POW_SM
1181 #undef N
1182 }
1183 
1184 /*
1185  * Exported call to check for a recent gain reading and return
1186  * the current state of the thermal calibration gain engine.
1187  */
1188 HAL_RFGAIN
1189 ar5416GetRfgain(struct ath_hal *ah)
1190 {
1191 	return HAL_RFGAIN_INACTIVE;
1192 }
1193 
1194 /*
1195  * Places all of hardware into reset
1196  */
1197 HAL_BOOL
1198 ar5416Disable(struct ath_hal *ah)
1199 {
1200 	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1201 		return AH_FALSE;
1202 	if (! ar5416SetResetReg(ah, HAL_RESET_COLD))
1203 		return AH_FALSE;
1204 
1205 	AH5416(ah)->ah_initPLL(ah, AH_NULL);
1206 	return AH_TRUE;
1207 }
1208 
1209 /*
1210  * Places the PHY and Radio chips into reset.  A full reset
1211  * must be called to leave this state.  The PCI/MAC/PCU are
1212  * not placed into reset as we must receive interrupt to
1213  * re-enable the hardware.
1214  */
1215 HAL_BOOL
1216 ar5416PhyDisable(struct ath_hal *ah)
1217 {
1218 	if (! ar5416SetResetReg(ah, HAL_RESET_WARM))
1219 		return AH_FALSE;
1220 
1221 	AH5416(ah)->ah_initPLL(ah, AH_NULL);
1222 	return AH_TRUE;
1223 }
1224 
1225 /*
1226  * Write the given reset bit mask into the reset register
1227  */
1228 HAL_BOOL
1229 ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
1230 {
1231 	/*
1232 	 * Set force wake
1233 	 */
1234 	OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1235 	    AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1236 
1237 	switch (type) {
1238 	case HAL_RESET_POWER_ON:
1239 		return ar5416SetResetPowerOn(ah);
1240 	case HAL_RESET_WARM:
1241 	case HAL_RESET_COLD:
1242 		return ar5416SetReset(ah, type);
1243 	default:
1244 		HALASSERT(AH_FALSE);
1245 		return AH_FALSE;
1246 	}
1247 }
1248 
1249 static HAL_BOOL
1250 ar5416SetResetPowerOn(struct ath_hal *ah)
1251 {
1252     /* Power On Reset (Hard Reset) */
1253 
1254     /*
1255      * Set force wake
1256      *
1257      * If the MAC was running, previously calling
1258      * reset will wake up the MAC but it may go back to sleep
1259      * before we can start polling.
1260      * Set force wake  stops that
1261      * This must be called before initiating a hard reset.
1262      */
1263     OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1264             AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1265 
1266     /*
1267      * PowerOn reset can be used in open loop power control or failure recovery.
1268      * If we do RTC reset while DMA is still running, hardware may corrupt memory.
1269      * Therefore, we need to reset AHB first to stop DMA.
1270      */
1271     if (! AR_SREV_HOWL(ah))
1272     	OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1273     /*
1274      * RTC reset and clear
1275      */
1276     OS_REG_WRITE(ah, AR_RTC_RESET, 0);
1277     OS_DELAY(20);
1278 
1279     if (! AR_SREV_HOWL(ah))
1280     	OS_REG_WRITE(ah, AR_RC, 0);
1281 
1282     OS_REG_WRITE(ah, AR_RTC_RESET, 1);
1283 
1284     /*
1285      * Poll till RTC is ON
1286      */
1287     if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
1288         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
1289         return AH_FALSE;
1290     }
1291 
1292     return ar5416SetReset(ah, HAL_RESET_COLD);
1293 }
1294 
1295 static HAL_BOOL
1296 ar5416SetReset(struct ath_hal *ah, int type)
1297 {
1298     uint32_t tmpReg, mask;
1299     uint32_t rst_flags;
1300 
1301 #ifdef	AH_SUPPORT_AR9130	/* Because of the AR9130 specific registers */
1302     if (AR_SREV_HOWL(ah)) {
1303         HALDEBUG(ah, HAL_DEBUG_ANY, "[ath] HOWL: Fiddling with derived clk!\n");
1304         uint32_t val = OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
1305         val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1306         val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1307         OS_REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1308         (void) OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
1309     }
1310 #endif	/* AH_SUPPORT_AR9130 */
1311 
1312     /*
1313      * Force wake
1314      */
1315     OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1316 	AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1317 
1318 #ifdef	AH_SUPPORT_AR9130
1319     if (AR_SREV_HOWL(ah)) {
1320         rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1321           AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1322     } else {
1323 #endif	/* AH_SUPPORT_AR9130 */
1324         /*
1325          * Reset AHB
1326          *
1327          * (In case the last interrupt source was a bus timeout.)
1328          * XXX TODO: this is not the way to do it! It should be recorded
1329          * XXX by the interrupt handler and passed _into_ the
1330          * XXX reset path routine so this occurs.
1331          */
1332         tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
1333         if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1334             OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1335             OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
1336         } else {
1337 	    OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1338         }
1339         rst_flags = AR_RTC_RC_MAC_WARM;
1340         if (type == HAL_RESET_COLD)
1341             rst_flags |= AR_RTC_RC_MAC_COLD;
1342 #ifdef	AH_SUPPORT_AR9130
1343     }
1344 #endif	/* AH_SUPPORT_AR9130 */
1345 
1346     OS_REG_WRITE(ah, AR_RTC_RC, rst_flags);
1347 
1348     if (AR_SREV_HOWL(ah))
1349         OS_DELAY(10000);
1350     else
1351         OS_DELAY(100);
1352 
1353     /*
1354      * Clear resets and force wakeup
1355      */
1356     OS_REG_WRITE(ah, AR_RTC_RC, 0);
1357     if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
1358         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
1359         return AH_FALSE;
1360     }
1361 
1362     /* Clear AHB reset */
1363     if (! AR_SREV_HOWL(ah))
1364         OS_REG_WRITE(ah, AR_RC, 0);
1365 
1366     if (AR_SREV_HOWL(ah))
1367         OS_DELAY(50);
1368 
1369     if (AR_SREV_HOWL(ah)) {
1370                 uint32_t mask;
1371                 mask = OS_REG_READ(ah, AR_CFG);
1372                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1373                         HALDEBUG(ah, HAL_DEBUG_RESET,
1374                                 "CFG Byte Swap Set 0x%x\n", mask);
1375                 } else {
1376                         mask =
1377                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1378                         OS_REG_WRITE(ah, AR_CFG, mask);
1379                         HALDEBUG(ah, HAL_DEBUG_RESET,
1380                                 "Setting CFG 0x%x\n", OS_REG_READ(ah, AR_CFG));
1381                 }
1382     } else {
1383 	if (type == HAL_RESET_COLD) {
1384 		if (isBigEndian()) {
1385 			/*
1386 			 * Set CFG, little-endian for register
1387 			 * and descriptor accesses.
