1 /*- 2 * SPDX-License-Identifier: ISC 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * Copyright (c) 2002-2008 Atheros Communications, Inc. 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 * 19 * $FreeBSD$ 20 */ 21 #include "opt_ah.h" 22 23 #include "ah.h" 24 #include "ah_internal.h" 25 26 #include "ah_eeprom_v3.h" 27 28 #include "ar5212/ar5212.h" 29 #include "ar5212/ar5212reg.h" 30 #include "ar5212/ar5212phy.h" 31 32 #define AH_5212_5413 33 #include "ar5212/ar5212.ini" 34 35 #define N(a) (sizeof(a)/sizeof(a[0])) 36 37 struct ar5413State { 38 RF_HAL_FUNCS base; /* public state, must be first */ 39 uint16_t pcdacTable[PWR_TABLE_SIZE_2413]; 40 41 uint32_t Bank1Data[N(ar5212Bank1_5413)]; 42 uint32_t Bank2Data[N(ar5212Bank2_5413)]; 43 uint32_t Bank3Data[N(ar5212Bank3_5413)]; 44 uint32_t Bank6Data[N(ar5212Bank6_5413)]; 45 uint32_t Bank7Data[N(ar5212Bank7_5413)]; 46 47 /* 48 * Private state for reduced stack usage. 49 */ 50 /* filled out Vpd table for all pdGains (chanL) */ 51 uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL] 52 [MAX_PWR_RANGE_IN_HALF_DB]; 53 /* filled out Vpd table for all pdGains (chanR) */ 54 uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL] 55 [MAX_PWR_RANGE_IN_HALF_DB]; 56 /* filled out Vpd table for all pdGains (interpolated) */ 57 uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL] 58 [MAX_PWR_RANGE_IN_HALF_DB]; 59 }; 60 #define AR5413(ah) ((struct ar5413State *) AH5212(ah)->ah_rfHal) 61 62 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, 63 uint32_t numBits, uint32_t firstBit, uint32_t column); 64 65 static void 66 ar5413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, 67 int writes) 68 { 69 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5413, modesIndex, writes); 70 HAL_INI_WRITE_ARRAY(ah, ar5212Common_5413, 1, writes); 71 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5413, freqIndex, writes); 72 } 73 74 /* 75 * Take the MHz channel value and set the Channel value 76 * 77 * ASSUMES: Writes enabled to analog bus 78 */ 79 static HAL_BOOL 80 ar5413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan) 81 { 82 uint16_t freq = ath_hal_gethwchannel(ah, chan); 83 uint32_t channelSel = 0; 84 uint32_t bModeSynth = 0; 85 uint32_t aModeRefSel = 0; 86 uint32_t reg32 = 0; 87 88 OS_MARK(ah, AH_MARK_SETCHANNEL, freq); 89 90 if (freq < 4800) { 91 uint32_t txctl; 92 93 if (((freq - 2192) % 5) == 0) { 94 channelSel = ((freq - 672) * 2 - 3040)/10; 95 bModeSynth = 0; 96 } else if (((freq - 2224) % 5) == 0) { 97 channelSel = ((freq - 704) * 2 - 3040) / 10; 98 bModeSynth = 1; 99 } else { 100 HALDEBUG(ah, HAL_DEBUG_ANY, 101 "%s: invalid channel %u MHz\n", 102 __func__, freq); 103 return AH_FALSE; 104 } 105 106 channelSel = (channelSel << 2) & 0xff; 107 channelSel = ath_hal_reverseBits(channelSel, 8); 108 109 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); 110 if (freq == 2484) { 111 /* Enable channel spreading for channel 14 */ 112 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 113 txctl | AR_PHY_CCK_TX_CTRL_JAPAN); 114 } else { 115 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 116 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); 117 } 118 } else if (((freq % 5) == 2) && (freq <= 5435)) { 119 freq = freq - 2; /* Align to even 5MHz raster */ 120 channelSel = ath_hal_reverseBits( 121 (uint32_t)(((freq - 4800)*10)/25 + 1), 8); 122 aModeRefSel = ath_hal_reverseBits(0, 2); 123 } else if ((freq % 20) == 0 && freq >= 5120) { 124 channelSel = ath_hal_reverseBits( 125 ((freq - 4800) / 20 << 2), 8); 126 aModeRefSel = ath_hal_reverseBits(1, 2); 127 } else if ((freq % 10) == 0) { 128 channelSel = ath_hal_reverseBits( 129 ((freq - 4800) / 10 << 1), 8); 130 aModeRefSel = ath_hal_reverseBits(1, 2); 131 } else if ((freq % 5) == 0) { 132 channelSel = ath_hal_reverseBits( 133 (freq - 4800) / 5, 8); 134 aModeRefSel = ath_hal_reverseBits(1, 2); 135 } else { 136 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n", 137 __func__, freq); 138 return AH_FALSE; 139 } 140 141 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) | 142 (1 << 12) | 0x1; 143 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff); 144 145 reg32 >>= 8; 146 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f); 147 148 AH_PRIVATE(ah)->ah_curchan = chan; 149 return AH_TRUE; 150 } 151 152 /* 153 * Reads EEPROM header info from device structure and programs 154 * all rf registers 155 * 156 * REQUIRES: Access to the analog rf device 157 */ 158 static HAL_BOOL 159 ar5413SetRfRegs(struct ath_hal *ah, 160 const struct ieee80211_channel *chan, 161 uint16_t modesIndex, uint16_t *rfXpdGain) 162 { 163 #define RF_BANK_SETUP(_priv, _ix, _col) do { \ 164 int i; \ 165 for (i = 0; i < N(ar5212Bank##_ix##_5413); i++) \ 166 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5413[i][_col];\ 167 } while (0) 168 struct ath_hal_5212 *ahp = AH5212(ah); 169 uint16_t freq = ath_hal_gethwchannel(ah, chan); 170 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 171 uint16_t ob5GHz = 0, db5GHz = 0; 172 uint16_t ob2GHz = 0, db2GHz = 0; 173 struct ar5413State *priv = AR5413(ah); 174 int regWrites = 0; 175 176 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n", 177 __func__, chan->ic_freq, chan->ic_flags, modesIndex); 178 179 HALASSERT(priv != AH_NULL); 180 181 /* Setup rf parameters */ 182 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) { 183 case IEEE80211_CHAN_A: 184 if (freq > 4000 && freq < 5260) { 185 ob5GHz = ee->ee_ob1; 186 db5GHz = ee->ee_db1; 187 } else if (freq >= 5260 && freq < 5500) { 188 ob5GHz = ee->ee_ob2; 189 db5GHz = ee->ee_db2; 190 } else if (freq >= 5500 && freq < 5725) { 191 ob5GHz = ee->ee_ob3; 192 db5GHz = ee->ee_db3; 193 } else if (freq >= 5725) { 194 ob5GHz = ee->ee_ob4; 195 db5GHz = ee->ee_db4; 196 } else { 197 /* XXX else */ 198 } 199 break; 200 case IEEE80211_CHAN_B: 201 ob2GHz = ee->ee_obFor24; 202 db2GHz = ee->ee_dbFor24; 203 break; 204 case IEEE80211_CHAN_G: 205 case IEEE80211_CHAN_PUREG: /* NB: really 108G */ 206 ob2GHz = ee->ee_obFor24g; 207 db2GHz = ee->ee_dbFor24g; 208 break; 209 default: 210 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", 211 __func__, chan->ic_flags); 212 return AH_FALSE; 213 } 214 215 /* Bank 1 Write */ 216 RF_BANK_SETUP(priv, 1, 1); 217 218 /* Bank 2 Write */ 219 RF_BANK_SETUP(priv, 2, modesIndex); 220 221 /* Bank 3 Write */ 222 RF_BANK_SETUP(priv, 3, modesIndex); 223 224 /* Bank 6 Write */ 225 RF_BANK_SETUP(priv, 6, modesIndex); 226 227 /* Only the 5 or 2 GHz OB/DB need to be set for a mode */ 228 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 229 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 241, 0); 230 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 238, 0); 231 232 /* TODO - only for Eagle 1.0 2GHz - remove for production */ 233 /* XXX: but without this bit G doesn't work. */ 234 ar5212ModifyRfBuffer(priv->Bank6Data, 1 , 1, 291, 2); 235 236 /* Optimum value for rf_pwd_iclobuf2G for PCIe chips only */ 237 if (AH_PRIVATE(ah)->ah_ispcie) { 238 ar5212ModifyRfBuffer(priv->Bank6Data, ath_hal_reverseBits(6, 3), 239 3, 131, 3); 240 } 241 } else { 242 ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 247, 0); 243 ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 244, 0); 244 } 245 246 /* Bank 7 Setup */ 247 