xref: /freebsd/sys/dev/ath/ath_hal/ar5416/ar5416_misc.c (revision 3e65b9c6e6b7b2081d54e1dc40983c3c00eaf738)
1 /*
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 #include "ah_devid.h"
24 #include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
25 
26 #include "ar5416/ar5416.h"
27 #include "ar5416/ar5416reg.h"
28 #include "ar5416/ar5416phy.h"
29 
30 /*
31  * Return the wireless modes (a,b,g,n,t) supported by hardware.
32  *
33  * This value is what is actually supported by the hardware
34  * and is unaffected by regulatory/country code settings.
35  *
36  */
37 u_int
38 ar5416GetWirelessModes(struct ath_hal *ah)
39 {
40 	u_int mode;
41 	struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
42 	HAL_CAPABILITIES *pCap = &ahpriv->ah_caps;
43 
44 	mode = ar5212GetWirelessModes(ah);
45 
46 	/* Only enable HT modes if the NIC supports HT */
47 	if (pCap->halHTSupport == AH_TRUE && (mode & HAL_MODE_11A))
48 		mode |= HAL_MODE_11NA_HT20
49 		     |  HAL_MODE_11NA_HT40PLUS
50 		     |  HAL_MODE_11NA_HT40MINUS
51 		     ;
52 	if (pCap->halHTSupport == AH_TRUE && (mode & HAL_MODE_11G))
53 		mode |= HAL_MODE_11NG_HT20
54 		     |  HAL_MODE_11NG_HT40PLUS
55 		     |  HAL_MODE_11NG_HT40MINUS
56 		     ;
57 	return mode;
58 }
59 
60 /*
61  * Change the LED blinking pattern to correspond to the connectivity
62  */
63 void
64 ar5416SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
65 {
66 	static const uint32_t ledbits[8] = {
67 		AR_MAC_LED_ASSOC_NONE,		/* HAL_LED_INIT */
68 		AR_MAC_LED_ASSOC_PEND,		/* HAL_LED_SCAN */
69 		AR_MAC_LED_ASSOC_PEND,		/* HAL_LED_AUTH */
70 		AR_MAC_LED_ASSOC_ACTIVE,	/* HAL_LED_ASSOC*/
71 		AR_MAC_LED_ASSOC_ACTIVE,	/* HAL_LED_RUN */
72 		AR_MAC_LED_ASSOC_NONE,
73 		AR_MAC_LED_ASSOC_NONE,
74 		AR_MAC_LED_ASSOC_NONE,
75 	};
76 #if 0
77 	uint32_t bits;
78 #endif
79 
80 	if (AR_SREV_HOWL(ah))
81 		return;
82 
83 	OS_REG_RMW_FIELD(ah, AR_MAC_LED,
84 	    AR_MAC_LED_ASSOC, ledbits[state & 0x7]);
85 
86 	/*
87 	 * For now, don't override the power/network LED
88 	 * "on" bits.  The reference driver notes that some
89 	 * devices connect the LED pins to other functionality
90 	 * so we can't just leave this on by default.
91 	 */
92 #if 0
93 	bits = OS_REG_READ(ah, AR_MAC_LED);
94 	bits = (bits &~ AR_MAC_LED_MODE)
95 	     | SM(AR_MAC_LED_MODE_POWON, AR_MAC_LED_MODE)
96 #if 1
97 	     | SM(AR_MAC_LED_MODE_NETON, AR_MAC_LED_MODE)
98 #endif
99 	     ;
100 	bits = (bits &~ AR_MAC_LED_ASSOC)
101 	     | SM(ledbits[state & 0x7], AR_MAC_LED_ASSOC);
102 	OS_REG_WRITE(ah, AR_MAC_LED, bits);
103 #endif
104 }
105 
106 /*
107  * Get the current hardware tsf for stamlme
108  */
109 uint64_t
110 ar5416GetTsf64(struct ath_hal *ah)
111 {
112 	uint32_t low1, low2, u32;
113 
114 	/* sync multi-word read */
115 	low1 = OS_REG_READ(ah, AR_TSF_L32);
116 	u32 = OS_REG_READ(ah, AR_TSF_U32);
117 	low2 = OS_REG_READ(ah, AR_TSF_L32);
118 	if (low2 < low1) {	/* roll over */
119 		/*
120 		 * If we are not preempted this will work.  If we are
121 		 * then we re-reading AR_TSF_U32 does no good as the
122 		 * low bits will be meaningless.  Likewise reading
123 		 * L32, U32, U32, then comparing the last two reads
124 		 * to check for rollover doesn't help if preempted--so
125 		 * we take this approach as it costs one less PCI read
126 		 * which can be noticeable when doing things like
127 		 * timestamping packets in monitor mode.
128 		 */
129 		u32++;
130 	}
131 	return (((uint64_t) u32) << 32) | ((uint64_t) low2);
132 }
133 
134 void
135 ar5416SetTsf64(struct ath_hal *ah, uint64_t tsf64)
136 {
137 	OS_REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
138 	OS_REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
139 }
140 
141 /*
142  * Reset the current hardware tsf for stamlme.