1388 			 */
1389 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRD | AR_CFG_SWRG;
1390 #ifndef AH_NEED_DESC_SWAP
1391 			mask |= AR_CFG_SWTD;
1392 #endif
1393 			HALDEBUG(ah, HAL_DEBUG_RESET,
1394 			    "%s Applying descriptor swap\n", __func__);
1395 			OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
1396 		} else
1397 			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
1398 	}
1399     }
1400 
1401     return AH_TRUE;
1402 }
1403 
1404 void
1405 ar5416InitChainMasks(struct ath_hal *ah)
1406 {
1407 	int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
1408 
1409 	/* Flip this for this chainmask regardless of chip */
1410 	if (rx_chainmask == 0x5)
1411 		OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1412 
1413 	/*
1414 	 * Workaround for OWL 1.0 calibration failure; enable multi-chain;
1415 	 * then set true mask after calibration.
1416 	 */
1417 	if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
1418 		OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1419 		OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1420 	} else {
1421 		OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
1422 		OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
1423 	}
1424 	OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
1425 
1426 	if (AH5416(ah)->ah_tx_chainmask == 0x5)
1427 		OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1428 
1429 	if (AR_SREV_HOWL(ah)) {
1430 		OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1431 		OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1432 	}
1433 }
1434 
1435 /*
1436  * Work-around for Owl 1.0 calibration failure.
1437  *
1438  * ar5416InitChainMasks sets the RX chainmask to 0x7 if it's Owl 1.0
1439  * due to init calibration failures. ar5416RestoreChainMask restores
1440  * these registers to the correct setting.
1441  */
1442 void
1443 ar5416RestoreChainMask(struct ath_hal *ah)
1444 {
1445 	int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
1446 
1447 	if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
1448 		OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1449 		OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1450 	}
1451 }
1452 
1453 /*
1454  * Update the chainmask based on the current channel configuration.
1455  *
1456  * XXX ath9k checks bluetooth co-existence here
1457  * XXX ath9k checks whether the current state is "off-channel".
1458  * XXX ath9k sticks the hardware into 1x1 mode for legacy;
1459  *     we're going to leave multi-RX on for multi-path cancellation.
1460  */
1461 static void
1462 ar5416UpdateChainMasks(struct ath_hal *ah, HAL_BOOL is_ht)
1463 {
1464 	struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
1465 	HAL_CAPABILITIES *pCap = &ahpriv->ah_caps;
1466 
1467 	if (is_ht) {
1468 		AH5416(ah)->ah_tx_chainmask = pCap->halTxChainMask;
1469 	} else {
1470 		AH5416(ah)->ah_tx_chainmask = 1;
1471 	}
1472 	AH5416(ah)->ah_rx_chainmask = pCap->halRxChainMask;
1473 	HALDEBUG(ah, HAL_DEBUG_RESET, "TX chainmask: 0x%x; RX chainmask: 0x%x\n",
1474 	    AH5416(ah)->ah_tx_chainmask,
1475 	    AH5416(ah)->ah_rx_chainmask);
1476 }
1477 
1478 void
1479 ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan)
1480 {
1481 	uint32_t pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1482 	if (chan != AH_NULL) {
1483 		if (IEEE80211_IS_CHAN_HALF(chan))
1484 			pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1485 		else if (IEEE80211_IS_CHAN_QUARTER(chan))
1486 			pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1487 
1488 		if (IEEE80211_IS_CHAN_5GHZ(chan))
1489 			pll |= SM(0xa, AR_RTC_PLL_DIV);
1490 		else
1491 			pll |= SM(0xb, AR_RTC_PLL_DIV);
1492 	} else
1493 		pll |= SM(0xb, AR_RTC_PLL_DIV);
1494 
1495 	OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1496 
1497 	/* TODO:
1498 	* For multi-band owl, switch between bands by reiniting the PLL.
1499 	*/
1500 
1501 	OS_DELAY(RTC_PLL_SETTLE_DELAY);
1502 
1503 	OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
1504 }
1505 
1506 static void
1507 ar5416SetDefGainValues(struct ath_hal *ah,
1508     const MODAL_EEP_HEADER *pModal,
1509     const struct ar5416eeprom *eep,
1510     uint8_t txRxAttenLocal, int regChainOffset, int i)
1511 {
1512 	if (IS_EEP_MINOR_V3(ah)) {
1513 		txRxAttenLocal = pModal->txRxAttenCh[i];
1514 
1515 		if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1516 			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1517 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
1518 			      pModal->bswMargin[i]);
1519 			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1520 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
1521 			      pModal->bswAtten[i]);
1522 			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1523 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
1524 			      pModal->xatten2Margin[i]);
1525 			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1526 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
1527 			      pModal->xatten2Db[i]);
1528 		} else {
1529 			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1530 			      AR_PHY_GAIN_2GHZ_BSW_MARGIN,
1531 			      pModal->bswMargin[i]);
1532 			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1533 			      AR_PHY_GAIN_2GHZ_BSW_ATTEN,
1534 			      pModal->bswAtten[i]);
1535 		}
1536 	}
1537 
1538 	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1539 		OS_REG_RMW_FIELD(ah,
1540 		      AR_PHY_RXGAIN + regChainOffset,
1541 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1542 		OS_REG_RMW_FIELD(ah,
1543 		      AR_PHY_RXGAIN + regChainOffset,
1544 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
1545 	} else {
1546 		OS_REG_RMW_FIELD(ah,
1547 			  AR_PHY_RXGAIN + regChainOffset,
1548 			  AR_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1549 		OS_REG_RMW_FIELD(ah,
1550 			  AR_PHY_GAIN_2GHZ + regChainOffset,
1551 			  AR_PHY_GAIN_2GHZ_RXTX_MARGIN, pModal->rxTxMarginCh[i]);
1552 	}
1553 }
1554 
1555 /*
1556  * Get the register chain offset for the given chain.
1557  *
1558  * Take into account the register chain swapping with AR5416 v2.0.
