xref: /freebsd/sys/dev/ath/ath_hal/ar5212/ar5413.c (revision 7aa383846770374466b1dcb2cefd71bde9acf463)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 
24 #include "ah_eeprom_v3.h"
25 
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
29 
30 #define AH_5212_5413
31 #include "ar5212/ar5212.ini"
32 
33 #define	N(a)	(sizeof(a)/sizeof(a[0]))
34 
35 struct ar5413State {
36 	RF_HAL_FUNCS	base;		/* public state, must be first */
37 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2413];
38 
39 	uint32_t	Bank1Data[N(ar5212Bank1_5413)];
40 	uint32_t	Bank2Data[N(ar5212Bank2_5413)];
41 	uint32_t	Bank3Data[N(ar5212Bank3_5413)];
42 	uint32_t	Bank6Data[N(ar5212Bank6_5413)];
43 	uint32_t	Bank7Data[N(ar5212Bank7_5413)];
44 
45 	/*
46 	 * Private state for reduced stack usage.
47 	 */
48 	/* filled out Vpd table for all pdGains (chanL) */
49 	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
50 			    [MAX_PWR_RANGE_IN_HALF_DB];
51 	/* filled out Vpd table for all pdGains (chanR) */
52 	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
53 			    [MAX_PWR_RANGE_IN_HALF_DB];
54 	/* filled out Vpd table for all pdGains (interpolated) */
55 	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
56 			    [MAX_PWR_RANGE_IN_HALF_DB];
57 };
58 #define	AR5413(ah)	((struct ar5413State *) AH5212(ah)->ah_rfHal)
59 
60 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61 		uint32_t numBits, uint32_t firstBit, uint32_t column);
62 
63 static void
64 ar5413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65 	int writes)
66 {
67 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5413, modesIndex, writes);
68 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_5413, 1, writes);
69 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5413, freqIndex, writes);
70 }
71 
72 /*
73  * Take the MHz channel value and set the Channel value
74  *
75  * ASSUMES: Writes enabled to analog bus
76  */
77 static HAL_BOOL
78 ar5413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
79 {
80 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
81 	uint32_t channelSel  = 0;
82 	uint32_t bModeSynth  = 0;
83 	uint32_t aModeRefSel = 0;
84 	uint32_t reg32       = 0;
85 
86 	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
87 
88 	if (freq < 4800) {
89 		uint32_t txctl;
90 
91 		if (((freq - 2192) % 5) == 0) {
92 			channelSel = ((freq - 672) * 2 - 3040)/10;
93 			bModeSynth = 0;
94 		} else if (((freq - 2224) % 5) == 0) {
95 			channelSel = ((freq - 704) * 2 - 3040) / 10;
96 			bModeSynth = 1;
97 		} else {
98 			HALDEBUG(ah, HAL_DEBUG_ANY,
99 			    "%s: invalid channel %u MHz\n",
100 			    __func__, freq);
101 			return AH_FALSE;
102 		}
103 
104 		channelSel = (channelSel << 2) & 0xff;
105 		channelSel = ath_hal_reverseBits(channelSel, 8);
106 
107 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108 		if (freq == 2484) {
109 			/* Enable channel spreading for channel 14 */
110 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112 		} else {
113 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115 		}
116 	} else if (((freq % 5) == 2) && (freq <= 5435)) {
117 		freq = freq - 2; /* Align to even 5MHz raster */
118 		channelSel = ath_hal_reverseBits(
119 			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120             	aModeRefSel = ath_hal_reverseBits(0, 2);
121 	} else if ((freq % 20) == 0 && freq >= 5120) {
122 		channelSel = ath_hal_reverseBits(
123 			((freq - 4800) / 20 << 2), 8);
124 		aModeRefSel = ath_hal_reverseBits(1, 2);
125 	} else if ((freq % 10) == 0) {
126 		channelSel = ath_hal_reverseBits(
127 			((freq - 4800) / 10 << 1), 8);
128 		aModeRefSel = ath_hal_reverseBits(1, 2);
129 	} else if ((freq % 5) == 0) {
130 		channelSel = ath_hal_reverseBits(
131 			(freq - 4800) / 5, 8);
132 		aModeRefSel = ath_hal_reverseBits(1, 2);
133 	} else {
134 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135 		    __func__, freq);
136 		return AH_FALSE;
137 	}
138 
139 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140 			(1 << 12) | 0x1;
141 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142 