143  */
144 void
145 ar5416ResetTsf(struct ath_hal *ah)
146 {
147 	uint32_t v;
148 	int i;
149 
150 	for (i = 0; i < 10; i++) {
151 		v = OS_REG_READ(ah, AR_SLP32_MODE);
152 		if ((v & AR_SLP32_TSF_WRITE_STATUS) == 0)
153 			break;
154 		OS_DELAY(10);
155 	}
156 	OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
157 }
158 
159 uint32_t
160 ar5416GetCurRssi(struct ath_hal *ah)
161 {
162 	if (AR_SREV_OWL(ah))
163 		return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
164 	return (OS_REG_READ(ah, AR9130_PHY_CURRENT_RSSI) & 0xff);
165 }
166 
167 HAL_BOOL
168 ar5416SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
169 {
170 	return AH_TRUE;
171 }
172 
173 /* Setup decompression for given key index */
174 HAL_BOOL
175 ar5416SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
176 {
177 	return AH_TRUE;
178 }
179 
180 /* Setup coverage class */
181 void
182 ar5416SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
183 {
184 	AH_PRIVATE(ah)->ah_coverageClass = coverageclass;
185 }
186 
187 /*
188  * Return the busy for rx_frame, rx_clear, and tx_frame
189  */
190 uint32_t
191 ar5416GetMibCycleCountsPct(struct ath_hal *ah, uint32_t *rxc_pcnt,
192     uint32_t *extc_pcnt, uint32_t *rxf_pcnt, uint32_t *txf_pcnt)
193 {
194 	struct ath_hal_5416 *ahp = AH5416(ah);
195 	u_int32_t good = 1;
196 
197 	/* XXX freeze/unfreeze mib counters */
198 	uint32_t rc = OS_REG_READ(ah, AR_RCCNT);
199 	uint32_t ec = OS_REG_READ(ah, AR_EXTRCCNT);
200 	uint32_t rf = OS_REG_READ(ah, AR_RFCNT);
201 	uint32_t tf = OS_REG_READ(ah, AR_TFCNT);
202 	uint32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
203 
204 	if (ahp->ah_cycleCount == 0 || ahp->ah_cycleCount > cc) {
205 		/*
206 		 * Cycle counter wrap (or initial call); it's not possible
207 		 * to accurately calculate a value because the registers
208 		 * right shift rather than wrap--so punt and return 0.
209 		 */
210 		HALDEBUG(ah, HAL_DEBUG_ANY,
211 			    "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
212 			good = 0;
213 	} else {
214 		uint32_t cc_d = cc - ahp->ah_cycleCount;
215 		uint32_t rc_d = rc - ahp->ah_ctlBusy;
216 		uint32_t ec_d = ec - ahp->ah_extBusy;
217 		uint32_t rf_d = rf - ahp->ah_rxBusy;
218 		uint32_t tf_d = tf - ahp->ah_txBusy;
219 
220 		if (cc_d != 0) {
221 			*rxc_pcnt = rc_d * 100 / cc_d;
222 			*rxf_pcnt = rf_d * 100 / cc_d;
223 			*txf_pcnt = tf_d * 100 / cc_d;
224 			*extc_pcnt = ec_d * 100 / cc_d;
225 		} else {
226 			good = 0;
227 		}
228 	}
229 	ahp->ah_cycleCount = cc;
230 	ahp->ah_rxBusy = rf;
231 	ahp->ah_ctlBusy = rc;
232 	ahp->ah_txBusy = tf;
233 	ahp->ah_extBusy = ec;
234 
235 	return good;
236 }
237 
238 /*
239  * Return approximation of extension channel busy over an time interval
240  * 0% (clear) -> 100% (busy)
241  *
242  */
243 uint32_t
244 ar5416Get11nExtBusy(struct ath_hal *ah)
245 {
246     struct ath_hal_5416 *ahp = AH5416(ah);
247     uint32_t busy; /* percentage */
248     uint32_t cycleCount, ctlBusy, extBusy;
249 
250     ctlBusy = OS_REG_READ(ah, AR_RCCNT);
251     extBusy = OS_REG_READ(ah, AR_EXTRCCNT);
252     cycleCount = OS_REG_READ(ah, AR_CCCNT);
253 
254     if (ahp->ah_cycleCount == 0 || ahp->ah_cycleCount > cycleCount) {
255         /*
256          * Cycle counter wrap (or initial call); it's not possible
257          * to accurately calculate a value because the registers
258          * right shift rather than wrap--so punt and return 0.
259          */
260         busy = 0;
261         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cycle counter wrap. ExtBusy = 0\n",
262 	    __func__);
263 
264     } else {
265         uint32_t cycleDelta = cycleCount - ahp->ah_cycleCount;
266         uint32_t ctlBusyDelta = ctlBusy - ahp->ah_ctlBusy;
267         uint32_t extBusyDelta = extBusy - ahp->ah_extBusy;
268         uint32_t ctlClearDelta = 0;
269 
270         /* Compute control channel rxclear.
271          * The cycle delta may be less than the control channel delta.
272          * This could be solved by freezing the timers (or an atomic read,
273          * if one was available). Checking for the condition should be
274          * sufficient.
275          */
276         if (cycleDelta > ctlBusyDelta) {
277             ctlClearDelta = cycleDelta - ctlBusyDelta;
278         }
279 
280         /* Compute ratio of extension channel busy to control channel clear
281          * as an approximation to extension channel cleanliness.