1559  *
1560  * XXX make sure that the reg chain swapping is only done for
1561  * XXX AR5416 v2.0 or greater, and not later chips?
1562  */
1563 int
1564 ar5416GetRegChainOffset(struct ath_hal *ah, int i)
1565 {
1566 	int regChainOffset;
1567 
1568 	if (AR_SREV_5416_V20_OR_LATER(ah) &&
1569 	    (AH5416(ah)->ah_rx_chainmask == 0x5 ||
1570 	    AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
1571 		/* Regs are swapped from chain 2 to 1 for 5416 2_0 with
1572 		 * only chains 0 and 2 populated
1573 		 */
1574 		regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1575 	} else {
1576 		regChainOffset = i * 0x1000;
1577 	}
1578 
1579 	return regChainOffset;
1580 }
1581 
1582 /*
1583  * Read EEPROM header info and program the device for correct operation
1584  * given the channel value.
1585  */
1586 HAL_BOOL
1587 ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1588 {
1589     const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1590     const struct ar5416eeprom *eep = &ee->ee_base;
1591     const MODAL_EEP_HEADER *pModal;
1592     int			i, regChainOffset;
1593     uint8_t		txRxAttenLocal;    /* workaround for eeprom versions <= 14.2 */
1594 
1595     HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1596     pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
1597 
1598     /* NB: workaround for eeprom versions <= 14.2 */
1599     txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44;
1600 
1601     OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
1602     for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1603 	   if (AR_SREV_MERLIN(ah)) {
1604 		if (i >= 2) break;
1605 	   }
1606 	regChainOffset = ar5416GetRegChainOffset(ah, i);
1607 
1608         OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
1609 
1610         OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
1611         	(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
1612         	~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1613         	SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1614         	SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1615 
1616         /*
1617          * Large signal upgrade,
1618 	 * If 14.3 or later EEPROM, use
1619 	 * txRxAttenLocal = pModal->txRxAttenCh[i]
1620 	 * else txRxAttenLocal is fixed value above.
1621          */
1622 
1623         if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah))
1624 	    ar5416SetDefGainValues(ah, pModal, eep, txRxAttenLocal, regChainOffset, i);
1625 
1626     }
1627 
1628 	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1629                 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1630                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, pModal->ob);
1631                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, pModal->db);
1632                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, pModal->ob_ch1);
1633                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, pModal->db_ch1);
1634                 } else {
1635                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, pModal->ob);
1636                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, pModal->db);
1637                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, pModal->ob_ch1);
1638                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, pModal->db_ch1);
1639                 }
1640                 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
1641                 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS,
1642 		    !!(pModal->flagBits & AR5416_EEP_FLAG_LOCALBIAS));
1643                 OS_A_REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
1644 		    !!(pModal->flagBits & AR5416_EEP_FLAG_FORCEXPAON));
1645         }
1646 
1647     OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
1648     OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
1649 
1650     if (! AR_SREV_MERLIN_10_OR_LATER(ah))
1651     	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
1652 
1653     OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
1654         SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1655         | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1656         | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1657         | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1658 
1659     OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1660 	pModal->txEndToRxOn);
1661 
1662     if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1663 	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1664 	    pModal->thresh62);
1665 	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1666 	    pModal->thresh62);
1667     } else {
1668 	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
1669 	    pModal->thresh62);
1670 	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62,
1671 	    pModal->thresh62);
1672     }
1673 
1674     /* Minor Version Specific application */
1675     if (IS_EEP_MINOR_V2(ah)) {
1676         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
1677 	    pModal->txFrameToDataStart);
1678         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
1679 	    pModal->txFrameToPaOn);
1680     }
1681 
1682     if (IS_EEP_MINOR_V3(ah) && IEEE80211_IS_CHAN_HT40(chan))
1683 		/* Overwrite switch settling with HT40 value */
1684 		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1685 		    pModal->swSettleHt40);
1686 
1687     if (AR_SREV_MERLIN_20_OR_LATER(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_19)
1688          OS_REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, pModal->miscBits);
1689 
1690         if (AR_SREV_MERLIN_20(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_20) {
1691                 if (IEEE80211_IS_CHAN_2GHZ(chan))
1692                         OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1693 			    eep->baseEepHeader.dacLpMode);
1694                 else if (eep->baseEepHeader.dacHiPwrMode_5G)
1695                         OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
1696                 else
1697                         OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1698 			    eep->baseEepHeader.dacLpMode);
1699 
1700 		OS_DELAY(100);
1701 
1702                 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
1703 		    pModal->miscBits >> 2);
1704                 OS_REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_DESIRED_SCALE_CCK,
1705 		    eep->baseEepHeader.desiredScaleCCK);
1706         }
1707 
1708     return AH_TRUE;
1709 }
1710 
1711 /*
1712  * Helper functions common for AP/CB/XB
1713  */
1714 
1715 /*
1716  * Set the target power array "ratesArray" from the
1717  * given set of target powers.
1718  *
1719  * This is used by the various chipset/EEPROM TX power
1720  * setup routines.
1721  */
1722 void
1723 ar5416SetRatesArrayFromTargetPower(struct ath_hal *ah,
1724     const struct ieee80211_channel *chan,
1725     int16_t *ratesArray,
1726     const CAL_TARGET_POWER_LEG *targetPowerCck,
1727     const CAL_TARGET_POWER_LEG *targetPowerCckExt,
1728     const CAL_TARGET_POWER_LEG *targetPowerOfdm,
1729     const CAL_TARGET_POWER_LEG *targetPowerOfdmExt,
1730     const CAL_TARGET_POWER_HT *targetPowerHt20,
1731     const CAL_TARGET_POWER_HT *targetPowerHt40)
1732 {
1733 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1734 	int i;
1735 
1736 	/* Blank the rates array, to be consistent */
1737 	for (i = 0; i < Ar5416RateSize; i++)
1738 		ratesArray[i] = 0;
1739 
1740 	/* Set rates Array from collected data */
1741 	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1742 	    ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm->tPow2x[0];
1743 	ratesArray[rate36mb] = targetPowerOfdm->tPow2x[1];
1744 	ratesArray[rate48mb] = targetPowerOfdm->tPow2x[2];
1745 	ratesArray[rate54mb] = targetPowerOfdm->tPow2x[3];
1746 	ratesArray[rateXr] = targetPowerOfdm->tPow2x[0];
1747 
1748 	for (i = 0; i < N(targetPowerHt20->tPow2x); i++) {
1749 		ratesArray[rateHt20_0 + i] = targetPowerHt20->tPow2x[i];
1750 	}
1751 
1752 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1753 		ratesArray[rate1l]  = targetPowerCck->tPow2x[0];
1754 		ratesArray[rate2s] = ratesArray[rate2l]  = targetPowerCck->tPow2x[1];
1755 		ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck->tPow2x[2];
1756 		ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck->tPow2x[3];
1757 	}
1758 	if (IEEE80211_IS_CHAN_HT40(chan)) {
1759 		for (i = 0; i < N(targetPowerHt40->tPow2x); i++) {
1760 			ratesArray[rateHt40_0 + i] = targetPowerHt40->tPow2x[i];
1761 		}
1762 		ratesArray[rateDupOfdm] = targetPowerHt40->tPow2x[0];
1763 		ratesArray[rateDupCck]  = targetPowerHt40->tPow2x[0];
1764 		ratesArray[rateExtOfdm] = targetPowerOfdmExt->tPow2x[0];
1765 		if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1766 			ratesArray[rateExtCck]  = targetPowerCckExt->tPow2x[0];
1767 		}
1768 	}
1769 #undef	N
1770 }
1771 
1772 /*
1773  * ar5416SetPowerPerRateTable
1774  *
1775  * Sets the transmit power in the baseband for the given
1776  * operating channel and mode.