RF_BANK_SETUP(priv, 7, modesIndex); 248 249 /* Write Analog registers */ 250 HAL_INI_WRITE_BANK(ah, ar5212Bank1_5413, priv->Bank1Data, regWrites); 251 HAL_INI_WRITE_BANK(ah, ar5212Bank2_5413, priv->Bank2Data, regWrites); 252 HAL_INI_WRITE_BANK(ah, ar5212Bank3_5413, priv->Bank3Data, regWrites); 253 HAL_INI_WRITE_BANK(ah, ar5212Bank6_5413, priv->Bank6Data, regWrites); 254 HAL_INI_WRITE_BANK(ah, ar5212Bank7_5413, priv->Bank7Data, regWrites); 255 256 /* Now that we have reprogrammed rfgain value, clear the flag. */ 257 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; 258 259 return AH_TRUE; 260 #undef RF_BANK_SETUP 261 } 262 263 /* 264 * Return a reference to the requested RF Bank. 265 */ 266 static uint32_t * 267 ar5413GetRfBank(struct ath_hal *ah, int bank) 268 { 269 struct ar5413State *priv = AR5413(ah); 270 271 HALASSERT(priv != AH_NULL); 272 switch (bank) { 273 case 1: return priv->Bank1Data; 274 case 2: return priv->Bank2Data; 275 case 3: return priv->Bank3Data; 276 case 6: return priv->Bank6Data; 277 case 7: return priv->Bank7Data; 278 } 279 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n", 280 __func__, bank); 281 return AH_NULL; 282 } 283 284 /* 285 * Return indices surrounding the value in sorted integer lists. 286 * 287 * NB: the input list is assumed to be sorted in ascending order 288 */ 289 static void 290 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize, 291 uint32_t *vlo, uint32_t *vhi) 292 { 293 int16_t target = v; 294 const uint16_t *ep = lp+listSize; 295 const uint16_t *tp; 296 297 /* 298 * Check first and last elements for out-of-bounds conditions. 299 */ 300 if (target < lp[0]) { 301 *vlo = *vhi = 0; 302 return; 303 } 304 if (target >= ep[-1]) { 305 *vlo = *vhi = listSize - 1; 306 return; 307 } 308 309 /* look for value being near or between 2 values in list */ 310 for (tp = lp; tp < ep; tp++) { 311 /* 312 * If value is close to the current value of the list 313 * then target is not between values, it is one of the values 314 */ 315 if (*tp == target) { 316 *vlo = *vhi = tp - (const uint16_t *) lp; 317 return; 318 } 319 /* 320 * Look for value being between current value and next value 321 * if so return these 2 values 322 */ 323 if (target < tp[1]) { 324 *vlo = tp - (const uint16_t *) lp; 325 *vhi = *vlo + 1; 326 return; 327 } 328 } 329 } 330 331 /* 332 * Fill the Vpdlist for indices Pmax-Pmin 333 */ 334 static HAL_BOOL 335 ar5413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax, 336 const int16_t *pwrList, const uint16_t *VpdList, 337 uint16_t numIntercepts, 338 uint16_t retVpdList[][64]) 339 { 340 uint16_t ii, jj, kk; 341 int16_t currPwr = (int16_t)(2*Pmin); 342 /* since Pmin is pwr*2 and pwrList is 4*pwr */ 343 uint32_t idxL, idxR; 344 345 ii = 0; 346 jj = 0; 347 348 if (numIntercepts < 2) 349 return AH_FALSE; 350 351 while (ii <= (uint16_t)(Pmax - Pmin)) { 352 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList, 353 numIntercepts, &(idxL), &(idxR)); 354 if (idxR < 1) 355 idxR = 1; /* extrapolate below */ 356 if (idxL == (uint32_t)(numIntercepts - 1)) 357 idxL = numIntercepts - 2; /* extrapolate above */ 358 if (pwrList[idxL] == pwrList[idxR]) 359 kk = VpdList[idxL]; 360 else 361 kk = (uint16_t) 362 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 363 (pwrList[idxR] - currPwr)*VpdList[idxL])/ 364 (pwrList[idxR] - pwrList[idxL])); 365 retVpdList[pdGainIdx][ii] = kk; 366 ii++; 367 currPwr += 2; /* half dB steps */ 368 } 369 370 return AH_TRUE; 371 } 372 373 /* 374 * Returns interpolated or the scaled up interpolated value 375 */ 376 static int16_t 377 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight, 