282          *
283          * According to the hardware folks, ext rxclear is undefined
284          * if the ctrl rxclear is de-asserted (i.e. busy)
285          */
286         if (ctlClearDelta) {
287             busy = (extBusyDelta * 100) / ctlClearDelta;
288         } else {
289             busy = 100;
290         }
291         if (busy > 100) {
292             busy = 100;
293         }
294 #if 0
295         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cycleDelta 0x%x, ctlBusyDelta 0x%x, "
296              "extBusyDelta 0x%x, ctlClearDelta 0x%x, "
297              "busy %d\n",
298               __func__, cycleDelta, ctlBusyDelta, extBusyDelta, ctlClearDelta, busy);
299 #endif
300     }
301 
302     ahp->ah_cycleCount = cycleCount;
303     ahp->ah_ctlBusy = ctlBusy;
304     ahp->ah_extBusy = extBusy;
305 
306     return busy;
307 }
308 
309 /*
310  * Configure 20/40 operation
311  *
312  * 20/40 = joint rx clear (control and extension)
313  * 20    = rx clear (control)
314  *
315  * - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz when changing
316  *         from 20/40 => 20 only
317  */
318 void
319 ar5416Set11nMac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
320 {
321     uint32_t macmode;
322 
323     /* Configure MAC for 20/40 operation */
324     if (mode == HAL_HT_MACMODE_2040) {
325         macmode = AR_2040_JOINED_RX_CLEAR;
326     } else {
327         macmode = 0;
328     }
329     OS_REG_WRITE(ah, AR_2040_MODE, macmode);
330 }
331 
332 /*
333  * Get Rx clear (control/extension channel)
334  *
335  * Returns active low (busy) for ctrl/ext channel
336  * Owl 2.0
337  */
338 HAL_HT_RXCLEAR
339 ar5416Get11nRxClear(struct ath_hal *ah)
340 {
341     HAL_HT_RXCLEAR rxclear = 0;
342     uint32_t val;
343 
344     val = OS_REG_READ(ah, AR_DIAG_SW);
345 
346     /* control channel */
347     if (val & AR_DIAG_RXCLEAR_CTL_LOW) {
348         rxclear |= HAL_RX_CLEAR_CTL_LOW;
349     }
350     /* extension channel */
351     if (val & AR_DIAG_RXCLEAR_EXT_LOW) {
352         rxclear |= HAL_RX_CLEAR_EXT_LOW;
353     }
354     return rxclear;
355 }
356 
357 /*
358  * Set Rx clear (control/extension channel)
359  *
360  * Useful for forcing the channel to appear busy for
361  * debugging/diagnostics
362  * Owl 2.0
363  */
364 void
365 ar5416Set11nRxClear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
366 {
367     /* control channel */
368     if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
369         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_CTL_LOW);
370     } else {
371         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_CTL_LOW);
372     }
373     /* extension channel */
374     if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
375         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_EXT_LOW);
376     } else {
377         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_EXT_LOW);
378     }
379 }
380 
381 /* XXX shouldn't be here! */
382 #define	TU_TO_USEC(_tu)		((_tu) << 10)
383 
384 HAL_STATUS
385 ar5416SetQuiet(struct ath_hal *ah, uint32_t period, uint32_t duration,
386     uint32_t nextStart, HAL_QUIET_FLAG flag)
387 {
388 	uint32_t period_us = TU_TO_USEC(period); /* convert to us unit */
389 	uint32_t nextStart_us = TU_TO_USEC(nextStart); /* convert to us unit */
390 	if (flag & HAL_QUIET_ENABLE) {
391 		if ((!nextStart) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
392 			/* Add the nextStart offset to the current TSF */
393 			nextStart_us += OS_REG_READ(ah, AR_TSF_L32);
394 		}
395 		if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
396 			nextStart_us += ah->ah_config.ah_sw_beacon_response_time;
397 		}
398 		OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
399 		OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
400 		OS_REG_WRITE(ah, AR_QUIET_PERIOD, period_us);
401 		OS_REG_WRITE(ah, AR_NEXT_QUIET, nextStart_us);
402 		OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
403 	} else {
404 		OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
405 	}
406 	return HAL_OK;
407 }
408 #undef	TU_TO_USEC
409 
410 HAL_STATUS
411 ar5416GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
412         uint32_t capability, uint32_t *result)
413 {
414 	switch (type) {
415 	case HAL_CAP_BB_HANG:
416 		switch (capability) {
417 		case HAL_BB_HANG_RIFS:
418 			return (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) ? HAL_OK : HAL_ENOTSUPP;
419 		case HAL_BB_HANG_DFS:
420 			return (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) ? HAL_OK : HAL_ENOTSUPP;
421 		case HAL_BB_HANG_RX_CLEAR:
422 			return AR_SREV_MERLIN(ah) ? HAL_OK : HAL_ENOTSUPP;
423 		}
424 		break;
425 	case HAL_CAP_MAC_HANG:
426 		return ((ah->ah_macVersion == AR_XSREV_VERSION_OWL_PCI) ||
427 		    (ah->ah_macVersion == AR_XSREV_VERSION_OWL_PCIE) ||
428 		    AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) ?
429 			HAL_OK : HAL_ENOTSUPP;
430 	case HAL_CAP_DIVERSITY:		/* disable classic fast diversity */
431 		return HAL_ENXIO;
432 	default:
433 		break;
434 	}
435 	return ar5212GetCapability(ah, type, capability, result);
436 }
437 
438 static int ar5416DetectMacHang(struct ath_hal *ah);
439 static int ar5416DetectBBHang(struct ath_hal *ah);
440 
441 HAL_BOOL
442 ar5416GetDiagState(struct ath_hal *ah, int request,
443 	const void *args, uint32_t argsize,
444 	void **result, uint32_t *resultsize)
445 {
446 	struct ath_hal_5416 *ahp = AH5416(ah);
447 	int hangs;
448 
449 	if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
450 		return AH_TRUE;
451 	switch (request) {
452 	case HAL_DIAG_EEPROM:
453 		return ath_hal_eepromDiag(ah, request,
454 		    args, argsize, result, resultsize);
455 	case HAL_DIAG_CHECK_HANGS:
456 		if (argsize != sizeof(int))
457 			return AH_FALSE;
458 		hangs = *(const int *) args;
459 		ahp->ah_hangs = 0;
460 		if (hangs & HAL_BB_HANGS)
461 			ahp->ah_hangs |= ar5416DetectBBHang(ah);
462 		/* NB: if BB is hung MAC will be hung too so skip check */
463 		if (ahp->ah_hangs == 0 && (hangs & HAL_MAC_HANGS))
464 			ahp->ah_hangs |= ar5416DetectMacHang(ah);
465 		*result = &ahp->ah_hangs;
466 		*resultsize = sizeof(ahp->ah_hangs);
467 		return AH_TRUE;
468 	}
469 	return ar5212GetDiagState(ah, request,
470 	    args, argsize, result, resultsize);
471 }
472 
473 typedef struct {
474 	uint32_t dma_dbg_3;
475 	uint32_t dma_dbg_4;
476 	uint32_t dma_dbg_5;
477 	uint32_t dma_dbg_6;
478 } mac_dbg_regs_t;
479 
480 typedef enum {
481 	dcu_chain_state		= 0x1,
482 	dcu_complete_state	= 0x2,
483 	qcu_state		= 0x4,
484 	qcu_fsp_ok		= 0x8,
485 	qcu_fsp_state		= 0x10,
486 	qcu_stitch_state	= 0x20,
487 	qcu_fetch_state		= 0x40,
488 	qcu_complete_state	= 0x80
489 } hal_mac_hangs_t;
490 
491 typedef struct {
492 	int states;
493 	uint8_t dcu_chain_state;
494 	uint8_t dcu_complete_state;
495 	uint8_t qcu_state;
496 	uint8_t qcu_fsp_ok;
497 	uint8_t qcu_fsp_state;
498 	uint8_t qcu_stitch_state;
499 	uint8_t qcu_fetch_state;
500 	uint8_t qcu_complete_state;
501 } hal_mac_hang_check_t;
502 
503 HAL_BOOL
504 ar5416SetRifsDelay(struct ath_hal *ah, const struct ieee80211_channel *chan,
505     HAL_BOOL enable)
506 {
507 	uint32_t val;
508 	HAL_BOOL is_chan_2g = AH_FALSE;
509 	HAL_BOOL is_ht40 = AH_FALSE;
510 
511 	if (chan)
512 		is_chan_2g = IEEE80211_IS_CHAN_2GHZ(chan);
513 
514 	if (chan)
515 		is_ht40 = IEEE80211_IS_CHAN_HT40(chan);
516 
517 	/* Only support disabling RIFS delay for now */
518 	HALASSERT(enable == AH_FALSE);
519 
520 	if (enable == AH_TRUE)
521 		return AH_FALSE;
522 
523 	/* Change RIFS init delay to 0 */
524 	val = OS_REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
525 	val &= ~AR_PHY_RIFS_INIT_DELAY;
526 	OS_REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
527 
528 	/*
529 	 * For Owl, RIFS RX parameters are controlled differently;
530 	 * it isn't enabled in the inivals by default.
531 	 *
532 	 * For Sowl/Howl, RIFS RX is enabled in the inivals by default;
533 	 * the following code sets them back to non-RIFS values.
534 	 *
535 	 * For > Sowl/Howl, RIFS RX can be left on by default and so
536 	 * this function shouldn't be called.