1777  */
1778 static HAL_BOOL
1779 ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
1780                            const struct ieee80211_channel *chan,
1781                            int16_t *ratesArray, uint16_t cfgCtl,
1782                            uint16_t AntennaReduction,
1783                            uint16_t twiceMaxRegulatoryPower,
1784                            uint16_t powerLimit)
1785 {
1786 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1787 /* Local defines to distinguish between extension and control CTL's */
1788 #define EXT_ADDITIVE (0x8000)
1789 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
1790 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
1791 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
1792 
1793 	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1794 	int i;
1795 	int16_t  twiceLargestAntenna;
1796 	CAL_CTL_DATA *rep;
1797 	CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
1798 	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
1799 	CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
1800 	int16_t scaledPower, minCtlPower;
1801 
1802 #define SUB_NUM_CTL_MODES_AT_5G_40 2   /* excluding HT40, EXT-OFDM */
1803 #define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
1804 	static const uint16_t ctlModesFor11a[] = {
1805 	   CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1806 	};
1807 	static const uint16_t ctlModesFor11g[] = {
1808 	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1809 	};
1810 	const uint16_t *pCtlMode;
1811 	uint16_t numCtlModes, ctlMode, freq;
1812 	CHAN_CENTERS centers;
1813 
1814 	ar5416GetChannelCenters(ah,  chan, &centers);
1815 
1816 	/* Compute TxPower reduction due to Antenna Gain */
1817 
1818 	twiceLargestAntenna = AH_MAX(AH_MAX(
1819 	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0],
1820 	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
1821 	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1822 #if 0
1823 	/* Turn it back on if we need to calculate per chain antenna gain reduction */
1824 	/* Use only if the expected gain > 6dbi */
1825 	/* Chain 0 is always used */
1826 	twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0];
1827 
1828 	/* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
1829 	if (ahp->ah_tx_chainmask & 0x2)
1830 		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1831 			pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
1832 
1833 	if (ahp->ah_tx_chainmask & 0x4)
1834 		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1835 			pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1836 #endif
1837 	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
1838 
1839 	/* XXX setup for 5212 use (really used?) */
1840 	ath_hal_eepromSet(ah,
1841 	    IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
1842 	    twiceLargestAntenna);
1843 
1844 	/*
1845 	 * scaledPower is the minimum of the user input power level and
1846 	 * the regulatory allowed power level
1847 	 */
1848 	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
1849 
1850 	/* Reduce scaled Power by number of chains active to get to per chain tx power level */
1851 	/* TODO: better value than these? */
1852 	switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
1853 	case 1:
1854 		break;
1855 	case 2:
1856 		scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
1857 		break;
1858 	case 3:
1859 		scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
1860 		break;
1861 	default:
1862 		return AH_FALSE; /* Unsupported number of chains */
1863 	}
1864 
1865 	scaledPower = AH_MAX(0, scaledPower);
1866 
1867 	/* Get target powers from EEPROM - our baseline for TX Power */
1868 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1869 		/* Setup for CTL modes */
1870 		numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
1871 		pCtlMode = ctlModesFor11g;
1872 
1873 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
1874 				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
1875 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
1876 				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1877 		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
1878 				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1879 
1880 		if (IEEE80211_IS_CHAN_HT40(chan)) {
1881 			numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
1882 
1883 			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
1884 				AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1885 			/* Get target powers for extension channels */
1886 			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
1887 				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
1888 			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
1889 				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1890 		}
1891 	} else {
1892 		/* Setup for CTL modes */
1893 		numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
1894 		pCtlMode = ctlModesFor11a;
1895 
1896 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
1897 				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1898 		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT20,
1899 				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1900 
1901 		if (IEEE80211_IS_CHAN_HT40(chan)) {
1902 			numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
1903 
1904 			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT40,
1905 				AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1906 			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
1907 				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1908 		}
1909 	}
1910 
1911 	/*
1912 	 * For MIMO, need to apply regulatory caps individually across dynamically
1913 	 * running modes: CCK, OFDM, HT20, HT40
1914 	 *
1915 	 * The outer loop walks through each possible applicable runtime mode.
1916 	 * The inner loop walks through each ctlIndex entry in EEPROM.