143 	reg32 >>= 8;
144 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145 
146 	AH_PRIVATE(ah)->ah_curchan = chan;
147 	return AH_TRUE;
148 }
149 
150 /*
151  * Reads EEPROM header info from device structure and programs
152  * all rf registers
153  *
154  * REQUIRES: Access to the analog rf device
155  */
156 static HAL_BOOL
157 ar5413SetRfRegs(struct ath_hal *ah,
158 	const struct ieee80211_channel *chan,
159 	uint16_t modesIndex, uint16_t *rfXpdGain)
160 {
161 #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
162 	int i;								    \
163 	for (i = 0; i < N(ar5212Bank##_ix##_5413); i++)			    \
164 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5413[i][_col];\
165 } while (0)
166 	struct ath_hal_5212 *ahp = AH5212(ah);
167 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
168 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
169 	uint16_t ob5GHz = 0, db5GHz = 0;
170 	uint16_t ob2GHz = 0, db2GHz = 0;
171 	struct ar5413State *priv = AR5413(ah);
172 	int regWrites = 0;
173 
174 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
175 	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
176 
177 	HALASSERT(priv != AH_NULL);
178 
179 	/* Setup rf parameters */
180 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
181 	case IEEE80211_CHAN_A:
182 		if (freq > 4000 && freq < 5260) {
183 			ob5GHz = ee->ee_ob1;
184 			db5GHz = ee->ee_db1;
185 		} else if (freq >= 5260 && freq < 5500) {
186 			ob5GHz = ee->ee_ob2;
187 			db5GHz = ee->ee_db2;
188 		} else if (freq >= 5500 && freq < 5725) {
189 			ob5GHz = ee->ee_ob3;
190 			db5GHz = ee->ee_db3;
191 		} else if (freq >= 5725) {
192 			ob5GHz = ee->ee_ob4;
193 			db5GHz = ee->ee_db4;
194 		} else {
195 			/* XXX else */
196 		}
197 		break;
198 	case IEEE80211_CHAN_B:
199 		ob2GHz = ee->ee_obFor24;
200 		db2GHz = ee->ee_dbFor24;
201 		break;
202 	case IEEE80211_CHAN_G:
203 	case IEEE80211_CHAN_PUREG:	/* NB: really 108G */
204 		ob2GHz = ee->ee_obFor24g;
205 		db2GHz = ee->ee_dbFor24g;
206 		break;
207 	default:
208 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
209 		    __func__, chan->ic_flags);
210 		return AH_FALSE;
211 	}
212 
213 	/* Bank 1 Write */
214 	RF_BANK_SETUP(priv, 1, 1);
215 
216 	/* Bank 2 Write */
217 	RF_BANK_SETUP(priv, 2, modesIndex);
218 
219 	/* Bank 3 Write */
220 	RF_BANK_SETUP(priv, 3, modesIndex);
221 
222 	/* Bank 6 Write */
223 	RF_BANK_SETUP(priv, 6, modesIndex);
224 
225     	/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
226 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
227         	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 241, 0);
228         	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 238, 0);
229 
230 			/* TODO - only for Eagle 1.0 2GHz - remove for production */
231 			/* XXX: but without this bit G doesn't work. */
232 			ar5212ModifyRfBuffer(priv->Bank6Data, 1 , 1, 291, 2);
233 
234 			/* Optimum value for rf_pwd_iclobuf2G for PCIe chips only */
235 			if (AH_PRIVATE(ah)->ah_ispcie) {
236 				ar5212ModifyRfBuffer(priv->Bank6Data, ath_hal_reverseBits(6, 3),
237 						 3, 131, 3);
238 			}
239 	} else {
240         	ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 247, 0);
241         	ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 244, 0);
242 
243 	}
244 
245 	/* Bank 7 Setup */
246 	RF_BANK_SETUP(priv, 7, modesIndex);
247 
248 	/* Write Analog registers */
249 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_5413, priv->Bank1Data, regWrites);
250 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_5413, priv->Bank2Data, regWrites);
251 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_5413, priv->Bank3Data, regWrites);
252 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_5413, priv->Bank6Data, regWrites);
253 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_5413, priv->Bank7Data, regWrites);
254 
255 	/* Now that we have reprogrammed rfgain value, clear the flag. */
256 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
257 
258 	return AH_TRUE;
259 #undef	RF_BANK_SETUP
260 }
261 
262 /*
263  * Return a reference to the requested RF Bank.