537 	 */
538 	if ((! AR_SREV_SOWL(ah)) && (! AR_SREV_HOWL(ah)))
539 		return AH_TRUE;
540 
541 	/* Reset search delay to default values */
542 	if (is_chan_2g)
543 		if (is_ht40)
544 			OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x268);
545 		else
546 			OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x134);
547 	else
548 		if (is_ht40)
549 			OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x370);
550 		else
551 			OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x1b8);
552 
553 	return AH_TRUE;
554 }
555 
556 static HAL_BOOL
557 ar5416CompareDbgHang(struct ath_hal *ah, const mac_dbg_regs_t *regs,
558     const hal_mac_hang_check_t *check)
559 {
560 	int found_states;
561 
562 	found_states = 0;
563 	if (check->states & dcu_chain_state) {
564 		int i;
565 
566 		for (i = 0; i < 6; i++) {
567 			if (((regs->dma_dbg_4 >> (5*i)) & 0x1f) ==
568 			    check->dcu_chain_state)
569 				found_states |= dcu_chain_state;
570 		}
571 		for (i = 0; i < 4; i++) {
572 			if (((regs->dma_dbg_5 >> (5*i)) & 0x1f) ==
573 			    check->dcu_chain_state)
574 				found_states |= dcu_chain_state;
575 		}
576 	}
577 	if (check->states & dcu_complete_state) {
578 		if ((regs->dma_dbg_6 & 0x3) == check->dcu_complete_state)
579 			found_states |= dcu_complete_state;
580 	}
581 	if (check->states & qcu_stitch_state) {
582 		if (((regs->dma_dbg_3 >> 18) & 0xf) == check->qcu_stitch_state)
583 			found_states |= qcu_stitch_state;
584 	}
585 	if (check->states & qcu_fetch_state) {
586 		if (((regs->dma_dbg_3 >> 22) & 0xf) == check->qcu_fetch_state)
587 			found_states |= qcu_fetch_state;
588 	}
589 	if (check->states & qcu_complete_state) {
590 		if (((regs->dma_dbg_3 >> 26) & 0x7) == check->qcu_complete_state)
591 			found_states |= qcu_complete_state;
592 	}
593 	return (found_states == check->states);
594 }
595 
596 #define NUM_STATUS_READS 50
597 
598 static int
599 ar5416DetectMacHang(struct ath_hal *ah)
600 {
601 	static const hal_mac_hang_check_t hang_sig1 = {
602 		.dcu_chain_state	= 0x6,
603 		.dcu_complete_state	= 0x1,
604 		.states			= dcu_chain_state
605 					| dcu_complete_state,
606 	};
607 	static const hal_mac_hang_check_t hang_sig2 = {
608 		.qcu_stitch_state	= 0x9,
609 		.qcu_fetch_state	= 0x8,
610 		.qcu_complete_state	= 0x4,
611 		.states			= qcu_stitch_state
612 					| qcu_fetch_state
613 					| qcu_complete_state,
614         };
615 	mac_dbg_regs_t mac_dbg;
616 	int i;
617 
618 	mac_dbg.dma_dbg_3 = OS_REG_READ(ah, AR_DMADBG_3);
619 	mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
620 	mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
621 	mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
622 	for (i = 1; i <= NUM_STATUS_READS; i++) {
623 		if (mac_dbg.dma_dbg_3 != OS_REG_READ(ah, AR_DMADBG_3) ||
624 		    mac_dbg.dma_dbg_4 != OS_REG_READ(ah, AR_DMADBG_4) ||
625 		    mac_dbg.dma_dbg_5 != OS_REG_READ(ah, AR_DMADBG_5) ||
626 		    mac_dbg.dma_dbg_6 != OS_REG_READ(ah, AR_DMADBG_6))
627 			return 0;
628 	}
629 
630 	if (ar5416CompareDbgHang(ah, &mac_dbg, &hang_sig1))
631 		return HAL_MAC_HANG_SIG1;
632 	if (ar5416CompareDbgHang(ah, &mac_dbg, &hang_sig2))
633 		return HAL_MAC_HANG_SIG2;
634 
635 	HALDEBUG(ah, HAL_DEBUG_HANG, "%s Found an unknown MAC hang signature "
636 	    "DMADBG_3=0x%x DMADBG_4=0x%x DMADBG_5=0x%x DMADBG_6=0x%x\n",
637 	    __func__, mac_dbg.dma_dbg_3, mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
638 	    mac_dbg.dma_dbg_6);
639 
640 	return 0;
641 }
642 
643 /*
644  * Determine if the baseband using the Observation Bus Register
645  */
646 static int
647 ar5416DetectBBHang(struct ath_hal *ah)
648 {
649 #define N(a) (sizeof(a)/sizeof(a[0]))
650 	/*
651 	 * Check the PCU Observation Bus 1 register (0x806c)
652 	 * NUM_STATUS_READS times
653 	 *
654 	 * 4 known BB hang signatures -
655 	 * [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
656 	 * [2] bits 8,9 are 1, bit 11 is 0. State machine state
657 	 *     (bits 25-31) is 0x52
658 	 * [3] bits 8,9 are 1, bit 11 is 0. State machine state
659 	 *     (bits 25-31) is 0x18
660 	 * [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
661 	 *     Rx State (bits 20-24) is 0x7.