378 int16_t targetLeft, int16_t targetRight) 379 { 380 int16_t rv; 381 382 if (srcRight != srcLeft) { 383 rv = ((target - srcLeft)*targetRight + 384 (srcRight - target)*targetLeft) / (srcRight - srcLeft); 385 } else { 386 rv = targetLeft; 387 } 388 return rv; 389 } 390 391 /* 392 * Uses the data points read from EEPROM to reconstruct the pdadc power table 393 * Called by ar5413SetPowerTable() 394 */ 395 static int 396 ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel, 397 const RAW_DATA_STRUCT_2413 *pRawDataset, 398 uint16_t pdGainOverlap_t2, 399 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[], 400 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 401 { 402 struct ar5413State *priv = AR5413(ah); 403 #define VpdTable_L priv->vpdTable_L 404 #define VpdTable_R priv->vpdTable_R 405 #define VpdTable_I priv->vpdTable_I 406 uint32_t ii, jj, kk; 407 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */ 408 uint32_t idxL, idxR; 409 uint32_t numPdGainsUsed = 0; 410 /* 411 * If desired to support -ve power levels in future, just 412 * change pwr_I_0 to signed 5-bits. 413 */ 414 int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; 415 /* to accommodate -ve power levels later on. */ 416 int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; 417 /* to accommodate -ve power levels later on */ 418 uint16_t numVpd = 0; 419 uint16_t Vpd_step; 420 int16_t tmpVal ; 421 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex; 422 423 /* Get upper lower index */ 424 GetLowerUpperIndex(channel, pRawDataset->pChannels, 425 pRawDataset->numChannels, &(idxL), &(idxR)); 426 427 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 428 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; 429 /* work backwards 'cause highest pdGain for lowest power */ 430 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd; 431 if (numVpd > 0) { 432 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain; 433 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]; 434 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) { 435 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]; 436 } 437 Pmin_t2[numPdGainsUsed] = (int16_t) 438 (Pmin_t2[numPdGainsUsed] / 2); 439 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1]; 440 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]) 441 Pmax_t2[numPdGainsUsed] = 442 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]; 443 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2); 444 ar5413FillVpdTable( 445 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 446 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 447 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L 448 ); 449 ar5413FillVpdTable( 450 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 451 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]), 452 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R 453 ); 454 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) { 455 VpdTable_I[numPdGainsUsed][kk] = 456 interpolate_signed( 457 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR], 458 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]); 459 } 460 /* fill VpdTable_I for this pdGain */ 461 numPdGainsUsed++; 462 } 463 /* if this pdGain is used */ 464 } 465 466 *pMinCalPower = Pmin_t2[0]; 467 kk = 0; /* index for the final table */ 468 for (ii = 0; ii < numPdGainsUsed; ii++) { 469 if (ii == (numPdGainsUsed - 1)) 470 pPdGainBoundaries[ii] = Pmax_t2[ii] + 471 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB; 472 else 473 pPdGainBoundaries[ii] = (uint16_t) 474 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 ); 475 if (pPdGainBoundaries[ii] > 