264  */
265 static uint32_t *
266 ar5413GetRfBank(struct ath_hal *ah, int bank)
267 {
268 	struct ar5413State *priv = AR5413(ah);
269 
270 	HALASSERT(priv != AH_NULL);
271 	switch (bank) {
272 	case 1: return priv->Bank1Data;
273 	case 2: return priv->Bank2Data;
274 	case 3: return priv->Bank3Data;
275 	case 6: return priv->Bank6Data;
276 	case 7: return priv->Bank7Data;
277 	}
278 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
279 	    __func__, bank);
280 	return AH_NULL;
281 }
282 
283 /*
284  * Return indices surrounding the value in sorted integer lists.
285  *
286  * NB: the input list is assumed to be sorted in ascending order
287  */
288 static void
289 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
290                           uint32_t *vlo, uint32_t *vhi)
291 {
292 	int16_t target = v;
293 	const uint16_t *ep = lp+listSize;
294 	const uint16_t *tp;
295 
296 	/*
297 	 * Check first and last elements for out-of-bounds conditions.
298 	 */
299 	if (target < lp[0]) {
300 		*vlo = *vhi = 0;
301 		return;
302 	}
303 	if (target >= ep[-1]) {
304 		*vlo = *vhi = listSize - 1;
305 		return;
306 	}
307 
308 	/* look for value being near or between 2 values in list */
309 	for (tp = lp; tp < ep; tp++) {
310 		/*
311 		 * If value is close to the current value of the list
312 		 * then target is not between values, it is one of the values
313 		 */
314 		if (*tp == target) {
315 			*vlo = *vhi = tp - (const uint16_t *) lp;
316 			return;
317 		}
318 		/*
319 		 * Look for value being between current value and next value
320 		 * if so return these 2 values
321 		 */
322 		if (target < tp[1]) {
323 			*vlo = tp - (const uint16_t *) lp;
324 			*vhi = *vlo + 1;
325 			return;
326 		}
327 	}
328 }
329 
330 /*
331  * Fill the Vpdlist for indices Pmax-Pmin
332  */
333 static HAL_BOOL
334 ar5413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
335 		   const int16_t *pwrList, const uint16_t *VpdList,
336 		   uint16_t numIntercepts,
337 		   uint16_t retVpdList[][64])
338 {
339 	uint16_t ii, jj, kk;
340 	int16_t currPwr = (int16_t)(2*Pmin);
341 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
342 	uint32_t  idxL, idxR;
343 
344 	ii = 0;
345 	jj = 0;
346 
347 	if (numIntercepts < 2)
348 		return AH_FALSE;
349 
350 	while (ii <= (uint16_t)(Pmax - Pmin)) {
351 		GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
352 				   numIntercepts, &(idxL), &(idxR));
353 		if (idxR < 1)
354 			idxR = 1;			/* extrapolate below */
355 		if (idxL == (uint32_t)(numIntercepts - 1))
356 			idxL = numIntercepts - 2;	/* extrapolate above */
357 		if (pwrList[idxL] == pwrList[idxR])
358 			kk = VpdList[idxL];
359 		else
360 			kk = (uint16_t)
361 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
362 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
363 				 (pwrList[idxR] - pwrList[idxL]));
364 		retVpdList[pdGainIdx][ii] = kk;
365 		ii++;
366 		currPwr += 2;				/* half dB steps */
367 	}
368 
369 	return AH_TRUE;
370 }
371 
372 /*
373  * Returns interpolated or the scaled up interpolated value
374  */
375 static int16_t
376 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
377 	int16_t targetLeft, int16_t targetRight)
378 {
379 	int16_t rv;
380 
381 	if (srcRight != srcLeft) {
382 		rv = ((target - srcLeft)*targetRight +
383 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
384 	} else {
385 		rv = targetLeft;
386 	}
387 	return rv;
388 }
389 
390 /*
391  * Uses the data points read from EEPROM to reconstruct the pdadc power table
392  * Called by ar5413SetPowerTable()
393  */
394 static int
395 ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
396 		const RAW_DATA_STRUCT_2413 *pRawDataset,
397 		uint16_t pdGainOverlap_t2,
398 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
399 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
400 {
401 	struct ar5413State *priv = AR5413(ah);
402 #define	VpdTable_L	priv->vpdTable_L
403 #define	VpdTable_R	priv->vpdTable_R
404 #define	VpdTable_I	priv->vpdTable_I
405 	uint32_t ii, jj, kk;
406 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
407 	uint32_t idxL, idxR;
408 	uint32_t numPdGainsUsed = 0;
409 	/*
410 	 * If desired to support -ve power levels in future, just
411 	 * change pwr_I_0 to signed 5-bits.