1917 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
1918 	 *
1919 	 */
1920 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1921 		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1922 		    (pCtlMode[ctlMode] == CTL_2GHT40);
1923 		if (isHt40CtlMode) {
1924 			freq = centers.ctl_center;
1925 		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
1926 			freq = centers.ext_center;
1927 		} else {
1928 			freq = centers.ctl_center;
1929 		}
1930 
1931 		/* walk through each CTL index stored in EEPROM */
1932 		for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1933 			uint16_t twiceMinEdgePower;
1934 
1935 			/* compare test group from regulatory channel list with test mode from pCtlMode list */
1936 			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
1937 				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1938 				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1939 				rep = &(pEepData->ctlData[i]);
1940 				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
1941 							rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
1942 							IEEE80211_IS_CHAN_2GHZ(chan));
1943 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1944 					/* Find the minimum of all CTL edge powers that apply to this channel */
1945 					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
1946 				} else {
1947 					/* specific */
1948 					twiceMaxEdgePower = twiceMinEdgePower;
1949 					break;
1950 				}
1951 			}
1952 		}
1953 		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
1954 		/* Apply ctl mode to correct target power set */
1955 		switch(pCtlMode[ctlMode]) {
1956 		case CTL_11B:
1957 			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
1958 				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
1959 			}
1960 			break;
1961 		case CTL_11A:
1962 		case CTL_11G:
1963 			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
1964 				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
1965 			}
1966 			break;
1967 		case CTL_5GHT20:
1968 		case CTL_2GHT20:
1969 			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
1970 				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
1971 			}
1972 			break;
1973 		case CTL_11B_EXT:
1974 			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
1975 			break;
1976 		case CTL_11A_EXT:
1977 		case CTL_11G_EXT:
1978 			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
1979 			break;
1980 		case CTL_5GHT40:
1981 		case CTL_2GHT40:
1982 			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
1983 				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
1984 			}
1985 			break;
1986 		default:
1987 			return AH_FALSE;
1988 			break;
1989 		}
1990 	} /* end ctl mode checking */
1991 
1992 	/* Set rates Array from collected data */
1993 	ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
1994 	    &targetPowerCck,
1995 	    &targetPowerCckExt,
1996 	    &targetPowerOfdm,
1997 	    &targetPowerOfdmExt,
1998 	    &targetPowerHt20,
1999 	    &targetPowerHt40);
2000 	return AH_TRUE;
2001 #undef EXT_ADDITIVE
2002 #undef CTL_11A_EXT
2003 #undef CTL_11G_EXT
2004 #undef CTL_11B_EXT
2005 #undef SUB_NUM_CTL_MODES_AT_5G_40
2006 #undef SUB_NUM_CTL_MODES_AT_2G_40
2007 #undef N
2008 }
2009 
2010 /**************************************************************************
2011  * fbin2freq
2012  *
2013  * Get channel value from binary representation held in eeprom
2014  * RETURNS: the frequency in MHz
2015  */
2016 static uint16_t
2017 fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
2018 {
2019     /*
2020      * Reserved value 0xFF provides an empty definition both as
2021      * an fbin and as a frequency - do not convert
2022      */
2023     if (fbin == AR5416_BCHAN_UNUSED) {
2024         return fbin;
2025     }
2026 
2027     return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2028 }
2029 
2030 /*
2031  * ar5416GetMaxEdgePower
2032  *
2033  * Find the maximum conformance test limit for the given channel and CTL info
2034  */
2035 uint16_t
2036 ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
2037 {
2038     uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2039     int      i;
2040 
2041     /* Get the edge power */
2042     for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
2043         /*
2044          * If there's an exact channel match or an inband flag set
2045          * on the lower channel use the given rdEdgePower
2046          */
2047         if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
2048             twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
2049             break;
2050         } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
2051             if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
2052                 twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
2053             }
2054             /* Leave loop - no more affecting edges possible in this monotonic increasing list */
2055             break;
2056         }
2057     }
2058     HALASSERT(twiceMaxEdgePower > 0);
2059     return twiceMaxEdgePower;
2060 }
2061 
2062 /**************************************************************
2063  * ar5416GetTargetPowers
2064  *
2065  * Return the rates of target power for the given target power table
2066  * channel, and number of channels
2067  */
2068 void
2069 ar5416GetTargetPowers(struct ath_hal *ah,  const struct ieee80211_channel *chan,
2070                       CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
2071                       CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
2072                       HAL_BOOL isHt40Target)
2073 {
2074     uint16_t clo, chi;
2075     int i;
2076     int matchIndex = -1, lowIndex = -1;
2077     uint16_t freq;
2078     CHAN_CENTERS centers;
2079 
2080     ar5416GetChannelCenters(ah,  chan, &centers);
2081     freq = isHt40Target ? centers.synth_center : centers.ctl_center;
2082 
2083     /* Copy the target powers into the temp channel list */
2084     if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2085         matchIndex = 0;
2086     } else {
2087         for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2088             if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2089                 matchIndex = i;
2090                 break;
2091             } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
2092                        (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
2093             {
2094                 lowIndex = i - 1;
2095                 break;
2096             }
2097         }
2098         if ((matchIndex == -1) && (lowIndex == -1)) {
2099             HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
2100             matchIndex = i - 1;
2101         }
2102     }
2103 
2104     if (matchIndex != -1) {
2105         OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2106     } else {
2107         HALASSERT(lowIndex != -1);
2108         /*
2109          * Get the lower and upper channels, target powers,
2110          * and interpolate between them.
2111          */
2112         clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2113         chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2114 
2115         for (i = 0; i < numRates; i++) {
2116             pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
2117                                    powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2118         }
2119     }
2120 }
2121 /**************************************************************
2122  * ar5416GetTargetPowersLeg
2123  *
2124  * Return the four rates of target power for the given target power table
2125  * channel, and number of channels
2126  */
2127 void
2128 ar5416GetTargetPowersLeg(struct ath_hal *ah,
2129                          const struct ieee80211_channel *chan,
2130                          CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
2131                          CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
2132 			 HAL_BOOL isExtTarget)
2133 {
2134     uint16_t clo, chi;
2135     int i;
2136     int matchIndex = -1, lowIndex = -1;
2137     uint16_t freq;
2138     CHAN_CENTERS centers;
2139 
2140     ar5416GetChannelCenters(ah,  chan, &centers);
2141     freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
2142 
2143     /* Copy the target powers into the temp channel list */
2144     if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2145         matchIndex = 0;
2146     } else {
2147         for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2148             if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2149                 matchIndex = i;
2150                 break;
2151             } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
2152                        (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
2153             {
2154                 lowIndex = i - 1;
2155                 break;
2156             }
2157         }
2158         if ((matchIndex == -1) && (lowIndex == -1)) {
2159             HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
2160             matchIndex = i - 1;
2161         }
2162     }
2163 
2164     if (matchIndex != -1) {
2165         OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2166     } else {
2167         HALASSERT(lowIndex != -1);
2168         /*
2169          * Get the lower and upper channels, target powers,
2170          * and interpolate between them.
2171          */
2172         clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2173         chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2174 
2175         for (i = 0; i < numRates; i++) {
2176             pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
2177                                    powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2178         }
2179     }
2180 }
2181 
2182 /*
2183  * Set the gain boundaries for the given radio chain.