63) { 476 HALDEBUG(ah, HAL_DEBUG_ANY, 477 "%s: clamp pPdGainBoundaries[%d] %d\n", 478 __func__, ii, pPdGainBoundaries[ii]);/*XXX*/ 479 pPdGainBoundaries[ii] = 63; 480 } 481 482 /* Find starting index for this pdGain */ 483 if (ii == 0) 484 ss = 0; /* for the first pdGain, start from index 0 */ 485 else 486 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 487 pdGainOverlap_t2; 488 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]); 489 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); 490 /* 491 *-ve ss indicates need to extrapolate data below for this pdGain 492 */ 493 while (ss < 0) { 494 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step); 495 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal); 496 ss++; 497 } 498 499 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii]; 500 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii]; 501 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; 502 503 while (ss < (int16_t)maxIndex) 504 pPDADCValues[kk++] = VpdTable_I[ii][ss++]; 505 506 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] - 507 VpdTable_I[ii][sizeCurrVpdTable-2]); 508 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); 509 /* 510 * for last gain, pdGainBoundary == Pmax_t2, so will 511 * have to extrapolate 512 */ 513 if (tgtIndex > maxIndex) { /* need to extrapolate above */ 514 while(ss < (int16_t)tgtIndex) { 515 tmpVal = (uint16_t) 516 (VpdTable_I[ii][sizeCurrVpdTable-1] + 517 (ss-maxIndex)*Vpd_step); 518 pPDADCValues[kk++] = (tmpVal > 127) ? 519 127 : tmpVal; 520 ss++; 521 } 522 } /* extrapolated above */ 523 } /* for all pdGainUsed */ 524 525 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) { 526 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1]; 527 ii++; 528 } 529 while (kk < 128) { 530 pPDADCValues[kk] = pPDADCValues[kk-1]; 531 kk++; 532 } 533 534 return numPdGainsUsed; 535 #undef VpdTable_L 536 #undef VpdTable_R 537 #undef VpdTable_I 538 } 539 540 static HAL_BOOL 541 ar5413SetPowerTable(struct ath_hal *ah, 542 int16_t *minPower, int16_t *maxPower, 543 const struct ieee80211_channel *chan, 544 uint16_t *rfXpdGain) 545 { 546 struct ath_hal_5212 *ahp = AH5212(ah); 547 uint16_t freq = ath_hal_gethwchannel(ah, chan); 548 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 549 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL; 550 uint16_t pdGainOverlap_t2; 551 int16_t minCalPower5413_t2; 552 uint16_t *pdadcValues = ahp->ah_pcdacTable; 553 uint16_t gainBoundaries[4]; 554 uint32_t reg32, regoffset; 555 int i, numPdGainsUsed; 556 #ifndef AH_USE_INIPDGAIN 557 uint32_t tpcrg1; 558 #endif 559 560 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n", 561 __func__, chan->ic_freq, chan->ic_flags); 562 563 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) 564 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; 565 else if (IEEE80211_IS_CHAN_B(chan)) 566 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; 567 else { 568 HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan)); 569 pRawDataset = &ee->ee_rawDataset2413[headerInfo11A]; 570 } 571 572 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5), 573 AR_PHY_TPCRG5_PD_GAIN_OVERLAP); 574 575 numPdGainsUsed = ar5413getGainBoundariesAndPdadcsForPowers(ah, 576 freq, pRawDataset, pdGainOverlap_t2, 577 &minCalPower5413_t2,gainBoundaries, rfXpdGain, pdadcValues); 578 HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3); 579 580 #ifdef AH_USE_INIPDGAIN 581 /* 582 * Use pd_gains curve from eeprom; Atheros always uses 583 * the default curve from the ini file but some vendors 584 * (e.g. Zcomax) want to override this curve