662 	 */
663 	static const struct {
664 		uint32_t val;
665 		uint32_t mask;
666 		int code;
667 	} hang_list[] = {
668 		/* Reg Value   Reg Mask    Hang Code XXX */
669 		{ 0x1E000000, 0x7E000B00, HAL_BB_HANG_DFS },
670 		{ 0x52000B00, 0x7E000B00, HAL_BB_HANG_RIFS },
671 		{ 0x18000B00, 0x7E000B00, HAL_BB_HANG_RX_CLEAR },
672 		{ 0x00702400, 0x7E7FFFEF, HAL_BB_HANG_RX_CLEAR }
673 	};
674 	uint32_t hang_sig;
675 	int i;
676 
677 	hang_sig = OS_REG_READ(ah, AR_OBSERV_1);
678 	for (i = 1; i <= NUM_STATUS_READS; i++) {
679 		if (hang_sig != OS_REG_READ(ah, AR_OBSERV_1))
680 			return 0;
681 	}
682 	for (i = 0; i < N(hang_list); i++)
683 		if ((hang_sig & hang_list[i].mask) == hang_list[i].val) {
684 			HALDEBUG(ah, HAL_DEBUG_HANG,
685 			    "%s BB hang, signature 0x%x, code 0x%x\n",
686 			    __func__, hang_sig, hang_list[i].code);
687 			return hang_list[i].code;
688 		}
689 
690 	HALDEBUG(ah, HAL_DEBUG_HANG, "%s Found an unknown BB hang signature! "
691 	    "<0x806c>=0x%x\n", __func__, hang_sig);
692 
693 	return 0;
694 #undef N
695 }
696 #undef NUM_STATUS_READS
697 
698 /*
699  * Get the radar parameter values and return them in the pe
700  * structure
701  */
702 void
703 ar5416GetDfsThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
704 {
705 	uint32_t val, temp;
706 
707 	val = OS_REG_READ(ah, AR_PHY_RADAR_0);
708 
709 	temp = MS(val,AR_PHY_RADAR_0_FIRPWR);
710 	temp |= 0xFFFFFF80;
711 	pe->pe_firpwr = temp;
712 	pe->pe_rrssi = MS(val, AR_PHY_RADAR_0_RRSSI);
713 	pe->pe_height =  MS(val, AR_PHY_RADAR_0_HEIGHT);
714 	pe->pe_prssi = MS(val, AR_PHY_RADAR_0_PRSSI);
715 	pe->pe_inband = MS(val, AR_PHY_RADAR_0_INBAND);
716 
717 	val = OS_REG_READ(ah, AR_PHY_RADAR_1);
718 	temp = val & AR_PHY_RADAR_1_RELPWR_ENA;
719 	pe->pe_relpwr = MS(val, AR_PHY_RADAR_1_RELPWR_THRESH);
720 	if (temp)
721 		pe->pe_relpwr |= HAL_PHYERR_PARAM_ENABLE;
722 	temp = val & AR_PHY_RADAR_1_RELSTEP_CHECK;
723 	pe->pe_relstep = MS(val, AR_PHY_RADAR_1_RELSTEP_THRESH);
724 	if (temp)
725 		pe->pe_enabled = 1;
726 	else
727 		pe->pe_enabled = 0;
728 
729 	pe->pe_maxlen = MS(val, AR_PHY_RADAR_1_MAXLEN);
730 	pe->pe_extchannel = !! (OS_REG_READ(ah, AR_PHY_RADAR_EXT) &
731 	    AR_PHY_RADAR_EXT_ENA);
732 
733 	pe->pe_usefir128 = !! (OS_REG_READ(ah, AR_PHY_RADAR_1) &
734 	    AR_PHY_RADAR_1_USE_FIR128);
735 	pe->pe_blockradar = !! (OS_REG_READ(ah, AR_PHY_RADAR_1) &
736 	    AR_PHY_RADAR_1_BLOCK_CHECK);
737 	pe->pe_enmaxrssi = !! (OS_REG_READ(ah, AR_PHY_RADAR_1) &
738 	    AR_PHY_RADAR_1_MAX_RRSSI);
739 }
740 
741 /*
742  * Enable radar detection and set the radar parameters per the
743  * values in pe
744  */
745 void
746 ar5416EnableDfs(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
747 {
748 	uint32_t val;
749 
750 	val = OS_REG_READ(ah, AR_PHY_RADAR_0);
751 
752 	if (pe->pe_firpwr != HAL_PHYERR_PARAM_NOVAL) {
753 		val &= ~AR_PHY_RADAR_0_FIRPWR;
754 		val |= SM(pe->pe_firpwr, AR_PHY_RADAR_0_FIRPWR);
755 	}
756 	if (pe->pe_rrssi != HAL_PHYERR_PARAM_NOVAL) {
757 		val &= ~AR_PHY_RADAR_0_RRSSI;
758 		val |= SM(pe->pe_rrssi, AR_PHY_RADAR_0_RRSSI);
759 	}
760 	if (pe->pe_height != HAL_PHYERR_PARAM_NOVAL) {
761 		val &= ~AR_PHY_RADAR_0_HEIGHT;
762 		val |= SM(pe->pe_height, AR_PHY_RADAR_0_HEIGHT);
763 	}
764 	if (pe->pe_prssi != HAL_PHYERR_PARAM_NOVAL) {
765 		val &= ~AR_PHY_RADAR_0_PRSSI;
766 		val |= SM(pe->pe_prssi, AR_PHY_RADAR_0_PRSSI);
767 	}
768 	if (pe->pe_inband != HAL_PHYERR_PARAM_NOVAL) {
769 		val &= ~AR_PHY_RADAR_0_INBAND;
770 		val |= SM(pe->pe_inband, AR_PHY_RADAR_0_INBAND);
771 	}
772 
773 	/*Enable FFT data*/
774 	val |= AR_PHY_RADAR_0_FFT_ENA;
775 
776 	OS_REG_WRITE(ah, AR_PHY_RADAR_0, val | AR_PHY_RADAR_0_ENA);
777 
778 	if (pe->pe_usefir128 == 1)
779 		OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_USE_FIR128);
780 	else if (pe->pe_usefir128 == 0)
781 		OS_REG_SET_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_USE_FIR128);
782 
783 	if (pe->pe_enmaxrssi == 1)
784 		OS_REG_SET_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_MAX_RRSSI);
785 	else if (pe->pe_enmaxrssi == 0)
786 		OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_MAX_RRSSI);
787 
788 	if (pe->pe_blockradar == 1)
789 		OS_REG_SET_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_BLOCK_CHECK);
790 	else if (pe->pe_blockradar == 0)
791 		OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_BLOCK_CHECK);
792 
793 	if (pe->pe_maxlen != HAL_PHYERR_PARAM_NOVAL) {
794 		val = OS_REG_READ(ah, AR_PHY_RADAR_1);
795 		val &= ~AR_PHY_RADAR_1_MAXLEN;
796 		val |= SM(pe->pe_maxlen, AR_PHY_RADAR_1_MAXLEN);
797 		OS_REG_WRITE(ah, AR_PHY_RADAR_1, val);
798 	}
799 
800 	/*
801 	 * Enable HT/40 if the upper layer asks;
802 	 * it should check the channel is HT/40 and HAL_CAP_EXT_CHAN_DFS
803 	 * is available.