412 	 */
413 	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
414 	/* to accomodate -ve power levels later on. */
415 	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
416 	/* to accomodate -ve power levels later on */
417 	uint16_t numVpd = 0;
418 	uint16_t Vpd_step;
419 	int16_t tmpVal ;
420 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
421 
422 	/* Get upper lower index */
423 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
424 				 pRawDataset->numChannels, &(idxL), &(idxR));
425 
426 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
427 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
428 		/* work backwards 'cause highest pdGain for lowest power */
429 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
430 		if (numVpd > 0) {
431 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
432 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
433 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
434 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
435 			}
436 			Pmin_t2[numPdGainsUsed] = (int16_t)
437 				(Pmin_t2[numPdGainsUsed] / 2);
438 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
439 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
440 				Pmax_t2[numPdGainsUsed] =
441 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
442 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
443 			ar5413FillVpdTable(
444 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
445 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
446 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
447 					   );
448 			ar5413FillVpdTable(
449 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
450 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
451 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
452 					   );
453 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
454 				VpdTable_I[numPdGainsUsed][kk] =
455 					interpolate_signed(
456 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
457 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
458 			}
459 			/* fill VpdTable_I for this pdGain */
460 			numPdGainsUsed++;
461 		}
462 		/* if this pdGain is used */
463 	}
464 
465 	*pMinCalPower = Pmin_t2[0];
466 	kk = 0; /* index for the final table */
467 	for (ii = 0; ii < numPdGainsUsed; ii++) {
468 		if (ii == (numPdGainsUsed - 1))
469 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
470 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
471 		else
472 			pPdGainBoundaries[ii] = (uint16_t)
473 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
474 		if (pPdGainBoundaries[ii] > 63) {
475 			HALDEBUG(ah, HAL_DEBUG_ANY,
476 			    "%s: clamp pPdGainBoundaries[%d] %d\n",
477 			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
478 			pPdGainBoundaries[ii] = 63;
479 		}
480 
481 		/* Find starting index for this pdGain */
482 		if (ii == 0)
483 			ss = 0; /* for the first pdGain, start from index 0 */
484 		else
485 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
486 				pdGainOverlap_t2;
487 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
488 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
489 		/*
490 		 *-ve ss indicates need to extrapolate data below for this pdGain
491 		 */
492 		while (ss < 0) {
493 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
494 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
495 			ss++;
496 		}
497 
498 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
499 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
500 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
501 
502 		while (ss < (int16_t)maxIndex)
503 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
504 
505 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
506 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
507 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
508 		/*
509 		 * for last gain, pdGainBoundary == Pmax_t2, so will
510 		 * have to extrapolate
511 		 */
512 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
513 			while(ss < (int16_t)tgtIndex) {
514 				tmpVal = (uint16_t)
515 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
516 					 (ss-maxIndex)*Vpd_step);
517 				pPDADCValues[kk++] = (tmpVal > 127) ?