and not 585 * honoring their settings results in tx power 5dBm low. 586 */ 587 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 588 (pRawDataset->pDataPerChannel[0].numPdGains - 1)); 589 #else 590 tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1); 591 tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN) 592 | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN); 593 switch (numPdGainsUsed) { 594 case 3: 595 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3; 596 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3); 597 /* fall thru... */ 598 case 2: 599 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2; 600 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2); 601 /* fall thru... */ 602 case 1: 603 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1; 604 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1); 605 break; 606 } 607 #ifdef AH_DEBUG 608 if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1)) 609 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default " 610 "pd_gains (default 0x%x, calculated 0x%x)\n", 611 __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1); 612 #endif 613 OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1); 614 #endif 615 616 /* 617 * Note the pdadc table may not start at 0 dBm power, could be 618 * negative or greater than 0. Need to offset the power 619 * values by the amount of minPower for griffin 620 */ 621 if (minCalPower5413_t2 != 0) 622 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower5413_t2); 623 else 624 ahp->ah_txPowerIndexOffset = 0; 625 626 /* Finally, write the power values into the baseband power table */ 627 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */ 628 for (i = 0; i < 32; i++) { 629 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) | 630 ((pdadcValues[4*i + 1] & 0xFF) << 8) | 631 ((pdadcValues[4*i + 2] & 0xFF) << 16) | 632 ((pdadcValues[4*i + 3] & 0xFF) << 24) ; 633 OS_REG_WRITE(ah, regoffset, reg32); 634 regoffset += 4; 635 } 636 637 OS_REG_WRITE(ah, AR_PHY_TPCRG5, 638 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 639 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | 640 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | 641 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | 642 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); 643 644 return AH_TRUE; 645 } 646 647 static int16_t 648 ar5413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data) 649 { 650 uint32_t ii,jj; 651 uint16_t Pmin=0,numVpd; 652 653 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 654 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; 655 /* work backwards 'cause highest pdGain for lowest power */ 656 numVpd = data->pDataPerPDGain[jj].numVpd; 657 if (numVpd > 0) { 658 Pmin = data->pDataPerPDGain[jj].pwr_t4[0]; 659 return(Pmin); 660 } 661 } 662 return(Pmin); 663 } 664 665 static int16_t 666 ar5413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data) 667 { 668 uint32_t ii; 669 uint16_t Pmax=0,numVpd; 670 671 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 672 /* work forwards cuase lowest pdGain for highest power */ 673 numVpd = data->pDataPerPDGain[ii].numVpd; 674 if (numVpd > 0) { 675 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1]; 676 return(Pmax); 677 } 678 } 679 return(Pmax); 680 } 681 682 static HAL_BOOL 683 ar5413GetChannelMaxMinPower(struct ath_hal *ah, 684 const struct ieee80211_channel *chan, 685 int16_t *maxPow, int16_t *minPow) 686 { 687 uint16_t freq = chan->ic_freq; /* NB: never mapped */ 688 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 689 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL; 