804 	 */
805 	if (pe->pe_extchannel == 1)
806 		OS_REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
807 	else if (pe->pe_extchannel == 0)
808 		OS_REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
809 
810 	if (pe->pe_relstep != HAL_PHYERR_PARAM_NOVAL) {
811 		val = OS_REG_READ(ah, AR_PHY_RADAR_1);
812 		val &= ~AR_PHY_RADAR_1_RELSTEP_THRESH;
813 		val |= SM(pe->pe_relstep, AR_PHY_RADAR_1_RELSTEP_THRESH);
814 		OS_REG_WRITE(ah, AR_PHY_RADAR_1, val);
815 	}
816 	if (pe->pe_relpwr != HAL_PHYERR_PARAM_NOVAL) {
817 		val = OS_REG_READ(ah, AR_PHY_RADAR_1);
818 		val &= ~AR_PHY_RADAR_1_RELPWR_THRESH;
819 		val |= SM(pe->pe_relpwr, AR_PHY_RADAR_1_RELPWR_THRESH);
820 		OS_REG_WRITE(ah, AR_PHY_RADAR_1, val);
821 	}
822 }
823 
824 /*
825  * Extract the radar event information from the given phy error.
826  *
827  * Returns AH_TRUE if the phy error was actually a phy error,
828  * AH_FALSE if the phy error wasn't a phy error.
829  */
830 
831 /* Flags for pulse_bw_info */
832 #define	PRI_CH_RADAR_FOUND		0x01
833 #define	EXT_CH_RADAR_FOUND		0x02
834 #define	EXT_CH_RADAR_EARLY_FOUND	0x04
835 
836 HAL_BOOL
837 ar5416ProcessRadarEvent(struct ath_hal *ah, struct ath_rx_status *rxs,
838     uint64_t fulltsf, const char *buf, HAL_DFS_EVENT *event)
839 {
840 	HAL_BOOL doDfsExtCh;
841 	HAL_BOOL doDfsEnhanced;
842 	HAL_BOOL doDfsCombinedRssi;
843 
844 	uint8_t rssi = 0, ext_rssi = 0;
845 	uint8_t pulse_bw_info = 0, pulse_length_ext = 0, pulse_length_pri = 0;
846 	uint32_t dur = 0;
847 	int pri_found = 1, ext_found = 0;
848 	int early_ext = 0;
849 	int is_dc = 0;
850 	uint16_t datalen;		/* length from the RX status field */
851 
852 	/* Check whether the given phy error is a radar event */
853 	if ((rxs->rs_phyerr != HAL_PHYERR_RADAR) &&
854 	    (rxs->rs_phyerr != HAL_PHYERR_FALSE_RADAR_EXT)) {
855 		return AH_FALSE;
856 	}
857 
858 	/* Grab copies of the capabilities; just to make the code clearer */
859 	doDfsExtCh = AH_PRIVATE(ah)->ah_caps.halExtChanDfsSupport;
860 	doDfsEnhanced = AH_PRIVATE(ah)->ah_caps.halEnhancedDfsSupport;
861 	doDfsCombinedRssi = AH_PRIVATE(ah)->ah_caps.halUseCombinedRadarRssi;
862 
863 	datalen = rxs->rs_datalen;
864 
865 	/* If hardware supports it, use combined RSSI, else use chain 0 RSSI */
866 	if (doDfsCombinedRssi)
867 		rssi = (uint8_t) rxs->rs_rssi;
868 	else
869 		rssi = (uint8_t) rxs->rs_rssi_ctl[0];
870 
871 	/* Set this; but only use it if doDfsExtCh is set */
872 	ext_rssi = (uint8_t) rxs->rs_rssi_ext[0];
873 
874 	/* Cap it at 0 if the RSSI is a negative number */
875 	if (rssi & 0x80)
876 		rssi = 0;
877 
878 	if (ext_rssi & 0x80)
879 		ext_rssi = 0;
880 
881 	/*
882 	 * Fetch the relevant data from the frame
883 	 */
884 	if (doDfsExtCh) {
885 		if (datalen < 3)
886 			return AH_FALSE;
887 
888 		/* Last three bytes of the frame are of interest */
889 		pulse_length_pri = *(buf + datalen - 3);
890 		pulse_length_ext = *(buf + datalen - 2);
891 		pulse_bw_info = *(buf + datalen - 1);
892 		HALDEBUG(ah, HAL_DEBUG_DFS, "%s: rssi=%d, ext_rssi=%d, pulse_length_pri=%d,"
893 		    " pulse_length_ext=%d, pulse_bw_info=%x\n",
894 		    __func__, rssi, ext_rssi, pulse_length_pri, pulse_length_ext,
895 		    pulse_bw_info);
896 	} else {
897 		/* The pulse width is byte 0 of the data */
898 		if (datalen >= 1)
899 			dur = ((uint8_t) buf[0]) & 0xff;
900 		else
901 			dur = 0;
902 
903 		if (dur == 0 && rssi == 0) {
904 			HALDEBUG(ah, HAL_DEBUG_DFS, "%s: dur and rssi are 0\n", __func__);
905 			return AH_FALSE;
906 		}
907 
908 		HALDEBUG(ah, HAL_DEBUG_DFS, "%s: rssi=%d, dur=%d\n", __func__, rssi, dur);
909 
910 		/* Single-channel only */
911 		pri_found = 1;
912 		ext_found = 0;
913 	}
914 
915 	/*
916 	 * If doing extended channel data, pulse_bw_info must
917 	 * have one of the flags set.