518 					127 : tmpVal;
519 				ss++;
520 			}
521 		}				/* extrapolated above */
522 	}					/* for all pdGainUsed */
523 
524 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
525 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
526 		ii++;
527 	}
528 	while (kk < 128) {
529 		pPDADCValues[kk] = pPDADCValues[kk-1];
530 		kk++;
531 	}
532 
533 	return numPdGainsUsed;
534 #undef VpdTable_L
535 #undef VpdTable_R
536 #undef VpdTable_I
537 }
538 
539 static HAL_BOOL
540 ar5413SetPowerTable(struct ath_hal *ah,
541 	int16_t *minPower, int16_t *maxPower,
542 	const struct ieee80211_channel *chan,
543 	uint16_t *rfXpdGain)
544 {
545 	struct ath_hal_5212 *ahp = AH5212(ah);
546 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
547 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
548 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
549 	uint16_t pdGainOverlap_t2;
550 	int16_t minCalPower5413_t2;
551 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
552 	uint16_t gainBoundaries[4];
553 	uint32_t reg32, regoffset;
554 	int i, numPdGainsUsed;
555 #ifndef AH_USE_INIPDGAIN
556 	uint32_t tpcrg1;
557 #endif
558 
559 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
560 	    __func__, chan->ic_freq, chan->ic_flags);
561 
562 	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
563 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
564 	else if (IEEE80211_IS_CHAN_B(chan))
565 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
566 	else {
567 		HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
568 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
569 	}
570 
571 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
572 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
573 
574 	numPdGainsUsed = ar5413getGainBoundariesAndPdadcsForPowers(ah,
575 		freq, pRawDataset, pdGainOverlap_t2,
576 		&minCalPower5413_t2,gainBoundaries, rfXpdGain, pdadcValues);
577 	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
578 
579 #ifdef AH_USE_INIPDGAIN
580 	/*
581 	 * Use pd_gains curve from eeprom; Atheros always uses
582 	 * the default curve from the ini file but some vendors
583 	 * (e.g. Zcomax) want to override this curve and not
584 	 * honoring their settings results in tx power 5dBm low.
585 	 */
586 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
587 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
588 #else
589 	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
590 	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
591 		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
592 	switch (numPdGainsUsed) {
593 	case 3:
594 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
595 		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
596 		/* fall thru... */
597 	case 2:
598 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
599 		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
600 		/* fall thru... */
601 	case 1:
602 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
603 		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
604 		break;
605 	}
606 #ifdef AH_DEBUG
607 	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
608 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
609 		    "pd_gains (default 0x%x, calculated 0x%x)\n",
610 		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
611 #endif
612 	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
613 #endif
614 
615 	/*
616 	 * Note the pdadc table may not start at 0 dBm power, could be
617 	 * negative or greater than 0.  Need to offset the power
618 	 * values by the amount of minPower for griffin
619 	 */
620 	if (minCalPower5413_t2 != 0)
621 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower5413_t2);
622 	else
623 		ahp->ah_txPowerIndexOffset = 0;
624 
625 	/* Finally, write the power values into the baseband power table */
626 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
627 	for (i = 0; i < 32; i++) {
628 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
629 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
630 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
631 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
632 		OS_REG_WRITE(ah, regoffset, reg32);
633 		regoffset += 4;
634 	}
635 
636 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
637 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
638 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
639 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
640 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
641 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
642 
643 	return AH_TRUE;
644 }
645 
646 static int16_t
647 ar5413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
648 {
649 	uint32_t ii,jj;
650 	uint16_t Pmin=0,numVpd;
651 
652 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
653 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