2184  *
2185  * The gain boundaries tell the hardware at what point in the
2186  * PDADC array to "switch over" from one PD gain setting
2187  * to another. There's also a gain overlap between two
2188  * PDADC array gain curves where there's valid PD values
2189  * for 2 gain settings.
2190  *
2191  * The hardware uses the gain overlap and gain boundaries
2192  * to determine which gain curve to use for the given
2193  * target TX power.
2194  */
2195 void
2196 ar5416SetGainBoundariesClosedLoop(struct ath_hal *ah, int i,
2197     uint16_t pdGainOverlap_t2, uint16_t gainBoundaries[])
2198 {
2199 	int regChainOffset;
2200 
2201 	regChainOffset = ar5416GetRegChainOffset(ah, i);
2202 
2203 	HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: chain %d: gainOverlap_t2: %d,"
2204 	    " gainBoundaries: %d, %d, %d, %d\n", __func__, i, pdGainOverlap_t2,
2205 	    gainBoundaries[0], gainBoundaries[1], gainBoundaries[2],
2206 	    gainBoundaries[3]);
2207 	OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
2208 	    SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
2209 	    SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)  |
2210 	    SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)  |
2211 	    SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)  |
2212 	    SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
2213 }
2214 
2215 /*
2216  * Get the gain values and the number of gain levels given
2217  * in xpdMask.
2218  *
2219  * The EEPROM xpdMask determines which power detector gain
2220  * levels were used during calibration. Each of these mask
2221  * bits maps to a fixed gain level in hardware.
2222  */
2223 uint16_t
2224 ar5416GetXpdGainValues(struct ath_hal *ah, uint16_t xpdMask,
2225     uint16_t xpdGainValues[])
2226 {
2227     int i;
2228     uint16_t numXpdGain = 0;
2229 
2230     for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
2231         if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
2232             if (numXpdGain >= AR5416_NUM_PD_GAINS) {
2233                 HALASSERT(0);
2234                 break;
2235             }
2236             xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
2237             numXpdGain++;
2238         }
2239     }
2240     return numXpdGain;
2241 }
2242 
2243 /*
2244  * Write the detector gain and biases.
2245  *
2246  * There are four power detector gain levels. The xpdMask in the EEPROM
2247  * determines which power detector gain levels have TX power calibration
2248  * data associated with them. This function writes the number of
2249  * PD gain levels and their values into the hardware.
2250  *
2251  * This is valid for all TX chains - the calibration data itself however
2252  * will likely differ per-chain.
2253  */
2254 void
2255 ar5416WriteDetectorGainBiases(struct ath_hal *ah, uint16_t numXpdGain,
2256     uint16_t xpdGainValues[])
2257 {
2258     HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: numXpdGain: %d,"
2259       " xpdGainValues: %d, %d, %d\n", __func__, numXpdGain,
2260       xpdGainValues[0], xpdGainValues[1], xpdGainValues[2]);
2261 
2262     OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
2263     	~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 |
2264 	AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
2265 	SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) |
2266 	SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
2267 	SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) |
2268 	SM(xpdGainValues[2],  AR_PHY_TPCRG1_PD_GAIN_3));
2269 }
2270 
2271 /*
2272  * Write the PDADC array to the given radio chain i.
2273  *
2274  * The 32 PDADC registers are written without any care about
2275  * their contents - so if various chips treat values as "special",
2276  * this routine will not care.
2277  */
2278 void
2279 ar5416WritePdadcValues(struct ath_hal *ah, int i, uint8_t pdadcValues[])
2280 {
2281 	int regOffset, regChainOffset;
2282 	int j;
2283 	int reg32;
2284 
2285 	regChainOffset = ar5416GetRegChainOffset(ah, i);
2286 	regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
2287 
2288 	for (j = 0; j < 32; j++) {
2289 		reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)  |
2290 		    ((pdadcValues[4*j + 1] & 0xFF) << 8)  |
2291 		    ((pdadcValues[4*j + 2] & 0xFF) << 16) |
2292 		    ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
2293 		OS_REG_WRITE(ah, regOffset, reg32);
2294 		HALDEBUG(ah, HAL_DEBUG_EEPROM, "PDADC: Chain %d |"
2295 		    " PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d"
2296 		    " Value %3d | PDADC %3d Value %3d |\n",
2297 		    i,
2298 		    4*j, pdadcValues[4*j],
2299 		    4*j+1, pdadcValues[4*j + 1],
2300 		    4*j+2, pdadcValues[4*j + 2],
2301 		    4*j+3, pdadcValues[4*j + 3]);
2302 		regOffset += 4;
2303 	}
2304 }
2305 
2306 /**************************************************************
2307  * ar5416SetPowerCalTable
2308  *
2309  * Pull the PDADC piers from cal data and interpolate them across the given
2310  * points as well as from the nearest pier(s) to get a power detector
2311  * linear voltage to power level table.
2312  */
2313 HAL_BOOL
2314 ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
2315 	const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
2316 {
2317     CAL_DATA_PER_FREQ *pRawDataset;
2318     uint8_t  *pCalBChans = AH_NULL;
2319     uint16_t pdGainOverlap_t2;
2320     static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
2321     uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
2322     uint16_t numPiers, i;
2323     int16_t  tMinCalPower;
2324     uint16_t numXpdGain, xpdMask;
2325     uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
2326     uint32_t regChainOffset;
2327 
2328     OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
2329 
2330     xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain;
2331 
2332     if (IS_EEP_MINOR_V2(ah)) {
2333         pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap;
2334     } else {
2335     	pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
2336     }
2337 
2338     if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2339         pCalBChans = pEepData->calFreqPier2G;
2340         numPiers = AR5416_NUM_2G_CAL_PIERS;
2341     } else {
2342         pCalBChans = pEepData->calFreqPier5G;
2343         numPiers = AR5416_NUM_5G_CAL_PIERS;
2344     }
2345 
2346     /* Calculate the value of xpdgains from the xpdGain Mask */
2347     numXpdGain = ar5416GetXpdGainValues(ah, xpdMask, xpdGainValues);
2348 
2349     /* Write the detector gain biases and their number */
2350     ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
2351 
2352     for (i = 0; i < AR5416_MAX_CHAINS; i++) {
2353 	regChainOffset = ar5416GetRegChainOffset(ah, i);
2354 
2355         if (pEepData->baseEepHeader.txMask & (1 << i)) {
2356             if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2357                 pRawDataset = pEepData->calPierData2G[i];
2358             } else {
2359                 pRawDataset = pEepData->calPierData5G[i];
2360             }
2361 
2362             /* Fetch the gain boundaries and the PDADC values */
2363 	    ar5416GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
2364                                              pCalBChans, numPiers,
2365                                              pdGainOverlap_t2,
2366                                              &tMinCalPower, gainBoundaries,
2367                                              pdadcValues, numXpdGain);
2368 
2369             if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
2370 		ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2,
2371 		  gainBoundaries);
2372             }
2373 
2374             /* Write the power values into the baseband power table */
2375 	    ar5416WritePdadcValues(ah, i, pdadcValues);
2376         }
2377     }
2378     *pTxPowerIndexOffset = 0;
2379 
2380     return AH_TRUE;
2381 }
2382 
2383 /**************************************************************
2384  * ar5416GetGainBoundariesAndPdadcs
2385  *
2386  * Uses the data points read from EEPROM to reconstruct the pdadc power table
2387  * Called by ar5416SetPowerCalTable only.