918 	 */
919 	if (doDfsExtCh && pulse_bw_info == 0x0)
920 		return AH_FALSE;
921 
922 	/*
923 	 * If the extended channel data is available, calculate
924 	 * which to pay attention to.
925 	 */
926 	if (doDfsExtCh) {
927 		/* If pulse is on DC, take the larger duration of the two */
928 		if ((pulse_bw_info & EXT_CH_RADAR_FOUND) &&
929 		    (pulse_bw_info & PRI_CH_RADAR_FOUND)) {
930 			is_dc = 1;
931 			if (pulse_length_ext > pulse_length_pri) {
932 				dur = pulse_length_ext;
933 				pri_found = 0;
934 				ext_found = 1;
935 			} else {
936 				dur = pulse_length_pri;
937 				pri_found = 1;
938 				ext_found = 0;
939 			}
940 		} else if (pulse_bw_info & EXT_CH_RADAR_EARLY_FOUND) {
941 			dur = pulse_length_ext;
942 			pri_found = 0;
943 			ext_found = 1;
944 			early_ext = 1;
945 		} else if (pulse_bw_info & PRI_CH_RADAR_FOUND) {
946 			dur = pulse_length_pri;
947 			pri_found = 1;
948 			ext_found = 0;
949 		} else if (pulse_bw_info & EXT_CH_RADAR_FOUND) {
950 			dur = pulse_length_ext;
951 			pri_found = 0;
952 			ext_found = 1;
953 		}
954 
955 	}
956 
957 	/*
958 	 * For enhanced DFS (Merlin and later), pulse_bw_info has
959 	 * implications for selecting the correct RSSI value.
960 	 */
961 	if (doDfsEnhanced) {
962 		switch (pulse_bw_info & 0x03) {
963 		case 0:
964 			/* No radar? */
965 			rssi = 0;
966 			break;
967 		case PRI_CH_RADAR_FOUND:
968 			/* Radar in primary channel */
969 			/* Cannot use ctrl channel RSSI if ext channel is stronger */
970 			if (ext_rssi >= (rssi + 3)) {
971 				rssi = 0;
972 			};
973 			break;
974 		case EXT_CH_RADAR_FOUND:
975 			/* Radar in extended channel */
976 			/* Cannot use ext channel RSSI if ctrl channel is stronger */
977 			if (rssi >= (ext_rssi + 12)) {
978 				rssi = 0;
979 			} else {
980 				rssi = ext_rssi;
981 			}
982 			break;
983 		case (PRI_CH_RADAR_FOUND | EXT_CH_RADAR_FOUND):
984 			/* When both are present, use stronger one */
985 			if (rssi < ext_rssi)
986 				rssi = ext_rssi;
987 			break;
988 		}
989 	}
990 
991 	/*
992 	 * If not doing enhanced DFS, choose the ext channel if
993 	 * it is stronger than the main channel
994 	 */
995 	if (doDfsExtCh && !doDfsEnhanced) {
996 		if ((ext_rssi > rssi) && (ext_rssi < 128))
997 			rssi = ext_rssi;
998 	}
999 
1000 	/*
1001 	 * XXX what happens if the above code decides the RSSI
1002 	 * XXX wasn't valid, an sets it to 0?
1003 	 */
1004 
1005 	/*
1006 	 * Fill out dfs_event structure.
1007 	 */
1008 	event->re_full_ts = fulltsf;
1009 	event->re_ts = rxs->rs_tstamp;
1010 	event->re_rssi = rssi;
1011 	event->re_dur = dur;
1012 
1013 	event->re_flags = 0;
1014 	if (pri_found)
1015 		event->re_flags |= HAL_DFS_EVENT_PRICH;
1016 	if (ext_found)
1017 		event->re_flags |= HAL_DFS_EVENT_EXTCH;
1018 	if (early_ext)
1019 		event->re_flags |= HAL_DFS_EVENT_EXTEARLY;
1020 	if (is_dc)
1021 		event->re_flags |= HAL_DFS_EVENT_ISDC;
1022 
1023 	return AH_TRUE;
1024 }
1025 
1026 /*
1027  * Return whether fast-clock is currently enabled for this
1028  * channel.
1029  */
1030 HAL_BOOL
1031 ar5416IsFastClockEnabled(struct ath_hal *ah)
1032 {
1033 	struct ath_hal_private *ahp = AH_PRIVATE(ah);
1034 
1035 	return IS_5GHZ_FAST_CLOCK_EN(ah, ahp->ah_curchan);
1036 }
1037