654 		/* work backwards 'cause highest pdGain for lowest power */
655 		numVpd = data->pDataPerPDGain[jj].numVpd;
656 		if (numVpd > 0) {
657 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
658 			return(Pmin);
659 		}
660 	}
661 	return(Pmin);
662 }
663 
664 static int16_t
665 ar5413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
666 {
667 	uint32_t ii;
668 	uint16_t Pmax=0,numVpd;
669 
670 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
671 		/* work forwards cuase lowest pdGain for highest power */
672 		numVpd = data->pDataPerPDGain[ii].numVpd;
673 		if (numVpd > 0) {
674 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
675 			return(Pmax);
676 		}
677 	}
678 	return(Pmax);
679 }
680 
681 static HAL_BOOL
682 ar5413GetChannelMaxMinPower(struct ath_hal *ah,
683 	const struct ieee80211_channel *chan,
684 	int16_t *maxPow, int16_t *minPow)
685 {
686 	uint16_t freq = chan->ic_freq;		/* NB: never mapped */
687 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
688 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
689 	const RAW_DATA_PER_CHANNEL_2413 *data=AH_NULL;
690 	uint16_t numChannels;
691 	int totalD,totalF, totalMin,last, i;
692 
693 	*maxPow = 0;
694 
695 	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
696 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
697 	else if (IEEE80211_IS_CHAN_B(chan))
698 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
699 	else {
700 		HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
701 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
702 	}
703 
704 	numChannels = pRawDataset->numChannels;
705 	data = pRawDataset->pDataPerChannel;
706 
707 	/* Make sure the channel is in the range of the TP values
708 	 *  (freq piers)
709 	 */
710 	if (numChannels < 1)
711 		return(AH_FALSE);
712 
713 	if ((freq < data[0].channelValue) ||
714 	    (freq > data[numChannels-1].channelValue)) {
715 		if (freq < data[0].channelValue) {
716 			*maxPow = ar5413GetMaxPower(ah, &data[0]);
717 			*minPow = ar5413GetMinPower(ah, &data[0]);
718 			return(AH_TRUE);
719 		} else {
720 			*maxPow = ar5413GetMaxPower(ah, &data[numChannels - 1]);
721 			*minPow = ar5413GetMinPower(ah, &data[numChannels - 1]);
722 			return(AH_TRUE);
723 		}
724 	}
725 
726 	/* Linearly interpolate the power value now */
727 	for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
728 	     last = i++);
729 	totalD = data[i].channelValue - data[last].channelValue;
730 	if (totalD > 0) {
731 		totalF = ar5413GetMaxPower(ah, &data[i]) - ar5413GetMaxPower(ah, &data[last]);
732 		*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
733 				     ar5413GetMaxPower(ah, &data[last])*totalD)/totalD);
734 		totalMin = ar5413GetMinPower(ah, &data[i]) - ar5413GetMinPower(ah, &data[last]);
735 		*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
736 				     ar5413GetMinPower(ah, &data[last])*totalD)/totalD);
737 		return(AH_TRUE);
738 	} else {
739 		if (freq == data[i].channelValue) {
740 			*maxPow = ar5413GetMaxPower(ah, &data[i]);
741 			*minPow = ar5413GetMinPower(ah, &data[i]);
742 			return(AH_TRUE);
743 		} else
744 			return(AH_FALSE);
745 	}
746 }
747 
748 /*
749  * Free memory for analog bank scratch buffers
750  */
751 static void
752 ar5413RfDetach(struct ath_hal *ah)
753 {
754 	struct ath_hal_5212 *ahp = AH5212(ah);
755 
756 	HALASSERT(ahp->ah_rfHal != AH_NULL);
757 	ath_hal_free(ahp->ah_rfHal);
758 	ahp->ah_rfHal = AH_NULL;
759 }
760 
761 /*
762  * Allocate memory for analog bank scratch buffers
763  * Scratch Buffer will be reinitialized every reset so no need to zero now
764  */
765 static HAL_BOOL
766 ar5413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
767 {
768 	struct ath_hal_5212 *ahp = AH5212(ah);
769 	struct ar5413State *priv;
770 
771 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
772 
773 	HALASSERT(ahp->ah_rfHal == AH_NULL);
774 	priv = ath_hal_malloc(sizeof(struct ar5413State));
775 	if (priv == AH_NULL) {
776 		HALDEBUG(ah, HAL_DEBUG_ANY,
777 		    "%s: cannot allocate private state\n", __func__);
778 		*status = HAL_ENOMEM;		/* XXX */
779 		return AH_FALSE;
780 	}
781 	priv->base.rfDetach		= ar5413RfDetach;
782 	priv->base.writeRegs		= ar5413WriteRegs;
783 	priv->base.getRfBank		= ar5413GetRfBank;
784 	priv->base.setChannel		= ar5413SetChannel;
785 	priv->base.setRfRegs		= ar5413SetRfRegs;
786 	priv->base.setPowerTable	= ar5413SetPowerTable;
787 	priv->base.getChannelMaxMinPower = ar5413GetChannelMaxMinPower;
788 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
789 
790 	ahp->ah_pcdacTable = priv->pcdacTable;
791 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
792 	ahp->ah_rfHal = &priv->base;
793 
794 	return AH_TRUE;
795 }
796 
797 static HAL_BOOL
798 ar5413Probe(struct ath_hal *ah)
799 {
800 	return IS_5413(ah);
801 }
802 AH_RF(RF5413, ar5413Probe, ar5413RfAttach);
803