2388  */
2389 void
2390 ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
2391                                  const struct ieee80211_channel *chan,
2392 				 CAL_DATA_PER_FREQ *pRawDataSet,
2393                                  uint8_t * bChans,  uint16_t availPiers,
2394                                  uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
2395                                  uint8_t * pPDADCValues, uint16_t numXpdGains)
2396 {
2397 
2398     int       i, j, k;
2399     int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
2400     uint16_t  idxL, idxR, numPiers; /* Pier indexes */
2401 
2402     /* filled out Vpd table for all pdGains (chanL) */
2403     static uint8_t   vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2404 
2405     /* filled out Vpd table for all pdGains (chanR) */
2406     static uint8_t   vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2407 
2408     /* filled out Vpd table for all pdGains (interpolated) */
2409     static uint8_t   vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2410 
2411     uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
2412     uint8_t   minPwrT4[AR5416_NUM_PD_GAINS];
2413     uint8_t   maxPwrT4[AR5416_NUM_PD_GAINS];
2414     int16_t   vpdStep;
2415     int16_t   tmpVal;
2416     uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
2417     HAL_BOOL    match;
2418     int16_t  minDelta = 0;
2419     CHAN_CENTERS centers;
2420 
2421     ar5416GetChannelCenters(ah, chan, &centers);
2422 
2423     /* Trim numPiers for the number of populated channel Piers */
2424     for (numPiers = 0; numPiers < availPiers; numPiers++) {
2425         if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
2426             break;
2427         }
2428     }
2429 
2430     /* Find pier indexes around the current channel */
2431     match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
2432 	IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
2433 
2434     if (match) {
2435         /* Directly fill both vpd tables from the matching index */
2436         for (i = 0; i < numXpdGains; i++) {
2437             minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
2438             maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
2439             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
2440                                pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
2441         }
2442     } else {
2443         for (i = 0; i < numXpdGains; i++) {
2444             pVpdL = pRawDataSet[idxL].vpdPdg[i];
2445             pPwrL = pRawDataSet[idxL].pwrPdg[i];
2446             pVpdR = pRawDataSet[idxR].vpdPdg[i];
2447             pPwrR = pRawDataSet[idxR].pwrPdg[i];
2448 
2449             /* Start Vpd interpolation from the max of the minimum powers */
2450             minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
2451 
2452             /* End Vpd interpolation from the min of the max powers */
2453             maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
2454             HALASSERT(maxPwrT4[i] > minPwrT4[i]);
2455 
2456             /* Fill pier Vpds */
2457             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
2458             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
2459 
2460             /* Interpolate the final vpd */
2461             for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
2462                 vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
2463 		    IEEE80211_IS_CHAN_2GHZ(chan)),
2464                     bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
2465             }
2466         }
2467     }
2468     *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
2469 
2470     k = 0; /* index for the final table */
2471     for (i = 0; i < numXpdGains; i++) {
2472         if (i == (numXpdGains - 1)) {
2473             pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
2474         } else {
2475             pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
2476         }
2477 
2478         pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
2479 
2480 	/* NB: only applies to owl 1.0 */
2481         if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
2482 	    /*
2483              * fix the gain delta, but get a delta that can be applied to min to
2484              * keep the upper power values accurate, don't think max needs to
2485              * be adjusted because should not be at that area of the table?
2486 	     */
2487             minDelta = pPdGainBoundaries[0] - 23;
2488             pPdGainBoundaries[0] = 23;
2489         }
2490         else {
2491             minDelta = 0;
2492         }
2493 
2494         /* Find starting index for this pdGain */
2495         if (i == 0) {
2496             if (AR_SREV_MERLIN_10_OR_LATER(ah))
2497                 ss = (int16_t)(0 - (minPwrT4[i] / 2));
2498             else
2499                 ss = 0; /* for the first pdGain, start from index 0 */
2500         } else {
2501 	    /* need overlap entries extrapolated below. */
2502             ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
2503         }
2504         vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
2505         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2506         /*
2507          *-ve ss indicates need to extrapolate data below for this pdGain
2508          */
2509         while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2510             tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
2511             pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
2512             ss++;
2513         }
2514 
2515         sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
2516         tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
2517         maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
2518 
2519         while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2520             pPDADCValues[k++] = vpdTableI[i][ss++];
2521         }
2522 
2523         vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
2524         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2525         /*
2526          * for last gain, pdGainBoundary == Pmax_t2, so will
2527          * have to extrapolate
2528          */
2529         if (tgtIndex >= maxIndex) {  /* need to extrapolate above */
2530             while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2531                 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
2532                           (ss - maxIndex +1) * vpdStep));
2533                 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
2534                 ss++;
2535             }
2536         }               /* extrapolated above */
2537     }                   /* for all pdGainUsed */
2538 
2539     /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
2540     while (i < AR5416_PD_GAINS_IN_MASK) {
2541         pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
2542         i++;
2543     }
2544 
2545     while (k < AR5416_NUM_PDADC_VALUES) {
2546         pPDADCValues[k] = pPDADCValues[k-1];
2547         k++;
2548     }
2549     return;
2550 }
2551 
2552 /*
2553  * The linux ath9k driver and (from what I've been told) the reference
2554  * Atheros driver enables the 11n PHY by default whether or not it's
2555  * configured.