690 const RAW_DATA_PER_CHANNEL_2413 *data=AH_NULL; 691 uint16_t numChannels; 692 int totalD,totalF, totalMin,last, i; 693 694 *maxPow = 0; 695 696 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) 697 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; 698 else if (IEEE80211_IS_CHAN_B(chan)) 699 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; 700 else { 701 HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan)); 702 pRawDataset = &ee->ee_rawDataset2413[headerInfo11A]; 703 } 704 705 numChannels = pRawDataset->numChannels; 706 data = pRawDataset->pDataPerChannel; 707 708 /* Make sure the channel is in the range of the TP values 709 * (freq piers) 710 */ 711 if (numChannels < 1) 712 return(AH_FALSE); 713 714 if ((freq < data[0].channelValue) || 715 (freq > data[numChannels-1].channelValue)) { 716 if (freq < data[0].channelValue) { 717 *maxPow = ar5413GetMaxPower(ah, &data[0]); 718 *minPow = ar5413GetMinPower(ah, &data[0]); 719 return(AH_TRUE); 720 } else { 721 *maxPow = ar5413GetMaxPower(ah, &data[numChannels - 1]); 722 *minPow = ar5413GetMinPower(ah, &data[numChannels - 1]); 723 return(AH_TRUE); 724 } 725 } 726 727 /* Linearly interpolate the power value now */ 728 for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue); 729 last = i++); 730 totalD = data[i].channelValue - data[last].channelValue; 731 if (totalD > 0) { 732 totalF = ar5413GetMaxPower(ah, &data[i]) - ar5413GetMaxPower(ah, &data[last]); 733 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 734 ar5413GetMaxPower(ah, &data[last])*totalD)/totalD); 735 totalMin = ar5413GetMinPower(ah, &data[i]) - ar5413GetMinPower(ah, &data[last]); 736 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) + 737 ar5413GetMinPower(ah, &data[last])*totalD)/totalD); 738 return(AH_TRUE); 739 } else { 740 if (freq == data[i].channelValue) { 741 *maxPow = ar5413GetMaxPower(ah, &data[i]); 742 *minPow = ar5413GetMinPower(ah, &data[i]); 743 return(AH_TRUE); 744 } else 745 return(AH_FALSE); 746 } 747 } 748 749 /* 750 * Free memory for analog bank scratch buffers 751 */ 752 static void 753 ar5413RfDetach(struct ath_hal *ah) 754 { 755 struct ath_hal_5212 *ahp = AH5212(ah); 756 757 HALASSERT(ahp->ah_rfHal != AH_NULL); 758 ath_hal_free(ahp->ah_rfHal); 759 ahp->ah_rfHal = AH_NULL; 760 } 761 762 /* 763 * Allocate memory for analog bank scratch buffers 764 * Scratch Buffer will be reinitialized every reset so no need to zero now 765 */ 766 static HAL_BOOL 767 ar5413RfAttach(struct ath_hal *ah, HAL_STATUS *status) 768 { 769 struct ath_hal_5212 *ahp = AH5212(ah); 770 struct ar5413State *priv; 771 772 HALASSERT(ah->ah_magic == AR5212_MAGIC); 773 774 HALASSERT(ahp->ah_rfHal == AH_NULL); 775 priv = ath_hal_malloc(sizeof(struct ar5413State)); 776 if (priv == AH_NULL) { 777 HALDEBUG(ah, HAL_DEBUG_ANY, 778 "%s: cannot allocate private state\n", __func__); 779 *status = HAL_ENOMEM; /* XXX */ 780 return AH_FALSE; 781 } 782 priv->base.rfDetach = ar5413RfDetach; 783 priv->base.writeRegs = ar5413WriteRegs; 784 priv->base.getRfBank = ar5413GetRfBank; 785 priv->base.setChannel = ar5413SetChannel; 786 priv->base.setRfRegs = ar5413SetRfRegs; 787 priv->base.setPowerTable = ar5413SetPowerTable; 788 priv->base.getChannelMaxMinPower = ar5413GetChannelMaxMinPower; 789 priv->base.getNfAdjust = ar5212GetNfAdjust; 790 791 ahp->ah_pcdacTable = priv->pcdacTable; 792 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); 793 ahp->ah_rfHal = &priv->base; 794 795 return AH_TRUE; 796 } 797 798 static HAL_BOOL 799 ar5413Probe(struct ath_hal *ah) 800 { 801 return IS_5413(ah); 802 } 803 AH_RF(RF5413, ar5413Probe, ar5413RfAttach); 804