2556  */
2557 static void
2558 ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan)
2559 {
2560 	uint32_t phymode;
2561 	uint32_t enableDacFifo = 0;
2562 	HAL_HT_MACMODE macmode;		/* MAC - 20/40 mode */
2563 
2564 	if (AR_SREV_KITE_10_OR_LATER(ah))
2565 		enableDacFifo = (OS_REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO);
2566 
2567 	/* Enable 11n HT, 20 MHz */
2568 	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
2569 		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
2570 
2571 	/* Configure baseband for dynamic 20/40 operation */
2572 	if (IEEE80211_IS_CHAN_HT40(chan)) {
2573 		phymode |= AR_PHY_FC_DYN2040_EN;
2574 
2575 		/* Configure control (primary) channel at +-10MHz */
2576 		if (IEEE80211_IS_CHAN_HT40U(chan))
2577 			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
2578 #if 0
2579 		/* Configure 20/25 spacing */
2580 		if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
2581 			phymode |= AR_PHY_FC_DYN2040_EXT_CH;
2582 #endif
2583 		macmode = HAL_HT_MACMODE_2040;
2584 	} else
2585 		macmode = HAL_HT_MACMODE_20;
2586 	OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
2587 
2588 	/* Configure MAC for 20/40 operation */
2589 	ar5416Set11nMac2040(ah, macmode);
2590 
2591 	/* global transmit timeout (25 TUs default)*/
2592 	/* XXX - put this elsewhere??? */
2593 	OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
2594 
2595 	/* carrier sense timeout */
2596 	OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
2597 	OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
2598 }
2599 
2600 void
2601 ar5416GetChannelCenters(struct ath_hal *ah,
2602 	const struct ieee80211_channel *chan, CHAN_CENTERS *centers)
2603 {
2604 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
2605 
2606 	centers->ctl_center = freq;
2607 	centers->synth_center = freq;
2608 	/*
2609 	 * In 20/40 phy mode, the center frequency is
2610 	 * "between" the control and extension channels.
2611 	 */
2612 	if (IEEE80211_IS_CHAN_HT40U(chan)) {
2613 		centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
2614 		centers->ext_center =
2615 		    centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
2616 	} else if (IEEE80211_IS_CHAN_HT40D(chan)) {
2617 		centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
2618 		centers->ext_center =
2619 		    centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
2620 	} else {
2621 		centers->ext_center = freq;
2622 	}
2623 }
2624 
2625 /*
2626  * Override the INI vals being programmed.
2627  */
2628 static void
2629 ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *chan)
2630 {
2631 	uint32_t val;
2632 
2633 	/*
2634 	 * Set the RX_ABORT and RX_DIS and clear if off only after
2635 	 * RXE is set for MAC. This prevents frames with corrupted
2636 	 * descriptor status.
2637 	 */
2638 	OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
2639 
2640 	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
2641 		val = OS_REG_READ(ah, AR_PCU_MISC_MODE2);
2642 		val &= (~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE);
2643 		if (!AR_SREV_9271(ah))
2644 			val &= ~AR_PCU_MISC_MODE2_HWWAR1;
2645 
2646 		if (AR_SREV_KIWI_10_OR_LATER(ah))
2647 			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
2648 
2649 		OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
2650 	}
2651 
2652 	/*
2653 	 * Disable RIFS search on some chips to avoid baseband
2654 	 * hang issues.
2655 	 */
2656 	if (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah))
2657 		(void) ar5416SetRifsDelay(ah, chan, AH_FALSE);
2658 
2659         if (!AR_SREV_5416_V20_OR_LATER(ah) || AR_SREV_MERLIN(ah))
2660 		return;
2661 
2662 	/*
2663 	 * Disable BB clock gating
2664 	 * Necessary to avoid issues on AR5416 2.0
2665 	 */
2666 	OS_REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
2667 }
2668 
2669 struct ini {
2670 	uint32_t        *data;          /* NB: !const */
2671 	int             rows, cols;
2672 };
2673 
2674 /*
2675  * Override XPA bias level based on operating frequency.
2676  * This is a v14 EEPROM specific thing for the AR9160.
2677  */
2678 void
2679 ar5416EepromSetAddac(struct ath_hal *ah, const struct ieee80211_channel *chan)
2680 {
2681 #define	XPA_LVL_FREQ(cnt)	(pModal->xpaBiasLvlFreq[cnt])
2682 	MODAL_EEP_HEADER	*pModal;
2683 	HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
2684 	struct ar5416eeprom	*eep = &ee->ee_base;
2685 	uint8_t biaslevel;
2686 
2687 	if (! AR_SREV_SOWL(ah))
2688 		return;
2689 
2690         if (EEP_MINOR(ah) < AR5416_EEP_MINOR_VER_7)
2691                 return;
2692 
2693 	pModal = &(eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]);
2694 
2695 	if (pModal->xpaBiasLvl != 0xff)
2696 		biaslevel = pModal->xpaBiasLvl;
2697 	else {
2698 		uint16_t resetFreqBin, freqBin, freqCount = 0;
2699 		CHAN_CENTERS centers;
2700 
2701 		ar5416GetChannelCenters(ah, chan, &centers);
2702 
2703 		resetFreqBin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan));
2704 		freqBin = XPA_LVL_FREQ(0) & 0xff;
2705 		biaslevel = (uint8_t) (XPA_LVL_FREQ(0) >> 14);
2706 
2707 		freqCount++;
2708 
2709 		while (freqCount < 3) {
2710 			if (XPA_LVL_FREQ(freqCount) == 0x0)
2711 			break;
2712 
2713 			freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
2714 			if (resetFreqBin >= freqBin)
2715 				biaslevel = (uint8_t)(XPA_LVL_FREQ(freqCount) >> 14);
2716 			else
2717 				break;
2718 			freqCount++;
2719 		}
2720 	}
2721 
2722 	HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: overriding XPA bias level = %d\n",
2723 	    __func__, biaslevel);
2724 
2725 	/*
2726 	 * This is a dirty workaround for the const initval data,
2727 	 * which will upset multiple AR9160's on the same board.
2728 	 *
2729 	 * The HAL should likely just have a private copy of the addac
2730 	 * data per instance.
2731 	 */
2732 	if (IEEE80211_IS_CHAN_2GHZ(chan))
2733                 HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 7, 1) =
2734 		    (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3;
2735         else
2736                 HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 6, 1) =
2737 		    (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6;
2738 #undef XPA_LVL_FREQ
2739 }
2740 
2741 static void
2742 ar5416MarkPhyInactive(struct ath_hal *ah)
2743 {
2744 	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2745 }
2746